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ABSTRACT 

LEARNING LOCAL FEATURES USING 
BOOSTED TREES FOR FACE RECOGNITION 

Rajkiran Gottumukkal 
Old Dominion University, 2011 
Director: Dr. Vijayan K. Asari 

Face recognition is fundamental to a number of significant applications that include 

but not limited to video surveillance and content based image retrieval. Some of the 

challenges which make this task difficult are variations in faces due to changes in pose, 

illumination and deformation. This dissertation proposes a face recognition system to 

overcome these difficulties. We propose methods for different stages of face recognition 

which will make the system more robust to these variations. We propose a novel method 

to perform skin segmentation which is fast and able to perform well under different 

illumination conditions. We also propose a method to transform face images from any 

given lighting condition to a reference lighting condition using color constancy. Finally 

we propose methods to extract local features and train classifiers using these features. We 

developed two algorithms using these local features, modular PCA (Principal Component 

Analysis) and boosted tree. We present experimental results which show local features 

improve recognition accuracy when compared to accuracy of methods which use global 

features. 

The boosted tree algorithm recursively learns a tree of strong classifiers by splitting 

the training data in to smaller sets. We apply this method to learn features on the intra-

personal and extra-personal feature space. Once trained each node of the boosted tree will 



be a strong classifier. We used this method with Gabor features to perform experiments 

on benchmark face databases. Results clearly show that the proposed method has better 

face recognition and verification accuracy than the traditional AdaBoost strong classifier. 
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I. INTRODUCTION 

Human visual system is capable of very robust object recognition. Humans can 

recognize a familiar object even after its appearance has changed due to pose, lighting 

conditions, deformation and/or occlusion. Over the years several researchers have tried to 

replicate this capability in computers with varying degree of success. Automating this 

process has several important applications.1 

One of the recent applications is, being able to recognize objects of interest in 

surveillance videos. Surveillance cameras are being deployed in large numbers all over 

the world to prevent crime from happening. Typically a human operator is needed to 

observe the video feeds to detect objects of interest. However this has the disadvantage of 

human error due to fatigue and shortage of man power. Computerized object recognition 

can alleviate these problems; however it has to be as robust as human visual processing. 

A robust object recognition system can aid human operator by drawing his/her attention 

to the objects of interest without too many false recognitions. Human operator can then 

use his/her cognition to determine the appropriate action to be taken. 

Another important application is in automated manufacturing quality control. For 

example a bottling factory could be manufacturing several thousand bottles per hour. 

Some of the bottles may have manufacturing defects, for example the label on a bottle 

may be missing. If a human operator has to check each bottle for defects the 

manufacturing process will slow down. On the other hand a computer can analyze images 

' This work is written as per the IEEE Transactions format 
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from a camera at a much faster rate. With a computer capable of robustly recognizing 

defects the manufacturing will not be slowed down by the quality control. 

Content based image retrieval (CBIR) is a broad area where object recognition is 

used. The problem involves retrieving a set of closely matching images from a large 

database of images given a query image. In the absence of CBIR, humans have to 

manually search the database to find images similar to the query image. This is too 

tedious even for a database having few hundred images and impractical for databases 

having millions of images. CBIR has several applications such as law enforcement, 

medical images retrieval, and retail. 

A. Problem Statement 

Given an input image, find the images from a database which are visually most 

similar to the input image. To clarify this further, we consider the example of face 

recognition. Typically we have 2D face images of different individuals, which may be 

acquired under controlled conditions with arbitrary camera and environmental conditions. 

Also, each individual may have multiple instances of their face image. Now, given a test 

image the computer has to compute matching scores of the test image against images in 

the database. The highest matching score should be given to the image which is most 

similar to the test image. 

Under constrained conditions satisfactory accuracy has been achieved to deploy the 

facial recognition system in real world applications. However, unconstrained variations in 

imaging conditions result in less than satisfactory accuracy. The major factors that 

influence the recognition process are listed below. 
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• Pose - Pose of the face can vary with respect to position of camera. Appearance of 

face varies a lot from frontal to profile pose. When the database has faces at a 

particular pose and test image is at a vastly different pose, recognition is difficult. 

• Orientation - Rotation of a face with respect to optical axis of camera causes features 

of face like eyes, mouth etc., to appear at different location. 

• Occlusion - When parts of face are hidden from view of camera occlusion occurs. 

Occlusion can be of varying degree and at extreme cases where most of the face is 

occluded it may be impossible to recognize it. Facial hair and eyewear can also be 

considered as special cases of occlusion. 

• Illumination - Images represent the intensity level of light received by the camera. 

This can vary with changes in position of light source, number of light sources and 

type of light sources. 

• Deformation - Structure of face can change due to changes in expression. Any non-

rigid object for that matter will appear different due to deformation. 

These factors affect all form of object recognition. For an object recognition system 

to be practical it must address these issues. The work presented in this dissertation will 

try to directly address them. 

B. Object Recognition System 

In this section we discuss the basic building blocks of a general object recognition 

system. To explain certain aspects of the system will use the example of face detection 

application. 
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Fig. 1. General object recognition system. 

1) Image Sensing 

The real world scene is converted into digital data which can be used by a computer. 

This involves projecting the 3D real world points to 2D image plane. This is done using a 

digital or video camera. There is loss of information when we map the 3D points to the 

2D image plane. The characteristics of camera also affect the quality of the captured 

image which can make the recognition task more difficult. 

2) Preprocessing 

Preprocessing is done to change the input images to a form more suitable for 

processing in the future stages. The methods used for preprocessing can vary based on 

the application and algorithms being used in the feature extraction and classification 

stages. One of the common preprocessing steps is to normalize the input images intensity 

using histogram equalization. 
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3) Feature Extraction 

Feature extraction is done to transform the image data to a format which makes 

classification more accurate. Using the pixel intensities as features is not suitable for most 

classification tasks. This is due to high dimensionality of the image space and also pixel 

intensities at a give location can vary widely for images of the same class. In practice 

feature extrication and classification tasks are tightly coupled and they depend on the 

application. 

4) Classification 

The classifier is responsible for making the decision of which class the input image 

belongs. To make this decision, the classifier has to have prior knowledge of each class. 

This process is called training, training can be done either in supervised manner where 

we provide it with labeled examples or unsupervised manned where the classifier learns 

the labels from the underlying structure of the data. 

C. Approaches 

There are two main approaches to face recognition. They are model-based recognition 

and appearance-based recognition. In model-based approaches, a model of the face is 

created which can undergo geometrical transformation to map the model into sensors 

coordinate system. If a close match is found between the model and original image, the 

image is classified as belonging to the same class as the model. Appearance based 

approaches aim to learn the appearance of the face using training examples. In practice, 

salient features of the face are used as input to machine learning algorithms to learn a 

classifier which can distinguish between the trained face against other faces. 
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One of the advantages of model-based approaches is that a good match can be 

obtained from a few features due to strong geometric constraints. Due to this they are 

robust to factors like pose variations and occlusions. The downside of these methods is 

that it is time consuming to obtain the models and they are not general. On the other hand 

appearance-based methods are more general and can be easily tuned by adjusting training 

data. However they have the disadvantage of being sensitive to factors like changing 

illumination, expression, pose and occlusion which make it difficult to find matching 

features. My research comes under appearance-based approach, but models local 

appearance of parts and the relationships among the parts. We aim to make it robust to 

the presence of mentioned factors. 

D. Thesis Outline 

In this chapter, we provided the motivation for computer based face recognition and 

discussed some of the challenges that need to be overcome. In chapter 2, we will discuss 

in more detail the feature extraction and classification algorithms used in appearance-

based methods. In chapter 3, we will discuss in detail the methods we developed for pose, 

illumination and expression invariant face recognition. In chapter 4, we will discuss in 

detail the boosted tree algorithm. Experimental results are shown in chapter 5, and in 

chapter 6 we will present our conclusions and ideas for future improvements. 

E. Objectives 

The main objectives of this research work are to make face recognition robust to 

changes in pose, orientation, occlusion, illumination, and expression. To achieve this we 

made improvements to the different building blocks of the face recognition system. We 
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have proposed a new method to perform skin segmentation which is fast and able to 

perform well under different illumination conditions. We have also proposed a method to 

transform face images from give lighting condition to a reference lighting condition using 

color constancy. Finally, we propose two approaches to face recognition using local 

features. We tested all the proposed methods thoroughly with benchmark datasets and 

analyzed the results. 



8 

II. APPEARANCE-BASED FACE RECOGNITION 

There are two main categories of methods to do appearance-based face recognition, 

generative methods and discriminant methods. Generative methods such as principal 

component analysis (PCA) [1], independent component analysis (ICA) [2] or non-

negative matrix factorization (NMF) [3] try to find a suitable representation of the 

original data. In contrast, discriminant methods such as linear discriminant analysis 

(LDA) [4], support vector machines (SVM) [5], or boosting [6] where designed for 

classification tasks. Given the training data and the corresponding labels the goal is to 

find optimal decision boundaries. Thus, to classify an unknown sample using a 

discriminative model a label is assigned directly based on the estimated decision 

boundary. In contrast, for a generative model the likelihood of the sample is estimated 

and the sample is assigned the most likely class. 

In appearance-based methods images are usually captured by different two-

dimensional views of the face of interest. Based on the applied features these methods 

can be sub-divided into two main classes, i.e., local and global approaches. A local 

feature is a property of an image located on a single point or small region. It is a single 

piece of information describing a rather simple, but ideally distinctive property of the 

face. Examples for local features of a face are the color, gradient or gray value of a pixel 

or small region. For face recognition tasks the local feature should be invariant to 

illumination changes, noise, scale changes and changes in viewing direction, but in 

general this cannot be reached due to the simplicity of the features itself. Thus, several 

features of a single point or distinguished region in various forms are combined and a 
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more complex description of the image usually referred to as descriptor is obtained. A 

distinguished region is a connected part of an image showing a significant and interesting 

image property. It is usually determined by the application of a region of interest detector 

to the image. In contrast, global features try to cover the information content of the whole 

image or patch. This varies from simple statistical measures (e.g., mean values or 

histograms of features) to more sophisticated dimensionality reduction techniques, i.e., 

subspace methods, such as principle component analysis (PCA) [1], independent 

component analysis (ICA) [2], or non negative matrix factorization (NMF) [3]. The main 

idea of all of these methods is to project the original data onto a subspace that represents 

the data optimally according to a predefined criterion. 

Since the whole data is represented, global methods allow reconstructing the original 

image thus providing robustness to some extent. Contrary to this, due to the local 

representation, local methods can cope with partly occluded faces considerably better. 

A. Feature Extraction 

1) Local Features 

These features describe the region or its local neighborhood by certain invariance 

properties. An important problem is the high dimensionality of these features for 

matching and recognition tasks. The computational effort is very high and thus, it is very 

important to reduce the dimensionality of the descriptor by keeping their discriminative 

power. We give a brief overview about some of the important state of the art methods. 
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• SIFT Descriptor 

One of the most popular descriptors is the one developed by David Lowe [7, 8]. Lowe 

developed a carefully designed combination of detector and descriptor with excellent 

performance as shown in [9]. The detector/descriptor combination is called scale 

invariant feature transform (SIFT) and consists of a scale invariant region detector called 

difference of Gaussian (DoG) detector and a proper descriptor often referred to as SIFT-

key. 

The DoG-point detector determines highly repetitive interest points at an estimated 

scale. To get a rotation invariant descriptor, the main orientation of the region is obtained 

by a 36 bin orientation histogram of gradient orientations within a Gaussian weighted 

circular window. Note, that the particular gradient magnitudes m and local orientations & 

for each pixel I(x, y) in the image are calculated by simple pixel differences according to 

m = J ( / (x + 1,y) - I(x - 1,y))2 + (/(*,y + 1) + l{x,y - l ) ) 2 

0 = tan-^ /Cc.y + 1) + Kx.y- l ) ) / ( / (x + Ly) - l(x - l ,y))) (2.1) 

The size of the respective window is well defined by the scale estimated from the DoG 

point detector. It is possible, that there is more than one main orientation present within 

the circular window. In this case, several descriptors on the same spatial location are 

created. For the descriptor all the weighted gradients are normalized to the main 

orientation of the circular region. The circular region around the key-point is divided into 

4 x 4 non overlapping patches and the histogram gradient orientations within these 

patches are calculated. Histogram smoothing is done in order to avoid sudden changes of 
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orientation and the bin size is reduced to 8 bins in order to limit the descriptor's size. This 

results into a 4 x 4 x 8 = 128 dimensional feature vector for each key-point. Fig. 2 

illustrates this procedure for a 2 x 2 window. Finally, the feature vector is normalized to 

unit length and thresholded in order to reduce the effects of linear and non-linear 

illumination changes. 

Fig. 2. Illustration of SIFT descriptor calculation, from these 2 x 2 patches a 32 

dimensional histogram is calculated. [8] 

• PCA-SIFT 

Ke and Sukthankar [10] modified the DoG/SIFT-key approach by reducing the 

dimensionality of the descriptor. Instead of gradient histograms on DoG-points, the 

authors applied Principal Component Analysis (PCA) to the scale-normalized gradient 

patches obtained by the DoG detector. In principle they follow Lowe's approach for key-

point detection. They extract a 41 x 41 patch at the given scale centered on a key-point, 

but instead of a histogram they describe the patch of local gradient orientations with a 

PCA representation of the most significant eigenvectors (that is, the eigenvectors 
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corresponding to the highest eigenvalues). In practice, it was shown, that the first 20 

eigenvectors are sufficient for a proper representation of the patch. The necessary 

eigenspace can be computed off-line (e.g., Ke and Sukthankar used a collection of 21.000 

images). In contrast to SIFT-keys, the dimensionality of the descriptor can be reduced by 

a factor about 8, which is the main advantage of this approach. Evaluations of matching 

examples show that PCA-SIFT performs slightly worse than standard SIFT-keys [11]. 

• Local Binary Pattern 

Local binary patterns (LBP) are a very simple texture descriptor approach initially 

proposed by Ojala et al. [12]. They have been used in a lot of applications and are based 

on a very simple binary coding of thresholded intensity values. In their simplest form 

they work on a 3 x 3 pixel neighborhood and use the intensity value of the central point 

as reference for the threshold as shown in Fig. 3. 

Treshold Multiply 
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1 
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2 
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LBP = 1 +4 + 16 + 32 = 53 

Fig. 3. Illustration of computing LBP feature for 3 x 3 pixel neighborhood. [13] 

The neighborhood pixelsp, for i= 1 ...8 are then signed (S) according to 
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and form a locally binary pattern descriptor value LBP(po) by summing up the signs S, 

which are weighted by a power of 2 (weight W(p,)). Usually the LBP values of a region 

are furthermore combined in a LBP-histogram to form a distinctive region descriptor. 

LBPCpo) = Zf=i W(Pi)S(Po, Pi) = Sf=i 2(£-1)S(p0, pO (2.3) 

Locally Binary Patterns are invariant to monotonic gray value transformations but they 

are not inherently rotational invariant. Nevertheless this can be achieved by rotating the 

neighboring points clockwise so many times, that a maximal number of most significant 

weight times sign products is zero [12]. 

2) Global Features 

The main idea of global features is to project the original input images onto a suitable 

lower dimensional subspace. We give a brief overview about some of the important state 

of the art methods. 

• Principal Component Analysis 

Principal Component Analysis (PCA) [1] also known as Karhunen-Loeve 

transformation (KLT), is a well known and widely used technique in statistics. It was first 

introduced by Pearson [14] and was independently rediscovered by Hotelling [15]. The 

main idea is to reduce the dimensionality of data while retaining as much information as 

possible. This is assured by a projection that maximizes the variance but minimizes the 

mean squared reconstruction error at the same time. Dimension reduction is achieved by 
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preserving the components that account for the vast majority of the variance in the 

dataset. The remaining components are discarded. In image recognition, PCA can be used 

to produce a feature set with a dimensionality significantly less than that of the original 

images. This reduction is performed without a substantial loss of the intrinsic data 

contained in the image. 

In this process, the 2D training images are converted into N X 1 vectors x„ where N is 

the number of pixels in the original image and / ranges from 1 to M images. The next step 

is to compute the mean image. This is accomplished by summing corresponding positions 

and dividing the sum by Mas shown in equation 2.4. 

™=£S"i*i (2-4) 

Then the mean image m is subtracted from each of the original image vectors. The new 

mean centered vectors w, are computed using equation 2.5 and placed in a matrix W. 

wt = Xi —m (2.5) 

The covariance matrix C is computed using equation 2.6. 

C = WW
T (2.6) 

The covariance matrix is factored to yield the eigenvectors and eigenvalues. The 

eigenvectors are used to provide a basis for the projection into the subspace. 

Additionally, the new basis is oriented in such a fashion that the first eigenvector is 

associated with the maximum variance. The second eigenvector is the direction with the 

second greatest variance, and so on. 
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It is not necessary to calculate the covariance matrix. The eigenvectors can be computed 

by way of singular value decomposition (SVD) of the image matrix directly. Equation 2.7 

shows the factoring where U is the matrix containing the eigenvectors. 

W = UYV
T (2.7) 

PCA is a widely used method for feature extraction. However, it is not suitable to be 

used as features for rapid face recognition because of its computational overhead. Image 

data typically has a very high dimensionality. Using this type of data, the PCA feature 

extraction process always results in a matrix multiplication between two matrices of high 

dimension, which is computationally expensive. 

• Independent Component Analysis 

The discussion of Independent Component Analysis (ICA) begins with the meaning 

of statistical independence. A set of random variables is said to be statistically 

independent if knowing something about the value of one of the variables does not yield 

any information about the value of the other. More formally, given a set of random 

variables {yi,y2, —,ym)
 ar>d a joint density function /(yi,y2, • ••,ym), the random 

variables are statistically independent if/can be factorized as follows: 

/(yi,y2 ym) = / (yi) / (y 2) ...f(ym) (2.8) 

where /(yTO) is the marginal density of ym. The goal of ICA is to find a projection such 

that equation 2.8 holds. Similar to PCA, ICA can be used to reduce the dimensionality of 

other features. 
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• Linear Discriminant Analysis 

Linear Discriminant Analysis (LDA) is another linear transformation method. Unlike 

PCA, which does not explicitly account for class difference during its analysis process, 

LDA does. Discriminant analysis, in general, is used to determine which directions 

discriminate between two or more classes. LDA seeks to find the projection that best 

separates the dataset by classes. In this case, the best projection is the one that minimizes 

the variance or scatter between members of the same class and maximizes the separation 

between different classes. More formally, let Cp C2> —,Cm be a partitioned dataset of m 

classes in M.
n
, then each class Cj has Nj samples Xf £ Cj where i = 1,..., Nj and j = 

1, ...,7n. The analysis begins by computing the means of each of the classes using 

equation 2.9. 

Hi = j-fiU*l (2-9) 

Next the overall mean is calculated using equation 2.10 

A i = £ z r = i ^ (2-10) 

Then the matrix that represents the separation between classes known as the between-

class scatter matrix is computed using equation 2.11 

5B=Er=l(M;-M)(M;-M) r (2.H) 

The matrix that captures the separation within the class is known as the within-class 

scatter matrix and is computed as follows: 
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Sw = Zjl^i^l - nj)(x! ~ Hjf (2.12) 

Both SB and Sw are in E n x n . The goal is to find a projection such that SB is maximized 

and Sw is minimized. In general, a projection of X into new space is accomplished via 

Z = UTX, where Z is the projection of Xin the space spanned by the columns of U. This 

optimization problem can be solved by applying the general form of the eigenvalue 

problem: 

SBU = \SWU (2.13) 

B. Classification 

1) Bayesian Decision Theory 

Bayesian Decision Theory is a classical method for classification that has wide-

reaching applications. It establishes the foundation for making pattern recognition 

decisions or classifications based on statistical inference. Before continuing it is 

necessary to state Bayes formula, which will serve as the basis for this discussion. Let 

{a>1,o)2, ...,OJC} be a finite set of C states of natures or classes. If x is a feature vector 

containing observed random variables used to describe the states of nature, then the 

Bayes formula will be the following: 

P^\x)=^pl ( 2 . 1 4 ) 

where 

p(x)=E?=iP(*K)P(<u ;) (2.15) 
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This means that the posterior probability P(a)j\x) is equal to the likelihood p(x|&);) 

times the prior probability P(k>;) divided by evidence p(x). The posterior probabilities 

are computed for all classes and the class with the highest probability is selected. This is 

the Bayesian Decision rule. By choosing the class with the highest posterior probability 

the expected error is minimized. 

A variation of this rule seeks to minimize the risk associated with making a decision. 

This is accomplished by adding a loss function to the equation. Let {alla2, ...,aa} be a 

finite set of a possible actions and let X{ai\ojj) be the loss function associated with 

selecting action at when coj is the true state of nature; then the expected loss of action at 

is given by equation: 

R(«i\x) = Z;=iA(a(|w;)P(a);|x) (2.16) 

Using the formulation above, the expected loss or risk associated is computed for all of 

the possible actions, and the action that yields the minimum risk is selected. 

2) K Nearest Neighbor 

Unlike the other classifiers, the KNN classifier does not require configuration prior to 

use except for the determination of k, the number neighbors used, and the presence of the 

reference set. This simplicity is a major advantage for the KNN classifier over neural 

networks that require substantial configuration by the researcher. 

Classification is a simple matter. The test subject is labeled based on its closest 

neighbors. The major task is to evaluate the closeness or distance. The Euclidian distance 

is a standard measure often used. Given a reference point Y = {yx,y2, •••,yn] and a test 
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point X = {x1,x2, •••,xn} where n is the number of random variables describing the 

points; the Euclidian distance is shown in equation (2.17). 

d(.Y,X) = JZU(yi-xiy (2.17) 

Though the procedure for determining class is relatively simple, the process can yield 

complicated nonlinear decision boundaries. Unlike the decision boundary of a neural 

network, the KNN decision boundary is guaranteed to have an expected error no worse 

than twice that of the optimal solution. 

3) Decision Tree 

Another tool for classification is the decision tree. The tree structure is used to 

segregate subjects into the appropriate classes as it traverses the tree. There are three 

distinct nodes: root, intermediate, and leaf. The root node is the starting point of the 

process. Using the features of the subject, the root applies a test, which determines to 

which child the subject should proceed. If the child is a leaf node, the class of the subject 

is contained in the node and the process is completed. If the child is an intermediate node, 

the process is repeated using the test that resides at the new node. Ideally, the tests at the 

higher nodes are more general in nature, and the ones at the lower nodes are more 

specific and tailored to smaller groups of subjects. 

In order for a decision tree to be effective, each node must simplify the problem for 

its children. Another important consideration is how this simplification process is 

measured. Impurity is the metric that is traditionally used. There are different 

mathematical formulations for impurity. Equation 2.18 shows the most popular [16]. 
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KN) = -2jP((Oj)\og((0j) (2.18) 

i(N) denotes the impurity at node N. The simplification can be monitored by measuring 

the change in impurity between the parent node and its children nodes. For a tree that is 

restricted to binary splits, the change in impurity is given by 

Ai(iV) = fOV) - PLi(NL) - PRi(NR) (2.19) 

where yVLand NR are the left and right children nodes respectively, and PL and PR are the 

fraction of the parent's dataset in each child node. If multiway splits are allowed the 

equation for Ai(/V) changes to 

Ai(5) = i(W)~Sg=1Pfci(iVfc) (2.20) 

where B is the number of children in the split, Pk is the fraction at node k, and i(Nk) is 

the impurity at node k. This equation can be used to determine the size of the optimal 

split. 
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III. ROBUST FACE RECOGNITION SYSTEM 

In this chapter we present the contributions made in improving the existing methods 

which are used to achieve robust face recognition. To aid faster and more accurate face 

detection we developed a new skin segmentation method. We use an existing face 

detection method, which uses Haar features and AdaBoost classifier to detect faces. We 

developed a face color constancy method which will be used in the preprocessing stage. 

This method transforms the face images towards reference illumination condition which 

will give our system some illumination invariance. We propose two methods to perform 

face recognition using modular PCA and boosted tree of classifiers. In the following 

sections, we describe in detail the contributions made towards pose, illumination and 

expression invariant face recognition. 

A. Face Recognition System 

Our proposed face recognition system takes still images or video as input. The skin 

segmentation method is applied to segment the regions in images which have skin like 

color. Face detection is applied on the segmented regions. Since face detection is limited 

to skin color regions, we can get more accurate face detection. Next the detected faces are 

processed using color constancy method. This transforms the face illumination to 

reference illumination condition. Next, we perform face recognition to classify the face. 

Fig. 4 shows the blocks of our face recognition system. 
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Fig. 4. Face recognition system. 

B. Skin Color Segmentation 

Skin segmentation can be defined as the process of identifying the pixels of a given 

color image which corresponds to human skin. Humans use color as a fundamental clue 

for detecting faces from complex scenes. Skin color segmentation is a difficult problem 

since skin colors vary based on the ambient light and the cameras, which produce 

different colors even for the same person under the same illumination conditions. Skin 

colors also vary from person to person. 

Probabilistic methods have been widely used for pixel based skin segmentation. One 

of the probabilistic methods is the Skin Probability Map (SPM) [18, 19], which has been 

found to be the best in terms of accuracy and running time [19]. Other well known 

statistical skin color models are single Gaussian model [20] and the mixture of Gaussian 

model [21]. The single Gaussian skin model has the advantage of being simple and fast, it 

however does not adequately represent the variance of the skin distributions under 



23 

different conditions. To overcome this drawback, the mixture of the Gaussian model has 

been suggested. It is however hard to be trained and slow. Some of the earlier skin 

segmentation techniques classify pixels based on pre-defined ranges in the color space 

[23]. More recently machine-learning algorithms have been used to perform pixel 

classification based on predefined ranges in color space [22], The method we use for skin 

modeling is SNoW (Sparse Network of Winnows). It was first used in image processing 

for face detection with great success [24]. We consider the skin pixels and non-skin 

pixels as two classes and perform the classification using SNoW. 

The choice of color space has a significant impact on the skin segmentation result. 

Researchers have tried to find the most effective color space for skin segmentation by 

performing detailed analysis on different color spaces [27, 28]. But there is no single 

color space, which is most effective for all skin segmentation methods [25]. It has been 

argued theoretically that for every color space, there exists an optimum skin segmentation 

scheme such that the performance of all these skin segmentation schemes is the same in 

that color space [26]. 

1) Skin Color Model Using SNoW 

We trained the SNoW algorithm on the YCbCr color space since the transformation 

from RGB is simple and it has explicit separation of luminance and chrominance 

components. We say more about the choice of color space in the next section. The 

network is first trained in the YCbCr color space with the image created from the skin 

patches. A two-dimensional skin distribution matrix (SDM) of dimensions 256 x 256 is 

created and all its elements are initialized to 0. During training with the skin patches, the 
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elements of the SDM are selected for updating based on the index computed as 

[Cb(x, y), Cr(x, y)]. The winnows update rule is used to update the matrix and the update 

procedure is as shown: 

ifW(Cb(x,y)lCr(x,y))==0 Vx,y 

W(Cb(x,y),Cr(xly)) = r1 (3.1) 

The elements or weights of the SDM which are active are initialized to r/ as shown in 

equation (3.1); rj is 0.1 in our implementation. Next the weights are promoted for all the 

pixels in the skin image as shown in equation (3.2). 

if W(Cb(x, y), Cr{x, y)) < r\ x a
71

 Vx, y 

W(Cb(x,y),Cr(x,y)) = ax W{Cb(x,y),Cr(x,yj) (3.2) 

where W is the SDM; Cb, Cr represent the color components of the skin image and x, y 

vary from 1 to X, Y respectively where X is the number of columns in the skin image and 

Y is the number of rows in the skin image. The variable a in equation (23) is used for 

promoting the weights, and a=2 in our case. The result of initial skin segmentation 

performed on a test image and the original image are shown in Fig. 5. Skin segmentation 

is performed by classifying pixels with weights above 1000 (selected after experimental 

analysis) as skin pixels. In Fig. 5, pixels classified as skin are represented as white and 

non-skin pixels are represented as black. As can be seen in Fig. 5, many non-skin pixels 

are falsely classified as skin pixels. Non-skin patches falsely classified as skin pixels are 

used as negative examples to update the SDM as shown in equation (24), where t = 1000 

and ,5=0.5. 
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ifW(Cb(x,y),Cr(x,y)) > t Vx,y 

W(Cb(x,y),Cr(x,y))=px W(Cb(x,y),Cr(x,y)) (3.3) 

More negative examples of non-skin pixels are obtained by performing skin 

segmentation on test images and the non-skin patches are incorporated into the non-skin 

image This process is performed until the false positives are reduced to a desired level. 

Equation (3.3) performs the demotion of weights for pixels from the non-skin regions, 

which overlap with the skin region in the Cb-Cr color space. The advantage of using the 

winnow update rule for updating the weights is that we can reduce the false positives 

without adversely affecting the true positive rate. The SDM in Cb-Cr color space after 

updating it with non-skin pixels is shown in Fig. 6. 

Fig 5. Selecting non-skin patches. 

The SDM can be normalized by dividing it with the maximum weight in the SDM The 

normalized SDM would give the probability of skin distribution not overlapping with the 
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non-skin distribution. Unless stated otherwise, SDM refers to a non-normalized 

distribution. 

Fig. 6. SDM in Cb-Cr after training. 

2) Selecting Color Spaces 

We are interested in selecting a color space, which would give the best skin 

segmentation results for our technique. From the literature we found that one of the best 

skin segmentation was obtained using the TSL color space [27]. We trained the SDM on 

the TSL color space and YCbCr color space. The results obtained are as shown in Fig. 7. 
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Fig. 7. Original images used for testing are shown in the first column, second column 

shows the results of skin segmentation using SDM in Cb-Cr color space, and results of 

skin segmentation using SDM in T-S color space are shown in column three. 

C. Color Constancy 

We propose a novel technique to compensate for variations in face images due to 

changes in the illumination conditions. Other than color of the faces, shadows and 

specular reflections on the faces also change with respect to lighting environment. These 

variations result in false recognitions even in the best face recognition algorithms. We 
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tackle this problem by processing the faces using a color constancy model specific to face 

images, which we named face color constancy (FCC). 

Our approach of using color constancy to achieve illumination invariant face 

recognition is unique in many ways compared to previous illumination invariant face 

recognition methods. We can deal with real world illumination environments where many 

light sources are active simultaneously, the position of the light sources are changing and 

the neighborhood scene is changing. Our model is also capable of FCC when camera 

processing such as auto-gain and camera color balancing functions are active. Given a 

few faces under different illumination environments in these real word situations, our 

model can learn the basis vectors needed to compensate for these variations in any new 

face image. Our model can also compensate for strong shadows and specular reflections 

to some extent. We process the RGB values of the face image and aim to minimize the 

RMS error in each band with respect to the reference face in the gallery. Processing on 

the RGB image gives us more power to minimize the RMS errors. We can also support a 

face recognition system where each subject in the gallery is in a different lighting 

environment. A probe image taken under an arbitrary illumination environment can then 

be transformed towards its reference in the gallery using our FCC algorithm. 

1) Learning the Joint Color Changes 

Let the RGB color space be defined as, C = {(r, g,b)
T
 ER

3
:0 < r < 255, 0 < g < 

255,0 < b < 255). This space defines all the possible color vectors observable in 

images. The color vector of an image pixel p is denoted as c(p) £ C. Let 1 < i < N, 

where N is the number of individuals and let 1 < j < M, where M is the number of 
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illumination conditions under which each individual's image is taken. Also let 1 < k < 

P, where P is the number of pixels in each face image. The mapping of colors under 

different illumination conditions is represented by difference of two corresponding 

pixels: 

d%.lti) = c{l%)-c{lfj) (3.4) 

This difference vector tells us how a particular pixel's value changed from illumination 

condition of Ii0 to illumination condition of/i;-. This is computed for each of the P pair of 

pixels to obtain a vector field that is defined at all points in C for which there are colors 

in image /i;-. The vector field is constructed by placing each vector difference at the point 

c(//j) in the color space C. The vector field <D over C is defined as: 

o'(C(/J)) = d(4,/J), l<k<P (3.5) 

This vector field is only defined at particular color points in C that happen to be in image 

ifj, hence O is called a partially observed color flow. We wish to obtain a full color flow 

from the partially observed color flow. A simple approach to obtain the full color flow is 

to follow an interpolation scheme as proposed in [17]. The color flow at a color point 

(r,g,b)
T is obtained by a weighted proximity based average of nearby observed color 

flow vectors. 

0(r, g, b) = — 2
 { V l,,) (3.6) 
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In [17] the full color flow is defined at every point in C, whereas our full color flow is 

defined only in a subset of C. The points where O is defined depends on the colors 

present in It]. The variance term a
2 controls the mixing of the observed flows to form the 

interpolated flow vectors. Visualization of the color flow vector field for a face pair is 

shown in Fig. 8. 

Fig. 8. Visualization of the full color flow vector field. 

The possible changes of a pixel's color on the face surface due to changes in 

illumination conditions are compact. While in principle its possible for a change in 

illumination condition to map any color from a Lambertian surface to any other color 

independently of all other colors, we know from experience that many such joint maps 
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are not observed in real world situations. Hence there is significant structure in the space 

of color flows. The image pair shown in Fig. 8 has a nonlinear variation; some regions of 

the face become brighter than other regions due to position of the point source. As can be 

seen from the visualization, this kind of nonlinear variations can be captured by modeling 

the space of color flows. 

Given a large number of color flows, we wish to model their distribution. We chose 

to use Principal Component Analysis (PCA) due to the following reasons. The flows are 

well represented by a small number of principle components and finding the optimal 

description of a difference image in terms of color flows is computationally efficient 

using this representation. There are -16 million points in the color space C, hence to 

represent the color flows we quantize it at Q distinct points. Therefore the color flow cP 

can be represented as a collection of 3Q coordinates. We chose Q = 4096 distinct and 

equally spaced points in the color space for our experiments. Hence the full color flow is 

a vector of 3 x 4096 components. Using a higher value of Q would give us a more 

accurate color flow field, but due to computational speed and memory limitations we 

settle for Cj = 163. We compute principal components of the color flow covariance 

matrix. These principal components are known as eigenflows [17]. Fig. 9 shows the 

eigenvalues associated with the first 50 eigenflows. As expected the curve drops off 

rapidly indicating that most of the variance in the color flow distribution is represented by 

the first few eigenflows. 
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Fig. 9. Magnitude of the eigenvalues vs. eigenvalue index. 

2) Color Constancy from Eigenflows 

Given an image taken under arbitrary illumination condition, how can we obtain the 

image closest to its reference image in terms of L2 distance? In previous section we 

described the training procedure to obtain the eigenflows for face images. Using these 

eigenflows, we can transform a face image taken under arbitrary illumination conditions 

towards its reference illumination condition. 

Let Itest be a face under arbitrary illumination condition and let Itest0 be its reference. 

We compute the difference image as 



33 

D
 =

 hesto ~ hest (3-7) 

The difference image basis vectors for the test image and a set of E eigenflows ¥;, 1 < /' < 

E, can be represented as 

Di = ItestWi) (3-8) 

Here the operator /test(-) takes the pixel values at the location [x,y] and generates a 

difference image basis vector by placing at each [x, y] the closest eigenflow. The closest 

eigenflow is determined based on the distance in the color space from the color vector at 

[x,y]. The transformed image is obtained as 

IT = Itest + i:f=iYiDt (3.9) 

where yt are scalar multipliers. We can directly solve for yt by solving the system 

Yi = DtD (3.10) 

Here D is the difference image defined in equation (3.7), and £>* is the pseudo-inverse of 

the difference image basis vectors defined in equation (3.8). 

D. Modular Face Recognition 

The main objective of this research is to improve the accuracy of face recognition 

subjected to varying head pose, illumination and facial expression. As stated before, PCA 

method has been a popular technique in facial image recognition. But this technique is 

not accurate when the pose and illumination of the facial images vary considerably. In 

this research work, we improve the accuracy of this technique under these conditions. We 

propose the modular PCA method, which is an extension of the conventional PCA 
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method. In the modular PCA method the face images are divided into smaller images and 

the PCA method is applied on each of them. Whereas in the traditional PCA method the 

entire face image is considered, hence any profound variation in pose or illumination will 

affect the recognition rate profoundly. Since in the case of modular PCA method the 

original face image is divided into sub-images the variations in pose or illumination in the 

image will affect only some of the sub-images, hence we expect this method to have 

better recognition rates than the conventional PCA method. A similar method called 

modular eigenspaces was proposed by Pentland et al., 1994. In this method PCA is 

performed on the eyes and nose of the face image. 

The PCA based face recognition method is not very effective under the conditions of 

varying pose and illumination, since it considers the global information of each face 

image and represents them with a feature set. Under these conditions, the features will 

vary considerably from the features of the images with normal pose and illumination, 

making it difficult to classify them correctly. On the other hand, if the face images were 

divided into smaller regions and the features are computed for each of these regions, then 

the features will be more representative of the local information of the face. When there 

is a variation in the pose or illumination, only some of the face regions will vary and rest 

of the regions will remain the same as the face regions of a normal image. Hence, 

features of the face regions not affected by varying pose and illumination will closely 

match with the features of the same individuals face regions under normal conditions. 

Therefore, it is expected that improved recognition rates can be obtained by following the 

modular PCA approach. We expect that if the face images are divided into very small 



35 

regions the global information of the face may be lost and the accuracy of this method 

will deteriorate. 

1) Modular PCA 

In this method, each image in the training set is divided into N smaller images. Hence 

the size of each sub-image will be L
2
/N. These sub-images can be represented as 

Iij(m,n) = It(j=(j-l) + m±(j-l)+n) Vi.j (3.11) 

where / varies from 1 to M, M being the number of images in the training set, j varies 

from 1 to N, N being the number of sub-images and m and n vary from 1 to L/V7V. The 

average image of all the training sub-images is computed as 

A = ±Y?=xY.Uh} (3.12) 

The next step is to normalize each training sub-image by subtracting it from the mean as 

c = ^z&iZ7-ityyj (3.i3) 

Next we find the eigenvectors of C that are associated with the M' largest eigenvalues. 

We represent the eigenvectors as E1,E2,...EM'. The features are computed from the 

eigenvectors as shown below: 

WvnjK = E
T

K x (lpnJ - A) Vp.nJ.K (3.14) 

where Stakes the values 1,2...M\ n varies from 1 to T, Y being the number of images per 

individuals, and p varies from 1 to P, P being the number of individuals in the training 
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set. Features are also computed for the test sub-images using the eigenvectors as shown 

in the next equation: 

WtestjK = Elx(ltestj-A) Vj.K (3.15) 

Mean feature vector of each class in the training set is computed from the feature sets of 

the class as shown below: 

TpJK=^lZn=lWpnjK Vp.y (3.16) 

Next the minimum distance is computed as show below: 

DpJ=jii:%L1\WtestjK-TpjK\ (3.17) 

Dp < 61 for a certain value of/?, the corresponding face class in the training set is the 

closest to the test image. Hence the test image is classified as belonging to the p
th face 

class. 

2) Comparison 

We applied the PCA method and the modular PCA method to reconstruct the test 

images. In the case of the PCA method the image is reconstructed as 

hest = A + E
T

KWtestK (3.19) 

The test image is reconstructed in a similar manner for the modular PCA method and is 

given as 
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Uestj=A + Ej;wtestjK (3.20) 

(a) (b) " (c) 

Fig. 10. (a) Reconstructed image using PCA method for a test image from the Sheffield 

database, (b) Original image from the Sheffield database, and (c) Reconstructed image 

using modular PCA method at N=4 for a test image from the Sheffield database. 

(a) (b) (c) 

Fig. 11. Reconstructed image using PCA method for a test image from the Yale 

database, (b) Original image from the Yale database, and (c) Reconstructed image using 

modular PCA method at N=4 for a test image from the Yale database. 

Figures 10 and 11 show the reconstructed images of a face image from the test set of the 

Sheffield [29] and Yale [30] databases using both the methods. In the figures, the 
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reconstructed images obtained for the modular PCA method are concatenated to facilitate 

visual comparison with the reconstructed image obtained for PCA method 
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IV. FACE RECOGNITION USING BOOSTED TREE 

We build a tree of discriminative classifiers by learning the intra-personal and extra-

personal data recursively. At the root level a strong classifier is trained, we then split the 

training data based on the posterior probability of this classifier. Training data which is 

classified with high probability as intra-personal variations is sent to the right set. 

Similarly training data which is classified with high probability as extra-personal 

variation is sent to the left set. The remaining data is sent to both the sets. The right child 

and left child strong classifiers are then trained on these sets. This process is repeated on 

each child strong classifier until the stopping conditions are met. By this process the child 

strong classifiers will learn the features needed to classify the difficult data which was 

classified with low probability or misclassified by its parent. 

A. Related Work 

One of the influential algorithms for face recognition was proposed by Moghaddam 

and Pentland [33]. They model the distribution of intra-personal and extra-personal 

space. To model the distributions they use eigenspace density estimation and obtain the 

probability density functions of both these classes. Bayesian analysis is used to obtain the 

similarity measure for test images. The key advantage of this method is that it learns to 

distinguish between variations in images of same subjects against variations between 

different subjects. Jones and Viola [34] learn a boosted classifier on these difference 

images using AdaBoost and Haar like features. They show that a very accurate classifier 

can be learned by learning a few important features. They also propose a resampling 
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method to deal with the large number of extra-personal data compared to the small 

number of intra-personal data. In paper [35] Yang et al. combined the ideas from [33] and 

[34] with Gabor features to show that Gabor features selected by AdaBoost can give high 

recognition rates. 

In [36] a probabilistic boosting tree (PBT) framework is proposed to learn two-class 

and multi-class discriminative models. This method recursively constructs a tree of strong 

classifiers with the training data. This is done by dividing the training set to two new sets, 

left and right set. Each of the sets is then used to train the left and right sub-trees 

recursively. Hard to classify data is sent to lower levels, leading to expansion of the tree. 

One of the key advantages is that clusters in data are automatically discovered. Once 

trained the tree can be used to compute the posterior probability of given input data. This 

framework was used successfully for multi-class object recognition and multi-view face 

detection. A related approach called cluster boosted tree (CBT) is presented in [37]. This 

method learns tree structured classifiers by the dividing the training data using 

discriminative image features. It uses vector boosted tree [39] to build the classification 

tree. At each boosting round one weak classifier is selected for each branch. If the 

discriminative power of the new weak classifier is too weak the branch is split in two. 

When a branch splits, the two resulting branches are re-trained from the beginning. This 

is done to propagate the sub-categorization information upstream. At the end of training, 

each branch forms a strong classifier for the sub-categories discovered automatically 

from the training data. The key improvement of CBT over PBT is that a balanced 

splitting of positive and negative data is achieved. This method was applied to pedestrian 
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detection and car detection and was shown to be more accurate than view-based detectors 

like [39]. 

B. Motivation for Our Approach 

We are interested in learning the features which can separate intra-personal and extra-

personal classes accurately. As shown in [34], a linear combination of rectangle features 

can be learned to discriminate between these two classes. Building on this idea we use 

Gabor features in our approach. Gabor features have been successfully used before in 

achieving high accuracy in face recognition [38]. 

The intra-personal space is made up of variations caused due to external factors like 

illumination, expression, pose, occlusion and noise. Whereas the extra-personal space 

will have variations due to facial features between different subjects in addition to the 

above mentioned factors. These external factors will cause some intra-personal and extra-

personal data to be intermixed in the feature space. One possible way to decouple these 

two classes is to design more effective features. Unfortunately it is often hard to design 

features which can give a good separation between these two classes in the feature space. 

Our approach is to learn a small set of features from the original high dimensional 

Gabor feature space using a tree of strong classifiers learned using AdaBoost. In 

AdaBoost each round of boosting selects a weak classifier (feature) with minimum error 

rate. The samples which are incorrectly classified are given more weight and the weights 

of all the samples are normalized. Due to this previously correctly classified samples may 

be mis-classified again and receive penalty. Thus, after some rounds of boosting weak 

classifier become ineffective. Instead of putting all the weak classifiers in a single strong 
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classifier we use the divide and conquer approach to build a tree of strong classifiers. 

This gives us a better chance of learning the features to separate the hard to classify 

samples deeper down the tree. 

To illustrate the working of our method we trained it with a subset of data from AR 

face database [31]. This subset had 30 randomly selected subjects and each subject has 13 

Fig. 12 The root and first level of the learned classifier tree with top five feature 

locations overlaid on the face image. The order of top features in decreasing order of 

importance is colored red, green, blue, yellow and pink. The corresponding Gabor filters 

are displayed below the image. 
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images. These images have different illumination, expression and occlusion (sun glasses 

and scarf) as shown in Fig. 24. The top 5 features learned by the root classifier and right 

and left child classifiers as shown in Fig. 12. The right classifier was automatically 

trained with data consisting of intra-personal samples and extra-personal samples which 

were classified with low probability by the root classifier. This classifier naturally 

focuses on learning features to correctly classify the hard to classify extra-personal 

samples against the intra-personal samples. Similarly the left classifier has learned the 

features need to classify the hard to classify intra-personal samples. 

C. Gabor Features on Difference Images 

Gabor features capture the salient visual properties. They have desirable 

characteristics such as spatial localization, orientation selectivity, and spatial frequency. 

They model the receptive field profiles in cortical simple cells. We use Gabor filters to 

extract features from the difference images. Using difference images reduces the multi 

class problem to two class problem. It also facilitates the use of binary classifiers like 

AdaBoost. 

1) Intra-personal and extra-personal differences 

In this paper we consider face recognition as the problem of determining if a pair of 

face images belongs to same subject or different subjects. To do this we learn the Gabor 

features from intra-personal and extra-personal difference images. Gabor features are to 

some extent insensitive to variations like illumination and expression. However its ability 

to decouple intra-personal and extra-personal variations is limited. 
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Give a training set of images with K subjects and M images per subject, the amount of 

intra-personal and extra-personal data would be N
+ = KM{M — l ) /2 and N~ = 

M
2
K(K — l ) /2 respectively. The ratio of number of extra-personal data to number of 

intra-personal data would be M(K — 1)/(M — 1). Typical face recognition problems we 

are interested in have very large number of subjects compared to number of image per 

subject. Hence the number of extra-personal data is very large compared to intra-personal 

data. To deal with this large asymmetry in training data, resampling method proposed in 

[34] is used in training the AdaBoost classifier. 

2) Gabor features 

Gabor kernel is the product of a Gaussian envelope and a plane wave, defined as 

rp^x) = Mj!e(-PI|2I^H2/252) ykx _ g-*V2] (4.1) 

—* 

where x = (x, y) is the variable in spatial domain. Here k is the frequency vector which 

determines the scale and orientation of the Gabor kernels, and is defined as 

k = kse
1
** (4.2) 

where ks = kmax/f
s and <pd = nd/8 with kmax being the maximum frequency, and/is 

the spacing factor between kernels in the frequency domain. In face recognition 

researchers commonly use 40 Gabor wavelets with five scales s 6 {0,1,2,3,4} and eight 

orientations d G {0,1,2,3,4,5,6,7}. Also S = 2n, kmax = n/2, and / = V2. 

Given an image I(x) having n2 pixels, its Gabor transformation at a particular 

position x0 is computed by convolving with Gabor kernels as 



45 

( ^ * D(*o) = J>*(*o " x)l(x)d\x) (4.3) 

In this way for each pixel position in the face image 40 complex values are calculated. 

Phase information of the transform is time-varying hence only the magnitude values are 

used. This will result in a feature space of dimension n2 x 40. From this high 

dimensional feature space we will be selecting a small number of features which 

minimize classification error using our learning algorithm. 

D. Learning Algorithm 

In our learning algorithm we use AdaBoost invented by Freund and Schapire [40] to 

learn the strong classifiers. Strong classifier are created by combining a set of weak 

classifiers H(x) = £ L i a
tht(x) where ht(x) is a weak classifier. To learn the boosted 

tree we use the probabilistic boosting tree (PBT) framework proposed in [36]. 

1) Training Tree of Classifiers 

From the training data a strong classifier is trained using AdaBoost. The posterior 

probability of the training data is computed with the strong classifier as 

a(+l\x)=
 e x p { 2"W } (4 4) 

C^t-±|X; 1+exp{2H(x)} ^'
H) 

a(-l\x)=
 exP(~2"M) (45) 

^ 1 , X ; l+exp {-2H(x)} l
 -

J) 

The training data is then split into right and left sets using these probabilities. Samples 

whose q(+l\x) probabilities fall above — e are sent to the right data set and sample 

whose q(—l\x) probabilities fall above — £ are sent to the left data set. The remaining 
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a. Given training set of samples S = (Xi.y^dj),...,(*„, yn,dn), where xL EX, yt 6 {—1,+1} for 

negative and positive examples respectively and J , dt — 1. 

b. Initialize weights dlt — - where N is the total number of negative and positive samples. 

c. On the training set S train a strong classifier using AdaBoost with T weak classifiers but exit early if 

et > 9. 

d. While training strong classifier perform resampling for the first round of boosting and every R
th round 

thereafter. 

e. If the current tree depth is L then exit. 

f. Initialize two empty sets Sleft and Sright. 

g. For each sample is 5 compute the probabilities q(+l\xj and q(~ l\x{) using the current strong 

classifier. 

h. I f q f + l l j O - ^ e t h e n f X p y , , ! . ) - * Snght 

else if q(—11 xj - ^ > e then (x„y,,l) -» Sleft 

else (x„y,,q((+l | x,)) -» 5 r i a h t and ( ^ . y ^ C - l | z,)) -> S,e/t. 

i. If min (N{^jt, Nj^jt)/max (.N^jt,N^jt) < q> then exit, where N[^jt is the number of samples in StefC 

belonging to class -1 and N£,jc is the number of samples in Sleft belonging to class +1. 

j . Normalize all the weights of the samples in Sje/ t. 

k. Repeat the above procedure from step c with Sleft. 

1. If mm {Nylght,Nylght)/max {N~lght,N^lghc) < <p then exit, where N~ght is the number of samples in 

Snght belonging to class -1 and N*lght is the number of samples in Sright belonging to class +1. 

m. Normalize all the weights of the samples in Sright. 

Fig. 13. Training procedure for boosted tree of classifiers. 

samples are the hard to classify samples and they are sent to both the data sets. The 

importance weights of hard to classify samples are assigned as q(+l\x) for right set and 

q(—l\x) for left set. The remaining samples are given weights of 1. This ensures that the 
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child classifiers will not over fit to classify the hard samples correctly. New strong 

classifiers are then trained on both the sets. This process is repeated recursively on the 

right and left branches until stopping conditions are met. The variable s is used to control 

the over fitting to some extent. After training is completed each node of the tree is a 

strong classifier. 

After each split we count the number of samples from positive and negative classes in 

the new data set. If the number of samples from one class is below a certain ratio with 

respect to the other class we stop training on that branch. We stop training the strong 

classifiers when the error of a weak classifier is above 6 or when the boosting has run for 

T rounds. Fig. 13 gives the procedure we use for training. In all our experiments 9 = 

0.45, ft = 10, e = 0.1 and <p = 0.01. 

To test an input difference image, we compute its Gabor features and classify it 

recursively using the learned tree as described in [36]. 

2) Resampling 

As we have mentioned before the ratio of number of extra-personal data to number of 

intra-personal data would be M(K — 1)/(M — 1). Here K is the number of subjects and 

M is number of images per subject. For a typical case where M is 10 and K is 100, we 

would have 110 times more extra-personal data compared to the amount of intra-personal 

data. Having overwhelmingly more number of negative samples over number of positive 

samples can make it difficult in selecting good features for AdaBoost. To handle this 

problem we choose limited number of samples from the large number of negative 

samples using the resampling approach similar to the one used in [34]. 
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We fix the number of positive samples to be 15% of the number of negative samples in 

the resampled set. We also fix the maximum number of positive samples in the resampled 

set to be 300. To select the samples we compute the cumulative distribution of the 

weights of all the positive and negative samples. 

CZ^Ztdt
1
; C^^ZidT

1 (4.6) 

Let N+1 be the number of positive samples and N'
1 be the number of negative samples 

we want in the resampled set. Generate JV+1 uniformly distributed random numbers rs in 

the interval [0, C^1], where C^1 is the total weight of all the positive samples. Choose 

sample xf
r given the number rs such that Cf

1
 < rs < C^. Similar process is done to 

select Af_1 negative samples for the resampled set. 
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V. EXPERIMENTAL RESULTS 

In this chapter we present the experimental results of completed research. To perform 

the experiments we used several standard data sets. The details of the data sets are given 

in table 1. 

Table 1. Datasets used to perform experiments on the proposed methods. 

Task 

Skin Segmentation 

Face Color Constancy 

Face Recognition 

Dataset 

AR[31] 

PIE [32] 

Sheffield [29] 

Yale [30] 

Classes 

126 

68 

20 

15 

Images 

-4000 

41368 

564 

165 

The AR face database has face images taken under different lighting conditions. We use 

these to collect positive example to train the SDM for skin color segmentation. PIE 

database has images taken with different head poses, positions of light sources, and facial 

expressions. We are interested in using the images with different light source positions to 

train and test our FCC algorithm. The Sheffield face database has images with different 

head poses varying from profile to frontal. We use this database to test the performance 

of face recognition algorithms under varying head pose. The Yale face database had 

images with simultaneous lighting and expression variations. This is use to test 

performance of face recognition algorithms under varying lighting and expression. 
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A. Skin Color Segmentation 

We created a set of skin pixels from images in the AR face database [29] and personal 

images taken from a digital camera. The images have illuminations varying from 

fluorescent light to direct sunlight. From the outdoor scenes we used skin regions from 

both direct sunshine and shadows. We didn't use any images from the internet during 

training since there is no control on the image properties. Training was done on the Cb-

Cr color space since the transformation from RGB is simple and it has explicit separation 

of luminance and chrominance components. 

1) Comparative Evaluation 

We evaluate the performances of SDM based skin segmentation scheme and the SPM 

based skin segmentation method under the same conditions. Both the methods were 

trained with the same skin and non-skin pixels and tested on a set of images collected 

from different sources. The constants and thresholds used in the algorithms are not 

changed across the two color spaces. 

We compared the true positives (TP) and false positives (FP) of both the methods for 

the test images. The results shown in table 2 were generated by counting the number of 

pixels classified as skin and non-skin for the first original image shown in Fig. 18 to 

obtain the TP and FP. The results are for 4983 skin pixels and 191625 non-skin pixels 

from the test image. 

The underlying principle of SDM and SPM based face detection methods are similar. 

Instead of using two matrices to represent skin and non-skin probabilities, SDM uses a 

single matrix and updates its elements using winnows update rule for skin and non-skin 
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examples. Magnitude of the weight associated with each element of the sparse matrix 

known as SDM represents the likelihood of a corresponding pixel being skin or non-skin. 

A threshold is used to cutoff the weights below certain magnitude, which corresponds to 

non-skin pixels. 

Table 2. TP and FP rates for SDM and SPM methods in Cb-Cr and T-S color spaces. 

Skin Models 

SDM 

SPM 

Cb-Cr 

TP% 

86.94 

86.37 

FP% 

1.75 

1.42 

T-S 

TP% 

98.70 

75.58 

FP% 

7.67 

4.24 

B. Face Color Constancy 

We perform training on the face images from the PIE database [32] to learn the color 

changes on faces for different lighting conditions as described previously. We use only 

frontal faces with normal expression. The database has two sets of illumination 

variations. In set 1 the ambient lights are on and the point source is changing its state and 

position. In set 2 the ambient lights are off and again the point source is changing its state 

and position. We first use the set 1 to learn the joint color changes. Few images of a face 

taken under different illumination conditions from set 1 are shown in Fig. 14. Notice the 

changes in colors, shadows, and specular reflections for different illumination conditions. 
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We applied the FCC algorithm on 10 faces of arbitrary illumination conditions and 

transformed them to their reference illumination condition. The mean RMS error of the 

original faces with respect to the reference face was 70.51 We then computed the mean 

RMS errors of the transformed faces obtained using different number of eigenflows from 

the reference face (see Fig. 15, pg. 53). 

14 Sonne of the face images of an individual from set 1 used for training 
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Fig. 15. Mean RMS error using different number of eigenflows. Mean RMS error of the 

original images was 70.51. 

Using only 20 eigenflows the mean RMS error reduced to 7.65. Fig. 16 shows a few 

probe faces transformed towards the reference illumination condition. Notice that the 

effects of shadows and specular reflections are reduced and the color of the face is 

consistent with respect to the reference face. These results show that we were able to 

minimize the RMS error and transform the faces to reference illumination condition 

successfully. Thus, from the eigenflows obtained during the training procedure we 

compute the basis difference vectors for a probe face and efficiently transform it towards 

reference illumination condition of the gallery face. The individual shown in Fig. 16 was 

T r 

J I I I I I L 
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not used during training to compute the eigenflows. This shows that our FCC algorithm is 

capable of generalizing color constancy for unseen faces. The results of FCC for unseen 

faces of different ethnicities are shown in Fig. 17. 

Fig 16. Probe faces (third row) are transformed (second row) to match the illumination 

condition of the reference face (first row). 
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Fig. 17. Faces in the left column are references, middle column is the transformed faces 

and right column is the probe faces 

C. Modular Face Recognition 

The performance of the conventional PCA based algorithm and the modular PCA 

based algorithm were evaluated with two image databases, Sheffield and Yale. The 

Sheffield database consists of images with varying pose and the Yale database consists of 
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images with varying illumination and expressions. All the images in both the databases 

were normalized and cropped to a size of 64x64 pixels. 

1) Pose Invariance 

For our tests we took a partial set of face images consisting of 10 images each of 20 

different individuals from the Sheffield face database. Each image of a person is taken at 

a different pose, with a normal expression. Out of the ten images of a person, only eight 

were used for training and the remaining two were used to test the recognition rates. Fig. 

18 shows the set of images of a person used for training and testing respectively. The 

choice of the training and testing images was made to test both the algorithms with head 

pose angles that lie outside the head pose angles they were trained with. The PCA and 

modular PCA methods may perform poorly with this selection of training and testing 

images, but our aim is to compare their performance for test images whose head pose lie 

outside the head pose of the training images. 

(a) 

B 
(b) 

Fig. 18. (a) Images of an individual used for training, (b) Images of an individual used for 

testing. 
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Fig. 19 shows the recognition rate, false recognition rate and false rejection rate for the 

modular PCA method with varying N. In the case of PCA the recognition rate was 0.3, 

false recognition rate was 0.625 and false rejection rate was 0.075. 

Fig. 19. Recognition, false recognition and false rejection rates of the modular PCA 

method for varying N. For PCA the rates were 0.3, 0.625 and 0.075 respectively. 

From the results we note that the modular PCA method has a slightly better recognition 

rate and false recognition rate at N=4 and JVM6, but the conventional PCA method has a 

slightly lesser false rejection rate. Hence the proposed method has no significant 

improvement over the PCA method under the condition of varying pose. 
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2) Illumination and Expression Invariance 

The Yale database has 165 images of 15 adults, 11 images per person. The face 

images vary with respect to facial expression and illumination. The images have normal, 

sad, happy, sleepy, surprised, and winking expressions. There are also images where the 

position of the light source is at the center, left and right. In addition to these there are 

images with and without glasses. Out of the eleven images of a person, only eight were 

used for training and the remaining three were used to test the recognition rates. Fig. 20 

shows the set of images of a person used for training and testing respectively. The choice 

of the training and test images was made to facilitate comparison of performance of both 

the methods for test images with uneven illumination and partial occlusion. 

(a) 

(b) 

Fig. 20. (a) Images of an individual used for training, (b) Images of an individual used for 

testing. 

We also conducted experiments by leaving out one image from each individuals set 

of 11 images during training and testing the recognition with the images left out. This 

was repeated 11 times by leaving out a different image each time. This kind of testing is 

known to as leave out one testing. 
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As before we vary the value of Â  from 4 to 4096 to observe the effect it has on face 

recognition. Fig. 21 shows the recognition rate, false recognition rate and false rejection 

rate for the modular PCA method with varying N. In the case of PCA the recognition rate 

was 0.44, false recognition rate was 0.31 and false rejection rate was 0.24. A second set 

of experiments were performed by leaving out one testing. The results obtained for 

modular PCA are shown in Fig. 22. For PCA, recognition rate was 0.48, false recognition 

rate was 0.36 and false rejection rate was 0.16. 
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Fig. 21. Recognition, false recognition and false rejection rates of modular PCA method 

for varying N. For PCA rates were 0.44, 0.31 and 0.24 respectively. 
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Fig. 22. Recognition, false recognition and false rejection rates of modular PCA method 

for varying N. For PCA rates were 0.48, 0.36 and 0.16 respectively. 

Fig. 23. Reconstructed images for a test image with varying illumination using the PCA 

and modular PCA method. 

We observe from the results that the modular PCA method completely outperforms 

the PCA method in all aspects for JVat 4, 16 and 64. However, best results were obtained 

for N at 16. Reconstruction of one of the test images was performed using PCA and 
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modular PCA for N at 16. The results of the reconstruction are shown in Fig. 23, the first 

image is the reconstructed image obtained using PCA method, the second image is the 

original image and the third image is the concatenation of the reconstructed images 

obtained using the modular PCA method for ^=16. 

D. Boosted Tree of Classifiers 

In this section we present the results of face recognition and face verification 

experiments. We used the AR face database [31] for our experiments. This database has 

26 frontal images captured in 2 sessions with different facial expressions, illumination 

conditions, and occlusions (sun glasses and scarf) of 130 subjects. Each image is of size 

768 x 576 pixels. For our experiments all images were converted to grayscale, cropped 

and aligned by the centers of eyes and mouth and resize to resolution of 16x16 pixels. A 

tois?G£p?&j§s? h$g? § | «r- ^ p *3^p 
, * * >€., . * • / \ Jt' "JL J * *=- #" #- Q $r -T? -̂ r 

HF& CrV CtB *~ *
r
 ̂  ~' * "*• 

-r ^ £ ^g? ĝ?" ^Jf 

Fig. 24. Images of a subject from AR face database. 

mask is applied to remove the hairstyle and background information. Images from 

session one of a subject after pre-processing are shown in Fig. 24. 
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1) Unseen extra-personal variations 

For the first experiment we trained AdaBoost and boosted tree with randomly 

selected 15 male and 15 female subjects. We generated the intra-personal differences 

from the all the 13 images from first session. To generate the extra-personal differences 

we used the 1st, 5th, 9th and 13th image from session 1 of each subject. We trained 

AdaBoost for T = 50 and T = 100 rounds. We also trained the boosted tree with T = 

50. We tested the trained classifiers with a different set of 30 randomly selected subjects 

with equal number of males and females. We generated the intra-personal and extra-

personal test data similar to training data. 

t 0.3 f , . „ . - . — * , . . . . , , . , --.,- -~,~. , „ , --..,,, -BooytecHree-£& 

0 M v ' r' -T M rn -i ** n • i r*M u t i P r r i r ' r r ' f T i r r j i r ' n i r t t u r tn i 'r-n r-T irMvirtf'M r 

0 0.08 0.16 0 24 0 32 0.4 0.48 0.56 0.64 0.72 0.8 0.88 0.96 

False alarm rate 

Fig. 25. ROC curves for AdaBoost-50, AdaBoost-100, and BoostedTree-50. 

For face verification we computed the correct verification rate and false alarm rate for 

2340 intra-personal samples and 6960 extra-personal test samples. We show the ROC 
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curves obtained for AdaBoost with 50 rounds of boosting (AdaBoost-50), AdaBoost with 

100 rounds of boosting (AdaBoost-100) and boosted tree with 50 rounds of boosting 

(BoostedTree-50) in Fig. 25. The boosted tree was set to run for a maximum number of 

L = 2 levels. 

Q -1_ rT- rTnr_ r_^ rx^ r_1^^ r | 

1 3 5 7 9 1113 15 17 19 2123 25 27 29 3133 35 37 39 4143 45 47 49 

Rank 

Fig. 26. Rank-N recognition rates for AdaBoost-50, AdaBoost-100, and BoostedTree-50. 

For face recognition we only keep one image of the subject in the gallery, so for a 

probe image we will have 1 intra-personal pair and 236 extra-personal pairs. We do this 

with each of the 13 images for a subject. We then computed the rank-n recognition rate 

for AdaBoost-50, AdaBoost-100 and BoostedTree-50 as shown in Fig. 26. 

In this experiment the subjects in training and test sets were different; however the 

intra-personal variations were same. Hence the classifiers were tested with extra-personal 
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variations which were not seen during training. We see from the results that the boosted 

tree method performs better than the AdaBoost-50 in this case. 

2) Unseen intra-personal variations 

In the next experiment we randomly select 30 male and 30 female subjects. For 

training we randomly select 7 images from session 1 and generate intra-personal data. 

Extra-personal data is generated from 2 images randomly selected from session 1 for all 

the 60 subjects. For testing we again randomly select 7 images from session 2 to generate 

intra-personal data. Extra-personal data is generated from 2 images randomly selected 

from session 2. 
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Fig. 27 ROC curves for AdaBoost-50, AdaBoost-100, and BoostedTree-50. 

For face verification we computed the correct verification rate and false alarm rate for 

1260 intra-personal samples and 7080 extra-personal test samples. We show the ROC 
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curves obtained for AdaBoost-50, AdaBoost-100 and BoostedTree-50 in Fig. 27. The 

boosted tree was set to run for a maximum number of L = 10 levels. 

Again for the face recognition experiment we keep one image of the subject in the 

gallery, so for a probe image we will have 1 intra-personal pair and 118 extra-personal 

pairs. We do this with each of the 7 images for a subject. We then computed the rank-n 

recognition rate for AdaBoost-50, AdaBoost-100 and BoostedTree-50 as shown in Fig. 

28. 

0 T~r~rT"r i t'T-r-i t-r 1~i t r i-rri i t i—i i i i n i i m t r m i i r-r-ri i ti—ri 

1 3 5 7 9 1113 15 17 19 2123 25 27 29 3133 35 37 39 4143 45 47 49 

Rank 

Fig. 28. Rank-N recognition rates for AdaBoost-50, AdaBoost-100, and BoostedTree-

50. 

In the second experiment the training and test images were randomly selected from 

different sessions for the same subjects. So the classifiers will be tested with intra-

personal variations which were not seen during training. We see from the results that the 



66 

boosted tree method performs better than the AdaBoost-50 and AdaBoost-100 in this case 

as well. 
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VI. CONCLUSION 

In this dissertation proposal we presented methods to improve the accuracy of face 

recognition systems. We made the following contributions: 

• We proposed a new method called SDM (Skin Distribution Matrix) to perform skin 

segmentation using SNoW learning approach. The performance of skin segmentation 

using SDM and existing methods was evaluated on the Cb-Cr and T-S color spaces. 

We have shown that using SDM needs lesser resources than existing methods. The 

effectiveness of SDM was demonstrated by showing skin detection of images from 

different sources, which were not included in the training set. 

• We developed a novel method to compensate of lighting changes on face images 

called face color constancy (FCC). The results show that FCC method is robust and 

can compensate for large illumination variations, shadows and specular reflections 

over faces. We also showed that our approach could have application in illumination 

invariant face recognition. 

• We improved upon an existing method to do face recognition. Our method called 

modular PCA performs better than the PCA method under the conditions of large 

variations in expression and illumination. For large variations in pose there is slight 

improvement in the performance using modular PCA. This modular approach can be 

applied to any subspace algorithm to obtain the improvements we see in modular 

PCA approach. 

• We demonstrated the use of boosted tree of classifiers in face verification and 

recognition. The proposed approach achieves better accuracy by learning a tree of 
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strong classifiers. This in effect naturally learns the clusters present in the intra-

personal and extra-personal feature space. The use of probabilistic boosting tree frame 

work for face recognition is novel. The experimental results show that our approach is 

capable of performing better than a single boosted classifier. Even a single strong 

classifier trained for more rounds with AdaBoost is less accurate than our method 

trained with fewer rounds of boosting. We also showed that our method performs 

well for unseen intra-personal and extra-personal variations. 
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