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ABSTRACT

ELECTROHYDRODYNAMIC SIMULATIONS OF THE DEFORMATION OF

LIQUID-FILLED CAPSULES

Pai Song

Old Dominion University, 2019

Director: Dr. Yan Peng

A comprehensive two- and three- dimensional framework for the electrohydrodynamic simu-

lation of deformable capsules is provided. The role of a direct current (DC) electric field on the

deformation and orientation of a liquid-filled capsule is thoroughly considered numerically. This

framework is based on lattice Boltzmann method for the fluid, finite element method for the mem-

brane structure of the capsule, fast immersed interface method for the electric field and immersed

boundary method being used to consider the fluid-structure-electric interaction. Under the effect

of electric field, two different types of equilibrium states, prolate or oblate are obtained. The nu-

merical algorithm is also applied to study the interfacial tension droplet and red blood cell under

shear flow. The capsules are more deformed and arrive at equilibrium status more quickly under

stronger electric field. Bending stiffness will suppress the deformation and cause transition from

tank-treading to tumbling for the red blood cell. However, the applied electric field will slow down

the transition from tank-treading to the tumbling motion or even stay in the tank-treading motion

with stronger electric field.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 INTRODUCTION

The study of the shape deformation of viscoelastic, fluid-filled capsules has many industrial

applications in hydrodynamics. In particular, it has been known that the deformability of red blood

cell is associated with its health status [1]. The membrane of a red blood cell has two components,

the cytoskeleton on the cytosolic side (internal) and a lipid bilayer on the external side [2]. Small

capillaries requires significant deformation by red blood cells, from the normal biconcave discoid

to a bullet-like shape [3]. Some blood diseases are related to the ability of red blood cells to deform

or recover their shapes, such as sickle-cell anemia. For health red blood cells, the cytoskeleton is

closely attached to the lipid bilayer; while detached from lipid bilayer, it maybe a signal of sickle-

cell anemia. The dissociated membrane may result in less deformation. But when red blood cell

pass through which requires it to deform to a bullet-like shape, it undergoes significant deforma-

tion. Better knowledge of the mechanics underlying red blood cell shape deformation would be of

use in understanding how they are distorted by sickle cell anemia and how this distortion might be

counted by treatment [4].

To aid the development of diagnosis and treatments for the blood diseases, such as develop

a practical lab-on-a-chip device capable of red blood cell diagnosis in clinical applications, it is

important to understand the mechanical structure of red blood cell and study the manner in which

their shape is deformed. Extensive theoretical analysis [5, 6, 7] and experimental studies [8, 9,

10] has been recently complemented by significant computational simulations [3, 11, 12]. Up

till now, very few attentions have been paid to the red blood cell deformation in electrokinetic

based microfluidic environment. A blood cell type-membrane is elastic, area preserved; a complete

understanding of such membrane behaviour involves fluid-structure interaction under the influence

of electric field is still lacking.
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In this thesis, to better understand the mechanism of deformation of red blood cell type capsule,

we also consider the simulation of a droplet, which would be used to validate our numerical method

and compared with red blood cell deformation. Depending on the assumptions pertaining to the

physical properties of the membrane, a capsule may serve as a model for various types of particles.

For example, the capsule is considered to be an interfacial- tension drop if the membrane is a

simple liquid-liquid interface, and the membrane may be also a thin deformable solid. G.I. Taylor

[13] studied a weakly conducting drop suspended in another leaky dielectric fluid under an electric

field, and concluded that the equilibrium drop shape can be explained by balancing the viscous

stress with the electric stress on the drop interface, in which electric conductivity and permittivity

between the two fluids were considered. Jong-Wook Ha [14] analyzed the effect of uniform electric

field on the orientation and deformation of the a red blood cell-type capsule with a viscoelastic

membrane theoretically in the small deformation limit. It shows when the capsule immersed in a

simple shear flow, the surface viscosity affects the degree of deformation. The effect of electric

field on the orientation angle of the capsule is considerable.

There has been quite a few effort in using numerical methods to simulate the electrohydrody-

namics of a viscous capsule under an DC electric field. Numerous extensive studies have been

published on the simulation of capsule deformation under leaky dielectric theory. Those works,

based on how the interface is treated, can be categorized into the front tracking method [15], level

set method [16, 17], lattice Boltzmann method [18] and the volume-of-fluid method [19], etc... In

[20], a hybrid immersed boundary and immersed interface method is developed to simulate the

dynamics of a leaky dielectric drop under an DC electric field in Navier-Stocks fluids.

In present work, we investigate the eletrohydrodynamics of interfacial-tension drop, viscoelas-

tic circular membrane and red blood cell shape capsule under electric field. A lattice Boltzmann

method is used to solve the fluid flow, while the immersed boundary method is chosen to simu-

late the fluid-structure interaction which take into account various type of capsule’s properties. In

addition, the electric field is solved by fast immersed interface method. As in [20], the resulting

Maxwell stress tensor due to applied electric field is cast as an interfacial electric force, so the fluid

force and electric interfacial force can be formulated in a unified immersed boundary framework.

1.2 SCOPE AND OUTLINE



3

This thesis has four principal aims. First, it will develop a comprehensive, extensible compu-

tational model of electrohydrodynamic simulation for interfacial-tension droplet and viscoelastic

capsules. Second, it will show how the capsule deform in electric field induced flow or under both

shear flow and electric field. It would be observed the role that the capsule’s shape and parameters

play in these processes. This will help to reconcile work that largely focused on experimental in-

vestigations. Third, it will consider the potential mechanical causes of a red blood cells’ biconcave

shape. Biological and theoretical studies have proposed several ideas, and the perspective of a

computational study would be of interest.

In Chapter 2, a numerical method for modeling and simulation of leaky dielectric model is

outlined. A comparison was made between Correction Function Method [21] and Fast Immersed

Interface Method [22] when choose the algorithm for the computation of electric potential. The

Fast Immersed Interface Method is selected due to the advantage to impose the jump conditions at

the interface and the ability to deal with three dimensional computation.

In Chapter 3, a complete methodology for modeling and simulation of electrohydrodynamics is

presented in two and three dimensional settings. Both the two and three dimensional versions of the

structural model include the capsule’s shear elasticity, bending stiffness, and membrane viscosity.

The electric stress is cast as an interfacial electric force in which the shear force and electric

interfacial tension can be formulated in a unified immersed boundary framework. It is significant

important since the tensor is discontinuous across the interface due to different permittivities and

conductivities in two different fluids.

In Chapter 4, a two dimensional validation of electrohydrodynamics for interfacial-tension

drop is presented and the comparison with Taylor’s small deformation theory is made. Numerical

results are demonstrated by considering the combination of pemittivities and conductivities for

three different cases. The results agree well with Taylor’s theory. Numerical simulation is also

performed when both shear flow and electric field are applied to the interfacial-tension drop. The

results confirm deformation behaviors with other publications.

In Chapter 5, the electric effect on the deformation of immersed capsules is studied for two

dimensional viscoelastic circular and biconcave (red blood cell) capsules in shear flow. Bending

stiffness is considered and comparison is made for different bending modulus. Under electric
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effect, the capsule shows larger deformation. As electric field strength increases, slower tank-

treading phenomenon is observed. The electric field could also slow or dump tumbling motion on

a biconcave red blood cell in shear flow, numerical results are demonstrated.

In Chapter 6, the electric effect on the deformation of three-dimensional circular capsules is

proposed. Some features of three dimensional simulation are similar to two dimensional results.
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CHAPTER 2

ELECTRIC FIELD

2.1 GOVERNING EQUATIONS FOR ELECTRIC FIELD

In electrohydrodynamics, electric and magnetic phenomena are independent since their fields

are uncoupled (Feynman et al 1964). Insofar as the characteristic time for electrostatic processes

is large compared to that for magnetic phenomenon, the induced magnetic effect can be neglected.

When external magnetic fields are absent, magnetic effects can be ignored completely. Thus, the

electric field intensity E is irrotational which results in ∇×E = 0. By Gauss law in a dielectric

material with permittivity ε , the volume charge density qv can be written as

qv = ∇ · (εE) (1)

The conservation of free charge density in electrohydrodynamics can be expressed as

Dqv

Dt
+∇ · (σE) = 0 (2)

where D
Dt

= ∂
∂ t
+u ·∇ is the material derivative, σ is the electric conductivity of the medium and

u is the velocity of the fluid. In a homogeneous incompressible fluid where the permittivity ε and

conductivity σ are both constant and ∇ ·u = 0. Plugging (1) into (2), and simplify we can have the

differential equation for qv

Dqv

Dt
+

σ

ε
qv = 0 (3)

The solution of (3) is simply qv = q0
ve−σ/ε·t with initial condition qv(0) = q0

v . We immediately find

that the free charge density decays from the initial charge density with the relaxation time scale

tE = ε/σ . The viscous time scale of the fluid motion is defined by tF = ρL2/µ , where ρ and µ are

fluid density and viscosity, and L is the characteristic length scale.
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Figure. 1: A capsule suspended in a fluid subject to a uniform DC electric field E∞ = (0,−E∞)

For electrically conductive fluid satisfying the relation tE ≪ tF , the charge accumulates at in-

terface almost instantaneously as compared to the time scale of fluid motion. On the other hand,

for the weakly conducting fluid, it may behave as a leaky dielectric material when tE ≫ tF . There

is no free electric charge in the leaky dielectric fluid system.

2.2 LEAKY DIELECTRIC MODEL

In a leaky dielectric model, both liquids in a two-fluid system with different electric properties

are electrically conductive and satisfy the condition tE ≪ tv, The governing equation of electric

field can be simplified into

∇ · (σE) = 0 in Ω\Σ (4)

We consider a capsule containing a leaky dielectric fluid suspended in another leaky dielectric

fluid under a uniform DC electric field E∞ as illustrated in Figure 1. The whole computational

domain is separated by the elastic membrane Σ and the fluids are characterized by the piecewise

constant of the electric conductivity σ and permittivity ε , where − indicates quantities inside

capsule and + indicates quantities outside capsule.
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By neglecting the induced magnetic effect, the electric field is irrotational. The electric field

can be expressed in terms of electric potential φ by E = −∇φ . Then the governing equation of

electric potential described by a Poisson equation can be written as

∇ · (σ∇φ) = 0 in Ω\Σ (5)

The boundary conditions along the interface separating Ω− and Ω+ are based on the continuity

of the electric potential and the normal component of the electric flux density across the interface.

The continuities of electric potential and electric current are preserved

[φ ] = 0 and [σ∇φ ·n] = 0 on Σ (6)

where [·] indicates a jump of the quantity from the Ω+ side minus the one of Ω− side, and the

normal vector n is pointing outward from Ω− to Ω+ side. The electric potential from (5) can be

solved using the boundary conditions (6) on Σ and other boundary conditions on ∂Ω determined

by suitable physical model. The electric field strength is computed by E = −∇φ . We can obtain

the distribution of volume charge density qv = ∇ · (εE).

2.3 THE CORRECTION FUNCTION METHOD FOR SOLVING ELLIPTIC

INTERFACE PROBLEM

This method is presented in two versions: 4th order accuracy and 2nd order accuracy [21]. To

be consistent with fluid and structure solver, 2nd order accuracy is adequate for current numerical

simulation. In the case where conductivity is constant through the whole computational domain,

σ+ = σ− = σ , without loss of generality, we consider the following elliptic interface problem with

jumps as

∇2φ+ =
f+

σ
in Ω+ (7)

∇2φ− =
f−

σ
in Ω− (8)

[φ ] = a on Σ (9)

[∇φ ·n] = b

σ
on Σ (10)
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The interface Σ divides the domain into the subdomains Ω+ and Ω−, φ+ and φ− are used to

denote the solution in each of the subdomains.

Define function D(~x) by D(~x) = φ+(~x)−φ−(~x) and b(~x) = b/σ . The governing equation for

the resulting ”ill-posed” Cauchy problem follows:

∇2D(~x) =
f+

σ
− f−

σ
= fD(~x) in Ω (11)

D(~x) = a(~x) on Σ (12)

∇D(~x) ·n = b(~x) on Σ (13)

The correction term, D(~x) = φ+(~x)−φ−(~x), is a solution of the PDE (11-13). This PDE will

be solved over a band across the interface. The Poisson’s equation is discretized using the standard

5-point stencil, which is generally used to solve Poisson’s equation with appropriate boundary

conditions and achieve 2nd order accuracy. We approximate D(~x) using modified bilinear (see

details in 2.3.4) interpolant in each Ω
i j
Σ , where Ω

i j
Σ corresponds to a grid point at which the standard

discretization of Poisson’s equation involves a stencil that across the interface Σ. The definition

of Ω
i j
Σ is given in 2.3.2. However, the Laplacian of a standard bilinear interpolant vanishes, Thus,

a modified linear will be used to take full advantage of the fact that D(~x) is the solution to the

Cauchy problem.

2.3.1 NUMERICAL METHOD FOR SOLVING CAUCHY PROBLEM

The standard second order accurate 5-point finite difference scheme is used to solve Poisson

equation in two dimensions:

(
ui+1, j−ui, j

△x
)− (

ui, j−ui−1, j

△x
)

△x
+

(
ui, j+1−ui, j

△y
)− (

ui, j−ui, j−1

△y
)

△y
= fi, j (14)

where △x = xi+1 − xi and △y = y j+1 − y j are the grid spacing in the horizontal and vertical direc-

tions, respectively.

If the 5-point Laplacian does not cut through the interface, we do not have to modify equation

(14); On the other hand, if the 5-point Laplacian of a grid point involves using both inside and

outside point(s), a correction of will be needed to ensure that the solution is smooth.
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In the vicinity of the discontinuities at the interface, proper correction terms will be added to

RHS of Poisson equation. In the case of Figure 2, where the node (i, j), (i, j−1), (i−1, j) lie in

Ω+ while the nodes (i+1, j) and (i, j+1) are in Ω−, ideally, we would like to use equation (14)

as follows:

(
u+i+1, j−u+i, j

△x
)− (

u+i, j−u+i−1, j

△x
)

△x
+

(
u+i, j+1−u+i, j

△y
)− (

u+i, j−u+i, j−1

△y
)

△y
= fi, j (15)

Figure. 2: A 5-point stencil enclose the interface Σ and separated into Ω+ and Ω−.

We do not have any information about ui+1, j and ui, j+1, instead, Di+1, j = u+i+1, j − u−i+1, j and

Di, j+1 = u+i, j+1 −u−i, j+1 can be computed by using above numerical scheme.

Now, eqn. (15) becomes:

(
u−i+1, j+Di+1, j−u+i, j

△x
)− (

u+i, j−u+i−1, j

△x
)

△x
+

(
u−i, j+1+Di, j+1−u+i, j

△y
)− (

u+i, j−u+i, j−1

△y
)

△y
= fi, j (16)

Di+1, j and Di, j+1 are independent of solution u, we can move them to the right hand side of

equation (16), that is

(
u−i+1, j−u+i, j

△x
)− (

u+i, j−u+i−1, j

△x
)

△x
+

(
u−i, j+1−u+i, j

△y
)− (

u+i, j−u+i, j−1

△y
)

△y
= fi, j +Ci, j (17)
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where Ci, j =− 1
(△x)2 Di+1, j − 1

(△y)2 Di, j+1

There are up to 12 different cases when the 5-point stencil across the interface, we apply the

similar formulas for other cases than above.

2.3.2 DEFINITION OF INTEGRATION AREA ΩIJ
Σ

In the Figure 2 of a 5-point stencil , the interface Σ across the dashed square box connecting

four grid nodes (i−1, j),(i, j−1),(i+1, j) and (i, j+1).

In correction function method, we construct the a rectangular integration area Ω
i j
Σ such that Ω

i j
Σ

contains all the nodes where D is needed. As mentioned previously in Figure 2, Di, j+1 and Di+1, j

are needed, and hence, the integration region should include nodes (i+1, j) and (i, j+1). In [21],

the author introduced a method to determine the integration area that guarantee the stability and

accuracy which take full advantage of 5-point stencil scheme for Poisson Equation. The strategy

is briefly stated as follows.

1. Find the angle θΣ between the tangent vector~t at the mid-point of interface enclosed, and

the x-axis. Build a new p−q coordinate system by rotating x−y an angle θr = θΣ−π/4, as

shown in Figure 3.

r

q

p

Figure. 3: A illustration of coordinate rotation.



11

(a) Rectangle enclosing the in-

terface within the stencil.

(b) Rectangle enclosing the all

nodes need correction.

(c) Rectangle enclosing the in-

terface and nodes.

Figure. 4: The integration region Ω
i j
Σ .

2. Find the rectangle enclosing the interface within the stencil. The rectangle is aligned with

respect to the p− and q− directions, see Figure 4a.

3. Find the rectangle enclosing all nodes at which the computation of D is needed. The rectan-

gle is aligned with respect to the p− and q− directions, see Figure 4b.

4. Ω
i j
Σ is the smallest rectangle enclosing the two previous rectangles, see Figure 4c.

2.3.3 NUMERICAL SCHEME FOR SOLVING POISSON EQUATION

We will solve the local Cauchy problem in a least square sense, using a minimization procedure.

Since we don’t have boundary conditions, but interface conditions, we must resort to a minimiza-

tion functional that is different from the standard one associated with the Poisson equation. Thus,

we impose the Cauchy interface conditions by using a penalization method. The functional to be

minimized is then:

Jp =(li j
c )

3
∫

Ω
i j
Σ

(

∇2D(~x)− fD(~x)
)2

dV + cp

∫

Σ
⋂

Ω
i j
Σ

(

D(~x)−a(~x)
)2

dS

+ cp(l
i j
c )

2
∫

Σ
⋂

Ω
i j
Σ

(

Dn(~x)−b(~x)
)2

dS (18)

where cp > 0 is the penalization coefficient used to enforce the interface conditions, and l
i j
c > 0

is a characteristic length associated with Ω
i j
Σ , the shortest side length(width). Jp is a quadratic
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(a) Two correction terms needed at

(i+1, j) and (i, j+1).
(b) Two correction terms needed at

(i−1, j) and (i, j−1).

(c) Two correction terms needed at

(i+1, j) and (i, j−1).
(d) Two correction terms needed at

(i−1, j) and (i, j+1).

Figure. 5: Four cases of two correction terms needed in a 5-point stencil.

functional whose minimum (zero) occurs at the solution to Cauchy problem. cp can be determined

empirically from a low resolution calculation.

We use 4 Gaussian quadrature points for the 1D line integrals, and 16 points for the 2d area

integrals. The modified bilinear representation for D involves 5 basis polynomials, the minimiza-

tion problem produces a 5× 5 linear system. Here we let D(~x) = ∑
5
i=1 D(~xi)Ni(ξ ,η) to take full

advantage of the modified bilinear scheme (see 2.3.4), where Ni(i = 1,4) are standard bilinear

quadrilateral element basis function in ξ −η plane, N5 is an quadratic term.
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(a) One correction terms needed at

(i, j+1).
(b) Two correction terms needed at

(i, j−1).

(c) Two correction terms needed at

(i+1, j).
(d) Two correction terms needed at

(i−1, j).

Figure. 6: Four cases of one correction terms needed in a 5-point stencil.

To solve Di(i = 1,5), we will take partial derivative of (18) with respect to Di(i = 1,5) and five

equations will be obtained. For the integration

∫

Γ
⋂

Ω
i j
Γ

(

D(~x)−a(~x)
)2

dS =
∫

Γ
⋂

Ω
i j
Γ

(

5

∑
i=1

D(~xi)Ni(ξ ,η)−a(~x)
)2

dS (19)
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Take partial derivative of right hand side of (19) with respect to D(~x j) we obtain:

∂

∂D j

∫

Γ
⋂

Ω
i j
Γ

(

5

∑
i=1

D(~xi)Ni(ξ ,η)−a(~x)
)2

dS

=
∫

Γ
⋂

Ω
i j
Γ

2
(

5

∑
i=1

D(~xi)Ni(ξ ,η)−a(~x)
)

N j(ξ ,η)dS

=2

∫

Γ
⋂

Ω
i j
Γ

5

∑
i=1

D(~xi)Ni(ξ ,η)N j(ξ ,η)dS−2

∫

Γ
⋂

Ω
i j
Γ

a(~x)N j(ξ ,η)dS (20)

Similarly, for the integration
∫

Γ
⋂

Ω
i j
Γ

(

Dn(~x)−b(~x)
)2

dS (21)

where

Dn(~x) =
5

∑
i=1

D(~xi)∇Ni(ξ ,η) ·~n

Take partial derivative of eqn. (21) with respect to D(~x j) we obtain:

∂

∂D j

∫

Γ
⋂

Ω
i j
Γ

(

Dn(~x)−b(~x)
)2

dS

=
∂

∂D j

∫

Γ
⋂

Ω
i j
Γ

(

5

∑
i=1

D(~xi)∇Ni(ξ ,η) ·~n−b(~x)
)2

dS

=
∫

Γ
⋂

Ω
i j
Γ

2
(

5

∑
i=1

D(~xi)∇Ni(ξ ,η) ·~n−b(~x)
)

∇N j(ξ ,η) ·~ndS

=2

∫

Γ
⋂

Ω
i j
Γ

5

∑
i=1

D(~xi)(∇Ni(ξ ,η) ·~n)(∇N j(ξ ,η) ·~n)dS−2

∫

Γ
⋂

Ω
i j
Γ

b(~x)(∇N j(ξ ,η) ·~n)dS (22)

Finally, for the integration
∫

Ω
i j
Γ

(

∇2D(~x)− fD(~x)
)2

dV (23)

where

∇2D(~x) =
5

∑
i=1

D(~xi)∇
2Ni(ξ ,η)
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Take partial derivative of eqn. (23) with respect to D(~x j) we obtain:

∂

∂D j

∫

Ω
i j
Γ

(

∇2D(~x)− fD(~x)
)2

dV

=
∂

∂D j

∫

Ω
i j
Γ

(

5

∑
i=1

D(~xi)∇
2Ni(ξ ,η)− fD(~x)

)2
dV

=
∫

Ω
i j
Γ

2
(

5

∑
i=1

D(~xi)∇
2Ni(ξ ,η)− fD(~x)

)

∇2N j(ξ ,η)dV

=2

∫

Ω
i j
Γ

5

∑
i=1

D(~xi)∇
2Ni(ξ ,η)∇2N j(ξ ,η)dV −2

∫

Ω
i j
Γ

fD(~x)∇
2N j(ξ ,η)dV (24)

Take partial derivative of (18) with respect to D(~x j) and (20), (22) and (24) are substituted into

to get:

0 =
∂

∂D j

{

(li j
c )

3
∫

Ω
i j
Γ

(

∇2D(~x)− fD(~x)
)2

dV + cp

∫

Γ
⋂

Ω
i j
Γ

(

D(~x)−a(~x)
)2

dS

+ cp(l
i j
c )

2
∫

Γ
⋂

Ω
i j
Γ

(

Dn(~x)−b(~x)
)2

dS

}

=(li j
c )

3
∫

Ω
i j
Γ

5

∑
i=1

D(~xi)∇
2Ni(ξ ,η)∇2N j(ξ ,η)dV − (li j

c )
3
∫

Ω
i j
Γ

fD(~x)∇
2N j(ξ ,η)dV

+ cp

∫

Γ
⋂

Ω
i j
Γ

5

∑
i=1

D(~xi)Ni(ξ ,η)N j(ξ ,η)dS− cp

∫

Γ
⋂

Ω
i j
Γ

a(~x)N j(ξ ,η)dS

+ cp(l
i j
c )

2
∫

Γ
⋂

Ω
i j
Γ

5

∑
i=1

D(~xi)(∇Ni(ξ ,η) ·~n)(∇N j(ξ ,η) ·~n)dS

− cp(l
i j
c )

2
∫

Γ
⋂

Ω
i j
Γ

b(~x)(∇N j(ξ ,η) ·~n)dS (25)

Or, equivalently, we can rewrite (25) as

5

∑
i=1

D(~xi)

(

(li j
c )

3
∫

Ω
i j
Γ

∇2Ni(ξ ,η)∇2N j(ξ ,η)dV + cp

∫

Γ
⋂

Ω
i j
Γ

Ni(ξ ,η)N j(ξ ,η)dS

+ cp(l
i j
c )

2
∫

Γ
⋂

Ω
i j
Γ

(∇Ni(ξ ,η) ·~n)(∇N j(ξ ,η) ·~n)dS

)

=(li j
c )

3
∫

Ω
i j
Γ

fD(~x)∇
2N j(ξ ,η)dV + cp

∫

Γ
⋂

Ω
i j
Γ

a(~x)N j(ξ ,η)dS

+ cp(l
i j
c )

2
∫

Γ
⋂

Ω
i j
Γ

b(~x)(∇N j(ξ ,η) ·~n)dS (26)
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To evaluate the integration
∫

Ω
i j
Γ

∇2Ni(ξ ,η)∇2N j(ξ ,η)dV , we first calculate the Jacobian of the

transformation which is defined by

J(ξ ,η) =

∣

∣

∣

∣

∂ (x,y)

∂ (ξ ,η)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∂x

∂ξ

∂y

∂ξ
∂x

∂η

∂y

∂η

∣

∣

∣

∣

∣

∣

∣

∣

, (27)

Then we have

∫

Ω
i j
Γ (x,y)

∇2Ni(ξ (x,y),η(x,y))∇2N j(ξ (x,y),η(x,y))dxdy

=
∫

Ω
i j
Γ (ξ ,η)

∇2Ni(ξ ,η)∇2N j(ξ ,η)|J(ξ ,η)|dξ dη (28)

where

∇2Ni(ξ (x,y),η(x,y))

=(
∂

∂x
,

∂

∂y
) · (∂Ni(ξ (x,y),η(x,y))

∂x
,
∂Ni(ξ (x,y),η(x,y))

∂y
)

=(
∂

∂x
,

∂

∂y
) · (∂Ni(ξ ,η)

∂ξ

∂ξ

∂x
+

∂Ni(ξ ,η)

∂η

∂η

∂x
,
∂Ni(ξ ,η)

∂ξ

∂ξ

∂y
+

∂Ni(ξ ,η)

∂η

∂η

∂y
)

From (1) and using the definition of Ni(ξ ,η), we have

∂N1

∂ξ
=−1

4
(1−η)

∂N1

∂η
=−1

4
(1−ξ )

∂N2

∂ξ
=

1

4
(1−η)

∂N2

∂η
=−1

4
(1+ξ )

∂N3

∂ξ
=

1

4
(1+η)

∂N3

∂η
=

1

4
(1+ξ )

∂N4

∂ξ
=−1

4
(1+η)

∂N4

∂η
=

1

4
(1−ξ )

∂N5

∂ξ
=−ξ

2

∂N5

∂η
=−η

2

(29)
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Finally, we derive the following expressions for ∇2Ni(ξ ,η):

∇2N1(ξ ,η) =
1

2

(

(∂ξ

∂x

)(∂η

∂x

)

+
(∂ξ

∂y

)(∂η

∂y

)

)

∇2N2(ξ ,η) =−1

2

(

(∂ξ

∂x

)(∂η

∂x

)

+
(∂ξ

∂y

)(∂η

∂y

)

)

∇2N3(ξ ,η) =
1

2

(

(∂ξ

∂x

)(∂η

∂x

)

+
(∂ξ

∂y

)(∂η

∂y

)

)

∇2N4(ξ ,η) =−1

2

(

(∂ξ

∂x

)(∂η

∂x

)

+
(∂ξ

∂y

)(∂η

∂y

)

)

∇2N5(ξ ,η) =
1

2

(

(∂ξ

∂x

)2
+
(∂η

∂x

)2
+
(∂ξ

∂y

)2
+
(∂η

∂y

)2
)

∇2Ni(ξ (x,y),η(x,y)) = 0 for i = 1,2,3,4 since they are bilinear quadrilateral basis functions.

To evaluate
∫

Γ
⋂

Ω
i j
Γ

(∇Ni(ξ ,η) ·~n)(∇N j(ξ ,η) ·~n)dS, where ~n = (nx,ny), by the definition of

Ni(ξ ,η), we have

∇Ni(ξ (x,y),η(x,y)) =
(∂Ni(ξ (x,y),η(x,y))

∂x
,
∂Ni(ξ (x,y),η(x,y))

∂y

)

=
(∂Ni(ξ ,η)

∂ξ

∂ξ

∂x
+

∂Ni(ξ ,η)

∂η

∂η

∂x
,
∂Ni(ξ ,η)

∂ξ

∂ξ

∂y
+

∂Ni(ξ ,η)

∂η

∂η

∂y

)

The (i, j) entry is

∫

Γ
⋂

Ω
i j
Γ

(∇Ni(ξ ,η) ·~n)(∇N j(ξ ,η) ·~n)dS

=
∫

Γ
⋂

Ω
i j
Γ

[

(∂Ni(ξ ,η)

∂ξ

∂ξ

∂x
+

∂Ni(ξ ,η)

∂η

∂η

∂x

)

nx +
(∂Ni(ξ ,η)

∂ξ

∂ξ

∂y
+

∂Ni(ξ ,η)

∂η

∂η

∂y

)

ny

]

[

(∂N j(ξ ,η)

∂ξ

∂ξ

∂x
+

∂N j(ξ ,η)

∂η

∂η

∂x

)

nx +
(∂N j(ξ ,η)

∂ξ

∂ξ

∂y
+

∂N j(ξ ,η)

∂η

∂η

∂y

)

ny

]

dS

where ~n = (nx,ny). Now we are ready to compute D(~x) in different cases, depending on the way

how the interface intersect the stencil.

2.3.4 MODIFIED BILINEAR INTERPOLATION

Since each cell Ω
i j
Σ is arbitrary rectangle, in order to use Gaussian Quadrature, we will map

this rectangle from x− y plane to ξ −η plane.
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The standard bilinear quadrilateral element basis function in (ξ ,η) plane:

N1(ξ ,η) =
1

4
(1−ξ )(1−η) (30)

N2(ξ ,η) =
1

4
(1+ξ )(1−η) (31)

N3(ξ ,η) =
1

4
(1+ξ )(1+η) (32)

N4(ξ ,η) =
1

4
(1−ξ )(1+η) (33)

The standard bilinear interpolation of a scalar function φ is given by

φ(~x) =
4

∑
i=1

φiNi(ξ ,η)

where φi represents the function value of φ at point i.

Now, we add a quadratic term proportional to ξ 2 +η2, so that the Laplacian of the modified

bilinear is no longer identically zero.

The coefficient of the quadratic term can be written in terms of the average value of the Lapla-

cian over the domain, ∇2φ . We obtain the following formula for the modified bilinear interpolant:

φ(~x) =
4

∑
i=1

φiNi(ξ ,η)− 1

4

(

(1−ξ )(1+ξ )+(1−η)(1+η)
)

∇2φ

In addition to the standard basis function, for convenience, we define N5(ξ ,η) and φ5(~x) as

follows:

N5(ξ ,η) =
1

4

(

(1−ξ )(1+ξ )+(1−η)(1+η)
)

φ5(~x) = ∇2φ(~x)

This yields the compact form of modified bilinear interpolant:

φ(~x) =
5

∑
i=1

φiNi(ξ ,η)

To solve ξ and η , we use the following relationship between the four vertices: (xi,yi) and
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(ξi,ηi) as follows:

xi = a1 +a2ξi +a3ηi +a4ξiηi

yi = b1 +b2ξi +b3ηi +b4ξiηi

We next use these expressions to solve for the four coefficients:

















x1

x2

x3

x4

















=

















1 −1 −1 1

1 1 −1 −1

1 1 1 1

1 −1 1 −1

































a1

a2

a3

a4

















(34)

This can be easily done by inverting the matrix:

















a1

a2

a3

a4

















=

















1 −1 −1 1

1 1 −1 −1

1 1 1 1

1 −1 1 −1

















−1















x1

x2

x3

x4

















(35)

To obtain the reverse mapping, we need to solve

x = a1 +a2ξ +a3η +a4ξ η

y = b1 +b2ξ +b3η +b4ξ η

Note this system is no longer linear, however it can be solved quite easily analytically. We first

obtain

ξ =
x−a1 −a3η

a2 +a4η

Which can be substitute into the second expression to obtain:

a4b3 −a3b4)η
2 +(a4b1 −a1b4 +a2b3 −a3b2 + xb4 − ya4)η

+(a2b1 −a1b2 + xb2 − ya2) = 0
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This is a quadratic equation can be solved by using quadratic formula.

For our problem, the transformation of arbitrary rectangle is always linear, this implies that

a4 = b4 = 0, we calculated other coefficients as follows:

a1 =
1

4
(x1 + x2 + x3 + x4) b1 =

1

4
(y1 + y2 + y3 + y4)

a2 =
1

4
(x2 − x1 + x3 − x4) b2 =

1

4
(y2 − y1 + y3 − y4)

a3 =
1

4
(x3 + x4 − x1 − x2) b3 =

1

4
(y3 + y4 − y1 − y2)

Solve for ξ and η , we obtain:

ξ =
−a1b3 +b1a3 −a3y+b3x

a2b3 −b2a3
(36)

η =−
(−a1b2 +b1a2 −a2y+b2x

a2b3 −b2a3

)

(37)

2.3.5 NUMERICAL EXAMPLES

In this section, we shall demonstrate some examples widely used in other literatures. The

maximum norm L∞ is used to measure the errors in the computed solution u. Let ue be the exact

solution, the L∞ error in u is defined as L∞
error = ‖u−ue‖∞. The convergence rate is related to the

number of grid points N and grid spacing parameter h. A practical method to calculate the order

of convergence for a discretization method is to implement the following formula

p ≈ log(errornew/errorold)

log(hnew/hold)

The ratio is defined as

Ratio =
errorold

errornew

For a second order accurate method, the ratio approaches to 4 in each step of mesh refinement. An

average ratio of 4 indicates second order convergence. We use the same notation for all examples

in this thesis.
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Example 1

Consider ∇ · (σu) = 0 in two dimensions on [−1,1]× [−1,1] with the interface defined by

the circle x2 + y2 = 0.52. In this example, σ+ = σ− = 1. The jump conditions on the interface

is [u] = 0 and [un] = 2, with Dirichlet boundary conditions 1+ log(2
√

X2 +Y 2), (X ,Y ) ∈ ∂Ω at

boundary, directly computed from the exact solution. The Lagrangian control points are 140 on

the immersed interface. The exact solution is

u(x,y) =







1+ log(2
√

x2 + y2), (x,y) ∈ Ω+

1, (x,y) ∈ Ω−

Table 1 shows the numerical accuracy and convergence tests.

TABLE 1: Accuracy and convergence test for Example 1

N L∞ error in u Ratio Order

21 2.07059e-03 - -

41 2.29257e-04 9.0317 3.28936

81 9.10811e-05 2.5171 1.35574

161 1.84140e-05 4.9463 2.32714

321 4.91145e-06 3.7492 1.91517

641 1.35885e-06 3.6144 1.85795

Figure 7 shows the convergence results for the errors in the L∞ norms.
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Figure. 7: error behaviour of the solution
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Figure 8 shows the plots of numerical solutions with grids 21, 41, 81, 161, 321 and 641, from

top to bottom, left to right, respectively.

Figure. 8: Numerical solutions

Example 2

This is an example taken from [23]. (Example 7). Consider ∇2u = 0 in two spatial dimensions

on [−1,1]× [−1,1] with the interface defined by the circle x2+y2 = 0.52 with an outward pointing

normal vector,~n = (2x,2y).

The jump conditions are:

[u]Σ = y2 − x2

[un]Σ = 4(y2 − x2)

The exact solution is

u(x,y) =







x2 − y2 (x,y) ∈ Ω−

0 (x,y) ∈ Ω+
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Table 2 shows the results of numerical accuracy.

TABLE 2: Accuracy and convergence test for Example 1

N L∞ error in u Ratio Order

11 8.19894e-03 - -

21 2.28310e-03 3.5911 1.97714

41 6.24386e-04 3.6566 1.93785

81 2.33045e-04 2.6793 1.44745

161 5.25309e-05 4.4363 2.16874

321 1.41005e-05 3.7255 1.90598

Figure 9 shows the convergence results for the errors in the L∞ norms.
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Figure. 9: error behaviour of the solution

Figure 10 shows the numerical solution with 11, 21, 41, 81, 161 and 321 grid points in each

direction, from top to bottom, left to right, respectively.

The Correction Function Method (CFM) is a robust scheme that can deal with the complicated

interface geometry, and can even be developed to 4th order scheme based on the compact 9-point

stencil discretization of the Poisson equation, see details in [21]. We are able to use this method

to solve electric potential under the assumption that the conductivity σ is constant through the

entire computational domain. Unfortunately, the Correction Function Method cannot applied to

the situation where σ+ and σ− are unequal. The explanation is given in [21]. Due to the drawback

of correction function method, we move forward on the fast immersed interface method which can

deal with discontinuity in σ .
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Figure. 10: Plots of Numerical Solutions

2.4 FAST IMMERSED INTERFACE METHOD FOR SOLVING ELLIPTIC

INTERFACE PROBLEM

The fast immersed interface method is employed to impose the jump conditions at the interface.

This method is originally developed by Z. Li in [22] used to solve elliptic interface problems.

We consider the problem on a computational domain Ω with an immersed interface Σ. The

interface Σ divides the domain Ω into two regions; namely inside (Ω−) and outside (Ω+) of the

interface. Without loss of generality, we consider the following elliptic interface problem with

inhomogeneous jumps as

∇ · (σ∇φ) = f in Ω\Σ (38)

[φ ] = w on Σ (39)

[σ∇φ ·n] = v on Σ (40)

The above equation should be accompanied with some suitable boundary condition (Dirichlet or

Neumann condition) along the computational domain ∂Ω. Other boundary conditions will not

change the main ingredients presented here. Note that, the jumps v(s) and w(s) are both functions

defined on the interface Σ. Since σ is piecewise constant, we can rewrite the above equation in the
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form of Poisson equation ∆φ =
f

σ
in different domains Ω+ and Ω− with the same jump conditions.

In the following, we use the shorthand φn to represent the normal derivative ∇φ ·n.

We consider the following alternate problem using a unknown jump condition φn = g(s):

∆φ+ =
f+

σ+
in Ω+ (41)

∆φ− =
f−

σ− in Ω− (42)

[φ ] = w, [σφn] = v, [φn] = g, on Σ. (43)

Solving alternate problem (41)–(43) is equivalent to solve original problem. Consider the problem

on a rectangular domain [a,b]× [c,d] with a uniform grid

xi = a+ ih, y j = a+ jh, 0 ≤ i ≤ m,0 ≤ j ≤ n

The immersed interface Σ : {X(s) = (X(s),Y (s)),0≤ s< 2π} is presented as a cubic spline passing

through a set of Lagrangian points (Xk,Yk) on Σ, where k = 1,2, ...,N. The grid points (xi,y j) are

defined at the cell center where discrete solution φi j are located. The grid point is identified as

either a regular or irregular point. If the 5-point Laplacian stencil of a grid point does not cut

through the interface, then that grid point is labelled as regular point; otherwise, the grid point is

irregular point, no matter it’s in Ω+ or Ω−. When (xi,y j) is an irregular point, a correction term

Ci j is required to add to the standard 5-point Laplacian stencil which incorporate the boundary

condition on the interface Σ. Thus, the discretization of equation: in a uniform Cartesian grid with

equal mesh size is as follows

φi+1, j −2φi, j +φi−1, j

h2
+

φi, j+1 −2φi, j +φi, j−1

h2
= f̄i j + ci j (44)

The correction term ci j is zero unless (xi,y j) is irregular grid point, f̄i j =
f+i j

σ+
if (xi,y j) is in Ω+

and f̄i j =
f−i j

σ− if (xi,y j) is in Ω−.

Now we describe the fast immersed interface method in details. We shall use lower-case letters

and upper-case letters to distinguish continuous format and discrete format. See the following
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correspondences

Φ : φ in equation (44)

F : f̄ in equation (44)

C : c in equation (44)

G : the unknown interface jump condition g in (43)

W : the interface jump condition w in (43)

V : the interface jump condition v in (43)

L : standard five points discrete Laplacian operator

The discrete form of (44) becomes

LΦ = F +C (45)

The correction term, C, has been proved in [24, 25], is a linear combination of W and G

C = AW −BG (46)

where A and B are two matrices with real entries correspond to the correction terms in the im-

mersed interface method implemented from their positions around the vicinity of the interface.

The equation (45) becomes

LΦ+BG = F +AW = F1 (47)

The discrete form of boundary condition [σφn] = v is

σ+Φ+
n −σ−Φ−

n −V = 0 (48)

The unknown boundary condition [φn] = g, is fully connected with the boundary condition [σφn] =
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v, σ+ and σ− through an interpolation scheme, which is proposed by Xu [23] as follows

φ+
n +

σ−

[σ ]
[φn] =

[σφn]

[σ ]
, if σ− > σ+ (49)

φ−
n +

σ+

[σ ]
[φn] =

[σφn]

[σ ]
, if σ+ > σ− (50)

At each Lagrangian point Xc = (xc,yc) on the interface Σ, We use the weighted least squares (see

details in 2.4.2) to approximate φ+
n (Xc) and φ−

n (Xc). This approach has second-order of accuracy

for the derivatives. With this approximation, we can rewrite (49)-(50) in matrix form linearly as

DΦ+EG = PV (51)

where D denote the matrices resulting from the weighted least square approximation, E is the

constant matrix, σ−
[σ ] I or σ+

[σ ] I, determined by (49) or (50); and P = 1
[σ ]I. As proved in [26], Φ+

n and

Φ−
n depend on D, G and V linearly and given by the following equation

σ+Φ+
n −σ−Φ−

n −V = DΦ+EG−PV (52)

The proof of (52) is straight forward. Multiply (49) by [σ ], we have

[σ ]φ+
n +σ−[φn] = [σφn] (53)

By applying the jump conditions, we can perform the following operations

0 = [σ ]φ+
n +σ−[φn]− [σφn]

= σ+φ+
n −σ−φ+

n +σ−φ+
n −σ−φ−

n − [σφn]

= σ+φ+
n −σ−φ−

n − [σφn]

Thus we can obtain the following expression of the continuous form of (52)

φ+
n +

σ−

[σ ]
[φn]−

[σφn]

[σ ]
= σ+φ+

n −σ−φ+
n − [σφn] (54)
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and the same operation can be done in a similar manner for (50)

φ−
n +

σ+

[σ ]
[φn] =

[σφn]

[σ ]
= σ+φ+

n −σ−φ+
n − [σφn] (55)

Now we are ready to solve following the system of equations (47) and (51) using immersed inter-

face method.




L B

D E









Φ

G



=





F1

PV



 (56)

First, we eliminate Φ to obtain system for G. The dimension of G is the same as the number of

Lagrangian points on the interface, and is much smaller than the dimension of Φ, which is defined

at all grid points. We obtain the system with G:

(E −DL−1B)G = PV −DL−1F1

= V̄

(57)

This is an nb ×nb system for G, a much smaller linear system compared to the one for Φ, nb is the

number of control points used on the interface. An iterative method, such as GMRES (see 2.4.1)

iteration, is preferred to solve (57). To compute V̄ in (57), we first set G = 0 in (47) and apply one

step of the immersed interface method (see [24]) to solve (47) to get Φ(0) = L−1F1. Next, compute

the normal derivatives on each side of the interface to get Φ±
n (0) (see details in 2.4.2). Thus the

right-hand side of equation (57) is

V̄ = PV −DL−1F1

= PV −DΦ(0)

=−(DΦ(0)+EG−PV ) ( because G = 0)

=−(σ+Φ+
n (0)−σ−Φ−

n (0)−V )

(58)

Consider the matrix-vector multiplication (E −DL−1B)G in (57), which will be used in GMRES

iteration. This can be done by avoiding the matrix-vector multiplication involves two steps in

practice as follows [26].
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1. Set G = G∗ initially and apply a fast Poisson solver to compute Φ∗ in (47)

Φ∗ = L−1(F1 −BG∗) (59)

2. Apply weighted least square interpolation to compute (Φ+
n )

∗ and (Φ−
n )

∗, and the residual

vector in the flux jump condition is

R∗ =V − (σ+(Φ+
n )

∗−σ−(Φ−
n )

∗) (60)

or according to (52),

R∗ = PV − (DΦ∗+EG∗) (61)

The matrix-vector multiplication (E −DL−1B)G∗ = EG∗−DL−1BG∗, where L−1BG∗ = L−1F1 −
Φ∗. Now we have

(E −DL−1B)G∗ = EG∗−DL−1BG∗

= EG∗−D(L−1F1 −Φ∗)

= EG∗+DΦ∗−DL−1F1

= EG∗+DΦ∗−PV +V̄

=−(PV − (EG∗+DΦ∗))+V̄

=−R∗+V̄

Now we are able to apply GMRES iterative method to solve G until it converges in (57). Finally,

solve Φ using G from previous step with a fast Poisson solver in (47)

LΦ = F1 −BG

2.4.1 GENERALIZED MINIMAL RESIDUAL METHOD (GMRES)

The generalized minimal residual method (GMRES) is an iterative method for the numerical

solution of a non-symmetric system of linear equations. The method approximates the solution by
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the vector in a Krylov subspace with minimal residual. The Arnoldi iteration is used to find this

vector.

The GMRES method was developed by Yousef Saad and Martin H. Schultz in 1986 [27].

GMRES is a generalization of the minimal residual method (MINRES) developed by Chris Paige

and Michael Saunders in 1975 [28]. GMRES also is a special case of the Direct Inversion of

Iterative Space method (DIIS) developed by Peter Pulay in 1980 [29]. DIIS is also applicable to

non-linear systems.

The system of equations to solved is

A~x =~b (62)

where matrix A is assumed to be invertible of size m by m. Vector~b is normalized with ‖b‖= 1.

The n-th Krylov subspace for above problem is

Kn = Kn(A,~b) = span{~b,A~b,A2~b, ...,An−1~b} (63)

GMRES approximate the exact solution of Ax = b by the vector ~xn ∈ Kn that minimizes the Eu-

clidean norm of the residual~rn = A~xn −~b, where the Euclidean norm of vector~rn is denoted by

‖~rn‖.

The vectors~b,A~b, ...,An−1~b might be close to linearly dependent. To avoid this situation, the

Arnoldi iteration [30] is used to find orthonormal vectors ~q1,~q2, ...,~qn which form a basis for Kn.

Hence, the vector~xn ∈ Kn can be written as~xn = Qn~yn with~yn ∈Rn, where Qn is the m-by-n matrix

formed by~q1,~q2, ...,~qn.

The Arnoldi process also produces an (n+1)-by-n upper Hessenberg matrix Hn with

AQn = Qn+1Hn (64)

Because columns of Qn are orthonormal, we have

‖A~xn −b‖= ‖Hn~yn −QT
n+1b‖= ‖Hn~yn −βe1‖ (65)

where e1 = (1,0,0, ...,0)T is the first vector in the standard basis of Rn+1 and β = ‖b−A~x0‖. ~x0
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is the first trial vector (usually zero). Hence~xn can be found by minimizing the Euclidean norm of

the residual~rn = Hn~yn −β1. This is a linear least squares problem of size n.

On the n-th iteration, the GMRES method is performed through the following steps

1. Calculate~qn by using Arnoldi method.

2. Find the~yn that minimizes ‖~rn‖.

3. Compute~xn = Qnyn.

4. Repeat if the residual is not yet small enough.

2.4.2 WEIGHTED LEAST SQUARES APPROACH FOR COMPUTING UNKNOWN

JUMP CONDITION IN TWO DIMENSIONAL

The crucial step in immersed interface method is to compute Φ+
n and Φ−

n with the knowledge

of Φ and the jump condition G. A weighted least squares approach was used in [26], the idea is to

approximate quantities on the interface from a grid function. In current case, interpolate Φi j to the

interface to get Φ+
n (Xc) and Φ−

n (Xc), where Xc is a Lagrangian point on the interface. The original

approach was developed by Peskin’s immersed interface method in [31]. However, his method is

only first-order accurate and may smear out the solution near the interface.

Consider the continuous situation, let φ(x,y) be a piecewise smooth function, with discontinu-

ities only along the interface. We wish to interpolate φi j to the interface to get approximations of

the normal derivatives of φ−
n (Xc) and φ+

n (Xc) with second order accuracy.

The interpolation scheme for φ−
n at the point Xc on the interface can be written as

φ−
n (Xc)≈ ∑

i, j

= γi jφ(i, j)dα(|Xc −~xi j|)−C (66)

where N denotes a set of neighboring grid points near Xc, and C is a correction term which can be

determined once γi j are known. The distance function dα(r) is defined as

dα(r) =











1
2
(1+ cos(πr/α)) if r < α

0 if r ≥ α

(67)
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The coefficients γi j and correction term C can be computed based on immersed interface method

in [24].

In immersed interface method, since the jump condition is given in the normal derivative of the

solution, a local coordinates is used at the point Xc = (xc,yc)

ξ = (x− xc)cos(θ)+(y− yc)sin(θ)

η = −(x− xc)sin(θ)+(y− yc)cos(θ)
(68)

where θ is the angle between the x-axis and the normal direction. Under such new coordinate, the

Figure. 11: Local η −ξ coordinates transformation at the interface node.

interface can be parameterized by

ξ = χ(η),η = η with χ(0) = 0,χ ′(0) = 0 (69)

The interface jump conditions [φ ] = w and [σ∇φ ·n] = v are locally defined by

φ+−φ− = w(η) (70)

σ+∂φ+

∂n
−σ−∂φ−

∂n
= v(η) (71)
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Differentiate (70) with respect to η along the interface to get

[φξ ]χ
′+[φη ] = w′(η) (72)

Differentiate (72) with respect to η we obtain

[φξ ]χ
′′+χ ′ d

dη
[φξ ]+ [φξ η ]χ

′+[φηη ] = w′′(η) (73)

Another interface jump condition, [φn] = g is locally defined by

φ+
n = φ−

n +g (74)

At a point (η ,χ(η)) ∈ Γ, the normal derivative in terms of the derivatives of ξ - and η- is given by

∂φ

∂n
=

1
√

1+χ ′2
(φξ −φη χ ′) (75)

And in the local coordinate system η −ξ , (74) can be written as

φ+
ξ
−φ+

η χ ′ = φ−
ξ
−φ−

η χ ′+g

√

1+(χ ′)2 (76)

Differentiate (76) with respect to η along the interface we have the following relation

φξ ξ χ ′+φ+
ξ η

− d

dη
(φ+

η )χ ′−φ+
η χ ′′ =φ−

ξ ξ
χ ′+φ−

ξ η
− d

dη
(φ−

η )χ ′−φ−
η χ ′′

+g′(η)
(
√

1+(χ ′)2 +
g(η)χ ′χ ′′
√

1+(χ ′)2

)
(77)

The Poisson equation ∇ · (σ∇φ) = f remains unchanged if the coordinate transformation is com-

posed of a shift and rotation as in (68), that is,

φxx +φyy =
d

dη

(dφ

dη

)

+
d

dξ

(dφ

dξ

)

=
f

σ
for constant σ (78)
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We obtain the following PDE in Ω+ and Ω−, respectively

φ+
ηη +φ+

ξ ξ
=

f+

σ+
(79)

φ−
ηη +φ−

ξ ξ
=

f−

σ− (80)

With χ(0) = 0 and χ ′(0) = 0 at a fix point corresponding to ξ = η = 0 on the interface Σ, the

solution of the equation (41) and (42) satisfy the following interface relations

φ+ = φ−+w from (70)

φ+
ξ

= φ−
ξ
+g from (74)

φ+
η = φ−

η +w′ from (72)

φ+
ξ ξ

= φ−
ξ ξ

+gχ ′′−w′′+
[ f

σ

]

φ+
ηη = φ−

ηη −gχ ′′+w′′ from (73)

φ+
ξ η

= φ−
ξ η

+ v′χ ′′+g′ from (77)

(81)

where w′ = wη , g′ = gη , χ ′ = χη , w′′ = wηη and χ ′′ = χηη . Let ξi,η j be the ξ −η coordinates of

(xi,y j), then apply Taylor series to have

φ(xi,y j) = φ±+φ±
ξ

ξi +φ±
η η j +

1

2
φ±

ξ ξ
ξ 2

i +
1

2
φ±

ηηη2
j +φ±

ξ η
ξiη j +O(h3) (82)

where + and − sign depends on whether(ξi,η j) lies on the + or − side of the interface Σ.

The Taylor expansion of (66) about Xc in the ξ −η coordinate system is

φ−
n =a1φ−+a2φ++a3φ−

ξ
+a4φ+

ξ
+a5φ−

η +a6φ+
η +a7φ−

ξ ξ
+a8φ+

ξ ξ

+a9φ−
ηη +a10φ+

ηη +a11φ−
ξ η

+a12φ−
ξ η

−C+O(h3max|γi j|)

=(a1 +a2)φ
−+(a3 +a4)φ

−
ξ
+(a5 +a6)φ

−
η +(a7 +a8)φ

−
ξ ξ

+(a9 +a10)φ
−
ηη +(a11 +a12)φ

−
ξ η

−C+O(h3max|γi j|) (83)
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Define the index sets K− and K+ by K± = {k : (ξk,ηk) is on the ± side of Γ}, wthen the coeffi-

cients ak
′s are given by

a1 = ∑
(xi,y j)∈Ω−

γi jdα(|Xc −~xi j|)

a3 = ∑
(xi,y j)∈Ω−

ξkγi jdα(|Xc −~xi j|)

a5 = ∑
(xi,y j)∈Ω−

ηkγi jdα(|Xc −~xi j|)

a7 = ∑
(xi,y j)∈Ω−

1

2
ξ 2

k γi jdα(|Xc −~xi j|)

a9 = ∑
(xi,y j)∈Ω−

1

2
η2

k γi jdα(|Xc −~xi j|)

a11 = ∑
(xi,y j)∈Ω−

ξkηkγi jdα(|Xc −~xi j|)

a2 = ∑
(xi,y j)∈Ω+

γi jdα(|Xc −~xi j|)

a4 = ∑
(xi,y j)∈Ω+

ξkγi jdα(|Xc −~xi j|)

a6 = ∑
(xi,y j)∈Ω+

ηkγi jdα(|Xc −~xi j|)

a8 = ∑
(xi,y j)∈Ω+

1

2
ξ 2

k γi jdα(|Xc −~xi j|)

a10 = ∑
(xi,y j)∈Ω+

1

2
η2

k γi jdα(|Xc −~xi j|)

a12 = ∑
(xi,y j)∈Ω+

ξkηkγi jdα(|Xc −~xi j|)

(84)

From the interface relations (69), the algorithm requires the coefficients of φ−, φ−
η , φ−

ξ ξ
, φ−

ηη

and φ−
ξ η

to vanish, and φ−
n = φ−

ξ
, we obtain the linear system of equations for the coefficients γi j

a1 +a2 = 0

a3 +a4 = 1

a5 +a6 = 0

a7 +a8 = 0

a9 +a10 = 0

a11 +a12 = 0

(85)

A second order approximate to the normal derivative φ−
n at Xc can be achieved by choosing

an appropriate correction term C, and the discontinuities across the interface only contribute to

the correction term C. The detailed analysis can be found in [24, 25] for Poisson equations with

discontinuous, where the five points stencil is used by adding a correction term to the source term

at irregular grid point.

The ak
′s are obtained once the coefficients γi j

′s are computed, and the correction term C is
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determined by

C =a2w+a4g+a6w′+a8

(

gχ ′′−w′′+
[ f

σ

])

+a10(w
′′−gχ ′′)+a12(w

′χ ′′+g′) (86)

which guarantee the computation of φ−
n to the second order accuracy. With the relation φ+

n =

φ−
n +g, we can get a second order accuracy interpolation scheme for φ+

n immediately

φ+
n (Xc)≈ ∑

i, j

= γi jφ(i, j)dα(|Xc −~xi j|)−C+g (87)

where γi j
′s are the solutions we computed for φ−

n .

2.4.3 WEIGHTED LEAST SQUARES APPROACH FOR COMPUTING UNKOWN JUMP

CONDITION IN THREE DIMENSIONAL

The interpolation scheme for φ−
n at the point Xc on the interface can be written as

φ−
n (Xc)≈ ∑

i, j,K

= γi jkφ(i, j,k)dα(|Xc −~xi jk|)−C (88)

where N denotes a set of neighboring grid points near Xc, and C is a correction term which can be

determined once γi jk are known. A local coordinates is used at the point Xc = (xc,yc,zc)

ξ = (x− xc)αxξ +(y− yc)αyξ +(z− zc)αzξ

η = (x− xc)αxη +(y− yc)αyη +(z− zc)αzη

τ = (x− xc)αxτ +(y− yc)αyτ +(z− zc)αzτ

(89)

where αxξ represents the directional cosine between the x-axis and ξ , and so forth. The three-

dimensional coordinate transformation above can also be written in matrix-vector form. Define the
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local transformation matrix as

A =











αxξ αyξ αzξ

αxη αyη αzη

αxτ αyτ αzτ











and the local coordinates transformation becomes











ξ

η

τ











= A











(x− x∗)
(y− y∗)
(z− z∗)











Also, for any differentiable function p(x,y,z), we have











p̂ξ

p̂η

p̂τ











= A











px

py

pz





















p̂ξ ξ p̂ξ η p̂ξ τ

p̂ηξ p̂ηη p̂ητ

p̂τξ p̂τη p̂ττ











= A











pxx pxy pxz

pyx pyy pyz

pzx pzy pzz











AT

where p̂(ξ ,η ,τ) = p(x,y,z) and AT is the transpose of A. It can proved that AT A = I, and under the

local coordinates transformation, the PDE (5) is invariant. Hence the hat in difference vector and

matrix can be dropped for simplicity. Under the local ξ −η − τ coordinate system, the interface

can be parameterized by

ξ = χ(η ,τ) with χ(0,0) = 0,χη(0,0) = 0,χτ(0,0) = 0 (90)
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The solution of the equation (41) and (42) satisfy the following interface relations

φ+ = φ−+w

φ+
ξ

= φ−
ξ
+g

φ+
η = φ−

η +wη

φ+
τ = φ−

τ +wτ

φ+
ητ = φ−

ητ −gχητ +wητ

φ+
ηη = φ−

ττ −gχηη +wηη

φ+
ητ = φ−

ητ −gχττ +wττ

φ+
ξ η

= φ−
ξ η

+wη χηη +wτ χητ +gη

φ+
ξ τ

= φ−
ξ τ

+wη χητ +wτ χττ +gτ

φ+
ξ ξ

= φ−
ξ ξ

+g(χηη +χττ)+
[ f

β

]

−wηη −wττ

(91)

Let ξi,η j,τk be the ξ −η − τ coordinates of (xi,y j,zk), then apply Taylor series to have

φ(xi,y j,zk) =φ±+φ±
ξ

ξi +φ±
η η j +φ±

τ τ j +
1

2
φ±

ξ ξ
ξ 2

i +
1

2
φ±

ηηη2
j +

1

2
φ±

τττ2
k

+φ±
ξ η

ξiη j +φ±
ξ τ

ξiτk +φ±
ητηiτk +O(h3)

where + and − sign depends on whether(ξi,η j) lies on the + or − side of the interface Σ.
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The Taylor expansion of (88) about Xc in the ξ −η − τ coordinate system is

φ−
n =a1φ−+a2φ++a3φ−

ξ
+a4φ+

ξ
+a5φ−

η +a6φ+
η +a7φ−

τ +a8φ+
τ

+a9φ−
ξ ξ

+a10φ+
ξ ξ

+a11φ−
ηη +a12φ+

ηη +a13φ−
ττ +a14φ+

ττ

+a15φ−
ξ η

+a16φ+
ξ η

+a17φ−
ξ τ

+a18φ+
ξ τ

+a19φ−
ητ +a20φ+

ητ

−C+O(h3max|γi jk|)

=(a1 +a2)φ
−+(a3 +a4)φ

−
ξ
+(a5 +a6)φ

−
η +(a7 +a8)φ

−
τ

+(a9 +a10)φ
−
ξ ξ

+(a11 +a12)φ
−
ηη +(a13 +a14)φ

−
ττ

+(a15 +a16)φ
−
ξ η

+(a17 +a18)φ
−
ξ τ

+(a19 +a20)φ
−
ητ

+a2[φ ]+a4[φξ ]+a6[φη ]+a8[φτ ]+a10[φξ ξ ]+a12[φηη ]+a14[φττ ]

+a16[φξ η ]+a18[φξ τ ]+a20[φητ ]−C+O(h3max|γi jk|) (92)
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Define the index sets K− and K+ by K± = {k : (ξk,ηk,τk) is on the ± side of Γ}, where the coef-

ficients ak
′s are given by

a1 = ∑
k∈K−

γi jkdα(|Xc −~xi jk|)

a3 = ∑
k∈K−

ξkγi jkdα(|Xc −~xi jk|)

a5 = ∑
k∈K−

ηkγi jkdα(|Xc −~xi jk|)

a7 = ∑
k∈K−

τkγi jkdα(|Xc −~xi jk|)

a9 = ∑
k∈K−

1

2
ξ 2

k γi jkdα(|Xc −~xi jk|)

a11 = ∑
k∈K−

1

2
η2

k γi jkdα(|Xc −~xi jk|)

a13 = ∑
k∈K−

1

2
τ2

k γi jkdα(|Xc −~xi jk|)

a15 = ∑
k∈K−

ξkηkγi jkdα(|Xc −~xi jk|)

a17 = ∑
k∈K−

ξkτkγi jkdα(|Xc −~xi jk|)

a19 = ∑
k∈K−

ηkτkγi jkdα(|Xc −~xi jk|)

a2 = ∑
k∈K+

γi jkdα(|Xc −~xi jk|)

a4 = ∑
k∈K+

ξkγi jkdα(|Xc −~xi jk|)

a6 = ∑
k∈K+

ηkγi jkdα(|Xc −~xi jk|)

a8 = ∑
k∈K+

τkγi jkdα(|Xc −~xi jk|)

a10 = ∑
k∈K+

1

2
ξ 2

k γi jkdα(|Xc −~xi jk|)

a12 = ∑
k∈K+

1

2
η2

k γi jkdα(|Xc −~xi jk|)

a14 = ∑
k∈K+

1

2
τ2

k γi jkdα(|Xc −~xi jk|)

a16 = ∑
k∈K+

ξkηkγi jkdα(|Xc −~xi jk|)

a18 = ∑
k∈K+

ξkτkγi jkdα(|Xc −~xi jk|)

a20 = ∑
k∈K+

ηkτkγi jkdα(|Xc −~xi jk|)

(93)

From the interface relations (90), the algorithm requires the coefficients of φ−, φ−
η , φ−

τ , φ−
ξ ξ

,

φ−
ηη , φ−

ττ , φ−
ξ η

, φ−
ξ τ

and φ−
ητ to vanish, and φ−

n = φ−
ξ

, we obtain the linear system of equations for



41

the coefficients γi jk

a1 +a2 = 0

a3 +a4 = 1

a5 +a6 = 0

a7 +a8 = 0

a9 +a10 = 0

a11 +a12 = 0

a13 +a14 = 0

a15 +a16 = 0

a17 +a18 = 0

a19 +a20 = 0

(94)

A second order approximate to the normal derivative φ−
n at Xc can be achieved by choosing

an appropriate correction term C, and the discontinuities across the interface only contribute to the

correction term C. The detailed analysis can be found in [32] for Poisson equations with discontin-

uous, where the 27 grid points stencil is used for three dimensions unless otherwise specified. The

system is under-determined and in general there are infinite many solutions. A SVD subroutine is

used to solve such a system. The ak
′s are obtained once the coefficients γi jk

′s are computed, and

the correction term C is determined by

C =a2[φ ]+a4[φξ ]+a6[φη ]+a8[φτ ]+a10[φξ ξ ]

+a12[φηη ]+a14[φττ ]+a16[φξ η ]+a18[φξ τ ]+a20[φητ ]

=a2w+a4g+a6wη +a8wτ +a10

{

g(χηη +χττ)+
[ f

σ

]

−wηη −wττ

}

+a12(wηη −gχηη)+a14(wττ −gχττ)+a16(wτ χηη +wτ χητ +gη)

+a18(wη χητ +wτ χττ +gτ)+a20(wητ −gχητ) (95)

which guarantee the computation of φ−
n to the second order accuracy. With the relation φ+

n =
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u−n +g, we can get a second order accuracy interpolation scheme for φ+
n immediately

φ+
n (Xc)≈ ∑

i, j,k

= γi jkφ(i, j,k)dα(|Xc −~xi jk|)−C+g (96)

where γi jk
′s are the solutions we computed for φ−

n .

2.4.4 COMPUTATION OF ELECTRIC FIELD

After calculating the scalar potential φ , the electric field E= (φx,φy) is computed through finite

difference scheme. At a regular point, φx and φy are computed by the standard centered difference

shceme as

φx(i, j) =
φ(i+1, j)−φ(i−1, j)

2∆x

and

φy(i, j) =
φ(i, j+1)−φ(i, j−1)

2∆y

For irregular point, φx and φy are computed by one-side difference interpolation. For example,

when (xi,y j), (xi−1,y j) ∈ Ω− and (xi+1,y j) ∈ Ω,

φx(i, j) =
φ(i, j)−φ(i−1, j)

∆x

2.5 NUMERICAL EXAMPLES

Example 1

This is exactly same as 2.3.5, we can compare the results given by correction function method

and immersed interface method.

Consider ∇ · (σφ) = 0 in two dimensions on [−1,1]× [−1,1] with the interface defined by the

circle x2 + y2 = 0.52. In this example, σ+ = σ− = 1. The jump conditions on the interface is

[φ ] = 0 and [φn] = 2, with Dirichlet boundary conditions 1+ log(2
√

X2 +Y 2), (X ,Y ) ∈ ∂Ω at
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boundary, directly computed from the exact solution. The Lagrangian control points are 140 on

the immersed interface. The exact solution is

u(x,y) =







1+ log(2
√

x2 + y2), (x,y) ∈ Ω+

1, (x,y) ∈ Ω−

Table 3 shows the numerical accuracy and convergence tests.

TABLE 3: Accuracy and convergence test for Example 3

N L∞ error in φ ratio order

20 1.233E −03

40 3.437E −04 3.58743 1.84295

80 1.070E −04 3.21215 1.68354

160 3.110E −05 3.44051 1.78262

320 6.560E −06 4.74085 2.24515

The Figure 12 demonstrates the convergence rate of two methods, the Correction Function

Method and Immersed Interface Method. The two methods are both 2nd order convergent and

have quite closed numerical errors. In the following examples, we will examine the convergence

rate of immersed interface method for different σ+ and σ−.

10
-2

10
-5

10
-4

10
-3

L
error

: CFM

L
error

: IIM

h
2

Figure. 12: comparison of correction function method and immersed interface method.
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Example 2

This example is taken from [33]. Consider ∇ ·(σ∇φ) = f (x,y) in two dimensions on [−1,1]×
[−1,1] with the interface defined by the circle (x−0.5)2 +(y−0.5)2 = 0.252. The exact solution

are given as

φ(x,y) =











e−x2−y2
, in Ω− and σ− = 1

0, in Ω+ and σ+ = 2

and f (x,y) = 8(x2+y2−1)e−x2−y2
in Ω− and f (x,y) = 0 in Ω+, respectively. The jump conditions

across the interface Σ separating Ω+ and Ω− are [φ ] = −e−x2−y2
and [σφn] = 8(2x2 + 2y2 − x−

y)e−x2−y2
. The Lagrangian control points are 140 on the immersed interface. The appropriate

Dirichlet boundary conditions are specified at ∂Ω. Table 4 shows the numerical accuracy and

convergence tests.

TABLE 4: Accuracy and convergence test for Example 2

N L∞ error in φ ratio order Iter.

20 1.368E −03 31

40 3.075E −04 4.44878 2.15341 17

80 7.046E −05 4.36418 2.12571 12

160 1.644E −05 4.28589 2.09959 8

320 4.112E −06 3.99805 1.99930 7

Example 3

This example is taken from [25]. Consider ∇ ·(σ∇φ) = f (x,y) in two dimensions on [−1,1]×
[−1,1] with the interface defined by the circle x2 + y2 = 0.52. The exact solution are given as

φ(x,y) =



























x2 + y2

σ− , in Ω−

(x2 + y2)2 −0.1log(2
√

x2 + y2)

σ+
+
(0.52

σ− − 0.54

σ+

)

, in Ω+
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and the source term f (x,y) is determined accordingly from exact solution

f (x,y) =



























4

σ− , in Ω−

16(x2 + y2)

σ+
, in Ω+

One can determine that the solution is continuous everywhere which indicates that [φ ] = 0 across

the interface Σ separating Ω+ and Ω−. The flux jump condition is [σφn] = −0.7. This can be

verified from exact solution as well. The Lagrangian control points are 140 on the immersed

interface. The appropriate Dirichlet boundary conditions are specified at ∂Ω. We investigated the

following two cases.

• Case A. The parameters are taken with σ− = 1 and σ+ = 10.Table 5 shows the numerical

accuracy and convergence tests.

TABLE 5: Accuracy and convergence test for Example 3-A

N L∞ error in φ ratio order Iter.

20 7.079E −03 59

40 1.601E −03 4.42161 2.14457 32

80 3.681E −04 4.34936 2.12080 17

160 8.894E −05 4.13875 2.04919 9

320 2.053E −05 4.33220 2.11510 7

• Case B. The parameters are taken with σ− = 1 and σ+ = 100. Table 6 shows the numerical

accuracy and convergence tests.

TABLE 6: Accuracy and convergence test for Example 3-B

N L∞ error in φ ratio order Iter.

20 1.573E −03 61

40 3.553E −04 4.42724 2.14641 38

80 8.240E −05 4.31189 2.10832 20

160 1.949E −05 4.22781 2.07991 10

320 4.136E −06 4.71228 2.23643 7

From example 3, we can observe that fast immersed interface method converges very well for small

ratio of σ−
σ+ . The error in the solution is even much smaller with small ratio. This phenomenon has
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Figure. 13: The numerical solution φ of example 3 for grid size N = 80 with σ−
σ+ = 1
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Figure. 14: The error distribution of example 3 for grid size N = 80 with σ−
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been addressed in [25]. Because the solution in Ω+ approaches a constant as σ+ becomes large

and it’s quadratic in Ω−. A second order accurate method would give high accurate solution in

both regions. See Figure 13 and Figure 14 for comparison results of numerical solutions and errors

for the ratio of σ−
σ+ = 1

10
, σ−

σ+ = 1
100

, and σ−
σ+ = 1

1000
.

Example 4

Consider ∇ · (σ∇φ) = 0 in two dimensions on [−1,1]× [−1,1] with the interface defined by

the circle x2 + y2 = 0.52. The exact solution is

φ(x,y) =







ex cos(y), for (x,y) ∈ Ω−

0, for (x,y) ∈ Ω+
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The jump conditions are [φ ] = −ex cos(y) and [φn] = 2ex(ysin(y)− xcos(y)). Table 7 shows the

numerical accuracy and convergence tests.

TABLE 7: Accuracy and convergence test for Example 4

N L∞ error in φ ratio order

20 3.170E −04

40 7.386E −05 4.29190 2.10162

80 2.056E −05 3.59241 1.84495

160 5.564E −06 3.69518 1.88565

320 1.380E −06 4.03188 2.01145

Example 5

We consider a problem with a piecewise constant coefficient σ and a discontinuous source term

f in three dimensions. The interface is a sphere x2 + y2 + z2 = r2
0, where r0 = 0.5. The differential

equation is

(σφx)x +(σφy)y +(σφz)z = f

with

σ(x,y,z) =











σ−, if r < 1
2

σ−, if r ≥ 1
2

f (x,y,z) =











−200σ−r2, if r < 1
2

20σ+r2, if r ≥ 1
2

Dirichlet boundary conditions and the jump conditions are determined from the exact solution

φ(x,y,z) =











−10r4, if r < 1
2

r4, if r ≥ 1
2

‖φ‖= 11r4
0 =

11

16

‖σφn‖= 4(10σ−+σ+)r3
0 =

(10σ−+σ+)

2

where r =
√

x2 + y2 + z2 and on the interface, r = r0 = 1/2. Two cases are tested for different

combinations of σ− and σ+.



48

TABLE 8: Accuracy and convergence test for σ− = 1 and σ+ = 2

N L∞ error in φ ratio order

26 1.994E −02

52 4.888E −03 4.07938 2.02835

104 1.230E −03 3.97398 1.99058

TABLE 9: Accuracy and convergence test for σ− = 1 and σ+ = 1000

N L∞ error in φ ratio order

26 3.283E −02

52 9.604E −03 3.41837 1.77331

104 2.369E −03 4.05403 2.01936
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CHAPTER 3

NUMERICAL ALGORITHM FOR ELECTROHYDRODYNAMICS

3.1 FLUID FLOW

In present work, lattice Boltzmann method is used to model the fluid flow. The lattice Boltz-

mann method is a kinetic-based method and derived from the Boltzmann equation. Within the low

Mach region, lattice Boltzmann method exhibits stability that exceeds many traditional methods

[34]. The governing equation of lattice Boltzmann method in discrete form is as follows

f(x j + cδt , tn +δt)− f(x j, tn) =−M−1Ŝ[m(x j, tn)−m(eq)(x j, tn)] (97)

where fi(x j, tn) represents the distribution of particles at x j with velocity ci at time tn

f(x j + cδt , tn +δt)

=(f0(x j, tn +δt), f1(x j + c1δt , tn +δt), ..., fQ−1(x j + cQ−1δt , tn +δt))
T

and

f(x j, tn) = (f0(x j, tn), f1(x j, tn), ..., fQ−1(x j, tn))
T

m and m(eq) represent the velocity moments, and the equilibrium moments, respectively [35]. The

matrix M maps from probability distribution space into moment space

m = M−1 · f

and Ŝ is the diagonal matrix of relaxation rates [s0,s1, ...,sQ−1].

The evolution of lattice Boltzmann method therefore consist of two steps: collision and stream-

ing. With the multiple relaxation time (MRT) approximation, as represented on the right side

of (97), probabilities f at each lattice node x j are mapped to their moment space by the matrix

M. Within this moment space, the non-conserved moments m(x j, tn) relax toward their equilibria
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m(eq)(x j, tn), according to their specified relaxation parameters si on the diagonal of matrix S. Af-

ter this relaxation, the moments are mapped by the matrix M−1 back to the probability distribution

space.

In the two dimensional simulation, the D2Q9 model using a square lattice with nine velocities

is employed. The D3Q19 model is one of the commonly used models in three-dimensional simu-

lation. The integers ’D’ and ’Q’ denote the number of spatial dimensions and number of discrete

velocities, respectively.

3.1.1 TWO DIMENSIONAL LATTICE BOLTZMANN MODEL

Followed by [36, 34], the discrete lattice velocities in D2Q9 model can be compactly formu-

lated as

ci =



























(0,0) for i = 0

(

cos
(i−1)π

2
,sin

(i−1)π
2

)

for i = 1,4

√
2
(

cos
(2i−9)π

4
,sin

(2i−9)π
4

)

for i = 5,8

(98)

There are nine moments m = (δρ,e,ε, jx,qx, jy,qy, pxx, pxy)
T corresponding to the nine discrete

velocities ci. The density fluctuation δρ and the momentum j := ( jx, jy) are conserved moments

in our model; e,ε,q = (qx,qy), pxx and pxy are related to the energy, the energy square, the heat

flux and the diagonal and off-diagonal components of the stress tensor, respectively. With the low

Mach number approximation, the non-conserved moments are expressed in terms of conserved

moments

e(eq) =−2δρ +3j · j

ε(eq) = δρ −3j · j

q
(eq)
x =− jx

q
(eq)
y =− jy

p
(eq)
xx = j2

x − j2
y

p
(eq)
xy = jx jy
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For D2Q9 model, the transformation matrix is

M =















































1 1 1 1 1 1 1 1 1

−4 −1 −1 −1 −1 2 2 2 2

4 −2 −2 −2 −2 1 1 1 1

0 1 0 −1 0 1 −1 −1 1

0 −2 0 2 0 1 −1 −1 1

0 0 1 0 −1 1 1 −1 −1

0 0 −2 0 2 1 1 −1 −1

0 1 −1 1 −1 0 0 0 0

0 0 0 0 0 1 −1 1 −1















































Multiple-relaxation-time scheme is optimized to ensure Galilean invariance and isotrophy, while

minimizing dissipation and dispersion. Consequently, the s7 and s1 are determined by the shear

viscosity µ and the bulk viscosity ξ through

µ =
1

3
(

1

s7
− 1

2
)cδx and ξ =

1

6
(

1

s1
− 1

2
)cδx (99)

The relaxation rates s0,s3 and s5 who correspond to the conserved moments (δρ, jx and jy), have no

effect on the model. The parameters s2, s4 and s6 are for the moment ε , energy flux components qx

and qy, and are only relevant to the higher-order hydrodynamic term. These values are determined

by linear stability analysis and are set to s2 = 1.54 and s4 = s6 = 1.9 in current study.

3.1.2 THREE DIMENSIONAL LATTICE BOLTZMANN MODEL

In D3Q19 model, the velocity discretization for the fluid particles is described as
(

c1,c2,c3,c4,c5,c6,c7,c8,c9,c10,c11,c12,c13,c14,c15,c16,c17,c18,c19

)

=











0 1 −1 0 0 0 0 1 1 −1 −1 1 −1 1 −1 0 0 0 0

0 0 0 1 −1 0 0 1 −1 1 −1 0 0 0 0 1 1 −1 −1

0 0 0 0 0 1 −1 0 0 0 0 1 1 −1 −1 1 −1 1 −1










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The transformation matrix M, according to [37] and [36], is defined as









































































































1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

−30 −11 −11 −11 −11 −11 −11 8 8 8 8 8 8 8 8 8 8 8 8

12 −4 −4 −4 −4 −4 −4 1 1 1 1 1 1 1 1 1 1 1 1

0 1 −1 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0 0 0 0

0 −4 4 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0 0 0 0

0 0 0 1 −1 0 0 1 1 −1 −1 0 0 0 0 1 −1 1 −1

0 0 0 −4 4 0 0 1 1 −1 −1 0 0 0 0 1 −1 1 −1

0 0 0 0 0 1 −1 0 0 0 0 1 1 −1 −1 1 1 −1 −1

0 0 0 0 0 −4 4 0 0 0 0 1 1 −1 −1 1 1 −1 −1

0 2 2 −1 −1 −1 −1 1 1 1 1 1 1 1 1 −2 −2 −2 −2

0 −4 −4 2 2 2 2 1 1 1 1 1 1 1 1 −2 −2 −2 −2

0 0 0 1 1 −1 −1 1 1 1 1 −1 −1 −1 −1 0 0 0 0

0 0 0 −2 −2 2 2 1 1 1 1 −1 −1 −1 −1 0 0 0 0

0 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1

0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0

0 0 0 0 0 0 0 1 −1 1 −1 −1 1 −1 1 0 0 0 0

0 0 0 0 0 0 0 −1 −1 1 1 0 0 0 0 1 −1 1 −1

0 0 0 0 0 0 0 0 0 0 0 1 1 −1 −1 −1 −1 1 1









































































































(100)

The diagonal matrix of 19 relaxation parameters is

S =
(

s0,s1,s2,s3,s4,s5,s6,s7,s8,s9,s10,s11,s12,s13,s14,s15,s16,s17,s18

)

where s0, s3, s5 and s7 correspond to conserved density ρ and momenta jx, jy and jz, and the

choices of which do not alter the model. The relaxation parameters s9 = s11 = s13 = s14 = s15,

for components of the pressure tensor 3pxx, pww, pxy, pyz and pxz, are determined by kinematic

viscosity µ by the equation

µ =
1

3

( 1

s9
− 1

2

)

(101)

The bulk parameters s2, s6 and s8 for mass fluxes qx, qy and qz are set equal to s9 due to the sake of

isotropy. The remaining parameters s2 for energy square ε; s10 and s12 for 3πxx and πww; s16, s17

and s18 relating to mx, my and mz are high-order terms which do not alter the hydrodynamics and

are set to 1.8 by linear stability analysis.

3.2 IMMERSED BOUNDARY METHOD

The primary advantage of immersed boundary method is associated with the fact that the grid

generation is greatly simplified, compared to generate a body-conformal structured or unstructured
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grid. In the immersed boundary method, a Cartesian grid maybe employed for the fluid simulation

and body immersed in the field is represented on a Lagrangian coordinates. The fluid velocity

near the capsule boundary is used to determine the velocity of the capsule and is used to update

the position of the capsule. The deformation of the capsule generates forces. The incompressible

Navier-Stokes Equations are solved, using LBM, with the addition of these forces to determine the

fluid velocity. A smoothed Dirac delta function is used to transfer the necessary data between the

two grids. The smoothed Dirac delta function in d-dimensional space is defined by

δh(x) = δh(x1)δh(x2) · · ·δh(xd), x ∈ Rd (102)

in which the one dimensional discrete delta function is given by

δh(x) =











1
4h

[

1+ cos(πxπ
2h

)
]

|x| ≤ 2h

0 |x| ≥ 2h

(103)

The smoothed delta function is employed to determine the fluid velocity at capsule grid points,

based on the local fluid velocity, and to spread the body forces created by capsule deformation to

the nearby fluid. In our model, the membrane of immersed capsule is represented by a set of elastic

fibers and the location of these fibers is tracked by a collection of mass-less points that move with

the local fluid velocity, thus the capsule velocity U is determined at Lagrangian node Xc by

U(Xc) = ∑
j

δ (Xc −x j)u(x j)h
d (104)

in which x j and u denote Eulerian fluid node position and velocity, respectively. Subsequently, this

velocity is used to update the position of the Lagrangian grid by the forward Euler method

Xc(tn +dt) = Xc(tn)+U(Xc)dt (105)

The effect of the immersed boundary on the surrounding fluid is captured by distributing the fiber
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stress P to the fluid grid points through a localized forcing term in the momentum equation by

p(x j) = ∑
c

δ (Xc −x j)P(Xc) (106)

as the area of the elements has already been incorporated into calculation of P at Xc. Subsequently,

the forces exerted on the fluid are incorporated into the fluid simulation according to the update

method described in [38] and [35]. In the collision phase of LBM, after computing the hydrody-

namic moments, momenta j =
(

jx, jy, jz
)

at grid point x j are updated to according to the forces p,

as

j′(x j) = j(x j)+
dt

2
p(x j) (107)

After using j′ to find the equilibrium moments m(eq), the momentum is updated again, as

j′′(x j) = j′(x j)+
dt

2
p(x j) (108)

and j′′ is used to compute the probability distribution after the collision phase. The advection step

of LBM is not altered by the addition of forces acting on the fluid.

3.3 STRUCTURAL ALGORITHM FOR TWO DIMENSIONS

Due to the immersed boundary method, velocity is continuous across the membrane. However,

a jump in interfacial tension across the interface does exist. A red blood cell type capsule has shear

and isotropic elasticity, bending stiffness and membrane viscosity [39, 40, 7]. Consequently, using

Gauss’s divergence theorem, Pozrikidis [41] derives the force equilibrium equation for complete

tension T = τ t̂+qn̂ as

f =−(Psurf ·∇) · (τ t̂+qn̂) (109)

for in-plane tension τ , transverse shear tension q, tangent vector t̂, and outward normal vector n̂.

The projection matrix Psurf = I−nn projects the gradient to the capsule surface and hence Psurf is

the surface gradient. In two dimensions, the equation is simplified by the Frenet-Serret formulae

to

f =− ∂

∂ℓ
(τ t̂+qn̂) =

[

κτ − ∂q

∂ℓ

]

n̂−
[∂τ

∂ℓ
+κq

]

t̂ (110)
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for capsule curvature κ and derivatives taken with respect to capsule arc length ℓ. Further, the

transverse shear tension q is simply the derivative of bending moment m with respect to arc length,

as q =
∂m

∂ℓ
. The first and second derivatives with respect to arc length are computed by using

five-point centered difference methods for arbitrarily spaced stencil.

The viscoelastic character of the capsule membrane is described by the Kelvin-Voigt viscoelas-

tic model, where in-plane tension is simply the sum of the elastic and viscous contributions

τ = τe + τv (111)

Strain for each element of the capsule is given in terms of the stretch ratio λ , which is defined by

the ratio of a line element’s current length ℓ(t) and initial length ℓ0, as

λ (t) =
ℓ(t)

ℓ0
(112)

For simplicity, Hooke’s law is employed to describe the capsule’s shear elasticity and determine

the elastic tension τe. This model takes the form

τe = Es(λ −1) (113)

where Es is the shear elasticity modulus. The tension due to membrane viscosity is defined by

τv = µs
1

λ

∂λ

∂ t
(114)

in which µs is the membrane viscosity coefficient. The time derivative of λ is calculated by a

one-sided second order finite difference method. The capsule’s isotropic elasticity is not explic-

itly included in the two dimensional algorithm. Transverse shear tension is the result of bending

stiffness and defined as

q =
∂m

∂ℓ
= EB

∂

∂ℓ
(κ −κ0) (115)

in which EB is the bending stiffness modulus, κ is the current curvature, and κ0 is the initial shape

configured curvature. Pozrikidis noted that, equation (115) is only correct for small deviations

from the preferred curvature [42, 41], but is sufficient to account for the qualitative role of bending
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stiffness here [41]. For both circular and biconcave capsule, κ0 is set equal to the initial curva-

ture. Curvature κ is calculated with periodic cubic spline interpolation, if the capsule surface is

parameterized by the function F , then

κ =
±F ′′

(1+F
′2)3/2

(116)

Thus, the two dimensional capsule is unstressed, by either viscoelastic tension or bending mo-

ments, at the initial shape configuration.

The heavy side function is used to deal with the non-dimensional fluid viscosity ratio V . Let

d be the shortest distance from the fluid node to the capsule boundary. The sign of d for a fluid

note is set to be positive if located outside the capsule and negative if in side the capsule. With the

signed distance d having been determined, a smoothed Heaviside function of d from [3] is defined

as

H(d) =



























0 d ≤ 2h

1
2
(1+ d

2h
+ 1

π sin πd
2h
) −2h ≤ d ≤ 2h

1 d ≥ 2h

(117)

The viscosity µ , at the node, is determined using H(d) by the equation

µ(x) = µc +(µa −µc)H[d(x)] (118)

in terms of viscosity µc inside the capsule and ambient viscosity µa.

In order to proceed, three additional structural non-dimensional parameters are defined. The

capillary number for the fluid, Ca, is defined as

Ca =
µaka

Es
(119)

in terms of ambient fluid viscosity µa, shear rate k, equivalent capsule radius a, and shear elasticity

modulus Es. The capillary number Ca represents the ratio of viscous fluid shear to solid elastic

force, and is also referred to as the dimensionless shear rate in the literature. The bending stiffness
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Eb is defined as

Eb =
EB

aEs
(120)

for bending stiffness modulus EB and represents the ratio of bending to shear resistance. Finally,

the membrane viscosity ratio η is defined as

η =
µs

aµa
(121)

for membrane viscosity coefficient µs and equivalent radius a; thus, η is the ratio of membrane to

ambient fluid viscosity.

3.4 THREE DIMENSIONAL ALGORITHM

In contrast to the discretization of a set of line segments in two dimensional, the three dimen-

sional capsule surface is discretized into flat triangular elements. The mesh generation is similar to

the approach as in [43] for an octaheron. To discretize the surface of spherical capsule, an icosa-

hedron is placed in the circumscribed capsule, each triangular face of the icosaheran is subdivided

into four equal triangles, the new bisect points on the edges are then projected onto the sphere.

This process is repeated until the mesh is sufficiently fine. The discretization of biconcave surface

can be done in the same manner. The discretization for sphere and biconcave shapes are shown in

15, a mesh with 2562 vertices and 5120 triangles is considered sufficient respectively, based on the

fluid grid and convergence analysis.

3.4.1 FINITE ELEMENT MEMBRANE

As stated previously, in three dimensional algorithm, the capsule’s elastic character is described

by a finite element model, the forces are obtained at the discrete nodes of the membrane, only in-

plane stresses and strains exist. The capsule itself is considered to be massless and composed

of a set of zero-thickness triangles, surrounding the interior fluid. In three dimensional situation,

a deformed triangle is often no longer in the plane of the undeformed triangle. The approach

of Charrier etal. is adopted, mapping the undeformed and deformed triangular elements to the

common z = 0 plane. The undeformed flat triangular element xix jxk is deformed into flat triangular

element XiX jXk, in the same plane z = 0, Figure 16. If a material point x undergoes a displacement
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Figure. 15: Discretization of a sphere and a biconcave shape.

Figure. 16: Undeformed triangular patch xix jxk and deformed triangular patch XiX jXk.

u arriving the position X, it can be described by

X = x+u(x) (122)
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A neighboring point x+dx arrives at X+dX, the relation between the two is given by

X+dX = x+dx+u(x+dx) (123)

or, equivalently,

dX = dx+u(x+dx)−u(x) (124)

Using the definition of gradient of a vector function, (124) becomes

dX = dx+(∇u)dx (125)

where ∇u is a second-order displacement gradient. In current situation, the matrix of ∇u with

respect to rectangular Cartesian coordinates is

[∇u] =





∂u1

∂x1

∂u1

∂x2

∂u2

∂x1

∂u2

∂x2





Then we write (125) as

dX = Fdx (126)

where F is the deformation gradient matrix with Fi j =
∂Xi

∂x j
= δi j +

∂ui

∂x j
. The square of the dis-

placement, is by taking the dot product of dX with itself

dX ·dX = Fdx ·Fdx = dX · (FT F)dX (127)

where G = FT F is known as the right Cauchy-Green deformation tensor. It is the matrix of the

metric tensor of the deformed element with components

G11 =
(

1+
∂u

∂x

)2

+
(∂v

∂x

)2

(128)

G22 =
(∂u

∂y

)2

+
(

1+
∂v

∂y

)2

(129)

G12 = G21 =
(

1+
∂u

∂x

)(∂u

∂y

)

+
(

1+
∂v

∂y

)(∂v

∂x

)

(130)
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The principle values λ1 and λ2 of the in-plane stretch ratios are

λ 2
1 =

1

2

[

G11 +G22 +
√

(G11 −G22)2 +4G2
12

]

(131)

λ 2
1 =

1

2

[

G11 +G22 −
√

(G11 −G22)2 +4G2
12

]

(132)

The principle of virtual work is used to calculate the forces at the three nodes of an element.

For a finite element of an elastic material, in absence of body forces and acceleration, this principle

may be written as

δWe = {δu}T{Fx}+{δv}T{Fy} (133)

where δWe is a first order variation in the strain energy of the element due to the infinites-

imal changes {δu} and {δv} in the nodal displacements. {Fx}T = (Fxi Fx j Fxk) and {Fy}T =

(Fyi Fy j Fyk) are the nodal forces in the x and y directions corresponding to the current deformed

state of the element. Under the assumption of homogeneous deformation, the stretch ratios are

constant within the element, and we have

δWe =VeδW (134)

where Ve is the original volume of the element and W is the strain energy density. Consider initially

isotropic membrane material, W is a symmetric function of the principle stretch ratios, and W can

be taken as an independent function of only the in-plane stretch ratios λ1 and λ2 with first order

variation expressed as

δW = {δu}T
[∂W

∂λ1

{∂λ1

∂u

}

+
∂W

∂λ2

{∂λ2

∂u

}]

+{δv}T
[∂W

∂λ1

{∂λ1

∂v

}

+
∂W

∂λ2

{∂λ2

∂v

}]

(135)

It follows that the nodal force-displacement relations for the element are finally of the form

{Fx} =Ve
∂W

∂λ1

{∂λ1

∂u

}

+Ve
∂W

∂λ2

{∂λ2

∂u

}

{Fy} =Ve
∂W

∂λ1

{∂λ1

∂v

}

+Ve
∂W

∂λ2

{∂λ2

∂v

}

(136)
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3.4.2 MEMBRANE CONSTITUTIVE LAW & ELASTIC STRESS

For such a purely elastic capsule, the Cauchy stress caused by deformation is determined using

a two-dimensional constitutive law. The simplest approach, known as the neo-Hookean law, cor-

responds to membranes made of polymerized material. The neo-Hookean law does not restrict the

area dilation and has purely shear elasticity. The energy strain relation for the neo-Hookean law

has the form

WNH =
Es

6
(λ 2

1 +λ 2
2 +λ−2

1 λ−2
2 −3) (137)

for incompressible neo-Hookean material with shear elasticity modulus Es. The principal stains,

λ1 and λ2, are eigenvalues of the deformation tensor and represent the principle stretching ratios.

The zero-thickness (ZT) shell equation is another version of the neo-Hookean (NH) law, which

has been used by Ramanujan and Pozrikidis in [43]

WZT =
Es

6

(

λ 2
1 +λ 2

2 −2−2log(λ1λ2)+2(logλ1λ2)
2
)

(138)

The Skalak’s constitutive law, proposed by Skalak, includes both shear elasticity and the local

conservation of surface area, is used to model the membrane red blood cell in [7]. The energy

strain relation is expressed as

WSK =
Es

4

(

(λ1 +λ2 −2)2 +2(λ1 +λ2 −2)2 −2(λ 2
1 λ 2

2 −1)+C(λ 2
1 λ 2

2 −1)2
)

(139)

The term C(λ 2
1 λ 2

2 −1)2 accounts for the area dilation. The additional parameter C is the ratio be-

tween shear elasticity modulus and area dilation modulus, which is quite large for incompressible

biological membranes. Measures of C for red blood cells are typically on the order of 105 for ex-

tremely small time step. For practical purpose, a preferable chosen of C = 15 permits some change

in capsule surface area and prevent significant dilation or compression.

The neo-Hookean constitutive law is adequate to describe a spherical capsule. For biconcave

capsules, however, the incompressibility of the membrane is a significant factor. Consequently,

in subsequent results, spherical and biconcave capsules are described by noe-Hookean and Skalak

constitutive law, respectively.
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The principal stresses in neo-Hookean law can be expressed as

σ1 =
1

λ2

∂WNH

∂λ1
=

Es

λ1λ2

(

λ 2
1 − 1

λ 2
1 λ 2

2

)

(140)

σ2 =
1

λ1

∂WNH

∂λ2
=

Es

λ1λ2

(

λ 2
1 − 1

λ 2
1 λ 2

2

)

(141)

The principal stresses derived from Skalak law are

σ1 =
1

λ2

∂WSK

∂λ1
=

Es

λ1λ2

(

λ 2
1 (λ

2
1 −1)+C(λ1λ2)

2(λ 2
1 λ 2

2 )
)

(142)

σ2 =
1

λ1

∂WSK

∂λ2
=

Es

λ1λ2

(

λ 2
2 (λ

2
2 −1)+C(λ1λ2)

2(λ 2
1 λ 2

2 )
)

(143)

3.4.3 BENDING STIFFNESS

The biological capsule’s membrane is known to be incompressible and exhibits a resistance

against bending. Thus, in addition to tension energy, bending energy should be taken into account

for present simulation. Namely, for a closed surface, the Helfrich-type energy of a zero-membrane

is used to enforce the incompressibility constraint and given by

Wb =
EB

2

∫

S
(2κ − c0)

2dS (144)

for the bending stiffness modulus EB of mean curvature, capsule surface area S, mean curvature κ

and spontaneous curvature c0 [44]. By taking the variational derivative [45] to the surface, one can

derive the bending force density fb at a node as

fb =
EB

2

(

(2κ + c0)(2κ2 −2κg − c0κ)+2∆LBκ
)

n (145)

in which κg is the Gaussian curvature of the membrane, n is the unit outward normal vector to the

surface and ∆LB is the surface Laplacian (or Laplace-Beltrami) operator. For spherical capsules,

the choice of spontaneous curvature is c0 = 0, which indicates that the membrane does not have

an internal/external asymmetry and leads to fb = 0 for the undeformed capsules. However, sponta-

neous curvature c0 is not simply the three dimensional analogue of the two dimensional preferred
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curvature k0.

3.5 ELECTRIC FORCE

As described in [46] and [47], the stress induced in a dielectric medium under an electric field

is given by the Maxwell stress tensor of the form

ME = ε
(

EE− 1

2
(E ·E)I

)

(146)

the volume force density fE of the Maxwell stress induced in a dielectric medium, can be calcu-

lated by taking the divergence of the Maxwell stress tensor ME while assuming that the fluid is

incompressible of the form

fE =−1

2
E ·E∇ε +∇ · (εE)E = ∇ ·ME =−1

2
E ·E∇ε +qvE (147)

where ρ is the density of fluid. The first term on the right hand side, −1
2
E ·E∇ε , is due to the

polarization stress and it acts along the normal direction of the interface as a result of the term

∇ε . The second term is due to the interaction of the electric charges with the electric field acting

along the direction of the electric field. Since both the permittivity and conductivity are piecewise

constants, the volume force density fE in (147) is none zero only in the vicinity of the interface due

to the fact of ∇ ·E = 0 in both Ω+ and Ω−. As the electric charges are on the interface, both the

polarization electric stress and the charge-field interaction electric stress would thus be exerted as

interfacial forces from the jump of Maxwell stress in the normal direction rather than applying the

volume force as in (147) into fluid equation. The interfacial electric force is hence defined as

FE = ‖ME ·n‖= (M+
E −M−

E ) ·n (148)

where M+
E and M−

E refer to the exterior and interior Maxwell stress tensors, respectively. Thus, the

electric volume force fE can be alternatively represented by the electric interfacial force using the

Dirac delta function (102) as

fE(x, t) =
∫

Σ
FE(s, t)δ (x−X(s, t))|Xs|ds (149)
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where X is the set of Langrangian nodes on the interface, s and t are the parameters describing the

interface Σ, Xs denotes the partial derivative of X with respect to the s.

In two dimensions, the interfacial electric force can be explicitly expressed in term of computed

results of E = (−φx,−φy), normal vector n and tangential vector τ . We rewrite E = Enn+Eττ ,

where En = (−φx,−φy) · n and Eτ = (−φx,−φy) · τ . Substitute E into (146) and dot the normal

vector n, we can obtain the expression for Maxwell stress:

ME ·n = ε
(

EE− 1

2
(E ·E)I

)

·n

= ε((Enn+Eττ)(Enn+Eττ)) ·n− ε

2
(E2

n +E2
τ )I ·n

= ε(E2
n)n+ ε(EτEnτ)− ε

2
(E2

n +E2
τ )n

=
ε

2
(E2

n −E2
τ )n+ εEnEττ

The interfacial electric force is in consequence written as

FE = (M+
E −M−

E ) ·n

=
ε

2
(E+2

n −E−2
n −E+2

τ +E−2
τ )n+ ε(E+

n E+
τ −E−

n E−
τ )τ

Similarly, in three dimensions, the electric field is given by E = (−φx,−φy,−φz), the normal

vector is n and two orthogonal tangent vectors are denoted by τ1 and τ2. Now E can be written in

terms of En, Eτ1
and Eτ2

E = Enn+Eτ1
τ1 +Eτ2

τ2 (150)

where En = (−φx,−φy,−φz) · n, Eτ1
= (−φx,−φy,−φz) · τ1 and Eτ2

= (−φx,−φy,−φz) · τ2. The

three dimensional Maxwell Stress is

ME ·n = ε
(

EE− 1

2
(E ·E)I

)

·n

= ε((Enn+Eτ1
τ1 +Eτ2

τ2)(Enn+Eτ1
τ1 +Eτ2

τ2)) ·n− ε

2
(E2

n +E2
τ1
+E2

τ2
)I ·n

= ε(E2
n)n+ ε(Eτ1

En)τ1 + ε(Eτ2
En)τ2 −

ε

2
(E2

n +E2
τ1
+E2

τ2
)n

=
ε

2
(E2

n −E2
τ1
−E2

τ2
)n+ εEnEτ1

τ1 + εEnEτ2
τ2
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The interfacial electric force is in consequence written as

FE = (M+
E −M−

E ) ·n

=
ε

2
(E+2

n −E−2
n −E+2

τ1
+E−2

τ1
−E+2

τ2
+E−2

τ2
)n

+ ε(E+
n E+

τ1
−E−

n E−
τ1
)τ1 + ε(E+

n E+
τ2
−E−

n E−
τ2
)τ2

3.6 THE OUTLINE OF NUMERICAL ALGORITHM FOR

ELECTROHYDRODYNAMICS

The numerical implementation of one step calculation at time tn is as follows.

1. Compute the electric potential φ n by the fast immersed interface method, and calculate

the electric field E = (−φ n
x ,−φ n

y ) on the grid. Compute the interface electric force using

Maxwell stresses tensor at Lagrangian points on the interface.

2. Calculate the interfacial tension (for droplet) or viscoelastic force and bending force (for

blood cell membrane).

3. Distribute all forces from the Lagrangian points to the fluid points by using the discrete delta

function as in immersed boundary method.

4. Solve the governing equation of lattice-Boltzmann method and update the velocity to un+1.

5. Interpolate the new velocity on the fluid grid points to the Lagrangian points and drive the

points to new positions xn+1.
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CHAPTER 4

NUMERICAL VALIDATION

4.1 FLUID-STRUCTURE INTERACTION VALIDATION

The deformation of the capsule is described by the Taylor shape parameter, which is defined as

Dxy =
L−B

L+B
(151)

where L is the end-to-end length of the drop measured along the axis of symmetry and B is the

maximum breadth in the transverse direction. They are computed by the approach of Breyyiannis

[48]. In his approach, a deformed capsule is mapped to an ellipse who shares the tensor of the

moments of inertia. The principle direction of the tensor is identified as the capsule’s inclination

angle θ , measured with respect to the horizontal direction of flow.

The deformation of an elastic capsule is examined in the simulation. A square computational

domain Ω = [−4,4]× [−4,4], has 321 nodes in both the dimensions of the shear flow and the

transverse direction. The uniform grid length was h = 2.5µm and the timestep ∆t = 2.5µs. The

Reynolds number based on characteristic length and velocity is 0.05, where viscous forces are

dominant, and is characterized by smooth, constant fluid motion. The capsule is placed at the

center of the domain and its membrane is initially discretized into 140 Lagrangian nodes, such

that each segment is of equal length. The initial shear flow, continuously enforced on the domain

boundaries is ~u = (ky,0) for shear rate k = 10−4s−1 and y ∈ [−4,4]. All variables are normalized

by the characteristic length 2a, velocity 2ka, time 1/k and tension µka, where a is the radius of

the capsule, µ is the viscosity of the ambient fluid. Capsule deformation is studied in terms of the

Taylor deformation parameter.

The present results demonstrate that the capsule deforms to a steady shape and then the mem-

brane rotates around the liquid inside which is so called tank-treading motion. We observed single

eddy inside the capsule and recirculation external flows via the velocity field in Figure 18, at the

time when the capsule achieved steady state with Ca = 0.0125.
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u=(ky,0)

Figure. 17: Schematic illustration of a two-dimensional capsule in simple shear flow.

The results from the two dimensional algorithms are compared with previous of Breyiannis and

Pozrikidis (2000) by boundary element method [48]. Figure 19 considers the deformation of an

elastic capsule, with respect to the Taylor deformation parameter, for different capillary numbers

Ca. The results agree very well, even for higher capillary number Ca = 0.4. The time taken to

achieve steady state is shorter for lower capillary number, since lower rate indicate larger elastic

modulus, so a small deformation can generate enough elastic force to balance the viscous shear-

force.

4.2 NUMERICAL VALIDATION FOR ELECTROHYDRODYNAMIC

SIMULATION

In present section, we will perform a series of numerical tests for practical purpose. The con-

vergence of the electric potential and the interfacial electric force are investigated. Then the com-

parison with small deformation theory is performed through running a series of simulations with

different permittivity ratios εr =
ε−
ε+ and conductivity ratio σr =

σ−
σ+ .

The initial set-up of the simulation is the same as in [20]. An interfacial tension circular drop

with radius R = 1 is placed at the center (0,0) of the fluid domain Ω = [−4,4]× [−4,4] and initial

velocity of the fluid is set to be zero everywhere. The flow is completely driven by the electric field.

The initial velocity field is zero. The electric field E∞, far from the drop, is set to be (0,−1). The
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Figure. 18: Fluid field and the shape of deformed capsule with no bending at steady state , Ca =
0.0125.
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Figure. 19: Comparison with Boundary Element Method (Breyiannis and Pozrikidis, 2000)

boundary conditions for the potential φ are φ = y (Dirichlet) at y =±4, and
∂φ
∂x

= 0 (Neumann) at

x = ±4. The number of Lagrangian control points is M on the immersed interface Σ. It has been
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Figure. 20: Electric force Fe at different number of Lagrangian control points: M =
32,64,128,256. To the left is Fx, and to the right is Fy.

addressed in [20] that the Lagrangian mesh ∆s, should satisfy ∆s = 2π/M < h, where h = 8/N

is the Cartesian grid mesh width. In our simulation, N = 8/h < 8M/2π is guaranteed. Although

the exact solution is unavailable for our simulation, the solution for 512 Lagrangian control points,

(FE)512 is referrered as analytic solution. Then we verify the order of convergence by computing

successive errors defined by ||(FE)2N − (FE)512||∞ versus the Cartesian mesh size N.

4.2.1 CONVERGENCE TEST FOR THE INTERFACIAL ELECTRIC FORCE

In present simulation, we chose σr = 3 and εr = 2 and plot FE with different number of La-

grangian markers M = 32,64,128 and 256. One can see that the interfacial electric force tends to

converge as the marker size M increases, roughly second order convergence observed. Table 10

shows the convergence test results of initial electric force.

TABLE 10: Convergence test for Fx and Fy

N ||(Fx)N − (Fx)512||∞ Rate Order ||(Fy)N − (Fy)512||∞ Rate Order

32 2.13141e−02 4.24485e−02

64 5.12620e−03 4.15788 2.05585 8.45450e−03 5.02081 2.32792

128 2.22769e−03 2.30113 1.20234 3.47598e−03 2.43226 1.28230

256 6.91200e−04 3.22293 1.68837 9.08762e−04 3.82497 1.93545

4.2.2 NUMERICAL VALIDATION
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To validate our proposed model and numerical method, we compared our results with the theo-

retical analysis given by Feng [49], based on Taylor’s small-deformation theory. In Feng’s analysis,

the capsule is considered as an interfacial tension drop. He develop a linear model to describe the

steady equilibrium shape of a leaky dielectric drop immersed in a DC electric field. The character-

ized deformation parameter is defined as in (4.1).

In the first-order small-deformation analysis for a two-dimensional interfacial tension drop, the

equilibrium drop deformation is approximated by

D =
σ2

r +σr +1−3εr

3(1+σr)2
CaE

Define fd(σr,εr) = σ2
r +σr + 1− 3εr, and fd is called discriminating function, which was first

found by Rhodes and Saville for electro-hydrodynamic distortion of a particulate stream in con-

tinuous flow electrophoresis. The equilibrium drop shape is related to the discriminating function.

When fd > 0, the drop turns into a prolate shape, while fd < 0, the drop will deform into an oblate

shape.

The initial velocity are set to be zero everywhere and the flow is completely driven by the elec-

tric field. We set the fluid viscosity µ = 1/240, the surface tension γ = 1/2402 and the density of

fluid ρ = 1. Hence the dimensionless Ohnesorge number for the flow, Oh = µ/
√

γρR, which mea-

sures the ratio of inertial forces to viscous forces is simply computed as Oh = 1. For an interfacial

tension capsule, the membrane surface energy is proportional to its area with the interfacial tension

γ as the proportionality constant [14]. Therefore, the dimensionless capillary number is defined in

terms of the interfacial tension. The electric capillary number CaE = ε+R|E∞|2/γ , measures the

strength of the electric field relative to the surface tension force. In latter sections, when consid-

ering capsules involving viscoelastic membrane (red blood cell), the electric capillary number is

redefined in terms of elastic modulus, and the fluid capillary number is Ca in stead of Ohnesorge

number.

To best understand the capsule deformation pattern with different combination of electric pa-

rameters σr and εr, a series of simulations have been performed for Oh = 1. They are labeled as

Case A (σr = 1.75,εr = 3.5), Case B (σr = 3.25,εr = 3.5) and Case C (σr = 4.75,εr = 3.5). For

these three cases, we conduct the simulations with different electric capillary number CaE . Figure
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21a shows the deformation number D versus the electric capillary number CaE for three cases.

Negative deformation number indicate that the capsule has an increased length in the radial direc-

tion (refer to case A), while positive deformation number reveal an increased length of the capsule

in the axial direction (refer to case B and case C).

As illustrated in [13], the induced flow inside the capsule in the first quadrant is clockwise

while the shape of capsule is elongated along the radial direction (case A). Figure 23 shows such a

phenomenon with CaE = 1. However, we observed counterclockwise induced circulatory flow for

case B and clockwise flow for case C, whereas the capsule is elongated along the axial direction in

both case B and case C. The simulations confirm Taylor’s theory in [13]. The flow pattern is related

to the regions determined by fd and σr = εr. In Figure 22, while in region A ( fd > 0, εr > σr),

we observe prolate-type deformation (elongated along the radial direction) and clockwise flow;

In both regions B and C (elongated along the axial direction), the capsule deforms to oblate-type

shape, but the circulatory flow is clockwise for region B and counterclockwise for region C.

As shown in previous simulation, the axis of symmetry of the capsule is always parallel to

the direction of the externally applied electric field when the capsule is driven by the electric field

induced flow. In the following section, we consider the capsule immersed in the electric field and

shear flow, the capsule deformation and orientation will be affected by the relative strength of the

shear and electric stresses.
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Figure. 21: (a) The plot of the deformation number Dxy versus the capillary number for Case A

(�,σr = 1.75,εr = 3.5), Case B (©,σr = 3.25,εr = 3.5) and Case C (♦,σr = 4.75,εr = 3.5). (b)
Deformation evolution of cases A, B and C for the same capillary number CaE = 0.2.
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Figure. 22: The capsule deformation for different combinations of conductivity ratio σr and per-

mittivity ratio εr.
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Figure. 23: Deformation and velocity field for the case A (σr = 1.75,εr = 3.5) at different times

with CaE = 1.
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Figure. 24: Deformation and velocity field for the case B (σr = 3.25,εr = 3.5) at different times

with CaE = 1.
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Figure. 25: Deformation and velocity field for the case C (σr = 4.75,εr = 3.5) at different times

with CaE = 1.
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4.3 NUMERICAL SIMULATION ON THE DEFORMATION OF

INTERFACIAL TENSION CIRCULAR CAPSULE UNDER SHEAR FLOW

In this section, we consider adding simple shear flow simultaneously to the interfacial tension

droplet, and the deformation and orientation will be affected by the relative strength of the shear

and electric stresses (Figure 26). The radius of initial undeformed drop is 1. It has been confirmed,

an individual Newtonian fluid drop is oriented at 45◦ with respect to the flow direction at the

leading order [50]; the orientation angle will change when the high-order impact is included. On

the other hand, it has been validated that, the axis of symmetry of the deformed drop shape is

aligned parallel to the electric field for either prolate or oblate deformation in the absence of the

shear flow. One might have the thoughts when the drop is subject to the electric field and shear

flow simultaneously, the orientation angle of the major axis of the drop varies from θ/π = 0 to

θ/π = 0.25 aligned with the flow direction when the oblate-type deformation is generated. While

the prolate type deformation is involved, the orientation angle should lie between θ/π = 0.25 and

θ/π = 0.5. If the shear flow is dominant, the orientation angle should be close to θ/π = 0.25 since

the shear force is at leading order. We’re interested in the case that, the electric force is competitive

to the shear force. To this purpose, the initial shear flow is set to be ~u = (ky,0) for the shear rate

k = 0.00125.

Under the electric field with strength CaE = 1 and the shear flow, in Figure 27, the drop tends

to tilt horizontally along the shear flow direction while it shows oblate shape (Case A) in the

simulation in previous section. The shape deformation is slightly greater than in the absence of

electric field. Orientation angle is between θ/π = 0 and θ/π = 0.25, which confirm the behavior

for oblate-type deformation. In Figure 28, the drop tends to tilt vertically along the transverse

direction against shear flow and confirm that orientation angle is initially between θ/π = 0.25 and

θ/π = 0.5 for prolate deformation (Case B), and greater than the angle when CaE = 0. For Case

C, it is aligned along the shear flow direction as Case B initially; when deformation proceed, it is

observed the orientation angle is less than the angle for CaE = 0 (Figure 29). The main reason is

that, the shear force is no longer dominant if compared with electric force. It can be seen from

Figure 30, Case C generates a significantly deformed capsule than Case A and Case B, which also

confirm that the electric force is more dominant than shear flow.
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Figure. 26: Schematic illustration of a two-dimensional capsule in simple shear flow and DC

electric field.
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Figure. 27: The deformation behavior of interfacial tension drop, Case A: σr = 1.75, εr = 3.5. (a)

Temporal evolution of Taylor deformation parameter. (b) Temporal evolution of inclination angle.

(c) Shape evolution.
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Figure. 28: The deformation behavior of interfacial tension drop, Case B: σr = 3.25, εr = 3.5. (a)

Temporal evolution of Taylor deformation parameter. (b) Temporal evolution of inclination angle.

(c) Shape evolution.



80

0 0.2 0.4 0.6 0.8

k*dt

0

0.2

0.4

0.6

0.8

1
D

x
y

Ca
E
=0

Ca
E
=1

(a)

0 0.2 0.4 0.6 0.8

k*dt

0

0.05

0.1

0.15

0.2

0.25

0.3

/

Ca
E
=0

Ca
E
=1

(b)

(c)

Figure. 29: The deformation behavior of interfacial tension drop, Case A: σr = 4.75, εr = 3.5. (a)

Temporal evolution of Taylor deformation parameter. (b) Temporal evolution of inclination angle.

(c) Shape evolution. (d) Shape deformation at T = 0.6.

Figure. 30: Shape deformation at T = 0.6 for Case C: σr = 4.75, εr = 3.5.
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CHAPTER 5

ELECTRIC EFFECT ON THE DEFORMATION OF IMMERSED

CAPSULES

5.1 ELECTRIC EFFECT ON THE DEFORMATION OF VISCOELASTIC

CIRCULAR CAPSULE UNDER SHEAR FLOW

In previous section, the numerical algorithms for the simulation of capsule under just shear

flow and the deformation of capsule under DC electric field induced flow have been validated. In

this section, we perform a series of numerical simulation to study the deformation of capsule under

the effect of both shear flow and DC electric field. When an elastic capsule immersed in the shear

flow, the flexible membrane rotates in the same direction of shear flow due to non-slip boundary

condition. The capsule will start deforming until reach steady state. By coupling electric field, the

capsule will be more deformed and achieve steady state more quickly. The capsule reaches steady

state when shear force, electrical force and body force are balanced, but the membrane still rotate

around the fluid filled in capsule; this is known as tank-treading motion.

The initial set up of numerical simulation is similar as in Chapter 4. As mentioned previously,

when considering the elastic red blood cell type membrane, the electric capillary number is defined

as CaE = ε+R|E∞|2/Es, where Es is the elastic modules of the membrane; the fluid capillary

number is Ca = µaka/Es, in terms of ambient fluid viscosity µa, shear rate k, equivalent capsule

radius a and Es.

The simulations with the following combinations of permittivity and conductivity ratios are

conducted: Case A (σr = 1.75, εr = 3.5), Case B (σr = 3.25, εr = 3.5) and Case C (σr = 4.75,

εr = 3.5).

The discriminate function fd(σ,εr) = σ2
r + σr + 1 − 3εr, indicates that, under σr = 1.75,

εr = 3.5, the prolate shape and induced counterclockwise flow are obtained when the capsule

achieves equilibrium state under a DC electric field E∞. By adding the shear flow ~u = (ky,0),
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we perform the simulation by considering different electric capillary number CaE on the evolu-

tion of the capsule. The results demonstrate that the deformation is monotonically increasing with

increased CaE and yield more deformed equilibrium shape. In addition, the time to achieve equi-

librium state decreases with increased CaE , and they are shorter than without electric field (under

shear flow only). In Figure 31a, for the Case A (σr = 1.75, εr = 3.5), while capsule deforms

to an ellipsoidal equilibrium shape in the absence of electric field under Ca = 0.04, the capsule

continues to elongate by adding electric field and gradually increases with increased CaE . We ob-

serve the same phenomenon in Case B (σr = 3.25, εr = 3.5) (Figure 33a) and Case C (σr = 4.75,

εr = 3.5) (Figure 35a). Under weaker shear flow (Ca = 0.0125), the capsule is less deformed

(Figure 37a,Figure 39a,Figure 41a). Also, it can be seen that the capsule tends to tilt horizontally

along the shear flow in Case A, while for Case B and Case C, the capsule tends to tilt vertically.

In Figure 43, Figure 44 and Figure 45, a single clockwise vortical swirl flow is formed inside the

capsule, and Case B and Case C show stronger swirl flow than Case A, since they both tend to tilt

vertically against the shear flow.

As shown in Figure 46, 47 and 48, the capsule membrane starts rotating around its fluid inside

with period T . The normalized tank treading frequency, f = 4π/(kT ), is presented in Figure 49,

Figure 50 and Figure 51 for Case A, Case B and Case C, respectively. No significant difference

can be seen from Case A and Case B; but for more deformed capsule in Case C, we can see higher

frequency. The reason is, under stronger combined electric force and shear force, stronger flow are

generated and speed up the tank treading phenomenon.
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Figure. 31: Ca = 0.04, Case A: σr = 1.75, εr = 3.5. (a) Temporal evolution of Taylor deformation

parameter. (b) Temporal evolution of inclination angle.
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Figure. 32: Equilibrium shape of deformed capsule for Case A: σr = 1.75, εr = 3.5 under shear

flow Ca = 0.04 and various electric strengths.
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Figure. 33: Ca = 0.04, Case B: σr = 3.25, εr = 3.5. (a) Temporal evolution of Taylor deformation

parameter. (b) Temporal evolution of inclination angle.
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Figure. 34: Equilibrium shape of deformed capsule for Case B: σr = 3.25, εr = 3.5 under shear

flow Ca = 0.04 and various electric strengths.
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Figure. 35: Ca = 0.04, Case C: σr = 4.75, εr = 3.5. (a) Temporal evolution of Taylor deformation

parameter. (b) Temporal evolution of inclination angle.
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Figure. 36: Equilibrium shape of deformed capsule for Case C: σr = 4.75, εr = 3.5 under shear

flow Ca = 0.04 and various electric strengths.
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Figure. 37: Ca = 0.0125, Case A: σr = 1.75, εr = 3.5. (a) Temporal evolution of Taylor deforma-

tion parameter. (b) Temporal evolution of inclination angle.
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Figure. 38: Equilibrium shape of deformed capsule for Case A: σr = 1.75, εr = 3.5 under shear

flow Ca = 0.0125 and various electric strengths.
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Figure. 39: Ca = 0.0125, Case B: σr = 3.25, εr = 3.5. (a) Temporal evolution of Taylor deforma-

tion parameter. (b) Temporal evolution of inclination angle.
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Figure. 40: Equilibrium shape of deformed capsule for Case B: σr = 3.25, εr = 3.5 under shear

flow Ca = 0.0125 and various electric strengths.
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Figure. 41: Ca = 0.0125, Case C: σr = 4.75, εr = 3.5. (a) Temporal evolution of Taylor deforma-

tion parameter. (b) Temporal evolution of inclination angle.
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Figure. 42: Equilibrium shape of deformed capsule for Case C: σr = 4.75, εr = 3.5 under shear

flow Ca = 0.0125 and various electric strengths.
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Figure. 43: Fluid field and the shape of deformed capsule for Case A (σr = 1.75, εr = 3.5), CaE =
0.3, Ca = 0.0125.
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Figure. 44: Fluid field and the shape of deformed capsule for Case B (σr = 3.25, εr = 3.5), CaE =
0.3, Ca = 0.0125.
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Figure. 45: Fluid field and the shape of deformed capsule for Case C (σr = 4.75, εr = 3.5), CaE =
0.3, Ca = 0.0125.
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Figure. 46: Tank-treading phenomenon for Case A (σr = 1.75, εr = 3.5), Ca = 0.0125, under

various strength of electric field.
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Figure. 47: Tank-treading phenomenon for Case B (σr = 3.25, εr = 3.5), Ca = 0.0125, under

various strength of electric field.
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Figure. 48: Tank-treading phenomenon for Case C (σr = 4.75, εr = 3.5), Ca = 0.0125, under

various strength of electric field.
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Figure. 49: The normalized tank treading frequency for Case A: σr = 1.75, εr = 3.5.
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Figure. 50: The normalized tank treading frequency for Case B: σr = 3.25, εr = 3.5.
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Figure. 51: The normalized tank treading frequency for Case C: σr = 4.75, εr = 3.5.
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5.2 EFFECT OF MEMBRANE BENDING STIFFNESS

In this section, the effect of membrane bending stiffness are considered. The elastic force

causes the development of in-plane tension and bending moments causes transverse shear tensions.

Under certain conditions, microcapsules in a shear flow display membrane folding effect, and

wrinkles are formed parallel to their orientation [51, 52]. The bending stiffness are found to be

important resource in determining the equilibrium configuration and shape oscillations of capsules,

and in avoiding the development of wrinkling and folding of capsules in shear flow. Pozrikidis’

[41] numerical study shows that bending stiffness has significant effect on the steady configuration

of elastic capsules in simple shear flow, a membrane that offers resistance to bending can suppress

elastic instabilities.

Although the two-dimensional model is a large simplification, previous publications [53, 54,

55] show that two dimensional study maintains most common features of the three dimensional

capsule’s motion, such as the transition from tank treading mode to tumbling mode.

In the next two sections, the electric effect on the deformation of both circular and biconcave

capsules is studied numerically under simple shear flow.

5.2.1 EFFECT OF MEMBRANE BENDING ON CIRCULAR CAPSULES

Due to the bending stiffness, the transverse shear tension is defined by q = ∂m
∂ℓ = EB

∂
∂ℓ(κ −κ0),

in which EB is the bending stiffness modulus, κ is the current curvature, and κ0 is the initial shape

configured curvature.

An initially unstressed circular capsule was placed in the center of the shear flow domain. In

the absence of DC electric field, the capsule was deformed by the flow until the system reached

equilibrium. The Taylor deformation parameter Dxy, initially zero, increases to a constant during

the process. The present results show that the capsule deforms to the steady shape and then the

membrane rotates around the liquid inside, which is called tank-treading motion. This simulation

was performed for a variety of two dimensionless parameters, capillary number of fluid Ca and

bending modulus Eb. As shown in Figure 52a and 53a, a sequence of steady capsules with shear

flow Ca = 0.04 and Ca = 0.125 are presented for various bending modulus Eb ranging from 0 to
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0.5, respectively. The results agree well with Sui’s method [42]. As expected, the shape defor-

mation are significantly affected by bending stiffness. The bending stiffness restricts the global

deformation of capsule and prevents the development of high curvature at the two tips. Seen from

Figure 54 and 55, as the bending modulus increases, the deformed capsule get closer to a circle

shape which indicates smaller deformation. It can be observed that the time taken to achieve steady

shape is shorter under higher bending modulus. This is intuitively making sense because the cap-

sule deform less under higher bending modulus and it is quicker to generate enough elastic force

to balance the viscous shear force.

The temporal evolution of the inclination angle are presented in Figure 52b and Figure 53b for

Ca = 0.04 and Ca = 0.125, respectively. The quantitative results confirm that increased bending

stiffness reduces the capsule deformation and makes it tend to tilt less along the flow direction.

When the electric field is applied vertically as before, three cases are studied. For the case A, we

studied the capsule deformation having different capillary number and different bending modulus

when Ca = 0.04. From Figure 56, 57 and 59, we can see that when the bending stiffness increases,

the deformation decreases with quicker tank-treading motion. With fixed bending stiffness, a com-

parison was made with electric capillary numbers of CaE = 0, CaE = 0.1 and CaE = 0.3. The

results for cases B and C are shown in Figure 61-70, we observe the similar effects for the two

cases. As shown in Figure 56-70, all three cases show the tank-treading phenomenon; for higher

capillary number, the motion becomes slower.
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Figure. 52: The Taylor deformation parameter and inclination angle evolution, Ca = 0.04.

0 0.5 1 1.5 2 2.5 3 3.5 4

k*dt

0

0.1

0.2

0.3

0.4

0.5

0.6

D
x
y

E
b
=0

E
b
=0.05

E
b
=0.1

E
b
=0.2

E
b
=0.4

E
b
=0

E
b
=0.05

E
b
=0.1

E
b
=0.2

E
b
=0.4

E
b
=0

E
b
=0.05

E
b
=0.1

E
b
=0.2

E
b
=0.4

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4

k*dt

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

/

E
b
=0

E
b
=0.05

E
b
=0.1

E
b
=0.2

E
b
=0.4

E
b
=0

E
b
=0.05

E
b
=0.1

E
b
=0.2

E
b
=0.4

(b)

Figure. 53: The Taylor deformation parameter and inclination angle evolution, Ca = 0.125.
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Figure. 54: Equilibrium shape of deformed capsule under various bending modulus under Ca =
0.04, t = 2.5.
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Figure. 55: Equilibrium shape of deformed capsule under various bending modulus under Ca =
0.125, t = 2.5.
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Figure. 57: Tank-treading phenomenon for circular capsule with bending stiffness Eb = 0.1 under

various electric field for case A (σr = 1.75,εr = 3.5).
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Figure. 58: (a) Deformation parameter Dxy; (b) inclination angle θ/π for Case A, Eb = 0.1
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Figure. 59: Tank-treading phenomenon for circular capsule with various bending stiffness under

electric field with CaE = 0.1 for case A (σr = 1.75,εr = 3.5).
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Figure. 60: (a) Deformation parameter Dxy; (b) inclination angle θ/π for Case A, CaE = 0.1
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Figure. 61: Equilibrium shapes of circular capsule with Ca = 0.04 for case B (σr = 3.25,εr = 3.5).
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Figure. 62: Tank-treading phenomenon for circular capsule with bending stiffness Eb = 0.1 under

various electric field for case B (σr = 3.25,εr = 3.5).
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Figure. 63: (a) Deformation parameter Dxy; (b) inclination angle θ/π for Case B, Eb = 0.1
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Figure. 64: Tank-treading phenomenon for circular capsule with various bending stiffness under

electric field with CaE = 0.1 for case B (σr = 3.25,εr = 3.5).

0 0.5 1 1.5 2

k*dt

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

D
x
y

E
b
 = 0

E
b
 = 0.1

E
b
 = 0.4

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4

k*dt

0.15

0.2

0.25

0.3

/

E
b
 = 0

E
b
 = 0.1

E
b
 = 0.4

(b)

Figure. 65: (a) Deformation parameter Dxy; (b) inclination angle θ/π for Case B, CaE = 0.1
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Figure. 66: Equilibrium shapes of circular capsule with Ca = 0.04 for case C (σr = 4.75,εr = 3.5).
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Figure. 67: Tank-treading phenomenon for circular capsule with bending stiffness Eb = 0.1 under

various electric field for case C (σr = 4.75,εr = 3.5).
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Figure. 68: (a) Deformation parameter Dxy; (b) inclination angle θ/π for Case C, Eb = 0.1
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Figure. 69: Tank-treading phenomenon for circular capsule with various bending stiffness under

electric field with CaE = 0.1 for case C (σr = 4.75,εr = 3.5).
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Figure. 70: (a) Deformation parameter Dxy; (b) inclination angle θ/π for Case C, CaE = 0.1
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5.3 NUMERICAL RESULTS AND DISCUSSION: EFFECT OF ELECTRIC

FIELD ON THE DEFORMATION OF BICONCAVE CAPSULES

The deformation of a biconcave capsule under shear flow has been studied extensively in the

past by experimental observation, theoretical analysis and numerical simulation. The results show

several types of steady-state behavior. Theoretical investigations of biconcave capsule dynamics in

[56] exhibit three distinct behaviors, tumbling, tank-treading of the membrane about the viscous in-

terior with periodic oscillations of the orientation angle, and intermittent behavior in which the two

modes occur alternately. Researchers have shown that several factors including capsule’s bending

stiffness, membrane viscosity, fluid viscosity ratio and membrane viscosity all play important roles

in determining the capsule’s equilibrium behavior.

The biconcave capsule has an initial shape [41] given by

x = aα sin χ

y = a
α

2
(0.207+2.003sin2 χ −1.123sin4 χ)cos χ (152)

for equivalent radius a = 1, α = 1.3858, and angles χ ranges from −3π/4 to 5π/4. The capsule is

initially unstressed. The characteristic length is the equivalent diameter of the biconcave capsule

equals 1.48a.

Without electric field, the deformation of biconcave capsule is studied for various bending

modulus under shear flow Ca = 0.0125 in Figure 71. The capsule carries out tank treading motion.

As bending modulus increased, the motion changes to tumbling mode. The capsule is elongated

or compressed depending on the position in shear flow. For higher bending stiffness, the capsule

is similar to rigid body motion. It can be confirmed that by increasing the bending stiffness, the

capsules’ behavior changes from tank-treading to tumbling mode.
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Figure. 71: Deformation of the biconcave capsule with Ca= 0.0125 with various bending modulus.
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Figure. 72: Inclination angle of the biconcave capsule with Ca = 0.0125.
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5.3.1 ELECTRIC EFFECT ON THE DEFORMATION OF BICONCAVE CAPSULE UN-

DER CASE A

The deformation of capsules is investigated for various electric capillary numbers CaE =

0,CaE = 0.1,CaE = 0.3 and CaE = 0.5 under shear flow Ca = 0.0125. The bending modulus

is Eb = 0. Figure 74a presents the evolution of the deformation parameter Dxy. The deformed

capsules are plotted in Figure 73 until achieved steady state. As the capillary number increases,

the response time deformed to steady state decreases. The electric field elongates the capsule in the

parallel direction for current combination of permittivity and conductivity ratios. The inclination

angle decreases due to the effect of applied electric field.

Figure 75-77 presents the temporal evolution of the biconcave capsule’s deformation for var-

ious electric capillary numbers with bending modulus Eb = 0.05 under shear flow Ca = 0.0125.

For higher bending modulus, the capsule carries out rigid body like motion, only tumbling mode

can be observed during the evolution of motion. The applied electric field does not change the

transition between tank treading mode and tumbling mode.
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Figure. 73: Deformation of the biconcave capsule with Ca = 0.0125 under different strength of

electric field for the case A (σr = 1.75,εr = 3.5).
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Figure. 74: (a) Deformation parameter Dxy; (b) inclination angle θ/π for Case A.
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Figure. 75: Tank-treading and tumbling motion of the biconcave capsule with Ca = 0.0125 and

Eb = 0.05.
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Figure. 76: Tank-treading and tumbling motion of the biconcave capsule with Ca = 0.0125 and

Eb = 0.05 under electric field with CaE = 0.1 for case A (σr = 1.75,εr = 3.5).
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Figure. 77: Tank-treading and tumbling motion of the biconcave capsule with Ca = 0.0125 and

Eb = 0.05 under electric field with CaE = 0.3 for case A (σr = 1.75,εr = 3.5).
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5.3.2 ELECTRIC EFFECT ON THE DEFORMATION OF BICONCAVE CAPSULE UN-

DER CASE B AND CASE C

As demonstrated in previous section for capsule under DC electric field, the circular capsule

will deform to oblate shape in both Case B (σr = 3.25,εr = 3.5) and Case C (σr = 4.75,εr = 3.5),

but induced circulatory flow inside the first quadrant is clockwise for Case B and counterclockwise

for Case C.

The deformation of capsules is investigated for various electric capillary numbers CaE =

0,CaE = 0.1,CaE = 0.3 and CaE = 0.5 under shear flow Ca = 0.0125. The bending modulus

is Eb = 0. The deformed capsules are plotted in Figure 78 and 79 for Case B and Case C until

achieved steady state, respectively. As the capillary number increases, the response time deformed

to steady state decreases. The electric field elongates the capsule in the parallel direction for cur-

rent combination of permittivity and conductivity ratios. The inclination angle increases due to the

effect of applied electric field.
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Figure. 78: Deformation of the biconcave capsule with Ca = 0.0125 under different strength of

electric field for the case B (σr = 3.25,εr = 3.5).
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Figure. 79: Deformation of the biconcave capsule with Ca = 0.0125 under different strength of

electric field for the case C (σr = 4.75,εr = 3.5).
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Figure. 80: Deformation of the biconcave capsule with Ca = 0.0125 under different strength of

electric field with bending modulus Eb = 0.005 for the case B (σr = 3.25,εr = 3.5).
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Figure. 81: Deformation of the biconcave capsule with Ca = 0.0125 under different strength of

electric field with bending modulus Eb = 0.05 for the case B (σr = 3.25,εr = 3.5).
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Figure. 82: Deformation of the biconcave capsule with Ca = 0.0125 under different strength of

electric field with bending modulus Eb = 0.005 for the case C (σr = 4.75,εr = 3.5).
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Figure. 83: Deformation of the biconcave capsule with Ca = 0.0125 under different strength of

electric field with bending modulus Eb = 0.05 for the case C (σr = 4.75,εr = 3.5).
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5.3.3 DAMPED TUMBLING MOTION UNDER ELECTRIC EFFECT

The electric field could slow or damp tumbling motion on a biconcave red blood cell in shear

flow [57, 58]. Even under a weak electric field which produce slightly effect on deformation of

immersed capsule, we can still observe significant change on tumbling motion. The electric forces

on the capsule against the viscous forces and align it either vertically or horizontally, depending on

the combination of conductivity ratio σr and permittivity ratio εr.

In the absence of electric field, the deformation of biconcave capsules which subject to the

shear flow Ca = 0.0125 is studied. Figure 84 presents the temporal evolution of inclination angle

for capsules with various bending stiffness Eb = 0.002, Eb = 0.005 and Eb = 0.05. The unsteady

tank treading motion is observed for Eb = 0.002. The capsule start tank-treading to tumbling

transition when increasing bending stiffness from Eb = 0.002 to Eb = 0.005. Stronger bending

stiffness (Eb = 0.05) significantly increase tumbling frequency.

When the capsule is subject to both shear flow and electric field, we first investigate the case

A (σr = 1.75,εr = 3.5), for which the electric force align the capsule horizontally. The inclination

angles are plotted in Figure 85 and Figure 86, for different bending modulus Eb = 0.05 and Eb =

0.005, respectively. For larger bending stiffness (Fig. 85), the tumbling period is seen to lengthen

with increased strength of electric field; the damped tumbling motion does not occur under current

setting of parameters. When bending modulus reduced to Eb = 0.005, as seen from Figure 86,

the tumbling motion still occur for CaE = 0.1, but completely damped out for CaE = 0.3 and

CaE = 0.5. For Case B, the electric force align the capsule vertically, which against the shear flow

in opposition. The slow down tumbling motion are presented in Figure 87 and Figure 88.

In general, the strength of the electric field has significant effect on the capsule’s motion be-

havior in shear flow. A weaker electric field only cause slightly decreased tumbling motion while

stronger electric field decrease the tumbling frequency substantially and even completely damp the

tumbling behavior out.
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Figure. 84: Evolution of inclination angle of biconcave capsules with various bending modulus at

Ca = 0.0125.
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Figure. 85: Evolution of inclination angle of biconcave capsules with bending modulus Eb = 0.05

at Ca = 0.0125 for Case A (σr = 1.75,εr = 3.5).
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Figure. 86: Evolution of inclination angle of biconcave capsules with bending modulus Eb = 0.005

at Ca = 0.0125 for Case A (σr = 1.75,εr = 3.5).
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Figure. 87: Evolution of inclination angle of biconcave capsules with bending modulus Eb = 0.05

at Ca = 0.0125 for Case B (σr = 3.25,εr = 3.5).
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Figure. 88: Evolution of inclination angle of biconcave capsules with bending modulus Eb = 0.005

at Ca = 0.0125 for Case B (σr = 3.25,εr = 3.5).



125

5.4 EFFECT OF FLUID VISCOSITY RATIO ON THE DEFORMATION OF

CAPSULE

In addition to membrane bending stiffness, the deformation of an elastic capsule is also de-

termined by a few other factors such as inertia, membrane viscosity and the fluid viscosity ratio

of internal and external fluids. In particular, when introduced to a simple linear shear flow, the

elastic capsule exhibit a number of interesting physical dynamics, the nature of which is highly

dependent on the ratio of the viscosity of the enclosed and external fluids. For large fluid viscosity

contrasts or low shear rate, the non-spherical red blood cells undergo a tumbling motion which

has been observed in experiments [59, 60, 61, 62]. For less deformed red blood cell or those with

smaller viscosity contrasts, the capsules show a tank-treading motion characterized by a steady

shape. Above phenomenon are also analytically [63, 64, 65, 66, 57, 56] and numerically studied

[67, 68, 69, 70, 55].

Goldsmith and Marlow [71] were the first to experimentally observe the effect of viscosity

ratio on red blood cells. Pfafferott [59] found that a red blood cell underwent tank-treading motion

when the viscosity ratio was less than two, and tumbling motion for higher viscosity ratios when

subjected to shear flow.

Keller and Skalak [63] theoretically analyzed the dynamic motion of an ellipsoidal capsule in

simple shear flow. For a capsule with a given geometry, the transition from tank-treading mode to

tumbling mode depends on the viscosity ratio between internal fluid and external fluid, and it is

independent of shear rate. In Keller and Skalak’s theory, the capsule was assumed to have a fixed

shape. Rioual [64] predicted that viscosity ratio induced transition based on general considerations

does not resort to the explicit computation of the full hydrodynamic field inside and outside the

capsule.

Viscosity ratio dependent transition has also been recovered in numerical studies by Pozrikidis

[41] using boundary element method, Misbah [54] and Beaucourt [55] using advected-field scheme

and Salac & Miksis [69, 70] with level set methods.

The dimensionless fluid viscosity ratio V of a capsule is defined to be the ratio of the fluid

viscosity inside the capsule µc, to the ambient fluid viscosity µa. To implement a non-unity fluid

viscosity ratio over a time-dependent region, the fluid viscosity at each node is computed every

timestep, so that the relaxation parameters for that node may be appropriately adjusted [72]. In
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practice, this is only necessary for nodes which are near the capsule boundary, as the others will

not change from one timestep to the next. To compute the new viscosity at a node, not only whether

the node lies inside or outside the capsule must be determined, but also the fluid viscosity contrast

across the capsule interface must be smoothed, for the sake of the stability of the fluid solver. In the

context of multiphase flows, Tryggvason et al. used a Poisson Equation to determine fluid density

at grid points near the interface [73]. Alternatively, a Heaviside function [74] and hereafter refined

in [3] based on the shortest normal distance from the fluid node to the membrane.

In current method, the strategy of [3] is employed to deal with the fluid viscosity jump across

the capsule interface. To determine the viscosity of a fluid node at a given timestep, the Lagrangian

node nearest to the fluid node is selected. The dot product of the vector between these two points

and the unit outward normal from the Lagrangian node is calculated and the sign of this product

indicate whether the fluid node is inside or outside of the capsule. The sign of d for a fluid node

is set to be positive if the point is located outside of the interface or negative if it is inside the

interface.

With the signed distance d having been determined, a smoothed Heaviside function of d from

[3] is introduced, and defined as

H(d) =



























0, d <−2h,

1
2
(1+ d

2h
+ 1

π sin(πd
2h
)), −2h ≤ d ≤ 2h

1, d > 2d

(153)

The viscosity µ at the node is determined using H(d) by the equation

µ(x) = µc +(µa −µc)H[d(x)] (154)

in terms of the fluid viscosity µc inside the capsule and the ambient fluid viscosity µa.

The effect of fluid viscosity ratio on the deformation of circular capsules is investigated numer-

ically in simple shear flow and DC electric field. Numerical simulations are performed in simple

shear flow without applying DC electric field. The evolution of deformation for an elastic capsule

at different capillary numbers under fluid viscosity ratio V = 0.5, V = 1 and V = 5 are plotted in
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Figure. 89: Deformation of circular capsule for V = 0.5, Re = 0.05, Eb = 0 and η = 0.

Figure 89-91. We observe that the time required to achieve steady state increases with the fluid

viscosity ratio, and also, the capsule with small viscosity ratio, is more deformed. The fluid vis-

cosity ratio plays an opposite role to the shear rate. While subject to electric field (Figure 92),

we observed the similar phenomenon without considering viscosity ratio. As the capillary num-

ber increases, the response time deformed to steady state decreases but the capsule deforms more.

Comparing to electric field, fluid viscosity ratio plays more significant role in determining response

time.
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Figure. 90: Deformation of circular capsule for V = 1, Re = 0.05, Eb = 0 and η = 0.
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Figure. 91: Deformation of circular capsule for V = 5, Re = 0.05, Eb = 0 and η = 0.
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(a) V = 0.5, Case A: σr = 1.75,εr = 3.5.
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(b) V = 5, Case A: σr = 1.75,εr = 3.5.
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(c) V = 0.5, Case B: σr = 3.25,εr = 3.5.
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(d) V = 5, Case B: σr = 3.25,εr = 3.5.
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(e) V = 0.5, Case C: σr = 4.75,εr = 3.5.
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(f) V = 5, Case C: σr = 4.75,εr = 3.5.

Figure. 92: Deformation parameters Dxy for V = 0.5 and V = 5 under shear flow Ca = 0.0125.
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CHAPTER 6

THREE DIMENSIONAL SIMULATION

The hybrid immersed boundary method, lattice Boltzmann method and immersed interface

method developed is used here to study the spherical capsule deformation in three dimensions.

Although two-dimensional simulation represents some features of three dimensional study, it’s

still a large simplification and somehow miss a few other features. In the present simulation, a

mesh with 2562 vertices and 5120 triangles is used.

A computational domain with size [0,10]× [0,10]× [0,10] is selected, and an elastic spherical

capsule of radius one is placed in the center of the computational domain, Neo-Hookean law is

used. The internal and external fluids have the same property which indicates no viscosity jump

cross the interface. Bending effect and membrane viscosity viscosity are not considered here.

Reynolds number is set to be 0.05 and the inertia effect is negligible due to small Reynolds number.

Without electrical force, the simulation results at different capillary numbers ranging from

0.0125 to 0.2 are compared with Sui’s results [42] in Figure 93, the results agree well. The shape

evolution of cross section for Ca = 0.025 is depicted in Figure 97. The tank treading motion is

observed. When capsule being deformed to equilibrium shape, the membrane rotates around in-

ternal liquid. The evolution of deformation parameter Dxy and tank-treading phenomenon confirm

that 3D and 2D have similar common features. It takes longer to achieve equilibrium state for

higher capillary number since the capsule needs to deform more to generate enough elastic force

to balance the viscous shear force, which is considerably larger compared to elastic force for higher

capillary number.

With electric field considered, similar results are obtained as in 2D simulations. We impose

a constant voltage potential difference in z-direction by E∞ = (0,0,CaE(5− z)), where CaE is

dimensionless electric capillary number. The other boundary conditions for the potential φ are

φ∂x = 0 (Neumann) at x = 0 and x = 10, and φ∂y = 0 (Neumann) at y = 0 and y = 10.

As stated in 2D simulation, under assumption of first-order small-deformation, the equilibrium

steady shape of an elastic capsule is related to the discriminating function given by fd(σr,εr) =



131

0 0.5 1 1.5 2 2.5 3 3.5 4

k*dt

0

0.1

0.2

0.3

0.4

0.5

0.6

D
x
y

Ca=0.0125

Ca=0.025

Ca=0.05

Ca=0.1

Ca=0.2
Sui

Present Method

Figure. 93: Comparison for different capillary numbers Ca at V = 1, Eb = 0 and η = 0.

σ2
r +σr +1−3εr. When fd < 0, the capsule turns into an oblate shape; while fd > 0, the capsule

will deform into a prolate shape. The evolution of deformation parameters of the case with σr =

1.75 and εr = 3.5 is plotted in Figure 93 for a range of values of CaE = 0,0.1,0.3,0.5,1. It is

seen the time taken to achieve steady shape is slightly shorter for higher electric capillary number

CaE . Under stronger electric field, the capsule deforms to steady state quicker. The electric effect

plays an significant role during the shape evolution. The tank treading motion for various strength

electric field are depicted in Figure 97-101. For stronger electric field, the tank-treading motion is

slightly slower. All above confirm the same features as in 2D simulation.
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Figure. 94: Deformation for various electric strength with Ca = 0.025, V = 1 and η = 0. Case A:

σr = 1.75, εr = 3.5.
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Figure. 95: Deformation for various electric strength with Ca = 0.025, V = 1 and η = 0. Case B:

σr = 3.25, εr = 3.5.
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Figure. 96: Deformation for various electric strength with Ca = 0.025, V = 1 and η = 0. Case C:

σr = 4.75, εr = 3.5.

Figure. 97: Shape evolution for Ca = 0.025, V = 1 and η = 0.
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Figure. 98: Shape evolution for Ca = 0.025, V = 1 and η = 0, under electric field with strength

CaE = 0.1. Case A: σr = 1.75, εr = 3.5.

Figure. 99: Shape evolution for Ca = 0.025, V = 1 and η = 0, under electric field with strength

CaE = 0.3. Case A: σr = 1.75, εr = 3.5.
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Figure. 100: Shape evolution for Ca = 0.025, V = 1 and η = 0, under electric field with strength

CaE = 0.5. Case A: σr = 1.75, εr = 3.5.

Figure. 101: Shape evolution for Ca = 0.025, V = 1 and η = 0, under electric field with strength

CaE = 1. Case A: σr = 1.75, εr = 3.5.
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CHAPTER 7

CONCLUSION

In this thesis, a hybrid method used to simulate electrohydrodynamics of the fluid-filled capsule

under the shear flow with DC electric field is proposed. The lattice Boltzmann method combined

with immersed boundary method is chosen to simulate the fluid-structure interaction. The electric

field is solved by fast immersed interface method. The resulting electric stress tensor due to applied

electric field is cast as an interfacial force in which the shear force and electric interfacial tension

can be formulated in a unified immersed boundary framework. The present method also preserves

the advantages of the immersed boundary method and lattice Boltzmann method.

A series of numerical tests for the present hybrid method were conducted to illustrate the ac-

curacy and applicability of the method. Results were compared with Taylor’s deformation theory

and other numerical results in literature. In DC field, the circular capsules deform into ellipsoidal

shapes and even drum-like shapes with high curvature edges under electric-induced flow. The ini-

tial transient behavior of deformation depends on the different properties between the inner and

outer fluids of the capsule, the orientation of the capsules transitioning between prolate (major axis

parallel to the applied electric field) or oblate (major axis perpendicular to applied electric field)

shapes depending on the conductivity ratio and the permittivity ratio. The results agree well with

published literature and show that the present numerical method could be an alternative approach

for the simulation of electrohydrodynamics.

Based on present approach, the effect of electric effect on the deformation of two-dimensional

viscoelastic capsule was investigated numerically in simple shear flow. The deformation of initially

circular and biconcave shapes were studied. For circular capsule, when the membrane carries out

tank-treading motion, the capsule shows larger deformation under electric effect. By increasing the

strength of electric field, slower tank-treading phenomenon was observed. Bending suppress the

deformation and the equilibrium capsule is less deformed if the bending stiffness is increased. For

biconcave capsules, tumbling motion is obtained with relative high bending stiffness; the bending

stiffness could be a factor that can lead to the transition of a capsule’s motion from tank-treading to
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tumbling. When DC electric field is applied, the numerical results confirmed that be tumbling mo-

tion maybe dumped with relatively strong electric field. The damped phenomenon was observed

for the case with σr = 1.75,εr = 3.5, though the tendency was noticed for the other two cases with

different combination of conductivity ratio and permittivity ratio. Further improvement on numer-

ical algorithm is undergoing in order to view the damped phenomenon for variety parameters.

Current algorithm is applicable for three dimensional computation. The membrane of three

dimensional membrane was discretized into unstructured flat triangular elements and a finite el-

ement model was incorporated to obtain the forces acting on the membrane nodes. The present

results agree well with published theoretical and numerical results. As expected, three-dimensional

simulation showed some similar features as in two-dimensional simulation. The spherical capsule

deform to stationary shapes and achieve steady tank-treading motion. Stronger electric field re-

duced tank treading frequency and enforced deformation parameter of the capsule.

Future work will consider vesicle membrane that is not only viscoelatic but also with an elec-

tric capacitance and an electric conductance within the leaky dielectric framework. The electric

potential and transmembrane potential could be solved simultaneously based on present numerical

method with sightly change on boundary conditions. The elliptic interface equation for the electric

potential couples a time-varying transmembrane potential; the transmembrane potential is solved

simultaneously with the electric potential.
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