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ABSTRACT 

TREE-D-SEEK: A FRAMEWORK FOR RETRIEVING 3D SCENES 

Saurav Mazumdar 
Old Dominion University, 2009 
Director: Dr Lee A Belfore, II. 

In this dissertation, a strategy and framework for retrieving 3D scenes is proposed. The 

strategy is to retrieve 3D scenes based on a unified approach for indexing content from 

disparate information sources and information levels. The TREE-D-SEEK framework 

implements the proposed strategy for retrieving 3D scenes and is capable of indexing 

content from a variety of corpora at distinct information levels. A semantic annotation 

model for indexing 3D scenes in the TREE-D-SEEK framework is also proposed. The 

semantic annotation model is based on an ontology for rapid prototyping of 3D virtual 

worlds. 

With ongoing improvements in computer hardware and 3D technology, the cost 

associated with the acquisition, production and deployment of 3D scenes is decreasing. 

As a consequence, there is a need for efficient 3D retrieval systems for the increasing 

number of 3D scenes in corpora. An efficient 3D retrieval system provides several 

benefits such as enhanced sharing and reuse of 3D scenes and 3D content. Existing 3D 

retrieval systems are closed systems and provide search solutions based on a predefined 

set of indexing and matching algorithms. Existing 3D search systems and search 

solutions cannot be customized for specific requirements, type of information source and 

information level. 



In this research, TREE-D-SEEK- an open, extensible framework for retrieving 3D 

scenes- is proposed. The TREE-D-SEEK framework is capable of retrieving 3D scenes 

based on indexing low level content to high-level semantic metadata. The TREE-D-

SEEK framework is discussed from a software architecture perspective. The architecture 

is based on a common process flow derived from indexing disparate information sources. 

Several indexing and matching algorithms are implemented. Experiments are conducted 

to evaluate the usability and performance of the framework. Retrieval performance of the 

framework is evaluated using benchmarks and manually collected corpora. 

A generic, semantic annotation model is proposed for indexing a 3D scene. The primary 

objective of using the semantic annotation model in the TREE-D-SEEK framework is to 

improve retrieval relevance and to support richer queries within a 3D scene. The semantic 

annotation model is driven by an ontology. The ontology is derived from a 3D rapid 

prototyping framework. The TREE-D-SEEK framework supports querying by example, 

keyword based and semantic annotation based query types for retrieving 3D scenes. 
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Chapter I 

INTRODUCTION 

Finding efficient ways of retrieving media content is an area of active research. In 

comparison to work related to retrieving text, audio, images, and video, research in 

retrieving 3D content is relatively recent. With ongoing improvements in computer 

hardware, computer networking and 3D authoring tools, the acquisition, production and 

deployment of 3D objects/3D scenes is become easier. 3D objects and scenes have found 

applications in many areas such as in biomedical applications, gaming, social networking, 

electronic commerce, security, etc. 

In the field of medicine, the use of 3D models for human and animal anatomy is growing 

rapidly. These 3D models may be part of a patient's health record. Effective retrieval of 

3D anatomical models would enhance health care processes and create an effective 

platform for knowledge sharing between any concerned parties in the health care process 

chain. Effective storage and retrieval mechanisms could enhance existing web-based 

public heath record systems such as Microsoft Health Vault [1] or Google Health [2]. An 

effective retrieval system for 3D medical models also promotes dissemination and 

training for educational purposes. Content based searches may be useful for detecting 

any anomalies in the 3D models present in the system. 

Reference Model: IEEE Transactions on Computers. 
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In Bioinformatics, 3D shape matching is important in several areas such as for classifying 

proteins. In 3D gaming and simulation, an effective search capability promotes reuse of 

3D assets. Indeed, 3D social networks such as Second Life [3] are becoming very 

popular. In large scale virtual worlds, search is crucial not just for locating objects but 

also for navigation within the virtual world. 3D models have also become very important 

for e-commerce applications. 3D models of products provide improved visualization of 

the commodity being retailed. 3D content based retrieval may be useful for face 

recognition systems and for detecting dangerous situations. In computer-aided 

manufacturing, an efficient 3D search and retrieval system is crucial for re-use and 

analysis. Based on the above discussion, it can be safely assumed that a significant 

increase in the number and usage of 3D models and repositories is an eventuality. 

Therefore, there is a need for an efficient retrieval system for 3D content. For the 

purposes of this dissertation, 3D content refers to 3D virtual scenes and 3D objects 

present in 3D virtual scenes. A 3D virtual scene is a simulated 3D environment wherein 

the user/participant can interact with the objects in the environment or the environment 

itself. Retrieving 3D content involves indexing the 3D content, formulating a query, 

comparing the query to the 3D content, and returning the results or hits to the user. A user 

of the retrieval system refers to the human who submits the query to the retrieval system. 

Indexing refers to the process of collecting, parsing, extracting or detecting features, 

creating descriptors and storing the descriptors in a structure for fast retrieval. A feature 

is a characteristic of the data in a corpus. For instance, shape of a 3D object may be 
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deemed a feature and used for indexing. A descriptor provides syntax and an objective 

value for features so that they can be stored and evaluated in a consistent manner. 

Matching refers to the process of computing a similarity measure so that pairs of 

descriptors can be compared and scored. A few existing 3D model search engines and 

available 3D repositories are reviewed next. 

1.1 Currently available 3D model search engines and search engines for the 

semantic web 

Retrieval of 3D content is an area of active research interest. Several experimental 3D 

search engines are available both on the World Wide Web (WWW) and offline. In this 

section, a brief overview of the Princeton 3D model search engine [4], 3DESS [5], 

Google 3D warehouse [6], Ogden VI [7], ITI 3D search [8], SWOOGLE [9] is provided. 

1.1.1 Princeton 3D model search engine 

The Princeton 3D model search engine allows querying via text, 2D sketches and by 

uploading entire models. It uses rotational invariant spherical harmonics to compute 

shape descriptors. It is a complete search system with its own 3D focused crawler for 

WWW. The Princeton Group has also provided a benchmark for mesh models [4]. The 

query interface of the Princeton 3D model search engine is shown in Figure 1. The 

Princeton search engine supports multimodal queries that include combinations of 

text/2D sketch and text/3D sketch. No semantic indexing or querying is supported. 
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.'•--;_ T e s t * 20 Sketch:; 

Keywords: 

&|T ^%^^fcw%^"'fc^feg<f *& £...&&-*% jfc*g toy^^jg^fl^st 

3D Model Search Engine 
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Available search types: 

. Text& 2D Sketch 
one or more keywords and/or 1/2/3 simple outline sketches 

• Text & 3D Sketch 
one or more keywords and/or a single 3D sketch 

. File Compare 
upload your own 3D model file 

• Find Similar Shape 
click the link below a search result 

Available datasets: 

• Free Models 
~ 31000modelsdownloadedfromtheWeb 

• Viewpoint Models 
-' 2000 commercial models 

• De Espona Models 
~ 1000 commercial models 

• Cacheforce Models 
- 2000 commercial models 

. All Models 
All of the above 

OiiliriB since November 2001 

This site should work with Netscape 4.0 or up, or equivalent, with Java ami Javascript enabled. If you are running aversion of Java older than 1.2, then get the latest 0 | | 
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Figure 1: Princeton 3D model search engine query interface [4]. 

1.1.2 3-Dimensional Engineering Shape Search System (3DESS) 

The 3DESS system [5] is a prototype shape search system for CAD/manufacturing 3D 

models. The system is not available online. It allows the user the choice of which type of 

shape based feature to use in the search. The search engine uses a relevance feedback 

approach to refine searching. No semantic indexing or querying is supported. 

1.1.3 Google 3D warehouse 

The Google 3D warehouse [6] is an online repository of 3D models. The 3D models are 

broadly classified into geo-referenced and non-geo-referenced. A geo-referenced 3D 

model is a real world object such as a stadium, building, etc. that can be accurately 

located using Google Earth. Non-geo-referenced models are other objects that are not 
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location specific such as a human body, plant, etc. The Google 3D warehouse query 

interface is shown in Figure 2. No shape indexing and matching is supported. 

fie J->\&. watmmvmimmftmiima 
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mm 
Featured Google Earth 
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w 
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Featured Google Earth 
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Cities in Development 

5k I 
' l a * .S 

Ktfr«&tr*- . * * * . . *»- - * 

i 

Browse 3D Warehouse models in Google Earth " " ' 

*" Experience your 3D world * ^ ^ 

Experience your 3D worid using ^x"" 2 
Googles interconnected suite of ^ffi *i3jj{ 

N Google SkelchUp \ y g , J 

\ r Gooole Earth W ? 

3D Warehouse 

FJ idc l forG OTloEtJrtl 

Modeling guide {PC 

Frequently asked qi 

Figure 2: Google 3D warehouse query interface [6]. 

1.1.4 Ogden VI 

The Ogden [7] VI is a search engine system that retrieves 3D content using rotational 

invariant shape descriptors, voxelized 3D models, point clouds, etc. Retrieval using 

similar parts of 3D models is also provided. The query interface of OGDEN VI is shown 

in Figure 3. 
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Figure 3: Ogden VI query interface [7]. 

1.1.5 Informatics and Telematics Institute (ITI) 3D search system 

The ITI 3D search system [8] allows content based retrieval of 3D objects in Virtual 

Reality Markup Language (VRML). It allows searches on the Princeton Benchmark, the 

Utrecht database and its own database only. It does not support semantic indexing. The 

query interface is shown in Figure 4. 
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Figure 4: ITI 3D query interface [8]. 

1.1.5 SWOOGLE 

The SWOOGLE system [9] is a complete search system for the semantic web. It is 

capable of crawling and indexing documents written in Web Ontology Language (OWL) 

and Resource Description Format (RDF) available on the web. It is not capable of 

indexing based on 3D low level content. The query interface is shown in Figure 5. 
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Figure 5: SWOOGLE query interface [9]. 

1.1.6 Discussion 

Based on the survey of the above mentioned search engines, query interfaces and relevant 

work discussed in Chapter II, current retrieval solutions do not provide a unified 

approach of retrieving 3D scenes based on indexing and matching low level to high level 

content. An open framework for retrieving 3D scenes that can be used by search engine 

developers to create customized search solutions for 3D corpora has not been proposed or 

implemented. The problem statement is discussed next. 

1.2 Problem statement 

As the number of 3D models and scenes increase, there is a need for efficient 3D retrieval 

systems. The focus of several research works [4], [8], [5], [7] has been on identifying 

efficient low-level content-based retrieval mechanisms for 3D models. The primary goal 

of these research works was to identify effective 3D retrieval strategies for 3D models. 

The retrieval strategies proposed in these research works used either geometric or 
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statistical algorithms for indexing and matching 3D models. Several existing works and 

search engines [10] [6] used syntactic metadata and keyword based approaches for 

retrieving 3D content. The need for machine interpretability, richer querying capability, 

improved retrieval relevance and improved navigation in 3D scenes has resulted in 

several works [11][12] wherein semantic annotations were used to formally specify 3D 

scenes. Similar to retrieval in other types of multimedia, the "bridging" of the semantic 

gap from low level features to high level semantic metadata has been proposed. 

In addition, in [13] and the above mentioned search systems, suitable modes of query for 

effective retrieval of 3D models were also investigated. The query mode supported by a 

search system is closely related to the choice of indexing and matching algorithm 

available in a search system. The general solution in available 3D search systems was to 

provide support for querying based on metadata, 2D/3D sketches and by example. In 3D 

retrieval based on 2D/3D sketches, a user provides a "skeleton" sketch of a 3D model and 

the same is matched against the contents of the 3D corpus. In querying by example, an 

entire 3D model is provided as query and similar 3D models are retrieved based on low 

level content matching. In addition, semantic queries based on natural language have 

been proposed for 3D scene retrieval. Existing search systems support a few or all of the 

above query modes. These search systems may also support retrieval based on 

multimodal queries wherein a combination of the above mentioned queries are used to 

retrieve 3D content. For example, in [10], a user is allowed to provide both text and 2D 

sketch as input query. 
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Based on the survey performed in 3D retrieval and 3D search systems, several 

observations may be made. First, a unifying retrieval strategy and an open framework for 

retrieving 3D scenes capable of indexing low-level content to high-level semantic 

metadata has not been proposed or implemented. Indeed, current solutions for retrieving 

3D content employ a "stove-piped" approach of indexing and matching 3D content 

wherein at most, the retrieval system supports implementation and evaluation of 

algorithms at a particular information level and by individual research groups. 

Second, a framework for retrieving 3D scenes has not been discussed. The above 

mentioned search and retrieval systems are closed systems and are used by particular 

research groups and organization for their own specific requirements or to support 

general users for performing 3D retrieval based on a predetermined set of retrieval 

mechanisms. The capability of creating a search engine for retrieving 3D scenes with 

customized indexing and matching algorithms for specific corpora has not been 

addressed. 

Third, a framework that is both capable of retrieving 3D scenes and providing search 

within a 3D scene for navigation and for retrieving 3D objects within a scene has not 

been discussed. Existing retrieval solutions are capable of either retrieving 3D scenes that 

contain at most one 3D model or provide search for particular closed 3D scenes/virtual 

worlds. 
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Fourth, a framework that can index 3D scenes based on scenegraph content and structure 

has not been proposed. A scenegraph is a data structure that contains information about 

3D content present in a scene. A scenegraph provides the capability of logically ordering 

3D content present in a scene. 

In this research, TREE-D-SEEK, a retrieval framework for 3D scenes, is proposed. The 

TREE-D-SEEK framework implements a unified strategy for indexing and matching 3D 

content. The TREE-D-SEEK framework is capable of indexing and matching 3D content 

based on textual annotations, scenegraph content and structure, shape and semantic 

annotations. Based on the individual process flow in retrieving 3D content from each type 

of information source and information level, a unified process flow is derived. Indexing a 

3D scene based on its scenegraph content and structure provides the capability of 

retrieving occluded or cluttered 3D scenes. 

The software architecture of the TREE-D-SEEK framework is specified. Clear software 

, interfaces are available to provide extensibility with respect to implementing a desired 3D 

retrieval strategy at the information levels supported in the retrieval strategy. As proof of 

concept, several indexing and matching algorithms have been implemented. Finally, an 

ontology based annotation model for indexing 3D scenes is proposed in this research. It is 

envisioned that this annotation model may be used to author 3D scenes and to support 

richer queries for improved navigation and search within a 3D scene. 
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1.3 Research scope 

One of the primary objectives of this research is to create a generic 3D retrieval strategy 

and a framework that implements this strategy for retrieving 3D scenes design. For the 

purposes of this research, 3D scene content refers to 3D objects present in a virtual scene. 

The goal of this research is not in designing the "front-ends" vis-a-vis the user interface 

for querying or for viewing the results. Also, retrieving 3D content based on the behavior 

of objects present in the scene is not supported. 

The TREE-D-SEEK framework must contain clear software interfaces so that it can 

potentially be part of a 3D authoring tool that may a 3D search capability. The framework 

should allow seamless integration of indexing and matching techniques for the supported 

information sources and information levels. A semantic annotation model must be 

proposed for indexing any generic 3D scene. 

1.4 Chapter organization 

The rest of the dissertation is organized as follows., 

Chapter 2: Background and Related Work: In this chapter, background 

concepts and related work in 3D retrieval are surveyed. Several indexing and 

matching algorithms are discussed. 

Chapter 3: TREE-D-SEEK Retrieval Strategy. In this chapter, a generic 

retrieval strategy for retrieving 3D scenes is proposed. A common process flow is 

derived based on existing process flows for retrieval based on metadata, 

scenegraph, shape and semantic annotations are discussed. 
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Chapter 4: TREE-D-SEEK Framework. The TREE-D-SEEK framework is 

proposed in Chapter 3. The software architecture of the framework is described. 

Several indexing and matching algorithms implemented in the TREE-D-SEEK 

framework are discussed in this chapter. 

Chapter 5: TREE-D-SEEK Semantic Annotation Model. In this chapter, a 

semantic annotation model for 3D scenes is proposed. The annotation model is 

based on an ontology derived from a 3D rapid prototyping framework. 

Chapter 6: Implementation, Experiments, and Discussion. In this chapter, the 

TREE-D-SEEK framework is used on selected 3D corpora and several retrieval 

performance assessments are presented. 

Chapter 7: Conclusions and Future Work. This chapter describes the 

conclusions drawn from this research. Future enhancements that may be 

potentially pursued are also outlined. 
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Chapter II 

BACKGROUND AND RELATED WORK 

The primary objective of this dissertation is to create an Information Retrieval (IR) 

framework capable of retrieving 3D scenes based on extracting low level features to high 

level semantic metadata. In Chapter I, several complete search systems for 3D content 

and semantic metadata were discussed. In this chapter, background and related work 

pertaining to available indexing and matching techniques are discussed. 

In particular, a brief discussion of 3D model representation and two 3D file formats is 

first presented. This is followed by a description of scenegraphs and scenegraph-based 

3D technologies. Next, relevant background and work in indexing, matching and 

retrieving content using text-based, structure-based, content-based and semantic metadata 

is described. 

For text-based retrieval, a brief discussion of vector based method is provided. For 

structure-based retrieval, a description of related work done in software versioning 

systems and XML versioning systems is provided. For semantic metadata-based retrieval, 

firstly existing standards available for multimedia and 3D retrieval are discussed. 

Subsequently, for semantic metadata based retrieval, a brief description of semantic 

retrieval based on ontologies for 3D shapes is mentioned. Finally, a discussion and 

summary of this chapter is provided. 
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2.1 3D model representation 

A 3D scene may be comprised of one or more 3D models/objects. 3D models 

representations can vary in several ways. For instance, 3D object representations can vary 

with respect to the ease in acquisition, storage (size), rendering efficiency, authoring 

efficiency, articulated transformational capability, etc. 3D objects representation may be 

classified as shown in Figure 6 [14] . 3D objects may be broadly represented by 

• Points 

• Surfaces 

• Solids 

• High level 

Point representation refers to an unordered, raw representation of 3D models. Examples 

of Point representations are point clouds, range images and polygonal soups. Point clouds 

are simply a set of 3D vertices. Point clouds may be obtained using 3D scanners. Range 

images are also known as depth maps. Pixels in a range image represent the distance of a 

point in the scene from a reference frame. By using a range of views/reference frames, 

the 3D shape can be estimated and reconstructed. Range images may be acquired using 

range scanners. Polygonal soups are an unordered collection of polygons. Polygonal soup 

representation of 3D objects does not have any information relating to how the polygons 

are interconnected with each other. Most graphic cards can support polygonal soup 

representations. It is quite common to find hardware support for triangles as a primitive 

for rendering 3D models. 
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Figure 6: 3D model representation. 

Surface information of a 3D object is used in 3D surface object representations. 

Examples of surface representations are polygonal meshes and parametric surface 

representations. In polygonal meshes representation, an order for specifying the vertices, 

edges and interconnectivity of polygons is provided. A vertex is shared by at least two 

edges, and each edge is shared at most by two polygons. Each polygon consists of a 

closed set of edges [15]. An implicit surface representation uses the implicit function 

S = F{x,y,z) — 0 . By using this function, a 3D point can be easily determined to be 

inside, outside or on the surface. 

Solid model representation refers to 3D objects that can be represented using rigid solids. 

The Solid model representation is also referred to as a Volume model. Examples of 3D 

solid representations are Constructive Solid Geometry (CSG) [14] and Voxels. CSGs use 

geometric primitives such as cylinders, spheres and boxes. The CSG objects are typically 
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rendered using set-theoretic functions such as unions and intersections on CSG 

primitives. The volumetric pixel or voxel is typically acquired using devices such as 

Magnetic Resonance Imaging (MRI), CAT (Computerized Axial Tomography), etc. The 

voxelizing process creates a uniform 3D grid that provides samples in three dimensions 

of the object being modeled. Initially, a volumetric dataset is constructed using a series of 

cross sectional images of the 3D object. Taking distance between each pixel (interpixel 

distance) within an image slice and in between each slice itself {interslice distance), a 

grid can be created. By interpolating interslice data, an entire volume can be represented 

[16]. 

High level 3D representations support easier authoring and rendering capabilities by 

using specialized data structures. Examples of high level 3D representations include 3D 

models for specific domains such as 3D protein modeling and scenegraphs. A scenegraph 

is a hierarchical data structure wherein each node of the data structure can contain some 

aspect of the 3D model or scene such as geometry of the object, associated 

transformation etc. Scenegraphs provide several benefits such as the ability to define 

objects in their own coordinate system, reuse of object definitions and articulated 

animation [17]. 

2.2 3D formats 

A 3D format refers to how a 3D representation can be encoded for storage. One of the 

challenges of 3D retrieval relates to the availability of a wide variety of available 3D file 
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formats, both proprietary and non-proprietary file formats. Consequently, two non­

proprietary formats are discussed briefly. 

2.2.1 Virtual Reality Markup Language (VRML) 

VRML is a technology for delivering 3D content over the web [18]. The VRML file is 

usually referred to as a VRML world and has an extension "wrl". VRML is a scene-graph 

based technology. A brief description of scenegraphs is provided later in this chapter. 

VRML provides several primitives called nodes. Nodes can be shape-related such as Box 

nodes, Cylinder nodes, IndexedFaceSet nodes, etc. In addition, nodes can be used to 

group together simpler nodes, i.e. they can be parent nodes that hold children nodes. 

Examples of parent nodes are group and transform nodes. Group and transform nodes 

allow composite objects composed of several simpler nodes to be controlled as one node. 

This provides the capability for specialized operations such as articulated animations, etc. 

Sensor nodes such as TouchSensors provide the capability to sense interactions between 

users and the associated nodes. Script nodes in VRML allow the use of ECMA-script or 

Java classes to add additional behavior for 3D scenes. Event routing is done using the 

keyword ROUTE. VRML has two keywords DEF and USE that allow object reuse. The 

Worldlnfo node may be used for documentation and can appear anywhere in the file. 

2.2.2 Extensible 3D (X3D) 

Extensible 3D Graphics (X3D) is an ISO standard [19] for delivering 3D content with 

multimedia on a network. X3D was developed by the Web3D consortium. X3D provided 

the benefits of XML to VRML 2.0. The overall design criteria of X3D were to facilitate 

interchange and interoperability of 3D models by providing a common subset of 3D 



19 

techniques and graphic capabilities to map from and to various 3D software packages. 

X3D supports 2D/3D graphics, animations, scripting for complex behavior, user 

interactions, navigation, networking, audio/video etc. 

X3D supports a scenegraph based architecture. A brief description of scenegraphs is 

available in the following section. The nodes of the scenegraph may be extended to add 

functionality for a particular requirement. Each node except the root node has a single 

parent. X3D allows for geometry rendering and expressing behavior. External scripting 

using Java script (ECMAScript) and Java is recognized. X3D browsers may be web 

browser based or standalone and may be used to render X3D scenes and allow animation 

and interaction. These browsers consist of a parser to read the file format and a 

scenegraph manager that recursively uses a depth-first-traversal to rapidly render the 

scene graphic nodes[20]. The Scene Access Interface (SAI) may be used to express 

complex behavior in X3D Scenes. The SAI may be accessed internally in the scenegraph 

via script nodes or externally from other programming languages (Java or JavaScript). 

This approach is different from VRML 2.0 as VRML 2.0 had two programming 

interfaces to express behavior. 

To target specific 3D platforms and markets, the X3D specification supports profiles. A 

profile is a subset of functionalities provided in the X3D specification. This partitioning 

of functionalities into particular sets supports more efficient deployment of X3D scenes 

and worlds. There are six types of profiles available on X3D. The core profile is the 

simplest X3D profile and does not contain any geometry. The X3D core profile primarily 
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contains metadata nodes. This profile does not contain any animation capabilities. The 

Interchange profile contains all of the basic geometry nodes, and animation. This profile 

supports importing and exporting of 3D scenes. The MPEG-4 Interactive profile provides 

functionality required to specify 3D graphics in MPEG-4. The CADInterchange profile 

provides support in importing CAD models. It contains some CAD specific nodes. The 

Immersive profile incorporates all functionality available in VRML 2.0. The Full profile 

includes all the nodes in X3D. It contains capabilities such as Humanoid Animation (H-

Anim), Non Uniform Rational B-spline Surfaces (NURBS). 

Each X3D profile consists of a collection of components. There are twenty four 

components in X3D 3.0 [20]. Each component contains a set of specific X3D nodes. An 

X3D developer can import desired functionality at the component level from any profile. 

This allows the X3D developer to select specific functionality from any desired profile 

without having to import the entire profile. 

2.2.2.1 X3D file structure 

The X3D file structure is shown in Figure 7. 

• 
• 
e 

• 
• 
• 
e 

File Header 
X3D Header statement 
Profile Statement 
Component Statement 
META statement 
X3D root node 
X3D scene graph child nodes 

Figure 7: X3D file structure. 
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The file header indicates that the file is an XML one and also specifies the text encoding. 

The X3D header statement contains the schema association and namespace for X3D. The 

profile statement indicates the type of profile the X3D world would use. The Component 

statement provides an additional level of usability wherein individual components not 

belonging to the above specified profile in the file may be imported and used. The Meta 

statements may be used to specify the metadata associated with the X3D world. The X3D 

root node called the <Scene> indicates the beginning of the scenegraph. The X3D 

scenegraph child nodes that constitute the elements of the X3D scene follow 

subsequently. 

Each node contains fields that store the data associated with that node. Fields may 

contain a single value or an array of values. Field values may be integer, Boolean, 

single/double precision floating point and strings. In the next section, some basic graph 

concepts are mentioned. 

2.2.3 Scenegraphs 

Scenegraphs are a model centric approach to 3D authoring. As mentioned previously, a 

scenegraph is a data structure, wherein each node of the data structure contains some 

aspect of the 3D model or scene. The nodes may contain aspects of the 3D scene such as 

a description of the geometry of objects, relative locations of the objects, transformations, 

materials, etc. present in the 3D scene. The scenegraph structure provides a logical and 

often spatial ordering of the 3D content present in the scene. An example of a logical 

ordering would be the expression of the relationship of a car to its occupant such that the 
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occupant is a child node of the car in the scenegraph. In continuing with the previous 

example, a spatial ordering would then result in the occupant moving when the car 

moves. By expressing these logical and spatial relationships in a 3D scenegraph, an effect 

of changing one node (parent), can be propagated to all the nodes that have a logical 

relationship with it (child nodes). Scenegraphs may be implemented as an array wherein 

operations are performed in linear time. However, this data structure with linear operation 

time may be often inadequate for relatively larger virtual scenes/worlds. Consequently, it 

is quite common to find trees being used as a scenegraph data structure. 

Scenegraphs have been used in several 3D authoring tools and Application Programming 

Interfaces (APIs). Most retained mode 3D APIs use scenegraphs. The first API to use 

scenegraphs was the Programmer's Hierarchical Interactive Graphics System (PHIGS). 

Open Inventor [21] and Java3D [22] both use scenegraphs. As mentioned previously, 

both VRML and X3D have scenegraph based architectures. 

The primary objective of this dissertation is to provide a framework for mining 3D 

content using different information sources and levels. For example, if a 3D scene is part 

of a web-page, there may be hypertext that can be indexed and used for retrieval. If a 3D 

scene has a semantic description, the TREE-D-SEEK framework must be capable of 

retrieving content using this higher level description. In the subsequent sections, 

background and work relevant to retrieving content using textual keyword content, 

scenegraph content, shape content and 3D semantic data is discussed. 
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2.3 Approaches to retrieving textual content based on Information Retrieval (IR) 

The field of IR has traditionally involved mining unstructured and semi-structured textual 

content. Information retrieval techniques for textual content are classified broadly into 

two categories as shown in [23]. Semantic retrieval techniques attempt to "mimic" human 

understanding of natural language text. Semantic retrieval techniques are often used 

along with statistical retrieval techniques. Statistical approaches involve breaking words 

into terms. Generally, terms are words that occur in a query or a corpus. A query is a 

"search-string" used to find a relevant match from the target corpus. Querying can be ad-

hoc or routing based. Routing queries are typically topic filters, i.e. each term in the 

query "routes" the searching system to a predefined topic. Adhoc queries are typically 

arbitrary search strings. A corpus is a collection of files or documents. 

Some search engines can also recognize phrases as terms. A phrase is a combination of 

words in a query of corpus. Some engines may also break documents into strings of n 

consecutive characters [24]. "n-grams" may be extracted by moving a window of n 

characters in length through a document or query one character at a time. Numeric 

weights are commonly assigned to both query and document terms. Weight of any term 

in the document is a measure of how well the term can identify uniquely the document. 

Weight of any term in the query is a measure of how important the term is in identifying 

the document in the corpus. 
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Figure 8: IR technique classification. 

Statistical techniques can be further classified into Boolean, Extended Boolean vector 

space, and Probabilistic. In the Boolean approach, queries are formed by logical ANDing 

or logical Oring each query term. A document will match the query only if both terms 

that have been ANDed in the query have been found or if either of the terms appearing in 

the query is found if the terms had been ORed. This method is incapable of producing 

ranked output. In the extended Boolean approach, weights are assigned to the terms in the 

query and document. P-norm models are constructed where given a query consisting of n 

query terms ti,t2,...tn with corresponding weights wqi,wq2,...wqn and a document D with 

corresponding weights wai, W<J2, Wdn, similarity functions of the P-norm model are 

computed by (1) and (2). 
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SIM AND (d, (T1, W Q I ) AND . . . AND(TN, WQN)) = 1-
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z: wqv 

where 1 < p < co (1) 

S M O R ((1,(T1,WQI)OR.. .OR(TN, WQN)) = E Wcli 

n 

WcliP .WqiP 

i=l y WqiP 

where 1 < p < oo 
(2) 

Atp = oo, the extended Boolean model transforms into classic Boolean. At p=l, the 

extended Boolean becomes a vector space model. A probabilistic retrieval model is 

similar to the other statistical retrieval methods. According to [25], a distinguishing 

feature separating probabilistic methods from other statistical retrieval models is the use 

of formal probability theory and related statistics to provide estimates for relevance 

ranking. The vector space approach is discussed next. 

2.3.1 Vector space approach 

In the vector space approach, a document vector in multidimensional Euclidean space is 

used to represent an individual document. Each distinct term is a dimension in this space. 

Each term is assigned a numeric weight to indicate the ability of the term to act as a 

descriptor for the document. A given term may receive different weights in different 

documents. The weights assigned to terms in a document can represent the coordinates of 

the document vector in the Euclidean space. The corpus or collection of documents may 

be represented by using a document by term matrix where each row is a document and 

each column is a term and an entry at ith row and j t h column indicates the weight of term j 

in document i. 
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The most common weighing scheme used to assign weights to terms in documents is the 

Term Frequency Inverse Document Frequency (TFIDF) weighing scheme. Term 

frequency (TF) is the frequency of occurrence of a given term in a document. Term 

frequency is a local document specific statistic. Inverse Document Frequency (IDF) maps 

N 
the frequency of the occurrence of a term over the entire corpus. IDF is defined as ln(—) 

n 

where N is the total number of documents in the collection and n is the number of 

documents containing the term. IDF is zero if a particular term appears in the entire 

document. This indicates that the term may not be a good descriptor for the document or 

any document in the collection. 

The mathematical product of TF and IDF basically indicates a strategy of identifying and 

assigning heavier weights to terms that occur frequently within a document and do not 

occur too frequently in other documents or terms that occur moderately within a 

document and over documents in the collection. The weights need to be normalized to 

account for variations in document size. 

Once the query and the documents in the corpus have been weighted and assigned vectors 

in document space, a similarity measure is required to compare objectively the query and 

the documents. This numeric score may be a measure of similarity or dissimilarity. The 

most frequently used similarity measure used in vector space retrieval is the dot or cosine 

product given by 
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SIM(Query, Document) = £ P _ i QueryTermi • DocumentTermi (3) 

2.4 Approaches for retrieving content based on structure 

The need for information exchange, interoperability, inferring and searching are 

motivating principles behind organizing data in virtually every domain. Each of the 

above mentioned principles clearly require the structure to be the least common 

denominator. Structure refers to the requirement of data to adhere to rigid schemata. The 

Extensible markup language (XML) has now become the lingua franca to represent 

structure. XML versioning is critical in several applications such as collaborative -

authoring, warehousing, and software configuration versioning systems. XML versioning 

in web based crawling is also important for identifying the "permanence" of links to web 

pages. 

For the purpose of this dissertation, scenegraphs that will be mined are XML based trees. 

Also, the TREE-D-SEEK framework is capable of retrieving content, based on semantic 

metadata marked up in XML. In the following sections, related work in software 

versioning, structure-matching and available XML document comparator algorithms is 

presented. 

2.4.1 Software versioning systems 

Difference detection for documents has been studied extensively. The GNU diff utility 

shipped along with UNIX installations since 1974 is an example of a popular file 

comparison utility for comparing two text files. The diff utility uses the Longest Common 
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Subsequence (LCS) [26]. Furthermore, several versioning systems make use of the diff 

utility to store deltas are the Revision Control System (RCS) [27] and the Source Code 

Control System (SCCS). A more recent example of a version system is the Concurrent 

Versioning System (CVS) [27] that is built on top of RCS. 

Both RCS and SCCS are edit distance (delta) based. In RCS, the most recent version of a 

document is kept unchanged and all older versions of the document are stored as reverse 

delta. In SCSS, the original version of a document is stored along with forward deltas and 

timestamps. The above mentioned tools are not capable of supporting structure based 

queries as they process the documents as a sequence of text strings and are therefore not 

ideal for XML file versioning [28]. 

2.4.2 Structure matching algorithms 

XML document structure is tree based; therefore, tree structure matching can be used in 

the process of structure matching of XML documents. Tree structure matching algorithms 

can be classified into ordered tree matching and unordered tree matching. Ordered trees 

are trees that have a well- defined sibling-sibling ordered relationship for every node in 

the tree. Unordered trees are trees that have no specific "order" in the relationship 

between children of a parent node. Ordered and unordered matching algorithms can also 

be classified into top-down and bottom-up algorithms based on how the trees are 

traversed and compared with each other. 
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Two trees are isomorphic if and only if there is a bijection between the vertex sets of the 

trees preserving the structure of the trees [29]. Clearly, in the case of ordered tree 

isomorphism, the bijection should provide a mapping between nodes in each of the trees 

preserving the structure of the root and the structure of the sibling nodes. In unordered 

tree isomorphism, the bijection should preserve the structure of the tree wherein there is a 

mapping from a vertex in one tree to a vertex in the other tree preserving the structure of 

the root, and parent child relationship. 

The subtree isomorphism problem is a generalization of the tree isomorphism problem. It 

involves identifying whether a given tree is isomorphic to a subtree of another tree. A 

generalization of the subtree isomorphism problem is the maximum common subtree 

isomorphism problem wherein the objective is to determine the largest common subtree 

between two trees [29]. 

2.4.3 Related work in tree matching 

In [30], a bottom-up algorithm with O(n) for identifying isomorphism between rooted 

unordered trees with n nodes is described. The algorithm assigns integers to the nodes of 

the two trees in a bottom up fashion. The two trees are identified as isomorphic if and 

only if the roots of the two trees have the same integer value. A tree to tree correction 

algorithm based on edit operations was proposed in [31]. In [32], a restriction of [31] is 

presented, wherein a top down strategy is used and only nodes on the same level are 

matched. The time complexity of this algorithm is 0(nin2) time, where ni is the number 

of nodes in Treei and n2 is the number of nodes in T2. In [33], an edit distance based 



30 

algorithm based on a post-order, dynamic programming approach is proposed. In [34] 

and [35], bottom up subtree isomorphism algorithms are presented and the run time 

complexity is of the order 0(ni+n2) where ni and n2 are the number of nodes in each of 

any two trees Ti and T2 respectively. The strategy used in order to achieve this runtime 

complexity is a bottom up approach wherein the maximum common subgraph is 

identified by computing a directed acyclic graph that partitions the two trees Ti and T2 

into isomorphism equivalence classes. 

2.4.4 XML comparator algorithms 

The Xydiff algorithm proposed in [36] is used to compare two XML documents using a 

bottom up approach. Each node is traversed using a bottom up approach, and each node 

is assigned a signature and a weight. The node signature is a bottom up hash value of the 

current node content as well as its children. The weight is a bottom up value proportional 

to the size of its subtree. Subsequently, in a top-down traversal, nodal signatures are 

compared. If the nodal signatures are not identical, then the children are inserted into a 

priority queue based on the weight. The heavier weighted subtrees are compared first. If 

there is an identical match between two subtrees, then the node signature and weight is 

pushed upwards to the parent. The weight of the subtree dictates the level to which this 

value is propagated. The Xydiff algorithm fails when the leaves of the trees are changed. 

The Xydiff algorithm also uses XML specific attributes such as ID and other heuristics to 

obtain O (n log n) efficiency. 
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In X-Diff [37], unordered XML documents can be compared. It uses a more exhaustive 

edit based approach wherein each node is assigned a hash value in a top-down traversal. 

If root nodes have the same signature, the trees are identical. If the roots do not have the 

same signature then minimum edit cost algorithms is used to compare trees. The X-diff 

execution time is of the order of 0(n2-d-log d), where d is the total degree of any node in 

the tree. 

In XMLTreeDiff [38], DOM-Hash [39] is initially used to reduce the size of the two 

XML documents by removing the maximum common subtree. Then it uses another 

minimum edit tree algorithm to compare the two simplified trees. 

2.5 Content based 3D retrieval 

In comparison to retrieval of other types of multimedia, 3D content retrieval is relatively 

recent. Owing to improvements in 3D acquisition, production and consumption 

capabilities, growth of 3D applications for visualization, training, entertainment, etc. are 

certainties. As in other types of multimedia, content based methods for retrieving 3D 

content is an important research area. In content based 3D searching, the goal is to 

identify an objective measure of similarity to search, compare and retrieve a user query to 

the target corpus. The query provided by the user contains 3D content that may be used to 

find and retrieve similar content from the target corpus. A generic strategy in content 

based searching is that 3D objects are modeled as objects in a vector space, and a 

distance function is used to measure the similarity or dissimilarity between objects. The 

similarity between objects may be based on the global geometric similarity of the two 3D 
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objects. Typically, the global geometric similarity may be calculated using either a direct 

geometric matching strategy wherein two 3D objects are directly matched based on 

transformation cost associated in converting one object to the other, or a descriptor based 

strategy wherein features extracted from the 3D objects are used for indexing, 

comparison and retrieval. Direct geometric matching strategies is therefore not scalable 

for large 3D corpuses as this would involve evaluating each pair of models for every 

model in the corpus once the query model has been submitted. A descriptor based 

approach is relatively more scalable as features can be extracted apriori and offline for 

the corpus and compared with the features of the query model at the time the query model 

has been submitted. Shape descriptors need to be discriminating, run-time efficient and 

compact to store. 3D shape matching methods can be classified as shown in Figure 9. 

The classification categories are not mutually exclusive. In other words, a skeleton 

matching algorithm may also be classified as a global feature distribution. [40]. 

3D shape 
matching 

Feature based 

Global features 
and feature 
distribution 

Spatial 
map 

Graph based 

Local 
features 

I 
Reeb Graph Skeleton 

Figure 9: Classification of shape matching algorithm classification [40]. 
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3D shape matching methods may be broadly classified into feature based or graph based 

methods. Global features, global feature distribution, and spatial maps features can be 

represented as a single vector in Euclidean space of n dimensions where n is fixed apriori 

for a 3D corpus [15]. Some related work in global feature and global feature distribution 

based algorithms is described subsequently. 

2.5.1 Related work performed in global feature, global feature distribution and 

spatial map based techniques 

In [41], calculating global features such as moments, Fourier transform coefficients, and 

volumes from 3D meshes is described. In [42], bounding boxes, wavelet based 

descriptors for 2D and 3D objects are described. The descriptors are defined using 

MPEG-7. An example of a global feature distribution based technique is the D2 

algorithm [43]. The D2 shape distribution provides the distributed of Euclidean distance 

between randomly selected two points on the surface of an object. It is a rotation 

invariant descriptor. 

In spatial map based techniques, descriptors capture the spatial location of objects. 

Generally, pose normalization is required. An example of spatial map technique is the 

shape histogram technique found in [44] . Three types of descriptors fall under this 

category namely shell descriptor, sector descriptor and shell & sector descriptor 

corresponding to how the 3D space is partitioned. In the shell model, the 3D space is 

partitioned into concentric shells. In the sector model, the 3D is partitioned into sectors 

emerging from the center. In the spider web model, the shell and sector model are 
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combined to partition the 3D space. The shell descriptor represents the distribution of 

distances of surface points from the center of mass. It is therefore a ID descriptor. The 

sector descriptor represents the distribution of surface points as a function of spherical 

angles. Spherical harmonics based rotational invariant features are suggested in [45]. By 

decomposing a 3D model into functions on concentric spheres and using spherical 

harmonics to discard orientation information, the shape descriptors are made orientation 

invariant. 3D Zernike descriptors from voxelized models are presented in [46]. 

2.5.2 Related work in local feature based similarity. 

In local featured based approaches, surface shape is evaluated around localized points on 

the boundary of the shape. An example of this technique can be found in [47]. In this 

paper [47], two 3D shapes are compared based on their curvature distributions generated 

from their deformed meshes. Local feature based similarity techniques are difficult to 

compute. 

2.5.3 Related work in graph based methods 

In graph based methods, a graph of the inter-connectivity structure of shape components 

constituting a shape is extracted from the 3D object and matched. Graph matching based 

on edit distance is NP hard. Graph matching using maximum common subgraph 

techniques is NP complete. 

2.6 Retrieval based on standards 

The benefits of having standards for multimedia representation such as the Joint 

Photographic Experts Group (JPEG) standards or Moving Pictures Experts Group 
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(MPEG) standards are apparent. Clearly, standards allow addressing interoperability 

issues, thereby increasing the number of consumers for the products and finally resulting 

in lowering of production costs. Also, standards enable the creation of suites of tools to 

facilitate the acquisition, development and deployment of products. Support for 3D 

content specification may be found in MPEG-7 and MPEG 21. 

The MPEG-1 was developed in 1992 and the goal was to encode moving pictures and 

sound to fit into a CD-ROM. MPEG-1 uses the Standard Interchange Format (SIF) which 

stipulates a 352x240 NTSC at 1.5 Mbps [48]. MPEG-2 was established in 1994 and is 

capable of broadcast quality video at its specified bit rates between 3-10 Mbps. The 

MPEG-3 standard was not popular and was dropped. The original target market for 

MPEG-3 was High Definition Television (HDTV). The MPEG-4 was finalized at the end 

of 1998 and the target market is the television and the World Wide Web (WWW). 

MPEG-4 allows encoding at rates varying from 2Kbps to 5Mbps. The MPEG-4 provides 

the capability to integrate content of synthetic 3D content and is compatible with the 

VRML standard mentioned earlier. More detailed description of MPEG-7 and MPEG-21 

are provided below. 

2.6.1 MPEG-7 

MPEG-7 was proposed in July 1996 and the goal of MPEG-7 standard is to address the 

necessity for improved search and retrieval of multimedia content. Multimedia content 

refers to still pictures, video, audio, 3D models and graphics. MPEG-7 is solely a content 

description capability or to be the "the bits about the bit" [49]. It was not designed to 
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replace any of the existing MPEG standards. It provides capabilities to define and 

describe already captured and stored (offline) content and streaming or broadcasting 

environments (real-time). MPEG-7 is an isolated description file that may be available 

with the actual multimedia representation format file. MPEG-7 is capable of describing 

scenes using object based composability. A noteworthy feature of MPEG-7 is that it 

supports a unified framework to support both low-level and high-level feature 

description. MPEG-7 toolkit supports the following functionalities [49]: 

• Descriptors. 

• Description Schemes. 

• Description Definition Language (DDL). 

• System tools. 

A Descriptor represents a content feature. It specifies the syntax used to specify a feature. 

A description scheme specifies the syntax and semantics that descriptors representing the 

multimedia content would adhere to. A Description Definition Language is the language 

used for creating and defining the descriptors and creating or extending the associated 

scheme. MPEG-7 DDL is XML based. The Description Schema of MPEG-7 is W3C 

XML Schema based. System tools refer to tools that support creation and management of 

intellectual property, storage of descriptions etc. [49]. 

2.6.2 MPEG-21 

The primary objective of the MPEG-21 standard is to support the delivery and 

consumption of multimedia over an extensive range of devices and networks and also to 

provide mechanisms to define and distribute transparently the digital rights/ 
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permissions/intellectual property rights associated with the multimedia content. MPEG-

21 is also known as a multimedia framework, open for specifying any type of media, 

content representation, digital rights/intellectual property rights, delivery mechanism, and 

the use of content. Indeed, the MPEG-21 framework provides support for content 

producers, distributers and consumers involved with any media and any device. The 

MPEG-21 framework defines two main concepts namely a Digital Item and a User. 

A Digital Item is the basic multimedia unit available for consumption. The Digital Item 

concept recognizes the fact that it is not necessary for a multimedia application to be 

solitary. A Digital Item may be associated with another Digital Item within a multimedia 

application. For instance, a video file may be associated with a still picture (video cover 

page) and a transcription file. The digital items can be identified by using the MPEG-21 

Digital Item Identification (DII) standard. The structure of individual digital Items 

relating to each other within a multimedia package can be defined using the MPEG-21 

Digital Item Declaration (DID) standard. 

The User in MPEG-21 framework is an entity that interacts with the Digital Item. The 

MPEG-21 Digital Item Adaptation (DIA) standard and tools can be used to describe the 

network conditions, bit stream representation and other usage based environment 

parameters. The MPEG-21 defines both producers and consumers as Users. A consumer 

and a producer are both users but with different rights based on interactions with other 

users. 
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2.7 Retrieval based on ontologies and semantic metadata 

Ontologies and ontology based retrieval is an area of active research interest. The goal is 

to improve "machine understandability and reasoning" to assist in satisfying the "need" 

behind the search query as opposed to a purely statistical search or a search based on pure 

meta-data only. According to Gruber [50], "ontology is an explicit specification of a 

conceptualization." A concept is an abstract, simplified view of the world. A concept is 

generally language independent and may be interrelated to other concepts. The Semantic 

web, which has attracted a lot of attention, has been defined as the "conceptual 

structuring of the web in an explicit machine readable way" [51]. 

Syntactic metadata is metadata that does not provide any contextual or domain specific 

information but provides basic information such as the date of creation of a document, or 

author's name etc. Semantic metadata refers to metadata that provides contextual 

information. Semantic metadata may be defined using a domain specific metadata model 

or as an ontology instance. Ontology may be created using an ontology language. The 

proposed language stack of the Semantic web is shown in Figure 10. 

XOL | SHOE OML 

OWL 

1 
OIL DAML+OIL 

RDF(s) 

XML 

Figure 10: Semantic web language stack. 
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The language stack of the Semantic web can support several languages such as Ontology 

XML Language (XOL) [52], Simple HTML Ontology Extension( SHOE) [53], Ontology 

Markup Language (OML) [54], Resource Description Framework (RDF) [55] ,RDF 

Schema [56], Ontology Inference Layer (OIL) [57] , (DARPA Markup Language) 

DAML+OIL [58] and Web Ontology Language [59]. As seen in Figure 6, the underlying 

structure of the Semantic web is based on XML. Related work done in ontology 

versioning systems and 3D retrieval using semantic metadata and ontologies is described 

subsequently. 

2.7.1 Ontology versioning systems 

Ontology management and versioning systems are an area of active research interest. As 

the number of ontologies increase, there will be a need for managing ontologies. Several 

ontology management and versioning systems have been proposed. An example of an 

ontology versioning system is PromptDiff [60]. PromptDiff can perform structural 

comparisons using sub-graph isomorphism. AnchorPrompt [61] is a graph based tool for 

finding related concepts in different ontologies provided an initial mapping exists 

between the ontologies being compared. In [62], several important distinctions between 

versioning systems and ontology versioning systems were made. For instance, in [62], a 

distinction is made between versioning changes and inter-conceptual changes and a 

distinction is made between conceptual changes and specification changes. An example 

of an ontology mapping system is GLUE [63]. 
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2.7.2 3D content and standards 

The XMT-A standard is an extension of MPEG-4 for specifying audio-visual content 

using XML. It contains a subset of X3D nodes in the specification. In [64], semantic 

metadata for 2D/3D scenes is described using MPEG 7. A semantic graph representing 

the 2D or 3D scene was defined using MPEG-7. A user interface was described that 

enables selection of a high level description of an object resulting in the highlighting of 

the associated low level geometry of the object in a VRML browser. Also, the capability 

to select the low level geometry of the object in the browser resulting in the viewing of 

the semantic relationship of the selected object is possible. The content description file 

using MPEG-7 is a stand-alone file and not part of the content file itself. 

In [65], the use of domain specific annotations and Ontoworld [66] to annotate existing 

virtual worlds is described. A strategy to index 3D scenes using MPEG-7 is discussed in 

[67] wherein an annotation model is described for 3D models. The annotation model used 

MPEG-7 extended with 3D specific locators. 

2.7.3 3D content and ontologies 

In [68], a combination of X3D and RDF technologies is used to provide semantics to 3D 

virtual environments. Scene independent, domain specific, reusable ontologies in RDF 

provide the high level conceptual relationship definitions. These definitions are used in 

providing semantic annotation directly within an X3D file. As a result, semantic 

information using this strategy involves at a minimum two files. 
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An interesting approach to 3D content retrieval based on shapes and ontologies is 

discussed in [69]. In this work, a knowledge based framework for the annotation of 3D 

shapes is discussed. The shape annotation is done by deriving the possible functionality 

of the 3D object. Geometric recognition tools are used to derive functionality of the 3D 

objects based on their shapes. 

2.8 Discussion and summary 

As mentioned in Chapter I, there is a need for a unified retrieval strategy wherein a 3D 

system is capable of retrieving 3D content based on indexing information sources at 

different information levels. Existing retrieval solutions use closed systems to provide a 

generic 3D retrieval capability and a fixed set of indexing and matching techniques for 

retrieving content. An open, extensible, framework is required for 3D search engine 

developers so that customized solutions for retrieving 3D content may be implemented. 

In this chapter, 3D model representations were studied. 3D models representations impact 

the choice of indexing and matching algorithm. For example, if a corpus consists of 3D 

models wherein each 3D model is represented using polygonal meshes; retrieval using 

scenegraph structure will suffer from poor precision. Related work in indexing, matching 

and retrieving content using text-based, structure-based, shape based and semantic 

metadata is also discussed in this chapter. This study of existing indexing and matching 

algorithms provides an understanding of the process flow for retrieving content based on 

indexing related information sources and information levels. 
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In this research, a unified strategy and framework for retrieving 3D scenes is proposed. 

The strategy is to retrieve 3D content by indexing and matching related information 

sources at different information levels. A framework is proposed that implements the 

retrieval strategy. The retrieval strategy is discussed next. 
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Chapter III 

TREE-D-SEEK RETRIEVAL STRATEGY 

A unified 3D retrieval strategy and framework that supports retrieval of 3D content by 

indexing information sources at different information levels provides several benefits. 

This retrieval strategy allows a user to query a 3D corpus based on the user's individual 

level of ease and skill. For instance, a non 3D user can use metadata to query the corpora. 

A 3D modeler can create a 3D model and use the model as a query to retrieve similar 

models. A unified, open framework provides the 3D search engine developer to create a 

customized search solution for specific corpora and requirements. A unified framework 

supports the creation of a test bed to evaluate indexing and matching algorithm for 

different information sources at different information levels. 

In this chapter, a unified strategy for retrieving 3D models is discussed. The strategy is to 

provide a unified approach for retrieving 3D scenes wherein information sources are 

indexed and matched at the syntactic-metadata, shape, scenegraph and semantic metadata 

levels. The processes for indexing different information sources may vary. In order to 

build a unified software framework that can support retrieval of 3D content based on 

indexing different information sources, the individual indexing processes for each type of 

information source need to be reviewed and any commonality in the retrieval process 

flow must be isolated. A brief discussion of the process flows for retrieving content 

based on indexing the different information sources is presented in this chapter. Next, a 
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common process flow that can be used for indexing and matching different information 

sources is derived. This common process flow may be then used in designing a software 

retrieval framework and is presented in the next chapter. The retrieval strategy is 

discussed next. 

3.1 3D scene retrieval strategy 

3D scenes are not necessarily isolated islands, available only as self contained units. For 

instance, web based 3D scenes may be related to the embedding web page. Hypertext, 

keywords, file names and associated Uniform Resource Identifiers (URIs) can provide 

information about 3D scenes. 3D scenes may be scene-graph based. A scenegraph may 

provide further information about the composition of the 3D scene. A scenegraph may 

have a hierarchical structure that can be used for structure matching. A 3D scene may 

contain semantic annotations based on domain specific ontologies. Therefore, to improve 

retrieval relevance and allow for different querying mechanisms, a 3D search engine 

framework can support retrieval based on: 

• Mining external textual content associated with the 3D scene. 

• Mining scenegraph content and structure. 

• Mining low level 3D content. 

• Mining 3D-scene semantic annotations. 

Based on the retrieving processes reviewed in Chapter II, a strategy for retrieving 3D 

content is shown in Figure 11. The components shown in Figure 11 are derived from 

components that are common to a generic IR retrieval process. Corpora may be a 
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collection of 3D scenes or other content such as web pages, metadata, semantic 

annotations relevant to the 3D scenes present in the corpora. Crawling may be required to 

discover 3D and related content from any corpora and transferring the content to a 

predestined location such as in a local file system. Indexing is a process of creating a data 

structure for faster retrieval. In 3D content and multimedia retrieval, indexing involves 

identifying and extracting features from the content, creating descriptors for the extracted 

features and storing the descriptors. A feature is a characteristic of the data selected to 

compare and evaluate the data present in a corpus. For instance, shape of 3D objects may 

be a low level feature used for retrieving 3D objects. A descriptor is a representation of a 

feature that contains a numeric value or numeric values allowing objective evaluation of 

the corresponding feature. An example of a 3D descriptor can be a histogram of distances 

between random surface points on the 3D object. In the proposed retrieval strategy, 

features corresponding to text, low-level, scenegraph and semantic annotations are 

identified and corresponding descriptors are created and stored. 

The searching process involves formulating a query, handling the query, matching the 

query and returning the results obtained from the search. Formulating a query requires 

identifying the type of query and providing the selected query to the retrieval system. 

This strategy supports querying by text, scenegraph content, semantic annotations and 3D 

shape. The choice of query may be dependent on the matching algorithm selected by the 

user. 
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Figure 11: TREE-D-SEEK retrieval strategy. 

Matching refers to the process of using a similarity (or dissimilarity) measure to compare 

the query to the indexed 3D content. For instance, Euclidean distance may be used as a 

similarity measure to compare a pair of descriptors. Based on the score obtained from 

using the similarity measure, top hits or results of the search are returned back to the user 

based on the similarity measure. Descriptors are generated based on the same algorithm 

that was used in the indexing process. The indexing process is done apriori. Descriptors 

are generated for each document in the corpora. The matching and retrieving processes 

are initiated when the query is submitted to the retrieval system. 
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As mentioned previously, the components shown in Figure 11 correspond to generic 

process flow in an IR retrieval strategy. The proposed retrieval strategy is unique in the 

concept of indexing corpora for 3D content retrieval at the syntactic metadata, low-level 

content, scenegraph structure and semantic annotation level. 

3.2 Text retrieval 

Although textual querying for 3D content may yield significant noise, textual querying 

remains the most frequently used query interface for any multimedia retrieval system 

[70]. An example of textual indexing and searching is the Google image search [71]. 

Examples of text sources in the retrieval of 3D content may include file names, URIs, 

Hypertext Markup Language (HTML) web pages, etc. 

The generic process flow for text indexing is shown in Figure 12. This also represents the 

baseline process flow in the TREE-D-SEEK framework for text indexing. 

TextSource • Parsing Tokenizing Stopping 

Store keyword in 
index 

Stemming 

I 
Expansion 

Figure 12: Text indexing process flow. 

Since the text source may store information based on its own particular schema or 

encoding, a parser may be required to extract the relevant features. The features extracted 
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may contain a stream of text. A word tokenizer may be required to isolate words from the 

stream. The tokenized words are then cleaned by removing stop words, i.e. words such as 

"and" that are not sufficiently discriminating. The stemmer may be used to remove 

inflected words. For example the word 'dogs' after stemming becomes 'dog'. Once 

stopping and stemming have been performed, keywords may be expanded by performing 

a lookup on a thesaurus. Once, this analysis of the token stream is performed, the 

keywords are indexed and stored. 

The searching process flow for retrieving based on keywords is shown in Figure 13. First 

the query is indexed and then the keyword descriptors are scored using a matching 

function to score the query with the stored keywords and the top results of the search or 

top hits are returned back to the user. 

query' 
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Figure 13: Searching process flow. 

3.3 Scenegraph based retrieval 

A scenegraph is a data structure, wherein each node of the data structure contains some 

aspect of the 3D model or scene. The nodes may contain aspects of the 3D scene such as 
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the geometry of objects, relative locations of the objects, transformations, materials, and 

etc. that are present in the 3D scene. The scenegraph may contain additional metadata 

related to the contents of the 3D scene. To our knowledge, no previous work has focused 

on retrieving 3D content based on matching scenegraph content and structure. 

For the purposes of this research, a scenegraph is a rooted, acyclic tree. The nodes in the 

tree provide a ordering of the 3D objects present in the scene. Consequently, a 

scenegraph may be mined based on both the metadata content present in the scenegraph 

and also based on the structure of the scenegraph itself. The generic process flow for 

indexing 3D scenegraphs is presented in Figure 14. 
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Figure 14: Scenegraph indexing. 

3D scenes may be authored using a variety of tools and languages and encoded into a 

variety of file formats. Also, not all 3D scenes may have an underlying scenegraph. For 

instance scenes that have been authored using OpenGL may not have an underlying 

scenegraph. The problem of creating a common scenegraph for any 3D authoring 

language or technology is addressed in [72]. In this research, a rapid prototyping 
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framework is used to extract scenegraph content and structure from a source and to store 

the same in a common scene format [72]. Next, certain nodes of the scenegraph may be 

used for feature extraction. For example, the metadata node in X3D may be specifically 

targeted and its contents examined. The feature extractor can select specific nodes and 

create the respective indices for storage. 

Once the scenegraph content and structure have been extracted, descriptors for both 

structure and content are created. The process flow for searching based on scenegraph 

structure and content is shown in Figure 15. The process begins by first indexing the 

query without storing the descriptors of the query in the index. Next, a similarity (or 

dissimilarity) metric is used to score the descriptor with the available descriptors in the 

index. The top scored matches are returned. 
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Figure 15: Scenegraph based searching process flow. 

3.4 Shape retrieval 

Shape based retrieval algorithms in the TREE-D-SEEK framework can only be used for 

retrieving isolated 3D models. The most widely used approach for comparing the 
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similarity between two 3D models is to evaluate the global geometric similarity between 

them. For the purposes of this research, local similarity based approaches are not 

considered. A common approach is to use descriptors to represent the global geometry of 

3D models. 3D descriptors can be feature vectors wherein a vector of numeric values is 

used to represent the shape of the 3D model. 3D descriptors may be statistical in nature 

such as descriptors containing histogram summarizations of the shape of the object. 3D 

descriptors may be graph-based descriptors wherein characteristics of the topology of the 

3D model may be summarized. The process involved in creating these descriptors is 

shown in Figure 16. 
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Figure 16: 3D shape indexing. 

Since 3D scenes in the corpora may be available in different 3D formats, a file format 

handler is required to translate the scene into a 3D format that can be used for extracting 

features. Since 3D models are considered similar under translation, scale and rotation 

operations, a preprocessing step is required to register the 3D model into a canonical 

coordinate system. In the next step, the model is transformed into a 3D representation 

from which the desired features can be extracted. For example, a 3D mesh model may be 

transformed into a voxelized model. The voxelized model may be transformed using 

spherical harmonics to obtain numeric descriptors from the 3D model. 
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The searching process also uses the process flow shown in Figure 16 to generate the 

descriptors for the query. Then, a similarity measure is used for scoring the match 

between the query descriptors and the stored scene descriptors. The top hits are returned 

back. 

3.5 Semantic annotations based retrieval 

The vision of the Semantic web and the necessity for improved recall and precision in 3D 

retrieval techniques have resulted in significant interest in providing interpretable markup 

of 3D objects and scenes. If available, 3D scene annotations can provide several 

advantages. 

Semantic annotations may improve the relevance of retrieved content. Retrieval of 3D 

scenes based on free textual annotations may be error prone as the annotations are 

subjective. Low-level content based retrieval may be comparatively more reliable as the 

features used in retrieval are objective and automatically extracted [73]. However, 

content-based retrieval methods for 3D scenes are based only on geometric matching of 

3D models and do not account for the semantics associated with the 3D scene. 

3D scene annotations allow for richer queries that can target the semantic properties of 

objects present in 3D scenes. Improved recall and precision of 3D scene retrieval will 

result in efficient reuse of 3D content thereby decreasing 3D authoring time. Semantic 

annotations can improve understanding, user interaction and navigation in 3D scenes. 
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Domain based semantic annotations can assist in the creation and development of 3D 

scenes [74]. 

Several works have focused on providing semantic annotations for 3D scenes. In [12], an 

unsupervised segmentation algorithm is used to partition 3D models into its basic 

components using a domain specific ontology. In [75], virtual reality scenes are 

integrated with semantic annotation for efficient querying and visualization. 

In the proposed retrieval strategy, 3D scenes may be retrieved based on available 

semantic annotations. These semantic annotations of a 3D scene are assumed to be stored 

separate from the 3D scene. Also, the semantics of the annotations must be based on a 

domain specific ontology. Matching semantic annotations based on ontologies is a 

difficult problem. 

A significant problem is that the underlying domain ontologies may differ in the 

conceptualization of a domain. As a result, the semantic annotations corresponding to 

each conceptualization may be related, but it is difficult to identify a relationship between 

the underlying ontologies. The annotations may also have been created using different 

ontology languages and therefore may have different structure and syntax. Generally, the 

current approach to comparing ontologies is to compare the linguistic and structural 

similarities of the underlying ontologies [76]. In linguistic matching, ontologies are 

matched using any textual label, class name, property name, individual name, etc. In 

structural matching, the strategy is to represent ontologies using graph formalism and to 
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perform graph matching for comparing ontologies. The generic process involved in 

indexing semantic annotations is shown in Figure 17. A format handler is required to 

parse the particular ontology language used to specify the annotations. For example, an 

OWL parser may be required to parse annotations formalized using the OWL language. 
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Figure 17: Semantic annotation indexing. 

A feature extractor is required to extract relevant features that can be used to create 

structural and text descriptor. The descriptors can then be stored in the index. 

3.6 Common process model 

Based on the above mentioned processes involved in the indexing of 3D scenes, a 

common process model can be conceptualized. The common indexing process model 

encapsulates the processes into three containers as shown in Figure 18. The software 

architecture of the TREE-D-SEEK framework provides abstractions that support this 

process model. The indexing process is performed offline. As a result, only the 

descriptors for the query need to be generated at the time the query is submitted to the 

search system. The query descriptors are then matched and scored using a similarity (or 

dissimilarity) metric. The search process flow may be generalized into two phases. In the 
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first phase, the query is indexed without storing the descriptors in the index. The next 

phase involves matching and scoring the query descriptor with the stored descriptors in 

the index. 
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Figure 18: Generalized indexing process model. 
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3.7 Discussion 

An open framework that supports retrieval of 3D scenes based on the retrieval strategy 

discussed in this chapter has not been proposed. A software architecture framework that 

is capable of supporting the common indexing and search process flows derived in this 

chapter has not been discussed or implemented. The TREE-D-SEEK framework 

implements the retrieval strategy discussed in this chapter. Several indexing and 

matching algorithms have been implemented as part of the TREE-D-SEEK framework as 

proof of concept that the framework can support retrieval of relevant information sources. 

The TREE-D-SEEK framework is discussed next. 
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Chapter IV 

TREE-D-SEEK FRAMEWORK 

The TREE-D-SEEK framework implements the retrieval strategy discussed in Chapter 

III. The proposed strategy is to retrieve 3D content based on text sources, scenegraph 

content, scenegraph structure and semantic annotations. The software architecture of the 

TREE-D-SEEK framework provides a unified interface to encapsulate the retrieval 

process for each of the above mentioned information sources. The rest of the chapter is 

organized as follows. First, the software architecture of the TREE-D-SEEK framework is 

discussed. Second, the software architecture is discussed from component, dataflow and 

interface perspectives. Third, a description of the implemented indexing and matching 

techniques implemented in the TREE-D-SEEK framework is presented. 

4.1 TREE-D-SEEK: A component view 

A retrieval process may be partitioned into two phases-the indexing phase and the 

querying phase. In the indexing phase, feature descriptors are created for the content and 

indexed. The process is performed offline and apriori to the querying phase. In the 

querying phase, descriptors are created for a query using the same indexing process. 

Next, the query descriptors are matched with the stored descriptors in the index and 

results from the search are returned in a predefined order to the user. Before the retrieval 

process can begin, the relevant content from available corpora must be discovered and 

made accessible for indexing. 
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The top level components in the TREE-D-SEEK framework are shown in Figure 19. For 

the purpose of this research, it is assumed that the relevant information sources from the 

corpora already reside on a file system that is accessible for indexing. However, the 

framework provides interfaces that support the integration of crawler implementations. 

The components have a one to one correspondence with class names in the TREE-D-

SEEK framework. A brief description of each component is provided next. 
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Figure 19: TREE-D-SEEK: A component view. 
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4.1.1 Common Scene Definition Framework 

The Common Scene Definition Framework (CSDF) [72] is a 3D rapid prototyping 

framework. The CSDF is designed to be a superset of existing 3D technology. The CSDF 

framework itself is extensible and capable of transforming 3D scenes in different formats 

into a common scene definition. Synthesis modules in CSDF can synthesize or export 

from the common scene definition to the desired 3D representation of the user. The 

common scene definition elements have a mapping with the elements in the X3D 

standard. A major benefit of using the CSDF in the TREE-D-SEEK framework is the 

extensibility it provides in terms of parsing different 3D formats. Secondly, it provides a 

common scene definition for different 3D scenes. 

4.1.2 DirectoryTraverser 

The DirectoryTraverser is capable of recursively traversing a local file system. It is 

capable of discovering relevant content that can be fetched for indexing. The 

DirectoryTraverser identifies relevant content based on individual file extensions. For 

instance, a file that contains a ".owl" extension may be fetched for semantic annotation 

indexing. The interface and class description is shown in Figure 20. 
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«interface» 
Crawlerlnterface 

+crawl(in file: Directory) 

~ $ 

DirectoryTraverser 

|+crawl(in File : Directory) 

Figure 20: DirectoryTraverser. 

4.1.3 IndexerManager 

The IndexerManager component is responsible for handling and managing the indexing 

process in the TREE-D-SEEK framework. The IndexManager delegates the indexing of 

content to the respective content indexer. For instance, shape based content is sent to the 

shapelndexer component. The IndexerManager class is shown in Figure 21. 

IndexerManager 
isTextlndexingEnabled : bool 
isScenegraphlndexingEnabled : bool 

-isShapelndexingEnabled : bool 
-isSemanticlndexingEnabled : bool 
-textlndexer: Textlndexer 
scenegraphlndexer: Scenegraphlndexer 
shapelndexer: Shapelndexer 
semanticlndexer: Semanticlndexer 

|+handle(in file : File): bool 

Figure 21: IndexerManager. 

4.1.4 SearcherManager 

The responsibility of the SearcherManager component is similar to the functionality of its 

counterpart- the IndexerManager component. The SearcherManager class is responsible 

for handling the searching process in the TREE-D-SEEK framework. The 
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SearcherManager delegates the handling of the query to the respective content searcher. 

For instance, shape based content is handled by the shape searcher. The SearcherManager 

class is shown in Figure 22. 

SeacherManager 

-isTextlndexingEnabled : bool 
-isScenegraphlndexingEnabled : bool 
-isShapelndexingEnabled : bool 
-isSemanticlndexingEnabled : bool 
-textSearcher: TextSearcher 
-scenegraphSearcher: ScenegraphSearcher 
-shapeSearcher: ShapeSearcher 
-semanticSearcher: SemanticSearcher 
-returnHits : File 

+handle(in file : File): bool 

Figure 22: SearcherManager. 

4.1.5 Matcher 

The matcher component is responsible for scoring the query with the indices. The 

matcher component scores the query based on a predefined similarity measure and 

returns the matches in decreasing order of relevance. 

4.1.6 Common Scene Annotation Modeler (CSAM) 

The granularity of the retrieved content using the TREE-D-SEEK framework is at the 3D 

scene level. In other words, entire 3D scenes are returned as relevant results for each type 

of query. The primary objective of the Common Scene Annotation Modeler (CSAM) is 

designed to provide an intra scene querying and retrieving capability. For instance, the 

CSAM must be capable of retrieving individual 3D objects present in a particular 3D 

scene. To provide this capability in the TREE-D-SEEK framework, the strategy is to 

transform the common scene definition generated by the CSDF framework into a formal 

specification based on the TREE-D-SEEK semantic annotation model. The process must 



62 

also allow for manual human annotation. At the time of writing this dissertation, the 

CSAM module is not capable of fully specifying a common scene. In this research, the 

TREE-D-SEEK semantic annotation model and the CSDF ontology are discussed. The 

semantic annotation model is discussed further in the next chapter. 

4.1.7 External tools 

Certain external tools may be required in addition to the components outlined in the 

framework. These tools may be used for extracting feature from the content or to 

manually annotate 3D scenes. The TREE-D-SEEK framework has a wrapper class that 

can execute external programs synchronously and asynchronously. Some common 

classes that are used for both indexing and searching are described next. 

4.1.8 Classes and interfaces common in both indexing and searching 

Based on the process flow described in Chapter III, the searching process may also 

involve preprocessing, feature extraction and descriptor generation for a query before the 

query can be matched to the stored index. The Indexer classes in the TREE-D-SEEK 

framework encapsulate these processes and are shown in Figure 23. 
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«interface» 
Indexerlnterface 

+index(in file: File) 
+closelndex() 

- ^ 

ShapelndexerJ iTextlndexerl iScenegraphlndexerl ISemanticlndexer 

Indexer 
^preprocessor 
#featureExtractor 
#descriptorGenerator 
+setup(in properties : Properties) 

S 

Figure 23: Indexers. 

The preprocessor classes are responsible for primarily parsing the files which may be 

encoded in different formats. For shape based retrieval, preprocessing may involve model 

registration as discussed in Figure 24. 

«interface* 
Preprocessorlnterface 

+getDocument(): Document 

7 ^ 

TextPreprocessor 

Preprocessor 

preprocessor: Parser 

2 

ScenegraphPreprocessor[ jSemanticPreprocessor ± ShapePreprocessor 

Figure 24: Preprocessors. 

The FeatureExtractor classes are responsible for extracting features from the content. 

Each FeatureExtractor class contains an Analyzer class. The Analyzer class is responsible 
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for refining the features extracted from the content. For instance, for text based retrieval, 

the stemming, and keyword expansion is the responsibility of this class. The, extractor 

classes are shown in Figure 25. 

«interface» 
FeatureExtractorinterface 

+getFeatureAnalyzer() : Analyzer 

Fea tureExtractor 
|-analyzer: Analyzer 

TextGraphFeatureExtractor 

S 
ShapeFeatureExtractor 

ScenegraphFeatureExtractorl ISemanticFeatureExtractor 

Figure 25: FeatureExtractors. 

The DescriptorGenerator class is responsible for creating descriptors for extracted 

features. The DescriptorGenerator class can store the descriptors in the index if the 

process is invoked by the IndexerManager class. If the SearcherManager class invokes 

the process flow, then the descriptors are not stored but are returned from the 

DescriptorGenerator to the Searchers to be used further for querying the stored index. 



«interface» 
DescriptorGeneratorlnterface 

+addTolndex(in d: Document, in f) 
+setup(in p: Properties) 
+closelndex() 

DescriptorGenerator 
indexWriter: IndexWriter 
indexDirectory: Directory 

TextDescriptorGenerator 

S 

ShapeDescriptorGenerator 

ScengraphDescriptorGenerator SemanticDescriptorGenerator 
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Figure 26: DescriptorGenerators. 

For each type of document and query handled by the IndexerManager or the 

SearcherManager, a parser may be required for ingesting the content for feature 

extraction. The parsers implement the Parser Interface as shown in Figure 27. 

PSBParser 

«interface» 
Parserlnterface 

+parse(): Document 

5 
OFFShapeParser CSDFParser OWLParser 

Figure 27: Parserlnterface. 
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4.2 TREE-D-SEEK framework: A dataflow view 

A dataflow view for the indexing process in the TREE-D-SEEK framework is shown in 

Figure 28. It is assumed that all content is already available in a file system accessible for 

indexing. The DirectoryTraverser is responsible for traversing recursively each file in the 

corpus and based on the file extension is sent for indexing to the IndexerManager. The 

IndexerManager is responsible for delegating the indexing of the content to its respective 

indexer. If shape based indexing is required then the file is sent to the Shapelndexer. 

Before the document is sent to either of the Scenegraphlndexer, Shapelndexer or 

Semantic Indexer, the IndexerManager is responsible for sending the file to a 

CSDFFramework instance, wherein a CSDF scene definition is created. Next, the CSDF 

scene definition is sent to the CSAM component and to individual indexers. The CSAM 

component is responsible for also creating an OWL/RDF based annotations from the 

CSDF scene definition. The process of the annotation of the common scene definition 

may require human intervention. As mentioned previously, the CSAM module has not 

been fully implemented and at the time of writing this dissertation is not capable of fully 

formulating a formal specification for the common scene definition. In this research, a 

semantic annotation model for annotating 3D scenes for the CSDF framework and the 

TREE-D-SEEK framework is proposed. 

Each indexer component has a preprocessor, feature extractor and descriptor generator 

component for creating feature descriptors for each file. Once the descriptors are created, 

they may be stored in the corresponding index. 



67 

Text, Scenegraph, 
Semantic Annotations,-

Shape 

i 
Corpora 

DirectoryTraverser 

I 
files for indexing 

I 
IndexerManager 

text 

Preprocessor 

FeatureExtra 
ctor 

Text Indexer 

DescriptorGen 
erator 

Descriptors 

-Semantic annotations 

-scengraph,shape—i 

CSDFScene' 

CSDF Framework 

CSDF scene—I—Shape 
X X RDF/OWL store 

, - • ] CSAM | 
"cene I 

5 
Preprocessor 

FeatureExtra 
ctor 

Scenegraph 
Indexer 

DescriptorGen 
erator 

Preprocessor 

FeatureExtra 
ctor 

Shapelndexer 

DescriptorGen 
erator 

I 
Preprocessor 

FeatureExtra 
ctor 

Semantic 
Indexer 

DescriptorGen 
erator 

Descriptors Descriptors Descriptors 

Text Index Scenegraph Index Shape Index Semantic annotations index 

Figure 28: Indexing components and data flow in the TREE-D-SEEK framework. 

The data flow in the searching phase of the TREE-D-SEEK framework is shown in 

Figure 29. 



68 

keyword 

Preprocessor 

FeatureExtra 
ctor 

Text Searcher 

DescriptorGen 
erator 

Descriptors 

I 
TextMatcher 

T 
IndexSearch 

Text Index 

scengraph.shapi 

i CSDF scene—shape-

Preprocessor 

FeatureExtra 
ctor 

Scenegraph 
Searcher 

DescriptorGen 
erator 

Descriptors 
I 

ScenegraphM 
atcher 

T 
IndexSearch 

Scenegraph Index 

RDF/OWL store 

Preprocessor 

FeatureExtra 
ctor 

ShapeSearcher 

DescriptorGen 
erator 

Descriptors 
I 

ShapeMatcher 

T 

Preprocessor 

FeatureExtra 
ctor 

Semantic 
Searcher 

DescriptorGen 
erator 

Descriptors 
I 

SemanticMatc 
her 

IndexSearch T 
IndexSearch 

Shape Index Semantic annotations index 

Figure 29: Dataflow in searching process. 
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4.3 TREE-D-SEEK framework implementation 

As shown in Figure 30, the TREE-D seek framework is built on top of the Apache 

Lucene Information Retrieval Library [77]. From the developer's perspective, the 

framework uses the facade design pattern [78]. 

«interface»Facade 
+crawl() 
+search() 

1 

«subsystem» 
TREE-D-SEEK Framework 

— I — 
«bind» 

1 ^ 
«subsystem» 

Apache Lucene 

Figure 30: Software architecture: an implementation perspective. 

Next, the implemented algorithms for indexing and matching text, scenegraph, shapes 

and semantic annotations are discussed. 

4.4 Retrieval based on text 

The implemented retrieval uses the Term Frequency Inverse Document Frequency 

(TFIDF) weighing strategy discussed in Chapter II. Documents are represented as vectors 

in a multidimensional Euclidean space where each distinct term is a dimension in this 

space. Each term is assigned a numeric weight to indicate the ability of the term to act as 
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a descriptor for the document and will typically have different weights in different 

documents. The weights assigned to terms in a document can represent the coordinates of 

the document vector in the Euclidean space. The corpus or collection of documents may 

be represented by using a document by term matrix where each row is a document and 

each column is a term and an entry at ith row and j t h column indicates the weight of term j 

in document i. The most common weighing scheme used to assign weights to terms in 

documents is the Term Frequency Inverse Document Frequency (TFIDF) weighing 

scheme. 

The Term frequency (tf) is the frequency of occurrence of a given term in a document and 

is a local document specific statistic. Inverse Document Frequency (IDF) maps the 

N 
frequency of the occurrence of a term over the entire corpus. IDF is defined as ln(—) 

n 

where N is the total number of documents in the collection and n is the number of 

documents containing the term. IDF is zero if a particular term appears in every 

document. This indicates that the term may not be a good descriptor for the document or 

any document in the collection. 

In summary, in the TFIDF weighing scheme, heavier weights are assigned to terms that 

occur frequently within a document and do not occur too frequently in other documents 

or heavier weights are assigned to terms that occur moderately within a document and 

over documents in the collection. The similarity measure used to compare a query to each 
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document is the cosine angle between vectors, i.e. for two vectors vlandv2, the cosine 

angle is shown below. 

_ v l . v 2 ,A. 
cos6> = (4 ) 

||vl||. | |v2|| 

There can be several potential text sources for retrieving 3D scenes. 3D scenes may have 

relevant filenames. Occasionally, these file names are alphanumeric indicating version 

number. Furthermore, some file names may have 3D as a suffix to them. As a 

consequence, the file names may need to be normalized. If 3D scenes are web based, then 

URL paths, hypertext, web page titles, and etc. may be potential text sources. The TREE-

D-SEEK framework provides an HTML parser to parse relevant source and index the 

content. The TREE-D-SEEK framework provides an interface to the developer which 

may be extended to use any parser of the developer's choice. Stopping is done based on 

the SMART classification [79] of stop words. Stemming is done using the Porter 

Stemmer [80]. Keyword expansion is done using Wordnet [81]. 

4.5 Retrieval based on scenegraph matching 

In the scenegraph retrieval strategy implemented in the TREE-D-SEEK framework, two 

descriptors are generated for every scenegraph. The first descriptor represents any 

metadata present in the scenegraph. For example, metadata nodes such as the Worldlnfo 

node in VRML or the Meta node in X3D contain human readable metadata for the 3D 

scene. Also, technologies such as VRML and X3D allow the reuse of scenegraph nodes 

in a 3D scene by defining a node, giving it a name and reusing the node by reference to 
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the original node. This may be done in VRML using DEF and USE. Such nodes are also 

potential sources for descriptor generation. Words may be expanded using WordNet and 

then stored in the index. Scenegraphs are also indexed based on texture file names, 

diffusive color and other material properties. The second index created is solely for 

matching the structure of the scenegraphs. Two algorithms have been implemented for 

scenegraph structure indexing and matching. 

4.5.1 Levenshtein distance 

The Levenshtein distance edit distance algorithm [35] is implemented in the TREE-D-

SEEK framework for indexing and matching scenegraphs based on structure. This is an 

algorithm that uses a dynamic programming technique to compare two labeled trees 

based on deleting, inserting and relabeling nodes. The scoring function is given by 

[ editDis tan ce 

vamiqueryLength, storedlndexLength 

Where edit Distance is the reciprocal of the number of steps required by the Levenshtein 

Algorithm to match the two strings, queryLength is the length of the query string and the 

storedlndexLength is the length of the stored index. 

As mentioned previously, the scenegraph of a 3D scene is a directed acyclic tree. The 

nodes in the acyclic tree represent 3D objects and associated behavior present in the 3D 

scene. The steps involved for creating a descriptor are shown in Figure 31. 

(5) 
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3D Scenegraph 

StringTokenizer 

Figure 31: Scenegraph descriptor creation. 

A lookup table is first created that contains each node type that may appear in the 

scenegraph along with a corresponding string identifier. The value of the identifier may 

be an integer based on automatically parsing the schema related to the scenegraph. A 

scenegraph tree is traversed using a depth-first algorithm. At the start of the algorithm, a 

string descriptor representing the structure of the scenegraph is initialized as empty. As 

each node is visited, a string identifier corresponding to the visited node is concatenated 

to the end of the string descriptor. If the node has a unique named attribute/label, it is 

also added to the text index. The string obtained after the traversal of each node in the 

scenegraph is the index/descriptor for the entire scene and is stored in the index. 

For a query scenegraph, the above process is repeated. Once the string descriptor is 

created, the descriptor is matched with existing scenegraph descriptors using the 

Levenshtein distance algorithm. The other algorithm implemented is the tree 

isomorphism approach. 
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4.5.2 Tree isomorphism 

TREE-D-SEEK also performs structure matching using combinatorial algorithms for tree 

matching. Each node is assigned a code based on a post order traversal. An example of 

this process is shown in Figure 32. The assignment of codes to each node is performed 

using a bottom up approach. The leaves of the tree are all given a code 1. Next, the parent 

of the labeled leaves is assigned a code that is a concatenation of the count of the total 

number of children+1 and the codes of the children sorted in ascending order of 

dimensions. Matching may be done by comparing the root nodes using the Levenshtein 

edit tree algorithm mentioned previously. 

5,1,3,1,1 5,1,3,1,1 10,1,8,1,6,5,1,3,1,1 

TreeC 

Figure 32: Isomorphism codes for trees. 

4.6 Shape retrieval 

The TREE-D-SEEK framework is capable of retrieving content based on matching the 

geometry of 3D objects. The proposed algorithm can only be used on 3D scenes that 



75 

contain isolated or single 3D models. The algorithm used is D2 on voxels [82]. The 

objective is to calculate the distribution of distances between voxels and comparing the 

histograms. The basic idea is obtained from the D2 algorithm for surface points given by 

Osada [43]. Since distance calculations are invariant to translation and rotations, these 

descriptors are easy to compute and matching is fast. The distance distribution function at 

a given distance d is given by 

D2(d) = 
(Vp, q s P where lip - qll = d}\ 

(5) 

where, P is the point set, ||p-q|| is the Euclidean distance between point's p and q and |P| is 

the number of points in P. The dissimilarity distance (for matching) is given by 

Diss_D2(Histogramp -Histogramq) = / Jvpf (6) 
;=1 

A pictorial representation of the data flow is shown in Figure 33. 

Shape query 

Shape Index 

Mi 
Voxelized model Descriptor 

Figure 33: Shape matching. 

The query model is first voxelized into a 256x256x256 voxel grid. Voxelization is 

performed using external tools [83]. Then the descriptor calculations are performed on 
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the model using (5). The query descriptors are then compared with the stored descriptors 

(6) in the shape index of the TREE-D-SEEK framework. 

4.7 Semantic annotations retrieval 

It is assumed that semantic annotations for 3D scenes are based on ontologies and are 

stored separate from the scene. Furthermore, for the purposes of this research, the 

ontologies and annotations must be based on the OWL formalism. A brief description of 

the OWL language is described in the Appendix. Again, for the purposes of this research, 

it is assumed that annotations are represented as individuals from the OWL formalism 

and both annotations and their corresponding ontologies are available for indexing. 

As mentioned previously, current approaches to comparing ontologies is to compare the 

lexical and structural similarities of the underlying ontologies [76]. In lexical matching, 

ontologies are matched using any textual label, class name, property name, individual 

name, etc. In structural matching, the strategy is to represent ontologies using graph 

formalism and to perform graph matching for comparing ontologies. 

In the TREE-D-SEEK framework, and as proof of concept, a lexical indexing and 

matching algorithm has been implemented. This involves using Wordnet based keyword 

expansion and TFIDF on natural language elements such as the comment nodes of the 

ontology. Classes and labels are first tokenized by removing any non alphabet symbols 

and then separated into individual words if camel case is detected. Then, the individual 

words are expanded using Wordnet. The obtained descriptors are then stored into the 
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index using the TFIDF weighing approach. In addition, the class names and labels are 

also treated as distinct strings that may be matched based on the Levenshtein distance 

algorithm mentioned previously. A weighted matching scheme based on the TFIDF and 

the Levenshtein distance algorithm may be used for the overall scoring of the annotation 

file. 
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Chapter V 

TREE-D-SEEK SEMANTIC ANNOTATION MODEL AND CSDF 

ONTOLOGY 

As mentioned in Chapter IV, the rationale and objective for providing a formal 

specification for a 3D scene indexed using the TREE-D-SEEK framework is to support 

richer queries, improved retrieval and navigation within the 3D scene. From a framework 

and 3D retrieval perspective, this strategy is not derived based on any commonality in 

process flows of existing 3D retrieval solutions. 

The Common Scene Annotation Modeler (CSAM) has been mentioned in the previous 

chapter. The CSAM module accepts the common scene definition from the CSDF 

framework and is responsible for semi-automating the generation of a formal 

specification of the 3D scene based on the TREE-D-SEEK semantic annotation model. 

At the time of writing this dissertation, the implementation of the CSAM module is not 

complete. The CSAM module is not capable of fully specifying a common scene 

definition obtained from the CSDF framework. The semantic annotation model based on 

the CSDF framework is presented. 

5.1 CSDF ontology 

In general, the focus of 3D modelers is primarily on the geometric modeling and 

rendering aspect of 3D scenes. The semantic annotation of 3D scenes is usually not part 
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of a formal design process in 3D scene development. Indeed, most 3D authoring tools 

provide limited capabilities for specifying semantic annotations for 3D content. In this 

chapter, a semantic annotation model for 3D scenes is proposed. The TREE-D-SEEK 

annotation model is based on an ontology derived from the CSDF framework. The CSDF 

framework is discussed in [72]. It consists of a superset of existing 3D technology along 

with provisions for extensibility to include new 3D technologies. The top level view of a 

section of the CSDF ontology is shown in Figure 34. Many of the classes present in the 

CSDF ontology is based on the software classes in the CSDF framework. For instance, 

the CSDFGeometry class exists both as a Java class in the CSDF class and an OWL class 

in the CSDF ontology. 

The ontology also provides concepts that can be used to store descriptors obtained from 

the indexing strategy described in Chapter III. A 3D scene consists of one or more 

scenegraphs. Each scenegraph has a collection of one or more GroupHolder. A 

GroupHolder may contain a logical grouping of 3D objects. A GroupHolder may have a 

mapping to a real world entity. For instance four walls can be grouped to a room. The 

hasRealWorldMapping property maps a 3D object to its equivalent real world object 

name. 
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CSDFSpationSceneLocation 

has3DSceneLocation 
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has3DShapeFeatureVector 

hasGeometry 

Vector 

CSDFGeometry 

Figure 34: An incomplete representation of the CSDF ontology. 

The hasPart property allows 3D objects to be segmented into subparts which may or may 

not have a real world mapping. A GroupHolder may contain other GroupHolders by 

using a transitive property called controls. A GroupHolder may consist of one or more 

3D objects. The CSDFGroupholder concept taxonomy is shown in Figure 35. 
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CSDFGroupHolde?) 

(iC'SDF Switch ) f QSDF&roup') (CSBF Transform **) ( CSDFLad ) CcSOFStatieGraup) ( CSDFInline*) 

Figure 35: GroupHolder taxonomy. 

The properties associated with the CSDFTransform concept is shown in Figure 36. 

hasTranslation 

vector 

SroupHolder y 

Transform 

hasBoundaryBoxSize 

i ^ \ 

hasRotation« 

hasScale 

hasBoundaryBoxCenter 

vector 

X 
vector 

Figure 36: CSDFTransform properties. 

vector 

The 3D object may be an aggregation of 3D shapes. Each 3D shape has geometry and an 

appearance associated with it. The Appearance concept specifies a material, color or 

texture associated with the shape. An incomplete representation of the Appearance 

concept is shown in Figure 37. 
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Figure 37: Appearance concept. 

The CSDFGeometry concept taxonomy is shown in Figure 38. 
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Figure 38: CSDFGeometry taxonomy. 

Some of the properties associated with a CSDFCylinder are shown in Figure 39. 
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hasHeigh 
float 
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isSolid 

I 
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Boolean 

Figure 39: CSDFCylinder properties. 

An example of a 3D scene in VRML 2.0 is shown in Figure 40. 
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geometry Cylinder { 
radius 1 
height 0.5 
side TRUE 
top TRUE 
bottom TRUE 

} 
} 

b o x — 
Transform { 

Translation 0 1 0 
children [ 

Shape { 

} 

appearance USE MY 
geometry Box { 
size 0.5 3 0.5 

-cylinder-
Transform { 

translation 0 2 0 
children [ 

Shape { 
appearance USE MY 
geometry Cylinder{ 
radius 1 
height 0.5 
side TRUE 
top TRUE 
bottom TRUE 
} 

Figure 40: Dumbbell in VRML 2.0. 

The corresponding annotation of the above 3D scene based on the CSDF ontology is 

shown in Figure 41. 
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Shapel L**-hasRealWorldMapping 

hasRealWorldMapping 

"Dumbbell Weight" 

hasGeometry 

X 
Cylinder! 

Figure 41: 3D scene annotation using the CSDF ontology. 

The CSDF ontology supports the indexing mechanism described in this research. The 

has3DShapeFeatureVector and hasMatching properties may be used to specify shape 

descriptors and matching functions used for indexing and retrieving 3D shape. The 

hasScenegraphFeatureVector may be used to store the scenegraph feature vector. Some 

of the potential benefits of using the annotation scheme in the TREE-D-SEEK framework 

are as follows: 
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1. Richer queries are possible such as "retrieve all 3D objects present in the 

scene whose color is blue", "retrieve all 3D object that have a box as a 

part", etc. 

2. A directed, rooted, connected, acyclic scene-graph such as the 

VRML/X3D scenegraphs is limited in its ability to express semantic 

relationships. Two limitations mentioned in [64] are the difficulty of 

expressing a shared object from a logical level and the difficulty in 

expressing the semantics associated with the functionality or property of 

an object in the scenegraph. The CSDF ontology is not acyclic and can 

represent shared objects. It also provides the hasFunction property that 

may be used to indicate the real world functionality of an object. 

3. Many of the scenegraph objects, properties and relationships can be 

automatically obtained by using the TREE-D-SEEK framework. 

Relationships that contain child nodes with two or more parent nodes will 

need to be specified manually. 

4. The CSDF ontology may be used to specify a language independent high 

level specification of a 3D virtual scene or world. This specification may 

be used to populate the CSDF framework, thereby allowing rapid 

prototyping of 3D virtual worlds in any 3D format and technology 

supported in the CSDF. This capability is not the focus of this work and 

has not been addressed. 

5. This strategy of coupling a search engine framework with a rapid 

prototyping framework supports the notion of 'search' as being part of a 



87 

formal process in 3D scene authoring and in the rapid prototyping of 3D 

virtual worlds. 
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Chapter VI 

IMPLEMENTATION, EXPERIMENTS AND DISCUSSIONS 

The primary objective of this research is to design and implement a framework for 

retrieving 3D content. Search engine developers may use, modify or extend the 

framework to provide desired solutions for retrieving 3D content. The framework 

supports 3D retrieval based on indexing and matching syntactic metadata, scenegraph 

structure, shape and semantic annotations. Several indexing and matching algorithms 

have been implemented as proof of concept that the software framework is indeed 

capable of encapsulating descriptor based 3D indexing and matching strategy for 

disparate information sources. A semantic annotation model is proposed in the TREE-D-

SEEK framework to support richer queries and improved search within 3D scenes. At the 

time of writing this dissertation, the framework is not fully capable of indexing 3D scenes 

based on the proposed semantic annotation model. This is because the CSDF ontology 

does not contain all classes corresponding to the CSDF software classes in Java. 

In this chapter, several experiments are conducted to test the retrieval effectiveness of the 

indexing and matching algorithms implemented as part of the framework. The goal is to 

show that such experiments are possible based on the use of this framework and not 

necessarily to verify the performance of individual implementations of algorithms. The 

rest of the chapter is organized as follows. First, details of the implementation of the 

TREE-D-SEEK framework are discussed. Next, supported query expressions for each 
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type of content are presented. This is followed by the result of some experiments 

conducted to test the retrieval effectiveness of the implemented indexing and matching 

algorithms. Finally, a discussion of the potential use of a search system that uses the 

framework from an end user's perspective is provided. 

6.1 Implementation details 

The TREE-D-SEEK framework was written in Java 6 and is built on top of the Apache 

Lucene [77] framework. The framework provides capabilities to store descriptors as part 

of the Lucene index or as entries in a MySQL database. The framework provides the 

capability to make system calls to execute external programs. Text, scenegraph, shape 

and semantic annotations based indexing and matching algorithms are implemented as 

part of the framework. For shape based retrieval, 3D models were voxelized using [84]. 

For creating shape-based descriptors, an external descriptor generator program using C++ 

was created. The framework calls this descriptor generator program during shape 

indexing and searching to perform shape based retrieval. 

6.1.1 Administration 

For the purposes of this research, information sources used for testing the framework 

contained plain text, scenegraph, shape and semantic annotation in OWL. The framework 

also has built in parsers for HTML and XML. To administer the indexing and searching 

processes in TREE-D-SEEK, the framework provides control files for indexing and 

searching. An example of an indexing administration file and an example of a searching 

administration file are shown in Figure 42 and Figure 43 respectively. 
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//TREE-D-SEEK framework indexing file 
Textlndexer = false 
TextExtension=txt 
TextParser= parsers.TextFileParser 
TextCommandLineFeatureAnalyzer= Analyzers.SynonymAnalyzer 
TextIndexDirectory= c :\\phd\\demo\\textretrieval\\textindex 

Scenegraphlndexer=true 
ScenegraphExtension=x3d 
ScenegraphFeatureAnalyzer=Analyzers.SynonymAnalyzer 
ScenegraphIndexDirectory=c:\\phd\\demo\\scenegraphretrievar\\ 
scenegraphindex 

Shapelndexer=false 
ShapeExtension=xml 
ShapeFeatureExtractor=d2 

Semanticlndexer=false 
SemanticExtension=owl 
SemanticFeatureAnalyzer=org.apache.lucene.analysis.standard.StandardAnaly 
zer 
SemanticIndexDirectory=c:\\phd\\demo\\SemanticRetrieval\\semanticindex 

Figure 42: Indexer-administration file. 

The indexer-administration file provides the capability to select the particular directory 

that contains the target corpora and also to select a directory to store the index if required. 

The other options are that descriptors generated may be stored in the Random Access 

Memory (RAM) or a MySQL database. The file also provides the capability to control 

the indexing process wherein a particular type of indexing may be switched on or off. For 

example, in Figure 42, shape, semantic and text indexing is switched off. If more than 

one type of indexing is turned on, the document in the corpora is indexed sequentially 

based on the order in which the type of indexing is specified in this file. 
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# setup file for search component of TREE-D-SEEK 

TextCommandLineSearcher = false 
TextCommandLineFeature Analyzer=Analyzers. SynonymAnalyzer 
indexDirectory=C:\\phd\\demo\\textretrieval\\textindex 

TextSearcher = false 
TextExtension=txt 
TextParser= none 
TextFeatureAnalyzer=org.apache.lucene.analysis.standard.StandardAnalyzer 
TextIndexDirectory= c:\\phd\\phdData\\index\\textIndex 
Boost= 

ScenegraphSearcher=true 
SearchMode=true 
S cenegraphExtension=x3 d 
ScenegraphFeatureAnalyzer=Analyzers.SynonymAnalyzer 
ScenegraphIndexDirectory=c:\\phd\\demo\\scenegraphretrieval\\scenegraphindex 
StructuralPrecision=l .Of 
S tructuralBoost=0.5 
TextBoost=0.5 

ShapeSearcher=false 
ShapeExtension=xml 
ShapeFeatureAnalyzer=d2 
ShapeIndexDirectory=c:\\phd\\demo\\scenegraphretrieval\\shapeindex 
Boost=0 

SemanticSearcher=false 
SemanticExtension=owl 
SemanticFeatureAnalyzer=org.apache.lucene.analysis.standard.StandardAnalyzer 
SemanticIndexDirectory=c:\\phd\\demo\\SemanticRetrieval\\semanticindex 
Boost=1.00f 
StructuralBoost=1.00f 
TextBoost=1.00f 

Figure 43: Searcher-administration file. 

The searcher-administration file provides capabilities similar to its counterpart- the 

indexer administration-file such as the capability of turning off a particular type of search 

for an information source or level. The file also provides the capability of weighing a 
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indexing or matching scheme. For example, in the scenegraph based retrieval method 

weights may be assigned individually to scenegraph content and structure so that the user 

can "boost" the significance of either scenegraph content or scenegraph structure to 

improve relevance during retrieval. 

6.1.2 CSAM Implementation details 

The TREE-D-SEEK semantic annotation model and the CSDF ontology were created 

using Protege 4.0 Beta [85]. The ontology had been written using the OWL-DL 

formalism. The CSAM module uses the OWL API [86] to parse the target file to be 

indexed and to create a new OWL based TREE-D-SEEK semantic annotation file. The 

semantic annotation file contains only a mapping between the classes generated using the 

CSDF framework and the OWL classes of the CSDF ontology. To provide higher level 

semantics, manual annotation or a manual mapping to a higher level class/concept of 

domain ontology is needed. 

6.1.3 CSAM current implementation status 

The CSDF ontology has not been completed at the time of writing this dissertation. The 

current implementation status of the CSDF ontology is shown as Table 1. A checkmark 

indicates that the corresponding class in the CSDF ontology has capability to express all 

its associated object and data properties and axioms. At the time of writing this 

dissertation, the CSDF ontology consists of 58 classes. 
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Table 1: Available classes in CSDF ontology. 

CSDF Framework Class 

CSDF Appearance 

CSDFBox 

CSDFColor 

CSDFCone 

CSDFCoordinate 

CSDFCylinder 

CSDFDirectionalLight 

CSDFExternProtoDeclare 

CSDFField 

CSDFFieldObjRef 

CSDFFontStyle 

CSDFGroup 

CSDFImageTexture 

CSDFIndexedFaceSet 

CSDFIndexedLineSet 

CSDFMaterial 

CSDFNavigationlnfo 

CSDFNode 

CSDFNormal 

CSDFOrientationlnterpolator 

CSDFPixelTexture 

CSDFPlaneSensor 

CSDF OWL Class 

S 

s 

s 

s 

s 

s 

s 
V 

V 

V 

V 
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CSDFPointLight 

CSDFPointSet 

CSDFPositionlnterpolator 

CSDFProtoInstance 

CSDFProximitySensor 

CSDFRoute 

CSDFScene 

CSDFScript 

CSDFShape 

CSDFSphere 

CSDFSwitch 

CSDFText 

CSDFTextureCoordinate 

CSDFTextureTransform 

CSDFTimeSensor 

CSDFTouchSensor 

CSDFTransform 

CSDFUse 

CSDFViewpoint 

S 

• 

• 

S 

S 

6.1.4 Supported query expressions 

The TREE-D-SEEK framework provides direct support for the following types of query 

expressions for information retrieval. For scenegraph and shape-based retrieval, a user 

submits an entire 3D model/scene file as a query. For retrieval based on semantic 
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annotations, a user is also required to submit an entire OWL annotation file. TREE-D-

SEEK supports several types of query expressions for text based retrieval. For text based 

retrieval, a user may provide a document that can be parsed into text using one of the 

parsers available in the TREE-D-SEEK framework. At the time of writing this 

dissertation, the framework supports parsing of Hyper Text Markup Language (HTML) 

documents and Extensible Markup Language (XML) documents. The developer can also 

create their own parser implementations for parsing the desired type of content. 

In addition, the TREE-D-SEEK framework supports automatic handling of several 

textual query expressions. A user may enter a query expression containing keywords for 

searching. A query expression may contain Boolean operators such as AND, OR and 

NOT. A query entered may be a phrase. A query may have wild cards in it. A query 

may have a range within which a result should be obtained. The user may also extract 

text from other media and sources provided that a parser is available and useable by the 

TREE-D-SEEK framework. For text, the supported query type, an example of the 

supported query syntax, and the contents of matched document are shown as Table 2. 

Table 2: Supported text query expressions. 

Text query 

type 

Boolean based 

queries 

Phrase queries 

Example of supported query 

expression 

Lets tree AND seek 

" TREE-D-SEEK rocks" 

Documents retrieved will contain 

text containing both TREE and SEEK 

text contain the words TREE and SEEK 
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Wild card 

queries 

Range Queries 

TREE* 

Date[031609 TO 031709] 

juxtaposed with each other 

Text that contains the word TREE followed by 

a string of characters 

a date between 031609 and 031709 

6.2 Experiments 

The indexing and matching algorithms implemented as part of the TREE-D-SEEK 

framework are tested. A test-bed consists of two corpora namely the Princeton Shape 

Benchmark and a TREE-D-SEEK corpus is used and created respectively. The TREE-D-

SEEK corpus is a combination of manually collected set of documents pertaining to text, 

scenegraph, shape and semantic retrieval. As mentioned previously, the primary objective 

of this work is to create an open, extensible framework for retrieving 3D scenes. The 

experiments discussed in this chapter prove that the framework can indeed retrieve 3D 

scenes based on text, shape, scenegraph and semantic annotations. 

The rest of this section is organized as follows. First, the test bed is discussed. Next, some 

timing results are presented for indexing content based on text, scenegraph, shape and 

semantic annotations. Next, retrieval effectiveness is calculated using average-

precision/recall curves using a technique described in the appendices. 
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6.2.1 Test bed 

6.2.1.1 Princeton Shape Benchmark (PSB) 

The PSB consists of freely available 1814 3D models from the Web. The models in the 

PSB have been manually classified. The available categories are shown in Figure 44. The 

3D models are stored using a polygonal surface format. The PSB is purely a shape 

benchmark. It does not support the evaluation of text or semantic annotation retrieval 

algorithms. 

Princeton Shape Benchmark Categories 

• Series 1 

Figure 44: PSB categories. 

6.2.1.2 TREE-D-SEEK corpus 

Twenty 3D scenes were collected and manually classified. They were obtained from [87] 

and [88]. The 3D scenes were either VRML 2.0 or X3D based. The scenegraphs had 

structure and text that were used for retrieval. The corpus also contains twenty OWL 

8 # 

s .& y f 



98 

ontologies collected from the WWW. Each OWL file was populated with random 

individuals/instances. Each 3D scene in the corpus consists of basic shapes. The 3D 

scenes were manually classified in two groups. In one group, each 3D scene contained 

only 3D primitive shapes. Scenes in the other group contained the same primitive shapes 

with an axis rendered through though each shape. 

6.3 Indexing times 

The framework was used to evaluate the time taken by the framework for performing 

text, scenegraph, shape and semantic indexing. The test was conducted on a non 

dedicated machine for indexing with the specifications shown in Figure 45. 

Hardware environment 

CPU: Intel Core Duo at 1.73 Ghz 

RAM: 2038 MB 

Drive configuration: SCSI 

Software environment 

Lucene Version: 3.1 

Java Version: 1.6 

05" Version: Windows Vista Home 

Location of index: file 

Figure 45: Hardware and software configuration. 

The TREE-D-SEEK corpus was used to obtain the graph shown in Figure 46. As 

expected, scenegraph retrieval with lookup took longer than the scenegraph indexing with 

no lookup, semantic indexing and text indexing. The scenegraph indexing with no lookup 
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uses the bottom up isomorphism strategy for indexing structure. The text corpus used in 

this experiment is from [89]. For shape indexing, the PSB was used. For each model, the 

average indexing time was 45.1 seconds. 
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Figure 46: Indexing times. 

6.4 Retrieval performance 

Retrieval performance of the implemented indexing and matching strategies are discussed 

using precision and recall. A discussion on Information Retrieval (IR) metrics, recall and 

precision metrics and how the recall-precision graphs are obtained is discussed using an 

example in Appendix Al. 
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6.4.1 Text based retrieval 

The TREE-D-SEEK corpus was used to test the TFIDF weighting scheme. Text was 

collected from [89]. The average precision/recall curve is shown in Figure 47. 

Figure 47: Average precision/recall for text retrieval. 

6.4.2 Shape based retrieval 

Since the PSB is a shape benchmark, D2 on voxels was used for shape matching. In, 

Figure 48, the average precision over recall curve for retrieval based on shape matching 

and scenegraph is presented. The curve presents precision recall values averaged over all 

models in the PSB. The PSB is purely a shape benchmark. Each model in the PSB 

consists of only polygon soups. 
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Figure 48: Averaged precision versus recall plot. 

6.4.3 3D scenegraph retrieval 

To test scenegraph retrieval, the TREE-D-SEEK corpus was used. The 3D scenes were 

manually classified into two groups-3D scenes that contain an axis rendered through the 

objects in the scene and 3D scenes that consist of basic geometric shapes only and no 

axis. The scenegraphs were indexed both for structure and content using the strategies 

discussed in chapter IV. Scenegraph retrieval was compared with 3D shape retrieval for 

this corpus, and the results are shown in Figure 49. For the given corpus, retrieval using 

scenegraph content and structure yielded better recall-precision than the shape matching 
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using D2 on voxels. This was because the distinction between the shapes with axis and 

shapes without axis was not as significant for the D2 on voxels shape indexing method as 

it was in scenegraph structure and content indexing. 

Scenegraph retrieval 
1.2 

0.4 

0.2 
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recall 
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Figure 49: Scenegraph retrieval. 

6.4.4 3D semantic retrieval 

To test semantic retrieval, the TREE-D-SEEK corpus was used. Seven OWL ontology 

files were collected from the web. Corresponding to each file, ten OWL based semantic 

annotations files were created. Each of the ten semantic annotation file corresponding to 

the OWL ontology contain random individuals/instances corresponding the classes 

available in the ontology. 
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The recall/average precision graph obtained using the implemented semantic retrieval 

strategy is shown in Figure 50. 

Semantic Retrieval 
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1 
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0 

Figure 50: Average precision/recall for semantic retrieval. 

6.5 Discussion 

As the primary objective of this work is to design and implement a framework that is 

capable of retrieving 3D scenes and not necessarily to find or evaluate retrieval 

algorithms, these experiments result in three observations. First, performance metrics for 

retrieval may be collected using the TREE-D-SEEK framework. Second, the framework 

may be tested on several information sources and levels. Third, based on the recall-

precision curves obtained for each type of retrieval, the behavior of the TREE-D-SEEK 

framework and its indexing algorithms is not inconsistent with what may be expected 

from IR systems. 

•Semantic Retrieval 

) 0.5 1 1.5 

Recall 
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Since the CSAM module is not fully implemented, it cannot be tested to show all the 

benefits described in the previous chapter. At the time of writing this dissertation, the 

CSAM module can only support basic scene based queries such as retrieving all objects 

in a scene that have the same material, color etc. 

Based on the experiments conducted in this chapter, the usability of the framework or a 

search system that may use this framework may be theorized. A search system from the 

end user's perspective is shown in Figure 51. 

3D corpora 

Figure 51: 3D search perspectives. 
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From the end-user's perspective, the TREE-D-SEEK framework can support retrieval of 

3D scenes based on multiple "views" for indexing and searching. Each view presents 

aspects of the 3D scene at different information levels. This research suggests that an end 

user can indeed retrieve 3D content based on separating or combining views or by using a 

drill down strategy, wherein, for example, a user starts by performing a text search and 

this leads to an automated retrieval using the rest of the views. Multimodal queries may 

also be used by assigning numeric weights to each view. The appropriate querying 

strategy clearly will depend on several factors such as level of expertise of the end-user, 

type of information need, and etc. This research also highlights the importance of 

providing a search capability at two levels for 3D scenes. The first is at the document 

level wherein an entire scene may be returned as results of a search. The second level is 

to provide a search capability within a 3D scene. This is conceptually supported by the 

framework by using the TREE-D-SEEK semantic annotation model and the CSDF 

ontology. 
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Chapter VII 

CONCLUSIONS AND FUTURE WORK 

In summary, a strategy for retrieving 3D scenes is presented. The proposed strategy is to 

unify processes for retrieving 3D scenes from information sources. Relevant information 

on a 3D scene may be available as free text annotations and stored as text files. If a 3D 

scene is web-based, then the webpage containing the 3D scene, URL, 3D scene file name, 

etc. are potential information sources. If a 3D scene is scenegraph based then the 

scenegraph may also be an information source. A 3D scene may also contain low level 

content that may be used for indexing and matching. Semantic annotations of 3D scenes 

based on domain specific ontologies may also provide information that may be used for 

3D scene retrieval. 

In this research, TREE-D-SEEK, a framework for retrieving 3D scenes, is presented. 

The TREE-D-SEEK framework implements the retrieval strategy proposed in this 

dissertation. The framework is capable of retrieving 3D scenes by indexing and matching 

free text annotations, scenegraphs, shapes and semantic annotations. A software 

architecture for the framework is designed and implemented by first analyzing the 

individual process flows in retrieving 3D scenes based on each of the above mentioned 

types of information sources and then by generalizing and abstracting each of the 

individual process flows into a common process flow. The software architecture design 

uses a facade based pattern to encapsulate and hide the complexity of each step in the 
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common process flow. The TREE-D-SEEK framework is implemented on top of the 

Apache Lucene IR library. The software architecture of the TREE-D-SEEK framework 

presents clear interfaces that may be used for customizing and implementing retrieval 

algorithms. The TREE-D-SEEK framework can therefore be used as a test bench for 

evaluating 3D retrieval algorithms. As proof of concept, several indexing and matching 

algorithms are implemented. 

In this research, a new semantic annotation model is also proposed for annotating and 

indexing 3D scenes. The semantic annotation model is ontology based. The ontology 

provides a formal conceptualization of a 3D scene obtained from the Common Scene 

Definition Framework. 

7.1 Contribution to existing research on 3D retrieval 

Based on the review of research in 3D retrieval, work prior to this research has not 

outlined a generic strategy for retrieving 3D content wherein a unified approach was used 

for indexing and matching content from different information sources and information 

levels. In this work, a unified strategy and framework is proposed for retrieving 3D 

content based on indexing low-level content, syntactic metadata, scenegraph content and 

structure, and semantic annotations. 

Existing search systems are closed systems. A description of the software architecture of 

the search systems from a software class perspective is not available. The capability to 

reuse and fine tune the search system for a specific corpus or for implementing a new 
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retrieval scheme is not available for a 3D search engine developer. In this dissertation, 

TREE-D-SEEK, an open, extensible framework for retrieving 3D scenes, has been 

proposed and implemented. By using the TREE-D-SEEK framework, a developer may 

develop indexing and matching algorithms for the supported information sources and 

create a search system based on user needs and type of corpora being indexed. The 

developer can develop both unimodal and multimodal query modes that are most suitable 

for retrieving content from a targeted corpus. A novel approach proposed in this research 

is to support retrieval and therefore queries based on scenegraph content and structure. 

No previous work has proposed retrieval based on scenegraph structure. 

Finally, a new 3D annotation model for indexing 3D scenes has been proposed in this 

dissertation. The annotation model is based on an ontology derived from a rapid 

prototyping framework. The annotation model supports the retrieval strategy proposed in 

this dissertation. 

Although it may not be appropriate to compare a framework to complete search systems, 

a comparison of capabilities of the TREE-D-SEEK framework to the above mentioned 

3D search engines and repositories is shown in Table 3. The checkmarks indicate existing 

capabilities already implemented and provided as part of the framework. 
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Table 3: Capability comparison. 

Search Engine 
Queries 

Textual queries 

Query by shape 

Scenegraph 

Metadata 

Semantic 
Metadata 
2D Sketch 

3D Sketch 

Princeton 
Search 
Engine 

S 
• 

S 

•y 

s 

3DESS 

s 

y 
v 

Google 3D 
Warehouse 

S 

y 

Ogden 
VI 

s: 

3D 
Search 

s 

V 

TREE-
D-

SEEK 

• 
s 
s 
s 
s 

7.2 Future enhancements 

Several enhancements may be envisioned. An immediate enhancement is to include new 

indexing and matching algorithms in the TREE-D-SEEK framework. Descriptors 

generated via these indexing methods may be evaluated using the TREE-D-SEEK 

framework. Currently, the framework is capable of retrieving only 3D objects. Behavior 

of the objects in 3D scenes is not indexed. Future work would support retrieval based on 

3D object behavior. Indexing of 3D object behavior in 3D scenes would enable matching 

of 3D scenes based on animation. 

From an implementation standpoint, indexing of corpora is sequential; i.e., if the 

information sources contain information at different information levels, the content is 

indexed based on the order of indexing strategies appearing in the indexer configuration 
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file. An improvement can be envisioned wherein a multithreaded indexing model may be 

used. In such a model, text indexing, scenegraph indexing, shape indexing and semantic 

indexing may be performed in parallel. 

The TREE-D-SEEK framework can be extended to encapsulate the process of relevance 

feedback and learning algorithms so that the precision of returned results may be 

improved. Relevance feedback is an IR concept wherein the information need of a user is 

represented and refined by a search system based on the user's relevance assessment of 

the retrieved results obtained from an initial query. 

The TREE-D-SEEK semantic annotation model presents several opportunities for future 

research. First, the CSDF ontology may be extended to provide a high level concept for 

each class available in the CSDF framework. The CSAM module discussed in Chapter IV 

may be fully implemented to enable translation of a CSDF 3D scene specification to a 

formal scene specification using the CSDF ontology. Any content indexed by the TREE-

D-SEEK framework may be indexed, serialized and stored using RDF/XML. This would 

enable querying each 3D scene using technologies such as RQL and SPARQL. 

A 3D authoring environment that uses both the CSDF framework and the TREE-D-SEEK 

framework to create 3D scenes can be built. This would enable the search capability to be 

part of the authoring and rapid prototyping environment. The underlying semantic 

annotation model may also assist in the creation and annotation of the 3D scenes. 
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APPENDICES 

A.l Relevance and Information Retrieval (IR) performance metrics 

Most IR performance metrics are based on the metrics of precision and recall. Precision 

is defined as the "the ratio of relevant items retrieved to all items retrieved or the 

probability that given that an item is retrieved, it is relevant" [90]. Recall is defined as the 

"ratio of relevant items retrieved to all relevant items in a file [collection] or given the 

probability that an item is relevant, it will be retrieved" [90]. Relevance is an important 

criterion in the evaluation of IR systems. Several IR experts [91] have partitioned 

relevance into two categories: objective or system based relevance and subjective or 

human based relevance. Objective or system based relevance is an algorithmic process 

wherein the query is matched with the contents of the document without heeding the 

context of the query. Subjective relevance deals with relevance based on the erudition 

level of the user. Subjective relevance is broken into four further subcategories namely 

generic topicality, pertinence, situational, motivational and affective relevance. 

A.l.l Recall and precision 

Recall and precision are defined in (7) and (8) below. Recall provides a measure of the 

effectiveness of a search system in retrieving all relevant documents from a corpus. 

Precision provides a measure of the effectiveness of a search system in retrieving the 

most relevant documents from a corpus. 

Number of retrieved relevant documents ,_. 
recall = ( /) 

T otal number of relevant docuement 
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. . Number of retrieved relevant documents ,ON 

precision = (o) 
Total number of retrieved docuement 

Precision and recall are competing metrics. Often in IR systems, if the recall level is high, 

the precision of the returned results is low or vice versa. To control the two metrics, a 

threshold value may be used that indicates the user-defined cutoff similarity value. 

For the purpose of this research, recall and precision may be calculated as follows. A 

given corpus must be classified into categories apriori. Then, a document is matched with 

every document (including itself) in the corpus. Each document in the corpus can then be 

ranked based on the score obtained by use of the matching algorithm. The retrieved 

documents may belong to one of the classified categories in the corpus. Then, assuming 

the class size is x, the recall value for a document from the same category going down 

the ranked list will be 1/x , 2/x, ... to x/x. Then, a precision value corresponding to this 

recall value will be the number of relevant documents divided by the number of results it 

took to get to that number. The number of results it took to get to a particular result is 

also equal to the rank of the document. In Table 4, an example is provided to shown how 

precision recall values are calculated for a particular query. In this example, assume that 

there were ten relevant documents in the corpus. For the particular query, twenty 

documents have been retrieved. The leftmost column shows the ordering of documents 

returned from the search. The second column contains the relevance of the document to 

the query. It is a Boolean value. Recall is calculated based on (7) and (8). 



Table 4: Example of PR calculation. 

RANK 
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100% 

100% 

100% 

75% 

80% 

67% 

71% 

63% 

55% 

60% 

55% 

50% 
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Standardized recall-precision values are shown in Table 4. In the leftmost column, the 

standard 11 recall points are shown. In the second column, the corresponding highest^ 

precision value from Table 4 for a particular standard recall value is used. This value 

indicates the maximum number of documents required to achieve that recall level. The 

rightmost column depicts the interpolated precision. Interpolated precision is the 

maximum precision value taking into account precision at the current recall level and 

precision at subsequent recall levels. 

Table 5: Interpolated precision. 
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For 11 recall intervals, precision values are averaged over all queries. If a single value is 

desired, the 11 point average may be calculated. For Table 5, the 11 point average 

precision is approximately 75 percent. 
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