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ABSTRACT 

STATISTICAL OPTIMIZATIONS OF MUSCLE ACTION 

POTENTIALS BASED ON MODELING AND ANALYSIS OF ION 

CHANNEL DYNAMICS 

GyuTae Kim 
Old Dominion University, 2011 

Director: Dr. Frederic D. McKenzie 

An Electromyogram (EMG) is an electrical signal, which is measured from a skeletal 

muscle during voluntary and involuntary contractions. EMGs are useful in interpreting 

pathological states of the musculoskeletal system. In particular, EMGs offer valuable 

information concerning the timing of muscular activity and its relative intensity. Various 

EMG models have developed with many different purposes from a pure mathematical 

model to a pattern structure model [17,46]. Sophisticated EMG models are necessary to 

examine the effects of small changes in muscular morphology and activities [46]. Due to 

the crucial importance of EMG models, all factors in the model should be precise and 

accurate. Especially, an intracellular action potential (IAP) model, the starting point of an 

EMG model, should be precisely generated because of its importance as the main 

component for an EMG model. Generally, the Rosenfalck IAP model [75,89] has been 

used because of its computational simplicity [59,72,77]. However, the Rosenfalck IAP 

model oversimplifies a real IAP, which has been experimentally measured, and it results 

in mismatching amplitudes and time duration between a real and modeled IAP. 

This research proposes a mathematical IAP model using a series of modified gamma 

and erlang probability density functions. The optimization of the proposed IAP model 

was conducted by several different numerical methods, namely Gauss-Newton, Steepest 



Descent, and Conjugate Gradient methods. These optimizing methods for the proposed 

muscle IAP model were validated by applying them to the experimental results of the 

Hudgkin and Huxley neuron action potential [11]. Due to the similarity in the mechanism 

of both nerve and muscle IAP generations, the validation shows that the methods and 

results are reasonably applied and obtained in the proposed muscle model, which for the 

first time incorporates properties that explain ion channel behavior in IAP generation. 
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CHAPTER 1 

INTRODUCTION 

There are highly increasing demands to understand ion channel dynamics for their critical 

functions in the cell [71]. Ion channels provide the core paths for various ions and 

generate electrical signals by differences in ion concentrations. Mainly, these signals are 

used for the physiological communication between cells, and the correct signals can be 

produced only by well understood ion channel dynamics. Recently, more applications of 

ion channels have been addressed; for example, an ion channel is a new target in drug 

delivery [29,50]. Moreover, the studies of pain and many diseases at the cellular level 

often require ion channel dynamics and behaviors. Based on these current studies, the 

precise and correct generation of an electrical signal from the cell is possible when the 

concepts of ion channel dynamics are applied. 

1.1 MOTIVATION AND PROBLEM STATEMENT 

Skeletal muscle is the major inner contractile tissue of the human motor system. A 

muscle consists of hundreds of muscle fibers that are the specialized cells in muscle. 

These muscle fibers are functionally packed into a Motor Unit (MU), a systemic unit with 

a single motor neuron and its innervated muscle fibers. For a muscular excitation, the 

brain generates an electrical signal and sends it to the muscle through the spinal neurons. 

A motor unit in the muscular system is composed of one motor neuron and many muscle 

fibers. The signal arrives at a motor neuron and is sent to the innervated muscle fibers. 

This physical connection site between a motor neuron and a muscle fiber is a 

communication link called the Neuromuscular Junction (NJ). The axon terminal in this 



2 

junction holds many vesicles that contain neurotransmitters called acetylcholine. An 

arrived signal at the axon terminal stimulates the vesicles to open and release 

acetylcholine into the space between the motor neuron and muscle fiber. The released 

neurotransmitters bind to specific neurotransmitter receptors on the End Plate (EP) of a 

muscle fiber. The signal from the EP starts to open ion channels for ionic movement. An 

ion channel is an ionic path in the cell membrane, a bilayer structure covering the muscle 

cell. Each ion is permeable only through a specific ion channel. For example, a sodium 

(Na+) ion channel allows only Na+ ions to pass through it. Therefore, the electrical signal 

can trigger changes in ion concentrations by opening and closing many ion channels. 

These changes in ion concentrations, in turn, generate an electrical signal called the 

intracellular action potential (IAP). 

Voluntary and involuntary contractions of muscle are caused by electrical signals, 

which are generated in the peripheral and central nervous system. These signals, called 

Electromyograms (EMGs), are measured and analyzed to study the activities of muscle. 

Generally, a complete EMG can be obtained by the summation of all muscle fiber action 

potentials (MFAP) in the muscle. MFAPs are electrical signals from a muscle fiber 

during muscular activity. For the computation of a MFAP, a weighting function related 

to measuring location and transmembrane current (or ionic current) is required. An IAP is 

generally used to compute the transmembrane current, based on the mathematical proof 

by Rosenfalck [75,89]. 

The main reason to use an IAP as a bioelectrical source in computing a MFAP is its 

relative ease in measuring, compared with the transmembrane current. According to 

Rosenfalck [75], the transmembrane current can be calculated by the second derivative of 



3 

the IAP [75]. However, the Rosenfalck IAP model was developed based on a simple 

signal pattern approximation [75,95]. This means that the Rosenfalck IAP model does not 

consider ion concentrations and ion channel activities, which are the core physical 

principles generating the IAP. Moreover, several issues such as mismatching results in 

amplitudes and time duration were raised when the Rosenfalck IAP model was used [95]. 

According to Nandedkar [95], the maximum value in computed transmembrane current 

using the Rosenfalck IAP model was 4 times smaller than the experimental value. Also, 

the duration time and rising time of the IAP and its second derivative were 2 times longer 

than those of the measured data. A rectified version of the Rosenfalck IAP model was 

developed by Nandedkar [95]. However, the Nandedkar IAP model also failed to 

overcome the mismatching problem in time duration of the IAP and its second derivative 

when compared with experimental data [17]. Therefore, neither Rosenfalck nor 

Nandedkar were successfully able to develop a valid IAP model. Their unrealistic models 

may lead to incorrect results if EMG is modeled and simulated based on these IAP 

models. Therefore, an accurate IAP model is critical to generating realistic findings in ion 

channel dynamics and potential activities on the muscle fiber. 

1.2 HODGKIN AND HUXLEY EXPERIMENTS 

Hodgkin and Huxley's (H-H) experiments have significantly affected the modem 

understanding of neural excitability. Through their series of five articles published in 

1952, they experimentally unveiled the interconnection between the nerve action 

potential and ionic conductance [10-14]. The nerve action potential is mainly generated 

by specific ions' movements, such as sodium (Na+), potassium (K+), chloride (cl"), A-
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type potassium (K(A)+), high-voltage activated calcium(Ca2+), calcium-dependent 

potassium (K(Ca)+) and persistent sodium (NaP) [19]. These ions' movements are 

enabled through ion channels, specifically voltage-dependent ion channels. Different 

ionic charges make ion channels open to specific ions and allow those ions to flow in or 

out of the cell. The ionic flow or ionic movement through an ion channel is called ionic 

current. The ionic current can be expressed by the multiplications of ionic conductance 

and the potential difference between the membrane potential and an equilibrium potential 

for a specific ion. According to the H-H experiments, the potential differences can be 

calculated or directly measured by the Nernst equation and the current clamp technique, 

respectively. Therefore, they are determined to be constants. This implies that ionic 

conductance is the only changing factor over time during an IAP generation. This was 

also the initial hypothesis by Hodgkin and Huxley for explaining their experimental 

results. In the 1950s, Hodgkin and Huxley counted only two ions, sodium (Na+) and 

potassium (K*), for nerve excitability and other unknown ions were treated as portions of 

leakage. Thus, only three ionic currents, namely Na+, K+, and leakage, were counted to 

form the total ionic current in the H-H neuron experiment. 

To measure the membrane activities during action potential, two important techniques 

were used: the space clamp and the voltage clamp. The space clamp is a technique to 

make all voltage dependent variables independent from the axial distance by replacing 

axoplasm with electrodes in a high volume conductivity solution. The axon from a giant 

squid was well fitted for this technique because of its amazing size, up to 1 mm in 

diameter, compared with other creatures' axons, normally less than several urn in 

diameter. In addition, a giant squid axon has only two types of voltage-dependent 
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FIG. 1: Voltage Clamp Technique [110]. Two electrodes at intracellular and extracellular 
areas continuously measure the membrane potential, and it is sent to the feedback 
amplifier via the membrane potential amplifier. The feedback amplifier finds the 
difference between the clamped and membrane voltages, and it returns into the cell. The 
membrane current is continuously measured at the current monitor. 
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FIG. 2: Hodgkin and Huxley (H-H) Electric Equivalent Circuit (reproduced from the 
original figure) [11]. Membrane potential (Vm), equilibrium potentials for sodium (ENa), 
potassium (ER), and leakage (EL) are suggested as constants. Ionic currents are expressed 
as I-Na, IK, and Ii for sodium, potassium, and leakage, respectively. 
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conductance, Na+ and K+, on the nerve membrane. These advantages made it easier to 

apply the techniques and fundamental hypothesis. 

The voltage clamp is a technique to measure the ionic current at a certain level of 

"clamp" voltage. A generated voltage is applied into the cell membrane through an 

inserted electrode, and the ionic current at the given voltage is measured. This technique 

provides the experimental results related to the dynamics of an ion channel. Since the 

majority of ion channels in a cell membrane are voltage-gated ion channels, most ion 

channels are operated by the changes of the applied voltage across the cell membrane. 

Therefore, the measured current by the voltage clamp technique mostly results from the 

dynamics of voltage-gated ion channels. At the same time, the changes in ionic current 

directly reflect the changes in ionic conductance. 

Based on their discoveries, they designed an equivalent circuit (Figure 2) which can 

show the electrical properties in a segmented nerve membrane. The H-H equivalent 

circuit presents the total ionic current as determined by the summation of independent 

ionic currents of different ion species. As shown in the H-H circuit model, the total ionic 

current, IJON, is given by: 

IION = Hx=llx (1-1) 

where x presents a different ion species, and the summation is limited by 3 because of the 

H-H experimental initial hypothesis [11]. Again, each ionic current can be computed 
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FIG. 3: Nerve Action potential with the conductance for Sodium (Na+) and Potassium 
(K+) (reproduced from the original figure) [11]. A generated action potential (V), the 
conductance for sodium (gNa), and that for potassium (gic) are displayed with the total 
conductance (g). 

by the multiplication of ionic conductance and the difference between the membrane 

potential and the ionic potential for each ion species. 

Ix = gx(Vm - Ex) (1.2) 

where gx is the conductance for x ion, and Vm and Ex are the membrane potential and the 

equilibrium potential, respectively. Due to the H-H hypothesis, the ionic current can be 

finally expressed as follows: 

IION = gNa(Vm - ENa) + gK(Vm - EK) + gL(Vm - EL) (1.3) 

The total membrane current, I,otai, is obtained by the summation of the ionic current and 
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the membrane capacity current as shown in the H-H equivalent circuit, which gives the 

following equation: 

Wal = IION + Cm~^T (1-4) 

where Cm is the membrane capacity. The H-H equivalent circuit could be created because 

of the critical assumption that each ionic conductance independently responds to the 

changing membrane potential. Based on this assumption, Hodgkin and Huxley examined 

the conductance for sodium (Na+) and potassium (K+) with different voltage levels. 

Through their experiments, they found that the Na+ conductance lasted only several 

milliseconds, but K+ conductance lasted as long as a clamped voltage was applied. 

Finally, Hodgkin and Huxley could demonstrate the major influences on the membrane 

potential from two ionic currents, INA and IK, by tracking their changing ionic 

conductances. This experimental conclusion is well expressed in an action potential 

figure with ionic conductance (Figure 3). 

As known in electrical concepts, conductance is the inverse of electrical resistance. 

Therefore, high conductance implies that Na+ and K+ ions can pass through the 

membrane easily. However, each ionic conductance for Na+ and K+ responds differently 

to the change of transmitted voltage which is obvious since the duration of Na+ 

conductance is transient, and K+ conductance lasts as long as the transmitted voltage is 

applied. As shown in Figure 3, this results in two independent ionic conductances during 

action potential generation. The first phase in the action potential model, depolarization, 

is mostly governed by the fast increase in Na+ conductance. During the second phase, 

repolarization, the combined effects from the changes in Na+ and K+ conductances affect 
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the action potential. This causes a relatively slow process during repolarization. Even 

after repolarization, the K+ conductance sustains by slowly decreasing, and it causes the 

third phase, hyperpolarization. Even though no changes are shown in muscle, there are 

other ions', mainly chloride (CI"), conductances involved in recovering to the resting 

membrane potential in the nerve. Due to their minor effects on the action potential, 

Hodgkin and Huxley treated the ions with minor effects as a combined conductance, 

called leakage conductance, gL. 

1.3 ACTION POTENTIALS: NERVE VS. MUSCLE 

The relationship between action potential and independent ionic conductances has been 

experimentally proven by Hodgkin and Huxley. Ionic conductance primarily depends on 

the activities of an ion channel for specific ion species. Thanks to the discoveries by 

Hodgkin and Huxley, we know that the properties of ion channels for different ion 

species have no effect on each other, and they work independently. It implies that an 

action potential can be generated if each ionic conductance is modeled correctly. In 

addition, an action potential with independently combined ionic conductances can easily 

show the critical activities of ion channels, which was experimentally concluded and 

modeled by Hodgkin and Huxley. 

The original Hodgkin and Huxley experiments were limited to nerve tissue. However, 

ionic movements through ion channels during action potential are very similar in nerve 

and muscle. In both, there are excitable cells, neurons in nerve and muscle fibers in 

muscle. These specialized cells are stimulated and generate an electric signal. In neurons, 

the electric signal is transmitted to neighboring neurons and relaxes as physiological 
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information among neurons. In skeletal muscle, this electrical signal causes a muscular 

contraction that mostly terminates in a tendon, which is a connective tissue between 

muscle and bone. During the generation of action potential, sodium (Na+) and potassium 

(K+) play the main roles in both nerve and muscle. During the depolarization phase, the 

conductance for Na+ rapidly increases and affects the sharp increase of the action 

potential in both. After reaching the highest peak point, the conductance for Na+ drops 

quickly but that for K+ incre ases in a re latively slow manne r. This result s in slow 

repolarization. After repolarization, there is a slight difference in the shape of action 

potentials in nerve and muscle; there is no hyperpolarization phase in muscle IAP. In 

nerves, the excessive K+ conductance causes more negative amplitude than the resting 

membrane potential and it is compensated for by the increase of chloride (C1-) 

conductance. In muscle, however, there is no hyperpolarization, which indicates that 

fewer different ion species are involved in muscle than in nerve action potential. Most 

changes in muscle action potential can be assumed to be controlled by Na+ and K+. 

Therefore, the design of the muscle action potential is easier because the smaller number 

of ion species means small effects in the model of the action potential. Therefore, the 

muscle action potential can be modeled by three ionic components: Na+, K+, and leakage. 

1.4 PREVIOUS ACTION POTENTIAL MODELS IN MUSCLE 

In modeling an Electromyogram (EMG), a single muscle fiber action potential (MFAP) is 

the core element. The most known analytical intracellular action potential (IAP) model is 

the Rosenfalck IAP model [75]. In 1993, Stashuk [27] showed a technique for simulation 

of an EMG by using Rosenfalck IAP models. In 1994, Dumitru et al. [21] directly used 
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FIG. 4: Measured and modeled Intracellular Action Potentials (IAP). Experiment-derived 
Muscle IAP in solid line, Rosenfalck IAP model in dashed dotted line, and Nandedkar 
IAP model in dashed double dotted line. 

the Rosenfalck IAP model for the determination of a single MFAP. In 1999, Merletti et 

al. [80] applied the Rosenfalck IAP model to simulate a surface myoelectric signal model 

without any modifications. In 2000, Dunchene et al. [46] also adopted the Rosenfalck 

IAP model in the generation of a complete EMG. However, the authors identified an 

incorrectness of the Rosenfalck IAP model and attempted several continuous efforts in 

rectifying the IAP model. However, in the end, they simply used the Rosenfalck IAP 

model with different default values. In 2004, Mammarberg et al. [16] used the Rosenfalck 

IAP model in developing a fast technique for the generation of a MFAP. In the same 

year, Lowery et al. [72] used the Rosenfalck IAP model as the main bioelectrical source 
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to generate MFAP at different positions in the muscle. As shown in many MFAP and 

EMG models, the Rosenfalck IAP model has been considered a reliable and relatively 

correct IAP model. In 2005 and 2006, the Rosenfalck IAP model was used as a reference 

to develop an even more accurate IAP model [16,60]. 

Ultimately, the Rosenfalck IAP model had mismatching values in the amplitudes and 

time durations of the IAP (Figure 4). In 1983, Nandedkar and Stalberg [95] suggested a 

modified analytical expression of the IAP by substituting a doubled IAP propagation 

distance. This method solved the problem of mismatching amplitudes in the Rosenfalck 

IAP model, but the Nandedkar IAP model still contained unrealistic time durations 

(Figure 4). In 1993, van Veen et al. [17] attempted to find the most reliable sources for 

the MFAP by comparing different bioelectrical sources from an analytical modeled 

source to a measured transmembrane current. In their study, the authors emphasized the 

distorted results of the Rosenfalck and the Nandedkar IAP models by using the 

comparisons with a measured data [17]. 

To rectify and improve these incorrect IAP models, various efforts have been made. 

For these efforts, there are two typical tendencies: simple modification of the Rosenfaclk 

IAP model and the summation of separate signals. The Nandedkar IAP model [95] is one 

of the representative methods that modify the Rosenfalck IAP model. This method is 

very simple and straightforward. Based on the Rosenfalck IAP model, the default values 

in the model are changed to match a real IAP. Because the Nandedkar IAP model 

directly uses the Rosenfalck IAP model, there are no more computational burdens or time 

consuming processes. However, this method still contains unrealistic time durations of 

IAP even after changing the default values as reported. The other method, the separate 



13 

signal summation, takes a different approach to generate the IAP model. A measured 

IAP can be divided into two, three or even four separate phases depending on the 

purposes of a study. These phases are the rising, the rapid falling, and the slow falling 

phases. According to Falces et al. [53,54], there is one more phase, the transition phase, 

between the rapid falling and the slow falling phase. The method of separate signal 

summation uses these divided phases as independent signals. The Dimitrov and 

Dimitrova (D-D) IAP model [37,57,58] is a separate signal summation method that 

assigns an analytical expression for each phase. However, the simple analytical 

expression cannot help to understand the ionic movements in IAP profiles. In particular, 

the summation of independent signals in each phase generally results in discontinuity in 

the second derivative, which is an unavoidable computational process in an EMG model 

[54,97-99]. To overcome this problem, Arabadzhiev et al. [97-99] suggested a single 

analytical function for an IAP model. However, a linear summation of enumerated 

functions in the Arabadzhiev's IAP model was not able to overcome the limitation 

contained in the D-D IAP model. 

As can be deduced from this discussion, many researchers worked on the 

development of an IAP model. However, none of the previous IAP models have satisfied 

or e xplained all essential sources for IAP profiles. Therefore, a new IAP model is 

required that satisfies the following aspects: 

(1) Realistic Amplitudes and Time Duration, 

(2) Ionic Movements and Ion Channel Morphology, 

(3) Easy Mathematical Computation and Implementation. 
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1.5 APPROACH 

Based on the H-H experiment conclusions, an analytical expression with three 

independent ionic properties was formed as an objective function. The ionic properties 

were expressed by using a modified gamma probability distribution function and an 

erlang probability distribution function, which are assumed to show the number of ion 

channel states and the speed of ionic flow. These two factors were the main components 

to decide the ionic properties. As discussed in the H-H experiments, the limits were set to 

three: sodium (Na+), potassium (K+), and leakage. To validate that the proposed methods 

were correct, one experimentally measured IAP [11] from a nerve cell was compared 

with simulated results from a model developed using the proposed methods. The 

validated methods were then used to create a muscle IAP model. After a muscle IAP was 

modeled by using measured muscle IAP data [17], the proposed method to generate the 

muscle IAP model was compared with other measured IAP data [75,105] for validation 

and modification. 

The designed objective function was curve-fitted into the measured IAP data. The 

following equations in 1.5 and 1.6 show a gamma probability density function for a 

single ion channel conductance and its expanded expression for an IAP model, 

respectively. 

gi(t)=Ytae-^ (1.5) 

IAPmodel(t)=Y.l1Yit^e-^ (1.6) 
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where t is time, and /' shows the number of independent ion species, including the leakage 

ion channel. Three ion channel conductance models are expressed in this IAP model. In 

all, nine unknown parameters, [ai, 012, 03, Pi, P2, P3, Yi> Y2, 73], are assigned based on the 

model expression. Due to the limitation of optimization techniques, it is nearly 

impossible to have a complete zero error between the reference and objective function, 

which can result in parameter values that are not unique. Therefore, several different 

optimization techniques were used to examine the variability of the obtained values. In 

this dissertation, Gauss-Newton, Steepest Descent, and Conjugate Gradient methods were 

used to find the final values of the unknown parameters. For examining the properties of 

ion channels, the values in a and /? were carefully analyzed and discussed. These 

parameters, a and /?, in each ion channel conductance model are believed to closely 

connect with the biological characteristics such as the number of ion channel states and 

the speed of ion movement across the ion channels. 

The main objective of this dissertation is to find a new IAP model, which represents 

the realistic values of IAP in amplitudes and time durations. Furthermore, the newly 

developed IAP model is expected to show the morphological properties of ion channels 

by considering the basic mechanisms in IAP generation. Initially, a new IAP is modeled 

and simulated for advanced Electromyogram (EMG) generation. However, it eventually 

becomes a study of an ion channel and its conductance. Through this new IAP model, the 

ion channel activities underlying action potentials can be understood more clearly, and 

various applications for this model are expected to grow significantly. 

1.6 ORGANIZATION 

This dissertation is composed of separate c hapters ba sed on their m ain topics. T he 
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physiological and mathematical backgrounds are covered in chapters 2 and 3. In chapter 

4, IAP model generation is presented based on the given mathematical background. The 

validation of the developed IAP model is described in chapter 5. Several applications of 

the IAP model are introduced in chapter 6. In addition, the detailed dynamic properties of 

ion channels are analyzed and discussed. Finally, the future work and dissertation 

conclusion are presented in chapter 7. Following are specific summaries of each chapter. 

Chapter Two provides a brief explanation of the physiological background. Muscle 

and muscle fiber, the fundamental component of muscle, are thoroughly examined, and 

the mechanical mechanism in muscle fiber during muscle contraction is explained in 

detail. In addition, the different types of muscle fiber are reviewed, and their brief 

characteristics are presented. Ion movement and the dynamics of ion channel in cell 

excitation are presented in this chapter. Ion movements are the main causes that generate 

IAP and the dynamics of ion channels are the key to understanding the kinetics of ion 

movements. To discuss the properties of ion channels through IAP modeling, other ion 

channel models are also briefly presented. In particular, the relationship between IAP and 

the dynamics of ion channel is explained in modeling aspects. 

Chapter Three pr esents the mathematical basis for IAP modeling. The historic 

background that the gamma probability distribution function has been widely used in IAP 

modeling is given. The relationship between gamma and erlang probability distribution 

functions is presented, and its physiological meanings are provided. Three different 

optimization techniques, namely Gauss-Newton, Steepest Descent, and Conjugate 

Gradient methods, are explained. Their pros and cons are characterized and discussed. In 

particular, the limitations of these optimization techniques are discussed and some 
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suggestions are provided. 

Chapter Four gives the detailed processes of IAP modeling. Based on the proposed 

objective function with gamma and erlang probability distribution functions, three 

optimization techniques are applied to generate IAP models. In each optimization 

method, nine unknown parameters are determined, and some of them are used to explain 

the physiological characteristics. 

Chapter Five presents the validation of the generated IAP model by comparing 

several measured IAP. From previous studies, some measured IAP data were obtained by 

digitizing them. These experimentally measured IAPs are directly compared with the 

generated IAP model. By applying some limits to variables, the generated IAP model is 

analyzed and investigated. 

Chapter Six suggests some applications based on ion channel dynamics, which is the 

fundamental basis of IAP modeling. Currently, many research areas in drug delivery, 

pharmacology, and neurosciences require understanding the properties of ion channels. 

The difficulties and limitations in optical technologies demand accurate ion channel 

models to predict physiological changes at the cellular level. In addition, detailed 

discussions of the newly generated IAP model are provided. As shown in H-H 

experimental conclusions in nerve, the relationship between IAP and ionic conductance is 

investigated in muscle. From the modeling aspects, the differences of IAP in nerve and 

muscle are investigated, and the main causes are explained based on the changes in ionic 

conductance. 

Chapter Seven provides final conclusions based on the generated IAP model. In this 

chapter, the overall work and discussions are summarized and some restrictions are 
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discussed. Based on the discussions, future works related to this dissertation are 

recommended. 
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CHAPTER 2 

PHYSIOLOGICAL BACKGROUND 

Muscle is a contractile inner tissue. Mainly, muscle can be classified into three different 

types, skeletal, smooth, and cardiac muscles, depending on their functional 

characteristics. Skeletal muscle, also called voluntary muscle, is directly involved with 

body formation and movement by attaching to bones. This type of muscle controls the 

conscious postures based on the transmitted neural signal from the brain and the central 

nervous system (CNS). Smooth muscle is an involuntary muscle, which is located around 

the boundaries at different organs, such as arteries, veins, urinary bladder, respiratory 

tract, and the eye's iris. Cardiac muscle is muscle found in the heart. 

2.1 SKELETAL MUSCLE 

Skeletal muscle is composed of hundreds of muscle fibers in thin contractile layers. 

These fibers are interconnected physically and functionally. A physical connection of 

muscle fibers, called fascicle, is wrapped by perimysium, a type of connective tissue. 

The structural flexibility of fascicles is critical in locomotion by allowing changing length 

[63,67]. The functional connection of its muscle fibers, called a Motor Unit (MU), is 

composed of a single motor neuron and its innervated muscle fibers. In both connections, 

the muscle fiber is a core element to form a structural and functional structure. 

Depending on the sizes of muscles, the numbers of muscle fibers vary. In skeletal 

muscle, all muscle fibers are organized in parallel bundles, enabling all muscle fibers in a 

muscle to contract and relax together efficiently. In a fascicle, a type of connective tissue, 

called endomysium, exists by filling the spaces among muscle fibers. 
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FIG. 5: Connective Tissue Wrappings of Skeletal Muscle. Muscle fibers are wrapped into 
fascicles physically. Tendon plays the main role in connecting muscle to bone. 
Epimysium covers the entire skeletal muscle protecting it from abrasion with other 
muscles and bones. 

Endomysium contains collagen fibers and continuously connects to the tendons and the 

perimysium. Between fascicles, there are blood vessels and they help to supply oxygen 

for energy generation. The entire skeletal muscle is enveloped in epimysium, which is 

composed of connective tissues. Epimysium protects muscles from the abrasion of other 

muscles and bones. A tendon is a strong bundle of connective tissue, mainly composed of 

collagen and water. The major function of tendons is to connect muscle to bone and pass 

a transmitted force. Recent research shows that the elasticity of tendon directly affects 

muscular function in locomotion [83,87]. 
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FIG. 6: Structure of a skeletal muscle fiber, myofibril, and sarcomere. Muscle fiber is 
composed of numerous myofibrils. A myofibril has longitudinal connected sarcomeres, 
which have two types of proteins, actin and myosin filaments. 

TABLE 1: Different Muscle Fiber Types and their characteristics. The speed of 
contraction is different because of the different energy producing mechanisms. 

Muscle Fiber Types 

Contraction Speed 

Resistance to Fatigue 

Involving Activities 

Generated Force 

Oxidative Capacity 

Glycolytic Capacity 

Type I 

Slow 

High 

Aerobic 

Low 

High 

Low 

Type Ila 

Fast 

Middle 

Long Term 

Anaerobic 

High 

High 

High 

Type lib 

Very Fast 

Low 

Short Term 

Anaerobic 

Very High 

Low 

High 
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2.2 MUSCLE FIBER 

Muscle fiber, also called myofiber, is a contractile cell with a cylindrical shape. It is a 

fundamental unit composing a muscle through a parallelized connection. It is generally 

categorized into three different types depending on its various characteristics such as 

contraction time, the size of motor neuron, fatigue resistance, etc. 

2.2.1 STRUCTURE 

A general fiber has a diameter that ranges from 5 to 100 urn and a length that can be 

many centimeters. The origination of muscle fiber is the myoblast, an individual 

embryonic muscle cell, and some myoblasts become a myotube in a period of embryonic 

developments. A myotube has many nuclei in a single plasma membrane and 

differentiates into a muscle fiber. Muscle fiber is composed of many parallel subunits 

called myofibrils. Again, a myofibril has longitudinal connected subunits, called 

sarcomeres. Each sarcomere has two special types of proteins, actin thin and myosin 

thick filaments, in a tightly organized pattern. Depending on the positions of the two 

proteins, there are specific sections on a sarcomere. M-line is the center of a sarcomere, 

and contains enzymes for the energy metabolism of muscle fibers. Each sarcomere is 

bounded by Z-disc, also called Z-line, which contains a-actinin, a type of protein. 

Typically, the sarcomere is formed by the interdigitation of myosin and actin filaments. 

The a-actinins in Z-disc attach to the actin filament and fix the locations of actin 

filaments. Actin and myosin filaments are overlapped and make the densest portion 

called A-band. Under microscopic e xamination, A-band represents the darkest color 

because of its structure. Contrary to A-band, there is the thinnest portion, H-zone. This 
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specialized area holds the myosin filaments and is located in the middle of the A-band. 

The I-band is located at the ends of the A-band and contains Z-disc. 

Two proteins, actin and myosin filaments, are the core subunits of a sarcomere. An 

actin filament is composed of many globulae proteins, called G-actin, and other attached 

proteins to F-actin, which is polymerized by G-actins. In each G-actin, there is a 

specialized binding site for the myosin head-binding site. The main attached proteins in 

an actin filament are tropomyosin and troponin. These proteins are involved in 

controlling muscle contraction. A myosin filament consists of the combinations of three 

pairs of molecules. Two of the pairs are identical molecules called myosin heavy chain. 

Each myosin heavy chain contains a globular region called a myosin head. This 

specialized region has the binding sites for actin and plays the main role in the 

contraction of a myofibril. 

Generally, a muscle fiber is divided into three main types: type I, type Ila, and type 

lib. Type I fibers slowly contract by using cellular respiration. Due to their power 

generation mechanisms, type I fibers can sustain their contractions for a relatively long 

time. Type I fibers also show high resistance to fatigue, but the produced power is 

relatively low. Type Ila fibers have a faster contraction time than type I fibers. 

Compared with type I fibers, type Ila fibers have less endurance. Even though the 

resistance to fatigue of type Ila fibers is fairly high, the resistance is lower than that of 

type I fibers. Type lib fibers have a very fast contraction time, and the produced power in 

a limited time is also very high. Compared with other fiber types, type lib fibers have 

much lower resistance to fatigue and, thus, a short time for maintaining power. 
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2.2.2 SLIDING FILAMENT THOERY 

The geometry of parallel and serial arrangements in muscles has important effects on the 

mechanical muscle contraction and relaxation. During the contraction of muscle fibers, it 

is not necessary for muscle fiber components to be shortened. Instead of physical 

shortenings of myosin and actin filaments, the cross movements in myofibrils under the 

interdigitated connections of myosin and actin filaments are used for the whole muscle 

contraction. 

A transmitted impulse from the brain and nervous system arrives at the 

neuromuscular junction, which is the functional connection between the terminals of a 

nerve and muscle fiber. The impulse triggers the release of neurotransmitters, 

acetylcholine (ACh). The diffused AChs bind to their receptors on the motor end plate of 

the muscle fibers and trigger a muscle action potential. During the muscle fiber 

contraction, the generated action potential travels along the surface of the muscle fiber. 

The generated muscular action potential is transmitted into the muscle fiber at the T 

tubule, which is a deep invagination on the surface of the membrane. The sarcoplasmic 

reticulum (SR), a specialized organelle to regulate the level of calcium (CA2+) ions in a 

muscle fiber, is located around the T tubule. After a neural impulse is transmitted into the 

muscle fiber, the inhibitor enzyme, acetylcholinesterase (AChE), terminates AChs to 

prevent another action potential from arising until more AChs are released from the 

motor neurons. The flowing action potential stimulates the SR to release CA2+. The 

flooded CA2+ binds to troponin on the actin filament and exposes the binding sites for 

myosin. The myosin head in the myosin heavy chain pulls the actin to the center of the 

sarcomere by the repeated attaching and detaching processes. After the action potential 
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ends, CA2+ are removed by active transport into the SR. The contraction of a muscle fiber 

is terminated when the myosin binding sites are blocked. 

2.2.3 ACTION POTENTIAL 

A cell is surrounded and protected by a specialized lipid1 bilayer called a cell membrane. 

A typical cell membrane is composed of three types of lipids: phosphoglycerides, 

sphingolipids, and sterols. Of these lipids, phosphoglycerides and sphingolipids contain 

the dual amphipathic nature, which means the hydrophilic (water-soluble) and 

hydrophobic (water-insoluble) characteristics at each end of the lipid. Significantly, the 

hydrophilic part, called the polar head of a lipid, is exposed to the interior and exterior 

cellular environments. It prevents any electrically charged particles, typically ions, from 

passing directly through the cell membrane. For the pathways of specific ions, there are 

specialized gates, called ion channels. Due to their selectivity, a potential difference is 

created between the inside and the outside of the cell membrane. The same structural 

properties are maintained in muscle fibers. 

During no cellular excitations, the interior and the exterior cell membrane have 

different ionic gradients because of the different ion concentrations. Generally, there are 

excessive amounts of sodium (NA+) and chloride (CI") at the outside and excessive 

amounts of potassium (K+) on the inside of the membrane during no cell excitations. This 

difference in the ionic concentration gradients is maintained until other stimuli from the 

nervous system through motor neurons are transmitted to muscle fibers. A typical 

membrane potential in muscle during the resting state is -70 mV to -90 mV. 

' A group of biological molecules, which are not soluble in water. 
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FIG. 7: Typical Intracellular Action Potential (IAP) in a skeletal muscle with the 
separated phases. The fast initial increase, called depolarization, is the first IAP phase. 
The second phase is the period that the IAP goes back to polarized values, which is 
repolarized. Finally, the potential has the resting state after IAP dynamics are relieved. 

The neurotransmitters, AChs, from a motor neuron trigger ion channels to open by 

binding to their receptors on muscle fibers. The open ion channels for a specific ion 

increase the ionic conductance for the ion, which results in the easiness in the ionic 

inward or outward flows. Initially, the Na+ ion channels are open soon after the neural 

stimulations start. This causes fast inward flows of Na+, and it governs depolarization in 

the action potential. As indicated in the resting membrane potential, the inside muscle 

fiber is negatively charged. Therefore, the positively charged ions flow into the cell 

membrane when a potential steady state is broken. Of the main ion species in the 
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potential generation across the membrane, the positively charged ions are Na+ and K+. 

The ion channels for both ions are open when the action potential starts to be generated. 

However, the speed rates of the ionic inward and outward flows are different: faster 

inward Na+ flow than outward K+ flow. Also, the lasting times of Na+ and K+ 

conductance in the applied potentials are well explained in the H-H experimental results. 

Therefore, the fast inward Na+ flow with shorter lasting time affects the fast 

depolarization, and the slow outward K+ flow with longer lasting time governs the slow 

repolarization in an action potential. In other words, the ion channels for K+ are open 

longer than those for Na+ during the action potential. 

The action potential in the muscle fiber is a self-propagating force. Once triggered by 

the neural stimuli, the muscular action potential travels along the surface of a muscle 

fiber with an approximate velocity of 4 m/sec. This specific traveling speed is called 

conduction velocity, and it primarily depends on the diameter of the fiber. After the first 

action potential occurs at the segmented fiber around the end plate region, the action 

potential is repeatedly generated at each segment until it arrives at the tendon. With this 

method, the action potential spreads like an electrical wave over the membrane. 

2.3 ION CHANNEL 

An ion channel is a transmembrane protein, providing a specialized path for ions in the 

cell membrane, which is composed of bilayered phospholipid molecules. The cell 

membrane enables a cell to maintain its unique characteristics. However, cells need to 

communicate with other cells for specific biological regulation. For this purpose, cells 

send and receive electrical signals by allowing ions to flow with inward or outward 
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Na+ Channel K+ Channel 

FIG. 8: Simplified Diagram of Na+ and K+ Ion Channels. A Na+ ion channel is composed 
of four a-subunits and several associated p-subunits, depending on the localization of ion 
channels. A K+ ion channel has four a-subunits with an auxiliary p-subunit for each a-
subunit, which are arranged around the channel center. 

TABLE 2: Different Ion Concentrations at Intracellular and Extracellular spaces across 
the cell membrane. During resting state, the excessive amounts of sodium (Na+) and 
chloride (C1-) are maintained at the extracellular area and the excessive amount of 
potassium (K+) are at the intracellular area. The unit, mEq/L, means the amount of a 
substance that will react with one mole of electrons. 

ION 

Sodium (Na+) 

Potassium (K+) 

Calcium (Ca2+) 

Magnesium (Mg2+) 

Chloride (CI) 

Bicarbonate (HC03~) 

Sulfate (S04) 

INTRACELLULAR 

10 

140 

0.0001 

58 

4 

10 

2 

EXTRACELLULAR 

142 

4 

2.4 

1.2 

103 

28 

1 

*unit: mEq/L 
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directions across the cell membrane. In ionic movements, an ion channel provides the 

main routes for ions. Ion channels vary due to the nature of their gating, which can allow 

specific ions to pass through them, and the number of gates. Voltage-gated channels are 

opened and closed based on the membrane potential caused by the different 

concentrations of ions. A voltage-gated, also called voltage-dependent, ion channel is a 

governing and major type of ion channel. Ligand-gated channels are operated by the 

attachments or dissociation of some specific ligands, chemical messenger molecules, to 

the ion channels. A stress activated channel is another type of ion channel. It simply 

opens and closes in response to the mechanical deformation of a cell membrane. 

As mentioned, the voltage-gated ion channels are dominant in the cell membrane, 

which indicates that the kinetics of voltage-gated ion channels is critical to affect the 

changes of membrane potential [62]. In addition to the voltage-gated ion channel, the 

Na+/K+ pump plays an important role in maintaining the resting membrane potential by 

the repeated exchanges of Na+ and K+. 

2.3.1 VOLTAGE-GATED Na+ CHANNEL 

A voltage-gated Na+ channel is a membrane protein composed of four a-subunits and 

several associated p-subunits. The four a-subunits construct a structural main core, which 

is the pathway for Na+ ions [28]. In turn, an a-subunit consists of four homologous 

domains with six helical regions. Each domain has a tetrodotoxin (TTX) binding site, 

which selectively controls fast acting Na+ c hannels. Voltage-gated Na+ channels are 

critical in the generation and propagation of action potentials [93]. The probability of 

open Na+ channels increases dramatically during depolarization and then rapidly 
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decreases. The open Na+ channels allow only Na+ ions and result in a high Na+ 

concentration inside the cell membrane. The area occupied by Na+ channels on the total 

surface is very small, but each channel can pass many ions ~ approximately 107 ions in a 

second [23]. Therefore, a channel carries a significant number of ions through it during 

depolarization. 

2.3.2 VOLTAGE-GATED K+ CHANNEL 

A voltage-gated K+ channel is another membrane protein to provide a specialized path for 

K+ through the cell membrane. A K+ channel is composed of four monomeric a-subunits, 

which surround the structural pore. Each a-subunit is associated with a P-subunit, and 

these p-subunits control the function of channels. Due to the relatively longer response 

time to a triggering potential, the conductance by voltage-gated K+ channels is tightly 

connected to the membrane potential. Notably, the repolarization in the action potential is 

mainly governed by the dynamics of voltage-gated K+ channels. While the action 

potential rapidly increases, the conductance of the K+ channel increases slowly. Even 

after the action potential reaches its peak, the increasing conductance still remains for a 

short time. This leads to slow repolarization in the action potential. 

2.3.3 NaVlC" ADENOSINE TRIPHOSPHATASE 

Na+/K+ ATPase, also called a Na+/K+ pump or simply Na+ pump, is an enzyme2 that 

controls an active transport of ions through the cell membrane. The Na+/K+ pump is 

composed of a-subunits and P-subunits [52]. The a-subunit consists of specific binding 

2 A protein that helps to increase the rates of chemical reactions 
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sites of Na+, K+, and ATP3; these sites are exposed to extracellular space for K+ and to 

intracellular space for Na+ and ATP during the active ionic transportation [5]. The p-

subunit is a special component in providing the routes for a-subunits in membrane and 

attaching sites for K+ ions [52]. 

The negative gradient of an intracellular action potential is not a stable state. Rather, 

it is better referred to as the steady state. For maintaining this state, an active transport is 

required, and the Na+/K+ pump plays the main role in establishing the membrane 

gradient. In skeletal muscles, the Na+/K+ pump controls the balance of Na+ and K+across 

the cell membrane and also in many other cell types, such as the cells in the kidney, 

blood vessels, and the heart [51]. During the typical steady state of an excitable cell, K+ 

has higher concentrations than Na+ inside the cell by the active transport of the Na+/K+ 

pump. Transportation starts with the Na+ binding to the pump from within the 

intracellular space. A phosphorylation4 by ATP binds to the pump and causes it to open 

to the extracellular space. During its outward opening, 3 Na+ ions are released and 2 K+ 

ions are attached to the pump. The deformation of phosphrylation switches the pump 

opening to intracellular space, and the 2 attached K+ are finally released into the cell 

membrane. As shown in the pumping process, this transportation requires ATPs. 

Therefore, it is called an active transport. 

2.4 ACTION POTENTIAL TRANSMISSION 

The initial neural signal generated in the brain is sent to a muscle fiber through serial or 

parallel connected neurons. Muscle fibers are functionally arranged into a motor unit 

3 Adenosine Triphosphate, used as metabolic energy for the intracellular active transfer 
4 A combination of a phosphate group and a protein or other molecule 
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FIG. 9: Typical Path of Neural Stimulus from the brain to the tendon. Neuron and muscle 
fiber is connected at a neuromuscular junction and action potential flow follows the 
surface of the muscle fiber by self-propagation. 

(MU). Each MU has one motor neuron axon and tens or hundreds of muscle fibers, which 

the neuron axon innervates. There is a special connective junction called the 

neuromuscular junction (NJ) where each muscle fiber is connected with the single axon 

through the motor end plate with a structural space called the synaptic cleft. Due to the 

connecting property, all muscle fibers in a MU are stimulated simultaneously. 

The NJ provides the communication link between the motor neuron axon and muscle 

fibers. A motor neuron contains acetylcholine vesicles at its end, and each vesicle holds 

many neurotransmitters called acetylcholines (ACh). The signal from the nervous system 

stimulates the vesicles to release AChs into the NJ. The AChs bind to the ACh receptors, 

which are located at the motor end plate. It triggers the sodium (Na+) and potassium (K+) 

ion channels to open and allow ionic flow through the cell membrane. From the motor 
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end plate, the neural stimuli from the brain and nervous system flow following the 

surface of muscle fibers. This electrical potential also flows into the T tubule, the 

invaginated area of the sarcolemma5, and stimulates the inner contraction process. 

Finally, the traveling action potential dissipates in the tendon. 

5 The plasma membrane of the muscle cell 
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CHAPTER 3 

MATHEMATICAL BACKGROUND 

Many measured biological data are typically optimized with specially designed functions 

to reproduce the same or similar experimental results. Through optimizations, many 

benefits in times and costs can be actualized, and more modified optimization methods 

are developed for those advantages. 

3.1 GAMMA PROBABILITY DENSITY FUNCTION 

A gamma probability density function (PDF) has been widely used because of its 

practical features in expressing an empirical result. Originally, a gamma PDF was applied 

to design the dye-dilution curve of blood flow [86]. The main reason to adopt a gamma 

PDF was its mathematical convenience and easy applicability to various dilution curves 

[40]. Based on the curve-fitting on a variety of dilution curves, 114 normal and abnormal 

curves, a gamma PDF was suggested as a good characterization for normal curves as well 

as a theoretical analysis of a typical dilution curve [40]. Because of the empirical 

applications by a gamma PDF [64], it also has been applied for designing an intracellular 

action potential (IAP) model [75,89,95]. Although these IAP models shown in the 

previous studies failed to represent a precise IAP model [60], these studies suggested a 

roughly approximated prototype for IAP models by using a gamma PDF. A typical 

gamma PDF is given as follows: 

9PDFi.x)=-^-kx
k^e~ex (3.1) 



35 

where r(k) is a gamma function. Two parameters, k and 8, control the shape and the 

change rate of a gamma PDF. With a fixed value of 6, the general shape of a gamma PDF 

is controlled by the parameter, k. The higher values in k with fixed 0 generate the 

narrower and delayed signals. Unlike k, 6 produces a wider and delayed signal as it 

becomes smaller in the fixed k. These effects, also called gamma variates, were carefully 

examined by using normal and abnormal curves many decades ago [40,86]. 

In this dissertation, a modified gamma PDF is used by simple replacements as 

follows: 

gM{x) = yxae-^ (3.2) 

where (k-l) is replaced by a, and-is replaced by /?. The amplitude component in the 

gamma PDF is replaced by y. The skewness of a gamma PDF is very useful in explaining 

ionic flows at different rates [33]. The depolarization and repolarization by the 

movements of sodium (Na+) and potassium (K+) in the IAP result from fast Na+ ion flow 

into cells at the beginning of the IAP and slow K+ ion flow out of cells at the rest part of 

the IAP [33]. These different ionic flows can be modeled by using independently separate 

gamma PDFs. Due to the historical and physiological findings, a series of modified 

gamma PDFs can be an accurate and meaningful IAP model. 

3.2 ERLANG PROBABILITY DENSITY FUNCTION 

The Erlang probability density function (PDF) is a special form of a gamma PDF. In a 

gamma PDF, two parameters, k and 6, are non-integers in equation 3.1. However, k, the 

shape parameter, is forced to be integers in the Erlang PDF. As an example, the Erlang 
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PDF was used for the analytical solution for a compartmental chain [96]. The integer 

values in k, a in the modified gamma PDF, help to explain the relation between a and the 

number of ion channel states. The state of ion channel means the current form of the ion 

channel. By changing its form, ion channels provide paths for specific ions. Each 

formation of the ion channel is assumed to be stable, continuing for several milliseconds 

[102]. Based on this assumption, ion channel formation at each state can be independent 

and stable. Currently, this kind of assumption is required for ion channel models because 

of the lack of visual data of transmembrane proteins, which are the structural units of ion 

channels. By using the Erlang PDF, the assumable total states of ion channels will be 

explained by means of numerical values. 

3.3 NUMERICAL OPTIMIZATION 

Numerical optimization is often used to represent various biological data [20,56,66,101]. 

Optimization mainly finds the minimum or maximum of an objective function that 

contains important values to designate critical changes in the measured data. Depending 

upon the limitations of the final solutions, optimization can be divided into two types: 

unconstrained and constrained optimizations. As implied by their names, unconstrained 

optimization has no boundary or initial restrictions in the core variables of a given 

objective function while constrained optimization does. Generally, the ranges for the 

variables in the given objective functions are not specifically defined. Notably, the 

dynamic models for ion channels are still vague because of their size limitations and 

structural complications [2,3,61,62]. Therefore, many models for the physiological 
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dynamics or kinetics of ion channels require the approaches of unconstrained 

optimization methods. 

In general, the physiological changes are non-linear and the final model is not stable 

in optimization [6]. In particular, the uniqueness of obtained solutions is one of the most 

challenging processes in an "inverse problem" [6]. These difficulties may be decreased 

by using several different methods in numerical optimizations. In this study, three 

numerical methods will be applied to generate an intracellular action potential (IAP) 

model: Newton method, Steepest Descent method, and Conjugate Gradient Method. In 

addition, the Levenberg-Marquardt algorithm will be used to support finding a numerical 

solution in the Gauss-Newton method. 

3.3.1 OBJECTIVE FUNCTION 

An objective function is a mathematical equation for the evaluation of its fitness to 

experimental results in a typical optimization technique [48]. An objective function 

generally contains multiple criteria which control functional dynamics [55,70]. 

Eventually, the functional dynamics are expressed as the important characteristics 

underlying the measured data. Therefore, the creation of an objective function is the most 

important process which one must accomplish in optimization. 

In constructing an objective function, several critical aspects should be deliberated. 

First, the variables in an objective function should represent meaningful criteria to 

explain the dynamics underlying the experimental data [48]. Theoretically, many 

optimization problems can be solved by using different equations and variables. For 

example, the intracellular action potential (IAP) has been modeled with different 
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equations and variables. Rosenfalck and Nandedkar [75,89,95] suggested a modified 

gamma distribution function as an IAP model and Dimitrov and Dimitrova (D-D) 

[37,57,58] created the summation of three independent analytical expressions that were 

composed of a modified gamma distribution function and a polynomial function. The 

most recent IAP model was generated based on the multiplication of a modified gamma 

distribution function and a more lengthened polynomial function by D-D [98,99]. 

However, no IAP model successfully denoted the meanings of variables, and all IAP 

models were simply empirical adjustments. Due to the theoretically weak approximation, 

most IAP models are often criticized for their modeling origins and replaced by other 

alternatives. Therefore, all values in an objective function are required to be used as 

significant factors. 

The second factor is the continuity of the objective function. As optimization 

algorithms require more sophisticated solutions, they need the higher order derivatives of 

an objective function [107]. For example, Newton methods in optimization use the 

Hessian matrix, the second derivatives of the objective function, but Gauss-Newton 

methods adopt the Jacobian matrix, the first derivative, for reducing complex 

computations. However, Newton methods may generate more accurate solutions than 

Gauss-Newton methods because of the loss of functional components. The continuity of 

an objective function is also linked to computational efficiency in optimization. 

Generally, the higher order continuous derivative of an objective function produces faster 

convergence of an optimization [107]. Therefore, any discontinuity is unacceptable in 

creating an objective function. 
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The third is functional efficiency. As shown in the examples of IAP modeling, an 

unlimited expansion of any function might generate the optimized shape to experimental 

data [98,99]. However, a meaningless long function can decrease the computational 

speed and also cause low credibility of a generated model [48]. 

The last considerable aspect in optimization is the solution uniqueness. Most 

optimization processes for nonlinear data require iterative methods to find solutions. 

However, the iterative process solutions contain unsolved local minimum points [7]. Due 

to computational limitations, it is tremendously difficult to satisfy all those local 

minimum points in one solution. The incomplete solutions often cause problems of 

uniqueness [7,44,48,109]. To improve and solve these problems, various approaches have 

been tried: (1) the adoption of alternative methods [7,48,109], (2) the combination of 

traditional optimization methods [48], and (3) computational modification of the 

optimization process [44]. However, computational modification is too complex to apply 

to general cases. Therefore, alternative methods and their combinations are widely used 

for the uniqueness of solutions. 

3.3.2 GAUSS-NEWTON METHOD 

The Gauss-Newton method is a numerical optimization algorithm to find non-linear least 

square solutions. This method is a modi fied version of the Newton method, and it 

generally requires no second derivatives, called Hessians. In least square problems, the 

non-linear solutions can be found by iterative methods because of their computational 

limits. Most limitations are caused by the weak properties in convergence during the 

iterative process. Convergence limitations mainly result from choosing the wrong initial 
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variable values for the solutions, or the ill-conditioned multiplications of the first 

derivatives, called Jacobians, can also raise this kind of problem. Therefore, a modified 

Gauss-Newton method is used in this study by adding the second derivative component 

to overcome the computational limits. For the computation of the second derivatives, the 

Levenberg-Marquardt algorithm is introduced. This algorithm takes the advantages of 

both the Gauss-Newton and the gradient descent methods [41], but instead of directly 

computing the second derivatives, the Levenberg-Marquardt algorithm finds an 

approximate Hessian matrix to ensure the existence of its inversion. 

H = (JTWJ + ul) (3.3) 

where J is the Jacobian matrix, and W is the weighting matrix. I is the identity matrix. By 

taking a low conditioning factor, u, the algorithm has properties similar to the Gauss-

Newton method, and it operates like the gradient descent method with a high factor. The 

factor can be determined based on the previous and updated solutions. There is no 

specific value for the initial factor, but it starts with 0.5 in practice. For accurate 

computational results, the modified Hessian matrix is not used in this study. However, the 

essential idea to adapt two different optimization methods is applied by using equation 

3.3. 

With an initial guess, p0, the Gauss-Newton method updates the set of solutions, p, in 

every iteration. The solution at nth iteration is as follows: 

P„ = P„_! + Ap (3.4) 
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where pn is the solution after the nth iteration, and pn_i is the solution after the (n-1)1 

iteration. Ap is the computed increment or decrement vector and is calculated as follows: 

AP = (ITI)-1(-ITr) (3.5) 

where r is the residual matrix, which is the difference between the measured data and a 

given objective function. XT and X"1 represent the transpose and inverse matrix of X, 

respectively. However, the component of JTJ can be ill-conditioned, which means 

singular6. To avoid this computational problem, the Hessian matrix is added and applied 

to find the increment or decrement vector. The final equation is as follows: 

Ap = £ • (H + LiD)-1 • J (3.6) 

where H is the Hessian matrix of the residual matrix. D is the diagonal matrix of H, and u. 

is the Marquardt parameter, e is the fractional parameter between 0 and 1 that controls the 

incremental size of the solution. 

Before the next iteration, the newly computed solution is compared with the previous 

solution by using the sum of squared residuals (SSR). A typical SSR is as follows: 

SSR = EP=1(M(i)-F(i))2 (3.7) 

where M is the measured data, and F is a modeled function with the number of n. SSR 

generally measures the discrepancy between the measured data and a modeled function. 

By finding the SSR, the tightness of a model to measured data can be estimated which is 

a very popular method in various areas [1,4,38]. The iteration in the modified Gauss-

6 A matrix has no inversion. 
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Newton method continues until a preset condition, generally specific values in SSR, is 

satisfied [84]. 

3.3.3 STEEPEST DESCENT METHOD 

The steepest descent method, also known as the gradient descent method, is used to find 

the minimums of nonlinear functions in engineering and the natural sciences [88]. This 

method is the simplest and easiest method of the gradient descent algorithms. Th is 

method has solutions, which are linearly converged, and it generally converges even with 

a poor initial guess for the solution [88]. A typical process in updating the solution is as 

follows: 

Pn+1 = Pn + «nJn (3.8) 

where pn+i and pn are the solutions after (n+l)th and (n-l)th iterations, respectively, a is 

the step size or step length, and J is the Jacobian matrix of a given objective function. 

Generally, the step size can be computed as follows: 

an = arg min f (pn + ajn) (3.9) 

where arg min means the argument of the minimum for the given objective fhction, f, 

and the a, which satisfies the condition, is replaced by the previous value during the 

iteration process. There are many approaches for finding the step size under line-search 

rules [108]. In practice, however, the norm of the Jacobian matrix should be one for the 

accurate step size computation [18]. In particular, the given search method can cause 

unnecessary computation for the trajectory if the final solution is close to the current 
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point [18]. As in the Gauss-Newton method, the SSR is introduced in the iteration to 

evaluate the performance of the current solution by comparing it with the measured data. 

The iteration continues if terminating conditions are not met. 

3.3.4 CONJUGATE GRADIENT METHOD 

The Conjugate gradient method is another gradient descent method, and the iterative 

formula in the conjugate gradient method is slightly different from the steepest descent 

method. Instead of directly using the Jacobian matrix in computing the next solution, 

there is one step to find the search direction vector, S. 

The general iteration formula is as follows: 

Pn+1 = Pn + «nSn (3.10) 

where pn+i and p„ are the solutions for the (n+l)th and the nth iterations, respectively, a is 

the step size, and S is the search direction vector. The vector is again calculated as 

follows: 

Sn+l = -Jn+1 + SnSn (3.11) 

where Sn+i and Sn are the direction vectors for the (n+l)th and the nth iterations. J is the 

Jacobian matrix of the given objective function, and 5 is the conjugate gradient 

parameter. Generally, the conjugate gradient method has different versions depending on 

the computational method for its parameter, 5: the Polak-Ribiere (PR), the Fletcher-

Reeves (FR), Hestenes-Stiefel (HS), and Dai-Yuan (DY) methods [49,73,79,106]. The 

computational formulus for each version is as follows: 
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(3.12) 

(3.13) 

(3.14) 

— - n - s T d (3-15) 
3 n - i " n - i 

where dn.i is the difference between two successive Jocobian matrixes, Jn and Jn-i. 

Depending on the convexness or the concaveness of the given objective function, these 

versions produce different results. However, the classified versions are meaningless if the 

given objective function has both convexness and concaveness at the same time [49]. In 

many cases, PR and HS are often used because of the component, S^d ,^ ! , in the 

formula, which is considered to increase the efficiency of the conjugate gradient method 

[49]. Notably, PR and HS can restart the optimization process from the beginning if an ill 

direction vector is produced [49,104]. In addition, PR can update to various directions by 

the first derivative computation. Like other optimization methods, the conjugate gradient 

method also uses an iteration process to find solutions. The SSR is also used to decide the 

termination of the process by comparing a preset condition. 
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CHAPTER 4 

INTRACELLULAR ACTION POTENTIAL MODELING 

Intracellular action potentials (IAPs) in neuron and muscle have similar characteristics in 

the generating mechanisms but different shapes. The different IAPs require a different 

number of ion types to model the IAP in neuron and muscle. Therefore, a different 

number of involving components should be applied in IAP modeling. 

4.1 NEURON INTRACELLULAR ACTION POTENTIAL 

For a reference, a measured neuron intracellular action potential (IAP) was obtained by 

digitizing the original data in a published journal paper [11]. The obtained IAP was 

measured from the hindmost nerve cells of Loligo7, which have giant axons with a 

diameter range between 400 and 800 um [10]. The sampled axons were tested to 

determine whether their membranes could generate an action potential after removing 

axoplasm in vitro8. With a short rectangular step voltage through one inserted electrode, 

the potential difference was recorded [10]. The potential difference to the applied short 

shock was compared with a computational value, which was controlled by the connected 

capacitor to the inserted electrode and the exposed total membrane area to the current 

flow. 

4.1.1 DATA PREPARATION 

The digitized IAP was obtained by using Desktop Ruler (version 1.45). The measured 

IAP was displayed on a computer screen, and the time and the potential amplitude were 

7 A genus of squids 
8 Terminology for a procedure in a controlled environment 
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FIG. 10: The measured neuron IAP [11] in dots and its digitized IAP in dashes. After 
smoothing the data, the digitized IAP has a 2.5 % smaller value in the highest amplitude. 
The general neuron IAP initially has a negative value, approximately -60 ~ -65 mV [12], 
but the neuron IAP in the reference [100] was adjusted to zero (0) by removing the initial 
amplitude. 

recorded manually by Desktop Ruler. Several noticeable points, the zero and the highest 

amplitude, were selected and converted to the matched potential values. These points 

were used as references to decide other measured potential amplitudes from the digitized 

values. All potential amplitudes were calculated based on comparisons with point 

references. These manual recordings of the digitized potential amplitudes resulted in 

jagged lines that could cause computational difficulties in optimization. Therefore, to 

reduce possible computational complications, the recorded digitized values were 

smoothed in Matlab (version 7.8). The data smoothing was performed using Matlab 

defaults, the moving average method with span 5. There was an approximately 2.5 % loss 
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in the highest amplitude due to the smoothing procedure. This amount of error can be 

acceptable because it could happen even between two measured data [105]. Therefore, 

the small loss in the highest amplitude by smoothing was acceptable in this study. 

4.1.2 CONSTRUCTION OF OBJECTIVE FUNCTION 

The objective function for the neuron IAP was constructed with two modified functions, 

modified Gamma and modified Erlang probability distribution functions (PDF). As 

emphasized in the Hodgkin and Huxley experiments [11], the most influent ions in 

generating the neuron IAP are sodium (Na+) and potassium (K+). In addition to these 

ions, there is another important ion, chloride (C1-), which plays a critical role in the 

repolarization from the hyperpolarization. The small influences by other ions, such as A-

type potassium (K(A)+), high-voltage activated calcium(Ca2+), calcium-dependent 

potassium (K(Ca)+) and persistent sodium (NaP), were combined into the leakage as 

Hodgkin and Huxley proposed in their studies [11-14]. Therefore, there were four 

independent Gamma PDFs or four independent Erlang PDFs in the objective function for 

a neuron IAP as follows: 

FNeuronIAp(f) = I f ^ y ^ e " ^ (4.1) 

where t is time in msec. In the Gamma PDF, a is any real number, but it is limited to an 

integer in the Erlang PDF. Each Gamma or Erlang PDF represents the ionic conductance 

for the main ions, such as Na+, K+, Cl~ and leakage, in time. The unknown parameters, a, 

P, and y, were assigned for shape, rate, and adjusted amplitude, respectively. The 

parameter characteristics were determined by the properties of general Gamma and 
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Erlang PDFs. The separated parameter characteristics are useful in expressing the skewed 

IAP shape, which is controlled by the combined movements of Na+ and K+ ions. 

Of the unknown parameters, the values in a were assumed as indicators to match with 

the number of ion channel states. Due to the relationship between ion channel states and 

channel structural complexity, the higher value in a implies the more complicated 

structural characteristics. Therefore, the highest a represents the number of Na+ channel 

states and the second highest a shows the K channel states. Based on this hypothesis, the 

lowest values in a suggests the number of leakage channel states. 

4.1.3 OPTIMIZATION IN GAUSS-NEWTON METHOD 

The digitized IAP from reference [11] was assigned as the desired (target) signal for 

optimization. The Gauss-Newton method requires an initial guess for the estimated 

parameters. In determining the initial guess, the ionic conductance changes for each main 

ion were considered. For example, Na+ conductance rapidly increases at the beginning of 

IAP and drops before K+ conductance reaches its peak value in the time domain. Unlike 

Na+ conductance, K+ conductance increases relatively slowly at the beginning of IAP 

dynamics and decreases while IAP repolarizes. By reflecting these specific conductance 

changes, the initial values for the unknown parameters were determined. The initial 

parameters were the same for both objective functions with the Gamma PDF or the 

Erlang PDF, and they were empirically given as [2, 3, 5, 8, 0.3, 0.1, 0.5, 1.2, 1.6, -0.004, 

0.1, -0.03] for [<xi, a2, a3, a4, Pi, p2, P3, P4, Yi, 72, Y3, 74]- To measure the difference 

between the desired and optimized IAPs, the residue was calculated, and the sum square 

of residue (SSR) was computed in each iteration as follows: 
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residuein) = Vdes(n) - Vopt(n) (4.2) 

ssr = Yi=1residue(i) (4.3) 

where Vdes and Vopt are the desired and the optimized IAP, respectively, and n is the 

number of digitized values from the reference. An iterative process continues until a 

newly computed SSR is the same as the previous SSR. 

In the Gauss-Newton method, the Jacobian matrix is required to update the unknown 

parameters, and the Hessian matrix was added for a better solution in the inverse 

computation of parameter vector, [ai, a2, a3, a4, Pi, p2, p3, P4, yi, Y2, Y3.Y4]- The Jacobian 

and Hessian matrices were calculated as follows: 

[-ar(l) 
3 a i 

3r (2) 

da-i 

dr(ri) 

- da1 

3 r ( l ) 

da2 

3r(2) 

da2 

3r (n ) 

da2 

3 r ( l ) 

da3 

dr(2) 

da3 

dr(n) 

da3 

3 r ( l ) 

3 a 4 

3r(2) 

3 a 4 

3r(n) 

da4 

3 r ( l ) 

dPi 
3r(2) 

dPi 

3r (n ) 

a/?i 

3 r ( l ) 

dp2 • 

3r(2) 

3/?2 " 

3r(n) 

dPz ' 

3 r ( l ) 

3 / 3 

3r(2) 

dYs 

dr(n) 

dYs 

3 r ( l ) - | 

3y4 

3r(2) 

9 / 4 

3r(n) 

dY4 J 

r 3 2 r ( l ) 

dal 

3 2 r (2 ) 

dal 

3 2 r ( n ) 

L da\ 

3 2 r ( l ) 

da-idY4 

3 2 r (2 ) 

3 a t 3 y 4 

3 2 r ( n ) 

3 2 r ( l ) 

da2da1 

3 2 r (2 ) 

da2dat 

d2r(n) 

da2da1 

3 2 r ( l ) 

3 a 2 3 y 4 

3 2 r (2 ) 

3 a 2 3 y 4 

3 2 r ( n ) 

3 a 2 3 y 4 

3 2 r ( l ) 

da3da± 

3 2 r (2) 

da3da-i 

d2r(n) 

da3da-L 

3 2 r ( l ) 

3y 33y 4 

3 2 r (2) 

3y 33y 4 

3 2 r ( n ) 

3y 3 3y 4 

3 2 r ( l ) " | 

ay4
2 

3 2 r (2) 

9 y | 

3 2 r ( n ) 

ay4
2 J 

where r is residue. For implementing the Hessian matrix, a modified Hessian matrix was 

adopted as follows: 



50 

l-\ 

„ . - * 

W | ^ - \ Iea- is ier l LAI' t iom «i mlvleiii r> 

-< J ene i a t fd IAP in l r a n ^ - N e v \ ton M e thud 
<<J.mu»<iPDFj 

T u n e (nij-cc) 

FIG. 11: The measured neuron IAP [11] in dots and the generated IAP in dashes. The 
IAP model was generated by using the Gauss-Newton method and its objective function 
was composed of four independent Gamma PDFs. 
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FIG. 12: The measured neuron IAP [11] in dots and the generated IAP in dashes. The 
IAP model was generated by using the Gauss-Newton method and its objective function 
was composed of four independent Erlang PDFs. 
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where the indices, j and k, denote the corresponding parameters, and n is the number of 

digitized values from the reference. P implies the parameter vector. After every iteration, 

the parameter vector was updated using equations (3.4) and (3.6) with a fractional 

parameter, 0.1, as shown in equation (4.7). Theoretically, \i is a fractional parameter and 

a smaller value for p produces more accurate results. However, the longer time is 

necessary with the smaller p. In addition, there is a high chance that the process finally 

falls into a local minima and fails to find the better solution. Therefore, p should be 

determined as a trade-off point between computational time and accuracy. A newly 

computed parameter vector was compared with the previous parameter vector by 

computing a new residue. The new residue is again used for calculating a new SSR. 

AP = 0.1 x (Hjk + nD) x Jr (4.7) 

where AP is the increment or decrement of the parameter vector, and D is the diagonal 

matrix of the Hessian matrix. p also represents the Marquardt parameter. Before the next 

iteration, u. is updated based on the comparison between the previous and new SSR 

values. If the new SSR is smaller than the previous one, p is divided by a specific factor, 

which is generally pi (JI), and it generates a new value for p for the next iteration. In the 

opposite case, p is multiplied by pi (n) for the next iteration. This is the core of the 

Levenberg-Marquardt algorithm, and its process is as follows: 

previous u 

new ssr < previous ssr: new u = -
K n (4.8) 

new ssr > previous ssr: new u = previous u xn 
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Due to the limits in finding a complete zero (0) error solution, the iterative process 

was terminated when there were no additional decreases in newly computed SSR values. 

At the same time, any distorted results were also considered in deciding the end of an 

iteration. The zig-zag search for the global minimum sometimes causes a worse 

optimization result with a better SSR value. Therefore, the iterative process was stopped 

based on empirical evidence. 

4.1.4 OPTIMIZATION IN STEEPEST DESCENT METHOD 

The optimization process in steepest descent method was similar to that in the Gauss-

Newton methods except for the method to update the changes in the parameter vector. 

Unlike the Gauss-Newton methods, the second derivative matrix, the Hessian matrix, was 

excluded for finding the increment or decrement of the parameter vector. After 

computing the Jacobian matrix of the given objective function as equation (4.4), the 

changes in the parameter vector were calculated as follows: 

AP = (oss •*- Hflrll) x g (4.9) 

where P is the parameter vector, [ai, a2, a3, 04, Pi, P2, P3, p4, yi, Y2, y3,Y4], and oss is the 

optimal step size, g is the multiplication of the Jacobian matrix and residue, and ||g|| is the 

norm of g. The AP was used to update the parameter vector and the newly computed 

parameter vector was applied for the next generated IAP model. By using SSR value, the 

tightness to the desired data was evaluated and the next iteration started if an obtained 

IAP model was not close enough to the measured IAP. As explained in the Gauss-

Newton methods, the continuity of the iteration process depends on empirical 

experiences. 



53 

,'-X 

• MA) 'Uiwl 1. vl' fiom a leKuciice 
-tjeneinted IAP in Steepest Descent Method 

(Oaiiuno PDF) 

^**» 
^ ~?*» 

Tune (msec) 

FIG. 13: The measured neuron IAP [11] in dots and the generated IAP in dashes. The 
IAP model was generated by using the Steepest Descent method and its objective 
function was composed of four independent Gamma PDFs. 
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FIG. 14: The measured neuron IAP [11] in dots and the generated IAP in dashes. The 
IAP model was generated by using the Steepest Descent method and its objective 
function was composed of four independent Erlang PDFs. 
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FIG. 15: The measured neuron IAP [11] in dots and the generated IAP in dashes. The 
IAP model was generated by using the Conjugate Gradient method and its objective 
function was composed of four independent Gamma PDFs. 
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FIG. 16: The measured neuron IAP [11] in dots and the generated IAP in dashes. The 
IAP model was generated by using the Conjugate Gradient method and its objective 
function was composed of four independent Erlang PDFs. 
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TABLE 3: Summary of computed parameters, [ai, a2, a3, a4, Pi, P2, P3, P4, yi, Y2, Y3.Y4], 
under different optimization methods such as the Gauss-Newton, the Steepest Descent, 
and the Conjugate Gradient with objective functions using the Gamma PDFs or the 
Erlang PDFs. The SSR for each case was the final value after iterations. 

Parameter 

a l 

a2 

a3 

a4 

PI 
p2 

P3 

p4 

yl 

y2 

y3 

y4 

SSR 

Gauss-Newton 

Initial 
2 

3 

5 

8 

0.3 

0.1 

0.5 

1.2 

1.6 

-0.004 

0.1 
-0.03 

-

Final (G/E) 
2.39/2 

2.92 / 3 

4.99 / 5 

8.21/8 

0.31/0.29 

0.08/0.08 

0.45 / 0.46 

1.28/1.21 

0.93/1.34 

-0.006 / -0.004 

0.08 / 0.08 

-0.02 / -0.03 

179.62/190.75 

Steepest Descent 

Initial 
1 

3 
6 

8 

0.05 

0.08 

0.15 

0.6 

1.9 

-0.015 

0.1 
-0.004 

-

Final (G/E) 

1.04/1 

2.91/3 

6.13/6 

8.13/8 

0.05 / 0.05 

0.08 / 0.08 

0.16/0.15 

0.67 / 0.67 

1.98/1.98 

-0.016/-0.015 

3.4e-7/1.5e-6 

4.1e-4/5.9e-4 

441.34/709.28 

Conjugate Gradient 

Initial 

1 

3 

6 

8 

0.05 

0.08 

0.15 

0.6 

1.9 

-0.015 

0.1 
-0.004 

-

Final (G/E) 
1.04/1 

2.91/3 

6.13/6 

8.13/8 

0.05 / 0.05 

0.08 / 0.08 

0.16/0.15 

0.67 / 0.67 

1.98/1.98 

-0.015/-0.015 

3.4e-7/1.5e-6 

4.1e-4/5.9e-4 

446.31/724.17 

*G/E = Gamma / Erlang 

4.1.5 OPTIMIZATION IN CONJUGATE GRADIENT METHOD 

As with previous methods, the conjugate gradient method also involved the Jacobian 

matrix to update the parameter vector. Most of the process was similar to that of the 

steepest descent method except for the search direction parameter. Of several different 

approaches in computing the search direction parameter, the Polak-Ribiere (PR) method 

was used because of its efficiency with regards to the conjugate gradient method. The 

search direction parameter, 6, in the PR method was as follows: 

5 _ gnewXgnew ,^ JQX 

goldxgold 
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AP = oss x (gnew + 5 x APold) (4.11) 

where gnew is the multiplication of the current Jacobian matrix and current residue, and 

gold is that of the previous Jacobian matrix and previous residue, oss is the optimal step 

size and AP0id is the previous parameter vector. By using these computations, the 

parameter vector was updated in every iteration. The updated parameter vector was 

applied to the proposed objective vectors in the Gamma or the Erlang PDFs, and the 

newly generated IAP model was compared with the desired data by a residue. As in 

previous methods, the SSR value was computed in every iteration, and this was used to 

decide the continuity of the iteration process. If the SSR increased, the iteration was 

terminated, but the process kept running as long as the SSR continuously decreased. 

Using my hypothesis, the highest value, 8, in a is connected with the Na+ channel and 

the second highest value, 5, in a is connected with the K+ channel. For the leakage, the 

assigned a is 1. 

4.2 MUSCLE FIBER INTRACELLULAR ACTION POTENTIAL 

The reference for an intracellular action potential (IAP) in a muscle fiber was obtained 

from a published journal paper [17] as was also done for a neuron IAP. The muscle IAP 

was obtained in rat EDL9 muscle in vivo [17]. 

4.2.1 DATA PREPARATION 

The measured IAP was digitized using Desktop Ruler (version 1.45). Some points, such 

as the zero and the highest amplitudes, were utilized as references to decide other 

Extensor Digitorum Longus. A pinnate muscle located at the lateral part of the front of the leg. 
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FIG. 17: The measured muscle IAP [17] in dots and its digitized IAP in dashes. After 
smoothing the data, the digitized LAP has a 1.95 % smaller value in the highest 
amplitude. General muscle LAP initially has a membrane potential and it is shown in the 
digitized muscle IAP. 

measured potential amplitudes from the manually digitized values. All potential 

amplitudes were calculated based on the comparisons with point references. As was done 

in the neuron IAP data preparation, the digitized IAP was smoothed in Matlab with the 

moving average method by span 5. Due to the smoothing, there was approximately 

1.95% loss in the highest amplitude. The reference IAP had an initial membrane potential 

of approximately -77.7 mV that was directly adopted in the digitized IAP. The initial 

membrane potential was generally removed in the computation of residue; therefore, 

there were no effects by the initial membrane potential. 
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4.2.2 CONSTRUCTION OF OBJECTIVE FUNCTION 

Unlike the neuron IAP, muscle IAP is mainly governed by three ions, namely sodium 

(Na+), potassium (K+), and leakage. Therefore, the objective function has only three 

independent Gamma or Erlang PDFs as follows: 

PmusclelApit) = E i U t t ^ e " ^ (4.12) 

where t is time in msec. In the Gamma PDF, a is any real number, and it is an integer in 

the Erlang PDF. Just like the objective functions in the neuron IAP, each Gamma or 

Erlang PDF represents the ionic conductance for the main ions in time. The unknown 

parameters, a, P, and y, were assigned for shape, rate, and adjusted amplitude, 

respectively. In addition, the values in a again play a role in signifying the number of ion 

channel states as done in the neuron LAP model. Based on the relationship between ion 

channel states and channel structural complexity, the higher value in a implies the more 

complicated structural characteristics. Therefore, the highest a represents the number of 

Na+ channel states, and the second highest a shows the K+ channel states. Finally, the 

lowest values in a correspond to the number of leakage states. 

4.2.3 OPTIMIZATIONS IN THREE METHODS 

Three optimization methods, the Gauss-Newton, the steepest descent, and the conjugate 

gradient methods, were applied to optimize a recorded IAP from muscle fiber as was 

done in the optimization of the neuron IAP. Even though the optimizing performance by 

the Gauss-Newton method in modeling a neuron IAP was the best based on the closeness 

to the reference data, all three methods were again applied to examine if there were any 
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FIG. 18: The measured muscle IAP [17] in dots and the generated IAP in dashes. The 
IAP model was generated by using the Gauss-Newton method and its objective function 
was composed of three independent Gamma PDFs. 
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FIG. 19: The measured muscle IAP [17] in dots and the generated IAP in dashes. The 
IAP model was generated by using the Gauss-Newton method and its objective function 
was composed of three independent Erlang PDFs. 
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FIG. 20: The measured muscle IAP [17] in dots and the generated IAP in dashes. The 
IAP model was generated by using the Steepest Descent method and its objective 
function was composed of three independent Gamma PDFs. 
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FIG. 21: The measured muscle LAP [17] in dots and the generated LAP in dashes. The 
IAP model was generated by using the Steepest Descent method and its objective 
function was composed of three independent Erlang PDFs. 
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FIG. 22: The measured muscle IAP [17] in dots and the generated IAP in dashes. The 
LAP model was generated by using the Conjugate Gradient method and its objective 
function was composed of three independent Gamma PDFs. 
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FIG. 23: The measured muscle IAP [17] in dots and the generated IAP in dashes. The 
IAP model was generated by using the Conjugate Gradient method and its objective 
function was composed of three independent Erlang PDFs. 
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TABLE 4: Summary of computed parameters, [ai, a2, a3, Pi, B2, P3, yi, Ji, Y3], under 
different optimization methods, such as the Gauss-Newton, the Steepest Descent, and the 
Conjugate Gradient with objective function using the Gamma PDFs or the Erlang PDFs. 
All values under each optimization methods are the final with specific SSR. 

Parameter 

al 
al 

a3 
PI 
P2 
P3 
Yl 
Y2 

Initial 

1 

Gauss-Newton 
Gamma 

1.02 
5 I 4.95 
8 7.198 

0.35 | 0.302 
3 
6 
8 

580 
y3 I 14000 

SSR | 

2.818 
5.782 
7.589 

465.032 
10984 

13.3005 

Erlang 
1 
5 

Steepest Descent 
Gamma 

1.142 
4.712 

8 I 7.741 
0.316 I 0.336 
2.924 
6.562 
8.711 

599.694 
20373 

16.3538 

2.803 
6.263 
7.565 

579.951 
14000 

14.8248 

Erlang 
1 
5 
8 

0.3696 
2.9518 
6.2497 
12.0237 

580.0019 
14000 

42.1556 

Conjugate Gradient 
Gamma 

1.117 
4.775 
7.695 
0.335 
2.829 
6.238 
7.873 

579.989 
14000 

14.8954 

Erlang 
1 
5 
8 

0.374 
2.954 
6.252 
12.328 

580.605 
14000 
41.912 

different results in the muscle IAP optimization. The desired (target) signal was digitized 

from a reference [17,105] and was treated by the same process as shown in the neuron 

IAP data preparation. By considering the ionic conductance changes for each main ion, 

an initial guess for the method was obtained. For instance, the rapid increase and decrease 

of Na+ conductance was considered, and the relative slow increase and decrease of the K+ 

conductance was applied in creating an initial guess. The initial values for the unknown 

parameters were the same for both objective functions, the Gamma PDF and the Erlang 

PDF, and they were empirically given as [1, 5, 8, 0.35, 3,6 , 8, 580, 14000] for [ai, a2, a3, 

Pi- P2, P3, yi, yi, yi\- Including the initial guess, the process was mostly the same as that in 

the neuron IAP optimization of the Gauss-Newton methods. 

The optimization processes of the muscle IAP in the steepest descent and the 

conjugate gradient methods were also very similar to those in neuron IAP optimization. 
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Applying the same optimal step size, the processes were completed. In both methods, 

only the Jacobian matrix was used for updating the parameter vectors, and iteration was 

the main approach to find a final result for the parameters. Like the neuron IAP 

optimization, SSR values were used to show the tightness to the desired data, and the 

iterative process continued if an obtained SSR was smaller than the previous one. In the 

conjugate gradient method, the Polak-Ribiere (PR) method was used to find the search 

direction parameter because of its computational efficiency. Overall, the results of the 

Gauss-Newton method showed better performances with smaller SSRs in both neuron 

and muscle. Moreover, the objective function with the Gamma PDFs produced smaller 

SSRs than that with the Erlang PDFs. 

Again, the highest value, 8, in a is related to the Na+ channel and the second highest 

value, 5, in a is connected with the K+ channel based on my hypothesis. For the leakage, 

the assigned a is 1. 
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CHAPTER 5 

MODEL VALIDATION & MODIFICATION 

Validation is closely related to the credibility of a proposed computational model. 

Therefore, this process should be performed to ensure that the developed model 

accurately reproduces the estimated system dynamics. In addition, the muscle 

intracellular action potential (IAP) model was initially proposed because of the distorted 

performances by previous IAP models. Therefore, the proposed muscle IAP model is 

validated in this chapter. Due to limited funds and instruments, the indirect method is 

applied for model validation. All experimental resources are obtained from previous 

literature, and most processes in validation are similar to those of optimizations. Through 

the optimizations in the previous chapters, it was shown that the proposed IAP model had 

high credibility with specific values of parameters. However, those values were 

optimized to only one experimental result. By using comparisons with mode measuring 

data, the computed parameters in optimization can be evaluated if they are consistent in 

other experimental IAP dynamics. 

5.1 VALIDATION 

Due to the experimental limitations in obtaining the exact numbers underlying the 

biological activities, it is common to design computational models for biological 

principles and processes. By using developed models, the biological behavior or 

dynamics are predicted and the obtained information is applied for medical treatments, 

research references, and various biological understandings. However, those models are 

easily criticized by reviewers who consider that all results from computational models are 
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inherently wrong [68]. To avoid the criticisms, a proposed computational model is 

required to be evaluated for accuracy by comparing it with real experimental data, so 

called validation. Validation is a process to determine how well the computational 

models accurately display or predict any given physical dynamics [39,43,68]. Through 

the process of validation, a simplified computational model is examined if it can predict 

or reproduce any fundamental experiment data for the more complicated system. 

Therefore, validation is closely dependent on resources or experimental results from the 

viewpoint of computational analysis [39]. 

Generally, there are two validation types: direct and indirect validations [8,39]. Direct 

validation conducts real experiments on the target subjects by controlling experimental 

components, such as experimental sources, measuring methods, detailed constituents, and 

accepted error ranges. Therefore, analysts or model designers can access and control 

every experimental step, and it helps to increase the fundamental confidence of a 

computational model in later comparison with an experimental result [9]. The performed 

experiments are designed to show the closeness to the simulated results. Therefore, the 

most significant properties and conditions are incorporated on purpose [39]. On the other 

hand, indirect validation uses experimental outcomes from other literature or research. 

Model developers typically cannot control any of an experiment's properties, which 

results in preference for indirect validation. However, indirect validation is very useful 

under cost restrictions, experimental difficulties, and difficulty in quantifying property 

values [39]. 
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5.2 PARAMETER DETERMINATIONS 

Of three different optimization methods, the Gauss-Newton method showed the lowest 

SSR values, which implied that the results of the Gauss-Newton method were the most 

fitted to the measured IAP data. It temporally concluded that the parameter values by the 

Gauss-Newton method were acceptable to build a muscle IAP model when the range for 

a parameter was too wide to make a decision. In addition, the physical meanings, the state 

of the ion channel and the speed of ion movements in the parameters were also 

considered in determining the values of parameters. Each probability density function in 

the IAP model shows the changes of ionic conductance and the combinations of 

parameters, such as [ai, Pi, y-], [a2, P2, j2], and [a3, p3, y3], have a floating relationship 

among them. This means that the change of one parameter in each combination affects 

the other parameters in the same combination. 

The parameters, [ai, 02, a3], were consistent in the objective function with the Erlang 

PDFs; ai and 012 were 1 and 5, respectively. These values were close to the numbers in 

the function with gamma PDFs. However, a3 was computed as 7 with the Gamma PDFs 

and 8 with the Erlang PDFs. Considering its numerical meaning in the proposed IAP 

model, the assigned number for a3was one of two values, 7 or 8. The other parameters, 

[Pi, P2, p3], were approximately determined by considering the values of [ai, a2, a3]. The 

range of Pi was between 0.302 and 0.374. However, the SSR values in the steepest 

descent and the conjugate gradient methods with the Erlang PDFs were relatively high. 

Therefore, it could be narrowed to the range between 0.302 and 0.336. When 1 was 

assigned to ai, the parameter, p-, could be assigned to 0.316, which was the result by the 

Gauss-Newton method with the Erlang PDFs. Using the same approach, 2.924 was 
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TABLE 5: Selected parameters, [ai, 0.2, a3, Pi, P2, p3, yi, y2, Y3], based on the results of 
different optimization methods, such as the Gauss-Newton, the Steepest Descent, and the 
Conjugate Gradient, for objective functions with the Gamma PDFs or Erlang PDFs. 

Parameter 

al 
a2 
a3 
PI 
P2 
P3 
yl 
Y2 
Y3 

Selected Values 
SET1 

1 
5 
7 

0.316 
2.924 
5.782 
8.711 

599.694 
10984 

SET 2 
1 
5 
8 

0.316 
2.924 
6.562 
8.711 

599.694 
20373 

assigned to P2. On the other hand, p3 had two different values as a3. According to the 

obtained parameters, the value of a3 could be two numbers, 7 or 8, which results in p3 

possibly having two different values depending on the value of a3. Therefore, p3 was 

assigned to 5.782 when a3 was 7, and p3 was 6.562 when a3 was 8. The parameters, [yi, 

Y2- Y3]- were also assigned to specific numbers based on the determinations of other 

parameters. 

5.3 VALIDATION FOR THE PROPOSED IAP MODEL 

From previous research [105], three muscle IAP data were collected, and they were 

digitized by using Desktop Ruler (version 1.45). The digitized data were used as new 

sources for optimization. The Gauss-Newton method was selected based on its 

performance in the optimizations, and the Erlang PDFs in the objective function were 

determined with the initial assumption that the values in [ai, 02, a3, p , P2, p3] represent 
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FIG. 24: Digitized measured muscle IAP [105] data for validation. All data were 
measured from the right m. extensor digitorum longus (EDL) and right m. soleus in the 
hind limb of rats. The muscle IAP data have different rest membrane potentials; 
approximately, -84, -77, and -72 mV for source #1, #2, and #3, respectively. 
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FIG. 25: Removed initial membrane potentials of the digitized IAP data. The highest 
values were observed approximately at 0.35, 0.38, and 0.35 msec for source #1, #2, and 
#3, respectively. 
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the number of ion channel states and the speed of ion movements. After optimization 

with each source, the results were compared with the selected parameters in Table 5. 

5.3.1 MODEL VALIDATION: SOURCE 1 

The obtained source had the resting membrane potential, -84.42 mV. The initial 

membrane potential before triggering the action potential was removed from the digitized 

data and smoothed as the digitized IAP data were smoothed in Matlab (version 7.8) using 

the function smooth with 3 points moving average. In validation, the reduced points for 

the moving average in smoothing the data were used to avoid any distortions between the 

digitized and smoothed data. Due to the smoothing, the data loss in the highest value was 

1.20%. The objective function for a muscle IAP model was composed of three Erlang 

PDFs and the Gauss-Newton methods were used for optimization. Two different initial 

conditions, [15 7 0.316 2.924 5.782 8.711 599.694 10984] and [15 8 0.316 2.924 6.562 

8.711 599.694 20373], caused by the different values in [a3, p3] for optimization were 

applied using the values shown in Table 5. All operational conditions, such as a fractional 

parameter, optimal step size and parameter updating methods, were the same as shown in 

the Gauss-Newton optimization method in 4.1.3. The iterative operation continued as 

long as the sum squared of residue (SSR) decreased. 

5.3.2 MODEL VALIDATION: SOURCE 2 

The obtained source had the resting membrane potential, -77.53 mV. By using Matlab 

(version 7.8), the digitized IAP data were smoothed with 3 points moving average. The 

digitized data before a real action potential was triggered were deleted for optimization. 
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The data loss in the highest value was 1.01% after data smoothing. As in the previous 

model validation, three Erlang PDFs were the main components in the objective function 

and the Gauss-Newton method was used for optimization. Including initial conditions, all 

operational conditions in the Gauss-Newton method were the same as those in the model 

validation of source 1. In optimization, two different initial conditions were applied, and 

the program iteration was continued based on the SSR values. 

5.3.3 MODEL VALIDATION: SOURCE 3 

The obtained source had the resting membrane potential -72.10 mV. As explained in the 

two previous validations, the function smooth with 3 points moving average in Matlab 

(version 7.8) was used for data smoothing after removing the initial resting membrane 

potential before an actual action potential. Due to the smoothing, the data loss in the 

highest value was 1.21 %. The objective function for the muscle IAP model was 

composed of three independent Erlang PDFs, and the Gauss-Newton method was the 

main optimizing method. All operational parameters in the method were the same as 

indicated in the previous validation sections. Two different initial conditions for 

optimization were applied using the values shown in Table 5. The SSR values in 

optimization were the main sources to determine whether the process continued. 

5.4 MODIFICATION 

The three digitized muscle IAP data showed minor differences, such as the time to reach 

the peak point, the resting membrane potential, and the highest values. For example, the 
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FIG. 26: Source #1 from the measured muscle IAP [105] in dots and the generated IAP in 
dashes. The initial condition for optimization was [15 7 0.316 2.924 5.782 8.711 599.694 
10984] and the values in [ai, a2, a3] were consistent during optimization as [1, 5, 7]. The 
final SSR was 325.65. 
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FIG. 27: Source #1 from the measured muscle LAP [105] in dots and the generated IAP in 
dashes. The initial condition for optimization was [1 5 8 0.316 2.924 6.562 8.711 599.694 
20373] and the values in [ai, a2, a3] were consistent during optimization as [1, 5, 8]. The 
final SSR was 36.48. 
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FIG. 28: Source #2 from the measured muscle IAP [105] in dots and the generated IAP in 
dashes. The initial condition for optimization was [15 7 0.316 2.924 5.782 8.711 599.694 
10984] and the values in [ai, a2, a3] were consistent during optimization as [1, 5, 7]. The 
final SSR was 24.73. 
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FIG. 29: Source #2 from the measured muscle IAP [105] in dots and the generated IAP in 
dashes. The initial condition for optimization was [15 8 0.316 2.924 6.562 8.711 599.694 
20373] and the values in [ai, a2, a3] were consistent during optimization as [1, 5, 8]. The 
final SSR was 27.19. 
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FIG. 30: Source #3 from the measured muscle IAP [105] in dots and the generated IAP in 
dashes. The initial condition for optimization was [15 7 0.316 2.924 5.782 8.711 599.694 
10984] and the values in [ai, a2, a3] were consistent during optimization as [1, 5, 7]. The 
final SSR was 36.48. 
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FIG. 31: Source #3 from the measured muscle IAP [105] in dots and the generated IAP in 
dashes. The initial condition for optimization was [15 8 0.316 2.924 6.562 8.711 599.694 
20373] and the values in [ai, a2, a3] were consistent during optimization as [1, 5, 8]. The 
final SSR was 40.37. 
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TABLE 6: Summary of computed parameters, [ai, a2, a3, Pi, P2, p3, yi, y2, Y3], by using 
different sources. The proposed IAP model has three independent Erlang PDFs, and the 
parameters were matched to the unknown values in the model. Due to the space 
limitation, all numbers were approximated. 

al 
a2 
a3 

PI 
P2 
p3 
yl 

y2 
Y3 

Initial 
SET1 

1 
5 
7 

0.316 
2.924 
5.782 
8.711 

599.694 
10984 

SSR | 

SOURCES 
#1 
1 
5 
7 

0.47 
0.34 
4.60 
37.5 
0.002 
4184.1 

325.65 

#2 
1 
5 
7 

0.48 
3.24 
11.31 
19.44 

1257.1 
231437.2 

24.73 

#3 
1 
5 
7 

0.32 
3.14 
6.84 
10.98 
1016.8 
17321.2 

36.48 

Initial 
SET 2 

1 
5 
8 

0.316 
2.924 
6.562 
8.711 

599.694 
20373 

~ 

SOURCES 
#1 
1 
5 
8 

0.23 
2.90 
6.47 
11.09 

582.61 
18784.9 

36.48 

#2 
1 
5 
8 

0.49 
3.25 
13.07 
20.12 
1268.2 

1066583.8 

27.19 

#3 
1 
5 
8 

0.33 
3.19 
8.04 
11.52 
1121.4 

48822.7 

40.37 

times to reach the peak point during excitation were 0.35, 0.38, and 0.35 msec for source 

#1, #2, and #3, respectively, which meant that the highest value was observed in source 

#2 later than those of the other sources. In addition, the resting membrane potentials of 

the sources also varied in the range between -84.42 and -72.10 mV. However, all sources 

showed the typical characteristics of muscle LAP. For instance, all sources lasted less than 

2 msec for excitation, and there was no excessive repolarization, so called 

hyperpolarization. Specifically, total action potential amplitudes were bigger than 60 mV, 

and the rising times10 of these action potentials were not more than 0.16 msec. 

Based on the results of IAP modeling in Chapter 4, the proposed IAP model 

contained three Erlang PDFs, which represented ion conductance, and the Gauss-Newton 

method was used for optimization. Depending on the initial conditions for the parameters, 

The duration between 10 and 90 % in depolarizing phase of an action potential [44] 
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the computational results of unknown parameters, [ai, a2, a3, Pi, P2, p3, yi, y2, y3], were 

differently optimized. 

Due to the relatively high SSR value, the results of source #1 in the initial set 1 were 

first removed from consideration. The values in [ai, 0.2, a3] were consistent as indicated 

in the initial conditions, and they could be chosen as [1, 5, 7] or [1, 5, 8]. However, the 

results of source #1 by the initial set 1 implied that a muscle IAP model might be 

incorrect when using [1, 5, 7] for [ai, a2, a3] in some data. Therefore, the values for [ai, 

ot2, ct3] were determined by [1, 5, 8]. To validate other important parameters, [p-, P2, p3], 

the meaningful separations of obtained parameters were necessary. For example, the 

proposed muscle IAP model was composed of three independent modified Erlang PDF, 

and each PDF was supposed to represent a specific ion conductance. Therefore, the 

parameters could be combined as [ai, p-, yi], [a2, P2, Y2], and [a3, p3, y3]. From the 

physiological background of ion conductance, the conductance by leakage has very small 

effects on the muscle LAP while Na+ and K+ conductances have a major impact. In 

addition, the values in [yi, Y2, y3] showed the simple amplitude for each Erlang PDF to 

adjust to the measured IAP, which meant that their values were very dependent upon the 

other parameters, [a\, ua, a3, Pi, P2, p3]. Therefore, the considerations for [yi, y2, y3] were 

omitted, and their values were determined based on the other parameters. 

The obtained value of P2 had the range between 2.90 and 3.25 while its initial value 

was 2.924. When considering that this value came from the measured biological data, it 

was reasonable to present a possible range for each parameter. However, the aim in this 

study was to make a muscle IAP model, and an average value was computed using the 

obtained numbers. Based on the initial and obtained numbers, the computed number was 



76 

Ililtml\ "JUu 

-3 
J3 

Q 
eu 

FIG. 32: Normalized Erlang PDF with a2=5. The dots plotted results with the initial 
values containing p3=2.924. The lines represent the sources #1 (p3=2.90), #2 (p3=3.25), 
and #3 (p3=3.19), respectively. 
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FIG. 33: Normalized Erlang PDF with a3=8. The dots plotted results with the initial 
values containing p3=6.562. The lines represent the sources #1 (p3=6.47), #2 (p3=13.07), 
and #3 (p3=8.04), respectively. 
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FIG. 34: Modeled muscle Intracellular Action Potential (IAP) with measured IAPs from 
different references [17,105]. The model consisted of three independent Erlang PDFs, 
and nine parameters were assigned. These parameters were [1, 5, 8, 0.33, 3.07, 7.02, 9.68, 
890.83, 21772] for [au a2, a3, Pi, p2, p3, yi, y2, 73], respectively. 

TABLE 7: Final parameters for the muscle IAP model. By considering biological 
characteristics in the generation of a muscle IAP, 6 parameters, [aj, a2, a3, Pi, p2, p3], 
were determined and the other parameters, [y-, y2, y3], were optimized by using the 
Gauss-Newton method. 

al 
a2 
a3 

PI 
P2 
P3 
yl 
y2 
y3 

Final 
Parameters 

1 
5 
8 

0.33 
3.07 
7.02 
9.68 

890.83 
21772 
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FIG. 35: Modeled muscle Intracellular Action Potential (IAP) with its components. The 
modeled IAP is composed of three independent components which are assumed to be 
related with each ion channel conductance. 

3.07 for p2. Unlike P2, there was a relatively wide range for p3 because of the high value 

from source #2. The value of p3 from source #2 can be a possible number for p3, but it 

was relatively far from the other values for p3. Therefore, only three sources including the 

initial value were used to compute the number of p3, which was 7.02. To complete the 

IAP model, optimization with the 6 obtained values, [ai, a2, a3, Pi, p2, p3], and 3 

unknown parameters, [yi, y2, y3], was repeated using the Gauss-Newton method as shown 

in Chapter 4. The final values for the muscle LAP model were as shown in Table 7. 
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CHAPTER 6 

DISCUSSIONS 

By adopting the relationship between LAP generation and multiple ion channel 

conductivities as shown in H-H neuron experiments, a muscle LAP model has been 

successfully constructed. Unlike previous muscle IAP models, the newly proposed 

muscle IAP model contains some unique advantages to show ion channel conductivities 

during cell excitation and to compute the separate ionic current for each ion type. 

6.1 ION CHANNEL (CONDUCTANCE) MODELING 

Typical models of ion channel dynamics or kinetics are developed in a stochastic fashion 

because of the discrete conductance levels of ion channels through the patch clamp 

technique [2,3]. In voltage-gated ion channels, the ionic movement is critical for 

generation of biological potentials, and the stochastic process of channel gating 

underlying the potential is fundamental to understanding the ion flow through channels. 

Generally, the stochastic properties of ion channels are modeled by using stationary 

Markov models (SMM)11 [2]. A SMM is easily able to represent the various topologies of 

ion channels, which are directly related to the multiconformational characteristics of an 

ion channel. For example, a Na+ ion channel is composed of proteins such as four a-

subunits and one to three p-subunits. In an a-subunit, there are four homologous domains 

that consist of six membrane segments and each domain contains the selective filter, 

voltage sensor, and TTX12 binding site. The different conformations of these proteins in 

the Na+ ion channel reveal its specific states. Even though the number of proteins is 

11 The statistic models for a real- world process to transit from one to another state. 
12 Tetrodotoxin. By attaching to a specific site, it blocks action potentials. 
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different, this relationship between the conformation and the state of ion channel is true 

in all other voltage-gated ion channels. However, it has been unsolved as to how many 

stable states actually exist during the dynamics of an ion channel. 

Since the structure of a K+ ion channel from bacteria was revealed in 1998 [24], X-

ray crystallography has been widely used to physically view the real states of ion 

channels. By crystallizing an ion channel at a certain state, its structure is revealed 

through X-ray diffraction analysis. With this advanced method, the open state structure of 

the voltage-gated ion channels has been successfully solved [92,94]. However, the closed 

state of ion channels still remains unknown, especially in conformational channel 

structures. Therefore, ion channel modeling can be different depending on the number of 

the closed channel states [30,62]. Nevertheless, most ion channel models possess 

ambiguity in determining the number of closed channel states because of the difficulties 

in distinguishing different ion channels in closed states [74]. 

For the ion channel model in this study, the optimized numbers for a were used to 

represent the possible ion channel states including an open state. As explained in Chapter 

4, the increased numbers in a at the graphically same location generate the narrower 

signal pattern. When considering the relationship between the number of proteins in a 

channel and their state numbers, more proteins in a channel result in the higher values in 

the parameter, a. For example, a Na+ ion channel with four subunits and two subunit 

accessories in skeletal muscle had 8 different channel states based on the determined 

parameter, a3. Apparently, this number cannot represent a specific state topology of a Na+ 

ion channel, but it may provide the minimum number of states that can reveal the stable 

invariant manifolds of the proteins in the channel [47]. Also, the computed number, 5, for 
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a2 implies the possible states of the K+ ion channel, and 1 was assigned to ai for leakage 

in the channel model of this study. With the assumption in these numbers, other 

parameters can also be determined. Specifically, the parameter p controls the increasing 

and decreasing rates, which means that a lower value in p produces a faster increase or 

decrease. From the aspect of ion movement, these changes in conductance can be 

partially caused by the speed of ion movement, which is one of the important factors in 

deciding the biological function of the channels [35]. 

As explained, the proposed ion channel model, specifically ion channel conductance 

model, was developed with electrophysiological considerations and experimental facts. 

As shown by the study of Hodgkin and Huxley (H-H), the action potential in cells is 

generated by the driving forces of channel conductances and the proposed ion channel 

conductance models for Na+, K+ and leakage under the action potential model in this 

study consistently show the previous theory by H-H. 

6.2 ION CHANNEL CONDUCTIVITY 

The conductivities of Na+ and K+ channels lead to depolarization and repolarization, 

respectively, during cell excitation, and their dynamic properties are critical in modeling 

an IAP, especially in muscle. As shown in the H-H experiments [11], the patterns of these 

ion channel conductances were apparently different in duration. Na+ channel conductance 

was characterized as a fast increase and a fast decrease within a short time period. Even 

though the strength of an applied stimulus could change the amplitude of Na+ 

conductance, the responding pattern of the Na+ conductance to different stimuli was 

similar. In addition, the responding time was shorter as the applied stimulus became 
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FIG. 36: Generated conductances for Sodium (Na+) and Potassium (K+) in nerve. The 
provided parameters for each conductance were obtained from the result by the Gauss-
Newton optimization method with the Erlang PDFs. [aNa, PNa] were [8, 1.34], and [aK, 
PK] were [5, 1.21]. The amplitudes for conductances were modified based on the H-H 
neuron model. 
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FIG. 37: Generated conductances for Sodium (Na+) and Potassium (K+) in muscle. The 
provided parameters for each conductance were obtained from the result by the Gauss-
Newton optimization method with the Erlang PDFs. [aNa, PN3] were [8, 7.02], and [aK, 
PK] were [5, 3.07]. The maximum amplitudes for conductances were obtained from a 
previous paper [78]. 
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FIG. 38: Na+ conductances of muscle and neuron. The Na+ channel conductance for 
neuron was based on H-H model and the generated Na+ channel conductance for muscle 
was by the Erlang PDF with [8, 7.02] for [aNa, PN3], respectively. For comparison, the 
maximum amplitudes for conductance in muscle were adjusted to those in neuron. 
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FIG. 39: K+ conductances of muscle and neuron. The K+ channel conductance for neuron 
was based on H-H model and the generated K+ channel conductance for muscle was by 
the Erlang PDF with [5, 3.07] for [aNa- PNa], respectively. For comparison, the maximum 
amplitudes for conductance in muscle were adjusted to those in neuron. 
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larger. On the other hand, K+ channel conductance was identified with a relatively slower 

increase than Na+ channel conductance during depolarization and lasted as long as an 

applied stimulus remained. The increased strength of a stimulus made the increasing rate 

greater and the maximum conductances for different stimuli were continuously 

maintained with a constant stimulus. These specific characteristics are captured well in 

the generated nerve IAP (Figure 36) from the result by the Gauss-Newton optimization 

method with Erlang PDFs. Those similar changes in ion conductances were also shown in 

muscle (Figure 37). As explained in Chapter 2, most mechanisms to generate a muscle 

IAP are similar to a nerve IAP. The only difference between them is the number of ions 

involved with generating an IAP. Specifically, two ions, Na+ and K+, play a dominant 

role in generating a muscle IAP, and their conductances are the key in generating a 

meaningful muscle IAP. 

In Figures 38 and 39, the comparisons between the generated Na+ and K+ channel 

conductances in muscle and neuron are shown. The generated Na+ a nd K+ c hannel 

conductances in muscle were based on the Erlang PDFs in the currently generated muscle 

IAP model in this study and those in neuron were based on the H-H models [11]. Due to 

the difference in amplitude, the amplitudes of the conductances in muscle were increased 

to match those in neuron for comparison. The Na+ channel conductances in muscle and 

neuron showed similar profiles during cell excitation. However, the K+ channel 

conductance in neuron presented a longer time duration than that of the Erlang PDF in 

the muscle LAP model in this study. It is reasonable because there are some differences in 

the IAP profiles of muscle and neuron; for example, the duration of IAP in neuron is 

longer than that in muscle, and there is no hyperpolarization in muscle. 
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FIG. 40: Generated ionic currents for Sodium (Na+), Potassium (K+), and leakage in 
muscle. The consolidated ionic current was computed by the summation of the generated 
currents for Na+, K+, and leakage. 
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FIG. 41: Generated capacitor current in muscle. The membrane capacitor, Cm, was 
assumed as 1 pF/cm2 as many previous studies suggested [11,72,75,78,89]. 
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6.3 TOTAL IONIC CURRENT 

The H-H circuit model (Figure 2) showed that the ionic current through cell membrane 

could be computed using ion conductances. As shown in equations (1.1)-(1.3), the 

summation of the individual ionic currents produces the consolidated ionic current. The 

total ionic current is eventually provided by adding the capacitive current to the 

consolidate current. Based on the generated ion conductances, each ionic current for Na+, 

K+ and leakage are computed as follows: 

iNa = gNa(Vm - ENa) (6.1) 

IK = gK(Vm - EK) (6.2) 

I I = gL(Vm - EL) (6.3) 

where Vm is the membrane potential, and Ex represents equilibrium potential for an ion 

species, x. The resting membrane potential was -77.7 mV from the final muscle IAP 

model (Figure 34), and 63 mV and -58 mV were applied for ENa and EK, respectively 

[26]. The equilibrium for the leakage was decided by considering that the leakage current 

has a small effect on the ionic current, and it was assumed to be -70 mV. For the ion 

conductance models, the parameters by the Gauss-Newton optimization method with 

Erlang PDFs were applied with [1, 0.33, 5, 3.07, 8, 7.02] for [aL, pL, aK, PK, aNa, pNa], 

respectively. All amplitudes of ion conductances were modified based on the H-H neuron 

model. The ionic current was computed using equation (1.1). To find the total ionic 

current, a capacity current was added to the consolidated ionic current and computed as 

follows: 
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= C m ^ f (6.4) 

where Cm is the membrane capacity, which is generally 1 pF/cm2. Based on the above 

computations, the total ionic current can be calculated using equation (1.4). Due to the 

limits of experimental references in capacitor currents, the total ionic current is not shown 

in this study. 

6.4 TRANSMEMBRANE CURRENT 

Transmembrane current,3 is also called transmembrane ionic current and can be 

computed by the second derivative of the IAP [75,89]. Mathematical generation of the 

transmembrane current is possible using the core conductor model [45]. By simplifying a 

real excitable cell with some specific assumptions, the core conductor model can generate 

the transmembrane current. The assumptions used by the core conductor model are listed 

as follows: 

(1) Two conductors, the intracellular and extracellular fluids, are separated by the cell 

membrane. Both fluids are homogeneous and isotropic, and they follow Ohm's 

law. 

(2) An excitable cell has a cylindrical and symmetric shape. 

(3) Any magnetic effects are ignored. 

(4) The current flows in intracellular and extracellular fluids move longitudinally. 

With assumption (1), the intracellular and the extracellular potentials can be computed as 

follows: 

13 The flowing current through the cell membrane caused by the potential difference between intra- and 
extracellular fields 
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(6.5) 

(6.6) 

where V\ and Ve are the intracellular and extracellular potentials, respectively. /', and ie are 

the intracellular and extracellular currents, respectively, r, and re are the intracellular and 

extracellular resistors, respectively. Using assumptions (2) and (3), the following 

relations can be obtained. 
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FIG. 42: Generated Transmembrane current in muscle. The cell radius (a) and the 
intracellular resistor (r,) were obtained from a previous study [78] and they were 27.5 pm 
and 4209.06 kQ/cm respectively. 
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ii(0 = ~ie(t) (6.8) 

where a is the radius of the cell, and im is the transmembrane current. Using equations 

(6.5), (6.6) and (6.8), the relation between V, and Ve can be calculated as follows: 

1 ^ + 1^1=0 (6.9) 
re dt rt dt v ' 

Ve(t) = -rfVt(t) (6.10) 

Based on equations (6.6) and (6.7), 

2naim=j^ (6.11) 

Therefore, the transmembrane current can be computed as follows: 

im = — ^ (6.12) 
771 27rar- dt2 v ' 

As shown in equation (6.12), the transmembrane current can be computed by the second 

derivative of the intracellular potential. 

From a previous study [106], the specific values for a cell radius and an intracellular 

resistor were obtained, and they were 27.5 pm and 4209.06 kQ/cm respectively. In 

addition, the conduction velocity14 (CV) was assumed to be 4 m/sec, which is the most 

general CV in a muscle fiber [108-110], and it was used to find the correct unit for the 

The propagating velocity of an action potential in an excitable cell 
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transmembrane current. By applying these values, the transmembrane current was 

generated (Figure 39). 

6.5 APPLICATIONS OF ION CHANNEL MODELS 

As shown in muscle IAP modeling, an ion channel (conductance) model provides the 

fundamental sources to generate an IAP. Moreover, an ion channel model can be used in 

generating the ionic currents for specific ions such as Na+ and K+, which is not easy to 

measure in experimental laboratories. Using an ion channel model, only simple 

mathematical computations are required to generate the ionic currents. This is not the 

only benefit from ion channel models when considering that ion channels are closely 

related to many cellular functions and various pathological disorders [15,25], especially 

in excitable cells such as neurons, cardiac myocytes, and skeletal muscle fibers. The 

applications for ion channels are also varied from simple electrophysiological research to 

hypothalamic neural thermosensitivity [69]. Recently, ion channels have been used as 

targets for many venom15 peptides [90], and these applications of ion channels are 

possible when the structures and characteristics of ion channels become explicit. An ion 

channel model can be successfully used in understanding the characteristics of ion 

channels when mainly focused on electrophysiological features. 

Due to their critical role in physiological processes, ion channels have been 

considered important therapeutic targets [36]. Based on the structural and 

electrophysiological characteristics of ion channels, a new drug or chemical for specific 

channels can be designed. In particular, the electrophysiological dynamics in ion 

Toxins discharged by certain types of animals to inject their victims 
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channels should be comprehended for therapeutic strategies for a new drug. An ion 

channel model can be useful for examining how fast a newly developed medicine affects 

a specific target area or how long the effects of the medicine last in that area. For 

example, consider the case where there are two ion channels for the path of a drug, and 

let's assume that the ion channels are Na+ and K+ channels. As shown in the previous ion 

channel conductivities, the conductivities of these ion channels are different in a reactive 

time and duration as much as their maximal amplitudes during cell excitations. If the Na+ 

channel is targeted for a drug, the drug works faster and lasts a shorter time than the case 

that targets the K+ channel. Electrophysiological dynamics arising from the different 

targets can help decide the structural and chemical characteristics of a new drug and its 

possible reactions can be estimated by using an ion channel model. 

An ion channel model can also be used to investigate neural thermosensitivity [69]. It 

is well known that depolarization and hyperpolarization of ion channel conductances are 

affected by temperature [103]. The changes in temperature affect the firing pattern of the 

extracellular action potential, which indirectly shows the changes in IAP. Eventually, the 

changes in IAP result from the changes in ion channel conductivities. Therefore, the ion 

channel conductance due to thermosensitivity can be examined by an ion channel model 

by adding a variable for temperature. 
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CHAPTER 7 

CONCLUSION AND FUTURE WORK 

To allow for less computational burden and easier implementation, several simplified 

intracellular action potential (IAP) models have been used. Of these LAP models, 

Rosenfalck's and Nandedkar's IAP models have been widely accepted to generate 

muscle IAPs while the Dimitrov and Dimitrova (D-D) IAP model has been recently 

developed and utilized. However, Rosenfalck's and Nandedkar's IAP models produced 

unrealistic amplitudes and time durations, and the D-D IAP model has the disadvantage 

of a difficult implementation. Additionally, previous models have failed to link 

morphological structure and physiological behavior of ion channels to the IAP model 

itself. Therefore, a muscle IAP model is required to resolve all the problems that are 

inherent in previous IAP models. 

7.1 CONCLUSION 

To understand how LAP in a muscle fiber is generated, it is necessary to examine the 

main sources for IAP. A muscle fiber is generally surrounded by extracellular fluid, and 

the area around the muscle fiber has a relatively high concentration of sodium (Na+). 

Contrastingly, the inside of a muscle fiber is filled with intracellular fluid that has a 

relatively high concentration of potassium (K+). These two main ions, Na+ and K+, are the 

fundamental sources in generating a muscle IAP during cell excitation. A muscle IAP is 

composed of several typical phases beginning with a rapid increase, then continuing with 

a relatively slow decrease, and ending with a very slow decreasing phase. These 

distinctive phases are caused by the inward or outward flow of different ions. However, 
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typical muscle fibers are enveloped by a special bilayer called the cell membrane that 

blocks the free flow of ions. To allow ions to pass through the cell membrane, there are 

special gates called ion channels. Ion channels play a main role in the movement of ions, 

and the voltage-gated ion channels are dominant on the cell membrane controling most 

changes in an IAP. Moreover, each ion channel is permeable only to a specific ion type. 

For example, Na+ can pass the cell membrane only through Na+ channels, and K+ moves 

only through K+ channels. During the resting state of a muscle fiber, IAP is negatively 

ranged between -75 and -90 mV. Once a muscle fiber is excited, the conductivity of Na+ 

channels sharply increases which results in the flow of many Na+ into the muscle fiber. 

Due to the rapid increase in Na+, the inside of the muscle fiber starts to be more 

positively charged, which is called depolarization. Depolarization led by Na+ ends within 

a short period of time, and repolarization starts with K+ outward flow activated by 

opening K+ channels. After repolarization, a cell excitation finishes and is presented in 

IAP by very slow potential decreases until the IAP obtains its initial potential, the so-

called resting membrane potential. 

Based on these physiological dynamics, a new IAP model is developed using 

optimization methods. In optimization, an objective function is constructed, which 

contains all involved ion channels' dynamics. The objective function is composed of 

three independent Erlang probability density functions (PDF) and each PDF matches with 

the ion channel conductivity of different ions. Through iterative methods, nine unknown 

values in the objective function are generated, and these values are adjusted through 

validation and modification. The final IAP model with calculated values is well matched 

to several experimental results. 
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An IAP model is required in generating an Electromyogram (EMG). An EMG is 

computed by the summation of motor unit action potentials (MUAPs) and a MUAP can 

be calculated by the summation of the extracellular action potentials (EAPs) in one motor 

unit. An EAP from a muscle fiber is calculated by the multiplication of a weighted 

function and the transmembrane current. The weighted function is computed using the 

inverse distance between a possible measuring point and the muscle fiber location. Also, 

the transmembrane current can be calculated using the second derivative of the IAP. Due 

to the interconnected computations for the EMG, development of a precise and realistic 

IAP model is required, and the IAP model in this study satisfies these requirements. 

In addition to being the source in generating an EMG, the LAP model in this study has 

several advantages over other previous IAP models. First, the LAP model directly shows 

the separated ion channel conductance model in its equation. As previously explained, a 

typical IAP is generated by the dynamical changes of ion channel conductances. 

Therefore, the changes of ion channel conductances have been considered in designing 

the objective function during optimization. Depending on different values of «, the type 

of ion channel is determined which helps to classify which independent function in the 

IAP model represents what kind of ion channel conductance. By applying the maximum 

values of ion channel conductance from the experimental results, the dynamics of ion 

channel conductances are easily generated. Second, the IAP model can be used to 

examine muscle fiber diseases related to abnormal ion channel activity. Any abnormal 

changes in ion channel conductances result in an unusual IAP, and it is possible to 

investigate the major problems by examining independent ion channel conductances. A 

third advantage is the realistic amplitudes and time duration of the IAP model in this 
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study. As proved by comparison with several experimental results, the IAP model in this 

study shows a good matching shape to the real IAP. This implies that the IAP model in 

this study can be free from the problem of unrealistic LAP generation. It has never been 

overcome by popular IAP models that are still utilized in EMG generation. The last 

advantage is the ease of implementation for the generation of the transmembrane current. 

As explained, the transmembrane current can be calculated by the second derivative of 

the IAP model. Therefore, the function of an IAP model needs to be continuous in time to 

be differentiated twice. Notably, the D-D LAP model is unable to be used in calculating 

the transmembrane current because of its functional discontinuity. The IAP model in this 

study is developed with continuous functions, and it can be easily implemented to 

generate the transmembrane current. Overall, the IAP model in this study shows better 

results in the aspects of being a realistic model and supporting practical applications than 

other previous IAP models. 

7.2 FUTURE WORKS 

By developing a new IAP model based on ion channel dynamics, an advanced and 

accurate IAP model is presented in this study. In particular, an IAP model with 

meaningful components is designed. However, some components in the developed IAP 

model are still unknown. For example, the number of closed states in the ion channel is 

not as clear as other research assumes. Based on the ion channel structures, the possible 

closed channel states may be presumed, but an exact number of channel states is not 

known. 
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The IAP model in this study also has a limitation in explaining the meaning of y, 

which is simply used to adjust the IAP model to the reference data. If all other values in 

the IAP model are correctly assigned and optimized, the values in y also represent a 

meaningful component. Instead of directly using the values in y, however, the maximum 

conductance values were obtained from the results of an experiment that measured the 

ion channel conductances. This might be related to the uniqueness of a solution in 

optimization. Even though the uniqueness was partially resolved by applying different 

optimization methods, the obtained y suggests that more research is necessary in the 

future. 
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