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ABSTRACT 

INTERCONNECTIONS OF NONLINEAR SYSTEMS 

DRIVEN BY L2-lTO STOCHASTIC PROCESSES 

Luis A. Duffaut Espinosa 
Old Dominion University, 2009 
Director: Dr. W. Steven Gray 

Fliess operators have been an object of study in connection with nonlinear systems 

acting on deterministic inputs since the early 1970's. They describe a broad class of 

nonlinear input-output maps using a type of functional series expansion, but in most 

applications, a system's inputs have noise components. In such circumstances, new 

mathematical machinery is needed to properly describe the input-output map via 

the Chen-Fliess algebraic formalism. In this dissertation, a class of L2-Ito stochastic 

processes is introduced specifically for this purpose. Then, an extension of the Fliess 

operator theory is presented and sufficient conditions are given under which these 

operators are convergent in the mean-square sense. Next, three types of system 

interconnections are considered in this context: the parallel, product and cascade 

connections. This is done by first introducing the notion of a formal Fliess oper

ator driven by a formal stochastic process. Then the generating series induced by 

each interconnection is derived. Finally, sufficient conditions are given under which 

the generating series of each composite system is convergent. This allows one to 

determine when an interconnection of Fliess operators driven by a class of L2-Ito 

stochastic processes is well-defined. 
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CHAPTER I 

INTRODUCTION 

The main goal of this dissertation is to describe the interconnection of nonlinear 

input-output systems that are driven by stochastic inputs. For this purpose, a math

ematical representation of an input-output system is introduced using the theory of 

formal power series. It is presented as a stochastic extension of the known theory 

for Fliess operators [17,20]. At the same time, one must ensure that there exists 

some compatibility between the inputs and outputs of these systems in order to per

mit their interconnection. The main contributions of this dissertation are sufficient 

conditions for the well definedness of nonlinear input-output systems accepting L2-

Ito stochastic processes as inputs and a description of the generating series for the 

parallel, product and cascade interconnections. 

This chapter is organized as follows. Section 1.1 provides the background and 

motivation for the dissertation. Section 1.2 states the primary research problems 

addressed herein. Finally, Section 1.3 outlines the basic structure of this dissertation. 

LI BACKGROUND A N D MOTIVATION 

Functional series expansions of nonlinear input-output operators have been uti

lized since the early 1900's in engineering, mathematics and physics. Among the 

more representative approaches are those of M. Fliess [16-21], V. Volterra [52,60] and 

This dissertation follows the style of the IEEE Transactions on Automatic Control for placement 
of the figure titles and the format of the bibliography. 
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N. Wiener [52,64]. In the early 1970's, the area of nonlinear control systems started 

to use noncommutative algebra. The theory of formal languages and automata em

ployed in computer science and linguistics found common ground with nonlinear real

ization and control theory through the work of Marcel-Paul Schiitzenberger, who in

troduced powerful new ideas like rationality into the context of noncommutative for

mal power series [53]. In the 1980's, M. Fliess introduced formal power series together 

with the path integrals of K. T. Chen to provide an algebraic description of functional 

expansions known as Chen-Fliess series [7,17]. From a deterministic point of view, op

erators constructed utilizing this formalism describe a large class of nonlinear input-

output systems. For example, any Volterra operator with analytic kernel functions 

can be described using a Chen-Fliess series. Specifically, let X = {XQ, X \ , ... ,xm} 

be an alphabet and X* be the free monoid comprised of all words over X (including 

the empty word 0) under the catenation product. A formal power series in X is 

any mapping of the form X* —>• Re, and the set of all such mappings will be de

noted by M.e((X)}. For each c E R£((X}), one can formally associate an m-input, 

^-output operator Fc in the following manner. Let p > 1 and a < b be given. For 

a measurable function u : [a, 6] —• Rm, define ||«||L = max{||uj||L : 1 < i < TO}, 

where \\ui\\L is the usual Lp-norm for a measurable real-valued function, Ui, de

fined on [a, b}. Let L™[a,b] denote the set of all measurable functions defined on 

[a, b] having a finite ||-||L -norm and B™(R)[a,b] := {u E L™[a,b] : \\u\\L < R}. 

With t0,T G M. fixed and T > 0, define recursively for each rj G X* the mapping 

E„ : LT[t0, t0 + T}-+ C[t0, t0 + T] by E% = 1, and 

t 

EXzr,>[u}{t) = j Ui{r)Enl[u}{r) dr, (1.1.1) 

to 
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where Xi G X, rj G X* and Uo = 1. Also, without loss of generality, it is assumed 

that to = 0. The input-output operator corresponding to c is then 

Fc[u](t)= ^ M ) £>](*) , (1.1.2) 

which is called a Fliess operator, and all (c, 77) is called a coefficient of c. Properties 

of Fliess operators have been widely studied. For example, their continuity, local 

convergence, global convergence, differentiability, analyticity and realizability have 

been characterized [17,19,20,29,31,61-63]. In the classical literature where these 

operators first appeared, it was normally assumed that there exist real numbers 

K,M >0 such that 

I(c, 77)I < KM^\rj\\, 

for all 77 G X*, where \z\ = max{|zi|, |^21, • • •, \zi\} when z G M.e, and |?7| denotes the 

number of symbols in 77 [17,19,20,57]. This growth condition on the coefficients of 

c ensures that there exist positive real numbers R and T such that for all piecewise 

continuous u with H^Hi^ < R the series (1.1.2) converges uniformly and absolutely 

on [to,̂ o + T\. Such a power series c is said to be locally convergent. More recently, 

Gray and Wang showed in [29] that 

m JJai (t\ 
\EM(t)\ <U^M> (L1-3) 

1=0 

where for each X{, Ui(t) = ft \ui(s)\ds, and Qj = I77I is the number of times the 

letter Xj appears in 77. This bound can be used to show that Fc[u] converges absolutely 

in [to, ex)) for u G LPie[to, 00) when c satisfies the growth condition 

I(c, 77)1 <KMM. 
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Series satisfying this condition are said to be globally convergent. Moreover, if c is 

locally convergent then (1.1.3) can be used to show that Fc[u] constitutes a well-

defined operator from B™(R)[to, t0 + T] into Bg(S)[to, t0 + T] for sufficiently small 

R,S,T > 0, where the numbers p, q € [l,oo] are conjugate exponents, i.e., 1/p + 

1/q = 1 with (1, oo) being a conjugate pair by convention. This also allows one to 

characterize the well-posedness of interconnections of Fliess operators defined on Lp 

spaces [28]. 

A convenient property of any Fliess operator is that its input-output behavior 

is completely determined by its generating series, independent of whether a state 

space representation is available. When a state space repalization exists for the 

system, a coordinate frame has been intrinsically assigned, and, therefore, the input-

output system may be localized to a coordinate neighborhood on the state manifold. 

This is not a necessary setting for the analysis of Fliess operators. The behavior 

(free of coordinate frames) of an input-output system restricted to a ball in an Lp-

space can be studied extensively using purely combinatoric/algebraic tools. It is also 

worth mentioning that these concepts are intimately related to differential geometric 

methods commonly used in nonlinear control theory [35]. 

In most applications, a system's inputs usually have noise components. In such 

circumstances, additional mathematical machinery is needed to properly describe an 

input-output map in the sense of Fliess. Several authors have formulated approaches 

under which stochastic processes are admissible inputs. One example is the series 

expansion of the solution of a stochastic differential equation, where iterated ltd 

and Stratonovich integrals play a central role [23,39]. H. Sussmann gave a detailed 

description of the situation using Lie series and showed that a particularly suitable 
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mathematical formulation involves the use of Stratonovich integrals because they 

obey the rules of ordinary differential calculus [56,59]. This is also supported by the 

transfer principle developed by P. Malliavin, where geometric constructions involving 

manifold-valued curves can be extended to manifold-valued processes by replacing 

ordinary calculus with Stratonovich stochastic calculus [12,44]. On the other hand, 

Ito integrals are useful for computing estimates of process moments [1,45,50,51]. 

Several approaches for systems driven by Wiener process inputs have been presented 

in [1,16,18,21,23,42]. It is easily verified, however, that the corresponding output 

process of a nonlinear input-output system is, in general, not a Wiener process. 

Hence, these approaches are not well suited for modeling interconnected systems. In 

this dissertation, a broader class of stochastic processes called L2-Itd processes are 

considered as possible input processes [8,39]. It is argued that this input class is 

more appropriate for practical applications. Then, stochastic versions of (1.1.1) and 

(1.1.2) will be defined in Chapter IV using Lebesgue and Stratonovich integrals. 

As a motivating example, consider an autonomous system modeled by the stochas

tic differential equation 

dz(t) = f(z(t)) dt + g(z(t)) dW(t), (1.1.4) 

where W is a standard Wiener process. Equation (1.1.4) in integral form is written 

as 

t t 

z(t) = z(0) + Jf(z(s)) ds + Jg(z{s)) dW(s), (1.1.5) 

0 0 

where f(z) and g(z) are suitably defined functions [39]. By Ito's differentiation rule, 



(1.1.5) can be written in Stratonovich form as 

t t 

z(t) = z(0) + J (j(z(a)) + 9-^-Yzg{z{s))) dS + j9{Z{S)) dW{s)- ( L L 6 ) 

0 V N, ' 0 

For a C2 function, F, the Stratonovich differential chain rule in integral form is 

t t 

F(z{t)) = F(z(Q)) + J (f(z(s))j-F(z(s))^ ds + j g{z(s))~F{z{s)) dW{s). 

0 0 

(1.1.7) 

From these equations, one can identify the Lie differentiation operators Lf = f(z)-j^ 

and Lg = g{z)-§^ so that (1.1.7) becomes 

t t 

F(z(t))=F(z{Q)) + j LfF(z(s)) ds+ £LgF{z{s)) dW{s). 

0 0 

Now, let F(z) in (1.1-7) be replaced by either / or g from (1.1.6) and substitute 

f(z(t)) and g(z(t)) back into (1.1.6). This yields 

t t 

z(t) = z(0) + f(z(0))Jds + g(z(0))^dW(s) 

0 0 

t s t s 

• J J Lff(z(r)) dr ds + J j Lgf(z(r)) dW(r) ds 

0 0 0 0 
t s t s 

£ f Lfg(z{r)) dr dW(s) + ££ Lgg(z{r)) dW{r) dW{s) 

0 0 0 0 

t t 

= z(0) + f(z{0))Jds + g{z{Q))jdW{s) + i?! (*(*)), 

0 0 

where R\(z(t)) contains all the integrals whose integrands do not depend on z(0). 

Continuing in this way produces the usual Peano-Baker formula [52, p. 95]. Since the 

integrals involved here have a similar nature as the iterated integral (1.1.1), define 

alphabets X = {XQ}, Y = {yo}, XY = X U Y and the iterated Lie derivatives 

+ 

+ 
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L9*0v = L9vL9*Q
 a n d L9yQv = L9r,L9y0>

 w h e r e &* = / , 9y0 = #> a n d V G ̂ * - Then, 

slightly abusing the notation in (1.1.5), one can write 

z(t) = z(0) + LgxQI(z(0))Exo[0](t) + LgyoI(z(0))Eyo[0}(t) 

+L9xQXoI(z(0))EXoXo{0)(t) + L9yQXQI(z(0))EyoXo[0](t) 

+L9xoyoI(z(0))EXoyo[0](t) + L9yovoI(z(0))Eyoyo{0](t) + Ra{z{t)), 

where I denotes the identity map and once again i?2(-z(i)) contains all the integrals 

whose integrands do not depend on z(Q). This produces the general series solution 

of the stochastic differential equation (1.1.4) 

z(t)= Yl L9r!I(z(0)) Ev[Q](t). (1.1.8) 
V€XY* 

Here, (/, g, I, z(0)) realizes the operator Fc driven by noise when (c, 77) = Lg l(z(0)), 

\/r] G XY*. This example is analogous to the one presented in [17,35] for deterministic 

inputs. It also suggests an extension of the Fliess operator theory to the case where 

the inputs are stochastic processes. Such a generalization also has an underlying 

noncommutative algebraic structure. M. Fliess observed from the work of R. Ree [49] 

that the multiplication of two deterministic iterated integrals can be described using 

the shuffle product. Thus, the set of generating series for Fliess operators forms a 

commutative M-algebra [17]. This shuffle algebra plays a key role in the theory of 

systems interconnections [13,25,28]. In the stochastic setting, an analogous algebraic 

structure needs to be proposed. Fortunately, Stratonovich iterated integrals induce 

a shuffle algebra, which is identical to that in the deterministic case since they obey 

the same rules of ordinary integral calculus [23]. 

Now, continuing with the previous example, suppose in equation (1.1.5) that 

f(z) = 0 and g(z) = z. A simple inductive procedure shows that the series coefficients 



in (1.1.8) are 

I 1 : VrjeY* 
(c,r]) = L9vI(z(0)) = ! (1.1.9) 

I 0 : otherwise. 

Therefore, using integration by parts, 

0 0 ft rt2 ^ W k ^ pt ft2 

#) = E f ••? dW(t1)-.-dW(tk) = Yl ,, = ew^. 

This shows that the series c can be associated with the well-defined random variable 

ew(t) for a n y gx e f j t > 0. On the other hand, if f(z) = 0 and g(z) = z2, it can be 

shown that 

{ \n\\ : VrjEY* 
(1.1.10) 

0 : otherwise. 

By the same argument 

0° ft l-ti °° -1 

*(*) = $ > ! $ •$ dWih) • • • dW(tk) = J2Wk^=i W(t)' 
fe=0 ^ ° ^ ° fc=0 ^ ' 

only if t < r = inf{i > 0 : |W(t) | < 1}. Thus, z(t) is a well-defined random 

variable only when t < r , where r is also a random variable. One of the objectives 

of this dissertation is to find conditions under which the generating series of a Fliess 

operator can be related to a well-defined random variable in the sense that it is the 

mean square limit of an infinite summation of random variables. Observe that the 

coefficients in (1.1.9) and (1.1.10) are upper bounded by 

|(c,77)| <KMM, V7]ey* , 

and 

\(c,V)\<KMM\r}\l, VT? <E Y", 

respectively, when K = 1 and M = 1. In the deterministic case, it is known that the 

former bound leads to the global convergence of a Fliess operator, while the latter 
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bound leads to local convergence [29]. In the stochastic case, another type of series is 

important in addition to the mentioned above. Consider the series c E M.((X}) such 

that for every word in X* the image under c is independent of the order of the letters 

in the word, i.e., (c,x inx in_1 •••xil) = (c,xla{n)xi<n_l) • • • xi(r(1)), where a denotes any 

permutation of { 1 , . . . , n — 1, n}. This type of series is called exchangeable. It was 

introduced by Fliess in [17]. Exchangeability introduces a degree of commutativity 

to a generating series. Fliess operators associated with exchangeable generating 

series can be written more compactly and conveniently. Specifically, the properties 

of globally convergent series will be exploited to obtain the global convergence of 

Fliess operators driven by L2-Ito processes, while the properties of locally convergent 

and exchangeable series will be used to obtain their local convergence. 

Interconnections of dynamical systems are found everywhere in applications. In 

Figure 1, the most elementary configurations: the parallel, product, cascade and 

feedback connections are presented. Characterizing the nature of these intercon

nections allows engineers to understand how to design system controllers so that a 

collection of subsystems can work together to achieve a common task. For linear 

systems, a complete treatment of their interconnection theory can be found in [36]. 

On the other hand, interconnections involving nonlinear systems are not well un

derstood. For example, it is known that the set of linear systems is closed under 

parallel (addition), cascade and feedback interconnections. That is, the composite 

system is another linear system. However, when nonlinear systems of a given class 

are interconnected, the composite system may fall into a different class of systems. 
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u *y y 

(a) Parallel connection (b) Product connection 

U > Fd h 
U > + 

y 

d H -

•^ 

(c) Cascade connection (d) Feedback connection 

Fig. 1: Elementary system interconnections. 

Consider as an example two bilinear state space systems 

m 

Zi(t) = AiZtty + ^NjjZityujjit), Zi(0) = zifi 

yi(t) = CiZi(t), 

where i = 1, 2 and Zj(£) G Kn; Uj,i{t) G R; £/j(i) G M ;̂ and Aj, iVĵ  and Q are matrices 

of appropriate dimensions. It can be easily verified that if they are interconnected 

in a cascade fashion, that is, if m = I and one feeds the outputs of one system into 

the inputs of the other, then one possible state space realization for the input-output 
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mapping u\ \—> y2 is 

m 

ii(t) = AlZl(t) + ^NjtlZl(t)ujA(t), zi(0) = zi,0 (1.1.11) 

m 

i2(t) = A2z2(t) + Y, NtfZtWdzxit))^ z2{0) = z2fi (1.1.12) 

2/2(i) = C2z2(t), (1.1.13) 

which is an affine-input nonlinear system, i.e., a system of the form 

771 

*(*) = /(*(*))+ X>(*(*)K-(t), (̂o) = ô 

j/(t) = &(*(*)), 

where / and <?j are vector fields defined in terms of local coordinates on a state space 

manifold, and h is the output function [35]. In this example, in particular, the g/s 

have quadratic polynomial components. 

From a Fliess operator point of view, the four elementary interconnections shown 

in Figure 1 were first studied by Ferfera in [13]. Ferfera's work described the gener

ating series of the four interconnections. Since his work only focused on interconnec

tion of Fliess operators with rational generating series, the convergence analysis was 

straightforward. On the other hand, Wang in [63] showed that the product connec

tion of two Fliess operators having arbitrary locally convergent generating series is 

another Fliess operator associated to a locally convergent generating series. Later, 

Gray and Li in [28] analyzed the cascade and feedback connections of Fliess opera

tors. They showed in particular that the set of local convergent Fliess operators is 

closed under the cascade connection. In summary, let Fc and Fj be two Fliess op

erators with generating series series c,d E M.{(X)), respectively. Then, the parallel, 



12 

U —> 

v - > " > .?2 " > 
^ ft JU 

Fig. 2: Cascade of input-output maps. 

product and cascade connection of Fc and Fd are described by 

Fc[u] + Fd[w] = Fc+d[u] 

Fe[u]'Fd[u] = FCind[u] 

Fc[Fd[u}] = Fco,[u] 

(1.1.14) 

(1.1.15) 

(1.1.16) 

where it is a deterministic input, and +, LU and o are addition, the shuffle product 

and the composition product, respectively [28]. No similar treatment, however, is 

available for Fliess operators driven by stochastic inputs. To illustrate the problems 

encountered in the interconnection of systems driven by stochastic processes, consider 

the cascade connection of an arbitrary input-output map F[yi,y2] and the input-

output map denned componentwise by 

j/i(*) = h{u)= f Ul{s)& u2(r)dW{r)ds 
Jo Jo 

Ut) = h{u)= i u2(s) f Ul(r)drdW(s), 
Jo Jo 

where u\ and u2 are suitable L2-bounded stochastic processes (see Figure 2). When 

dealing with stochastic processes, a desired property for system inputs is that they 
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are independent processes. In this setting, consider u\ and u2 to be mutually inde

pendent. However, the intermediate signals jji and y2 may be dependent processes 

since f\ and f2 depend at the same time upon u\ and u2. Thus, if the input-output 

system F is only defined for independent inputs then it cannot be driven by y\ and 

y2 since they are dependent of each other. From this point of view, the cascade 

connection presented in Figure 2 is not well-posed because the inputs and outputs 

are not compatible with each other in the sense that the outputs must preserve the 

properties, such as independence, established for the inputs. In order to provide 

a characterization similar to (1.1.14), (1.1.15) and (1.1.16) for the stochastic case, 

appropriate extensions of the series operations +, UJ and o need to be defined to 

properly describe each interconnection. Then, the following questions can be formu

lated: what conditions need to be imposed to obtain a well-defined stochastic process 

at the output of the interconnected system? Can each interconnecion of Fliess oper

ators be represented by a Fliess operator? If so, what is the nature of the generating 

series of the composite Fliess operator given that the component generating series 

are either globally convergent or locally convergent? 

1.2 P R O B L E M STATEMENT 

The main objectives of this dissertation are to: 

i. Define a class of L2-Ito stochastic processes that are admissible as inputs to a 

Fliess operator. 

ii. Define a Fliess operator over this input class and provide sufficient conditions 
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under which the operator converges to produce an output process that is well-

defined over a nonzero interval of time. 

Hi. Characterize the corresponding set of outputs, giving their main properties and 

describing in what sense there is compatibility between the input class and the 

output class. 

iv. Describe the generating series for parallel, product and cascade interconnections 

of two Fliess operators for formal input processes and over the class of L2-Ito 

input processes. 

v. Provide sufficient conditions under which convergence in some sense is preserved 

for such interconnected systems. 

1.3 DISSERTATION OUTLINE 

This dissertation is organized as follows. In Chapter II, the probabilistic frame

work is presented. After the preliminaries, three basic topics are considered: stochas

tic processes, the Ito and Stratonovich integrals and stopping times. 

In Chapter III, a basic introduction to formal power series is presented. The 

classes of rational and recognizable series are described in detail, and the equivalence 

between these two classes is set forth. Then a variety of formal power series products 

are defined. It is shown under certain assumptions that some of these products 

preserve rationality. Next, Ferfera's condition for the rationality of the composition 

product is presented as well as an extension of this condition in terms of the Hankel 

rank. 
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In Chapter IV, Fliess operators with stochastic input processes are considered. 

First, the relevant space of stochastic inputs is described. Then a formula for trans

forming Stratonovich iterated integrals into a sum of Ito integrals is developed, and 

Z/2-bounds for Stratonovich and Ito iterated integrals are determined. This yields 

sufficient conditions for both local and global convergence of Fliess operators over 

the class of stochastic inputs considered. Next, the shuffle algebra formed by the set 

of generating series of Fliess operators with stochastic inputs is presented and various 

examples of its utility are given. Finally, the relationship between Fliess operators 

driven by stochastic inputs and Chen series is described. 

In Chapter V, the interconnection of systems with stochastic inputs is addressed. 

In the first part of the chapter, a short summary of the deterministic case is pre

sented as a point of reference. In the next section, the notion of a formal Fliess 

operator is introduced in order to study the interconnection problem independent 

of convergence issues. This is followed by the characterization of the non-recursive 

interconnections using the addition, shuffle product and composition product. Then, 

the mean square convergence of the parallel and product connections is studied in 

for the global case, the local case and for exchangeable series. Finally, conditions for 

preserving rationality under the composition product are given. These latter condi

tions then play a central role in ensuring that the cascade of two systems driven by 

stochastic processes is convergent in the mean square sense. 

In Chapter VI, the main conclusions are summarized, and future research topics 

are given. 
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CHAPTER II 

PROBABILISTIC FRAMEWORK 

This chapter introduces all the necessary stochastic machinery for the remainder 

of this dissertation. First, the basic probabilistic setup is given, followed by the 

definition of a stochastic process. The intent is not to give a complete development 

of stochastic processes, but only the essential concepts, such as almost sure continuity, 

Martingales, stopping times, etc. Then, two basic stochastic integrals are presented, 

the Ito integral and the Stratonovich integral, together with their main properties. 

Finally, a section on stopping times is presented in order to facilitate the study of 

convergence over stochastic intervals of time undertaken in Chapter IV. It is worth 

mentioning that this chapter will serve as one of two pillars on which the new Fliess 

operator theory will rely. The majority of the concepts presented in this chapter 

have been taken from [2,8,46-48,54,55]. 

II. 1 PRELIMINARIES 

Definition II.1.1. Let Q be a non empty set and T a u-algebra on Q. A measurable 

space is defined by the pair (O, J7). 

The smallest <r-algebra containing all the open sets in R is denoted by <8(1R) and 

is called the Borel cr-algebra. The elements of 23(E) are called Borelians. 

Definition II.1.2. Let (f2, J7) be a measurable space. A probability measure over 

(O, F) is a function P : T —> K+ U {oo} such that 
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i. P(A) > 0 for all A G T. 

ii. P(n) = 1 and P(0) = 0. 

iii. For any disjoint sequence Ai,A2--- G T, 

( 0 0 \ OO 

n=l / n=l 

The triple (O, J7, P) defines a probability space. 

Definition II.1.3. A random variable, X, defined on (Q, T) is a real-valued func

tion X : fi —* R such that 

X~l{A) = {uen-. X{ui) G A} G ^ 

for any A G B(R). 

A random variable X defined on (f2,.F) is called ^-measurable, where Q is a 

<T-algebra, if 

X~\A) = {ueQ : X(LU) G A} G £ 

for any set A G B(M). Furthermore, a random variable X induces a cr-algebra, Tx-, 

defined as 

Tx = X-^BiR)) = {X~\B) : B G B(R)}, 

provided that X satisfies the following properties: 

i. X~\0) = 0 G Tx, 

ii. (X-1(B))C = X-1((B)C) eTx, where (B)c = R\B G B{R), 
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oo / oo \ oo 

iii. (J X-1 (Bi) = X-1(\jBi) and \J B{ G B(R). 
i=l \ i = l / z=l 

It is also clear that Tx is the smallest cr-algebra which contains all the sets 

X~\B), where B G B(R). 

There are several different senses in which random variables can be considered to 

be equivalent. 

Definition II.1.4. Let X and Y be two random variables on (O, J-,P). Then 

i. X and Y are equal if X{UJ) = Y(u>), V u G f2; 

ii. X and V are almost surely equal if P(u G Q, X(u) = Y(cu)) = 1. 

iii. X and F are equal in distribution if P(X G F) = P{Y G F) for F e f . 

II.2 STOCHASTIC PROCESSES 

Definition II.2.1. Let T be a set of indexes. A stochastic process is a 

parametrized collection of random variables, X = {Xt}ter, defined on the proba

bility space (fi, J7, P), where each element of the collection takes values in K71, i.e., 

X : T x H ^ R " 

Generally, T can be any set, for instance, [0, oo), [a, b] with a < b < oo or a 

non negative set of integers. In this dissertation, T = [0, oo) or [0,T], T > 0. Note 

that for a fixed £ G T, Xj : fi —> Mn is an n-dimensional random variable. On the 

other hand, for a fixed w G O, Xw : T —> K" is a vector-valued function over T. 

This latter function of time is known as a path of the stochastic process X. For 
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simplicity of notation, the argument u> will normally be suppressed, i.e., Xt(u) = Xt 

andXUJ(t)=X(t). 

Given the temporal nature of a stochastic process, one can consider in some sense 

a past, a present and a future. Therefore, the concept of a filtration is used to 

represent changes on the set of events that can be measured due to an increase or 

decrease of information over time. 

Definition II.2.2. A filtration, F, is a non-decreasing family of u-algebras on a 

measurable space (Q, T), i.e., a family {Tt}t^T which satisfies Ts C Tt C T for 

0 < s<t. 

A common way to construct a a-algebras Tt is Tt = a ( [_} T 1. Moreover, given 

a process X = {Xt}teT defined on (Q.,T,P), the filtration Fx formed with the 

a-algebras generated by the random variables Xt, t 6 T, is known as the natural 

filtration of X, i.e., 

where Tx, is the cr-algebra generated by the stochastic process at time s. 

Definition II.2.3. A stochastic process X = {Xt}t^T is called adapted to the 

filtration F if for each t G T, Xt is a .^-measurable random variable. 

Naturally, every stochastic process is adapted to its natural filtration. Notions of 

equivalence between two stochastic processes are given next. 

Definition II.2.4. Let X = {Xt}t^r and Y = {Yt}t&T be two stochastic processes 

on (Q,T,P). Then 
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i. X and Y are equivalent if X(t, u) = Y(t, w), V t G T and VwGfi; 

ii. X and Y are stochastically equivalent if P{Xt = Yt) = 1, Vi G T; 

iii. X and y are wide sense stochastically equivalent if for all k = 1, 2 . . . and 

for all {t\,t2, • • • ,tk) C T the following is satisfied: 

P(Xh G F1,Xt2 EF2,...,Xtke Fk) = P(Ytl e FuYh G F 2 , . - A e Fk), 

for Fi e Tti, i = l,2,...,k; 

iv. X and Y are indistinguishable if almost all paths are equal, i.e., 

P(ioen,Xt = Yt, VteT) = l. 

For any of the equivalences defined above, if there exist a stochastic process Y equiv

alent t o X = {Xt}t£T, then Y is called a version of X. 

Definition II.2.5. A stochastic process X = {Xt}ter is said to be almost surely 

continuous if Xu : T —• M71 is continuous for all a> G fi\A/", where AA satisfies 

P{A/"} = 0. 

An interesting fact about equivalency is that, from a stochastic point of view, 

two processes can be equivalent while at the same time their paths can have different 

properties. For example, a discontinuous process can have a version which is almost 

sure continuous. Thus, one could utilize the continuous version rather than the 

original version with no probabilistic consequences. 

Theorem II.2.1. (Kolmogorov Continuity Theorem) Let X be a stochastic process. 

If there exists positive real numbers a, (3 and 7 such that 

E[|X(<) - X{s)\a] < 7 \t - s\1+f), 0 < s < £ < T < o o , 
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then there exists a continuous version of the process X. 

Definition II.2.6. A stochastic process X is said to be cadlag if (almost surely) it 

has sample paths which are right continuous with left limits. Similarly, a stochastic 

process X is said to be caglad if (almost surely) it has sample paths which are left 

continuous with right limits. 

Another property that is preserved through equivalence of stochastic processes is 

adaptability. 

Proposition II.2.1. Let X andY be two equivalent processes andF be a filtration 

of (Q, !F, P). If X is adapted to F, then Y is adapted to F as well 

Definition II.2.7. A process X defined on (Q, J7, P) is called a Martingale with 

respect to the filtration F if 

i. E[X] < oo; 

ii. X is adapted to F; 

hi. E[Xf|.Fs] = Xs a.s., where s,teT and 0 < s < t. 

Condition (i) is a technical requirement. Condition (ii) means that one can 

measure the actual value of X at each instant t G T. The last condition ensures that 

the expected value remains constant throughout time. 

II.2.1 The Wiener process 

In 1828 the Scottish botanist Robert Brown observed that when pollen particles 

are suspended over a liquid they make irregular and erratic movements even though 
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no external force is being applied [5]. This phenomenon was called Brownian mo

tion. The fact that there was not a physical or mathematical explanation for this 

phenomenon created some concern within the scientific comunity. The first accu

rate explanation of Brownian motion was advanced by Desaulx in 1877: "In my way 

of thinking the phenomenon is a result of thermal molecular motion in the liquid 

environment (of the particles)." This is indeed the case. A suspended particle is 

constantly and randomly bombarded from all sides by the molecules of the liquid. If 

the particle is very small, the collisions it experiences on one side will sometimes be 

stronger than those from the opposite side, causing it to jump. These small random 

jumps are what make up Brownian motion. It was not until 1905, when Einstein 

brought an accepted explanation of Brownian motion to the physics community, that 

an indirect confirmation of the existence of molecules was presented [11]. This type 

of movement was later described mathematically by Norbert Wiener. Therefore, it 

is called a Wiener process. 

Definition II.2.8. Let (£2, T, P) be a probability space and F = {Tt\ter a filtration 

of that space. An n-dimensional Wiener process is a stochastic process W = 

{Wt}teT, T = [0, oo) satisfying the following properties: 

i. W is adapted to the filtration F, and for 0 < s < t, the increment Wt — Ws is 

independent of Ts. 

ii. For s <t, the increment Wt — Ws ~ N(0, (t — s)InXn), where InXn is the n x n 

identity matrix. 

Hi. The processe starts at 0 almost surely, i.e., P-fVKo = 0} = 1. 
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iv. The sample paths of W = {Wt}ter a r e continuous in the sense of Definition 

II.2.5. 

Condition (Hi) is often relaxed by noting that if X = {Xt}t<=T satisfies (i), (ii) 

and (zu), then Y = X — X0 = {X(t) — X(0)}t&r is taken to be a Wiener process. 

In addition to the description of Brownian motion as a physical phenomenon and a 

Wiener process as a mathematical abstraction, some authors (for example, Nielsen 

[46]) refer to a Brownian process. The difference between a Brownian process and 

the Wiener process is that the latter is related to a particular filtration while the 

former is not. In other words, if the filtration is changed then the Brownian process 

remains the same, but the Wiener process may vary. 

Given that Wiener processes play a central role in subsequent sections, some of 

their key properties are presented next. 

T h e o r e m I I . 2 .2 . Let W be a Wiener process. Then Wt ~ N(0,t), E[WtW8] = 

min{£, s} and E [\Wt - Ws\
2] =\t-s\. 

T h e o r e m I I . 2 . 3 . Let W be a Wiener process with natural filtration F , then W is a 

Martingale respect to F . 

An important question about the Wiener process is whether or not most of the 

paths of a Wiener process are differentiable. This will be important when one tries to 

construct Stieltjes type integrals using a Wiener process as an integrator function. If a 

Wiener process were differentiable then it would be easy to define ^ . Unfortunately, 

the next theorem shows that the opposite is true. 

T h e o r e m I I .2 .4 . [2] Let W be a Wiener process defined, in the probability space 
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(Q,JP",P). Then 

P ( w g l l : Wu(t) is not differentiable at any t £ T) = 1. 

There is an easy heuristic argument behind this conclusion. First, recall that 

in Theorem II.2.2 it was stated that W(i) is a Gaussian random variable with zero 

mean and with variance t. Taking the ratio 

AW A W(t + h)- W{t) 
At ~ (t + h)-t 

it is easily observed that the numerator has variance h, and the denominator is the 

constant h. Thus, ^- has variance 1/h, which tends to infinity as h goes to 0. In 

other words, a path of W(t) on smaller and smaller scales becomes more and more 

erratic, and the slope ultimately diverges. 

II.3 ITO AND STRATONOVICH INTEGRALS 

The main objective of this section is to describe integration of a stochastic process 

with respect to a Wiener process, i.e., to define the integral 

f X(s)dW(s), t>0. 
Jo 

This type of integration serves as a way to create a process with an increment whose 

variance changes over time. Processes with this chararacteristic appear in many 

engineering and finance applications [46,47]. 

II.3.1 Linear and quadratic variation 

It is known that if a function has a bounded linear variation, then it can act as the 

integrator of a Stieltjes integral. Informally speaking, the linear variation measures 
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Fig. 3: Partition II = {0,t1:t2,T} of f{t) on [0,T]. 

the total amount of up's and down's made by a function over an interval of time. For 

example, the linear variation of a differentiable function f(t), as shown in Figure 3, 

for the partition II = {0, ii, £2, T} is 

LV(f)[0,T] 4 [/(£,) - /(0)] - [/(ta) - / ( t0 ] + [/(T) - /(t2)] 

= r f(t)dt+ [t\-f(t))dt+ [ f(t)dt 

\f(t)\ dt. 

Definition II.3.1. Let II = {t0 = 0,*i,. . . ,tn = T} be a partition of [0,T], T < 00. 

Then the linear variation of a (not necessarily differentiable) function / is defined 

as 

n-\ 

^^M-'fnEl/M-M)!, 
Iinii-o fc=0 

where ||II|| = max (tk+i — tk) is the measure of the partition II. 
k=0,...,n—1 
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Example II.3.1. Suppose that / is differentiable. Using the mean value theorem, 

there exists a time t*k 6 (ifc, *&+i] such that 

f(tk+1) - f(tk) = f'(t*k)(tk+1 -tk). 

Thus, 

n—1 ra—1 

fc=0 fc=0 

and therefore 

LT/(/)[0,T] = hm E l/'(**)l (**+i - **) = T |/'(*)| 
11XX11—•U Id 

dt. 

D 

There exist functions whose linear variation is unbounded (see Figure 4) [40]. In 

this situation, the quadratic variation of the function can still be finite. 

Definition II.3.2. The quadratic variation of a function / : [0, T] —» K is defined 

as 

ra-l 

( / ) ^ l = lin iKoS l / ( t fe+l)_/ ( t fc) l' 
fc=0 

The quadratic covariation of two functions / and g over [0, T] is defined as 

7 1 - 1 

^ > [ 0 , T ] = lim V (/fo+0 " f(tk))(9(tw) - g(tk)). (11.3.1) 
" l|-> fc=o 

Two important properties of the quadratic covariation as a function of time are that 

it has bounded variation and satisfies 

</' 9)[Q,T] = 1 ( ( / + #)[0,T] - ( / - S>[0,T] 

This is called the polarization identity. 
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X 

Fig. 4: Unbounded linear variation function f{x) = sin(l/x). 

Example II.3.2. Suppose that / has a continuous derivative. Then 

n—\ n—\ 

fc=0 fc=0 

' n - 1 

< [T,(f?(ti)(tk+i-tk)\\\u\ 
,k=0 

Taking limits, 

( / W] ^ l|n^0 

' 7 1 - 1 

>fc = 0 
D/')2to)(Wi-t*)))l|n 

E(/')2(^)(4+i-tfc)) 
fc=0 

= lim llnll / | / ' ( t ) | 2 ^ 

= lim llnll lim 
||ni|-oM "iinii-o 

= 0. 

The last step above used the fact that f'(x) is continuous, which ensures that 

fa\f(t)\2dt is finite. • 
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In ordinary calculus, integrable functions are exactly equivalent to those functions 

whose linear variation is bounded. A disadvantage of Wiener processes is that they 

are nowhere differentiable; as a consequence, the mean value theorem does not apply. 

However, if their linear variation is finite, then a Stieltjes integral can be constructed. 

Theorem II.3.1. Let W be a Wiener process. The quadratic variation of W over 

[Q,T] is 

W[o,r] = T-

Example II.3.3. Suppose that the Wiener process W is a function of bounded 

variation on [0, T]. It then follows that 

ra-l 

£iw(tfc+1)-w(;fc))i. 
fc=0 

Since W is a.s. continuous on [0,T], it is necessarily a.s. uniformly continuous on 

[0,T]. Therefore, 

max \W{tk+1) - W(tk))\ - • 0 as ||II|| -» 0, 
0<k<n—1 

from which it follows that 

n - 1 

This contradicts Theorem II.3.1, and thus LV(W)[ojt\ = oo. rj 

This example shows that a Stieltjes type integral cannot be constructed if a 

Wiener process acts as an integrator. However, using the fact that a Wiener process 

has finite quadratic variation, an approximation procedure may be used to define a 

stochastic integral in terms of a Wiener process. This procedure is a density argument 

y2\W(tk+1)-W(tk))\
2< max \W(tk+1)-W(tk))\ 

fc=0 
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similar to that used for defining Lebesgue integrals, except that all the limits involved 

are taken in the mean-square sense. 

Before constructing an integral for the Wiener process, the necessary setting is 

introduced. Consider the probability space (Cl,?7, P), the Wiener process W, the 

natural filtration F of W and the process X adapted to F, which is Tt x 23([0,im

measurable for any fixed t > 0. 

Definition II.3.3. The R-vector space formed by all square integrable random vari

ables is denoted by L2(n,JF, P), or, in abbreviated form, L2(P), where square inte-

grability of X means 

E[|X|2] <oo. 

Theorem II.3.2. The space L2(P) with norm ||-||L2(p) = y E [|-| ] is a complete 

normed space, i.e., a Banach space. 

In a similar manner, consider the set of all square integrable stochastic processes 

defined on the probability space ( f l x T , P , F ® A) under the measure P <S> A. V is 

known as the predictable er-algebra, i.e., the er-algebra generated by sets of the form 

As x (s,t\ and A0 x {0}, where {0 < s < t < T}, As G Fs, and A0 £ TQ. 

Definition II.3.4. The M-vector space formed by all square integrable stochastic 

processes is denoted by L2(ft x [0, T],V,P<8> \), or, in abbreviated form, L2(P ® A), 

where square integrability of the stochastic process X means 

E [T\xt 
Jo 

rT 

H\ dt 
'0 

< CO. 

Theorem II.3.3. The space L2(P <8> A) with the norm ||-|IL2(P(8IA)
 = \r® io I'l dt 

is a Banach space. 
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The construction of the integral for a Wiener process, referred to as an ltd integral, 

is outlined in three steps. 

Step 1: The ltd integral for simple processes 

Definition II.3.5. Let IT = {to,ti,... ,tk-i,tk} be a partition of [0,T], T < oo. A 

simple process is a stochastic process X that can be expressed as 

fc-i 

3=0 

where Xj is a square integrable random variable, Tt -measurable, and l[t-,t-+1) is the 

indicator function for the interval [tj,tj+i). 

Note that a simple process is adapted, square integrable and has cadlag (right-

continuous with left limits everywhere) paths. It is not difficult to show that the set 

of simple processes forms a real vector space, denoted here by 7{Q. 

Definition II.3.6. The Ito integral I : Hg -* L2(P) is defined as 

I(X)= f X{s)m(8)^Y/X(tj){W{tj+1)-W{tj)). 

Theorem II.3.4. (Basic properties) Let X,Y ETCl and k be a real number. Then 

i. (Linearity): [ (X(s) + kY(s)) dW(s) = f X(s)dW(s) + k f Y{s) dW(s) 
Jo Jo Jo 

ii. (Zero Expectation): E 

in. (Isometry): 

E ( [ X{s)dW{s) 

X{s)dW{s) 
uo 

= 0 

T 
Y(s)dW{s] E X{s)Y{s)ds 
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Note that if X = Y a.s., then this identity reduces to 

Jo 
E 

T x 2" 

X(s) dW{s) = E s) ds (II.3.2) 

In terms of the norms defined previously, identity (II.3.2) is equivalent to 

IIWII L*(P) \x\ L2(P®\) • 

Step 2: Extension via approximations 

Definition II.3.7. Define Ti2 as the subset of L2(P® A) consisting of all measurable 

and adapted stochastic processes that satisfy 

E \X(s)\2ds < oo. 

Clearly H2
0 C Ti2 C L2{P ® A). 

Theorem II.3.5. Til is dense in Ti2, i.e., for any X G TC2 there exists a family of 

processes in Til, {Xn}n>o> such that lim ||Xn — X\\L2fp^x) ~ 0-

Theorem II.3.6. Let X G Ti? and {Xn}n>0 be a sequence of processes in Til that 

converges to X, i.e., lim \\Xn — X\L ,p8A> —• 0. Then, the sequence of integrals 

I(Xn) = / Xn(s) dW{s), n > 0, is a Cauchy sequence in the complete space L2(P), 
Jo 

and the limit is independent of the sequence of approximating simple processes. 

Definition II.3.8. Let W be a Wiener process and X G Ti2. The Ito integral of 

X is defined as 

rp rp 

I(X) = f X{s) dW{s) 4 lim I Xn{s) dW(s), 
Jo "-*00 Jo 
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where the limit is taken in the L2(P) sense, and {Xn}n>0 is a sequence in 0% such 

that 

lim E 
71—»00 

f (X(s)~Xn{s))2ds = 0 . 
Jo 

It is important to mention that an additional extension of the Ito integral con

cept is possible. This extension allows one to integrate processes that are adapted, 

measurable, and satisfy 

P l u e O : J X2{s)ds < oo, Vt > 0 J = 1. 

The set of these processes is denoted by C2
LOC(P). This generalization will not be 

needed in this dissertation. Note that the Ito integral 

I : H2-^L2{P) 

X ^ I(X) = I X(s)dW(s) 
Jo 

has been defined as an isometric linear extension of the Ito integral on HQ. Thus, 

the properties of the Ito integral for simple processes are also valid for the integral 

of processes in 7i2. 

Theorem II.3.7. The integral operator I :H2 —> L2(P) satisfies: 

i. (Linearity): [ (X{s) + kY(s)) dW(s) = f X(s) dW{s) + k f Y(s) dW{s) 
Jo Jo Jo 

ii. (Zero Expectation): E X(s)dW(s) 

Hi. (Isometry): E 

o 

T v 2" 

X{s)dW(s) = E / X2(s)ds 
Jo 

HereX,Y £li2 and k 6 l . 
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It is clear that if X E TC2 and IQXA is the indicator function for the measurable 

set $1 x A, where A E B(T), then the product XtnxA £ H2. This allows one to 

define the Ito integral over subsets of T. 

Definition II.3.9. Let A C B(T). The I to integral o f l e H 2 over A is 

f X(s) dW(s) 4 I X{s)UxAdW{s). 
J A JT 

Step 3: The I to integral as a stochastic process 

The possibility of integrating over any subset of B{T) allows one to introduce the 

notion of a stochastic process generated by Ito integrals. Indeed, for each t E T, 

the Ito integral I(X)t = fQX(s)dW(s) = JQ -X"(s)lnx[o,t] dW(s) is ^-measurable. 

Naturally, I(X) t is now parametrized by t £ T. Thus, this family constitutes a 

natural choice to define the process {I(X)t}teT induced by X. However, the Ito 

integral J*X(s)dW{s) is a random variable on L2(P), so I(X)t can be specified 

arbitrarily for a set At £ T with P(At) = 0. In other words, I(X)t is ambiguous 

on a null set At. If there are countable null sets At, then there is no problem since 

the measure of a countable union of measure zero sets is again zero. But [0, T] is 

an uncountable set, and the union of all At over t G [0, T] might well be all of Q. 

Then, the construction could be ambiguous for some u E f2. The next result solves 

the problem. 

Theorem II.3.8. If X E H2, then there exists a continuous process X' : O x T —> M. 

such that 

ptujEfl: X't{uj) = I X(s) dWs) = 1. 
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Proof: Given that Til is dense in Ti2, one can take a sequence {Xn}n>0 E Til 

approximating X. For each t E T, Xnl[0)i] E Til, and, therefore, the integral 

/„' Xn(s) dV7(s) = fTXn(s)l[0tt] dW{s) E L2(P) is well defined on Q. For each n, the 

process Xn does not have the ambiguity described in the previous paragraph. Hence, 

it is possible to define the sequence {X'tn}n>o as 

X'ttn= f Xn(s)dW(s). 
Jo 

More explicitly, for U <t < ti+i, 

3-1 

x^^r^oww-w^))-
i=0 

Now, from the Wiener process properties, each X'tn is a .^-adapted continuous Mar

tingale. Applying the isometry property and Doob's maximal inequality [8] for n > m 

P suplLXL -X' II > e < 
r 

1 
E \Y' — Y' I 

1 
< 2 ||A„ ^m|lz,2(p<g,A) 

Since {X„}n > 0 is convergent in 7Y2, it is a Cauchy sequence. Thus, one can consider 

an increasing subsequence {nk}k>o such that ||Xnfc+1 — X„J|L ,P„A1 < 2~3fc, for a 

sufficiently large nk. If e = 2~k then 

P [ sup X' — X' >2" f c j < 2~fc, fc = l , 2 , . . . 

Note that X f̂cli 2 fe < co, and by the Borel-Cantelli Lemma, there exist a set Q0 ^ ^ 

with P(LO E QQ) = 1 a n ( i a random variable Y such that y(a>) < oo V UJ E VLQ. If 

u E O0, then sup r X'tnk+i(u) - X'^u) 

follows that 

> 2 k for a finite number of fc's. It then 

sup 
r 

* U + » - * £ n » <2" f c V k>Y{u) 
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This indicates that {X't {UJ)}, for any a; G f20, is a Cauchy sequence under the 

supremum norm in C(T). Since this space is complete, the sequence {Xtink(tu)} is 

convergent for each u G O0 to a continuous function, namely X't{ui). 

Concerning the stochastic equivalence claim, note that Xnk\^t] ~^ ^l[o,t] G 

Li{P <8> A) as fc —> oo. By the isometry property, JTXnk(s)t[o<t\dW(s) —> 

fTX(s)t[oit] dW(s) G L2(P). Finally, by the uniqueness of the limit, 

P (x{ = J X(s)dWs] = 1, 

which concludes the proof. • 

The process X' will be considered the integral process induced by the process X. 

Some properties of this integral process are presented next. 

Theorem II.3.9. Let X G 7i2. The integral process 

X'(t) = f X(s) dW{s) 
Jo 

is adapted to F, which is the natural filtration of the Wiener process W. 

Hereafter the filtration under consideration will always be the one generated by 

the Wiener process W. 

Theorem II.3.10. The quadratic variation of X' = I(X) over [0,t] is 

<IPO>[o,t]= f X\s)ds. 
Jo 

Theorem II.3.11. (Martingale property) Let X ETC2. The integral process induced 

by X is a Martingale process with respect to the filtration F, i.e. 

E(I(X)t|J-"s) = I{X)S almost surely, where s,t G T and 0 < s < t. 
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It is also interesting to consider the converse claim, i.e., under what circumstances 

can a Martingale be written as an ltd integral?. The next theorem presents one of 

the most important results in Martingale theory and explains why Martingales play 

a central role in Ito stochastic calculus. 

Theorem II.3.12. (The Martingale representation theorem) Suppose Y is a Mar

tingale with respect to the filtration F and that Yt £ L2(P) for allt > 0. Then there 

exists a unique adapted stochastic process X £ 7i2 such that a.s. 

Y(t) = E[y(0)] + I X{s) dW{s), for all t > 0. 
Jo 

Corollary II.3.1. LetY be a Martingale with respect to the filtration F. /f (V)r0 £i = 

0 for all t <E [0,T], then a.s. Y = 0. 

Proof: From Theorem II.3.12, one can express the process Y as 

Y(t)=E[Y0}+ [ X(s)dW{s). 
Jo 

Calculating the quadratic variation of Y over [0,t], it then follows that 

0 

= [ X2(s)ds. 
Jo 

Observe that this is a non-decreasing function. It is also known that for Lebesgue 

integrals, if fQ \f(s)\ ds = 0, then a.s. / = 0. By hypothesis, 

(Y)m= ltX2(s)ds^0, 
Jo 

which implies that a.s. X = 0. Therefore, Y can only be the zero Martingale. • 
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II.3.2 T h e Stratonovich integral 

The Ito integral was first defined for simple processes as 

n - l 

i(x)t = Y,x(tk)mtk+i)-w(tk)), 
fc=0 

where there is an intrinsically defined partition of the interval [0,t], i.e., 0 = £i < 

t2 < • • • < tn-\ < tn = t, and tl = tk for each subinterval [tk,tk+i). Then by a 

density argument the definition was extended for processes in 7i2. Suppose now that 

the simple processes are slightly modified, i.e., rather than considering t*k = tk one 

considers t*k = Xtk + (1 — A)tfc+i with A G [0,1]. Then, applying the same density 

argument, the resulting integral for A ̂  0 is not equivalent to the Ito integral. 

Example II .3.4. Calculate JjJ W{s) dW(s) for A = 0 and \. 

i. A = 0 (Ito integral) 

First, calculate the partial sums 

n - l 

fe=0 

= \ E (̂ fo+O - w^)) - \ £ (w(tk+1) - w(tk)f 
fc=0 fc=0 

= \ (W\T) - W2(0)) - \ Y^ (W(tk+1) - W(tk)f . 
fc=0 

Then, the mean-square limit of Sn converges to 

J^w(s)aw(s)=l-w\t)-l-t. 

u. A - i 
2 



38 

Similarly, 

n - l 

Sn = ^ f ( ^ ) ( f ( t W ) - % ) ) . 
k=0 ^ ' 

By the continuity of the Wiener process, Sn can be replaced by 

s, = g (w^nw^ {w{tM) _ w{h)) 
k=0 

n - l 

l E (^2(^) - ^e*)) 2 
fe=0 

Thus, the mean-square limit of S'n gives 

/"* 1 

/ W(s)cW(s) = -W 2 ( i ) . 

In general, for any A G [0,1] 

J*W(s)dW(s)=1-W2(t)+(\-1-y. 
D 

The advantage of using A = 0 is that the resulting integral is* adapted, and the 

induced integral process is a Martingale process. This is not true for any other value 

of A. If A = | , the extra term obtained from Ito integration disappears; therefore, 

it resembles Stieltjes integration. This is known as the Stratonovich integral This 

integral can also be defined in terms of the Ito integral. 

Definition II.3.10. The Stratonovich integral of X £ H2 is defined as 

t 

S(X) = j£' X(s) dW(s) 4 J X(s) dW{s) + \ (X, W)m , (II.3.3) 

o 

where (X, W)roti is the quadratic covariation defined in (II.3.1). 
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Observe that from the Ito integral and quadratic covariation definitions, the def

inition of the Stratonovich integral is equivalent to the following limit 

S(X) = lim ] T ( * & + * ) + *(**» mtk+1) - W(tk)), (II.3.4) 
n—>oo ' * 2 

fc=0 

where the limit is taken in the L2(P) sense. If in addition the regularity of the 

integrand and the continuity of W are utilized, then (II.3.4) is also equivalen to 

7 1 - 1 

S(X) = lim £ x ff±^±) {W(tk+1) - W(tk)), 
n—>oo • i — ' V Z I 

which is similar to the Ito integral definition with the difference that now the limit 

is taken on the processes defined using the middle point, k+]^ k, of the time interval 

[ife,tfc+i] rather than its left extreme t^. 

Corollary II.3.2. Consider Y e H2 such that {Y,W)rQt, < oo and a Lebesgue 

integrable function X. If 

£ Y{s)dW{s)= f X{s)ds, 
Jo Jo 

then a.s. Y = X = 0. 

Proof: Since f0X(s)ds has bounded variation, then (f0X(s)ds)Q = 0. Using 

Definition II.3.10 

(£Y(s)dW(s)) =([ Y(s)dW(s)) +(UY,W)[0\ =0. 
VO / [0,t] \J0 I [o,t] \ Z / [0,t] 

> ^ ' 
0 

Now, by Corollary II.3.1, Y = 0 a.s. This implies that [QX(s)ds = 0 a.s. Thus, 

Y — X — 0 a.s. as claimed. • 

At first glance, the Ito integral seems enough to represent a variety of stochastic 

processes. But, the extra terms appearing when the Ito integral is computed cannot 
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be expressed as such. For example, 

^W{s)dW{s) = \w\t)-\t, 

or equivalently, 

W2{t) =t+ [ 2W{s)dW(s)= f lds+ I 2W(s)dW(s), {11.3.5) 

Jo Jo Jo 

where t has no representation as an Ito integral, and W2 is not a Martingale. Al

though Theorem II.3.12 cannot be applied to the process W2, it can be represented 

by a sum of a Lebesgue and an Ito integral. In general, a large number of interesting 

and important phenomena can be described by combining Lebesgue integrals and Ito 

integrals. 

Definition II.3.11. An Ito process is a stochastic process on (12, J7, P) that can 

be written as 

X{t)=X(0)+ [ a(s)ds+ [ b(s)dW{s), 
Jo Jo 

where a is Lebesgue integrable, b G H.2, X(0) is a real number and t G T. These 

processes can be represented in differential form as 

dX(t) = a(t)dt + b(t)dW{t). 

In addition, if a G H.2, the process X will be called an L2-Ito process, and the set 

of all L2-Ito processes will be denoted by <?. 

Note that at t = 0 there is no information accumulated for X, i.e., the trivial 

cr-algebra J-Q = {0, Q} defines the past information of X. This is the reason why 

X(0) is assumed to be a real number. Thus, all the paths of X start at the specified 



41 

value X(0) (see [54]). Moreover, the Lebesgue integral component of an Ito process 

satisfies the following theorem. 

Theorem II.3.13. [46] If a G L^fi x [0,T\,V, P <8> A) then the process 

X(t) = I a{s)ds 
Jo 

is continuous and adapted. 

Observe that from Theorems II.3.8 and II.3.13 one can conclude that every Ito process 

has a.s. continuous paths and is adapted. 

Example II.3.5. Let X be an L2-U6 process with Lebesgue integrand a and Ito 

integrand b. The Stratonovich integral of X is 

f X(8)dW{a) = J^X{s)dW{s)+1-{X,W)[Qfi 

= [ X{s) dW{s) + [ h(s) ds 
Jo Jo * 

Thus, the Stratonovich integral of an Z^Tto process is always well-defined and is an 

L2-Ito process since b Eli.2. • 

In stochastic calculus, Ito's formula for functions of Ito processes is the analogue 

of the chain rule in ordinary calculus. 

Theorem II.3.14. (Ito's formula) Let X be the Ito process dX(t) = a{t)dt + 

b(t)dW(t) and consider g(x,t) G C2([0, oo) x E). Then, Y(t) = g(X(t),t) is an 

ltd process and satisfies 

dY(t) = ^(X(t), t) dt + ^(X(t),t) dX{t) + \^2{X{t),t)(dX{t))\ 
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In general, since dtdt = dtdW(t) = dW(t)dt = 0 and {dW(t)f = dt, it follows that 

dY{t) = (§(*(*),*) + g(X(t),£)a(i) + I0(x(t),t)^(o) dt 

+^L(X(t),t)b(t)dW(t). 

II .4 S T O P P I N G T I M E S 

In this section, the book by Protter [48] has been used as the main reference. 

Definit ion II .4 .1 . Let F = {J-t}teT be a filtration with T = [0, oo). A random 

variable r : R —> [0, oo) is a s topping t ime with respect to F if the event {r < t) G 

.Fj for every 0 < t < oo. 

The left and right limits of a filtration can be defined for any time, t, as 

s>t \s<t J 

For T = [0, T], if i = T, it is convenient to set ,F f+ = J r or, if t = 0, Jr
t_ = TQ. 

It is easy to verify that J-s C ^ r
s + C Jr

i_ C ^"t for all times s < t. Furthermore, 

{Ft+}t>o and {^t-}t>o are themselves filtrations. A filtration is said to be right-

continuous if Tt — Ft+ for every t, so, in particular, {Jrt+}t>o is always the smallest 

right-continuous filtration larger than {J-t]t>o- Hereafter, all filtrations under consid

eration will be right-continuous. One important consequence of the right continuity 

of a filtration is given in the following theorem. 

T h e o r e m II .4 .1 . The event {r < t} G Tt, 0 < t < oo, if and only if r is a stopping 

time. 
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Proof: Since {r < t} = f] {r < s}, for any e > 0, one has {r < t} G f) JT, = J"t. 

So r is a stopping time. Conversely, assume that r is a stopping time. Then, it 

satisfies {r < t} = (J {r < t — e}, and {r < £ — e} G JS-e- Hence {T < t} £ Tt- • 
£>e>0 

Definition II.4.2. Let X be a stochastic process and let D be a Borel set in M. 

Define r(u) = inf{t > 0 : Xt G £)}. Then r is called the hitting time of D for X. 

Theorem II.4.2. Let X be an adapted cddldg stochastic process, and let D be either 

an open or closed set. Then the hitting time, r, of D is a stopping time. 

Proof: Let D be an open set. By Theorem II.4.1, it suffices to show that {r < t] G 

J=u 0 < t < oo. But 

{r<t}= [J {XSED}, 
seQn[o,i) 

because D is open and X has right continuous paths. Given {Xs G D} = X^(D) G 

^"s, the result follows. Next, assume that D is a closed set. Define An = {x : 

d(x, D) < 1/n}, where d(x, D) denotes the distance from x to D. Then An is an 

open set, and the event 

{r < t} = p| |J {Xs G AJ G ^ t. 
«= i seQnfo.t) r sr-

Thus, r is a stopping time. 

Example II.4.1. Consider a continuous stochastic process X. A special case of a 

hitting time is r = inf{£ > 0 : Xt = R}, R G M. It is usually called the first passage 

time for the barrier R. n 



44 

Example II.4.2. The random variable 

K = sup{£ > 0 : Xt G D}, 

is the last time that Xt hits D. In general, it is not a stopping time. The heuristic 

reason is that the event {K < t} depends upon the entire future of the process and, 

thus, would not in general be Tt-measurable. Q 

Definition II.4.3. Let (O, J7) be a measurable space. A stopped cr-algebra, TT, 

is the set of events A G T for which 

A n {r < t) G Tu t e l . 

Theorem II.4.3. Let F be a filtration. If r is a stopping time, then r is TT-

mesurable. 

Proof: One needs to prove that {r < s} e TT for all s. Let t be arbitrary. Since r 

is a stopping time then 

{r < s} n {r < t] = {r < s A t} G ^ s A t C ^ t . 

Thus {r < s} G J-T from the definition of TT. Hence, r is J^ measurable. • 

Lemma II.4.1. Let r and a be stopping times. The random variable r A a is also a 

stopping time. 

Proof: Observe that {r A a < t} = {r < t} \J{a < t] G Tt- Then r A a is a stopping 

time. • 

Theorem II.4.4. Let r and a be stopping times. If r{uS) < O-{LO) for all u> G fi, then 

•Jf V_ J (J • 
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Proof: Observe that Af]{r < t} = (Af]{r < t}) f"\{a < t} e Tt. This implies that 

TT C Ta. m 

Definition II.4.4. Let X be a stochastic process on T, and let r be a stopping time. 

A stopped or truncated process is any process of the form 

XT{t,u) = X(r{cu) At,u)= X(t,co)t{t<T} + X(r(u}),uj)l{t>Th 

where the random variable XT(u>) = X(r(u>),u) is called a stopped random variable. 

Observe that if the stopped process XT(t, ui) is restricted to the stochastic interval 

[0, r ] = {(£, UJ) E [0, oo) x u : 0 < t < r(u)}, 

then XT(t,u)) = X(t,u)t^0iT^. Usually, a path of this process is denoted simply by 

X ( t A r ) . 

Theorem II.4.5. Let X 6 TC2 and r be a stopping time. Define the stopped random 

variable YT = JQ
r X(s) dW(s) = £ X(S)1 [ 0 , T ] (S ) dW(s). Then 

ptAT ft 

YT(t) = Y(t A r) = / X(s) dW{s) = / X(s)l[0,T](s) dW{s). 
Jo Jo 

The proof of this theorem is not trivial. A nice treatment can be found in [50, 55]. 

A direct application of the previous theorem gives a similar result for Stratonovich 

integrals. 

Corollary II.4.1. Let X(t) = £ v(s) dW(s), where v is an L2-It6 process. Then, 

rtAT 

the stopped random process YT — <i X(s) dW(s) satisfies 

YT{t)=i X(s)t[0,T](s)dW(s). 
Jo 
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Proof: Since X can be writen as 

X(t)= f v(s)dW(s)+ I ^ds, 
Jo Jo ^ 

it follows, by direct application of Theorem II.4.5, that 

X(tArR) = X(t)l[0>TR](t) 

ftATR ftATR bis) 
= / v(s)dW(s)+ ^ d s 

Jo Jo * 
v(s)l[0>TR](s) [o,TR](s)ds 

o Jo z 

t 

<0 

+ 

= [ v(s)t[0,rR](s)dW(S) 

Jo 

~(J a(s)l[0tTR](s)ds + J b{s)t[0,TR](s)dW(s),W 

v(s)l[0,TR](s) dW(s) + ~ {vll0tTRhW)m 

= £v(s)l[QiTR](8)dW(8). 

This completes the proof. • 

The main result of this section is described in the following theorem. It will be 

used later in Chapter IV for the convergence of Fliess operators over stochastic time 

intervals. 

Theorem II.4.6. Let X(t) = £ v(s) dW(s), where v is an L2-Itd process. Then: 

i. There exists a strictly positive stopping time TR = inf {t € T : |X(t)| = R} for 

any finite real R > 0. 

ii. XTR{t,u) restricted to [0, TR] is a well-defined L,2-bounded, a.s. continuous and 

adapted L2-Itd process. 
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Proof: For part (z), since v is an L2-Ito process, it can be written as 

v(t) = f a(s)ds+ f b(s)dW{s). 
Jo Jo 

Therefore, rR is a well-defined stopping time since (by Theorems II.3.8 and II.3.13) 

X(t)= [ b^-ds+ fv{s)dW{s), 
Jo ^ Jo 

and the absolute value function is continuous. Regarding part ii, it is well known 

that since X is adapted and a.s. continuous, the stopped process is also adapted and 

a.s. continuous [48]. Now evaluate J0 E [X2(s)j ds. By Ito's formula, 

X2(t) = 2 f X(s)b(s)ds + 2 f X(s)v(s)dW{s) + [ v2(s)ds, 
Jo Jo Jo 

where b(s) = b(s)/2. Since 2k1k2 < k2 + kl, for all fci, k2 E M, it follows from Theorem 

II.3.7 that 

E[X2(t)] < E 
Uo 

(X2(s) + b2(s)) ds+ f v2(s)ds 
Jo 

The L2 bound for X restricted to [0, TR] can be calculated from the previous expres

sion as 

E[X2(t A rR)} < E / (X2(s A rR) +b2{sA rR)) ds + [ v2{s A rR) ds 
Uo Jo 

Given that b, v E L2(n x [0, T\,V,P®\), define a real number M > E J0 b
2(s) ds + 

E f0v
2(s)ds Then by Fubini's theorem 

E[X2{t A rR)] < M + I E [X2{s A TR)\ ds. (II.4.1) 
Jo 

If this inequality is used in the right-hand-side of (II.4.1) then 

E[X2(t A TR)] < M + Mt + I /" E [X2{r A rR)} drds. 
Jo Jo 
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Repeating this procedure infinitely many times and knowing that E[X2(r A TR)] < 

R2, it follows that 

7} 

E[X2(t A rR)} < lim M V —t + i ? 2 ^ = Me( 

for a fixed t G [0,T]. This implies that ^E{X2(s)}ds < oo, and thus XTR{t,uo) £ 

L2{n x [0, T\,V:P® A). This completes the proof. • 
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CHAPTER III 

FORMAL POWER SERIES 

This chapter presents some elements from the fundamental theory of formal power 

series. The treatment relies heavily on [4,24]. Formal power series appear naturally 

in the context of language theory; therefore, the terminology of this subject will be 

adopted. The definition of formal languages and formal power series are introduced 

first. Then, various products of formal power series are defined along with their 

basic properties. Some important classes of formal power series are also addressed, 

in particular, rational and recognizable series. Then, the relationship between these 

classes of series is presented in Schiitzenberger's Theorem. This naturally leads to 

the question of which products of formal power series are closed over these classes. 

Here, a new and simpler proof of Ferfera's sufficient condition for the rationality 

of the composition product of two formal power series is presented. Finally, the 

main properties and algebraic tools that will be used in Chapter V to define the 

interconnection of systems are described. 

I I I . l F O R M A L L A N G U A G E S 

An alphabet is a non-empty set of symbols, X — {x0, xi,..., xm}. Each element 

of X is called a letter, and any string of symbols in X, 77 = xik • • • xix is called a word. 

The length of 77, I77J, is the number of symbols in 77, and \r]\x, is the number of times 

the letter Xi appears in 77. The set of all words of length k is denoted by Xk. The 
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set of all words, including the empty word, 0, is denoted by X*. A language is any 

subset of X*. The set X* forms a monoid under the catenation product, 

<€ : X* x X* -»• X* 

Clearly, for any 77, £, ^ G X*, ff is associative: {r]£,)v = n{^u). The empty word 0 is 

the identity element for # , 077 = 770 = 77, Vr? G X*. The triple (X*, ^ , 0) is in fact a 

/ree monoid of X. 

Definition III.1.1. Let (M, D,e) and (M', • ' , e') be two arbitrary monoids. A 

mapping g : M —> M' is called a morphism if 

^ • 0 = e(77)D'0(O, Vrj^GM, (III.l.l) 

where g(e) = e'. If, in addition, £> is bijective, then it is called an isomorphism. 

Note that any morphism g on X* is completely determined by its action on X. 

In other words, for any word 77 = xik - - • x^ G X*, 

Q(xik---xil) = Q(xik)---g{xil). 

If g is injective, i.e., g(n) = g(£) implies 77 = £, V77, £ G X*, then £> is called a code. 

III . l . l Formal power series 

Given the alphabet X = {x0, xi,..., xm} and finite £ G N, a formal power series 

is any function c : X* —> R*. The value of c for a specific word 77 G X* is denoted by 

(c, 77). In particular, (c, 0) is referred to as the constant term. Typically, c is written 

as the formal sum 

c = J ^ ( c , 77)77. 
vex' 
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The collection of all series generated with the alphabet X is denoted by M£((X)). If 

c,d G M.e((X)), their sum is given by 

c + d = ] T (c + d, 77)77 = ^ [(c, r?) + (d, rj)} 77, 

and their scalar product is defined by 

re = ^2 (rc- v)v = ^2 r ( c ' ^ 

for r £ i The set of formal power series with these two operations forms an R-vector 

space. The Cauchy product is defined by 

cd= J ] (cd, 77)77= Y^ ^2(c^)(dX)v, 
vex* i/ex* tc=v 

where the interior summation is obviously finite. The R-vector space E((X)) endowed 

with the Cauchy product forms an R-algebra. For c G M.e((X}}, the language 

supp(c) = {77 eX*:(c, 77)^0} 

is called the support of c. The subset of K*((X)) consisting of all series with finite 

support is denoted by M.e(X). Its elements are called polynomials, c is said to be 

proper if 0 ^ supp(c). M.e((X)) forms a complete ultrametric space under the mapping 

dist : M.l({X)) x K £ ( ( X » -»• K+ U {0} 

( c , d ) ^ d i s t ( c , d ) = c7ord(c-d), 

where 0 < a < 1 and ord(c) = inf{|?7| : (0,77) 7̂  0} if c 7̂  0, otherwise ord(c) = 00. 

dist satisfies the inequality 

dist(c, d) < max{dist(c, e), dist(e, d)}, Vc, d, e G R({X)), 
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which can be viewed as a stronger version of the usual triangle inequality. 

Let {ci]iei be a family of series, where / is a set of indexes in N. This family is 

called summable if there exists a formal series c such that for all e > 0, there is a 

finite subset I' of / such that for all finite subsets J oi I that contain / ' 

dist > CA.C I < e. 

The series c is called the sum of the family {ci}i<=i, and it is unique. 

A family {cj}je/ is said to be locally finite if for every word 77 £ X* there exists 

only a finite number of indexes i £ I such that (Q, 77) ^ 0. It is easy to show that 

every locally finite familly is summable, and 

iei 

where this summation is finite. It is not true in general that a summable family is 

always locally finite. It is useful to define the left-shift operator, £~x, as follows: 

r 1 : X*^R(X) 

{ rf : ?? = £7/ 

0 : otherwise. 

Note from the definition that 77 can be mapped to the polynomial 0, and that clearly 

there exists a bijection between the non-empty words in X* and the monic polyno

mials in M.(X). For any series c 6 IR((X}), the definition can be extended as 

776X* 
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It is simple to verify that ^"1(-) is a linear operator on the IR-vector space M.((X)). 

That is, 

r V1C1 + r2c2) = rie_1(ci) + r2r ' (C2) 

for all n e R and Q G R ' ( ( I ) } . 

Lemma I I I . l . l . For any x e X, £, f e X* and series c, d € M((X)) the following 

properties hold: 

i. (^)-1(c) = «/-1(r1(c)) 

M. z_1(cd) = x~1(c)d + (c,0)x_1(cO. 

I I I . 1.2 Formal power series products 

Definition III.1.2. Let c,dE K((X}). The Hadamard product of c and d is 

defined as 

cQd= ^ (c,u)(d,v)u. 

Here, supp(c 0 d) = supp(c) Pi supp(d). 

Example I I I . l . l . Let X = {xo,£i, • • • ,^m} De an alphabet and define for a fixed 

Xi and k the language L = {rj e X*, |r]|x = A;}. The characteristic series generated 

by L is defined as L = ^2vGL V- If c G M.({X)) is arbitrary, the restriction of c to the 

language L can be written using the Hadamard product as 

CL = C\L = C 0 iv. 

• 
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Definit ion III. 1.3. The shuffle of two words 77, £ G X* is defined to be the language 

SV,£ = {V e X* : V = 771^x7/2^2 • • • Vntn, Vi, & G X*, 

77 = 771772 •••??„, £ = £ i £ 2 • • • & . . 71 > 0 } . 

In particular, 5^0 = {77} and £0^ = {£}. 

Definition III .1 .4. Let 77 = Xjrf and £ = x^f, where 77', £' G X* and Xj,Xk G X. 

The shuffle product of 77 and f is recursively defined as 

77 LU £ = Xj [77' LU f ] + Xfc fa LU f ' ] , 

where 0u_,0 = 0 a n d f L u 0 = 0Lu£ = f. 

It is easily verified that 77 LU f yields a polynomial involving words of only length 

I77I + |f I and supp{?7LLif} = Sv^. 

Example III .1 .2 . Suppose X = {xo, Xi, x 2 , x 3 } . Then 

XQXX LU X2X3 = XQIXX LU X2X3] + X2[x0X1 UJ X3] 

= X0(x1[(l) LU X2X3] + X 2 [ X I L U X 3 ] ) + X 2 ( x 0 [ x i LU X3] + X3[x0X± LU 0]) 

= X 0 XiX 2 X 3 + X 0 X 2 XiX 3 + XoX2X3Xi + X 2 X 0 XiX 3 + X2X0X3X1 + X2X3X0Xi, 

XQX\ LU X\X3 = X0[xi LU XiX3] + X±[x0Xx LU X3] 

= XO(XI[0LUXIX3] +X1[XILUX3\) + Xi(x0[x! LUX3] + x3[x0xi LU0]) 

= 2x0X1X1X3 + x 0xix 3xi + X1X0X1X3 + XiX0x3Xi + Xix3x0xi, 
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and 

{X0XIX2X3, X0X2XXX3, X0X2X3X1,X2X0X1X3, X2XoX3X1,X2X3XoXi}, 

"Sxoxi,X1X3 

{xoXiXi^, x0x2x3x1,x2x0x1x3, x2xQx3x1, X^XQXX}. 

Observe that each element of the shuffle language involves a combination of the letters 

in each given word which preserves their relative order, i.e., XQ is always to the left 

of xi and x2 is always to the left of x3. rj 

Consider the next example where the behavior of the product of deterministic 

iterated integrals is presented. 

Example III .1.3. Let u be an m-dimensional piecewise continuous, real-valued func

tion defined over the finite interval [to, t i] . Recall that for r\ £ X* the iterated integral 

Ev was defined recursively as 

Ev[u](t) = EXj71,[u](t) = f Uj(r)Evl[u\(T)dr 
J t0 

with E$[u\{t) = 1 for all t 6 [to, t i ] , and t0 was assumed to be 0. This iterated integral 

can be extended for any polynomial p £ M.(X) in the following manner, 

EP[u](t)= >T (p,V)EM(t). 
Tjesupp(P) 

Let £(WL{X}) be the set of all such iterated integrals. Now observe for each 77, £ G X* 

tha t from the integration by parts formula 

En[u}{t)Ez[u]{t) = EXjrf[u](t)EXki,[u](t) 

U i ( r ) [ ^ [ U ] ( r ) ^ [ U ] ( r ) ] d r 
0 
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+ [ uk(T)[Ev[u](r)E^{u}(r)}dr 
Jo 

= EX][Ev,[u}(r)Edu](r))(t) 

+EXk(r)[ET1[u}(T)Ee[u}(r)}(t). 

As a consequence, any product of two integrals is again an iterated integral in 

£(JSL{X)), and it can be expresed in terms of the shuffle product. Q 

The shuffle product definition is linearly extended directly to series c,d £ M.((X)) 

as 

c^d= Y, [M)(<U)]^f- (in.i.2) 

For a specific word ^ £ X*: the coefficient 

( 7 7 ^ , ^ = 0 if M + | f | ^ M . 

Therefore, the summation in (III.1.2) is well-defined since the family of polynomials 

{77 LU<̂  : V77, £ £ X*} is locally finite. An equivalent expression for this product is 

Cujd— y ^ (cujd, i/)u, 
vex* 

where 

(cujd,i/)= J ^ (c,77)(d,^)(77uj^,i/). 

In the case where c,d E M.e((X)), the shuffle product is defined componentwise, i.e., 

the z-th component of Cmd is (cwd, v)i = (Q Ludi: u), where u £ X* and 1 < i < £. 

Moreover, it is easy to show that the shuffle product is commutative, associative and 

distributive with respect to the addition. As a consequence, R(X) and R((X)) are 

R-algebras with multiplicative element 1. 
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T h e o r e m I I I . 1 . 1 . Letrj,£ € X* such that |T?| = n\ and |£| = n 2 . Then supp{77UJ £} 

has at most ("1+"2) unique words. 

Proof: The proof is by induction over n = n\ + n<i. For n = 0 and n = 1 the result is 

trivial. If nx = 0 and ra2 G N, then % = {£}, and therefore, # ( % ) = (0+
0"

2) = 1, 

where # denotes the cardinality of £0^. Now assume the hypothesis holds up to 

some fixed n > 0, i.e., # ( 5 ^ ) < ( " J . Let 77 = x j n i + 1 • --xn and f = xin2 •••xix. 

Then by the shuffle product definition 

V ^ f = ^ i n 1 + l ( ^ n i • • • Z j l LU f ) +Xln2 (?7 LU Xi x • • • Xh) . 

v ' v ' 
<(:,)words < u + i ) ™rds 

Since ( £ ) + (m"+1) = ( ; i+\) , it follows that #(S„,e) < ( ^ J , and the theorem is 

proved. • 

E x a m p l e I I I . 1 .4 . From Example III.1.2, 

ifiSx0x1:x2x3) — 6 = I 1 and w{SXQXliXlX3) = 5 < I I = 6 . 

• 

T h e o r e m I I I . 1.2. [24] Let be X an alphabet. For any x £ X: 

i. xLuk = xujXiu---Lux = klxk 

k times 

n. xk^xn~k = ( " ) x " , 0 < k<n 

111. ( ^ ) - * = M ^ , Jjk>i 

/ 00 \ L u k 00 

zv. (XX) = XXxi' k-1' 
\j=0 ) j=0 
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T h e o r e m I I I . 1.3. The left-shift operator acts as a derivation with respect to the 

shuffle product. That is, Vc, d 6 R((X)} and Xk G X 

X ^ C L U G T ) = X^l{c) Lud + CujX~k
1{d). 

Proof: Without loss of generality, consider the nonempty words n = Xjrf, £ = x£' £ 

X*. From Definition III. 1.4 

xk\v^O = x-^Xjin'uj^ + Xiiniu^')) 

0 : j^k,i^k 

77' uu £ : j = k^i 

T)UJ£' : i = k ^ j 

7/ UJ f + 77 w f' : i=j = k 

= < 

Next, let c, d G R((X}). By the linearity of the left-shift operator and the previous 

identity 

xk
l(c^d) 

We** J 

= E K 1 (c),77)77^(d,0e+ E ^r,)n^{xk
l{d)^)i 

= x^ (c) LU d + c LU x^1 (d). 
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Definition III.1.5. [13,14] Given rj = x^k x ^ - 1 xik_x ... x^xnx^ e X* and the 

series d £ M.m((X)), the composition of rj with d is defined recursively as 

f 

V • \n\xi = 0 , V i ^ 0 

r]od={ 2;g+1[diLlJ(77/od)] : 77 = X ^ T / , k G N, 

^ 0 , 1 , ' e x*, 

where c?i : £ i—>• (d, £)i, and (d,£)i is the z-th component of (d,£). Furthermore, the 

composition of a series c 6 M^((X}) with d is 

co r f= V^ (c, 77)77 o d. 

Theorem III. 1.4. [24,28] Let deRm((X)) then the family of series {77 o d : 77 <E 

X*} is locally finite and therefore summable. 

Proof: Given that any word in X* can be written as 

it follows that 

\n\-Hx 

ovd(r] o d)—n0 + k + y^iT'j+ ord(di.) = \r]\+ Y^ ord(dji). 

Thus, for any ( 6 1 " , 

W = {V^X* : (770^)^0} 

C {veX* : ord(77od)< |f|} 

M-M*0 

77 EX* : |77|+ £ o r d ^ . ) < |£| 

file:///n/xi
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One can see that the latter set is finite, ensuring Id(Q is finite, which in turn implies 

summability. • 

It is easy to verify that the composition product is linear with respect to its first 

argument. That is, for all c, d, e G Rm((X)}, and a, j3 G R, 

(ac + pd) o e = a(co e) + j3(d o e). 

However, in general, c o (ad + (5e) ^ a(c o d) + f3(c o e). An exception is the case 

when a series is linear. A series c G M.e((X)) is called linear if 

supp(c) C {7] G X* : 77 = Xg'XiXQ0, z G {1 ,2 , . . .,n}, n0,ni > 0}. 

Given a word 77 = XQ'XJXQ0 and using the bilinearity of the shuffle product, observe 

that 

r]o(ad + pe) = x^+l{ad + f3e)i^x^° 

= a(rj o d) + P(r] o e). 

Hence, 

co(ad + (3e) = ^ ^ a(c, 77)77 o (ad + /3e) 
vex* 

= ^ (a(c, 77)77 o d + /?(c, 77)77 o e) 

= a(co d) + (3(co e). 

One can verify that the composition product is associative and distributive from 

the right with respect to the shuffle product. Unfortunately, it lacks an identity 

element and is not commutative. Consequently, (M.e((X)), o) and (B^(X),o) are 

only semigroups. Some additional properties are given next. 
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Lemma III.1.2. [28] The following properties hold for the composition product 

(Here 1 is a column vector of m ones): 

i. Ood = 0,WeR({X}}. 

ii. c o 0 = Co = / ( c , ^O)XQ. (Thereby, c o 0 = 0 if and only if CQ = 0). 
n>0 

Hi. Co o d = c0; yd e Mm((X)). (7n particular, lo d= 1.) 

iv. c o l = ci = ^ ^ (c, 77)x0 . (Thus, co\ — c if and only if c0 = c.) 
J]€X* 

III.2 RATIONAL A N D RECOGNIZABLE SERIES 

In this section, the notion of rationality is introduced in terms of four rational 

operations on M.((X)): addition, scalar multiplication, catenation and inversion. 

Then, conditions for the existence of a linear representation of a series are presented. 

This defines the concept of recognizable series. Finally, it is determined whether or 

not certain products of formal power series preserve rationality. When rationality is 

not preserved in general, sufficient conditions for preserving rationality are provided. 

III.2.1 Rational series 

A series c G R((X}} is called invertible if there exists a series c_1 £ K((X}) such 

that cc~x = c~xc — 1. If c is not proper, one can always write 

c = ( c , 0 ) ( l - c ' ) , 

where d £ M.({X)) is proper. In which case, 
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where 
oo 

(c'r ± 5>)< • 
i=0 

It can be easily shown that c is invertible if and only if c is not proper. Now, let 

S be any subalgebra of the catenation K-algebra on E( (X) ) . S is called rationally 

closed when every invertible series c G S has c _ 1 G S. The rational closure of any 

subset E1 C R((X)) is the smallest rationally closed subalgebra of E((X}} such that 

it contains E. 

Definit ion III .2 .1 . A series c G E( (X) ) is rational if it belongs to the rational 

closure of R(X). 

Consequently, all rational series can be computed by a finite number of sums, 

scalar multiplication, catenations and inversions. Any operation preserving rational

ity is referred to as a rational operation. 

III.2.2 Recognizable series 

Definit ion III.2.2. A linear representat ion of c G K((X)) is any triple (/x,7, A), 

such that 

(c,r7) = A^(r7)7, Vr? G X*, 

where 7 and AT G R n x l , and ^ : X* —> M.nXn is a monoid morphism. The integer n 

is called the dimension of the linear representation. 

Definit ion III .2.3. [4] A series is called recognizable if it has a linear represen

tation. 

The next concept will be used to provide a necessary and sufficient condition for 

recognizability. 
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Definition III.2.4. [4,24] A subset V C R((X)) is called stable if f-^c) G V for 

all c G V and all f G X*. 

Theorem II I .2 .1 . [4,24] A series c G R((X)) is recognizable if and only if there 

exists a stable vector subspace ofR((X}) that contains c. 

Example I I I .2 .1 . Let p G R(X), where X = {XQ, ... ,xm}. Let Vp be the vector 

subspace of R(X) such thatp G Vp if deg(]3) < deg(p) for allp G R(X). Clearly p G Vp 

and dim(V ,̂) = ]Ci=o ( m + ^-T- Furthermore, Vp is stable since £,~l{p) < deg(p) for 

any £ G X* and any p G Vp. Hence, all polynomials are recognizable. Q 

The following theorem establishes the connection between rational series and 

recognizability. 

Theorem III.2.2. (Schutzenberger, 1961) [4,24,53] A series is rational if and only 

if it is recognizable. 

From Theorem III.2.2 a bound for the growth of the coefficients of a rational 

series can be obtained. 

Corollary I I I .2 .1 . If c G R({X)) is rational, then there exist K, M > 0 such that 

|(c,77)| <KM™, V r / e l * . 

Proof: In light of the previous theorem, it is known that if c is rational, then there 

exists a linear representation (A, /i, 7) for the coefficients of c such that 

(c, V) = Mvh, Vr/GX*, 

where 7, XT G RnXl and /i : X* —» Rnxn is a monoid homomorphism. Define 

#X = m + 1, K = INI INI an<^ -^ = m a x {ll/-4^)!!}; where ||-|| denotes the 
0<i<m 
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matrix norm. From the morphism property, n{rj) = fi(xik)/j,(xik J • • • [/.(x^) when 

77 = xikxikl • • • Xjj, X{i 6 l , 1 < j < k. Therefore, the Cauchy-Schwartz inequality 

gives 

|(c,77)| = UAM^hll < ||A|| ||7|| \\KV)\\ < KM^, Mr) e X*. 

m 

Corollary III.2.1 implies that all rational series are globally convergent series. 

III.2.3 Products of formal power series as rational operations 

Rationality is important because it implies the existence of a bilinear state space 

realization for the corresponding Fliess operator [17,35]. It is therefore desirable to 

know when the product of two rational series is again rational. 

Theorem III.2.3. [17] If c and d are rational series in M((X}), then cQ d is also 

a rational series in M.((X)). 

Proof: From Theorem III.2.1, let Vc and Va be stable finite dimensional real vector 

subspaces of R((X)) such that they contain c and d, respectively. Let {ci}"f1 and 

{d~iYl=i b e the corresponding bases for Vc and Vd. Define VcQa C ~R{(X)) as 

VCQd = span{cj Qdj : i = l,...,nc and j = 1 , . . . , nd}. 

Clearly, VCQd C M((X)) is finite dimensional. If one writes 

nc nd 

c = J ^ otiCi, d = ^2 Pjdj, 

then it follows that 

nc,nd 

cQd=^2 ai(3j (k 0 dj £ Vced. 
*J=1 
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It only remains to be shown that VcQd is stable. Observe, by the definition of the 

Hadamard product, that for any x G X 

x_ 1(ci 0 dj) = x_1(ci) 0 £ _ 1 K ) . 

Since Vc and Va are stable it follows that x~x{ci 0 dj) G VcQd, a n d therefore, VcQd is 

stable. In light of Theorems III.2.1 and III.2.2, the series c 0 d is recognizable, and, 

consequently, rational. • 

Theorem III.2.4. [17,24] If c and d are rational series in WL((X)), then cmd is 

also a rational series in M((X)). 

Proof: A proof similar to the one above will work, but here define the following 

vector subspace of M.((X)} 

VCLUd = span{Q mdj : i = l,...,nc and j = 1 , . . . , nd}. 

It is easy to see that Vc,_,_, j is finite dimensional. If 

then 

nc,nd 

Cujd= 2^ aiPj <k ^ d j G VCLUd-

To see that VCLUd is stable, observe from Theorem III. 1.3 that for every letter x G X 

x~l(c.i i-udj) = x~l(ci) LU dj + Ci UJ x~l(dj), Vi , j . 

Therefore, since Vc and Vd are stable, x _ 1 (Q w dj) G VCUJd, and KLUd is stable. Again 

by Theorems III.2.1 and III.2.2, c w d is recognizable, and, consequently, rational. • 

In contrast, the composition product does not behave as nicely as the previous 
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products. The following example, given by Ferfera [13], shows that the composition 

product is not a rational operation. 

E x a m p l e I I I . 2 .2 . [26,27] Suppose X = {x0,Xi} and consider the rational series 

c = (1 — Xi)"1 = x*. The claim is that c composed with itself is not rational. The 

main goal is to show that 

( C o C ) 4^) = ( ^ , k0>o, h>o, 

or equivalently, 

( ^ i 0
4 » ( c o C ) , | ) = ( ^ . (IH.2.1) 

The claim is trivial when k0 = k\ = 0 provided that 0° := 1. If k0 = 1 and k\ = 0, 

observe that 

XQ1^ O C) = ^ 1 ( c ) °c + CLU ( r r ^ c ) oc) = cm (co c). 

0 c 

The intermediate claim then is that 

x - f c o ( C o C ) = C m f c o u J ( c o c ) , fc0>l, 

where the shuffle power of c is defined as 

CLUk = C L U C L U • • • UUC , k > 1 

fc times 

and c 1 ^ 0 = 1. If the identity above holds up to some fixed ka > 1 then 

XQ
kQ^{coc) = X o 1 ( c m f c o m ( c o C ) ) 

= X 0
1 ( c m f c o ) m ( c o c ) + C m f e o m X o 1 ( c o C ) 

i t o C ^ ^ ' m l o ^ c ) m ( c o C ) + C m f c o u J ( c L U ( c o c ) ) 

0 

= c m ( w L ( c o c ) . 
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Hence, the intermediate identity in question holds for fc0 > 0. Observe that 

= X? (C m ko) uu (C o C ) + C ^ fco w xr 1 (C o c) 

0 

- Jfcocm(fco-1)Lux^1(c) m ( c o c ) 

c 

= fc0C
mfe0uJ(coc). 

The next proposition is that 

Z p X o °(C ° C) = ( M ^ ° LU (C O c). 
fco 

If this is the case up to some fixed k\ > 1 then 

i ^ V f c o c ) = xr1((fc0) f c lcu j f c om(coc)) 

= (to)*1 xr1(cmfco)Lu(coc) + cmfcoLuxr1(coC) 

= (ko)kl [k0c
l i fco 

LU C O C )] 

= (fco)fel+1Cmfe0Lu(coC). 

Hence, the proposition holds for all ki,k0 > 0. To validate (III.2.1), simply compare 

the constant coefficients in the above identity: 

{x-^x^{coc),%) = ((ko)klc^k°^(coc),$) 

( c o c , ^ 1 ) = (fc0)
fel. 

Setting fc0 = fci reduces the expression to 

(coc,XQXk) = kk, k> 0. 

The key observation is that these coefficients are growing faster than any sequence 

of coefficients from a rational series can possibly grow, namely, at a rate KM^ for 

some K,M > 0 (Corollary III.2.1). Hence, the series c o c cannot be rational. rj 
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Although the composition product does not preserve rationality in general, there 

exist a special condition under which rationality is preserved. Below, such condition 

is given. 

Definition III.2.5. [13,14] A series c G R((X)) is limited relative to Xi if there 

exists an integer A/i > 0 such that 

sup |77|Xi = Mi < co. 
?;6supp(c) 

If c is limited relative to x, for every i = 1 , . . . , m then c is said to be input-limited. 

In such cases, let J\fc := max^A/,. A series c G E£((X)) is input-limited if each 

component series, Cj, is input-limited for j = 1 , . . . , £. In this case, A/"c := maxj J\fc.. 

Theorem III.2.5. [13,14] Let c G R'{{X)) and d G Mm((A:)) be two rational series. 

If c is input-limited then the series co d is rational. 

The proof presented here relies on the following lemma. 

Lemma III.2.1. [26,27] Let c G Re((x)) be a rational series with a linear represen

tation {fj,, 7, A). Let Ni = ufa) G Mnxn, i = 0 , 1 , . . . , m. Then for any d G Rm{(X)) 

it follows that 

vex 

where X = {xi,X2,... ,xm}, and the set of operators {Dv : rj G X*} is the monoid 

under composition uniquely specified by 

DXz : Rn*n{(X)) -+ Rn*n((X)) : E ^ x0(N0x0)*N^ ^ E) 

with D^ equivalent to the identity map. 
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Proof: Without lost of generality, assume l = 1. Directly from the definition of the 

composition product observe that 

cod = E E E ^K^NlkN^Nlk_1---N^NnN[ 
fc>0 ii,...,i;fc=l 7io,...,nfc>0 

0 ifc 0 i k - i 0 J / i i J ' 0 

o"°7 

E E E A îv^K"1^^---^1^^^ 
fe>0 i i , . . . , i f c=ln 0 , . . . ,n f c>0 

X, 0 dik LU XQ 1 [dik_1 LU • • • X Q 1 [d i ! LU X Q ° ] • • • J 

From the bilinearity and continuity of the shuffle product (in the ultrametric sense), 

it follows that 

cod = E E Xx* E^°x°H^ 
/c>0 ii , . . . , i f e=l \ n f c > 0 

*2fe 

«fc-i>0 

"Jfc-1 x0 ( Y, (^ox0)
ni) iVu ^ ̂  ( E ( ^ o r 

\ni>0 / L \n0>0 , 

= 5 ^ E ^o{Nox0)*Nik [dik QJ [xoCiVoXo)*^,! [dj^! LU • • • 
fc>0 ii,...,ifc=l 

x0(AW*AU^-(AW*] •••]]] 7-

Finally, applying the definition of Dv, 

cod = E E ADXtfcDx^i.--I^(A^or)7 

= J ] AD?7((iVoXo)*)7, 
r)£X* 

and the lemma is proved. 

7 

Proof of Theorem III.2.5: Since c is input-limited, it follows from Lemma III.2.1 that 

Mo 

k=0 t]£Xk 
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Clearly, each operator Dv is mapping a rational series to another rational series as it 

involves only a finite number of rational operations (including the shuffle product). 

Therefore, for any integer k > 0 the formal power series 

J2 AD,((iVoXo)*)7 

is again rational since the summation is finite. Thus, cod must be rational. 

Example III .2 .3. [26] Reconsider the series coc, where c = x\ as in Example III.2.2. 

The nested inductive argument used there can be directly extended to establish the 

identity 

(coc,xk
0°xkS---xk

0
l-'xk

1
l) = (fc0)

fcl(fc0 + fc2)
fc3---

(feo + h + • - • + fc,_i)fc' (IIL2.2) 

for all I > 0 and fcj > 0, i = 0 , 1 , . . . , I. In which case, 

/ ran ni nj — i n 7 \ 

(co c, x0°2;1x0
12;i • •-x0

J xix0
3) 

= n0(n0 + n1)---(n0 + ni H r-%-i) (III.2.3) 

(c o c, x^xox™1 • • • x0x™k) = Qmnrni2m2 •••krnk (III.2.4) 

for all j > 0 and 7ij > 0, i = 0 , 1 , . . . , j ; and all k > 0 and m* > 0, i = 0 , 1 , . . . , k. 

Using identity (III.2.4), observe that 

C o c = ^ ( C O C , I 7 ) I 7 + ^ ^ ( c o c , < 0 x 0 x r - - ^ o ^ r ) -
mo>0 k>\ mQ,...,mk~>0 

-mo mi mk 

= 1 + Y1 Yl lmi2m2---kmkx0x™1x0x™2---x0x™k 

k>l mi,...,Trik>0 
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= ! + E x° ( E *r) x° ( E (2^)m2) *° ( E (^i)" 
fc>l \ m i > 0 / \ m i > 0 / \mk>0 

= l + J^x0a:*zo(2x1)*---Xo(A;x1)s. (III.2.5) 
k>\ 

Alternatively, observe that x\ has a linear representation with NQ = 0, N\ = 1 

and A = 7 = 1. Thus, DXl : e —> XQ{X\ i_ue), and from Lemma III.2.1 

coc = J2 XDv((N°xo)*h 
vex* 

= E^m 
fe>0 

= 1 + 'Y^X0(X*1LU(X0(XIUJ(-- -X0(XIUJ1) •••)))) 
fc>l 

= 1 + ^x 0 a : iXo(2x i )* •• •x0(A;xi)*, 
fe>i 

which is consistent with (III.2.5). Clearly, if the first argument in co c is truncated, 

then the resulting series composition produces a rational series as expected from 

Theorem III.2.5. • 

Example III .2 .4. Let c = x\ = (1 — Xi)~l, which is rational but obviously not 

input-limited, and d = 1. Trivially, co d = (1 — xo)™1. Thus, having c input-limited 

is a sufficient but not necessary condition for the composition product to preserve 

rationality. On the other hand, if one sets d = X\ then it can be verified that 

(c o d, x^x\) = k\, k > 1 [13]. In which case, requiring d to be input-limited instead 

of c is not a sufficient condition for preserving rationality. rj 

Another sufficient condition for the rationality of the composition product can be 

described in terms of the Hankel rank of a formal power series. 

Definition III.2.6. [15] For any c e R £ ( W ) , the K-linear mapping Hc : R(X) -»• 
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M.e({X)) on the vector space WL(X) uniquely specified by 

is called the Hankel mapping of c. 

Hc has a matrix representation whose (f, 77) component is given by (Hc)^ri = (c, £77) 

for all £,77 G X*. Its range space, HC(R(X)), is an IR-vector subspace of Re((X)), 

which is not necessarily finite dimensional. Consider the following definition and 

theorem. 

Definition III.2.7. [15] The Hankel rank of c G Re((X)) is pH(c) = 

dim{Hc{R(X))). 

Theorem III.2.6. [15] A series c G WLl((X}) is rational if and only if its Hankel 

rank is finite. 

Note that for an arbitrary input-limited rational series c G M.e{(X)), there exists 

a natural number J\fc such that its support is 

(c)= r? G X* : X X , < A/; supp 
i = l 

It is easy to verify that the composition of any input-limited rational series c G 

M.e((X}) with a rational series d G Em((X}} can be written as 

Nc 

cod — 2^ Cfc o d, 
k=0 

where C& = c 0 4 , and Lk is the characteristic series of the language Lk = 

{77 G X* : YllLi \v\x
 = ^ } - F r o m the definition of the Hadamard product supp(cfc) = 

supp(c) D l f Moreover, since Lk = X^X^XQ) • • • (x^x^) for ij G { l , . . . , m } , 
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j — 1 ,2, . . . , m, then Lk is a rational language, and its characteristic series is ra

tional. By Theorem III.2.3, the series c^ is also a rational series. Clearly, the partial 

sum c~T = X^!=o ck *s a ^ s o input-limited. Thus, it follows from Theorem III.2.5 that for 

any rational c £ M.e((X)} and d E M.m((X)), each series in the sequence {cr od}r>0 is 

rational, or equivalently, in light of Theorem III.2.6, {PH{CT ° d)}r>o is a well-defined 

sequence of nonnegative integers. In this context, consider the following theorem. 

Theorem III.2.7. [9] Let c € ^e({X)) and d € M.m{{X}} be two rational series. If 

the sequence {PH{CT ° d)}r>o has a limit then c o d is rational. 

Proof: The claim follows directly from Theorem III.2.6 and the following (eas

ily verified) property concerning infinite matrices. Let {Mr}r>0 be a sequence 

of doubly infinite matrices with real coefficients. Assume that lim^oo Mr = M 

(componentwise in the usual topology). If each Mr has finite rank (meaning that 

PH{MT) = dim(M r(K.(X))) is finite), it is not necessarily the case that M has finite 

rank (such examples abound). But if the sequence {pn(Mr)}r>o has a limit, then it 

does follow that pn{M) < lim r ._>00p^(M r), that is, M must have finite rank. • 

Example III .2.5. Suppose X — {XQ, XI , X2}, and let c = 1 + (1 — xi)"1 — (1 — x 2 ) _ 1 

and d = [1 1]. Clearly in this case c is not input-limited since CQ — I and Cj = x\ — x°2 

for all j ' > 1. Now observe that c 0 o d = 1 and Cj o d = 0 for all j > 1. Thus, 

Cr o d = 1 for all r > 0, which in turn implies that PH{CT O d) = 1 for all r > 0. From 

Theorem III.2.7 it then follows that cod must be rational. It is trivial to check that 

indeed co d = 1. rj 

If c is input-limited, then obviously lim r_>00p//(c rod) — PH{cr0d)\r=Arc = pH^cod). 

Conversely, if l im, . -^ PH{CT ° d) exists, then there must exist an integer r* > 0 such 



74 

that PH{CT o d) = PH(C ° d) for all r > r* (which, of course, does not imply that 

Cr od = cod). In general, however, it is possible for TicTod -*• 7~(-cod as r —> oo, while at 

the same time the integer sequence pH{crod) diverges. In which case, Theorem III.2.7 

would not apply. 

Example III.2.6. Reconsider Example III.2.4, where c = (1 — Xi)_1, d = 1, and 

co d = (1 — Xo)_1. As noted earlier, c is not input-limited, but rationality is still 

preserved, specifically PH{C ° d) = 1. Now observe that Cj = xj, Cj o d = x3
0 for 

j > 0, and thus, cr o d = 5^j=o ^o- ^n which case, PH{CT ° d) = r for all r > 0. This 

example clearly falls outside the realm of Theorem III.2.5 and its generalization, 

Theorem III.2.7, even though rationality is in fact preserved. • 

It is worth noting in the previous example that if each Hankel matrix Hcrod 

is truncated to an r x (r + 1) matrix, then the resulting matrix always has rank 

equivalent to that of Ti.cod for every r > 0. This is reminiscent of classical Hankel 

matrix analysis done for the partial (linear) realization problem [37]. In fact, when 

c o d is not rational, cr o d can be viewed as a rational approximation of c o d, i.e., a 

type of partial bilinear realization problem or a noncommutative Pade approximation 

(e.g., see [32,33]). Therefore, it seems unlikely that any finite test for rationality can 

be devised by considering only the ranks of truncated Hankel matrices. 
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CHAPTER IV 

FLIESS OPERATORS 

In this chapter, Fliess operators are introduced in such a way that dissertation 

problems (i), (ii) and (Hi) are solved. As noted in Chapter I, a series c G M£((X)) 

can be formally associated with the m-input, ^-output Fliess operator 

Fc[v](t)= ^ ( c , 77) £>](£) , 

when the inputs are measurable functions. In order to develop a stochastic version of 

a Fliess operator, a class of suitable stochastic input processes needs to be introduced. 

Then, stochastic integrals will be used to provide an extension of the definition of 

Fliess operators. To develop the corresponding convergence results, it is necessary to 

write a Stratonovich iterated integral as a sum of Ito integrals, so that the convenient 

properties of the Ito integral can be used. The calculus of upper bounds for stochastic 

iterated integrals in Li will be used to prove that a Fliess operator with stochastic 

inputs converges in the mean square sense when its corresponding series is globally 

convergent. In addition, it will be shown that the notion of a stopping time can 

be used to significantly expand the set of input-output systems that can be studied 

by this formalism. The chapter is concluded by characterizing the nature of the 

output process and some of the underlying algebraic structure concerning the new 

class of Fliess operators. Specifically, it is shown that the given stochastic formalism 

for Fliess operators can be directly related to Chen series, which have a well known 

relationship to Fliess operators driven by deterministic inputs. 
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IV. 1 FLIESS O P E R A T O R S W I T H STOCHASTIC I N P U T S 

IV.1.1 The UVm[0,T] space 

Consider a one-dimensional Wiener process, W, denned over a probability 

space (O,^7, P). For a predictable function u : 0. x [t0,t0 + T] —>• Mm, let 

||u|| = max{||iij||L : 1 <i < m}, where ||-||L is the usual norm on LP(Q, x [to, to + 

T], V, P (8) A), the set of all predictable functions defined on [to, £o + T] having finite 

||-||L -norm with V the predictable algebra and A the Lebesgue measure. 

Definition IV.1.1 . Let 0 < t0 < T. Consider the set of all m-dimensional stochastic 

processes over [t0,t0 + T], denoted by UV [t0, tQ + T], which can be written as 

t t 

w{t)= fu(s)ds + £v{s)dW{s) (IV.1.1) 

to to 

for some i t , u 6 / . The latter are called the drift and diffusion inputs, respectively. 

Moreover, the subset UVm[t0, t0+T] C UV [t0, t0+T] will refer to all processes where: 

a) Each integrand consists of m components such that E[UJ(£)] < oo, E[u,(t)] < oo, 

£G [t0,t0 + T\. 

b) The integrands u and v are such that 

IMIr , \ \V \ \T ,\\V\\T < ReR+. 
II lli>2 ' " 11L2 ' II Hi>4 — 

c) The random variables Ui(t\), ^(£2), fj(£i) and ^(£2) a r e mutually independent 

for 1 < i < m and £x 7̂  £2. 

m 

Observe that since u, v G =/", by Definition II.3.10 any u; G WV [£o,£o + Tj is also 

an L2-Ito process because the Stratonovich integral of v can be expressed as the Ito 
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process 
t £ t 

i v{s) dW{s) = ( v(s) dW(s) + l- J b(s) ds. 

to to to 

To describe an iterated integral over UVm[to, tQ+T], consider the following alphabets: 

X = {XQ, X \ , ..., xm}, Y = {y0, yi,..., ym} and XY = X UY. An arbitrary element 

of X U Y will be denoted by q. For each 77 E XY*, define recursively the mapping 

Ev : ^ ( O x [t0, t0 + T], V, P ® A) -» Ca.s.[t0, to + T] by first setting E% = 1 and then 

letting 
t -

B ^ H W = f ui(s)Evl[w]{s) ds, x , 6 l (IV.1.2) 
to 

t -

^ ' M ( * ) = f v^E^wKs) dW{s), y% e Y, (IV.1.3) 

to 

where 77' e XY*, u0 = v0 = 1, and the notation i— indicates that the integration is 

over [tQ, t). The notation t— will be suppressed in subsequent sections. Also, without 

loss of generality, it is assumed hereafter that to = 0. 

The following terminology will be used throughout the upcoming sections. Let 

Nm + 1 be the set of all vectors with components in N = {0,1, . . .} . Define the language 

XkYn = {77 E XY*, \rj\x — k, \r)\Y = n} formed by words having A; letters in X and n 

letters in Y. For a fixed word 77 E XkYn, define the vectors ot = (am, • • • , a0) E Nm+l 

and (3 = (/?m, • • • ,/30) e Nm+1, where a* = \r]\x., fa = \r]\y,, k = YZ=oai a n d 

n = ]CiLo<^- The summations over all possible <Vs that sum to k and all possible 

Pi's that sum to n are denoted, respectively, by Yl\\a\\=k a n d ^2\\p\\=n- Since one is 

interested in working with arbitrary letters in the alphabet XY, hereafter q\ will 

denote an element of XY, where q\ = Xi if I = 1 and q\ = yt if I = 2. The symbol wqi 

will denote either a drift or a diffussion input, and dq\ will denote either Lebesgue or 
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Stratonovich integration according to the value of I. 

IV. 1.2 A n Ito-Stratonovich identity 

Now given that E^w^t) uses Stratonovich integrals in its definition, a special 

approach has to be employed to calculate ||£' r ;[^](t)||2. It is known that Stratonovich 

integrals lack certain important properties such as isometry [39], but if a Stratonovich 

integral is written in terms of Ito integrals, then all the properties associated with Ito 

integrals are available. There exist several formulas for writing iterated Stratonovich 

integrals as sums of iterated Ito integrals [34,41]. If 7/ 6 XkYn, an analogous formula 

for Ev[w] can be obtained by a sucessive application of Definition II.3.10. To develop 

this identity, first define J (if) = (jn,---,ji) £ N" to be those places in r\ where 

all the letters belonging to Y are located. For example, if rj = x^y^x^y^y^ then 

J{v) = (jz,32,3i) = (4,2,1). 

Theorem IV.1 .1 . Let rj e XkYn and w e UVm[0,T] be arbitrary. Then 

EM(t)= £ 2 ^ E C>](*). (iv.i.4) 
n=0,T-2=0 p / ' j 

ST«2 G-'T.nr2 

where 

A xnr2 | s r 2 = ( s r 2 , . . . , si) e W2 : sh + 1 < sh+i, lSl2+1 = 2, l<l2<r2-l, 

sh £ J(v)} 

forl<r2< LfJ, A,o = 0, 

AZl = |ST-I = ( s r i , • • •, Si) G N n : sh < sj1 +i , 1 < h < n - 1, sh ^ sh or sh + 1, 

S;2 t S r 2 , S; .e^)} 
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for 1 < 7"i < n, A^Q = 0, and [_-J is i/ie floor function. In addition, if r\ = qf*nrf G 

t 

i,HW = f > ( * H ( M t W (iv.i.5) 
0 

L 8 r 2 H ( f ) ^ L H ( t ) r r , „ , , f (IV.1.6) 

J % 5 ( * H K I ' B 

iw^fei, G L 2 ( n x [ 0 , r ] , ? , ? ® A ) , 1 < *i < n , 1 < Z2 < r2, andi.,, ,iSl G {0, . . . , m} 

are £/ie indices of the s/x -i/i and s;2 -i/i elements of J(r]). 

Proof: Before starting the proof, it is important to observe that Anr2 and Anr\ only 

affect the stochastic integrals in En[w\, i.e., they are related exclusively to letters in 

Y. The proof is by induction on the length of the word r\ G XkYn. The k + n = 0 

case is trivial. For k + n = 1, if r\ = xix G X then it is clear that 

Exn[w]{t) = / uh(s) ds 
Jo 

since r*i = r2 = 0. On the other hand, if 77 = yix 6 7 then from (II.3.3) it follows 

that 

EynH(t) = j\ll(s)dW(s) + ^j\H(s)ds (IV.1.7) 

1 (1) 

= i.JHW + ^ M W , 

since Si = 1 (An = {(1)}) and r2 = 0. The k+n = 2 case is helpful for understanding 

the general case. Here 77 G {xi2x^,xi2yii:yi2xix,y^y^}- The 77 — x^x^ case is trivial 

since there are no letters in Y involved. If 77 = xi2yix or yi2xix, then from formula 

(II.3.3) 

1 (1) 

EXl2Vn M( t ) = ixi2Wil [HW + 2X4^n M(*)> 
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and 
I (2) 

K2Xtl H(t) = IW2xn [W](t) + -lylXn [W](t), 

respectively. When rj = y^y^, the following identity needs to be proved 

1 (1) 1 (2) i 0 i (2,1) 

^ H ( t ) = iv[w](t)+-iv* [w)(t) + -in
9 [H(*) + 2^(1)H(*) + 4^ 0 M(0- (iv.i.8) 

Suppose 

/i(i) = via(t) f vn(s)dW(s) 
Jo 

htt) = t̂aW / Ms) ds-

Jo 

From the Ito derivation rule 

diVM^s) = V1{s) dV2{s) + V2(s) dV^s) + Bi(s)£2(s) ds, (IV.1.9) 

where dVi(s) — Ai(s) ds + Bi(s)dW(s), one can determine which terms in dfi and 

dji generate a quadratic covariation different from zero. For example, 

hit) = (J ai2(s)ds + J bl2(s)dW(s)\n vn(s) dW(s)\ (IV.1.10) 

M * ) ["vil{r)dW(r)dW(s) + [ vl2(s)vn(s) dW(s) + $(dt). 
Jo Jo 

t 

0 

Here <&(d£) denotes a generic term that together with the Wiener process W generates 

quadratic covariations equal to zero. For /2, given that the right factor of f2 is a 

Lebesgue integral, only Vi2 contributes to a quadratic covariation different from zero. 

Hence, 

f2{t) = f bl2(s) / \ ( r ) drdW(s) + $(dt). (IV.1.11) 
Jo Jo 
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Continuing with the proof of (IV. 1.8), substitute (IV. 1.7) into EVi y% [w](t] and em

ploy (IV.1.10) and (IV.1.11). Then 

= f via(t2) (f v^h) dWfa) + \ I' K(ti) dtA dW(t2) 

= J Vi2(h) (J * Vix(ti) dWfa) + ^J2 6̂ (*0 dtiJ dW(t2) 

+\(viA-)fviAti)dW(t1) + ̂ vi2(-) J b^h) dh,W 
[0,4] 

+ 

+ 

^te) / ' ViAh) dWit^dWih) + \ f vi2(t2) f
 2 bi.ih) dhdW{t2 

Jo z Jo Jo 

I I bi2(t2) [ v^h) dW(h)dt2 + l f u<2faK(*0 dh 
* Jo Jo ^ Jo 

T / 6*a(*2) / K^l) dtxdtz 4 Jo Jo 
(1) 1. (2) 1. 1. (2,1) 

= !>](*) + - V [w](t) + - i / [w](t) + -i,wHW + ft 0 H(0-

Now assume (IV. 1.4) holds up to n+k and let 77 = g ^ + j V € Xy f c + n + 1 . If Zfc+n+1 = 1 

then 

£ > ] ( * ) 

t 

= / Uik+n+1(tk+n+l) 

0 

n'LiJ 1 *! 
E ^r^i E CaN(*k+n+0 

r i = 0 , r 2 = 0 

V 

dt. k+n+l 

4fJ , 
= E ^ E tf">K*)-

r i = 0 , r 2 = 0 

(IV.1.12) 

ST«2 t jT-nro 

If ^ + T l + i = 2 then 

^ [ w ] ( i ) = $ vlk+n+1(tk+n+l) 
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/ \ 

E ^ ^ E VaM(*fc+n+l) 
ri=0,T2=0 

V 
s P ^ S r 2 

dW(tfc+n+1). (IV.1.13) 

/ ST«2 CjHnr2 

Since any sZl 7̂  sh, sh + 1 for 0 < l2 < [f J, using (II.3.3) and (IV.1.9), 

Vi fc+n+l (•)K>]oU 
[0,*] 

i;-H(i) + CHW 

OK*) 

s r i < fc + n, sT2 < k + n — 1 

and dn+* e y, 

s n = A; + n or sT2 = k + n — 1 

or gj"+* G X, 

(IV. 1.14) 

where s' = (k + n + 1, s r i , . . . , sx) and ŝ , = (k + n, sr2,..., sx). Substituting 
T-l 

(IV. 1.14) into (IV.1.13) and regrouping gives 

Ev[w](t) 

E ^ ! ^ E f Vik+n+Atk+n+l) \I°,r2[w}(tk+n+1)\dW{tk+n+l) 
7 , i = 0 , r 2 = 0 

S r i c-ZT-nri ^ 

ST«2 fc-^nr2 

S-r-i 

E 2 ^ E (I^MW+^(^ + 1 ( - ) ( I ; -H(- ) ) ,W/ 
n = 0 , r 2 = 0 a rzAaTi 

Sr2 £-^-7ir2 

For n even, 
n+l,L?J 

Ev[w](t)= E 
1 

2 r i 2T2 

n = 0 , r - 2 = 0 c . ' ' 2 
a ' - l f c ^ ( „ + l ) 7 - 1 

and for n = n' + 1 odd, 

n'+l,LfJ+l 

^HW = E 
1 

Tl=0,T2=0 
2rl2r-2 

E C2HW-
S r l f c _ ( n ' + l ) n 

S r 2 £ ^ ( n ' + l ) r 2 

[o.*L 

^ C aMw, (iv.i.15) 

(IV. 1.16) 
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Together (IV. 1.15) and (IV. 1.16) become 

ri=0'7"2=0 *i6AS»1)P1 
s r 2 £ ' 4 ( n + l ) r 2 

Finally, from equations (IV.1.13) and (IV.1.17) the induction is completed. • 

IV.1.3 Upper bounds for stochastic iterated Ito integrals 

The next two theorems present L2 upper bounds for the iterated Ito integrals 

(IV. 1.5) and (IV. 1.6). 

Theorem IV.1.2. Let n E XkYn and w e UVm[0,T} be arbitrary. An L2 upper 

bound for the iterated ltd integral (IV.1.5) at a fixed t £ [0,T] is 

i i i > K ^ < * f c i i ^ ^ (iv.i.18) 
»=o {' Pi' 

where fj^t) = /„* E [u?(s)] ds and Vi(t) = J* E [u?(s)] ds. 

Proof: The inequality is proved by induction over the total number of k + n integrals. 

For k + n = 0, the claim follows trivially. If k + n = 1, then there are two cases. 

First, if 77 = xix then by Holder's inequality 

\\lXn[w}(t)\\2
2<t f EluKt^dt^tU^t). 

Jo 

The second case is when r\ = yi±. By the isometry property 

iiv*)ir2= /"E [^M] d^v^t). 
Jo 

Now calculate the bound for n + k + 1 integrals assuming that (IV. 1.18) holds up to 

some fixed n + k > 0. Set n = q££\rf with rf G XkYn. If lk+n+1 = 1, then the 
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independence property assumed in Definition IV. 1.1 gives 

|I>](t)||= 

= E / uik+n+1{tk+n+l)Iri'[w](tk+n+l) dtk+n+1 

< 

= 

= 

t / E 
J L 
0 

t 

( / E [ 
0 

t 

t / E 

u2ik+n+1 (tk+n+l) (V [w] {tk+n+l)f dtk+n +1 

uifc+„+i(*fc+n+i) E [ ( V M ( W i ) ) 2 ] dtk+n+1 

+K I I U?l(tk+n+l) Vi '{tk+n+l) 
Zk+n+l n 

=0 a,-! 
dt k+n+l 

< t fc+1 ™ C/f'WTTV*W n ai\ -•--*- A ! 
i=0 l i=0 r i 

E U i f c + B +1 (**+"+!) 

A< 

^ i ^ " ^ 1 (*fe+n+l 
•dt fc+n+1 

c/f f c + n + 1 + 1(t) 
(a* f c + n + i + 1 ) ! 

< t 
at\ (A)! ' n 

i=0 

where ]CI=o a* = ^- Letting a; = a; + £j(rfc+n+1) (here ^ denotes the Kronecker delta 

function), then 

i=0 
a,-! A ! 

where 5Ẑ =o Qi = ^ + 1- Now, when lk+n+i = 2, the isometry property gives 

Î MWII; 

= E Vik+n+1 {tk+n+l%,> [w] {tk+n+l) dW(tk+n+1) 

E t^tWiKVHiW))2 dt k+n+l 
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E 
«k+ 

= / E K + " + 1
( i f c + " + i ) ] 

n + i( t f c + n + i ) | E [(I71,[w}(tk+n+1))
2] dt 

k+n+l 

U^1 (tk+n+l) n ^i t(tk+n+l) 

k+n+l n n a»! •x--t ft! 
i=0 l i=0 M* 

dt k+n+l 

s f f L m ft ^ / E 
i=0 *' i=0 Hl' 

Vik+n+1 ftfc+n+lj 
U t f c + n + 1(*fc+n+l) 

Wk+n+l -

dt fc+n+lj 

i^ik+n+l 

vflk+n+1+\t) 
(Afc+n+1 + i)! 

where ][]™0 ft = n. Similarly, let A = A + % f e + n + 1) , then 

iwwii^fiTf'tf', 
i=0 a»! A! 

where 5Z A = n + 1. Hence, the proposition is proved for all k + n > 0. • 
i=0 

Theorem IV.1.3. Let 77 e Xfcy™ and w E WVm[0,T] 6e arbitrary. An L2 upper 

bound for the iterated ltd integral (IV.1.6) at a fixed t E [0,T] is 
2 

OKt) < 2rHk+r1+r2 TT fl* ft) ̂ f ft) %* ft) 5 " ft) (IV. 1.19) 

w/zere 7, = X ^ i f e ^ + <%s-,2+i)), si2 e ST-2; 7; = XwjLi ^ S ' SU e *ri,' A = 

A - 7i - 7>; &ift) = /0 'E[u?(S)]dS, VJft) = /0*E [«?(«)] da, l?ft) = f*E[vt(s)]ds 

and Bi(t) = f*E[ti?(s)]ds. 

Proof: This inequality is proved by induction over r = r\ + r2. If rx = 0 and r2 = 0 

then inequality (IV. 1.19) reduces directly to inequality (IV. 1.18). Now assume that 

(IV. 1.19) holds up to r —1 > 0. To illustrate the inductive step, consider the following 

calculations. By Holder's inequality 

biAh)dh 

1 

< tJElbKt^dt, 
0 

< tBh(t). 
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To calculate the norm squared of fQ v^^^v^^^dti, there are two cases. 

If i\ ^ %2 then 

U t a ( t i ) ^ i i ( * i ) d t i 

2 / t 

< tUvlvKhfldtA I | E [<(*)] eft 

= t Vn(t)Vi2(t)<2tVH(t)Vi2(t). 

If i\ = %2 then 

<(*i)<fti < t / E ^ ^ ) ] ^ ! <2i ( ^ ( * ) ) ! 

Keeping in mind the inequalities above, one can proceed with the induction. Without 

loss of generality, set 77 = q££ • • • q\a
s
r
r
+

+\ylSrr]' e XkYn, rf e X^^Y8-'1 with sr = sTl 

or sT2 + 1, and k\ < k. For s n > sT2, applying the isometry property n — sri times 

and Holder's inequality k\ times gives 

OK*) 

= E 

tSr1 +2 

W lk + n ( t fe+n) • • • / U> i 
9ifc+n J «. 

^0 0 

* s r i + l 
S r i - 1 

• « r i + i 

^ : : ; ; : ( ^ 1 + i ) - - - ^ : : ( ^ 

< t 

1 

E w\+n(tfe+n) 
9i fc+n 

fc + Tl 

W 2 +2 

/ 
E w 2 i . r i + 1 ( ^ + 1 ) 

>n +1 

E 

/ tsri+l 

s r i _ i 

V H(^X dtSri+i---dt k+n-
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Using Holder's inequality once more and applying the inductive step with r — 1 = 

n+r2- 1, 

t 

I < tkl I E w\+n(tk+n) 
9, k + 

fc-f-7T 

tsri +2 ,_ 

E W iSri+1(tsn+lj tSri+l I E C,^) 
s r j - 1 

i / r 2 M(U dtSridtSri+± • • • dtk+n 

< tkl / E 

o 
™ V n (^+n) 

* s r i + 2 

E w < s r l + 1 ( ^ + 1 ) 
9i 

* s r i + l / E C1(^1). 

QT f̂c-AM+n+ra-l TT Ua*(tsn) Vi fen ) ^ ' ( ^ n ) BJl(tSr1) , , 

< 2r2tk+ri+r2 I E 
/ : 

«>2|fc+„ (tfc+n) , fc+n 

A! V7* 
+ 1 ' " • dtk+n 

E 

0 0 

^ V + l ( ^ r , + l ) 
<?; 

S J . J + 1 V s r i 

ST-, +1 

1 1 ™.l rt.l . / * T T 1 1 
i=0 

* s r i + l 

a,-! A! 7x! Z=0 l l ] -

/ E ^ (^n ) — ^ j dtSTidtSri+l • • • dtk+r, 

0 

< 2 r 2 i f c + n + r 2 / E 

0 

w\+n (tk+n) 
1i 

k + 
k-\-n 

tsr1 +2 

/ E K 1 + A 1 + O 

1 1 = 1 ^ i ^^T VI Ms^+1''' d i fc+"' 
2 = 0 

A! V7i! 7;. 

where 7- = 7i + <$iiSr. . Observe that YlT=o^i ~ r i - The remaining (n + &i — s n ) 

integrals are evaluated exactly as in the proof of Theorem IV. 1.2. Thus, the <Vs and 

Pi's increase rather than the 7J'S, and 

" U°*{t)vl(t)V?{t)B?{t) 
irNW < 2r2tk+ri+r21 I 

i = 0 
Oii A! V7*! 7-
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where YT= o ai = fc> ai 

A + 

H=0 

lk+n 3 n + 1 

a-i a • • • a- * 

Xi 
, E L A+7. + 7,' = n , A = 

i'fc + r; « s r + l 
, and A = A + 7i + 7i- Similarly for sT2 > sri, one instead 

applies the isometry property n — (sr2 — 1) times and Holder's inequality fci times. 

There are two situations. The first is when sT2 + 1 ^ sr2. It then follows by Holder's 

inequality that 

C>](*) 

E 

2 

t'Srn + 3 * s r 2 + l 

V» 
/ w ik+n(tk+n) • • • w iSra+2{tSra+1) vit +i(tSr2)vu (tSr2) 

2" 

K^H{t-Sr2) ^ d ^ : ; ( t , „ + 1 ) • • -^::(t f e + n) 

< tfel / E W* fc+n (tfc+n 
?i 

k+ 
k+n 

tsr2 + 3 

E ™2 ' .V,+2(*Sr,+l 
? i s r 2 + 2 

* » r , + l 

E < + i ( ^ > L ( ^ 2 ) 
o 

S r 2 - 1 

< tkl / E 
o 

°>-2 / ' 5 r 2 V ° r 2 

* 5 r 2 + 3 ,-

V a M(*.-) 

*s r ,+ l • 

dtsT0dts +1 • • • «tfe+n 

™ \ + n (tfc+n) 
9 i 

k + ' 
fe+n / ...yE 

0 

™ i , r . + 2 ( ^ + 1 ) 
= r 2 + 2 

* s r 2 + l 

E < 9 + i ( ^ 2 ) < 9 ( ^ 2 ) 
o r 2 — l y . f c — f c j + r i + r 2 — 1 

0 

m T-VQ. 

n 
2=0 

u? (**,) v f (t,„) vf* (t,T2) a? (ts-„2) 
Q,-! A! ^ ! 7*! 

dtsT dtsr +i • • • dtk+n 

< 2 r 2 _ 1 t f c + r i + r ' 2 / E 

o 

w\+n(tk+n) 
ii 

k+ 
k + r. 

tsr2+3 ,_ 

E W2u+2(tsr,+l) 
1, 

' S r 2 + 2 \uSr2 

s r , + 2 

1 1 ™l fl.t o/.t 1 1 
i=0 A 



89 

I l ^ r o ) lsr2+l\'"r2, —-,—; dU 
' Z . i f — • 

«L (*.-

< 2r2~Hk+ri+r2 / E 

- 2%'- \ 

7' ! 
-rft5„ dis + i - --dt k+n 

) 
t s r „ + 3 

/ 
w\+n(tk+n) 

"fc+n 

E w2, s r„+2 V*s r 2 +l j 

y r U"*(tsT2+i) V{ *(tSr2+1) Bi^ts^+i) 

i = 0 
Q,-! A! 7i! 

I I 7^7 / = / — " % 2 + l ' • • atk+n 

l^hT2,isT2+i 

< 2r2~Hk+ri+r2 I E 

0 

w\+n(tk+n) 
1i 

k+ 

k+r, 

*srr> + 3 

E W ' i r , + 2 V " S r 2 (*5r, + l ) 

'S ro+2 

n 
i=0 

yf(*^+l) ^ ( ^ 2 + l ) ^ ( t ^ + l ) 3*(t,„+l) 

a,- A '7i 7i! 
" ^ S r 9 + 1 * " " ^ 7 1 5 a^2 

where 7, = 7̂  + SiSr2 + £;(sr2+i) and ^™ 0 7i = 2r2. Thus, the remaining (n + hi -

(sr2 + 1)) integrals are calculated as in the case when sri>sT , and again the a,'s and 

A's increase instead of the 7j"s. Therefore, 
2 

I „*>](*) ^w^wvrw^w < 21 2r2~1tfc+ri+r2TT 
t o a« ! A! V7i! 7i! 

where J ™ 0
 ai = k, a* = a{ + 'fc+n _ _ _ ' s r 2 + 2 | 

, YT=o (pi + 7t + 7t) = «, A 

A + a l k + n • • • a
l " r 2 + 2 

Vik+n ^-isr2+2 
, and A = A + 7i + 7i- I n the second situation, isr + 1 = i-. r2 

Since (7^ + 2) > V 7̂i + 1 \ /7 i + 2 ^ follows that 

OK*) 

< 2 r2 —lj.fc+r E ^ \ + n (tfc+n) 
1k + n 

*Sr2 + 3 ,_ 

E ^V+afe-a+l) 
«*» >+2 
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11 «.! fl.l n/.l 11 
i=0 

4 s r 2 + l 

A! 7i! 

- 7 i 

E u L + i (**>,) 
y. Sr2 (t- ) 

% ' I 

.1=0 VV 
^Tz'l'3r2 ' l s r 2 + l 

dtsr2dtsr2+i • • • dtk+r 

< 2r -lj.k+r\+r2 / E w\+n (tk+n) 
it 

k+ 
fc + n 

- o r 2 "I 

E 
. 9iSr2+2 

m TTO. n 
i=0 

^T(^+i)v;A(^+i)^(^+i) A ^'(^+i) 

a,;! 

* 5 r , + l 

A 

- T i , 

li 
n 

.i-o V"V 

/ 
0 

E *0*J î ?(*o 
7-

"^s,.2 " ^ s r 2 + l • • • dtk+n 

t 

< 2rHk+ri+T2 I E 

0 
/ 

w2, {tk+n) 
li 

k+ 
k-\-n 

tsro + 3 

E W2U+2{tSr2+l) 
li Sr2+2 

fr^f(^2 + i)^(^2 + i)^(^2 + i) fr W'l(t,n+i) Vt2+2^ 
1 1 ri,! rt.l *v,t 1 1 

° r 2 - ' s r 2 

i=0 
a,:! A! 7- to v^ J ^ K ^ + 2 ) 

^ » J r 2 . ^ r 2 + l V 

t 

< 2rHk+ri+r2 J E 

0 

™ \ + n (tfc+n) 
9 i fc+n 

^ s r 2 + 3 

0 

^ V + 2 ( ^ 2 + i ) 
<?i S r o + 2 

nm ^ ' ( * 5 r 2 + 1 ) K l ( * S r 2 + 1 ) ^ ( £ s r 2 + 1 ) - B j 7 ' ( ^ r 2 + 1 ) , , 

~\ ~5~i 7==f ~ " ^ + 1 • • • a t n , 
1 = 0 a,-

where 7, = 7̂  + 25jiSr and ]CI=o 7i = ^r2- The remaining n + ^ — (sT2 — 1) integrals 

are evaluated as in the previous steps. Thus, 

Ua*(t)Vf(t)V?*(t)B?(t) 
I „*>](*) < 9r2tfc+ri+r"21 I 

Q. •! A! V ¥ 7i! ' 

where EI=oa* = k' Ot-i = OLi 
h. L k+n . . . ' . r a + 2 

, Eto A + 7* + 7; = "> A 

A o - • • • a 
^Ik+n y * S r 2 + 2 

, and A = A + 7i + 7z- Since all the possible situations are 
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covered, the proof is complete. • 

A consequence of the previous two theorems is the L2 upper bound for the random 

variable En[w](t) when 77 e XkYn. 

Theorem IV. 1.4. Let 77 G XkYn and w € UVm be arbitrary. Then for a fixed 

lia,MWII, < (^)fc
f
(f!(^+2))2". (IV.1.20) 

( Q ! ) 2 ( / ? ! ) 4 

where a! = a0! • • • am\, f}\ = #,! • • • (3m\ and max{||u||L2, \\v\\L2, \\v0\\L2, \\V\\LA} < R. 

Proof: A Stratonovich integral can be written in terms of Ito integrals using (IV. 1.4). 

Note that #{Anr2) < {n^) < ( ; ) and # ( A ^ ) = (n ;f2) < (£). Using the triangle 

inequality, Theorem IV. 1.3 and the binomial theorem, observe 

™.|£ 
1 E |£>]WII2< £ 2r,y2 

r i = 0 , r 2 = 0 CASr2 

C2HW 

™ , | _ 2 J k+r-l+r2 

r i = 0 , r 2 = 0 

r 2 

2 r i 2 2 
Mfj a,! ft! V¥ 7i! 

< 

^ f c + n \ n4iJ ftha±r2 

T E 12 
. V / / n = 0 , r 2 = 0 

E n 
* e:4 2 ^(AOWW^ 

< 
Rk+nU 

.("WW J ri^w* 

" ' L 2 J r l + r 2 771 

E ^ E n /?! 

Sri £.Anr^ 
A!7i!7i! 

< 

< 

_^tL)r^t±(n\^tJL(n 

{RVi)k{3V2R(Vi + 2)(Vt + V2))n 

4"(a!)^(/?!)3 
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(RVt)k(V2R{Vt + 2))2n 

(a!)3(/3!)i 

IV. 1.4 Fliess operators and their global convergence 

In this section Fliess operators are suitably extended in order to accept stochastic 

processes from UVm[Q,T] as inputs. Now recall that for any w G UVm[0, T], R is 

an upperbound for ||it||L , \\v\\L and ||u||L4. Thus, the concrete objective of this 

section is to show the mean square convergence of the stochastic extension of Fliess 

operator for all t £ [0,T], where T, R > 0 are arbitrarily large but finite. This type 

of convergence will be known as global convergence. 

Definition IV.1.2. A causal m-input, ^-output Fliess operator Fc, c 6 M.e((XY)), 

driven by a stochastic process in UVm[0,T] is formally defined as 

Fc[w](t)= E M ) ^ H W , (IV.1.21) 
7]€XY* 

where each Ev is given in (IV.1.2)-(IV.1.3). 

The operator Fc lacks real meaning unless its convergence is described in some 

manner. Since (IV.1.21) involves stochastic integrals, a mean square notion of con

vergence is assumed, i.e., the infinite series ^ x r , |(c, T/)| |J£7̂ [xt;]j12 is finite. The 

procedure used here is motivated by Riccomagno in [50,51]. In this regard, consider 

the following definition. 

Definition IV.1.3. For a fixed t G [0,T], the series Fc[w](t) in (IV.1.21) is said to 

be a Cauchy series if for any e > 0 there exist an N > 0 such that 

N2 3 

j=Ni k=0 veXkYi-k 
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when N2 > iV~i > N. 

It is well known that L2(Q, J-, P) with its usual norm is a Hilbert space modulo the 

almost sure equivalence relation in Definition II. 1.4. The following theorem ensures 

that a Fliess operator converges absolutely in the mean square sense to produce a 

well-defined output process when its corresponding series is globally convergent. 

Theorem IV. 1.5. Suppose for a series c E M.e((XY)) there exists real numbers 

K, M > 0 such that 

\(c,r})\ <KMH, VrjEXY*. 

Then for any stochastic process w € UVm[0, T], T > 0, the series (IV.1.21) converges 

absolutely in the mean square sense to a well-defined random vector y(t) = Fc[w](t), 

te[0,T\. 

Proof: Without loss of generality it is assumed that £ = 1. Pick a t £ [0, T] and any 

w £ UVm[0,T]. Let R = max{||u||L2 , | H | i a , | |u0 | | i a, \\V\\LA}. For a word n e XkYn, 

recall k = Yl^iLo a* *s ^ n e n u m ber of Lebesgue integrals in 77, while n = Y^iLa A' ^s ^n e 

number of stochastic integrals in 77. Define 

«k,n(i) - ^2ic>v)Ev[w]{t). 
v€X

kYn 

Note that the language I/a,/3 = {v G xkYn : \rj\x. = a i ; I77I. = Pi,i = 0 , . . . , m} 

consists of (k + n)!/(a!/?!) words. Applying Theorem IV.1.4, 

K„(t)||2 < £lMIII3,M(*)lla 
T]&XkYn 

(RVi)k{V2R{Vi + 2))2n (A; + n)\ 
< KMn+k Y^ 

\\a\\=k,\\(i\\=n 
(a!)l(/?!)s a\0\ 
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Without loss of generality, it is assumed that R> 1. If R' = AR(R + A), then by the 

multinomial theorem, 

,,^+n V - (fc + n)! 
k,n(*)ll2 < KCAfi? E 

< 

< 

K(2MRn)k+n J2 
k\n\ 

Ha||=fc Sl=>W0' 
K(2MR')k+ (*!) 

(Jfc!)t(n!) Ha||=fe 

(n!)i 

°0* ^ W 
K{2MR')k+n ( ^ fc! 

" (*0*(n!)* ViiHNfc"
a! 

K ( 2 M # ( m + l ) 2 ) f c + n 

£ 
l||=n 

nl 

< (IV.1.22) 
(fc!)2(n!)4 

To show that (IV.1.21) is mean square convergent, it is sufficient to show that it is a 

Cauchy series. Since |?7| = \q\x + \rj\Y = k + n = j , it follows immediately from the 

triangle inequality that 

N2 j 

E E £M)£>](t) 
j-N! fc=0 V£XkYJ-k 

N2 j 

j=Ni k=0 

(IV. 1.23) 

for any N2 > Nt e N. Now for any e > 0 there exist an iV > 0 such that by (IV.1.22) 

N2 j 

E J2\\akj-k(t)\\2 
j=Ni fc=0 

N2 j 

< E E EIMIII^MWII,, 
j=Ni fc=0 neXkYi-k 

A A {2MR'{m+l)2)k(2MR'{m+l)2y-k 

3=0 fc=0 

r^ ^ (2MR'(m + l)2)k ^ (2MR'(m + lf)n 

= K1. 77^1 2_ 

(*!)*((j-*)!)* 

W fc=o v ' v - ; - n = o 

y , (M")k y , (M")n 

k= 

(n!)i 

h (*0* h (n!)i 
< e 
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for all N2> Nx> N, where M" = (2MR'(m + l)2). Note that ^f- and ^ T are 
(fc!)5 (n!)3 

the k-th. and n-th term of an absolutely convergent series, respectively. By the ratio 

test, 

lim = lim r = 0 
fc-.oo Sk fc—°°(/c+l)2 

and 

lim —— = lim r = 0. 

Thus the series (IV.1.21) is Cauchy. This implies that YlveXY* K^7?)! Il^/Mlb 1S 

finite. • 

Example IV. 1.1. Consider the following system driven by a Wiener process 

dz(t) = Mz(t)dW(t), z(Q) = 1 
(IV.1.24) 

y(t) = Kz(t). 

The generating series for (IV.1.24) is (c, y$) = KMk for k > 0 and 0 otherwise. 

Therefore, c satisfies the growth condition in Theorem IV. 1.5. The output when 

w = 0 is 
0 0 rt f-t2 

y(t) = Fc[0}(t) = Y,KMkT •••? dW^-'-dWih). 
fc=0 J° J° 

Since Stratonovich integrals follow the rules of standard integral calculus, 

rt Wk{s) „ x r . . Wk+1{t) r-¥^-w^^ (—> 
Hence, 

„m = FM(t) = V KMk-
k\ 

y(t) = Fe[0](t) = E KMk^T = KeMW{t)' f E [°' °°)-
fc=0 

D 

One application of Fliess operators is that it provides a series solution of the state 

equation of a nonlinear system [17,21,42,50]. This fact is related to the Borel-Laplace 
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transform of analytic signals, which was applied by Fliess in [17]. A similar approach 

was used by Riccomagno in [50] to solve a specific class of nonlinear stochastic differ

ential equations. The following examples illustrate the basic ideas in the stochastic 

setting utilized here. 

Example IV. 1.2. Consider the following stochastic linear system 

dz{t) = -az{t) dt + bw(t), z(0) = 1, (IV.1.26) 

where w is the formal derivative of w £ UV[0, T], i.e., if 

w = u(s) ds + S v(s) dW(s), 
Jo Jo 

then 

w = — w = u(s) + v(s)w, (IV.1.27) 
dt 

where w stands for white Gaussian noise. Technically speaking, equation (IV.1.26) 

is only valid in its integral form 

z(t)-z(0) = -a z(s)ds + b( u(s) ds + v{s)dW(i 
Jo \Jo Jo 

s) , z(0) = l. 

Assume there exists a series c G M.((XY)) such that the solution z(t) = Fc[w](t). 

Then the solution z(t) can be replaced by the series c, Lebesgue integration by the 

letter XQ to the left, Stratonovich integration by the letter yo to the left, Lebesgue 

integration with integrand the z-th component of u by Xi to the left and Stratonovich 

integration with integrand the z-th component of v by yi to the left, where i ^ 0. 

Applying these rules, one can write the algebraic equation 

c - 1 = -axoc + bixx +yx), (IV.1.28) 
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Solving for c gives 

c={l + ax0)~
1(l + b{x1+y1)). 

Given that c is written as the ratio of two polynomials, it resembles the Laplace 

transform of a linear system. Since c is rational, it follows from Theorem IV. 1.5 

that the solution to the system has to be globally convergent. The Fliess operator 

associated with c is 

Fc[w]{t) = F{1+axo)-Hl+b{xi+yi))[w}(t) 

= F{1+axo)-i[w](t) + Fb{1+axo)-iXl[w](t) + Fb{1+axo)-iyi[w](t) 

= F{1+aXo)-i[w](t) + / bF(1+axo)-i[w]{s)u(s) ds 
Jo 

+j£ bF(1+axo)-i[w]{s)v{s)dW(s). 

A simple calculation shows that 
OO OO / s£ 

F{i+axo)-i[w]{t) = ^ ^ - ^ N l ^ E ^ V ^ H W 
k=0 fc=0 

0 0 / \k °° / j.\k 

= E ^ f (B»[*))"=Ei;#--'M' 
k=0 fe=0 

Hence, 

F c H( t ) = e~at + b [ F{1+axo)-i{w}(s)u{s)ds + bJ; F{1+axo)-i[w}(s)v{s) dW{s) 
Jo Jo 

= e~at + b I e-a{t-s)u{s)ds + bi e-a{-t-s)v{s)dW{s). 
Jo Jo 

This solution is a Volterra series with the following kernels: 

h0(t) = e~at and /ii(t,s) = fie-0''-'5. 

D 
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In stochastic calculus a so-called linear stochastic differential equation has the 

form of a bilinear system fed with a Wiener process input [39,47]. Besides, it is 

known that bilinearity is equivalent to having a rational generating series [4]. For 

example, consider the stochastic differential equation (1.1.6), where f(z) = N^z and 

g(z) = N$z, with iVo1, iV0
2 £ Kn x n and z(t) £ Rn. It follows that 

z(t)= f N£z(s)ds + J; N$z(s) dW(s). (IV.1.29) 
Jo Jo 

If w denotes the formal derivative of the Wiener process W, i.e., W{t) = JQwdt, 

then (IV.1.29) can be written as a bilinear system driven by the white Gaussian noise 

w, 

z(t) = Ntz(t)+N*z(t)w(t), z(0) = 7 

y(t) = Xz(t). 

The iterative procedure developed for (1.1.6) gives 

z(t)= Y^ Mvh Ev[o](t), 
rj€XY* 

where [i is defined recursively as /i(xo?7) = ^oM7?) a n d ^(VoV) = -^ro^(r7) f°r a u 

t] £ XY*. In Corollary III.2.1, It was shown that there always exists K, M > 0 

such that |(c, ?])| = |A/u(ry)7| < KM^. Therefore, the series associated with z(t) is 

rational, and thus, globally convergent. The next example shows how to analyze a 

bilinear system algebraically as in Example IV.1.2. 

Example IV. 1.3. Consider the following bilinear system 

dz{t) = -az(t)dt + bz(t)w(t), z{0) = 1, 
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where w € UV[0, T\. In integral form this becomes 

z{t) - z(0) = -a J z{s)ds + b( f z{t)u(s) ds + f v{s) dW{s)j , z(0) = 1. 

(IV. 1.30) 

Assuming there exist a series c e M.{(XY)) such that z(t) = Fc[w](t) and using the 

substitution rules described in the previous example, one obtains 

c — 1 = — ax0 c + b (xi + yi)c. 

Solving for c gives 

c = (1 + ax0 - b(xi + yi))"1. 

Observe that c is a rational series, and therefore, c is also a globally convergent series. 

From Theorem IV.1.5, it is known that z(t) = Fc[w}(t) converges to a well-defined 

random variable for all t £ [0, T]. On the other hand, the operator Fc[w] can now be 

written as 

Fc[w]{t) = F{1+axo-Kxi+yi))-i[w](t) 

oo 

k=0 

Riccomagno in [50] developed an extension of identity i. in Theorem III.1.2, i.e., 

(ax0 + by0)^
k = k\(ax0 + by0)

k. (IV.1.31) 

For i ^ O , a simple extension shows that 

(ax0 + bxi + cyi) ujk = k\(ax0 + bxi + cyi)k. 



Then 

OO -. 

Fc[w]{t) = ^2^F{_axo+b{xi+yi))Luk[w}(t) 
k=0 
oo 1 

= z J V\ (^(-^o+tcxi+w)) M (*)) fc! 
fc=0 
oo ^ ( - a i + ^ t ) ) * _ t+bw{t) 

k=0 

Fliess in [17] also suggested the following iterative scheme. 

Co = (l + azo)"1, 

cfc = &(l + ax o rVc f c _ i , 

with c = X f̂clo cfc- ^or simplicity, assume it(£) = 0 . Then 

Ci = 6(1+ ax0)^1?/i(l + axo)"1, 

c2 = 62(l + ax0)_1yi(l + axo)"1yi(l + ax0)~1, 

c3 = 63(l + axo)~1yi(l + axo)"1yi(l + ax0)"1yi(l + axo)~1, 

cfc = 6fe(l + a2;o)"1yi(l + axo)"1z/i---2/i(l + axo)"1yi(l + axo)~1 

Therefore, 

Jo Jo 

... £2 e-^-^e'^Mtk-i) dWfa) • ••dW{tk„l)dW{tk) 

= e~atbk f v(tk) f v(tfc-i) - - • i ^ - O d W C t O - . - d W ^ - ! 

= e"at 
&i u(s)dW(s) 

A;! 

Thus, F > ] ( t ) = E r = o ^ N ( t ) = e - ^ W . 
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Example IV. 1.4. A switched linear system is usually modeled as 

z = Auz, 

where u : 1R+ —> {0,1} is a switching signal and A0, A\ are square matrices. This 

system can be represented as a bilinear system in the following manner: 

i = A\zu + A0z(l — u) 

= AQz + (Ax - AQ)ZU 

= NQz + Nizu, 

where No = A0 and Ni = A\ — A0. If u is stochastic, then an appropriate type of 

stochastic process modeling the integral process induced by u is a Poisson process. 

This type of process falls into the class of jump processes or Levy processes which 

are outside the class of processes being considered in this dissertation [48]. It may, 

however, be possible to extend the notion of Fliess operators for this type of input 

processes in future work. • 

IV.2 T H E S H U F F L E A L G E B R A 

Given that Stratonovich integration satisfies the integration by parts formula, the 

R-vector space M.l((XY)) together with the shuffle product forms an M-algebra. This 

algebra is called the shuffle algebra of M.e((XY}), and it can be seen as a generalization 

of the shuffle algebra defined on M.e((X)). In Chapter V, this algebra will play a 

central role in the definition of the composition product over XY*. 

Definit ion IV.2 .1 . The addit ion of c, d G Re((XY)) is defined as 

c + d= Yl i(c^) + {d,v))V-
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Definition IV.2.2. The scalar product of r E R and c E M.e((XY)) is defined as 

veXY' veXY* 

These operations are direct extensions of the operations defined on M((X)). 

Definition IV.2.3. The shuffle product on XY* is recursively defined for r\ = 

fav', i = &?, rf, f' E XY* and fa, fa E XY as 

where 0Lxj0 = 0and£uj0 = 0uj£ = £. 

The definition is extended to any c,d E R£((XY)) by 

V,H£XY» 

It is clear that this extension of the shuffle product to M.({XY)) behaves exactly as 

the one for R{(X)). The iterated integral defined in (IV.1.2) and (IV.1.3) can be 

extended linearly to polynomials as 

Ep[w]{t)= Y, (P -^^HW, 
rjesupp(p) 

where p E M.(XY). The set of all such integrals forms a vector space denoted as 

£{R{XY)). 

Lemma IV.2.1. Let w E UVm[0, T\. Then 

Ev[w}(t)E^[w](t) = Evlui[w](t) (IV.2.1) 

for rj,£ E XY*. In addition, the set £(R(XY)) forms an R-algebra with product w 

on XY* and identity element E$ = 1. 
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Proof: Consider the iterated integrals Ev[w](t), E^[w]{t) G S(R(XY)) for n = q\\n\ 

£ = q1?^', r/, £' G XY* and q\\,ql*2 G XY. From the Stratonovich integration by parts 

rule, their product can be computed as 

E > ] ( t ) E c M ( t ) = / wu(r) 
J o *J'i 

JO Hii + 

= Eu 

Evl[w}(r)Et , H ( r ) dq^r) 

Eohril[w}(r)Ee[w}(r) 

(*) 

dqt(r) 

En,[w]{r)Eh [W]{T 
H32 

+Enh (r) 
HJ2 

Enll,[w}(r)E^w](r,t0) (t) 

= ^ ' l W , . . „ ' 2 f , M ( * ) o / n ' l i i f f ' 

= £, T;LU5 :«>](*)• 

Now, since r7u_i£ G M(XF), the product of two iterated integrals is an element of 

S(R{XY)). Hence, S(R(XY)) forms an M-algebra with product uu on XY* and 

identity element E§ = 1. • 

The next lemma show how to utilize the shuffle product to decompose the char

acteristic series of an arbitrary alphabet. 

Lemma IV.2.2. Let Z = {z 0 , . . . , zm} be an arbitrary alphabet. The characteristic 

series of the language Z* can be written in terms of the shuffle product as 

rjeZ' fe=0 l|a||=fc 

Z0 LUZ1 LU • " • LU Zm (IV.2.2) 

Proof: Recall that ]Ci|a|i=fc denotes the summation over all vectors a. such that 

a0 + ai + • • • + am = k. For simplicity, consider the case when Z = {z0,z±}. It is 

sufficient to prove (IV.2.2) for the characteristic series of the language Zk = {77 G 
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Z* : \r)\ = k}. The proof is done by induction over k. Consider k = 1. Clearly, 

Z = z0 + qi = q0 m 0 + 0 LU Zl = ^2 zo ° ̂  ZT • 
| |a | |=l 

For k = 2, 

Z = ZQ -\- ZgZi + Z\ZQ - j - Z1 = Z0 LU 0 + ZQ LU Z\ + 0 i_u Z^ = y ZQ° U J Z J 1 . 

Assume identity (IV.2.2) holds up to k. For k + l then 

zk+1 = E ̂ ^E^E" 
— Zo _2_^ ^o U J 2 1 "+" Z l ^ L / Z0 LLJ Z l 

||a||=fc ||a||=fc 

k k 

Ha||=2 

i=0 j=0 

fc-1 A: 

= Y^ MZQ ^ *i_ i) + E 2 l ^ o m ^i"1) + z°^o ^ 0) + 2i(0 UJ z*) 
i=0 1=1 

fc-1 fc-1 

= £ Zb(2J LU Z*"*) + J ] Z!(Z0
+1 u, Z1

fc-i"1) + (Z0
fc+1 LU 0) + (0 LU Z\+1) 

i=0 i=0 

fc-1 

= J ] ( Z b l z j - ^ ) + Z l U + 1 - z t " 1 " 1 ) ) + (Zk
0

+1 LU0) + (0 m***1) 
i=0 

fc-1 

= 5 > o + 1 - *?-<) + (^+1 - 0) + (0 u, z*+1) 

t=0 

= ^ L U Z ^ ^ ) + ( z * * 1 ^ ) + ( 0 u ^ + 1 ) 1=1 

fc+1 

- X^(?1 ,('=+1)-M - V^ ra° rQi 

- 2 ^ ^ o l I j 2 i / _ 2 ^ ^o LU '2 ;i • 
i=0 ||a||=fc+l 

Therefore, (IV.2.2) is proved. • 

For any a, /3 G ̂ m + 1 define the polynomials pa = x^0 LU • • • UJ x^m and pp = 

Vo° ^ • • • ̂  Z/&"> respectively. 
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Corollary IV.2.1. The characteristic series, XkYn, of the language XkYn can be 

written in term,s of the shuffle product as 

XkYn 4 J2 V 
•q£XkYn 

||a||=fc,||/?||=n 

Proof: In Lemma IV.2.2, let Z = XY = {x0, xi,..., xm, yo,yi, • • •, ym}- Then by 

(IV.2.2) 

oo 

JL r — 2_^ v — 2^ 2^ ° i m • • • m m ^° ^ ^ m • • • m ^m 

7,€XY* j=0 ||a||+||^||=i 
oo 

i=0 IMI+H0ll=i 
oo j 

j=0 fc=0 ||a||=fc,||/?||=j-A; 

Since XkYj'k = {n G XY* : |T7|X = fc, M y = j - k} and XY = 

E^lo E L o E^ex*yi-* V, it follows directly that 

fc=0 ||a||=fc,||,3||=j-/c 

The next example shows how Lemma IV.2.1 leads to an improvement of the 

proof for the local convergence of Fliess operators driven by deterministic inputs. 

This is illustrated using a new grouping of the series (1.1.2) in terms of the shuffle 

product. This grouping will ultimately provide an improved estimate for the radius 

of convergence over what appears in the literature [29]. 

Example IV.2.1. [10] In the deterministic case, i.e., when the alphabet Y is empty, 

the drift inputs are deterministic and max{||it||L , T} < R on [0,T]. One can show, 
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then, that 

(IV.2.3) 
i=0 

Specifically, it is clear that 

r ao ai 
X„" LU X , LU ••• LU Xv \FPM(t)\ = 

By induction, it is next shown that 

FxV[u](t) 

•M(*)i=nk^M(*) 
i=Q 

< 
U?(t) 

aj\ 
(IV.2.4) 

When ctj = 0 or Qj = 1, the claim is trivially true. If (IV.2.4) holds up to some fixed 

integer ctj > 0 then 

F«j+i[u](t) < J Mr)\\Fx^[u](r) 
o 

dr 

u*j+1(t) 

Furthermore, it is also easy to verify by induction that 

\Ev[u](t)\ < Ev[u](t), 0 < t < T , (IV.2.5) 

where u £ L™[0, T] has components Uj = \UJ\, j = 0 , 1 . . . , m. Suppose (IV.2.5) holds 

for words up to length k. Then for any Xj EX, 

t 

\EXjV[u](t)\ < / K - ( T ) | | ^ M ( T ) | dr 
o 

t 

< Ju3{r)En[u]{r) dr 

o 
= EXjV[u]{t). 
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Thus, the claim holds for all 77 G X*. Now fix T > 0. Pick any u G L?[0, T] and let 

R — max{||u||Li , T}. From Lemma IV.2.1, observe that 

Y, \{c,V)Ev[u](t)\ < E E I M I ^ K * ) 
7?ex* fc=o v&xk 

0 0 

< Y,KMkkl E 3* raw 
fc=0 ||a||=fc 

0 0 E>fc 

< J>M*« E ^ 
fc=0 \H\=k 

fc=0 l|a||=fe 
0 0 

= Y^K(MR(m+1))k-

Therefore, the series defining Fc converges absolutely and uniformly on an open ball 

in Li[0,T] of radius R < l/M(m + 1). In [29], the more conservative radius of 

convergence 1/M(m + l)2 was proved. • 

For fixed a,(3 G Nm+1 , w G UVm[0,T] and t > 0, define the following sum of 

iterated integrals 

SaAw}(t) 4 FPa m p > ] ( t ) = FPa[w](t)FP0[w}(t). (IV.2.6) 

The importance of (IV.2.6) comes from the fact that, using the commutativity of 

the shuffle product and equation (IV.2.1), the Lebesgue integrals and Stratonovich 

integrals can be completely separated. Thus, an L2 upper bound for Sai/g[u>](£) can be 

obtained by calculating individual L2 upper bounds for the random vectors FPa [w](t) 

and FPf3[w](t). Then from the independence assumptions in Definition IV. 1.1, 

l|s«^M(*)ll5 = \\FPM(t)\\l\KH(t)\\2
2. (iv.2.7) 

The following lemma is needed for calculating a bound for H-F^M^)^. 
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Lemma IV.2.3. Let u be the drift input of w G UVm[0,T}. Then for a = 

( a 0 , . . . , am) G Nm + 1 and any real numbers t > s > 0 

E li(ui(*)-^)r 
,i=0 

m 

i=0 

(IV.2.8) 

w/iere ^ ( t ) = Q E [k(s) |] ds. 

Proof: Let /c = ^ a*. The identity is satisfied trivially if fc = 0. If A; = 1 then 

E[Ui(t)-Ui(s)]< / E [K( r ) | ]d r<f / 2 ( t ) . 
J s 

Now suppose (IV.2.8) holds for k — 1 > 0. Clearly u has independent increments. 

Using Pubini's theorem, it follows that 

E 

/ £ QiUi(r) (Ut{t) - Uiir))"*-1 n ([/,(*) - U^r dr 
Js „_n 7_n 

< E 
;=o 

H m 

< 

< 

E (uM-u^p-'iKuM-u^r 
;=o 

<ir J>E[K(r) 
- i=o 

/

I m no 

- i=o i=o 

m 

= new-
i=0 

Thus, the inequality in question is proved. • 

Using the above lemma, (IV.2.3), and Definition IV. 1.1, the L2-norm of FPa [w](t) 

is 

l*i>](')ll5sIlS < n •2k 

(ail)2 ~ (a!) 
(IV.2.9) 
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In Theorem IV.1.5, it was shown that X^exr* KA7?)! ll-^MCOIb *s n m ^ e when c is 

globally convergent. Then, as in the deterministic case, the next example shows how 

the shuffle product on XV can be used to group iterated integrals, and thus, obtain 

conditional global convergence of a Fliess operator driven by an L2-Ito process. 

Example IV.2.2. [10] Pick a t E [0,T] and any w G UVm[0,T]. Let R = 

max{||u||Li , ||u||La, \\v0\\L2, \\v\\L4}. Define 

aKn(t) = KMn+k J2 SQi/3M(t). 
||a||=fc,||/?||=n 

Applying the multinomial theorem, identities (IV.2.7) and (IV.2.9), and Theorem 

IV. 1.4 

IK mil <KM^ T ( ^ ( ^ + 2))2"g^ 
||a||=fe,||/3||=n \P-J H 

If it is assumed that R > 1 and R' = AR(R + 4), then 

\\akn(t)\\2<K(MR'rn{m+1lk y ^ 4 

<K(MRT«^(yf\ fc!(n!)4 \^nP]-j 

= K(MR')k+ni^-^(m + l)2n 

k\(n\)4 

K(MR'(m+l)2)k+n 

fc!(n!)s 

Immediately from Lemma IV.2.1, for N2 > Ni & N, equation (IV. 1.23) can be re-

derived as 

N2 j N2 3 

j=Ni k=0 r)£XkYJ-k 
2 j=JVi fc=0 

oo j 
{MR'jm + lf)k{MR'{m + l)2)^k 

< ^EE 
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^ ^ (MR'(m + iff ^ (MR'(m + iff 
KL, in 2_. 

*T (Mi?'(m+l)2)r 

n=o W 

fc=0 n=0 

oo 

= K'Y}Mn) 

ss ("': l. J 

4 

is finite. 
2 

where M" = (MJR'(m+ l)2) and K' = K^MR'^m+1^\ Note that ^ £ is the rz-th 
(n!)3 

term of an absolutely convergent series. Hence, one reaches the same conclusion as 

in Theorem IV. 1.5. • 

Even though in the example above convergence is achieved, it is only conditional 

convergence, i.e., the ordered sum £)°10 Yjl=o Y2V£XkYi-i<(c>'ll)Ev[w}(t) 

Thus, this grouping works perfectly in the deterministic case, but in the stochastic 

situation it is not enough to assured global convergence. However, this grouping will 

be very useful in the next section when local convergence of Fliess operators is taken 

in account. 

IV.3 LOCAL CONVERGENCE 

Although global convergence is a desirable property for the generating series of 

a Fliess operator, many systems of interest are not of this type. So in this section a 

stochastic notion of local convergence is introduced using the concept of a stopping 

time. Then a corresponding sufficient condition for local convergence is developed. 

But first an example is given to motivate the approach taken. 

Example IV.3.1. Consider the system 

dz(t) = Mz2(t) dW(t), z(0) = 1, 
(IV.3.1) 

y(t) = Kz{t). 
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The generating series for system (IV.3.1) is (c, y§) = KMkk\, k > 0, and 0 otherwise. 

The corresponding output is 

°° rt rti 

y(t) = Fc[0](t) = 'VKMkk\ f •••£ dW{tx) • • • dW{tk). 

By formula (IV. 1.25), 

oo 

y(t) = Fc[0](t) = J]XMfc^fc(i). 
fc=0 

At first glance, y appears not to be convergent since Theorem IV. 1.5 does not apply. 

However, if 

TR = inf{t : \MW(t)| = R} (IV.3.2) 

and R < 1, then y(t) will be an absolutely convergent series with limit Kz(t) = 

i-MW(t) f° r a n ^ * — TR' Now, let K = M = 1. In [38], the theoretical probability 

distribution function of T# is given by 

\R\ - 3 «2 

/ ( ^ ) = ^ r f i
2 e " ^ , (IV.3.3) 

which is the distribution function known as the inverse gamma distribution with 

parameters a = | and /? = ^-. In Figure 5, a Monte Carlo simulation of the 

probability density function of TR is presented for R ~ 1~ (approximation to 1 from 

the left.) • 

Two important observations concerning Example IV.3.1 are that the condition 

given in Theorem IV. 1.5 is only a sufficient condition, and the convergence time 

interval has a random nature, i.e., 

[0, r ] = {0 < t < r(u) : (r, u) e [0, oo) x fi}. 
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P(t) o, 

I Simulated 

" Theoretical 

Fig. 5: Estimated probability density function TR. 

Moreover, the direct solution of (IV.3.1) confirms this since it can be solved by 

separation of variables, i.e., 

/ ^ 1 = i M dW{s) = MWit). 
Jo z2{s) J0 

Then, 

y(t) = Kz(t) = 
K 

1 - MW{t) 

for any t such that M2W(t) < 1, or for any t < r = inf{£ E [0, oo) : MW(t) < 1}. 

In addition, observe that the stopping time 

rR ^ min inf It 6 T : \S v^s) dW(s) = RA (IV.3.4) 
iG{0,l, -,m} t IJ0 J 

will play an important role in the derivation of a the local convergence condition 

for the case when the generating series of Fc[w] is locally convergent. The next 
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definition describe the set of admissible inputs for Fliess operators corresponding to 

locally convergent formal power series. 

Definition IV.3.1. Let X(t) = <£ v(s) dW(s), where v is an m-dimensional L2-H6 

process. The set UVm[0, rR] is defined as the set of processes w E UVm[0, T] stopped 

at rR defined in (IV.3.4). 

The next theorem presents the main result in this section. 

Theorem IV.3.1. Suppose that for a series c E Mf((XY)), there exist real numbers 

K > 0 and M > 0 such that 

I M ) | < KMM \n\\, VrjeXY*. 

Then for any random process w G UVm[0,rR] with rR defined as in (IV.3.4), the 

series 
oo j 

Fc[w](t) = T,H E M)£>](*) (IV-3-5) 
j=0 fc=o r)EXkYi-k 

converges in the mean square sense to the random vector y(t) = Fc[w](t), t E [0, TR}. 

Proof: Without loss of generality it is assumed that £ = 1. Pick any w E UVm[0, rR] 

and at E [0,TR]. Observe that rR is the first time the process X(t) = <p Uj(s) dW(s) 

hits the barrier (-R, R). Since X(t) is a well-defined Ito process, Theorem II.3.8 and 

the fact that the absolute value function is a, continuous function ensures that one 

can always choose, without loss of generality, a continuous version of the process X. 

Then, by Theorem II.4.6, the random variable rR is a strictly positive stopping time. 

Thus, the stopped process XTR is a well-defined L2-bounded, a.s. continuous and 
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adapted L2-Ito process. Now, using integration by parts and property (IV.2.1) 

^ > ] M = y«.UJ...m>ft.MW = ^ H W - F ^ - H W 

n 
i=0 

£ Vi(s)dW(s) 

A! 

T h e I/2-norm for FP0 [w] (t) t r u n c a t e d a t t h e s topping t ime rR is 

\FPM{thrR)\\l = ~ E 

< 

m2 

R2n 

W 

n 
i=0 

rtATR 

£ Vi{s) dW{s) 
Wi 

Define 

ak,n(t)±KMk+n(k + n)\ £ S a ^ H ( i ) . 
||a||=fc,||/3||=n 

Let i?' = max{||u||L , ||u0||L ,R}- Using equations (IV.2.7) and (IV.2.9), and the 

multinomial theorem, the following bound is obtained 

Kn(*ATfl)||2 < KMk+n(k + n)\ Y, 
IMI=fc,||fl||=n 

nrk TDin 

= K(MR')k+n(k + n)\ 

= K{MR'(m+l))k+n 

(m+l ) f c (m + l ) n 

fc! n\ 

k + rf 
n 

To show that (IV.3.5) is mean square convergent, it is sufficient to show that it 

is a Cauchy series. From the triangle inequality, 

N2 j 

j=Ni fc=0 r)EXkYi-k j=Ni fe=0 
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for N2 > Ni £ N. Now for any e > 0 there exists an N > 0 such that 

j=N1 fc=0 j=Nx k=0 '^J >' 

N2 j ., 

j=Ni fc=0 U ' 

iV2 

= ^ K(2MR'(m + l))j < e (IV.3.6) 

for 2MR'(m+ 1) < 1 and iV2 > Ni > N. Note that since 2MR'(m + l) < 1 then the 

series on the right hand side of (IV.3.6) is absolutely convergent. Hence, the series 

Y^INI. S i=o Yr,exkYJ-k{c, rj)Ev[w](t A rR) is Cauchy, and the theorem is proved. • 

Note in (IV.3.5) that there is an implied order of the summation over XY*. Thus, 

the current proof for the convergence of Fc is strictly speaking addressing conditional 

convergence. 

Definition IV.3.2. [17] Let a,/3 6 Nm + 1 and define the language L«>/3 = 

(77 G XY*, \rj\x. = oti, \rj\y. = {3hi = 0 , 1 , . . . ,m\. A series c E Re{(XY)) is called 

exchangeable if all the words in Laj3 have the same coefficient for all a,j3G Nm+1 . 

Corollary IV.3.1. Let c £ M.e{(XY)) be an exchangeable and locally convergent 

series. Then for an arbitrary w G UVm[0,T], there exists a stopping time rR for 

R > 0 such that the Fliess operator associated with c converges to a well-defined 

random vector independently of the order in (IV.3.5). 

Proof: Since c is exchangeable, one can group all the iterated integrals associated 

with words having the same a and /3, i.e., 

00 j 

Fc[w](t) = E E E M)£>]w 
j=0 fc=0 q£XkYi-k 
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oo J 
= E E E catpsaif)[w](t), 

j = 0 fe=0 ||a||=fc,||/3||=i-fc 

where for fixed a, f3 G H m + 1 cap denotes the coefficient for all 77 G -LQ.,/3- Note, then, 

that formula (IV.2.4) allows to write 

oo J 
„r „, v-v- v- ¥} E?[w](t) E&[w](t) 

ail A! 
(IV.3.7) 

j = 0 fc=0 ||a||=fc,||/3||=j-fe i=0 

which is independent of the order indicated in (IV.3.5). Therefore, from Theorem 

IV.3.1, the infinite series (IV.3.7) is Cauchy, and thus, the series 

OO ] 771+1 

î M(*)ii2 = E E E i<w>m 
j=0 fc=0 ||Q||=fc,||/3||=i-fc i=0 

^ H W ^ M W 
a,-! ft! 

is finite. This completes the proof. 

Example IV.3 .2 . Consider the following nonlinear system 

dz(t) , 

IT ~zw-

where w is understood as in (IV. 1.27) when w G UVm[0, T]. In integral form 

z(t) = f u(s)z2{s)ds + J; v(t)z2(s)dW{s). (IV.3.8) 

Jo Jo 

Given that the shuffle product represents the product of iterated integrals (see Lemma 

IV.2.1), the n-th power of z(i) can be substituted with the series c m " = CLU-• •UJC 

such that (IV.3.8) can be written algebraically as 

C = (Xi + yi) CUJC. 

n times 

(IV.3.9) 

Thus, c can be calculated as 

= Ec*> 
fc=0 



where 

Co = 1 
fc-i 

Cfc = (Xi + y i ) y ^ C j L u C f c - i - i . 
i=0 

Specifically, the solution of equation (IV.3.9) is obtained calculating all Cfc's, 

ci = (x!+yi)coLuc0 = (xi + yi) 

C2 = (xi +yi) (COLUC! + CILUC 0 ) 

= (xi + 2/i) (fai + 2/i) + (*i + yi)) 

= 2l(x1+y1)
2 

C3 = (Xi +2 / l ) (COLLI C2 + C 1 U J C I + C2LUCO) 

= (xx + yx) (2(xi + y i )
2 + (xx + Vl)

 m 2 + 2(x2 + y i)
2) = 3(zi + yi)3 

= (xx + 2/1) (2(xj + yx)2 + 2(xx + y :)
2 + 2[xx + yif) = 3!(xx + Vlf 

C4 = (Xi +yi) (c0 LU C3 + Ci LU C2 + C 2LUCI + C 3 L U C 0 ) 

= (xi + 2/i) (3!(xi + yi)3 + 2!(xi + Vl) LU {XX + Vlf 

+2!(xx + yi) LU (xx + Vl)
2 + 3!(xi + yi)3) 

= (xi + yi) (3!(x! + Vlf + 2(xx + m)Lu3 + 3!On + yx)3) 

= (xi + yi) (3!(x! + yxf + 2(3!)(xi + yi)3 + 3!(xx + y i)
3) 

= Ufa+ytf 

Inductively, one can show that 

Cfc = fc!(x! + Vl)
k. 
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Thus, 
oo oo 

c = J2k\(x1+y1)
k = J2(Xl + y1)

LUfc (IV.3.10) 
fc=0 fc=0 

In this example, the order defined in (IV.3.5) is irrelevant since c is obviously ex

changeable. Therfore, Fc[w] is 

oo _. 

where t £ [0,ri] with T\ = inf{£ 6 [0, oo), \w(t)\ = 1}. This algebraic approach gives 

the same solution as that obtained by solving using variable separation. rj 

The next example is taken from [20]. It will be used to show how the corre

sponding generating series of a system can be approximated by globally convergent 

series. 

Example IV.3 .3 . Consider the circuit in Figure 6. This is formed by four parallel 

components: a noise current source, an ideal resistor, an ideal capacitor and a non

linear resistance, where the current is a function of the square of the voltage across it. 

Applying Kirchoff's current law and assuming R = C — 1, the nonlinear differential 

equation relating the current w and the voltage, z(t), across the capacitor is 

dz(t) , 
—$T- + z + z2 = w, 

at 

where w is the formal derivative of the input w G UVm[0, T]. In integral form 

z(t)+ / z(s)ds+ / z2(s)ds= / u(s)ds + £ v(t)dW(s). 
Jo Jo Jo Jo 

The series that corresponds to this system is definitely not globally convergent, but it 

is known that at most has a locally convergent growth bound. Using the substitution 
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W J *>Z 
R = l> C = l 

Z 

Fig. 6: A nonlinear circuit driven by a noise current source. 

technique described in the example above, this nonlinear differential equation can be 

written algebraically as 

C + XQ C + X0 C LU C = X\ + yi. 

A factorization gives 

c=(l + x0)
 1{-xQclu2 + {x1+y1)). 

Similarly, c can be obtained by an iterative procedure. First, a CQ that satisfies 

Co + XQCQ + x0c0 uj c0 = 0 is c0 = 0. Next, 

ci = (xi + yx) 

and 
fc-I 

ck = - ( 1 + xo) 1x0'y
y
jCi< 'Ck-

i = i 

Calculating the next few c^'s: 

C2 = ( 1 + X O ) " 1 X 0 ( C I O J C I ) 

= (l + xoy
1x0((xl +y1)i±J(x1 + y1)) 
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= 2(l + x0)-
1x0(x1+y1)

2, 

C3 = (1 + X o ) _ 1 X 0 (Ci L U C 2 + C 2 L U C I ) 

= 2(1 + x0)~
lx0 ((x1 + yi) LU (1 + XQ)~1XQ{XI + yif) , 

C4 = (1 + XQ)~1XQ (Ci L±JC3 + C 2 L U C 2 +C1UJC3) 

= 2(1 + xo)" 1 ^ (4(xi + l/i) LU ((1 + x0)_1x0 ((xi + 2/1) LU (1 + zo r^o fa i + yi)2)) 

+ 4(1 + xoyT-xofa + yif LU (1 + x0)"1xo(x1 + yif) 

Observe that c0, c\,... are all rational series, and thus, they are globally convergent, 

i.e., each Q is a series associated with a globally convergent Fliess operator. In the 

deterministic case, it is well known that rational systems have been used as approx-

imants of more general types of nonlinear systems [32,33]. Thus, an advantage of 

this iterative procedure is that it gives an approximating method for Fliess operators 

associated with locally convergent series through globally convergent (rational) Fliess 

operators. 

• 

IV.4 THE OUTPUT PROCESS 

From Theorem IV.1.5, y{t) = Fc[w](t) is a well-defined random variable Vt E [0, T] 

when c is globally convergent. The goal of this section is to show that {y(t)}te[o,T] is 

a well-defined stochastic process. The next corollary shows the relationship between 

the set of output processes and the set UVm[0, T]. 
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Corollary IV.4.1. In the context of Theorem IV.1.5, the operator 

Fc:UVm[0,T}^UV [0,T], 

for any T > 0. 

Proof: By Theorem IV.1.1, the iterated integrals (IV.1.2) and (IV.1.3) can each be 

written as a sum of a Lebesgue integral and an Ito integral. The sequence of partial 

sums used in (IV. 1.23) can then be written as a sequence of the sum of Lebesgue and 

Ito integrals. Since it is well known that L™{VL, J-', P) with its usual norm is a Hilbert 

space (modulo the equivalence relations in Definition II.1.4), then Theorem IV.1.5 

shows that the limit of this sequence has to be a random vector that can be expressed 

componentwise as the summation of a Lebesgue integral and an Ito integral. Finally, 

by Theorems II.3.8 and II.3.13, the limiting random variable as a function of time 

generates a well-defined Ito process. • 

Now that the output process y has been identified as an L2-Ito process, using 

Theorem II.3.8, there exists an almost surely continuous Ito process y' induced by y. 

Not surprisingly, this fact implies that there exists some compatibility between the 

input set and output set in the sense that UVm[0,T] C UV [0, T]. In other words, 

any process y = Fc[w] is a well-defined L2-Ito process. However, the independence 

of the inputs is not necessarily preserved at the output. In Chapter V, this result 

will be used to establish the convergence of the interconnection of Fliess operators 

driven by processes in UVm[0,T}. 

Although it is not easy to write the output process y in its specific Ito form, the 

next lemma shows how this goal can be done in some situations. 
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L e m m a IV.4 .1 . Consider a locally convergent series c £ M.((XY)) with growth 

constants K, M > 0. Let f £ XYk be fixed, if d E R((XY}} is defined as 

•neXY* 

then there exists an N > 0 such that \{d,rj)\ = |(£_1(c), 77)| < KM® (MN^)H \r]\\, 

for alln,££XY*. 

Proof: Let |£| — k. For Ar > 0 large enough, it is not difficult to see that 

(n + l ) - - - (n + fc) 
(iV*)' 

< 1. 

Thus, (n + 1) • • • (n + k) < (Nk)n. As a consequence, 

\{d,rl)\ = \{c,^rl)\ < KMkMM\r]\\(n+l)---(n + k) 

< K'M'M \ri\\ 

with K' = KMk and M' = MNk. m 

Note that if e G R({XY)) is globally convergent, then \{£~l(c),7})\ < K'M^l where 

K' = KMM. 

Example IV .4 .1 . Let c G R ( ( X 7 ) ) be a globally convergent series such that if 

Mx K ^ 0 for z 7̂  0 then (c, 77) = 0. It easy to show, since the inputs are trivial, that 

any Ev[0} can be expressed as 

EM(t) ri = x0n 

£,[0](i) = ^ 
/ E7/[0]{s) dW{s) : 77 = 2/07/' and n'= x0n" 

Jo 

f E,n,[0](s) dW{s) : 77 = 7/07/ and r/ = yQif, 
Jo 

+\J Ev„[0](s)ds 



123 

where rj', rj" E XY*. Now the output y = Fc[0] associated with generating the series 

c can be written as 

y(t) = (c,0) + jf Fx-l{c)[w](s) ds + j f Fy-,{c)[w](s)dW(s) 

= (c,0) + /" F x - i ( c ) H(s) ds + f FyQl{c){w](s) dW(s) 

+K ( c 'y o ) + I ^O1K-1(C))N(^)^+^ i^-i(lto-i(c))MW^(a),w 

= (c, 0) + / ^ - ( c ) M ( ^ ) da + f Fy-,{c)[w]{s) dW(s) 

+ 5 ( / ^o\voH0)W(*) dW(s) + \ (F^- 1 ( C ) ) M ( - ) , W ) [ 0 t ] , W 

= (c'0) + / ^'(ciH^^ + l '^ - 'wHW^) 

[0,*] 
> v ' 

0 

= (c>0) + / (^'(c)H(«) + ^ - ( ^ W ) H W ) ^ 

where XQ 1(-), y^"1(-) are left-shift operators. From Theorem IV.1.5 and Lemma IV.4.1, 

the random variables Fx-i,,[0], F -i,.[0] and F -i, -i,c^[0] a r e well-defined. Hence, 

the output process y is a well-defined Ito process. • 

Observe that, at each instant of time, the Ito process defined by the output 

process of a Fliess operator is associated with the same generating series. In other 

words, the generating series can be seen as its series expansion when the words are 

replaced with their corresponding iterated integral. In this sense, this fact resembles 

the concept of analyticity. 
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Definition IV.4.1. The Ito process associated with a generating series c £ 

Re{(XY)) will be called analytic. 

Even though it has been established that the output process of a Fliess operator 

is well-defined when the associated series is either globally convergent or locally 

convergent and exchangeable, there exists the possibility that two formal power series 

in R((Xy}) might represent the same output process. The next theorem shows that 

the output process y has a unique generating series. 

Theorem IV.4.1. Let c,dE M.e((XY)) be two globally convergent series. Then 

Fc = Fd on UVm[0, T] if and only ifc = d. 

Proof: If c = d, the result follows trivially. The converse result is proved first for 

words, i.e., one has to establish that if E^w]^) = E^[w}(t) then 77 = f, 77,4" £ XY*. 

This fact is proven by induction over the length of a word, n. When n = 0, the result 

follows immediately. For n = 1, suppose EXi[w](t) = Ex.[w](t), then by definition 

/ Ui(s) ds = Uj(s) ds 
Jo Jo 

or 

/ (ui(s) — Uj(s)) ds = 0. 
Jo 

Thus, s., which implies that x* = Xj. Now suppose instead that EXi[w\{t) = 

Ey.[w](t). Then 

<* Vi(s)dW(s)= / Uj(s)ds. 
Jo Jo 

By Corollary II.3.2, this can only occur if Ui = Vj = 0. Therefore, Ex.[w](t) ^ 

Ey. [w] (t) for a nonzero w G UVm [0, T]. If Eyi [w] (t) = Eyj [w] (t), then by the linearity 
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u,(t) a. 

a,. 

<x. 

CC;, 

t0+t{ tQ+tx+t2 /0+/,+f2+f3 

Fig. 7: The z-th component of input u, i ^ 0. 

of the Stratonovich integral and Corollary II.3.2 it follows that V{ = Vj. Next, assume 

that the claim holds up to n. If EXiV[w}(t) = EXjV[w}(t) for r\ £ XYn, then 

(ui(s) — Uj(s)) Ev[w](s) ds = 0. 

Given that Ev[w] ^ 0 for every t > 0, then Ui(s) — Uj(s) and Xi = z,-. For 

EXiV[w](t) = EyjV[w](t), it follows that ui(s)Eri[w](s) = Vj(s)Ev[w](s) = 0. Since 

Ev[w] ^ 0, then Ui(s) = fj(s) = 0. Thus, EXiTI[w](s) ^ Eyj7][w](s) unless w = 0. 

Analogously, using linearity, if EyiT][w](t) = Eyj7l[w](t), then^(s) = Vj(s) andy^ = yj. 

Next, consider two series c,rfe M.e((XY)). Since Fc[w] = Fd[w] implies Fc-d[w] = 

0, it is sufficient to prove that if Fc[w] = 0 for all w then c = 0. In [24,63] a uniqueness 

proof was given for deterministic inputs, where the operator gt af,„dt was applied 
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to Fc, c G E((X)) for a piecewise constant input in B™(R)[to,to + T] defined by 

u(t) = ctj < R, t E [ij^i,ij], 

with otj = [aij • • • amj] E K.m, aoj = 1, ij = Yl\=o U an<i U > 0> J> ^ = 1, 2 , . . . , A;; and 

tfe <T (see Fig. 7). The following identity was then employed 

Qk 

-Fc[u](tk) 
tj=0+ f(zxk 

j=0,...,fc+l C 

= ^ a c f c ( c , O = 0 . (IV.4.2) 
dtidt2- ••dtk 

Unfortunately, stochastic calculus lacks of a notion of a derivative in the usual sense. 

However, Corollary II.3.2 can be used to overcome this obstacle. Specifically, recall 

that for a function F € C2, the Stratonovich chain rule (1.1.7) established that 

dF(X(t)) = F(X(0)) + ^F(X(t))u(t) dt + ^F(X(t))v(t) dW(t), 

where X(s) = X(0) + / u(s) ds + £ v(s) dW(s). If F is the identity function then 
Jo Jo 

dX(t)=u{t)dt + v{t)dW{t). 

Moreover, from Corollary II.3.2, if X(i) = 0 then a.s. v(s) — u(s) = 0. Hence 

u{t) + v(t) = 0. One can then define the operator 

DtX(t) = u(t) + v{t) 

such that X(t) = 0 implies DtX(t) = 0 for all t. Dt is linear since 

DtiX^t) + X2(t)) = U l ( t ) + l i 2 ( t ) + U l ( t ) + U 2 ( t ) 

= DtXx(t) + DtX2(t), 

and 

DtirX^t)) = Dt(lru{s)ds + &rv(s)dW(s) 

= r(u(t)+v(t))=rDtX(t), 
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w o (0 

< 

< 

t 

1 
1 

'4 

/ 

' o + ' i t0 + tx + r2 r0 + tx +12 + r3 

Fig. 8: Piecewise process w 
Irl 

for every r 6 l . Employing this operator and an identity similar to (IV.4.2) are the 

key to the uniqueness proof. 

It is first necessary to show that 

D-tl---DtkFc[w](tk) 

i=0,...,fc+l ,fc 

= J2 «^(c,0 = 0, (IV.4.3) 

where av = a. ik • • • a, i1)v and a ; , . denotes the piecewise part of 
\*?k)k " (^ ) 

w i, (t) = 
^(t), if lj = 1 

^ . ( t ) , if /,- = 2 

between times i,-_i and ij (see Fig. 8). An inductive argument over k will prove the 

identity. In particular, a piecewise constant input is an L2-Ito process. Consider an 
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input w G UVm[0,T] with integrands u,v which are piecewise constant. Trivially, 

Fc[w] can be written as 

Fc[w}(t) = {c,V>) + j J2Ui^ E (c,xlV)Ev[w}(s) ds 
i=0 r;Gsupp(a;~1(c)) 

F*7\C)MM 

t-t m 

+ f Y,^(s) E (c,yiV)Ev[w}(8)dW(s). (IV.4.4) 
77£supp(yi (c)) 

VwM(, ) 

By Corollary II.3.2, equation (IV.4.4) implies 

m,2 

A - ^ c N ( t i ) 
i l = 0 + 

E ^(S)F(^)^(c)[H(S)=0. 
x=o,;=i 

The same result is obtained by calculating DtFc[w](t). Therefore 
m,2 

= J2 ^(*i)^(,i)-i(C)M(*i) 
t 1 = 0+ i=0,2=l 

= E ^'(OM^M^o) 
r?6Xy* 

= E a
g{i(c.9i), 

where Ev[w](to) = 1 if 77 = 0 or 0 if 77 ̂  0. Since by assumption Fc[u>] = 0 then 

D^F^wKti) = 0. Hence, £] a ^(c, g-) = 0. For Fc[ty](t2), one can follow a similar 
r)£XY 

procedure 

DhFc[w](i2) 
rt2 m,2 m 

t2=0+ t2=0+ 

„ J 2 111.,*, , , 1 

Jo i=o,*=i i=o 

Jo i=o,i=i j=0 

/

to+ti m ' 2 m 

E E ^ i ^ o + *i')uj(s)Ftei)-MxJ-
1(c))M(s)ds 

i=o,z=i j=o 

rto+t! m>2 TO 

+ f E E ^ + ^ M ^ D - ^ W H ^ ) ^ 

t2=o+ 

i=o,;=i i=o 
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Observe that Ui(t0+t^) = aSi2- One can then apply D^ to Dt2Fc[w](t2) 

amounts to 

which 
t2=o+ 

t2=o+ 
m,2 m,2 

i l = 0 + 

A-! ( A-2^cM(t2) 

= Y Y a , | i2U;^( t0+tl) i ;(,!i)-i((^)-i(c))H(*0+tl) 
j=0 ,2 i= l J = 0 , i 2 = l 

m,2 ro,2 

t i = 0 + 

= E Y Y VA^i^N'^Mfa)) 
i=0,Zi=l j = 0 , £ 2 = l r)€XY* 

= Y a
q
ll2a

q
l*l(C'(li1(ll?rl)Erll

WKt0) 

•neXY* 

= Y av^v), 
V&XY2 

where YI^XY2 av^(c^ v) = ^ since Df2Fc[u;](t2) = 0. Now assume the identity in 

question is valid up to k > 0. Then 

Dh---Dh A - t + / c H ( 4 + i ) 
t k + i = 0 + , t,-=0+ 

j=0,...,k 

m , 2 

= Av-Dfc E w«fc+1(ifc+i)F, 
iifc+l=0>'jfe+l=l « : r w " WE) <•>' i * + l = 0 + , tj=0+ 

'j'=0,...,fc 

where the fact that w ik+i(tk+i) 
qik+i 

tion hypothesis, 

Dh--.Dh+lFc[w}(h+i) 

tj=0+ 
j=0,...,k 

— a, i 
tk+i=o+ (CI)"-1 has been used. By the induc-

t j=0+ 
£ Oi/ It 

,'fc+i. 
( ? ' f c + i Wi 

i=6,...,fc+i ^ ; j e ^ W x y 

= Y avk+l(c,V)-
v€XYk+1 

Again, since Fc[w] = 0, then E , 6 x y H i ar,fc+i(c, *?) = 0. 

E M(^::)_1(^) 

(IV.4.5) 

\ 

) 

/ 
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Observe that equation (IV.4.5) is a polynomial in a.^. Define the following oper

ator 

Qk 

daelk 
cc 

3 k 

a 
h ikk 
hi 

a i l l 

1 . ts Z s , ls Js, S 1 , . 

0 : otherwise. 

Applying this operator to (IV.4.3) gives 

/ 
dk 

r)nk • • • n l 

\ 

E <k---<^€---€, 
\q>k~qn &XYk 

..,k 

( c , ^ - - - ^ ) = 0. 

/ 

Repeating this procedure for any r\ = q3^ • • • cf^ G XYk
} k > 0, it follows that 

(c, 7]) = 0. Thus c = 0 as desired. • 

IV.5 CHEN SERIES A N D FLIESS OPERATORS 

An important class of formal power series are the Chen series. Basically, a Chen 

series is used to represent all possible paths, say C[t0itl], from the interval [to,ti] to 

Rm +1 made by a set of m +1 input signals [7,22]. Chen series are also closely related 

to Fliess operators driven by deterministic inputs. That is, a Fliess operator can be 

written as the inner product of its generating series and the Chen series, expressed 

as an exponential, generated by its input. In the stochastic setting, Chen series have 

been used, for example, to study discretization schemes for stochastic differential 

equations of the form 

m 

dz(t) = f0{z(t)) + E fi{*{t)) dW.it), 

http://dW.it
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where each /j G C£°, as well as the local structure of the general solution of stochastic 

differential equations [3,6,59]. In other words, the interpretation of Chen series as 

input paths can actually be extended to Brownian paths [1,3,6,22] and even to rough 

paths [43]. This last fact makes viable the construction of a Chen series using inputs 

in UVm[0, T]. The purpose of this section is to show that Fliess operators with such 

stochastic inputs are also related to a class of Chen series. The treatment here is 

based on the deterministic case as presented in [24]. Some preliminaries are needed 

first. 

Definition IV.5.1. Let £ be an R-vector space with and E-bilinear mapping 

£ x L^ C: (x,y)» [x,y], 

satisfying the identities: 

i. [x,x] = 0, 

ii. [[x,y],z] + [[y,z],x] + [[z,x],y] = 0. 

for x,y,z € C The operation [•, •] is called the Lie Bracket on C, and the space C 

and this product is called a Lie algebra. 

Given any associative R-algebra, A, with multiplicative identity element 1, there is 

an associated Lie algebra whose bracket operation is 

[x, y} = xy- yx. 

For the alphabet XY, the smallest subset of R(XY) containing XY which is closed 

under the Lie bracket operation forms a Lie algebra denoted C(XY). 
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Definition IV.5.2. Any polynomial in C(XY) is called a Lie polynomial. 

Definition IV.5.3. A series d e ~M.((XY)) is called a Lie series if it can be decom

posed as d = *}2n>1Pn, where each pn is a Lie polynomial whose support resides in 

XYn. 

For any series d € R((X7}) such that (d, 0) = 0, the exponential exp(d) is defined 

by the series 

00 fin 

exp(d) = J ] - , 
71=0 

and log(d) is defined by 

\og(i + d) = J2(-ir~1-. 
n=0 

Here log(exp(d)) = d and exp(log(l + d)) = 1 + d. 

Definition IV.5.4. A series is called an exponential Lie series when c = exp(d), 

where d is a Lie series. 

A characterization of exponential Lie series is given in the next theorem. 

Theorem IV.5.1. [49] (Ree's Criterion) c is an exponential Lie series if and only 

if (c, f u, u) = (c, 0 (c, v) for all £, v € XY*. 

Example IV.5.1. Suppose XY = {y0}, c e R((XY)) with (c, 0) = 1 and 

(c, ^iui/) = (c, f )(c, v) for all f, u £ XY*. Using the identity 

i J I l ~^~ •? 1 i+j 

y0^yi=[ i m , 

it follows that 

= (c,yo)ic,yo)-
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Setting i = n > 0 and j = 1 yields the recursion 

c,2/o) 
(c, ?/o"+1) 

so that 

n + 1 
(c,y0), 

Thus, as predicted by Theorem IV.5.1, it follows that c is the exponential Lie series 

c = > j — = exp((c, 2/0j2/o) 
n>0 

= exp(p), 

where p = (c, y0)y0 G £(XY). D 

Definition IV.5.5. For any T > 0, w G WVm[0,T] and t G [0,T], the Chen series 

associated with a formal power series in M.e((XY)) is defined as 

J>](*)= E ^>K*)-

TteXY* 

One can see from Theorem IV.5.1 that for any t G [0,T] and £, f G XY* 

(p[u](t),e-^) = E ^M(*)(»7,e-^) 

= Eiini/[u](t) 

= Ez[u]{t)Ev[u]{t) 

E £j%M(*U J ( E *3>M(*),") 
^ 6 X Y 

= (PM(*),0(^M(*),")-

Therefore, P[u](t) is an exponential Lie series. This type of series is directly related 

to Fliess operators with inputs on UVm[0, T] in the sense that for any Fliess operator 
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Fc, c e Re({XY}), one can write 

y{t) = Fc[w](t) 

•neXY* 

c, Yl ^ M W 
V&XY* 

= (c,P[w](t)) 

= (c,exp(£/)), 

where U = log (P [it]). 

Example IV.5.2. The Fliess operator driven by Wi = / Ui(s) ds+£ Vi(s) dW(s) e 
Jo Jo 

UVm[0,T] associated with the series c = (xi+yi)* = (1 — Xi — yi) * = Sfc>0(^i+2/i) fc 

is 

y{t) = F{xi+yir[w}(t) = J2E(xi+yiAw](t) 
fc>0 

By identity (IV. 1.31), 

fc>0 

fc>0 

= exp I / Ui(s)ds+ £ vi(s)dW(s) 

= exp{w1{t)). 

Hence, tihs Fliess operator can be written as an exponential. • 

Another characteristic of Chen series for deterministic inputs is that they satisfy 

a differential equation [58]. To conclude this section, the next theorem shows that 
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the Chen series generated by stochastic inputs in UVm[0,T] also satisfy a stochastic 

differential equation. 

Theorem IV.5.2. For any T > 0, letwG UVm[Q, T]. Then the corresponding Chen 

series P[w](t) satisfies the stochastic differential equation 

dP[u](t) = (^XiUiWdt + yiVitydWitUPiu]®. (IV.5.1) 

Proof: Observe that, 

dP[u]{t) = Y^ ridEv{u}(t) 
•qeXY* 

( m 

Y,ni{t)Ex-,{r})[u]{t) dt + Vi(t)EyrHv)[u](t) dW(t) 
i=0 

= (^XiUiWdt + yiViWdWit)) J2 vEv[u}{t) 
\i=o J vexy 

= ( j r XMt) dt + Witt) dW{t) ) P[u](t)-

It is important to point out that equation (IV.5.1) is strictly valid only in its integral 

form, i.e., 

m rt ( "* rt "- rt 

£ > / ui(s)P[w]{s)ds + Yiyif «i(s)PH(s)^(s) 
.•_n JO • n JO 

,i=0 " u i=0 
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CHAPTER V 

INTERCONNECTIONS OF FLIESS OPERATORS 

In this chapter, the theory describing the interconnection of Fliess operators is 

presented, and, in the process, dissertation problems (iv) and (v) are addressed. In 

the first section, the existing formalism for the parallel, product and cascade intercon

nection of systems driven by deterministic inputs is summarized. Since an extension 

of the shuffle algebra has been developed in Chapter IV for the language XY*, an 

extension of the composition product can be also developed for XY*. Using this 

concept, an analogue of the formal Fliess operator described in [24,30] is developed 

for formal stochastic input processes. Next, the parallel, product and cascade con

nections are defined algebraically for formal Fliess operators and for Fliess operators 

with inputs in UVm[0,T]. The chapter is concluded giving sufficient conditions for 

the global and local convergence of the parallel, product and cascade connection of 

Fliess operators. 

V . l P R E L I M I N A R I E S 

The four elementary interconnections used in system theory are the parallel, prod

uct, cascade and feedback connections. The focus of this dissertation is on the non-

recursive connections, which are the parallel, product and cascade connections. In 

the deterministic case, the parallel connection is trivial. The product connection 

was analyzed by Fliess [17] and Wang [63]. The cascade connection was analyzed 
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by Ferfera [13], and Gray and Li [28]. Gray and Wang showed in [29] that Fliess 

operators always have the form 

Fc : B?(R)[t0, t0 + T] -> Be
q(S)[t0, t0+T\, 

provided that c G M.e((X)) is locally convergent and R,S,T>0 are sufficiently small. 

This fact makes the interconnections of analytic nonlinear input-output systems well-

defined in the deterministic setting. The next theorem describes the generating series 

of the three interconnections under study. 

Theorem V . l . l . [13,24,28] Let c, d G Mm((X)). The generating series for the 

parallel, product and cascade interconnections are given by 

Fc + Fd = Fc+d 

* c ' " d ~ " c LU d 

Fc° Fd = Fcod. 

The next theorem states that the series operations +, LU and o preserve local 

convergence. 

Theorem V.1.2. [28] Suppose c, d G lRm({X)) are locally convergent. Then c + d, 

CLud and cod are also locally convergent. 

The stochastic counterpart of these results is presented next. 

V.2 THE STOCHASTIC CASE 

In Chapter IV, it was shown that Fliess operators driven by inputs from UVm[Q, T] 

have the form 

Fc : UVm[0, T] -> UVm[0, T], (V.2.1) 
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when c is a globally convergent series, and 

' — in 

Fc:UVm[0,T]-+UV [O.r,], (V.2.2) 

when c is locally convergent. Unlike the deterministic situation, this is not enough 

to establish the well-posedness of the corresponding interconnections. For example, 

the output process of a Fliess operator with stochastic inputs does not have the in

dependence properties that inputs in UVm[0,T] have. Therefore, the outputs cannot 

drive a second Fliess operator. In this situation, it is first convenient to consider the 

interconnection of Fliess operators when there are no convergence assumptions. 

V.2.1 Formal Fliess operators 

The main objective of this section is to define a class Fliess operators where the 

associated generating series is independent of any assumptions concerning global or 

local convergence. The main idea here is to obtain clues about the generating series 

of the interconnection of Fliess operators free of any convergence requirement, and 

then find a correspondence to the case where Fliess operators are convergent. This 

latter point of view motivates the definition of a formal stochastic process. 

Definition V.2.1. Let cw £ Em((X0Y0)). A formal stochastic process w is 

defined by 

M*)= Y. (cu,,v)Ev[0}(t). (V.2.3) 
V&XoYo* 

The set formed by all formal stochastic processes is denoted by W. 

There is no input in UVm[0,T] playing a role in (V.2.3) since the iterated integrals 

only utilize letters from X0Y0. It is understood that for any w G "W there exist a 
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corresponding generating series cw G ~M.((XOYQ)), and since c^ is arbitrary, w is simply 

a formal summation of iterated integrals. Note also that cw can be written as 

* v ' „ ' 

c1 c2 

where (cj,,0 = (cw,x0^) and ( t ^ , 0 = (c^yoO for all f G X0y0*. Trivially, d,,<4 G 

Mm((Xolo)), and they are called the drift component and the diffusion component of 

cw, respectively. This also implies that cx
w and c2

w define the formal processes w1 and 

w2, which are the formal drift and diffusion integrands of w, respectively. A formal 

input here can be understood as an exogenous input process being generated from a 

exosystem where w = 0, i.e., u = v = 0. 

In Example IV.4.1, it was observed that the output of a Fliess operator associated 

with c £ M.{(XQYQ)) can be formally written in Ito form as 

y(t) = Fc[w]{t) 

= ^0) + jf (f.„-l(c)HW + ̂ t f w j N w ) da 

+ r ^ - ' i e j H W ^ W . (V.2.4) 

and when c is globally convergent y is an L2-It6 process. According to this represen

tation, there exists a relationship between formal processes and the set UV [0, T] as 

described below. 

-—-̂  m 

Theorem V.2.1. Let w G W. If cw is globally convergent then w £ UV [0,T]. On 

the other hand, if w is ordered in the sense that 
oo j 

"(*) = £ £ E (^v)Ev[0}(t), (V.2.5) 
3=0 fc=0 veX5YJ-k 
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and cw is locally convergent then w G UV [0, rR], where rR = inf{£ G [0, T] : |W(i)| = 

—— m 

R}. In particular, if cw is exchangeable and locally convergent, then w G UV [0,rR] 

regardless of the ordering implied in (V.2.5). 

Proof: Since w is a formal process, it is associated to a series cw G IRm((Xolo))-

Next, similar to (V.2.4), w can be formally written in Ito form. The same can 

be done for the formal drift and diffusion integrands of w associated with cx
w and 

c2
w, respectively. Now, if the formal inputs w1 and w2 correspond to c\, and 

(?w, respectively, and max{|(c^,7])|, |(c^, 77)!} < KM^ for all n E X0Y0*, then, 
m 

by Theorem IV.1.5 and Lemma IV.4.1, the formal process w G UV [0,7]. On 

the other hand, if max{|(ci,,77)|, \(c2
w,rj)\} < KM^\r}\\ for all 77 <= X0Y0* then 

by Theorem IV.3.1 and Lemma IV.4.1 there exist R E K. and a stopping time 

TR = inf{t e [0,T] : \W(t)\ = R} such that w e UV [0,rR] when w is taken as 

in (V.2.5). If Cw is an exchangeable series, the order in (V.2.5) is irrelevant. Thus 
weUVm[0,TR]. u 

In order to define a formal Fliess operator, an extension of the composition 

product definition has to be formulated over XY*. Without loss of generality, any 

77 G XY* can be written as 

V = Vkqtvk-iqt1
1---m^1rio, (V.2.6) 

where r?; G ^o^o*, 0.1 = xij when lj = 1, q?. = y^ when lj = 2, and in both cases ij G 

{1 , . . . ,m} . In addition, the set of words {77^,...,,770} such that fjj+i = Vj+iQi-'llVj 

and ij+\ 7̂  0 are called the right factors of 77. The composition product of a series 

with a word is defined below. 
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Definition V.2 .2 . The compos i t ion product is 

{ V • h k i K = 0. V i ^ 0 

r/4[4 ^(fjod)} : rj = rfqifj, ^ O j ' G {1, 2}, rf G X0^o*, 

where 77 € XY* is a right factor, dj : £ 1—• (d, £)j, (d, £)^ is the ith component of 

(d,£,y, J = 1 represents drift coefficients and j = 2 represents diffusion coefficients. 

Furthermore, the composition of a series c G R^((XY)} with d is 
co d = Y ^ (c,77)77 o d. 

It is important to observe that if Y — 0, then this composition product reduces 

to the usual composition product on R m ( (X) ) . The theorem below says that the 

composition product on XY* is summable. 

T h e o r e m V .2 .2 . Let d G Rm{(XY)); then the family of series {77 o d : 77 G XY*} 

is locally finite and therefore summable. 

Proof: Given that any word in XY* can be written as in (V.2.6), it follows that 

k lr'Hr'l*0,y0 

ord(77 o d) = n0 + A; + y^Tij + ord(djJ) = |?7| + \ ^ ord(djJ). 

Thus, for any £ G XY*, 

Id(Z) = {veXY* : ( 7 7 o d ) ^ 0 } 

C {77 G XY* : ord(77 o d) < |f |} 

rjEXY* : \v\+ Y, o r d ( ^ ) < | e | 

One can see that the latter set is finite, ensuring /<*(£) is finite, which in turn implies 

summability. • 

Now that all the necessary concepts are available, the definition of a formal Fliess 

operator can be stated. 
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w {+)—> y w • zr-+y 

F; 

Fig. 9: Parallel and product connections of Fliess operators. 

Definition V.2.3. The class of formal Fliess operators on M.m{(X0Y(j)) is the 

collection of mappings 

& ± {co : Rm((X0y0)) - Re((X0YQ)) : cw ^ cy = co cw,c e Rl((XY))}. 

The operator co is a formal operator in that it acts on a formal input, i.e., one 

that has a series representation. 

V.2.2 The parallel, product and cascade interconnections of formal Fliess 

operators 

The parallel and product connections are studied first. It is helpful to recall the 

meaning of these interconnections. Consider two input-output maps Fc and Fd (see 

Figure 9) both driven by the input w and having outputs yc, yd, respectively. The 

parallel connection is simply the addition of the two outputs, i.e., 

y = yc + yd = Fc[w] + Fd[w}. 
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The product connection is the multiplication of the two outputs, i.e., 

y = yc-yd = Fc[w] • Fd[w]. 

Using Definitions IV.2.1 and IV.2.3, one can characterize the parallel and product 

connections assuming inputs from W. 

Theorem V.2.3. Let c,de Rl((XY)). Then 

c o cw + d o cw = (c + d) o cw, Vc^ € R{(X0Y0)). 

Proof: The parallel connection is the addition of two formal Fliess operators. There

fore, from the left linearity of the composition product, 

c o cw + d o cw = (c + d)ocw. 

• 

Given that the formal Fliess operators co and do both act on the series cw, the 

product connection of formal Fliess operators is represented by the shuffle product 

of the output series, i.e., (c o cw) iu(do cw). 

Theorem V.2.4. Let c,d G Re((XY)}. Then 

{cocw)^{docw) = {c^d)ocw, Vcw eR((X0Y0)). (V.2.7) 

Proof: It is known that the product of two iterated integrals is represented by the 

shuffle product of words in XY*. Note that 

(c^d)oe= J2 M ) ( d , 0 f a - O o e , (V.2.8) 
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and 

( c o e ) ^ ( d o e ) = J2 (c,v)(d,Q((T]oe)ui(Zoe)). (V.2.9) 

Therefore, it is sufficient to show that 

{r}Lu£)oe= (77oe)m(£oe) (V.2.10) 

for all TJ,£ E XY*. This is proven by induction over I77I + |f| = n. If \TJ\ + |£| = 0 

then the identity is satisfied trivially. Consider 77 = q^r)', £ = q\2
2t,', and 77', £' G XY* 

such that \q\ + |£'| = n - 1 and |T/| + |f | = n - 1. Now assume that (V.2.10) holds 

up to n — 1, and calculate the identity for \r\\ + |f | = n. Then 

(77-O o e = ( g J i ( V - O ) ° e + ( ^ ( ^ O ) ° e. 

By the inductive step and Definitions IV.2.3, V.2.2, if j ! = j'2 = 0 then 

= g ^ ( ( V ° e ) L U ( e o e ) ) + g|)
2 ((77 o e j u ^ o e ) ) 

= g'1 ((7/ o e) u, g<2 (£' o e)) + g*> (g*1 (7/ o e) ^ (£' o e)) 

= ( ^ o e ^ ^ o e ) ) 

= (77 o e) LU (£ o e). 

If j \ = 0 and j 2 ^ 0 then, by the commutativity of the shuffle product, 

( 7 7 ^ ) ° e = g ^ ( ( ^ - 0 ° e ) + g ^ ( 4 2
2 ^ ( ( r ? u J O ° e ) ) 

= g'1 ((V' o e) u, (£ o e)) + g<2 [d% m ((77 o e) u, (£' o e))) 

= g ^ ( ( 7 7 ' o e ) ^ g ^ 2 ( 4 2 ^ ( e ' o e ) ) ) 

+ql
0

2{QoW°e)^d%^(t;'oe)) 
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Fig. 10: Cascade connection of Fliess operators. 

= (77 o e) LU (£ o e). 

If ji = j2 7̂  0 then, by again the commutativity of the shuffle product, 

(7/^0° e = ^ ( d S X l V ^ l ^ M + g ^ ^ X l ^ O o e ) ) 

= <£ ( 4 u> ((7/ o e) m (£ o e))) + <# (d£ m ((77 o e) uu (£' o e))) 

= i ( d | > ^ o e ) 4 ( ^ ^ o e ) ) ) 

= (77 o e) UJ (£ o e). 

This result, along with (V.2.8) and (V.2.9), completes the proof. • 

The cascade connection needs a special treatment. It is represented by the com

posite system, Fc o Fd, with input iid and output yc (see Figure 10). In other words, 
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the output of the system Fd is connected directly to the input of the system Fc, i.e., 

yc = (FcoFd)[ud] = Fc[Fd[ud}]. 

Since these input-output maps have been described as functional expansions, the 

cascade connection will follow the rules of the usual functional composition. 

Observe in Figure 10 that when two Fliess operators are connected in cascade 

fashion, an intermediate signal, y, is generated. In order to properly establish this 

interconnection, it will be desirable that the intermediate signal behaves as an input 

of the next system. Moreover, y needs to have 2m components since it is assumed 

that the second system has 2m inputs. That is, one is expecting two sets of outputs: 

one set to serve as drift inputs and the other to serve as diffusion inputs for Fc. In 

other words, the associated series d must be in d £ R2rn({XY)). For example, if y 

has £ components then y is divided, depending on how noisy are its components, into 

two groups: mi drift inputs and m2 diffusion inputs labeled with superscripts 1 and 

2, respectively. Since one desires £ = 2m, then m = max{mi, 777,2} and the group 

with fewer components is completed with zeros. For the cascade of formal Fliess 

operators, the compatibility between inputs and outputs is not a problem given that 

by Definition V.2.3, cw e Rm((X0Y0)) and Cy e R2m((X0Y0)) when £ = 2m is chosen. 

Therefore, Cy can be the input of a second formal Fliess operator. Using Definition 

V.2.2, one can characterize the cascade connection assuming inputs from W. 

Theorem V.2.5. Let c e Re{(X0Y0)) and d £ R2m((XY}). Then 

co(doCw) = (cod)o cw, Vc^ G R2m((X0Y0)). 
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Proof: First, observe that 

co(docw)= ^ (c, 77)770 (do Cur). 

Therefore, it is sufficient to show 

(77 o d) o cw = 77 o (d o Cu,) (V.2.11) 

for all 77 e XY*. Now consider that any word in XY* can be written as in 

(V.2.6). The proof is done by induction over the numbers of right factors in 77, 

said {fjk, fjk-i. • •, 770}. If k = 0 then 77 = 770 G X0Y0*. By Definition V.2.2, 

(770 o d) o cw = 770 o cw = 770 = 770 o d o Cu,. 

Now suppose identity (V.2.11) holds up to the fc-th right factor of 77. Using (V.2.7), 

for 77fe+1 = Vk+iqllUVk, 

(fjk+1 od)ocw = [Vk+iQ^XlVk odj ocw 

= (vk+iqo+1 [<%£ m {fjk o d ) j ) 

= 77 fc+1gi fe+1([^>(77 fcod)" 

= Vk+i%k+1 ((^ifc+l " ^ ((% ° d ) ° C J 

= Vk+iqlo+1 ((dlk+1 o cw) LU (77* o (d o c,,)) 

= f)k+i o ( d o c , „ ) . 

o C, 

°c„ 

Hence, 

c o ( d o c ^ ) = ^ (c, 77)770 ( d o c , ) 

= J ] (C:V){v°d)ocw 

veXY* 

= (c o d) o Cm, 
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which completes the proof. • 

Generally speaking, Theorems V.2.4 and V.2.5 show that the composition product 

over M((X7)) is distributive from the right with respect to the shuffle product and 

associative. These two properties were originally proven by Ferfera in [13] for the 

composition product over R£((X}}. In conclusion, the parallel, product and cascade 

connections of formal Fliess operators are characterized by the operations +, LU , and 

o on R ( ( j y ) } . In the next section, these three operations are going to be related to 

the interconnections of Fliess operators with inputs from UVm[0, T]. 

V.2.3 Convergence of the interconnections of Fliess Operators 

In light of (V.2.1) and (V.2.2), one needs more than an algebraic notion of well-

posed of an interconnection when inputs from UVm[0, T] are considered. For example, 

the cascade connection requires the convergence of w,y and y in addition to y be

longing to UVm[0,T}. Unfortunately, from Corollary IV.4.1, it has been shown that 

y resides in UV [0, T], which is a set including UVm[0,T]. However, one can utilize 

the concepts of rationality and local convergence of formal power series to develop 

situations where the interconnections of Fliess operators produce a well-defined out

put process. This section begins with the description of the interconnections of Fliess 

operators with inputs from UVm[Q,T]. 

Theorem V.2.6. Let c,d £ M.e({XY)) be locally convergent series and w £ 

UVm[0,T}. Then 

Fc[w] + Fd[w] = Fc+d[w], 

Fc[w]-Fd[w] = FCLud[w]. 
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Proof: The parallel connection is the addition of two Fliess operators. Therefore, 

Fc[w](t) + Fd[w]{t) = Y, (c,r])Eri[w](t)+ ^ (d,v)EvH(t) 
J1&XY* TjeXY* 

= J2 {c + d,v)Er,[w]{t) 
rjeXY* 

= Fc+d[w](t). 

The product connection is the product of two Fliess operators. Therefore 

Fc[w}(t) • Fd[w](t) = Yl M)£>](*)- E (^O^M(i) 
?7exy* sexy* 

= E (c,r7)(d,0^^cMW 

= Fcind[w](t). 

• 

Here, the minimum requirements from Theorem IV.3.1 for the convergence of 

Fc[w] and Fd[w] have been assumed. Hence, Fc+d[u>] and FCL1Jd[i(/] are infinite sum

mations of well-defined iterated integrals, since EVLU^[w] is well-defined for any 

w G UVm[0,T]. Note that the generating series of the parallel and product con

nections of Fliess operators on UVm[0,T] and formal Fliess operators coincide. To 

study the convergence of Fc+d[u>] and FCLud[w], it is necessary to study the proper

ties of c + d and ciud on R£((A"Y)). The next theorem is a direct consequence of its 

counterpart for series in M.((X)) [24,63]. 

Theorem V.2.7. Ifc,d 6 Bf((XY)) are globally convergent then c + d and ctud are 

globally convergent. Moreover, if c,d G R f((Xy}) are locally convergent then c + d 

and cujd are locally convergent. 

It then follows in the next corollary that the parallel and product connections are 
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well-defined and produce a well-defined L2-Ito process over [0,T], T > 0, when the 

generating series involved are globally convergent. 

Corollary V.2.1. Let c e Re((XY}) and d e Rl((XY)) be globally convergent 

series. For any w G UVm[0, T], the operators Fc+d and FCLUd produce well-defined 

L2-Ito processes over [0, T]. 

Proof: Since c and d are globally convergent, by Theorem V.2.7, c + d and Cujd are 

globally convergent. Thus, by Theorem IV.1.5 and Corollary IV.4.1, the operators 

Fc+d and FCLUd converge and produce well-defined L2-Ito output processes over [0, T], 

T>0. m 

For c and d locally convergent series, Fc+rf[i(;] and FCLUCi[w] also converge condi

tionally over a nonzero stochastic time interval. 

Corollary V.2.2. Let c,d G M.£((XY)) be locally convergent series. For any w € 

UVm[0,T], there exist an R > 0 and a stopping time TR such that Fc+d and Fctud, 

respectively, produce L^-lto processes over [0, rR] assuming the order of summation 

defined in (IV.3.5). 

Proof: Since c and d are locally convergent, by Theorem V.2.7, c + d and cujd are 

locally convergent. Then, by Theorem IV.3.1, the operators Fc+d and Fcujd define 

L2-Ito processes over the stochastic interval of time [0,r#], where TR is defined in 

(IV.3.4) and when the series defining Fc+d and FCUJd are added in the order described 

in (IV.3.5). • 

Observe that if c + d and CLud were exchangeable series then Corollary V.2.2 is 

valid unconditionally. In particular, the local convergence of the parallel connection 
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of Fliess operators is well-posed for c and d exchangeable series. 

Corollary V.2.3. Let c,d G M.e((XY)) be locally convergent and exchangeable. For 

any w G biVm[0,T], the Fliess operator Fc+d[w] converges over a stochastic interval 

of time regardless of the order introduced in (IV.3.5). 

Proof: From Corollaries IV.3.1 and V.2.2, it is only sufficient to show that c + d 

is exchangeable. Fix oc,{3 E ^™-+i. ^ g ^ from Definition IV.3.2, ca^ represent the 

image under c for words in Lap and da^ represent the image under d for words in 

La^. It is easy to see that (c + d)a,p = Ca,p + da,p for all a.,/3 G Nm + 1 . Thus, c + d 

is exchangeable. • 

The cascade connection is again treated again separately. Below, the relationship 

between the cascade connection of Fliess operators on UVm[0, T] and the composition 

product on 1{{J7}) is obtained. 

Theorem V.2.8. Let c G Re{(XY)} and d G R2m{(XY)) be locally convergent, and 

weUVm[0,T\. Then 

(FcoFd)[w) = Fcod[w}. 

Proof: Since Fd[w] is a convergent operator, the iterated integrals in Fc defined using 

the components of Fd[w] as integrands are well-defined. It is shown first that F^oFj, = 

Fvod for any n G XY* using induction over k = \rj\x, + \rj\ i G { 1 , . . . , m}. Let n G 

XY* be written as in (V.2.6) and consider the set of right factors {77/-, 77*1-1 J . . . , 770} 

of 77. Clearly, 

(F^0 o Fd[w]) (t) = E^w}^) = F-nMtt) = ^ M W -
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Now assume that (Ffjk o Fd[u])(t) = F^k0d[u](t) holds up to some fixed k > 0. Then 

by Definition V.2.2 

(F,j+1 o Fd[w])(t) 

rH+^ij+1Vj' 
= £, Jj+1\Fd[w]](t) 

T F iJ+1 [ u K t o ^ t ^ H ^ i ) ^ ; ( t i ) • • • ^::;;;(in J+1 

times 

/ • • • j f *#; ^ (MH(*i) <;(*i) • • • di^(v1 + i ) 

+u 0 

r i j + i + l times 

ft /-t2 

Tij+i+1 times 

= F 
Vj+l d / + 1

 LU (mod) 

= Fv.+lod[w]{t). 

Finally, 

(FcoFd[w})(t) = ^ (C)»7)^,[FdH](t)= E M * W H ( * ) 
V&XY* ri£XY* 

= E M 
rieXY* y&XY* 

J2 (v°d,iy)E„[w]{t) 

E„[w](t) 

= E (cod,i/) £,>](*) 

= Fcod[w](t). 

Note that the generating series of the cascade connection of Fliess operators in 

UVm[0, T] and formal Fliess operators coincide. • 

Even though Fc[w] and Fd[w} are convergent, the composite operator Fcod[w] is 

just an infinite summation of iterated integrals. In addition to globally and locally 

convergent formal power series, the concept of rationality plays an important role 
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in the convergence analysis of the cascade of Fliess operators on Z^Vm[0,T]. For 

global convergence, an analogue to Ferfera's condition presented in Theorem III.2.5 

is needed for series in M.({XY)}. Fortunately, the rationality of the composition 

product on M((XY)) can be treated in a manner completely analogous to the case 

for R((X)) . From Definitions III.2.5 and V.2.2, the definition of input limited can 

be directly extended to series in M.{(XY}). 

Definition V.2 .4 . A series c G M.((XY)) is l imited relative t o CCJ and yi if there 

exists an integer Hi > 0 such that 

sup \n\Xuyi ~ Hi < oo. 
7jesupp(c) 

If c is limited relative to Xi and yi for every i = 1 , . . . , m then c is said to be 

input-l imited. In such cases, let Hc := maXjA/i. A series c G M.e((XY)) is input-

limited if each component series, Cj, is input-limited for j = 1 , . . . ,£. In this case, 

Hc := maxj HCj-

Theorem V.2 .9 . Let c G Re{(XY)) and d G R2m({XY)). If c and d are rational 

series then co d is rational if c is input-limited. 

A slight extension of Lemma III.2.1 is presented next. 

L e m m a V.2 .1 . Let c G M.e((XY}) be a rational series with a linear representation 

0 , 7 , A). Let Nl = ufa) G Rnxn and Nf = n{yi) G Rnxn, i = 0 , 1 , . . . ,m. Then for 

any d G l 2 m ( ( i y ) ) it follows that 

cod= J2 ^((N^xo + NZyo)*^, 

neXY" 
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where XY = { x i , . . . ,xm,yi,... ,ym}, and the set of operators {Dv : n 6 XY } is 

the monoid under composition uniquely specified by 

D^ : rx"((X7}) - R"*"«XY» : E ^ {N*x0 + N*y0y4N?(4' ^E) 

with D$ equivalent to the identity map. (The shuffle product above is defined compo

nentwise.) 

Proof: Without loss of generality, assume £ = 1. Define W„ = JVj" • • • A# for 

77 = qfg* • • • qlQ G XY*. Directly from the definition of the composition product 

observe that 

m,2 cod = E E E ^X^-X^--^X^;v 
fc>0 u,...,ifc=l 77o,...,r;fe6-XoYb* 

Zi,...,/fc=l 

m,2 

= E E E XN,X:N^Nti---NmNiiN^-
fc>0 ii,...,ifc=l ??o,.--,%6-foVb* 

J i , - A = i 

%9o < 
2fc —1 

Vk-iq0 dt1 

Prom the bilinearity and continuity of the shuffle product (in the ultrametric sense), 

it follows that 

771,2 

cod = E E A E ^vkitiN1, k )\r'fc 

fc>Oii,...,ifc=l \r)keXQYo* 
h,—,lk=l 

E ^-i^-i I ^Ntl 
„Vk-i£X0Y0* 

\ 

di 

d1"-1 

E ^Vi 
\J)IEX0YO* 

m,2 

tiK 
) 

d\ - ( E N^o 
rjoSX0Y0* 

7 

]T E Wlx0 + N*y0y(&Nli dg> (N^Xo + N^yq^N1^ 
fc>0 ii,...,ifc=l 

h,-..,/fe=l 
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7-

Finally, applying the definition of DT], 

cod = E E A ^ ' ^ 3 - i - - - ^ 1 ( ( ^ o + iV0
2y0)*)7 

= J ] AD„((iVfr0 + iV0
2y0)*)7, 

•neXY* 

and the lemma is proved. • 

Proof of Theorem V.2.9: Since c is input-limited, it follows from Lemma III.2.1 that 

c o d = E E *A,((ivfro+ivfo>n7. 
fc=0 , e x ? ' 

Clearly, each operator Dv is mapping a rational series to another rational series as it 

involves only a finite number of rational operations. Therefore, for any integer k > 0 

the formal power series 

J ] \D,((Nl
0x0 + N2

0yoy)"f 
r,eXYk 

is again rational since the summation is finite. Thus, cod must be rational. • 

By a direct application of Theorem V.2.9, a sufficient condition for the conver

gence of the cascade of two rational Fliess operators is described next. 

Corollary V.2.4. Let c e Re((XY}} and d e R2m((XY)) be rational series. If c 

is input-limited, then for any w G UVm[0, T], T > 0, the output of a cascade of two 

Fliess operators, FCOCL[W}, converges in the mean square sense to a well-defined L^-Ito 

output process. 
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Proof: Since c is input-limited, the series c o d is rational by Theorem V.2.9. Then, 

by Theorem IV. 1.5 and Corollary IV.4.1, the operator Fc[Fd[w;]] = FCOd[w] defines a 

well-defined L2-Ito output process. • 

One can use Theorem V.2.9 to establish a condition for the analyticity of Fc[w] 

in the rational case. 

Theorem V.2.10. Consider an operator Fc with c G Mf((XY)) rational and input-

limited. Select an input w G UVm[0,T] which is an analytic ltd process described 

by the rational series cw G Rm((XoY"o})- Then the output process y = Fc[w] is also 

analytic and has the generating series cy — c o cw G R((Xolo})-

Proof: Because c is input-limited, the series c o cw is rational. Then, by Corollaries 

IV.4.1, V.2.4 and Theorem IV.1.5, the process y(t) = FCOCw[w](t) is a well-defined Ito 

output process for all t G [0, T] and has the series representation c o cw. • 

Example V.2.1. Consider the input-limited series c = (1 — x0)"1(x1 + yi)2 and 

d = (1 — yi)_ 1 . From the last theorem, the composition product cod must be rational 

since c is input-limited, i.e., max < max {|r?L ), max {|r?l } > < 2. To confirm that 
F ' ' \veXY'UnxiJ,

V£XY*U nyii j ~ 

co d is rational, using standard formal power series tools, the composition of c and 

d can be computed as 

cod = ( l -a ;o)- 1 (x i + 2 / i ) 2 o( l -y 1 )~ 1 

= (1 - XQ)"1 (X\ + Xlyi + y1xl + y\) o (1 - yiy
l 

= (1 - x0)"1xo ((1 - z/i)"1 m (an o (1 - y,)-1)) 

+(i - xo)"1^ ((i - yi)-1 - (z/i o (i - yi)'1)) 

+(1 - x0)-
lyQ ((1 - yx)"1 LU (xi o (1 - yiy

1)) 
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+(1 - xQylyQ ((1 - yi)-
x u, (yx o (1 - y,)-1)) 

= (1 - so)-1*.) ((1 - yi)"1 - (x0(l - yl)~
1 m (0 o (1 - y^"1)) 

+(i - x0)-
1x0 ((l - T/0'1 - M i - yi)-1 LU (0 o (i - s/!)-1)) 

+(i - xo)"1^ ((i - yi)'1 - (x0(i - yiY1 - (0 o (i - y^1)) 

+(1 - xQyxyQ ((1 - yO"1 u, (^(1 - y i ) - 1 w (0 o (1 - y i )
- 1 ) ) 

= (1 - xo ) " 1 ^ ((! ~ 2/i)_1 ̂  xo(l - yi)"1) 

+ (1 - xoy
lx0 ((1 - y ^ 1 ujyo(l - yi)"1) 

+ ( l - x0)_1yo ((1 - yi)"1
 UJX0(I - yi)"1) 

+ ( i - xo)" 1 ^ ((i - yi)"1 - yo ( i - yi)"1) • 

The latter summands can be determined directly as 

4(i-y1y
l^(i-yiy

1 

= gJ
0(l-y1)"

1uJ(l + y1(l-y1)^) 

= ^(i-yir'+^a-yir'-z/ia-i/ir1 

= «g(i - ^r 1 + 4 ((i - Vly
1 ̂  yi(i - yiy

x) + yi (4(i - Vly
l u, (i - yiy

1) 

= 4 ((1 - yO"1 - (2/i(l - Vly
l + l))+yi (4(1 - yO"1 u, (1 - yO"1) 

= gg ((1 - y,)-1 u, (1 - yO"1) + yx (4(1 - 2/i)_1 - U " ViY') 

= 4(1 - 2y1)-1 + yi (4(i - yiy
x u, (1 - yiy

l). 

Factoring 4(1 — y i ) - 1 UJ (1 — yi ) - 1 from the left-hand and right-hand sides gives 

(i - 4) (4(i-m)'1 ^(1 - yi)'1) = 4(i-W~l-

In which case, 

4(1 - Vly
x - (1 - y1)~

1 = (1 - y i ) - x ^( l - 2y1)"1. (V.2.12) 
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Using identity (V.2.12), the composition c o d is computed as 

cod = (l-x0y
1x0((l-y1)'

1x0(l-2y1)-
1) 

+(1 - xo ) " 1 ^ ((1 - S / i r toU - 2yl)~
1) 

+ (1 - xo ) - 1 ^ ((1 - ViVxoil - 2y1)~
1) 

+(1 - xoy'yo ((1 - y1)-
1y0(l - 2yi)~

l) . 

Observe that cod is a rational series. Thus, the corresponding Fliess operator Fcod[w] 

is the input-output map of a bilinear system. • 

Now it is only left to establish under what condition the cascade of Fliess op

erators on UVm[0,T} having locally convergent generating series produce an L2-It6 

process. In this setting, consider the next theorem, which is a direct consequence of 

its counterpart for series in R{{X)) [24,28]. 

Theorem V.2.11. Let c G Re({XY)) and d G R2m((XY}). If c and d are locally 

convergent then c o d is also locally convergent. 

Corollary V.2.5. Let c e Re({XY)} and d G R2m((XY)} be locally convergent. For 

any w G UVm[0,T], there exist an R > 0 and a stopping time TR such that Fcoci[w] 

converges to an L2-R0 output processes over [0, TR] assuming the order of summation 

defined in (IV.3.5). 

Proof: First observe that Fc and Fd, independently, are each only well-defined on 

UVm[Q,T) when the summations are ordered as in (IV.3.5). By Theorem V.2.11, 

regardless of any order for c and d, the series cod have locally convergent coeffi

cients. Hence, the operator -FCO(i[if] is again defined in the same sense. Therefore, 
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the ordered summation of Fcod[w] converges to an L2-Ito output process over the 

stochastic interval of time [0, TR], where rR is defined in (IV.3.4). • 

From the last theorem, once again a conditional convergence result is obtained 

when locally convergent series are involved. Earlier, the property of exchangeability 

was added to remove this conditionality (see Theorem IV.3.1). However, in this 

particular theorem, exchangeability cannot be used since it is not known at present 

whether the composition product of exchangeable series is exchangeable. 



160 

CHAPTER VI 

CONCLUSIONS AND FUTURE RESEARCH 

In this final chapter, the main contributions and conclusions of this dissertation 

are summarized. Then some future research topics are described. 

V I . l M A I N C O N C L U S I O N S 

This dissertation was focused on the solution of five problems. 

The first problem involved defining a class of L2-H6 processes that formed a set of 

admissible inputs to a Fliess operator. The proposed classes of inputs were given in 

Definitions IV.1.1 and IV.3.1. In these definitions three sets were defined: UVm[0,T], 

IAV [0, T] and UVm[0, TR}. The first is a subset of the second, and it formed the set 

of inputs to be used for driving a Fliess operator. The latter set is the restriction of 

UVm[0, T] to the nonzero stochastic time interval [0, rR]. In particular, any element 

of these sets is an L2-Ito process and can be written as the sum of a Lebesgue and a 

Stratonovich integral whose integrands are themselves L2-Ito processes. 

The second problem was to define a Fliess operator over UVm[0,T] and 

UVm[0, TR], and provide the necessary conditions under which the operator con

verges to produce a well-defined stochastic output process over a nonzero interval of 

time. The proposed definition of a Fliess operator driven by inputs from UVm[0, T] 

was given in Definition IV.1.2. For this definition, an iterated integral comprised 

by Lebesgue and Stratonovich integrals was introduced in (IV.1.2) and (IV.1.3). To 

establish the convergence of this Fliess operator, it was natural to take limits in 
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the mean square sense. The fact that Stratonovich integrals now played a role in 

the Fliess operator definition added a level of complication in the calculation of an 

L2 upper bound for these Lebesgue-Stratonovich iterated integrals in that they do 

not satisfy the isometry property. Then, identity (IV. 1.4) was used to transform 

Stratonovich integrals into Ito integrals so that Theorems IV. 1.2, IV. 1.19 and IV. 1.4 

gave the L2 upper bounds needed. The main idea for the global convergence of Fliess 

operators, Theorem IV.1.5, was to use the concept of globally convergent series in 

combination with the notion of a Cauchy series to prove the mean square convergence 

of a Fliess operator. This also meant that the limit is a well-defined L2 bounded ran

dom variable. In addition, using properties of the shuffle product, a conditional local 

convergence result for these operators was given in Theorem IV.3.1. However, if the 

generating series of the Fliess operator was an exchangeable series then Theorem 

IV.3.1 produced a well-defined stochastic process defined over a nonzero stochastic 

interval of time independent of the order defined in Theorem IV.3.1. 

The third problem was to characterize the set of output processes giving their 

main properties and describing in what sense there is compatibility between the 

input class and the output class. A characterization of the output process was given 

in Corollary IV.4.1. Specifically, this corollary showed that an input in UVm[0,T] 

maps to an output in UV [0, T\. This meant that the output set UV [0, T] satisfies 

all the properties of UVm[0, T] with the exception of the independence properties 

presented in Definition IV. 1.2. One critical problem related to this fact is that the 

output process generated by a Fliess operator might not, in general, be suitable 

for driving another Fliess operator. It was also shown in Theorem IV.4.1 that two 

different generating series cannot represent the same output process. Finally, an 



162 

Ito process generated by a Fliess operator was called analytic since it resembles the 

notion of analyticity in the usual sense. 

The fourth problem was to characterize the generating series for the parallel, 

product and cascade interconnections of Fliess operators for formal input processes 

and for inputs from UVm[0,T]. The proposed solution to this problem was to first 

define the set of formal inputs in Definition V.2.1 and the class of formal Fliess 

operators in Definition V.2.3. Then the characterization of the nonrecursive inter

connections (parallel, product and cascade) were presented in Theorems V.2.3, V.2.4 

and V.2.5. In these theorems, it was shown that the operations +, LU and o on 

M({XY)) characterize the parallel, product and cascade connections, respectively. 

Theorems V.2.6 and V.2.8 showed that the same operations also characterize their 

respective connections for inputs in UVm[0,T}. 

Finally, the fifth problem was to provide conditions under which these intercon

nections are well-defined in the sense that they produce a well-defined output process. 

It was discovered that the algebraic operations +, LU and o on M((XY)) behaves 

similarly as on M((X)). Then, Theorem V.2.7 showed that the + and LU operations 

preserve global convergence, and Theorems V.2.7 and V.2.11 showed that +, UJ and 

o operations preserve local convergence. In Corollaries V.2.1, V.2.2 and V.2.3, the 

convergence of the parallel and product connections was presented. For the com

position product, Ferfera's sufficient condition for the rationality was extended to 

M((X7}) in Theorem V.2.9. Using the previous theorem, it was shown in Corollary 

V.2.4 that under Ferfera's condition the cascade of two Fliess operators on UVm[0, T] 

produces a well-defined L2-It6 output process. Finally, Corollary V.2.5 showed that 

the composition of two locally convergent Fliess operators generates a convergent 
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output when ordered in the form presented in Theorem IV.3.1. One problem with 

this theorem is that if the summation of the composite system is taken in a different 

order, the system might not yield a well-defined output process. 

VI.2 F U T U R E R E S E A R C H 

Some interesting future problems related to this dissertation are listed below. 

1. It was observed in Corollary IV.4.1 that the output process of a Fliess operator 

belongs to UV [0, T]. If the input set were UV [0, T] then there would exist full 

compatibility between inputs and outputs. Thus, the signal y (see Figure 10) 

can be used to drive a second Fliess operator. One could then ask: Is UV [0, T] 

a more natural input space for the interconnection of Fliess operators driven 

by stochastic inputs? 

2. Another open problem concerns the absolute convergence of Fliess operators 

when the generating series is locally convergent. The structure of an affine state 

space system is independent of the type of inputs (deterministic or stochastic) 

used to drive it. Therefore, there are plenty of systems described by locally 

convergent series that can be driven by stochastic processes. Then, the follow

ing questions can be formulated: Under what conditions does a Fliess operator 

with stochastic inputs converge absolutely to a well-defined output process? 

Are the conditions associated with UVm[0,T] enough to achieve convergence? 

3. It was noted in Chapter V that if the composition product of two exchangeable 

series is exchangeable then the cascade of two Fliess operators with inputs from 
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UVm[Q,T] will produce a well-defined output process. But, under what condi

tions is exchangeability preserved under the composition product? What other 

properties of exchangeable series can be exploited in the stochastic setting? 

4. It was shown in Example IV. 1.4 that inputs from L/Vm[0,T] are not adequate 

to model switched systems. It was conjectured that stochastic processes such 

as Poisson processes (Levy processes) would be more suitable for this purpose. 

Thus, how can the theory developed in this dissertation be adapted to consider 

inputs such as Poisson processes? 
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