
Old Dominion University
ODU Digital Commons
Electrical & Computer Engineering Theses &
Disssertations Electrical & Computer Engineering

Spring 2009

TREE-D-SEEK: A Framework for Retrieving
Three-Dimensional Scenes
Saurav Mazumdar
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/ece_etds

Part of the Artificial Intelligence and Robotics Commons, Computer Engineering Commons,
and the Electrical and Computer Engineering Commons

This Dissertation is brought to you for free and open access by the Electrical & Computer Engineering at ODU Digital Commons. It has been accepted
for inclusion in Electrical & Computer Engineering Theses & Disssertations by an authorized administrator of ODU Digital Commons. For more
information, please contact digitalcommons@odu.edu.

Recommended Citation
Mazumdar, Saurav. "TREE-D-SEEK: A Framework for Retrieving Three-Dimensional Scenes" (2009). Doctor of Philosophy (PhD),
dissertation, Electrical/Computer Engineering, Old Dominion University, DOI: 10.25777/nf36-3d78
https://digitalcommons.odu.edu/ece_etds/95

https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Fece_etds%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece_etds?utm_source=digitalcommons.odu.edu%2Fece_etds%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece_etds?utm_source=digitalcommons.odu.edu%2Fece_etds%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece?utm_source=digitalcommons.odu.edu%2Fece_etds%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece_etds?utm_source=digitalcommons.odu.edu%2Fece_etds%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=digitalcommons.odu.edu%2Fece_etds%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.odu.edu%2Fece_etds%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.odu.edu%2Fece_etds%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece_etds/95?utm_source=digitalcommons.odu.edu%2Fece_etds%2F95&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

TREE-D-SEEK: A FRAMEWORK FOR RETRIEVING 3D SCENES

by

Saurav Mazumdar
MS. December 2002, Old Dominion University

A Dissertation Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the

Requirement for the Degree of

DOCTOR OF PHILOSOPHY

ELECTRICAL AND COMPUTER ENGINEERING

OLD DOMINION UNIVERSITY
May 2009

Approve/a by:

Lee A. Belfore II/(pirector)

^ederic D. McKenzie/(Member)

Roland R. Mielke (Member)

Andreas Tolk (Member)

ABSTRACT

TREE-D-SEEK: A FRAMEWORK FOR RETRIEVING 3D SCENES

Saurav Mazumdar
Old Dominion University, 2009
Director: Dr Lee A Belfore, II.

In this dissertation, a strategy and framework for retrieving 3D scenes is proposed. The

strategy is to retrieve 3D scenes based on a unified approach for indexing content from

disparate information sources and information levels. The TREE-D-SEEK framework

implements the proposed strategy for retrieving 3D scenes and is capable of indexing

content from a variety of corpora at distinct information levels. A semantic annotation

model for indexing 3D scenes in the TREE-D-SEEK framework is also proposed. The

semantic annotation model is based on an ontology for rapid prototyping of 3D virtual

worlds.

With ongoing improvements in computer hardware and 3D technology, the cost

associated with the acquisition, production and deployment of 3D scenes is decreasing.

As a consequence, there is a need for efficient 3D retrieval systems for the increasing

number of 3D scenes in corpora. An efficient 3D retrieval system provides several

benefits such as enhanced sharing and reuse of 3D scenes and 3D content. Existing 3D

retrieval systems are closed systems and provide search solutions based on a predefined

set of indexing and matching algorithms. Existing 3D search systems and search

solutions cannot be customized for specific requirements, type of information source and

information level.

In this research, TREE-D-SEEK- an open, extensible framework for retrieving 3D

scenes- is proposed. The TREE-D-SEEK framework is capable of retrieving 3D scenes

based on indexing low level content to high-level semantic metadata. The TREE-D-

SEEK framework is discussed from a software architecture perspective. The architecture

is based on a common process flow derived from indexing disparate information sources.

Several indexing and matching algorithms are implemented. Experiments are conducted

to evaluate the usability and performance of the framework. Retrieval performance of the

framework is evaluated using benchmarks and manually collected corpora.

A generic, semantic annotation model is proposed for indexing a 3D scene. The primary

objective of using the semantic annotation model in the TREE-D-SEEK framework is to

improve retrieval relevance and to support richer queries within a 3D scene. The semantic

annotation model is driven by an ontology. The ontology is derived from a 3D rapid

prototyping framework. The TREE-D-SEEK framework supports querying by example,

keyword based and semantic annotation based query types for retrieving 3D scenes.

V

This dissertation is dedicated to my father Sachish Chandra Mazumdar.

VI

ACKNOWLEDGEMENTS

"Don Quixote: Dost not see? A monstrous giant of infamous repute whom I intend to
encounter.

Sancho Panza: It's a windmill.
Don Quixote: A giant. Canst thou not see the four great arms whirling at his back?

Sancho Panza: A giant?
Don Quixote: Exactly."

Indeed, when I began this journey the distinction between windmills, giants and doctoral

dissertations were fuzzy to say the least. At the end of this journey, the distinctions have

become fuzzier and irrelevant. The journey itself was full of interesting non-windmill

sights, events and interactions, and I have several co-travelers and guides to thank for

making the journey's end a success.

My advisor, Dr Lee Belfore provided the initial research idea that germinated into this

work. Dr Belfore not only provided valuable continuous feedback on the research front

but also created an environment of support and trust on a personal level that is crucial for

an international graduate student embarking on this journey. My committee members, Dr

Andreas Tolk, Dr Rick Mckenzie and Dr Roland Mielke provided excellent feedback and

helped shape the final outcome. My master's thesis advisor, Dr James Leathrum got me

to love research and more importantly on how to aspire to hit a three iron. Dr Sacharia

Albin, the program director, Dr Shirshak Dhali, the chair of our department and Dr

Zahorian, the former chair of our department, helped in ensuring that my progress was

1 Man ofLaMancha (1972)

Vll

steady and the journey's end achievable. My colleagues, Dr Emre Baydogan and Prabhu

Krishnan provided the initial steps with their excellent research work with the Common

Scene Definition Framework. Prabhu also provided financial and emotional support

during some difficult times. My friend Ajay Kongera provided refuge, television and high

speed internet during my endless trips to Norfolk. He also steadfastly provided much

needed logistical support in my battle to submit the dissertation on time. Linda Marshall

and Romina Samson from the ECE department helped tremendously in keeping the

administrative paper work as fun and light as possible. Dr Yuri Millo, director of

Simulation and Training Environment Lab (SiTEL) and everyone at SiTEL were very

supportive and helped by letting me take some time off during my internship to finish this

work.

I owe everything to my parents and family. My mother, Srimoti Mazumdar has been a

source of inspiration and comfort all through this work. My regular conversations with

her provided a much needed level of abstraction from the vagaries of research. My sister,

Dr Sudeshna Mazumdar Leighton and my brother in law Dr Denys Leighton provided

constant encouragement and support throughout this dissertation. My in-laws, Bhaskar

and Bhama Menon provided much needed support during the last stages of this work.

An important motivator who has to be mentioned and who provided all the joy,

entertainment and the urgency to finish - my ten month old daughter Sitara Mazumdar.

Finally and most importantly, I could not have gone on this journey without my co-

traveler, my GPS, my wife Ishita.

Vll l

TABLE OF CONTENTS

Page

LIST OF TABLES xii

LIST OF FIGURES xiii

INTRODUCTION 1

1.1 Currently available 3D model search engines and search engines for the semantic
web 3

1.1.1 Princeton 3D model search engine 3

1.1.2 3-Dimensional Engineering Shape Search System (3DESS) 4

1.1.3 Google 3D warehouse 4

1.1.4 Ogden VI 5

1.1.5 Informatics and Telematics Institute (ITI) 3D search system 6

1.1.5 SWOOGLE : 7

1.1.6 Discussion 8

1.2 Problem statement 8

1.3 Research scope 12

1.4 Chapter organization 12

BACKGROUND AND RELATED WORK 14

2.1 3D model representation 15

2.2 3D formats 17

2.2.1 Virtual Reality Markup Language (VRML) 18

2.2.2 Extensible 3D (X3D) 18

2.2.2.1 X3D file structure 20

2.2.3 Scenegraphs 21

2.3 Approaches to retrieving textual content based on Information Retrieval (IR) 23

2.3.1 Vector space approach 25

2.4 Approaches for retrieving content based on structure 27

2.4.1 Software versioning systems 27

2.4.2 Structure matching algorithms 28

ix

2.4.3 Related work in tree matching 29

2.4.4 XML comparator algorithms 30

2.5 Content based 3D retrieval 31

2.5.1 Related work performed in global feature, global feature distribution and
spatial map based techniques 33

2.5.2 Related work in local feature based similarity 34

2.5.3 Related work in graph based methods 34

2.6 Retrieval based on standards 34

2.6.1 MPEG-7 35

2.6.2 MPEG-21 36

2.7 Retrieval based on ontologies and semantic metadata 38

2.7.1 Ontology versioning systems 39

2.7.2 3D content and standards 40

2.7.3 3D content and ontologies 40

2.8 Discussion and summary 41

TREE-D-SEEK RETRIEVAL STRATEGY 43

3.1 3D scene retrieval strategy 44

3.2 Text retrieval 47

3.3 Scenegraph based retrieval 48

3.4 Shape retrieval 50

3.5 Semantic annotations based retrieval 52

3.6 Common process model 54

3.7 Discussion 56

TREE-D-SEEK FRAMEWORK 57

4.1 TREE-D-SEEK: A component view 57

4.1.1 Common Scene Definition Framework 59

4.1.2 DirectoryTraverser 59

4.1.3 IndexerManager 60

4.1.4 SearcherManager 60

4.1.5 Matcher 61

4.1.6 Common Scene Annotation Modeler (CSAM) 61

X

4.1.7 External tools 62

4.1.8 Classes and interfaces common in both indexing and searching 62

4.2 TREE-D-SEEK framework: A dataflow view 66

4.3 TREE-D-SEEK framework implementation 69

4.4 Retrieval based on text 69

4.5 Retrieval based on scenegraph matching 71

4.5.1 Levenshtein distance 72

4.5.2 Tree isomorphism 74

4.6 Shape retrieval 74

4.7 Semantic annotations retrieval 76

TREE-D-SEEK SEMANTIC ANNOTATION MODEL AND CSDF ONTOLOGY 78

5.1 CSDF ontology 78

IMPLEMENTATION, EXPERIMENTS AND DISCUSSIONS 88

6.1 Implementation details 89

6.1.1 Administration 89

6.1.2 CSAM Implementation details 92

6.1.3 CSAM current implementation status 92

6.1.4 Supported query expressions 94

6.2 Experiments 96

6.2.1 Test bed 97

6.2.1.1 Princeton Shape Benchmark (PSB) 97

6.2.1.2 TREE-D-SEEK corpus 97

6.3 Indexing times 98

6.4 Retrieval performance 99

6.4.1 Text based retrieval 100

6.4.2 Shape based retrieval 100

6.4.3 3D scenegraph retrieval 101

6.4.4 3D semantic retrieval 102

6.5 Discussion 103

xi

CONCLUSIONS AND FUTURE WORK 106

7.1 Contribution to existing research on 3D retrieval 107

7.2 Future enhancements 109

REFERENCES I l l

APPENDICES 121

A.l Relevance and Information Retrieval (IR) performance metrics 121

A. 1.1 Recall and precision 121

VITA 126

xii

LIST OF TABLES

Page

Table 1: Available classes in CSDF ontology 93

Table 2: Supported text query expressions 95

Table 3: Capability comparison 109

Table 4: Example of PR calculation 123

Table 5: Interpolated precision 124

xiii

LIST OF FIGURES

Page

Figure 1: Princeton 3D model search engine query interface 4

Figure 2: Google 3D warehouse query interface 5

Figure 3: Ogden VI query interface 6

Figure 4: ITI 3D query interface 7

Figure 5: SWOOGLE query interface 8

Figure 6: 3D model representation 16

Figure 7: X3D file structure 20

Figure 8: IR technique classification 24

Figure 9: Classification of shape matching algorithm classification 32

Figure 10: Semantic web language stack 38

Figure 11: TREE-D-SEEK retrieval strategy 46

Figure 12: Text indexing process flow 47

Figure 13: Searching process flow 48

Figure 14: Scenegraph indexing 49

Figure 15: Scenegraph based searching process flow 50

Figure 16: 3D shape indexing 51

Figure 17: Semantic annotation indexing 54

Figure 18: Generalized indexing process model 55

Figure 19: TREE-D-SEEK: A component view 58

Figure 20: DirectoryTraverser 60

Figure 21: IndexerManager 60

xiv

Figure 22: SearcherManager 61

Figure 23: Indexers 63

Figure 24: Preprocessors 63

Figure 25: FeatureExtractors 64

Figure 26: DescriptorGenerators 65

Figure 27: Parserlnterface 65

Figure 28: Indexing components and data flow in the TREE-D-SEEK framework 67

Figure 29: Dataflow in searching process 68

Figure 30: Software architecture: an implementation perspective 69

Figure 31: Scenegraph descriptor creation 73

Figure 32: Isomorphism codes for trees 74

Figure 33: Shape matching 75

Figure 34: An incomplete representation of the CSDF ontology 80

Figure 35: GroupHolder taxonomy 81

Figure 36: CSDFTransform properties 81

Figure 37: Appearance concept , 82

Figure 38: CSDFGeometry taxonomy 82

Figure 39: CSDFCylinder properties 83

Figure 40: Dumbbell in VRML 2.0 84

Figure 41: 3D scene annotation using the CSDF ontology 85

Figure 42: Indexer-administration file 90

Figure 43: Searcher-administration file 91

Figure 44: PSB categories 97

XV

Figure 45: Hardware and software configuration 98

Figure 46: Indexing times 99

Figure 47: Average precision/recall for text retrieval 100

Figure 48: Averaged precision versus recall plot 101

Figure 49: Scenegraph retrieval 102

Figure 50: Average precision/recall for semantic retrieval 103

Figure 51: 3D search perspectives 104

1

Chapter I

INTRODUCTION

Finding efficient ways of retrieving media content is an area of active research. In

comparison to work related to retrieving text, audio, images, and video, research in

retrieving 3D content is relatively recent. With ongoing improvements in computer

hardware, computer networking and 3D authoring tools, the acquisition, production and

deployment of 3D objects/3D scenes is become easier. 3D objects and scenes have found

applications in many areas such as in biomedical applications, gaming, social networking,

electronic commerce, security, etc.

In the field of medicine, the use of 3D models for human and animal anatomy is growing

rapidly. These 3D models may be part of a patient's health record. Effective retrieval of

3D anatomical models would enhance health care processes and create an effective

platform for knowledge sharing between any concerned parties in the health care process

chain. Effective storage and retrieval mechanisms could enhance existing web-based

public heath record systems such as Microsoft Health Vault [1] or Google Health [2]. An

effective retrieval system for 3D medical models also promotes dissemination and

training for educational purposes. Content based searches may be useful for detecting

any anomalies in the 3D models present in the system.

Reference Model: IEEE Transactions on Computers.

2

In Bioinformatics, 3D shape matching is important in several areas such as for classifying

proteins. In 3D gaming and simulation, an effective search capability promotes reuse of

3D assets. Indeed, 3D social networks such as Second Life [3] are becoming very

popular. In large scale virtual worlds, search is crucial not just for locating objects but

also for navigation within the virtual world. 3D models have also become very important

for e-commerce applications. 3D models of products provide improved visualization of

the commodity being retailed. 3D content based retrieval may be useful for face

recognition systems and for detecting dangerous situations. In computer-aided

manufacturing, an efficient 3D search and retrieval system is crucial for re-use and

analysis. Based on the above discussion, it can be safely assumed that a significant

increase in the number and usage of 3D models and repositories is an eventuality.

Therefore, there is a need for an efficient retrieval system for 3D content. For the

purposes of this dissertation, 3D content refers to 3D virtual scenes and 3D objects

present in 3D virtual scenes. A 3D virtual scene is a simulated 3D environment wherein

the user/participant can interact with the objects in the environment or the environment

itself. Retrieving 3D content involves indexing the 3D content, formulating a query,

comparing the query to the 3D content, and returning the results or hits to the user. A user

of the retrieval system refers to the human who submits the query to the retrieval system.

Indexing refers to the process of collecting, parsing, extracting or detecting features,

creating descriptors and storing the descriptors in a structure for fast retrieval. A feature

is a characteristic of the data in a corpus. For instance, shape of a 3D object may be

3

deemed a feature and used for indexing. A descriptor provides syntax and an objective

value for features so that they can be stored and evaluated in a consistent manner.

Matching refers to the process of computing a similarity measure so that pairs of

descriptors can be compared and scored. A few existing 3D model search engines and

available 3D repositories are reviewed next.

1.1 Currently available 3D model search engines and search engines for the

semantic web

Retrieval of 3D content is an area of active research interest. Several experimental 3D

search engines are available both on the World Wide Web (WWW) and offline. In this

section, a brief overview of the Princeton 3D model search engine [4], 3DESS [5],

Google 3D warehouse [6], Ogden VI [7], ITI 3D search [8], SWOOGLE [9] is provided.

1.1.1 Princeton 3D model search engine

The Princeton 3D model search engine allows querying via text, 2D sketches and by

uploading entire models. It uses rotational invariant spherical harmonics to compute

shape descriptors. It is a complete search system with its own 3D focused crawler for

WWW. The Princeton Group has also provided a benchmark for mesh models [4]. The

query interface of the Princeton 3D model search engine is shown in Figure 1. The

Princeton search engine supports multimodal queries that include combinations of

text/2D sketch and text/3D sketch. No semantic indexing or querying is supported.

4

.'•--;_ T e s t * 20 Sketch:;

Keywords:

&|T ^%^^fcw%^"'fc^feg<f *& £...&&-*% jfc*g toy^^jg^fl^st

3D Model Search Engine
Text 6 2D Sketch Tad ft 3D Sketch File Compere Beseorch Contact Us Unks FAQ Main

Available search types:

. Text& 2D Sketch
one or more keywords and/or 1/2/3 simple outline sketches

• Text & 3D Sketch
one or more keywords and/or a single 3D sketch

. File Compare
upload your own 3D model file

• Find Similar Shape
click the link below a search result

Available datasets:

• Free Models
~ 31000modelsdownloadedfromtheWeb

• Viewpoint Models
-' 2000 commercial models

• De Espona Models
~ 1000 commercial models

• Cacheforce Models
- 2000 commercial models

. All Models
All of the above

OiiliriB since November 2001

This site should work with Netscape 4.0 or up, or equivalent, with Java ami Javascript enabled. If you are running aversion of Java older than 1.2, then get the latest 0 | |
version of the Java Runtime Environment at this page, if something does not work, please let us know by clicking fjeje. |J | fg

Figure 1: Princeton 3D model search engine query interface [4].

1.1.2 3-Dimensional Engineering Shape Search System (3DESS)

The 3DESS system [5] is a prototype shape search system for CAD/manufacturing 3D

models. The system is not available online. It allows the user the choice of which type of

shape based feature to use in the search. The search engine uses a relevance feedback

approach to refine searching. No semantic indexing or querying is supported.

1.1.3 Google 3D warehouse

The Google 3D warehouse [6] is an online repository of 3D models. The 3D models are

broadly classified into geo-referenced and non-geo-referenced. A geo-referenced 3D

model is a real world object such as a stadium, building, etc. that can be accurately

located using Google Earth. Non-geo-referenced models are other objects that are not

5

location specific such as a human body, plant, etc. The Google 3D warehouse query

interface is shown in Figure 2. No shape indexing and matching is supported.

fie J->\&. watmmvmimmftmiima

English change

G o o g k 3D Warehouse I

mm
Featured Google Earth

MQ0.eler,g

Search for: <?• Models O Collections.

w
Heip Model a City

wmfm

Featured Google Earth
Collections

Cities in Development

5k I
' l a * .S

Ktfr«&tr*- . * * * . . *»- - *

i

Browse 3D Warehouse models in Google Earth " " '

*" Experience your 3D world * ^ ^

Experience your 3D worid using ^x"" 2
Googles interconnected suite of ^ffi *i3jj{

N Google SkelchUp \ y g , J

\ r Gooole Earth W ?

3D Warehouse

FJ idc l forG OTloEtJrtl

Modeling guide {PC

Frequently asked qi

Figure 2: Google 3D warehouse query interface [6].

1.1.4 Ogden VI

The Ogden [7] VI is a search engine system that retrieves 3D content using rotational

invariant shape descriptors, voxelized 3D models, point clouds, etc. Retrieval using

similar parts of 3D models is also provided. The query interface of OGDEN VI is shown

in Figure 3.

6

m S§ffPatai\tofl-ag'

•Vtmr(A Stmeh Engntfir JDMOIHS)

Database: [db/nnceton F| Shapejeafurer [e ip -L l l l ĵafewaaa Ms#D«aasa ||

l i i h | | J

• , 1 I

*?
*

Figure 3: Ogden VI query interface [7].

1.1.5 Informatics and Telematics Institute (ITI) 3D search system

The ITI 3D search system [8] allows content based retrieval of 3D objects in Virtual

Reality Markup Language (VRML). It allows searches on the Princeton Benchmark, the

Utrecht database and its own database only. It does not support semantic indexing. The

query interface is shown in Figure 4.

7

J

(I
KP k--*«:v:.<

r=LJrnDE
© AnimaS"-

© 5pheroi(fe

© Conventional Airplanes

© Delta AMan=s

© Helicopters

© Cars

' - © Motorcades

© Other

© Tubes

© Couches

© Chairs

© F i s h

© Humans „j

& 1^3 Pmceton DB j

QJ I^IUtre^ tDS

w^ei i i i jw

Search f ru i t s
Search completed in 0 016 sees..,

Figure 4: ITI 3D query interface [8].

1.1.5 SWOOGLE

The SWOOGLE system [9] is a complete search system for the semantic web. It is

capable of crawling and indexing documents written in Web Ontology Language (OWL)

and Resource Description Format (RDF) available on the web. It is not capable of

indexing based on 3D low level content. The query interface is shown in Figure 5.

8

Want more results? Login

semantic web search ^ $ 2007

ontology docament term m o r e »

I „ j #
^Swoogle Search jA

Searching over 10,000 ontologies

manual o news o fag o ncb-servicc o aubmrt-urt o sw-aittave o feedback o swooplf20Q5

Swcogla 5> M 0 4 - 2 0 8 " . eb iau i t r group at UMBC

This woA i t l icensed under a Creatine Commons filiitBulion-NonCormneicifll-^KB'gft!'^ ?,f! L7.ic^f1?,^-

Figure 5: SWOOGLE query interface [9].

1.1.6 Discussion

Based on the survey of the above mentioned search engines, query interfaces and relevant

work discussed in Chapter II, current retrieval solutions do not provide a unified

approach of retrieving 3D scenes based on indexing and matching low level to high level

content. An open framework for retrieving 3D scenes that can be used by search engine

developers to create customized search solutions for 3D corpora has not been proposed or

implemented. The problem statement is discussed next.

1.2 Problem statement

As the number of 3D models and scenes increase, there is a need for efficient 3D retrieval

systems. The focus of several research works [4], [8], [5], [7] has been on identifying

efficient low-level content-based retrieval mechanisms for 3D models. The primary goal

of these research works was to identify effective 3D retrieval strategies for 3D models.

The retrieval strategies proposed in these research works used either geometric or

9

statistical algorithms for indexing and matching 3D models. Several existing works and

search engines [10] [6] used syntactic metadata and keyword based approaches for

retrieving 3D content. The need for machine interpretability, richer querying capability,

improved retrieval relevance and improved navigation in 3D scenes has resulted in

several works [11][12] wherein semantic annotations were used to formally specify 3D

scenes. Similar to retrieval in other types of multimedia, the "bridging" of the semantic

gap from low level features to high level semantic metadata has been proposed.

In addition, in [13] and the above mentioned search systems, suitable modes of query for

effective retrieval of 3D models were also investigated. The query mode supported by a

search system is closely related to the choice of indexing and matching algorithm

available in a search system. The general solution in available 3D search systems was to

provide support for querying based on metadata, 2D/3D sketches and by example. In 3D

retrieval based on 2D/3D sketches, a user provides a "skeleton" sketch of a 3D model and

the same is matched against the contents of the 3D corpus. In querying by example, an

entire 3D model is provided as query and similar 3D models are retrieved based on low

level content matching. In addition, semantic queries based on natural language have

been proposed for 3D scene retrieval. Existing search systems support a few or all of the

above query modes. These search systems may also support retrieval based on

multimodal queries wherein a combination of the above mentioned queries are used to

retrieve 3D content. For example, in [10], a user is allowed to provide both text and 2D

sketch as input query.

10

Based on the survey performed in 3D retrieval and 3D search systems, several

observations may be made. First, a unifying retrieval strategy and an open framework for

retrieving 3D scenes capable of indexing low-level content to high-level semantic

metadata has not been proposed or implemented. Indeed, current solutions for retrieving

3D content employ a "stove-piped" approach of indexing and matching 3D content

wherein at most, the retrieval system supports implementation and evaluation of

algorithms at a particular information level and by individual research groups.

Second, a framework for retrieving 3D scenes has not been discussed. The above

mentioned search and retrieval systems are closed systems and are used by particular

research groups and organization for their own specific requirements or to support

general users for performing 3D retrieval based on a predetermined set of retrieval

mechanisms. The capability of creating a search engine for retrieving 3D scenes with

customized indexing and matching algorithms for specific corpora has not been

addressed.

Third, a framework that is both capable of retrieving 3D scenes and providing search

within a 3D scene for navigation and for retrieving 3D objects within a scene has not

been discussed. Existing retrieval solutions are capable of either retrieving 3D scenes that

contain at most one 3D model or provide search for particular closed 3D scenes/virtual

worlds.

11

Fourth, a framework that can index 3D scenes based on scenegraph content and structure

has not been proposed. A scenegraph is a data structure that contains information about

3D content present in a scene. A scenegraph provides the capability of logically ordering

3D content present in a scene.

In this research, TREE-D-SEEK, a retrieval framework for 3D scenes, is proposed. The

TREE-D-SEEK framework implements a unified strategy for indexing and matching 3D

content. The TREE-D-SEEK framework is capable of indexing and matching 3D content

based on textual annotations, scenegraph content and structure, shape and semantic

annotations. Based on the individual process flow in retrieving 3D content from each type

of information source and information level, a unified process flow is derived. Indexing a

3D scene based on its scenegraph content and structure provides the capability of

retrieving occluded or cluttered 3D scenes.

The software architecture of the TREE-D-SEEK framework is specified. Clear software

, interfaces are available to provide extensibility with respect to implementing a desired 3D

retrieval strategy at the information levels supported in the retrieval strategy. As proof of

concept, several indexing and matching algorithms have been implemented. Finally, an

ontology based annotation model for indexing 3D scenes is proposed in this research. It is

envisioned that this annotation model may be used to author 3D scenes and to support

richer queries for improved navigation and search within a 3D scene.

12

1.3 Research scope

One of the primary objectives of this research is to create a generic 3D retrieval strategy

and a framework that implements this strategy for retrieving 3D scenes design. For the

purposes of this research, 3D scene content refers to 3D objects present in a virtual scene.

The goal of this research is not in designing the "front-ends" vis-a-vis the user interface

for querying or for viewing the results. Also, retrieving 3D content based on the behavior

of objects present in the scene is not supported.

The TREE-D-SEEK framework must contain clear software interfaces so that it can

potentially be part of a 3D authoring tool that may a 3D search capability. The framework

should allow seamless integration of indexing and matching techniques for the supported

information sources and information levels. A semantic annotation model must be

proposed for indexing any generic 3D scene.

1.4 Chapter organization

The rest of the dissertation is organized as follows.,

Chapter 2: Background and Related Work: In this chapter, background

concepts and related work in 3D retrieval are surveyed. Several indexing and

matching algorithms are discussed.

Chapter 3: TREE-D-SEEK Retrieval Strategy. In this chapter, a generic

retrieval strategy for retrieving 3D scenes is proposed. A common process flow is

derived based on existing process flows for retrieval based on metadata,

scenegraph, shape and semantic annotations are discussed.

13

Chapter 4: TREE-D-SEEK Framework. The TREE-D-SEEK framework is

proposed in Chapter 3. The software architecture of the framework is described.

Several indexing and matching algorithms implemented in the TREE-D-SEEK

framework are discussed in this chapter.

Chapter 5: TREE-D-SEEK Semantic Annotation Model. In this chapter, a

semantic annotation model for 3D scenes is proposed. The annotation model is

based on an ontology derived from a 3D rapid prototyping framework.

Chapter 6: Implementation, Experiments, and Discussion. In this chapter, the

TREE-D-SEEK framework is used on selected 3D corpora and several retrieval

performance assessments are presented.

Chapter 7: Conclusions and Future Work. This chapter describes the

conclusions drawn from this research. Future enhancements that may be

potentially pursued are also outlined.

14

Chapter II

BACKGROUND AND RELATED WORK

The primary objective of this dissertation is to create an Information Retrieval (IR)

framework capable of retrieving 3D scenes based on extracting low level features to high

level semantic metadata. In Chapter I, several complete search systems for 3D content

and semantic metadata were discussed. In this chapter, background and related work

pertaining to available indexing and matching techniques are discussed.

In particular, a brief discussion of 3D model representation and two 3D file formats is

first presented. This is followed by a description of scenegraphs and scenegraph-based

3D technologies. Next, relevant background and work in indexing, matching and

retrieving content using text-based, structure-based, content-based and semantic metadata

is described.

For text-based retrieval, a brief discussion of vector based method is provided. For

structure-based retrieval, a description of related work done in software versioning

systems and XML versioning systems is provided. For semantic metadata-based retrieval,

firstly existing standards available for multimedia and 3D retrieval are discussed.

Subsequently, for semantic metadata based retrieval, a brief description of semantic

retrieval based on ontologies for 3D shapes is mentioned. Finally, a discussion and

summary of this chapter is provided.

15

2.1 3D model representation

A 3D scene may be comprised of one or more 3D models/objects. 3D models

representations can vary in several ways. For instance, 3D object representations can vary

with respect to the ease in acquisition, storage (size), rendering efficiency, authoring

efficiency, articulated transformational capability, etc. 3D objects representation may be

classified as shown in Figure 6 [14] . 3D objects may be broadly represented by

• Points

• Surfaces

• Solids

• High level

Point representation refers to an unordered, raw representation of 3D models. Examples

of Point representations are point clouds, range images and polygonal soups. Point clouds

are simply a set of 3D vertices. Point clouds may be obtained using 3D scanners. Range

images are also known as depth maps. Pixels in a range image represent the distance of a

point in the scene from a reference frame. By using a range of views/reference frames,

the 3D shape can be estimated and reconstructed. Range images may be acquired using

range scanners. Polygonal soups are an unordered collection of polygons. Polygonal soup

representation of 3D objects does not have any information relating to how the polygons

are interconnected with each other. Most graphic cards can support polygonal soup

representations. It is quite common to find hardware support for triangles as a primitive

for rendering 3D models.

16

3D model

Points Surfaces

Point
clouds

Range
clouds

Polygonal
soups

Solids

Polygonal
meshes

^— Implicit

High level

Constructive
Solid Geometry

Voxels

Scenegraphs

Domain
specific model

Figure 6: 3D model representation.

Surface information of a 3D object is used in 3D surface object representations.

Examples of surface representations are polygonal meshes and parametric surface

representations. In polygonal meshes representation, an order for specifying the vertices,

edges and interconnectivity of polygons is provided. A vertex is shared by at least two

edges, and each edge is shared at most by two polygons. Each polygon consists of a

closed set of edges [15]. An implicit surface representation uses the implicit function

S = F{x,y,z) — 0 . By using this function, a 3D point can be easily determined to be

inside, outside or on the surface.

Solid model representation refers to 3D objects that can be represented using rigid solids.

The Solid model representation is also referred to as a Volume model. Examples of 3D

solid representations are Constructive Solid Geometry (CSG) [14] and Voxels. CSGs use

geometric primitives such as cylinders, spheres and boxes. The CSG objects are typically

17

rendered using set-theoretic functions such as unions and intersections on CSG

primitives. The volumetric pixel or voxel is typically acquired using devices such as

Magnetic Resonance Imaging (MRI), CAT (Computerized Axial Tomography), etc. The

voxelizing process creates a uniform 3D grid that provides samples in three dimensions

of the object being modeled. Initially, a volumetric dataset is constructed using a series of

cross sectional images of the 3D object. Taking distance between each pixel (interpixel

distance) within an image slice and in between each slice itself {interslice distance), a

grid can be created. By interpolating interslice data, an entire volume can be represented

[16].

High level 3D representations support easier authoring and rendering capabilities by

using specialized data structures. Examples of high level 3D representations include 3D

models for specific domains such as 3D protein modeling and scenegraphs. A scenegraph

is a hierarchical data structure wherein each node of the data structure can contain some

aspect of the 3D model or scene such as geometry of the object, associated

transformation etc. Scenegraphs provide several benefits such as the ability to define

objects in their own coordinate system, reuse of object definitions and articulated

animation [17].

2.2 3D formats

A 3D format refers to how a 3D representation can be encoded for storage. One of the

challenges of 3D retrieval relates to the availability of a wide variety of available 3D file

18

formats, both proprietary and non-proprietary file formats. Consequently, two non­

proprietary formats are discussed briefly.

2.2.1 Virtual Reality Markup Language (VRML)

VRML is a technology for delivering 3D content over the web [18]. The VRML file is

usually referred to as a VRML world and has an extension "wrl". VRML is a scene-graph

based technology. A brief description of scenegraphs is provided later in this chapter.

VRML provides several primitives called nodes. Nodes can be shape-related such as Box

nodes, Cylinder nodes, IndexedFaceSet nodes, etc. In addition, nodes can be used to

group together simpler nodes, i.e. they can be parent nodes that hold children nodes.

Examples of parent nodes are group and transform nodes. Group and transform nodes

allow composite objects composed of several simpler nodes to be controlled as one node.

This provides the capability for specialized operations such as articulated animations, etc.

Sensor nodes such as TouchSensors provide the capability to sense interactions between

users and the associated nodes. Script nodes in VRML allow the use of ECMA-script or

Java classes to add additional behavior for 3D scenes. Event routing is done using the

keyword ROUTE. VRML has two keywords DEF and USE that allow object reuse. The

Worldlnfo node may be used for documentation and can appear anywhere in the file.

2.2.2 Extensible 3D (X3D)

Extensible 3D Graphics (X3D) is an ISO standard [19] for delivering 3D content with

multimedia on a network. X3D was developed by the Web3D consortium. X3D provided

the benefits of XML to VRML 2.0. The overall design criteria of X3D were to facilitate

interchange and interoperability of 3D models by providing a common subset of 3D

19

techniques and graphic capabilities to map from and to various 3D software packages.

X3D supports 2D/3D graphics, animations, scripting for complex behavior, user

interactions, navigation, networking, audio/video etc.

X3D supports a scenegraph based architecture. A brief description of scenegraphs is

available in the following section. The nodes of the scenegraph may be extended to add

functionality for a particular requirement. Each node except the root node has a single

parent. X3D allows for geometry rendering and expressing behavior. External scripting

using Java script (ECMAScript) and Java is recognized. X3D browsers may be web

browser based or standalone and may be used to render X3D scenes and allow animation

and interaction. These browsers consist of a parser to read the file format and a

scenegraph manager that recursively uses a depth-first-traversal to rapidly render the

scene graphic nodes[20]. The Scene Access Interface (SAI) may be used to express

complex behavior in X3D Scenes. The SAI may be accessed internally in the scenegraph

via script nodes or externally from other programming languages (Java or JavaScript).

This approach is different from VRML 2.0 as VRML 2.0 had two programming

interfaces to express behavior.

To target specific 3D platforms and markets, the X3D specification supports profiles. A

profile is a subset of functionalities provided in the X3D specification. This partitioning

of functionalities into particular sets supports more efficient deployment of X3D scenes

and worlds. There are six types of profiles available on X3D. The core profile is the

simplest X3D profile and does not contain any geometry. The X3D core profile primarily

20

contains metadata nodes. This profile does not contain any animation capabilities. The

Interchange profile contains all of the basic geometry nodes, and animation. This profile

supports importing and exporting of 3D scenes. The MPEG-4 Interactive profile provides

functionality required to specify 3D graphics in MPEG-4. The CADInterchange profile

provides support in importing CAD models. It contains some CAD specific nodes. The

Immersive profile incorporates all functionality available in VRML 2.0. The Full profile

includes all the nodes in X3D. It contains capabilities such as Humanoid Animation (H-

Anim), Non Uniform Rational B-spline Surfaces (NURBS).

Each X3D profile consists of a collection of components. There are twenty four

components in X3D 3.0 [20]. Each component contains a set of specific X3D nodes. An

X3D developer can import desired functionality at the component level from any profile.

This allows the X3D developer to select specific functionality from any desired profile

without having to import the entire profile.

2.2.2.1 X3D file structure

The X3D file structure is shown in Figure 7.

•
•
e

•
•
•
e

File Header
X3D Header statement
Profile Statement
Component Statement
META statement
X3D root node
X3D scene graph child nodes

Figure 7: X3D file structure.

21

The file header indicates that the file is an XML one and also specifies the text encoding.

The X3D header statement contains the schema association and namespace for X3D. The

profile statement indicates the type of profile the X3D world would use. The Component

statement provides an additional level of usability wherein individual components not

belonging to the above specified profile in the file may be imported and used. The Meta

statements may be used to specify the metadata associated with the X3D world. The X3D

root node called the <Scene> indicates the beginning of the scenegraph. The X3D

scenegraph child nodes that constitute the elements of the X3D scene follow

subsequently.

Each node contains fields that store the data associated with that node. Fields may

contain a single value or an array of values. Field values may be integer, Boolean,

single/double precision floating point and strings. In the next section, some basic graph

concepts are mentioned.

2.2.3 Scenegraphs

Scenegraphs are a model centric approach to 3D authoring. As mentioned previously, a

scenegraph is a data structure, wherein each node of the data structure contains some

aspect of the 3D model or scene. The nodes may contain aspects of the 3D scene such as

a description of the geometry of objects, relative locations of the objects, transformations,

materials, etc. present in the 3D scene. The scenegraph structure provides a logical and

often spatial ordering of the 3D content present in the scene. An example of a logical

ordering would be the expression of the relationship of a car to its occupant such that the

22

occupant is a child node of the car in the scenegraph. In continuing with the previous

example, a spatial ordering would then result in the occupant moving when the car

moves. By expressing these logical and spatial relationships in a 3D scenegraph, an effect

of changing one node (parent), can be propagated to all the nodes that have a logical

relationship with it (child nodes). Scenegraphs may be implemented as an array wherein

operations are performed in linear time. However, this data structure with linear operation

time may be often inadequate for relatively larger virtual scenes/worlds. Consequently, it

is quite common to find trees being used as a scenegraph data structure.

Scenegraphs have been used in several 3D authoring tools and Application Programming

Interfaces (APIs). Most retained mode 3D APIs use scenegraphs. The first API to use

scenegraphs was the Programmer's Hierarchical Interactive Graphics System (PHIGS).

Open Inventor [21] and Java3D [22] both use scenegraphs. As mentioned previously,

both VRML and X3D have scenegraph based architectures.

The primary objective of this dissertation is to provide a framework for mining 3D

content using different information sources and levels. For example, if a 3D scene is part

of a web-page, there may be hypertext that can be indexed and used for retrieval. If a 3D

scene has a semantic description, the TREE-D-SEEK framework must be capable of

retrieving content using this higher level description. In the subsequent sections,

background and work relevant to retrieving content using textual keyword content,

scenegraph content, shape content and 3D semantic data is discussed.

23

2.3 Approaches to retrieving textual content based on Information Retrieval (IR)

The field of IR has traditionally involved mining unstructured and semi-structured textual

content. Information retrieval techniques for textual content are classified broadly into

two categories as shown in [23]. Semantic retrieval techniques attempt to "mimic" human

understanding of natural language text. Semantic retrieval techniques are often used

along with statistical retrieval techniques. Statistical approaches involve breaking words

into terms. Generally, terms are words that occur in a query or a corpus. A query is a

"search-string" used to find a relevant match from the target corpus. Querying can be ad-

hoc or routing based. Routing queries are typically topic filters, i.e. each term in the

query "routes" the searching system to a predefined topic. Adhoc queries are typically

arbitrary search strings. A corpus is a collection of files or documents.

Some search engines can also recognize phrases as terms. A phrase is a combination of

words in a query of corpus. Some engines may also break documents into strings of n

consecutive characters [24]. "n-grams" may be extracted by moving a window of n

characters in length through a document or query one character at a time. Numeric

weights are commonly assigned to both query and document terms. Weight of any term

in the document is a measure of how well the term can identify uniquely the document.

Weight of any term in the query is a measure of how important the term is in identifying

the document in the corpus.

24

Figure 8: IR technique classification.

Statistical techniques can be further classified into Boolean, Extended Boolean vector

space, and Probabilistic. In the Boolean approach, queries are formed by logical ANDing

or logical Oring each query term. A document will match the query only if both terms

that have been ANDed in the query have been found or if either of the terms appearing in

the query is found if the terms had been ORed. This method is incapable of producing

ranked output. In the extended Boolean approach, weights are assigned to the terms in the

query and document. P-norm models are constructed where given a query consisting of n

query terms ti,t2,...tn with corresponding weights wqi,wq2,...wqn and a document D with

corresponding weights wai, W<J2, Wdn, similarity functions of the P-norm model are

computed by (1) and (2).

25

SIM AND (d, (T1, W Q I) AND . . . AND(TN, WQN)) = 1-
Z"= i (1"W r f ,) P .WqiP

z: wqv

where 1 < p < co (1)

S M O R ((1,(T1,WQI)OR.. .OR(TN, WQN)) = E Wcli

n

WcliP .WqiP

i=l y WqiP

where 1 < p < oo
(2)

Atp = oo, the extended Boolean model transforms into classic Boolean. At p=l, the

extended Boolean becomes a vector space model. A probabilistic retrieval model is

similar to the other statistical retrieval methods. According to [25], a distinguishing

feature separating probabilistic methods from other statistical retrieval models is the use

of formal probability theory and related statistics to provide estimates for relevance

ranking. The vector space approach is discussed next.

2.3.1 Vector space approach

In the vector space approach, a document vector in multidimensional Euclidean space is

used to represent an individual document. Each distinct term is a dimension in this space.

Each term is assigned a numeric weight to indicate the ability of the term to act as a

descriptor for the document. A given term may receive different weights in different

documents. The weights assigned to terms in a document can represent the coordinates of

the document vector in the Euclidean space. The corpus or collection of documents may

be represented by using a document by term matrix where each row is a document and

each column is a term and an entry at ith row and j t h column indicates the weight of term j

in document i.

26

The most common weighing scheme used to assign weights to terms in documents is the

Term Frequency Inverse Document Frequency (TFIDF) weighing scheme. Term

frequency (TF) is the frequency of occurrence of a given term in a document. Term

frequency is a local document specific statistic. Inverse Document Frequency (IDF) maps

N
the frequency of the occurrence of a term over the entire corpus. IDF is defined as ln(—)

n

where N is the total number of documents in the collection and n is the number of

documents containing the term. IDF is zero if a particular term appears in the entire

document. This indicates that the term may not be a good descriptor for the document or

any document in the collection.

The mathematical product of TF and IDF basically indicates a strategy of identifying and

assigning heavier weights to terms that occur frequently within a document and do not

occur too frequently in other documents or terms that occur moderately within a

document and over documents in the collection. The weights need to be normalized to

account for variations in document size.

Once the query and the documents in the corpus have been weighted and assigned vectors

in document space, a similarity measure is required to compare objectively the query and

the documents. This numeric score may be a measure of similarity or dissimilarity. The

most frequently used similarity measure used in vector space retrieval is the dot or cosine

product given by

27

SIM(Query, Document) = £ P _ i QueryTermi • DocumentTermi (3)

2.4 Approaches for retrieving content based on structure

The need for information exchange, interoperability, inferring and searching are

motivating principles behind organizing data in virtually every domain. Each of the

above mentioned principles clearly require the structure to be the least common

denominator. Structure refers to the requirement of data to adhere to rigid schemata. The

Extensible markup language (XML) has now become the lingua franca to represent

structure. XML versioning is critical in several applications such as collaborative -

authoring, warehousing, and software configuration versioning systems. XML versioning

in web based crawling is also important for identifying the "permanence" of links to web

pages.

For the purpose of this dissertation, scenegraphs that will be mined are XML based trees.

Also, the TREE-D-SEEK framework is capable of retrieving content, based on semantic

metadata marked up in XML. In the following sections, related work in software

versioning, structure-matching and available XML document comparator algorithms is

presented.

2.4.1 Software versioning systems

Difference detection for documents has been studied extensively. The GNU diff utility

shipped along with UNIX installations since 1974 is an example of a popular file

comparison utility for comparing two text files. The diff utility uses the Longest Common

28

Subsequence (LCS) [26]. Furthermore, several versioning systems make use of the diff

utility to store deltas are the Revision Control System (RCS) [27] and the Source Code

Control System (SCCS). A more recent example of a version system is the Concurrent

Versioning System (CVS) [27] that is built on top of RCS.

Both RCS and SCCS are edit distance (delta) based. In RCS, the most recent version of a

document is kept unchanged and all older versions of the document are stored as reverse

delta. In SCSS, the original version of a document is stored along with forward deltas and

timestamps. The above mentioned tools are not capable of supporting structure based

queries as they process the documents as a sequence of text strings and are therefore not

ideal for XML file versioning [28].

2.4.2 Structure matching algorithms

XML document structure is tree based; therefore, tree structure matching can be used in

the process of structure matching of XML documents. Tree structure matching algorithms

can be classified into ordered tree matching and unordered tree matching. Ordered trees

are trees that have a well- defined sibling-sibling ordered relationship for every node in

the tree. Unordered trees are trees that have no specific "order" in the relationship

between children of a parent node. Ordered and unordered matching algorithms can also

be classified into top-down and bottom-up algorithms based on how the trees are

traversed and compared with each other.

29

Two trees are isomorphic if and only if there is a bijection between the vertex sets of the

trees preserving the structure of the trees [29]. Clearly, in the case of ordered tree

isomorphism, the bijection should provide a mapping between nodes in each of the trees

preserving the structure of the root and the structure of the sibling nodes. In unordered

tree isomorphism, the bijection should preserve the structure of the tree wherein there is a

mapping from a vertex in one tree to a vertex in the other tree preserving the structure of

the root, and parent child relationship.

The subtree isomorphism problem is a generalization of the tree isomorphism problem. It

involves identifying whether a given tree is isomorphic to a subtree of another tree. A

generalization of the subtree isomorphism problem is the maximum common subtree

isomorphism problem wherein the objective is to determine the largest common subtree

between two trees [29].

2.4.3 Related work in tree matching

In [30], a bottom-up algorithm with O(n) for identifying isomorphism between rooted

unordered trees with n nodes is described. The algorithm assigns integers to the nodes of

the two trees in a bottom up fashion. The two trees are identified as isomorphic if and

only if the roots of the two trees have the same integer value. A tree to tree correction

algorithm based on edit operations was proposed in [31]. In [32], a restriction of [31] is

presented, wherein a top down strategy is used and only nodes on the same level are

matched. The time complexity of this algorithm is 0(nin2) time, where ni is the number

of nodes in Treei and n2 is the number of nodes in T2. In [33], an edit distance based

30

algorithm based on a post-order, dynamic programming approach is proposed. In [34]

and [35], bottom up subtree isomorphism algorithms are presented and the run time

complexity is of the order 0(ni+n2) where ni and n2 are the number of nodes in each of

any two trees Ti and T2 respectively. The strategy used in order to achieve this runtime

complexity is a bottom up approach wherein the maximum common subgraph is

identified by computing a directed acyclic graph that partitions the two trees Ti and T2

into isomorphism equivalence classes.

2.4.4 XML comparator algorithms

The Xydiff algorithm proposed in [36] is used to compare two XML documents using a

bottom up approach. Each node is traversed using a bottom up approach, and each node

is assigned a signature and a weight. The node signature is a bottom up hash value of the

current node content as well as its children. The weight is a bottom up value proportional

to the size of its subtree. Subsequently, in a top-down traversal, nodal signatures are

compared. If the nodal signatures are not identical, then the children are inserted into a

priority queue based on the weight. The heavier weighted subtrees are compared first. If

there is an identical match between two subtrees, then the node signature and weight is

pushed upwards to the parent. The weight of the subtree dictates the level to which this

value is propagated. The Xydiff algorithm fails when the leaves of the trees are changed.

The Xydiff algorithm also uses XML specific attributes such as ID and other heuristics to

obtain O (n log n) efficiency.

31

In X-Diff [37], unordered XML documents can be compared. It uses a more exhaustive

edit based approach wherein each node is assigned a hash value in a top-down traversal.

If root nodes have the same signature, the trees are identical. If the roots do not have the

same signature then minimum edit cost algorithms is used to compare trees. The X-diff

execution time is of the order of 0(n2-d-log d), where d is the total degree of any node in

the tree.

In XMLTreeDiff [38], DOM-Hash [39] is initially used to reduce the size of the two

XML documents by removing the maximum common subtree. Then it uses another

minimum edit tree algorithm to compare the two simplified trees.

2.5 Content based 3D retrieval

In comparison to retrieval of other types of multimedia, 3D content retrieval is relatively

recent. Owing to improvements in 3D acquisition, production and consumption

capabilities, growth of 3D applications for visualization, training, entertainment, etc. are

certainties. As in other types of multimedia, content based methods for retrieving 3D

content is an important research area. In content based 3D searching, the goal is to

identify an objective measure of similarity to search, compare and retrieve a user query to

the target corpus. The query provided by the user contains 3D content that may be used to

find and retrieve similar content from the target corpus. A generic strategy in content

based searching is that 3D objects are modeled as objects in a vector space, and a

distance function is used to measure the similarity or dissimilarity between objects. The

similarity between objects may be based on the global geometric similarity of the two 3D

32

objects. Typically, the global geometric similarity may be calculated using either a direct

geometric matching strategy wherein two 3D objects are directly matched based on

transformation cost associated in converting one object to the other, or a descriptor based

strategy wherein features extracted from the 3D objects are used for indexing,

comparison and retrieval. Direct geometric matching strategies is therefore not scalable

for large 3D corpuses as this would involve evaluating each pair of models for every

model in the corpus once the query model has been submitted. A descriptor based

approach is relatively more scalable as features can be extracted apriori and offline for

the corpus and compared with the features of the query model at the time the query model

has been submitted. Shape descriptors need to be discriminating, run-time efficient and

compact to store. 3D shape matching methods can be classified as shown in Figure 9.

The classification categories are not mutually exclusive. In other words, a skeleton

matching algorithm may also be classified as a global feature distribution. [40].

3D shape
matching

Feature based

Global features
and feature
distribution

Spatial
map

Graph based

Local
features

I
Reeb Graph Skeleton

Figure 9: Classification of shape matching algorithm classification [40].

33

3D shape matching methods may be broadly classified into feature based or graph based

methods. Global features, global feature distribution, and spatial maps features can be

represented as a single vector in Euclidean space of n dimensions where n is fixed apriori

for a 3D corpus [15]. Some related work in global feature and global feature distribution

based algorithms is described subsequently.

2.5.1 Related work performed in global feature, global feature distribution and

spatial map based techniques

In [41], calculating global features such as moments, Fourier transform coefficients, and

volumes from 3D meshes is described. In [42], bounding boxes, wavelet based

descriptors for 2D and 3D objects are described. The descriptors are defined using

MPEG-7. An example of a global feature distribution based technique is the D2

algorithm [43]. The D2 shape distribution provides the distributed of Euclidean distance

between randomly selected two points on the surface of an object. It is a rotation

invariant descriptor.

In spatial map based techniques, descriptors capture the spatial location of objects.

Generally, pose normalization is required. An example of spatial map technique is the

shape histogram technique found in [44] . Three types of descriptors fall under this

category namely shell descriptor, sector descriptor and shell & sector descriptor

corresponding to how the 3D space is partitioned. In the shell model, the 3D space is

partitioned into concentric shells. In the sector model, the 3D is partitioned into sectors

emerging from the center. In the spider web model, the shell and sector model are

34

combined to partition the 3D space. The shell descriptor represents the distribution of

distances of surface points from the center of mass. It is therefore a ID descriptor. The

sector descriptor represents the distribution of surface points as a function of spherical

angles. Spherical harmonics based rotational invariant features are suggested in [45]. By

decomposing a 3D model into functions on concentric spheres and using spherical

harmonics to discard orientation information, the shape descriptors are made orientation

invariant. 3D Zernike descriptors from voxelized models are presented in [46].

2.5.2 Related work in local feature based similarity.

In local featured based approaches, surface shape is evaluated around localized points on

the boundary of the shape. An example of this technique can be found in [47]. In this

paper [47], two 3D shapes are compared based on their curvature distributions generated

from their deformed meshes. Local feature based similarity techniques are difficult to

compute.

2.5.3 Related work in graph based methods

In graph based methods, a graph of the inter-connectivity structure of shape components

constituting a shape is extracted from the 3D object and matched. Graph matching based

on edit distance is NP hard. Graph matching using maximum common subgraph

techniques is NP complete.

2.6 Retrieval based on standards

The benefits of having standards for multimedia representation such as the Joint

Photographic Experts Group (JPEG) standards or Moving Pictures Experts Group

35

(MPEG) standards are apparent. Clearly, standards allow addressing interoperability

issues, thereby increasing the number of consumers for the products and finally resulting

in lowering of production costs. Also, standards enable the creation of suites of tools to

facilitate the acquisition, development and deployment of products. Support for 3D

content specification may be found in MPEG-7 and MPEG 21.

The MPEG-1 was developed in 1992 and the goal was to encode moving pictures and

sound to fit into a CD-ROM. MPEG-1 uses the Standard Interchange Format (SIF) which

stipulates a 352x240 NTSC at 1.5 Mbps [48]. MPEG-2 was established in 1994 and is

capable of broadcast quality video at its specified bit rates between 3-10 Mbps. The

MPEG-3 standard was not popular and was dropped. The original target market for

MPEG-3 was High Definition Television (HDTV). The MPEG-4 was finalized at the end

of 1998 and the target market is the television and the World Wide Web (WWW).

MPEG-4 allows encoding at rates varying from 2Kbps to 5Mbps. The MPEG-4 provides

the capability to integrate content of synthetic 3D content and is compatible with the

VRML standard mentioned earlier. More detailed description of MPEG-7 and MPEG-21

are provided below.

2.6.1 MPEG-7

MPEG-7 was proposed in July 1996 and the goal of MPEG-7 standard is to address the

necessity for improved search and retrieval of multimedia content. Multimedia content

refers to still pictures, video, audio, 3D models and graphics. MPEG-7 is solely a content

description capability or to be the "the bits about the bit" [49]. It was not designed to

36

replace any of the existing MPEG standards. It provides capabilities to define and

describe already captured and stored (offline) content and streaming or broadcasting

environments (real-time). MPEG-7 is an isolated description file that may be available

with the actual multimedia representation format file. MPEG-7 is capable of describing

scenes using object based composability. A noteworthy feature of MPEG-7 is that it

supports a unified framework to support both low-level and high-level feature

description. MPEG-7 toolkit supports the following functionalities [49]:

• Descriptors.

• Description Schemes.

• Description Definition Language (DDL).

• System tools.

A Descriptor represents a content feature. It specifies the syntax used to specify a feature.

A description scheme specifies the syntax and semantics that descriptors representing the

multimedia content would adhere to. A Description Definition Language is the language

used for creating and defining the descriptors and creating or extending the associated

scheme. MPEG-7 DDL is XML based. The Description Schema of MPEG-7 is W3C

XML Schema based. System tools refer to tools that support creation and management of

intellectual property, storage of descriptions etc. [49].

2.6.2 MPEG-21

The primary objective of the MPEG-21 standard is to support the delivery and

consumption of multimedia over an extensive range of devices and networks and also to

provide mechanisms to define and distribute transparently the digital rights/

37

permissions/intellectual property rights associated with the multimedia content. MPEG-

21 is also known as a multimedia framework, open for specifying any type of media,

content representation, digital rights/intellectual property rights, delivery mechanism, and

the use of content. Indeed, the MPEG-21 framework provides support for content

producers, distributers and consumers involved with any media and any device. The

MPEG-21 framework defines two main concepts namely a Digital Item and a User.

A Digital Item is the basic multimedia unit available for consumption. The Digital Item

concept recognizes the fact that it is not necessary for a multimedia application to be

solitary. A Digital Item may be associated with another Digital Item within a multimedia

application. For instance, a video file may be associated with a still picture (video cover

page) and a transcription file. The digital items can be identified by using the MPEG-21

Digital Item Identification (DII) standard. The structure of individual digital Items

relating to each other within a multimedia package can be defined using the MPEG-21

Digital Item Declaration (DID) standard.

The User in MPEG-21 framework is an entity that interacts with the Digital Item. The

MPEG-21 Digital Item Adaptation (DIA) standard and tools can be used to describe the

network conditions, bit stream representation and other usage based environment

parameters. The MPEG-21 defines both producers and consumers as Users. A consumer

and a producer are both users but with different rights based on interactions with other

users.

38

2.7 Retrieval based on ontologies and semantic metadata

Ontologies and ontology based retrieval is an area of active research interest. The goal is

to improve "machine understandability and reasoning" to assist in satisfying the "need"

behind the search query as opposed to a purely statistical search or a search based on pure

meta-data only. According to Gruber [50], "ontology is an explicit specification of a

conceptualization." A concept is an abstract, simplified view of the world. A concept is

generally language independent and may be interrelated to other concepts. The Semantic

web, which has attracted a lot of attention, has been defined as the "conceptual

structuring of the web in an explicit machine readable way" [51].

Syntactic metadata is metadata that does not provide any contextual or domain specific

information but provides basic information such as the date of creation of a document, or

author's name etc. Semantic metadata refers to metadata that provides contextual

information. Semantic metadata may be defined using a domain specific metadata model

or as an ontology instance. Ontology may be created using an ontology language. The

proposed language stack of the Semantic web is shown in Figure 10.

XOL | SHOE OML

OWL

1
OIL DAML+OIL

RDF(s)

XML

Figure 10: Semantic web language stack.

39

The language stack of the Semantic web can support several languages such as Ontology

XML Language (XOL) [52], Simple HTML Ontology Extension(SHOE) [53], Ontology

Markup Language (OML) [54], Resource Description Framework (RDF) [55] ,RDF

Schema [56], Ontology Inference Layer (OIL) [57] , (DARPA Markup Language)

DAML+OIL [58] and Web Ontology Language [59]. As seen in Figure 6, the underlying

structure of the Semantic web is based on XML. Related work done in ontology

versioning systems and 3D retrieval using semantic metadata and ontologies is described

subsequently.

2.7.1 Ontology versioning systems

Ontology management and versioning systems are an area of active research interest. As

the number of ontologies increase, there will be a need for managing ontologies. Several

ontology management and versioning systems have been proposed. An example of an

ontology versioning system is PromptDiff [60]. PromptDiff can perform structural

comparisons using sub-graph isomorphism. AnchorPrompt [61] is a graph based tool for

finding related concepts in different ontologies provided an initial mapping exists

between the ontologies being compared. In [62], several important distinctions between

versioning systems and ontology versioning systems were made. For instance, in [62], a

distinction is made between versioning changes and inter-conceptual changes and a

distinction is made between conceptual changes and specification changes. An example

of an ontology mapping system is GLUE [63].

40

2.7.2 3D content and standards

The XMT-A standard is an extension of MPEG-4 for specifying audio-visual content

using XML. It contains a subset of X3D nodes in the specification. In [64], semantic

metadata for 2D/3D scenes is described using MPEG 7. A semantic graph representing

the 2D or 3D scene was defined using MPEG-7. A user interface was described that

enables selection of a high level description of an object resulting in the highlighting of

the associated low level geometry of the object in a VRML browser. Also, the capability

to select the low level geometry of the object in the browser resulting in the viewing of

the semantic relationship of the selected object is possible. The content description file

using MPEG-7 is a stand-alone file and not part of the content file itself.

In [65], the use of domain specific annotations and Ontoworld [66] to annotate existing

virtual worlds is described. A strategy to index 3D scenes using MPEG-7 is discussed in

[67] wherein an annotation model is described for 3D models. The annotation model used

MPEG-7 extended with 3D specific locators.

2.7.3 3D content and ontologies

In [68], a combination of X3D and RDF technologies is used to provide semantics to 3D

virtual environments. Scene independent, domain specific, reusable ontologies in RDF

provide the high level conceptual relationship definitions. These definitions are used in

providing semantic annotation directly within an X3D file. As a result, semantic

information using this strategy involves at a minimum two files.

41

An interesting approach to 3D content retrieval based on shapes and ontologies is

discussed in [69]. In this work, a knowledge based framework for the annotation of 3D

shapes is discussed. The shape annotation is done by deriving the possible functionality

of the 3D object. Geometric recognition tools are used to derive functionality of the 3D

objects based on their shapes.

2.8 Discussion and summary

As mentioned in Chapter I, there is a need for a unified retrieval strategy wherein a 3D

system is capable of retrieving 3D content based on indexing information sources at

different information levels. Existing retrieval solutions use closed systems to provide a

generic 3D retrieval capability and a fixed set of indexing and matching techniques for

retrieving content. An open, extensible, framework is required for 3D search engine

developers so that customized solutions for retrieving 3D content may be implemented.

In this chapter, 3D model representations were studied. 3D models representations impact

the choice of indexing and matching algorithm. For example, if a corpus consists of 3D

models wherein each 3D model is represented using polygonal meshes; retrieval using

scenegraph structure will suffer from poor precision. Related work in indexing, matching

and retrieving content using text-based, structure-based, shape based and semantic

metadata is also discussed in this chapter. This study of existing indexing and matching

algorithms provides an understanding of the process flow for retrieving content based on

indexing related information sources and information levels.

42

In this research, a unified strategy and framework for retrieving 3D scenes is proposed.

The strategy is to retrieve 3D content by indexing and matching related information

sources at different information levels. A framework is proposed that implements the

retrieval strategy. The retrieval strategy is discussed next.

43

Chapter III

TREE-D-SEEK RETRIEVAL STRATEGY

A unified 3D retrieval strategy and framework that supports retrieval of 3D content by

indexing information sources at different information levels provides several benefits.

This retrieval strategy allows a user to query a 3D corpus based on the user's individual

level of ease and skill. For instance, a non 3D user can use metadata to query the corpora.

A 3D modeler can create a 3D model and use the model as a query to retrieve similar

models. A unified, open framework provides the 3D search engine developer to create a

customized search solution for specific corpora and requirements. A unified framework

supports the creation of a test bed to evaluate indexing and matching algorithm for

different information sources at different information levels.

In this chapter, a unified strategy for retrieving 3D models is discussed. The strategy is to

provide a unified approach for retrieving 3D scenes wherein information sources are

indexed and matched at the syntactic-metadata, shape, scenegraph and semantic metadata

levels. The processes for indexing different information sources may vary. In order to

build a unified software framework that can support retrieval of 3D content based on

indexing different information sources, the individual indexing processes for each type of

information source need to be reviewed and any commonality in the retrieval process

flow must be isolated. A brief discussion of the process flows for retrieving content

based on indexing the different information sources is presented in this chapter. Next, a

44

common process flow that can be used for indexing and matching different information

sources is derived. This common process flow may be then used in designing a software

retrieval framework and is presented in the next chapter. The retrieval strategy is

discussed next.

3.1 3D scene retrieval strategy

3D scenes are not necessarily isolated islands, available only as self contained units. For

instance, web based 3D scenes may be related to the embedding web page. Hypertext,

keywords, file names and associated Uniform Resource Identifiers (URIs) can provide

information about 3D scenes. 3D scenes may be scene-graph based. A scenegraph may

provide further information about the composition of the 3D scene. A scenegraph may

have a hierarchical structure that can be used for structure matching. A 3D scene may

contain semantic annotations based on domain specific ontologies. Therefore, to improve

retrieval relevance and allow for different querying mechanisms, a 3D search engine

framework can support retrieval based on:

• Mining external textual content associated with the 3D scene.

• Mining scenegraph content and structure.

• Mining low level 3D content.

• Mining 3D-scene semantic annotations.

Based on the retrieving processes reviewed in Chapter II, a strategy for retrieving 3D

content is shown in Figure 11. The components shown in Figure 11 are derived from

components that are common to a generic IR retrieval process. Corpora may be a

45

collection of 3D scenes or other content such as web pages, metadata, semantic

annotations relevant to the 3D scenes present in the corpora. Crawling may be required to

discover 3D and related content from any corpora and transferring the content to a

predestined location such as in a local file system. Indexing is a process of creating a data

structure for faster retrieval. In 3D content and multimedia retrieval, indexing involves

identifying and extracting features from the content, creating descriptors for the extracted

features and storing the descriptors. A feature is a characteristic of the data selected to

compare and evaluate the data present in a corpus. For instance, shape of 3D objects may

be a low level feature used for retrieving 3D objects. A descriptor is a representation of a

feature that contains a numeric value or numeric values allowing objective evaluation of

the corresponding feature. An example of a 3D descriptor can be a histogram of distances

between random surface points on the 3D object. In the proposed retrieval strategy,

features corresponding to text, low-level, scenegraph and semantic annotations are

identified and corresponding descriptors are created and stored.

The searching process involves formulating a query, handling the query, matching the

query and returning the results obtained from the search. Formulating a query requires

identifying the type of query and providing the selected query to the retrieval system.

This strategy supports querying by text, scenegraph content, semantic annotations and 3D

shape. The choice of query may be dependent on the matching algorithm selected by the

user.

46

Corpora , e
3D \ r J Semantic

Annotation

I
Crawling Indexing

Indexing and Matching
Algorithms^—

* ^ " Edit Tree

^^Isomorphism

li* — —
Vector based IR methods

a I V I U M l d l l U l I

^"** %^| Voxe
Moment of Inertia on

Voxels

~2
Volumetric Methods,

D2 on Voxels., * f

3DQuery

1
1 1

1 1

1
1
1

Indices

Semantic metadata

Scenegraph

Low level content

Text

Searching Matching J
Resuts 1 ^

Figure 11: TREE-D-SEEK retrieval strategy.

Matching refers to the process of using a similarity (or dissimilarity) measure to compare

the query to the indexed 3D content. For instance, Euclidean distance may be used as a

similarity measure to compare a pair of descriptors. Based on the score obtained from

using the similarity measure, top hits or results of the search are returned back to the user

based on the similarity measure. Descriptors are generated based on the same algorithm

that was used in the indexing process. The indexing process is done apriori. Descriptors

are generated for each document in the corpora. The matching and retrieving processes

are initiated when the query is submitted to the retrieval system.

47

As mentioned previously, the components shown in Figure 11 correspond to generic

process flow in an IR retrieval strategy. The proposed retrieval strategy is unique in the

concept of indexing corpora for 3D content retrieval at the syntactic metadata, low-level

content, scenegraph structure and semantic annotation level.

3.2 Text retrieval

Although textual querying for 3D content may yield significant noise, textual querying

remains the most frequently used query interface for any multimedia retrieval system

[70]. An example of textual indexing and searching is the Google image search [71].

Examples of text sources in the retrieval of 3D content may include file names, URIs,

Hypertext Markup Language (HTML) web pages, etc.

The generic process flow for text indexing is shown in Figure 12. This also represents the

baseline process flow in the TREE-D-SEEK framework for text indexing.

TextSource • Parsing Tokenizing Stopping

Store keyword in
index

Stemming

I
Expansion

Figure 12: Text indexing process flow.

Since the text source may store information based on its own particular schema or

encoding, a parser may be required to extract the relevant features. The features extracted

48

may contain a stream of text. A word tokenizer may be required to isolate words from the

stream. The tokenized words are then cleaned by removing stop words, i.e. words such as

"and" that are not sufficiently discriminating. The stemmer may be used to remove

inflected words. For example the word 'dogs' after stemming becomes 'dog'. Once

stopping and stemming have been performed, keywords may be expanded by performing

a lookup on a thesaurus. Once, this analysis of the token stream is performed, the

keywords are indexed and stored.

The searching process flow for retrieving based on keywords is shown in Figure 13. First

the query is indexed and then the keyword descriptors are scored using a matching

function to score the query with the stored keywords and the top results of the search or

top hits are returned back to the user.

query'

Hits

Parsing Tokenizing Stopping K Stemming

Matching and
scoring

Extract keywords

I
Expansion

Figure 13: Searching process flow.

3.3 Scenegraph based retrieval

A scenegraph is a data structure, wherein each node of the data structure contains some

aspect of the 3D model or scene. The nodes may contain aspects of the 3D scene such as

49

the geometry of objects, relative locations of the objects, transformations, materials, and

etc. that are present in the 3D scene. The scenegraph may contain additional metadata

related to the contents of the 3D scene. To our knowledge, no previous work has focused

on retrieving 3D content based on matching scenegraph content and structure.

For the purposes of this research, a scenegraph is a rooted, acyclic tree. The nodes in the

tree provide a ordering of the 3D objects present in the scene. Consequently, a

scenegraph may be mined based on both the metadata content present in the scenegraph

and also based on the structure of the scenegraph itself. The generic process flow for

indexing 3D scenegraphs is presented in Figure 14.

scenegraphTextlndex

Store
scenegraphStructurallndex I

Figure 14: Scenegraph indexing.

3D scenes may be authored using a variety of tools and languages and encoded into a

variety of file formats. Also, not all 3D scenes may have an underlying scenegraph. For

instance scenes that have been authored using OpenGL may not have an underlying

scenegraph. The problem of creating a common scenegraph for any 3D authoring

language or technology is addressed in [72]. In this research, a rapid prototyping

V~t Format
Handling

Scenegraph

UtJSOIIfJlUI

generation
Parsing

Structural
descriptor
generation

50

framework is used to extract scenegraph content and structure from a source and to store

the same in a common scene format [72]. Next, certain nodes of the scenegraph may be

used for feature extraction. For example, the metadata node in X3D may be specifically

targeted and its contents examined. The feature extractor can select specific nodes and

create the respective indices for storage.

Once the scenegraph content and structure have been extracted, descriptors for both

structure and content are created. The process flow for searching based on scenegraph

structure and content is shown in Figure 15. The process begins by first indexing the

query without storing the descriptors of the query in the index. Next, a similarity (or

dissimilarity) metric is used to score the descriptor with the available descriptors in the

index. The top scored matches are returned.

V< Format
Handling

Parsing

Scenegraph

Text
descriptor
generation

Structural
descriptor
generation

Use similarity
measure to
compare

descriptor with
stored

descriptors

Return
Matches

Figure 15: Scenegraph based searching process flow.

3.4 Shape retrieval

Shape based retrieval algorithms in the TREE-D-SEEK framework can only be used for

retrieving isolated 3D models. The most widely used approach for comparing the

51

similarity between two 3D models is to evaluate the global geometric similarity between

them. For the purposes of this research, local similarity based approaches are not

considered. A common approach is to use descriptors to represent the global geometry of

3D models. 3D descriptors can be feature vectors wherein a vector of numeric values is

used to represent the shape of the 3D model. 3D descriptors may be statistical in nature

such as descriptors containing histogram summarizations of the shape of the object. 3D

descriptors may be graph-based descriptors wherein characteristics of the topology of the

3D model may be summarized. The process involved in creating these descriptors is

shown in Figure 16.

Hie i-ormat
Handler

3D model
registration

3D model
transformation

Descriptor
generation

Figure 16: 3D shape indexing.

Since 3D scenes in the corpora may be available in different 3D formats, a file format

handler is required to translate the scene into a 3D format that can be used for extracting

features. Since 3D models are considered similar under translation, scale and rotation

operations, a preprocessing step is required to register the 3D model into a canonical

coordinate system. In the next step, the model is transformed into a 3D representation

from which the desired features can be extracted. For example, a 3D mesh model may be

transformed into a voxelized model. The voxelized model may be transformed using

spherical harmonics to obtain numeric descriptors from the 3D model.

52

The searching process also uses the process flow shown in Figure 16 to generate the

descriptors for the query. Then, a similarity measure is used for scoring the match

between the query descriptors and the stored scene descriptors. The top hits are returned

back.

3.5 Semantic annotations based retrieval

The vision of the Semantic web and the necessity for improved recall and precision in 3D

retrieval techniques have resulted in significant interest in providing interpretable markup

of 3D objects and scenes. If available, 3D scene annotations can provide several

advantages.

Semantic annotations may improve the relevance of retrieved content. Retrieval of 3D

scenes based on free textual annotations may be error prone as the annotations are

subjective. Low-level content based retrieval may be comparatively more reliable as the

features used in retrieval are objective and automatically extracted [73]. However,

content-based retrieval methods for 3D scenes are based only on geometric matching of

3D models and do not account for the semantics associated with the 3D scene.

3D scene annotations allow for richer queries that can target the semantic properties of

objects present in 3D scenes. Improved recall and precision of 3D scene retrieval will

result in efficient reuse of 3D content thereby decreasing 3D authoring time. Semantic

annotations can improve understanding, user interaction and navigation in 3D scenes.

53

Domain based semantic annotations can assist in the creation and development of 3D

scenes [74].

Several works have focused on providing semantic annotations for 3D scenes. In [12], an

unsupervised segmentation algorithm is used to partition 3D models into its basic

components using a domain specific ontology. In [75], virtual reality scenes are

integrated with semantic annotation for efficient querying and visualization.

In the proposed retrieval strategy, 3D scenes may be retrieved based on available

semantic annotations. These semantic annotations of a 3D scene are assumed to be stored

separate from the 3D scene. Also, the semantics of the annotations must be based on a

domain specific ontology. Matching semantic annotations based on ontologies is a

difficult problem.

A significant problem is that the underlying domain ontologies may differ in the

conceptualization of a domain. As a result, the semantic annotations corresponding to

each conceptualization may be related, but it is difficult to identify a relationship between

the underlying ontologies. The annotations may also have been created using different

ontology languages and therefore may have different structure and syntax. Generally, the

current approach to comparing ontologies is to compare the linguistic and structural

similarities of the underlying ontologies [76]. In linguistic matching, ontologies are

matched using any textual label, class name, property name, individual name, etc. In

structural matching, the strategy is to represent ontologies using graph formalism and to

54

perform graph matching for comparing ontologies. The generic process involved in

indexing semantic annotations is shown in Figure 17. A format handler is required to

parse the particular ontology language used to specify the annotations. For example, an

OWL parser may be required to parse annotations formalized using the OWL language.

Semantic
Annotations

Format
Handling

Feature
Extractor

^
Text descriptor generation

Structural descriptor
generation

Figure 17: Semantic annotation indexing.

A feature extractor is required to extract relevant features that can be used to create

structural and text descriptor. The descriptors can then be stored in the index.

3.6 Common process model

Based on the above mentioned processes involved in the indexing of 3D scenes, a

common process model can be conceptualized. The common indexing process model

encapsulates the processes into three containers as shown in Figure 18. The software

architecture of the TREE-D-SEEK framework provides abstractions that support this

process model. The indexing process is performed offline. As a result, only the

descriptors for the query need to be generated at the time the query is submitted to the

search system. The query descriptors are then matched and scored using a similarity (or

dissimilarity) metric. The search process flow may be generalized into two phases. In the

55

first phase, the query is indexed without storing the descriptors in the index. The next

phase involves matching and scoring the query descriptor with the stored descriptors in

the index.

v
Scenegraph

TextSource •

Semantic
Annotations

File Format
Handler

u Model
Registration

Scenegraph
Handling

Parsing

Format
Handling

W 3D model
transformation

Feature
Extraction

Tokenizing

zzz
Stopping

Stemming

Expansion

Parsing

Descriptor
generation

Text descriptor
generation

Structural
descriptor
generation

Descriptor
generation

Text descriptor
generation

Structural-

descriptor
generation

Preprocessing Feature Extraction Descriptor Generation

Figure 18: Generalized indexing process model.

56

3.7 Discussion

An open framework that supports retrieval of 3D scenes based on the retrieval strategy

discussed in this chapter has not been proposed. A software architecture framework that

is capable of supporting the common indexing and search process flows derived in this

chapter has not been discussed or implemented. The TREE-D-SEEK framework

implements the retrieval strategy discussed in this chapter. Several indexing and

matching algorithms have been implemented as part of the TREE-D-SEEK framework as

proof of concept that the framework can support retrieval of relevant information sources.

The TREE-D-SEEK framework is discussed next.

57

Chapter IV

TREE-D-SEEK FRAMEWORK

The TREE-D-SEEK framework implements the retrieval strategy discussed in Chapter

III. The proposed strategy is to retrieve 3D content based on text sources, scenegraph

content, scenegraph structure and semantic annotations. The software architecture of the

TREE-D-SEEK framework provides a unified interface to encapsulate the retrieval

process for each of the above mentioned information sources. The rest of the chapter is

organized as follows. First, the software architecture of the TREE-D-SEEK framework is

discussed. Second, the software architecture is discussed from component, dataflow and

interface perspectives. Third, a description of the implemented indexing and matching

techniques implemented in the TREE-D-SEEK framework is presented.

4.1 TREE-D-SEEK: A component view

A retrieval process may be partitioned into two phases-the indexing phase and the

querying phase. In the indexing phase, feature descriptors are created for the content and

indexed. The process is performed offline and apriori to the querying phase. In the

querying phase, descriptors are created for a query using the same indexing process.

Next, the query descriptors are matched with the stored descriptors in the index and

results from the search are returned in a predefined order to the user. Before the retrieval

process can begin, the relevant content from available corpora must be discovered and

made accessible for indexing.

58

The top level components in the TREE-D-SEEK framework are shown in Figure 19. For

the purpose of this research, it is assumed that the relevant information sources from the

corpora already reside on a file system that is accessible for indexing. However, the

framework provides interfaces that support the integration of crawler implementations.

The components have a one to one correspondence with class names in the TREE-D-

SEEK framework. A brief description of each component is provided next.

Corpus I 1
query a results

DirectoryTraverser

IndexerManager

Common Scene Definition Framework

TREE-D-SEEK Framework

CSAM External tools
^^SearcherManger

I
Scenegraph Index Shape Index Semantic annotations index

Figure 19: TREE-D-SEEK: A component view.

59

4.1.1 Common Scene Definition Framework

The Common Scene Definition Framework (CSDF) [72] is a 3D rapid prototyping

framework. The CSDF is designed to be a superset of existing 3D technology. The CSDF

framework itself is extensible and capable of transforming 3D scenes in different formats

into a common scene definition. Synthesis modules in CSDF can synthesize or export

from the common scene definition to the desired 3D representation of the user. The

common scene definition elements have a mapping with the elements in the X3D

standard. A major benefit of using the CSDF in the TREE-D-SEEK framework is the

extensibility it provides in terms of parsing different 3D formats. Secondly, it provides a

common scene definition for different 3D scenes.

4.1.2 DirectoryTraverser

The DirectoryTraverser is capable of recursively traversing a local file system. It is

capable of discovering relevant content that can be fetched for indexing. The

DirectoryTraverser identifies relevant content based on individual file extensions. For

instance, a file that contains a ".owl" extension may be fetched for semantic annotation

indexing. The interface and class description is shown in Figure 20.

60

«interface»
Crawlerlnterface

+crawl(in file: Directory)

~ $

DirectoryTraverser

|+crawl(in File : Directory)

Figure 20: DirectoryTraverser.

4.1.3 IndexerManager

The IndexerManager component is responsible for handling and managing the indexing

process in the TREE-D-SEEK framework. The IndexManager delegates the indexing of

content to the respective content indexer. For instance, shape based content is sent to the

shapelndexer component. The IndexerManager class is shown in Figure 21.

IndexerManager
isTextlndexingEnabled : bool
isScenegraphlndexingEnabled : bool

-isShapelndexingEnabled : bool
-isSemanticlndexingEnabled : bool
-textlndexer: Textlndexer
scenegraphlndexer: Scenegraphlndexer
shapelndexer: Shapelndexer
semanticlndexer: Semanticlndexer

|+handle(in file : File): bool

Figure 21: IndexerManager.

4.1.4 SearcherManager

The responsibility of the SearcherManager component is similar to the functionality of its

counterpart- the IndexerManager component. The SearcherManager class is responsible

for handling the searching process in the TREE-D-SEEK framework. The

61

SearcherManager delegates the handling of the query to the respective content searcher.

For instance, shape based content is handled by the shape searcher. The SearcherManager

class is shown in Figure 22.

SeacherManager

-isTextlndexingEnabled : bool
-isScenegraphlndexingEnabled : bool
-isShapelndexingEnabled : bool
-isSemanticlndexingEnabled : bool
-textSearcher: TextSearcher
-scenegraphSearcher: ScenegraphSearcher
-shapeSearcher: ShapeSearcher
-semanticSearcher: SemanticSearcher
-returnHits : File

+handle(in file : File): bool

Figure 22: SearcherManager.

4.1.5 Matcher

The matcher component is responsible for scoring the query with the indices. The

matcher component scores the query based on a predefined similarity measure and

returns the matches in decreasing order of relevance.

4.1.6 Common Scene Annotation Modeler (CSAM)

The granularity of the retrieved content using the TREE-D-SEEK framework is at the 3D

scene level. In other words, entire 3D scenes are returned as relevant results for each type

of query. The primary objective of the Common Scene Annotation Modeler (CSAM) is

designed to provide an intra scene querying and retrieving capability. For instance, the

CSAM must be capable of retrieving individual 3D objects present in a particular 3D

scene. To provide this capability in the TREE-D-SEEK framework, the strategy is to

transform the common scene definition generated by the CSDF framework into a formal

specification based on the TREE-D-SEEK semantic annotation model. The process must

62

also allow for manual human annotation. At the time of writing this dissertation, the

CSAM module is not capable of fully specifying a common scene. In this research, the

TREE-D-SEEK semantic annotation model and the CSDF ontology are discussed. The

semantic annotation model is discussed further in the next chapter.

4.1.7 External tools

Certain external tools may be required in addition to the components outlined in the

framework. These tools may be used for extracting feature from the content or to

manually annotate 3D scenes. The TREE-D-SEEK framework has a wrapper class that

can execute external programs synchronously and asynchronously. Some common

classes that are used for both indexing and searching are described next.

4.1.8 Classes and interfaces common in both indexing and searching

Based on the process flow described in Chapter III, the searching process may also

involve preprocessing, feature extraction and descriptor generation for a query before the

query can be matched to the stored index. The Indexer classes in the TREE-D-SEEK

framework encapsulate these processes and are shown in Figure 23.

63

«interface»
Indexerlnterface

+index(in file: File)
+closelndex()

- ^

ShapelndexerJ iTextlndexerl iScenegraphlndexerl ISemanticlndexer

Indexer
^preprocessor
#featureExtractor
#descriptorGenerator
+setup(in properties : Properties)

S

Figure 23: Indexers.

The preprocessor classes are responsible for primarily parsing the files which may be

encoded in different formats. For shape based retrieval, preprocessing may involve model

registration as discussed in Figure 24.

«interface*
Preprocessorlnterface

+getDocument(): Document

7 ^

TextPreprocessor

Preprocessor

preprocessor: Parser

2

ScenegraphPreprocessor[jSemanticPreprocessor ± ShapePreprocessor

Figure 24: Preprocessors.

The FeatureExtractor classes are responsible for extracting features from the content.

Each FeatureExtractor class contains an Analyzer class. The Analyzer class is responsible

64

for refining the features extracted from the content. For instance, for text based retrieval,

the stemming, and keyword expansion is the responsibility of this class. The, extractor

classes are shown in Figure 25.

«interface»
FeatureExtractorinterface

+getFeatureAnalyzer() : Analyzer

Fea tureExtractor
|-analyzer: Analyzer

TextGraphFeatureExtractor

S
ShapeFeatureExtractor

ScenegraphFeatureExtractorl ISemanticFeatureExtractor

Figure 25: FeatureExtractors.

The DescriptorGenerator class is responsible for creating descriptors for extracted

features. The DescriptorGenerator class can store the descriptors in the index if the

process is invoked by the IndexerManager class. If the SearcherManager class invokes

the process flow, then the descriptors are not stored but are returned from the

DescriptorGenerator to the Searchers to be used further for querying the stored index.

«interface»
DescriptorGeneratorlnterface

+addTolndex(in d: Document, in f)
+setup(in p: Properties)
+closelndex()

DescriptorGenerator
indexWriter: IndexWriter
indexDirectory: Directory

TextDescriptorGenerator

S

ShapeDescriptorGenerator

ScengraphDescriptorGenerator SemanticDescriptorGenerator

65

Figure 26: DescriptorGenerators.

For each type of document and query handled by the IndexerManager or the

SearcherManager, a parser may be required for ingesting the content for feature

extraction. The parsers implement the Parser Interface as shown in Figure 27.

PSBParser

«interface»
Parserlnterface

+parse(): Document

5
OFFShapeParser CSDFParser OWLParser

Figure 27: Parserlnterface.

66

4.2 TREE-D-SEEK framework: A dataflow view

A dataflow view for the indexing process in the TREE-D-SEEK framework is shown in

Figure 28. It is assumed that all content is already available in a file system accessible for

indexing. The DirectoryTraverser is responsible for traversing recursively each file in the

corpus and based on the file extension is sent for indexing to the IndexerManager. The

IndexerManager is responsible for delegating the indexing of the content to its respective

indexer. If shape based indexing is required then the file is sent to the Shapelndexer.

Before the document is sent to either of the Scenegraphlndexer, Shapelndexer or

Semantic Indexer, the IndexerManager is responsible for sending the file to a

CSDFFramework instance, wherein a CSDF scene definition is created. Next, the CSDF

scene definition is sent to the CSAM component and to individual indexers. The CSAM

component is responsible for also creating an OWL/RDF based annotations from the

CSDF scene definition. The process of the annotation of the common scene definition

may require human intervention. As mentioned previously, the CSAM module has not

been fully implemented and at the time of writing this dissertation is not capable of fully

formulating a formal specification for the common scene definition. In this research, a

semantic annotation model for annotating 3D scenes for the CSDF framework and the

TREE-D-SEEK framework is proposed.

Each indexer component has a preprocessor, feature extractor and descriptor generator

component for creating feature descriptors for each file. Once the descriptors are created,

they may be stored in the corresponding index.

67

Text, Scenegraph,
Semantic Annotations,-

Shape

i
Corpora

DirectoryTraverser

I
files for indexing

I
IndexerManager

text

Preprocessor

FeatureExtra
ctor

Text Indexer

DescriptorGen
erator

Descriptors

-Semantic annotations

-scengraph,shape—i

CSDFScene'

CSDF Framework

CSDF scene—I—Shape
X X RDF/OWL store

, - •] CSAM |
"cene I

5
Preprocessor

FeatureExtra
ctor

Scenegraph
Indexer

DescriptorGen
erator

Preprocessor

FeatureExtra
ctor

Shapelndexer

DescriptorGen
erator

I
Preprocessor

FeatureExtra
ctor

Semantic
Indexer

DescriptorGen
erator

Descriptors Descriptors Descriptors

Text Index Scenegraph Index Shape Index Semantic annotations index

Figure 28: Indexing components and data flow in the TREE-D-SEEK framework.

The data flow in the searching phase of the TREE-D-SEEK framework is shown in

Figure 29.

68

keyword

Preprocessor

FeatureExtra
ctor

Text Searcher

DescriptorGen
erator

Descriptors

I
TextMatcher

T
IndexSearch

Text Index

scengraph.shapi

i CSDF scene—shape-

Preprocessor

FeatureExtra
ctor

Scenegraph
Searcher

DescriptorGen
erator

Descriptors
I

ScenegraphM
atcher

T
IndexSearch

Scenegraph Index

RDF/OWL store

Preprocessor

FeatureExtra
ctor

ShapeSearcher

DescriptorGen
erator

Descriptors
I

ShapeMatcher

T

Preprocessor

FeatureExtra
ctor

Semantic
Searcher

DescriptorGen
erator

Descriptors
I

SemanticMatc
her

IndexSearch T
IndexSearch

Shape Index Semantic annotations index

Figure 29: Dataflow in searching process.

69

4.3 TREE-D-SEEK framework implementation

As shown in Figure 30, the TREE-D seek framework is built on top of the Apache

Lucene Information Retrieval Library [77]. From the developer's perspective, the

framework uses the facade design pattern [78].

«interface»Facade
+crawl()
+search()

1

«subsystem»
TREE-D-SEEK Framework

— I —
«bind»

1 ^
«subsystem»

Apache Lucene

Figure 30: Software architecture: an implementation perspective.

Next, the implemented algorithms for indexing and matching text, scenegraph, shapes

and semantic annotations are discussed.

4.4 Retrieval based on text

The implemented retrieval uses the Term Frequency Inverse Document Frequency

(TFIDF) weighing strategy discussed in Chapter II. Documents are represented as vectors

in a multidimensional Euclidean space where each distinct term is a dimension in this

space. Each term is assigned a numeric weight to indicate the ability of the term to act as

70

a descriptor for the document and will typically have different weights in different

documents. The weights assigned to terms in a document can represent the coordinates of

the document vector in the Euclidean space. The corpus or collection of documents may

be represented by using a document by term matrix where each row is a document and

each column is a term and an entry at ith row and j t h column indicates the weight of term j

in document i. The most common weighing scheme used to assign weights to terms in

documents is the Term Frequency Inverse Document Frequency (TFIDF) weighing

scheme.

The Term frequency (tf) is the frequency of occurrence of a given term in a document and

is a local document specific statistic. Inverse Document Frequency (IDF) maps the

N
frequency of the occurrence of a term over the entire corpus. IDF is defined as ln(—)

n

where N is the total number of documents in the collection and n is the number of

documents containing the term. IDF is zero if a particular term appears in every

document. This indicates that the term may not be a good descriptor for the document or

any document in the collection.

In summary, in the TFIDF weighing scheme, heavier weights are assigned to terms that

occur frequently within a document and do not occur too frequently in other documents

or heavier weights are assigned to terms that occur moderately within a document and

over documents in the collection. The similarity measure used to compare a query to each

71

document is the cosine angle between vectors, i.e. for two vectors vlandv2, the cosine

angle is shown below.

_ v l . v 2 ,A.
cos6> = (4)

||vl||. | |v2||

There can be several potential text sources for retrieving 3D scenes. 3D scenes may have

relevant filenames. Occasionally, these file names are alphanumeric indicating version

number. Furthermore, some file names may have 3D as a suffix to them. As a

consequence, the file names may need to be normalized. If 3D scenes are web based, then

URL paths, hypertext, web page titles, and etc. may be potential text sources. The TREE-

D-SEEK framework provides an HTML parser to parse relevant source and index the

content. The TREE-D-SEEK framework provides an interface to the developer which

may be extended to use any parser of the developer's choice. Stopping is done based on

the SMART classification [79] of stop words. Stemming is done using the Porter

Stemmer [80]. Keyword expansion is done using Wordnet [81].

4.5 Retrieval based on scenegraph matching

In the scenegraph retrieval strategy implemented in the TREE-D-SEEK framework, two

descriptors are generated for every scenegraph. The first descriptor represents any

metadata present in the scenegraph. For example, metadata nodes such as the Worldlnfo

node in VRML or the Meta node in X3D contain human readable metadata for the 3D

scene. Also, technologies such as VRML and X3D allow the reuse of scenegraph nodes

in a 3D scene by defining a node, giving it a name and reusing the node by reference to

72

the original node. This may be done in VRML using DEF and USE. Such nodes are also

potential sources for descriptor generation. Words may be expanded using WordNet and

then stored in the index. Scenegraphs are also indexed based on texture file names,

diffusive color and other material properties. The second index created is solely for

matching the structure of the scenegraphs. Two algorithms have been implemented for

scenegraph structure indexing and matching.

4.5.1 Levenshtein distance

The Levenshtein distance edit distance algorithm [35] is implemented in the TREE-D-

SEEK framework for indexing and matching scenegraphs based on structure. This is an

algorithm that uses a dynamic programming technique to compare two labeled trees

based on deleting, inserting and relabeling nodes. The scoring function is given by

[editDis tan ce

vamiqueryLength, storedlndexLength

Where edit Distance is the reciprocal of the number of steps required by the Levenshtein

Algorithm to match the two strings, queryLength is the length of the query string and the

storedlndexLength is the length of the stored index.

As mentioned previously, the scenegraph of a 3D scene is a directed acyclic tree. The

nodes in the acyclic tree represent 3D objects and associated behavior present in the 3D

scene. The steps involved for creating a descriptor are shown in Figure 31.

(5)

73

3D Scenegraph

StringTokenizer

Figure 31: Scenegraph descriptor creation.

A lookup table is first created that contains each node type that may appear in the

scenegraph along with a corresponding string identifier. The value of the identifier may

be an integer based on automatically parsing the schema related to the scenegraph. A

scenegraph tree is traversed using a depth-first algorithm. At the start of the algorithm, a

string descriptor representing the structure of the scenegraph is initialized as empty. As

each node is visited, a string identifier corresponding to the visited node is concatenated

to the end of the string descriptor. If the node has a unique named attribute/label, it is

also added to the text index. The string obtained after the traversal of each node in the

scenegraph is the index/descriptor for the entire scene and is stored in the index.

For a query scenegraph, the above process is repeated. Once the string descriptor is

created, the descriptor is matched with existing scenegraph descriptors using the

Levenshtein distance algorithm. The other algorithm implemented is the tree

isomorphism approach.

74

4.5.2 Tree isomorphism

TREE-D-SEEK also performs structure matching using combinatorial algorithms for tree

matching. Each node is assigned a code based on a post order traversal. An example of

this process is shown in Figure 32. The assignment of codes to each node is performed

using a bottom up approach. The leaves of the tree are all given a code 1. Next, the parent

of the labeled leaves is assigned a code that is a concatenation of the count of the total

number of children+1 and the codes of the children sorted in ascending order of

dimensions. Matching may be done by comparing the root nodes using the Levenshtein

edit tree algorithm mentioned previously.

5,1,3,1,1 5,1,3,1,1 10,1,8,1,6,5,1,3,1,1

TreeC

Figure 32: Isomorphism codes for trees.

4.6 Shape retrieval

The TREE-D-SEEK framework is capable of retrieving content based on matching the

geometry of 3D objects. The proposed algorithm can only be used on 3D scenes that

75

contain isolated or single 3D models. The algorithm used is D2 on voxels [82]. The

objective is to calculate the distribution of distances between voxels and comparing the

histograms. The basic idea is obtained from the D2 algorithm for surface points given by

Osada [43]. Since distance calculations are invariant to translation and rotations, these

descriptors are easy to compute and matching is fast. The distance distribution function at

a given distance d is given by

D2(d) =
(Vp, q s P where lip - qll = d}\

(5)

where, P is the point set, ||p-q|| is the Euclidean distance between point's p and q and |P| is

the number of points in P. The dissimilarity distance (for matching) is given by

Diss_D2(Histogramp -Histogramq) = / Jvpf (6)
;=1

A pictorial representation of the data flow is shown in Figure 33.

Shape query

Shape Index

Mi
Voxelized model Descriptor

Figure 33: Shape matching.

The query model is first voxelized into a 256x256x256 voxel grid. Voxelization is

performed using external tools [83]. Then the descriptor calculations are performed on

76

the model using (5). The query descriptors are then compared with the stored descriptors

(6) in the shape index of the TREE-D-SEEK framework.

4.7 Semantic annotations retrieval

It is assumed that semantic annotations for 3D scenes are based on ontologies and are

stored separate from the scene. Furthermore, for the purposes of this research, the

ontologies and annotations must be based on the OWL formalism. A brief description of

the OWL language is described in the Appendix. Again, for the purposes of this research,

it is assumed that annotations are represented as individuals from the OWL formalism

and both annotations and their corresponding ontologies are available for indexing.

As mentioned previously, current approaches to comparing ontologies is to compare the

lexical and structural similarities of the underlying ontologies [76]. In lexical matching,

ontologies are matched using any textual label, class name, property name, individual

name, etc. In structural matching, the strategy is to represent ontologies using graph

formalism and to perform graph matching for comparing ontologies.

In the TREE-D-SEEK framework, and as proof of concept, a lexical indexing and

matching algorithm has been implemented. This involves using Wordnet based keyword

expansion and TFIDF on natural language elements such as the comment nodes of the

ontology. Classes and labels are first tokenized by removing any non alphabet symbols

and then separated into individual words if camel case is detected. Then, the individual

words are expanded using Wordnet. The obtained descriptors are then stored into the

77

index using the TFIDF weighing approach. In addition, the class names and labels are

also treated as distinct strings that may be matched based on the Levenshtein distance

algorithm mentioned previously. A weighted matching scheme based on the TFIDF and

the Levenshtein distance algorithm may be used for the overall scoring of the annotation

file.

78

Chapter V

TREE-D-SEEK SEMANTIC ANNOTATION MODEL AND CSDF

ONTOLOGY

As mentioned in Chapter IV, the rationale and objective for providing a formal

specification for a 3D scene indexed using the TREE-D-SEEK framework is to support

richer queries, improved retrieval and navigation within the 3D scene. From a framework

and 3D retrieval perspective, this strategy is not derived based on any commonality in

process flows of existing 3D retrieval solutions.

The Common Scene Annotation Modeler (CSAM) has been mentioned in the previous

chapter. The CSAM module accepts the common scene definition from the CSDF

framework and is responsible for semi-automating the generation of a formal

specification of the 3D scene based on the TREE-D-SEEK semantic annotation model.

At the time of writing this dissertation, the implementation of the CSAM module is not

complete. The CSAM module is not capable of fully specifying a common scene

definition obtained from the CSDF framework. The semantic annotation model based on

the CSDF framework is presented.

5.1 CSDF ontology

In general, the focus of 3D modelers is primarily on the geometric modeling and

rendering aspect of 3D scenes. The semantic annotation of 3D scenes is usually not part

79

of a formal design process in 3D scene development. Indeed, most 3D authoring tools

provide limited capabilities for specifying semantic annotations for 3D content. In this

chapter, a semantic annotation model for 3D scenes is proposed. The TREE-D-SEEK

annotation model is based on an ontology derived from the CSDF framework. The CSDF

framework is discussed in [72]. It consists of a superset of existing 3D technology along

with provisions for extensibility to include new 3D technologies. The top level view of a

section of the CSDF ontology is shown in Figure 34. Many of the classes present in the

CSDF ontology is based on the software classes in the CSDF framework. For instance,

the CSDFGeometry class exists both as a Java class in the CSDF class and an OWL class

in the CSDF ontology.

The ontology also provides concepts that can be used to store descriptors obtained from

the indexing strategy described in Chapter III. A 3D scene consists of one or more

scenegraphs. Each scenegraph has a collection of one or more GroupHolder. A

GroupHolder may contain a logical grouping of 3D objects. A GroupHolder may have a

mapping to a real world entity. For instance four walls can be grouped to a room. The

hasRealWorldMapping property maps a 3D object to its equivalent real world object

name.

80

hasTextAnnotations- String

hasScenegraphs

3DScene

CSDFScenegraph

-P
hasGroups A Vector

CSDFShape

hasAppearance

l_
CSDFAppearance

hasRealWorldMapping"

hasSceneGraphStructureVector

CSDFRealWorldConcept

CSDFSpationSceneLocation

has3DSceneLocation

hasScenegraphl_ocation_

CSDFScenegraphLocation

has3DShapeFeatureVector

hasGeometry

Vector

CSDFGeometry

Figure 34: An incomplete representation of the CSDF ontology.

The hasPart property allows 3D objects to be segmented into subparts which may or may

not have a real world mapping. A GroupHolder may contain other GroupHolders by

using a transitive property called controls. A GroupHolder may consist of one or more

3D objects. The CSDFGroupholder concept taxonomy is shown in Figure 35.

81

CSDFGroupHolde?)

(iC'SDF Switch) f QSDF&roup') (CSBF Transform **) (CSDFLad) CcSOFStatieGraup) (CSDFInline*)

Figure 35: GroupHolder taxonomy.

The properties associated with the CSDFTransform concept is shown in Figure 36.

hasTranslation

vector

SroupHolder y

Transform

hasBoundaryBoxSize

i ^ \

hasRotation«

hasScale

hasBoundaryBoxCenter

vector

X
vector

Figure 36: CSDFTransform properties.

vector

The 3D object may be an aggregation of 3D shapes. Each 3D shape has geometry and an

appearance associated with it. The Appearance concept specifies a material, color or

texture associated with the shape. An incomplete representation of the Appearance

concept is shown in Figure 37.

82

hasDiffuseColor,
Vector

String

hasTextun

Figure 37: Appearance concept.

The CSDFGeometry concept taxonomy is shown in Figure 38.

/ '
S*T**±

(GSDFGeometiy)

m Ny -sy
X

(CSDFIndatdFaceSrt) (CSDFCone) QcSDFCyMnder) (CSDFBox) (CSDFEIrationSiidj QsDFIndattdlineStp (
^"^!~a. itP*^ *W _^P ****•«_ s " ^ T. =J*^ ^f . _*~&^ ^ 1 - ! i _ _ ^sr&^^

^
X

Figure 38: CSDFGeometry taxonomy.

Some of the properties associated with a CSDFCylinder are shown in Figure 39.

83

hasHeigh
float

CSDFCylinder

isSolid

I
\7> float

hasRadius

Boolean

Figure 39: CSDFCylinder properties.

An example of a 3D scene in VRML 2.0 is shown in Figure 40.

84

geometry Cylinder {
radius 1
height 0.5
side TRUE
top TRUE
bottom TRUE

}
}

b o x —
Transform {

Translation 0 1 0
children [

Shape {

}

appearance USE MY
geometry Box {
size 0.5 3 0.5

-cylinder-
Transform {

translation 0 2 0
children [

Shape {
appearance USE MY
geometry Cylinder{
radius 1
height 0.5
side TRUE
top TRUE
bottom TRUE
}

Figure 40: Dumbbell in VRML 2.0.

The corresponding annotation of the above 3D scene based on the CSDF ontology is

shown in Figure 41.

85

Shapel L**-hasRealWorldMapping

hasRealWorldMapping

"Dumbbell Weight"

hasGeometry

X
Cylinder!

Figure 41: 3D scene annotation using the CSDF ontology.

The CSDF ontology supports the indexing mechanism described in this research. The

has3DShapeFeatureVector and hasMatching properties may be used to specify shape

descriptors and matching functions used for indexing and retrieving 3D shape. The

hasScenegraphFeatureVector may be used to store the scenegraph feature vector. Some

of the potential benefits of using the annotation scheme in the TREE-D-SEEK framework

are as follows:

86

1. Richer queries are possible such as "retrieve all 3D objects present in the

scene whose color is blue", "retrieve all 3D object that have a box as a

part", etc.

2. A directed, rooted, connected, acyclic scene-graph such as the

VRML/X3D scenegraphs is limited in its ability to express semantic

relationships. Two limitations mentioned in [64] are the difficulty of

expressing a shared object from a logical level and the difficulty in

expressing the semantics associated with the functionality or property of

an object in the scenegraph. The CSDF ontology is not acyclic and can

represent shared objects. It also provides the hasFunction property that

may be used to indicate the real world functionality of an object.

3. Many of the scenegraph objects, properties and relationships can be

automatically obtained by using the TREE-D-SEEK framework.

Relationships that contain child nodes with two or more parent nodes will

need to be specified manually.

4. The CSDF ontology may be used to specify a language independent high

level specification of a 3D virtual scene or world. This specification may

be used to populate the CSDF framework, thereby allowing rapid

prototyping of 3D virtual worlds in any 3D format and technology

supported in the CSDF. This capability is not the focus of this work and

has not been addressed.

5. This strategy of coupling a search engine framework with a rapid

prototyping framework supports the notion of 'search' as being part of a

87

formal process in 3D scene authoring and in the rapid prototyping of 3D

virtual worlds.

88

Chapter VI

IMPLEMENTATION, EXPERIMENTS AND DISCUSSIONS

The primary objective of this research is to design and implement a framework for

retrieving 3D content. Search engine developers may use, modify or extend the

framework to provide desired solutions for retrieving 3D content. The framework

supports 3D retrieval based on indexing and matching syntactic metadata, scenegraph

structure, shape and semantic annotations. Several indexing and matching algorithms

have been implemented as proof of concept that the software framework is indeed

capable of encapsulating descriptor based 3D indexing and matching strategy for

disparate information sources. A semantic annotation model is proposed in the TREE-D-

SEEK framework to support richer queries and improved search within 3D scenes. At the

time of writing this dissertation, the framework is not fully capable of indexing 3D scenes

based on the proposed semantic annotation model. This is because the CSDF ontology

does not contain all classes corresponding to the CSDF software classes in Java.

In this chapter, several experiments are conducted to test the retrieval effectiveness of the

indexing and matching algorithms implemented as part of the framework. The goal is to

show that such experiments are possible based on the use of this framework and not

necessarily to verify the performance of individual implementations of algorithms. The

rest of the chapter is organized as follows. First, details of the implementation of the

TREE-D-SEEK framework are discussed. Next, supported query expressions for each

89

type of content are presented. This is followed by the result of some experiments

conducted to test the retrieval effectiveness of the implemented indexing and matching

algorithms. Finally, a discussion of the potential use of a search system that uses the

framework from an end user's perspective is provided.

6.1 Implementation details

The TREE-D-SEEK framework was written in Java 6 and is built on top of the Apache

Lucene [77] framework. The framework provides capabilities to store descriptors as part

of the Lucene index or as entries in a MySQL database. The framework provides the

capability to make system calls to execute external programs. Text, scenegraph, shape

and semantic annotations based indexing and matching algorithms are implemented as

part of the framework. For shape based retrieval, 3D models were voxelized using [84].

For creating shape-based descriptors, an external descriptor generator program using C++

was created. The framework calls this descriptor generator program during shape

indexing and searching to perform shape based retrieval.

6.1.1 Administration

For the purposes of this research, information sources used for testing the framework

contained plain text, scenegraph, shape and semantic annotation in OWL. The framework

also has built in parsers for HTML and XML. To administer the indexing and searching

processes in TREE-D-SEEK, the framework provides control files for indexing and

searching. An example of an indexing administration file and an example of a searching

administration file are shown in Figure 42 and Figure 43 respectively.

90

//TREE-D-SEEK framework indexing file
Textlndexer = false
TextExtension=txt
TextParser= parsers.TextFileParser
TextCommandLineFeatureAnalyzer= Analyzers.SynonymAnalyzer
TextIndexDirectory= c :\\phd\\demo\\textretrieval\\textindex

Scenegraphlndexer=true
ScenegraphExtension=x3d
ScenegraphFeatureAnalyzer=Analyzers.SynonymAnalyzer
ScenegraphIndexDirectory=c:\\phd\\demo\\scenegraphretrievar\\
scenegraphindex

Shapelndexer=false
ShapeExtension=xml
ShapeFeatureExtractor=d2

Semanticlndexer=false
SemanticExtension=owl
SemanticFeatureAnalyzer=org.apache.lucene.analysis.standard.StandardAnaly
zer
SemanticIndexDirectory=c:\\phd\\demo\\SemanticRetrieval\\semanticindex

Figure 42: Indexer-administration file.

The indexer-administration file provides the capability to select the particular directory

that contains the target corpora and also to select a directory to store the index if required.

The other options are that descriptors generated may be stored in the Random Access

Memory (RAM) or a MySQL database. The file also provides the capability to control

the indexing process wherein a particular type of indexing may be switched on or off. For

example, in Figure 42, shape, semantic and text indexing is switched off. If more than

one type of indexing is turned on, the document in the corpora is indexed sequentially

based on the order in which the type of indexing is specified in this file.

91

setup file for search component of TREE-D-SEEK

TextCommandLineSearcher = false
TextCommandLineFeature Analyzer=Analyzers. SynonymAnalyzer
indexDirectory=C:\\phd\\demo\\textretrieval\\textindex

TextSearcher = false
TextExtension=txt
TextParser= none
TextFeatureAnalyzer=org.apache.lucene.analysis.standard.StandardAnalyzer
TextIndexDirectory= c:\\phd\\phdData\\index\\textIndex
Boost=

ScenegraphSearcher=true
SearchMode=true
S cenegraphExtension=x3 d
ScenegraphFeatureAnalyzer=Analyzers.SynonymAnalyzer
ScenegraphIndexDirectory=c:\\phd\\demo\\scenegraphretrieval\\scenegraphindex
StructuralPrecision=l .Of
S tructuralBoost=0.5
TextBoost=0.5

ShapeSearcher=false
ShapeExtension=xml
ShapeFeatureAnalyzer=d2
ShapeIndexDirectory=c:\\phd\\demo\\scenegraphretrieval\\shapeindex
Boost=0

SemanticSearcher=false
SemanticExtension=owl
SemanticFeatureAnalyzer=org.apache.lucene.analysis.standard.StandardAnalyzer
SemanticIndexDirectory=c:\\phd\\demo\\SemanticRetrieval\\semanticindex
Boost=1.00f
StructuralBoost=1.00f
TextBoost=1.00f

Figure 43: Searcher-administration file.

The searcher-administration file provides capabilities similar to its counterpart- the

indexer administration-file such as the capability of turning off a particular type of search

for an information source or level. The file also provides the capability of weighing a

92

indexing or matching scheme. For example, in the scenegraph based retrieval method

weights may be assigned individually to scenegraph content and structure so that the user

can "boost" the significance of either scenegraph content or scenegraph structure to

improve relevance during retrieval.

6.1.2 CSAM Implementation details

The TREE-D-SEEK semantic annotation model and the CSDF ontology were created

using Protege 4.0 Beta [85]. The ontology had been written using the OWL-DL

formalism. The CSAM module uses the OWL API [86] to parse the target file to be

indexed and to create a new OWL based TREE-D-SEEK semantic annotation file. The

semantic annotation file contains only a mapping between the classes generated using the

CSDF framework and the OWL classes of the CSDF ontology. To provide higher level

semantics, manual annotation or a manual mapping to a higher level class/concept of

domain ontology is needed.

6.1.3 CSAM current implementation status

The CSDF ontology has not been completed at the time of writing this dissertation. The

current implementation status of the CSDF ontology is shown as Table 1. A checkmark

indicates that the corresponding class in the CSDF ontology has capability to express all

its associated object and data properties and axioms. At the time of writing this

dissertation, the CSDF ontology consists of 58 classes.

93

Table 1: Available classes in CSDF ontology.

CSDF Framework Class

CSDF Appearance

CSDFBox

CSDFColor

CSDFCone

CSDFCoordinate

CSDFCylinder

CSDFDirectionalLight

CSDFExternProtoDeclare

CSDFField

CSDFFieldObjRef

CSDFFontStyle

CSDFGroup

CSDFImageTexture

CSDFIndexedFaceSet

CSDFIndexedLineSet

CSDFMaterial

CSDFNavigationlnfo

CSDFNode

CSDFNormal

CSDFOrientationlnterpolator

CSDFPixelTexture

CSDFPlaneSensor

CSDF OWL Class

S

s

s

s

s

s

s
V

V

V

V

94

CSDFPointLight

CSDFPointSet

CSDFPositionlnterpolator

CSDFProtoInstance

CSDFProximitySensor

CSDFRoute

CSDFScene

CSDFScript

CSDFShape

CSDFSphere

CSDFSwitch

CSDFText

CSDFTextureCoordinate

CSDFTextureTransform

CSDFTimeSensor

CSDFTouchSensor

CSDFTransform

CSDFUse

CSDFViewpoint

S

•

•

S

S

6.1.4 Supported query expressions

The TREE-D-SEEK framework provides direct support for the following types of query

expressions for information retrieval. For scenegraph and shape-based retrieval, a user

submits an entire 3D model/scene file as a query. For retrieval based on semantic

95

annotations, a user is also required to submit an entire OWL annotation file. TREE-D-

SEEK supports several types of query expressions for text based retrieval. For text based

retrieval, a user may provide a document that can be parsed into text using one of the

parsers available in the TREE-D-SEEK framework. At the time of writing this

dissertation, the framework supports parsing of Hyper Text Markup Language (HTML)

documents and Extensible Markup Language (XML) documents. The developer can also

create their own parser implementations for parsing the desired type of content.

In addition, the TREE-D-SEEK framework supports automatic handling of several

textual query expressions. A user may enter a query expression containing keywords for

searching. A query expression may contain Boolean operators such as AND, OR and

NOT. A query entered may be a phrase. A query may have wild cards in it. A query

may have a range within which a result should be obtained. The user may also extract

text from other media and sources provided that a parser is available and useable by the

TREE-D-SEEK framework. For text, the supported query type, an example of the

supported query syntax, and the contents of matched document are shown as Table 2.

Table 2: Supported text query expressions.

Text query

type

Boolean based

queries

Phrase queries

Example of supported query

expression

Lets tree AND seek

" TREE-D-SEEK rocks"

Documents retrieved will contain

text containing both TREE and SEEK

text contain the words TREE and SEEK

96

Wild card

queries

Range Queries

TREE*

Date[031609 TO 031709]

juxtaposed with each other

Text that contains the word TREE followed by

a string of characters

a date between 031609 and 031709

6.2 Experiments

The indexing and matching algorithms implemented as part of the TREE-D-SEEK

framework are tested. A test-bed consists of two corpora namely the Princeton Shape

Benchmark and a TREE-D-SEEK corpus is used and created respectively. The TREE-D-

SEEK corpus is a combination of manually collected set of documents pertaining to text,

scenegraph, shape and semantic retrieval. As mentioned previously, the primary objective

of this work is to create an open, extensible framework for retrieving 3D scenes. The

experiments discussed in this chapter prove that the framework can indeed retrieve 3D

scenes based on text, shape, scenegraph and semantic annotations.

The rest of this section is organized as follows. First, the test bed is discussed. Next, some

timing results are presented for indexing content based on text, scenegraph, shape and

semantic annotations. Next, retrieval effectiveness is calculated using average-

precision/recall curves using a technique described in the appendices.

97

6.2.1 Test bed

6.2.1.1 Princeton Shape Benchmark (PSB)

The PSB consists of freely available 1814 3D models from the Web. The models in the

PSB have been manually classified. The available categories are shown in Figure 44. The

3D models are stored using a polygonal surface format. The PSB is purely a shape

benchmark. It does not support the evaluation of text or semantic annotation retrieval

algorithms.

Princeton Shape Benchmark Categories

• Series 1

Figure 44: PSB categories.

6.2.1.2 TREE-D-SEEK corpus

Twenty 3D scenes were collected and manually classified. They were obtained from [87]

and [88]. The 3D scenes were either VRML 2.0 or X3D based. The scenegraphs had

structure and text that were used for retrieval. The corpus also contains twenty OWL

8 #

s .& y f

98

ontologies collected from the WWW. Each OWL file was populated with random

individuals/instances. Each 3D scene in the corpus consists of basic shapes. The 3D

scenes were manually classified in two groups. In one group, each 3D scene contained

only 3D primitive shapes. Scenes in the other group contained the same primitive shapes

with an axis rendered through though each shape.

6.3 Indexing times

The framework was used to evaluate the time taken by the framework for performing

text, scenegraph, shape and semantic indexing. The test was conducted on a non

dedicated machine for indexing with the specifications shown in Figure 45.

Hardware environment

CPU: Intel Core Duo at 1.73 Ghz

RAM: 2038 MB

Drive configuration: SCSI

Software environment

Lucene Version: 3.1

Java Version: 1.6

05" Version: Windows Vista Home

Location of index: file

Figure 45: Hardware and software configuration.

The TREE-D-SEEK corpus was used to obtain the graph shown in Figure 46. As

expected, scenegraph retrieval with lookup took longer than the scenegraph indexing with

no lookup, semantic indexing and text indexing. The scenegraph indexing with no lookup

99

uses the bottom up isomorphism strategy for indexing structure. The text corpus used in

this experiment is from [89]. For shape indexing, the PSB was used. For each model, the

average indexing time was 45.1 seconds.

16

14

• D
C

o u
V)

c
01

-o
_c
o
4-»

<u
£

12

10

8

6

4

500 1000

size of corpora in Kbytes

1500

-Textlndexing

•Scenegraph Indexing

•ScenegraphWithNoLooku

P

•Semanticlndexing

Figure 46: Indexing times.

6.4 Retrieval performance

Retrieval performance of the implemented indexing and matching strategies are discussed

using precision and recall. A discussion on Information Retrieval (IR) metrics, recall and

precision metrics and how the recall-precision graphs are obtained is discussed using an

example in Appendix Al.

100

6.4.1 Text based retrieval

The TREE-D-SEEK corpus was used to test the TFIDF weighting scheme. Text was

collected from [89]. The average precision/recall curve is shown in Figure 47.

Figure 47: Average precision/recall for text retrieval.

6.4.2 Shape based retrieval

Since the PSB is a shape benchmark, D2 on voxels was used for shape matching. In,

Figure 48, the average precision over recall curve for retrieval based on shape matching

and scenegraph is presented. The curve presents precision recall values averaged over all

models in the PSB. The PSB is purely a shape benchmark. Each model in the PSB

consists of only polygon soups.

101

Shape retrieval
1.2 r '

1

0.8

c
o

3 0.6

0.4

0.2

0

0 0.2 0.4 0.6 0.8 1 1.2

Recall

Figure 48: Averaged precision versus recall plot.

6.4.3 3D scenegraph retrieval

To test scenegraph retrieval, the TREE-D-SEEK corpus was used. The 3D scenes were

manually classified into two groups-3D scenes that contain an axis rendered through the

objects in the scene and 3D scenes that consist of basic geometric shapes only and no

axis. The scenegraphs were indexed both for structure and content using the strategies

discussed in chapter IV. Scenegraph retrieval was compared with 3D shape retrieval for

this corpus, and the results are shown in Figure 49. For the given corpus, retrieval using

scenegraph content and structure yielded better recall-precision than the shape matching

102

using D2 on voxels. This was because the distinction between the shapes with axis and

shapes without axis was not as significant for the D2 on voxels shape indexing method as

it was in scenegraph structure and content indexing.

Scenegraph retrieval
1.2

0.4

0.2

_"~S*=y>

23
saa»a51 Hk

" ^

•-"^—Scenegraph Retrieval

• -„*• shape retrieval

0 0.2 0.4 0.6 0.8

recall

1.2

Figure 49: Scenegraph retrieval.

6.4.4 3D semantic retrieval

To test semantic retrieval, the TREE-D-SEEK corpus was used. Seven OWL ontology

files were collected from the web. Corresponding to each file, ten OWL based semantic

annotations files were created. Each of the ten semantic annotation file corresponding to

the OWL ontology contain random individuals/instances corresponding the classes

available in the ontology.

103

The recall/average precision graph obtained using the implemented semantic retrieval

strategy is shown in Figure 50.

Semantic Retrieval
1.2

1

c 0.8
o

:S 0.6

4 0.4

0.2

0

Figure 50: Average precision/recall for semantic retrieval.

6.5 Discussion

As the primary objective of this work is to design and implement a framework that is

capable of retrieving 3D scenes and not necessarily to find or evaluate retrieval

algorithms, these experiments result in three observations. First, performance metrics for

retrieval may be collected using the TREE-D-SEEK framework. Second, the framework

may be tested on several information sources and levels. Third, based on the recall-

precision curves obtained for each type of retrieval, the behavior of the TREE-D-SEEK

framework and its indexing algorithms is not inconsistent with what may be expected

from IR systems.

•Semantic Retrieval

) 0.5 1 1.5

Recall

104

Since the CSAM module is not fully implemented, it cannot be tested to show all the

benefits described in the previous chapter. At the time of writing this dissertation, the

CSAM module can only support basic scene based queries such as retrieving all objects

in a scene that have the same material, color etc.

Based on the experiments conducted in this chapter, the usability of the framework or a

search system that may use this framework may be theorized. A search system from the

end user's perspective is shown in Figure 51.

3D corpora

Figure 51: 3D search perspectives.

105

From the end-user's perspective, the TREE-D-SEEK framework can support retrieval of

3D scenes based on multiple "views" for indexing and searching. Each view presents

aspects of the 3D scene at different information levels. This research suggests that an end

user can indeed retrieve 3D content based on separating or combining views or by using a

drill down strategy, wherein, for example, a user starts by performing a text search and

this leads to an automated retrieval using the rest of the views. Multimodal queries may

also be used by assigning numeric weights to each view. The appropriate querying

strategy clearly will depend on several factors such as level of expertise of the end-user,

type of information need, and etc. This research also highlights the importance of

providing a search capability at two levels for 3D scenes. The first is at the document

level wherein an entire scene may be returned as results of a search. The second level is

to provide a search capability within a 3D scene. This is conceptually supported by the

framework by using the TREE-D-SEEK semantic annotation model and the CSDF

ontology.

106

Chapter VII

CONCLUSIONS AND FUTURE WORK

In summary, a strategy for retrieving 3D scenes is presented. The proposed strategy is to

unify processes for retrieving 3D scenes from information sources. Relevant information

on a 3D scene may be available as free text annotations and stored as text files. If a 3D

scene is web-based, then the webpage containing the 3D scene, URL, 3D scene file name,

etc. are potential information sources. If a 3D scene is scenegraph based then the

scenegraph may also be an information source. A 3D scene may also contain low level

content that may be used for indexing and matching. Semantic annotations of 3D scenes

based on domain specific ontologies may also provide information that may be used for

3D scene retrieval.

In this research, TREE-D-SEEK, a framework for retrieving 3D scenes, is presented.

The TREE-D-SEEK framework implements the retrieval strategy proposed in this

dissertation. The framework is capable of retrieving 3D scenes by indexing and matching

free text annotations, scenegraphs, shapes and semantic annotations. A software

architecture for the framework is designed and implemented by first analyzing the

individual process flows in retrieving 3D scenes based on each of the above mentioned

types of information sources and then by generalizing and abstracting each of the

individual process flows into a common process flow. The software architecture design

uses a facade based pattern to encapsulate and hide the complexity of each step in the

107

common process flow. The TREE-D-SEEK framework is implemented on top of the

Apache Lucene IR library. The software architecture of the TREE-D-SEEK framework

presents clear interfaces that may be used for customizing and implementing retrieval

algorithms. The TREE-D-SEEK framework can therefore be used as a test bench for

evaluating 3D retrieval algorithms. As proof of concept, several indexing and matching

algorithms are implemented.

In this research, a new semantic annotation model is also proposed for annotating and

indexing 3D scenes. The semantic annotation model is ontology based. The ontology

provides a formal conceptualization of a 3D scene obtained from the Common Scene

Definition Framework.

7.1 Contribution to existing research on 3D retrieval

Based on the review of research in 3D retrieval, work prior to this research has not

outlined a generic strategy for retrieving 3D content wherein a unified approach was used

for indexing and matching content from different information sources and information

levels. In this work, a unified strategy and framework is proposed for retrieving 3D

content based on indexing low-level content, syntactic metadata, scenegraph content and

structure, and semantic annotations.

Existing search systems are closed systems. A description of the software architecture of

the search systems from a software class perspective is not available. The capability to

reuse and fine tune the search system for a specific corpus or for implementing a new

108

retrieval scheme is not available for a 3D search engine developer. In this dissertation,

TREE-D-SEEK, an open, extensible framework for retrieving 3D scenes, has been

proposed and implemented. By using the TREE-D-SEEK framework, a developer may

develop indexing and matching algorithms for the supported information sources and

create a search system based on user needs and type of corpora being indexed. The

developer can develop both unimodal and multimodal query modes that are most suitable

for retrieving content from a targeted corpus. A novel approach proposed in this research

is to support retrieval and therefore queries based on scenegraph content and structure.

No previous work has proposed retrieval based on scenegraph structure.

Finally, a new 3D annotation model for indexing 3D scenes has been proposed in this

dissertation. The annotation model is based on an ontology derived from a rapid

prototyping framework. The annotation model supports the retrieval strategy proposed in

this dissertation.

Although it may not be appropriate to compare a framework to complete search systems,

a comparison of capabilities of the TREE-D-SEEK framework to the above mentioned

3D search engines and repositories is shown in Table 3. The checkmarks indicate existing

capabilities already implemented and provided as part of the framework.

109

Table 3: Capability comparison.

Search Engine
Queries

Textual queries

Query by shape

Scenegraph

Metadata

Semantic
Metadata
2D Sketch

3D Sketch

Princeton
Search
Engine

S
•

S

•y

s

3DESS

s

y
v

Google 3D
Warehouse

S

y

Ogden
VI

s:

3D
Search

s

V

TREE-
D-

SEEK

•
s
s
s
s

7.2 Future enhancements

Several enhancements may be envisioned. An immediate enhancement is to include new

indexing and matching algorithms in the TREE-D-SEEK framework. Descriptors

generated via these indexing methods may be evaluated using the TREE-D-SEEK

framework. Currently, the framework is capable of retrieving only 3D objects. Behavior

of the objects in 3D scenes is not indexed. Future work would support retrieval based on

3D object behavior. Indexing of 3D object behavior in 3D scenes would enable matching

of 3D scenes based on animation.

From an implementation standpoint, indexing of corpora is sequential; i.e., if the

information sources contain information at different information levels, the content is

indexed based on the order of indexing strategies appearing in the indexer configuration

110

file. An improvement can be envisioned wherein a multithreaded indexing model may be

used. In such a model, text indexing, scenegraph indexing, shape indexing and semantic

indexing may be performed in parallel.

The TREE-D-SEEK framework can be extended to encapsulate the process of relevance

feedback and learning algorithms so that the precision of returned results may be

improved. Relevance feedback is an IR concept wherein the information need of a user is

represented and refined by a search system based on the user's relevance assessment of

the retrieved results obtained from an initial query.

The TREE-D-SEEK semantic annotation model presents several opportunities for future

research. First, the CSDF ontology may be extended to provide a high level concept for

each class available in the CSDF framework. The CSAM module discussed in Chapter IV

may be fully implemented to enable translation of a CSDF 3D scene specification to a

formal scene specification using the CSDF ontology. Any content indexed by the TREE-

D-SEEK framework may be indexed, serialized and stored using RDF/XML. This would

enable querying each 3D scene using technologies such as RQL and SPARQL.

A 3D authoring environment that uses both the CSDF framework and the TREE-D-SEEK

framework to create 3D scenes can be built. This would enable the search capability to be

part of the authoring and rapid prototyping environment. The underlying semantic

annotation model may also assist in the creation and annotation of the 3D scenes.

I l l

REFERENCES

[1] Microsoft. "HealthVault Beta." Internet:

http://www.healthvault.com/index.html?rmproc=true [Jan. 18, 2009].

[2] Google. "Official Google Blog: Google Health." Internet:

http://googleblog.blogspot.com/2008/02/google-health-first-look.htmirJan. 18, 2009].

[3] Linden Lab. "Second Life: Virtual worlds, avatars, 3D chat, online meetings."

Internet: http://secondlife.com/ [Jan. 18, 2009].

[4] P. Shilane, P. Min, M. Kazhdan, and T. Funkhouser. "The Princeton Shape

Benchmark," in Proc. SMI, 2004. pp 167-178.

[5] P. Gorder."3DESS: a search engine enters the third dimension,"Computing in Science

and Engineering, Vol. 6(6), 2004, pp. 4-7.

[6] Google. "3D Warehouse." Internet: http://sketchup.google.com/3dwarehouse/. [Jan 18

2009].

[7] M. Suzuki, "A web based retireval system for 3D polygonal models, " in 20th

NAFIPSInternational Conference (NAFIPS2001),200l, pp. 2271-2276.

[8] Informatics and Telematics Institute. "3DSearch - Informatics and Telematics

Insitute." Internet: http://3d-search.iti.gr/3DSearch [March 6, 2009].

[9] L. Ding, T. Finin, A. Joshi, R.Pan, R. Cost, Y. Peng, P. Reddivari, V. Doshi, J. Sachs.

"SWOOGLE: A search and metadata engine for the Semantic Web, " in Proceedings of

the Thirtheenth ACM Conference on Information and Knowledge Management, 2004, pp.

652-659.

http://www.healthvault.com/index.html?rmproc=true
http://googleblog.blogspot.com/2008/02/google-health-first-look.htmirJan
http://secondlife.com/
http://sketchup.google.com/3dwarehouse/
http://3d-search.iti.gr/3DSearch

112

[10] Princeton 3D shape group. "3D search engine." Internet:

http://shape.cs.princeton.edu/search.html. [March 19, 2009]

[11] G.Vasilakis, M. Pitikakis, M. Vavalis, C. Houstis. "A Semantic Based Search

Engine for 3D Shapes : Design and Early Prototype Implementation," Integration of

Knowledge, Semantics and Digital Media Technology, EWIMT, 2005, pp. 391- 397.

[12] O. Symonova, M. Dao, G.Ucelli, R. Amicis, "Ontology Based Shape Annotation and

Retrieval,"'2nd International Workshop on Contexts and Ontologies: Theory, Practice

and Applications, 2006.

[13] P. Min. "A 3D model search engine." PhD Thesis, Princeton University. New

Jersey, 2004.

[14] T. Funkhouser. "Overview of 3D Object Representations."Internet:

http://www.cs.princeton.edu/courses/archive/spr04/cos426/lectures/13-reps.pdf. [Dec. 1,

2008]

[15] H. Anan."Digital Library Services for 3D models." Phd Dissertation, Old Dominion

University, Virginia, 2004.

[16] University of Iowa. "Voxel Processing in a nutshell." Internet:

http://www.uiowa.edu/~image/iaf/concepts/voxels/voxel processing.html [Dec. 1, 2008].

[17]. T. Funkhouser. "Scene Graphs and Modeling Transformations."Internet:

http://www.cs.princeton.edU/courses/archive/fall00/cs426/lecmres/transform/transform.p

df. [Dec 1, 2008.]

[18] L. Belfore II. "Virtual worlds: An architecture for constructing large VRML

worlds." Transactions of the Society for Computer Simulation International, Vol. 18, pp.

24-40,2001.

http://shape.cs.princeton.edu/search.html
http://www.cs.princeton.edu/courses/archive/spr04/cos426/lectures/13-reps.pdf
http://www.uiowa.edu/~image/iaf/concepts/voxels/voxel
http://www.cs.princeton.edU/courses/archive/fall00/cs426/lecmres/transform/transform.p

113

[19] W3C consortium. "X3D." Internet: http://www.web3d.org/about/overview/ [Feb. 5,

2009].

[20] D. Brutzman and D. Leonard. X3D: Extensible 3D Graphics for web authors,

Morgan Kaufmann Publishers, 2007.

[21] MIT. "Scenegraphs."Internet: http://web.mit.edu/ivlib/www/iv/scenes.html [Feb 1,

2009].

[22] Java.net. "An introduction to scenegraphs." Internet:

http://download.iava.net/media/iava3d/iavadoc/1.4.0/iavax/media/i3d/doc-

files/SceneGraphOverview.html [February 4, 2009].

[23] E. Greengrass. "Coursework Materials fo 1ST 441 Information Retrieval and Search

Engines." Internet:

http://clgiles.ist.psu.edu/IST441/materials/texts/IR.report.120600.book.pdf [December 4,

2008]

[24] M: Damashek. "Gauging similarity with n-grams: Language-independent

categorization of text." Science. Vol. 267, 1995, pp. 843-848.

[25]W. Cooper, F. Gey and D. Dabney. "Probabilistic retrieval based on staged logistic

regression," in Proceesings of the 15th Annual International ACM SIGIR Conference on

Research and Development in Information Retrieval, 1992, pp. 198-209.

[26] J. Hunt, K. Vo, W. Tichy. "An emperical study of delta algorithms." Lecture notes in

Computer Science. Springer Berlin/Heidelberg, Vol. 1167, 1996, pp. 49-66.

[27] D. Trinkle. "Official RCS Homepage." Internet:

http://www.cs.purdue.edu/homes/trinkle/RCS/ [December 25, 2008.]

http://www.web3d.org/about/overview/
http://web.mit.edu/ivlib/www/iv/scenes.html
http://Java.net
http://download.iava.net/media/iava3d/iavadoc/1.4.0/iavax/media/i3d/doc-
http://clgiles.ist.psu.edu/IST441/materials/texts/IR.report.120600.book.pdf
http://www.cs.purdue.edu/homes/trinkle/RCS/

114

[28] S. Chawathe, A. Rajaraman, H. Molina and J. Widom. "Change detection in

heiracchically structured information, " in Proceedings of the ACM SIGMOD

International Conference on Management of Data, 1996., pp. 493-504.

[29] G. Valiente. Algorithms on trees and graphs. Springer- Verlag, 2002.

[30] A. Aho, J. Hopcroft, and J. Ullman. The Design and Analysis of Computer

Algorithms, Addison-Wesley, 1974.

[31] K. Tai. "The tree to tree correction problem." Journal of the Association for

Computing Machinery, Vol. 26, pp. 422-433,1979.

[32] S. Selkow. "The tree to tree editing problem", Information Processing Letters, pp.

184-186, vol 6, 1977.

[33] K. Zhang, R. Statman, and D. Shasha. "On the editing distance between unordered

labeled trees." Information Processing Letters, vol. 42, pp. 133-139, 1992.

[34] G. Valiente. Simple and efficient subtree isomorphism. Department of Software,

Technical University of Catalonia. 2000. LS1-00-72-R.

[35] G. Valiente. Simple and efficient tree comparison.Technical report, Department of

Software, Technical University of Catalonia. 2001.

[36] G. Cobena, S. Abiteboul, and A. Marian, "Detecting changes in XML documents,"

in Proceedings of the 18th International Conference on Data Engineering, 2002, pp. 41-

52.

[37] W. Yuan,D. Dewitt, J. Cai. "X-diff: An effecive change detection algorithm for

XML documents," in Proceedings of the 19th International Conference on Data

Engineering, 2003, pp 519-530.

115

[38] F.Cubera and D. Epstein. "Fast difference and Update of XML documents, " in

XTech, 1999.

[39] H. Mayurama, K. Tamura and R.Uramoto. "RFC-2803. Dom-Hash." Internet:

http://tools.ietf.org/html/rfc2803 [December 28, 2008]

[40] JohanTangelder, and Remco Vetcamp. "A survey of content based 3D shape

retrieval methods, "in Proc. SMI, 2004, pp. 144-156.

[41] C.Zhang, C. and T. Chen. "Efficient feature extraction for 2D/3D objects in mesh

representation."//! CIP, 2001, 935-938.

[42] E. Paquet. "Description of shape information for 2D and 3D objects." Signal

Processing: Image Communication,vo\. 16, pp. 103-122,2000.

[43] R. Osada,T. Funkhouser,B. Chazelle, D. Dobkin."Shape distributions."^CM

Transactions on Graphics, vol 21, pp. 807-832. 2002.

[44] M. Ankerst, G. Kastenmuller, H. Kriegel, T. Seidl. "3D shape histograms for

similarity search ad classification in spatial databases." Lecture Notes in Computer

Science(SSD), vol 1651, pp. 207-226, 1999.

[45] M.Kazdhan, T.Funkhouser and S. Rusinkiewicz. "Rotational invariant spherical

harmonic representation of 3D shape descriptor," Symposium on Geometry Processing,

2003.

[46] M.Novotni, M. and R. Klien. "3D Zernike descriptors for content based shape

retrieval." Solid Modeling, pp. 216-225, 2003.

[47] H. Shum, M. Hebert, and K. Ikeuchi. "On 3D shape similarity," Proceedings IEEE

Computer Vision and Pattern Recognition. 1996. pp. 526-531.

http://tools.ietf.org/html/rfc2803

116

[48] D. Messerschmitt and H. Varian. "IS223: Strategic Computing and Communications

Technology." Internet: - - '

http://www2.sims.berkeley.edu/courses/is224/s99/GroupG/reportl.html [December 15,

2008]

[49] F. Pereira and R. VandeWalle. "Multimedia Content Description in MPEG-7 and

MPEG-21," in Multimedia Content and the Semantic Web: Standards, Methods and

Tools, G. Stamou and S.Kollias, Ed., John Wiley & Sons Ltd., 2005, pp. 3-41.

[50] T. Gruber. "Toward Principles for the Design of Ontologies Used for Knowledge

Sharing." InternationalJournal Human-Compute Studies, Vol. 43, pp. 907-928, 1995.

[51] T. Berners-Lee. "WWW past and future." http://www.w3.org/2003/Talks/0922-rsoc-

tbl/slide30-0.html [Dec. 20, 2008]

[52] P. Karp, V. Chaudri, and J. Tomere. " XOL: An XML Based Ontology Exchange

Language." Internet: http://www.ai.sri.com/pkarp/xol/xol.html [Jan 6, 2009]

[53] S. Luke, D. Rager and J. Hendler. " Ontology-based Web agents,"^ CM

International Conference on Autonomous Agents, ,1997. pp. 59-66.

[54] Ontologos. "Ontology Markup Language." Internet:

http://www.ontologos.Org/OML/OML%200.3.htm [Cited: Jan 6, 2009]

[55] W3C. "Resourse Description Framework." Internet: http://www.w3.org/RDF/

[January 6, 2009]

[56] W3C. "RDF Schema." Internet: http://www.w3.org/TR/rdf-schema/ [Jan 6, 2009]

[57] Ontoknowledge. "OIL page." Internet: http://www.ontoknowledge.org/oil/ [Jan. 6,

2009]

http://www2.sims.berkeley.edu/courses/is224/s99/GroupG/reportl.html
http://www.w3.org/2003/Talks/0922-rsoc-
http://www.ai.sri.com/pkarp/xol/xol.html
http://www.ontologos.Org/OML/OML%200.3.htm
http://www.w3
http://www.w3
http://www.ontoknowledge.org/oil/

117

[58] DARPA. "DARPA Agent Markup Language." Internet:

http://www.ontoknowledge.or g/oil/ [Jan. 6, 2009]

[59] W3C. "OWL Web Ontology Language." Internet: http://www.w3.org/TR/owl-

features/ [Jan. 6, 2009]

[60] N. Noy and M. Musen. "PROMPTDIFF: A fixed-point algorithm for comparing

ontology versions,"Eighteenth National Conference on Artificial Intelligence, pp. 744-

750.

[61] N. Noy and M. Musen. "Anchor-PROMPT: Using non-local context for semantic

matching," in Proceedings of the workshop on Ontologies and Information Sharing at the

InternationalJoint Conference on Artificial Intelligence. 2001. pp. 63-70.

[62] M. Klein, D. Fensel, A. Kiryakov and D. Ognyanov. " Ontology versioning and

change detection on the Web," 13th International Conference on Knowledge Engineering

and Knowledge Management (EKAW02), 2002, pp. 197-212.

[63] A. Doan, P. Domingos, and A. Halevy. "Reconciling Schemas of Disparate Data

Sources," in proceedings of the ACM SIGMOD Conference on Management of Data

(SIGMOD-2001), 2001, pp. 509-520.

[64] P. Halabala. "Semantic Metadata Creation, " 7th Central European Seminar on

Computer Graphics (CESCG 2003). 2003, pp. 15-25.

[65] H. Mansouri. Using Semantic Descriptions for Building and Querying Virtual

Environments. PhD thesis , Vrije Universiteit. Brussels, 2005.

[66] VRWISE. "OntoWorld tool." http://wise.vub.ac.be/ontobasis/tools.html. [Jan 6,

2009]

http://www.ontoknowledge.or
http://www.w3
http://wise.vub.ac.be/ontobasis/tools.html

118

[67] I.Bilasco,J. Gensel, M. Oliver and H. Martin. "On Indexing of 3D scenes using

MPEG-7,"i3th annual ACM international conference on Multimedia. 2005. pp. 471 -

474 .

[68]. Semantic Description of 3D Enviroments: a Proposal Based on Web Standards.

2006 . 11th international conference on 3D web technology, pp. 85 - 95 .

[69] F. Pitarello, A. Faven, E. Comossi, F. Giannini and M.Monti. "Deriving

Functionality from 3D Shapes: Ontology Driven Annotation and Retrieval.", Computer-

AidedDesign & Applications, vol. 4, pp. 773-782, 2007.

[70] T. Funkhouser, P. Min, M. Kazdhan, J. Chen, A. Halderman, and D. Dobkin, "A

search engine for 3D models." ACM transactions on Graphics, vol. 22, pp. 83-105, 2003.

[71]Google. "Google Image Search." Internet: http://images.google.com/ [Cited: Jan. 6,

2009]

[72] Emre Baydogan, Rapid Prototyping for Virtual Environments. PhD thesis, Old

Dominion University, Virginia, Dec. 2008.

[73] P. Min, M. Kazdhan, T. Funkhouser. "A comparison of text and shape matching for

retreival of online 3D models," in Proceedings European Conference on Digital

Libraries.2004, pp. 209-240.

[74] W. Bille, B. Pellens, F. Kleinermann, "Intelligent Modelling of Virtual Worlds

Using Domain Ontologies." Workshop of Intelligent Computing (WIC),2004, pp. 272-

279.

[75] E. Kalogerakis, C. Stavros, N. Moumoutzis. "Coupling Ontologies with Graphics

Content for Knowledge Driven Visualization," IEEE Virtual Reality Conference, 2006,

pp. 43-50.

http://images.google.com/

119

[76] G. Pirro and D.Talia. "An approach to Ontology mapping based on the Lucene

search engine library," in 18th Internation Workshop on Database and Expert Systems

Architecture, 2007, pp. 407-411.

[77] Apache Lucene. "Apache Lucene Overview." Internet:

http://lucene.apache.org/iava/docs/ [Jan. 15, 2009]

[78] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns: Elements of

Reusable Object-Oriented Software, Addision Wesley, 1995.

[79] J. Nie, and Fuman Jin. "A multilingual approach to multilingual Information

Retrieval." Lecture Notes In Computer Science, Springer Berlin / Heidelberg, vol. 2785,

2003.

[80] M. Porter. "An algorithm for suffix stripping."Prograw, vol. 14, pp. 130-137, 1980.

[81] C. Fellbaum. Wordnet: An Electronic Lexical Database. 1998.

[82] J.Wang, Y. He, and H. Tian. "Voxel-based shape analysis and search of mechanical

CAD-models.", Forschung im Ingenieurwesen, vol. 71, pp. 185-195, 2007

[83] P. Min. "Binvox." Internet: http://www.google.com/search?q=binvox [Nov 12,

2008] .

[84] P. Min. "Thinvox." Internet: http://www.google.com/search?q=thinvox [Nov 12,

2008].

[85] Stanford Center for Biomedical Informatics Research ,Stanford University. " Protege

Ontology Editor." Internet: http://protege.stanford.edu/ [Dec 12, 2008].

[86] University of Manchester;Clark & Parsia LLQUniversity of Ulm. "OWL API."

Internet: http://owlapi.sourceforge.net/ [Nov. 11, 2008].

http://lucene.apache.org/iava/docs/
http://www.google.com/search?q=binvox
http://www.google.com/search?q=thinvox
http://protege.stanford.edu/
http://owlapi.sourceforge.net/

120

[87] A. Ames, D. Nadeau, J. Moreland. "The VRML2.0 Source book." Internet:

http://www.wileyxom/legacv/compbooks/vrml2sbk/toc/toc.htm [Dec. 25, 2008].

[88]3D Cafe. "3D Cafe -Home." Internet:

http://www.3dcafe.com/index.php?option=com frontpaRe&rtemid=l [Dec. 21, 2008].

[89] Oxford University. "Oxford Text Archive." Internet:

http://ota.ahds.ac.uk/catalogue/index-id.html [March 17, 2009].

[90] T. Saracevic. "Evaluation of Evaluation in Information Retrieval," in Proceedings of

the 18th Annual International ACMSIGIR Conference on Research and Development in

Information Retrieval, 1995.

[91] T. Saracevic. "RELEVANCE: A review of and a framework for the thinking on the

notion in Information Science."'Journal for the American Society for Information Science,

vol 6, pp. 321-343, 1995.

http://www.wileyxom/legacv/compbooks/vrml2sbk/toc/toc.htm
http://www.3dcafe.com/index.php?option=com
http://ota.ahds.ac.uk/catalogue/index-id.html

121

APPENDICES

A.l Relevance and Information Retrieval (IR) performance metrics

Most IR performance metrics are based on the metrics of precision and recall. Precision

is defined as the "the ratio of relevant items retrieved to all items retrieved or the

probability that given that an item is retrieved, it is relevant" [90]. Recall is defined as the

"ratio of relevant items retrieved to all relevant items in a file [collection] or given the

probability that an item is relevant, it will be retrieved" [90]. Relevance is an important

criterion in the evaluation of IR systems. Several IR experts [91] have partitioned

relevance into two categories: objective or system based relevance and subjective or

human based relevance. Objective or system based relevance is an algorithmic process

wherein the query is matched with the contents of the document without heeding the

context of the query. Subjective relevance deals with relevance based on the erudition

level of the user. Subjective relevance is broken into four further subcategories namely

generic topicality, pertinence, situational, motivational and affective relevance.

A.l.l Recall and precision

Recall and precision are defined in (7) and (8) below. Recall provides a measure of the

effectiveness of a search system in retrieving all relevant documents from a corpus.

Precision provides a measure of the effectiveness of a search system in retrieving the

most relevant documents from a corpus.

Number of retrieved relevant documents ,_.
recall = (/)

T otal number of relevant docuement

122

. . Number of retrieved relevant documents ,ON

precision = (o)
Total number of retrieved docuement

Precision and recall are competing metrics. Often in IR systems, if the recall level is high,

the precision of the returned results is low or vice versa. To control the two metrics, a

threshold value may be used that indicates the user-defined cutoff similarity value.

For the purpose of this research, recall and precision may be calculated as follows. A

given corpus must be classified into categories apriori. Then, a document is matched with

every document (including itself) in the corpus. Each document in the corpus can then be

ranked based on the score obtained by use of the matching algorithm. The retrieved

documents may belong to one of the classified categories in the corpus. Then, assuming

the class size is x, the recall value for a document from the same category going down

the ranked list will be 1/x , 2/x, ... to x/x. Then, a precision value corresponding to this

recall value will be the number of relevant documents divided by the number of results it

took to get to that number. The number of results it took to get to a particular result is

also equal to the rank of the document. In Table 4, an example is provided to shown how

precision recall values are calculated for a particular query. In this example, assume that

there were ten relevant documents in the corpus. For the particular query, twenty

documents have been retrieved. The leftmost column shows the ordering of documents

returned from the search. The second column contains the relevance of the document to

the query. It is a Boolean value. Recall is calculated based on (7) and (8).

Table 4: Example of PR calculation.

RANK

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

RELEVANCE

RELEVANT

RELEVANT

RELEVANT

NOT

RELEVANT ,

NOT

RELEVANT

NOT

NOT

RELEVANT

NOT

NOT

RELEVANT

NOT

NOT

RELEVANT

NOT

RELEVANT

RELEVANT

NOT

RECALL

10%

20%

30%

30%

40%

40%

50%

50%

50%

60%

60%

60%

70%

80%

80%

90%

90%

100%

100%

100%

PRECISION

100%

100%

100%

75%

80%

67%

71%

63%

55%

60%

55%

50%

54%

50%

47%

50%

47%

50%

53%

50%

124

Standardized recall-precision values are shown in Table 4. In the leftmost column, the

standard 11 recall points are shown. In the second column, the corresponding highest^

precision value from Table 4 for a particular standard recall value is used. This value

indicates the maximum number of documents required to achieve that recall level. The

rightmost column depicts the interpolated precision. Interpolated precision is the

maximum precision value taking into account precision at the current recall level and

precision at subsequent recall levels.

Table 5: Interpolated precision.

Recall

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Precision

-

100%

100%

100%

80%

71%

60%

54%

50%

50%

53%

Interpolated precision

100%

100%

100%

100%

80%

71%

60%

54%

53%

53%

53%

125

For 11 recall intervals, precision values are averaged over all queries. If a single value is

desired, the 11 point average may be calculated. For Table 5, the 11 point average

precision is approximately 75 percent.

126

VITA

DEGREES:
• Doctor of Philosophy (Electrical and Computer Engineering) , Old Dominion

University, Norfolk, VA, May 2009
• Master of Science (Computer Engineering), Old Dominion University, Norfolk,

VA, December 2002
• Bachelor of Engineering (Computer Science and Engineering), PES Institute of

Technology, Bangalore University, Bangalore, India, October 1999

PART TIME EMPLOYMENT:
• Software engineering intern at Simulation and Training Environment Lab

(SiTEL), October 2008 -Present
• Research assistant at the Virginia Modeling and Simulation Center (VMASC),

January 2001- May 2008

PUBLICATIONS

Book Chapters
• J. Leathrum, R. Mielke, S. Mazumdar, R. Mathew, Y. Manepalli, V. Pillai and R.

Malladi. "A Simulation Architecture to Support Intratheater Sealift Operations."
Defense Transportation: Algorithms, Models and Applications for the 21st
Century, Elsevier Science Ltd, 2004.

Journal Articles
• R. Mathew, J. Leathrum, S. Mazumdar, T. Frith, J. Joines. "An Object-Oriented

Architecture for the Simulation of Networks of Cargo Terminal Operations."
Journal of Defense Modeling and Simulation (JDMS), vol. 2, pp. 101-116.2005.

• J. Leathrum., R. Mielke, S. Mazumdar, R. Mathew, Y. Manepalli, V. Pillai and R.
Malladi. "A Simulation Architecture to Support Intratheater Sealift
Operations."Mathematical and Computer Modelling, vol.39, 817-838, May 2004.

Conference Papers
• E. Baydogan, S. Mazumdar, L. Belfore. "Decoupled Agent Architecture for

Virtual Operating Room Training Simulations", CGVR '08: Proceedings of the
2008, International Conference on Computer Graphics and Virtual Reality, 2008.

• E. Baydogan, S. Mazumdar, L. Belfore, "Simulation Architecture for Virtual
Operating Room Training", 2008 VMASC Capstone Conference, 2008.

• S. Mazumdar, E. Baydogan, L. Belfore. "OntoVOR: The Design of a Knowledge­
base for a Virtual Operating Room," Proceedings of the 2007 ModSim World
Conference, 2007.

• L. Belfore, S. Mazumdar, S. Rizvi, J. Garcia, D. Bitts, C. Blancett, E.Paredes, D.
Moulton, W. Quinones, K. Jones, Jennifer Browning. "Integrating the Joint
Operations Feasibility Tool (JOFT) with JFAST, " in Proceedings ofSIW
Workshop, July 2006. Proceedings ofSIW Workshop, July 2006.

	Old Dominion University
	ODU Digital Commons
	Spring 2009

	TREE-D-SEEK: A Framework for Retrieving Three-Dimensional Scenes
	Saurav Mazumdar
	Recommended Citation

	ProQuest Dissertations

