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ABSTRACT 

SENSITIVE DETECTION OF NOVEL EFFECTS AND CHARACTERISTIC 
SIGNAL STRUCTURE OF HIGHER HARMONIC DETECTION IN 

WAVELENGTH MODULATION SPECTROSCOPY 

Mohammad Amir Khan 
Old Dominion University, 2009 
Director: Dr. Amin N. Dharamsi 

We discuss experimental and theoretical results of absorption features of the oxygen A-

band transitions when synchronous detection at higher harmonics using Wavelength 

Modulation Spectroscopy (WMS) is performed. A key aspect of structure higher 

harmonic detection is discussed. It is shown that the signal magnitude and spectral 

locations of turning points and zero crossings of WMS signal demonstrate key signatures 

of collision dynamics of gaseous specie parameters and lineshape parameters. In addition, 

it is also shown that these salient features provide sensitive probes for any changes in the 

gas environment or lineshape parameters. We discuss several advantages and subtle 

physical effects that can be probed by higher order detection. As an example, we show 

resolution of several overlapping congested line spectra with highly disparate oscillator-

strength. Optically thick regime of oxygen A- band transitions are probed by WMS and 

shown to exhibit distinctive features that are reflected in higher harmonic signals. These 

experimental results are the first ones to examine optical pathlength saturation by WMS. 

These effects greatly depend on the lineshape and gas parameters and experimental 

variables. The rich structure of WMS signals, especially at higher detection orders, is 

central to the technique's advantages in resolving these subtle effects. We show greater 

sensitivity of turning points and zero crossings with lineshape or gas parameters. We also 

show that in certain situations the sensitivity could be significant especially in the wing 



region of the profile where the absorption signal is low. 

We discuss two approaches to quantify advantages of higher harmonic detection and 

structure (number of zero crossings and turning points). The method is based on 

statistical analysis and principles of Shannon's classical information theory, where the 

precision in Wavelength Modulation Spectroscopy (WMS) and measurements with 

molecular species is quantified utilizing information theory. 

We show that there is an optimal harmonic detection order that yields the maximum 

information in presence of distortion and noise. Distortion and noise effects are treated 

separately. Particular cases of distortion i.e. modulation broadening, pressure broadening, 

pathlength saturation and Fabry - Perot fringing are discussed, and their relation to 

information in the measurement of lineshape parameters is outlined. It is shown that the 

optimal harmonic order can be understood by considerations of complexity in the signal 

structure rather than those of conventional Signal to Noise ratios. It is also shown that 

under certain experimental conditions higher detection orders ( N > 5 ) yield precise and 

optimal results in estimation of lineshape parameters in a given noise environment. The 

merit of optimal harmonic detection order is based on maximum information (in bits) that 

can be extracted at a particular harmonic signal in the presence of noise. 
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CHAPTER 1 

INTRODUCTION 

Wavelength Modulation Spectroscopy (WMS) [1-10] is a sensitive, convenient, versatile 

and cost-effective method for monitoring gaseous species and for obtaining quantitative 

information about molecular collision dynamics through precise measurements of the 

absorption lineshape function. In nearly every field of technology there is a distinct need 

for some type of characterization of a gaseous medium. Some examples where such a 

characteristic is needed include: identifying a particular species within the atmosphere, 

determining and controlling reactants within a processing environment, and analyzing the 

velocity and temperature distribution. The technique provides a sensitive probe of 

molecular species due to its rich structure (derivative like features with turning points and 

zero crossings) of the harmonic signals. Even slight perturbations in the lineprofile can be 

measured precisely and, because these perturbations are directly linked to changes in 

physical conditions of the sampled target, one obtains very precise and non-intrusive 

measurements of these parameters. Over the last few years, we have extended this 

technique to the regime of higher harmonic detection [6-10] and demonstrated that, in 

many cases, one obtains a higher precision by using an optimal harmonic detection order 

higher than the commonly used second harmonic. Experimental and theoretical results 

have been presented. 

The style model used in this dissertation is Applied physics B. 
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1.1 EXPERIMENTAL OBSERVATIONS: OPTICAL PATHLENGTH 

SATURATION 

The dissertation outlines metric of precision measurements of higher order harmonic 

detection in Wavelength Modulation Spectroscopy (WMS) experiments. In the first part 

of the dissertation (Chapters-2 and 3) we show experimental results that demonstrate the 

advantages of higher detection order and optimal detection based on physical parameters 

of gas and experimental variables. These results are discussed in Chapters 2 and 3. We 

show that higher detection order facilitates the probing of subtle features of the direct 

absorption signal that may not be apparent in direct or conventional aspiration 

spectroscopy measurements or even at lower detection orders. We further investigate the 

effects of gas environment, collision dynamics, lineshape function and experimental 

variables in measurements of these effects. Chapter 2 lays the theoretical foundation of 

WMS signals and mathematical methods [11, 12] in the literature that have been used to 

model the signals. We further discuss different types of lineshape functions that are 

commonly used for modeling the experimental results. In summary, the chapter describes 

theoretical developments, mathematical theory and modeling of WMS signals. In Chapter 

3 we discuss experimental results, particularly the resolution of several overlapping line 

transitions of Oxygen A-band spectrum and detection [7, 13] order that facilitates 

accurate modeling and estimation of lineshape parameters e.g. Doppler and collision 

linewidths. Further, in this chapter we also discuss the experimental results of optical 

pathlength saturation in WMS and the measurement of saturation parameters. Such 

measurements in an optically thick environment using WMS are reported here for the 

first time. In the concluding section of this chapter we discuss a key aspect of 



3 

experimental results i.e. the growth of weak lines at higher detection order and optical 

pathlength saturation effects [15, 16] are investigated. 

1.2 QUANTITATIVE METRICS OF MEASUREMENT OF LINESHAPE 

PARAMETERS 

The experimental observations indicate an optimal detection order for estimation of 

lineshape or gas parameters. In the second part of this thesis (Chapters- 4, 5 and 6) we 

develop a criterion that quantifies structure in WMS signals and advantages of greater 

structure in estimating lineshape or gas parameters. In chapter 4 we develop the concept 

of structure and distortion/noise effects that inhibit precise measurements of these 

parameters. A key idea to the aspects of structure is to first recognize that the WMS 

technique facilitates investigation of sensitive features of absorption signal by probing 

variations in the lineshape profile. These variations are exhibited as zero crossings and 

turning points, which are key markers in the far wing structure of the lineshape profile, 

thus demonstrating the WMS technique as a sensitive probe to the lineshape parameters 

[9, 10, 14]. 

In the following Chapter (5) we discuss practical limitations that lead to imprecision in 

WMS signals and optimum detection order in presence of noise or distortion. These 

effects; distortion (systematic aberration in measurements) and noise [17, 18] (a statistical 

irreversible process that lead to uncertainties in measurements) are considered separately. 

Consequently, two approaches are developed to quantify the advantage of higher order 

detection in presence of the distortion and noise in measurements. The first approach is 
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based on deviation of residuals [14, 19, 20] mainly at zero crossings and turning points of 

WMS signals. The method considers mismatches in theory and experiment that result due 

to uncertainties in a lineshape parameter. It is shown that mismatches are more prominent 

at higher orders thus enhancing the precision of measurements when such mismatches are 

minimized. The second approach is based on Shannon's formulation [21-24] of 

information theory and its connection to measurement of lineshape parameters using 

aspects of structure in WMS signals. 

1.3 STRUCTURE IN WMS SIGNALS 

All measurements probe changes in acquired signals. In spectroscopy the measurements 

are based on changes in photon intensity with respect to wavelength. It is the signal 

contrast from a reference that gives information about the parameter being measured. A 

signal that provides greater contrast from point to point in phase-space is easier to 

measure, even when it may not exhibit the greatest cumulative signal to noise ratio 

(SNR). In such cases, conventional SNR is not the most suitable metric for optimizing the 

measurement. For example, a signal with constant slope reveals less information (about 

its inherent physical process) compared to a signal with varying slopes or a signal with a 

number of turning points. This contrast (fractional change in signal magnitude) of a 

signal with respect to its background enables accuracy in measurements and higher 

precision in estimation of its distinct parameters. For example, suppose in any experiment 

one obtains an experimental spectral profile of direct and harmonic signals and matches it 

with a theoretical model to estimate a lineshape parameter, say the linewidth. Any finite 

amount of uncertainty in linewidth estimation, due to mismatches in theoretical and 
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experimental results yields greater mismatch at higher harmonics than the lower ones. 

This result is also shown in Chapter 5 which demonstrates larger deviation (of fractional 

residuals between the experiment and theory) due to greater structure in WMS signals 

[19, 20]. To illustrate this point, it is shown that uncertainty in linewidth of 5 percent the 

difference between the theory and experiment may not be noticeable in direct absorption 

signals or lower detection orders. However, at higher harmonics e.g. N > 4, these 

differences readily appear in greater contrast especially as mismatches at zero crossings 

and turning points. Therefore, even a small change in the lineshape parameters can cause 

appreciable effects on higher harmonic signals, which can be detected easily. Therefore, 

in a harmonic signal the locations of zero crossings and the turning points facilitate a very 

sensitive probe of lineshape parameters. 

1.4 INFORMATION THEORY 

The analysis of WMS signals based on information theory [21, 22] regard zero crossings 

and turning points and their combination as key markers [23, 24]. Any uncertainty in 

determination of these features in the presence of noise leads to an increase in cumulative 

uncertainty (in the estimation of lineshape parameters), while removal of these 

uncertainties extracts information. The Theoretical formulation of entropy in 

measurements is obtained from probabilistic distribution of zero crossings and turning 

points. We show that the entropy is directly proportional to signal magnitude to noise 

power which in certain situations, by increase in modulation index, yields information. 

Theoretical development [25, 26] of this approach, utilizing combinatoric analysis of zero 
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crossings and turning points, yields the optimal order of detection of WMS signals in 

presence of a noise. 

The combinatoric availability of turning points or zero crossings to estimate lineshape 

parameters allows one to apply aspects of information theory [21-26]. Therefore, one can 

primarily extract the information by analyzing spectral locations and signal magnitude of 

zero crossings and turning points instead of a full WMS spectrum. In any Nth harmonic 

WMS signal there are N zero crossings and N+l turning points. Therefore, higher 

harmonics provide more choices (or combinations of pairs of zero crossing or turning 

points) to estimate the lineshape parameter. For example, the linewidth of the profile can 

be obtained using combinations of pairs of zero crossings or turning points. For any Nth 

detection order there are, + Ci, + C2 + C2N+1 possible combinations to compute 

the linewidth. Further, if the measurements of zero crossings and turning points are 

precise, then, in principle, each combination of 2N+1Q ( i = 1,2 ...., 2N+1 ) pairs will 

yield the same linewidth values. However, uncertainties in the measurements will lead to 

a probability distribution of turning points and the linewidth obtained from them. This 

uncertainty, due to the instrument imprecision is quantified using information theory. The 

advantage of higher harmonic measurements is demonstrated by showing that more 

information can be extracted at higher N's, when the precision is changed by a fixed 

amount. Since the signal magnitude decreases with the increase in harmonic order, this 

advantage, quantified in bits, is not a monotonically increasing function (with respect to 

N). Instead, it shows an optimal detection harmonic order. 

The methods and results obtained in the formulation of this dissertation lay out the future 

groundwork for a vital advantage (quantified in bits) of weak line resolution of 
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interference from overlapping lines. It is proposed that for particular limitations of the 

experimental apparatus; there is a finite amount of information that can be transmitted 

from the probe laser via information source (molecular specie or lineshape) to the 

detection electronics. This approach is based on Shannon's information-theoretic 

formulation of a channel with Gaussian noise. The method developed is applied to the 

experimental results of Oxygen A-band transitions and measurement of subtle features 

using higher harmonic detection. 

In summary, there are two important aspects of WMS signals which are used in 

development of this theory: Firstly, zero crossings and turnings points of any Nth 

harmonic provide a sensitive probe, and secondly, the combinatory numbers of the 

structure provide greater choices to estimate a lineshape parameter. Concepts of 

information theory combine the two aspects and quantify the advantages of higher 

harmonic detection. 
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CHAPTER 2 

THEORETICAL BACKGROUND 

Modulation spectroscopy is a variant of absorption spectroscopy, where the signals 

obtained from this technique are a manifestation of variations of the absorption signal 

obtained from a modulated probe laser. Due to their low cost, tunability range (where 

many gas molecules have vibrational-rotational transitions.) and compactness, such lasers 

are currently the best candidate for modulation spectroscopy [1-4], also referred as 

tunable diode modulation spectroscopy. With the advent of Vertical Cavity Surface 

Emitting Lasers (VCSEL) and quantum cascade lasers and their tremendous range of 

tunability from mid infra-red to far infra-red regions of the electromagnetic spectrum, the 

field of absorption spectroscopy and its variants such as, modulation spectroscopy, cavity 

enhanced spectroscopy are becoming increasingly popular in research and fundamental 

science . 

There are several experimental techniques currently used to modulate the frequency of a 

diode laser. Semiconductor lasers can easily be frequency modulated via injection current 

and laser temperature. In general, depending on the method, the frequency modulation is 

accompanied with residual amplitude modulation. 

In this chapter we study mathematical description of WMS signals. We derive 

mathematical expressions of wavelength modulation spectroscopy signals utilizing two 

most common mathematical methods i.e. Myers - Putzers [5] and Wilsons [6] 

formulation. Myers - Putzers method involves a combination of Taylor's series and 
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Fourier series expansion, whereas Wilsons approach is direct integral of Fourier 

components of the absorption signal. 

2.1 MATHEMATICAL EXPRESSIONS FOR WMS SIGNALS 

In an experiment where the probe - usually a single mode tunable diode laser is frequency 

modulated and the absorbed signal is demodulated using synchronous detection. The 

signal thus obtained is given by Fourier harmonics of the modulated probe. The 

harmonic signals have derivative like features that are characteristics of the transition 

lineshape profile. 

In the absorption experiment, such as the one under consideration one obtains the usual 

equation describing the attenuation of intensity in an infinitesimal pathlength dz, i.e. 

dl/dz = -mrg(y)l (2-1) 

Here n is the density, & is the integrated absorption cross-section, L is the length of the 

absorber. Hence, the absorption signal of a sample normalized with respect to the initial 

intensity of the probe intensity IQ, (incident laser intensity) is, 

A/ -
— = 1 - exp {-n(TLg(v)} (2-2) 

•'o 

For weak absorption line, the Beer-Lambert relation yields, 

I*I0{\-nog(v)L) (2-3) 

Hence, the signal measured in a phase sensitive apparatus, using harmonic detection 

originates from, 

S = I-I,*-I0nog(v)L (2-4) 
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In a WMS experiment [2-4] a modulated laser source is used to probe an absorber, 

typically gaseous specie. The absorbed signal at the photodetector is channeled to a 

synchronous phase sensitive detection or a Lock-in Amplifier. The reference phase of 

modulated laser beam is synchronous to the demodulation frequency of the lock-in 

amplifier. The absorption signal, with imposed modulation on it, is then demodulated at 

multiples (If, 2f, 3f....) of the input modulation frequency. 

A probe, modulated at frequency, a>m with amplitude /? (in Hz), can be expressed as, 

/ (v + pcos{cOmt)). This is a periodic function of comt and can be expanded in form of 

Fourier series. 

2.1.1 Fourier components of modulated absorption signal 

When, a modulated laser beam is swept slowly across the absorption feature, the effective 

normalized absorption signal recorded by the detector is therefore: 

g(v)8(vL + p sin(a>mO = g(vL + p sinfo.0 = f(<p) (2-5) 

Here (p denotes the sinusoidal time variation, modulation signature on the probe laser, and 

on the absorbed signal. 

Any sinusoidal signal, y = f(v + fi cos 0), can be expressed in form of Fourier series 

expansion given by; 

y = -9- + YJ(akcosk<j> + bksmk<t>) (2-6) 

2 *=i 

It has been shown by Meyers and Putzers [5] that Mi component of the complex Fourier 

series off(q>) can be written as, (a complete description of the above formulations is given 

in Appendix A.) 
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a 2Y-1 {P_fv+k
{1V+^ 

V V j 
(2-7) 

Therefore, a pure frequency modulation (ignoring amplitude modulation) Nth harmonic 

order signal is given by: 

SN = -naLI0(-l)
[N]/2f(P-)2V+N ! g2V+N(v) (2-8) 

0 ife, 2 V\(V + N)\ y ) 

Here, g(v) is the lineshape profile and g2V+N(v) are the (2F+iV)th derivative of the 

lineshape function. 

If the lineshape function is a Gaussian, its derivatives [4] can be expressed as series: 

p. 1 INV2 2k 

8o <y)=-7=,—^ Z Cn,A^o) (v-Vo)^ 2 4 (2-9) 
y/K ( A V 0 ) k=0 

Here, AVD is the Doppler linewidth (Full width) and vo is the linecenter of the absorption 

lineshape profile. A complete description of the co-efficients C2k, N is given in Appendix 

B. In summary the composite absorption signals from Eqns. (2-8) and (2-9) can be 

expressed as, 

_ 0 » o 1 , [1V+N}I2 2* 
e w „^-T r r n W 2 _ 6 _ W " \ 2 ^ + A ' l X"1 n / A . , ^ u. ,. \2v+N-2k 

S =-n*LI0(-l) - ^ g ( T ) _ — _ ^ J ] C 2 , _ ( A v . ) (v-v0) t=0 

(2-10) 

or 

(2-11) 

Further simplifying the above expression, 

N-2k 
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(2P+AT) 

/ o \ [2V+N]/2 _ 
2V+N-2k 

toD^cfa* V\(V+N)\{(AvD)) U ' AVD 
(2-12) 

Substituting modulation index, m = -=*=— and the normalized frequency, x = — ° , one 
(Avfl) AVD 

obtains, 

1 iiv.N) [2F+iV]/2 — (T J ^ 1 1 (2C+AT) l ^ ^+AJ /2 

,SA?=-«o-Z/0(-l) [A' ] /2=^T=y(-)2F+iV (m) y C 
2V+N-2k 

2k,2V+NX 

(2-13) 

The above equation is the WMS signal with Gaussian lineshape function. Features of the 

signals are studied in the following section. 

2.1.2 Derivative like features of WMS signal 

It can be seen from Eqn. (2-8) that WMS signals have derivative like features of the 

lineshape function. In a typical Nth order WMS signal there are N+l zero crossings and 

N turning points. The odd harmonics have zero crossing at the linecenter whereas the 

even harmonics have a turning point at the linecenter, see Fig.2.1 below. The Figure 

shows the conventional absorption signal or the direct signal corresponding to N=0, and 

first (N=l) and second (N=2) order WMS signals. All the odd harmonics have odd 

symmetry with zero crossings at line center, vo, which can be exploited in measurements 

of transition line centers. Since each (N+l)th harmonic is effectively a derivative of its 

previous Nth signal, the locations of turning points and zero crossings of Nth are the zero 

crossing and turning point of its subsequent (N+l) harmonic order. The WMS signal 

probes the variations in the lineshape profile; therefore, the sensitivity at the locations of 
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zero crossing and turning point increases with the detection order. The last point to 

consider is that the signal magnitude decreases as the detection harmonic order increases. 

This decrease in signal magnitude must be out weighed by the advantages of using 

wavelength modulation spectroscopy with higher harmonic detection. Although, the 

signal power decreases with the detection order [4], one can find optimum harmonics for 

measurement of a lineshape parameter. This also is central to this dissertation, where the 

aim is to measure lineshape parameters based on the structure (or number of turning 

points and zero crossings). The signal magnitude and spectral locations of these salient 

points depend on the experimental controls e.g. the frequency modulation index, the 

amplitude modulation, and the lineshape or gas parameters such as the linewidth, the 

lineshape function, absorption cross-section, density etc. 

Conventional "direct" absorption N=l N=4 

3 

l e i 

6 
m 

A 
/ N 

J 

\ 
\ \ \r 

Tuning Ramp Voltage (Frequency) Wavelength scan —'-

Fig. 2.1. A typical absorption signal and its 1st and 4th detection harmonic signals. N =1 has one 
zero crossing and two turning points. N=4 has four zero crossings and five turning points. 

Semiconductor lasers such as VCSELs can be tuned and modulated by both temperature 

and injection current. When these lasers are modulated by the injection current, both the 

wavelength and intensity of the laser beam vary with the current. Therefore, amplitude 

modulation occurs simultaneously with the wavelength modulation. To account for the 

wavelength and amplitude modulations, a modification in direct modulation signal is 

required. As mentioned earlier the frequency modulation is often accompanied with a 
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distortion due to amplitude modulation. A detailed theory and mathematical formulation 

of the amplitude modulation is discussed in reference [4]. 

2.1.3 Dependence on modulation index 

It can be seen that the factor m2V+N controls the number of terms required for the 

convergence of the above series. If m « 1, only the first term of the above series is 

required. This corresponds to derivative spectroscopy. For m » 1, higher order terms of 

the series are required which leads to broadening [6] of the signals. 

A similar series expression can be obtained for a Lorentzian lineshape [4]. However, 

there is no analytical series expression to evaluate derivatives of the Voigt function. 

(Appendix B shows series formulation of the Voigt function.) 

In Eqn. (2-13), the ratio m - /31 Av is the so-called modulation index and is an important 

parameter in modulation spectroscopy signals. The parameter determines the structure of 

the electric field that samples the absorption lineshape transition. Generally, in the 

literature, the modulation index is expressed as M = PI (Om. In frequency modulation 

spectroscopy, M is generally small because the modulation frequency is large {com » 

Av). The sidebands generated by the modulation in this case are spaced far enough apart 

that only a few sidebands sample the absorption feature. Thus, any changes in ft or com 

affect the shape of the signal. In wavelength modulation spectroscopy, however, M is 

very large. Consequently, the absorption feature is sampled by a dense spectrum of 
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sidebands, all separated by (Dm. Because the modulation frequency is much less than the 

transition width (com«Av), neighboring side bands probe the transition at roughly the 

same spectral frequency. When detected with a square-law detector, this results in a 

signal profile that takes a derivative shape. In wavelength modulation, the spacing of the 

side bands is dense enough that moderate changes in com do not affect the signal shape. 

Therefore, it is common in wavelength modulation spectroscopy to redefine the 

modulation index as the ratio of peak frequency deviation to profile width, m = p I Av , 

because even slight changes in this parameter affect the shape of the signal. Throughout 

this study, we have adopted the above definition of modulation index. 

2.2 WMS SIGNALS AND LINESHAPE PROFILES 

There are several lineshape profiles that have been used to model the transition 

distribution of absorption lines. The lineshape profiles encode physics of broadening 

mechanisms of absorbing or emitting transitions. As mentioned in the previous section 

the shape of WMS signals among other variables depend on the lineshape profile. 

Throughout our analysis we consider three most commonly used lineshape profiles i.e., 

Doppler broadened (or a Gaussian function), Collision broadened (or a Lorentzian 

function) and a Voigt (convolution of Doppler and Collision broadened profiles) [7-11]. 

For illustration purposes, due to the ease of analytical calculations and faster 

computational algorithms, we have used the Doppler lineshape at several occasions in 

this dissertation. However, for experimental models and fitting, we have used the Voigt 

lineshape profile. The choice of Voigt lineshape profile was also due to the dynamics of 
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the collision processes under investigation, which in most of our experimental conditions 

was best related to the Voigt profile. 

2.2.1 Doppler and Lorentzian Profiles 

Doppler broadening is the inhomogeneous broadening of the linewidth of atomic 

transitions caused by the random movements of atoms. For example, if the atoms have a 

thermal velocity distribution with temperature T, the linewidth resulting from the Doppler 

'2£rin2N"" 
effect is AvD = 2 

Mc2 v0; where VQ is the mean optical frequency and m is the mass 

of the atoms. The Doppler broadening, e.g. for atoms in a gas cell is typically much larger 

than the natural linewidth. 

Doppler broadening can place severe constraints on precise spectroscopic measurements. 

However, it can be eliminated in various ways, e.g. by reducing the temperature (e.g. 

with laser cooling) or by employing a measurement scheme which is intrinsically 

insensitive to Doppler broadening, such as Doppler-free saturation spectroscopy or the 

use of two-photon absorption with counter propagating beams. 

The mathematical expression of the Doppler broadened profile is given by; 

SD(V)= / - - — e x P 
V7T AVD 

' - ( v - v o ) 2 ' (2-14) 
Av0 

f~>lrT^~>\1'2 f\ 1 rj-i -I ^ 

here the Doppler linewidth is, AvD = 2 — v0, and, the normalized linewidth is 
^ Mc 

AVr 
expressed as , AvD = ,—— = Av̂ , /1.66 

V41n2 
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The Doppler profile assumes that the lifetime of a transition is infinite, i.e., the oscillation 

is always present. Additionally, the Doppler profile neglects phase changing collisions, 

i.e., the wave train is continuous without interruption. In a gas at low pressure with few 

collisions, the Doppler profile is a good approximation of the absorption profile. 

However, as pressure and collisions increase, phase changing collisions have to be 

considered. The classical damped electron oscillator given by Siegman [9] provides an 

excellent model for a wave train with a finite period. Not only does this model give 

insight to absorption, it also models the phase shift associated with the change of index of 

reflection. 

The Lorentzian lineshape function is given by, 

gL(y)=~(—,2 ! A n,2 (2-i5) 

In (v-v0) +(Avco///2) 

its collision linewidth is expressed as, Avco// = nacollV . Here n is the density, acon is the 

collision cross-section and V is the velocity of atoms. 

In situations where experiments are carried out at high atmospheric pressure or density of 

the molecules, collision broadening is dominant: whereas, at low pressures Doppler 

broadening plays an important role. 

2.2.2 Voigt Profile 

If the dephasing collisions and the Doppler effect discussed above are considered 

statistically independent, then the Lorentzian profile can simply replace the delta function 

in the Doppler equation before integrating over the velocity resulting in the Voigt line 
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shape, 

gv(v) = \ 

Av„ 

m Y* 
2nkT «J-oo 

2 \ 

vnV 
(v0-v-^y + 

Av„ V xexp 
mVz 

2kT 
\dV. (2-16) 

In other words, in most physical situations the gas collision dynamics is not solely 

Doppler or Collision broadened but the combination of the two. Therefore, the profile is 

expressed as convolution of the Doppler and Collision lineshape functions. Following 

from the above equation, a standard Voigt function is given by, (2-17) 

1 b p> dye~y 

(2-17) 

Here 5vo is collision half width (28vo = Avco//), and x is the normalized 

frequency, x = , and the linewidth parameter is, b - co" 
Avr 2Avr 

2.2.3 The 'b' parameter: Doppler and Collision broadened regimes of Voigt 

The range of 'b ' parameter of a Voigt profile indicates dominance of collision or Doppler 

broadened phenomena in the gas dynamics. For example, the absorption at the linecenter, 

v = vo (x = xo) can be expressed as, 

gv(x0) = be» erfc(b)/(n,lzAvcoll) (2-18) 

Function gy(xo) depends strongly on the ratio of the linewidths for collision and Doppler 

broadening or parameter 'b ' and its complementary error function, Fig. 2.2. When the 

collision width Avco// is much greater than the Doppler width Av^ , i.e. b » 1 then 
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gv(x0)»l/ TTAVCO// , which is the case of pure collision broadening. Whereas, in the limit 

in which the Doppler width is much greater than the collision broadened width, i.e. b « 

1 then gv(x0) « 1/ nU2 &vD , which is the case of pure Doppler broadening. 

(eb)2erfc(bH 

b parameter > 

Fig. 2.2. Absorption signal (at the linecenter) and the b parameter of the Voigt profile. 

For the general case of arbitrary values of both the parameter b and the normalized 

frequency x, the lineshape function g(xv) given by Eqn. (2-19) must be evaluated from 

tabulated values of the more complicated function 

dye 
= *Re 

(x+yy+tf b 

dye -S \ 

K ^x+y+ib 
n. = — Rew(x+ib) (2-19) 

Here, w is the error function of complex argument. Numerical values are tabulated in 

various mathematical handbooks [12, 13]. 

2.2.4 Profile Narrowing 

Although the Voigt incorporates the basics for the transition line shape in a gas, it lacks 

the elements to explain the small deviations detected in a precise measurement. For 
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example, Rautian and Sobel'man [14-16] developed a line shape that incorporated a 

narrowing of the Voigt profile in a dense medium, Dicke [16] narrowing. As discussed in 

the derivation of the Voigt profile, collisions are not considered to have any affect on 

molecular velocity; therefore, the contribution of the Gaussian line shape to the Voigt is 

not altered by collisions. However, the inclusion of velocity-changing collisions, defined 

as collisions that change the velocity of the molecule but not the phase, can change the 

measurable velocity distribution. 

Physically, it is hard to visualize the Doppler profile narrowing discussed as by Rautian 

and Sobel'man. For example, their hard collision model considers that after every 

collision, the memory of the velocity prior to the collision is lost; and its velocity is 

redistributed in the Maxwellian distribution. Therefore, the instantaneous velocity 

distribution of the molecules is always Maxwellian. If the energy of the gas in the 

medium remains the same, it is counter intuitive to expect a narrowing of Doppler profile 

due to velocity changing collisions. Varghese and Hanson [11, 17] present an extreme 

case to illustrate this phenomenon qualitatively. Consider a dense medium where a 

molecule is continuously involved in velocity changing collisions, i.e., the molecule 

conducts a random walk in velocity space. If the bulk gas is at rest, the mean velocity 

will approach zero even though the instantaneous velocity distribution is Maxwellian. 

Therefore, the value of measured velocity will depend on the time it takes to make the 

measurement. Spectrally, velocity in the line of sight results in a Doppler shift, 

a)0(l + vz/c); therefore, the velocity is measured over the period of a wave. In this 

extreme case, if there are enough collisions during one period of the fundamental 

frequency, i.e., if the path is much less than a wavelength, 2nL « X, where L equals the 
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average velocity times the time between collisions, then the velocity measured will be the 

mean velocity of the molecule or in the case of a random walk, zero. However, in the 

other extreme, if collision were such that the path is much longer than the wavelength, 

2nL » A, then velocity changing collision will just interrupt the wave train, broadening 

the Lorentzian part of the line width. Rautian and Sobel'man [14, 15] derived the 

following equation to show this effect, 

/(©) = — Re 
K 

W(v)dv 
1 Ao) .. 
v + i(co0 - co - A -®ov. 

i-4 WM{v)dv 

Aco co0v 
v + i(co0 -co-A —) 

(2-20) 

where W(v) is the velocity distribution and v is the velocity changing collision 

frequency. The following changes were made to Rautian and Sobel'man's original 

equation for notation consistency: substituting A®/2 = T and co0/c = k, and co0 -co was 

substituted back into the equation for co. Note, when the velocity distribution is 

Maxwellian, the real part of the numerator is a Voigt profile with the Lorentzian width 

equal to Aco 12 + v . However, the denominator results in narrowing. If the velocity 

changing collision frequency is small, i.e. much less than the Doppler width, the second 

term denominator of the equation is negligible, and the line shape is a Voigt. However, 

in the other extreme, when the velocity changing collision frequency is much larger than 

the Doppler width, o » AcoD, the second term in the denominator can approach one at 

line center, i.e., the second term of the denominator is simply an inverted Voigt weighted 

by the velocity changing collision frequency. When normalized, the center is larger than 
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the Voigt's and narrowed on the sides; however, the wings are larger due to the inclusion 

of the velocity changing collision frequency in the Lorentzian portion of the Voigt. 

Varghese and Hanson [11] replaced these computational difficult integrations of the 

Voigt with the error function resulting in 

w(x\y + Q 
NG(x',y,g) = Rc (2-21) 

\-4nqw(x',y + C,)_ 

where C, is the dimensionless value of the velocity-changing collision frequency divided 

by the Doppler width. Note the change of variables in the error function from the 

definition used in the definition of the Voigt. The deviation from the unperturbed 

radiation frequency, x', remains the same, but the velocity-changing collision frequency 

has been added to the collisional broadening frequency, y + C, . 

Numerous other line shapes that are available including speed dependent asymmetries 

and collision correlation effects. However, such effects are currently not used to model 

any experimental data. 

2.3 WMS MODELING 

Myers and Putzers [5] approach discussed in the previous sections requires derivative of 

the lineshape functions. The method is useful as it allows one to visualize signals as it 

builds by every additional term in the series expansion. However, series expansion may 

sometime require a large number of (V) terms for the series to converge and used for 

modeling purposes. We have seen (Appendix B) that this method works best within a 

certain range of values of the modulation index (m) and normalized frequencies (x) of the 

spectrum, Eqn. (2-13). In other regions the method has computational difficulties in terms 



25 

of convergence of the series (this is discussed in Appendix B). Also, convergence of 

Gaussian, Lorentzian and Voigt are discussed in the Appendix B. 

On the other hand, another approach to compute WMS signals given by Wilsons method 

[6] has no such convergence problems. The WMS signal from this method is a simple 

cosine integral of the absorbed signal and is given by, 

1 (* 
HN=—\ g(v +Pcos(j))cosN(t>d(j> (2-22) 

Hence, the resultant WMS signal is expressed as, 

SN = -noLI« f g(y + p cos</)) cos N(t>d(j) (2-23) 

As noted earlier, Wilsons expression has no such convergence problems and can be used 

to numerically compute WMS signals. Functional form of Gaussian and Lorentzian 

functions can be directly used in the formulation. To evaluate the integral of the Voigt 

function, Humlicek algorithm is commonly used in the literature. Most of the work there 

was mainly concerned with direct absorption or at the most N = 2 detection: whereas our 

work required models of higher detection order, upto N=8, where Humlicek algorithm 

doesn't perform accurately. Therefore, for our computations we have primarily used 

Matlab dblquad (MATLAB double integration function) to calculate the harmonic signals 

of Voigt profiles. 

Based on the variables involved in the algorithms i.e. the type of lineshape function, 

range of modulation index and accuracy we have provided a Flowchart of modes of 

numerical computations. The Flowchart below describes various numerical methods and 

MATLAB functions that were used to evaluate WMS signals. 
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WMS harmonic signal computational methods 

Lineshape 

Gaussian 

Lineshape 

Voigt 

Myers-Putzers 
Higher Derivatives 
required -
calculated by series 
formula 
Convergence 
problems when 
x>0 and m>l 

Wilsons 

Wilsons 

Matlab Quad 

Numerical 
computation 

using Simpson 
integral method 

Myers-Putzers 
Current work 

computes upto 30 
derivatives of 

Matlab 
dblQuad 

Humlicek algorithm + 
Numerical Simpson 

intesral method 

<r -> < > 

Numerical 
code is faster 
than Matlab 

quad, accuracy 
is nearly the 

Numerical code is 
faster; however, 

Matlab dblQuad is 
more accurate. %age 
difference is ~ 15% 

Humlicek 1976 paper 
+ Numerical Simpson 

Lorentzian 

Myers-Putzers 
Higher Derivatives 
required - calculated 
by series formula. 
Convergence 
problems when x>0 
and m> 1/2 

Wilsons 

Matlab Quad 

Numerical 
Simpson 
intesral 

<e -> 

Numerical 
code is faster 
than Matlab 

quad, accuracy 
of both is same 

Humlicek 1982 paper 
+ Numerical Simpson 

< > 

Same accuracy 
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Flowchart of WMS mathematical modeling methods 

2.4 CONCLUSION 

Theoretical formulation and accurate modeling of WMS signals is paramount for an 

accurate estimation of lineshape and gas parameters. To give an overview of the 

experimental procedure and theoretical modeling, Fig. 2.3 below shows the schematic of 

the typical WMS experiment. A probe (diode) laser is modulated and samples across the 

lineshape profile. In order to achieve that, a sinusoidal modulation (~ 1 kHz) along with a 

fixed dc bias and a slow ramp (approx. 60 - sees) is input to the probe laser. As 

mentioned earlier, the (sampled) depth depends on the modulation frequency and 

modulation amplitude. The absorption signal from the photodetector is processed through 

a lock-in amplifier (narrow band detection) where the signal is demodulated at various 

frequencies of the input sinusoidal modulation. In addition, the wavelength of the probe 

laser is characterized by an interferometer tuned to the laser frequencies. The 

wavelengths acquired are used for modeling experimental data. In this procedure, the 

linecenter location and magnitude of both the experiment and theory are matched. 

Consequently, the parameters of theoretical model that best fits the experimental data 

give the lineshape parameters of the gaseous specie. 
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Modulated Laser 
is swept across wavelength range Gas s a r°pl e Photodetector 

t 1 g(v) 

Lineshape 

Wavemeter 

v, m 
Computation 

Model S^v) 

Lock-in amplifier 

Match line center 
peaks of Exp. 
and Model 

Fig. 2.3. Block diagram of various components of WMS experimental setup. Theoretical models are 
generally programmed in MATLAB. The experimental data is modeled using theoretical formulation and 
lineshape (or gas) parameters are estimated from the best fit between experiment and model. 
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CHAPTER 3 

OXYGEN A- BAND TRANSITIONS AND EXPERIMENTAL RESULTS 

Theoretical formulation of WMS signals in the previous chapter laid the foundation for 

experimental investigations and analysis of WMS signals. In this chapter we present 

experimental results of WMS signals that were obtained by probing absorption transitions 

of the spectrum of atmospheric oxygen [1-7]. 

It is known that the transitions in molecular oxygen [1-7] are electric dipole forbidden -

magnetic dipole driven, that are orders of magnitude smaller than allowed transitions. 

Higher order WMS signals reveal features that are otherwise subdued in direct absorption 

or at lower detection e.g. N < 2. Some of the features discussed in this chapter are: 

relative growth of weaker transitions in spectra of disparate overlapping lines, optical 

pathlength saturation and sensitivity of lineshape (or gas) parameters in far wings of the 

absorption lineshape profile. We show that two transitions with disparate line strengths 

can be fully resolved only at certain detection order and an appropriate choice of 

experimental variables. Therefore, under certain experimental conditions, the 

measurements are considered optimal for precise estimation of lineshape parameters and 

investigations of subtle features of the absorption lineshape profile. 

3.1 STRUCTURE OF OXYGEN A-BAND 

The oxygen A-band is one of the four associated bands of molecular oxygen in the visible 

and near infrared region of the spectrum [1-6]. These bands are denoted by A, B, y, and 8, 

correspond to vibrational transitions A => (0 <— 0), B => (l <— 0), y => (2 <— 0), and 
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S =>(3<— 0), where the notation is (v'<-v"), and where v' and v" are the vibrational 

levels in upper and lower electron states, respectively. These are formed by a collection 

of transitions between the triplet ground electronic state, 32>~g, and the singlet excited 

electronic state, ' H+
g, i.e., bx S* <—X3T.~ and the ground state configuration: 

(ag 2s)2 {au 2s)2 (cr g 2p)2 {nu 2/?)4 (n g 2p)2. 

The two 7t electrons in the open shell lead to three possible electronic states; 

3Z~, 'Eg, 'Ag. By Hund's rule, 3E~ has the lowest energy and is therefore the ground 

state. 

3.1.1 Vibrational and Rotational Energy Levels 

The potential energy curves for molecular oxygen are shown below in Fig. 3.1. These 

curves depict the bonding energy of the oxygen atoms as a function of the internuclear 

separation. The minimum potential energy is seen in the Figure below to occur in the 

E~ state at an internuclear separation of approximately 1.1x10" cm. According to 

Heisenberg uncertainty principle, though, the internuclear separation can only be defined 

within a certain range given by the constraint, AxAp > h. Consequently, the atoms of the 

molecule must move with a particular velocity, determined in part by their thermal 

energy, and therefore, the minimum energy must be specified as a quantized level within 

the potential energy curve. 
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Fig. 3.1. Energy levels of molecular Oxygen A- band. Note that the transitions are from two vibrational levels. 

The vibrations of diatomic molecules can be modeled by a mass-spring system, with a 

spring constant that is derived from the molecular interaction potential. The molecular 

vibrations take on allowed energy levels within the parabolic portion of the potential 

well, which to a first approximation can be described by the quantum-mechanical 

harmonic oscillator, Ev 
1 

v + — 
v 2j 

hco . Here v is the vibrational quantum number and the 

vibration frequency is 03 = (K I n) , where \x-mxm2 l(mx +m2) is the reduced mass 

and K is the spring constant. These evenly spaced energy levels are the simplest model of 

molecular vibrations and only hold for the lower vibrational levels in an electronic state. 

The energy levels in a physical system deviate from this harmonic oscillator slightly, in 

that the larger the vibrational quantum the more anharmonic the oscillations. For the 

anharmonic oscillator the spacing between the levels decreases with increasing 

vibrational quanta, until the vibrational energy is such that the molecule dissociates. 

Since the oxygen A-band is formed by transitions between the lowest vibrational levels 
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of the two electronic states, namely (()•<—Ojft'Sg <—X3E~, the simple harmonic 

oscillator model provides a very good approximation for our calculations. 

For the lower vibrational energy levels of a diatomic molecule, the distance over which 

the molecule vibrates is small compared to the equilibrium separation. Hence, to a first 

approximation the system can also be considered rigid where the radial motion can be 

decoupled from the angular motion. The quantized rotational levels are described as 

ER=K 
V 2 21 { 2 

Here, / = \ir] is the moment of inertia, k is the 

rotational quantum number, and Be is called the rotational constant. It is seen that the 

spacing of the rotational energy levels increases with rotational quanta, which is 

dependent on the value of the rotational constant. It turns out though, that this 

approximation is too crude for the calculations of the A-band. The non-rigid rotator must 

be considered. The energy of a rotating diatomic molecule is mostly kinetic with a small 

amount of potential energy due to centrifugal force. As the rotational quantum increases, 

the potential energy gets larger and the molecule behaves less and less like a rigid rotator. 

In this case the rotational energy levels are better described by the following above 

expression of vibrational energy ER = K\ K+^-K*(K+
1 

2) 21 
— or 
2/2 

* 2 * 4 

EB =K(K+-)B + K2(K+-} D, where Be = — and De =• 
' ' - f t i A t i r r 2) < e 21 — e 2/2 

The values of these parameters, called the rotational constants, determine the spacing of 

the rotational levels within the vibrational rung. Combining the contributions of all three 

energies, electronic, vibrational, and rotational gives: 
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3.1.1 Selection Rules and Line Notation 

Detailed analyses of the A-Band were first made by Mulliken and Van Vleck [1-4]. The 

two electronic states are approximately 1.62 eV apart, making the A-band, which 

involves the two lowest vibrational rungs, centered near 762 ran. The rotational levels of 

the oxygen states are designated by the quantum numbers J and N, where TV represents the 

rotational angular momentum, and, J the total angular momentum, which is the sum of 

the rotational and spin angular momenta. The ground state, which has total electron spin 

of unity, is split into levels corresponding to J" = N", N"+J, N"-l, with only odd values 

of N" allowed (double prime and single primes denote lower and upper states 

respectively). The upper electronic level, which has zero spin, is composed of singlet 

states with J'=N', where only even values of N' are allowed. 

Symmetry conditions and selection rules allow only four types of infrared transitions 

which may be expressed as: 

AN. AJ(N",J"), where AN. AJ = PP, PQ, RQ, and RR. The PP(N", J"=N") and 

PQ(N",J"=N"-1) lines are separated by about 2 cm"1., forming pairs that make up the P 

branch. The P branch starts near 13120 cm"1 and extends downward in frequency, the 

spacing between pairs ranging from 6 cm" between the first two pairs to 10cm" at 

J" =20. The transitions RR(N",J"=N") and RQ(N",J"=N"+1) also form 2-cm"1 pairs 

that make up the R branch in the range 13125 (761.905nm) -131170 cm"1 (759.301 nm). 

The separation between the pairs in the R branch is only about 4.5 cm"1 (135 GHz) 
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between the first two pairs and decreases toward higher J"; at J"=13, the separation 

between the lines adjacent pairs is less than 2 cm"1 (60 GHz), so that the pairs merge, 

forming a bandhead at about 13165 cm"1. 

The transitions involving changes in rotation, vibration, and electronic states are also 

called rovibronic transitions. Due to the differences in symmetry and degeneracy of 

these two states, the transitions are electric-dipole forbidden and electron spin forbidden, 

making the bands extremely weak. The transitions are driven by a magnetic dipole 

coupling of electromagnetic radiation with the electrons in the molecule. Typically, 

magnetic dipole transitions are approximately four orders of magnitude weaker than the 

usual allowed transitions; however, these transitions are nearly eight orders of magnitude 

weaker because in addition to the magnetic coupling, the electron must change its spin 

during the transition. 

These calculations are generally carried out under the Born-Oppenheimer approximation. 

In this approximation it is assumed that electronic motion occurs on a short time scale 

compared to the nuclear motion, enabling the molecular wave function to be separated 

into the product of the wave functions for the individual components. Hence, by treating 

each component of the rovibronic transitions independently and then summing the 

individual energies, one can calculate a molecular absorption band. The following 

section gives an example of this calculation for the oxygen A-band. 

The vibration transitions between the two electronic states do not strictly adhere to the 

same selection rules as they do with in an electronic level. Hence, the change in v can 

take any value: Av = 0, ± 1, ± 2..., however, all values are not equally probable due to the 

Franck-Condon principle [7]. The A-band is associated with the Av = 0 transition. 
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Selection rules for angular momentum are as follows: the total angular momentum, J = K 

+ S, where K is the quantum number for the angular momentum of the revolving nuclei 

and S is the quantum number for the electronic spin, can change by, AJ = 0, ± 1, 

designated P for -1, Q for 0, and R for +1. 

The rotational angular momentum, K, can only change by AK = ±1, designated P for -1 

and R for +1. This leads to two branches in the A-band that begin at Eel +EV . The R-

branch transitions are higher in energy, while P-branch transitions are of smaller energy. 

The values of the rotational constants determine the spacing of the rotational levels 

within the vibrational rung. Herzberg [7] gives the following values for the v = 0 levels 

of the ground and excited states of O2: 

3 E; : B=l.44cml and 'ST: B=\A0c-A 
1 cm 

3Z~ and ' E t : D. =4.95x10"'cm"1 

The difference in the values of Be for the two states indicates that the separation of the 

rotational levels of the ground state are greater than those of the excited state. 

Consequently, the transitions with AK = +1 will increase in energy initially, but reach a 

maximum energy at some rotational quantum number K"H, where the branch begins to 

fold back on itself. This is what is known as the band head (Fig. 3.2) and for the oxygen 

A-band occurs at approximately 759.57 nm (13165.258 cm"1) in the R-branch. 

The spin angular momentum for the ground state is 5 = 1, hence the ground state is triply 

degenerate, where the degeneracy is given by (25+1). This results in the following 

possible values for the total angular momentum: 

Ground state: 3S j n -
K"+\ 

K" 

K"-\ 
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The upper state has no degeneracy, since 5 = 0, and J' can take the following values: 

Excited state: ' Sg J'=K\ 

The rotational levels J"=K"+l and J"=K"-\ are nearly indistinguishable due to the 

symmetry of the molecule, hence the A-band appears to be composed of doublet line 

pairs instead of triplet line clusters. Furthermore, due to the individual symmetries of the 

states, only odd values of K are allowed in the ground state and only even K in the upper 

state. 

The transitions of the band are labeled with the following notation, where prime indicates 

the upper state and double primes indicate the lower state: 

AK-AJ(K",J") AK = 
-1 P 

i 
XI 

< 

+ 1 R 

R-branch P-branch 

Band 
Center 

AJ = 
-1 P 
0 Q 

+ 1 R 

M. JW 
759 760 761 762 763 764 765 766 767 768 769 770 

Wavelength [nm] 

Fig. 3.2. Oxygen A- band structure. The experimental work was carried out in wavelength range 
of 760.30 - 760.42 nm 
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3.2 WEAK OVERLAPPING OXYGEN TRANSITIONS 

The apparatus used to perform wavelength modulation spectroscopy experiments is 

shown in Fig. 3.3 below. The key components of the experimental setup are a tunable 

single mode diode laser, temperature controller, current controller with ramp, external 

oscillator, photodiode detector, and a lock-in amplifier. There are several advantages of 

the apparatus used in this research. First, it is compact and the device can be fabricated 

as a single unit with a manual or automatic control system or, the individual components 

can be connected and controlled by a computer. The lasers we used for experimentation 

primarily include Fabry-Perot type, VCSELs, and an external-cavity laser all centered 

around 762nm for oxygen a-band measurements which was tuned and modulated by 

varying the cavity length. This method of tuning allows for large continuous tuning 

ranges and pure wavelength modulation. Most common edge emitting diode lasers are 

tunable with temperature and injection current for over at least several hundred 

wavenumbers, which is sufficient to measure a large number of lines in the A-band. 

Laser Probe is "wavelength" modulated 

VCSEL 
R a m p Generator 

Oscillator 

760 nm 
/7\ 

Laser Driver 

Temp Controller UJ Reference 

Sample 

Photodiode 

L 

To PC 

Lock in Amplifier-
Demodulation at NM,, 

Fig. 3.3. Block diagram of the experimental apparatus. Wavelength of a modulated laser is swept across 
the absorption region of interest of Oxygen A-band. The signal from a photodetector is processed by a 
(narrrow band) lock-in amplifier and demodulated at the integral frequencies of the reference oscillator. 
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In measuring the weak lines of the oxygen A-band, for example those with absorption 

cross sections on the order of 10"24 and 10"27 cm2 cm"1 mol"1. To increase the sensitivity 

and the magnitude of the signal for probing weaker transitions, we found that it is 

beneficial to lengthen the absorption path by beam folding with a multipass cell. With 

the 10cm spherically concave mirrors that were used, we were able to achieve as many as 

135 passes at about 1.36 meters, giving a total path length of approximately 210m. 

A qualitative way to look at wavelength modulation spectroscopy (WMS) is to recognize 

that this method leads to derivative like signals that contain detailed structure associated 

with the turning points or variations in the absorption lineshape signal. The locations of 

these turning points with respect to the linecenter carry information about the linewidths 

and the lineshape profile. The relative magnitudes of the turning points give information 

about the absorption cross-section and any perturbations to the lineshape profile. In this 

section we discuss the experimental observations of variations or subtle physical effects 

of the absorption features that can be resolved using higher detection order. To illustrate 

this point we consider a probe region (of Oxygen A-band transitions) where four or five 

overlapping transitions that are fairly close to each other that are not discernible in direct 

(N = 0) measurements. We show that when lines of disparate strength overlap it can be 

advantageous to use higher harmonic detection to resolve the lines. 

One example of such a result is shown in the figure below. Fig. 3.4 shows the signal 

obtained in a direct (N = 0) absorption scheme, where a tunable VCSEL is used to probe 

a particular region of the molecular oxygen A-band where there are several overlapping 

lines with greatly disparate absorption cross sections. It is clear that one cannot discern 

these lines [8]. 
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However, it is seen from Fig. 3.5 that as one uses WMS one begins to see the individual 

lines. In particular, the higher the harmonic detection used in this case (we went up to the 

8th, i.e.8 f detection) the better the resolution becomes. In this case the mechanism by 

which this relative growth of the weaker lines occurs is because of distortion due to 

optical pathlength saturation. It turns out that for the pathlengths used, the stronger lines 

saturate before the weaker lines and consequently the stronger lines result in signals that 

are broadened more than the weaker lines. Now, it is known that the magnitude of a 

signal obtained in WMS depends on the modulation index which is defined as the 

modulation amplitude divided by the width of the line (m = /?/Av). Since the effective 

widths of the stronger lines are larger because of the aforementioned saturation, the 

effective modulation index for a stronger line is smaller than that for a weaker line and 

consequently one obtains the result in Figs. 3.5 (a)-(h). The magnitude of a WMS signal 

scales as ~ m , where m is the effective modulation index and N is the detection 

harmonic. Hence the signals due to the weaker lines begin to grow with respect to the 

stronger ones as the harmonic detection order increases. 

<H 1 1 1 , 1 1 1 1 , , 

0.5 0505 0.51 0.515 0.32 0325 0.53 0.555 054 0.54$ 0.55 

Laser Drive Input (V) • 

Fig. 3.4. Experimental Absorption signal of Oxygen A - Band transition. Strong absorption from RR 
(13,13) is shown in the figure. Weak overlapping lines are not visible. The laser wavelength is scanned 
from 760.30 - 760.40 nm. This range covers five oxygen transitions of disparate strength. The linear 
line is the input to the laser ramp voltage. 
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The following figures show WMS signals of the above "direct" absorption signal. The 

above experiments show the advantage of higher harmonic detection in resolution of 

overlapping lines. The experiments show four overlapping lines [8] which are not 

discernible at direct absorption and lower harmonics. These lines become apparent in 

higher order detection (Fig. 3.5). A peculiar feature of the optical pathlength saturation 

effect which is directly connected to relative growth of weaker transitions is also seen in 

Fig. 3.5(h) where center lobes, which are peak values, are relatively depressed. This is 

due to pathlength saturation [9, 10]. An extensive discussion of this effect is in the 

following sections. 
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Fig. 3.5. Experimental plots and theoretical models of N = 1 to N= 8 detection order of oxygen RR(13,13), 
RR*(13, 13), RQ (12 , 13) and RR( 43, 43) transitions. The weaker line begins to appear at N= 2 but the 
lines are not fully resolved until at N=7 or 8. The experiment was performed at 180 meters of pathlength. 
The modulation index was, m=4. 

A comparison between (see Fig. 3.6) the direct absorption signal and the 8th detection 

order, specifically focusing in the spectral region of the weaker transitions, shows the 

strength of the technique. This resolution critically depends on the experimental controls 

which are discussed in the following section. 
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Fig. 3.6. Comparison between 'direct' absorption and weaker lines of Oxygen A - band those are 
resolved at higher detection order. The figure shows three overlapping transitions in vicinity of a 
strong absorption transition. In the scale above the strong absorption line is not shown completely. 

3.2.1 Modulation index and line resolution 

The experimental results presented in the previous section show an optimal detection 

order that resolves distinctive features of the absorption lineshape profile. This is 

important because ultimately for accurate modeling one needs to fully identify these 

features in the signal. A range of values of modulation voltage (or modulation amplitude 

/?) were used to obtain the best resolution and practically useable Nth harmonic signal. 

Ideally, a very small modulation would be sufficient to resolve all the features of the 

lineshape profile. This in practical situations results in signals that are considerably 

smaller in magnitude at higher detection order (to overcome the impediment noise and 

distortion). On the other hand, although a large modulation index gives a strong signal, 

the signal tends to broaden and cause significant overlap with the neighboring transitions. 

It is seen that if the modulation index was increased up until m = 4, four overlapping 
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transitions, were resolved Figs. 3.5(a)-(f). However, by employing smaller values of m 

(i.e. m=2) an additional weaker transition was resolved, see Fig. 3.7. The transition is 

referred to as RQ (11,12) (centered at 13150.7471 cm"' and line strength of 1.52 x 10"26 

cm2 molecule"'cm"1 (according to the HITRAN data base [11])) on the long wavelength 

region of strong RR (13,13). Although the signal at higher detection orders was 

considerably small, RQ (11,12) was evident and partially resolved. This tradeoff between 

the choice of modulation index and resolution of lines comes at the cost of accuracy of 

estimation of lineshape parameters. 

760.37 (nm) 760.42 (nm) 
Wavelength (nm) • 

760.37 (nm) 760.42 (nm) 
Wavelength (nm) • 



45 

1 
2 

m 

(e) N=7 

RQ(11,U) 

^ ^ y \ / \ ^ _ 

760.3T 
X.-v"\^. 

8(nm) 760.41 (i 

(f) N= 

^ , _ ~ / W ^ , . , . .^A/\ ' IAA /V I /V I 
nm) 

Wavelength (nm) 

760.378 (nm) 

Wavelength (nm) 

i(n 760.41 (nm) 

Fig. 3.7. Oxygen transitions with five line transitions in a wavelength scan. The set of experiments were 
performed under similar conditions except with lower modulation index. RQ( 11,12) transition begin to 
appear at N = 6. The signal here is relatively weaker compared to the results discussed in the previous 
section. The modulation index was, m=2. 

3.2.2 Mechanism of modulation index and probe of WMS signals 

WMS probes the variation in the absorption signal; these variations could result from the 

inherent physical processes of the gas or distortion from the probe. Therefore, the 

absorption signal mainly depends on the lineshape function, lineshape and gas parameters 

e.g. linewidths, density, absorption cross-section etc. Detection at Nth harmonics can be 

regarded as Nth order (derivative) variation of the absorption signal. The frequency 

modulation index (w) determines the spectral range that the laser probes the profile at any 

point in the spectrum. For example, a smaller value of m (= p/Av) indicates that at a fixed 

wavelength, the probe samples two points are close to each other. In other words, if for 

instance the probe laser is tuned to the linecenter of the absorption line and m « l (i.e. 

modulation amplitude is smaller than the linewidth, (3« Av), the WMS signal obtained 

resembles feature of the absorption signal within range of half-width around the 
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linecenter. Whereas, if m is large ( m » l ) , the probe samples a much larger region of the 

spectrum and the contribution from the region in the wing of the absorption profile is 

significant. This is the basis of the magnitude and broadening of signals at higher index 

values. As an example, it will be shown that one can discern optical pathlength saturation 

effects only for a specific set of values of modulation index and at a particular detection 

order. This is because, strong absorption predominantly occurs "at" and "around" the 

line center, which leads to broadening around linecenter. The distortion due to this is 

extrememy small and only index (and higher N) that samples the absorption signal in that 

equivalent region (of saturation) exhibits this effect in WMS signals. To illustrate this 

point, consider, As to be the span of the spectral region of the absorption signal where 

broadening due to saturation occurs. It should be noted here that the so-called broadening 

is quite different to broadening of the signals due to large modulation depth, where m is 

large. In addition, the effects of broadening will significantly depend on the sensitivity of 

the photodetector. 

The ratio of As to the linewidth (Av) is a measure of the saturation index, i.e. As/ Av. The 

effective modulation index required to discern saturation effect should be less than or 

equal to the saturation index. Hence, if m < As/Av, these effects begin to appear as abrupt 

depression in the center lobes of even harmonic signals. If m > As/ Av, then these effects 

are masked by the modulation broadening (as the probe samples a larger region of the 

absorption profile) of the signal and are not discernible. 

With the same token one can also correlate resolution of overlapping lines and the 

modulation index. In this case if we consider the separation between two transitions to be 

Avo,, the lines will appear resolved only if m < AVQ/AV. 
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3.2.3 Experiments at large optical pathlengths 

The figures below show experimental results of N = 4, 6 and 8th detection orders, Figs. 

3.8, 3.9 and 3.10, obtained at varying modulation amplitudes. The experiment were 

performed at a fixed pathlength of 180 meters (or T = 1.4). It can be seen from the figures 

below that each harmonic shows distinct features of saturation and modulation 

broadening at various index values. At smaller values of m, a clear suppression of center 

lobes shows saturation whereas a similar suppression in linecenter magnitudes occurs at 

large m values due to modulation broadening. N = 4 detection does not show suppression 

in linecenter for any set of m values that were used in the experiment. In the same 

context, smaller values of m give a weak signal of N = 8, which is practically not useable 

for analysis. We found that N = 6 was the optimum detection order for most 

measurements, since it shows features of saturation and growth of overlapping lines for 

lagers set of values of m. In the figures below, four transitions are shown, the strong RR 

(13,13) transition and weak RR (13,13)* (isotopic transition of O18), RR(43,43) and RQ 

(12,13). The line strength of strong RR (13,13) is of the order of 10"24 (HITRAN units) 

where as RR (13,13)* , RR(43,43) and RQ(12,13) have line strength of 10"26, 10"28 and 

10" (all in HITRAN units) respectively. These weaker transitions are labeled as LI ( 

RR(13,13)* ), L2 ( RR(43,43)) and L3 ( RQ (12,13)) in figures below. Fig. 3.8 is the 4th 

harmonic signal of the absorption features of four lines. Figs. 3.9 and 3.10 are 6th and 8th 

order signals of same absorption scan. The experimental control parameters were kept 

same in all the set of experiments in Fig. 3.8, 3.9 and 3.10 below. 
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Fig. 3.8. Experimental results of 4th order RR(13,13) and three overlapping weak line transitions (LI, L2 and L3). 
The experiments were performed at pathlengths of 210 meters and modulation index was varied from m = 0.5 to m 
= 6.0. At m=0.5 weak RR(13,13)* transition (LI) begin to appear and RQ(12,13) transition (L2) is discernible 
completely. The weakest RR(43,43) transition (L3) is not discernible at any m values. This is because either its 
signal is extremely weak or it is masked by the neighboring lines. Large values of m begin to cause significant 
overlap of weaker transitions from stronger transition. 
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N=6 detection order at various modulation indices 
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Fig. 3.9. Experimental 6th order RR(13,13) and three overlapping line transitions (LI, L2 and L3) at 
different modulation index. Small m values (. m = 0.5 to m=l) show clear signs of saturation. However, 
at those index values the weak lines are not strong in signal. The index value of m = 2.25 seems to be 
optimum for resolution of overlapping lines, but does not show visible effects of saturation. 
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Fig. 3.10. Experimental results of 8th order RR (13,13) and three overlapping line transitions (LI, 
L2 and L3). The signals at small index value are weak and not useable for estimation of parameters. 
Although at those values the signal show signs of depression of center lobe. This effect is sustained 
for relatively longer range of index values. The weaker lines begin to grow with m, where m = 4 
resolves two of the three transitions. 
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3.3 OPTICAL PATHLENGTH SATURATION 

In the above section, we have demonstrated the experimental results of measurement at 

large pathlengths. In this section we discuss these results [9, 10] of absorption features of 

the oxygen A- band transitions in the optically thick regime when synchronous detection 

at higher harmonics (N> 2), using wavelength modulation spectroscopy (WMS), is 

performed. We have shown that the absorption saturation effects demonstrate a 

distinctive feature which results in suppression of the linecenter lobes of the harmonic 

signals. These effects depend on the optical pathlength as well as on the modulation 

index. 

Detection at higher harmonics reveals effects that are subdued in direct absorption 

measurements or in lower order detection. One such effect is absorption saturation, 

resulting from large optical depth or strong absorption of the incident light. This effect 

can play an important role in measurements of absorption in planetary (including that of 

the earth) and stellar atmospheres [12]. An absorption signal propagating over long 

distances exhibits characteristic effects that result from the fact that, because lineshape 

profiles vary rapidly with wavelength, each successive small (infinitesimal) absorbing 

path reacts to an incoming optical beam whose spectral profile is highly dependent on the 

cumulative path that beam has traversed prior to reaching this infinitesimal section. 

Pathlength saturation in any absorption experiment is the effect that appears because of 

non-uniform absorption across the transition lineshape frequency profile, with increasing 

penetration into the medium being probed, Fig. 3.11. Effectively, any element of the 

medium sees an input probe whose profile is different from that seen by a preceding 
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section because of the stronger absorption at, and around, the line center. The result is 

that the probe signal detected appears broadened. 

(a) 

White light profile II Absorbing 
medium 

Outgoing 
absorption 
signal ^ - . _ , 

Photodetector 

(b) 

Fig. 3.11. Schematic of saturation phenomena in an absorption experiment. An incident white light gets 
broadened as it traverses within the absorbing media. As a result, the outgoing beam at the detector appears 
broadened. Fig. (b) shows the spot pattern on one of the mirrors of the multipass cell. 

The basic equation of absorption (or emission) by a two level atom or molecule is; 

A I 
dI/dz = -^T-{n2-(g2/gl)nl}g(v)I = Iy(y) 

OK 
(3-1) 

Here, y(v) is the gain co-efficient (m"), A21 is Einstein's spontaneous emission 

coefficient, ri2 and nj are the population densities in levels 1 and 2 with degeneracy 

factors of gi and g2 and g(v) is the lineshape profile. 

In an absorption experiment, such as the one under consideration ri2 « (g2/gi)ni and one 

obtains the usual equation describing the attenuation of intensity in an infinitesimal 

pathlength dz, i.e. 

dl I dz = -n<jg(y)I (3-2) 
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Hence, the absorption signal of a sample of length L, normalized with respect to the 

initial intensity of the probe Io, is 

= 1 - e\p{-naLg(v)} (3-4) 

Where, n={g2/gi)ni and ^= r<j(v)dv IS the integrated absorption cross-section. Then, it 

follows from Eqn. (3-4) that the signal at the linecenter, v = vo is 

A/(V0) 

'o 

1 - exp {-n<7Lg(v0 ) } = 1 - exp(-r ) ( 3 - 5 ) 

Here, g(vo) is the magnitude at linecenter of the lineshape profile and the dimensionless 

saturation parameter, T=«<rz,g(v0) is a measure of optical depth: a small value of t signifies 

little or no saturation. 

In this work we assume the Voigt lineshape profile, which can be written as: 

gv(x) = 4 rT J -C , """'I 1 (3-6) 
n Hon ̂ {x + ylbf+l 

Let the frequency in normalized difference between v and vo be given by, 

xv = iy-vo)l2Svcou. Let b be the ratio of collision and Doppler linewidths given by, 

26vcoll/AvD (A^=Avz,/^/4h2), then gv (xv = 0) = beb2erfc(b) {n)1/2 dvcoU and saturation 

parameter z isr = n<jLgv(xy = 0). The linecenter magnitude, gv(xv= 0) depends strongly 

on the ratio of the linewidths for collision and Doppler broadening i.e. on the parameter 

'b ' . When the collision broadening dominates dvcou is much greater than the Doppler 

width Av£> ( b » l ) and gv(*v = 0) ~ 1/ nSvcou. On the other hand in the Doppler broadened 

region, ( b « l ) , g^=0)K\l4n~KvD- The saturation parameter in these two cases will be 
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T,,=naLljiSvaill and z =rroLl4n~kvD respectively. A detailed theoretical description of the 

lineshape profiles and their effects on saturation is discussed in the reference [9]. 

A probe, modulated at modulation frequency, com with modulation amplitude (/? - in Hz), 

can be expressed as, / (v + /fcos[a>mt]). In the experimental procedure whose results are 

described below the modulated beam is swept slowly across the absorption feature. The 

effective normalized absorption signal recorded by the detector is therefore: 

dye~y M(v + P cos 9) 
= 1 - exp 

'o 

-K (3-7) 
(xv +mcos0+y/b)2 +12 

HQrQ,K = naLlnV25vcdl, 0=comt is the angular modulation frequency, and m = $/2dvC0u is the 

modulation index normalized to the collision linewidth. 

Expanding the above signal in terms of Fourier series to express Nth harmonic signal [9, 

13] one obtains, 

SN =k f M(v+pcosG)cosNOdO (3-8) 

In all the previous literature in wavelength modulation spectroscopy measurements [13], 

the absorption signal was weak due to small optical pathlengths (x « 1). Therefore, 

Beer- Lambert law {Mii0«-naLg{v)) was applicable in the analysis. However, in the 

current work large pathlengths were used (i.e. x > 1). Hence, we use the exact expression 

of absorption signal on the photodetector given by Eqns. (3-6), (3-7) and (3-8) to model 

the experimental results. 
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3.3.1 Experimental Results 

Experimental measurements of the oxygen A-band (the rotational lines in the 0<—0 

vibrational rung of the b'Sg
+ <— X3Eg" low lying electronic transition) were made using an 

experimental set up whose main components have been described in the beginning of this 

chapter. Briefly, it consists of a tunable diode laser (VCSEL 760 nm) which is tuned to 

near an absorption line by controlling its temperature and the injected DC current. A 

modulation current is introduced along with a very slow (compared to the inverse of the 

modulation frequency) current ramp which sweeps the probe wavelength across the 

absorption feature. Detection is performed using a photodiode, whose signal is processed 

by a lock-in amplifier in which synchronous demodulation is performed at the 

modulation frequency, f, and its harmonics, Nf. The measurements were made in a 

multipass open-air cell, based on the design by Altaian, [13-14], in which the path length 

could be varied. Fig. 3.11 (b) shows the spot pattern on one of the mirrors of the 

multipass cell in such an experiment. Measurements were made on the RR (13, 13) line, 

which is centered at 13151.34015 cm"1 (760.378 nm) and has a line strength of 5.67 x 10" 

24 cm2 molecule"1 cm"1 (according to the HITRAN data base [11], Note: The 2008 

HITRAN Database lists a value of 13151.34866 cm-1 for the RR (13, 13) line. The 

results obtained in this dissertation (using the value of 13151.34015 cm"1 using HITRAN 

2000 version) are not affected since the wavelength scales in the figures in this paper are 

with respect to the center of this line itself.) 

As mentioned earlier, measurements were performed by scanning across the line feature 

without modulation (i.e. in "direct absorption": effectively with N = 0) as well as with 
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synchronous detection at the modulation frequency and other harmonics. In the notation 

of the following section, these measurements correspond to N=0, 1, 2, 3...8). A typical 

span of wavelength to probe RR (13,13) transition ranges from 760.32 nm to 760.40 nm 

and was obtained by slowly varying laser current on a fixed DC bias. In addition a 1 kHz 

modulation frequency was imposed on the laser driving current. The experiments were 

performed at room temperature in open air with pathlengths ranging from approximately 

55m (x = 0.43) to 210m (x = 1.6). For this paper we present results obtained for direct 

absorption and for the even harmonic detection orders (N = 2, 4, 6 and 8). 

The results presented below show second, fourth, sixth and eighth-harmonic at various 

modulation indices and x values of 0.43 (Fig. 3.12) and 1.6 (Fig. 3.13) respectively. 

Figs. 3.12(a)-(e) show experiments performed at smaller pathlengths or x = 0.43, for 

which pathlength saturation is small and the given modulation index of m=l the signals 

show conventional WMS features. They have N+l turning points and N zero crossings 

(which is also true for lower detection orders when experiments were performed at 

relatively higher pathlengths i.e. 210 m or x = 1.6 in Fig. 3.13.) 
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(a) N=0 ("Direct" absorption) (d) 

N=6 

Tuning Ramp Voltage (Frequency) 

(b) 

N=2 (e) 

N=8 
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^± H^. 
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Fig. 3.12. Experimentally measured direct absorption (no modulation), second, fourth, sixth and eighth 
harmonic signals of molecular oxygen A-band RR (13, 13) transitions, T is a measure of saturation effects, 
which in this case , are small (see Eqn. (2)).The direct absorption curve in (a) rides on a ramp that is the 
result of the slow current ramp in the laser driver current that results in a corresponding change in the laser 
intensity. (For all N > 0 signal magnitudes are plotted). Here, m=l and T = 0.43. For clarity the signals 
shown in (b)-(d) are normalized to the same height (Higher harmonic signal power decreases with 
increasing N [13]). The absolute R - signal of the lock-in amplifier is shown in all the figures (b) - (e). 



58 

In Fig. 3.13 the experiment was repeated- the only change being that the pathlength was 

increased now to 210 m corresponding to x = 1.6. Particular care was taken to maintain 

the same modulation index so that modulation broadening did not interfere with optical 

pathlength saturation effects. 

(a) 
N=0 ("Direct" absorption) 

(b) 
N=2 

(c) 

S » i» 

N=4 

I11 

(d) 
N=6 S 

-/v-yAr / ' » ? | 
j k f 

760.378 nra 

(e) 
N=8 

^^M\l Wh 

760.378 nra 

Wavelength • 

Fig 2.13. Direct absorption, fourth, sixth and eighth harmonic signals with larger saturation parameter, T 
values (T = 1.3 and m = 1). Higher order detection, sixth harmonic clearly shows effects of saturation, where 
the center is suppressed with respect to the side lobes. The eighth harmonic is extremely weak. The turning 
points are not clear and predominantly distorted; nonetheless the signal shows the characteristic depression 
of the center lobe indicating optical pathlength saturation. Ratio, RPS of the harmonic signals is the ratio of 
linecenter magnitude to the adjacent turning point. 
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Due to strong absorption (i.e. x » 1 ) around the linecenter, the absorption signal tends to 

broaden. The experimental results show the effects of perturbation due to such saturation 

which is clearly visible in sixth and eighth harmonic detection. These effects are more 

pronounced at higher detection orders because the Nth harmonic order probes higher 

order variations (corresponding qualitatively, and approximately, to Nth derivative) of the 

lineshape function). This Nth order variation of the broadened linecenter appears as a 

deep depression at the higher harmonics. This allows us to obtain another measure of 

optical pathlength saturation, namely the ratio (Rps) of the signal magnitude at the 

linecenter to that at an adjacent turning point. 

Therefore, for a combination of m and x, if the ratio tends to zero, the saturation effects 

are significant. On the other hand modulation broadening tends to increase this ratio. The 

ratio grows with the increase in modulation index until the signal appears modulation 

broadened. Therefore, for WMS experiments Rps provides a more convenient measure of 

pathlength saturation than x. From a practical point of view, one may say that the region 

for which 0 < Rps < 1 for a given set of modulation indices, optical pathlength saturation 

is pronounced. 

In Figs. 3.14(d) & (e) the center lobes show significant depression in magnitude in sixth 

and eighth harmonic signals, demonstrating the saturation phenomenon clearly. While, of 

course, saturation is present at all detection orders and even in direct absorption signal 

(i.e. in Fig. 3.12 and Figs 2.13(a)-(c)) they are not obvious. If one were to perform 

extremely precise measurements, in principle, these effects can be observed at any 

detection orders and x values with an appropriate set of modulation indices. But, given 
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ever-present practical limitations, the suppression of center lobes of WMS signals are a 

much clearer and obvious and definite indication of this saturation effect. 

3.3.2 Dependence on modulation index and detection order 

As is well known, Wavelength modulation spectroscopy signals depend strongly on the 

modulation index, m. A larger modulation index increases the signal magnitudes but also 

results in a broadening ("modulation broadening"). We have found previously [13] that 

there is an optimum modulation index (together with an optimum N) that needs to be 

used to extract overlapping lines. Similarly there is an optimal range of modulation 

indices in which one should operate for which the pathlength saturation effect is most 

pronounced i.e. RPS « 1. Too small a value does not result in useable signals (e.g. Fig. 

3.13(e)), while too large a modulation index masks any saturation effects. This is seen in 

Figs. 3.14(a)-(c) where, with N = 6, the suppression of the center lobes seen in Fig. 

3.14(a) completely disappears on increasing the modulation index, when m is increased 

from 0.5 in Fig. 3.14(a) to 2.25 in Fig. 3.14(c). However, the center lobe suppression, a 

signature of optical pathlength saturation, is displayed again at m = 2.25 but that requires 

detection at N = 8. 

3.3.3 Modeling the Experimental Results 

The experimental results were modeled (see Fig. 3.14) assuming a Voigt profile, 

substituting Eqn. (3-7) in Eqn. (3-8). Theoretical values of Doppler and collision 

line width of RR (13,13) transitions that best match the experiments were found to be 2.5 
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GHz and 3.1 GHz respectively. These values compare to the HITRAN [11] database 

values of 3.0 GHz and 3.1 GHz of the relevant oxygen transitions. 
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Fig. 3.14. Experimental and Theoretical Results. Sixth (a) and eighth (b) - harmonic signals measured with a 
fixed saturation parameter, T =1.6 corresponding to L = 210 meters. The suppression of the center lobe, a 
characteristic of optical path length saturation in WMS with even harmonic detection, is masked as the 
modulation index is increases (a-l)-(a-3). The suppression is recovered at a higher detection order (N=8) (Fig. 
(b-1)) only to be masked at even larger values of m (Fig. (b-2)). Note that the two curves around linecenter in 
Figs, (a-l) and (a-2) are the experimental and modeled plots, shown on a magnified scale in Fig 13(c). 

It is emphasized that our modeled values were obtained by the very stringent constraints 

that a set of WMS measurements imposes: For a given pathlength and modulation index a 

match between theoretical and experimental values was sought for the highest N, usually 

N = 8 in our experiment. This often required a match between the theoretical and 
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experimental values of N+l (= 9) turning points and N (= 8) zeros. Since, the experiment 

did not measure absolute optical power, the experimental and theoretical values of the 

peak of the center lobe at this highest N were set equal. The constraint placed was that all 

the other experimental measurements obtained would have to match to the model, with 

no other adjustment. Hence a set of measurements with say N = 2, 4, 6 and 8 required 

that (5 + 9 + 1 3 + 17 = 44) values of turning points and zeros to match. In such a 

procedure, there are therefore 43 (removing the one value for the normalization of the 

center lobe of N = 8) independent measurements that are an automatic check for self 

consistency. This illustrates how the detailed structure of WMS signals allows one to 

have a high degree of confidence in any conclusion drawn. 

3.3.4 Quantitative study of ratio of turning point and linecenter 

The discussions above can also be illustrated by the results plotted in Fig. 3.15. The 

values of Rps vs. m shown in Fig. 3.15, for each of the fourth, sixth and eighth harmonic 

orders show two main regions each where either saturation or modulation broadening is 

dominant. The ratio is less than unity when the center is suppressed relative to the 

adjacent turning point, indicating substantial optical pathlength saturation. For a 

particular detection order, saturation effects are more prominent in the range of smaller 

index values whereas at higher index values modulation broadening masks these effects. 

In addition, each detection harmonic has a characteristic span of these saturation or 

modulation dominant regions. 

The results in Fig. 3.15 illustrate the utility of WMS measurements from another 

perspective: Such measurements have many salient points that allow relevant 
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experimental conditions to be ascertained and checked for self consistency without 

having to measure the full spectral profile. In the case of Fig. 3.15, conclusions can be 

drawn by monitoring the ratio Rps obtained by measurement of the signal at the center 

and turning points. 

As mentioned earlier, the saturation parameter, x and hence the ratio Rps, strongly 

depends on the lineshape parameter e.g. collision and Doppler linewidth (b parameter of 

Voigt) or gas parameters e.g. density, absorption cross-section etc. Therefore, accurately 

modeling these effects enhances accuracy in measurements of lineshape and gas 

parameters. In addition, the models are more precise if a small variation in any 

experimental parameters causes larger change in signal magnitudes. For example, from 

Fig. 3.15 it is seen that the change in the ratio Rps is much greater at for N=8 than that of 

N= 4 or 6 which demonstrates sensitivity of higher harmonic detection. 
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Fig. 3.15. Ratio (RPS ) of the signal at linecenter and the adjacent turning point of fourth, sixth and 
eighth-harmonics. The dotted line refers to the point where the linecenter lobe and adjacent turning 
point are of equal heights (RPS =1). In the saturation dominant region (0 < RPS < 1), the ratio increases 
with the modulation index as the center lobe begins to grow. In modulation broadening dominant 
regions (1 < RPS < (RPS)max) the ratio reduces from its peak value to a minimum resulting in depression 
of center lobe, which is a common effect of broadening. Note that the rate at which the ratio for fourth, 
sixth and eighth harmonic changes is significant and demonstrates the sensitivity of higher order 
detection to optical pathlength saturation. Measurements are made at the detection at the points 
represented by the integers N. 
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3.3.5 Growth of overlapping lines and optical pathlength saturation 

The growth of overlapping lines (discussed in section 3.1) is directly connected to optical 

pathlength saturation discussed in the previous section. The figures below show the ratio 

of linecenter magnitude of weak isotopic O18, RR (13, 13) transition to O16 RR (13, 13) 

and weaker of N = 1 to N = 8 detection order and pathlengths values of 88 (x=0.8), 

150mts (x=l.l), 170 (T=1.2) and 210 (x=1.6) meters. It can be seen from Figs. 3.16 (a) 

and (b) a considerable growth in a weaker line occurs at higher detection order (N=8 ) 

and at relatively large pathlength. This is because at 210 meters the (direct) absorption 

signal is significantly broadened and therefore the linecenter of 8f detection is 

significantly depressed than other turning points of the WMS signal. 
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Fig. 3.16. Ratios of the linecenter magnitude of strong RR (13, 13) transitions vs. weaker RR*(13,13) transition. 
The ratio grows almost exponentially at higher detection order, indicating significant growth of weaker lines 
with the detection order. This growth is also reflected at various higher optical depths. For a fixed pathlength, the 
ratio is greater for larger detection order. 
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3.4 CONCLUSION 

Wavelength modulation spectroscopy (WMS) was utilized for the first time to probe 

effects of saturation of an absorption signal as it traverses a long path length. Among 

other effects it was seen that this very phenomena was also key to the growth of 

overlapping lines in a congested line spectra. The detailed structure of WMS signals 

which, in general, show N+l turning points and N zero crossings when Nf detection is 

used allows the effects of such saturation to be probed conveniently throughout the 

spectral profile. The method discussed allows one to probe lineshape profiles by 

observing how the signal profile varies with the absorption pathlength. In particular, the 

signal around linecenter displays the effects of saturation that are characteristic of the 

lineshape. And, since different lineshape profiles exhibit different saturation behavior, 

detection of the latter by higher harmonic detection provides a new method to perform 

sensitive measurements. While in the above discussion we have focused mainly on the 

effects of saturation on the central lobes, there are definite relationships between the 

variation of the individual side lobes as well as their relative magnitudes that yield further 

information about saturation as well as about the lineshape function itself. This aspect of 

variation of the signal in the wing region and its sensitivity to line parameters is 

addressed in the following chapters. 

All other factors being equal, the investigation of relative heights of zero crossings and 

turning points in WMS signals allows one to quantify results with a tighter precision and 
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greater sensitivity than in a direct absorption measurement. The results of the present 

work, however, show that one could use the VCSEL diode laser sensor employed with 

modulation spectroscopic technique to measure such absorption saturation effects in wide 

areas of applications. 
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CHAPTER 4 

SENSITIVTY TO LINESHPAE PARAMTERS, SIGNAL STRUCTURE AND 

NOISE COSNIDERATIONS 

In this chapter we analyze WMS signals from another perspective i.e. structure or zero 

crossings and turning points in the signal. It is known that Nf detection has N+l turning 

points and N zero crossings. Under practical conditions not all of these turning points are 

discernible and precisely measured. This depends on various factors such as the detection 

order, frequency modulation index, signal-to-noise power, distortion and interference 

from the neighboring transitions. We discuss aspects of structure and sensitivity of 

turning points to the changes in lineshape parameters or perturbations in absorption 

lineshape profile. In the concluding part of this chapter we address characteristics of 

distortion and noise that are common to WMS measurements [1-4] and their effects on 

measurements of lineshape or gas parameters. 

4.1 SENSITIVITY TO LINESHPAE PARAMTERS AND STRUCTURE: ZERO 

CROSSINGS AND TURNING POINTS 

In this section we discuss a quantitative measure of sensitivity of lineshape and gas 

parameters utilizing signal magnitudes of turning points and spectral locations of zero 

crossings in wavelength modulation spectroscopic (WMS) signals. The ratios of the 

signal magnitude at the linecenter and turning points depend on the lineshape profile and 

modulation probe, which itself carries information about molecular collisional dynamics. 

The structure of WMS signals, characterized by combinations of the ratios of signal 
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magnitude at turning points, provides a unique scale that quantifies lineshape parameters. 

It is also shown that under certain experimental conditions higher detection orders give 

more sensitive measurements, especially if the frequency modulation index is such that 

the turning points and zero crossings occur in the wings of the absorption lineshape 

profile. Wing structure of absorption lines and its relation to molecular collision 

dynamics, as revealed by WMS techniques, is discussed. 

The synchronous phase sensitive WMS technique provides a probe that mines variations 

of the lineshape profile. These variations correspond to the derivatives (of detection 

order) of the profile. WMS signals with synchronous detection at the Nth harmonic of the 

modulation frequency (Nf detection) yield N+l turning points and N zero crossings. 

These 2N+1 salient features (and their combinations) contain a large fraction of 

information about the lineshape characteristics and, hence, of the molecular collision 

dynamics. In this paper we study the dependence of the signal magnitude at turning 

points on lineshape parameters. (A turning point in the Nth harmonic detection generally 

corresponds to a zero crossing in the (N+l)f signal since an Nf WMS signal resembles 

the Nth frequency derivative of the lineshape function.) The signal magnitude and 

spectral locations of these features depend on the experimental parameters such as 

frequency modulation index (ratio of modulation amplitude and the linewidth, m = pVAv), 

amplitude modulation, sample length, as well as on the lineshape function and the 

oscillator-strength of transition being probed. The span of zero crossings and turning 

points provide key markers (Fig. 4.1) at various locations throughout the spectrum. 

Furthermore, detection at higher harmonics provides a greater number of such markers. 

The spacing between zero crossings, the signal magnitude at turning points and their span 
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(from the linecenter into the wings) all depend strongly on the frequency modulation 

index. In addition, the modulation index also plays a key role in determining the 

sensitivity of the signal to any variations in lineshape profile. For example, in order to 

resolve overlapping lines a frequency modulation index of the order of the line separation 

is optimal. This is because the probe laser effectively samples the spectral region of the 

direct absorption signal in the range of the frequency swing of the modulation. (By 

"direct" absorption we mean the absorption signal such as that obtained by conventional 

spectroscopy using no probe modulation). Such direct absorption signals may be viewed 

as a subset, with N = 0, of WMS signals.) Similarly, in optical pathlength saturation 

effects [5], where the signal broadens due to strong absorption around the linecenter, the 

effects are most easily discernible when the frequency modulation index is comparable to 

the spectral span of such broadening in the direct absorption signal. 

Any perturbation or deviation in the lineshape profile is strongly manifested in the wing 

region (because the absorption in those regions is smaller compared to that around the 

linecenter) and a small change in the gas dynamics can therefore produce significant 

change in the wings. Since the WMS signals effectively probe the Nth derivative of the 

absorption signal, the presence of such features in the wings provide sensitive locations to 

probe such perturbations or deviations in any assumed lineshape profile. In the following 

sections we will investigate the importance of zero crossings and turning points, 

especially those in the wings of the absorption profile, in determination of lineshape 

parameters, e.g. collision and Doppler linewidth of a profile. 
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N=3 and N=5 N=5 and N=7 

Normalized frequency Normalized frequency 

Fig. 4.1. Theoretical calculations of direct absorption signal (dashed curve) as well as with modulation with 
synchronous detection at various harmonics of the modulation frequency. The modulation index used is m = 1 for 
which, the first turning point or zero crossing occurs at spectral range of approximately half-width from the 
linecenter. The remaining turning points and zero crossings are distributed in the rest of the spectrum. Higher 
detection orders provide more such markers. Note that the signal magnitude decreases with the detection order [1] 
but, for illustration purposes, N = 3, 5 and 7 signals have been scaled to the magnitude of direct absorption signal at 
line center. 

4.1.1 Sensitivity in Far-Wing 

It can be summarized from the above that zero crossings and turning points are sensitive 

locations in WMS signals. In addition, a higher detection order has a greater number of 

such features available in the wing region of the absorption profile. This aspect will be 

discussed in detail in the following chapter. The increasing sensitivity to deviations in the 

wing structure with increasing N is illustrated further in the calculations shown in Fig. 

4.2. Here we have used a Doppler lineshape function in order to reduce computation 

time. However, the discussion in this section applies, in general, to all lineshape profiles. 

Figs. 4.2(a) and (b) show calculations of percentage changes in the WMS signal at 

various locations of (2N+1) turning points and zero crossings when the linewidth of a 

Doppler broadened profile is changed. The figure shows results for 5f detection (i.e. N = 

5) with a modulation index, m = 1, and a reference linewidth of 2 GHz. Computations of 

the change in signals at the turning points and zero crossings when the assumed linewidth 
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is varied by ± 0.2 GHz are plotted. It is seen that the signal at turning points (or zero 

crossings) in the wings are more sensitive than those closer to linecenter. For example in 

Figs. 4.2(a) or 4.2(b), the signal at turning points T2 and T3 or zero crossings Zi and Z2 is 

more sensitive to changes in the linewidth than at the points Ti or Zi, which are closer to 

line center (see the locations of these points with respect to line center which are shown 

in Fig. 4.2(c)). 

Change in signal at 5 turning points and 6 zero crossings of N = 5 signal. 

2.2 r 

0 5 10 15 20 25 30 35 

Percentage change in signal around zero crossings Percentage change in signal around turning points 

N=5 WMS Signal 

(c) 

2-2 Z-i 2Q Z I 7-2 

Fig. 4.2. Theoretical calculations of percentage change in the signal with respect to a reference Doppler linewidth of 2.0 
GHz. The nomenclature of the turning points and zero crossings is shown in Fig. 3(c). T2, T3 and Zl5 Z2 are the turning 
points and zero crossing in the wings. Z0 is the linecenter and Ti is approximately half-width from the linecenter. 
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Furthermore, the sensitivity of the signal at turning points and zero crossings is reduced 

at higher modulation index values (Fig. 4.3(a) and 4.3(b)). This is a result of modulation 

broadening of the signal [1,2]. 

Sensitivity of zero crossings and turning points with respect to modulation index 

- i E 1 r 

til )& 1 IB 21 2:15 27 

Linewidth • 

Fig. 4.3. Percentage change in the signal at zero crossings and turning points of 5f detection order (N = 5) with 
the change in the linewidth (from 2 GHz reference linewidth). Modulation broadening of the WMS signal 
decreases the sensitivity of variations in the linewidth. 

The locations of the zero crossings and turning points and their sensitivity considerably 

depend on the lineshape function and the probe modulation index (m). For example, if 

m>l the turning points (in wings) are less sensitive to the changes in the line width. This 

is because, for m >1, (the modulation amplitude is of the order of or greater than the 

linewidth) the first turning point occurs in spectral range of halfwidth, while the 

remaining turning points (and zero crossings) appear in the wings. Since, the Doppler 

broadened lineshape function falls off rapidly in the wings, the corresponding WMS 

signals manifest this feature on the wing structure in their locations and in their 

sensitivity of the turning points. In contrast, if the profile is collision broadened i.e. 
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sharper peak and falls off much more slowly in pedestals, the turning points are relatively 

more sensitive for values of m >1. 

4.1.2 Sensitivity of b parameter of Voigt profile 

In this section we discuss a more general case of lineshape profiles i.e. the Voigt profile 

and the effect of ratios of turning points with changes in the 'b ' (the ratio of collision and 

doppler linewidths, sVcoll/2Av^) parameter of the Voigt profile, Fig. 4.4. The range of b 

parameter signifies whether the profile is Doppler or collisional broadened dominant, i.e. 

if b » l the profile is collision broadened, and if b « l , the profile is Doppler broadened. 

The variation in the ratios of turning points gives a characteristic signature of the b 

parameter. As discussed earlier, for b >1, the pedestal of the lineshape falls slowly and 

there is no significant change in the ratios of turning points compared to when b<l, which 

is indicated in the ratios of turning point of WMS signals. In other words, if m>l, and 

b<l, the turning points in far wings show no significant variations (when the b parameter 

is slightly changed), as opposed to the case when b>l. 

Change in Ratios of four turning points of N=8 detection 
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Fig. 4.4. Sensitivity of turning points with the change in b parameter of Voigt profile. Fig. (a) shows turning 
points of 8th detection order in far wings. The turning point farthest in the wing region shows greatest 
sensitivity. Also, higher detection orders have turning points with greater sensitivity. 
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4.1.3 Sensitivity to Optical Pathlength 

As mentioned earlier, the turning points and zero crossings are sensitive to changes in the 

wing structure of WMS signals. For instance, there are situations when variations in the 

signal in the wing region may be prominent even though the total signal power may not 

show appreciable change, or in some cases may even decrease. Therefore, the turning 

points in these regions are quite important as they readily reflect such changes. This is 

illustrated by an example below, where the aspect of structure and effective growth of 

signal in the wing region is shown. 

Experimental measurements of variation in the signal amplitude (or linecenter magnitude 

of even harmonics) in WMS has been discussed previously [6, 8, 10]. However, 

analyzing the signal at the turning points with respect to the linecenter provides a new 

perspective of investigating wing structure of the lineshape profile. This normalized ratio, 

RT (= Tj/So, where, So is the signal magnitude at the linecenter of Nf signal; for odd 

harmonics, So = 0)) is a quantitative scale that shows characteristic features of variations 

in the signal in the wing region. We discuss characteristic behavior of the ratio, RT with 

respect to an experimental parameter namely the optical pathlength (r=rccrz,g(v0)), which is 

a measure of the optical depth (here, n is the density, a is the absorption cross-section 

and g(v) is the lineshape profile). In a measurement where n, a and g(v) are fixed, x can 

be varied by the pathlength (V) that laser beam traverses in the absorbing medium. In 

situations when optical depth is large, i.e. x » l , results in absorption saturation or strong 

absorption of the incident light. It has been shown [10] that WMS is a sensitive probe of 

pathlength saturation effects, especially when the detection is performed at higher 
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harmonics. The signal at higher detection order readily reveals peculiar features of 

saturation. 

Fig. 4.5(a) shows the ratio Rj of the turning points of 8th detection order of absorption 

signal of optically saturated Oxygen A- band transition ( RR (13,13) O16 transition 

centered at 13151.3486 cm"1 and has a line strength of 5.67 x 10 "24 cm2 molecule"1 cm"1). 

The ratios are measured as the optical pathlength parameter (or x) is increased from a 

value of 0.5 to 2.5. As the optical pathlength is increased, there are certain regions in the 

wing where there is a net effective growth in the signal. This can be seen from increase in 

the ratio as the pathlength is increased. The knee region in Fig. 4.5(a) shows onset of 

strong saturation. This region is more exaggerated in the turning points (e.g. Ti and T2) 

closest to the linecenter. Whereas, the turning point (T3), which is farthest from the 

linecenter, is least affected by saturation effects. Furthermore, it can be seen from Fig. 

4.5(b) that turning point T3 is most sensitive to changes in the pathlength. Therefore, it 

can be postulated that this region (T3), which is relatively unperturbed, can be useful in 

investigating subtle lineshape deviations e.g. profile narrowing effects or asymmetries in 

the lineshape profile. The above mentioned increase in the signal in the wing region is 

also true for detection at higher harmonics. Here, even though the total signal power 

decreases with the increase in detection order the wing region of 8th detection still seems 

be most sensitive the pathlength parameter, Fig. 4.5(c). 

The neighboring weak lines especially the RR (13,13) O isotopic transition (centered at 

13151.72491 cm" and has a line strength of 1.15 x 10 " cm molecule" cm") begins to 

grow as the pathlength is increased and cause significant overlap with turning points in 
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farthest wing of the stronger RR (13,13) line. Therefore, the fourth turning point of 8f 

detection is indiscernible and hence not shown in the figure below. 
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Fig. 4.5. Experimental plot of ratios, RT of RR (13, 13)) Oxygen (O ) A-band transition. In Fig. 5(a), T3 is the turning 
point farthest in the wing region of the absorption lineshape profile. The paired lines shows variation of the two identical 
turning points that are on long and short wavelength side of the linecenter. The difference in the two pairs could be result 
of any experimental nonlinearities or effects of intensity modulation. Fig. 5(b) shows values of RT at 4th, 6th and 8th 
detection order. 8f detection shows greatest sensitivity to the optical pathlength. It is seen that although the total signal 
power reduces with the detection order, the region around T3 still shows relative growth. 
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4.2 SIGNAL STRUCTURE AND MEASUREMENTS 

All measurements probe changes in acquired signals. In spectroscopy measurements are 

based on changes in intensity with wavelengths. The signal contrast from a reference then 

gives the quantity being measured. Similarly, scattering experiments query changes in the 

number of particles (including photons) in a spatial region. It is the signal contrast from a 

reference that gives information about the parameter being measured. The most common 

approach taken to increase sensitivity and precision (something always sought) is to 

maximize the SNR. A signal that provides greater contrast from point to point in phase-

space is easier to measure, even when it may not exhibit the greatest cumulative signal to 

noise ratio (SNR). Conventionally, measurements are considered optimal when the signal 

to noise (SNR) ratio is maximum. That approach has been very successful and in most 

cases is quite adequate. However, there are situations where the overall signal power does 

not tell the whole story. An example is the resolution of overlapping lines [1,3] in which 

the overall signal power is important but the variation of the signal resulting from line 

interferences can be even more critical: We have demonstrated, experimentally, that the 

highest resolution of the interfering lines is often obtained for values of conventional 

SNR that are not the maximum [7-12]. We develop an approach to deal with such 

situations and in the process bring out essential features that classical information theory 

reveals We provide a new perspective for quantifying optimal measurements: a signal 

with greater structure is more suitable, even when it may not exhibit the greatest SNR 

since the latter is a measure of the cumulative signal and noise powers. For example, a 

signal with constant slope reveals few details of the physical process generating it 

compared to a signal with turning points. In such cases, conventional SNR is not the most 
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suitable metric for optimizing the measurement. For example, a signal with a constant 

slope may reveal few details of the physical process generating it as compared to a signal 

with a number of turning points. This section examines the signal structure in a precision 

measurement. We show how concepts of information theory can be used to determine 

the extraction of the maximum amount of information from any metrological signal. 

4.2.1 Signal Structure and SNR 

In any given signal the locations where fractional changes are large facilitate more 

precise measurements. For example, a signal with a constant slope will reveal less 

information (about its inherent physical process) than a signal with varying slopes. This 

contrast (fractional change in magnitude) of a signal with respect to its background can 

provide measurements of high precision. The derivative like structure of a modulation 

spectroscopy signal provides such contrast and accounts for the higher sensitivity as 

compared to "direct" absorption techniques. 

It has been shown [7] that zero crossings and turning points of WMS signals are very 

sensitive to changes in the parameters being measured. Moreover, a fixed change in a 

lineshape parameter induces greater changes at turning points and zero crossings when 

the detection harmonic order is increased. This is because a higher order signal is a higher 

derivative, and the signal variations become sharper- up to some optimum value of the 

detection harmonic order, N. 

Although, the total signal power in the Nf signal reduces (see Fig. 4.6) with increasing 

detection order, N, higher order signals provide increased structure, in the form of 

additional turning points and zero crossings. These can more than compensate for the 
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decreased conventional SNR at higher N. The various combinations of these salient 

points facilitate independent measurement of lineshape parameters [9-12]. A 

combinatorial analysis allows one to introduce aspects of information theory to 

demonstrate the advantages mentioned. Such an approach is outlined in the following 

chapters. 

Signal Power vs. N 
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Fig. 4.6. WMS signals with respect to the detection order, N (bottom figure). The signal power reduces 
with the detection order: whereas, the number of turning points increases with N. Modulation index, m 
also plays important role in the cumulative SNR. 
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4.3 LOSS OF PRECISION: DISTORTION AND NOISE 

The turning points and zero crossings provide a sensitive probe for any measurement due 

to significant changes in the signal at these locations. In general, estimation of any 

lineshape parameter will depend on the precision with which one can determine spectral 

location and signal magnitudes of these salient features. 

In a typical experiment there are several sources that can cause imprecision in 

measurements. For example uncertainties associated with (1) instrumentation: diode 

laser, laser current drivers, temperature controllers, acquisition electronics, wavemeter, 

photodetector, lock in amplifier etc. (2) measurement of experimental variables, such as 

frequency modulation index (m), amplitude modulation index (r), pathlength (L), (3) 

probe distortion: optical pathlength saturation [5], interference of overlapping lines, 

modulation or pressure broadening [1,2], Fabry - Perot fringing [4] etc. We classify the 

uncertainties in an experiment in two categories. A systematic uncertainty, also referred 

to as distortion, is mainly due to instrumentation or experimental parameters that cause 

systematic aberration in measurements. Up to some extent, these effects can be measured 

and adequately modeled. For example, a distortion like modulation broadening, 

amplitude modulation, pressure broadening and pathlength saturation can be accounted 

for theoretical models of WMS signals [1, 2, 4, 5]. We have shown accurate modeling of 

such distortion effects previously [1, 4, 5] and also in the previous chapters. 

On the other hand, uncertainty due to noise is fundamental in nature that originates from 

thermodynamic properties of the matter. This type of randomness is probabilistic 

(statistical) in nature where the phase space of constituent particles of the material tends 

to occupy maximum possible configurations to attain a state of maximum disorder in 
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thermodynamic equilibrium. In electronics this noise originates from "resistive" nature 

(or "random collisions") of the circuits. The two most common types of noise are thermal 

and shot noise which has been dealt with extensively in several places in the literature 

[13, 14]. Due to their inherent statistical nature, these noise uncertainties cannot be fully 

accounted; only their average behavior is quantified and considered in experimentation 

It is important to recognize how these uncertainties translate into error in measurements 

and mismatch in experiments and models. Fig.4.8 illustrates this point, where uncertainty 

in wavelength acquisition is considered. The figure shows a simplified schematic of 

wavelength characterization and signal acquisition. Uncertainty in the wavemeter 

translates into uncertainty in the values of the model computed from the wavelength data, 

Figs. 4.7 and 4.8. Similarly, uncertainty in the lock-in amplifier data corresponds to the 

uncertainty in experimental signals. Both combined together will give imprecise values of 

the desired parameter, e.g. the linewidth or the absorption cross-section. 

dA/dV 

0.5 0505 051 0515 052 0525 053 0.535 054 0545 0.55 

Fig. 4.7. Wavelength characterization (Fig. (a)) of oxygen A- band spectrum that scans RR(13,13) 
transitions. The wavelength range is 760.30 nm - 760.41 nm . The figure shows 6 scans within this range. 
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Fig. 4.8. Representation of uncertainties in wavelength data and lock in amplifier signal. Wavelength 
imprecision results in error in the model. Uncertainty in the lock in amplifier signal is mainly due to distortion or 
noise in the detection electronics, experimental apparatus or fluctuations in gas environment. The total mismatch 
in experiment and model (and error in estimation of parameters) is due to cumulative uncertainties in estimation 
of spectral locations and signal magnitude. 

4.3.1 Signal Uncertainty - Distortion Effects 

In WMS measurements there are distortion effects that inhibit accurate estimation of 

turning points or zero crossings. For example, if the signal is broadened, the spectral 

location and magnitude of the turning points is imprecisely measured: and therefore, 

estimation of the parameters is inaccurate. We now give a brief description of these 

effects: 

Modulation Broadening: This broadening [1, 2] occurs due to higher values of 

modulation indices. The cumulative signal strength grows with the modulation index 

( ~mN) , but also results in broadening of the resultant signal. This is because, for large 

modulation amplitudes (P) the probe laser samples a greater spectral region of direct 

absorption signal. Typically for lower modulation indices the center lobe of the harmonic 
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signal is the highest in signal magnitude while the side lobes decrease with their 

respective distance from the linecenter. In case of higher modulation indices the signal 

broadens and center lobes begin to depress and the side lobes grow in magnitude, see 

Fig. 4.9. 

Fig. 4.9. Modulation distortion broadens WMS signals. The signal broadens around linecenter 
resulting in lowering of the linecenter peak magnitude. The cumulative signal power increase as ~ mN 

Pressure (Collision) Broadening: The effects of pressure broadening are the same as 

that of modulation broadening. In this case also, the signal broadens at higher pressures 

(>250 Torr) as the effects of the collisions between the gas molecules becomes 

prominent. In this range of pressures, collision broadened transitions are more dominant 

than Doppler broadened transitions. 

It has been show that effects of modulation or pressure broadening leads to flattening of 

the signal and hence, less precision in estimation of zero crossings or turning points. In 

addition, overlapping lines appear to be resolved at lower modulation indices. Therefore, 

any broadening effect inhibits the structure in signal and measurement precision. 
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Optical Pathlength Saturation: As discussed in the previous chapter, this effect [5] 

appears because of non-uniform absorption across the transition lineshape frequency 

profile, with increasing penetration into the medium being probed. Effectively, any 

element of the medium sees an input probe whose profile is different from that seen by a 

preceding section because of the stronger absorption at, and around, the line center. The 

result is that the probe signal detected appears broadened, see Fig. 4.10. Consequently, 

with the choice of suitable modulation index higher order (even) harmonics show this 

effect as suppression of their linecenter lobes. 

Optical pathlength saturation effects in higher detection orders 
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Figs. 4.10. Pathlength distortion: 4th and 8th harmonic signals with modulation index, m = 1. The 
saturation parameter, T = 1.0. Note that in N=8, the center peak is depressed due to pathlength 
saturation. Also, for the same z values lower order harmonic (N=4) do not show saturation effects. 

Fabry-Perot Fringing: This type of distortion effect occurs due to the multiple 

reflections of the probe beam inside the optical components of the experimental apparatus 

(Fig. 4.11). This is an oscillatory signal which limits the signal to noise ratio of the WMS 

signals. A detailed description of this effect is given reference [4]. 
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Fig. 4.11. Fabry- Perot fringing due to multiple reflections from optical components. Fig. (b) shows N=l 
signal with Fabry-Perot etalon. Due to etaloning effect the harmonic signal is distorted. The experimental 
signal and modeled plots [4] are shown together (Fig. (b)). 

4.4 SIGNAL UNCERTAINTY: THERMAL OR GAUSSIAN NOISE 

Thermal noise is a result of the discrete nature of photons (Bosons) and their thermal 

equilibrium between particles i.e. atoms or the lattice. This results in a distribution that 

maximizes their configuration in phase space also known as state of maximum entropy 

(or maximum disorder). The distribution is given by Planck's formula [15] of the 

blackbody radiation. The equivalent distribution in semiconductors is the cause of noise 

effects. The particles involved in this case are free electrons that are in thermal 

equilibrium with local e-fields (phonons or lattice vibrations). The distribution of these 

particles in thermal equilibrium is such that it describes maximum entropy in the phase 

(define by their energy and momentum). Although, at a finite temperature, a typical 

blackbody spectrum ranges from far infra red to gamma wavelengths, noise spectrum of a 

semiconductor electronic material is (band) limited to radio frequencies. This is due to 

the collision mean free path or the response time of the electronic devices. It can be 
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shown that the voltage distribution of this uniform spectrum of noise is a Gaussian 

distribution (Appendix E). 

Thermal noise [13, 14] (or Nyquist noise, see Appendix D for detailed physics of the 

topic) is one of the most common types of noise that appears in electronic circuits. This 

type of noise originates from resistive elements in the circuits. The noise occurs due to 

thermal collisions of electrons with atoms. As mentioned earlier, thermal noise has its 

roots in blackbody radiation; therefore, the noise distribution is the same as that of 

blackbody distribution (see Appendix D). However, this distribution is approximated to 

kT, due to the range of frequencies that are common to electronic circuit design. 

Therefore, a standard power distribution has a width of, kTAf(Af is the bandwidth of the 

device, due to capacitive effects of the circuits). In engineering terminology, this 

approximate version of thermal noise is also known as white noise. As the name suggests, 

white noise has a uniform distribution in frequency (this should not be interpreted as 

infinite power in infinite range of frequencies because the white noise energy expression, 

kT, is an approximation of hvl{ehvlkT -1) , which has a finite power over an infinite range 

of frequencies.) 

Since, white noise has a uniform power distribution, each noise pulse, independent of the 

other pulse, has a fixed variance. As a consequence of the central limit theorem, this 

distribution is a Gaussian with an average power, JcTAf, as its variance (see also Appendix 

E). During the collisions of individual electrons with atoms, each collision radiates a tiny 

pulse of electromagnetic waves, whose sum is the observed noise. A circuit element of 

resistance R ohms, develops, across its terminals in a small frequency band, Af, a 
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fluctuating mean square open circuit voltage, V2 = R kTAf. Therefore, it can deliver to 

another circuit element the maximum power P = kTAf watts. 

At room temperature, T= 300K, and since, £=1.38*10"23 Joules/K, the maximum power 

is about, P = 4*10"15 watts/megahertz bandwidth. Any signal of lower intensity than this 

will be lost in the thermal noise and cannot be recovered, ordinarily, by any amount of 

amplification. However, prior information about the kind of signal to be expected may 

enable signal-processing techniques to extract weaker signals. For example, in a 

synchronous detection using Lock in Amplifier, a weak modulated signal can be 

extracted by performing demodulation at higher frequencies. 

4.4.1 Thermal Collisions and Bandwidth in a detector 

It can be seen from both Feynman's and Nyquist's treatment [13, 14] that the thermal 

fluctuations or noise occurs due to collisions of electrons with atoms in a conductor. 

Since, the "resistor" by itself is not resonant or has a bandwidth, the bandwidth limitation 

comes from the channel that conveys the information about these collisions in the form of 

current of voltage variation, which is measured. Similarly, in a semiconductor, the 

collision occurs between the electron and the lattice. The resistive action of the 

semiconductor arises due to these collisions which are random in nature. These thermal 

collisions are transferred from one location to another in the lattice by the collision times 

of the carries. Therefore, bandwidth limitations of such collision arise due to 

semiconductor properties e.g. collision time, capacitance, diffusion length or response 

time of the semiconductor material. 
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4.5 CONCLUSION 

The analysis presented above allows distinctive features in the wings of an absorption 

line to be probed by using modulation spectroscopy with detection at harmonics that are 

relatively high (certainly greater than N = 2). The technique can be employed to study 

fluctuations in the lineshape parameters due to any changes in the gas environment and 

collision dynamics. Also since the method effectively probes (approximately) derivatives 

of the lineshape function, higher harmonic detection can pick up variations in the wings 

that are not discernible at lower values of N. This could, among other things, allow 

subtle features of narrowing effects on the spectral lineshapes such as Dicke narrowing to 

be studied more accurately. 

Sources of noise and distortion and their implication in measurements of WMS signal 

were discussed in this chapter. In the following analysis, we consider these aberrations on 

the signal magnitude and spectral locations of turning points and zero crossings and their 

impact on precision in measurements of lineshape parameters. 
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CHAPTER 5 

OPTIMAL DETECTION ORDER -I: RESIDUALS AND CHI SQUARE METRIC 

In the following chapter, we discuss quantitative aspects of optimal detection order in 

WMS signals. In the previous chapters, we have seen that higher detection orders reveal 

subtle effects that are not apparent in conventional direct measurements or lower 

detection orders. This is quite important for an accurate estimation of lineshape 

parameters. In this chapter, we address the fact that greater structure (or number of 

turning points and zero crossings) is quite advantageous as it imposes tighter constraints 

on fitting the experiments and hence enhances accuracy of the obtained parameters. 

Therefore, we study a criterion that provides a quantitative metric of efficacy in 

measurements, utility of structure and the corresponding detection order. 

5.1 QUANTITATIVE ADVANTAGES OF HIGHER HARMONIC DETECTION: 

CHI-SQUARE METRIC 

The distortion and noise effects discussed in the previous chapter lead to imprecision in 

the measurement of the signal and hence an uncertainty in lineshape parameters. This 

ultimately will reflect in mismatches between the experiments and theoretical models. In 

the following section, we quantify the mismatches and investigate regions where these 

errors can be minimized. Therefore, we investigate higher harmonic detection and their 

sensitive locations that can be potentially used to identify such errors with greater 

precision and facilitate accurate estimation of lineshape parameters. To proceed we 

discuss a statistical analysis approach that quantifies criteria of fitting experiment and 
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theory. The method is based on the least mean square of residuals [1,2] or chi-square 

measure, which computes the mismatch of experimental and theoretical WMS signals 

that occur due to uncertainties in lineshape parameter e.g. the linewidth. The analysis 

shows that the figure of merit (of residuals) is higher at higher harmonics and hence 

allows a better fit between experiment and model. In summary, we show that one 

identifies the errors with greater accuracy at an optimal detection order using aspects of 

structure. 

5.1.1 Quality of fit between experiment and model 

In this section, a quantitative analysis of Wavelength Modulation Spectroscopy (WMS) 

signals at various harmonic detection orders for use in precision, non-intrusive 

measurements is performed utilizing statistical analysis of fractional error (mismatches 

between theory and experiment) distribution and structure of WMS signals. Here we 

define the error metric as variance of fractional error throughout the spectrum. A 

theoretical analysis of the fitting of WMS detailed structures at various harmonic 

detection orders is studied [1,2] and analyzed, using statistical measures. It is shown that 

the error metric increases with mismatches in linewidth in a particular (Nth order) 

harmonic signal. However, this rate of increase in variance is characteristic of the 

harmonic detection order used, thereby demonstrating the advantage in measurements at 

different harmonics. It is shown that for a constant error in estimation of linewidth of a 

profile, the error can be higher for higher detection orders. Therefore, mismatches in fits 

are more prominent at certain optimal detection orders. 
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Experiments with WMS at various detection orders have been done to measure quantities 

like absorption cross-section, temperature, pressure and concentration of gaseous species. 

These small perturbations of a lineshape profile reveal details of the molecular collision 

kinetics, and hence yield precise measurements that are difficult to achieve by other 

techniques. These sensitive measurements not only require an accurate fitting of the 

experimental data with the theoretical model but also require a measure of the quality of 

the fit. Therefore, it becomes imperative to analyze the statistical behavior of these fits 

and their dependence on quantities like linewidth, modulation index etc. For these 

purposes we demonstrate a criterion, based on the variance of errors, which is used to 

quantify the quality of a fit. 

A model, which for reference we call the "theoretical signal" using a precisely known 

linewidth, (AVD) is given by Eqn. (5-1) below. 

g 1 
/ \2\H-N 

m 
V^ AvD tt v!(v+7V)! v(2)y 

(l.. . . X \2*NI2»NV2 f . . . \ 2 k 

^=-j,«rf(-rff Z ^ { ^ r̂̂  E ^ H ) e-1) 
(v-v0) 

V AVD J 

[2v+AT]/2 Avr 

V ( v " v o ) j 

Here m is the frequency modulation index, m = J3/AVD-

The features of such a model also depend on the modulation index, m. In addition, 

another signal, which we call the calculated "expected signal" is generated with an 

induced error (s) in the linewidth, AVD- Hence the theoretical signal has linewidth, AvD 

while the expected signal has linewidth (AvD ± s). The resultant errors induced in this 

way vary across the signal spectrum because of the detailed structure of these signals. 

The statistical behavior of such errors is investigated by examining the induced variance 

of error for different harmonic detection orders. 

In Figs. 5.1 (a) and (b) the solid curve denotes the theoretical signal (Gaussian lineshape 

with linewidth AvD= 2GHz) of 1st and 5th harmonic WMS signals. The dotted curves 

file:///2/H-N
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represent the expected signal. For these purposes we have included an assumed 5% error 

(i.e. s = 0.1 GHz) in the linewidth. The modulation index used was m=l. Convergence 

of the series in Eqn. (5-1) required a total of five terms (v = 4) for both 1st and 5th 

harmonics. The range of wavelengths selected for the signals are those that are typical for 

absorption lines in the Oxygen A band [3]. 

1st harmonic signs! 5th harmonic signs! 

760.335 760 34 7813*5 760.35 760.355 /SO.36 760.365 "760.3/ 760.3/5 
Wavelength(rim) 

760.335 760.34 760.3^5 760.35 760.355 760,36 761X335 760.37 760.375 
Wave!ength(rtm) 

Fig. 5.1. Theoretical signal (solid curve) and Expected signal (dotted curve) of 1st and 5th harmonic WMS 
signals. Linewidth of theoretical signal = 2GHz. Linewidth of expected signal=2.1GHz. 

It is obvious that mismatch between the theoretical and expected signals is due to the 

difference in their linewidths. An important point to note is that the mismatch in the 5th 

harmonic detection order signal is greater than in the 1st harmonic detection order signal. 

This difference of mismatch between the harmonics is reflected in the variance of errors 

analysis, discussed below, and is central to the advantage that accrues when one uses 

higher harmonic detection orders. 

5.1.2 Fractional residuals 

Figs. 5.1(a) and (b) show the mismatch between theoretical and expected signals because 

of the induced error in linewidth. In order to define the criteria of mismatch we first note 
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that magnitude of a particular harmonic signal varies significantly throughout the 

spectrum, because of the large amount of structure in these signals. Also, magnitude of 

the harmonic signal depends on the detection order, N. For example, the residuals 

(difference between theoretical and expected signal) of 1st harmonic will be greater than 

that of 5th harmonic, simply because the magnitude of 1st harmonic signal is 100 times 

the magnitude of 5th harmonic signal. Therefore any useful measure of mismatch for 

WMS signals should be independent of location of the residues in the spectrum as well as 

their harmonic order. Hence, we use the fractional error (at each wavelength in the 

spectrum) as a criterion of mismatch. The fractional errors are residues between the 

theoretical and expected signals at each wavelength, normalized to the magnitude of the 

theoretical signal at that particular wavelength. This yields a scatter of fractional errors 

throughout the spectrum. The variance of these fractional errors can then be used as a 

measure of the quality of the fit of harmonic signals. The fractional error for any Nth 

harmonic WMS signal is therefore defined as; 

Note that here it is more meaningful to consider the absolute magnitudes of the 

mismatches. 

The variance of fractional error is given by the usual definition: 

°N=-£(fNe(v)-Je)
2 (5-3) 

Here n is total number of data points (or wavelengths) and fe is the average fractional 

error. 

theoretica I (v) 
-A" 

exp eriment (v) 
(5-2) 
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Obviously, for a perfect match the variance of fractional error is zero, and generally 

speaking a smaller magnitude of variance of error indicates a better quality of the fit. It 

has been shown earlier that if mismatches occur only due to error in estimation of 

linewidths (e), the variance of error increases with the increase in error (s), as is expected. 

Fig. 5.2. Mismatch between expected and theoretical harmonic signals. The mismatch is due to difference 
in the linewidth. Expected Linewidth = 2.0 GHz and Theoretical linewidth= 2.1 GHz and. Mismatches 
are significant at higher order specially at, N = 6 to N = 8, at the locations of zero crossings and turning 
points. In addition, higher order harmonic provide more visibility of these mismatches than lower ones. 
The scatters show the magnitude of fractional error along the spectrum. 

Fig. 5.2 shows an assumed model and observed data with a finite difference in the 

linewidth. The scatter plot imposing on the two plots indicate a mismatch due to a 

fractional difference from the observed data. It can be seen that zero crossings and 

turning points are the most sensitive locations where the scatter (in error) is the greatest. 

Therefore, one can conclusively show that most of the errors between the signals occur at 
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these locations. To reinforce this argument, we calculated errors around these turning 

points and zero crossings and compared it with the total error throughout the spectrum. 

The table below shows a concentration of errors at the location of zero crossings and 

turning points. It can be seen that a greater percentage of error (of total error in spectrum) 

is concentrated around zero crossings and turning points. This could provide faster 

algorithms that are adaptive and compute values around these salient points instead of the 

full WMS spectrum. 

Table 5.1. Cumulative measure of error due to mismatch between the expected and theoretical WMS signals at 
various detection orders. First column shows percentage error in the vicinity of zero crossings and turning points 
of WMS spectrum. Third column is the deviation of the error, higher detection order show greater deviation. 
This is due to mismatch at several of these salient features. 

Detection 
Order 

N=l 

N=2 

N=3 

N=4 

N=5 

N=6 

N=7 

N=8 

Average fractional 
error around Ts and 
Zs 

0.03(15%) 

0.12(40%) 

0.19(50%) 

0.3(58%) 

0.37(62%) 

0.46(63%) 

0.52(64%) 

0.57(64%) 

Average fractional error of 
spectrum excluding Ts and 
Zs 

0.17 

0.18 

0.19 

0.21 

0.23 

0.26 

0.29 

0.32 

Deviation of 
fractional Error 
(full spectrum) 

0.08 

0.08 

0.09 

0.11 

0.12 

0.16 

0.20 

0.22 

Figs. 5.1(a) and (b) showed a situation for theoretical and expected signals and the 

mismatch between them. In practical applications, a theoretical model (for example Eqn. 
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(5-1)) will be used to fit the real experimental data. An additional consideration that must 

be brought to bear in any experimental situation is the fact that in practical situations the 

experimental data will be subjected to imprecision of the measuring instruments. Such 

imprecision can result from many factors, including noise as well as the ever-present 

finite resolution of any instrument. Two such important effects, namely the variation of 

the photodetector signal due to noise and the finite resolution of the interferometeric 

measurement used to identify the wavelength at which a given measurement is done are 

now addressed. 

5.2 SIGNALS WITH IMPRECISION IN MEASUREMENTS 

In a typical WMS experiment a modulated laser beam is shined on the sample and the 

signal from the absorber is collected by a photodetector. The signal from the 

photodetector is then processed through a Lock in Amplifier (demodulated at different 

harmonics) to obtain the harmonic detection signal. In such experiments, the wavelength 

of the laser is usually measured by a "wavemeter" which is essentially an interferometer. 

In the analysis below it is assumed that both the photodetector and wavemeter have 

certain imprecision (or uncertainties) in measurements. 

Fig. 5.3 shows a graphical representation of any WMS data acquisition scheme with such 

imprecision. We analyze the situation when the reading obtained by the wavemeter is 

known to have a finite uncertainty. The rectangles represent possible signals on the 

photodetector at three different frequencies (or wavelengths), v-A, v and v+A. It is 

assumed that these three values are equally likely to be true. In addition, the vertical 

dotted arrow represents the range of imprecision of the photodetector, due to any noise. 
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Therefore, at any one possible frequency for example v-A, any of the signals SEOI, SE2I or 

SEH is likely to be registered at the photodetector. It is assumed that all these are equally 

likely. 

o SM= Theoretical model 
representation 

n SE= Photodetector signal 
representation 

* • 

Fig. 5.3. Graphical representation of photodetector signals (in rectangles) with imprecision (vertical dotted 
arrows). Circles denote the theoretical model computed at three frequencies. The fractional error is a measure 
of expanse of theoretical model data point from any one of the photodetector signal data point on signal scale. 

All of the nine photodetector signals and three theoretical model data points (at v-A, v 

and v+A) form 27 possible, equally likely combinations that will enter ino a computation 

of the fractional error. Here, the fractional error is mismatch of any one of the 

photodetector signals (SEIJ , i = 0,1,2 and j = 1, 2, 3) from any one of the theoretical 

model data points (SMR , k =0,1,2). For example, the fractional error SEH and SMI is 

written as; 

Signal 
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/ „ = p{\) * p(Sm) * p(Sm,) * [SEII~SUI] (5-4) 

Here p(l) is the probability of occurence of photodector signal-1, P(SMI) is the 

probability of occurence of frequnecy v-A (or model SMI ) and P(SEH) is the probability 

of occurence of SEII of photodetector signal-1. 

Computing all possible combinations of the photodetctor signal and theoretical model 

data, the general form of average fractional error weighted over all combinations, is: 

fe=ttt purpis^pis^n^^-] (5-5) 
j=\ ,=o k=0 ^Eij 

It can be seen from the above equation that fractional errors depend on the probability of 

occurence of photodetector signals and wavemeter data (or theoretical model data points) 

lying in the region of imprecision of the instruments. Hence it follows that the fractional 

errors depend on the statistical distribution of the signals and the noise characterstics of 

the instruments. 

To generate the theoretical signals that represent a photodetector signal we used Eqn. (5-

1) gaussian lineshape and fixed linewidth of AVD = 2GHz) and introduced a 10% error 

(as imprecision of the photodetector) in each of the data points representing photodetector 

signals. A finite error (of A to represent imprecision of the wavemeter) was also 

introduced in the frequency data (wavelength scan of R13R13 line of oxygen). The 

expected signals were generated at these frequencies also using Eqn. (5-1) 

( gaussian lineshape and linewidth of (AVD + e) = (2 + S) GHZ, range of 8 was taken from 

0.02 GHz to 0.1 GHz). The fractional errors were computed assuming uniform 

distribution of the imprecision of the photodetector and the wavemeter. The results in the 
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following section show variance of errors not only due to error in estimation of 

linewidths but also due to finite imprecision in the measuring instruments. 

5.3 METRIC AT HIGHER DETECTION ORDER 

The variance of error of different harmonics (N = 1 to N = 5) was calculated 

incorporating imprecision in wavelength and signal measurements. All the computations 

were done with a modulation index, m=l. It was estimated that for this modulation index, 

four terms (v = 4) in the series expansion in Eqn. (5-1) were sufficient to represent the 

full WMS signal. A four percent criterion for convergence was used- namely that 

computations were stopped when consecutive values differed by less than this amount. 

The calculations were carried to include higher terms in the series and the computations 

were terminated after verification that the next several terms gave a tighter convergence. 

For fixed modulation index m, it was found that the number of terms required to express 

full WMS signal remain same for all the harmonics. In other words, detection orders 

N=l to N=5 required four terms to represent the full WMS signal. However, the number 

of terms (needed to satisfy the 4% convergence criterion) increases with the modulation 

index m. For example for a fixed linewidth of 2 GHz, m = 1 requires a total of four terms 

(v =3), m=2 and m=3 requires 15 and 35 terms respectively. This is because of the effects 

of "modulation broadening" in the expected signals. 

Fig. 5.4 shows the trend of deviation of fractional error (Eqn. (5-3)) with error (s) in 

estimation of linewidth for N=l and N=5 detection orders. For these computations, the 

error (s) in the linewidth was varied from 0.02 GHz to 0.1 GHz. 
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Deviation of fractional errors vs. error in linewidth 

2 3 

Error in linewidth 

Fig. 5.4. Deviation of fractional error of harmonic N=l to N=5 of WMS signals. Higher order harmonic 
show greater deviation of errors and steeper slopes. Note: The harmonics N=l, 2 and 3 are scaled 10 
times. 

The above figure shows comparison of deviation of fractional error for N=l to N=5 

harmonic order WMS signals. The plot shows that higher order detection signals have 

higher as well as steeper slopes under the assumptions of these computations (Gaussian 

lineshape and uniform distribution of errors in photodetector and wavemeter 

measurements). Also, the mismatches between theoretical and expected signals increase 

with increasing error (e) in the linewidth, as expected, of course. This is reflected in a 

higher magnitude of the variance of error. Better fits are characterized by smaller 

variance of errors. The quantification of the quality of the fit between experiment and the 

theory facilitates precise estimates of quantities like absorption cross section, a . 

The theoretical analysis developed above can be extended to other lineshape profiles such 

as Lorentzian, Voigt etc. While the exact values of variance of errors must, of course, 
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depend on the exact characteristics of the lineshapes, the types of noise and the 

distribution of the imprecision of the instruments, the general trends should remain intact. 

One other way to look at the results obtained above is from the perspective of 

information content [4-7] due to the effects of noise and other signal "blurring" that 

results from the practical environment during any measurement. We will discuss this in 

some detail in the following chapter. 

5.3.1 Experimental Results and deviation of residuals 

It has been shown [1, 8] that the locations of zero crossings and turning points are 

sensitive to any changes in a lineshape parameter such as the linewidth. Figs. 5.5(a) and 

5.5(b) show experimental and computed 5th and 7th order WMS signals of oxygen A-

Band RR(13,13) rotation-vibrational transitions. The modeling was done assuming a 

Voigt lineshape function. The model that best fit the experiment was obtained whose 

residuals were least from a set of b (the ratio of collision and Doppler linewidths in a 

Voigt profile). The scatter plots imposed on these figures show the fractional errors (at 

each spectral location) between theory and experiment. It can be seen that the mismatch 

(shown as an inset in Fig. 5.5(c)) is large at the locations of zero crossings and turning 

points. In addition, a higher detection order has a greater number of such locations with 

higher mismatches. This aspect is brought out in Fig. 5.5(d) which is a Chi-square (a 

measure of standard deviation of fractional errors between experiment and theory) plot 

that shows what could be regarded as cumulative figures of merit for a particular 

detection order. Note that the chi square was estimated for three different values of the 

collision broadening parameter, b (b = AvColl /2Avfl) one of which gives the minimum chi-
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square value, and was the best fit to the experimental results. Also note that in Fig. 5.2(d) 

the difference between the values of chi-square metric is very small at lower detection 

orders and begins to grow with the detection order. Recall that mismatches of this type 

between an experimental measurement and a model, with a particular parameter such as 

the linewidth, ultimately improve the measurement's precision: the greater the mismatch 

that occurs as a result of a fixed change in an assumed value, the more precise the 

measurement will be when the mismatch is minimized. Hence, all other factors being the 

same, Fig. 5.5 (d) shows that 7f detection would provide the most precise results for a 

linewidth measurement. 
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Fig. 5.5. Experimental and modeled plots of 6th (Fig. (a)) and 7th (Fig. (b)) order WMS signals of oxygen RR 
(13,13) A-band transition. The scatter shows the magnitude of mismatch between theory and experiment at each 
spectral location. Note the greater scatter is in the wings. Fractional error around the locations of (2N+1) zero 
crossings and turning points is 57% (N = 6) and 61% (N = 7) of the total cumulative error throughout the 
spectrum, showing the importance of these salient points. The linewidth parameter of a Voigt profile that gives 
the best fit, corresponds to b=0.60 (Doppler width = 3 GHz and collision broadened width = 2 GHz. Fig. (d) is 
the chi-square curve for the best fit (i.e. where cumulative error between theory and experiment is the least i.e. b 
= 0.60) as well as for two other values (b = 0.40 and b = 0.80). b = 0. 60 shows the least error for all detection 
orders. Note that at lower harmonics the three chi-square curves are relatively close to each other and gradually 
spread apart showing greater mismatch at higher detection order. This shows that higher harmonic detection 
can be advantageous. Since the signal power decreases with increasing N, after a certain N the advantage of 
higher harmonic detection is lost in the noise- the WMS signals' turning points and zero crossings becoming 
indiscernible from noise. 
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5.4 CHI-SQUARE MEASURE AND INFORMATION 

The idea of Information [4-6] and information loss owing to indistinguishability or 

distortion of events has been discussed previously [6]. It was shown that such a blurring 

of events whatever the cause, results in a loss of information. In the analysis developed 

above, the variance of error is a result of two factors: namely an error in estimation of 

linewidth and an imprecision of the instruments. In a practical situation these two factors 

will be coupled together. However, for convenience we examine them separately. 

First, consider an ideal (hypothetical) situation where experiments are done with perfect 

instruments and with 100% accuracy, i.e. we assume, initially, that the instruments are 

ideal. Then, in Fig. 5.3, instead of nine data points (rectangles) representing the 

photodetector signal and three data points of the Wavemeter (that gives theoretical data 

points denoted by circles), one would register only one data point. Therefore we would 

compute only one value of a fractional error. 

In this idealized scenario the variance of error will be due only to errors in the linewidth 

assumed in the theoretical model. If the exact lineprofile and linewidth were known then 

there would be a perfect match between the theoretical and expected models. Hence the 

fractional errors and the variance of error would be zero. 

Now consider the second factor, namely the more realistic scenario where we recognize 

that the measuring instruments are not precise. This effect will also contribute to the 

variance of error. Again referring to Fig. 5.3, if the imprecision in the instruments is such 

that each of the nine photodetector signals (rectangles) and Wavemeter data points are 

equally probable, then each of the photodetector signals occurs with a probability P(SE\J) 

=1/9 and each data point of the Wavemeter occurs with probability /?(SMk) =1/3. Hence 
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for one theoretical data point there will be nine possibilities of the photodetector expected 

signals from which to compute an average fractional error. This gives 27 equally 

probable fractional error data points. It should be noted that a variance of error in the 

presence of imprecision in measurements will never be zero even if the exact lineshape 

profile and line parameters like linewidth are known. Clearly, imprecision in the 

instruments limits the minimum possible variance of error that one can achieve and 

therefore limits the best possible fit between the experimental and theoretical data. 

In order to extract the most information from an experiment, by changing the harmonic 

detection order in a WMS experiment, one needs to set up conditions so that initially one 

has a large variance of errors. In that case then, after the model is fit to the experimental 

data, one will have extracted the largest amount of information. This is consistent with 

the basic result of information theory of Shannon in which the greater the decrease in 

entropy (or uncertainty) the greater the amount of information that is extracted. 

Measurements done by modulation experiments will have certain optimal harmonic 

detection orders that yield the most precise results. This will intimately be dependent on 

the given set of experimental apparatus and the particular noise environment. 

For instance, the method discussed in this chapter allows features in the wings of an 

absorption line to be probed by using modulation spectroscopy with detection at 

harmonics that are relatively high (certainly greater than N = 2). The technique can be 

employed to study fluctuations in the lineshape parameters due to any change in gas 

environment and collision dynamics. Also since the method effectively probes 

(approximately) derivatives of the lineshape function, higher harmonic detection can pick 

up variations in the wings that are not discernible at lower values of N. This could, 
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among other things, allow subtle features of narrowing effects on the spectral lineshapes 

such as Dicke narrowing to be studied more accurately. 

There are many instances where measurements at higher harmonic detection orders and at 

certain spectral locations of the signal will yield a higher precision in-spite of the fact that 

with every increase in the detection order the signal decreases. It should also be 

emphasized that this increase in precision in measurement is quite separate from the 

well-recognized increase in signal to noise ratio that is obtained by synchronous detection 

at frequencies at which the noise spectral intensity is low. The inherent advantage of 

higher harmonic detection demonstrated here is due to the richer structure and sensitivity 

to variation in lineshape profile. The result has been demonstrated by a statistical analysis 

in this chapter, where we see that the sensitivity of a lineshape parameter can be optimum 

in region in the far wing structure of the lineshape profile. As we will see in the following 

chapter, this notion is closely related to the idea of information content in terms of the 

entropy expression developed by Claude Shannon [4, 5] in the mid part of the last 

century. 
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CHAPTER 6 

OPTIMAL DETECTION ORDER -II: INFORMATION THEORY 

In this chapter we apply concepts of Shannon's information theory [1-2] to Wavelength 

Modulation Spectroscopy (WMS) to obtain quantitative figures of merit such as the 

measurement precision and a prediction of the optimal detection harmonic order [3-6]. 

The amount of information, in bits, that can be extracted in any WMS measurement is 

calculated. The theory is applied to experimental results we have obtained in WMS 

experiments in congested spectra with overlapping lines that have highly disparate 

absorption cross-sections. A key result is that the complexity of signal structure can play 

a much more important role than the conventional signal to noise ratio. We show that 

there are some parts (where it exhibits turning points and zero crossings) of the 

structurally-rich WMS signal that play a larger role in conveying information about the 

measurement than other parts of the signal. We also show that, for a particular noise 

limitation of the apparatus, there is a finite amount of information that can be transmitted 

(to the detection equipment) by the probe laser as it samples the probed species. The 

apparatus is analogous to a Shannon's information channel. Application of the theory 

developed to our experimental absorption measurements in the Oxygen A-band shows 

why high detection harmonic orders (up to the 6th or 8th) yield the highest resolution. 

This is in contrast to statements in the literature, based on conventional signal to noise 

ratio considerations, that the best results are to be expected with second harmonic 

detection. 

This chapter complements the quantitative analysis of optimal detection order in the 

previous chapter. It is seen that the absorption features, and therefore the WMS signal, 
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depend mainly on the gas environment, lineshape parameter and experimental controls, 

signal magnitudes, and noise environment. In addition, we have seen that locations of 

zero crossings and turning points are most sensitive, and in some situations sufficient for 

signal analysis instead of the full WMS spectrum. Therefore, an optimal detection order 

for estimation of any lineshape or gas parameter depends on the measurement of these 

salient features in a given noise environment. 

6.1 INFORMATION CONTENT 

There has been a great deal of interest currently in the field of information theory and its 

connections with other fields of science e.g. statistical mechanics, quantum mechanics, 

optics, etc. According to Bennett [7-11] every physical process can be considered as an 

information processing experiment, which requires the generation, transmission and 

measurement of a bit. The process also involves a computation in that mathematical 

operations occur on the bit. In spectroscopy, the generation of the bit is inherent to the 

physical transition being probed. Ultimately, the total amount of information in such an 

experiment is described quantitatively by the lineshape profile, which is a probability 

density function in the frequency (or wavelength) domain. The lineshape profile therefore 

gives the maximal information content (of the source) that can be measured in an ideal, 

noise free, environment. However, this maximum amount of information cannot be 

extracted fully because the processes of transmission, computation and measurement are 

inevitably subject to the practical limitations of the apparatus. 

These ideas are applied to a general spectroscopic measurement to provide quantitative 

measures of how much information is lost as a result of practical limitations on the 
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apparatus. The approach taken is to note that in most spectroscopic techniques (whether 

they involve absorption, emission or scattering phenomena) the precision and sensitivity 

of the results depend mainly on the accurate measurement of a wavelength and intensity. 

The measurement of the wavelength serves to identify the species being probed and the 

intensity of signal (absorbed, emitted or scattered) allows one to quantify the density of 

the species. In this chapter we quantify information loss in WMS measurement by 

recognizing that any measurement on a lock-in-amplifier, photodetector or a 

spectrometer- interferometer will have a finite precision which is associated with the 

uncertainty in this measurement of intensity, voltage, wavelengths etc. The loss of 

information in a measurement of intensity in general depends on many factors such as 

noise, nonlinearities and saturation in the detector [10-13]. 

Shannon's mathematical theory of communication [1, 2] laid the foundation of modern 

information theory. The theory generally groups the major components of a 

communication system into the source, the channel, a receiver and a destination (where 

an observer accesses the transmitted information). The information content is associated 

with the entropy H of the source. This entropy depends on the probabilistic distribution 

of the source's messages. In general, of course, this set of messages can be any collection 

of suitable signals. Shannon's measure of entropy is closely related to that in statistical 

mechanics and thermodynamics. According to Shannon, entropy is uncertainty in a 

source that has a probabilistic distribution of messages. In statistical mechanics, 

uncertainty is number of distinguishable arrangements that can be drawn from a group of 

particles. Entropy in a communication set up is the number of distinguishable messages 

that can be sent from an information source. 
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The entropy of a system of N particles can be obtained by combinatorial analysis of all 

possible arrangements of these particles. In standard statistical mechanical arguments 

[14] N would be the number of distinguishable particles and each arrangement of 

particles may be regarded as a message. In a collection of N particles in which m groups 

of particles ni, n2 ... nm are of same kind (i.e. they are indistinguishable from one 

another) the logarithm of average of possible number of distinguishable arrangements is 

the entropy of source (Hs). This is given by [14]: 

Hs = LogGs =Log(N\/n1 \n2! nm !)"" = - £ > , logP, (6-1) 

where, pt = n/N. Hence, the logarithm of the average number of arrangements, where 

each one of the latter can be considered to code a message, allows one to identify Eqn. 

(6-1) with the information content of the set of messages. 

For continuous signals, with a probability density function p(x) Shannon has shown that 

the corresponding expression is, 

Hs = - r p(x) log p{x)dx (6-2) 

This measure depends on the base unit of the variable x (whose information is sought) 

and has to be interpreted in the context of differences in entropy. 

6.1.1 Information loss 

In an ideal environment, where one group of objects (particles or messages) is 

distinguishable from another, the information content is given by Eqn. (6-2). Information 

loss occurs whenever two or more originally distinct particles can no longer be 

distinguished. For example, if for some reason ni of these particles appear the same as n2 
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(«,, n2 —» «, + n2) at the detector then the entropy at the destination (HD) with such a 

distortion will be: 

HD=LogGD=Log(NU(ni+n2)l nj)UN =-(/?, + p2)\og(p, +p2)-^imlP, logp, (6-3) 

The resulting loss of information (AH) is given by, AH= \HS - HD\ 

Information loss, AH , could be the result of distortion, noise or imprecision in a device 

or any combination of these, anywhere between the source and the detector. AH is a 

quantitative measure of metric of any measurement. AH—> 0 implies that measurements 

are ideal; whereas, a large value of AH signifies amount of imprecision in the 

measurements. 

It should be noted here that AH is the loss of information about the source due to 

imprecision in measurement. Two cases arise depending on the nature of distortion, 

where HD < Hs . In a situation where HD < Hs, the nature of distortion is such that there 

is no additional uncertainty imposed by the measuring apparatus. For example, in 

intensity measurements with a photodiode, photomultiplier or a phototransistor, the 

device generates a response proportional to the light received by the component (which is 

usually a transistor or a diode) up to a certain intensity level. When the amount of light 

surpasses that level, the detector becomes saturated and output (current) does not increase 

even as the light intensity increases In this scenario, the two distinct current values (or 

messages) become identical due to saturation and results in a loss of information. 

Loss of information can also occur at the cost of heat dissipation [7-9] (or noise) at the 

location (i.e. imprecise receiver in the experimental apparatus) of information loss, 

resulting in the increase of entropy of the system. 
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Eqn. (6-3) applies for discrete signals (in which one would use Eqn. (6-2) for discrete 

signals) as well as for continuous signals that is relevant for absorption spectroscopy. For 

this latter case one would use Eqn. (6-2) in Eqn. (6-3). 

In any spectroscopy experiment e.g. absorption, scattering (Raman), photoelectron, 

Fluorescence, X ray spectroscopy etc., it requires measurements of wavelength (of the 

probe) and intensity from the spectrum (of the sample under investigation). Due to 

practical limitations of the measurement apparatus e.g. interferometer, photodetector, 

filters etc. these suffer from inevitable distortion and noise, resulting in loss of 

information about the source (or sample). This loss of information (measured as change 

in entropy) is characteristic of the type of distortion or imprecision of the measuring 

apparatus. These imprecision occur due to commonly known effects e.g. responsivity, 

saturation, rise time (bandwidth or averaging), nonlinear response of detector, noise 

sources such as thermal noise, shot noise etc. In the following section we discuss 

information in perspective of WMS signals and the amount of structure i.e. zero-

crossings and turning point that each harmonic provides for a measurement. 

6.2 INFORMATION THEORY AND WMS PERSPECTIVE- PRECISION IN 

MEASUREMENTS OF SIGNAL AT TURNING POINTS AND ZERO 

CROSSINGS 

The connection of information theory to the general concepts in physics is a strength that 

can lead to progress in many other areas of current research. In fact, an argument can be 

made that whenever any measurement is made, information is being extracted from the 

system of interest. It is not very difficult to identify any measurement scheme in terms of 
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Shannon's original five-part communication system [1, 2] comprising of the message 

source, the coding block, the channel, the receiver and the destination. And, of course, 

every real measurement will contain some source of noise, and this also is an integral part 

of Shannon's formulation. Of interest to us here are aspects of information theory as they 

relate to spectroscopic measurements in general and to modulation spectroscopy in 

particular. It should come as no surprise that spectroscopic measurements could be 

discussed in the light of communication theory, if for no reason than the fact that a 

central aspect of such measurements involves the probing of a feature that can be 

described by probability density functions (the lineshape profiles). Information theory, 

statistical mechanics and thermodynamics all concern themselves with random processes, 

and the very nature of any transition that would be probed in a spectroscopic method 

involves such processes. 

In the WMS experiments discussed previously, the source messages may be regarded as 

having been generated when the probe interacts with the sample under investigation. The 

messages are then transmitted along the rest of the optical path (which may be regarded 

as the channel) and measured at the receiver (which is often just a photodetector). Any 

spectroscopic measurement can be represented as a model of a communication system 

consisting of a source, a transmitter, a channel, a receiver and a destination. A 

spectroscopy experiment may be considered equivalent to a standard communication 

system as shown in Fig. 6.1 below. 



118 

Typical communication setup 

Information 
Source 

Transmitter Receiver Destination 

Message Signal Received 
Signal 

Noise Source 

Message 

Information Source: 
atom or molecule 

Receiver: 
Photodetector 

Destination: Data 
Acquisition/Computer 

Conventional direct 
absorption signal 

Noise 
Source 

Spectroscopy experiment setup 

Fig. 6.1. Schematic diagram of a standard communication system. An absorption spectroscopy 
apparatus modeled as a communication system. 

In these sections below, we introduce concepts of information theory and its connection 

to the structures of WMS [5-7], signals to illustrate the theory developed. As mentioned 

earlier in WMS, a probe is modulated and synchronous detection performed at one of the 

harmonics of the modulation frequency. WMS signals show variations of the lineshape in 

the form of structure that have features associated with frequency derivatives of the 

lineshape profile probed. In general, Nth harmonic detection (where N is an integer) 
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yields signals with N+l turning points and N zero crossings. We have shown in the 

previous chapters that the zero crossings and turning points provide the most sensitive 

[15, 16] measurements in an experiment. We define the salient structure parameter M = 

Z+T = 2N+1, where Z is the number of zero crossings and T is the number of Turning 

Points (both maxima and minima). A combinatorial analysis of the arrangements of 

spectral locations and signal magnitudes of the turning points and zero crossings is used 

to find the amount of information that is extracted when one uses WMS signals to 

measure a lineshape parameter, for example, the linewidth: (see Table 6.1 and Fig. 6.2). 

The turning points and zero crossings allow one to quantify the signal information 

content, in bits. If, say, the linewidth is being measured it can be estimated from 

combinations of pairs Ts and Zs. Each harmonic detection order, N, yields 2N+1C2 (= 

(2N+l)!/{(2!) (2N-1)!}) independent measurements and higher harmonic (larger N) 

detection provides greater precision. In general there 2N+1Ci , 2N+1Q , ....2N+1C2N+I such 

combinations of Ts and Zs that can be used to estimate the parameter, 

Without any loss of generality, we assume that the lineshape profile of the absorption 

signal is a Gaussian, and that the modulation index is small so that the derivative 

approximation is valid. We can then restrict ourselves to the V= 0 terms in Eqn. (6-4). 

SN =-naLI0(-l)
[N],2(£)NgN(v) (6-4) 

Here, n is the density, a is the integrated absorption cross-section, L the length of the 

absorber, / is the incident laser intensity and g the lineshape profile, g is Nth derivative 

(in v) of the profile. 

Table 6.1 shows theoretical locations (in frequency space) of the turning points (Ts) and 

zero crossings (Zs) of the first and second order harmonic calculated from Eqn. (6-4). 
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The linewidth of the profile is computed from linear combinations of pairs of these Ts 

and Zs. Therefore, each experimental harmonic detection order, N, gives 2N+1C2 number 

of ways to compute the linewidth, the parameter being measured. The nomenclature of 

the turning points is shown in Fig. 6.2 below. 

Table 6.1. Spectral locations of turning points and zero crossings of N=l and N=2 signals and linewidth 
obtained form the combination of these points. 

N=l 

Z0 

T.1 
Ti 

Location 
(freq.) 

v0 

v0 - AvD 

v0 + AvD 

Linewidth 
(Avb) 
Zo-T. , 
T1-Z0 
T1 - T . , 

N=2 

Z.1 
Zi 
To 
T.1 
T1 

Location 
(freq.) 
v0 - AvD 

v0 + AvD 

vo 
vo - \3AVD 

v0 + V3AvD 

Linewidth (AvD) 

T1 - T.1 , Z1 — To * Z1 - Z_i, To - Z_i 
V(1/3)(T0-T.,),V(1/3)(T1-To) 
a1(Z.1-T.1),a1(Z1-T1) 
a2(Z1-T1), a2(Ti-Z_1) 
{here : aj = Vi +1, a2 = Vi -1} 

In the following section, we show that the rich structure afforded by the 2N + 1 salient 

points (turning points plus zero crossings) allows one to calculate the quantitative amount 

of information, in bits, that can be extracted. Considerations of the usual precision limits 

of, and the noise in, the apparatus are included. 

Information in the Structure of Signals: The Turning Points (Ts) and Zero Crossings 

(Zs) of the signal encode information about the linewidth. The question now posed is 

"Given the conditions of the experiment, what is the maximum amount of information, in 

bits, about the linewidth that can be extracted, and at what harmonic detection order, N, 

will this be achieved? " An experiment using this N would therefore be the optimal one. 

In a practical environment infinitely precise measurements are not possible due to the 

limitations of the apparatus, noise, interference with other overlapping lines, etc. But, it is 

just this limitation of finite precision that allows us to exploit Claude Shannon's 

information theory [1, 2] to answer the question posed. The central point is that it is the 

removal of uncertainty in measurements that leads to information acquisition. 

file:///3Avd
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Normalized frequency 
70 80 90 100 110 120 130 

Normalized frequency 

Structure = T + Z 

Fig. 6.2. N=l and N=2 harmonic detection signals with the zero crossings (Zs) and turning points 
(Ts) as points of interest. 

In any practical measurement the locations of the Ts and Zs will not be precisely known. 

Consider first an uncertainty in these locations that can be described by a uniform 

discrete probability function: 

ZN X ^ N 7 N ryN 

j - * Z, ji, Z, j 2 , Z j 3 

And, TN
j-»TNj1,TN

j2,TNj3. 

This implies that ZNj could be (with equal probability) at any one of the three locations 

Z^ji, ZNj2, ZNj3, and similarly the turning point TNj could be at any one of the three 

locations T ji T j 2 , T j3. Therefore, the linewidth which is being measured could be 

anywhere in a range of values determined by the uncertainties in ZNj and TNj. 

The amount of information related to linewidth that can be extracted increases when the 

precision of the instruments is increased. In this case, an increased precision means 

smaller ranges for the sets {ZNji, ZN
j2, Z

N
j3} and {TNji, TN

j2, T
N

j3} (see Fig. 6.3). 
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Pi 

P2 

Fig. 6.3. Uncertainty in locations of zero crossings and turning points described by two uniform 
probability distribution functions. 

There are 2N+1C2 ways of picking a pair of values from the 2N+1 values of Zs and Ts. So 

the number of combinations for first and second harmonic (N = 1, 2) detection are C2, 

and 5C2. If the uncertainties are described by a uniform probability distribution function, 

Pi, then the information gained by increasing the precision (from pi to P2) for first order 

detection, N=l is, 

AH1 = H'pj-H1^ = 3[log(4)-log(2)] = 3bits. 

The corresponding gain for N=2 (second harmonic detection) is; 

AH2 = H2
pl-H

2
p2 = 10[log(4)-log(2)] = 1 Obits. 

Hence, AH2 = (10/3) AH1. 

In general, Af^/Aff = 2M+1C2/
2N+1C2 showing that more information is extracted from 

higher harmonic detection, where there is more structure ( HM> AH1^ with M> N). Note 

carefully signal power does not enter into these considerations. This result quantifies the 

qualitative and intuitively obvious statement that more information is extracted from a 

practical apparatus when it can be configured to yield a signal with a larger amount of 

structure regardless of the signal magnitude. This is the central result that, as far as we 

know, has not been discussed in the literature so far. A generalization of the method to 
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situations where the imprecision is described by any probability distribution function is 

straightforward. For instance, for a Gaussian noise in the apparatus, one obtains: 

For TV=1 

H1(kv) = fk-jHtfj 

forN = 2; 

H2(Av)= X ' 0 jw#f<^, 

here, Ok is the variance obtained from of the distribution of each of the Zs and Ts of N=l 

and N = 2 harmonic order. It will be seen in the following sections that o> relates to signal 

and noise power and hence depends on signal magnitudes and bandwidth of detection of 

detection order. In summary, there are two aspects of WMS measurements that are 

critical for information extraction, namely, the amount of imprecision (due to noise, 

distortions etc.) in the experiment and number of discernible turning points and zero 

crossings available to estimate a parameter. A generalized analysis with Gaussian noise is 

discussed in the following section. 

6.3 INFORMATION IN MEASUREMENT OF A LINESHAPE PARAMETER 

Using the theory described above, if one was to determine a lineshape or gas parameter 

with combinations of all possible pairs of Ts and Zs (TNjTNj, TN;ZNj, ZNjZNj) there are 

2N+1C2 pairs for computation. In an ideal (noiseless channel) measurement, each of the 

pairs yield exactly the same magnitude of the parameter being measured irrespective of 

the choice of pairs or the harmonic order. However, due to imprecision in measurement, 

the values of Ts or Zs is a probability distribution with an equivalent to the nature of 
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uncertainty induced by the imprecision. Therefore, the resultant values of lineshape 

parameter will depend on the functional form of the distribution and a number of pairs 

used for computation (since each order has 2N+1C2 modes of measurements). For 

instance, in case of a Gaussian noise (or thermal noise) in an apparatus, Ts and Zs will 

have a normal distribution with finite variance equivalent to the noise power. 

The figure below shows a schematic where noise is introduced at the location where T/Z 

are being measured. 

Absorption signal 
Photodetector L I A v o l t a g e s i § n a l 

— r a s T ~7*^ —*yr 
\ 

• 

[ 

/\ 

SN+n -^ \ r-

V . 

Noise, <J„ 

Fig. 6.4. Schematic of an input absorption lineshape signal with an additive noise. The 
resultant signal with imposed noise is accessed at the destination. 

To illustrate the above point, consider a WMS experimental setup described in Fig. 6.2, 

further assume that the additive Gaussian noise (denoted by discrete nt values in Figs. 6.4 

and 6.5) centered at no and variance, an . Therefore, the distribution of the Ts and Zs is 

centered at (Tt
N + no) with variance, a„ (here, T,N is the ith turning point of Nth detection 

order) . Since Ts and Zs are used to estimate a lineshape parameter any uncertainty in 

their magnitudes will translate into an equivalent uncertainty in the parameter being 

estimated. 
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Turning point distribution due to Noise 

<=kTeAf 
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Fig. 6.5. WMS harmonic signal with additive Gaussian noise at the turning points and zero crossings. 
The noise distribution results in uncertainties in both spectral location and signal magnitudes 

Consequently, the lineshape parameter will be a random variable. For example, the 

linewidth of the profile in this case will be a random variable with a distribution given by 

the convolution (because the linewidth can be expressed as linear combination of T/Zs) 

of distributions of T/Z. Once the distribution function of the parameter is obtained using 

Shannon's formulation, the entropy of the parameter is obtained. The following steps 

outline the necessary mathematical formulation. 

Consider, Gaussian probability distribution of noise center at no and variance, a. 

Therefore, 

/ N 1 -(n-n0f/2a2 

(6-5) 

This additive noise distorts each of the turning points and zero crossings which now have 

a distribution, 
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P(s)= _L e-(
s-^^f<2°2 

(6-6) 

,N 

42no 

Here, S is the random variable associated with the values of T/Zs . Tf is the ith turning 

point (or zero crossing) of Nth detection order 

For simplicity, we assume, no = 0 (or zero mean Gaussian noise). Therefore, 

/ a . 1 4s-TNJiia7 

P(S)= r— e v •' (6-7) 

since pairs of turning points are used to compute a lineshape parameter let at and CFJ be the 

noise corresponding to each ith and jth turning point. The resultant distribution obtained 

form two turning points, Tt and 7} is 

p(AS) = p(S-S') = p(S)*p(S') * n(.V\-. 1 
yflxG, exp-

(S-7]N) 

v^~ exp-
(S'-Tf) 

(6-8) 

or 

p(AS) = 
2K {CX, +GJ} 

exp-
(AS-{TI

N-TJ
N}/2) 

2{cr,+^}2 (6-9) 

The resultant distribution is also a Gaussian with mean and variance given by 

*Slumv={Tl
N-TJ

N}f2 and, o = o,+aJ 

If in case, the noise distribution is the same throughout the scan of signal acquisition, 

then, (7i = aj - aN , therefore, a - 2aN 

A quick calculation of entropy (H) of the distribution from the combinations of T/Z of 

N= 1 harmonic order gives, 

HNml = H(TiZ0) + H(T_lZ0) + H(T_lTl) 
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It can be shown (Appendix E) that entropy of a Gaussian is given by, 7/ = log(V2;rea), 

therefore, 

HNmi = log(>/2^{(T(7;Z0)xr(7:iZ0)^(7:i7;)}) 

And, since each of Ti and Tj have same variance , a 

HN^=3nog{cjN} + D 

here D = log -J2ne 

The entropy of Nth detection order can be generalized as, 

HN = 2N+1C2*log{aN} + D (6-11) 

Information (AH) is extracted by change of precision in measurements, change in 

temperature (Te) or detection bandwidth (AJ), since, thermal noise power have 

dependence given by, a2 = kTeAf 

Here, M = 2N+]C2 = N(2N +1) 

Bits extracted in this case depends on number of pairs of combinations or detection order, 

N, and noise power c/1. 

6.3.1 Full scale sensitivity of lock in amplifier and information 

The signal magnitudes of turning points vary with their location from the linecenter, i.e. 

the linecenter (of even harmonic) is a peak value: whereas, distant turning points (in wing 

region) decrease in magnitude with the distance from the linecenter. Exact relation 

K*}, 
K.*}7 

(6-12) 
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between the spectral location and magnitude is not known, but it depends mainly on 

experimental variables such as modulation index, linewidths, pathlength etc. A physical 

argument to clarify this point is as follows: 

A lineshape parameter can be estimated accurately using a combination of turning points 

e.g. for N = 2; combinations (T2T.2) and (T1T.2) can be used to compute the parameter. 

Since, T2 is smaller in magnitude than Ti the precision it is measured will be much 

smaller than that of Ti. Therefore, (T1T.2) is more likely to give a more precise value than 

(T2T-2). To account for this disparity, each turning point is weighted equally according 

to its magnitude, or, in other words, each is measured at full scale of IV. Fig. 6.6, below 

illustrates this point. 

IV Full scale • N 

A-> amplification = lVolt/Vo 

fT^ 
T-2 

N=2 

On 

AC7n 

i / 

v V 
c> ' \ 

Fig. 6.6. Full scale sensitivity of individual turning points of N=2 harmonic signal. Each turning point 
is weighted equally with equivalent amplification of the signal to IV. 

Consider a turning point, whose voltage (distribution) on the lock in amplifier is, 

p(V)dV = -(v-v0f^dv 

2no 
(6-13) 
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Here VQ is the average voltage. Accordingly, the signal magnitude (distribution) of each 

turning point weighed that is due to this amplification (A) to full scale will be, 

p(AV)d(AV) 
1 

2KG I Vn 

,e-(v^fn(.,v0fdv ( 6 _ l 4 ) 

With amplification, A = V/VQ, the normalized distribution is, 

(6-15) 

Here, a = — is the normalized variance. 

Typical values of gain sensitivity of the lock in amplifier at each detection order is given 

below. 

Gain determined 
by output amp 

SIGNAL, 
INPUT l 

2^ 

MIXER (P.S.D.) 

A < > A . B 

INPUT BANDPASS 
AMPLIFIER FILTER 

REFERENCE 
NPUT O- j 

PHASE SHIFTER 

2V OUTPUT 

LOW PASS OUTPUT 
FILTER AMPLIFIER 

4 

REFERENCE 
TRIGGER 

Detection 
Bandwidth set by 
LP filter 

Fig. 6.7. Schematic of a lock in amplifier (LIA) [17]. Typical values of LIA full scale sensitivity and 
gain in a WMS experiment are shown in the figure. 

Harmonic 

Order, N 

1 

2 

3 

4 

5 

6 

7 

8 

FS sensitivity 

(mV) 

1000 

500 

200 

200 

100 

100 

50 

50 

Gain (dB) 

20 

26 

34 

34 

40 

40 

46 

46 
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6.3.2 Entropy and detection order 

It has been mentioned previously that there are three possible pairs of turning points 

and/or zero crossings ( T S T ' . I , T'IZ'O, T'.IZ'O) for N=l detection order to obtain 

lineshape parameter. Now following from the analysis in the previous section to obtain 

the expression for the entropy, their respective distributions can be expressed as, 

1 
p(AS) = p(S, -Sj) = ^=^ exp-

( M - l | 

2(CT,J)2 

(6-15) 

The above equation is a cumulative distribution of the ith and jth turning point. Here, 

ay is the variance of normalized magnitude of turning points T\ and 7j whose individual 

distribution is described (in a previous section) as p(S\) andp(Sj). Therefore, 

Oii = " 
T,-Tj 

since ai - aj - aN 

<Jij = <TN 

( 2 ^ 

J.-TJJ 

Following from this, the entropy (for N = 1) of a parameter from the pair of three 

independent distributions [3-6] can be expressed as, 

HN=l = H(Ti Zo) + H(T-i Zo) + H(T-x Tx) (6-16) 

Since, the individual distributions are Gaussian; the total entropy is then given by; 

HN=l = log V2^r7{a(7;Z0).CT(r ,T0)v(T_ XTX)) (6-17) 

Substituting from above, 
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HN=X =\ogyj2ne\(T^ 
f 2 > ( 

, T -Z , , T -Z , . r -r , v i -l y 
(6-18) 

^ = 1 =- log{((7 ; -Z 0 ) / (7 A r ) . ) (7 : i -Z 0 ) /c7 J , ) . ( (7 ; -7 : i ) /a J V )} + £)' (6-19) 

where constant, D = log23 yflne 

or, 

^=i=-ZU-1
1°g{A'S

y
/^} + Z)' 

In general, the entropy of Nth harmonic: 

(2N+lc)-i/ (2N+lc)/ 
k = y 2> /2 ;Nodd and k = K 2,/2 ;Neven 

(6-20) 

(6-21) 

6.3.3 Information and optimal detection order 

In any measurement information is gained from the reduction of uncertainty, mainly due 

to change in measurement precision. The question we address is: "How much information 

is gained in any Nth harmonic when instrument precision is increase by a finite amoun?" 

Assuming that the measurements are performed for two sets of experiments with a 

variable, e.g. modulation index, changed from mi to m2. Therefore, information extracted 

(or change in entropy), using Eqn. (6-21), 

^ = I U 1 0 8 KMJ 
{ASv/a} 

p. J 

(6-22) 

Here, p\ and p2 is denotation for precision in the two sets of experiments. It should be 

noted from above, information that is extracted depends on the total number of 
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discernible turning points that are available and the signal to noise power. Although 

signal magnitude increase with index values, in certain experiments small index values 

are required. This choice of index is imperative for probing sensitive effects such as, 

pathlength saturation or resolution of overlapping lines. The disadvantage of small 

modulation index is weaker signal magnitude, where the turning points in wings may not 

appear discernible. 

The figure below shows information extracted with respect to detection order for two set 

of experiments where modulation index is varied by a certain amount. 

200 i 

150-

100 

50 

0 

(b) AH = Hm=1.2 - Hm=i.0 

0 2 4 6 
-50 J 

8 10 

-> Harmonic order, N 

Fig. 6.8. Information extracted vs. the harmonic order, N, for two set of modulation indices and fixed noise 
power (on). Maximum information is extracted at N=7 and N=8. The available turning points (or structure) 
that are discernible are maximum at N=7 and N=8. 

In other words, the measurement precision increases with the modulation indices, but 

may result in loss (of information) of subtle effects (complete overlap of weaker 

transitions or saturation effects) as a result of modulation broadening. The plots in Fig. 

6.8 (a) and (b) above indicate two important aspects of information and structure. The 

information extracted peaks at the values (N =7) where maximum turning points are 
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discernible and begins to fall since the turning points cannot be mined even if the 

modulation index is increased. This is also demonstrated when the peak in the next figure 

moved to higher detection order (N = 8) where a higher index was employed. 

6.4 INFORMATION IN LINEWIDTH MEASURMENTS 

As mentioned in chapter 4, a lineshape parameter e.g. linewidth or absorption cross-

section is estimated from the best fit between theory and experiment. This is one of the 

reasons that turning points and zero crossings are considered key markers because the 

mismatches due to deviations in an absorption profile are significant. The uncertainty in 

experiment is due to imprecision in measurement of signal magnitude of turning points. 

Similarly, the uncertainties in models are the result of imprecise measurements of 

wavelength, modulation index and also in lineshape function, but for simplicity we 

assume the functional form, g(v) is precisely known. Both these uncertainties in 

experiment and model, which are independent of each other, result in a cumulative 

uncertainty in estimation of a lineshape parameter. 

Consider the error or difference between the theoretical model and experimental 

expressed as, 

F = 19^ — ^ I 
-c' \" exp *-> model]-

Therefore, the error distribution is the mismatch between experiment and theory, or the 

error, is, 

p(E)= J - e-
{E-E°fl2al (6-23) 

A/2TT <J E 

From the above Eqn. (6-22), the mean of the error distribution given by, 
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E0 = I " exp ^model\average. 

Note that this error is similar to the analysis in chapter 5. 

The deviation or the error distribution, E, is given by the sum of the individual 

uncertainties (see schematic, Fig. 6.9 below). 

0"E = Oexp + <*X 

Assuming that both the experimental lock-in amplifier signal and the model have the 

same uncertainty i.e. aexp
 = o%= aN- The normalized uncertainty that is due to disparate 

signal magnitudes across the WMS spectrum is: 

O" N = 
°"exp+ C T A 2(7 ; 

model exp 

(6-24) 

Note: ox is the wavelength or model uncertainty. Here, we assume that the transformation 

from wavelength to a model data is a linear one i.e. Smodei = kA,, therefore, cmodei = ^x 
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Fig. 6.9. Cumulative uncertainty in experimental signals and model data is equivalent to the convolution of the 

individual distribution. 
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From the above distribution, the entropy is given by, 

# £ = " ! > § { £ " M + £ (6-25) 

Here, k = 2N+1 or number of discernible turning points. 

The information extracted by a finite change in the precision is: 

Mil = 2>g{£," /a}m2 /5>g{£," /a}m_ (6-26) 

The figure below shows information as a change in harmonic order. The information is 

extracted when the error between model and experiment is optimized. The error in the 

analysis is considered due to mismatch in the linewidth or absorption cross-sections. At 

higher harmonic, the mismatch is higher or AS/a is greater. The curve below peaks at the 

detection where the maximum number of turning points are discernible and cumulative 

mismatch is the largest. And ultimately the curve reduces to a finite value because the 

signal deteriorates at that noise power to the extent that it completely blurs turning points. 

Therefore, additional turning points do not show and structure is reduced. The above 

analysis can also be extended to deviation in a lineshape profile and their corresponding 

WMS signals are due to density or pressure variations. There are aspects that are closely 

related to the variance of error analysis discussed in the previous chapter. 
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Harmonic order, N • 

Fig. 6.10. Information extracted in linewidth measurements. Given the set of experimental conditions and 
noise environment, N=7 is found to be the optimal detection order. 

6.5 INFORMATION AND FINITE PRECISON OF INSTRUMENT 

Apart from the noise uncertainty discussed in the previous section, the measuring 

instruments have a certain precision in measurements that result in loss of information. 

To illustrate the above point, consider a schematic of WMS detection electronics as 

shown in Fig. 6.4. We assume that the additive noise is Gaussian in nature and it adds to 

the Lock-in-amplifier (LIA) data. The final output is such that its mean is shifted by the 

signal magnitude of the LIA. Also, the variance of the signal magnitude of turning points 

or zero crossings is the same as a. Now if the measuring apparatus has a finite precision 

(Fig. 6.11) the noise (or turning points) distribution will modify to a discrete (a step 

function) function. The analysis below accounts for this additional uncertainty. 

The distribution of measured voltage values of turning points of WMS signals in the 

presence of Gaussian noise is given by Eqn. (6-26) below. Any Nth order harmonic will 

have N+l such distributions of turning points and N distributions of zero crossings. 
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p(V)dV -(V-V0fl2V 

lino 
dV (6-27) 

In addition to noise, the precision of the instruments being used also needs to be 

considered. Fig. 6.11 shows this in the form of an imprecision of 2A in the measurement 

of the voltage representing the signal. A finite precision of the detector blurs any voltage 

(V —>V ± A) in a certain range of values, A, initially distinct, to appear indistinguishable. 

The relevant probability distribution of a measurement in which such an uncertainty is 

introduced is, 

P, = ['+A p{V)dV - £"A
 P(V)dV (6-28) 

I 

Vi 
Voltage values 

Fig. 6. 11. Detector imprecision modifies the distribution of the turning points to discrete values. 

Therefore, 

Pi = — {erfiX; + A) - erf{xi - A)} 
K 

(6-29) 

where, x = (V-V0)Iy[lo and A = A/V2<r 

The entropy, / / = - V {#}log{p,} in the above case depends on the noise distribution, on, 

and the detector precision, A. If the measurements were infinitely precise (something 
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obviously not possible in practice), then one would extract a maximal amount of 

information. It should be noted that an infinitesimal value of A recovers the original 

distribution of the turning points. In this case one extracts maximal information, since 

each/?, is absolutely distinct. 

Figs. 6.12 and 6.13, show information extracted at various detection orders, N, when the 

precision size, A (= nV; n is %age uncertainty in the magnitude, V, of a given turning 

point) is changed, and, there is a fixed amount of Gaussian noise, an, for all detection 

orders. In addition, in the calculations peak value of N=l harmonic is normalized to 

unity, and all the other harmonics (N>2) are factored with the peak value of N=l 

harmonic signal. It is also assumed that the total number of turning points (or structure in 

the signal) available at a particular detection order, N, depend on the ratio of their 

magnitudes to the noise. In other words, one registers a turning point only if it is above a 

certain noise tolerance (taken, in this case, V/V2an > 5); all other turning points are 

assumed obscured by noise and not considered for computational purposes. For example, 

in N=9 detection order for a given modulation index the turning points that are farther in 

the wings, are very small compared to the noise variance. Hence, eventually a further 

increase in detection order, N, brings about diminishing returns and we begin to lose 

turning points (or structure) as their magnitude reduces significantly compared to noise. 

Therefore, the amount of information extracted does not increase continuously with the 

detection order, and shows a maximum at a particular detection order. In the specific case 

shown in Fig. 6.12 the optimum harmonic detection order is N = 7. 
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Fig. 6.12. Information is extracted when the precision is increased. The information extracted at different detection 
order, N, varies with the available turning points or structure in the signals. The total number of turning points (Ts) 
discernible (above a certain noise tolerance) in any detection order show the same trend as that of AH. 

6.5.1 Dependence of information extracted on the frequency modulation index 

A WMS signal grows with the modulation index, m. In comparison the noise power does 

not change significantly. Therefore, the conventional SNR increases with m, and the total 

number of turning points discernable at higher detection increases. For smaller m values, 

the number of available turning points is greatly reduced at higher values of N. 

Fig. 6.13 shows results of computations performed at lower index values, m=l, than in 

the previous set of m = 2.25 (in Fig. 6.12 above). The plots with lower modulation 

values, m=l, yield maximal information at a lower order, N=4, compared to the plots 

with relatively higher m = 2.25, (maximum information at N=7) for the same instrument 

precision. It should be noted that for m=l the maximum number of available turning 

points are at N= 3: whereas, for m= 2.25 the maximum number is at N= 5 and 7. 
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Fig. 6. 13 Information extracted at different detection orders at lower modulation index, m=l. 
Compared to m=2.25 the maximal information occurs at lower harmonic order. Due to smaller SNR the 
total number of available turning points (Ts) reduces significantly. 

6.6 MODULATION DISTORTION AND RESOLUTION OF OVERLAPPING 

LINE TRANSITIONS 

Higher modulation indices improve signal power and therefore the conventional SNR. In 

this respect an increased modulation index results in a larger amount of information 

extracted (as can be seen by comparing Fig. 6.12 with Fig. 6.13). On the other hand, an 

increased modulation index also results in signal broadening [18] and this can be 

detrimental in resolution of overlapping lines. This imposes limitations, and the choice of 

an optimal modulation index becomes quite complicated when the aim is to resolve 

interfering lines. 

The presence of an interfering line increases the turning points (2N(LINEI + LINE2) + 2) and 

zero crossing (2N(LINEI + LINE2) )• To illustrate this point consider an example where the 

spectrum of interest contains two absorption features with exactly the same lineshape 

parameters, except the linecenter. If the absorption lines are relatively far apart then one 
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can fully resolve the transitions at lower harmonics with relatively small modulation 

indices. However, if the line separation is significantly small, then one might resort to 

higher detection orders. This generally requires a set of higher modulation values. The 

resolution of lines becomes more challenging if the two have disparate lineshape 

parameters, especially if the absorption cross-section of one line is orders of magnitude 

smaller than the other. Therefore, there exist a range of modulation indices (depending on 

the noise figures of the detection electronics) for a set of lineshape parameters that allows 

resolution of these interfering transitions. This range of modulation index determines the 

total number of turning points of the two overlapping transitions that are distinct. In 

other words, there is a finite amount of information that can be extracted in each 

detection order when the modulation index is varied within a finite range of values. For 

example, the calculation below shows information extracted in, N=3 and N=7 detection 

orders obtained at two modulation indices, when two overlapping lines appear fully 

resolved, (i.e. all 2N+2 turning points due to the two lines are completely distinct) and 

when they are partially resolved. 

For, N=3 

5HN=3 = Xi l0g{Gn (Vi;II1=2, N=3)} " Zi log{an (Vijm=4, N=3>} 

= 81og{ On }-6l0g{ On } = 21og{ <T„ } 

Also, the information extracted for N=7; 

5HN=7 = Zi log{o-n (Vi>nl=2, N=7)} - Zi log{o n (\i>m=4, N=7)} 

= 16l0g{ a n }-l l l0g{ On } = 51og{ On } 

Fig. 6.14 shows 3rd and 7th order WMS signals of two overlapping lines (same 

linewidth) with different absorption cross-sections, aabs (o"abs-LiNEi = 10 ciabs-LiNE2)- T h e 
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plots show that the lines are fully resolved lines when m = 2: whereas, the increased 

modulation broadening at m = 4 results in only a partial resolution of the interfering lines. 

It can be seen that the amount of information extracted (Appendix F) is different for the 

two detection orders by the same changes in modulation indices from, m = 4 to m = 2. 

It should be noted, that the total number of turning points, or the structure in the signal, is 

the sum of turning points (of individual transition), that are not masked due to overlap or 

obscured due to noise or distortion. 
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Fig. 6.14. N= 3 and N=7 detection order of two overlapping transitions at modulation indices, m=2, where 
lines are fully resolved and m=4, when lines are partially resolved. For N=3, the total number of turning 
points in fully resolved lines (at m=2) is 8 and for N=7 it is 16. At higher modulation indices (m=4) some of 
these turning points are masked due to overlap, i.e. for N=3, the total number of available turning points are 6, 
where as for N=7 it is 11. Therefore, the information extracted when modulation index is changed from fully 
resolved (m=2) to partially resolved (m=4) lines is 2log{ a„ } for N=3 and 5log{ an } for N=7. 

The table below shows the amount of information extracted (at various detection orders) 

when two overlapping lines are fully resolved at smaller values of modulation index (m = 

2) compared to the case when these lines are partially resolved at relatively higher m 

values, m = 3 and m = 4. The calculations for the table are carried out with a Gaussian 

uncertainty in the turning points due to noise: however, there is no imprecision 

considered (as in the previous section) in this case. 
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Table. 6.2 Number of discernible turning points at different modulation indices (m = 2, 3 and 4) at 
detection orders N = 1 to 9. Information extracted for fixed noise power is directly proportional to number 
of additional turning points discernible by change in index values. 

N 

1 
2 
3 
4 
5 
6 
7 
8 
9 

TPs at m=2 
(fully 
resolved) 
4 
6 
8 
10 
12 
14 
16 
18 
20 

TPs at m=3 
(partially 
resolved) 
4 
5 
6 
8 
10 
11 
11 
13 
16 

TPs at m=4 
(partially 
resolved) 
3 
5 
6 
7 
9 
11 
11 
11 
14 

Information 
extracted, 
dH(m=2 -> m=3) 
log{o„} 
log{o„} 
2log{a„} 
2logfa„} 
2log{on} 
3log{a„} 
5log{a„} 
5log{a„} 
4log{o„} 

Information 
extracted, 
SH(m=2 -> m=4) 
log{a„} 
log{o„} 
2log{a„} 
3log{on} 
3log{a„} 
3log{a„} 
5log{a„} 
7log{a„} 
6log{u„} 

In the given set of computations given above, maximal information is extracted when the 

lines are fully resolved. This occurs at N = 7 and N = 8. The results presented in the 

previous sections and in the table that for a set of experimental parameters there exists an 

optimal detection order where maximal information can be mined about an experiment 

based on structure rather than its SNR. 

6.7 CONCLUSION 

An aspect of Shannon's formulation of information and entropy is introduced in the 

analysis of information content in modulation spectroscopic signals. It is seen that the 

amount of relevant information (quantified in bits) depends on the structure of WMS 

signals, noise and imprecision in the measuring apparatus. A key aspect of distortion in 

WMS is modulation broadening. Its connection to information extracted in overlapping 

lines was investigated. It is observed that in certain situations higher detection orders 

(N>2) enable one to extract more information and the signals are fully resolved. This is in 
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agreement with trends that we have verified experimentally previously. The analysis 

presented in this chapter can be extended to the situations where the spectrum contains 

absorption features of more than two overlapping transitions. In addition several subtle 

effects such as optical pathlength saturation, distortion effects like Fabry-perot fringing 

can also be quantified in terms of information theory. In addition, practical limitations 

such as noise in the detection electronics, finite bandwidth, photodetector sensitivity 

when combined with the distortion effects in the experiment; the information theory 

developed in this chapter reproduces features of WMS experiments and optimal detection 

order. 

A comprehensive theory of information in estimation of lineshape or gas parameters in a 

WMS would require accounting for all possible distortion and noise sources in the 

experiment. These are categorized in two possible classifications, as shown below. 
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• Fabry-Perot Fringing (Q) 
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Fig. 15. Resolution of weaker lines and direct absorption signal scaled to magnitude of 8th harmonic. The 
WMS signal, which is variation of the lineshape profile shows considerable structure and hence an aid to 
resolution. 
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On a final note of consideration, an absorption spectrum in a given scan can be viewed as 

a linear system. The input is an absorption lineshape profile, which is processed by a 

narrow band amplifier, whose effective response function (A) is a function of 

experimental and detection parameters. The output is a signal with structure that encodes 

the information about the input convolved with the response function of the (narrow 

band) amplifier. 

A = meff= f(P> Ave/r > G> S, n, L, k) leff <#' (6-30) 

Here, p is the modulation amplitude and Avejf is the effective linewidth of the profile that 

the laser samples. This is due to the fact that broadening effects like saturation modify the 

linewidth and hence the modulation index for that particular transition, i.e. meff= p/ Aveff 

Also, in the above expression, a is the absorption cross-section, g is the lineshape 

function, n is the density of the absorber, L is the sample length and k is the detection 

order. Therefore, the effective amplification of the signal depends on the characteristics 

of the detection electronics and collision dynamics of the physical process under 

investigation. 

Information in Resolution of Overlapping Lines- Amplification (A) of Weak lines 

A/ — 
( ) = 1 - e x p ( - « ( T L g ( v ) ) 
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INPUT ^ A = m efr 
OUTPUT 

• > 

Fig. 16. WMS setup and its equivalence with a linear system. 
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Aspects of information theory developed in this chapter are also closely related to the chi-

square measure discussed in the previous chapter. It is shown that there is a connection 

[19, 20] between chi-square measure and principles of maximum likelihood or maximum 

entropy. While the analysis deals with WMS signals it can also be extended to other 

measurement techniques where signals have a significant contrast with respect to a 

reference- for example, such applications include scattering measurement and those that 

are done with phased antenna arrays [21, 22]. 
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CHAPTER 7 

SUMMARY 

Shannon's information theory is applied to Wavelength Modulation Spectroscopy (WMS) 

providing quantitative figures of merit such as the measurement precision and a 

prediction of the optimal detection harmonic order to be used. The analysis was based on 

complexity in the structure of WMS signals and uncertainty in these salient points. The 

removal of this uncertainty ultimately leads to information, in bits, that can be extracted 

in any WMS measurement. 

The central result of this dissertation can now be stated: Measurements done by 

modulation experiments will have certain optimal harmonic detection orders that yield 

the most precise results, given a certain set of experimental apparatus and a particular 

noise environment. There are many instances where measurements at higher harmonic 

detection orders will yield a higher precision in-spite of the fact that with every increase 

in the detection order the signal decreases [Chapters 4 and 5]. It should also be 

emphasized that this increase in precision in measurement is quite separate from the well-

recognized increase in signal to noise ratio that is obtained by synchronous detection at 

frequencies at which the noise spectral intensity is low. The inherent advantage of higher 

harmonic detection demonstrated here is due to the richer structure of the signals 

[Chapter 6]. 

The theory is applied to experimental results we have obtained in WMS experiments in 

congested spectra with overlapping lines that have highly disparate absorption cross-

sections [Chapter 3]. We have shown that there are some parts (where it exhibits turning 

points and zero crossings) of the WMS signal that play a larger role in conveying 
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information about the measurement than other parts of the signal. All other factors being 

equal, the investigation of relative heights of zero crossings and turning points in WMS 

signals allows one to quantify results with a tighter precision and greater sensitivity than 

in a direct absorption measurement. 

The experimental methods discussed in the dissertation allow one to probe lineshape 

profiles by observing how the signal profile varies with various parameters e.g. the 

modulation index, lineshape parameters, gas environment or absorption pathlength. This 

is particularly evident in the signal around line center displays effects of saturation that 

are characteristic of the lineshape. This method is powerful because, ultimately, all the 

information about any measurement is contained in the lineshape profile. And, since 

different lineshape profiles exhibit different saturation behavior the higher harmonic 

signals then display characteristic features of the functional form of the lineshape. In our 

discussion we have addressed the features of subtle effects on the central lobes as well as 

turning points in wings. There are definite relationships between the variation of the 

individual side lobes as well as their relative magnitudes that yield further information 

about these effects as well as about the lineshape function itself. Although the dissertation 

mainly concentrated on the analysis with Voigt lineshape profile, the method can be 

extended to other profiles like Rautian and Sobelman or Galatary profiles. Each of these 

profiles shows characteristic behaviors of collision dynamics, perturbation or narrowing 

effects and its signatures on them. In summary, the results of the present work, however, 

show that one could use the diode laser sensor employed with modulation spectroscopic 

technique to measure such absorption saturation effects in wide areas of applications. 
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Although the emphasis was mainly on WMS measurements, the analysis can be extended 

to any measurements of signals with structure with any spectroscopy measurements in 

general. Practical applications follow immediately. For instance, the technique, which is 

non intrusive and a sensitive probe can be used for a variety of applications including 

atmospheric remote sensing, areas in astronomy (study of stellar phenomena and 

atmospheres), characterization of (diode) lasers etc. The aspect of structure and 

information can be extended for a generalized theory that optimizes measurements. 

The aspect of information discussed in the dissertation is not a new notion. There have 

been several theories that have been proposed to address problems in science and 

engineering in the framework of information theory [1-6]. Key ideas like maximum 

likelihood or maximum entropy are general and applicable to any scenario where one 

seeks an optimal solution to a problem which is statistically dependent on a number of 

parameters and their probability distribution. In addition, there have been several places 

in study of spectroscopy where signals (concentration of signature peaks in spectra) and 

their properties were analyzed in light of information theory. Some of these works have 

been reported in Nuclear Magnetic Resonance spectroscopy (NMR), Optical information 

and spectroscopic imaging techniques. 

Future work can address inherent physical effects i.e. perturbations in molecular (or gas) 

dynamics and its connection to information theory. For example, effects that leads to 

deviation in lineshape profiles e.g. narrowing effects (Dicke Narrowing) and the amount 

of information extracted when such effects are probed at different set of experimental 

precision. Their dependence on the environment and experimental variables can be 

quantified and ultimately a combination of optimal set of parameters can be obtained that 
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give maximal information about narrowing parameters. One could in this case give a 

range of sets of these parameters and conditions, when these subtle effects can be 

accurately measured. In the dissertation, we have shown that measurements in certain 

regions of far wing structures of the lineshape profile, where the sensitivity to a lineshape 

parameter (or narrowing parameter) could be maximum precise and give more accurate 

measurements of the profile. For instance, we have shown that there are regions in far-

wing where turning points show significant growth when cumulative signal power 

reduces with the detection order. Therefore, one can postulate subtle effects like 

narrowing could possibly be measured accurately in certain wing regions of the harmonic 

signals. 

On a final note, it has been established by the works of Bennett, Launderer and Feynman 

[7-11] that there is a close connection between information, erasure (information loss) 

and heat generated in that process. This ultimately gives a fundamental limit on 

thermodynamics of computation, thus connecting a computational (or algorithmic) notion 

of information to a physical entity. This kind of explicit accounting of entropy as well as 

energy is not done now but will become necessary as the measurements approach their 

fundamental physical limits. Therefore, the connection can be utilized in obtaining the 

fundamental limit of efficiency of components e.g. photonic devices that are used in 

measurements. This ultimately will encompass all aspects of physical dynamics of an 

experiment where the required elements of measuring, modeling, and predicting the 

information in a system will be much more broadly applicable throughout the 

optimization of information processing systems. 
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APPENDIXES 

A. MATHEMATICAL FORMULATION OF WMS SIGNALS 

Myers and Putzers approach: 

Consider a function y, on which phase sensitive detection is employed, 

y = f(v + pcos(f>); Here/can be any function e.g. in our case Gaussian, Lorentzian or a Voigt 

function. 

Expressing function y as a Fourier series 

y = — + ̂ (ak cosk<l> + bk sink<j>) (A-1) 
2 k=\ 

Fourier coefficients are given by 

ak=—\ f cos k^dtj) (A-2) 

1 r 
bk=—\ fsinJufrdif) (A-3) 

77- J-n 

ck^ak+ibk=±[felk*dt (A-4) 

Here, k is the harmonic order, for any functionXv) analytic in region | v - v, \< p about v = v, we 

have Taylor series expansion, given by, 

/ (v) = £ j 8 " c o s " * ^ (A-5) 



The above equation is only valid for | p cos <j> |< p 
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rTP,„» (A-6) 

c * = -
• / " , 1 rf _*-,-BrjB / " ^ v 2Zz

T{Tir[1l/-
,-"[^(^+i)r}=22:z

T(f)"^ (A-7) 

^ ^ 
(z2 + ir = X . 2p 

Since, (x + a)" = ^ 
^ 

A=0 v*y 
pcV-* 

Coefficients of z " in the expansion of (z2 +1)" 

In Eqn. (A-7) n-V = 2k i.e. if n is even k = even and if n is odd k = odd 

Hence n = 2k + V (k is the harmonic order) 

„=o «! 2 „=0 «! 2 
(A-8) 

and 

» r2V+2k o 

i—t(^ , i n i ' v ±J2V+2k,2V 

" ( 2 « + 2«)! 2 
^= 2 Z7^T#T> 2 ""* * 

oo s-2V+2k+\ n 

t^(2K+2£ + l)! 2 

2 , i \ F 
Coefficients of z vin expansion o f ( z z + l ) 
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B. 2V+k,2V 

r2v + k^ 

V V j 

Therefore, 

oo r2V+2k r2V+2k o 

a2k=2Y-t {P-fv+2k 

2k f^iiv+iky.i 

^2V + 2k^ 
(A-9) 

oo r2V+2k+\ 

2k+1 ti(2V + 2k + l)\ 2 

2V + 2k + \ 

or in general, 

oo rlV+k o 

ah =2V-
^0(2V + k)l 2 

f2V + k^ 

v ' J 
(A-10) 

Alternative method to obtain series expression for harmonics 

FromEqn. (A-5) /(v + /?cos0) = £ 0 " c o s " 0 ^ - (A-ll) 

Fourier series expansion of cos" 0 gives, 

cos"0 = cnQ +cwlcos0 + c„2cos20H hcnmcosm0H = ̂ cnm cos nuj) (A-12) 

Substituting above in Eqn. (A-l 1) 

, ^ / » . ^ « » / » r ^ /(v+i8cos0)=X/?"cos>AJr=Z)8"^r{Z^coS^} 
«=0 W - n=0 W - m=0 

(A-13) 

Here, 



ml 

2„,_, m + n.m-n. : i ^ _ l i n 
2 2 

Also, Fourier series of/gives; 

Also, comparing coefficients of cos k(j) gives; 

Compare the above Eqn. (A-15) with Eqn. (A-10) 

Wilsons method: 

Since/is even function of 0 , from Eqn. (A-14) 
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f(y + (5 cos0) = ^,Hk cos k</) 
k=0 

(A-14) 

' 2 m + t n 2m + k rIm+k n 

* » = £ " / P c w = 0 (2m + k)\ 
k ,2m + k (A-15) 

x, r2V+k o 

ak=2±— (~)2V+k 

fa(2V + k)\ 2 

^2V + k^ 
(A-16) 

Hk=—\ f(y + p cos 0) cos kfydfy (A-17) 
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B. CONVERGENCE OF SERIES EXPANSION OF THE DERIVATIVES OF GAUSSIAN 

AND LORENTZIAN FUNCTIONS 

Derivatives of lineshape functions are required to compute WMS signals using Myers and 

Putzers method. The number of terms in the series expansion is determined by its region of 

convergence. This critically depends on the values of modulation index and spectral location 

with respect to the linecenter or the normalized frequency. In this appendix we study this region 

of convergence of different lineshape functions. 

A complete series version of WMS harmonic signal is given by; 

K=0V Z J 

« f R\2V+N 1 

g2V+N (B-l) 
Vl(V + N)\ 

To test the convergence we evaluate the ratio of two consecutive terms (V) in the above 

expansion at any normalized frequency value, x, 

r„., riiiV i gw+l)+N 
lv+L-

iv \ * J (V + l)(V + \ + N) g 2V+N (B-2) 

1. Convergence of Gaussian Function 

Nth derivative of a Gaussian function can be expressed as; 

SSOO = 4 ^ 7 7 - 4 ^ IC2iJV(AvD)-(v-v0)-2* (B-3) 
VTT ( A V D ) k=0 

or 



s»=4^ 
1 [N)/2 

- y r xN~ •2* (B-4) 

where x = 
v ~ v o 

' ^2*,tf — V U 
N\ (-2) W-2i 

(JV-2*)! kl 
and g(x) = exp(-;c2) 

[N]=N-1 ;N is odd 

N; N is even 

The ratio now becomes, 

'K+l ^ m^ 

[2v+N+2]/2 

y c x 
Z_i ^2k,2V+N+2A-
k=0 

2V+N-2k+2 

h \ A J 
/ , ^2k,2V+NX 

2V+N-2k 

t=0 

(B 

a. Convergence at x = 0 

From the Eqn. (B-2) above, the ratio of terms at the linecenter is 

Tv I 2 ) 
1 g 

2(V+])+N 

(V + l)(V + N + \) g 2V+N 

Since, g 
2V+N+2 

S(V) 1 r / A ^2V+N+2) 
l~ / A , , \2(2V+N+2)+l ^2V+N+2,2V+N+2\lAVD ) 

V7T K&VD) c 2V+N+2,2V+N+2 

2V+N 
g g(y) 

^ ( A v D )
2 ( 2 -N)+\ c 2V+N,2V+N (AvD) 

(2V+N) (AvD)
2C 

(B 
2V+N,2V+N 

or 



(-\)(2V+N+2)'2(2V + N + 2)\ 

'2V+N+2.2V+N+2 

2V + N + 2 

C 2V+N.2V+N (-iy2,,+N),1(2V + N)l 

(2K + JV)S 

c 2V+N+2,2V+N+2 

2K + * 

c 
= (-1)(2F + TV + 2)(2F + TV +1) 

2K+W,2^+W 2F + 7V + 2 2F + JV 

C2K+W+2,2K+W+2 (-l)(2F + iV + 2)(2F + iV + l) (-2X2F + 7V + 1) g 2K+W+2 

c 2V+N,2V+N (AvD)2( 
2F + JV + 2 

) 
(AvD)2 

g 
2V+N 

2v+N+2 / „ 2v+N Substituting, f N ' / g zv N , Eqn. (B-6) in the ratio, Eqn. (B-7). The ratio now becomes, 

lv+\ 
f n \ 

v2AvDy 

-2(2V + N + 1) 
(V + \)(V + N + l) 

Dividing the above by V 

r_^2 -2(2 + — + - ) 
l K+l 

2 
F F 

'K V^y (i + lyi + K + 1) 
V V V 

for large V -> oo 

[ v+l 
m 

Therefore, convergence test 
Z, 

<1 requires, m<l. 
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The numerical plot shows the ratio for m=3, N=6, the series converges at about V = 10. 

Note that the above ratio is not sufficient condition for the series to converge. In other words, 

even though the series show ratio of less than unity for large V terms, it does not mean that series 

converges; it may still require large number of terms which makes this method computationally 

cumbersome. 

iZ Convergence of Gaussian series for x = 0 

J L_ 
0 1 0 ; : 20 30 40 50 60 70 80 90 

No. of V terms 

Fig. B-l. Convergence of the Gaussian series at the linecenter (x=0). Here, modulation index is m=3 
and harmonic order is, N=6. The series begin to converge as the larger number of terms is added in 
the series. The convergence range strongly depends on the m and N. 

b. Series Convergence at x > 0 

The WMS signal with a Gaussian lineshape function obtained by substituting Eqn. (B-3) in Eqn. 

(B-l), is given by, 

m 
V7rAvn v=o\l 

,2V+N [2V+N]/2 

V\(V + N)\ I c 2v+N-2k 
2k,2V+N-/ (B-9) 

k=0 
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Again, we find the ratio of subsequent V terms to test for convergence, 

lv+\ ^wN 

V V 

1 

[2V+N+2]/2 

y c x2v+ 

/ , ^2k,2V+N+2A 

k=0 

N-2k+2 

2) (v+iyy+i+N) 
[2V+N]/2 

I C 2V+N-2k 
2k,2V+NJ 

k=0 

(B-10) 

or 

m 1 

[2V+N+2]/2 

x2 y c x2v+ 

•* Z^ ^2k,2V+N+2-* 
t=0 

N-2k 

2) (v+iyy+N+i) [2V+N]I2 z ̂  2V+N-2k 

k=0 

(B-ll) 

Also, since, 

N-2k 

c 2k,N+2 

4(N + 2)(N + \) N\(-2) 

(N + 2-2h){N + \-2k) h\{N-2k)\ 
(B-12) 

Therefore, expressing above as a recursive relation, 

C 
4(N + 2)(JV + 1) 

• C , 
2 t ,w +2 ( AA + 2 -2£ ) ( iV + l - 2 £ ) 2 ^ 

(B-13) 

Substituting Eqn. (B-13) in Eqn. (B-l 1) one obtains, 

1 
[2K+W+2J/2 

y -
Tv+, = , .2 (2V + N + 2)(2K + JV +1) ££ (2F +Ar-2£ + 2)(2F + 7V-2£ + l) 

T 1 V / 

^2* ,2C+W- , [ : 
2K+N-2t 

(V + \)(V + N + \) [2V+N]/2 

y c x 
/ . ^2k,2V+NA 

2V+N-2k 

(B-14) 



In the limit, V-> <x> 
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LK+1 

T 
(mx) 

For x = 0 this reduces to the expression in part (a). Among other factors, the convergence of the 

series depends on the values of spectral location from the linecenter or 'x.' The numerical plot of 

the ratio when x>0 shows oscillatory behavior. 

Convergence of Gaussian series for x>0 

X js-

Ty/Ty^i 

/ • p : 

x = 4;m = 2,N = 2 
-

w , « 1 

;; Q: YXiWIVi' 20E; i ;:dtrm,. 40 ::A «;-».-

No. of Vierms 
10 20 30 40 50 60 70 

No. of V terms • 
90 

Fig. B-2. Convergence of the Gaussian series expansion of two different harmonic orders, N=2 and N=6. Here 
the normalized frequency is x = 4 and modulation index is, m=2 The ratios show oscillatory behavior which 
makes it difficult to predict the range of convergence and the terms required to accurately calculate the WMS 

To test the validity of convergence range obtained in the above analysis we computed the WMS 

signal using Myers and Putzers (or series) formulation and Wilsons method. Wilson method has 

no such known issues with convergence, probably because of the (integral) nature of the 

function. It is seen, the disparity in WMS signal from the two methods is more prominent in 

wing region ( x » 0) of the lineshape profile (see figure below). This could be due to 

convergence of Gaussian series, requiring larger number of terms in that region. In addition, 
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higher detection orders, N, show even greater difference, since they require even more number of 

terms in order for the series to converge. The figure below shows N = 8 signal computed using 

Myers and Putzers method and Wilsons method. The lineshape function is a Gaussian. The 

signals obtained from the two methods match within 5% around the linecenter but tend to deviate 

significantly (> 10%) in the wing region of the lineshape profile. 

Comparison between Mytrs-Putzers and Wilsons method 

Myers - Putzers 
Wilsons 

Fig. B-3. Comparison of the two mathematical methods of N=8 WMS signal. Myers and 
Putzers (or the series expansion of the lineshape function) and the Wilsons method (Fourier 
integral of the lineshape function). The slight discrepancy is due to convergence of Myers 
Putzers method at large values of the normalized frequency, x . 

2. Convergence of Lorentzian derivatives 

We repeat the same steps as in the previous section to obtain region of convergence of a series 

expansion of a Lorentzian function. Nth derivative of a lorentzian function given by, 

Si O0 = — ^ T ^C2kJf(—-)2k(v-v0) 
2K y A=0 2 

N-2k (B-15) 



2 . AV 2̂ Where, y = ( v - v 0 ) ' +( -—) 

C^ « = (-1)' 
(N + l)\ 

(2k+ 1) ylkj 

y2kj 

N\ 

(N-2k)\(2k)\ 

[N]=N-1 ;N is odd 

N; N is even 

From the equation above, the ratio of consecutive terms is, 

Tv \2) 

lv+\ 1 g 
2(K+1)+W 

(V + l)(V + N + l) g 2V+N 

At the line center y -> yQ = (—) 

Therefore, 

g 

AV \ l) f \ 2(V+\)+N ^ 
(K+l)+l V ~, ' ^2(V+l)+N,2(V+l)+N 2(V+\)+N n 2(C+1)+1 v 2 

y0 

g Av(-\r+\Av^2v+Ni 
K -Ko 

2K+1 ^ ^ ' (-"21'+W,2C+A' 

g 
2(K+1)+Af 1 ,Avx,C. 

2K+JV '(T> c 
2 ^2(F+1)+A',2(K+1)+A' 

2^+Af,2K+W 

Also the recursive relation of Ck's can be obtained, 
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C 2(V+\)+N,2(V+l)+N 

r 
^2V+N,2V+N 

— - - - ~ 2V + N + 2 (2V + N + 3) 

( ^ ) (2V + N + \)\(2V + N^ 

(2V + N + 1) 2V + N 

C2(V+,)+N,2(V^+N = (2V + N + 3)(2V + N + 2)(2F + N +1) 

C 2V+N,2V+N (2V + N + 3) 

C 2(V+\)+N,2(V+\)+N 

c 
y-'2V+N,2V+N 

= (-1)(2F + N + 2)(2F + N +1) (B-18) 

Therefore from Eqns. (B-17) and (B-18), 

g 
2(V+i)+N j A v 

2K+7V ~ 2 - 2 
(—) 2 (-1)(2F + TV + 2)(2F + TV +1) 

g Jo 
(B-19) 

From Eqn. (B-16) the ratio now becomes, 

Tv \2) (V + lW + N + \)y0
2 2 

1 (—)2(-l)(2V + N + 2)(2V + N + \) (B-20) 

Dividing numerator and denominator by V, 

Tv \2 j 
,— ,,, ,w„ N 2N,„ N 1, 

u„ i ^ v . > ( T ) ( - 1 X 2 + 7 + 7 X 2 + 7 + 7 ) 
1 — ( — ) 2 

F F 

In the limit V—»oo 
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T, v+\ 
fpV 

\^J 
4—-=-=-(-1) = :a«-» (B-21) 

V ^ J 

or 

•4/w" 

Here m is the modulation index. For the series to converge • A 2 , 1 

< 1 i.e. 4m < 1 or m < — 
2 

Ifx>0andV^oo 

lV+] 

V2y (X + lf 
\m) 

4Av2 

x 2 +l 
(B-22) 

Convergence of Gaussian vs. Lorentzian: The difference between the Gaussian and Lorentzian 

lineshapes is in their variation around linecenter and in the wing. The Gaussian is broader at the 

linecenter whereas Lorentzian is steeper and therefore higher in the linecenter value. In the wing 

region the Lorentzian falls off slowly than a Gaussian which falls of steeply. This behavior is 

also reflected in their convergence, and region of convergence at different index values. For 

example for large m values the magnitude of turning points in the wing region for a Lorentzian 

will be higher than that for a Gaussian. This is because the turning points are a measure of the 

slope of the function. Therefore, Lorentzian has a smaller region of convergence than a 

Gaussian. On the other hand it is postulated that the region of convergence of a Voigt, which is a 
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combination of Gaussian and Lorentzian function will depend on its b parameter (ratio of the 

Lorentzian to Gaussian linewidths). This is studied in the following section. 

3. Convergence of series expansion of the derivatives of Voigt Function 

A complex error probability function is given by, 

2/ 
(z) = exp(-z2)[l + - = texp(-t2)dt] = u(x,y) + Z'V(JC, v) (B-23) 

V7T 0
J 

In another representation, the integral representation of complex probability function can be 

expressed as, 

w(z) = - \ ^ ^ - d t = u(x,y) + iv(x,y) (B-24) 

The real part of the above equation is the Voigt function. It can be shown that the real part of the 

derivatives of the above equation also represents the derivative of the Voigt function 

the Nth derivative of w(z) can be written as, 

w»{z) = (-1)N(N\)- ] f ~ £ r ^ (B-25) 

Expressing, z -1 = (x -1) + iy = R(cos 6 + /sin 6) 

1 1 

0 - t)N+] RN+i [cos{(N +1)6} + isin{(N +1)0}] 

Separating real and imaginary parts one obtains, 

1 cos{(AT + l)e}-/sin{(jy + l)e} 

^^'[cosKiV + l^J + zsinK^ + l)^}] _ RN+] 

R = {(x-t)2 +y2}1'2 

(B-26) 



(B-27) 

0 = tan_ I{-^-} 
x — t 

Substituting R and 9 in equation 1 

cos{(^ + l ) ( t a n _ , [ ^ - ] ) } 
w»(x,y) = (-iy(M)l- jexPH2){ {{x_ty + y ^ n W 

. sin{(^ + l)(tan-,[-^-])} 

+(-i)'(M)-j«p(-,'){ {ix_ty+/v!Z v* 

The real part (2nd term) of the above equation the Nth derivative of the Voigt function 

sintttf + lXtaiT'H^-])} 
uN(x,y) = (-\)N(N\)- JexpH2){ {{x_ff + ^/^n W (B-28) 

In above equations; 

x = (In 2)1/2 — , where 8vD is Doppler half-width 
8vD 

J> = ( ln2) 1 / 2 5 V i 

8vD 

dw(z) dw dz dx , dz , dx -Jlog 2 
Also, s ince ,—^^ = and — = 1;— = - = K 

dv dz dx dv dx dv 8v, D 

dw(z) dw d2w(z) d dw d ,vdw 
— — = K— and subsequently, ^- = — { — } = — { K — } 
dv dz dv dv dv dv dz 

dw „ x d2w „dA ^dAdzdx „ 2 dA „ 2 d2w 
L e t , — = A(z) => r- - K -K -K — - K 

dz dv dv dz dx dv dz dz 

dNw „MdNw 
Therefore, in general; rr = K 

dvN dzN 

From Eqn. (B-28) Nth derivative of a Voigt function can be expressed as, 
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sin^JV + l X t a n - ' p ^ ] ) } 

«»(x,y) = (-l)»(Nl)- J expH 2 ) { {(x_t)2 + y 2 } ^ 2 )* 

At linecenter, x = 0 

uN(0,y) = KN(-\)N(N\)^ Jexp(-r2){-
sinKTV + lX tan ' 1 ^ ] )} 

-t 
{t2+y2}(N+lV2 }dt (B-29) 

Here, K 
V^g2 
Sv, 

The ratio of the subsequent derivatives at the linecenter can now be written as, 

2 ( W K^N(-\)^+N(2(V + \) + N)\±- ]exp(-,2){ 
sin{(2(F +1) + TV + l)(tan_1 [—])} 

-t 
ff2 + y2U(2V+l)N+\)/2 

}dt 

2V+N 

I M ( - l ) 2 W ( 2 v + ^ ) ! - ] e x p H 2 ) { 
sin{(2F +1 + N + l)(tan_1 [—])} 

= L ^ 
If2 + y2|(2K+W+l)/2 

}dt 

From Eqn. (B-2) the ratio of subsequent V terms of series expansion of WMS signal, 

1 2(V+\)+N 

(V + \)(V + \ + N) u 2V+N 

Let the,integral, 



sin{(2(F + l) + JV + l)(tan"'[—])} 
fexp(-/2){ — -

1 U2 + {t2+y2} 2U(2V+\)N+\)/2 
}dt 

sin{(2K + l + Af + l)(tan',[—])} 
Jexp(-f2){-

2 2\(2V+N+\)I2 {t2+y2} 
-}dt 

T f R\ 
1V+l 

pY K2(2V + N + 2)(2V + N + l) 

ly \^J (V + l)(V + l + N) 

T r A\ 41n2 (2V + N + 2)(2V + N + \) 

Tv ^2) {AvDf (V + \)(V + \ + N) 

AvD is Doppler Full-width. 

TV+i _(P] 1 (2F + JV + 2)(2F + JV +1) 

Tv \2 
l N •> 

AVD 

or, 
( o \ 

v2 A vu 
(AvJ2 (2V + N + 2)(2V + N + \) 

( A ^ ) 2 (V + l)(V + l + N) 

In the limit V—»oo 

f n \ P 
v 2 A v i ; 

2 / \ 2 

vA voy 
4JN=m2b2IN 

The b parameter of Voigt is given Z> = 
Avi 

From the above ratio two points should be noted here that, 

1. For a Gaussian, b-»0 - ^ - -> 0 
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2. For a Lorentzian, b—»oo —-—> oo 

T 

This again shows that, the number of terms required in a Gaussian (for convergence) is larger 

than that for a Lorentzian. 

In a typical WMS experiment for RR (13, 13) oxygen spectrum, the standard magnitudes of 

lineshape parameters are b ~ 1. 

•v+i m2L 

T 1 
For the series to converge —— < 1 or m < 4^ 

The plot below shows values of IN for different detection orders. For example, N=2, IN = 0.1. 

Therefore, m<3 for the series to converge. 

0.14 
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S 0.1 

i 008 

0 0.06 

1 0.04 

0.02 
0 

Ratio of Area vs N 

• 

0 2 4 6 8 10 12 14 

N 

Fig. B-4. Ratio of the integral IN the detection order. The magnitude of the ratio at a 
detection order determines the range of convergence for that particular detection order. 
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Analytical attempts to solve Voigt and its derivatives using Myers and Putzers method have been 

cumbersome and quite lengthy. Wilsons direct numerical method works reasonably well for 

WMS analysis. 

Numerical Evaluation of Voigt Function 

Comparison between Voigt Humlicek Algorithm and Matlab Dblquad: There are several 

numerical algorithms in literature to compute the complex error function, whose real part is a 

Voigt function. Humlicek algorithm is most commonly used algorithm to compute Voigt 

function. Humlicek gave two versions of this algorithm in his 1976 and 1982 papers. The plots 

below shows computation of Voigt function (both 1976 and 1982 papers) using Humlicek 

algorithm (with Simpsons integral step size of 104) and inbuilt MATLAB dblquad function. 

Voigt (Matlab dblquad)- dotted line 
-Humlicek (1976)Voigt - Solid line 

760.3 760-32 76034 760.36 760,36 76D.4 760 42 

Wavelength 

25 

20 

15 

10 

s 

0 

•5 

-10 

Percentage difference between Humlicek (197jd|| 
and Matlab computations 

7603 760.32 76034 760.36 760.38 760.4 760,42 

Wavelength 

Fig. B-5. Comparison between Voigt profile computed from Humlicek (1976) algorithm and MATLAB dblquad 
function. 
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Voigt (Matlab dblquad)- dotted line 
Humlicek (1976)Voigt - # i d line 

15 

10 

s 

0 

-s 
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-15 

-201-

Percentage difference between Humlicek 
(1982) and Matlab cornfxftations 

; 760.3 76032 760 34 rmm'^'mmvmmBz KTSKa 'iiiii7WMi::?ih 8760321 

Wavelength iMmBmgm 

Fig. B-6. Comparison between Voigt profile computed from Humlicek (1982) algorithm and MATLAB dblquad 
function. 

Higher derivatives using Humlicek algorithm and MATLAB dblquad. Higher order plots of Voigt 

algorithms show greater discrepancies in Humlicek and MATLAB methods, as shown in N=2 

plot below. 

0.12 
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0.02 
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Wavelength 

Humlicek 

MATLAB 

760.42 

Fig. B-7. Comparison between N=2 Voigt signal computed from Humlicek algorithm and MATLAB dblquad 
function. 
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Problems with Humlicek Algorithm: The Humlicek expression is based on complex analysis of 

the function, whose real term is a Voigt function. The derivatives of this complex probability 

function ( w(z) = exp(-z2)(l + —jpr- \exp(t2)dt ) also give derivatives of the Voigt. The 
JL 0 

derivatives are expresses as a recursion relation (w"(z) = -(-2n + 2)w"~2(z)-2zw"~\z);n>3). 

Each higher order derivative is expressed as combination of lower order derivatives. The 

Humlicek expression is an approximation with finite errors. These errors grow very rapidly with 

the order of the derivatives. 

C. MAXIMUM ENTROPY 

The entropy of a continuous random variable is given by H(x) = -\ f(x) log f(x)dx. If there 
J-oo 

are no constraints on the random variable, x, then the maximum entropy, occurs when f(x) is a 

uniform distribution, i.e. / (x ) = —. A more practical and versatile distribution occurs when there 
a 

are constraints on x. This result can also be shown mathematically, for example by maximizing 

H, under the constraint that \ f{x)dx = 1 and using Lagrange's method of multipliers. 
J-oo 

Consider, f(x) is a one-dimensional distribution. The form of f(x) giving maximum entropy, 

subject to the condition that the standard deviation of x is fixed at a, is a Gaussian. To show 

this, we maximize, H{x) = -\ fix) log f[x)dx 

under the constraints, 
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a2 = f x2f(x)dx and, f° f(x)dx = 1. (C-l) 
J-00 J-00 

This requires, by calculus of variations, maximizing the integral below, 

j ~[f(x) log f(x) + Xf(x)x2 + nf(x)]dx. (C-2) 

The relevant condition to find an extremum gives: 

-l-logf(x) + ?LX2+n = 0 (C-3) 

Consequently, (adjusting the constants to satisfy the constraints) one gets a Gaussian distribution, 

m = -n=^'-*,a* (C-4) 
2KG 

With this result, the maximum entropy principle can be explained in the following way. Let NL 

be the combinatorial arrangements (or sequences) that can be formed from L distinct objects. 

The frequency of occurrence of each of the (L) objects is their probability. The larger the entropy 

for a given distribution, the greater is the number of arrangements that can be generated, from 

independent trials of any probability experiments. Therefore, complexity of any probability 

distribution can be gauged, from the number of arrangements that can be extracted from it. In 

other words, the distribution with largest entropy, which therefore contains maximum 

information, is the one that contains maximum potential disorder. 

The Central limit theorem, which seems to be a manifestation of maximum entropy, 

demonstrates that if there are no random variables whose variance dominates over others, the 

sum of independent random variables converges towards a Gaussian distribution. Therefore, the 
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theorem allows us to say that, amongst all probability distributions with fixed mean and variance, 

it is to Gaussian distribution, that the probability density function of the sum must finally 

converge. 

For example, in a coin tossing experiment with N fair coins, the event of appearance of heads, 

probability of getting k heads is, hk =
 nCkp

kq"~k. Since each outcome is independent of the other 

for a large n, hk tends to a Gaussian distribution. 

In another interpretation of this result, which is analogous to the maximum entropy argument, for 

a given mean and variance of a coin tossing experiment, the Gaussian distribution is the one 

which generates the largest number of arrangements or sequences. 

A practical application of the concept of maximum entropy or central limit theorem appears in 

engineering problems. For a given power, the fluctuations from noise, in a physical quantity is 

considered to be a Gaussian. This can be understood as a hypothesis of maximum disorder, or a 

priori minimal knowledge. The entropy is the information content that the source of random 

events can supply during independent realizations. In the case of a source, with a high entropy, 

each experiment will tend to bring a lot of information. This is compatible with the 

interpretation, whereby, the information, available to us a priori, i.e. before the trials, is itself 

minimal. 

D. THERMAL NOISE- PHYSICS OF IMPEDANCE MATCHING IN CIRCUITS 

Thermal noise occurs due to collisions (which are random in nature) of electrons with atoms or 

molecules. Thermal noise is due to finite temperature of the elements of the detector (or receiver) 

system. Therefore, it can partially be alleviated by cooling these elements. 
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The noise goes by several different names: (1) in engineering it is referred to as "white" noise, 

because its spectral distribution is uniform or "flat" at video frequencies at room temperatures; 

(2) it is also referred to as "Johnson's" or Nyquist noise, after early pioneers in the field; and (3) 

it is also called "blackbody" noise, because its origin lies in the concept of blackbody physics 

(Planck's formulation of entropy of a blackbody spectrum). 

In the treatment of blackbody formulation the underlying assumption is that the size of the 

cavity (in which the blackbody radiation or photons reside and interact with atoms of the walls of 

cavity) is huge compared to a wavelength, the same considerations apply at video frequencies for 

elements that are small compared to a wavelength. The maximum power that can be transferred 

from a blackbody at a temperature T in a bandwidth Av (or W in previous section) is the product 

of the following factors: (1) the number of modes in that bandwidth, Av, (2) the energy per 

photon, hv, (3) the photons per mode, \/{ehv"'T -1} and (4) the bandwidth Av. 

At video frequencies, there is usually only one mode-the TEM mode extending down to zero 

frequency, with one direction of polarization of field. Thus, we obtain the low frequency limit 

pertinent to the detector (or receiver) problem 

p = \.{hv/ehv/kr-l}Av Watts 

At room temperatures and reasonable frequencies (e.g., less than 1 Ghz), the photon energy is 

much less that the kT (thermal energy) i.e. hv « kT (at room temperature ^ v / kT j s 

approximately 1/40 eV) and the approximate form of p which is often used is, P = kTAv . it is 

this form, which is referred as Johnson's noise, or also white noise and is an approximation. 
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p = kTAv is m e maximum power that can be transferred from one blackbody circuit element 

to another blackbody circuit element in the form of thermal noise. 

Fig. D-l below illustrates the restrictions involved in applyingp = \\hv/ehvlkT - l | Av. Resistor 

RA at a temperature TA emits noise power according to 'p ' , to be absorbed by RB, which in turn, 

radiates power back to RA. Only if RA= RB will the two systems be "black" to each other's 

radiation, thereby absorbing all of the incident power. 

-PA_> 

TA » T, T B 

TA, RA \ \ R B , TB 

A-"-^ I B 

Fig D-l. Exchange of thermal power between two resistors 

Therefore, the characterization of an element being "black" is identical to the specification of a 

system being matched for maximum power transfer. To account for the fact that many systems 

are not matched, we construct an equivalent circuit with appropriate generators and noiseless 

resistors, which yields the correct answer for the power transfer when matched and also properly 

allows for a mismatch. In other words, one of the common practices in designing an electronics 

circuit is impedance matching. In this, the resistance of various components of a circuit is 

matched for maximum power transfer. This essentially means that designers wish to construct 

components that see each other equally "black". Such a model is in Fig. D-2 below. 

Further, we define a voltage (or current) generator of such a magnitude as to yield the proper 

power transfer according to the laws of transmission-line theory, and so that it agrees with the 
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maximum power specified by Planck's formulation. Hence, the mean of the squared rms voltage 

is 

V2 =4R{hv/ehvlkT-\}Av*4RkTAv 

The corresponding current generator is 

I2 =-\hv/eh"*r -l)Av* — Av 
R{ j R 

R 

0 V2=4R{hv/ehvltT-l}Av 
R ffi^f = - \ h v l e h v l k T - \ Av 

Fig D-2. Equivalent circuits for thermal noise 

It is only the resistive part of the circuit that can accept power and, for the same reason, can 

generate this noise power. A reactive element such as a capacitance affects the bandwidth 

Av under consideration but does not contribute to or accept the noise power. 

E. POWER DISTRIBUTION AND ENTROPY 

In this analysis we show the connection between distribution of a signal and its power. We 

further quantify this in bits. Subsequently expressing the harmonics of the signal and using 

energy conservation one can estimate power in each harmonic, which is magnitude square of its 

Fourier co-efficient. Therefore, one can quantify the information in each harmonic. The 

particular example treated below is a source with fixed frequency and phase but varying 

amplitude (distribution). In the latter part we discuss, a source with frequency and amplitude 

distribution. 
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1. Source with fixed frequency and phase 

Consider a source emitting Electric fields (photons) of varying amplitudes and phase. The field is 

given by; 

y:(O = 4-cos(fiy+0o) (E-i) 

The energy of the E-field is given by \At 
|2 

Now we calculate the distribution of E-field amplitudes assuming that each At is independent of 

the other and the source is thermally excited. In this case one would have a situation where 

amplitude distribution is such that the entropy is maximized for a fixed average value of the E -

field energy. 

Let pi be the probability of the amplitude Aj. 

Therefore; 

5 > = 1 (E-2) 

I>|4|2=(£> OE-3) 

Maximizing H using Eqns. E-2 and E-3 as constraints; 

^-{2>, l o ^ + V£,P, • -i)+^(Z,P'\4 -{E))) = ° (E-4) 



182 

{\ + logp,+Xi+l2\A,\2}=0 

fogp,=-(a,+i + ^ | 4 f ) 

Pi = Ce~^ (E-5) 

p(A)dA = Ce'lA dA (E-6) 

using Eqns. E-2 and E-3 f p(A)dA = 1 and T A2p(A)dA = (E) 

gives, C = yj2Ka 

1 -4 
p(A)dA= , e 2°2dA : Amplitude distribution (E-7) 

V2;rcr 

Where, o2 ={E) (E-8) 

writing Eqn. E-7 as energy distribution; E = A 

1 -^ 
p{E)dE = —ewdE : Energy distribution (E-9) 

w 

Where w = 2a2 =2{E) 

Probability distribution of the energy is an exponential with the average value w. 

Variance of the energy distribution = w. 



Signal energy and Power 

If f(t) represents a voltage or electrical signal then its energy is given by 

J \f(tf dt Therefore, if /( /) = Ai cos(coQt + (/)0) 

\\f(tfdt=\\Ei(t)\
2dt = \Ai\

2 (E-10) 

Average energy over p(Ej); gives the variance of the independent E-filed intensities. 

Therefore, 

v=(\\E1(t)\
2dt} = (\Ai\

2) (E-ll) 

(Units needs to be adjusted depending on whether Aj is in volts or volts per meter) 

Also, time average power of E-field,/J 

i i2 i i2 

P,=-[\fM2dt--^lcos2(^ + 'l>o)dt=lf- (E-12) 

Average power over p(Ej); 

tt>=(ifi/(<>r*)=^ (E-l3) 

The above is also equal to the ensemble average (ergodicity) 



Signal energy and magnitude of Fourier coefficients: Distribution of the harmonics 

Fourier series expansion of a function f(x) is expressed as; 

f(x) = a0+YJkakcoskx + YJkbksinkx (E-14) 

where; 

ao = I f(x)dx 5 ak = — \ f(x) cos(kx)dx and bk = \ f{x) sin(Ax)<ix; 
J-7T jr J~n J-71 

Also, from E-14 

[ \f(tf dt= J[ (a0 +YJk
ak cos(fa»r) + X*** sin(toO) ^ 

[ | / ( 0 | ^ = T{a2
0 + — ̂  (q2

t + 62
t)} : Energy conservation (E-15) 

The probability average overp(E)\ j p{E)EdE gives the variance of the distribution 

(fi/(or*)=^«o+|E*(fl2/.*+*2^)>) (E-16) 

Probability average of ao is zero (a2
l0) = 0 since it is a constant 

H ) = ̂ Z 4 ( ( < t ) + (A2,,))> (E-17) 

("£' w ̂ e index for harmonic order and averaging is over index 'i') 

Therefore, if f,(t) = Af cos(a)0t + (f>0) 



CO flt/a> 
atk=—\ , ft(t)cos(kcot)dt 

coA (w/o) 
atk= '- cos(co0t + (j)0)cos(kcot)dt 

' jr J-n/co 

CO A nzla CO A- rt/<» 
ajk=—— cos([kco + co0]t + cj)0)dt-\ — cos([kco - co0]t + <j)0)dt 

2n i~7llu) 2K i~nlco 

coAt coA, jw/fi) coA, pi ia> 
ajk=——I cos([kco + co0]t + (j)0)dt-\ —I cos([kco - co0]t + (f>Q)dt 

K * n * 

ai,t = 
COA; 

7t(kco + coQ) 
\ cos udu H '• j cos vdv 
•% 7t(kco — co„} •% 

CO 
c = (k-\ )TT+0( 

CO 

©„ 
d = (& )x +(j)( 

con 

7r 

1 1 
• + -

(& + o)0 / co) (JC-COQI CO) V V - • ««o o ' WJ J 

sin(c) sin(c/) 

(k + co0/ co) (k-co0/ co) VV"- • «"o 'o' "vy 

Therefore, 

K k k \ 
(E-18) 

|2 I I2 

From the above, signal energy|^| = a. J . Therefore, one can express the signal energy 

of Fourier co-efficient of its expansion. The average energy over p(E) is 

K)=(k 
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In a more complicated function,/^, with higher Fourier co-efficient the total signal energy can 

be shown as a sum magnitude square of the individual Fourier co-efficients, \ai A . 

Following, from the above one can write the average power in each harmonic given by, 

f p(ck)ckdck , with piCk) = T!-e<M ;ck =\ak\
 2 (E-19) 

I |2 

Where, in each harmonics as \ak\ and if these are from a thermally excited source then one can 

I I 2 

write the amplitude distribution of each harmonic for various At i.e. \ak\. 

Signal Power 

j l\f,(tf dt = {«\o +|Z,(«2a + *\*»5 V T i s t h e bandwidth 

It should be noted that in an absorption or emission experiments, the emitted photons (or the 

photons on the photodetector) are not the thermal photons i.e. these photons are not part of, or 

aid in establishing thermal equilibrium of the system (gas in a box) that resulted in emission (or 

absorption) of these photons. In addition, there is no temperature associated with these photons. 

Temperature can only be brought in this analysis when these photons interact with the detector 

and establish equilibrium with the lattice as a result of energy conservation. This is contrary to 

blackbody photons, i.e. the photons that are collected from a pinhole of (blackbody) cavity: these 

photons are thermal I nature and has a notion of temperature directly associated with them. 
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2. Source with fixed amplitude and phase 

In this section we will estimate average Intensity of a source (emitting E-fields) with a spectral 

distribution. We will also estimate the intensity distribution of thermal source and distributions 

of the Fourier harmonics of the intensity. Consider, a source consisting of large number of atoms 

or molecules in thermal equilibrium. The source constantly emits Electric fields (photons) a 

range of frequencies. The field is given by; 

/ ( / ) = exp(/^.jc(0) where, x(t)= f v(t')dt' 
c •Uco 

Let f(t) be in units of Volts/meter 

The average power of the E-field is given by; 

1(a)) = lim 
T—»°o 

1 rTI2 • . 

-r== \ f(t)e-,a"dt (E-20) 

I(co) = — ^ (p(r )e~iardx - Einstein - Weiner- Khinchin Theorem (E-21) 

•7 

{where, I is in Joules/sec.m } 

Where, <p(r) = lim - f f (t)f(t + v)dt (E-22) 

{See Appendix} 
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Eqn. E-22is also equal to <p(r) = \f'(t)f(t + z)jl 

p(T) = ( exp [Ax( r ) ] ) (E-23) 

Expressing the above in the form; 

(p(t) = (exp[iks(T)]), r(j) = £ v(t)dt 

Introducing distribution function f(r,v,t) for the oscillator coordinate, r and velocity, v. This 

distribution function satisfied Boltzmann equation. 

df (df\ 
— + v.V/= — and the initial condition, f(r,v,0) = W(v)S(r) dt V Ot J collision 

Therefore, 

q>(z) = J dv J f(r,v,z)exp[ik.r]dr (E-24) 

And 

I(CD) = — \ dv \ f(r,v,T)exp[i(a>T-k.r)]drdT (E-25) 

In order to determine the average intensity of the photons, we need to calculate its energy 

distribution using maximum entropy concepts. 

1 This is also known as correlation function. The function is used when phase varies with time (i.e. frequency or 
phase) is a distribution (one cannot have a constant phase of E-field if the frequency is a random variable). In 
situations where frequency is constant, e.g. in Lorentzian lineshape one can write intensity as, I = J|E(t)E*(t)|dt. In 
case where frequency is a distribution, intensity is a convolution I = j|E(t)E*(t+T)|dT. 
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Correlation function and Spectral density 

The correlation function is defined as: 

<p(r) = limi [ f(t)f(t + r)dt (E-26) 

The Fourier Transform of the function/^ is, 

f(t)=[f(co)e-"'dco (E-27) 
J-oo 

And the complex conjugate is given by, 

/*(o=£/>y°'<fc> (E-28) 

Therefore, substituting Eqns. E-27 and E-28 in E-26, 

< p ( r ) = l i m - f P f / ,(a)> ; a , ,7(©)e- ' f l , ( '+ rWffl ,Jft)^ (E-29) 
J1—»oo 'T' J-7" J—co J—oo 

<p(r) = l i m - f \e'((0'-a)'dt\ [° f f V ) / ( c o y 0 ' 1 d a ' d a 

<p(r)= P P 5(CO'-©)/*{co')f{my,COTdco'dG) (E-30) 
J-oo J-oo 

cp(r)=[ /(^/((oy^dco (E-31) 
J-00 

Iff (t) describes an E - field (with proper units), (p(x) represents the Fourier transform of the 

spectral density f(a))f*(a>) 
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Special Case: Note that if T = 0 

From Eqn. E-26 

I n . 
cp(0) = lim — / (t)f{t)dt, cp(0) is the E - field intensity or the Poynting vector. 

Also, from Eqn. E-31 if x = 0 

<P(0) = r ./'*(G,)/(ft,)<^ft, , cp(0) is the spectral density. 
J - oo 

F. DISTRIBUTION OF TURNING POINTS OF OVERLAPPING TRANSITIONS 

This appendix shows calculations of the probability distribution of turning points of two 

overlapping lines in WMS signal. Since, the two transitions are statistically independent; WMS 

signal magnitude at any frequency in spectrum can be expressed as the sum of the signal due to 

individual transitions i.e. 

V -> VLINEI ± VLINE2 

The total signal magnitude depends on the modulation index, m, absorption cross-section, aabs 

and line separation. 

The distribution of the signal due to overlap can be expressed as, 

p(V)dV = n^e-(v-{v^±v^)fllal dV 

The total entropy of 2(N+1) turning points of the two overlapping transitions is, 

H^TTTM^T)} (F-2) 
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Here, an(Vx), is the variance of one of the turning point of Nth order harmonic. Therefore, 

information extracted from a change in modulation indices from mi to rri2 is given by; 

8HN =E r log{K(^)}m 2 /{cr„(VT)}m} (F-3) 
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G. MATLAB CODE 

Various algorithms were used while programming WMS signals for modeling the experimental 

data. A sample Matlab code that computes Ath order WMS signal is given below. The routine 

uses different call functions to compute four different oxygen transitions. The lineshape used 

here is a Voigt profile which can be changed to a Doppler or a Lorentzian from the call function 

file. 

%% This code computes WMS signals. The detection 
%% k values. The code implements Wilsons method 
code has 4 oxygen lines each of them has its own 
parameters are i taken from HITRAN data file.%% 

format long 
cl=3*10A10;% speed of light in cm/sec 
c=3*10A8 ; 
k=6; % Harmonic order 
beta=(l.4)*10A9;% modulation frequency in Hz 
A= xlsread('wavelengthdata','ExpJune07_09N6','11:13200');% wavelength in nm 
from Aug 15 exp 
stepsize=l; % the data is large truncate accordingly to save computation 
time. 
nl=length(A)/stepsize; % no. of data points 
%linecenters in cin-1 
linecenterR1313= 13151.34 0150; % linecenter of R1313 in cm-1 
linecenterR1313weak= 13151.72491 % linecenter of R1313weaker line in cm-1 
linecenterR4343= 13151.81436 % linecenter of R4343 in cm-1 
linecenterR1213= 13152.3203 % linecenter of R1213 in cm-1 
%Linecenters in Hz 
g0R1313= cl*(linecenterR1313); llinecenter in Hz of R1313 in bracket 
linecenter in cm-1 line center =1.3*10A14 
g0R1313weak=cl*(linecenterR1313weak); 
gOR4343=cl*(linecenterR4343) ; 
g0R1213=cl*(linecenterR1213) ; 

%doppler linewidths calculations %%in some cases directly taken from HITRAN 
Ml=2*16*10A-27 ;% mass of oxygen in Kilograms of 02 (atomic mass =16); 1 arau 
= 1.66054 x 10-24 grams 
M2=2*18*10A-27 ;% mass of Nitrogen (as second major molecule in air} in 
Kilograms of 02 (atomic mass =16); 1 amu •-- 1.66054 x 10-24 grams 
kl=1.38062*10A-23 ;% Boltzman constant J/K 
T=300; % temp in K 
linewidthdopR1313=3.1*10A9;%(1/sqrt(4*log(2))!*sqrt(8*kl*T*log(2)/(Ml*c^2))*1 
inecenter*cl; % normalized linewidth in hz 
linewidthdopR1313weak=2.5*10A9;;%(1/sqrt (J*log(2)))*sqrt(8*kl*T*log(2)/(Ml*cA 

2}}*linecenterR1313weak*cl; % normalized linewidth in hz 
linewidthdopR4343=2.3384*10A9;%%(1/sqrt(4*log(2)))*sqrt(8*kl*T*log(2)/(Ml*cA2 
}}*linecenterR4343*cl; % normalized linewidth in hz 

order can be changed from 
(dblquad integration}. The 
call function. The input 
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linewidthdopR1213=2.5*10A9% (1/sqrt (4*log(2) ) } *sqrt (8* kl *"r*log (2) / (M.l*cA2) } *li 
necenterR1213*cl; % normalized linewidth in hz 

%collisional linewidths 
linewidthlorR1313=2.4192*10*9;% linewidth in hz 
linewidthlorR1313weak=2.0192*10A9; 
linewidthlorR434 3=2.38 641*10A9; 
linewidthlorR1213=2.0192*10*9; 

% calculation of Voigt function 
yR1313=sqrt(4*log(2))*linewidthlorR1313/(2*linewidthdopR1313);% imaginary 
part of complex plane NOTE y is inbuilt in the rational approximation in the 
code do no need 
yR1313weak=sqrt(4*log(2))*linewidthlorR1313weak/(2*linewidthdopR1313weak); 
yR4343=sqrt(4*log(2))*linewidthlorR4343/(2*linewidthdopR4343); 
yR1213=sqrt(4*log(2))*linewidthlorR1213/(2*linewidthdopR1213); 

mR1313=beta/linewidthlorR1313; % modulation index 
mR1313weak=beta/linewidthlorR1313weak; 
mR1213=beta/linewidthlorR1213; 
mR4 34 3=beta/linewidthlorR1313; 
%%saturation parameter 
n=5.21197e+18;%d.ensity cm-3 
abscrossR1313= cl*(5.67E-24);% %absorption cross-sectionfline strength) from 
Hitrari line, factor of cl is to convert in proper unit i.e. from cm2-hz to 
cm-1 cm2 mol-1 
abscrossR1313weak=cl*(1.15E-26) ; % ^absorption cross-section cm-1 cm2 mol-1 
of R1313 weak line 
abscrossR4343=cl*(1.32E-28); 
abscrossR1213=cl*(1.41E-26) ; 
L=20790;% length in centimeters 

sigmacollR1313=l;%2.4265E-15 ; 
sigmacollR1213=l;%2.4 2 65E-15; 
sigmacollR1313weak=l;%2.4265E-15;% 
sigmacollR4343=l;%1.8607E-15 
gasparamR1313=n*abscrossR1313*L; 
gasparamR1313weak=n*abscrossR1313weak*L; 
gasparamR1213=n*abscrossR1213*L; 
gasparamR4 34 3=n*abscrossR4 34 3*L; 
coeffR1313=(2/piA(3/2))*gasparamR1313/(linewidthlorR1313); 
coeffR1313weak=(2/piA(3/2))*gasparamR1313weak/(linewidthlorR1313weak); 
coeffR1213=(2/piA(3/2))*gasparamR1213/(linewidthlorR1213); 
coeffR4343=(2/piA(3/2))*gasparamR4343/(linewidthlorR4343); 
saturationparameterR1313 = coeffR1313*pi*yR1313*exp(yR1313A2)*erfc(yR1313); 
freq=0; 
d=0; 
A2=cl./(A.*10A-7);% conversion of wavelength to frequency in Hz 
for A9 = 0:01:nl-4% the loop runs total number of wavelength data points 

freq=freq+stepsize,• 
vL=A2(freq) ; 
d=d+l 
A22(d)=A(freq); 



%%NORMALISED FREQUENCIES 
xR1313=(A2(freq)-gOR1313)/linewidthlorR1313; 
xR1313weak=(A2(freq)-gOR1313weak)/linewidthlorR1313; 
xR4343=(A2(freq)-gOR4343)/linewidthlorR1313; 
xR1213=(A2(freq)-gOR1213)/linewidthlorR1313; 

%%%% R1313 STRONG line 
intvoigtterm41 (d) =dblquad(Svoigtlineshape, -10A1, +10A1, -pi, +pi, 10A-
H,@quad,coeffR1313,yR1313,xR1313,mR1313,k);%% % term 4 
intvoigtterm51(d)=dblquad(Svoigtlineshape,-10A1,+10A1,-pi,+pi,10A-
11,Squad,coeffR1313,yR1313,xR1313,mR1313,k-1);%% 
intvoigtterm52(d)=dblquad(Svoigtlineshape,-10A1,+10A1,-pi,+pi,10A-
11,Squad,coeffR1313,yR1313,xR1313,mR1313,k+1);%% 
intvoigtterm71(d)=dblquad(Svoigtlineshape,-10A1,+10A1,-pi,+pi,10A-
11,Squad,coeffR1313,yR1313,xR1313,mR1313,k-2);%% 
intvoigtterm7 2(d)=dblquad(Svoigtlineshape,-10A1,+10A1,-pi,+pi,10 A-
11,Squad,coeffR1313,yR1313,xR1313,mR1313,k+2);%% 
%%%% R1313 weak line 
intvoigtterm41R1313weak(d)=dblquad(SvoigtlineshapeR1313weak,-10Al,+10Al,-
pi,+pi,10A-9,Squad,coeffR1313weak,yR1313weak,xR1313weak,mR1313weak,k);1% 
intvoigtterm51R1313weak(d)=dblquad(SvoigtlineshapeR1313weak,-10A1,+10A1,-
pi,+pi,10A-9,Squad,coeffR1313weak,yR1313weak,xR1313weak,mR1313weak,k-1);%% 
intvoigtterm52R1313weak(d)=dblquad(SvoigtlineshapeR1313weak,-10Al,+10Al,-
pi,+pi, 10A-9, Squad, coeffR1313weak,yR1313weak,xR1313weak,mR1313weak,k+1);%% 
intvoigtterm71R1313weak(d)=dblquad(6voigtlineshapeR1313weak,-10Al,+10Al,-
pi,+pi, 10A-9, Squad, coeffR1313weak,yR1313weak,xR1313weak,mR1313weak,k-2); 
intvoigtterm72R1313weak(d)=dblquad(SvoigtlineshapeR1313weak,-10Al,+10Al,-
pi,+pi,10A-9,Squad,coeffR1313weak,yR1313weak,xR1313weak,mR1313weak,k+2);%% 
% %%%% R4343 weak line 
intvoigtterm41R4343(d)=dblquad(8voigtlineshapeR4343,-10A1,+10A1,-pi,+pi,10A-
9,Squad,yR4 34 3,coeffR4 34 3,xR4 34 3,mR4 34 3,k);%% 
intvoigtterm51R4 34 3(d)=dblquad(SvoigtlineshapeR4 34 3,-10Al,+10Al,-pi,+pi,10A-
9,Squad,yR4 34 3,coeffR4 34 3,xR4 34 3,mR4 34 3,k-l); 
intvoigtterm52R4 34 3(d)=dblquad(SvoigtlineshapeR4 34 3,-10Al,+10Al,-pi,+pi,10A-
9,Squad,yR4 34 3,coeffR4 34 3,xR4 34 3,mR4 34 3,k+1);%% 
intvoigtterm71R4 34 3(d)=dblquad(SvoigtlineshapeR4 34 3,-10Al,+10Al,-pi,+pi,10A-
9,Squad,yR4 34 3,coeffR4 34 3,xR4 34 3,mR4 34 3,k-2); 
intvoigtterm72R4 34 3(d)=dblquad(SvoigtlineshapeR4 34 3,-10Al,+10Al,-pi,+pi,10A-
9,Squad,yR4343,coeffR4343,xR4343,mR4343,k+2);%% 
% %%%% R1213 weak line 
intvoigtterm41R1213(d)=dblquad(SvoigtlineshapeR1213,-10A1,+10A1,-pi,+pi,10A-
9,Squad,yR1213,coeffR1213,xR1213,mR1213,k); 
intvoigtterm51R1213(d)=dblquad(6voigtlineshapeR1213,-10Al,+10Al,-pi,+pi,10A-
9,Squad,yR1213,coeffR1213,xR1213,mR1213,k-l); 
intvoigtterm52R1213(d)=dblquad(SvoigtlineshapeR1213,-10A1,+10A1,-pi,+pi,10A-
9, Squad, yR1213, coeffR1213,xR1213,mR1213,k+1); 
intvoigtterm71R1213(d)=dblquad(SvoigtlineshapeR1213,-10A1,+10A1,-pi,+pi,10A-
9,Squad,yR1213,coeffR1213,xR1213,mR1213,k-2);%% 
intvoigtterm72R1213(d)=dblquad(SvoigtlineshapeR1213,-10A1,+10A1,-pi,+pi,10A-
9,Squad,yR1213,coeffR1213,xR1213,mR1213,k+2);%% 
end 

%%AMPLITUDE MODULATION 
%WMS higher order terms due to amplitude modulation, r 
kl=k-l;% k-1 if k is odd and k i k is even 
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k2=k+l;%k+l 
psi=0;%pi; 
r=0.08;% amp 

odd and f k is 

.itude module 

q4 = l;%( (factorial(k)/(p 
intvoigtterm4=-(1+(rA2) 
intvoigtterm4R1313weak= 
intvoigtterm4R4343=-(1+ 
intvoigtterm4R1213=-(1 + 

i* (2A (1-k.) ) * (betaAk) ) ) } ; 
/8)*(-1*(kl/2))*q4*intvoigtterm41;%% 
-(1+(rA2)/8)*(-1A(kl/2))*q4*intvoigtterm41R1313weak; 
(rA2)/8)*(-1A(kl/2))*q4*intvoigtterm41R4 34 3;%% 
(rA2)/8)*(-1A(kl/2))*q4*intvoigtterm41R1213; 

q51=l;%(fact 
q52=l;% • / (p] 

Lai((k-1) 
Lai ( (k-f-1) 

intvoigtterm5=-r*sin(psi)*(((-1) 
q52*intvoigtterm52); 
intvoigtterm5R1313weak= 
+1))/2)*(q51*intvoigtte 
intvoigtterm5R4 34 3=-r*s 
+1))/2)*(q51*intvoigtte 
intvoigtterm5R1213=-r*s 
+1))/2)*(q51*intvoigtte 

'1- beta.A(k-1) 
A(1-(k+1)i)*(beta.A(k+1)))); 
A(k2/2 +1))/2)*(q51*intvoigtterm51-

-r*sin(psi)*(((-1).A(k2/2 
rm51R1313weak-q52*intvoigtterm52R1313weak); 
in(psi)*(((-1).A(k2/2 
rm51R4343-q52*intvoigtterm52R4343);%% 
in(psi)*(((-1).A(k2/2 
rm51R1213-q52*intvoigtterm52R1213); 

q6 
int 
int 
D A 

int 
int 
q71 
q72 
int 
q72 
int 
q71 
int 
q71 
int 
q71 
q81 
q82 
int 
1A( 
int 
1A( 
int 
1A( 
int 
1A( 

1;%(fac 
voigtte 
voigtte 
(k2/2 
voigtte 
voigtte 
1;% 
1;% 

voigtte 
*intvoi 
voigtte 
*intvoi 
voigtte 
*intvoi 
voigtte 
*intvoi 
= 1;% = 

= 1;%( 
voigtte 
kl/2+1 
voigtte 
kl/2+1) 
voigtte 
kl/2+1 
voigtte 
kl/2+1) 

torial((k-
rm6=-r*cos 
rm6R1313we 
12) *q6*int 
rm6R4 34 3=-
rm6R1213=-
:o:rial ( (k 

rm7=-((rA2 
gtterm7 2 ) ; 
rm7R1313we 
gtterm71Rl 
rm7R4343=-
gtterm71R4 
rm7R1213=-
gtterm71Rl 
actorial(( 

rm8=-((rA2 
/2)*(q81* 

rm8R1313we 
)/2)*(q81 
rm8R4 34 3= 
)/2)*(q81 
rm8R1213= 
)/2)*(q81 

1) \ i (pi* ' 2 A ' ''• — ? k— 1 ) ''> ''• * ( b p ^ a A •' k - 1 '• '* ) ' * 
(psi)*(((-1)A(k2/2))12) *q6*intvoigtterm51; 
ak=-r*cos(psi)*(((-
voigtterm51R1313weak; 
r*cos(psi)*(((-1)A(k2/2))/2)*q6*intvoigtterm51R4343; 
r*cos(psi)*(((-1)A(k2/2))/2)*q6*intvoigtterm51R1213; 
-2) ) /(pi*(2A(1-(k-2}))*(betaA (k-2) ) ) } ; 
+2);/(pi*(2N(l-(k+2)))*(betaA(k+2)})); 
)/8)*sin(2*psi)*((-1A(k2/2))12) *(-q71*intvoigtterm71+ 

)/8)*sin(2*psi)*((-1A(k2/2))12) * (• 
q72*intvoigtterm72R1313weak); 
*sin(2*psi)*((-1A(k2/2) )/2)* (-
intvoigtterm72R4343); 

ak=-((rA2 
313weak+ 
((rA2)/8) 
343+ q72* 
((rA2)/8)*sin(2*psi)*((-1A(k2/2))/2)* (-
213+ q72 

)/(Pi* 
)/8)*cos( 
intvoigtt 
ak=-((rA2 
intvoigtt 
( (rA2)/8) 
intvoigtt 
( (rA2)/8) 
intvoigtt 

intvoigtterm72R1213); 
* (2A (l-(k-2) ) ) * (beta/" (k-2) } ) ) ; 
(2A(1-(k+2)))*(betaA(k+2)))) ; 
2*psi)* ( (-
erm71+q82*intvoigtterm72); 
)/8)*cos(2*psi)* ( (-
erm71R1313weak+q82*intvoigtterm72R1313weak); 
*cos (2*psi)*((-
erm71R4 34 3+q82*intvoigtterm7 2R4 34 3 ) ; 
*cos(2*psi)*((-
erm71R1213+q82*intvoigtterm7 2R1213); 

FullvoigtR1313=(intvoigtterm4+intvoigtterm5+intvoigtterm6+intvoigtterm7+intvo 
igtterm8); 
FullvoigtR1313weak=(intvoigtterm4R1313weak+intvoigtterm5R1313weak+intvoigtter 
m6R1313weak+intvoigtterm7R1313weak+intvoigtterm8R1313weak); 
FullvoigtR4 34 3=(intvoigtterm4R4 34 3+intvoigtterm5R434 3+intvoigtterm6R4 34 3+intv 
oigtterm7R4343+intvoigtterm8R4343) ; 
FullvoigtR1213=(intvoigtterm4R1213+intvoigtterm5R1213+intvoigtterm6R1213+intv 
oigtterm7R1213+intvoigtterm8R1213); 
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%%SUM OF ALL INTERFERING LINES 
Alllines=FullvoigtR1313+FullvoigtR1313weak+FullvoigtR4 34 3+FullvoigtR1213; 
%ALL MODELED LINES 

%%LINECENTR MATCHING OF MODEL AND EXPERIMENT. EXPERIMENT DATA IMPORTED FROM 
%%EXCEL FILE 
Expsignalfulldata= 
transpose(xlsread('Experiment-data' , 'ExpJulylO 09N6', 'al: a2200'));% wavelength 
in nra from Aug 15 exp 
Expsignal=Expsignalfulldata(1,l:stepsize:length(Expsignalfulldata)-30); 
nexp=length(Expsignal); 
nmodel=length(Alllines); 
wavlinecenter = 1200;% input('linecenter index of wavelength data') 
Explinecenter = 1700;%input{'linecenter index of Exp data') 
diffindex = abs(wavlinecenter-Explinecenter); 

if wavlinecenter < Explinecenter 
Alllines_new(1,1:diffindex)= zeros(1,diffindex); 
Alllines_new(1,1+diffindex:diffindex+nmodel)=Alllines(1,1:nmodel); 
%nl+diffindex-10 
Expsignal_new(1,1:nexp)= Expsignal(1:nexp); 
Expsignal_new(1,nexp+1:nexp+diffindex)=zeros(1, diffindex) ; 

else 
%if w a v1inecenter >Exp1inecenter 
Expsignal_new(1,1:diffindex)= zeros(1,diffindex); 
Expsignal_new(1,1+diffindex:diffindex+nexp)=Expsignal(1,1:nexp); 
Alllines_new(1,1:nmodel)= Alllines(1:nmodel); 
Alllines_new(1,nmodel+1:nmode1+diffindex)=zeros(1, diffindex) ; 
end 

tl=(1:length(Expsignal_new)); 
t2=(1:length(Alllines_new)); 

plot(tl,Expsignal_new./max(Expsignal_new),t2,abs(Alllines_new)./max(abs(Allli 
nes_new)),'r') 
pause 
frerror = abs(l - Alllines_new(1:length(tl))./Expsignal_new(1:length(tl))); 

for j = 1:length(frerror) 

if (100*frerror(j)) > 200 & (100*frerror(j)) ~= inf % 200 percent mismatch 
frerror1(j)=2; 

elseif frerror(j) == 1 |Expsignal_new(j)==0 |Alllines_new(j)==0 
frerrorl(j)=0; 

else 
frerrorl(j)=frerror(j); 

end 

end 
j 2=1:length(frerrorl); 
varfrerror = var(frerrorl) 
plot(tl,Expsignal_new,t2,Alllines_new,'r',j2,frerrorl,'.') 



pause 

%%E3TIMATI0N OF ZERO CROSSINGS AND TURNING POINTS 
d3=0; 
d4=0; 
for A9=2:length(Expsignal)-2 

x3= (A2(A9)-gOR1313 )/linewidthlorR1313; 
d3=d3+l; 
slopel(d3) = abs(Expsignal(A9)) - abs(Expsignal(A9+1)); 
slope2(d3) = abs(Expsignal(A9)) - abs(Expsignal(A9-1)); 

if slopel(d3)>0 && slope2(d3)>0 || slopel(d3)< 0 && slope2(d3)< 0 
IIslopel(d3)==0 && slope2(d3)>0 ||slopel(d3)>0 && slope2(d3)==0 
IIslopel(d3)==0 && slope2(d3)<0 ||slopel(d3)<0 && slope2(d3)==0 
% (10/100) *directwins (g2) 

d4=d4+l; 
TPZC(d4)=abs(Expsignal(A9));%signal magnitude of the turning point or 

zero crossing 
wav(d4)= x3; %%spectrai location of the turning point or zero 

crossing 
ErroravTPZC(d4)= mean(Fracerror(A9-10:A9+10)); % fractional error 

around turning points 
PowerTPZC(d4)= sum(abs((Expsignal(A9-10:A9+10)))); %%power around T/Z 
else 

Errorspectrum(d3) = Fracerror(A9);!%fraction error due to spectrum except 
turning points and zero crossing W/H—10 points next to them ;see above code 

Powerspectrum(d3) = abs(Expsignal(A9)); !%power in spectrum excluding T/Z 
end 

end 
%%The input data can be chnaged from experimental to model to estimate the 
%%turning points of the model data 

ErrorTPZC= mean(ErroravTPZC)Icumulative error around turning points 
Errorspectrum = mean(Errorspectrum) 
AvPowerTPZC=sum(PowerTPZC) 
AvPowerspectrum= sum(Powerspectrum) 

TPm = TPZC(1,l:2:length(TPZC)) ;l%turning points 
wavTPm =wav(l, 1:2:length(wav));%spectral location of turning points 
ZCm = TPZC(1, 2:2:length(TPZC)); %%zero crossings 
wavZCm=wav(1, 2:2:length(wav)) ;%%spectral location of zero crossings 
ratioTPm = TPm/max(TPm); 

TPZCexceldata=transpose(TPZC)/max(TPZC); 
wavTPZCexceldata=transpose(wav); 
plot(TPZC, ' .-' ) 
TPZCtr=transpose(TPZC) 

%%EXAMPLE LINEWIDTH SENSTIVITY AT TURNING POINTS AND ZERO CROSSINGS 
for t = l:k+l % k+1 = number of turning points 

d6=0; 
for linewidthdop=l.8*10A9:0.02*10^9:2.2*10"9 

ml= beta/linewidthdop; 
d6=d6+l; 
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TPintvoigtterm411w(d6)=coeff*abs(((1/pi))*quadl(@gaussianlineshape2, -
pi, +pi, 10A-18, [],linewidthdop,wavTPm(t),ml,k)); 
end 
TPintvoigtterm411wperc(t,l:d6)=100*(TPm(t)-TPintvoigtterm411w)./TPm(t); 

percantage change in the signal with LW 
end 

for t = 1:k % k = number of zero crossings 
d7=0; 

for linewidthdop=1.8*10A9:0.02*10A9:2.2*10A9 
ml= beta/linewidthdop; 
d7=d7+l; 

ZCintvoigtterm411w(d7)=coeff*abs(((1/pi))*quadl(@gaussianlineshape2,-
pi,+pi,10A-18,[],linewidthdop,wavZCm(t),ml,k)); 
end 
ZCintvoigtterm411wperc(t, l:d7)=100*(ZCm(t)-ZCintvoigtterm411w) ./ZCm(t); 

end 

linewidthdop=1.8*10A9:0.02*10A9:2.2*10A9; 
pause 
plot(linewidthdop/10A9,abs(TPintvoigtterm411wperc(1:k+1,1:d6))) 
pause 
plot(linewidthdop/10A9,abs(ZCintvoigtterm411wperc(1:k,1:d7))) 
spectrallocation = abs(min(abs(wav))-abs(wav)); 

% % C A L L FUNCTION FILES 

function PLVR1313=voigtlineshape(t,theta,coeffR1313,yR1313,xR1313,mR1313,k) 
%function V •= voigtlineshape(t,theta,y, x,m, k) 

%%V= ((y/pi).*exp(-t.A2)./(yA2 +((sqrt(log(2)}*({x + m*cos(theta)}-
t).A2)))).*(cos(k*theta)); Inhere m= beta/sigmadop 

PLVR1313= (1- exp(-coeffR1313.*exp(-t.A2)./(l+(2*xR1313 + 2*mR1313* 
cos(theta)+t./yR1313).A2))).* (cos(k*theta)); 

function 
PLVR1313weak=voigtlineshape(t,theta,coeffR1313weak,yR1313weak,xR1313weak,mR13 
13weak,k) 
%%V = voigtlineshape (t, theta, y, x, ni, k) 
%V= ( (y/pi) .*exp (-t.A2) ./(yA2 +((sqrt(log(2))*((x + m*cos(theta))-
t) .A2) } ) } .*(cos(k*theta)); 
%PLVR1313= (1- exp(-coeff*((1/pi).*exp(-t.A2)./(yR1313A2 
+((sqrt(log(2))*((xR1313 + m*cos(theta))-t).A2)))))}.*(cos(k*thata)); 
%%voigt with pathlength saturation 
PLVR1313weak= (1- exp(-coeffR1313weak.*exp(-t.A2)./(1+((xR1313weak + 
mR1313weak*cos(theta))/2-t/yR1313weak).A2))).*(cos(k*theta)); 

function PLVR1213=voigtlineshape(t,theta, coeffR1213,yR1213,xR1213,mR1213,k) 
%%V = voigtlineshape (t, theta, y, x,in, k.) 
%V= ((y/pi).*exp(-t.A2)./(yA2 +((sqrt(log(2))*((x + m*cos(theta)}-
t) . A2)))) .*(cos(k*theta)); Iwhere m= beta/sigmadop 



%PLVR1313= (1- expi-coeff*((1/pi).*exp(-t.~2)./(yR1313A2 
+((sqrt(log(2)}*((xRl313 + m*cos(theta))-t}.A2}})})).*{cos(k*theta)); 
%lvoigt with pathlength saturation 
PLVR1213= (1- exp(-coeffR1213.*exp(-t.A2)./(1+((xR1213 + 
mR1213*cos(theta))/2-t/yR1213) .A2))) . *(cos(k*theta) ) ; 
function PLVR4 34 3=voigtlineshape(t,theta,coeffR4 34 3,yR4 34 3,xR4 34 3,mR4 34 3,k) 
%%V — voigtlineshape(t,theta,y,x,m,k) 
%V= ( (y/pi) .*exp(-t.A2) . / (yA2 -f ( (sqrt (log (2) } * ( (x + m*cos(theta))-
t) ."2) ) ) } .* (cos (k*theta) ) ; %where m= beta/sigmaclop 
%?LVR1313= (1- exp(-coeff*((1/pi).*exp(-t.~2)./(yR1313A2 
+ ((sqrt(log(2))*((xR1313 + m*cos(theta))-t) . "2)))))) .*(cos(k*theta)); 
%%voigt with pathlength saturation 
PLVR4343= (1- exp(-coeffR4343.*exp(-t.A2)./(l+((xR4343 + 
mR4 34 3*cos(theta))/2-t/yR4 34 3).A2))).*(cos(k*theta)); 
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