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ABSTR ACT

M ODELING AN D SIM ULATION OF M OLECULAR C O U E T T E  
FLOW S A N D  RELATED FLOW S

Wei Li
Old Dominion University, 2015 

Director: Dr. Li-Shi Luo

In this thesis, molecular Couette flow is clearly defined and the modeling and sim
ulation of this kind of flow is systematically investigated. First, the integral equations 
for the velocity of gaseous Couette flow and related flows are derived from linearized 
Boltzmann BGK equation with Maxwell boundary condition and solved with high 
precision by using Chebyshev collocation and chunk-based collocation methods. The 
velocity profiles of gaseous Couette flows and related flows with a wide range of 
Knudsen number and the Maxwell boundary condition of various accommodation 
ratios are obtained. Moreover, the order of convergence of the numerical methods 
is also discussed and I obtain better precision. Second, to model the velocity pro
file, the analysis of Couette flows with pure diffusive boundary condition is given. 
My results show that the velocity profile is most appropriately approximated by a 
cubic polynomial. Meanwhile, the analysis also discloses the Knudsen number de
pendences of microscopic and macroscopic slip velocities and of the half channel mass 
flow rate. Finally, the modeling and simulation of molecular Couette flow in Navier- 
Stokes framework is carried out. To obtain density and velocity profiles including the 
Van der Waals effects near walls, high Knudsen number gaseous Couette flows are 
simulated by using molecular dynamics simulation (MD). Based on high precision so
lutions of the integral equations and MD results of velocity and density, macroscopic 
moments of molecular Couette flows are modeled by using effective radial distribu
tion functions. Then, with these modeled velocity and density profiles, the effective 
viscosity in the stress tensor of Navier-Stokes equation is constructed. The velocity 
and density profiles are reproduced by two-relaxation time lattice Boltzmann method 
in Navier-Stokes framework by the effective viscosity model.
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C H A PTER  1

INTRO DUCTIO N

During the decade, the applications of microflows in microelectromechanical sys
tems (MEMs) have attracted increasing interest of researchers. As a branch of the 
microflow study, we are particularly interested in the gaseous Couette flows in planar 
micro-scale channels, in which the media of the flows consist of finite numbers of gas 
molecules. Therefore, the flows are also called molecular Couette flows. Quantitative 
investigation of the hydrodynamic quantities, such as the density profiles and the ve
locity profiles of the molecular Couette flows, is conducive to the development of the 
micro-machine manufacturing industry. For instance, it contributes to the design of 
the microscopic electromechanical devices and the magnetic disc drive units.

1.1 MOTIVATION

The molecular Couette flows are multi-scale gaseous flows. Two typical lengths of 
different scales coexist in the molecular Couette flows. One of the typical lengths is 
the mean free path, namely, the average distance traveled by a moving gas molecule 
between successive collisions with another gas molecule. The mean free path is in the 
mesoscopic length scale. The ratio of the mean free path to the height of the planar 
channel defines the Knudsen number of the molecular Couette flow. The domain of 
the Knudsen number can be divided into four regions, less than 0.001 is the contin
uous flow region, between 0.001 and 0.1 is the slip flow region, from 0.1 to 10.0 is 
the transitional flow region, greater than 10.0 is the near free molecular flow region. 
Although continuous flows and slip flows are usually characterized by the Navier- 
Stokes equation, the governing equation for gaseous flows in the whole domain of the 
Knudsen number is the Boltzmann transport equation or its simplified model equa
tions, such as the Boltzmann BGK equation [23]. The derivation of these equations 
is rooted in the dilute gas limit, namely, when the number of the molecules in the 
gaseous flow approaches to infinite, the multiplication of the number of the molecules 
with the square of the diameter of the molecules remains a constant. It is noted that,
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in the dilute gas limit, the net volume of the gas molecules is 0, meaning the gas 
molecules are regarded as point particles and the diameter of the gas molecules is 
negligible with respect to the mean free path. Assuming the validity of the dilute 
gas limit is fine as long as one does not consider the van der Waals forces between 
the gas molecules and the solid walls. However, when the van der Waals forces must 
be considered, the second typical length, the diameter of the gas molecules, appears. 
The diameter of the gas molecules is in the microscopic length scale. In the micro
scopic length scale, the movement of gas molecules follows the Newton’s Second Law 
and the Newton’s Second Law based molecular dynamics (MD) simulation is almost 
the only resort to simulate the flow. The MD simulation corresponds to another gas 
limit, where the multiplication of the number of the molecules with the cube of the 
diameter of the molecules is a constant, when the number of molecules approaches 
to infinite. In this gas limit, the net volume of the gas molecules is a constant. Thus, 
a single gas molecule can not be regarded as a point particle but rather a ball. In a 
nutshell, not only are the two typical lengths in totally different length scales, but 
the governing equations model distinct gas limits. Coupling the Boltzmann equation 
or its simplified model equations with MD simulation in order to characterize molec
ular Couette flow under a unified frame is hard. Before a unified model is obtained, 
solving the Boltzmann equation with high precision and implementing MD simula
tion to get high quality flow information are not only necessary but also have their 
self-contained significance.
On the one band, solving the Boltzmann equation for the Couette flow problem can 
provide accurate solution to the bulk region velocity of the molecular Couette flow, 
where the bulk region is a distance, around three times of the diameter of the gas 
molecules, away from the walls. This distance is also called the wall force penetration 
depth. The full Boltzmann equation is a nonlinear partial differential integral equa
tion for the distribution function in seven variables, one in time, three in space and 
three in phase velocity^ It could be solved by direct simulation Monte Carlo method 
(DSMC) or first linearized and then solved by discrete ordinate method (DOM). 
However, DSMC bears intrinsic statistical noise and DOM involves quadratures of 
a huge number of discrete phase velocities in order to characterize relatively higher 
Knudsen number flow. Moreover, both methods are impossible to achieve very high 
precision. Due to the simple geometry, the Boltzmann BGK equation for the Couette 
flow with proper kinetic boundary condition can be converted into a weakly singular
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Fredholm integral equation of the second kind. Numerical investigations to the in
tegral equation for Couette flow has made a great progress. However, the precision 
of previous solutions have not reached benchmark criterion, due to their failure to 
properly handle the weak singularity of the kernel of the integral equation and the 
mild singularity at the boundaries of the solution to the integral equation. Successful 
treatments to these singularities will substantially improve the quality of the solution 
to the integral equation for the Couette flow problem.
On the other hand, MD simulation can supplement quantitatively correct velocity 
profiles and density profiles, which are not able to be obtained by solving the Boltz
mann equation, in the the near wall van der Waals force affected region. In fact, 
Barisik et al [44, 45] has implemented MD simulations of molecular Couette flows 
to discover that the velocity profile in the wall penetration depth is quite different 
from that obtained by Sone et al [24] who solved the linearized Boltzmann equation 
with the same Knudsen number. But, Barisik et a /’s work is initiatory and their MD 
results suffer from strong statistical error when the Knudsen is relatively lower.
In this thesis, one of the objects of the present research is to improve the precision and 
the computational efficiency in solving the integral equations to obtain benchmark 
solutions to the molecular Couette flows. The next is to systematically investigate 
the van der Waals effects near the walls by using MD simulation with low statistical 
noise. Considering the high cost of MD simulation, our final object is to construct 
effective viscosity model to simulate the molecular Couette flows by a lattice Boltz
mann method (LBM) with low cost.

1.2 PREVIOUS WORK

In order to reduce the difficulty of solving the full Boltzmann equation but to 
maintain its main property, simplifications have been made to obtain model equa
tions such as the BGK equation [23] and the linearized Boltzmann equation of differ
ent models, like the steady state model [24], the S-model [25], the variable collision 
frequency model [26] and the CES model [27]. The boundary conditions of the 
Boltzmann equation and its model equations are various prescribed reflective distri
bution functions at the solid walls, which include, but are not limited to the Maxwell 
boundary condition [28] with one parameter and the Cercignani-Lampis boundary 
condition [29] with two parameters. The study of gaseous Couette flow by using
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Boltzmann model equation can be divided as the early theoretical analysis and the 
later numerical investigation. Gross and Cercignani are two pioneers in the theo
retical study. Gross et al [8] utilized the analysis, which was once used for Milne 
equation of radiative transfer, to obtain linearize BGK equation. They further con
verted the linearized BGK equation into an integro-differential equation with purely 
diffusive boundary condition and derived a series of half range polynomial formal 
solutions by using a series of full range moment equations of the integro-differential 
equation. The first half range polynomial solution is a linear function, which serves 
as the footstone for deriving more delicate approximations to the velocity profile of 
the gaseous Couette flow. Another class of analysis of the gaseous Couette flow was 
done by Cercignani [30], who applied the method of elementary solutions to two dif
ferent Fredholm integral equations, both of them are derived from the BGK equation. 
By using this method, he obtained two solutions to the velocity of gaseous Couette 
flow in term of two convergent series expansions, one expansion for small Knudsen 
number case and the other for big Knudsen number case. Besides, Cercignani [31] 
further applied the method of elementary solutions to the variable collision frequency 
model for general shear flows. The significance of Gross et al and Cercignani’s ana
lytical works lies in their mathematical closeness. They provided a series of analytic 
approximations to the velocity profiles of gaseous Couette flows with increased preci
sion from different starting points. However, as the order of approximation increases 
the complexity of expressions in both approaches becomes prohibitive for practi
cal usage. Hence, numerical solution of the problem is necessary. The numerical 
solutions for gaseous Couette flow are mainly obtained by numerically solving an 
integral equation converted from the BGK equation or other linearized Boltzmann 
model equations with pure diffusive boundary condition, of which the rarity is char
acterized by the Knudsen number. For instance, Willis [32] used Nystrom method 
to solve the integral equation derived from the linearized BGK equation with four 
digits of precision. Loyalka et al [33] used the successive iteration method to solve 
Cercignani’s Fredholm equation [30] derived from the BGK equation with various 
Knudsen numbers. They obtained five digits of precision. Sone et al [24] used their 
own designed finite difference method to solve the steady linearized Boltzmann equa
tion with Knudsen number ranging from 0.1 to 10.0. Their solution has four digits 
of procision. Siewert [34] used a polynomial expansion technique [35] and the ana
lytical discrete ordinates method [36] to solve the linearized Boltzmann equation in
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the CES model with three different Knudsen numbers. His method has five digits of 
precision. Yap and Sader [37] used uniform chunk based Nystrom method to solve 
Fredholm equations of the second kind derived from the oscillatory and the steady 
BGK equations with at most six and eight digits of precision, respectively. These 
numerical solutions to the velocities of the gaseous Couette flows are accurate enough 
in engineering fields. However, they have not reached the enough precision to serve 
as benchmark results. As a benchmark solution, the accuracy should be close to 
the double precision. Recalling the literatures, the model equations for the gaseous 
Couette flow fall into two classes, the integro-differential equation and the Fredholm 
equation of the second kind. It is hard to obtain very accurate numerical solution to 
the integro-differential equation with unbounded phase domain. However, it is easier 
to solve the Fredholm equation of the second kind with quite high precision. Very 
recently, a state-of-the-art solution was obtained by Jiang and Luo [38], who used the 
singular region adaptively refined chunk based collocation method to solve the steady 
case integral equation discussed by Yap and Sader with at least 14 digits of precision 
in a wide range of Knudsen numbers. Hence, their results serve as a benchmark. 
Jiang and Luo’s method is based on the recent works [39, 40, 41] in solving integral 
equations with singular kernels and corner singularities. The integral equation de
rived from the linearized BGK equation falls into this category. On the one hand, 
the kernel, a composite Abramowitz function, is weakly singular with a logrithmic 
and an absolute value singularity. On the other hand, it is proved that the solution 
to the integral equation has a mild singularity on each of the end points. Jiang and 
Luo utilized a piecewise low order spectral polynomial expansion to approximate the 
solution. They used generalized Gaussian quadratures [42, 43] to approximate the 
integrals associated with the weakly singular kernel to a prescribed precision. For 
the boundary singularity of the solution, they used adaptively refined subintervals 
towards the boundaries to decompose the whole interval, such that the end points 
are contained in the shortest subintervals, where the highest numerical precision is 
obtained.
The initiatory investigation of the molecular Couette flow by MD simulation is done 
by Barisik et al [44, 45], who implemented MD simuation by using what they call a 
’smart wall algorithm’. The density profiles from Barisik et al's MD simulation illus
trate nearly uniform density outside the wall force penetration depth and a gradually 
increased density in the wall force penetration depth. The density profiles reach a
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peak at the position of about one molecule diameter away from the wall molecules 
and abruptly drop to zero at the solid wall. Barisik et al also discussed the veloc
ity profiles from their MD simulation. Although the velocity profiles have relatively 
stronger statistical noise when the Knudsen number of the Couette flow is getting 
lower, Barisik et al asserted that, outside the wall force penetration depth, their 
velocity profiles match well with Sone et aVs numerical solutions to the linearized 
Boltzmann equation [24] with the same Knudsen number. But in the attractive wall 
force region which is inside the wall force penetration depth, Barisik et aVs velocity 
profiles have an apparently overshoot with respect to Sone et aVs solutions to the 
linearized Boltzmann equation. In the repulsive force region, Barisik et aVs velocity 
profiles are random and vanish at the wall. The peak values of Barisik et al's velocity 
are located at approximately the same peak positions as those of the corresponding 
density profiles.

1.3 OUTLINE OF PRESENT WORK

In this thesis, we carry out our numerical investigation for the molecular Couette 
flow in three steps. First we solve the Fredholm integral equations of the second 
kind from the linearized BGK equation of the molecular Couette flows with high 
precision. Then, we analyze the high precision solution for the velocities by provid
ing high quality approximations. These approximations store the velocity profiles 
with different Knudsen numbers in simple pattern functions with optimal cofficients 
subject to various criteria. At last, we implement MD simulation for the molecular 
Couette flow, model the density profiles and velocity profiles of the molecular Couette 
flows by using the high precision solutions to the integral equations and the results 
from MD simulation and finally reproduce the density profiles and velocity profiles 
by using lattice Boltzmann equation (LBE).
On balance, this thesis is organized as follows. Chapter two gives the derivation of 
the integral equations for the Couette flow, Poiseuille flow and the Kramers problem 
with arbitrary Knudsen number and with the Maxwell boundary condition. Chapter 
three solves the integral equation for steady Couette flow by using the Chebyshev 
collocation method and the nonuniform chunk based collocation method, respec
tively, with high precision. As side products, we also solve the integral equations



7

for Poiseuille flow and Kramers problem in this chapter. Chapter four discusses var
ious approximations to the velocities of the Couette flows, as well as the Knudsen 
number dependence of the microscopic slip velocity, the marcroscopic slip velocity 
and the half region mass flow rate. Chapter five implements the MD simulation of 
the molecular Couette flow, models the density profiles and velocity profiles and re
produce these profiles by using TRT-LBE simulation with one dimensional and two 
dimensional gas-wall interaction, respective. Chapter six summarizes the work in 
this thesis and discusses the prospects of furture work.
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C H A PTER  2 

THE DERIVATION OF THE FREDHOLM  EQUATIONS  

FROM  THE BGK EQUATION

In this chapter, we give the derivation of Fredholm integral equations of the 2nd 
Kind for ocillatory Couette flow, the Kramers problem and Poiseuille flow, respec
tively, from the Boltzmann BGK equation with arbitrary accommodation ratio in 
the Maxwell boundary condition. In all of the problems, the derivations are exact 
except for the linearization of the BGK equation with low Mach number assumption, 
where the Mach number terms of order 2 and higher are omitted.

2.1 THE COUETTE FLOW PROBLEM

The BGK approximation of the Boltzmann equation is

~  I l m ) (1)

where /  =  f ( r , £ , t )  is the distribution function and /lm  =  the local
Maxwellian distribution function. The relaxation time, particle position, particle 
velocity and temporal variable are r, r , £  and t, respectively.
In the present case, we consider the local density p and the local temperature T  to 
be constants. The function /  can be written as

f ( r , € , t )  = n 3/2p£m3e l€/4m| 

and / lm can be written as

Sl m {t , £, t) = tr~3/2p C 3 exp -

=  7r~3/2 /!)£~3e ~ ^ ml2 exp

(2)

21

where U , UQ, are the local flow velocity, the maximum velocity difference of the 
plates, and the most probable particle speed, respectively. The function g is the
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perturbation of /  from the absolute Maxwellian, 7r~3/2p£~3e ~ ^ ml2. Let m  be the 
particle mass and kb be the Boltzmann constant, then =  yj2kbT / m  is also a 
constant.
We set up Cartesian coordinates for the oscillatory planar Couette flow problem. 
Let the stream-wise direction point in the direction of the positive x-axis, the outer 
normal direction of the lower plate point in the direction of the positive y-axis and 
the span-wise direction point in the direction of z-axis. The two parallel plates are 
separated by distance d with the lower one placed at the plane y =  —d/2 and the 
upper one placed at the plane y = d/2. The upper plate is moving with the velocity 
Uw = (t/o cos(cjt)/2,0,0), where u  is the oscillatory frequency. When uj =  0, the flow 
reduces to steady Couette flow. The lower plate is moving with the velocity —Uw. 
Equiped with the Cartesian coordinates, we have

U (r , t )  = {u(y,t), 0,0), 

f ( r , £ , t )  = f (y ,£ , t ) ,  

g(r ,€ ,t )  = g(y,£x,ty,t).

and

/ lm (»",£,£) =  7T z,2p ^ e
J +  2£xu(y,t) + Q ( u 2(y, t)

(3)

Substituting equations (2)-(3) into equation (1) and neglecting the 2nd order in
finitesimal, we have the linearized BGK equation

dg dg_ _  1
dt v dy r

2 fjxu(y,t)  
UUo

(4)

Using the scaling
t tu,
T  TU I,

y  - *  y d - 1, 

u —> uUq1,
Uw —> (cos(ujt)/2,0 , 0) ,  

equation (4), after rearrangement, is normalized as

dg dg   2^jU g
dt cLj dy r (5)
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We seek a 2tt periodic solution with respect to t for the dimensionless equation (5). 
In order to do so, we consider g(y , £x, £y, t) and u(y, t) as the real parts of two complex 
valued functions, namely,

= Re{g(y,£x,€y) e x p ( - i t ) }  = gR cos t + <7/ sin t, (6 )

u(y, t ) =  Re{u(y) exp(—it)} =  U r  c o s  t +  ui  sin t, (7)

where g(y,£x,£y) = 9r +  igi and u(y) = ur + iui  are complex value functions, §r 
and Hr are the real parts and g/ and u / are the imaginary parts.
Substituting equations (6)-(7) into equation (5) results in the equation below

- / • * \ - , £m£y 9gR £m£y dgj ■ ,gR(-~smt)  -f gj  cos t  +      5 cost +  -7 -^ -5—sin t
du  dy duj dy

2 £iu r  c o s  t +  2 £xu,i sin t  — gR c o s  t — gj sin t
T

Equating the coefficients of sin t and the coefficients of cost on both sides of the 
equation respectively, leads to the equations

£ y  ^9Ft , 9R . -  f t  R
 +  1- 0/ =   ,duj oy t  t

£ m £ y  dgj ~ . 9 l    2^XU/
( k u  dy t  t

We can use these equations to recover an equation for g and u, namely

dg du>(l — ir) _ 2£xduu
s y  "o I 7 9 ~  7 'dy £mr  (mr

Let A be the mean free path, then Knudsen number writes k = ^ The above
equation can be written as the steady complex value linearized BGK equation

s dg , 1 - i r  _ 2 i xu
^  +  — g =  — ■ (s)

We introduce the reduced perturbation function d>(y, £y) to remove the dependence 
of in equation (8),

/
OO

£xe~£g(y,£x, Q  d£x. (9)
•OO

<2Multiplying equation (9) by tf lt2£xe and then integrating with respect to  £x from 
— 0 0  to  0 0  leads to

„ d& 1 — i r  - u _
f» ^  +  — '* - * ■  (10)
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equation (10) has the solution

®(y ^y)  = J - i : [  u(s)e ^vr(y_s) ds +  $ ( —1/ 2, £y)e~”?»F(v+1/2) (11)
SyK J - 1/2

= - ^ - r  I ' '*  u ( s ) e ~ ^ y- s) ds + <1 (1/ 2, £y) e ^ <1/2~v). (12)
Sy^ Jy

The next thing we will do is write u(y) in terms of <E>(y, £y) by using the first order 
moment of / .  First

i e mU ( y , t t )  d£u(y ,t )
pU0

roo roopOO p  oo

=7r_1 /  /  £*e_^ (y ,£ x ,£ y ,0 e_^ d£xd£y.
J —oo J —oo

This means

( r°° r°°
Re{u(j/)e_,t} =  R e l n ~ 1 /  f*e- ^</(y, £*, £y)e~tte~^ d£x d£y

L J —oo J —OO

for all l e i .  So, 

Im{fi(y)e-*} =  Re{u(y)e- i(t+,r/2>}

=  Re j V 1 f  (  £ x e ~ £ g ( y ,  £x, £y)e-l(t+7r/2)e“^  d£x d£y 1
v »/ —OO j  —oo J

=  Im / 7r-1 f  f  £ x e - £ g ( y , t x , t y ) e - l t e - % d £ x d t y \  .
v J —oo J —oo )

Thus, we have

/ oo r poo
e - $  tt-i/2 / £ x e - £ g ( y , S x , Z y ) d £ x

■OO . J —OO

= IF-V2

-O O
roo

d£y

/
OO

e^l>(y,,£y)d£y. (13)
■OO
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Substitute equations (11)-(12) into equation (13) to get
roo  -j p y  l —ir

u(y) =  7r-1/2 I - I u(s)e *yk ŷ~â ds d£y
Jo J - 1/2

/•OO , .

+  7T- 1/2 I e - t2y $ ( - l / 2 , Q e - ^ iv+l/2)d tv 
Jo

/0 1 /*l/2 ,

e- ^  —— I u(s)e tvk ^dsd£j
oo s  y k  J y

y

+  7r~1/2 [  e - % * ( l / 2,Sy)eiv" {1/2 y} d£y
J  — CO

/ 1/2  roo  , .

^(s ) /  £y 1e-€y~1i'F ^~s| d£y ds 
1/2  Jo

J/*oo

f $ ( —l / 2,^y)e- ^ _^ :(v+1/2) d£y
o
*  oo

+  7T" 1/2 I l> (l/2 ,-^y )e- ^ - ^ (1/2- !,)dey. (14)
JO

Equation (14) is a generic integral equation for velocity. The quantities $ ( —1/2, £v) 
and $ ( 1/ 2, — £y) with / y > 0 are to be determined by boundary conditions to give a 
closed form of the integral equation.
The same idea can be used to discuss shear stress. Let the shear stress normalized by
p(,mPo be Txy(y, t), which can be written as the real part of a complex value function,

Txy(y, t) = Re{f*y(y) exp(-it)}- (15)

Txy can be written in terms of $(y, / y) by using a second order moment of / ,

J & U y f ( y , €,*)<%T xy(y , t ) P^ttlUq 
poo roo  

_ n  /-7T
-oo J  —oo

This means
/ o o  p o o

/  €x€ye~&~**9(y, 6c, 6/> *) d£* d£y.
•oo  «/ —o o

Re{TXy(y)e lt} = Ite{iT 1 f  f  £ye $g(y,£x,£y)e %t£xe ^ d £ x d £ y l .
I J — OO J —oo J

By using the same method as we do for the velocity, we have

/oo /*oo
/ £ye“*»£(y,6r>f tf)e"‘,t6 te_*- d ^ d ^ ,} ,

•oo J —oo-oo */ —oo
so

roo roo/ oo poo

/  6ye-*»y(y, £x, 6y)6*e“** d/x d/y
'OO J — OO

/ oo
Zye~%&(y,Cy)dZy. (16)

•oo

= 7 1 -^



13

Substitute equations (11)-(12) into equation (16), we have
pOO  i  p y  l - i r

Txy(y )= n~1/2 tve~**TT u(s)e~'&'{v~a)dsdty  
Jo S y ^  7 - 1/2

/•oo , .

+  tt-1/2 [  Zye - % $ ( - l / 2 , £ y) e - ^ {y+l/2) d£y 
Jo
/ ° 1 r 1/2

Cye _ ^ 7 _7  I u(s)e Ŝ dsd£y
oo sy*- J y

+  7T- 1/2 [ °  Zye - % $ ( l / 2 , Q e ^ {1/2- y) d£y 
J  — OO

= 7r~1/2fc~1 f  u(s) j  sgn(y — s)e~<’1/ «vF ŷ_s  ̂dsd£y 
JO J—1/2

+ TT-1̂  r  $ ( —1/2, ey)^e-^2- ^ (̂ 1/2) d£y 
Jon OO

-  tT 1̂  I $ ( i / 2, d£y. (17)
Jo

Now we discuss the boundary conditions of the Couette flow problem. The natural 
boundary conditions are given by the distribution function f ( y ,  t ,  t ) at the lower and 
the upper plates. Our goal is to present the boundary conditions in the form of 
equations for $ ( —1/ 2,£y) and $ ( 1/ 2, — £y) with £y > 0, respectively.
We follow the process of Dadzie [46] to get our boundary conditions. First, the pure 
diffusive boundary condition applied at the lower and the upper plates is given by 

f D ( ± l / 2 , € , t )  = n- ^ p ^ e-\(PFU0(.cOB(ut)/2fl,0)/(m\2i £ . n  > 0, (18)

where n  is the unit normal vector of the boundary plate pointing inside the channel. 
The diffusive speculative reflection combined boundary condition is given by

/ ( ± l /2 ,* , t )  = (1 -  a ±) fD( ± l / 2 , t , t ) +  a* f  (±1/2, t in, t ) ,  t  n >  0, (19)

where t i n  is the incident velocity at boundary, t  is the corresponding speculative 
reflecting velocity, a*  are the accommodation ratio of the lower and the upper plates, 
indicating the percentage of the speculative reflection at the corresponding boundary. 
The relation between the incident velocity and the reflecting velocity is tin =  £ — 
2 ( t  • n ) n .

Substitute equation (2) and equation (18) into equation (19); we have

1+ % ( ± l / 2 , t x,ty,t)
S m

=  (1 -  a ±)e- | ^ t/0(COSt/2,0,0)/«m|2 + |€|2 +  a ± l + % (± l / 2 , t x ,~ ty , t )  
S m
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where <  0 when y = 1/2 and £y > 0 when y  =  —1/ 2. 
This is equivalent to

0 ( ± l / 2 , & , £ v,t)  =  -(1 a ± )^m
f/o

i Cx^o cost U?, coe2 t 
;  £m 4«m — 1 4- a ±5 ( ± l / 2 , 4 a;, - ^ , t ) .

(20)

So,

Re{<7(±l/2,£x,£j,)e * }in _ ( i -«*)&,
u 0

, i xUn co st  C / q C o s 2 !

e  r  -  1

+ a ± -Rje{g(±l/21Sx, - Z y)e-'*}

and

I m { j ( ± l / 2 ^ , g c - ‘} =  R e{i? (± l/2 ,  £r,£y)e 

(1 -  a * ) ^

—i(t+ i r /2 ) }

UQ
(1 "  <*=%

± i x Un coB(t+n/2) Up co82(i+7r/2)
e £m — 1

U0

leading to

- ZxUn sin t C/2 sin2 t
44£

+  a± R e{$(± l/2 , - £ v)e~<(t+,r/2)}

+ a* Im {^(±l/2,4i, -4y)e_t‘},

fij(±V2»4*>4y)
(1 -  a ±)^meit

U0

/  , (t C /q  c o s  t Ug C O S2  t \  /  Cl t/p sin t C/p sin2 * \ "
I e (m l  \ + i I e £m 4£™ —11

+  < ^ § ( ± 1 / 2 , ^ ,  - £ y ) .

Using the above equation and equation (9), we can derive

4 (1/ 2, {„) =  (1 -  q + ) / 2  +  a +4 ( l / 2, t ,  <  0, 

* ( - 1 / 2 ,? , )  =  - ( 1  -  a ~ ) / 2  +  a * 4 ( - l / 2, { ,  >  0.

Equation (21) is equivalent to

4 ( 1/ 2, - { , )  =  (1 -  a +)/2  +  a +4 ( l / 2,£„), >  0,

Plugging (1/2, £y) and (1/2, —£y), respectively, into equation (11), we get

~  1  l  —IT i t  try V _  1  — I T

* ( 1 / 2 ,4 v) =  7 T /  it(s)e_ "£vF ds +  $ ( —1/2 , £y)e ^
KyK J —1/2

(21)

(22)

(23)

(24)
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and
1 /-V2 i_  _ i_

<1(1/2, - £ y) =  /  u ( s ) e - ^ {1/2~s) ds + $ ( -1 /2 ,  - Q e - t ? .  (25)
St/"- 7-1/2

Under the condition that £y > 0, we solve for $ ( — 1/2, £y) and $(1 /2 , —£y) from 
equations (22)-(25) to get

1 — a ~ a +e *vk
-  r \ / 2  -W (V 2+s) , +  -±^(3/2 - s )a rv* e +  a+e «»fc /0«\

+  —  /  - iTrriT)------- u(s)ds  (26)
Sy 7-1/2 1 _  Qz-o+e «»*=

and

* r i /o  ̂ , (1 -  « + ) -  « + ( l  -  « _ ) e _J^ F  1
^ V A/ Z? syy ““ 2(1—ir) o

-  j r . .  4. ^1 — a ~ a +e ivk
a + f 1/2 e_^ (1/2_a) +  a ~ e ~ ^ {3/2+s)

+ j~r  /     > u -j------ fi(») d-. (27)
^ y K  J - 1 /2  1 _  Q - a + e

We denote the nf/l order Abramowitz function as
roo

/„ (* )=  /  sne~s2~x ŝ ds (28)
7 0

and the nth order modified Abramowitz function as

/ °°  sn_ _ _ 7_e------------------------------------- (29)
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Substituting equation (26) and equation (27) into equation (14), we obtain 

1 f 1/2
u(y) ■Kl/2k 1/2

1 — a
< k

1 - ir
’ k

1
Q 1 ,

1 - ir

<*- (l —a +) (  _ , 1 — i r  \
+  0 ( “ “ ' — i r ' v + 3 / 2 j

+ h ^ ~ Jo r a + ' n r 1 ’ 1 /2  “ v
a +(l -  a " )  + 1 - i r

- J o  I a  a  , — -— , 3 / 227rl/2 -U ~ , k
,1/2

-»)
a -  f '  (  1  — i t  \

+  L n  fi(s)J- 1 ( Q- “ +' ~ 1 T '  1 + y + s) ds

a~Q!+ r *  _/ n , /  _ + 1 — i t  \  ,
+ J-U 2  “ (s) 1 r "  ’ n r 1 +  y "  V

1 — ir
k  ’

1 — ir
k '

1 — vr
k  ’

1 — ir

- 1 /2  

„+ /-1/2

- 1 /2

a + f 1/2 .
+  * 1/2k L n

+  ^  I * W jL i  { a ~ a + ' n r -' 2 - v + S J d s - (30)

Equation (30) is an integral of the second kind for u in closed form. Once solving 
this equation, one can recover the velocity profile by using equation (7).
Before we apply similar analysis on Txy, an interesting discovery is derived by mul
tiplying 7r_1/2e~£y on both sides of equation (10) and integration with respect to
from —oo to oo,

dTxy =  i r_  (31)
dy k
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Substituting equation (26) and equation (27) into equation (16), we obtain

Txyiv) J  «(S) SSn(y -  s)I0  \y -  s |^  ds

-Ji (a~at+ , k *r , y  +  1/2^

- 1 /2  

1 — a -
27rV2

a  (1 — a +) T /  _ , 1 — ir  „
+  " 2t tV2 J l ( a  a  > ~ r " ’J' +  3 /2

1 “  a +  T 7  -  +  1 _  i T  1 /O \
2tt̂ ~  (  “  ’1 / 2 ~ V)

a +(l — a~)  T /  _ . 1 — i r  \
+  27t^2 J i ( a ~“  ' ~ i r ' 3 n - y)

'1/2 .  1 - t r  .
+ ^ k L j { s ) j ° { a ~a + '- 1 /2

+  ^  / I  f i(s ) ‘7° 2 + » ” s ) ds- 1 /2  

71/2
7i' 1/ 2 ^  7 - 1 / 2

a ~ a + 71/2

k ’
1 — ir

k ]
1 — ir

k ’
1 — i r

7r1/2/: y_1/2 (32)

Equation (32) is a functional of u. From equation (31), we know if the plates keep 
uniform velocity, i.e., u> =  0 (which will cause the normalized r  to vanish), then 
Txy = Txy is independent of the spatial variable y. In this special case, we have

- 1/2

T*v =  -  ( t )  d s
- 1 /2

2 -  a~  -  a + (  _ + 1 \
-Jx l a  c* , —, 1/2 127tV2

a; +  a + — 2a a +
+  2^ /2  J i ( “  ft+’ fc’3/2

a~ f 1/2 (  _ 1
+ ^ X i / 2u (s )Jo r  " + ,^ 1 + 5 ) d s

a  a
+

1/2  

+  /•1/2

tt1/2*: j _ 1/2

j _ 1/2

„+ rV2

- 1 / 2

J  u(s)J0 a +, i , 2 - s ^ d s  

J  u(s)JQ ^aTa:+, i ,  1 -  s^ ds

7 ^ l Z u ( s ) J o ( a ~a + ^ 2 + s ) d s  (M )
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or

1 f 1/2
T'»  = 5 ^ t  y

+

+

- 1 /2  

2 — aT — a H
47r1/2

a "  +  a + — 2a:~a:+

a
47T1/ 2 

- 1/2

J i  a + , p  0 ^  +  J i  a + , 1 ^

Ji faTa;+, p  1J +  Jx f  aTa:+, p  2

27Tl!2k  J — i/2

« - « ♦  r  < ,
+  2^ X 1/2U(S)

*+ r x/2

J  u ( s ) Jo a +, 3/2 +  +  J0 a +, 1/2 +

)Jo ( a  ct+,^ ,5 /2  — s j  + J0 f a  a +, p 3 / 2 - s

27T1/2fc

a _a;+ f 1/2

a  a + , ^ >1/ 2 -  s

27r1/2fc y_1/2J  u(s) Jo ( a  a +, p 5 / 2  +  +  J0 a + , p 3 / 2  +  s j

ds

ds

ds

ds.

(34)

2.2 T H E  K R A M E R S  PR O B L E M

We start from the steady BGK Equation,

(35)

In this case, we also consider the local density p and local temperature T  as constants. 
The distribution function, / ,  can be written as

f ( r , $ )  = ir 3/2p£m3e ! ^ ml2[l +  7T5(r,£)] (36)

where 7 is the shear rate, g is the perturbation of /  from the absolution Maxwellian. 
/ l m  can be written as

2£ • U ( r )  — \ U( r ) \ 2
fLM(r,£) = n 3/2p£m3e l€/ul exp

£2Sm

7r -3/2pC, 1 + 2A j m + 0C 2 sm mi (37)

We set up Cartesian coordinates for the Kramers problem. Let the stream-wise 
direction point in the direction of the positive x-axis, the outer normal direction of 
the plate point in the direction of the positive y-axis and the span-wise direction
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point in the direction of the z-axis. The plate placed at the plane y =  0 is at rest. 
The flow velocity at the location y is U ( r ) =  (7 (y + q(y)), 0,0).
In the Cartesian coordinate, we have

/(*•>€) =  /(y»€), 

g{r ,€)  = g(y,£x,£y)-

Substituting equations (36)-(37) into equation (35) and neglecting the 2nd order 
infinitesimal, we have the linearized BGK equation

d g _ l
dy r

2 £x(y +  g(y)) 
emr

(38)

The mean free path is defined by A =  £mr. Using the scaling

y yA_1, 
q ->• qX-1,

£ ->• ^ m X>

we rearrange equation (38) and normalize it as

dg

We define

/
OO

£xe~t*g(y,£x, Q  d£x
•00

(39)

(40)

and assume g is small enough as y S> 1, such that |4>| is bounded by a constant CV 
Multiplying equation (39) by ir~lt2£,xe~& and then integrating with respect to 
from —00 to 00 leads to

€v~fy+ *  = y + Q- (41)

Equation (41) has the solution

$ (2/. £y) =  £y 1 f  (« + q(s))e{s y)/iv ds +  $ (0, £y)e yKy 
Jo

— —(.y1 f  (s + q(s))e<'8~y^^y ds +  &(y*, (,y)e^y' ~v^^y 
Jy

Using equations (42)-(43) and the fact

(42)

(43)

I f°°
\ $ ( y * , - t ; y ) $ e < - ( y' ±y)/ty d£y
\ J  0

< C<t>In(y* ±  y) ->■ 0, as y* -> 00,
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—  1 / 2  = 7r '

and the first order moment of / ,  we write q(y) in terms of <E>(y, £y),

,  ̂ J  & & /(» , *)d*
9(y) =~ rr------------ yp j  A

/•OO /» OO
=7r_1 /  /  £xe~**g(y, £x, €v)e~** dfy -  y

J  —oo J  —oo

/ oo

$(y.£v)e“€*dfy -  y
•oo

/*y* /•«>
k~1/2 /  (s +  9 ( s ) ) /_ ! ( |y - s |)d s  +  7r_1/2 /  $ (0 ,fy)e_€2-y/*y d£y

Jo Jo
poo

+  7r~1/2 /  4Ky*,-£y)e_ 2̂_(y*_y)/4y d£y -  y
Jo

r  roo  ro o

, -  h f  (s +  g(s))/_1( |y - s | ) d s  + j f  4>(0,4)e-^2- y/^ d 4  — y,y* —» oo
r  ro o  ro o

M g ( a ) /_ i ( |y - s |)d s  +  /i(y) +  y 4>(0, £y)e~^~y/^  d£y . (44)

Similarly, the diffusive speculative reflection combined boundary condition is given 

by
/(O ,0  =  (1 -  a)7r_3/2p^“3e_l€|2 +  a /(0 ,& „), £ • n  > 0

with =  £ -  2(£ • n )n .
This equivalent to

* ( (U y) = a S ( 0 , - £ y), £y > 0 .

Plugging (0, — £y) into equation (43) and using equation (46), we have
poo

/  $ (0 ,4 )e-« v -ŷ d 4 y 
Jo

Jroo

o

n
fVm "I

1 y  (s + q(s))e~s^ y ds 4- 4>(y*, — £y)e~y' ^ v e~*y~y^ y d£y

= « [ J  (s + q(s))I^1(y + s ) d s  + J  $(y*, - £ v)e“*Hv*+«')/& d£y

Jro o

' (s +  y(s))/_i(y +  s) ds, (y* -» oo) 
o

= a ^ 7 1(y) +  j  y(s)/_i(y +  s) ds .

Substituting the above equation into equation (44), we obtain

(45)

(46)

q(y) = vr=  -tr-V2
‘ ro o  ro o

/  g(s)/_1( |y - s | ) d s  +  ( l + a ) / i ( y )  +  a! /  y(s)/_i(y +  s) ds
Vo 9o

(47)
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Equation (47) is an integral equation of the 2nd kind for q in the closed form. Solving 
this equation, we can recover the velocity profile of the Kramers problem.
Then, we discuss the shear stress of the Kramers problem. Let the shear stress 
normalized by pjX^rn be Txy. From the derivation of equation (44), we have

7T- 1/2/
OO

$(y,  £y)e~^ d£y =  q{y) + y. (48)
•oo

On the one hand, using equation (48) and multiplying equation (41) by 7r_1/2e~^ 
and then integrating the resultant equation with respect to £y from — oo to oo leads 
to

J  r o o

71-1/2 dy j  t y ^ y e~^  d£y =  °-

On the other hand, Txy(y) can be written in terms of <E>(y, £y) by using a second order 
moment of / ,  namely,

_HmZx€yf(y,€)d€TXy{y)

/ OO

$(y ,4 )£ve~ ^ d£v
•oo

The above two equations show that Txy is independent of the spatial variable y. 
Plugging (0, — £y) into Equation (43), we get

$(°> -£y) =  C 1 [  (s  +  y ( s ) )e ~s/ ŷ d s  +  - Q e ~y' K y ■Jo
Using the above equation and Equation (46), Txy can be written as

/ OO 

•OO
roo

=  -  7r"1 /2 ( l  -  a)  /  $(0, - £ y ) £ ye ~ ^  d £ y
Jo

= -  7T~1/2(1 -  q) ( s  +  q(s))Io{s) ds +  $(y*, -^ )^ » e _^“_w*/& d£y
roo

-> -  7t_1/2(1 -  a) / (s + q(s))I0(s)ds,  (y* -» oo). (49)
Jo

2.3 THE POISEUILLE FLOW PROBLEM

First, we set up Cartesian coordinates for the planar Poiseuille flow problem. 
Let the stream-wise direction point in the direction of the positive x-axis, the outer



22

normal direction of the lower plate point in the direction of the positive y-axis and 
the span-wise direction point in the direction of the z-axis. The two parallel plates 
are separated by the distance, d, with lower one placed at the plane y = —d/2 and 
the upper one placed at the plane y =  d/2. Both of the plates are at rest. We focus 
on the cross section of the channel where x  =  0. We assume that the cross section 
has uniform density p and constant temperature T  and is subject to uniform density 
gradient Vp =  (^ ,0 ,0 ) .  The local flow velocity is U ( y ) =  (u(y), 0,0).
Recall the steady BGK equation (35). In the present case, the distribution function, 
/ ,  can be written as

Substituting equations (50)-(51) into equation (35) and neglecting the 2nd order 
infinitesimal, we have

(50)

where can be written as

d p i  +  Zv_dg = 1
d x p  £m dy r  

The Knudsen number is defined as k =  Using the scaling

(52)

y ->yd  \

equation (52) can be rewritten as the linearized BGK equation

(53)

Equation (53) has the solution

g { y , Q  =  - ^ 4 -  r  ( M s ) / k +  l ) e ^ ^ d s d - g ( - l / 2 , Q e - ^ +1^ ^
K y  J - 1/2

(54)

=  3 ^ 4 -  [  '  (2u(s)/fc + l)e<, -»VK»‘ )d« +  (55)
Psy J  y,y J y
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Using equations (54)-(55) and the first order moment of / ,  we write u(y) in terms 

of 9(y,Zv), namely,

f  &£xf(x,V,G)<l£u(y) CSrr d x

p

r l / 2
/ OO

9(v,Zv)e~** d^y
•OO

l̂ J _ J 2u^ k +  1^ { k T A ) ds

d x
r*oo

27r1/2d£
d x

rOO

/  p ( l / 2 ,  _ ^ ) c - ( 1/2-»)/««fc)-€S d ^y . (5 6 )
Jo

The diffusive speculative reflection combined boundary condition is given by

/(0 , ± 1 /2 ,0  =  (1 -  a ^ i r - W p t f e - W  + a± /(0 , ±1/2 , &n), £ n >  0 (57)

with £in = £ — 2(£ • n ) n .

This is equivalent to

5(1/2, Cy) =  a +5( l / 2, - £ y), «ey < o (58)

and
5 (-l/2 ,£ y ) =  a - g ( - 1 /2 , - Q ,  £y > 0. (59)

Equation (58) can be written as

5(1/ 2, -<£„) =  a +g( 1/ 2, <£y), > 0. (60)

Plugging (1/2,£y) and (1/2,—£y), respectively, into equation (54), we get 

dp 1
- 1 /2  

and

5 (1 /2 ,-Cy) =  4 4 "  /  (2u(s) /k+  l)e~1&r  ds + g ( - l / 2 ,  - £ y)e«^. (62)
da: p£y J —i/2

Under the condition, £y > 0, we solve for 5(1/ 2, — £y) and g(—1/2, £y) from equations 
(59)-(62) to get

d n 1 /*V2 i/2-s  i_
5(1/ 2, £y) =  —- — — /  (2 u ( s ) / k + l ) e  *yk ds + g ( - l / 2 , Q e  (61)

dx p£y 1/2

w  da:

1 / o  l / 2 ±  s  1 in  3 /  2 s

j _ l/2{2u{s)/k +  l)e ds + j _ 1̂ 2(2u(s)/k + l)e ds

p£y ^1 — a ~ a +e
(63)
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and

<7(1/2, - Q

Q+ d£ 
d x / / ( / 2(2« (s ) /fc + l)e  4»fc ds +  a  f ^ 2(2u(s)/k +  l)e ds

1/2 — 3
-  f 1/2 3/2+3

p£y ( l  — a ~ a +e

Substituting equation (63) and equation (64) into equation (56), we obtain

“ (y) = 2 ^ 7 2  /  j (2u(s ) A  +  ! )J- i  ds
- 1 /2 A:

Of /*A/^
+  2?rV2 /  (2w(s)/fc+ l)J_i(aTa;+, 1/fc, l +  y +  s)ds

c*— /"i/2
I (2u(s) /k  +  1) J _ i(a _Q;+, l//c, 2 +  y — s) ds

J - l / 227tV2 
/+

- 1 /2
,1/2a +  /,1/a

+  2^  J  (2u(s)/k +  1) J_ i(a  a +,l/fc, 1 - y - s ) d s

Q;-a + T1/2
+  J  ( 2 u ( s ) / k + l ) J - 1(a~a+, l / k , 2 - y  + s)ds.

- 1 /2

Denote w(y) =  2u{y) /k  4- 1, equation (65) can be written as

, 1/2
w(y)

( 1V 1) d s  +  1

/*1/*
+  ^  /  w(s) J _ i(a _Q!+, 1/fc, l  +  y +  s)d s

r l / 2
I w(s)J- i (a  a +, 1/k, 2 +  y — s) ds 

J - 1 /2

a  or
7r1/2/:

,+
- 1 /2

" 1 /2q,+ r*/*
+  ^T/2̂  /  w(s)</-i(«~«+, 1A , 1 -  y -  s) ds

/■1/2/ w(s) J_ i(a _a +, 1/fc, 2 — y +  s) ds.
J - l / 2

a  oc 
ixl/2k

(64)

(65)

(66)

Equation (66) is a Fredholm integral equation of the second kind for w in the closed 
form. Solving this equation, we can recover the velocity profile of the Poiseuille flow 
problem. Then, we consider the shear stress of the Poiseuille flow problem. Let the 
shear stress normalized by — £ ^ 5̂  be Txy, which can be written in terms of y(y,£y)
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by using a second order moment of / ,  namely,

2 i tTxy{y) —
S m d x

27r1/2d£ / oo

s(y,£y)£ve-3d£y. (67)
■OO

dx

Using equations (54)-(55) and equations (63)-(64), equation (67) is rewritten as 

1 f 1' 2
I

- 1 /2

r°° r ,2 1/41/2 ,2 1/2—y "

^xy(y) j  (2u(s)/k + 1) sgn(y -  s )/0 ds

/ ° °  [" t 2 V+1/ 2 _ f2 _ l /2 - jZ
[5( - l / 2,«„)?„e-4» - ^  -  9( l / 2,

dx
U / 2

-2^ 7 /2  J  ̂ ( M s ) / k  +  l)sgn(y -  s )/0 ^  ds

a “ r 1/2 
+  2ttV2 J  (2u(s ) / k  +  1)^o(a « + . l / fc. 1 +  y +  s) ds 

-  +  / - 1 /2

+  2?rl/2 I {2u(s)/k + l)J0{a~a+, l / k , 2  + y -  s )ds  

a + r 1/2
-  2 ^ 1 / 2 J  (2u(s)/k + l)J0(a a +, 1/fc, 1 -  y -  s) ds

(y~a+ 71/2
~  27ri/2 J  ^ ( 2u ( s ) / k + l ) J 0(a~oc+, l / k , 2 - y  + s)ds.  (68)

Prom the derivation of equation (56), we have

n f°°
u(y) =  ~ 27ri/2dg J  9 (y^y)e~ ^ d^y  (69)

Using equation (67) and equation (69) and multiplying equation (53) by 7r~1/,2e“^
then integrating the resultant equation with respect to £y from —oo to oo leads to

I T *  =  5 ‘ (70)d y 2

From equation (68) and equation (70), we obtain the shear stress of the Poiseuille



flow problem

TXy(y)  = §  +  TXtf(0)

i - ^ L / 2 u { s ) s g n i s ) I o \ k ) ds

+  k{a2 ^ / 2 * ] 1 A ,  1/2) -  J i i c r a
Q-  Z-l/2

+  /  u(s)J0(a a + , 1/k,  1 +  s) ds

a _a + /-1/2
H T7TT /  «(s)J0(a _« + , 1/fc,2 -  s )d sTT / k J — 1/2

a + f l /2
-  ^1/2^ /  u(s)J0(a  <*+,l/fc, l - s ) d s

Q!_a + Z’1/2
-  ~i/2fc J  u(s)J0(a~a+ , 1/A:, 2 +  s)ds.

+, l / f c ,3/ 2)]
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C H A PTER  3 

HIGH PRECISIO N SOLUTIONS TO THE FREDHOLM  

EQUATIONS OF THE SECOND KIND

In this chapter, we first use the Chebyshev collocation method to solve the Fred
holm equation for the steady Couette flow with purely diffusive boundary condition. 
This method utilizes high order Chebyshev expansion to approximate the solution 
to the integral equation. It outperforms the Nystrom method in handling the weakly 
singular kernel and the boundary singularity of the solution by modifying the ex
pansion coefficients near the boundary. We list the numerical solution at sample 
positions, discuss the rate of convergence, and provide shear stress and half channel 
mass flow rate with high precision. The velocity obtained from the Chebyshev col
location method has least 11 digits of precision when the Knudsen number is as low 
as 0.003 and has 13 digits of precision when the Knudsen number is higher. How
ever, this method needs to evaluate highly oscillatory integrals due to the in high 
order terms in the Chebyshev expansion of the solution, which is time consuming. 
Jiang and Luo [38] propose a better method free from evaluating oscillatory inte
grals. Their method is the singular region adaptively refined chunk based collocation 
method, which uses nonuniform subintervals to mitigate the influence of the bound
ary singularity. On each subinterval, the solution is approximated by a low order 
spectral polynomial expansion. We modify their chunk based collocation method 
by replacing their process of approximating the weakly singular kernel with our own 
easier operation and apply the modified method to solve the same Fredholm equation 
as we did by using the Chebyshev collocation method once again. We will analyze 
the rate of convergence of the method and give quantitative shear stress and half 
channel mass flow rate as well to compare with the counterparts of the Chebyshev 
collocation method. We further apply this method to solve the Fredholm equation 
for the steady Couette flow with arbitrary accommodation ratio Maxwell boundary 
condition. As a side product, we will use the same method to solve the Fredholm 
equation for the Poiseuille flow and the Kramers problem with an arbitrary accom
modation ratio in the Maxwell boundary condition.
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3.1 SOLVING INTEGRAL EQUATION FOR THE COUETTE FLOW  
PROBLEM W ITH CHEBYSHEV COLLOCATION METHOD

In this section, we solve the steady Couette flow problem with purely diffusive 
boundary condition and Knudsen number k by using the Chebyshev collocation 
method. The corresponding equation to solve is a simplified version of equation 
(30) with r  =  0 and a ± =  0:

-  f l /2 T f \ y ~ SW / ^  1 \ r  ( W * - V \  r ( y +  V 2V
U ^  7T ^ k  J_l/2 ~l ( ,  k )  U ^  27TV2 k J  °  V k )  '

(72)
Solving equation (72) requires evaluating Abramowitz functions of order —1 and 
order 0 precisely. By using Macleod’s [1] method of Chebyshev expansion, we are 
able to compute Abramowitz functions of order 0,1 and 2 with 20 decimal digits of 
precision. Meanwhile, the accurate value of the Abramowitz function of order — 1 
can be derived from those of order 0 and order 2. The details of the properties of the 
Abramowitz functions, the results of Macloed’s method and our approximation for 
Abramowitz function of order —1 are given in Appendix A. From the properties of 
Abramowitz function of order —1, one knows the kernel of the integral operator has 
a logarithmic singularity along the diagonal y — s. This singularity can be mitigated 
by the singularity deduction technique [6] and equation (72) is converted to

G0(y, k)u(y) -  ^  J  /_! [u(s) -  u(y)\ ds =  ^ F0(y , k) (73)

where

Gn(y, k) = In (  + In ( ,

= I ) ,

Since the velocity u(y) is antisymmetric about the channel center line y = 0, we 
expand it in terms of the odd-order Chebyshev polynomial Tn with n — 2j — 1,

N
uN{y) =  y jCnTn(2y), n = 2j -  1. (74)

j =i

Then equation (73) becomes a system of equations for the coefficients {cn|n =  2j  —
1.1 < j < N } ,

N
J 2 c n A n ( y )  = F0(y,k)/2,  (75)

i
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where

A n(y) = G0(y, k)Tn(2y) -  ± I . x [rn(2s) -  Tn(2y)} ds.

Equation (75) can be solve by a collocation method or a Galerkin method. We choose 
a collocation method for its computational efficiency. Choosing N  collocation points

= 2i — 1,1 < i < N }  and plugging in Equation (75), we have a linear system 
for { C n }

A c  = b, (76)

where A is a iV x N  matrix with entries A mn — A n(ym), b and c are iV-tuple column 
vectors with entries bm — F0(ym,k) /2  and c„, respectively, where m  = 2i — l ,n  =  
2 j - \ , \ < i , j  < N .
If the solution to Equation (73) is analytic, the Chebyshev-Gauss collocation points 
or the Chebyshev-Gauss-Lobatto collocation points can be used to achieve exponen
tial rate of convergence. However, we can show (in Appendix B) that the velocity 
derivative u'(y) blows up at the boundary, i.e., \im.ŷ ± i / 2  u'(y) —*• ±oo. This means 
the spectral collocation method can only provide an a t most polynomial rate of 
convergence. Moreover, the Chebyshev-Gauss collocation points which do not in
clude endpoints outperforms the Chebyshev-Gauss-Lobatto points which includes 
endpoints in this problem, since if one adopts the latter collocation points the end
point y =  ± 1 /2  singularity of the solution will pollute the whole domain. Hence, we 
choose the Chebyshev Gauss collocation points. The number of collocation points 
determines the number of linearly independent functions in the expansion basis. In 
Equation (74), the expansion consists of N  linearly independent odd Chebyshev 
functions. So, we need N  collocation points to correspond to the N  odd Chebyshev 
functions. The (2N)th order Chebyshev collocation point set is {xi|0 < i < 2N  — 1}, 
where Xj =  cos (^ ^ -7r) . The set {xj} can be divided into two subsets, the odd collo
cation point subset and the even collocation point subset according to whether i is 
an odd number or an even number. Since the collocation points should be consistent 
with expansion functions, we actually begin with the odd collocation point subset 
{xm|m =  2i — 1,1 <  i < N }  and scale it to the interval [—1/2,1/2]. Hence the first 
collocation point set we use is

P i  =  { v m  | y m  =  |  C O Sdm, d m  =  — i m = 2t -  1, 1 < i <  N}.  (77)

With the collocation points Pi, we observe the velocity un{v)  is more accurate in the 
interval [y^N-i, - V 2 N-i\ C [-1 /2 ,1 /2] than in the sets [—1/2, y2jv-i)U (—t/2iv -i, 1/2].
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More specifically, through numerical experiment, the rate of convergence of uw(y) 
on [1/2 N - 1 , —y2 N-i] is two times that on [—l / 2 , y 2N-i)  U (~y 2 N - i , 1/2]. To overcome 
this deficiency, we include one endpoint y =  1/2 in the first collocation point set. We 
name the augmented set of collocation points the second collocation point set,

P2  =  {yo\yo =  1/2} U  {ym\ym = ^  cos0m, Qm =  m  = 2i -  1, 1 <  i < N}.
(78)

With the collocation points P2, the velocity u(y) is expanded in iV +  1 terms of 
odd-order Chebyshev polynomials

N+1

UN+l(y) = X I  CnTn(2y), n = 2 j -  1. (79)
j =1

The derived linear system is
A c  = b (80)

where A  is a (N  +  1) x (N + 1) with A  as its submatrix, i.e.,

 ̂ A ) , l  A ) ,  3 • • •  -d o , 27V+1^  d k ) , l  - d o ,3 -d o ,2 iV + l ^

A 1,1

A 2n - i , 1 )

- d i ,  1 A i t i -Alj 2 N —1

^ A 2N - 1 , 1  A z J V - l .l  • • •  A 2N - 1 , 2 N - 1  )

b and c  are (N  +  l)-tuple column vectors with entries bm =  F0(ym, k)/2  and Cn, 
respectively, where m  =  0 when i =  0 and m  =  2i — 1 when 1 < i < N  and 
n = 2j  -  1,1 <  j  < N  +  1.
In the numerical experiment, we observe the accuracy of the velocity on the sets 
[—1/2, y2N-i)  U (~y 2 N-i ,  1/2] is enhanced with the new approximation iijv+i(y). Nu
merical experiment shows the rate of convergence and accuracy on [—1/ 2, y2v - i)  U 
(—2/2Ar-i, 1/2] by using the collocation points P2 is approximately the same as 
the rate of convergence and accuracy on [y2 N-i,  ~ y 2N-\\ by using the collocation 
points P\. However, with the collocation points P2, the accuracy of the velocity 
in the interior deteriorates. Due to the above discovery, we use the first colloca
tion point set Pi for [y2N-i, —y2 N-i] and the second collocation point set P2 for 
[—1/2, y2N-i)  U (—y2N-i,  1/2] to obtain uniform accuracy of u(y) on the entire inter
val [—1/2,1/2]. On balance, our N th order approximation of u(y) is:

_ , v _ f CnTn(2y), n  =  2j -  1, y € [y2v - i ,  -Jfejv-i]
-  j  1 ^ Tb(2!/)j n = 2 j - l ,  y €  [-1 /2 , y ^ )  U { - y 2N- 1, 1/2]

(81)
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where y2N-i = ~  \  cos The coefficients c and c  are obtained from equation (76)
and equation (80), respectively.
To solve equation (76) and equation (80), we need to compute the coefficient matrix
A and the right hand side column vector b. The key is to evaluate the entries A mn
accurately. We have

Amn = Go(ym, k)Tn(2ym) -  i  I - i  ^  PU 2s) -  Tn(2ym)}ds.

We denote the integral in Amn by 'H'ij(k), i.e.,

*«(*) = f *  J- i  ( ' - -fc1 ~)  [Tn(2s ) -T n(2ym)\ds

f - j 2 J- i  f 1̂ )  PHw-i(2«) -  1] ds, i =  0,

' k J - j  2 f ^ )  P V i(2 s )  -  T2j-i(2y2i-i)] ds, 1 < i < N .

Let
1, i = 0, 
cos^i, i = 1,2, • • • , N,

^ i j(k) can be written as

%j ( k ) =  r K ij{e ,k)dS  (82)
Jo

with

7 ^ (0 ,* ) =  7_i ( 1 ^ -

The integrand 77^(0, k ) is highly oscillatory when j  >  1 and has a deducted singular
ity at 6i, since 7_i has a In x  singularity at x = 0. To address the numerical difficulties 
caused by oscillatory, we divide the interval of integration, [0, 7r] into 2(j  +  1) subin
tervals for 1 <  j  < N,  such that two adjacent subinterval, excluding two subintervals 
at two ends, cover exactly one period of cos(2j  +  1)6. So, the integrand in the subin
tervals are slow varying. Also the singularity of 7_i occurs at 6 = 0i, which is an 
end-point of two subintervals. Since the abscissae of the quadrature we use do not 
include the end points, this mitigated the numerical difficulty caused by the singu
larity.
The interval [0,7r] has to be divided in two ways depending on both i and j .  Denote

cos 6, 1
2k

[cos(2y +  1)0 — cos(2ji +  1)0,] s in0. (83)
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I* and r  as the integer and remainder of (4i — 1)(2j  +  l)/(4iV), i.e.,

(4i -  1)(2jf +  1)
I* = AN

(Ai -  l)(2j +  1) 
AN

where i =  1 , 2 , N  and j  =  0,1 ,N .  We further introduce the following
notations:

r = 1
7T

2j + l

For even and odd I*, the integration interval [0,7r] is divided into 2(j +1) subintervals 
as follows:

[0, tt] =  [0, r<pj] U  U jz^{[li -  f ,  h  +  F] U  [l2 - r , l 2 + r]}(pj U  [tt -  fipjt ir], I* even,

[0, t t ]  =  [0, rtpj] U  - r , h  + r]U [l2 - f , l 2 + r]}<pj U  [ t t  -  ripj, n], I* odd,

where li = 21 + 1 and l2 =  2(1 + 1). The interval [li — f , l \  + f]ip has the endpoints 
(21 + 1 ±  r)(pj. The interval [l2 - r , l 2 + r\<pj has the endpoints (21 + 2 + r)ipj. Clearly, 
in the above divisions any two adjacent subintervals, excluding the two subintervals 
at the two ends which cover the length of 2ipj = 2ir/(2j + 1 ) , which is exactly one 
period of cos(2j  +  1)6 for 6 e  [0, 2-k].
For even I*, the integrals on the subintervals are: 

rrw
K ij(6,k)d6

»i / i  m  i a i  r (i + s^ripj
sin

(1 +  s)npj 6i 
A 2

sin

(3 +  s)r7r . (1 — s)r-n . ( l +  s)ro?7- , 
sin  ----- —  sm-------—i—  sm  -----— -  ds,

I

(84)

(h
Kij(6,k) &6

( I
sin (h + rs)<pj 6j

2 2
sm (h +  rs)(fj _  0i 

2 2
. (1 +  s)r7r . (1 -  s)rn . . .

sm  ---   sm ------ ------ sm[(<x +  rs)(fij\ ds, (85)
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f (/  Kij(d,k)dd  
J(h

r(h+ r)< p j

I(l2 -r)<fij 

■ 2ripj /
. (1 +  s)r7r . (1 -  s)rn  . ,

s in  r s in  r sin[(f2 +  rs)ipj\ ds,

( 1 '(l2 + rs)(pj e{' ’{k + rs fy j  di
sin

2 2
sin

2 2

I

2 2 

Kij{0,k) dd
■n-rtpj

fipj £'-acos
(1 -  s)r ipj  0i

4 2
cos

(1 -  s)r<pj _  (h 
4 2

(l +  s)r7r . (3 — s)r% . (1 — s)ripj ,
sm  ------  —  sin  ------ - —  sin - ds.

4 4 2
Similarly, for odd I*, the integrals on the subintervals are: 

ff'fi
/  K ij(d,k)dO 

= f Vl £  u  ( i  sin [ ( l + i l r s i  +  f  -  f (1 +  S)r^  -  *

. (3 +  s)r7r . (1 —s)r7r . (l +  s)ry?7- ,
sin  -------  —  sin-------—;—  sm  -----—*— -  ds,

4 4 2

I

(h+r)tpj

(h  —r )<fij
K i j ( 0 , k )  de

(li +  rs)(pj ei
2 2

smo  f 1 T I  ̂  • 1‘ 1 T '  o j y j j  V i: -  2rtpj J   ̂I—i \ t  s m  - - - - - - - - - - - - - - +  —

. ( l +  s)r7r . ( l - s ) r T r  .
sm  ---- —̂—  sm    sin[(Zi +  rs)(pj\ ds,

£ &

/  K ij(9,k)d9  
J(h

(h +  rs)<pj _  (h 
2 2 )

sm (l2 + rs)(pj 0i
2 2

sm
(l2 +  rs)(pj Oi

)
(1 +  s)rw . (1 -  s)r7r .

s in  —  sin   r sm[(t2 +  rs)<pjj ds,

I

2 2 

Kij(9, k) dd
ir-rvj

rt f j /> ( COS
'(l-s)ry>j 0j

4 2
cos (1 - s ) r < P j  Oi

)
(l +  s)r7r (3 — s)rn  . (1 — s)r</?7 ,

sm  -----—̂—  sm  ------1—  sm  -----— - ds.4 4 2

(86)

(87)

(88)

(89)

(90)

(91)

The integrals given by equations (84)-(87) and equations (88)-(91) are evaluated by 
using adaptive quadrature with a specific absolute tolerance e =  10”15. In particular,



34

as the kernel of the adaptive quadrature, we use the generalized Gaussian quadra
ture [42] for products of a polynomial and logarithmic function over the interval [0,1], 
i.e., f*  f ( x ) d x  =  wi f ( x i)- The nodes and weights are listed in Table 1.

TABLE 1: Abscissae and Weights of 40 Order Generalized Gauss quadrature for 
products of a polynomial and logarithmic function over [0,1]

1 A b sc is sa e  x , W e ig h ts i A b sc is sa e  x* W e ig h ts  tu*
1 0 .2 3 7 6 8 4 1 4 3 8 7 9 1 4 3 D -5 0 .9 0 8 7 1 6 6 4 8 4 7 9 5 5 2 1>-5 21 0 .2 7 4 6 5 7 1 6 4 6 1 6 2 6 4 1)0 0 .4 0 3 5 3 0 0 3 1 2 2 1 9 5 6 D -1
2 0 .3 5 7 9 4 1 1 9 8 6 5 9 5 3 6 D -4 0 .7 0 8 0 9 6 5 7 0 2 7 6 6 1 5 D -4 22 0 .3 1 6 3 6 9 0 4 7 6 0 5 7 0 5 D O 0 .4 3 0 1 9 5 6 4 4 0 5 7 4 8 3 D -1
3 0 .1 7 8 5 6 4 1 9 1 5 2 4 8 5 4 D -3 0 .2 3 6 1 0 7 9 2 4 2 4 9 6 7 6 D -3 23 0 .3 6 0 5 8 2 7 4 1 0 2 7 3 9 7 D 0 0 .4 5 3 4 5 6 0 3 3 7 5 6 6 0 3 D -1
4 0 .5 5 8 5 7 2 3 5 2 3 5 7 2 7 6 D -3 0 .5 5 2 9 4 1 3 2 4 9 8 2 5 8 6 D -3 24 0 .4 0 6 9 2 5 4 1 4 6 3 6 8 2 5 D 0 0 .4 7 2 6 7 3 1 0 3 9 8 3 4 5 5 D -1
5 0 .1 3 4 9 4 9 3 6 1 2 6 5 5 1 9 D -2 0 .1 0 6 4 7 1 9 0 7 6 6 9 1 8 6 D -2 25 0 .4 5 4 9 6 3 1 0 3 7 8 5 7 9 5 D 0 0 .4 8 7 2 6 4 7 9 1 9 5 3 4 6 8 D -1
6 0 .2 7 6 5 5 8 6 1 8 7 8 8 7 1 9 D -2 0 .1 8 0 8 9 8 8 2 7 5 5 9 0 8  I D -2 26 0 .5 0 4 2 0 7 0 5 1 4 2 7 0 9 8 D O 0 .4 9 6 7 1 9 6 2 9 3 6 0 1 9 4 D - 1
7 0 .5 0 5 5 2 2 3 8 1 4 1 7 7 4 3 D -2 0 . 2 8 1 6 2 4 9 0 6 8 2 7 5 1 3 D - 2 27 0 .5 5 4 1 2 1 4 3 6 8 9 8 8 0 1  DO 0 .5 0 0 6 0 9 8 6 1 1992 5 4 D -1
8 0 .8 4 9 3 3 2 8 1 6 1 8 2 9 7 8 D -2 0 .4 1 0 8 9 4 5 0 0 6 3 9 7 5 3 D -2 28 0 .6 0 4 1 3 2 3 3 1 1 1 2 8 4 5 D 0 0 .4 9 8 6 0 2 8 0 5 3 1 6 8 1 2 D -1
9 0 . 1 3 3 7 2 8 9 0 5 7 2 6 7 6 1 D -1 0 .5 7 0 0 6 5 5 2 5 0 2 3 8 5 9 D -2 29 0 .6 5 3 6 3 7 6 8 8 0 1 5 7 5 0 D O 0 .4 9 0 4 7 0 1 7 5 9 0 5 7 6 9 D -1
10 0 . 1 9 9 9 5 7 9 5 8 3 4 2 8 4 6 D -1 0 .7 5 9 5 5 0 9 4 7 5 3 4 3 5 0 D -2 30 0 .7 0 2 0 1 8 1 5 6 8 1 1 9 0 4 DO 0 .4 7 6 0 9 5 1 4 1 1983 0 7 D -1
11 0 .2 8 6 6 3 1 7 8 8 8 5 5 3 0 4 D -1 0 .9 7 8 7 8 4 0 9 3 5 1 7 8 7 1 D - 2 31 0 .7 4 8 6 4 8 4 7 9 0 5 1 7 8 5  DO 0 .4 5 5 4 7 6 9 3 8 1 7 0 2 9 0 D -1
12 0 .3 9 6 6 5 5 5 7 9 5 7 3 0 6 4 D -1 0 . 1 2 2 6 2 0 8 7 3 9 5 4 7 3 3 D -1 32 0 .7 9 2 9 0 9 2 1 9 7 8 3 8 0 3 D 0 0 .4 2 8 7 3 2 9 2 3 9 9 2 0 5 3 D -1
13 0 .5 3 2 7 2 9 9 4 3 9 5 6 6 2 7 D -1 0 .1 4 9 9 2 9 4 3 6 8 3 6 7 1 2 D -1 33 0 .8 3 4 1 9 8 5 7 2 9 2 3 8 5 4 D 0 0 .3 9 6 0 9 8 0 0 4 0 3 0 2 3 0 D -1
14 0 .6 9 7 2 5 5 3 0 1 2 5 7 9 2 8 D -1 0 . 1 7 9 4 5 7 6 3 5 2 8 1 8 7 6 D -1 34 0 .8 7 1 9 4 3 9 7 8 0 7 3 8 3 5 DO 0 .3 5 7 9 2 1 4 3 8 4 5 2 4 7 0 D -1
15 0 .8 9 2 2 4 1 4 8 3 6 9 3 3 3 3 D -1 0 .2 1 0 7 7 2 0 2 3 4 0 7 8 3 2 D -1 35 0 .9 0 5 6 1 3 2 8 9 4 2 5 4 1 6 DO 0 .3 1 4 6 6 1 0 9 4 0 0 9 3 14D -1
16 0 .1 1 1 9 2 2 4 9 1 9 4 3 6 1 5 D 0 0 .2 4 3 3 6 0 8 6 7 6 4 6 2 2 2 D -1 36 0 .9 3 4 7 2 5 2 4 7 5 1 5 5 0 7 D 0 0 .2 6 6 8 7 5 2 7 9 2 9 1 5 3 2 D -1
17 0 .1 3 7 9 1 9 5 5 6 5 10407D O 0 .2 7 6 6 4 4 9 1 3 0 9 4 0 5 7 D -1 37 0 .9 5 8 8 5 9 0 2 3 2 7 2 8 0 1 D 0 0 .2 1 5 2 1 2 4 1 1 4 4 5 6 7 3 D -1
18 0 . 1 6 7 2 5 3 5 5 3 8 9 9 2 9 3 D 0 0 .3 0 9 9 8 9 9 7 3 5 4 5 7 5 0 D -1 38 0 .9 7 7 6 6 2 6 4 2 0 6 4 8 4 2 D 0 0 .1 6 0 3 9 9 1 2 3 8 1 2 8 0 5 D -1
19 0 .1 9 9 8 9 7 1 1 3 6 2 9 0 6 4 D 0 0 .3 4 2 7 2 1 0 5 3 4 2 3 0 1 7 D -1 39 0 .9 9 0 8 6 0 2 4 6 6 2 0 0 7 9 D O 0 .1 0 3 2 3 0 2 6 0 8 0 5 1 0 1 D - 1
2 0 0 .2 3 5 7 5 3 9 5 9 6 2 5 1 3 0 D 0 0 .3 7 4 1 3 7 6 7 2 1 0 4 4 3 4 D -1 4 0 0 .9 9 8 2 5 9 9 7 2 4 7 1 2 4 2 D 0 0 .4 4 6 2 2 3 2 7 1 3 7 9 8 8 4 D -2

Evaluating A near double precision needs N  = 2047. After evaluating A and b, 
one can solve equation (76) and equation (80). Since the size of the coefficient matri
ces are moderate, at most 2048 x 2048 in the present work, we use direct method to 
solve the two linear system of equations. In order to achieve at least double precision 
accuracy, we implement the algorithm for the LU decomposition with pivoting and 
the forward elimination backward substitution by using C + +  with arbitrary preci
sion package. Balancing the effectiveness and efficiency we use 40 digits of decimal 
precision.
After obtaining c, in order to reduce the risk of augmenting round off error, when 
computing the Chebyshev expansion at position y, we use Clenshaw’s algorithm with 
Reinsch’s modification [47] to evaluate equation (81).
For the first branch of equation (81), we have:



1) b2N(y) = d2 N{y) = 0

2) for j from N to 1

d2j-i{y) = Cij-x +  2(2y +  1 )b2j{y) -  d2j(y) 

b2j-i(y)  = d2j-i(y)  -  b2j(y) 

d2j - 2{y) = 2(2y +  l)b2j - i (y)  ~  d2j-i(y )  

b2j - 2 (y) =  d2j^2(y) -  h j - i i y )

3) uN(y) = (do(y) -  di(y))/2

when \y\ < 5,

1) b2N(y) =  b2N+1{y) =  0

2) for j from N to 1

b2j-i{y)  =  C2 j -1 +  4yb2j(y) -  b2j+x(y) 

b2j- 2(y) = 4y62tf_i(y) -  6y(y)

3) ujv(y) =  (6o(y) -  6z(y))/2

when 6 < y < ^ cos

1) b2N(y) =  d2N(y) =  0

2) for j from N to 1

d2j- i(y)  = c2j—\ +  2(2y -  l)6jy (j/) -  <My) 

h j- i{y )  =  d2j_x(y) +  &2j(y) 

d2j- 2{y) = 2(2y -  l)&2i- i(y )  -  d2j- i (y )  

b2j- 2(y) =  d2j_2{y) +  fe2j_i(y)

3) iiw(y) =  (cfo(y) +  di(y))/2
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For the second branch of Equation (81), we have when — |  < y  < — |  cos ^ ,

1) &2AM-2(y) =  d2N+2(y) — 0

2) for j from N + l to 1

d2j- i (y)  = c y - i +  2(2y + 1 )b2j(y) -  d2j(y) 

hj-x(y)  = d2j- i (y)  -  Ihjiy) 

d2j- 2(y) = 2(2y + l)62j-i(y ) -  d2j-i(y ) 

b2j- 2(y) = d2j - 2(y) -  h j - i i y )

3) uN(y) =  (d0(y) -  di(y))/2

when |c o s -£$ < y < \ ,

1) b2N+2(y) =  d2;v+2(y) =  0

2) for j from N + l to 1

d2i-i{y) =  c2j - i  + 2(2y -  1)62j(y) -  d2j(y) 

b2j- i ( y ) =  d2j-i(y)  +  b2j(y) 

d2j- 2(y) =  2(2y -  l)62i_x(y) -  d2j-i(y ) 

b2j- 2(y) -  d2j..2{y) + b2j- i(y)

3) uN(y) =  (d0(y) +  di(y))/2

The parameter 5 determines the thickness of the boundary in which the Reinsch’s 
modification should be adopted. In this study, we choose 5 = 0.3.
Numerically, we solve equation (72) for the Couette flow with a wide range of Knudsen 
number k, i.e., 0.003 < k < 10.0, which cover four decimal digits. We vary the order 
of equation (80), namely N  + 1 =  2" with 4 <  n < 11, i.e., 15 < N  < 2047, to 
ensure the convergence of the results. Table 2 and Table 3 give the value of UN(y)  

at y =  0.1,0.2,0.3,0.4 and 0.5 for various values of k  and N.  At channel center 
y = 0, ujv(0) = 0 for all values of k. When N  = 2047, the results of wjv(y) in Table 2 
and Table 3 are accurate for at least 11 significant digits. From equation (81), the 
derivative of velocity a t the channel center, u'(0), is approximated by

N
u'N(0) = 2 Y , C 2 j - i ( - l ) j+1

j=l

Table 4 gives the boundary velocity tt(l/2 ) and the derivative of the channel center 
velocity for various values of k with N  = 2047.
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TABLE 2: The values of the velocity u^{y)  of the Couette flow at y = 0.1,0.2 and

y 0 .1 i 0 .2 0 .3
N  +  1 k  =  0 .0 0 3

25 6 9 .9 3 9 3 9 8 0 2 8 1 7 6 7 5 1 0 '^ 1 .9 8 7 8 7 9 6 0 5 6 3 7 2 4 1 0 "  1 2 .9 8 1 8 1 9 4 0 8 5 4 6 0 7 1 0 ” 1
51 2 9 .9 3 9 3 9 8 0 1 5 7 5 7 5 2 1 0 “ 2 1 .9 8 7 8 7 9 6 0 3 2 2 5 7 4 1 0 “ x 2 .9 8 1 8 1 9 4 0 4 6 7 9 4 5 1 0 “ x

1024 9 .9 3 9 3 9 8 0 1 4 8 7 2 1 0 1 0 ~ 2 1 .9 8 7 8 7 9 6 0 3 0 4 5 6 7 1 0 “  1 2 .9 8 1 8 1 9 4 0 4 4 3 6 5 8 1 0 “ x
2 048 9 .9 3 9 3 9 8 0 1 4 8 4 7 1 3 1 0 ” 2 1 .9 8 7 8 7 9 6 0 3 0 3 8 9 6 1 0 ” 1 2 .9 8 1 8 1 9 4 0 4 4 2 7 7 3 1 0 ” x

N  +  1 k  -  0 .0 1
256 9 .8 0 0 8 1 0 0 2 5 8 7 7 7 8 1 0 " 2 1 .9 6 0 1 6 2 0 1 4 0 8 7 4 9 1 0 ” 1 2 .9 4 0 2 4 3 4 2 7 6 3 0 4 2 1 0 _ l
512 9 .8 0 0 8 1 0 0 2 2 5 4 8 0 5 1 0 - 2 1 .9 6 0 1 6 2 0 1 3 4 8 4 4 2 1 0 ~ x 2 .9 4 0 2 4 3 4 2 6 4 6 7 6 7 1 0 ” x

1024 9 .8 0 0 8 1 0 0 2 2 3 1 0 4 7 1 0 ~ 2 1 .9 6 0 1 6 2 0 1 3 4 2 9 0 3 1 0 ” 1 2 .9 4 0 2 4 3 4 2 6 4 0 6 1 9 1 0 _ x
2048 9 .8 0 0 8 1 0 0 2 2 2 9 7 6 3 1 0 - 2 1 .9 6 0 1 6 2 0 1 3 4 2 5 5 0 1 0 ” 1 2 .9 4 0 2 4 3 4 2 6 4 0 3 0 8 1 0 " x

N  +  1 k  =  0 .0 3
256 9 .4 2 5 5 1 0 2 3 4 4 8 2 0 3 1 0 “ * 1 .8 8 5 1 5 5 9 6 5 2 2 2 0 6 1 0 - 1 2 .8 2 8 0 8 4 7 1 8 1 8 6 0 3 1 0 ~ x
512 9 .4 2 5 5 1 0 2 3 3 7 2 6 4 0 1 0 “ 2 1 .8 8 5 1 5 5 9 6 5 1 2 9 8 5 1 0 ” 1 2 .8 2 8 0 8 4 7 1 7 7 9 8 0 2 1 0 “ x

1024 9 .4 2 5 5 1 0 2 3 3 6 4 7 2 7 1 0 - 2 1 .8 8 5 1 5 5 9 6 5 1 0 6 9 2 1 0 ” 1 2 .8 2 8 0 8 4 7 1 7 7 8 4 0 4 1 0 ” x
2048 9 .4 2 5 5 1 0 2 3 3 6 3 8 4 2 1 0 ~ 2 1 .8 8 5 1 5 5 9 6 5 1 0 5 0 5 1 0 - 1 2 .8 2 8 0 8 4 7 1 7 7 8 3 3 3 1 0 * 1

N  +  1

o11

256 8 .3 5 6 1 0 4 0 2 9 3 7 8 1 0 1 0 - 2 1 .6 7 3 4 9 0 5 0 2 2 5 9 0 9 1 0 ” 1 2 .5 1 8 1 0 8 0 7 1 1 4 2 8 6 1 0 ” 1
51 2 8 .3 5 6 1 0 4 0 2 9 4 4 3 2 6 1 0 “ 2 1 .6 7 3 4 9 0 5 0 2 3 2 4 7 7 1 0 ” x 2 .5 1 8 1 0 8 0 7 1 0 1 9 6 9 1 0 - 1

1024 8 .3 5 6 1 0 4 0 2 9 4 2 4 5 3 1 0 ~ 2 1 .6 7 3 4 9 0 5 0 2 3 1 4 2 8 1 0 “ x 2 .5 1 8 1 0 8 0 7 1 0 2 1 8 1 1 0 “ X
2 048 8 .3 5 6 1 0 4 0 2 9 4 2 5 6 4 1 0 - 2 1 .6 7 3 4 9 0 5 0 2 3 1 3 5 5 I Q - 1 2 .5 1 8 1 0 8 0 7 1 0 2 2 4 7 1 0 ” x

N  +  1 k  -  0 .3
256 6 .6 4 5 4 3 0 0 6 9 3 0 7 4 8 1 0 - 2 1 .3 3 5 7 0 9 5 0 9 4 0 7 8 4 1 0 ” 1 2 .0 2 3 6 0 7 2 3 3 4 4 3 4 3 1 0 _ 1
512 6 .6 4 5 4 3 0 0 6 9 4 9 8 5 3 1 0 - 2 1 .3 3 5 7 0 9 5 0 9 4 8 6 0 7 1 0 _ 1 2 .0 2 3 6 0 7 2 3 3 3 9 4 0 0 1 0 ” 1

1024 6 .6 4 5 4 3 0 0 6 9 4 9 2 6 0 1 0 - 2 1 .3 3 5 7 0 9 5 0 9 4 7 9 7 1 1 0 ” 1 2 .0 2 3 6 0 7 2 3 3 3 9 8 1 2 1 0 ” 1
204 8 6 .6 4 5 4 3 0 0 6 9 4 9 3 9 5 i o ~ 2 1 .3 3 5 7 0 9 5 0 9 4 7 9 2 7 1 0 _ 1 2 .0 2 3 6 0 7 2 3 3 3 9 8 7 9 1 0 “ x

N  +  1 k  =  1 .0
256 4 .4 5 3 1 9 4 1 1 5 0 8 0 8 6 1 0 ~ 2 8 .9 7 6 2 9 0 0 0 5 5 0 2 8 4 1 0 ” 2 1 .3 6 6 6 9 1 8 0 6 9 3 3 0 8 1 0 - i
5 1 2 4 .4 5 3 1 9 4 1 1 5 2 1 3 0 8 1 0 “ 2 8 .9 7 6 2 9 0 0 0 5 9 9 2 6 0 1 0 ” 2 1 .3 6 6 6 9 1 8 0 6 9 1 3 3 7 1 0 ” x

1024 4 .4 5 3 1 9 4 1 1 5 2 1 1 3 0 1 0 ~ 2 8 .9 7 6 2 9 0 0 0 5 9 6 0 1 2 1 0 “ 2 1 .3 6 6 6 9 1 8 0 6 9 1 6 1 8 1 0 ” 1
204 8 4 .4 5 3 1 9 4 1 1 5 2 1 2 1 7 1 0 “ 2 8 .9 7 6 2 9 0 0 0 5 9 5 7 8 7 1 0 ” 2 1 .3 6 6 6 9 1 8 0 6 9 1 6 5 8 1 0 “ x

N  +  1 k  =  2 .0
2 5 6 3 .2 8 3 1 7 5 1 0 1 2 7 7 7 1 1 0 “ 2 6 .6 2 0 0 8 0 8 6 6 5 0 8 6 9 1 0 ” 2 1 .0 0 8 3 9 9 3 4 0 2 3 3 9 4 1 0 ~ x
5 1 2 3 .2 8 3 1 7 5 1 0 1 3 6 4 8 6 1 0 - 2 6 .6 2 0 0 8 0 8 6 6 8 2 6 1 3 1 0 - 2 1 .0 0 8 3 9 9 3 4 0 2 2 2 5 3 1 0 " 1

1024 3 .2 8 3 1 7 5 1 0 1 3 6 3 9 5 1 0 “ 2 6 .6 2 0 0 8 0 8 6 6 8 0 5 9 5 1 0 “ 2 1 .0 0 8 3 9 9 3 4 0 2 2 4 3 8 1 0 _ 1
2 04 8 3 .2 8 3 1 7 5 1 0 1 3 6 4 5 0 1 0 - 2 6 .6 2 0 0 8 0 8 6 6 8 0 4 5 5 1 0 “ 2 1 .0 0 8 3 9 9 3 4 0 2 2 4 6 5 1 0 “ X

N  +  1 k -  3 .0
25 6 2 .6 7 8 8 4 2 2 5 0 6 5 2 5 2 1 0 - 2 5 .4 0 0 7 6 1 3 0 2 1 2 0 6 5 1 0 “ 2 8 .2 2 3 9 3 1 9 0 0 2 6 5 6 2 1 0 - 2
5 1 2 2 .6 7 8 8 4 2 2 5 0 7 1 7 8 5 1 0 - 2 5 .4 0 0 7 6 1 3 0 2 3 5 7 3 7 1 0 “ 2 8 .2 2 3 9 3 1 9 0 0 1 8 3 9 1 1 0 - 2

1024 2 .6 7 8 8 4 2 2 5 0 7 1 7 2 1 1 0 - 2 5 .4 0 0 7 6 1 3 0 2 3 4 2 5 5 1 0 “ 2 8 .2 2 3 9 3 1 9 0 0 1 9 7 7 7 1 0 “ 2

204 8 2 .6 7 8 8 4 2 2 5 0 7 1 7 6 3 1 0 ~ 2 5 .4 0 0 7 6 1 3 0 2 3 4 1 5 4 1 0 “ 2 8 .2 2 3 9 3 1 9 0 0 1 9 9 7 3 1 0 - 2
A/ +  1 k  =  5 .0

256 2 .0 2 1 8 1 0 3 5 0 5 6 8 9 1 1 0 - 2 4 .0 7 4 5 1 0 5 4 9 3 6 7 0 5 1 0 “ 2 6 .1 9 9 4 2 7 0 3 9 1 1 5 5 3 1 0 - 2
5 1 2 2 .0 2 1 8 1 0 3 5 0 6 1 2 7 9 1 0 - 2 4 .0 7 4 5 1 0 5 4 9 5 2 5 3 6 1 0 “ 2 6 .1 9 9 4 2 7 0 3 9 0 6 2 6 8 1 0 “ 2

1024 2 .0 2 1 8 1 0 3 5 0 6 1 2 4 0 1 0 “ 2 4 .0 7 4 5 1 0 5 4 9 5 1 5 5 6 1 0 - 2 6 .1 9 9 4 2 7 0 3 9 0 7 2 0 1 1 0 “ 2
2048 2 .0 2 1 8 1 0 3 5 0 6 1 2 6 9 1 0 “ 2 4 .0 7 4 5 1 0 5 4 9 5 1 4 8 8 1 0 - 2 6 .1 9 9 4 2 7 0 3 9 0 7 3 3 1 1 0 ” 2

N  +  1 k  =  7 .0
256 1 .6 5 5 8 9 6 1 4 0 0 2 1 7 4 1 0 - 2 3 .3 3 5 9 5 2 2 2 2 7 7 5 9 2 1 0 “ 2 5 .0 7 2 3 3 5 8 2 3 6 8 8 5 8 1 0 “ 2
51 2 1 .6 5 5 8 9 6 1 4 0 0 5 4 9 2 1 0 “ 2 3 .3 3 5 9 5 2 2 2 2 8 9 5 3 9 1 0 ” 2 5 .0 7 2 3 3 5 8 2 3 6 4 9 2 7 1 0 - 2

1024 1 .6 5 5 8 9 6 1 4 0 0 5 4 6 3 1 0 “ 2 3 .3 3 5 9 5 2 2 2 2 8 8 8 0 3 1 0 “ 2 5 0 7 2 3 3 5 8 2 3 6 5 6 3 2 1 0 “ 2
204 8 1 .6 5 5 8 9 6 1 4 0 0 5 4 8 4 1 0 - 2 3 .3 3 5 9 5 2 2 2 2 8 8 7 5 3 1 0 “ 2 5 .0 7 2 3 3 5 8 2 3 6 5 7 3 1 1 0 - 2N +  1 k  =  1 0 .0

256 1 .3 2 4 8 4 0 0 5 4 1 8 9 0 4 1 0 “ 2 2 .6 6 7 9 5 4 5 7 5 2 9 7 5 4 1 0 ” 2 4 .0 5 3 5 7 4 0 3 2 1 5 3 9 8 1 0 “ 2
51 2 1 .3 2 4 8 4 0 0 5 4 2 1 3 4 2 1 0 - 2 2 .6 6 7 9 5 4 5 7 5 3 8 5 1 8 1 0 " 2 4 .0 5 3 5 7 4 0 3 2 1 2 5 4 7 1 0 “ 2

1024 1 .3 2 4 8 4 0 0 5 4 2 1 3 2 2 1 0 - 2 2 .6 6 7 9 5 4 5 7 5 3 7 9 8 0 1 0 - 2 4 .0 5 3 5 7 4 0 3 2 1 3 0 6 4 1 0 - 2
2 048 1 .3 2 4 8 4 0 0 5 4 2 1 3 3 7 1 0 - 2 2 .6 6 7 9 5 4 5 7 5 3 7 9 4 2 1 0 “ 2 4 .0 5 3 5 7 4 0 3 2 1 3 1 3 5 1 0 " 2

We compute the local relative error of the velocity u(y) at a specific location y and 
a given value of k:

| A * ( V ) I  =
M i/)  I

where the reference solution u„(y) is obtained with N  = 2047. We compute |5u^(y)| 
at y =  0.1,0.2,0.3, 0.4 and 0.5 and 0.003 < k  < 10.0. Figure 1 shows the log-log 
plots of N-dependence of |(5it/v| at y = 0.1 and k = 0.01, y  =  0.2 and k  =  0.1, y  =  0.3
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TABLE 3: The values of the velocity u^{y)  of the Couette flow at y = 0.4 and 0.5, 
for 0.003 < k < 10.0 and 256 < N  +  1 < 2048_______________

V 0 .4 0 .5
N  +  1 k  == 0 .0 0 3

2 5 6 3 .9 7 5 7 5 9 2 1 2 0 5 6 9 8 1 0 - 1 4 .9 7 8 9 1 5 3 2 8 1 7 2 5 6 • 1 0 - 1
5 1 2 3 9 7 5 7 5 9 2 0 7 0 8 3 1 9 1 0 " 1 4 .9 7 8 9 1 5 3 5 1 0 5 9 3 1 • 1 0 ” 1

1024 3 .9 7 5 7 5 9 2 0 6 7 3 5 0 3 1 0 " 1 4 .9 7 8 9 1 5 3 5 2 6 7 1 9 7 • 1 0 - 1
2 04 8 3 .9 7 5 7 5 9 2 0 6 7 1 6 0 7 1 0 - 1 4 .9 7 8 9 1 5 3 5 2 7 8 4 2 7 ■ 1 0 - 1

N  +  1 k 0 .0 1
2 5 6 3 9 2 0 3 5 5 7 2 1 5 3 2 6 3 i o ~ i 4 .9 3 0 6 9 7 7 9 9 6 1 9 8 8 - 1 0 ” 1
5 1 2 3 .9 2 0 3 5 5 7 2 0 1 4 9 2 2 1 0 - 1 4 .9 3 0 6 9 7 8 0 7 1 7 9 0 2 1 0 _ 1

1024 3 .9 2 0 3 5 5 7 2 0 0 3 6 2 6 1 0 - 1 4 .9 3 0 6 9 7 8 0 7 7 0 3 6 9 • 1 0 - 1
2 0 4 8 3 .9 2 0 3 5 5 7 2 0 0 2 7 6 2 1 0 _ 1 4 .9 3 0 6 9 7 8 0 7 7 3 9 8 2 • 1 0 - 1

N  - f  1 k 0 .0 3
2 5 6 3 .7 7 3 5 2 5 6 0 9 4 3 9 4 4 1 0 " 1 4 .8 0 0 0 5 8 6 7 9 9 3 2 0 0 • 1 0 * 1
5 1 2 3 .7 7 3 5 2 5 6 0 9 0 7 8 5 6 1 0 - 1 4 .8 0 0 0 5 8 6 8 2 5 7 1 3 3 • 1 0 - 1

1024 3 .7 7 3 5 2 5 6 0 9 0 3 0 3 0 1 0 “ * 4 .8 0 0 0 5 8 6 8 2 7 5 2 7 6 • 1 0 “ *
204 8 3 .7 7 3 5 2 5 6 0 9 0 2 4 7 2 1 0 - 1 4 .8 0 0 0 5 8 6 8 2 7 6 5 1 5 1 0 ~ l

N  +  1 = 0 .1
2 5 6 3 .3 8 3 6 8 4 0 6 0 7 8 6 6 2 1 0 - i 4 .4 1 2 2 4 6 4 0 8 9 1 3 6 4 • 1 0 - 1
5 1 2 3 .3 8 3 6 8 4 0 6 0 7 5 7 3 2 1 0 " 1 4 .4 1 2 2 4 6 4 0 9 6 6 7 2 1 • 1 0 _ 1

1024 3 .3 8 3 6 8 4 0 6 0 7 3 2 8 0 1 0 - 1 4 .4 1 2 2 4 6 4 0 9 7 1 8 6 8 • 1 0 ~ l
2 0 4 8 3 .3 8 3 6 8 4 0 6 0 7 2 9 9 7 1 0 ~ 1 4 .4 1 2 2 4 6 4 0 9 7 2 2 1 7 ■ 1 0 “ *

N  +  1 = 0 .3
2 5 6 2 .7 5 1 7 0 6 6 9 3 5 7 0 0 4 1 0 “ A 3 .6 7 2 1 2 5 6 9 5 2 8 7 0 1 - 1 0 “ l
51 2 2 .7 5 1 7 0 6 6 9 3 6 0 7 5 7 1 0 - 1 3 .6 7 2 1 2 5 6 9 5 4 8 6 0 1 • 1 0 _ l

1 024 2 .7 5 1 7 0 6 6 9 3 5 9 2 8 5 1 0 " 1 3 .6 7 2 1 2 5 6 9 5 4 9 9 5 2 • 1 0 “ l
204 8 2 .7 5 1 7 0 6 6 9 3 5 9 0 9 4 1 0 - 1 3 .6 7 2 1 2 5 6 9 5 5 0 0 4  • 1 0 " 1

N  +  1 k = 1 .0
25 6 1 .8 7 2 3 3 6 4 2 9 9 5 1 4 3 1 0 ” 1 2 .5 1 8 6 1 3 3 9 9 8 5 7 5 5 • 1 0 _ 1
51 2 1 .8 7 2 3 3 6 4 2 9 9 8 4 3 1 1 0 ~ l 2 .5 1 8 6 1 3 3 9 9 8 9 2 2 1 - 1 0 " 1

1 024 1 .8 7 2 3 3 6 4 2 9 9 7 6 7 8 1 0 _ 1 2 .5 1 8 6 1 3 3 9 9 8 9 4 5 5 - 1 0 - 1
2 0 4 8 1 .8 7 2 3 3 6 4 2 9 9 7 5 7 7 1 0 _ 1 2 .5 1 8 6 1 3 3 9 9 8 9 4 7 1 1 0 » l

N  +  1 k 2 .0
25 6 1 .3 8 1 7 9 7 1 0 1 3 9 2 4 2 1 0 _ i 1 .8 5 2 4 6 2 9 9 3 7 2 8 2 8 . 1 0 " 1
51 2 1 .3 8 1 7 9 7 1 0 1 4 1 4 9 7 1 0 _ 1 1 .8 5 2 4 6 2 9 9 3 7 3 9 4 1 • 1 0 _ 1

1 024 1 .3 8 1 7 9 7 1 0 1 4 1 0 3 0 1 0 ” 1 1 .8 5 2 4 6 2 9 9 3 7 4 0 1 6 . i o ~ l
2 0 4 8 1 .3 8 1 7 9 7 1 0 1 4 0 9 6 7 1 0 - 1 1 .8 5 2 4 6 2 9 9 3 7 4 0 2 1 • 1 0 _ l

N  +  1 k = 3 .0
25 6 1 .1 2 6 0 0 6 4 5 4 3 7 7 2 4 1 0 ~ l 1 .5 0 4 2 8 2 4 4 4 9 8 6 1 5 • 1 0 _ 1
51 2 1 .1 2 6 0 0 6 4 5 4 3 9 4 3 6 1 0 " 1 1 .5 0 4 2 8 2 4 4 4 9 9 1 6 7 1 0 _ 1

1024 1 .1 2 6 0 0 6 4 5 4 3 9 0 9 3 1 0 ~ * 1 .5 0 4 2 8 2 4 4 4 9 9 2 0 4 • 1 0 _ 1
2 0 4 8 1 .1 2 6 0 0 6 4 5 4 3 9 0 4 6 1 0 - 1 1 .5 0 4 2 8 2 4 4 4 9 9 2 0 7 • 1 0 _ 1

N  +  1 k 3 .6
25 6 8 .4 7 4 6 5 5 7 8 2 7 6 1 4 7 1 0 ~ ‘J 1 .1 2 6 3 5 1 8 8 0 2 9 2 2 1 • 1 0 - 1
51 2 8 .4 7 4 6 5 5 7 8 2 8 7 7 6 6 1 0 “ 2 1 .1 2 6 3 5 1 8 8 0 2 9 4 4 3 • 1 0 “ *

102 4 8 .4 7 4 6 5 5 7 8 2 8 5 5 0 2 1 0 - 2 1 .1 2 6 3 5 1 8 8 0 2 9 4 5 8 • IQ - 1
2 048 8 .4 7 4 6 5 5 7 8 2 8 5 1 8 8 1 0 ~ 2 1 .1 2 6 3 5 1 8 8 0 2 9 4 5 9 • 1 0 _ l

N  +  l k = 7 .0
25 6 6 .9 2 5 3 3 6 2 4 0 1 0 7 8 0 1 0 “ 2 9 .1 7 1 6 8 9 6 1 3 5 0 8 6 4 . 1 0 “ 2
5 1 2 6 .9 2 5 3 3 6 2 4 0 1 9 6 0 4 1 0 - 2 9 .1 7 1 6 8 9 6 1 3 5 2 0 5 6 • 1 0 - 2

1024 6 .9 2 5 3 3 6 2 4 0 1 7 9 0 4 1 0 “ 2 9 .1 7 1 6 8 9 6 1 3 5 2 1 3 7 • 1 0 “ 2
2 048 6 .9 2 5 3 3 6 2 4 0 1 7 6 7 0 1 0 - 2 9 .1 7 1 6 8 9 6 1 3 5 2 1 4 3 - 1 0 - 2

N  +  1 k 1 0 .0
25 6 5 .5 2 6 7 8 9 3 4 6 5 9 7 9 7 1 0 - 2 7 .2 9 2 2 1 1 2 9 9 3 2 1 9 2 ■ 1 0 - 2
5 1 2 5 .5 2 6 7 8 9 3 4 6 6 6 3 0 3 1 0 “ 2 7 .2 9 2 2 1 1 2 9 9 3 2 8 0 4 • 1 0 “ 2

1024 5 .5 2 6 7 8 9 3 4 6 6 5 0 5 9 1 0 " 2 7 .2 9 2 2 1 1 2 9 9 3 2 8 4 5 • 1 0 “ 2
2 0 4 8 5 .5 2 6 7 8 9 3 4 6 6 4 8 8 7 1 0 ~ 2 7 .2 9 2 2 1 1 2 9 9 3 2 8 4 8 1 0 ~ 2

and k  =  1.0 and y =  0.4 and k =  10.0. The results indicate that

|Jtxjv(y)| _ N
----------------  rv  —(V m  -----
SuM(y) | M

where N  ^  M  < 2047.
Table 5 shows the dependence of a  and its standard deviation | A a| on k. By obser

vation, we discover that the rate of convergence a  is independent of the position y and 
is only dependent on the Knudsen number k. For small value of k , i.e., k < 1.0, the
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TABLE 4: The Knudsen number k  dependence of the velocity u (l/2 )  at boundary 
and the channel center velocity derivative u'(0) obtained by the velocity Chebyshev 
expansion with N  =  2047__________________________________________________

k t i ( l / 2 ) u ' ( 0 )
0 .0 0 3 4 .9 7 8 9 1 5 3 5 2 7 8 4 2 7 1 0 - 1 0 .9 9 3 9 3 9 8 0 1 1 0 3 7 5 4
0.01 4 .9 3 0 6 9 7 8 0 7 7 3 9 8 2 1 0 - 1 0 .9 8 0 0 8 1 0 0 1 9 0 8 0 0 9
0 .0 3 4 .8 0 0 0 5 8 6 8 2 7 6 5 1 5 1 0 - 1 0 .9 4 2 5 4 5 5 9 9 8 2 4 7 0 0
0.1 4 .4 1 2 2 4 6 4 0 9 7 2 2 1 7 1 0 ' 1 0 .8 3 5 2 8 5 7 6 5 6 4 7 1 3 3
0 .3 3 .6 7 2 1 2 5 6 9 5 5 0 0 4 3 1 0 - 1 0 .6 6 3 5 3 0 0 7 7 0 2 7 9 4 4
1.0 2 .5 1 8 6 1 3 3 9 9 8 9 4 7 1 1 0 - 1 0 .4 4 4 2 2 8 4 6 9 7 4 6 6 2 5
2 .0 1 .8 5 2 4 6 2 9 9 3 7 4 0 2 1 1 0 " 1 0 .3 2 7 4 7 4 5 7 6 9 3 7 3 5 9
3 .0 1 .5 0 4 2 8 2 4 4 4 9 9 2 0 7 1 0 " A 0 .2 6 7 2 0 7 0 0 5 9 4 0 2 1 2
5 .0 1 .1 2 6 3 5 1 8 8 0 2 9 4 5 9 1 0 " 1 0 .2 0 1 6 9 4 4 3 1 8 1 7 7 7 0
7 .0 9 .1 7 1 6 8 9 6 1 3 5 2 1 4 3 10~'2 0 .1 6 5 2 0 8 6 3 4 7 9 5 6 0 6

1 0 .0 7 .2 9 2 2 1 1 2 9 9 3 2 8 4 8 10~'2 0 .1 3 2 1 9 5 5 7 9 0 5 1 6 9 7

rate of convergence a  increases as k rises. After k > 1.0, a  exceeds 4.0 and remains 
constant. The reason that small values of k converge slightly slower than greater 
values of k is that the Knudsen layer of the Couette flow attenuates as k becomes 
increasingly smaller. Thus many more collocation points near the boundary points 
y = ± 1 /2  are needed to resolve the Knudsen layer as the Knudsen number k ap
proaches to 0. To address the k  dependence on the thickness of the Knudsen layer, we 
focus on the source term of equation (73), | F0(y ,k ) =  |  j/0 — I0
Near the boundary y = ±1/2 , the property of u(y) is mainly determined by the 
behavior of the source term. From the asymptotic property of Abramowitz functions 
In(x)  in Appendix A, we know Iq(x ) is a  fast decaying function as a; is away from 
0. The source term \Fo{y, k) maintains the fast decaying property as y is away from 
±1/2 . However, when k is small, the fast decaying effect is amplified, resulting in 
the attenuation of the Knudsen layer of u(y); when k  is big, the fast decaying effect 
is mitigated, resulting in the thickening of the Knudsen layer of u(y).

TABLE 5: The dependence of the rate of convergence for the velocity u^(y)  on 
the Knudsen number k. The rate of convergence a: and its standard deviation are 
computed by using the least-square method.______ __________ __________

k 0 .0 0 3 0 .0 1 0 .0 3 0 .1 1 .0
a  ±  A q 3 .5 5 5 9  ±  0 .0 8 2 1 3 .7 2 2 9  ±  0 .0 5 8 6 3 .8 6 8 2  ±  0 .0 9 7 8 3 .9 6 6 0  ±  0 .2 4 8 6 4 .1 3 2 5  ±  0 .1 5 6 7

k 2 .0 3 .0 5 .0 7 .0 1 0 .0
a  ±  A a 4 .0 9 4 9  ±  0 .1 5 8 0 4 .0 8 4 4  ±  0 .1 6 6 8 4 .0 7 0 5  ±  0 .1 7 9 3 4 .0 7 0 9  ±  0 .1 8 2 9 4 .0 6 5 1  ±  0 .1 8 8 1
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r O 4=0./. y=0.2 
Least square fitting

4=0.0/, y=0.1 
Least square fitting

10
1 0 ’

1012L
400 8001200400 800120
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k=10.0, y -0 .4  
Least square fitting

k=1.0, y=0.3  
Least square fitting
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.-10

10"

8001200400400 800120
N

FIG. 1: The grid size N  dependence of the relative error of the velocity \5u^(y)\. 
The top row, from left to right: k  =  0.01 at y = 0.1 and k =  0.1 at y = 0.2. The 
bottom row, from left to right: k = 1.0 at y = 0.3 and k =  10.0 at y = 0.4.

We also compute the L 2 error of the velocity upj(y),

[ j - ^ l u N i y )  -  u*(y)\2dy
1/2

, 1 /2

[f-i/2\u*(y)\2dy]

where the reference solution u*{y) is obtained with N  — 2047. The results of | | | | 2
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with k =  0.003,0.01,0.03, 0.1,1.0 and 10.0 are shown in Table 6. The L2 error P u ^ | |2 
shows very weak dependence on k. For various values of 0.003 < k < 10.0, the rate 
of convergence a  >  3. Both the point-wise relative error and the L2 error indicate 
the scheme is of high order.

TABLE 6: The L2 error of the velocity u^(y)  and the rate of convergence a.
k N Pt*AH l2 ...T ...... N II2

16 9 0 7 3 1 5 9 5 6 4 3 1 1 5 9 2 1 0 " 3 16 6 .8 5 0 6 3 8 2 3 3 2 6 2 4 5 8 1 0 “ 3
32 1 .1 7 3 5 9 5 2 9 4 0 6 3 3 6 3 1 0 “ s 32 1 .1 5 8 0 3 4 9 7 9 4 9 7 3 3 9 1 0 - 5

0 .0 0 3
6 4 1 .9 9 8 3 3 2 3 6 5 4 9 4 1 3 9 1 0 “ °

0 .0 1
64 2 .0 4 0 5 1 2 2 6 4 0 7 7 0 9 0 1 0 “ °

128 3 .5 5 5 7 4 8 4 5 8 7 1 9 5 7 8 lO - ' 128 3 .5 8 9 8 8 7 6 8 5 1 6 3 7 8 5 1 0 “  i
25 6 6 .3 1 8 8 0 7 8 9 3 1 4 8 5 7 3 1 0 - 8 256 6 .3 3 6 2 4 3 9 6 4 0 5 7 0 7 2 1 0 “ b
51 2 1 .1 6 7 6 7 5 6 5 2 1 9 6 9 0 7 1 0 - B 51 2 1 .1 6 8 0 3 8 8 1 7 6 0 4 2 2 5 1 0 “ B

1024 2 .3 9 8 1 8 1 5 0 5 5 6 4 0 6 5 i o - y 1024 2 .3 9 6 6 2 1 8 7 2 1 2 7 3 1 9 1 0 “ ^
a 3 .3 5 7 0 a 3 .4 5 8 4

16 6 .9 0 6 3 6 3 1 0 8 6 6 5 6 1 0 1 0 - 5 16 7 .0 2 3 1 6 8 9 4 4 8 7 8 6 5 7 1 0 “ s
32 1 .1 8 6 6 1 6 0 1 0 6 4 7 8 0 7 1 0 - 6 32 1 .1 7 6 7 0 7 4 1 1 5 7 0 7 8 2 1 0 “ b

0 .0 3
6 4 2 .0 5 6 4 3 3 3 9 8 3 2 9 2 6 9 1 0 ~ °

O .l
64 2 .0 1 5 8 5 8 6 6 0 8 2 4 0 1 9 1 0 ” °

128 3 .5 8 8 5 6 4 0 8 1 9 8 1 8 1 3 1 0 “  ' 128 3 .5 0 3 9 7 6 3 6 8 5 6 6 7 9 6 1 0 "  1
25 6 6 .3 1 6 0 3 1 8 6 2 3 9 5 8 0 8 1 0 “ ° 25 6 6 .1 5 9 6 8 5 5 1 8 8 6 2 5 0 6 1 0 “ °
5 1 2 1 .1 6 3 2 9 7 7 1 9 1 3 8 1 6 1 1 0 “ H 51 2 1 .1 3 4 0 9 7 3 8 7 5 7 2 6 2 9 1 0 " H

102 4 2 .3 8 6 1 5 3 2 2 6 1 2 0 7 8 2 1 0 " tf 1024 2 .3 2 5 9 5 1 7 2 9 1 2 7 1 0 7 1 0 - 9
a 3 .4 5 5 4 a 3 .4 4 9 4
16 5 .4 5 5 3 4 8 2 3 4 8 7 8 5 6 3

n1o

16 3 .2 1 7 7 9 8 1 0 3 8 0 9 6 9 2 1 0 " 3
32 8 .9 5 6 1 5 1 5 0 9 5 6 6 8 3 7 1 0 ~ ° 32 5 .2 6 4 7 5 1 8 8 3 7 4 1 9 5 0 1 0 " °

1 .0
64 1 .5 2 4 3 7 2 9 3 7 5 3 3 6 9 9 1 0 “ °

1 0 .0
64 8 .9 5 2 3 3 2 2 5 5 1 8 1 7 9 3 1 0 " '

128 2 .6 4 4 5 1 3 2 8 3 1 1 7 0 7 9 1 0 “ ' 128 1 .5 5 2 6 5 8 6 6 2 7 8 4 4 0 6 1 0 " '
2 5 6 4 .6 4 6 1 8 9 8 9 0 0 7 3 8 4 9 1 0 “ b 25 6 2 .7 2 7 6 9 2 0 2 0 4 7 5 3 0 5 1 0 " *
5 1 2 8 .5 5 3 0 0 6 3 7 1 5 5 8 0 8 1 1 0 - y 51 2 5 .0 2 1 2 1 0 2 7 2 4 5 9 9 4 7 1 0 " y

102 4 1 .7 5 4 0 6 5 7 2 9 7 9 6 4 8 1 1 0 “ y 1024 1 .0 2 9 7 5 2 1 6 5 2 8 4 9 5 8 i o _ y
Ck 3 .5 4 0 5 a 3 .7 3 0 9

The accurate solution of u^{y)  enables one to obtain accurate shear stress Txy and 
the upper half channel mass flow rate Q. Corresponding to the present case: steady 
Couette flow problem with pure diffusive boundary condition, we set in equation 
(33) equal to 0 and use the antisymmetric property of u(y) to obtain

r-  = - * " 1/2 I / '  /o( £ ) “(s)ds+/ iQ t (92)

Substituting u^(s)  for u(s) in equation (92), the shear stress Txy is computed with 
2048f/l order Gauss-Legendre quadrature and N  =  2047 for various values of 0.003 < 
k < 10.0. When k  oo, Txy -> «  -0.282094792; when k 0+, Txy -» 0.
The upper half channel mass flow rate is define by

f l / 2

Q =  u(y) dy. (93)
Jo

With the Chebyshev expansion of u(y) given by equation (81), the upper half channel
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TABLE 7: The dependence of the stress Txy and the upper half channel mass flow 
rate Q on the Knudsen number k___________________________________________

k Q
0 .0 0 3 -1 .4 9 0 9 0 9 7 0 2 1 7 3 2 6 3 1 0 “ J 1 .2 4 2 4 4 5 6 5 5 3 5 8 9 7 8 1 0 ” 1
0 .0 1 -4 .9 0 0 4 0 5 0 0 9 6 6 8 5 0 0 i o ~ y 1 .2 2 5 3 3 0 2 7 5 2 9 4 3 9 6 1 0 ” 1
0 .0 3 -1 .4 1 3 7 9 8 6 0 1 5 1 7 4 4 7 1 0 “ 2 1 .1 8 0 1 4 7 0 3 7 1 8 5 8 6 1 1 0 ” 1
0 .1 -4 .1 5 5 6 0 7 7 8 2 5 5 9 2 1 7 10~J 1 .0 5 7 0 2 8 4 0 8 1 7 2 3 1 0 1 0 ” 1
0 .3 - 9 .3 4 4 9 8 3 5 1 1356 9 9 3 1 0 “ * 8 .5 6 0 1 1 1 6 9 9 8 2 0 6 4 1 1 0 “ *
1.0 -1 .6 9 4 6 2 5 7 5 3 3 6 8 2 3 5 1 0 - i 5 .8 0 4 7 0 8 7 3 5 5 5 5 4 2 4 1 0 “ *
2 .0 -2 .0 8 3 3 2 2 5 3 6 7 4 9 3 7 8 1 0 ” * 4 .2 8 1 6 5 9 7 7 6 1 1 3 9 0 0 1 0 “ *
3 .0 - 2 .2 6 6 4 3 7 4 9 7 6 5 8 0 8 6 1 0 - i 3 .4 8 9 2 9 8 5 0 6 1 9 0 7 9 7 1 0 ” *
5 .0 -2 .4 4 6 6 3 2 6 7 8 4 5 5 9 9 5 1 0 “ l 2 .6 2 7 0 4 2 0 6 0 9 6 7 3 7 2 1 0 ” *
7 .0 -2 .5 3 6 9 4 3 5 3 9 6 7 4 4 8 0 1 0 - 1 2 .1 4 7 4 6 0 4 1 2 3 3 0 8 2 4 1 0 ” *

1 0 .0 -2 .6 1 1 6 2 4 6 0 3 4 8 8 4 0 5 1 0 ” 1 1 .7 1 4 4 4 9 0 4 8 5 9 0 6 3 6 1 0 - l i

mass flow rate is approximated by

N* f \ c 06 477 f w/2
Q = y Z c 2j- i  /  T2j- i { y ) d y + Y \ c 2j- i  /  T2j_

j = l  1 5 COS 4W
. ( y )dy

=l ( c“ ^ + i ) + l ( 1 -  008^ )
1 A  

+  * 2 ^ '
i=2
AM-l

c o s & - ( - i ) '  , c - i y - 1----------- ;------------ j------- COS UzlllL 
2 N

+ 5  E  <%-*
3 = 2

cos J7T
2JV +

COS f a '- lb r
2 N

j  ~  1 

l"
1

Table 7 shows the approximated values of Txy and Q. The results in the table are 
consistent with the most recent and accurate results for steady Couette flow with 
purely diffusive boundary condition. Meanwhile, our results are more accurate, with 
at least 11 digits of accuracy.

3.2 SOLVING INTEGRAL EQUATION FOR THE COUETTE FLOW 
PROBLEM WITH CHUNK BASED COLLOCATION METHOD

In this section, we solve the steady Couette flow problem with purely diffusive 
boundary condition and the combined diffusive and speculative reflection boundary 
condition and Knudsen number k  with chunk based collocation method. First, we 
reconsider equation (72) for the case of purely diffusive boundary condition. The 
integration interval [—1/2,1/2] is decomposed into N  disjoint subintervals L)f=lEj. 
On each of the subinterval Ej —  [yj-uVj] C [y0, V n ] =  [-1 /2 ,1 /2 ], 0  =  1 ,2 ,- -- , TV),
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u(y) is approximated by a (M — l) t/l order expansion of scaled and shifted Gauss- 
Legendre polynomials with support E j ,

uN(y) =  { ^ m = i cj,mLj,m-i{y),  y £ Ej ^
3 \  0, y i  Ej ,

where is the scaled and shifted (m — l) (h order Gauss-Legendre polynomial
on the subinterval Ej and m is the expansion coefficient with respect to L j m^ l (y).
Let Lm(y) be the rnth order Gauss-Legendre polynomial, Lj m(y) is written as

Lj,m(y) =  Lm ( — — ^ \  , y £ [yj-i,yj].
\  Vj Vj-1 /

Hence, the velocity u(y) on the whole interval [—1/2,1/2] is approximated by

uN(y) =  f x t w ) ,  V € [-1 /2 ,1 /2], (95)
j =1

We substitute equation (95) into equation (72) and use equation (94) to obtain

/  r - 1 ( ^ )  =  k ) , y e E t.
j=l m= 1 J ej \  '

(96)
Let {xm|l < m  < M } be the set of M th order Gauss-Legendre abscissas. Then, 
{yj,m\yj,m = Vj- 1  +  {xm + 1)(% -  Vj-1)/2, 1 < m  < M }  is the set of M t/l order scaled 
and shifted Gauss-Legendre abscissas on the subinterval Ej. We choose {yj,m}m=1 38 
the collocation point set on E3 and denote by uJiTn = u^{yj^m) the (M  — l ) i/l degree 
approximation of u(y) on this collocation point set. According to the linear relation 
between {cjjm}£f=1 an(i  {%,m}m=i *n Appendix C, i.e., Cj = Puj,  where Cj and Uj 
are M-tuple column vectors with entries, cJim and Uj<m, respectively, equation (96) 
can be written as

1 N 1 
“ I 'M  -  ^72  E  *)> » 6  E"  <97>

j=i

where ^ j ( y )  is an M-tuple column vector with entries

*J,m ( y )  =  J  J  1-1 ( ■ —— — )  L j d s ,  m  =  1 , 2 ,  • • ■ , M. (98)

We plug y =  yt,n with n =  1,2, • • • , M, into equation (97), respectively, to obtain a 
linear system of M  equations for Uj. To simplify the form of the linear system, we
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denote an M  x M  matrix Wjti by

V j *  =  1) * j ( y i , 2 ) ■ • •

and an M-tuple column vector, FQ i , by

-Fo,« =  (F0(yi,i,k) FQ(yit2,k) ■■■ F0(yiM ,k))T.

Then, the linear system reads

=  ^ i w -  < ")
j = 1

Now we focus on the matrix Wj i. The m th row and nth column entry reads,

entm„ =  i  i> ,m -i(s) ds

Io +  ( - i r / o  (ESatJU=l) _  / £ _  /o (* * = ;)  £' m_ ,( s ) da, j  <  i,

sr1'2^ ,™ -,(]*,„) +  ( - l ) m/o -  /o
-  ( “ IF*) LU - . M  +  £  M t ) i U - . ( s )  ds, i  =  i,

( - i r +>/„ - /0 (20^ )  +  / £ , / „  F f ^ )  i ' , „ - , ( * )  ds, ; > i .

From Appendix C, we observe that the m th row and nth column entry of the inverse 
matrix Q  =  P~l is Ti,n-i(yi,m)- Hence, the matrix can be decomposed as

Wjti = n1/2SijQT - 0 F .  ( 100)
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The m th row and nth column entry of 0 tJ reads,

entmn j

=
( - l ) n+1/0 ( - ^ — ) +  la i 1* ^ )

+ C;7 Jo (! iUW  ds - /vt 7° ( ^ )  LU-^) ds,

 ̂ ( i)n/ 0 ( » = ^ ) + io -  /*_ , h  ( s- ^ r )  L'jtn_x(3) dS, j  > i,

- h  +  ( - l ) n+1/o ( y'-'m-kyL~K) +  Io ( ^ T ^ )  L'n-i(s) ds, j  < i,

( - 1  )n+1/ 0 (Vi"n̂ 1) +  Io (—f^ )
+  /-T  Io ( * ^ 1 ^ 1 )  L ' n - l ( s )  ds -  f l  Io ( ^ T l ^ l )  L ' ^ 8 )  ds, 

(_ l)n /0 ( V - l p * ) + Io i ^ f ^ )  - J ^ l o ( ^ r ^ )  ^ - i ( s )  ds,

where \Ej\ = y3 -  %_!, yJ>a =  i/,_i +  ^ | ^ | -  
Substituting equation (100) into equation (99), we obtain

N

^ 2  QijPuj  =  Fo,i/2- 
j=i

Equation (102) is equivalent to the linear system

A u  =  F ,

where
/  0 U P 01 )2P ••• 0 1 ,n P  \

A =
02,1 P 02,2 P

l,Nl
02,n P

\  ^ N , l P  0N,2P • • 0N, n P  /
/  T  T  T  \ TU = (U[U12 ■■■ UN) ,

3 = * ,

j  >  i- 
( 101)

( 102)

(103)

and
  ^ / r ,T  jtiT  piT \T

— jj'- °>J °-2 ’ ’ ’ 0 , ^  '



To compute A  and F  precisely, one needs to evaluate the Abramowitz function of 
order 0 with high precision. Again, we use Maeleod’s [1] method of Chebyshev ex
pansion. Meanwhile, one needs evaluate the four integrals in equation (101) with 
equally high precision. This is much easier to implement here than to do in the 
Chebyshev collocation method. Unlike approximating u(y) on the whole interval 
[—1/2,1/2], now u(y) is approximated on the subintervals by using much lower de
gree of piece-wise polynomials, i.e., we use M  = 10 and on each of the subintervals. 
u(y) is approximated by a 9th degree polynomial. In order to evaluate <t>l3, we use 
adaptive Gauss-Legendre quadrature with absolute tolerance e =  10~33 to compute 
the four integrals in equation (101). As the kernel of the adaptive quadrature, we use 
16th order Gauss-Legendre quadrature. The details about evaluating the abscissas 
and weights are listed in Appendix D.
The division of the interval [—1/2,1/2] into subintervals is another crux of the chunk 
based collocation method. Recalling from Appendix B that u'(x) doesn’t exist at 
boundaries ±1, one needs to adopt refined subintervals at the boundaries, in order 
to mitigate the influence of the boundary singularity. Actually, we use A /2 uniform 
subintervals in the middle of [—1/2,1/2] and gradually halve the length of subin
tervals on the two lateral directions. Specifically, when j  < A/4, the subinterval is 
Ej = [yj-1, y3] with y3 =  y3- i  +  2j ~1~ T / (N/2 + 2 £ 2 ?  2- i ); when A /4 < j <  3A/4, 
the subinterval is Ej =  [yj-i,y3\ with y3 =  yj_i +  l / (A /2 + 2  Ylnli 2~l); when 3A/4 < 
j  <  A, the subinterval is E 3 =  [y3-\,  y3] with y3 = y,_i +  2j ~ ^ / (A/2 -I- 2 2~l)>
where 1 < j  <  A, yQ = -1 /2 , yN =  1/2.
Numerically, we solve equation (103) for the Couette flow with the same range of 
Knudsen number A; as we do in Chebyshev collocation method, i.e., 0.003 < k < 10.0. 
We use quadruple precision to ensure accuracy. Meanwhile, we vary the order of 
equation (103) by changing A  with 40 < A  <  320, to  ensure the convergence of 
the results. Table 8 and Table 9 give the value of u(y) at y =  0.1,0.2,0.3,0.4 and 
0.5 for various values of k  and A. As in the Chebyshev collocation method, we also 
have u = 0 at the channel center, for all values of k. When A  =  320, the results 
of u(y) in Table 8 and Table 9 are accurate for at least 13 significant digits. From 
equation (94) and equation (95) the derivative of velocity at channel center u'(0) is 
approximated by
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TABLE 8: The values of the approximated velocity u N ( y ) of the Couette flow at
y  =  0.1,0.2 and 0.3, for 0.003 < k  <  10.0 and 40 < N  <  320__________

y 0 .1  } 0 -2  j 0 .3
N k  =  0 .0 0 3
40
80

160
32 0

9 .9 3 9 3 9 8 0 1 3 5 7 7 0 5 8  1 0 ” 2 
9 .9 3 9 3 9 8 0 1 4 2 0 2 0 1 0  1 0 ” 2 
9 .9 3 9 3 9 8 0 1 4 2 0 7 1 6 1  • 1 0 ” 2 
9 .9 3 9 3 9 8 0 1 4 2 0 7 8 8 5  • 1 0 " 2

1 .9 8 7 8 7 9 6 0 2 7 1 5 4 1 2  • 1 0 —1 
1 .9 8 7 8 7 9 6 0 2 8 4 0 4 0 2  • 1 0 “ 1 
1 .9 8 7 8 7 9 6 0 2 8 4 1 4 3 2  • 1 0 " 1 
1 .9 8 7 8 7 9 6 0 2 8 4 1 5 7 7  • 1 0 ' 1

2 .9 8 1 8 1 9 4 0 4 0 7 3 1 4 0  • 1 0 ” 1 
2 .9 8 1 8 1 9 4 0 4 2 6 0 6 2 5  1 0 ” 1 
2 .9 8 1 8 1 9 4 0 4 2 6 2 1 7 1  • 1 0 " 1 
2 .9 8 1 8 1 9 4 0 4 2 6 2 3 8 8  • 1 0 ” 1

N k  -  0 .0 1
40
8 0

160
32 0

9 .8 0 0 8 1 0 0 2 2 0 9 9 0 1 7  1 0 " 2 
9 .8 0 0 8 1 0 0 2 2 2 8 0 4 9 7  • 1 0 " 2 
9 .8 0 0 8 1 0 0 2 2 2 8 0 9 0 1  1 0 " 2 
9 .8 0 0 8 1 0 0 2 2 2 8 0 9 4 4  1 0 " 2

1 .9 6 0 1 6 2 0 1 3 3 8 3 5 8 2  • 1 0 - i  
1 .9 6 0 1 6 2 0 1 3 4 1 9 8 7 8  • 1 0 - 1  
1 .9 6 0 1 6 2 0 1 3 4 1 9 9 5 9  ■ IO- 1  
1 .9 6 0 1 6 2 0 1 3 4 1 9 9 6 7  • IO- 1

2 .9 4 0 2 4 3 4 2 6 3 4 3 8 8 9  1 0 ” 1 
2 .9 4 0 2 4 3 4 2 6 3 9 8 3 3 3  ■ 1 0 " 1 
2 .9 4 0 2 4 3 4 2 6 3 9 8 4 5 4  • IO” 1 
2 .9 4 0 2 4 3 4 2 6 3 9 8 4 6 7  1 0 ” 1

N k  =  0 .0 3
40
8 0

160
32 0

9 .4 2 5 5 1 0 2 3 3 6 5 3 7 4 2  • 1 0 " 2 
9 .4 2 5 5 1 0 2 3 3 7 0 8 9 6 1  • 1 0 ” 2 
9 .4 2 5 5 1 0 2 3 3 7 0 8 9 8 9  • IO- 2  
9 .4 2 5 5 1 0 2 3 3 7 0 8 9 9 2  • 1 0 " 2

1 .8 8 5 1 5 5 9 6 5 1 0 3 9 9 6  • 1 0 - 1  
1 .8 8 5 1 5 5 9 6 5 1 1 5 0 4 3  • I O ' 1
1 .8 8 5 1 5 5 9 6 5 1 1 5 0 4 9  • I O ' 1
1 .8 8 5 1 5 5 9 6 5 1 1 5 0 4 9  • IO” 1

2 .8 2 8 0 8 4 7 1 7 7 7 5 7 7 7  1 0 ” 1 
2 .8 2 8 0 8 4 7 1 7 7 9 2 3 7 1  ■ 1 0 ” 1
2 .8 2 8 0 8 4 7 1 7 7 9 2 3 7 9  1 0 ” 1
2 .8 2 8 0 8 4 7 1 7 7 9 2 3 8 0  1 0 ” 1

N fc =  0 .1
40
8 0

160
32 0

8 .3 5 6 1 0 4 0 2 9 4 1 2 2 4 4  • 1 0 " 2
8 .3 5 6 1 0 4 0 2 9 4 2 5 4 2 3  1 0 " 2 
8 -3 5 6 1 0 4 0 2 9 4 2 5 4 2 4  • 1 0 " 2
8 .3 5 6 1 0 4 0 2 9 4 2 5 4 2 4  • 1 0 " 2

1 .6 7 3 4 9 0 5 0 2 3 1 0 8 4 7  I O " 1
1 .6 7 3 4 9 0 5 0 2 3 1 3 5 0 4  • 1 0 “ 1
1 .6 7 3 4 9 0 5 0 2 3 1 3 5 0 4  - 1 0 ” 1
1 .6 7 3 4 9 0 5 0 2 3 1 3 5 0 5  ■ 1 0 ” 1

2 .5 1 8 1 0 8 0 7 1 0 1 8 3 7 7  • 1 0 “ 1
2 .5 1 8 1 0 8 0 7 1 0 2 2 4 4 6  • 1 0 ” 1
2 .5 1 8 1 0 8 0 7 1 0 2 2 4 4 6  • 1 0 ” 1
2 .5 1 8 1 0 8 0 7 1 0 2 2 4 4 6  • IO " 1

N k  =  0 .3
40
80

160
320

6 .6 4 5 4 3 0 0 6 9 4 9 0 8 9 6  • 1 0 " 2 
6  6 4 5 4 3 0 0 6 9 4 9 3 9 2 7  ■ 1 0 “ 2
6 .6 4 5 4 3 0 0 6 9 4 9 3 9 2 7  • 1 0 - 2
6 .6 4 5 4 3 0 0 6 9 4 9 3 9 2 7  • 1 0 ~ 2

1 .3 3 5 7 0 9 5 0 9 4 7 8 6 3 2  • 1 0 ” 1
1 .3 3 5 7 0 9 5 0 9 4 7 9 2 5 3  • 1 0 “ 1
1 .3 3 5 7 0 9 5 0 9 4 7 9 2 5 3  • 1 0 ” 1
1 .3 3 5 7 0 9 5 0 9 4 7 9 2 5 3  • 1 0 ” 1

2 .0 2 3 6 0 7 2 3 3 3 9 7 8 2 1  • IO” 1
2 .0 2 3 6 0 7 2 3 3 3 9 8 8 0 4  ■ 1 0 " 1
2 .0 2 3 6 0 7 2 3 3 3 9 8 8 0 4  • 1 0 ” 1
2 .0 2 3 6 0 7 2 3 3 3 9 8 8 0 4  • 1 0 ” 1

N k  s  1 .0
4 0
8 0

160
3 2 0

4 .4 5 3 1 9 4 1 1 5 2 1 1 6 7 0  • 1 0 ~ 2
4 .4 5 3 1 9 4 1 1 5 2 1 2 1 7 1  • 1 0 ~ 2
4 .4 5 3 1 9 4 1 1 5 2 1 2 1 7 1  • IO- 2
4 .4 5 3 1 9 4 1 1 5 2 1 2 1 7 1  • 1 0 - 2

8 .9 7 6 2 9 0 0 0 5 9 5 6 7 7 5  • 1 0 ” 2
8 .9 7 6 2 9 0 0 0 5 9 5 7 8 1 4  • 1 0 “ 2
8 .9 7 6 2 9 0 0 0 5 9 5 7 8 1 4  - 1 0 ” 2
8 .9 7 6 2 9 0 0 0 5 9 5 7 8 1 4  • IO” 2

1 .3 6 6 6 9 1 8 0 6 9 1 6 4 2 9  1 0 “ *
1 .3 6 6 6 9 1 8 0 6 9 1 6 5 9 7  • IO” 1
1 .3 6 6 6 9 1 8 0 6 9 1 6 5 9 7  I O " 1
1 .3 6 6 6 9 1 8 0 6 9 1 6 5 9 7  • 1 0 ” 1

N k  =  2 .0
4 0
8 0

160
3 2 0

3 .2 8 3 1 7 5 1 0 1 3 6 4 3 4 4  • 1 0 - 2
3 .2 8 3 1 7 5 1 0 1 3 6 4 5 0 4  • 1 0 - 2  
3 -2 8 3 1 7 5 1 0 1 3 6 4 5 0 4  ■ 1 0 " 2
3 .2 8 3 1 7 5 1 0 1 3 6 4 5 0 4  • 1 0 “ 2

6 .6 2 0 0 8 0 8 6 6 8 0 4 1 7 1  • 1 0 ” 2
6 .6 2 0 0 8 0 8 6 6 8 0 4 5 0 5  - IO” 2
6 .6 2 0 0 8 0 8 6 6 8 0 4 5 0 5  ■ 1 0 “ 2
6 .6 2 0 0 8 0 8 6 6 8 0 4 5 0 5  • 1 0 “ 2

1 .0 0 8 3 9 9 3 4 0 2 2 4 6 0 1  • 1 0 ” 1
1 .0 0 8 3 9 9 3 4 0 2 2 4 6 5 5  • IO” 1
1 .0 0 8 3 9 9 3 4 0 2 2 4 6 5 5  ■ 1 0 " 1
1 .0 0 8 3 9 9 3 4 0 2 2 4 6 5 5  • 1 0 " 1

N k  =  3 .0
4 0
8 0

160
3 2 0

2 .6 7 8 8 4 2 2 5 0 7 1 7 5 6 0  • 1 0 - 2
2 .6 7 8 8 4 2 2 5 0 7 1 7 6 4 0  ■ 1 0 “ 2
2 .6 7 8 8 4 2 2 5 0 7 1 7 6 4 0  • 1 0 “ 2
2 .6 7 8 8 4 2 2 5 0 7 1 7 6 4 0  • 1 0 ~ 2

5 .4 0 0 7 6 1 3 0 2 3 4 1 3 2 1  • 1 0 “ 2
5 .4 0 0 7 6 1 3 0 2 3 4 1 4 8 7  • IO” 2
5 .4 0 0 7 6 1 3 0 2 3 4 1 4 8 7  • IO” 2
5 .4 0 0 7 6 1 3 0 2 3 4 1 4 8 7  • 1 0 " 2

8 .2 2 3 9 3 1 9 0 0 1 9 9 4 9 2  • IO " 2
8 .2 2 3 9 3 1 9 0 0 1 9 9 7 6 7  ■ IO " 2
8 .2 2 3 9 3 1 9 0 0 1 9 9 7 6 7  • 1 0 " 3
8 .2 2 3 9 3 1 9 0 0 1 9 9 7 6 7  • IO” 2

N k  =  5 .0
4 0
80

160
3 2 0

2 .0 2 1 8 1 0 3 5 0 6 1 2 6 4 8  • 1 0 ” 2
2 .0 2 1 8 1 0 3 5 0 6 1 2 6 8 0  • 1 0 “ 2
2 .0 2 1 8 1 0 3 5 0 6 1 2 6 8 0  • 1 0 “ 2
2 .0 2 1 8 1 0 3 5 0 6 1 2 6 8 0  • 1 0 ~ 2

4 .0 7 4 5 1 0 5 4 9 5 1 4 7 8 3  - 1 0 " 2
4 .0 7 4 5 1 0 5 4 9 5 1 4 8 5 0  • IO” 2
4 .0 7 4 5 1 0 5 4 9 5 1 4 8 5 0  • IO” 2
4 .0 7 4 5 1 0 5 4 9 5 1 4 8 5 0  • IO” 2

6 .1 9 9 4 2 7 0 3 9 0 7 3 2 2 1  • IO” 2
6 .1 9 9 4 2 7 0 3 9 0 7 3 3 3 2  • 1 0 " 2
6 .1 9 9 4 2 7 0 3 9 0 7 3 3 3 2  - 1 0 “ 2
6 .1 9 9 4 2 7 0 3 9 0 7 3 3 3 2  • 1 0 " 2

N k  =  7 .0
4 0
8 0

160
320

1 .6 5 5 8 9 6 1 4 0 0 5 4 8 2 8  • 1 0 ~ 2
1 .6 5 5 8 9 6 1 4 0 0 5 4 8 4 6  - 1 0 - 2
1 .6 5 5 8 9 6 1 4 0 0 5 4 8 4 6  • 1 0 * 2
1 .6 5 5 8 9 6 1 4 0 0 5 4 8 4 6  • 1 0 ~ 2

3 .3 3 5 9 5 2 2 2 2 8 8 7 4 6 8  • 1 0 ” 2
3 .3 3 5 9 5 2 2 2 2 8 8 7 5 0 4  • IO- 2
3 .3 3 5 9 5 2 2 2 2 8 8 7 5 0 4  - IO” 2
3 .3 3 5 9 5 2 2 2 2 8 8 7 5 0 4  ■ IO " 2

5 .0 7 2 3 3 5 8 2 3 6 5 7 2 6 7  • IO " 2
5 .0 7 2 3 3 5 8 2 3 6 5 7 3 2 8  1 0 ” 2
5 .0 7 2 3 3 5 8 2 3 6 5 7 3 2 8  • 1 0 " 2
5 .0 7 2 3 3 5 8 2 3 6 5 7 3 2 8  IO " 2

N k  =  1 0 .0
4 0
8 0

160
32 0

1 .3 2 4 8 4 0 0 5 4 2 1 3 3 6 1  • 1 0 “ 2
1 .3 2 4 8 4 0 0 5 4 2 1 3 3 7 0  • IO- 2
1 .3 2 4 8 4 0 0 5 4 2 1 3 3 7 0  ■ IO- 2
1 .3 2 4 8 4 0 0 5 4 2 1 3 3 7 0  • 1 0 “ 2

2 .6 6 7 9 5 4 5 7 5 3 7 9 3 9 5  • 1 0 ~ 2
2 .6 6 7 9 5 4 5 7 5 3 7 9 4 1 4  • IO” 2
2 .6 6 7 9 5 4 5 7 5 3 7 9 4 1 4  • IO” 2
2 .6 6 7 9 5 4 5 7 5 3 7 9 4 1 4  • 1 0 “ 2

4 .0 5 3 5 7 4 0 3 2 1 3 1 3 5 2  • 1 0 “ 2
4 .0 5 3 5 7 4 0 3 2 1 3 1 3 8 3  • 1 0 " 2
4 .0 5 3 5 7 4 0 3 2 1 3 1 3 8 3  • IO” 2
4 .0 5 3 5 7 4 0 3 2 1 3 1 3 8 3  • 1 0 ” 2

Table 10 gives the boundary velocity uN( 1/2) and the channel center velocity deriva
tive for various values of k  with N  = 320.
We compute the local relative error of the velocity u(y) at a  specific location y and 

a given value of k,
ir Nr m \uN( y ) ~ u*(y)\

(y) =  J n rrT i ’1 M */)l
where the reference solution is obtained with N  = 320. We compute |5u^(2/)| at
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TABLE 9: The values of the approximated velocity u N ( y ) of the Couette flow at
y  =  0.4 and 0.5, for 0.003 < k <  10.0 and 40 < N  <  320_____

y 0 .4 0 .5
N k =  0 .0 0 3
40 3 .9 7 5 7 5 9 2 0 6 3 1 8 9 7 7 1 0 ” 1 4 .9 7 8 9 1 0 3 6 1 0 3 2 0 4 7 IO- 1
80 3 .9 7 5 7 5 9 2 0 6 5 6 8 9 6 1 1 0 “ l 4 .9 7 8 9 1 5 3 5 0 2 3 2 5 2 2 1 0 - 1

160 3 .9 7 5 7 5 9 2 0 6 5 7 1 0 2 1 1 0 ” 1 4 .9 7 8 9 1 5 3 5 2 7 8 9 6 7 5 1 0 ” 1
32 0 3 .9 7 5 7 5 9 2 0 6 5 7 1 3 1 1 1 0 _ l 4 .9 7 8 9 1 5 3 5 2 7 8 9 7 1 5 1 0 ” 1
N k  = 0 .01
40 3 .9 2 0 3 5 5 7 1 9 9 5 0 5 9 9 1 0 _ I 4 .9 3 0 6 9 2 8 8 1 0 6 5 8 7 4 1 0 - 1

80 3 .9 2 0 3 5 5 7 2 0 0 2 3 0 3 7 1 0 " 1 4 .9 3 0 6 9 7 8 0 5 2 2 0 8 1 9 1 0 “ 1
160 3 .9 2 0 3 5 5 7 2 0 0 2 3 1 9 8 1 0 “  1 4 .9 3 0 6 9 7 8 0 7 7 4 2 2 0 4 IO” 1
32 0 3 .9 2 0 3 5 5 7 2 0 0 2 3 2 1 5 IO” 1 4 .9 3 0 6 9 7 8 0 7 7 4 2 2 1 1 1 0 “ 1
A/ k  = 0 .0 3
40 3 .7 7 3 5 2 5 6 0 9 0 0 7 8 2 2 1 0 ”  * 4 .8 0 0 0 5 3 9 4 3 4 2 1 7 7 2 IO” 1
8 0 3 .7 7 3 5 2 5 6 0 9 0 2 9 7 5 3 1 0 - 1 4 .8 0 0 0 5 8 6 8 0 3 4 2 0 6 7 IO” 1

160 3 .7 7 3 5 2 5 6 0 9 0 2 9 7 6 3 1 0 ” 1 4 .8 0 0 0 5 8 6 8 2 7 6 6 8 2 7 IO” 1
32 0 3 .7 7 3 5 2 5 6 0 9 0 2 9 7 6 4 1 0 ” 1 4 .8 0 0 0 5 8 6 8 2 7 6 6 8 2 9 10 ” 1
w fc = 0 .1
40 3 .3 8 3 6 8 4 0 6 0 7 2 4 6 5 6 1 0 ”  1 4 .4 1 2 2 4 2 2 2 9 6 5 5 2 5 2 1 0 _ i
80 3 .3 8 3 6 8 4 0 6 0 7 2 9 8 9 7 1 0 ” 1 4 .4 1 2 2 4 6 4 0 7 5 8 4 0 5 4 IO” 1

160 3 .3 8 3 6 8 4 0 6 0 7 2 9 8 9 7 1 0 - 1 4 .4 1 2 2 4 6 4 0 9 7 2 2 4 2 0 IO” 1
32 0 3 .3 8 3 6 8 4 0 6 0 7 2 9 8 9 7 1 0 - 1 4 .4 1 2 2 4 6 4 0 9 7 2 2 4 2 1 IO” 1

N  . ..
fc = 0 .3

40 2 .7 5 1 7 0 6 6 9 3 5 8 9 8 8 9 1 0 ” 1 3 .6 7 2 1 2 2 5 4 7 4 6 3 3 2 8 IO” 1
80 2 .7 5 1 7 0 6 6 9 3 5 9 0 9 0 8 1 0 _ l 3 .6 7 2 1 2 5 6 9 3 8 9 0 1 4 5 IO” 1

160 2 .7 5 1 7 0 6 6 9 3 5 9 0 9 0 6 1 0 ” 1 3 .6 7 2 1 2 5 6 9 5 5 0 0 5 0 3 IO- 1
320 2 .7 5 1 7 0 6 6 9 3 5 9 0 9 0 6 1 0 ” 1 3 .6 7 2 1 2 5 6 9 5 5 0 0 5 0 4 IO” 1
N fc = 1 .0
4 0 1 .8 7 2 3 3 6 4 2 9 9 7 5 7 7 5 1 0 - 1 2 .5 1 8 6 1 1 6 3 5 0 5 6 9 8 0 IO” 1
8 0 1 .8 7 2 3 3 6 4 2 9 9 7 5 7 6 1 1 0 ” 1 2 .5 1 8 6 1 3 3 9 8 9 9 1 9 5 4 IO” 1

160 1 .8 7 2 3 3 6 4 2 9 9 7 5 7 6 0 1 0 ” 1 2 .5 1 8 6 1 3 3 9 9 8 9 4 7 3 2 IO” 1
3 2 0 1 .8 7 2 3 3 6 4 2 9 9 7 5 7 6 0 1 0 ” 1 2 .5 1 8 6 1 3 3 9 9 8 9 4 7 3 2 IO” 1
N fc = 2 .0
4 0 1 .3 8 1 7 9 7 1 0 1 4 0 9 7 5 5 1 0 ” 1 1 .8 5 2 4 6 1 8 7 4 4 2 4 3 9 2 1 0 ” *
8 0 1 .3 8 1 7 9 7 1 0 1 4 0 9 6 6 3 1 0 ” 1 1 .8 5 2 4 6 2 9 9 3 1 6 7 6 4 9 1 0 ” 1

160 1 .3 8 1 7 9 7 1 0 1 4 0 9 6 6 2 1 0 ” 1 1 .8 5 2 4 6 2 9 9 3 7 4 0 2 1 8 IO” 1
3 2 0 1 .3 8 1 7 9 7 1 0 1 4 0 9 6 6 2 1 0 ” 1 1 .8 5 2 4 6 2 9 9 3 7 4 0 2 1 8 IO” 1
N fc = 3 .0
40 1 .1 2 6 0 0 6 4 5 4 3 9 0 5 5 1 1 0 _ i 1 .5 0 4 2 8 1 6 1 6 2 3 4 7 5 1 1 0 ” A
80 1 .1 2 6 0 0 6 4 5 4 3 9 0 4 6 1 i o - 1 1 .5 0 4 2 8 2 4 4 4 5 6 8 1 3 7 IO” 1

160 1 .1 2 6 0 0 6 4 5 4 3 9 0 4 6 0 1 0 ” 1 1 .5 0 4 2 8 2 4 4 4 9 9 2 0 7 4 1 0 “ l
3 2 0 1 .1 2 6 0 0 6 4 5 4 3 9 0 4 6 0 1 0 ” 1 1 .5 0 4 2 8 2 4 4 4 9 9 2 0 7 5 IO” 1
N fc = 5 .0
40 8 .4 7 4 6 5 5 7 8 2 8 5 2 5 6 2 IQ- '2 1 .1 2 6 3 5 1 3 2 9 2 8 0 2 8 1 IO” 1
80 8 .4 7 4 6 5 5 7 8 2 8 5 1 8 4 4 1 0 “ 2 1 .1 2 6 3 5 1 8 8 0 0 1 2 7 2 9 IO” 1

160 8 .4 7 4 6 5 5 7 8 2 8 5 1 8 4 2 1 0 “ 2 1 .1 2 6 3 5 1 8 8 0 2 9 4 5 9 2 IO” 1
3 2 0 8 .4 7 4 6 5 5 7 8 2 8 5 1 8 4 2 I Q -2 1 .1 2 6 3 5 1 8 8 0 2 9 4 5 9 2 1 0 - 1

N fc = 7 .0
4 0 6 .9 2 5 3 3 6 2 4 0 1 7 7 2 4 1 IO " 2 9 .1 7 1 6 8 5 4 6 5 1 6 3 0 4 6 1 0 ” ^
8 0 6 .9 2 5 3 3 6 2 4 0 1 7 6 6 6 2 IO- 2 9 .1 7 1 6 8 9 6 1 1 3 9 9 4 1 2 1 0 ” 2

160 6 .9 2 5 3 3 6 2 4 0 1 7 6 6 6 1 1 0 ” 2 9 .1 7 1 6 8 9 6 1 3 5 2 1 4 3 4 1 0 “ 2
3 2 0 6 .9 2 5 3 3 6 2 4 0 1 7 6 6 6 1 IO- 2 9 .1 7 1 6 8 9 6 1 3 5 2 1 4 3 5 1 0 “ 2
N fc = 1 0 .0
4 0 5 .5 2 6 7 8 9 3 4 6 6 4 9 2 9 8 1 0 “ a 7 .2 9 2 2 0 8 2 6 1 8 0 1 6 1 1 1 0 - 2

8 0 5 .5 2 6 7 8 9 3 4 6 6 4 8 8 5 2 1 0 “ 2 7 .2 9 2 2 1 1 2 9 7 7 7 4 7 0 0 IO " 2
160 5 .5 2 6 7 8 9 3 4 6 6 4 8 8 5 1 IO- 2 7 .2 9 2 2 1 1 2 9 9 3 2 8 4 9 5 1 0 ” 2
32 0 5 .5 2 6 7 8 9 3 4 6 6 4 8 8 5 1 1 0 “ 2 7 .2 9 2 2 1 1 2 9 9 3 2 8 4 9 6 1 0 “ 2

y = 0.1, 0.2, 0.3, 0.4 and 0.5 and 0.003 < k < 10. Figure 2 shows the log-log plots 
of N-dependence of at y =  0.1 and k = 0.01, y  =  0.2 and k  =  0.1, y = 0.3 and 
k — 1.0 and y = 0.4 and k = 10.0. The results indicate that

\SuM{y)\ M

where N  ^  M  < 320. 
Table 11 shows the dependence of a  on A; at the positions: k = 0.1, 0.2, 0.3, 0.4 and
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TABLE 10: The Knudsen number k dependence of the velocity uN( 1/2) at boundary
A N Iand the channel center velocity derivative 0 obtained by the velocity piece-wise

^egendre approximation with N  — 320
fc u * ( l / 2 )

0 .0 0 3 4 .9 7 8 9 1 5 3 5 2 7 8 9 7 1 5 1 0 - 1 0 .9 9 3 9 3 9 8 0 1 4 2 0 7 8 6 5
0 .0 1 4 .9 3 0 6 9 7 8 0 7 7 4 2 2 1 1 1 0 - i 0 .9 8 0 0 8 1 0 0 2 0 0 4 3 0 2 2
0 .0 3 4 .8 0 0 0 5 8 6 8 2 7 6 6 8 2 9 1 0 -A 0 .9 4 2 5 4 5 6 0 0 3 2 4 4 0 3 8
0.1 4 .4 1 2 2 4 6 4 0 9 7 2 2 4 2 1 1 0 _ I 0 .8 3 5 2 8 5 7 6 5 6 4 6 9 4 3 7
0 .3 3 .6 7 2 1 2 5 6 9 5 5 0 0 5 0 4 1 0 ~ l 0 .6 6 3 5 3 0 0 7 7 0 2 9 7 0 9 5
1 .0 2 .5 1 8 6 1 3 3 9 9 8 9 4 7 3 2 1 0 ~ A 0 .4 4 4 2 2 8 4 6 9 7 4 6 7 9 9 1
2 .0 1 .8 5 2 4 6 2 9 9 3 7 4 0 2 1 8 1 0 “ 4 0 .3 2 7 4 7 4 5 7 6 9 3 7 5 0 1 5
3 .0 1 .5 0 4 2 8 2 4 4 4 9 9 2 0 7 5 1 0 - 1 0 .2 6 7 2 0 7 0 0 5 9 3 9 5 8 0 8
5 .0 1 .1 2 6 3 5 1 8 8 0 2 9 4 5 9 2 1 0 -A 0 .2 0 1 6 9 4 4 3 1 8 1 8 1 6 1 9
7 .0 9 .1 7 1 6 8 9 6 1 3 5 2 1 4 3 5 1 0 ~ * 0 .1 6 5 2 0 8 6 3 4 7 9 5 5 8 4 0

1 0 .0 7 .2 9 2 2 1 1 2 9 9 3 2 8 4 9 6 1 0 ~ * 0 .1 3 2 1 9 5 5 7 9 0 5 1 9 3 1 1

0.5. The rate of convergence is both dependent on the value of k and the position. 
Fixing position, the rate of convergence increases as the value of k rises. On the 
other hand, for each value of the k, the rate of convergence varies at different the po
sitions. Near the channel center, the rate of convergence is higher than that at other 
positions. It is almost the same value when y € [0.2, 0.4]. Due to the singularity, 
the rate of convergence is the lowest at the boundary. However, the lowest rate of 
convergence for in the table is as high as 5.7647, demonstrating the high efficiency 
of the scheme.

TABLE 11: The dependence of the rate of convergence for the velocity u N(y) on 
the Knudsen number k. The rate of convergence a  and its standard deviation are 
computed by using the least-square method.__________________

fc 0 .0 0 3 0 .0 1 0 .0 3 0.1 1 .0

y

0 .1

a

7 .0 7 7 3 7 .9 8 4 5 8 .8 4 5 9 9 .7 1 5 4 1 1 .1 6 3 4
0 .2 S .& 0 6 6 .4 5 5 5 6 .9 0 6 0 7 .4 0 3 6 8 .3 4 7 7
0.3 6 .0 1 1 0 6 .4 8 4 2 6 .9 4 2 3 7 .4 4 5 0 8 .3 8 3 5

"CT4. 6 .0 1 7 6 6 .4 9 3 6 ....6 .9 5 4 9 .... .....7 .4 5 9 8 '•''"g'339'2'""’
0 .5 5 .7 6 4 7 6 .1 6 6 5 6 .5 5 1 3 6 .9 6 3 6 7 .6 8 3 3
fc 2 .0 3 .0 5 .0 7 .0 1 0 .0

y

0 .1

a

1 1 .5 7 2 5 1 1 .8 1 2 6 1 2 .1 2 7 1 1 2 .3 6 0 9 1 2 .7 5 4 3
o .2 8 .6 3 3 8 8 .8 0 0 6 9 .0 0 9 5 9 .1 4 9 1 9 .3 2 3 4
0 .3 8 .6 5 5 3 8 .8 1 0 4 9 .0 0 1 8 9 .1 2 7 3 9 .2 7 6 2
0 .4 8 .6 2 4 3 8 .6 4 9 7 8 .8 0 9 4 8 .9 1 6 8 9 .0 4 6 7
<T5" 7 .8 3 0 6 ............. ..8 " :o 7 7 r ' "8":T67ff.... ■" " 8T 749 ...

We also compute the L 2 error of the velocity u(y),

Lf*i/2 luJV(^) — u *(y) | 2 dyl
h^ ii2 = i ^ l ^   ? y i - ,

[ L 1/2\u*(y)\ dy]

where the reference solution is obtained with N  = 320. The results of | | | j 2 with
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FIG. 2: The grid size N  dependence of the relative error of the velocity \5uN(y)\. 
The top row, from left to right: fc = 0.01 at y — 0.1 and fc =  0.1 at y =  0.2. The 
bottom row, from left to right: fc =  1.0 at y = 0.3 and fc =  10.0 at y = 0.4.

fc =  0.003,0.01,0.03,0.1,1.0 and 10.0 are shown in Table 12. The L2 error 
shows very weak dependence on fc. For various values of 0.003 <  fc <  10.0, the rate 
of convergence a > 6.4. Both the point-wise relative error and the L2 error indicate 
the scheme is of high order.

We compute the shear stress Txy and the upper half channel mass flow rate Q
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TABLE 12: The L 2 error of the velocity uN
fc N P u v l i 2 k N

20 5 .3 8 6 9 1 7 1 5 3 0 0 1 3 1 6 1 0 ” 7 20 5 .2 4 9 6 6 6 6 9 7 0 3 1 2 8 4 1 0 “ '

0 .0 0 3 4 0 1 .1 9 2 3 1 2 5 6 1 2 1 9 4 7 9 1 0 ” y 0 .0 1 4 0 1 .1 9 2 0 1 8 8 4 5 9 4 5 7 7 0 1 0 ” y
8 0 1 .1 2 4 4 0 8 8 2 3 4 4 3 0 0 8 1 0 ” A* 8 0 1 .9 4 1 6 6 1 6 5 1 2 2 6 1 7 1 1 0 ” A*

160 5 .2 1 8 6 8 9 4 5 2 0 4 9 8 9 5 1 0 ” AJ 160 8 2 4 4 2 4 3 1 5 5 9 8 9 9 2 6 1 0 “  u
a 6 .9 9 8 2 a 6 .7 1 0 3
20 5 .2 7 9 8 8 2 2 7 5 2 5 1 0 4 3 1 0 “ ' 2 0 5 .2 1 0 6 2 6 0 0 4 2 7 2 5 0 2 1 0 “  1

0 .0 3 4 0 1 .1 8 9 9 4 2 4 4 8 5 3 1 4 6 2 1 0 ” y 0.1 4 0 1 .1 6 8 3 4 6 1 8 3 9 8 0 7 0 7 1 0 ” y
8 0 2 .5 6 8 2 2 5 2 6 2 1 1 2 1 3 9 1 0 - n SO 2 .9 1 5 0 7 4 7 7 4 4 1 2 8 6 4 1 0 ”

160 1 .0 0 2 1 9 7 3 6 6 1 0 7 0 6 1 1 0 “ 152 160 1 .0 8 4 1 5 7 3 0 8 2 8 6 3 8 1 1 0 - i ^
at 6 .5 8 7 7 a 6 .5 2 7 0
2 0 3 .9 8 7 6 2 8 6 5 4 8 8 4 8 3 4 1 0 ” 7 20 2 .3 2 9 6 7 1 2 0 1 3 0 8 7 7 1

>1©

1 .0 4 0 8 .9 1 7 0 6 8 6 7 3 6 2 9 3 0 8 1 0 _ iU 1 0 .0 4 0 5 .2 0 7 6 8 7 3 0 0 1 9 2 4 0 5 1 0 ”  AU
8 0 2 .4 1 6 5 6 3 6 8 9 2 9 7 4 9 3 IO- 1 *4 8 0 1 .4 2 9 2 7 9 9 8 7 8 5 7 2 8 9 1 0 - H

160 8 .7 1 9 7 9 3 7 0 9 2 8 0 4 6 7 i o ~ l s 160 5 .1 3 1 6 6 1 1 2 0 5 1 6 8 6 4 1 0 - 1 3
at 6 .4 9 3 6 a 6 .4 8 8 6

y) and the rate of convergence a.

TABLE 13: The dependence of the stress Txy and the upper half channel mass flow 
rate Q on the Knudsen number k___________________________________________

fc T xu 0
0 .0 0 3 -1 .4 9 0 9 1 7 1 6 1 7 3 5 5 2 2 1 0 “ '* 1 .2 4 2 4 4 5 6 5 5 2 9 9 1 6 0 1 0 - i
0 .0 1 -4 .9 0 0 4 0 5 6 7 2 1 3 7 4 3 2 1 0 ” 3 1 .2 2 5 3 3 0 2 7 5 2 9 2 6 2 2 1 0 “ l
0 .0 3 -1 .4 1 3 7 9 8 6 0 8 6 0 6 2 6 8 1 0 ” * 1 .1 8 0 1 4 7 0 3 7 1 8 8 8 9 3 IO” 1
0 .1 - 4 .1 5 5 6 0 7 7 8 3 1 2 3 2 6 6 1 0 “ ^ 1 .0 5 7 0 2 8 4 0 8 1 7 2 2 9 2 1 0 “ A
0 .3 -9 .3 4 4 9 8 3 5 1 1 4 0 6 5 1 9 o 1 K 8 .5 6 0 1 1 1 6 9 9 8 2 0 6 1 8

1©

1-0 -1 .6 9 4 6 2 5 7 5 3 3 6 8 5 2 6 1 0 ” 1 5 .8 0 4 7 0 8 7 3 5 5 5 5 4 5 9

1o

2 .0 -2 .0 8 3 3 2 2 5 3 6 7 4 9 4 3 0 1 0 “ l 4 .2 8 1 6 5 9 7 7 6 1 1 3 9 1 7 1 0 “ *
3 .0 - 2 .2 6 6 4 3 7 4 9 7 6 5 8 1 0 4 1 0 ” A 3 .4 8 9 2 9 8 5 0 6 1 9 0 8 3 3

*l©

5 .0 -2 .4 4 6 6 3 2 6 7 8 4 5 5 9 9 9 1 0 ” 1 2 .6 2 7 0 4 2 0 6 0 9 6 7 3 8 3 1 0 ” *
7 .0 -2 .5 3 6 9 4 3 5 3 9 6 7 4 4 8 1 1 0 ” 1 2 .1 4 7 4 6 0 4 1 2 3 3 0 8 4 1 1 0 ” *

1 0 .0 -  2 .6 1 1 6 2 4 6 0 3 4 8 8 4 0 6 IO” 1 1 .7 1 4 4 4 9 0 4 8 5 9 0 6 4 9 1 0 ” '*

by using equation (93) and equation (92), respectively, where the integrals in the 
equations are evaluated piece-wisely on each subinterval Ej by a 10t/l order shifted 
and scaled Gauss-Legendre quadrature. Table 13 shows the approximated values of 
Txy and Q. The results in the table are consistent with our earlier results using the 
Chebyshev collocation method and are more accurate.
Next, we reconsider the steady case of equation (30) for the pure diffusive speculative 

reflection combined boundary condition. The equation we solve in this case simplifies



52

to equation (104):

u ( y ) 7rV2fc j _ 1 / 2

~  127rV2 J° (a ~ a + >1 y  + 1/ 2)

H  ̂J0 (aTa:+, 1 /fc, y +  3/2)

+  ^Q_a+’ 1//c’1/2 _  ^

-  (a ~Q+> V fc>3/2 -  *)
r*l/2^  /*

+  ^ 1 / 2 u(s)J-!  (aT a+, 1/fc, 1 +  7/ +  s) ds

a " a +  / ’1/'2 . , T /  _  j .  ,  , ,  „

+  ^ 1/2fc /  u(s) J - i  (a  a  , 1/fc, 2 +  y — s) ds

a + r172
+  ^I72fc /  (a a +, 1/fc, 1 -  y -  s) ds

Q;- Q.+ /*l/2
+ - ^ j  u(s)J^1 (a~a+, l / k , 2 - y - h  s)ds .  (104)

We take the same subdivision UjLiEj  of the interval [—1/2, 1/2]. We use the same 
order piece-wise, scaled and shifted Gauss-Legendre polynomial expansion from equa
tion (95) to approximate u(y). We end up with a linear system of the same form 
as equation (103) to solve. In the current case, as before <t>i j should be replaced by
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0 t J +  S0ij,  where the m th row and nth column entry of <50t J reads 

entmn

=a~ [ j0(a ra :+, 1/A, 1 +  yi>m +  y,) +  ( - l ) nJ0(a~a+, 1/A,1 +  yijTn +  yj_x)

-  J  J0(a~a+, 1 /k , 1 +  yiiTn +  yj,4) l4 _ i(s ) ds]

+  a T a + [ -  J0(a~a+, 1/A:, 2 +  yiifn -  %■) +  ( - l ) n+1 J0(a~a+, 1/k, 2 +  yiim -  y^-i) 

+  J  J0(a~a+, 1/k,  2 +  yi>rn -  y ^ L ' ^ ^ s )  ds]

+  q + [ -  J 0(aTa:+, 1/A:, 1 -  y*,m -  y^) +  ( - l ) n+1 J0(a~a+, 1/k, 1 -  yi>m -  y ^ )

+  J  J0(a~a+, l / k ,  1 -  yiim -  yj>a)L]l_1(s)ds]

+  a _Q;+ [J0(a _a + , 1/A, 2 -  yi,m +  y,) 4- ( - l ) " J o ( a r a +, 1/A, 2 -  yi>m +  y^-i)

(105)J" Jois* ^  , 1/A, 2 yi,m +  %,«)-An- i ( s ) ds],

where |£ , | =  y,- -  y^-i, y,> =  y^-i +
Meanwhile, .F is modified as

rp    1 /  £?,T £ iT  f p T  \ T
*  — 2 '  o.1 °-2 ' '  ’ o,n ) , 

in which Fo,i is an M-tuple column vector,

Fo,i = (Fo(yi,i,k) F0(yt,2, A) • • • F0(yi>M, k))T, 

and the function Fo is defined by

F0(y, A)

=(1 -  a +) J0(a - <*+, 1/A, 1/2 -  y) -  (1 -  a - ) JQ(a~a+, 1/k, y  -I-1/2)

+  aT( 1 — a +) J 0(a;_a + , 1/A, y +  3/2) -  a +(l -  a - ) J0(o;_a +, 1/A, 3/2 -  y).

This time, in order to compute the coefficient matrix A  and the RHS term F  precisely, 
we need to evaluate both J0 and J0 with high precision. For I0, we use Macleod’s [1] 
method of Chebyshev expansion. For J0, we use a truncated geometric series to 
express Jo in terms of linear combinations of io. The general series expansion reads:

OO

Jn(a,P,x)  =  /„(£(* +  2j)).  (106)
j= 0
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Equation (106) converges exponentially as long as 0 < a  < 1.
Hence, to control the error the approximation,

j - i
J0(a,/3,x) «  ^ 2  oPIq{0{x + 2j)),

3 = 0

within e0, one only need to require a JI0(2/3J) <  e0.
Numerically, we choose e0 =  10-17 and solve J , so that J0 will be evaluated 
with at least double precision. We solve equation (103) for the Couette flow 
with diffusive speculative combined boundary condition for Knudsen number fc = 
0.003, 0.3, 1.0, 2.0, 10.0. The dimension of each subblock of the matrix A  is 
as before, i.e., M  = 10. We use quadruple precision to ensure accuracy. Mean
while, we vary the order of equation (103) by changing N  with 40 < N  < 320, 
to ensure the convergence of the results. Table 14-23 gives the value of u(y) at 
y =  —0.5, —0.25,0,0.25 and 0.5 for various values of fc, N  and accommodation ratio 
a*. When N  = 320, the results of u(y) in Table 14-23 are accurate for at least 13 
significant digits. Figure 3-7 show the velocity profiles of the Couette flow problem 
for fc =  0.003, 0.3, 1.0, 2.0, 10.0 with various accommodation ratios at the upper and 
lower walls.
As the value of fc increases to a big enough value, the Couette flow becomes free 
molecular flow. The velocity u = of free molecular Couette flow is derived
in the Appendix E. Figure 8 shows the comparison between velocity profiles of the 
Couette flow for fc =  300 and velocity profiles of the free molecular flow for various 
accommodation ratios. The agreement of profiles shows that when fc > 30, the Cou
ette flow can be viewed as free molecular flow.
We also computed the shear stress Txy, the upper and lower half channel mass flow 
rates Q± of the Couette flow with various accommodation ratios by using equa
tion (33), equation (107) and equation (108), respectively,

Q+ = Io /2 u (y) (107)
Q~ = / ° 1/2 u(y) dy. (108)

The integrals in the equations are computed piece-wise over each subinterval Ej by 
using a shifted and scaled 10th order Gauss-Legendre quadrature. Table 24-26 give
the value of Txy, Q~ and Q+ for fc =  0.003, 0.3, 1.0, 2.0, 10.0 and various values of
accommodation ratios o^, respectively.
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TABLE 14: The values of the approximated velocity u N ( y ) of the Couette flow at
y  =  —0.5, —0.25 and 0, for the Knudsen number k  =  0.003 and 40 < N  <  320 and
a*  =  0,0.1,0.5,0.9________________________________________________

y -0 .5 -0 .2 5 0
N a ”  =  0 .1 ,  or+ =  0
40 -4 .9 7 3 6 5 3 5 6 5 8 3 2 2 9 7 1 0 ” 1 -2 .4 8 0 1 4 3 1 2 2 5 0 1 5 2 0  IO- 1 3 .1 4 3 9 3 8 2 2 5 2 1 7 8 1 5  ■ IO- '*
80 -4 .9 7 3 6 5 9 1 7 5 1 0 4 0 7 7 1 0 ” 1 -2 .4 8 0 1 4 3 1 2 2 7 5 1 2 7 9  • IO” 1 3 .1 4 3 9 3 8 1 6 2 6 7 8 4 8 8  • 1 0 ~ 4

160 - 4 .9 7 3 6 5 9 1 7 7 9 7 9 2 7 8 1 0 ” 1 -2 .4 8 0 1 4 3 1 2 2 7 5 2 8 1 0  IO- 1 3 .1 4 3 9 3 8 1 6 2 5 1 5 5 2 7  • 1 0 ~ 4
320 -4 .9 7 3 6 5 9 1 7 7 9 7 9 3 3 4 1 0 ” 1 -2 .4 8 0 1 4 3 1 2 2 7 5 3 0 3 0  I O * 1 3 .1 4 3 9 3 8 1 6 2 4 8 9 2 0 9  • 1 0 ~ 4
N a  =  0 .5 ,  =  0
4 0 -  4 .9 2 9 5 7 7 6 7 8 7 8 1 2 1 5 1 0 “ 1 -2 .4 4 3 8 9 7 2 4 7 6 3 5 0 9 2  1 0 ” 1 2 .7 3 5 6 7 6 6 3 1 8 8 1 6 1 4  • 1 0 ~ 3
80 -4 .9 2 9 5 8 6 0 0 7 4 6 3 4 3 5 1 0 - 1 -2 .4 4 3 8 9 7 2 4 8 8 4 5 9 0 3  1 0 ” 1 2 .7 3 5 6 7 6 5 6 1 3 7 7 3 0 1  ■ 1 0 ~ 3

160 -4 .9 2 9 5 8 6 0 1 1 7 3 3 8 8 2 IO*"1 -2 .4 4 3 8 9 7 2 4 8 8 4 8 6 9 5  ■ 1 0 “ 1 2 .7 3 5 6 7 6 5 6 1 2 7 6 4 0 9  • 1 0 - 3
320 -4 .9 2 9 5 8 6 0 1 1 7 3 4 0 8 9 1 0 - 1 -2 .4 4 3 8 9 7 2 4 8 8 4 9 1 4 6  1 0 ” 1 2 .7 3 5 6 7 6 5 6 1 2 5 8 2 4 2  • IO- 3
N a  — 0 .9 ,  a +  =  0
4 0 -4 .5 3 1 6 1 6 8 1 3 2 6 3 7 7 2 IO- 1 -2 .1 4 2 2 4 7 6 6 0 4 2 9 0 9 9  • IO” 1 2 .2 8 8 6 3 5 4 8 1 6 4 7 3 0 1  ■ 1 0 - 3
8 0 -4 .5 3 1 6 2 7 9 0 2 5 7 1 5 2 4 1 0 ” 1 -2 .1 4 2 2 4 7 6 7 1 7 0 4 9 2 0  • IO” 1 2 .2 8 8 6 3 5 4 0 7 3 1 8 9 2 1  ■ 1 0 ~ 2

160 -4 .5 3 1 6 2 7 9 0 8 2 5 8 1 6 0 I O * 1 -2 .1 4 2 2 4 7 6 7 1 7 1 2 8 0 4  - 1 0 ~ l 2 .2 8 8 6 3 5 4 0 7 2 7 4 4 6 8  ■ IO' 2
320 -4 .5 3 1 6 2 7 9 0 8 2 5 9 8 8 5 1 0 _ l -2 .1 4 2 2 4 7 6 7 1 7 1 4 5 0 9  • IO” 1 2 .2 8 8 6 3 5 4 0 7 2 6 4 2 3 1  1 0 ~ 2
N a ”  =  0 .1 ,  a +  =  0 .1
40 -4 .9 7 3 6 7 0 1 2 1 7 3 4 4 4 6 IO- 1 -2 .4 8 1 7 2 6 5 8 1 7 1 3 7 8 0  • 1 0 ” 1 0
80 -4 .9 7 3 6 7 5 7 2 7 4 8 1 0 7 3 1 0 _ 1 -2 .4 8 1 7 2 6 5 8 1 9 3 1 9 0 4  • IO” 1 0

160 -4 .9 7 3 6 7 5 7 3 0 3 5 4 4 6 6 IO- 1 -2 .4 8 1 7 2 6 5 8 1 9 3 3 3 5 2  • IO” 1 0
3 2 0 -4 .9 7 3 6 7 5 7 3 0 3 5 4 5 2 2 I Q -1 -2 .4 8 1 7 2 6 5 8 1 9 3 3 5 5 9  • 1 0 ” 1 0
N a “  =  0 .5 ,  ct+  -  0 .1
4 0 - 4 .9 2 9 6 2 1 7 1 7 3 4 2 9 6 6 1 0 - i -2 .4 4 5 4 9 5 7 0 5 1 5 4 7 2 6  • 1 0 ” 1 2 .4 2 1 2 9 1 1 3 9 3 7 4 5 5 2  ■ IO- 3
8 0 -4 .9 2 9 6 3 0 0 4 0 8 1 5 9 7 9 1 0 _ 1 - 2 .4 4 5 4 9 5 7 0 6 3 3 3 2 1 1  • IO” 1 2 .4 2 1 2 9 1 0 7 5 1 2 3 5 7 1  • 1 0 - 3

160 - 4 .9 2 9 6 3 0 0 4 5 0 8 3 7 5 4 1 0 _ l -2 .4 4 5 4 9 5 7 0 6 3 3 5 9 1 8  • IO” 1 2 .4 2 1 2 9 1 0 7 5 0 3 8 9 7 4  • 1 0 - 3
320 - 4 .9 2 9 6 3 0 0 4 5 0 8 3 9 6 0 1 0 “ l -2 .4 4 5 4 9 5 7 0 6 3 3 6 3 5 6  • IO” 1 2 .4 2 1 2 9 1 0 7 5 0 2 3 4 3 8  ■ 1 0 - 3
N a ”  =  0 .9 ,  a +  =  0 .1
4 0 - 4 .5 3 1 8 9 7 8 5 4 2 2 9 7 5 7 IO’ 1 -2 .1 4 3 9 6 2 3 7 9 2 7 6 4 0 8  • IO” 1 2 .2 5 7 2 6 1 0 6 6 3 3 5 3 2 5  ■ IO- 2
8 0 - 4 .5 3 1 9 0 8 9 3 6 8 7 8 5 1 0 1 0 - 1 -2 .1 4 3 9 6 2 3 9 0 5 1 4 0 2 3  IO” 1 2 .2 5 7 2 6 0 9 9 2 6 2 6 8 1 4  • 1 0 “ 2

160 - 4 .5 3 1 9 0 8 9 4 2 5 6 1 7 1 9 IO- 1 -2 .1 4 3 9 6 2 3 9 0 5 2 1 8 1 5  • IO- 1 2 .2 5 7 2 6 0 9 9 2 5 8 3 9 8 4  • 1 0 - 2
32 0 -4 .5 3 1 9 0 8 9 4 2 5 6 3 4 4 1 1 0 ~ l -2 .1 4 3 9 6 2 3 9 0 5 2 3 5 0 5  • IO” 1 2 .2 5 7 2 6 0 9 9 2 5 7 4 0 1 0  • 1 0 - 2
N a -  =  0 .1 ,  =  0 .5
40 - 4 .9 7 3 7 9 7 6 2 6 3 3 6 3 3 6 IO*-1 -2 .4 9 3 9 2 1 5 2 7 9 4 2 2 1 8  • IO” 1 - 2 .4 2 1 2 9 1 1 3 9 3 7 4 5 5 2  • IO- 3
80 - 4 .9 7 3 8 0 3 2 0 4 9 3 3 2 9 1 1 0 ~ l -2 .4 9 3 9 2 1 5 2 7 8 3 5 6 8 2  • IO” 1 -2 .4 2 1 2 9 1 0 7 5 1 2 3 5 7 1  ■ IO- 3

160 - 4 .9 7 3 8 0 3 2 0 7 7 9 2 7 6 5 IO- 1 -2 .4 9 3 9 2 1 5 2 7 8 3 6 6 9 7  ■ IO- 1 - 2 .4 2 1 2 9 1 0 7 5 0 3 8 9 7 4  • 1 0 ~ 3
320 - 4 .9 7 3 8 0 3 2 0 7 7 9 2 8 2 0 I O " 1 -2 .4 9 3 9 2 1 5 2 7 8 3 6 8 2 5  • IO” 1 - 2 .4 2 1 2 9 1 0 7 5 0 2 3 4 3 8  • 1 0 - 3
N a ”  =  0 .5 ,  a"*' — 0 .5
40 -4 .9 2 9 9 6 0 8 8 7 5 0 7 9 3 9 IO- 1 -2 .4 5 7 8 0 6 4 8 6 4 1 2 7 7 5  - 1 0 “ 1 0
80 -4 .9 2 9 9 6 9 1 7 0 8 5 9 1 4 4 IO- 1 - 2 .4 5 7 8 0 6 4 8 7 2 6 0 4 7 7  • 1 0 “ 1 0

160 -4 .9 2 9 9 6 9 1 7 5 1 0 6 3 3 9 1 0 “ 1 -2 .4 5 7 8 0 6 4 8 7 2 6 2 7 4 3  • 1 0 “ l 0
320 -4 .9 2 9 9 6 9 1 7 5 1 0 6 5 4 3 IO- 1 -2 .4 5 7 8 0 6 4 8 7 2 6 3 1 0 1  • 1 0 “ l 0
N a ”  — 0 .9 ,  a +  =  0 .5
40 -4 .5 3 4 0 6 2 8 1 4 4 5 4 8 4 5 1 0 - i - 2 .1 5 7 1 7 1 4 7 8 8 4 1 7 3 1  • IO” 1 2 .0 1 5 5 7 2 5 9 5 7 6 7 7 0 6  ■ IO- 2
80 -4 .5 3 4 0 7 3 8 4 5 7 9 2 5 0 2 1 0 “ 1 -2 .1 5 7 1 7 1 4 8 9 6 9 7 0 8 0  • IO” 1 2 .0 1 5 5 7 2 5 2 8 4 4 3 4 9 4  ■ 1 0 ~ 2

160 -4 .5 3 4 0 7 3 8 5 1 4 4 9 3 5 3 IO- 1 -2 .1 5 7 1 7 1 4 8 9 7 0 4 3 8 5  • IO” 1 2 .0 1 5 5 7 2 5 2 8 4 0 9 0 9 2  • 1 0 - 2
32 0 -4 .5 3 4 0 7 3 8 5 1 4 5 1 0 5 4 IO- 1 -2 .1 5 7 1 7 1 4 8 9 7 0 5 9 8 5  • IO” 1 2 .0 1 5 5 7 2 5 2 8 4 0 0 6 6 5  • 1 0 - 2
N a ”  =  0 .1 ,  a +  =  0 .9
4 0 -4 .9 7 4 8 5 8 7 8 9 9 1 6 2 4 9 1 0 “  i -2 .5 9 5 4 1 4 5 9 2 5 4 3 4 7 3  • IO” 1 -2 .2 5 7 2 6 1 0 6 6 3 3 5 3 2 5  • IO- 2
80 -4 .9 7 4 8 6 4 1 4 2 5 5 1 3 9 8 1 0 _ 1 -2 .5 9 5 4 1 4 5 8 9 0 3 9 3 8 5  • 1 0 ” 1 -2 .2 5 7 2 6 0 9 9 2 6 2 6 8 1 4  • 1 0 - 2

160 - 4 .9 7 4 8 6 4 1 4 5 2 9 5 0 4 8 1 0 “ x - 2 .5 9 5 4 1 4 5 8 9 0 3 8 6 1 1  • 1 0 ” 1 -2 .2 5 7 2 6 0 9 9 2 5 8 3 9 8 4  ■ 1 0 - 2
3 2 0 -4 .9 7 4 8 6 4 1 4 5 2 9 5 0 9 6 1 0 ” 1 -2 .5 9 5 4 1 4 5 8 9 0 3 8 3 0 7  ■ 1 0 ” 1 - 2 .2 5 7 2 6 0 9 9 2 5 7 4 0 1 0  • 1 0 - 2
N Of as 0 .5 ,  Q +  a= 0 .9
4 0 - 4 .9 3 2 7 8 4 2 6 5 8 2 3 3 5 7 IO- 1 -2 .5 6 0 2 8 5 9 9 7 9 9 5 2 7 2  • 1 0 ” 1 -2 .0 1 5 5 7 2 5 9 5 7 6 7 7 0 6  • IO- 2
8 0 -4 .9 3 2 7 9 2 2 1 5 1 6 6 3 5 2 IO” 1 -2 .5 6 0 2 8 5 9 9 5 3 8 5 7 7 8  • 1 0 “ 1 -2 .0 1 5 5 7 2 5 2 8 4 4 3 4 9 4  • 1 0 - 2

160 -4 .9 3 2 7 9 2 2 1 9 2 4 2 2 8 9 IO” 1 - 2 .5 6 0 2 8 5 9 9 5 3 8 6 2 0 4  1 0 “ 1 -2 .0 1 5 5 7 2 5 2 8 4 0 9 0 9 2  ■ IO- 2
32 0 -4 .9 3 2 7 9 2 2 1 9 2 4 2 4 7 2 IO- 1 -2 .5 6 0 2 8 5 9 9 5 3 8 6 1 1 8  • 1 0 “ l -2 .0 1 5 5 7 2 5 2 8 4 0 0 6 6 5  • IO- 2
N a  =  0 .9 ,  a +  =  0 .9
4 0 - 4 .5 5 2 1 1 7 6 0 4 1 2 0 0 9 1 1 0 ” 1 -2 .2 6 7 3 2 9 3 9 8 3 9 8 6 8 4  • I O " 1 0
8 0 - 4 .5 5 2 1 2 8 2 0 7 4 2 0 2 7 1 IO- 1 -2 .2 6 7 3 2 9 4 0 5 2 9 6 4 7 5  • IO” 1 0

160 - 4 .5 5 2 1 2 8 2 1 2 8 5 7 6 2 7 IO” 1 - 2 .2 6 7 3 2 9 4 0 5 3 0 1 6 9 0  I O " 1 0
32 0 -4 .5 5 2 1 2 8 2 1 2 8 5 9 1 8 8 IO” 1 -2 .2 6 7 3 2 9 4 0 5 3 0 2 7 8 6  • IO” 1 0
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TABLE 15: The values of the approximated velocity u N ( y ) of the Couette flow at
y  =  0.25 and 0.5, for the Knudsen number k  =  0.003 and 40 < N  < 320 and

=  0,0.1,0.5,0.9 _____________________________________
y 0 .2 5 0 .5
N a ”  =  0 .1 , q +  =  0
40 2 .4 8 6 4 3 0 9 9 8 9 5 1 9 5 6  - 1 0 " 4 .9 7 8 9 2 3 6 2 1 9 3 6 4 6 8 1 0 " 1
80 2 .4 8 6 4 3 0 9 9 9 0 7 6 6 3 6  - 1 0 ” 4 .9 7 8 9 2 8 6 0 7 9 9 9 5 3 2 1 0 " 1

160 2 .4 8 6 4 3 0 9 9 9 0 7 7 8 4 1  • 1 0 “ 4 .9 7 8 9 2 8 6 1 0 5 5 5 0 7 6 1 0 " 1
3 20 2 .4 8 6 4 3 0 9 9 9 0 7 8 0 0 9  • 1 0 " 4 .9 7 8 9 2 8 6 1 0 5 5 5 1 1 7 1 0 " 1
N a “  =  0 .5 ,  =  0
40 2 .4 9 8 6 1 0 7 8 0 2 7 2 7 2 4  • 1 0 " 4 .9 7 9 0 2 5 7 4 9 8 9 7 0 4 6 1 0 - 1

SO 2 .4 9 8 6 1 0 7 8 0 0 7 3 4 4 9  • 1 0 “ 4 .9 7 9 0 3 0 7 1 1 7 9 6 8 6 9 1 0 ” 1
160 2 .4 9 8 6 1 0 7 8 0 0 7 4 2 2 3  • 1 0 “ 4 .9 7 9 0 3 0 7 1 4 3 4 0 0 2 7 1 0 " 1
320 2 .4 9 8 6 1 0 7 8 0 0 7 4 3 1 1  • 1 0 “ 4 .9 7 9 0 3 0 7 1 4 3 4 0 0 6 7 I O " 1
N Q “  =  0 .9

OIIfCJ

40 2 .5 9 9 9 7 4 7 5 6 7 5 8 5 5 9  • 1 0 " 4 .9 7 9 8 7 5 6 9 0 9 5 2 7 9 1 I O " 1
80 2 .5 9 9 9 7 4 7 5 3 1 6 8 7 0 4  - 1 0 ” 4 .9 7 9 8 8 0 4 5 1 7 5 2 6 9 7 I O " 1

160 2 .5 9 9 9 7 4 7 5 3 1 6 7 6 9 7  • 1 0 " 4 .9 7 9 8 8 0 4 5 4 1 9 2 7 8 4 I O " 1
320 2 .5 9 9 9 7 4 7 5 3 1 6 7 3 5 5  • 1 0 ” 4 .9 7 9 8 8 0 4 5 4 1 9 2 8 1 8 I O " 1
N a ' __ Q 1, a +  =  0 .1
4 0 2 .4 8 1 7 2 6 5 8 1 7 1 3 7 8 0  • 1 0 ” 4 .9 7 3 6 7 0 1 2 1 7 3 4 4 4 6 I O " 1
80 2 .4 8 1 7 2 6 5 8 1 9 3 1 9 0 4  • 1 0 " 4 .9 7 3 6 7 5 7 2 7 4 8 1 0 7 3 IO " 1

160 2 .4 8 1 7 2 6 5 8 1 9 3 3 3 5 2  - 1 0 ” 4 .9 7 3 6 7 5 7 3 0 3 5 4 4 6 6 IO” 1
320 2 .4 8 1 7 2 6 5 8 1 9 3 3 5 5 9  • 1 0 ” 4 .9 7 3 6 7 5 7 3 0 3 5 4 5 2 2 IO” 1

N a - =  0 5 , =  0 .1
40 2 .4 9 3 9 2 1 5 2 7 9 4 2 2 1 8  • 1 0 " 4 .9 7 3 7 9 7 6 2 6 3 3 6 3 3 6 I O " 1
80 2 .4 9 3 9 2 1 5 2 7 8 3 5 6 8 2  • 1 0 “ 4 .9 7 3 8 0 3 2 0 4 9 3 3 2 9 1 IO " 1

160 2 .4 9 3 9 2 1 5 2 7 8 3 6 6 9 7  - 1 0 “ 4 .9 7 3 8 0 3 2 0 7 7 9 2 7 6 5 I O " 1
3 2 0 2 .4 9 3 9 2 1 5 2 7 8 3 6 8 2 5  • 1 0 ” 4 .9 7 3 8 0 3 2 0 7 7 9 2 8 2 0 I O " 1
N a “ =  0 9 a +  =  0 .1
40 2 .5 9 5 4 1 4 5 9 2 5 4 3 4 7 3  • 1 0 ” 4 .9 7 4 8 5 8 7 8 9 9 1 6 2 4 9 IO " 1
80 2 .5 9 5 4 1 4 5 8 9 0 3 9 3 8 6  • 1 0 ” 4 .9 7 4 8 6 4 1 4 2 5 5 1 3 9 8 I O " 1

160 2 .5 9 5 4 1 4 5 8 9 0 3 8 6 1 1  ■1 0 " 4 .9 7 4 8 6 4 1 4 5 2 9 5 0 4 8 I O " 1
32 0 2 .5 9 5 4 1 4 5 8 9 0 3 8 3 0 7  ■1 0 ” 4 .9 7 4 8 6 4 1 4 5 2 9 5 0 9 6 i o ~ i

N a - =  0 1, a +  =  0 .5
40 2 .4 4 5 4 9 5 7 0 5 1 5 4 7 2 7  • 1 0 " 4 .9 2 9 6 2 1 7 1 7 3 4 2 9 6 6 I O " 1
80 2 .4 4 5 4 9 5 7 0 6 3 3 3 2 1 1 1 0 " 4 .9 2 9 6 3 0 0 4 0 8 1 5 9 7 9 I O " 1

160 2 .4 4 5 4 9 5 7 0 6 3 3 5 9 1 8  • 1 0 " 4 .9 2 9 6 3 0 0 4 5 0 8 3 7 5 4 I O " 1
32 0 2 .4 4 5 4 9 5 7 0 6 3 3 6 3 5 6  • 1 0 " 4 .9 2 9 6 3 0 0 4 5 0 8 3 9 6 0 IO” 1
N a ~ =  0 5 , ~  0 .5
40 2 .4 5 7 8 0 6 4 8 6 4 1 2 7 7 5  • 1 0 " 4 .9 2 9 9 6 0 8 8 7 5 0 7 9 3 9 1 0 ” 1
80 2 .4 5 7 8 0 6 4 8 7 2 6 0 4 7 7  - 1 0 " 4 .9 2 9 9 6 9 1 7 0 8 5 9 1 4 4 1 0 " 1

160 2 .4 5 7 8 0 6 4 8 7 2 6 2 7 4 3  ■ 1 0 " 4 .9 2 9 9 6 9 1 7 5 1 0 6 3 3 9 IO” 1
32 0 2 .4 5 7 8 0 6 4 8 7 2 6 3 1 0 1  • 1 0 " 4 .9 2 9 9 6 9 1 7 5 1 0 6 5 4 3 IO” 1
N cx~ =  o 9 , a +  =  0 .5
40 2 .5 6 0 2 8 5 9 9 7 9 9 5 2 7 2  • 1 0 " 4 .9 3 2 7 8 4 2 6 5 8 2 3 3 5 7 I O " 1
80 2 .5 6 0 2 8 5 9 9 5 3 8 5 7 7 8  ■ 1 0 " 4 .9 3 2 7 9 2 2 1 5 1 6 6 3 5 2 I O " 1

160 2 .5 6 0 2 8 5 9 9 5 3 8 6 2 0 4  • 1 0 " 4 .9 3 2 7 9 2 2 1 9 2 4 2 2 8 9 I O " 1
320 2 .5 6 0 2 8 5 9 9 5 3 8 6 1 1 8  ■ 1 0 " 4 .9 3 2 7 9 2 2 1 9 2 4 2 4 7 2 I O " 1
N a ~ £= 0 1, a +  =  0 .9
40 2 .1 4 3 9 6 2 3 7 9 2 7 6 4 0 8  • 1 0 " 4 .5 3 1 8 9 7 8 5 4 2 2 9 7 5 7 1 0 " A
80 2 .1 4 3 9 6 2 3 9 0 5 1 4 0 2 3  • 1 0 ” 4 .5 3 1 9 0 8 9 3 6 8 7 8 5 1 0 IO” 1

160 2 .1 4 3 9 6 2 3 9 0 5 2 1 8 1 5  - 1 0 " 4 .5 3 1 9 0 8 9 4 2 5 6 1 7 1 9 I O " 1
32 0 2 .1 4 3 9 6 2 3 9 0 5 2 3 5 0 5  • 1 0 " 4 .5 3 1 9 0 8 9 4 2 5 6 3 4 4 1 I O " 1
N a ~ =  o 5, a +  =  0 .9
40 2 .1 5 7 1 7 1 4 7 8 8 4 1 7 3 1  ■ 1 0 " 4 .5 3 4 0 6 2 8 1 4 4 5 4 8 4 5 I O " 1
80 2 .1 5 7 1 7 1 4 8 9 6 9 7 0 8 0  • 1 0 " 4 .5 3 4 0 7 3 8 4 5 7 9 2 5 0 2 IQ -1

160 2 .1 5 7 1 7 1 4 8 9 7 0 4 3 8 5  ■ 1 0 " 4 .5 3 4 0 7 3 8 5 1 4 4 9 3 5 3 IO” 1
32 0 2 .1 5 7 1 7 1 4 8 9 7 0 5 9 8 5  • 1 0 " 4 .5 3 4 0 7 3 8 5 1 4 5 1 0 5 4 IO " 1
N a ~ =  o 9 , =  0 .9
4 0 2 .2 6 7 3 2 9 3 9 8 3 9 8 6 8 4  - 1 0 " 4 .5 5 2 1 1 7 6 0 4 1 2 0 0 9 1 1 0 ~ 1

80 2 .2 6 7 3 2 9 4 0 5 2 9 6 4 7 5  • 1 0 " 4 .5 5 2 1 2 8 2 0 7 4 2 0 2 7 1 I O " 1
160 2 .2 6 7 3 2 9 4 0 5 3 0 1 6 9 0  • 1 0 " 4 .5 5 2 1 2 8 2 1 2 8 5 7 6 2 7 IO " 1
320 2 .2 6 7 3 2 9 4 0 5 3 0 2 7 8 6  • 1 0 " 4 .5 5 2 1 2 8 2 1 2 8 5 9 1 8 8 I O " 1
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TABLE 16: The values of the approximated velocity u N ( y ) of the Couette flow at
y  =  —0.5, —0.25 and 0, for the Knudsen number k  =  0.3 and 40 < N  <  320 and
a *  =  0,0.1,0.5,0.9________________________________________________

y -0 .5 -0 .2 5 o
N a  =  0 .1 ,  =  0
4 0 — 3 .4 0 3 3 9 5 7 3 7 7 6 1 1 6 2  • 1 0 ” 1 -1 .4 3 8 7 9 6 5 0 7 3 2 6 4 1 3  • 1 0 “ 1 1 .8 2 8 4 4 5 5 7 7 0 4 6 6 9 3 1 0 “ 2
8 0 - 3 .4 0 3 3 9 9 1 4 2 6 1 8 3 6 1  ■ 1 0 ” 1 -1 .4 3 8 7 9 6 5 0 7 3 2 7 6 1 4  - 1 0 “ 1 1 .8 2 8 4 4 5 5 7 7 0 4 3 5 9 5 1 0 “ 2

160 -3 .4 0 3 3 9 9 1 4 4 3 6 0 9 8 7  ■ 1 0 “ 1 -1 .4 3 8 7 9 6 5 0 7 3 2 7 6 1 4  1 0 “ 1 1 .8 2 8 4 4 5 5 7 7 0 4 3 5 9 4 IO” 2
32 0 - 3 .4 0 3 3 9 9 1 4 4 3 6 0 9 8 8  • 1 0 ” 1 -1 .4 3 8 7 9 6 5 0 7 3 2 7 6 1 4  1 0 ” 1 1 .8 2 8 4 4 5 5 7 7 0 4 3 5 9 5 1 0 ” 2
N a  — 0 .5 ,  a +  =  0
40 - 1 .6 8 8 9 1 6 2 4 7 9 7 4 6 1 4  • 1 0 “ 1 -2 .4 6 0 5 8 2 5 7 5 7 5 1 2 5 9  • 1 0 “ 3 1 .2 5 6 0 2 6 8 3 5 2 7 8 9 9 0 IO” 1
80 -1 .6 8 8 9 2 0 1 7 0 7 8 4 9 5 9  - 1 0 " 1 -2 .4 6 0 5 8 2 5 7 6 1 1 8 2 1 3  • 1 0 “ 3 1 .2 5 6 0 2 6 8 3 5 2 7 6 7 8 6 IO” 1

160 - 1 .6 8 8 9 2 0 1 7 2 7 9 2 6 8 8  • IO” 1 -2 .4 6 0 5 8 2 5 7 6 1 1 8 2 2 2  • 1 0 ” 3 1 .2 5 6 0 2 6 8 3 5 2 7 6 7 8 6 IO” 1
32 0 -1 .6 8 8 9 2 0 1 7 2 7 9 2 6 8 9  IO” 1 -2 .4 6 0 5 8 2 5 7 6 1 1 8 2 2 3  • 1 0 “ 3 1 .2 5 6 0 2 6 8 3 5 2 7 6 7 8 6 IO” 1
N a  =  0 .9 ,  =  0
40 2 .6 8 7 1 9 3 2 6 5 5 8 8 0 2 2  - 1 0 “ 1 3 .2 9 8 5 4 0 4 7 3 5 5 7 7 2 1  1 0 “ 1 3 .7 3 7 5 5 6 9 9 1 2 3 5 6 4 4 IO” 1
80 2 .6 8 7 1 9 1 4 4 4 1 1 1 7 2 3  • 1 0 “ l 3 .2 9 8 5 4 0 4 7 3 5 5 3 4 8 5  • 1 0 “ 1 3 .7 3 7 5 5 6 9 9 1 2 3 2 7 1 8 IO” 1

160 2 .6 8 7 1 9 1 4 4 3 1 7 9 4 7 1  • IO - 1 3 .2 9 8 5 4 0 4 7 3 5 5 3 4 8 5  • 1 0 “ 1 3 .7 3 7 5 5 6 9 9 1 2 3 2 7 1 8 IO” 1
32 0 2 .6 8 7 1 9 1 4 4 3 1 7 9 4 7 1  • 1 0 “ l 3 .2 9 8 5 4 0 4 7 3 5 5 3 4 8 5  • 1 0 “ 1 3 .7 3 7 5 5 6 9 9 1 2 3 2 7 1 8 IO” 1
N a ”  =s 0 .1 ,  ss 0 .1
40 -3 .4 6 0 7 4 5 2 4 4 8 7 4 3 0 3  • 1 0 “ 1 -1 .5 6 5 9 0 1 9 3 8 9 0 8 8 9 2  ■ 1 0 “ l 0
80 -3 .4 6 0 7 4 8 5 2 7 4 3 0 0 4 4  • 1 0 “ * - 1 .5 6 5 9 0 1 9 3 8 9 0 9 8 5 0  ■ 1 0 “ 1 0

160 -3 .4 6 0 7 4 8 5 2 9 1 1 0 0 7 6  • 1 0 ” 1 - 1 .5 6 5 9 0 1 9 3 8 9 0 9 8 5 0  • IO” 1 0
32 0 -3 .4 6 0 7 4 8 5 2 9 1 1 0 0 7 7  • 1 0 ” 1 - 1 .5 6 5 9 0 1 9 3 8 9 0 9 8 5 0  • 1 0 “ l 0
N a ”  =  0 .5 ,  a +  s  0 .1
4 0 -1 .7 8 1 7 8 2 9 9 4 0 6 6 0 6 4  • 1 0 “ 1 -1 .6 3 5 7 3 4 3 2 7 9 7 7 2 2 7  • 1 0 ” * 1 .0 8 3 1 1 0 4 7 1 4 8 7 7 2 6  • 1 0 “ *
8 0 -1 .7 8 1 7 8 6 8 0 6 8 5 2 3 2 2  • 1 0 _ 1 -1 .6 3 5 7 3 4 3 2 8 0 1 1 3 8 3  • IO” 2 1 .0 8 3 1 1 0 4 7 1 4 8 5 7 8 1  • IO” 1

160 -1 .7 8 1 7 8 6 8 0 8 8 0 3 7 4 0  • 1 0 ” 1 -1 .6 3 5 7 3 4 3 2 8 0 1 1 3 8 3  ■ 1 0 ” 2 1 .0 8 3 1 1 0 4 7 1 4 8 5 7 8 1  • IO” 1
32 0 -1 .7 8 1 7 8 6 8 0 8 8 0 3 7 4 1  • 1 0 “ 1 -1 .6 3 5 7 3 4 3 2 8 0 1 1 3 8 4  • 1 0 ” 2 1 .0 8 3 1 1 0 4 7 1 4 8 5 7 8 1  • 1 0 “ l
N a ”  -  0 .9 ,  a +  =  0 .1
4 0 2 .6 1 3 4 1 0 7 7 2 1 1 4 5 9 4  • 1 0 “ 1 3 .2 1 9 0 7 0 3 1 7 8 1 8 3 7 3  • 1 0 “ 1 3 .6 5 4 5 4 6 2 2 1 1 4 4 7 9 4  • IO” 1
8 0 2 .6 1 3 4 0 8 9 6 8 1 2 0 9 7 3  • 1 0 ” 1 3 .2 1 9 0 7 0 3 1 7 8 1 4 1 3 2  • 1 0 “ 1 3 .6 5 4 5 4 6 2 2 1 1 4 1 8 5 1  • 1 0 “ l

160 2 .6 1 3 4 0 8 9 6 7 1 9 7 6 6 9  ■ I O " 1 3 .2 1 9 0 7 0 3 1 7 8 1 4 1 3 2  ■ 1 0 “ 1 3 .6 5 4 5 4 6 2 2 1 1 4 1 8 5 1  > IO” 1
3 2 0 2 .6 1 3 4 0 8 9 6 7 1 9 7 6 6 9  ■ 1 0 “ 1 3 .2 1 9 0 7 0 3 1 7 8 1 4 1 3 2  • 1 0 “ l 3 .6 5 4 5 4 6 2 2 1 1 4 1 8 5 1  • 1 0 “ l
N a “  =  0 .1 ,  at+  -  0 .5
4 0 -3 .7 9 7 4 7 8 9 0 1 6 7 5 8 0 6  • 1 0 “ 1 -2 .3 1 4 5 4 4 4 7 0 1 5 9 6 4 1  ■ I O " 1 -1 .0 8 3 1 1 0 4 7 1 4 8 7 7 2 6 . i o “ *
8 0 -3 .7 9 7 4 8 1 4 6 6 1 2 5 6 5 3  ■ 1 0 _ 1 -2 .3 1 4 5 4 4 4 7 0 1 5 9 0 7 5  - IO” 1 - 1 .0 8 3 1 1 0 4 7 1 4 8 5 7 8 1 • IO” 1

160 -3 .7 9 7 4 8 1 4 6 7 4 3 8 1 5 4  • 1 0 “ 1 -2 .3 1 4 5 4 4 4 7 0 1 5 9 0 7 5  ■ IO” 1 - 1 .0 8 3 1 1 0 4 7 1 4 8 5 7 8 1 . IO” 1
3 2 0 -3 .7 9 7 4 8 1 4 6 7 4 3 8 1 5 5  • 1 0 “ 1 -2 .3 1 4 5 4 4 4 7 0 1 5 9 0 7 5  • IO” 1 - 1 .0 8 3 1 1 0 4 7 1 4 8 5 7 8 1 IO” 1
N a “  =  0 .5 ,  a +  =  0 .5
4 0 -2 .3 5 9 3 7 3 4 3 5 8 9 6 9 4 7  • 1 0 ” * -1 .0 2 9 6 2 8 1 0 8 9 7 9 3 2 4  • IO- 1 0
8 0 - 2 .3 5 9 3 7 6 5 6 4 3 8 1 4 4 4  • 1 0 ” 1 -1 .0 2 9 6 2 8 1 0 8 9 8 0 8 8 1  • I O " 1 0

160 -2 .3 5 9 3 7 6 5 6 5 9 8 2 6 3 1  • IO” 1 -1 .0 2 9 6 2 8 1 0 8 9 8 0 8 8 1  • 1 0 “ 1 0
32 0 - 2 .3 5 9 3 7 6 5 6 5 9 8 2 6 3 1  • 1 0 ” 1 -1 .0 2 9 6 2 8 1 0 8 9 8 0 8 8 1  • IO” 1 0
N a ”  =  0 .9 ,  a +  =  0 .5
4 0 2 .0 8 3 0 0 8 3 5 1 5 8 0 7 2 4  • 1 0 “ 1 2 .6 4 7 1 6 9 5 0 0 0 0 5 1 6 1  • 1 0 “ 1 3 .0 5 4 9 0 8 7 8 8 3 6 1 8 7 1  • IO” 1
8 0 2 .0 8 3 0 0 6 6 7 3 2 6 5 7 0 7  - 1 0 “ 1 2 .6 4 7 1 6 9 5 0 0 0 0 1 2 5 5  • 1 0 “ 1 3 .0 5 4 9 0 8 7 8 8 3 5 9 1 9 1  - IO” 1

160 2 .0 8 3 0 0 6 6 7 2 4 0 6 7 2 7  • IO” 1 2 .6 4 7 1 6 9 5 0 0 0 0 1 2 5 4  • 1 0 “ 1 3 .0 5 4 9 0 8 7 8 8 3 5 9 1 9 1  • IO- 1
32 0 2 .0 8 3 0 0 6 6 7 2 4 0 6 7 2 6  ■ 1 0 “ 1 2 .6 4 7 1 6 9 5 0 0 0 0 1 2 5 4  • IO” 1 3 .0 5 4 9 0 8 7 8 8 3 5 9 1 9 1  • IO” 1
N a ”  =  0 .1 ,  a +  s  0 .9
40 -4 .5 8 8 1 1 9 5 0 4 4 6 1 9 6 0  ■ 1 0 ” 1 -4 .0 7 9 2 5 1 8 6 5 1 1 7 6 7 3  • IO” 1 -3 .6 5 4 5 4 6 2 2 1 1 4 4 7 9 4 . IO” 1
80 -4 .5 8 8 1 2 0 3 8 2 8 2 1 6 3 5  • 1 0 “ l -4 .0 7 9 2 5 1 8 6 5 1 1 5 9 3 2  • 1 0 ” 1 -3 .6 5 4 5 4 6 2 2 1 1 4 1 8 5 0 • IO” 1

160 -4 .5 8 8 1 2 0 3 8 3 2 7 1 1 8 6  • 1 0 ” 1 -4 .0 7 9 2 5 1 8 6 5 1 1 5 9 3 2  • 1 0 ” 1 -3 .6 5 4 5 4 6 2 2 1 1 4 1 8 5 1 • IO” 1
32 0 -4 .5 8 8 1 2 0 3 8 3 2 7 1 1 8 6  • 1 0 ” 1 -4 .0 7 9 2 5 1 8 6 5 1 1 5 9 3 2  • 1 0 “ l -3 .6 5 4 5 4 6 2 2 1 1 4 1 8 5 1 • IO” 1
N a  =  0 .5 ,  a *  — 0 .9
40 -3 .9 7 4 6 2 8 2 7 8 2 2 1 8 1 3  • I O " 1 -3 .4 5 7 4 7 2 8 4 9 5 6 6 2 6 5  • 1 0 ” 1 -3 .0 5 4 9 0 8 7 8 8 3 6 1 8 7 1 • IO” 1
80 -3 .9 7 4 6 2 9 4 9 3 0 3 0 4 0 3  • 1 0 “ 1 -3 .4 5 7 4 7 2 8 4 9 5 6 4 7 5 9  • IO” 1 -3 .0 5 4 9 0 8 7 8 8 3 5 9 1 9 1 • 1 0 “ l

160 -3 .9 7 4 6 2 9 4 9 3 6 5 2 1 5 4  • 1 0 “ 1 -3 .4 5 7 4 7 2 8 4 9 5 6 4 7 5 9  * IO” 1 -  3 .0 5 4 9 0 8 7 8 8 3 5 9 1 9 1 ■ IO” 1
3 2 0 - 3 .9 7 4 6 2 9 4 9 3 6 5 2 1 5 4  • 1 0 " 1 -3 .4 5 7 4 7 2 8 4 9 5 6 4 7 5 9  • 1 0 “ l -3 .0 5 4 9 0 8 7 8 8 3 5 9 1 9 1 • IO” 1
N a  =  0 .9 ,  a +  — 0 .9
40 -6 .0 5 2 1 2 2 9 4 3 9 9 9 5 7 0  1 0 ~ J -2 .5 4 7 0 8 1 4 8 7 4 3 5 0 1 3  IO” 2 0
80 -6 .0 5 2 1 3 3 3 5 7 4 1 0 9 2 3  • 1 0 “ 2 - 2 .5 4 7 0 8 1 4 8 7 4 4 3 6 0 0  - 1 0 ” 2 0

160 -6 .0 5 2 1 3 3 3 6 2 7 4 0 6 2 9  • IO” 2 - 2 .5 4 7 0 8 1 4 8 7 4 4 3 6 0 0  • IO” 2 0
3 2 0 -6 .0 5 2 1 3 3 3 6 2 7 4 0 6 3 2  • 1 0 “ 2 -2 .5 4 7 0 8 1 4 8 7 4 4 3 6 0 0  • 1 0 “ 2 0
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TABLE 17: The values of the approximated velocity u N ( y )  of the Couette flow
at y  — 0.25 and 0.5, for the Knudsen number k  =  0.3 and 4 0  <  N  <  320 and
a ± =  0,0.1, 0.5,0.9_______________________________________

y 0 .2 5 0 .5
N a "  =  0 .1 ,  a +  =  0
40 1 .7 9 9 6 0 5 0 6 6 1 8 1 2 2 1  ■ 1 0 " * 3 .7 2 1 6 0 0 1 5 6 3 8 4 7 4 2  • i o - *
80 1 .7 9 9 6 0 5 0 6 6 1 8 1 7 8 2 1 0 " 1 3 .7 2 1 6 0 3 1 8 5 5 7 3 4 9 2  • 1 0 - 1

160 1 .7 9 9 6 0 5 0 6 6 1 8 1 7 8 2  • 1 0 _ l 3 .7 2 1 6 0 3 1 8 7 1 2 3 8 4 7  • 1 0 - 1
320 1 .7 9 9 6 0 5 0 6 6 1 8 1 7 8 2 1 0 " 1 3 -7 2 1 6 0 3 1 8 7 1 2 3 8 4 8 1 0 - 1
N a ~  =  0 .5 ,  a +  =  0
40 2 .5 1 7 1 9 4 3 6 3 5 6 5 8 4 2  • 1 0 " * 4 .0 0 9 3 3 9 6 9 2 3 2 8 7 9 8 1 0 - 1

80 2 .5 1 7 1 9 4 3 6 3 5 6 4 9 9 4  • 1 0 " 1 4 .0 0 9 3 4 2 0 3 9 7 1 3 6 2 6  • 1 0 _ 1
160 2 .5 1 7 1 9 4 3 6 3 5 6 4 9 9 4  • 1 0 " 1 4 .0 0 9 3 4 2 0 4 0 9 1 5 0 3 1  ■ 1 0 " 1
320 2 .5 1 7 1 9 4 3 6 3 5 6 4 9 9 4  • 1 0 " 1 4 .0 0 9 3 4 2 0 4 0 9 1 5 0 3 1  • 1 0 - 1
N a  — 0 .9 ,  =  0
40 4 .1 6 4 4 3 5 9 5 6 7 6 4 8 9 1  • 1 0 " 1 4 .6 6 6 9 8 9 9 2 5 1 5 4 0 1 4  • 1 0 “ *
80 4 .1 6 4 4 3 5 9 5 6 7 6 3 1 7 0  • IO " 1 4 .6 6 6 9 9 0 7 1 4 2 2 5 9 3 2  • 1 0 _ l

160 4 .1 6 4 4 3 5 9 5 6 7 6 3 1 7 0  ■ I O " 1 4 .6 6 6 9 9 0 7 1 4 6 2 9 7 8 4  • i o - 1
320 4 .1 6 4 4 3 5 9 5 6 7 6 3 1 7 0  ■ IO " 1 4 .6 6 6 9 9 0 7 1 4 6 2 9 7 8 4  ■ 1 0 ” 1
AT a "  =  0 .1 , =  0 .1
40 1 .5 6 5 9 0 1 9 3 8 9 0 8 8 9 2  - 1 0 " * 3 .4 6 0 7 4 5 2 4 4 8 7 4 3 0 3  • 1 0 “ l
80 1 .5 6 5 9 0 1 9 3 8 9 0 9 8 5 0  - IO- 1 3 .4 6 0 7 4 8 5 2 7 4 3 0 0 4 4  • IO” 1

160 1 .5 6 5 9 0 1 9 3 8 9 0 9 8 5 0  • I O " 1 3 .4 6 0 7 4 8 5 2 9 1 1 0 0 7 6  ■ IO- 1
320 1 .5 6 5 9 0 1 9 3 8 9 0 9 8 5 0  • I O " 1 3 .4 6 0 7 4 8 5 2 9 1 1 0 0 7 7  ■ IO- 1
N a "  =  0 .5 , a +  =  0 .1
40 2 .3 1 4 5 4 4 4 7 0 1 5 9 6 4 1  - 1 0 " * 3 .7 9 7 4 7 8 9 0 1 6 7 5 8 0 6  • 1 0 “ 1
80 2 .3 1 4 5 4 4 4 7 0 1 5 9 0 7 5  - IO " 1 3 .7 9 7 4 8 1 4 6 6 1 2 5 6 5 3 i o - 1

160 2 .3 1 4 5 4 4 4 7 0 1 5 9 0 7 5  • I O " 1 3 .7 9 7 4 8 1 4 6 7 4 3 8 1 5 5  - 1 0 “ 1
32 0 2 .3 1 4 5 4 4 4 7 0 1 5 9 0 7 5  • IO " 1 3 .7 9 7 4 8 1 4 6 7 4 3 8 1 5 5  ■ IO” 1
N a “  =  0 .9 , a +  =  0 .1
40 4 .0 7 9 2 5 1 8 6 5 1 1 7 6 7 3  • IO " 1 4 .5 8 8 1 1 9 5 0 4 4 6 1 9 6 0  • 1 0 “ 1
80 4 .0 7 9 2 5 1 8 6 5 1 1 5 9 3 2  ■ IO” 1 4 .5 8 8 1 2 0 3 8 2 8 2 1 6 3 5  • I O * 1

160 4 .0 7 9 2 5 1 8 6 5 1 1 5 9 3 2  - IO " 1 4 .5 8 8 1 2 0 3 8 3 2 7 1 1 8 6  • 1 0 “ l
32 0 4 .0 7 9 2 5 1 8 6 5 1 1 5 9 3 2  • 1 0 - 1 4 .5 8 8 1 2 0 3 8 3 2 7 1 1 8 6  ■ 1 0 “ l
N a “  =  0 .1 , a +  =  0 .5
4 0 1 .6 3 5 7 3 4 3 2 7 9 7 7 2 2 7  • 1 0 “ * 1 .7 8 1 7 8 2 9 9 4 0 6 6 0 6 4  - IO- 1
8 0 1 .6 3 5 7 3 4 3 2 8 0 1 1 3 8 3  • 1 0 " 2 1 .7 8 1 7 8 6 8 0 6 8 5 2 3 2 2  ■ IO- 1

160 1 .6 3 5 7 3 4 3 2 8 0 1 1 3 8 4  • 1 0 " 2 1 .7 8 1 7 8 6 8 0 8 8 0 3 7 4 0  * 1 0 “ 1
320 1 .6 3 5 7 3 4 3 2 8 0 1 1 3 8 4  ■ 1 0 “ 2 1 .7 8 1 7 8 6 8 0 8 8 0 3 7 4 1  • 1 0 - 1

N a "  =  0 .5 , =  0 .5
4 0 1 .0 2 9 6 2 8 1 0 8 9 7 9 3 2 4  • IO " 1 2 .3 5 9 3 7 3 4 3 5 8 9 6 9 4 7  - 1 0 “ 1
8 0 1 .0 2 9 6 2 8 1 0 8 9 8 0 8 8 1  • IO " 1 2 .3 5 9 3 7 6 5 6 4 3 8 1 4 4 4  • 1 0 “ 1

160 1 .0 2 9 6 2 8 1 0 8 9 8 0 8 8 1  ■ IO " 1 2 .3 5 9 3 7 6 5 6 5 9 8 2 6 3 1  • 1 0 " 1
32 0 1 .0 2 9 6 2 8 1 0 8 9 8 0 8 8 1  • l 0 - l 2 .3 5 9 3 7 6 5 6 5 9 8 2 6 3 1  • IO- 1
N Or ”  =  0 .9 , a +  =  0 .5
4 0 3 .4 5 7 4 7 2 8 4 9 5 6 6 2 6 5  • i o - * 3 .9 7 4 6 2 8 2 7 8 2 2 1 8 1 3  - 1 0 “ *
80 3 .4 5 7 4 7 2 8 4 9 5 6 4 7 5 9  • 1 0 - 1 3 .9 7 4 6 2 9 4 9 3 0 3 0 4 0 3  • I O " 1

160 3 .4 5 7 4 7 2 8 4 9 5 6 4 7 5 9  ■ IO " 1 3 .9 7 4 6 2 9 4 9 3 6 5 2 1 5 4  • I O " 1
32 0 3 .4 5 7 4 7 2 8 4 9 5 6 4 7 5 9  • IO " 1 3 .9 7 4 6 2 9 4 9 3 6 5 2 1 5 4  • I O " 1
N a -  =  0 .1 , a +  =  0 .9
4 0 - 3 .2 1 9 0 7 0 3 1 7 8 1 8 3 7 3 - 1 0 _ i -2 .6 1 3 4 1 0 7 7 2 1 1 4 5 9 4 • 1 0 “ *
80 - 3 .2 1 9 0 7 0 3 1 7 8 1 4 1 3 2 • 1 0 _ 1 - 2 .6 1 3 4 0 8 9 6 8 1 2 0 9 7 3 • I O " 1

160 - 3 .2 1 9 0 7 0 3 1 7 8 1 4 1 3 2 • I O " 1 - 2 .6 1 3 4 0 8 9 6 7 1 9 7 6 6 9 • I O " 1
320 - 3 .2 1 9 0 7 0 3 1 7 8 1 4 1 3 2 - I O " 1 -2 .6 1 3 4 0 8 9 6 7 1 9 7 6 6 9 • IO- 1
N a -  =  0 .5 , a +  =  0 .9
40 -2 .6 4 7 1 6 9 5 0 0 0 0 5 1 6 1 • 1 0 “ * - 2 .0 8 3 0 0 8 3 5 1 5 8 0 7 2 4 . 1 0 " *
80 - 2 .6 4 7 1 6 9 5 0 0 0 0 1 2 5 5 • 1 0 “ l - 2 .0 8 3 0 0 6 6 7 3 2 6 5 7 0 7 • I O " 1

160 -2 .6 4 7 1 6 9 5 0 0 0 0 1 2 5 4 - lO - 1 - 2 .0 8 3 0 0 6 6 7 2 4 0 6 7 2 7 • I O " 1
32 0 -2 .6 4 7 1 6 9 5 0 0 0 0 1 2 5 4 • 1 0 " 1 - 2 .0 8 3 0 0 6 6 7 2 4 0 6 7 2 6 1 0 - 1

N a -  =  0 .9 , a +  =  0 .9
4 0 2 .5 4 7 0 8 1 4 8 7 4 3 5 0 1 3  • 1 0 “  2 6 .0 5 2 1 2 2 9 4 3 9 9 9 5 7 0  • 10~'2
80 2 .5 4 7 0 8 1 4 8 7 4 4 3 6 0 0  • 1 0 ~ 2 6 .0 5 2 1 3 3 3 5 7 4 1 0 9 2 3  • 1 0 " 2

160 2 .5 4 7 0 8 1 4 8 7 4 4 3 6 0 0  • i o - 2 6 .0 5 2 1 3 3 3 6 2 7 4 0 6 2 9  • IO " 2
32 0 2 .5 4 7 0 8 1 4 8 7 4 4 3 6 0 0  • 1 0 “ 2 6 .0 5 2 1 3 3 3 6 2 7 4 0 6 3 2  • 1 0 " 2
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TABLE 18: The values of the approximated velocity u N ( y ) of the Couette flow at
y  =  —0.5, —0.25 and 0, for the Knudsen number k  =  1 and 40 < N  <  320 and
a*  =  0,0.1,0.5,0.9________________________________________________

y -0 .5 -0 .2 5 o
TV a "  =  0 .1 ,  a +  =  0
4 0 -2 .1 0 9 2 6 4 9 7 4 8 9 5 3 7 9  • 1 0 " A -7 .6 5 7 9 5 4 8 7 8 2 8 5 7 9 9  IO " 2 3 .0 4 5 5 0 2 9 5 7 1 0 7 4 3 6 IO " 2
8 0 - 2 .1 0 9 2 6 6 8 2 4 3 2 7 6 7 7  • 1 0 “ 1 - 7 .6 5 7 9 5 4 8 7 8 2 8 7 7 1 1  • 1 0 " 2 3 .0 4 5 5 0 2 9 5 7 1 0 6 9 6 2 1 0 " 2

160 - 2 .1 0 9 2 6 6 8 2 5 2 7 4 2 1 3  1 0 " 1 - 7 .6 5 7 9 5 4 8 7 8 2 8 7 7 1 1  - 1 0 " 2 3 .0 4 5 5 0 2 9 5 7 1 0 6 9 6 2 1 0 " 2
3 2 0 -2 .1 0 9 2 6 6 8 2 5 2 7 4 2 1 4  • 1 0 " A - 7 .6 5 7 9 5 4 8 7 8 2 8 7 7 1 1  • 1 0 " 2 3 .0 4 5 5 0 2 9 5 7 1 0 6 9 6 2 1 0 " 2
TV a  — 0 .5 ,  — 0
4 0 7 .3 7 3 1 2 1 2 3 7 0 2 0 7 1 8  1 0 " 2 1 .0 8 7 1 6 4 2 4 5 2 0 3 6 7 4  • 1 0 ” 1 1 .8 3 5 7 9 0 4 2 3 1 1 3 1 5 7 IO” 1
8 0 7 .3 7 2 9 4 0 9 0 0 2 0 9 5 5 9  • 1 0 “ 2 1 .0 8 7 1 6 4 2 4 5 2 0 3 2 4 7  • 1 0 ” 1 1 .8 3 5 7 9 0 4 2 3 1 1 2 9 0 5 I O " 1

1 60 7 .3 7 2 9 4 0 8 0 7 9 1 3 3 2 4  • 1 0 ~ 2 1 .0 8 7 1 6 4 2 4 5 2 0 3 2 4 6  ■ 1 0 “ 1 1 .8 3 5 7 9 0 4 2 3 1 1 2 9 0 5 I O " 1
3 2 0 7 .3 7 2 9 4 0 8 0 7 9 1 3 2 7 9  • 1 0 " 2 1 .0 8 7 1 6 4 2 4 5 2 0 3 2 4 7  - 1 0 "  1 1 .8 3 5 7 9 0 4 2 3 1 1 2 9 0 5 I O " 1
TV a  — 0 .9 ,  q +  =  0
4 0 3 .7 0 5 5 4 3 1 1 3 3 2 1 4 6 3  • 1 0 " A 3 .9 9 3 5 5 1 4 5 3 8 8 8 8 5 0  1 0 " 1 4 .1 9 1 9 7 5 9 7 9 7 7 2 9 4 7 I O " 1
8 0 3 .7 0 5 5 4 2 4 9 4 4 7 6 1 0 8  • 1 0 “ 1 3 .9 9 3 5 5 1 4 5 3 8 8 8 5 7 7  • 1 0 " 1 4 .1 9 1 9 7 5 9 7 9 7 7 2 7 6 0 I O " 1

160 3 .7 0 5 5 4 2 4 9 4 1 5 9 3 8 3  • 1 0 “ 1 3 .9 9 3 5 5 1 4 5 3 8 8 8 5 7 7  - 1 0 ” 1 4 .1 9 1 9 7 5 9 7 9 7 7 2 7 6 0 I O " 1
3 2 0 3 .7 0 5 5 4 2 4 9 4 1 5 9 3 8 3  • 1 0 “ 1 3 .9 9 3 5 5 1 4 5 3 8 8 8 5 7 7  • 1 0 ” 1 4 .1 9 1 9 7 5 9 7 9 7 7 2 7 6 0 I O " 1
TV a "  =  0 .1 ,  <*+ =  0 .1
4 0 - 2 .2 7 9 3 5 4 7 7 2 0 2 1 8 7 2  • IO - 1 -1 .0 1 2 5 3 5 6 9 1 9 9 8 0 9 3  • 1 0 " 1 0
8 0 -2 .2 7 9 3 5 6 5 1 2 6 3 4 2 2 0  • 1 0 “ 1 - 1 .0 1 2 5 3 5 6 9 1 9 9 8 2 4 0  • IO” 1 0

160 -2 .2 7 9 3 5 6 5 1 3 5 2 5 0 6 2  • 1 0 “ 1 - 1 .0 1 2 5 3 5 6 9 1 9 9 8 2 4 0  • I O " 1 0
3 2 0 -2 .2 7 9 3 5 6 5 1 3 5 2 5 0 6 3  • 1 0 " 1 - 1 .0 1 2 5 3 5 6 9 1 9 9 8 2 4 0  • I O " 1 0
TV cr"  =  0 .5 , a +  =  0 .1
4 0 - 1 .2 8 9 9 5 9 6 5 2 2 5 5 9 3 6  • 1 0 " 2 8 .4 5 1 5 6 2 4 0 8 5 8 5 6 8 6  - 1 0 " 2 1 .5 6 7 0 4 8 3 7 8 3 3 9 3 0 2  • IO ” 1
80 - 1 .2 8 9 9 7 6 9 6 5 3 7 8 9 5 2  • 1 0 " 2 8 .4 5 1 5 6 2 4 0 8 5 8 1 7 6 7  • 1 0 ” 2 1 .5 6 7 0 4 8 3 7 8 3 3 9 0 8 3  - I O " 1

160 - 1 .2 8 9 9 7 6 9 7 4 2 3 9 7 9 5  • IO " 2 8 .4 5 1 5 6 2 4 0 8 5 8 1 7 6 7  • IO” 2 1 .5 6 7 0 4 8 3 7 8 3 3 9 0 8 3 I O " 1
3 2 0 - 1 .2 8 9 9 7 6 9 7 4 2 3 9 7 9 9  ■ 1 0 “ 2 8 .4 5 1 5 6 2 4 0 8 5 8 1 7 6 7  • 1 0 " 2 1 .5 6 7 0 4 8 3 7 8 3 3 9 0 8 3  • I O " 1
TV a "  =  0 .9 ,  a +  =  0 .1
4 0 3 .6 1 5 2 3 8 6 5 7 0 0 1 3 6 9  • 1 0 " 1 3 .9 0 0 4 8 4 6 2 2 9 9 7 0 5 5  • 1 0 " 1 4 .0 9 7 5 9 0 7 0 5 9 7 4 0 1 2  ■I O " 1
8 0 3 .6 1 5 2 3 8 0 4 4 5 7 5 4 2 4  • 1 0 " 1 3 .9 0 0 4 8 4 6 2 2 9 9 6 7 7 9  • IO " 1 4 .0 9 7 5 9 0 7 0 5 9 7 3 8 2 2  ■I O " 1

1 6 0 3 .6 1 5 2 3 8 0 4 4 2 6 1 9 8 4  • 1 0 " 1 3 .9 0 0 4 8 4 6 2 2 9 9 6 7 7 9  • IO” 1 4 .0 9 7 5 9 0 7 0 5 9 7 3 8 2 2  • I O " 1
3 2 0 3 .6 1 5 2 3 8 0 4 4 2 6 1 9 8 4  • I O " 1 3 .9 0 0 4 8 4 6 2 2 9 9 6 7 7 9  • IO " 1 4 .0 9 7 5 9 0 7 0 5 9 7 3 8 2 2 I O " 1
TV a "  =  0 .1 ,  =  0 .5
4 0 - 3 .1 4 3 6 5 4 3 4 9 7 2 0 7 2 2  • I O " 1 -2 .2 7 2 5 1 1 9 5 5 1 2 8 3 2 3  • IO " 1 -1 .5 6 7 0 4 8 3 7 8 3 3 9 3 0 2 . I O " 1
8 0 - 3 .1 4 3 6 5 5 5 3 7 3 7 2 0 1 8  • I O " 1 - 2 .2 7 2 5 1 1 9 5 5 1 2 8 2 5 8  • IO " 1 - 1 .5 6 7 0 4 8 3 7 8 3 3 9 0 8 3 . I O " 1

160 -3 .1 4 3 6 5 5 5 3 7 9 7 9 8 5 6  • 1 0 " 1 - 2 .2 7 2 5 1 1 9 5 5 1 2 8 2 5 8  ■ IO " 1 -1 .5 6 7 0 4 8 3 7 8 3 3 9 0 8 3 • I O " 1
3 2 0 -3 .1 4 3 6 5 5 5 3 7 9 7 9 8 5 6  • I O " 1 - 2 .2 7 2 5 1 1 9 5 5 1 2 8 2 5 8  IO " 1 - 1 .5 6 7 0 4 8 3 7 8 3 3 9 0 8 3 • I O " 1
TV a "  =  0 .5 , a +  -  0 .5
4 0 -1 .3 0 1 7 3 4 5 4 2 4 6 2 8 2 6  • I O " 1 -5 .5 8 2 3 8 2 9 5 4 3 0 1 9 4 6  • IO " 2 0
8 0 -1 .3 0 1 7 3 5 8 5 6 9 4 5 8 0 6  - I O " 1 -5 .5 8 2 3 8 2 9 5 4 3 0 3 5 2 2  ■ IO " 2 0

160 - 1 .3 0 1 7 3 5 8 5 7 6 1 8 5 5 7  - I O " 1 -5 .5 8 2 3 8 2 9 5 4 3 0 3 5 2 2  • 1 0 " 2 0
3 2 0 - 1 .3 0 1 7 3 5 8 5 7 6 1 8 5 5 8  • I O " 1 -5 .5 8 2 3 8 2 9 5 4 3 0 3 5 2 2  • 1 0 ” 2 0
TV a  =  0 .9 , a -*- — 0 .5
4 0 2 .9 5 8 5 2 8 8 4 3 9 5 7 7 7 7  • 1 0 " A 3 .2 2 2 9 2 0 1 5 8 5 4 9 0 1 7  • I O " 1 3 .4 0 7 9 1 1 5 6 3 6 1 8 2 5 8  • 1 0 " A
8 0 2 .9 5 8 5 2 8 2 7 8 2 1 4 9 3 7  • I O " 1 3 .2 2 2 9 2 0 1 5 8 5 4 8 7 5 8  • 1 0 “ 1 3 .4 0 7 9 1 1 5 6 3 6 1 8 0 8 0  • I O " 1

160 2 .9 5 8 5 2 8 2 7 7 9 2 5 3 9 0  • 1 0 " 1 3 .2 2 2 9 2 0 1 5 8 5 4 8 7 5 8  • 1 0 ” 1 3 .4 0 7 9 1 1 5 6 3 6 1 8 0 8 0  - I O " 1
3 2 0 2 .9 5 8 5 2 8 2 7 7 9 2 5 3 8 9  • 1 0 " 1 3 .2 2 2 9 2 0 1 5 8 5 4 8 7 5 8  • 1 0 ” 1 3 .4 0 7 9 1 1 5 6 3 6 1 8 0 8 0  • 1 0 " 1
TV a "  =  0 .1 ,  =  0 .9
4 0 - 4 .5 1 5 2 1 5 6 0 5 3 9 2 0 9 3  • 1 0 " 1 -4 .2 8 5 8 5 0 1 7 5 8 2 8 0 7 9  • 1 0 " A - 4 .0 9 7 5 9 0 7 0 5 9 7 4 0 1 2 • 1 0 " A
8 0 - 4 .5 1 5 2 1 5 9 1 5 5 4 6 9 8 3  - 1 0 " 1 - 4 .2 8 5 8 5 0 1 7 5 8 2 7 9 6 0  ■ I O " 1 -4 .0 9 7 5 9 0 7 0 5 9 7 3 8 2 2 • I O " 1

160 -4 .5 1 5 2 1 5 9 1 5 7 0 5 7 2 0  • 1 0 " 1 - 4 .2 8 5 8 5 0 1 7 5 8 2 7 9 6 0  • I O " 1 -4 .0 9 7 5 9 0 7 0 5 9 7 3 8 2 2 . 1 0 “ 1
3 2 0 -4 .5 1 5 2 1 5 9 1 5 7 0 5 7 2 0  • 1 0 " 1 - 4 .2 8 5 8 5 0 1 7 5 8 2 7 9 6 0  • IO” 1 -4 .0 9 7 5 9 0 7 0 5 9 7 3 8 2 2 • I O " 1
TV a "  =  0 .5 ,  a +  =  0 .9
4 0 - 3 .8 2 5 9 9 2 8 1 8 7 4 3 2 5 9  • 1 0 " 1 - 3 .5 8 8 6 2 6 3 5 4 4 7 0 2 0 7  • 1 0 " A -  3- 4 0 7 9 1 1 5 6 3 6 1 8 2 5 8 • 1 0 ” A
8 0 -3 .8 2 5 9 9 3 2 3 6 0 2 3 1 9 8  • 1 0 " 1 - 3 .5 8 8 6 2 6 3 5 4 4 7 0 1 0 3  • 1 0 " 1 -3 .4 0 7 9 1 1 5 6 3 6 1 8 0 8 0 • IO” 1

1 6 0 -3 .8 2 5 9 9 3 2 3 6 2 3 6 7 6 1  • 1 0 " 1 - 3 .5 8 8 6 2 6 3 5 4 4 7 0 1 0 3  • 1 0 " 1 -3 .4 0 7 9 1 1 5 6 3 6 1 8 0 8 0 • I O " 1
3 2 0 -3 .8 2 5 9 9 3 2 3 6 2 3 6 7 6 1  • I O " 1 -3 .5 8 8 6 2 6 3 5 4 4 7 0 1 0 3  • 1 0 " 1 -3 .4 0 7 9 1 1 5 6 3 6 1 8 0 8 0 • 1 0 " 1
TV at =  0 .9 ,  a +  =  0 .9
4 0 -2 .6 9 6 2 3 1 8 6 7 1 5 1 7 1 7  • 1 0 " 2 - 1 .1 1 8 8 2 6 0 6 8 8 3 4 4 0 1  • 1 0 " 2 0
80 - 2 .6 9 6 2 3 5 2 2 9 8 0 3 4 0 5  • 1 0 " 2 -1 .1 1 8 8 2 6 0 6 8 8 3 4 9 3 6  • 1 0 " 2 0

1 60 - 2 .6 9 6 2 3 5 2 3 1 5 2 4 4 1 1  ■ IO " 2 -1 .1 1 8 8 2 6 0 6 8 8 3 4 9 3 6  - 1 0 " 2 0
3 2 0 - 2 .6 9 6 2 3 5 2 3 1 5 2 4 4 1 2  • I O " 2 -1 .1 1 8 8 2 6 0 6 8 8 3 4 9 3 6  IO " 2 0
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TABLE 19: The values of the approximated velocity u N ( y ) of the Couette flow
at y  =  0.25 and 0.5, for the Knudsen number k  =  1 and 40 < Ar < 320 and
a*  =  0,0.1, 0.5,0.9_______________________________________

y 0 .25 0.5
N a -  =  0.1 Q ■+ II O

40 1.368731713732195 • 10“ 1 2.673902362028769 10“ 1
80 1.368731713732286 • 10“ l 2 .673904015572797 10“ l

160 1.368731713732286 • 10“ 1 2.673904016419077 1 0 " 1
320 1.368731713732286 • 10- 1 2.673904016419078 10“ 1
N a  =  0 .5 , a +  =  0
40 2.563219462178745 • 10“ 1 3.443876933492997 10” 1
80 2.563219462178645 10” 1 3 443878039688068 10“ 1

160 2.563219462178645 • 10“ 1 3.443878040254216 IO "1
320 2.563219462178645 • 10_1 3.443878040254217 10” 1
N a "  =  0 9 , a + =  0
40 4.380451963883620 • 10” 1 4.605631577708625 IO” 1
80 4.380451963883503 • 10” 1 4.605631858051690 1 0 " 1

160 4.380451963883503 ■1 0 ' 1 4 .605631858195169 IO” 1
320 4.380451963883503 • 10- 1 4.605631858195169 IO” 1
N a “  =  0 .1 , at+  =  0.1
40 1.012535691998093 • 10“  * 2.279354772021872 IO "1
80 1.012535691998240 - 10” 1 2.279356512634220 IO " 1

160 1.012535691998240 >IO” 1 2.279356513525062 IO” 1
320 1.012535691998240 • IO "1 2.279356513525063 10“ l
N a “  =  0 .5 , =  0.1
40 2.272511955128323 • 10“ A 3.143654349720722 10 - i
80 2.272511955128258 ■IO "1 3.143655537372018 1 0 -1

160 2.272511955128258 - i o - 1 3 .143655537979856 IO "1
320 2.272511955128258 • IO” 1 3.143655537979856 IO” 1
N a "  SB 0.9 , a +  ss 0.1
40 4.285850175828079 • i o ~ i 4 .515215605392093 IO "1
80 4.285850175827960 • 10“ 1 4.515215915546983 IO” 1

160 4.285850175827960 • 10“ l 4.515215915705720 IO " 1
320 4.285850175827960 • IO- 1 4.515215915705720 IO " 1
N at “  =  0 .1 , C * +  SB 0.5
40 -8 .4 5 1 5 6 2408585686 • 10~'J 1.289959652255936 10“ 2
80 -8 .45 1 5 6 2 4 0 8 5 8 1 7 6 7 • 10" 2 1.289976965378952 l 0 - 2

160 -8-451562408581767 • 10“ 2 1.289976974239795 IO” 2
320 -8 .45 1 5 6 2 4 0 8 5 8 1 7 6 7 - 10” 2 1.289976974239799 1 0 - 2

N Ct “  =  0 .5 , ot+  sb 0 .5
40 5.582382954301946 - IO "2 1.301734542462826 IO " 1
80 5.582382954303522 • 10“ l 1.301735856945806 IO” 1

160 5.582382954303522 10” 1 1.301735857618557 IO " 1
320 5.582382954303522 • IO” 2 1.301735857618558 IO " 1
N a ”  =  0 .9 , a +  =  0 5
40 3.588626354470207 ■10- i 3 .825992818743259 IO " 1
80 3.588626354470103 • 1 0 -1 3.825993236023198 IO "1

160 3.588626354470103 • IO” 1 3.825993236236761 IO "1
320 3.588626354470103 • IO” 1 3.825993236236761 IO " 1
N a " =  0 .1 , =  0 .9
40 -  3 .900484622997055 IO” 1 —3.6I523865700I369 10_ i
80 -  3 .900484622996779 . IO” 1 -3 .61 5 2 3 8 0 4 4 5 7 5 4 2 4 IO "1

160 -3 .90 0 4 8 4 6 2 2 9 9 6 7 7 9 • IO” 1 -3 .61 5 2 3 8 0 4 4 2 6 1 9 8 4 ■ IO” 1
320 -3 .90 0 4 8 4 6 2 2 9 9 6 7 7 9 ■ 10“ 1 -3 .6 1 5 2 3 8044261984 • 1 0 " 1
N a ”  =  0 .5 , a +  =B 0 .9
40 -3 .2 2 2 9 2 0 1 5 8 5 4 9 0 1 7 • IO” 1 -2 .95 8 5 2 8 8 4 3 9 5 7 7 7 7 • 10_ i
80 -3 .2 2 2 9 2 0 1 5 8 5 4 8 7 5 8 • IO” 1 -2 .95 8 5 2 8 2 7 8 2 1 4 9 3 7 IO " 1

160 -3 .22 2 9 2 0 1 5 8 5 4 8 7 5 8 • 10” 1 -  2 .958528277925390 ■ IO " 1
320 -3 .22 2 9 2 0 1 5 8 5 4 8 7 5 8 • IO” 1 -  2 .958528277925389 IO "1
N a

o’01!1

=  0 .9
40 1.118826068834401 - IO” 2 2.696231867151717 10“ 2
80 1.118826068834936 • 10“ 2 2.696235229803405 • 1 0 " 2

160 1.118826068834936 • 10” 2 2.696235231524411 - 1 0 " 2
320 1.118826068834936 • 1 0" 2 2 .696235231524412 - IO” 2
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TABLE 20: The values of the approximated velocity u N ( y ) of the Couette flow at
y  =  —0.5, —0.25 and 0, for the Knudsen number k  =  2 and 40 < N  <  320 and
ct± =  0,0.1,0.5,0.9________________________________________________

V -0.5 -0 .25 0
N a "  =  0 .1 , a +  =  0
40 -1 .394003828510785  • 1 0 " 1 -4 .191643274346711  • 1 0 " 2 3.625033272939019 • 1 0 " 2
80 -1 .394004982036027  • 1 0 " 1 -4 .191643274347313  • IO” 2 3.625033272938870 ■10” 2

160 -1 .394004982626397  • 1 0 " 1 -4 .191643274347313  ■ 10“ 2 3.625033272938870 • 1 0 -2
320 -1 .394004982626398  • 1 0 " 1 -4 .191643274347313  • IO "2 3.625033272938870 1 0 " 2
N a "  -  0 .5 , a +  =  0
40 8.494005301864806 • IO"2 1.543115856264126 • IO "1 2.061726546203782 • IO " 1
80 8.493994906486309 • 1 0 " 2 1.543115856264008 • 1 0 " 1 2.061726546203713 • IO " 1

160 8.493994901165987 - 1 0 " 2 1.543115856264008 • IO "1 2.061726546203713 • IO " 1
320 8.493994901165984 - 1 0 " 2 1.543115856264008 1 0 " 1 2.061726546203713 • IO” 1
N a  =  0 .9 , a -** =  0
40 4.008174269276555 ■ 1 0 " 1 4.188377296898878 10 " l 4 .314891395368673 IO” 1
80 4.008173949095708 • 1 0 " 1 4.188377296898816 • IO "1 4.314891395368630 • IO " 1

160 4.008173948931840 • 1 0 " 1 4.188377296898816 • 1 0 " 1 4.314891395368630 - IO " 1
320 4.008173948931840 • 1 0 " 1 4.188377296898816 • 1 0 " 1 4.314891395368630 • IO " 1
N a "  =  0 .1 , a + =  0.1
40 -1 .642936690036072  - 1 0 " 1 -7 .3 2 7 1 8 2523944650  • IO "2 0
80 -1 .642937763929955  • 1 0 " 1 -7 .3 27182523945102  • IO "2 0

160 -1 .642937764479570  • IO "1 -7 .3 27182523945102  ■ 10” 2 0
320 -1 .642937764479570  ■ 1 0 " 1 -7 .327182523945102  • IO "2 0
N a "  =  0 .5 , c*+ ss 0.1
40 5.903736107799532 • 1 0 " 2 1.254526366694325 • 1 0 " A 1.752887502545996 • IO " 1
80 5.903726172755933 • 1 0 " 2 1.254526366694217 • IO " 1 1.752887502545936 • 1 0 " 1

160 5.903726167671208 ■ 1 0 " 2 1.254526366694217 ■ IO " 1 1.752887502545936 ■IO " 1
320 5.903726167671206 - 1 0 " 2 1.254526366694217 • IO " 1 1.752887502545936 ■IO " 1
N a "  ss 0 .9 , =  0.1
40 3 .913352987694977 • IO "1 4.0918303,08226864 • IO " 1 4.217551802447860 • 1 0 " 1
80 3.913352670884397 • 10“ 1 4.091830308226821 • IO " 1 4.217551802447817 - IO " 1

160 3.913352670722254 ■ 1 0 " 1 4.091830308226821 • IO "1 4.217551802447817 • IO " 1
320 3.913352670722254 • IO "1 4.091830308226821 • IO "1 4.217551802447817 • IO " 1

N a "  =s 0 .1 , =  0.5
40 -2 .8 33582713729014  • 1 0 " 1 -2 .239069631785943  • IO " 1 -1 .75 2 8 8 7 5 0 2 5 4 5 9 9 6 • IO " 1
80 -2 .8 33583406746069  • IO "1 -2 .239069631785925  • IO " 1 -1 .75 2 8 8 7 5 0 2 5 4 5 9 3 6 • IO " 1

160 -2 .8 33583407100753  • 10” 1 -2 .239069631785925  ■ IO " 1 -1 .75 2 8 8 7 5 0 2 5 4 5 9 3 6 • IO " 1
320 -2 .8 33583407100753  • 1 0 " 1 -2 .239069631785925  • 1 0 " 1 -1 .75 2 8 8 7 5 0 2 5 4 5 9 3 6 ■ IO " 1
N a "  =  0 .5 , a +  =  0.5
40 -8 .7 07704655545018  • IO"2 -3 .765776759652863  ■ 1 0 " 2 0
80 -8 .7 07711993887009  • 1 0 " 2 -3 .7 6 5 7 7 6759653277  • IO "2 0

160 -8 .7 0 7 7 1 1997642750  - 1 0 " 2 -3 .7 6 5 7 7 6759653277  • IO "2 0
320 -8 .707711997642751  • 1 0 " 2 -3 .7 6 5 7 7 6759653277  • IO"2 0
N a "  =  0 .9 , « + =  0.5
40 3.220262259712840 - 1 0 " A 3.385541512409283 • 1 0 " 1 3.503617615868520 ■IO " 1
80 3.220261967537037 - 1 0 " 1 3.385541512409225 ■ IO "1 3.503617615868480 • IO " 1

160 3.220261967387503 • 1 0 " 1 3.385541512409225 • IO "1 3.503617615868480 ■IO " 1
320 3.220261967387502 • IO "1 3.385541512409225 • IO " 1 3.503617615868480 • IO” 1
N a "  =  0 .1 , a +  =  0 .9
40 -4 .481398298947552  • 1 0 " 1 -4 .337290180855282  • 1 0 " 1 -4 .2 1 7 5 5 1 8 0 2 4 4 7 8 6 0 • 1 0 " A
80 -4 .481398464843468  • 1 0 " 1 -4 .337290180855255  ■ 1 0 " 1 -4 .2 1 7 5 5 1 8 0 2 4 4 7 8 1 7 • IO "1

160 -4 .481398464928373  • 10” 1 -4 .337290180855255  • 1 0 " 1 -4 .21 7 5 5 1 8 0 2 4 4 7 8 1 7 • IO "1
320 -4 .481398464928373  • 1 0 " 1 -4 .337290180855255  • 1 0 " 1 -4 .2 1 7 5 5 1 8 0 2 4 4 7 8 1 7 • IO "1
N a  — 0 .5 , =  0 .9
40 -3 .767502664963592  • IO "1 -3 .618795400913077  10" 1 -3 .5 0 3 6 1 7 6 1 5 8 6 8 5 2 0 • 1 0 " A
80 -3 .767502883999263  - IO "1 -3 .618795400913055  ■ 1 0 " 1 -3 .5 0 3 6 1 7 6 1 5 8 6 8 4 8 0 • IO "1

160 -3 .767502884111365  • 1 0 " 1 -3 .6 1 8 7 9 5400913055  • 1 0 " 1 -3 .5 0 3 6 1 7 6 1 5 8 6 8 4 8 0 • IO "1
320 -3 .767502884111365  • 1 0 " 1 -3 .6 1 8 7 9 5400913055  • 10” 1 -3 .5 0 3 6 1 7 6 1 5 8 6 8 4 8 0 • IO "1
N a "  =  0 .9 , =  0 .9
40 -1 .684283451332681  • 1 0 " 2 -7 .0 8 2 4 0 4920082913  • 10” d 0
80 -1 .684285168635734  • 1 0 " 2 -7 .082404920084131  • IO "3 0

160 -1 .684285169514645  ■ 1 0 " 2 -7 .082404920084131  • IO "3 0
320 -1 .684285169514646  • IO "2 -7 .082404920084131  1 0 " 3 0
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TABLE 21: The values of the approximated velocity u N { y ) of the Couette flow
at y  =  0.25 and 0.5, for the Knudsen number k  =  2 and 40 < N  < 320 and
a* =  0,0.1,0.5, 0 .9_______________________________________

y 0.25 0.5
N a ”  =  0 .1 , a +  =  0
40 1.139258975475742 10“ 1 2.086172285191984 10_ i
80 1.139258975475771 10“ 1 2.086173320866516 IO” 1

160 1.139258975475771 10_ l 2.086173321396570 10“ l
320 1.139258975475771 10“ l 2.086173321396570 1 0 -1
JV a  =  0 .5 , a +  =  0
40 2.564547428032803 10“ l 3.167985524171794 IO- 1
80 2.564547428032775 10” 1 3.167986175332673 IO” 1

160 2.564547428032775 10- 1 3.167986175665934 10” 1
320 2.564547428032775 10” 1 3.167986175665935 10” 1
N a  =  0 .9 , e*+  =  0
40 4.434679463954785 10” 1 4.576209267966367 10”  1
80 4.434679463954758 10” 1 4.576209418596134 10” 1

160 4.434679463954758 10” 1 4.576209418673226 IO” 1
320 4.434679463954758 10” 1 4.576209418673226 IO” 1
N a “  =  0.1 a +  =  0.1
40 7.327182523944650 10”  2 1.642936690036072 IO” 1
80 7.327182523945102 10” 2 1.642937763929955 IO” 1

160 7.327182523945102 10” 2 1.642937764479570 IO” 1
320 7.327182523945102 o 1 w 1 .642937764479570 10” 1
N a “  =  0 .5 , a +  =  0.1
40 2.239069631785943 10“ l 2.833582713729014 10” 1
80 2.239069631785925 10“ l 2.833583406746069 10” 1

160 2.239069631785925 10” 1 2.833583407100753 10” 1
320 2.239069631785925 10“ l 2.833583407100753 IO” 1
N a “  =  0 .9 , a +  =  0.1
40 4.337290180855282 10” 1 4.481398298947552 IO” 1
80 4.337290180855255 1 0 " 1 4.481398464843468 IO” 1

160 4.337290180855255 10” 1 4.481398464928373 IO” 1
320 4.337290180855255 10~1 4.481398464928373 IO” 1
N a “  =  0 .1 , a +  =  0 .5
40 -1 .254526366694325 IO” 1 -5 .903736107799532 • IO- 2
80 -1 .254526366694217 • IO” 1 -5 .9 0 3 7 2 6172755933 • 10“ 2

160 -1 .254526366694217 • IO "1 -5 .9 0 3 7 2 6167671208 ■ 10” 2
320 -1 .254526366694217 ■ 10“ * -5 .9 0 3 7 2 6167671206 - IO” 2
N a ” =  0 .5 , a +  =  0 .5
40 3.765776759652863 ■l 0 - 2 8.707704655545018 ■10” 'J
80 3.765776759653277 10“ 2 8.707711993887009 • 1 0 " 2

160 3.765776759653277 • 10“ 2 8.707711997642750 • 10” 2
320 3.765776759653277 ■10“ 2 8.707711997642751 • 10” 2
N a I II O <0 =  0 .5
40 3.618795400913077 • IO” 1 3.767502664963592 IO " 1
80 3.618795400913055 IO” 1 3.767502883999263 • IO” 1

160 3.618795400913055 • IO” 1 3.767502884111365 - IO” 1
320 3.618795400913055 • IO” 1 3.767502884111365 • IO” 1
N a ”  =  0 .1 , a +  =  0 .9
40 -4 .091830308226884 • IO” 1 -3 .91 3 3 5 2 9 8 7 6 9 4 9 7 7 • IO” 1
80 -4 .091830308226821 • IO- 1 -3 .9 1 3 3 5 2670884397 • IO” 1

160 -4 .091830308226821 • IO” 1 -3 .9 1 3 3 5 2670722254 - IO” 1
320 -4 .091830308226821 ■ IO” 1 -3 .9 1 3 3 5 2670722254 • IO” 1
N a “  =  0 .5 , a +  =  0 .9
40 -3 .385541512409283 • IO "1 -3 .22 0 2 6 2 2 5 9 7 1 2 8 4 0 • IO” 1
80 -3 .385541512409225 . i o - 1 -3 .22 0 2 6 1 9 6 7 5 3 7 0 3 7 IO” 1

160 -3 .385541512409225 • IO- 1 -3 .2 2 0 2 6 1967387503 • 10“ l
320 -3 .385541512409225 ■ IO” 1 -  3.220261967387503 • IO” 1
N a ”  =  0 .9 , ss 0 .9
40 7.082404920082913 • 10” ** 1.684283451332681 ■10“ 2
80 7.082404920084131 - 10” 3 1.684285168635734 10“ 2

160 7.082404920084131 • 1 0 - 3 1.684285169514645 • 10” 2
320 7.082404920084131 • IO"3 1.684285169514646 1 0 - 2
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TABLE 22: The values of the approximated velocity u N ( y ) of the Couette flow at
y  =  —0.5, —0.25 and 0, for the Knudsen number k  =  10 and 40 < N  <  320 and

=  0,0.1,0.5,0.9________________________________________________
y -0.5 -0.25 o
N a  — 0 .1 , a +  =  0
40 -2 .307846758713362  • 1 0 “ 2 1.381792659172284 • 10- 2 4.477578877814241 10“ *
80 -2 .307849809980413  ■ 10” 1 1.381792659172251 10“ 2 4.477578877814232 • 10“ 2

160 -2 .307849811542036  1 0 " 2 1.381792659172251 • IO- 2 4.477578877814232 • IO” 2
320 -2 .307849811542036  • 1 0 " 2 1.381792659172251 • IO"2 4.477578877814232 ■ 10” 2
N a  =  0 .5 , =  0
40 1.917830999176494 • 10” 1 2.157147388637924 • 10“ 1 2.347520100315204 10” 1
80 1.917830753292282 • 10 - 1 2.157147388637918 • IO- 1 2.347520100315201 • 10“ 1

160 1.917830753166440 • 10“ 1 2.157147388637918 ■ IO "1 2.347520100315201 • 10“ 1
320 1.917830753166440 10“ 1 2.157147388637918 10“ 1 2.347520100315201 • IO- 1
N a  =  0 .9 , a +  =  0
40 4.344510312922155 1 0 " 1 4.400019188557676 • 10“ 1 4.442172496079084 • IO” 1
80 4.34451024649477 • 10“  1 4 .40001918855767 • 10“ 1 4.44217249607908 • 10” 1

160 4.344510246460774 • 1 0 “ * 4.400019188557673 • 10“ 1 4.442172496079082 • 10” 1
320 4.344510246460774 ■ 1 0 “ 1 4.400019188557673 • 10“ 1 4.442172496079082 • IO” 1
N a “  =  0 .1 , a +  =  0.1
40 -6 .2 63380978830734  • 1 0 “ * -2 .8 6 3 6 5 0655786129  • 10” * 0
80 -6 .2 6 3 3 8 3777029075  • 10“ 2 -2 .8 6 3 6 5 0655786152  • 10“ 2 0

160 -6 .2 6 3 3 8 3778461179  • 1 0 “ 2 -2 .8 6 3 6 5 0655786152  • 10“ 2 0
320 -6 .2 6 3 3 8 3778461179  • 10“ 2 -2 .8 6 3 6 5 0655786152  ■ 10“ 2 0
N a “  =  0 .5 , a +  =  0 .1
40 1.574261632163222 ■ 10 1.802252331390138 • 10“ 1 1.984259276238300 • 10” 1
80 1.574261398490683 ■ IO- 1 1.802252331390133 • 10” 1 1.984259276238297 • 10“ 1

160 1.574261398371090 • 10“ ‘ 1.802252331390133 • 10” 1 1.984259276238297 * 10” 1
320 1.574261398371090 • IO- 1 1.802252331390133 • IO” 1 1.984259276238297 • 10“ l
N a “  =  0 .9 , a + =  0.1
40 4.243819669629124 ■ 1 0 “ * 4.298788967370492 • 10 “ l 4.340659342253555 • IO” 1
80 4.243819603917520 • 10“ * 4.298788967370490 - 10“ 1 4.340659342253554 • IO- 1

160 4.243819603883889 • 1 0 “ 1 4.298788967370490 • 10“ 1 4.340659342253554 • 10” 1
320 4.243819603883889 • 1 0 “ 1 4.298788967370490 • 10” 1 4.340659342253554 • IO” 1
N a ~  =  0 .1 , a +  =  0 .5
40 -2 .3 7 0 7 8 2167962822  • 1 0 “ * -2 .162449194807811  • IO” 1 -1 .9 8 4 2 5 9 2 7 6 2 3 8 3 0 0  • 1 0 " 1
80 -2 .3 7 0 7 8 2336175935  • 1 0 “ 1 -2 .16 2 4 4 9 1 9 4 8 0 7 8 1 0  ■ IO” 1 -1 .9 8 4 2 5 9 2 7 6 2 3 8 2 9 7  IO "1

160 -2 .3 7 0 7 8 2336262026  • 1 0 “ 1 -2 .16 2 4 4 9 1 9 4 8 0 7 8 1 0  • IO” 1 -1 .9 8 4 2 5 9 2 7 6 2 3 8 2 9 7  1 0 " 1
320 -2 .3 7 0 7 8 2336262026  • 1 0 “ 1 -2 .16 2 4 4 9 1 9 4 8 0 7 8 1 0  IO” 1 -1 .9 8 4 2 5 9 2 7 6 2 3 8 2 9 7  1 0 " 1
N a “  =  0 .5 , a +  =  0 .5
40 -2 .9 82209393487885  • 1 0 “ * -1 .3 34563392411286  • IO” 2 0
80 -2 .9 8 2 2 1 1064666643  ■ 1 0 “ 2 -1 .3 3 4 5 6 3392411304  10” 2 0

160 -2 .9 8 2 2 1 1065521943  • 1 0 “ 2 -1 .3 3 4 5 6 3392411304  • 10“ 2 0
320 -2 .9 8 2 2 1 1065521944  ■ 1 0 “ 2 -1 .3 3 4 5 6 3392411304  • 10 “ 2 0
N a  =  0 .9 , — 0 .5
40 3.507918129996729 • 1 0 “ 1 3.558743710057917 • IO” 1 3.597953393526013 • IO " 1
80 3.507918069516432 • 10“ 1 3.558743710057915 • 10“ 1 3.597953393526011 • 1 0 " 1

160 3.507918069485479 ■ IO " 1 3.558743710057914 - 10“ 1 3.597953393526011 • IO "1
320 3.507918069485479 • 10“ 1 3.558743710057915 • IO” 1 3.597953393526011 • IO "1
N a ”  =  0 .1 , a + =  0 .9
40 -4 .42 7 1 3 1 7 8 1 0 2 7 5 8 7  ■ IO- 1 -4 .3 8 0 8 4 4928136334  • 10“ A -4 .3 4 0 6 5 9 3 4 2 2 5 3 5 5 5  • 1 0 " 1
80 -4 .42 7 1 3 1 8 1 7 6 7 8 7 6 9  • 1 0 “ 1 -4 .3 8 0 8 4 4928136333  • IO” 1 -4 .3 4 0 6 5 9 3 4 2 2 5 3 5 5 4  • IO "1

160 -4 .4 2 7 1 3 1817697527  • 10“ 1 -4 .3 8 0 8 4 4928136333  ■ IO” 1 -4 .3 4 0 6 5 9 3 4 2 2 5 3 5 5 4  1 0 " 1
320 -4 .42 7 1 3 1 8 1 7 6 9 7 5 2 7  • IO” 1 -4 .3 8 0 8 4 4928136333  • 10 “ l -4 .3 4 0 6 5 9 3 4 2 2 5 3 5 5 4  • 1 0 " 1
N a  =  0 .5 , a + =  0 .9
40 -3 .6 8 3 0 4 3165137232  • 10“ 1 -3-636352143540133  • IO” 1 -3 .5 9 7 9 5 3 3 9 3 5 2 6 0 1 3  • 10"  x
80 -3 .68 3 0 4 3 2 1 1 9 4 6 5 4 0  • 10“ 1 -3 .6 3 6 3 5 2143540132  • 10“ l -3 .5 9 7 9 5 3393526011  ■ IO "1

160 -3 .6 8 3 0 4 3211970496  - IO " 1 -3-636352143540132  ■ IO” 1 - 3  597953393526011 1 0 " 1
320 -3 .6 8 3 0 4 3211970496  • 10“ 1 -3 .63 6 3 5 2 1 4 3 5 4 0 1 3 2  • 10 “ l -3 .5 9 7 9 5 3393526011  • IO "1
N a  =  0 .9 , =  0 .9
40 -5 .295971983368881  • 10“ 3 -2 .3 2 4 7 6 7111939705  • 10“ 3 0
80 -5 .2 9 5 9 7 5500074703  • 10 - 3 -2 .32 4 7 6 7 1 1 1 9 3 9 7 5 0  • 10“ 3 0

160 -5 .2 9 5 9 7 5501874536  - 10“ 3 -2 .3 2 4 7 6 7111939750  - 10 “ 3 0
320 -5 .29 5 9 7 5 5 0 1 8 7 4 5 3 7  • 10“ 3 -2 .3 2 4 7 6 7 1 1 1 9 3 9 7 5 0  • 10 “ 3 0
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TABLE 23: The values of the approximated velocity u N ( y )  of the Couette flow
at y  =  0.25 and 0.5, for the Knudsen number k  =  10 and 40 < N  <  320 and
a*  =  0,0.1,0.5,0.9_______________________________________

V 0 .2 5 0 .5
N a "  =  0 .1 , a +  =  0
4 0 7 .5 5 6 3 2 3 7 8 1 5 6 7 3 4 2  • 1 0 " 51 1 .1 1 5 8 2 7 4 8 8 6 8 0 9 7 6  ■I O " 1
8 0 7 .5 5 6 3 2 3 7 8 1 5 6 7 3 5 6  ■1 0 " 2 1 .1 1 5 8 2 7 7 6 4 7 9 5 5 3 7  • IO” 1

160 7 .5 5 6 3 2 3 7 8 1 5 6 7 3 5 6  • 1 0 " 2 1 .1 1 5 8 2 7 7 6 4 9 3 6 8 5 1 1 0 "  1
3 2 0 7 .5 5 6 3 2 3 7 8 1 5 6 7 3 5 6 1 0 ” 2 1 .1 1 5 8 2 7 7 6 4 9 3 6 8 5 1  • I O " 1
N a  =  0 .5 , a +  — 0
4 0 2 .5 3 2 9 0 4 1 1 3 0 6 4 4 3 2 1 0 ” 1 2 .7 4 6 5 0 1 9 7 1 9 1 7 8 2 9  • 1 0 "  1
8 0 2 .5 3 2 9 0 4 1 1 3 0 6 4 4 3 0  • 1 0 _ 1 2 .7 4 6 5 0 2 1 3 2 1 1 2 4 6 6 I O " 1

160 2 .5 3 2 9 0 4 1 1 3 0 6 4 4 3 0  ■ 1 0 - 1 2 .7 4 6 5 0 2 1 3 2 1 9 4 4 5 3  • 1 0 " 1
3 2 0 2 .5 3 2 9 0 4 1 1 3 0 6 4 4 3 0  • IO” 1 2 .7 4 6 5 0 2 1 3 2 1 9 4 4 5 3 1 0 " 1
N a "  =  0 .9 0 + II o

4 0 4 .4 8 2 4 2 8 2 0 5 5 8 0 5 2 3  • IO” 1 4 .5 2 8 1 3 5 8 1 2 3 3 3 2 0 2 1 0 " 1
8 0 4 .4 8 2 4 2 8 2 0 5 5 8 0 5 2  • I O " 1 4 .5 2 8 1 3 5 8 4 5 8 7 6 6 6  • I O " 1

160 4 .4 8 2 4 2 8 2 0 5 5 8 0 5 2 2  - IO " 1 4 .5 2 8 1 3 5 8 4 5 8 9 3 8 2 5  • I O " 1
3 2 0 4 .4 8 2 4 2 8 2 0 5 5 8 0 5 2 2  • IO” 1 4 .5 2 8 1 3 5 8 4 5 8 9 3 8 2 5  • 1 0 " 1
N a " =  0 .1 , a +  =  0 .1
4 0 2 .8 6 3 6 5 0 6 5 5 7 8 6 1 2 9  ■IO "54 6 .2 6 3 3 8 0 9 7 8 8 3 0 7 3 4  • i o - -4
8 0 2 .8 6 3 6 5 0 6 5 5 7 8 6 1 5 2  • 1 0 " 2 6 .2 6 3 3 8 3 7 7 7 0 2 9 0 7 5  ■IO " 2

160 2 .8 6 3 6 5 0 6 5 5 7 8 6 1 5 2  • i o - 2 6 .2 6 3 3 8 3 7 7 8 4 6 1 1 7 9  • 1 0 " 2
3 2 0 2 .8 6 3 6 5 0 6 5 5 7 8 6 1 5 2  • 1 0 - 2 6 .2 6 3 3 8 3 7 7 8 4 6 1 1 7 9  - 1 0 " 2
N a "  =  0 .5 , a +  =  0 .1
4 0 2 .1 6 2 4 4 9 1 9 4 8 0 7 8 1 1  • 1 0 " 1 2 .3 7 0 7 8 2 1 6 7 9 6 2 8 2 2  • 1 0 _ i
8 0 2 .1 6 2 4 4 9 1 9 4 8 0 7 8 1 0  ■ IO " 1 2 .3 7 0 7 8 2 3 3 6 1 7 5 9 3 5  • 1 0 " 1

160 2 .1 6 2 4 4 9 1 9 4 8 0 7 8 1 0  - IO” 1 2 .3 7 0 7 8 2 3 3 6 2 6 2 0 2 6  • 1 0 " 1
3 2 0 2 .1 6 2 4 4 9 1 9 4 8 0 7 8 1 0  • IO " 1 2 .3 7 0 7 8 2 3 3 6 2 6 2 0 2 6  - 1 0 " 1
N a "  =  0 .9 , =  0 .1
40 4 .3 8 0 8 4 4 9 2 8 1 3 6 3 3 4  • IO " 1 4 .4 2 7 1 3 1 7 8 1 0 2 7 5 8 7  - 1 0 " 1
8 0 4 .3 8 0 8 4 4 9 2 8 1 3 6 3 3 3  • IO " 1 4 .4 2 7 1 3 1 8 1 7 6 7 8 7 6 9  • I O " 1

160 4 .3 8 0 8 4 4 9 2 8 1 3 6 3 3 3  - IO " 1 4 .4 2 7 1 3 1 8 1 7 6 9 7 5 2 7  - 1 0 " 1
3 2 0 4 .3 8 0 8 4 4 9 2 8 1 3 6 3 3 3  - 1 0 - 1 4 .4 2 7 1 3 1 8 1 7 6 9 7 5 2 7  • I O " 1
N a ~  =  0 .1 , =  0 .5
4 0 - 1 .8 0 2 2 5 2 3 3 1 3 9 0 1 3 8 • 1 0 _ i -1 .5 7 4 2 6 1 6 3 2 1 6 3 2 2 2 - 1 0 _ i
80 -1 .8 0 2 2 5 2 3 3 1 3 9 0 1 3 3 • IO " 1 -1 .5 7 4 2 6 1 3 9 8 4 9 0 6 8 3 • I O " 1

160 - 1 .8 0 2 2 5 2 3 3 1 3 9 0 1 3 3 • 1 0 "  1 -1 .5 7 4 2 6 1 3 9 8 3 7 1 0 9 0 • I O " 1
3 2 0 - 1 .8 0 2 2 5 2 3 3 1 3 9 0 1 3 3 ■ IO " 1 -1 .5 7 4 2 6 1 3 9 8 3 7 1 0 9 0 . IO” 1

N a "  =  0 .5 a +  =  0 .5
40 1 .3 3 4 5 6 3 3 9 2 4 1 1 2 8 6  • IO " 2 2 .9 8 2 2 0 9 3 9 3 4 8 7 8 8 5 IO " 2
80 1 .3 3 4 5 6 3 3 9 2 4 1 1 3 0 4 1 0 " 2 2 .9 8 2 2 1 1 0 6 4 6 6 6 6 4 3  • 1 0 " 2

160 1 .3 3 4 5 6 3 3 9 2 4 1 1 3 0 4  • 1 0 " 2 2 .9 8 2 2 1 1 0 6 5 5 2 1 9 4 3 IO " 2
3 2 0 1 .3 3 4 5 6 3 3 9 2 4 1 1 3 0 4  • 1 0 " 2 2 .9 8 2 2 1 1 0 6 5 5 2 1 9 4 4 1 0 - 2

N at "  =  0 .9 a +  =  0 .5
4 0 3 .6 3 6 3 5 2 1 4 3 5 4 0 1 3 3  • IO " 4 3 .6 8 3 0 4 3 1 6 5 1 3 7 2 3 2  • I O " 1
8 0 3 .6 3 6 3 5 2 1 4 3 5 4 0 1 3 2  • IO " 1 3 .6 8 3 0 4 3 2 1 1 9 4 6 5 4 0  - I O " 1

1 6 0 3 .6 3 6 3 5 2 1 4 3 5 4 0 1 3 2  ■ IO " 1 3 .6 8 3 0 4 3 2 1 1 9 7 0 4 9 6  • 1 0 " 1
3 2 0 3 .6 3 6 3 5 2 1 4 3 5 4 0 1 3 2  • IO” 1 3 .6 8 3 0 4 3 2 1 1 9 7 0 4 9 6  - 1 0 - 1

N a "  =  0 .1 =  0 .9
4 0 - 4 .2 9 8 7 8 8 9 6 7 3 7 0 4 9 2 • 1 0 " 1 -4 .2 4 3 8 1 9 6 6 9 6 2 9 1 2 4 • I O " 1
8 0 -4 .2 9 8 7 8 8 9 6 7 3 7 0 4 9 0 • 1 0 " 1 -4 .2 4 3 8 1 9 6 0 3 9 1 7 5 2 0 • I O " 1

160 -4 .2 9 8 7 8 8 9 6 7 3 7 0 4 9 0 ■ IO " 1 -4 .2 4 3 8 1 9 6 0 3 8 8 3 8 8 9 • I O " 1
3 2 0 -4 .2 9 8 7 8 8 9 6 7 3 7 0 4 9 0 - 1 0 “ 1 -4 .2 4 3 8 1 9 6 0 3 8 8 3 8 8 9 . I O " 1
N a ”  =  0 .5 <*+ =  0 .9
4 0 - 3 .5 5 8 7 4 3 7 1 0 0 5 7 9 1 7 • 1 0 " 4 -3 .5 0 7 9 1 8 1 2 9 9 9 6 7 2 9 • I O " 1
8 0 -3 .5 5 8 7 4 3 7 1 0 0 5 7 9 1 5 • 1 0 " 1 -3 .5 0 7 9 1 8 0 6 9 5 1 6 4 3 3 • IO” 1

160 - 3 .5 5 8 7 4 3 7 1 0 0 5 7 9 1 5 • IO " 1 -3 .5 0 7 9 1 8 0 6 9 4 8 5 4 7 9 • I O " 1
3 2 0 - 3 .5 5 8 7 4 3 7 1 0 0 5 7 9 1 5 • IO” 1 - 3 .5 0 7 9 1 8 0 6 9 4 8 5 4 7 9 . I O " 1
N a " =  0 .9 a +  =  0 .9
4 0 2 .3 2 4 7 6 7 1 1 1 9 3 9 7 0 5 IO " 3 5 .2 9 5 9 7 1 9 8 3 3 6 8 8 8 1 IO " 3
8 0 2 .3 2 4 7 6 7 1 1 1 9 3 9 7 5 0  • 10 " 3 5 .2 9 5 9 7 5 5 0 0 0 7 4 7 0 3 1 0 ” 3

16 0 2 .3 2 4 7 6 7 1 1 1 9 3 9 7 5 0  • 1 0 " 3 5 .2 9 5 9 7 5 5 0 1 8 7 4 5 3 6 I O " 3
3 2 0 2 .3 2 4 7 6 7 1 1 1 9 3 9 7 5 0  • 1 0 " 3 5 .2 9 5 9 7 5 5 0 1 8 7 4 5 3 7 1 0 " 3
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0.50.5 - a'=a*=0 
a  =0.1, a *=0 
a  =0.5, a*=0 
a  =0.9, a*=0 0.250.25 -

-0.25-0.25

-0.5-0.5
0.50.250.25 0.5 -0.5 -0.25-0.5 -0.25 ilu

0.5 0.5

0.250.25

-0.25-0.25

-0.5-0.5
-0.25 0.25 0.50.5 -0.5-0.5 -0.25 0.25

uu

FIG. 3: The velocity profiles of the Couette flow problem for k  =  0.003. Top row, 
from left to right: a + =  0, a -  =  0, 0.1, 0.5, 0.9 and a + =  0.1, a~ =  0.1, 0.5, 0.9. 
Bottom row, from left to right: a + =  0.5, a~ =  0.1, 0.5, 0.9 and a + =  0.9, a~ = 
0.1, 0.5, 0.9.

3.3 SOLVING THE INTEGRAL EQUATION FOR THE
POISEUILLE FLOW PROBLEM WITH CHUNK BASED  
COLLOCATION METHOD
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-0.4 - 0.2 0 0.2 0.4

0.5

0.25

-0.25

-0.5
0.40 0.2-0.4 - 0.2

u

0.5 -

0.25

-0.25

-0.5

-0.4 - 0.2 0

0.5
a= 0 .7 , a ' =0.5 
a - a  *=0.5 
ct =0.9, a* = 0 .lJ

0.25

-0.25

-0.5

- 0.2 0 0.2 0.4-0.4
u u

FIG. 4: The velocity profiles of the Couette flow problem for k — 0.3. Top row, from 
left to right: a + =  0, a~ =  0, 0.1, 0.5, 0.9 and a + =  0.1, a~ =  0.1, 0.5, 0.9. Bottom 
row, from left to right: a + =  0.5, aT =  0.1, 0.5, 0.9 and c*+ =  0.9, ct-  =  0.1, 0.5, 0.9.

In this section, we give a byproduct of the solutions to the Couette flow prob
lem, the solutions to the Poiseuille flow problem. Comparing equation (66) of the 
Poiseuille flow problem with the equation (104) of the steady Couette flow problem, 
we see the only difference is the RHS term. Hence, the process of solving for the 
Poiseuille flow problem is identical to that of solving for the Couette flow problem
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0
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0
-  / /  I  -

-0.25
: I ^

-0.25
-  /  /  j  -

-0.5 -0.5
-0.2 0 0.2 0.4 -0.2 0 0.2 0.4

0.5 0.5

0.25 0.25

-0.25 -0.25

a  =0.1, a.* =0.5 
6t'=a*=0.5 
a  =0.9, a*=0.5j-0.5 -0.5 -

- 0.2 0 - 0.1 00.2 -0.4 -0.3 - 0.2

FIG. 5: The velocity profiles of the Couette flow problem for k = 1.0. Top row, from 
left to right: a + =  0, a -  =  0, 0.1, 0.5, 0.9 and cc+ =  0.1, a~ =  0.1, 0.5, 0.9. Bottom 
row, from left to right: a + — 0.5, a~ = 0 .1 , 0.5, 0.9 and a + =  0.9, a~ =  0.1, 0.5, 0.9.

except that in the linear system equation (103), the elements in F  are uniformly 
7T1/2. Hence it suffices that we only illustrate the result of our computation when 
M  =  10 and N  =  320.
Figure 9-13 show the velocity profiles of the Poiseuille flow problem for k = 
0.003, 0.3, 1.0, 2.0, 10.0 with various accommodation ratios at the upper and lower
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0.5 a=a*=0 
a=0.1, a*=0 
a  =0.5. cl=0  
a  =0.9, a*=00.25

-0.25

-0.5
0 0.2 0.4- 0.2

0.5

0.25

-0.25

-0.5
0.4- 0.2 0 0.2

0.50.5

0.25 0.25

-0.25 -0.25

a  =0.1, a '=0.5 
a-a*=0.5  
a  =0.9, a*=0.5-0.5 -0.5

- 0.2 0 0.2 -0.4 -0.3 - 0.2 - 0.1 0u u

FIG. 6: The velocity profiles of the Couette flow problem for k =  2.0. Top row, from 
left to right: a + =  0, a~ =  0, 0.1, 0.5, 0.9 and a:+ =  0.1, a~ =  0.1, 0.5, 0.9. Bottom 
row, from left to right: a + =  0.5, a -  = 0 .1 , 0.5, 0.9 and <*+ =  0.9, a~ = 0 .1 , 0.5, 0.9.

walls. Figure 14-18 show the comparisons of a high precision velocity solu
tion with a quadratic profile. In the comparisons, we choose the cases of k = 
0.003, 0.3, 1.0, 2.0, 10.0 and equal accommodation ratios at the upper and lower 
walls. The quadratic profiles are computed such that the slip velocity and total mass 
flow rate are identified with those of the corresponding high precision solution. In
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-0.5 -O

i k
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i  k -

-0.4 -0.3 - 0.2 - 0.1 0

0.5

i k -
0.25

■A k

A k

-0.25

-0.5
- 0.2 0 0.2

FIG. 7: The velocity profiles of the Couette flow problem for k =  10.0. Top row, from 
left to right: a + =  0, a~ = 0, 0.1, 0.5, 0.9 and a + = 0.1, a~ =  0.1, 0.5, 0.9. Bottom 
row, from left to right: a + =  0.5, a~ =  0.1, 0.5, 0.9 and a + =  0.9, a -  =  0.1, 0.5, 0.9.

Figure 14 the high precision profiles are hardly distinguishable from the correspond
ing quadratic profiles. However, Figure 15-18 manifest obvious differences between 
the high precision solutions and the quadratic profiles. Hence, the quadratic solution 
of Poiseuille flow is only valid in near continuous flow when k  is sufficiently close to 
0.
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k=300. CL =0.9, CL =0. 
k=»o, d=0.9, a*=0.5

a =0.1. a  =0.9k=300
0.1, a  =0.9 

d =0.5. a*=0.9 
k=a°,d=0.5, a ’ =0.9 
k=300,d=a*=0.9 
k=‘* .d = d ‘=0.9

k=oo, a  
k=300.

-0.8 -0.6 -0.4 -0.2

FIG. 8: The velocity profiles of the Couette flow problem for k  =  300.0 and free 
molecular flow. Top row, from left to right: a + =  0, a -  = 0 ,  0.1, 0.5, 0.9 and c*+ = 
0.1, a -  =  0.1, 0.5, 0.9. Bottom row, from left to right: a + =  0.5, a -  =  0.1, 0.5, 0.9 
and o:+ =  0.9, a~ =  0.1, 0.5, 0.9.

We also computed the shear stress Txy, the upper and lower half channel mass 
flow rates Q± for the Poiseuille flows from equation (71), equation (107) and
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TABLE 24: The dependence of the stress T xy on the Knudsen number k  and various
accommodation ratios a * for the Couette flow problem

a + 0 0 0.1 0.5 0 .9
C t ~ k  =  0 .003
0.1
0 .5
0 .9

-1 .489979691463144  
-1 .482759827467247  
-1 .422673845622606

1 0 ~ 3
I O -3
IO” 3

-1 .489043399389355  
-1 .481832584402827  
-1 .421820207755527

1 0 -3

1 0 ~ 3
10“ 3

-1 .481832584402827  
-1 .474691270778127  
-1 .415244326513074

10“ 3
1 0 “ 3
1 0 - 3

-1 .421820207755527  
-1 .415244326513074  
-1 .360404449783136

1 0 ”^  
1 0 ~ 3 
1 0 ” 3

a ” k  = 0 .3
0 1
0.5
0 .9

-8 .992833904468987
-6 .956172509857737
-2 .333895677099649

10“ *
10“ 2
10” 2

-8 .666444972988237  
-6 .759707858916663  
-2 .311408070206627

i o - 2
10“ 2
10“ 2

-6 .759707858916663  
-5 .541877997358581  
-2 .150044078421201

10“ *
10“ 2
10“ 2

-2 .311408070206627
-2 .150044078421201
-1 .333813635834104

1 0 ” 2
IO” 2
1 0 - 2

C t ~ k  = 1.0
0.1
0 .5
0 .9

-1 .584929600446099  
-1 .050297657081390  
-2 .635370285166484

10_1
10“ l
10“ 2

-1 .488704157308196
-1 .007386051173426
-2 .607635444470014

IO- 1
10“ l
1 0 -2

-1 .007386051173426  
-7 .617694825897675  
-2 .407237158046933

1 0 ” 1
1 0 “ 2
1 0 “ 2

-2 .607635444470014  
-2 .407237158046933  
-1 .429651925848904

1 0 “ *
1 0 ” 2
1 0 “ 2

a ” k  = 2 .0
0.1
0.5
0 .9

-1 .922235658380698  
-1 .192157333370045  
-2 .718528121847265

10” 1
10“ l
10“ 2

-1 .784436264364144  
-1 .137914613870899  
-2 .689406198024603

10_1
10 - 1
10” 2

-1 .137914613870899  
-  8.357896315183509  
-2 .478119212980463

i 0 _ i

10“ 2
1 0 ” 2

-2 .689406198024603
-2 .478119212980463
-1 .454867257171203

1 0 “ *
IO” 2
10” 2

a ” k  = 10.0
0.1
0.5
0.9

-  2 .367266927911574  
-1 .354844126934459  
-2 .797513050216179

IO " 1
10_1
1 0 ~ 2

-2 .1 6 4 7 8 8680562340  
-1 .286081730379985  
-2 .766990972009083

1 0 ' 1
io” 1
10- 2

-1 .2 8 6 0 8  730379985  
-9 .149188224129712  
-2 .544964951340495

10_1
1 0 “ 2
i 0 - 2

-2 .766990972009083
-2 .544964951340495
-1 .478088309686578

1 0 - 2

1 0 " 2
1 0 “ 2

TABLE 25: The dependence of the upper half channel mass flow rate Q+ on the 
Knudsen number k  and various accommodation ratios a*  for the Couette flow prob
lem

a + 0 .0 0 .1 0 .5 0 .9
a “ k  = 0 .0 0 3
0 .1
0 .5
0 .9

1 .2 4 3 2 3 6 3 8 9 9 1 8 3 0 2  
1 .2 4 9 3 2 6 1 7 9 1 8 9 7 7 3  
1 .3 0 0 0 0 7 3 2 3 2 9 5 9 8 6

1 
I 

1 
o 

o 
o

1 .2 4 0 8 8 6 4 0 4 0 8 2 7 0 7
1 .2 4 6 9 8 3 7 6 5 1 0 7 1 7 7
1 .2 9 7 7 2 9 3 6 4 1 8 8 3 8 1 © 

o 
o

t 
1 

1 1 .2 2 2 7 8 0 0 5 7 8 5 6 6 9 9  • 1 0 _ 1  
1 .2 2 8 9 3 5 2 9 3 1 1 7 8 0 2  • 1 0 _ l  
1 .2 8 0 1 7 3 7 5 5 2 1 8 0 3 0  ■ 1 0 _ 1

1 .0 7 2 0 2 1 4 3 0 5 8 6 4 9 2  • 1 0 “ 1 
1 .0 7 8 6 2 5 7 9 4 0 9 0 4 0 9  • IO- 1  
1 .1 3 3 7 0 3 2 0 0 0 0 4 6 5 6  • 1 0 - 3

at” k =  0 .3
0 .1 9 .1 6 6 9 6 8 2 2 9 5 6 7 6 0 1 1 0 ” * 8 .0 1 1 6 3 4 5 5 6 9 5 0 5 2 7 I 0 ~ u 1 .0 2 3 2 4 1 5 4 9 4 0 6 7 1 9  • 1 0 ~ S -1 .6 0 0 1 6 5 2 7 2 6 4 4 0 3 8  ■ 1 0 _  I
0 .5 1 .2 7 1 2 4 1 6 2 4 5 0 1 5 3 2 1 0 “ 1 1 .1 7 1 0 5 9 0 6 9 6 2 5 4 1 0 1 0 ” 1 5 .3 1 2 8 4 1 8 2 7 1 6 5 3 8 1  • 1 0 ~ 2 -1 .3 1 5 0 2 1 5 1 6 8 3 7 1 3 7  • 1 0 " 1
0 .9 2 .0 8 6 3 0 9 9 7 9 4 0 1 2 8 2 1 0 “ 1 2 .0 4 4 1 8 8 6 5 0 9 7 2 4 3 5 1 0 ” 1 1 .7 3 4 9 7 4 9 7 5 9 7 2 0 1 7  • 1 0 _ 1 1 .3 2 5 6 5 6 4 6 4 1 8 2 6 5 6  • 1 0 - 2
a ” k =  1 .0
0 .1 6 .9 8 9 9 6 8 3 3 3 6 3 1 2 8 2 1 0 ” 2 5 .2 1 7 3 6 3 1 4 5 2 5 4 9 9 2 1 0 ” * -4 .0 7 1 7 7 5 2 9 9 0 8 9 5 1 7  ■ 10- 2 - 1 .9 4 4 8 6 0 3 2 4 2 9 8 9 6 7  • 1 0 _ 1
0 .5 1 .2 9 0 7 4 6 2 7 5 4 8 0 4 0 7 1 0 ”  1 1 .1 4 6 1 7 2 3 9 8 2 9 1 7 1 3 1 0 ” 1 2 .9 0 3 0 0 1 1 0 2 1 5 9 4 7 2  • 1 0 - 2 - 1 .6 0 6 6 5 3 5 5 5 1 1 0 2 9 4  ■ 1 0 “  1
0 .9 2 .1 9 2 3 6 7 9 2 2 5 2 6 5 2 7 1 0 “  1 2 .1 4 5 3 3 8 5 5 2 4 4 4 4 5 1 1 0 ” 1 1 .7 9 7 6 8 6 3 1 7 7 2 0 5 2 6  • 1 0 _ 1 5 .8 6 8 8 9 7 9 0 5 9 5 2 0 1 1  • IO- 3
at” k =  2 .0
0 .1 5 .8 0 2 2 9 8 1 6 9 3 6 0 0 8 2 1 0 “  y 3 .7 7 4 4 4 9 0 8 3 5 0 0 9 9 3 1 0 ” 2 -6 .1 6 8 5 1 4 2 4 7 2 3 1 8 1 5  ■ 1 0 ~ 2 - 2 .0 4 2 5 9 5 8 9 7 7 4 6 8 4 2  • 1 0 “ 1
0 .5 1 .2 8 8 4 1 7 8 8 7 5 9 0 5 0 5 1 0 “  1 1 .1 2 6 1 8 0 4 1 3 6 8 9 6 7 2 1 0 ” 1 1 .9 5 5 8 2 6 7 0 6 6 3 7 8 1 6  • 1 0 ~ 2 -1 .6 8 9 8 2 8 4 4 5 7 5 3 3 4 2  ■ 1 0 “ 1
0 .9 2 .2 1 8 6 3 5 6 4 9 8 8 3 7 1 2 1 0 “  1 2 .1 7 0 1 0 8 1 0 8 3 7 4 0 7 2 1 0 - 1 1 .8 1 1 4 4 5 6 5 1 2 4 3 1 7 9  • 1 0 - 1 3 .7 0 6 2 3 5 4 0 9 4 1 0 1 6 4  • IO- 3
a ” k = 1 0 .0
0 .1 3 .8 1 1 7 2 4 8 6 1 6 1 6 6 6 5 1 0 ” * 1 .4 6 6 3 2 4 1 7 1 1 3 9 5 7 0 1 0 ~ ' J - 8 .9 8 1 4 3 5 5 5 4 1 1 8 0 1 1  • IO- 2 -2 .1 4 8 5 4 1 4 4 0 9 4 7 9 4 1  • 1 0 ~ *
0 .5 1 .2 6 8 2 2 3 5 0 7 3 0 3 8 1 2 1 0 ”  1 1 .0 8 3 1 2 7 4 2 4 4 0 2 0 4 6 1 0 ” 1 6 .8 7 3 1 5 9 0 3 4 6 2 0 2 6 6  • 1 0 - 3 - 1 .7 7 8 6 2 2 8 9 1 6 2 3 9 4 8  • 1 0 " 1
0 .9 2 .2 4 1 5 4 7 6 0 8 6 4 1 3 6 7 1 0 ”  1 2 .1 9 0 7 9 8 7 5 7 5 6 3 0 4 3 1 0 ” 1 1 .8 1 8 6 9 8 0 0 5 9 5 6 5 8 5  • IO- 1 1 .2 0 3 5 4 9 0 9 8 7 5 9 8 4 7  • 1 0 " 3

equation (108), respectively. The integrals in the equations are computed piece- 
wisely over each subinterval Ej by using a shifted and scaled 10th order Gauss- 
Legendre quadrature. Table 27-29 give the value of Txy — y j 2, Q~ and Q+ for 
k — 0.003, 0.3, 1.0, 2.0, 10.0 and various values of accommodation ratios a ±, respec
tively.
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TABLE 26: The dependence of the lower half channel mass flow rate Q on the 
Knudsen number k  and various accommodation ratios a*  for the Couette flow prob-

a + 0 .0 0 .1 0 .5 0 .9
a  ~ k  -  0 .0 0 3
0.1
0 .5
0 .9

- 1 .2 4 0 0 9 4 6 8 9 0 2 5 6 8 4  • 1 0 " 1 
- 1 .2 2 1 9 8 0 8 4 9 2 6 4 8 8 1  • 1 0 _ 1  
- 1 .0 7 1 1 6 4 0 9 5 3 3 8 6 3 3  ■ 1 0 ” 1

- 1 .2 4 0 8 8 6 4 0 4 0 8 2 7 0 7  • 1 0 “ ‘ 
- 1 .2 2 2 7 8 0 0 5 7 8 5 6 6 9 9  • 1 0 ~ ‘ 
- 1 .0 7 2 0 2 1 4 3 0 5 8 6 4 9 2  • 1 0 “ 1

-1 .2 4 6 9 8 3 7 6 5 1 0 7 1 7 7  • 1 0 _ 1  
-1 .2 2 8 9 3 5 2 9 3 1 1 7 8 0 2  - 1 0 " 1 
-1 .0 7 8 6 2 5 7 9 4 0 9 0 4 0 9  • 1 0 “ l

-1 .2 9 7 7 2 9 3 6 4 1 8 8 3 8 1
-1 .2 8 0 1 7 3 7 5 5 2 1 8 0 3 0
- 1 .1 3 3 7 0 3 2 0 0 0 0 4 6 5 6

I O " 1
I O " 1
I Q " 3

Or" k = 0 .3
0.1 -7 .3 8 4 3 1 1 7 4 2 4 7 2 2 8 8  • 1 0 " 2 -8 .0 1 1 6 3 4 5 5 6 9 5 0 5 2 7  • IO- * - 1 .1 7 1 0 5 9 0 6 9 6 2 5 4 1 0  - 1 0 " 1 - 2 .0 4 4 1 8 8 6 5 0 9 7 2 4 3 5 1 0 - i
0 .5 - 3 .3 5 4 8 4 2 0 2 3 7 5 2 2 1 5  - 1 0 “ 3 -1 .0 2 3 2 4 1 5 4 9 4 0 6 7 1 9  • 1 0 ' 2 - 5 .3 1 2 8 4 1 8 2 7 1 6 5 3 8 1  • 1 0 " 2 - 1 .7 3 4 9 7 4 9 7 5 9 7 2 0 1 7 I O " 1
0 .9 1 .6 3 9 7 6 9 3 4 6 4 6 2 0 6 5  • 1 0 “ 1 1 .6 0 0 1 6 5 2 7 2 6 4 4 0 3 8  ■ 1 0 _ I 1 .3 1 5 0 2 1 5 1 6 8 3 7 1 3 7  • IO " 1 -1 .3 2 5 6 5 6 4 6 4 1 8 2 6 5 6 1 0 " 2
a " k  = 1.0
0.1 - 3 .9 9 5 7 3 2 9 5 9 2 1 1 0 6 7  • 1 0 “ * -5 .2 1 7 3 6 3 1 4 5 2 5 4 9 9 2  • 1 0 - 2 -1 .1 4 6 1 7 2 3 9 8 2 9 1 7 1 3  • IO " 1 -2 .1 4 5 3 3 8 5 5 2 4 4 4 4 5 1 I O " 1
0 .5 5 .2 7 3 7 3 3 7 4 2 7 3 7 1 1 6  • 1 0 " 2 4 .0 7 1 7 7 5 2 9 9 0 8 9 5 1 7  ■ 1 0 “ 2 -2 .9 0 3 0 0 1 1 0 2 1 5 9 4 7 2  ■ 1 0 " 2 -1 .7 9 7 6 8 6 3 1 7 7 2 0 5 2 6 I O " 1
0 .9 1 .9 9 1 2 9 4 8 3 2 4 5 7 5 3 8  • 1 0 “ 1 1 .9 4 4 8 6 0 3 2 4 2 9 8 9 6 7  • 1 0 _ l 1 .6 0 6 6 5 3 5 5 5 1 1 0 2 9 4  • IO " 1 - 5  8 6 8 8 9 7 9 0 5 9 5 2 0 1 1 1 0 “ 3

a ~ k  = 2 .0
0.1 - 2 .2 1 6 9 5 2 7 0 5 0 9 0 0 5 4  - 1 0 “ ^ -3 .7 7 4 4 4 9 0 8 3 5 0 0 9 9 3  ■ 1 0 ' 2 - 1 .1 2 6 1 8 0 4 1 3 6 8 9 6 7 2  • 1 0 " A - 2 .1 7 0 1 0 8 1 0 8 3 7 4 0 7 2 I O " 1
0 .5 7 .6 0 5 3 0 2 0 9 3 9 2 3 2 1 9  • 1 0 “ 2 6 .1 6 8 5 1 4 2 4 7 2 3 1 8 1 5  • 1 0 ~ 2 - 1 .9 5 5 8 2 6 7 0 6 6 3 7 8 1 6  • IO " 2 - 1 .8 1 1 4 4 5 6 5 1 2 4 3 1 7 9 I O " 1
0 .9 2 .0 9 0 8 0 3 6 2 3 7 8 5 1 4 5  * 1 0 " 1 2 .0 4 2 5 9 5 8 9 7 7 4 6 8 4 2  • 1 0 “ 1 1 .6 8 9 8 2 8 4 4 5 7 5 3 3 4 2  • 1 0 “ 1 - 3 .7 0 6 2 3 5 4 0 9 4 1 0 1 6 4 IQ —3

a " k  = 1 0 .0
0.1 6 .5 2 5 1 4 5 5 7 6 1 2 4 4 3 8  ■ 1 0 " a -1 .4 6 6 3 2 4 1 7 1 1 3 9 5 7 0  • IO- 2 - 1 .0 8 3 1 2 7 4 2 4 4 0 2 0 4 6  • 1 0 “ 1 - 2 .1 9 0 7 9 8 7 5 7 5 6 3 0 4 3 I O " 1
0 .5 1 .0 7 5 3 8 9 4 7 7 8 6 0 7 4 3  • 1 0 " 1 8 .9 8 1 4 3 5 5 5 4 1 1 8 0 1 1  ■ IO - 2 -6 .8 7 3 1 5 9 0 3 4 6 2 0 2 6 6  - 1 0 “ 3 - 1 .8 1 8 6 9 8 0 0 5 9 5 6 5 8 5 I O " 1
0 .9 2 .1 9 9 1 3 7 9 0 1 4 2 5 8 7 6  • 1 0 " 1 2 .1 4 8 5 4 1 4 4 0 9 4 7 9 4 1  ■ IO- 1 1 .7 7 8 6 2 2 8 9 1 6 2 3 9 4 8  IO- 1 -1 .2 0 3 5 4 9 0 9 8 7 5 9 8 4 7 1 0 " 3
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FIG. 9: The velocity profiles of the Poiseuille flow problem for k  =  0.003. Top row, 
from left to right: a + =  0, a~ = 0, 0.1, 0.5, 0.9 and a + =  0.1, a~ = 0.1, 0.5, 0.9. 
Bottom row, from left to right: a + =  0.5, a~ = 0.1, 0.5, 0.9 and a + = 0.9, a~ = 
0.1, 0.5, 0.9.
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FIG. 10: The velocity profiles of the Poiseuille flow problem for k  =  0.3. Top row, 
from left to right: a + =  0, a~ =  0, 0.1, 0.5, 0.9 and a + =  0.1, a~ = 0.1, 0.5, 0.9. 
Bottom row, from left to right: a + =  0.5, a~ =  0.1, 0.5, 0.9 and « + =  0.9, a~ — 
0.1, 0.5, 0.9.
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0.50.5
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a=0.5,a'=0.1 ■ 
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a  =0.9, a '= O .J r -0.5-0.5

4 6 81.5 2 2.5 3 21
u  u

FIG. 11: The velocity profiles of the Poiseuille flow problem for k = 1.0. Top row, 
from left to right: a + =  0, aT =  0, 0.1, 0.5, 0.9 and a + =  0.1, a~ = 0.1, 0.5, 0.9. 
Bottom row, from left to right: a:+ =  0.5, a~  =  0.1, 0.5, 0.9 and a + =  0.9, a~ =  
0.1, 0.5, 0.9.
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a =0,9, a*=

a  =0.7. a*=0 9 
a  =0:5, a.*=0.9 
a=a*=0 9-0.5-0.5

2.5 3 uu

FIG. 12: The velocity profiles of the Poiseuille flow problem for fc =  2.0. Top row, 
from left to right: a + =  0, a -  =  0, 0.1, 0.5, 0.9 and a + =  0.1, a~ =  0.1, 0.5, 0.9. 
Bottom row, from left to right: a + =  0.5, a~ =  0.1, 0.5, 0.9 and a + =  0.9, aT = 
0.1, 0.5, 0.9.
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3.51.5 2 2.5 3u u

FIG. 13: The velocity profiles of the Poiseuille flow problem for k =  10.0. Top row, 
from left to right: a + =  0, a~  =  0, 0.1, 0.5, 0.9 and c*+ =  0.1, a~ = 0.1, 0.5, 0.9. 
Bottom row, from left to right: a + =  0.5, ot~ =  0.1, 0.5, 0.9 and a + =  0.9, a~ =  
0.1, 0.5, 0.9.

3.4 SOLVING THE INTEGRAL EQUATION FOR THE KRAMERS 
PROBLEM W ITH CHUNK BASED COLLOCATION METHOD
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FIG. 14: Comparisons of Poiseuille flow velocities for k = 0.003: high precision 
solution v.s. quadratic profile. Top row, from left to right: a + = o r  =  0 and 
c*+ =  a~ = 0.1. Bottom row, from left to right: =  a -  =  0.5 and a + = a~ = 0.9.

In this section, we solve Kramers problem with the combined diffusive and spec
ulative reflection boundary condition and Knudsen number k  with chunk based col
location method. Recall equation (47) for Kramers problem, one needs a transform 
to convert the integral interval [0,oo) to a finite interval i.e., [0,1]. The transform 
should be delicately chosen in order to mitigate the fast decaying property of the
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FIG. 15: Comparisons of Poiseuille flow velocities for k =  0.3: high precision solution 
v.s. quadratic profile. Top row, from left to right: a + = a~ =  0 and a + = a~ =  0.1. 
Bottom row, from left to right: a + = a~ =  0.5 and ad" =  a~ =  0.9.

RHS function (1 +  a)Ii(y).  Since when y  -* oo, I- i (y)  ~  2̂ / 2̂ /3, we use the
inverse function of e-2^ 2)273, namely y =  ip{x) =  2(— ln x /3 )2/3 as the transform



80

0.5

0.25

high precision solution 
quadratic profile

-0.25

-0.5
0.90.7 0.8u0.6

0.5

0.25

high precision solution 
quadratic profile

-0.25

-0.5
0.8 0.90.6 0.70.5

0.5

0.25

high precision solution 
quadratic profile

-0.25

-0.5
8.7 8.8 8.98.6

0.5

0.25

high precision solution 
quadratic profile

-0.25

-0.5
1.6 1.7u

FIG. 16: Comparisons of Poiseuille flow velocities for k =  1.0: high precision solution 
v.s. quadratic profile. Top row, from left to right: c*+ =  a~ = 0 and c*+ =  a -  =  0.1. 
Bottom row, from left to right: a + =  a:-  =  0.5 and a + =  a~ =  0.9.

function. Hence equation (47) is converted to equation (109),

q (x ) -n ~ 1/2 [  [I-i{\ip(x)-ip(t)\)+aI-1(ip(x)+<p(t))]q(t)ip\t)dt = * - lf\ \+a)h(<p{x)),  
Jo

(109)

where q(x) = q(y)-
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FIG. 17: Comparisons of Poiseuille flow velocities for k =  2.0: high precision solution 
v.s. quadratic profile. Top row, from left to right: e*+ =  a~ =  0 and a + =  a~ =  0.1. 
Bottom row, from left to right: a + = a~ = 0.5 and of1" =  a~ =  0.9.

The interval [0,1] is decomposed into N  disjoint subintervals U^=1Ej and q(x) is 
approximated by piece-wise (M  — l ) th order expansion of scaled and shifted Gause- 
Legendre polynomials,

j=l
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FIG. 18: Comparisons of Poiseuille flow velocities for k =  10.0: high precision 
solution v.s. quadratic profile. Top row, from left to right: a + =  a~ =  0 and 
a + =  a -  =  0.1. Bottom row, from left to right: a + = a~ =  0.5 and a + = a~ = 0.9.

where
n N ( x )  =  < ^  G  E j ,

j \  0, z  i  Ej.

Let {xm}m=1 be the set of M th order Gauss-Legendre abscissas and let {xj iTn}*f=1 be 
the set of M th order scaled and shifted Gauss-Legendre abscissas on the subinterval
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TABLE 27: The dependence of the channel center stress Txy — y / 2  on the Knudsen 
number k and various accommodation ratios for the Poiseuille flow problem

a + 0 .0 0 .1 0 .5 0 .9
a " fc == 0 .0 0 3
0.1
0 .5
0 .9

1 .5 7 0 8 5 8 3 0 5 8 8 8 2 1 1
1 .3 6 7 2 7 3 3 3 7 2 1 3 6 2 0
1 .1 4 4 2 2 1 8 6 4 7 4 7 6 2 3

i o - 4
1 0 " 3
1 0 “ 2

0
1 .2 1 0 1 9 1 4 1 7 5 5 4 5 5 1
1 .1 2 8 5 4 5 3 1 4 5 3 4 7 7 7

1 0 “ 3
1 0 “ 2

-1 .2 1 0 1 9 1 4 1 7 5 5 4 5 5 1  10 
O

1 .0 0 7 7 4 4 8 4 7 7 5 4 4 8 3  1 0 “ 2

-1 .1 2 8 5 4 5 3 1 4 5 3 4 7 7 7  
-1 .0 0 7 7 4 4 8 4 7 7 5 4 4 8 3  

0

N 
N

1 
! 

O 
O

a “ k =  0 .3
0 .1 8 .9 1 3 2 8 2 4 3 5 5 2 4 2 9 0 1 0 " 3 0 -5 .3 4 3 6 7 4 5 7 3 4 5 2 7 2 4  10 “ 2 -1 .8 2 2 1 7 6 9 6 1 8 1 8 2 6 0 1 0 _ 1
0 .5 6 .1 8 8 4 6 6 0 2 1 3 5 3 5 8 1 1 0 " 2 5 .3 4 3 6 7 4 5 7 3 4 5 2 7 2 4 1 0 “ 2 0 -1 .5 2 4 9 9 8 2 4 6 4 1 3 0 5 4 1 0 “ 1
0 .9 1 .8 6 3 0 3 9 6 6 2 9 4 1 8 9 6 1 0 “  1 1 .8 2 2 1 7 6 9 6 1 8 1 8 2 6 0 1 0 “ 1 1 .5 2 4 9 9 8 2 4 6 4 1 3 0 5 4  - 1 0 " 1 0
a  ~ k =  1 .0
0 .1 1 .4 9 7 1 1 7 6 8 7 2 1 0 4 2 5 1 0 - 2 0 -7 .7 6 6 7 4 9 6 4 1 0 0 4 9 8 7  • 1 0 ” 2 - 2 .0 4 5 0 9 9 4 3 8 3 7 2 1 5 1 1 0 - 1
0 .5 9 .0 9 0 5 9 8 2 4 8 7 7 2 5 4 0 1 0 “ 2 7 .7 6 6 7 4 9 6 4 1 0 0 4 9 8 7 1 0 “ 2 0 -  1 .7 0 2 1 6 9 9 3 6 4 1 5 7 7 3 1 0 “ l
0 .9 2 .0 9 1 8 3 1 3 7 7 4 9 2 4 8 6 1 0 “ l 2 .0 4 5 0 9 9 4 3 8 3 7 2 1 5 1 1 0 ” 1 1 .7 0 2 1 6 9 9 3 6 4 1 5 7 7 3  1 0 ” 1 0
a ~ k =  2 .0
0 .1 1 .7 9 2 6 7 2 7 3 2 1 3 5 0 8 4

1o

0 -8 .7 1 5 1 5 9 1 9 2 0 6 4 6 0 5  • 1 0 “ 2 -  2 .1 0 6 3 5 2 0 0 3 0 6 0 5 3 9 1 0 “ l
0 .5 1 .0 2 4 4 7 4 0 4 8 4 9 1 4 5 4 1 0 “ l 8 .7 1 5 1 5 9 1 9 2 0 6 4 6 0 5 1 0 " 2 0 -1 .7 5 0 6 3 7 0 4 8 4 9 8 3 2 5 1 0 _ 1
0 .9 2 .1 5 4 7 1 9 6 3 6 8 3 4 5 1 4 1 0 ' 1 2 .1 0 6 3 5 2 0 0 3 0 6 0 5 3 9 1 0 " 1 1 .7 5 0 6 3 7 0 4 8 4 9 8 3 2 5  • 1 0 " 1 0
a  “ k = 1 0 .0
0 .1 2 .2 3 2 1 1 9 7 0 9 6 1 4 5 5 7 1 0 " 2 0 -9 .9 0 6 3 5 4 8 9 9 0 6 9 2 4 5  1 0 " 2 -2 .1 6 9 6 7 0 0 9 9 2 5 5 4 9 4 1 0 " 1
0 .5 1 .1 7 1 8 0 6 4 9 2 5 8 2 2 7 9 1 0 “  1 9 .9 0 6 3 5 4 8 9 9 0 6 9 2 4 5 1 0 “ 2 0 - 1 .7 9 8 6 6 0 4 4 8 7 9 0 2 6 8 1 0 _ 1
0 .9 2 .2 2 0 3 4 2 7 5 5 0 3 3 6 2 4 1 0 " 1 2 .1 6 9 6 7 0 0 9 9 2 5 5 4 9 4 1 0 " 1 1 .7 9 8 6 6 0 4 4 8 7 9 0 2 6 8  ■ 1 0 " 1 0

TABLE 28: The dependence of the upper half channel mass flow rate Q + on the 
Knudsen number k and various accommodation ratios a*  for the Poiseuille flow 
problem________________________________________________________________

a + 0 .0 0 .1 0 .5 0 .9
a “ k  -  0 .0 0 3
0.1
0 .5
0 .9

1 .4 1 5 6 9 8 0 7 3 4 8 9 9 7 4
1 .4 2 5 9 0 5 7 2 6 8 4 5 3 5 6
1 .5 1 0 8 8 5 5 7 3 9 6 7 0 8 1 o 

o 
© 1 .4 1 9 6 4 0 7 9 0 9 6 8 1 4 1

1 .4 2 9 8 7 3 9 9 4 8 3 6 6 8 0
1 .5 1 5 0 6 8 9 5 3 0 8 3 6 4 6 o 

o 
o 1 .4 5 0 0 2 8 8 6 2 3 6 2 3 3 0  • 1 0 1 

1 .4 6 0 4 5 9 7 3 4 4 3 6 4 1 2  • 1 0 1 
1 .5 4 7 3 1 9 1 9 6 8 1 3 7 2 9  • 1 0 l

1 .7 0 3 1 3 2 2 8 6 3 1 2 4 8 6
1 .7 1 5 2 6 4 6 5 5 5 6 6 8 0 4
1 .8 1 6 4 7 5 6 2 7 1 2 1 4 9 4

o
o

o

a  “ k  = 0 .3
0 .1 4 .5 4 2 6 5 5 0 8 0 7 9 0 5 0 0  • 1 0 - 1 4 .8 7 9 7 7 6 6 4 2 6 0 5 1 7 6 I Q -1 6 -9 3 0 2 3 0 1 6 4 3 2 2 5 3 6  - 1 0 " 1 1 .1 9 5 8 9 7 4 5 6 7 9 6 7 1 3 • 10°
0 .5 5 .4 8 0 0 0 8 9 5 8 4 2 1 8 6 0  • 1 0 - 1 5 .9 3 1 4 8 7 6 7 8 2 6 7 8 3 0 1 0 “ l 8 .8 2 6 8 8 4 6 9 9 7 0 2 2 9 7  • 1 0 " 1 1 .7 2 2 4 1 2 0 5 5 2 5 5 6 4 4 • 10°
0 .9 7 .6 9 0 1 7 7 5 0 7 3 3 5 1 7 2  • 1 0 “ 1 8 .4 7 5 3 3 2 8 0 7 9 0 2 5 3 2 1 0 ” 1 1 .4 2 5 4 2 6 8 5 9 5 9 9 0 0 6  • 10 ° 4 .4 2 8 4 8 3 5 7 8 6 5 5 4 1 0 ■ 10 °
a ” k  = 1 .0
0 .1 4 .0 2 8 0 2 1 5 7 3 9 0 6 1 4 6  ■ 1 0 “ 1 4 .3 6 3 2 0 2 2 3 6 9 7 6 6 2 6 1 0 - 1 6 .1 1 4 7 4 7 5 8 3 4 9 5 2 9 5  • 1 0 “ A 9 .0 0 3 5 1 5 2 3 9 6 3 7 7 5 1  • 1 0 _ 1
0 .5 4 .9 5 0 8 4 0 2 5 4 4 3 3 9 6 7  ■ 1 0 “ 1 5 .4 5 6 4 5 2 0 3 3 2 3 2 6 0 9 1 0 - 1 8 .4 2 0 5 4 5 5 0 2 8 3 7 4 2 4  • 1 0 " 1 1 .4 9 0 8 7 8 7 0 9 1 2 0 5 7 9 ■ 10°
0 .9 7 .2 4 6 9 7 2 7 2 3 1 7 9 1 2 4  • 1 0 _ 1 2 .1 4 5 3 3 8 5 5 2 4 4 4 4 5 1 1 0 _ 1 1 .3 4 5 9 1 6 1 6 7 8 5 1 2 9 9  • 1 0 ° 4 .4 0 4 8 8 3 8 5 2 4 8 5 1 9 5 • 10°
a “ k  = 2 .0
0 .1 4 .2 1 1 2 5 1 0 4 0 5 4 0 5 1 8  • 1 0 - i 4 .5 6 5 2 3 6 5 3 9 6 4 3 1 1 4 10 _ 1 6 .2 8 7 6 1 5 0 4 8 5 2 5 3 3 8  • 1 0 " A 8 .7 3 0 9 4 6 1 9 3 9 9 1 6 2 5  - 1 0 - 1
0 .5 5 .1 8 7 4 8 9 0 0 1 8 4 7 1 5 5  • 1 0 - 1 5 .7 4 3 4 4 7 9 7 2 2 1 1 1 9 5 1 0 “ l 8 .8 6 0 9 2 7 2 1 9 2 3 6 4 8 5  • 1 0 " 1 1 .4 9 8 3 2 2 9 5 6 7 1 6 6 0 0 • 10°
0 .9 6 .4 9 7 4 1 9 8 0 9 1 2 2 5 0 7  • 1 0 _ 1 7 .4 1 1 1 2 1 9 0 9 7 0 7 2 5 7 1 0 - 1 1 .3 9 4 7 6 1 7 5 7 7 6 6 2 2 0  • 10 ° 4 .4 9 6 4 8 7 1 7 2 5 2 3 2 0 2 • 10°
a  “ k  = 1 0 .0
0 .1 5 .3 8 7 3 6 0 4 1 7 6 3 4 4 5 5  ■ 1 0 - 1 5 .8 4 4 7 6 5 7 6 5 5 2 8 6 1 3 1 0 “ 1 7 .8 5 5 3 5 1 0 0 2 4 4 8 0 6 9  1 0 “ l 1 .0 2 1 3 1 3 7 9 6 9 4 7 4 1 2 ■ 10°
0 .5 6 .6 8 6 7 8 8 8 3 4 5 6 0 9 0 7  • 1 0 _ 1 7 .4 4 3 5 1 3 7 1 7 3 8 0 2 1 7 1 0 " 1 1 .1 3 9 1 0 1 5 5 9 8 2 1 2 8 8  • 10 ° 1 .8 0 4 0 1 0 2 5 4 7 8 8 7 3 3 • 10°
0 .9 8 .1 2 4 5 0 0 7 9 5 8 1 5 6 0 5  • 1 0 “ l 9 .3 2 5 3 1 0 2 7 6 0 7 7 9 7 0 1 0 " 1 1 .7 4 3 8 6 9 4 8 6 8 9 1 7 4 0  • 10 ° 5 .1 5 6 9 8 6 4 9 3 8 0 8 7 1 9 ■ 10°

E j .  We denote qj  as an M-tupple column with entry qjyTn =  q ^ ( x j <rn). We substi
tute equation (110) into equation (109) and use the linear relation Cj = Pqj from 
Appendix C to obtain

j=i

( i l l )
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TABLE 29: The dependence of the lower half channel mass flow rate Q on the 
Knudsen number k and various accommodation ratios a*  for the Poiseuille flow
problem

a + 0 .0 0 .1 0 .5 0 .9
Q — k  =  0 .0 0 3
0.1
0 .5
0 9

1 .4 1 8 3 1 2 4 9 5 8 6 8 7 4 1  • 1 0 1 
1 .4 4 8 6 7 4 9 4 3 1 5 1 4 1 2  • 1 0 1 
1 .7 0 1 5 5 7 8 4 1 2 7 1 9 5 5  1 0 1

1 .4 1 9 6 4 0 7 9 0 9 6 8 1 4 1  ■ 10* 
1 .4 5 0 0 2 8 8 6 2 3 6 2 3 3 0  • 1 0 1 
1 .7 0 3 1 3 2 2 8 6 3 1 2 4 8 6  1 0 1

1 .4 2 9 8 7 3 9 9 4 8 3 6 6 8 0  ■ 1 0 ‘ 
1 .4 6 0 4 5 9 7 3 4 4 3 6 4 1 2  • 10* 
1 .7 1 5 2 6 4 6 5 5 5 6 6 8 0 4  • 10*

1 .5 1 5 0 6 8 9 5 3 0 8 3 6 4 6  • 10* 
1 .5 4 7 3 1 9 1 9 6 8 1 3 7 2 9  ■ 1 0 1 
1 .8 1 6 4 7 5 6 2 7 1 2 1 4 9 4  • 1 0 1

a ” k  = 0 .3
0.1
0 .5
0 .9

4 .7 0 4 8 7 3 2 8 4 9 9 6 4 9 8  • 1 0 " 1 
6 .6 3 1 0 6 7 9 5 1 4 8 7 7 7 1  • 1 0 ”  1 

1 .1 2 3 6 0 6 3 7 6 7 9 3 8 3 3  • 10 °

4 .8 7 9 7 7 6 6 4 2 6 0 5 1 7 6  • 1 0 “ 1 
6 .9 3 0 2 3 0 1 6 4 3 2 2 5 3 6  • 1 0 " 1 

1 .1 9 5 8 9 7 4 5 6 7 9 6 7 1 3  • 10 °

5 .9 3 1 4 8 7 6 7 8 2 6 7 8 3 0  1 0 " 1 
8 .8 2 6 8 8 4 6 9 9 7 0 2 2 9 7  ■ 1 0 “ 1 

1 .7 2 2 4 1 2 0 5 5 2 5 5 6 4 4  ■ 10 °

8 .4 7 5 3 3 2 8 0 7 9 0 2 5 3 2  • 1 0 " 1 
1 .4 2 5 4 2 6 8 5 9 5 9 9 0 0 6  ■ 10°  
4 .4 2 8 4 8 3 5 7 8 6 5 5 4 1 0  • 10°

a " k  = 1 .0
0.1
0 .5
0 .9

4 .1 5 2 9 0 3 2 7 1 0 0 8 1 5 1  • 1 0 ”  1 
5 .7 2 0 8 3 8 0 5 2 4 9 9 7 2 1  - 1 0 “  1 
8 .1 9 4 8 2 6 3 2 3 4 3 8 2 6 4  • 1 0 ” 1

4 .3 6 3 2 0 2 2 3 6 9 7 6 6 2 6  ■ 1 0 “ 1 
6 .1 1 4 7 4 7 5 8 3 4 9 5 2 9 5  ■ 1 0 " 1 
9 .0 0 3 5 1 5 2 3 9 6 3 7 7 5 1  • 1 0 “ 1

5 .4 5 6 4 5 2 0 3 3 2 3 2 6 0 9  ■ 1 0 “ * 
8 .4 2 0 5 4 5 5 0 2 8 3 7 4 2 4  ■ 1 0 “ 1 

1 .4 9 0 8 7 8 7 0 9 1 2 0 5 7 9  • 10 °

7 .2 4 6 9 7 2 7 2 3 1 7 9 1 2 4  • 1 0 " 1 
1 .3 4 5 9 1 6 1 6 7 8 5 1 2 9 9  • 10°  
4 .4 0 4 8 8 3 8 5 2 4 8 5 1 9 5  10°

a ” fc = 2 .0
0 1
0 .5
0 .9

4 .3 2 2 7 0 3 2 6 3 3 9 0 9 1 1  • 1 0 ”  1 
5 .8 3 0 8 3 6 8 5 1 8 2 1 8 2 7  • I 0 " 1 
7 .8 6 4 3 9 2 6 0 0 1 8 5 1 7 2  - 1 0 " 1

4 .5 6 5 2 3 6 5 3 9 6 4 3 1 1 4  1 0 ~ *  
6 .2 8 7 6 1 5 0 4 8 5 2 5 3 3 8  • 1 0 “ 1 
8 .7 3 0 9 4 6 1 9 3 9 9 1 6 2 5  ■ 1 0 “ 1

5 .7 4 3 4 4 7 9 7 2 2 1 1 1 9 5  ■ 1 0 " t 
8 .8 6 0 9 2 7 2 1 9 2 3 6 4 8 5  • 1 0 " 1 

1 .4 9 8 3 2 2 9 5 6 7 1 6 6 0 0  10 °

7 .4 1 1 1 2 1 9 0 9 7 0 7 2 5 7  • 1 0 " ‘ 
1 .3 9 4 7 6 1 7 5 7 7 6 6 2 2 0  • 10 °  
4 .4 9 6 4 8 7 1 7 2 5 2 3 2 0 2  • 10°

a " k  = 1 0 .0
0.1
0 .5
0 .9

5 .4 8 1 9 3 2 7 7 0 6 2 6 1 1 6  • 1 0 " 1 
7 .1 8 4 6 3 1 7 8 8 4 9 5 7 3 6  • 1 0 " 1 
9 .0 7 0 4 1 2 6 3 4 6 0 3 7 0 8  • 1 0 "  1

5 .8 4 4 7 6 5 7 6 5 5 2 8 6 1 3  ■ 1 0 “ 1 
7 .8 5 5 3 5 1 0 0 2 4 4 8 0 6 9  1 0 “ 1 

1 .0 2 1 3 1 3 7 9 6 9 4 7 4 1 2  • 10 °

7 .4 4 3 5 1 3 7 1 7 3 8 0 2 1 7  • 1 0 “ 1 
1 .1 3 9 1 0 1 5 5 9 8 2 1 2 8 8  • 10 °  
1 .8 0 4 0 1 0 2 5 4 7 8 8 7 3 3  • 10 °

9 .3 2 5 3 1 0 2 7 6 0 7 7 9 7 0  • 1 0 " 1 
1 .7 4 3 8 6 9 4 8 6 8 9 1 7 4 0  ■ 10° 
5 .1 5 6 9 8 6 4 9 3 8 0 8 7 1 9  • 10°

where ' i f j  (x ) is an M-tuple column vector with entry

[  [I-i(\‘P(x)-<p(t)\) + aI-.1(<p(x) + (p(t))]ip,(t)Lj 'm- 1(t)dt, m  = 1,2, ••• , M.
JEj

We substitute x iiU for x  with n = 1,2, ••• , M  in equation (111), respectively, to 
obtain a linear system of M  equations for <&,

N

7T1 / 2
a L  V  WT Pa = 1 + a  F-_i/9 /  „ I/O

j=1
1/2 ( 112)

where we denote the M  x M  matrix by

Wj,i =  ( ’®r.7'(a ' t , l )  ^ j { x i,2) ' ' '

and denote the M-tupple column vector JFJ by

Fi =  ( / ^ ( x ^ ) )  ■ • ■ Ii(<p(xi>M)))T■

By using the same decomposition as Equation (100), Equation (112) is rewritten in:

Aq =  F , (113)

where
(  4*1,1 P 4*1,2P ••• 4>hNP \

4*2, lP 4*2,2 P 4>2,jtfP

V 4>NtlP 4>h ,2P ••• 4>n ,n P )
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Q = { q U l  ■■■€n )T

and
F  =  ( l  +  a )(F 1r F 2r  • • • F j ) r  

In the Kramers problem, the m th row and nth column entry of J reads

entmn j

(— l) -  +  <xIo((p(xi<m) +  ip(Xj-x))\
+[Io{(p{xj) -  <p(xi,m)) + a / 0(v?(xi>m) +  <p(xj))]
-  Sh[Io(<p(xj,t) -  tp(xi,m)) +  acIo(cp(xi<m) +  i p i x j ^ L ' ^ i t )  d t, j  < i,

( ~ l ) nIo(ip(Xi-i) -  <p(xitm)) -  Io(<p(Xi,m) -  <p(Xi)) 
+ a [ ( - l ) nI0(<p(xi!m) + <p(xi^)) + I0(<p(xi!m) + <p(xi))]

-  JlT[Io(v>(xi, t)  -  <p(xitm))  +  aIo(<p(xi,m) + ^ x ut))]L'n_ x{t) dt
+  Jxm[Io(v>(xi>m) -  <p(xiit)) -  a l 0(<p(xi,m) + v{xi,t))\L'n_i(t) dt, j  = i, 

-[Io(v(Xi,tn) -  <p{Xj)) -  aIo(ip(xi<m) +  v(Xj))\
+ ( - 1)n+1[/ o(<̂(^i,m) -  <p(xj-1)) -  aIo(<p(xi>m) + ^(Xj-l))] 

k +  /-llJo fa te .m ) -  <P(Xj,t)) -  a l 0(ip(xiym) +  ^(^,t))]^n-l(*) d*> 3 > h

where Xj<t =  xy_i +
We use the same subdivision of the interval as we did in the Couette flow problem and 
translate the subintervals from [—1 /2 ,1 /2 ] to [0,1]. Numerically, we choose N  =  320 

and M  — 10 and solve equation (113) for q  with various values of accommodation 
ratio a. Then, we use the transform <p(x) =  2 (— In x /3 )2 3̂ to map q  on the interval 
x  G [0,1] to corresponding q  on the interval y  (E [0, oo). We also compute the shear 
stress by the formula below derived from equation (49),

TXy =  7T-1/2(1 - a )  I  (<p(t) +  q(t))Io(ip(t))ip'(t) dt,
Jo

where the integral is evaluated piece-wise by a 10t/l order scaled and shifted Gauss- 
Legendre quadrature on each subinterval Ej. Cercignani [4] defines q(oo) as the slip 
coefficient of the Kramers problem, which can be considered as the macroscopic slip 
velocity in contrast with the (microscopic) slip velocity q(0) at the boundary. By 
using the fast decay proper of q(y), we use g(107) to approximate q(oo). We tabulate 
the accommodation ratio a  dependence of the slip velocity g(0), the approximated
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TABLE 30: The accommodation ratio a  dependence of the slip velocity g(0), the 
approximated slip coefficient <?(107) and the shear stress Txy________________

a 9 (0 ) 9 ( 1 0 ' ) T x v
0 .0 7 .0 7 1 0 6 7 8 1 1 8 6 5 4 6 8 1 0 ” 1 1 .0 1 6 1 9 1 4 1 8 3 2 3 3 4 6 10u -  5 .2 3 0 9 6 4 5 7 3 8 5 9 8 4 6 1 0 - i
O.OOl 7 .0 8 6 8 2 0 7 6 7 1 0 5 5 6 2 1 0 ” 1 1 .0 1 8 1 0 5 2 7 1 6 3 7 5 4 0 10u -  5 .2 3 3 5 5 2 7 9 1 7 9 2 9 1 4 1 0 ~ 4
0 .0 1 7 .2 3 0 1 9 0 8 1 1 0 7 4 4 9 1 1 0 “ l 1 .0 3 5 4 9 2 1 8 8 9 3 9 3 5 5 10u - 5 .2 5 6 8 8 0 0 3 8 4 2 0 0 3 8 1 0 “ 1
0 .1 8 .8 3 9 3 6 6 7 2 5 9 3 8 8 6 7 1 0 ” 1 1 .2 2 7 1 9 7 9 1 1 2 8 7 7 0 5 10u - 5 .4 9 3 4 8 0 8 1 1 8 6 6 4 1 3 1 0 “ 1
0 .2 1 .1 0 9 5 5 6 4 8 9 2 1 8 9 6 1 10u 1 .4 8 7 6 5 4 3 3 8 7 0 3 4 2 6 10° - 5 .7 6 3 6 1 0 8 8 1 8 9 3 8 0 7 1 0 “ *
0 .3 1 .4 0 5 0 5 4 1 7 5 9 2 5 9 4 8 10 ° 1 .8 1 8 6 6 7 0 4 8 0 7 6 7 2 8 10° - 6 -0 4 1 5 8 7 6 8 4 3 5 7 6 1 8 1 0 - 1

0 .4 1 .8 0 5 5 8 4 3 0 1 9 8 9 0 1 9 10u 2 .2 5 5 4 0 9 6 8 9 0 6 8 3 0 8 10u -6 .3 2 7 6 5 2 8 6 6 1 9 8 7 9 0 1 0 “ A
0 .5 2 .3 7 4 4 3 5 1 3 3 3 9 7 9 3 0 10u 2 .8 6 1 1 9 0 3 1 7 1 5 9 0 8 5 10° -6 .6 2 2 0 5 7 2 2 7 1 5 2 1 8 4 1 0 ” 1
0 .6 3 .2 3 8 1 9 6 3 4 5 0 2 7 7 0 0 10 ° 3 .7 6 2 6 1 9 1 3 8 9 3 6 1 5 6 10U - 6 .9 2 5 0 6 1 1 4 8 7 8 2 1 2 5 1 0 " 1
0 .7 4 .6 9 2 2 6 2 2 0 1 7 8 3 8 9 5 10 ° 5 .2 5 5 1 1 1 7 2 8 2 2 6 2 5 6 10° -7 .2 3 6 9 3 5 0 4 7 7 8 6 3 2 6 1 0 ” 1
0 .8 7 .6 2 2 8 4 4 3 5 4 5 9 6 1 6 2 !© j 

c 8 .2 2 4 9 0 1 8 5 9 0 7 4 0 0 6 10° -7 .5 5 7 9 5 9 8 5 5 1 8 3 7 8 6 1 0 ” 1
0 .9 1 .6 4 6 1 0 6 1 5 6 4 7 9 8 8 5 1 0 1 1 .7 1 0 3 1 3 1 2 6 9 2 3 7 9 2 10* -7 .8 8 8 4 2 7 5 2 3 1 2 6 3 4 2 1 0 ” 1

slip coefficient g(107) and the shear stress TXy in Table 30. In the case of completely 
diffusive boundary condition at the wall, i.e., a  = 0, both the microscopic and 
the macroscopic slip velocities are studied analytically or with high precision by 
researchers. Cercignani [5] (in equation (29)) gives an analytical solution of the 
microscopic slip velocity q(0) =  \/2 /2 . The difference between this analytical solution 
and our numerical solution is less than 10~15. Loyalka [6] gives a high precision 
solution of the macroscopic slip velocity q(oo) =  1.016191418323352759 . The
difference between this high precision solution and our numerical approximation is 
less than 10-14. Hence, our solutions are reliable and of high precision. The shear 
stress has high linear dependence on the accomodation ratio. Figure 19 shows the 
shear stress versus the accommodation ratio and linear mean square fitting of the 
shear stress. To depict the structure of velocity profile in the near boundary Knudsen 
lay, Cercignani [ 4 ]  defines the function of velocity defect by I(y) = 2 7 t 1 / 2 [< ? (o o )  —q(y)\. 
Figure 20 shows the velocity defect of the Kramer flow problem for a  ranging from 
0 to 0.9.
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l \J r o m  high precision solution 
Least square fitting

-0.6

-0.7

- 0.8 0.4 0.6 0.80.2 a

FIG. 19: Shear stress versus the accommodation ratio
0,0.001,0.01,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9.

2.5
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1.5

1
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0 , 2.50.5 1 1.5
i(y)

FIG. 20: The velocity defect of the Kramer flow problem for
0,0.1,0 .2 ,0 .3 ,0 .4 ,0 .5 ,0 .6 ,0 .7 ,0 .8 ,0 .9  with y <E [0,2.72703],
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C H A PTER  4

ANALYSIS OF THE COUETTE FLOW

In this chapter, we approximate the velocity profiles with different Knudsen num
bers by fitting various model functions. We start from Gross et a /’s linear approxi
mation to the velocity profile with purely diffusive boundary condition for arbitrary 
Knudsen number [8]. By substituting the linear approximation into the integral 
equation, we obtain an approximation to the velocity in terms of Abramowitz func
tions. Adjusting the coefficients of the Abramowitz functions by using least square 
fitting, we obtain very accurate velocity profiles of the rarefied Couette flows with 
different Knudsen numbers, which is optimal in the sense of L2 norm. Since the 
approximations to the velocity in terms of the Abramowitz functions is still not very 
convenient to use, we further approximate the velocities with odd degree polynomials 
by using least square fitting. As to use which degree polynomial should be used as 
the pattern function, we apply the variational method to show that the cubic ap
proximation to the velocity is a good choice. Besides the velocity profile, we discuss 
the boundary information, such as the velocity defect, the microscopic slip velocity 
and the macroscopic slip velocity at the boundary. We analyze the microscopic slip 
velocity, the macroscopic slip velocity and the half channel mass flow rate as func
tions of the Knudsen number by using the asymptotic behaviors of the Abramowitz 
functions of order —1,0,1 and 2. As a result, we obtain very accurate relationships 
between the microscopic slip velocity and the Knudsen number, the macroscopic slip 
velocity and the Knudsen number, as well as, the half channel mass flow rate and 
the Knudsen number. At the end of this section, we construct the effective viscosity 
of the rarefied Couette flow by using one of the cubic approximations to the velocity. 
We reproduce this cubic approximation to the velocity by using the two relaxation 
time lattice Boltzmann equation (TRT-LBE) with the effective viscosity and Dirich- 
let boundary condition. This shows the rarefied Couette flow can be characterized 
by a Navier-Stoke like equation with appropriate stress tensor.

4.1 FIRST APPROXIM ATION OF VELOCITY
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In this section, we construct an approximation to the velocity profile of the Cou
ette flow problem with purely diffusive walls. Our approximation captures the leading 
order singularity of the velocity profile at the boundaries. First we explore the fea
tures of the velocity. It is obvious that, at finite Knudsen number k , the boundary 
velocity does not equal the wall velocity, i.e., there is a microscopic slip velocity 
us. It has been proven the boundary velocity derivative u ' ( i  1/2) is infinite. In the 
framework of hydrodynamic equation, the velocity of Couette flow is a straight line. 
Figure 21 shows the Knudsen number dependence of the velocity u(y) computed by 
the chunk based collocation method with N  =  320. The velocities are compared 
with each corresponding straight line u\{y) =  u'(0)y for various values of Knudsen 
number k. The staight lines are solutions to the Navier-Stokes equation for various 
values of k  with slip velocities. The figure shows that in the bulk flow region, the ve
locity u{y) is close to the hydrodynamic solution ii* (y ); however, near the boundary, 
the nonlinear property of u{y) makes it off the straight line. To measure the kinetic 
component of the velocity, we compute the nonlinear component of the normalized 
velocity u (y )/u (l/2 ),

(115)
Figure 21 shows the nonlinear component of u(y)/u{  1/2) increases as k increases. 
On balance, there exists a singular nonlinear Knudsen layer near the walls. The high 
precision solutions of the Couette flow problem enable us to gain some insights con
cerning the Knudsen layer by using relatively simpler approximations. The simplest 
approximation for the velocity of Couette flow problem is the linear approximation by 
Gross et al. [8]. Noticing the discontinuity of the distribution function in phase space 
at the boundaries, they construct two half range polynimial distribution functions as 
trial functions. They compute full range moments by using the trial polynomials and 
set up moment equations by integrating the integrodifferential equation for Couette 
flow over the phase space. They solve the moment equation along with the boundary 
conditions for the coefficients of the trial polynomials. Then, they obtain the velocity 
function by integrating over the phase space. The first approximation to the velocity 
is:

M v ) = T t k m  <116)
By substituting equation (116) into the integral term of equation (72), we obtain 
an approximate solution to the velocity which captures the nonlinearity and the
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0.5
;= 10.0

0.45

0.4 k=0.1
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k=1.0— N0.3

0.2

0.15

0.1
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k=0.10.4-

k=10.ak=U

0.3
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FIG. 21: The Knudsen number dependence of velocity u(y). Top: The solid and 
dashed lines corresponds to the numerical solution uN(y) with N  =  320 and u\ =  
u'(0)y, i.e., the straight line tangent to u(y) a t y  =  0. Bottom: The normalized 
nonlinear component of the velocity, u^ l defined by Equation (115), u(y)/u(  1/2).

singularity of the Knudsen layer near the boundary:

ku(y) =
1 +  ky /n /2

V F0{y,k) 
k 2\/2

Fi(v,kY  
^  .

(117)
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Near the wall at y =  +1/2, S = (1/2 — y) <C 1, both In(( l /2  + y) /k )  =  In( ( l —S)/k) ra 
In( l /k )  and /„(( 1/2 — y)/fc) =  In(5/k) can be approximated by their leading order 
expansions [1] given in Appendix A. Hence, equation (117) becomes:

u(y) «  a0 { (S /k ) +
+  * +{<

M S /k) ( 1 +  ! ^ ) ) + f i(1 /2)

(S/k) ln(8/k)
V2

0 F
2V2

1 70(l/fc) +  2 /1(l/fc)

v'S ]}
(118)

where

u (l/2 ) =  ao 1 2Fi(0, k)
k y/n

do

and

I  +  TjL
k 2s/2

Oq —

Fo(0,k)
V2
Io(l/k)

V2
+ 2 h ( l / k )

2 +  k\f2/R
Equation (118) shows the leading order singularity of the velocity at the boundary 
y  =  ±1/2  is (S/k) \n(S/k) with S = 1/2 qF V- When y  —»• ± l/2 ,u '(y )  ~  In (S/k), 
thus u'(y) blows up at the boundaries y = ± 1 /2  for k ^  0. While the approximated 
solution u(y) conserves the singularity of the velocity, it does not approximate it well 
quantitatively. For instance, u (l/2 ) ^  u (l/2 )  and u'(0) ^  u'(0).
We can improve the approximation of the velocity based on u(y) by assuming the 
approximation of u(y) has the following form:

M v )  = A(k) + B(k)F0(y, k) + C(k)Fx(y , k), (119)

where A(k ), B(k)  and C(k)  are functions of k alone and are fully determined by the 
following constrains on Ui(y, k):

M  l/2) = u(l/2) ,

«i(0) =  u'(O),
r l / 2

/ M v )  dy =  Q,
Jo

where u(l/2),u'(0)  and Q are obtained by using the accurate solution uN(y) with
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TABLE 31: Coefficients of the approximation u ( y )  =  A y  +  B F 0 ( y , k )  +  C F i ( y ,  k )
k A B C

0 -0 0 3 9 .9 3 9 3 9 8 0 1 1 0 3 7 5 4 7 10 _ 1 4 .2 0 3 8 8 8 3 2 1 6 4 9 4 2 0 1 0 “ 4 1 .0 9 8 1 4 9 6 4 8 6 5 1 2 2 5 1 0 “ J
0 .0 1 9 .8 0 0 8 1 0 0 1 9 0 1 9 6 9 7 1 0 “ 1 1 .3 8 1 9 2 9 6 1 4 7 1 4 6 9 0 1 0 “ d 3 .6 0 9 1 5 3 1 7 8 7 1 1 9 8 9 1 0 " *
0 .0 3 9 .4 2 5 4 1 9 4 9 8 5 7 9 8 7 7 1 0 “ 1 4 .1 1 7 9 8 9 3 9 9 3 3 4 4 1 8 1 0 “ d 1 .0 1 7 0 8 4 0 7 2 3 9 5 4 2 9 1 0 “ *
0 .1 8 .3 2 9 3 5 6 1 7 0 0 1 7 6 8 2 1 0 _ 1 1 .9 5 8 8 3 6 3 6 9 5 2 0 4 1 4 1 0 - i 1 .4 8 0 8 7 5 8 6 0 7 7 9 3 0 1 1 0 “ *
0 .3 6 .3 7 9 6 4 5 2 6 8 7 1 1 7 2 6 1 0 - 1 6 .0 3 1 7 4 2 6 7 4 3 6 0 4 7 1 1 0 “ j -9 .0 1 0 9 5 3 9 0 8 0 7 0 0 2 9 1 0 “ '*
1 .0 3 .8 2 7 4 3 0 1 7 4 5 4 2 7 4 6 1 0 _ 1 1 .2 8 9 0 9 2 2 7 0 3 0 9 2 1 3 1 0 ' 1 -9 .7 3 6 0 2 7 7 7 8 6 8 3 4 7 0 1 0 “ *
2 .0 2 .6 4 4 6 8 9 5 1 0 0 8 3 5 3 7 1 0 “ 1 1 .6 9 5 8 7 9 1 5 7 9 4 4 9 1 7 1 0 ' 1 -1 .8 8 8 9 0 5 9 7 7 7 0 6 4 3 5 1 0 ~ l
3-0 2 .1 0 0 2 8 0 0 7 6 5 5 5 2 1 7 1 0 “ 1 1 .9 0 9 4 6 1 6 7 6 3 1 6 7 7 9 1 0 “ A -2 .5 6 8 6 2 9 9 3 2 6 1 7 4 7 3 1 0 ” 1
5 .0 1 .5 5 4 4 4 1 3 7 6 2 9 1 2 9 9 1 0 “ 1 2 .1 4 1 1 4 1 5 5 1 7 4 5 6 0 9 1 0 “ 1 -3 .5 6 6 5 8 9 2 6 4 4 4 4 7 6 6 1 0 _ 1
7 .0 1 .2 6 7 3 2 1 8 0 9 2 5 3 6 2 3 1 0 “ l 2 .2 6 9 0 3 1 1 8 7 3 1 3 7 2 8 1 0 ” 1 -4 .3 0 2 1 7 1 6 8 2 7 9 0 0 1 1 1 0 _ 1

1 0 .0 1 .0 1 5 0 7 2 4 6 3 3 3 5 7 4 0 1 0 “ 1 2 .3 8 3 5 7 3 1 4 0 0 6 3 6 2 7 1 0 “ A -5 .1 4 1 8 4 4 4 1 5 1 8 8 9 7 6 1 0 “ *

TABLE 32: L2 error of the approximation u\(y) — Ay  +  BFo(y, k ) +  CFi(y ,k ) and 
the shear stress Txy obtained from U\{y)

k ll<5wi H2 T
0 .0 0 3 4 .1 1 9 6 0 1 2 7 6 9 1 5 5 4 1  1 0 ~ tt -1 .4 9 0 9 0 9 7 0 1 6 5 5 7 0 3  • 1 0 - 3  ±  5 .4 8 7 2  • 1 0 - 1 *
0 .0 1 2 .8 7 1 3 5 0 4 7 4 0 9 3 2 4 4  • 1 0 “ ° -4 .9 0 0 4 0 5 0 0 9 0 8 9 8 6 7  1 0 ” 4 ±  2 .0 2 7 5  • 1 0 “ 14
0 .0 3 2 .8 2 7 9 7 8 1 8 8 6 6 2 5 9 8  • 1 0 “ 4 -1 .4 1 3 7 9 3 2 5 1 0 5 6 1 6 8  1 0 " *  ±  5 .6 9 0 1  1 0 " u
0 .1 6 .8 5 4 7 0 9 3 4 6 6 5 9 3 4 1  • 1 0 “ 4 -4 .1 5 5 0 3 0 6 0 9 9 7 4 8 2 3  • 1 0 ” * ±  2 .0 4 6 0  • 1 0 ” °
0 .3 4 .8 2 9 0 7 5 5 9 7 4 7 4 4 1 6  • 1 0 “ 4 -9 .3 4 4 4 4 8 1 4 7 0 7 6 7 6 7  • 1 0 ” * ±  5 .6 9 3 4  • 1 0 ” b
1 .0 2 .0 7 5 7 7 4 7 1 7 2 5 5 1 1 8  - 1 0 “ 4 -1 .6 9 4 6 1 9 1 0 4 6 2 6 5 5 6  • 1 0 ” 1 ±  2 .3 5 6 9  ■ 1 0 ” °
2 .0 1 .1 0 2 3 2 4 8 0 7 4 1 8 6 2 1  • 1 0 “ 4 - 2 .0 8 3 3 2 1 4 0 1 4 8 6 7 3 5  • 1 0 " 1 ±  8 .0 4 8 8  • 1 0 “ '
3 .0 7 .3 3 7 0 8 8 5 5 0 9 6 9 1 3 1  • 1 0 “ S -2 .2 6 6 4 3 7 1 4 4 5 7 7 6 4 8  • 1 0 " 1 ±  3 .7 5 4 9  • 1 0 ” '
5 .0 4 .2 6 9 9 0 4 0 6 9 2 8 1 6 1 0  ■ 1 0 _!> -2 .4 4 6 6 3 2 6 0 5 7 1 0 0 3 8  • 1 0 " *  ±  1 .2 8 9 4  ■ 1 0 ” '
7 .0 2 .9 5 0 3 2 3 2 7 6 6 4 8 7 1 5  • 1 0 “ & -2 .5 3 6 9 4 3 5 1 5 3 1 3 9 9 3  • 1 0 " 1 ±  6 .0 4 4 9  ■ 1 0 “ *

1 0 .0 1 .9 7 7 2 3 1 8 9 8 8 3 5 1 0 4  - 1 0 “ ° -2 .6 1 1 6 2 4 5 9 6 1 3 2 2 4 0  • 1 0 " 1 ±  2 .6 0 7 7  ■ 1 0 " g

N  =  320. Specifically, the equation for A, B  and C  are:

a + ! / -  ( s ) b + H s ) c " , , ' (0) ’

* A +

8
A + k + h

2

B  + k + 1 2

m
C = u( 1/2), 

C = Q.

The numerical solutions of A(k),  B(k)  and C (k ) are given in Table 31. The solutions 
of A(k), B ( k ) and C(k)  are smoothly dependent on k. To measure the accuracy and 
quality of the approximate solution iii(y), we compute the global L2 error of ii\{y) 
and shear stress Txy obtained form u\{y). The results are tabulated in Table 32. The 
half channel mass flow rate Q is used as one of the constraints to determine Hi (y) and 
Q, computed from the approximate solution Ui(y), is identical to Q computed with 
uN(y) in Table 13. The L2 global error never exceeds 7 - 1CT4 and the error in the 
stress Txy obtained from u\(y) are in the fifth digit or smaller. Hence, the solution 
Hi(y) is a highly effective approximation in terms of the stated measurements. 
However, to construct the Maxwell type slip velocity boundary condition, which
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can be used in the framework of Navier-Stokes equations [9]-[15], we cannot allow a 
boundary singularity in the velocity u(y), since these boundary conditions include 
derivatives of u(y) at the boundary. To accommodate the Maxwell type slip velocity 
boundary condition, we need to consider other approximations of u(y) in the following 
section.

4.2 VARIATIONAL APPROACH TO COUETTE FLOW

In this section, we discuss the variational approach to the Couette flow problem, 
which leads us to odd degree polynomial approximations to the velocity u{y). The 
approxiamtions possess correct symmetry of the flow but without the boundary sin
gularities and thus can be used to construct Maxwell slip boundary conditions. As 
a preparation, we define an integral operator A  associated with equation (72) by

(120>
Then, a simple calculation shows that A  is self-adjoint and equation (72) can be 
rewritten as:

u -  Au = w-1/2F0(-,k)/2. (121)

Since n] - l' 2G0(y,k) < 1, one also has

J - 1/2
We define the functional J(u)  as

f l / 2

J ( u ) =  /  u(y)\u(y) -  Au(y) -  n 1/2F0(y,k)]dy,  (122)
J - 1/2

Then, if u is the solution to equation (121), we have
1 ri/2 ci/2

J(u + 5u) = ~  2^ 1/2 /  “ (y)*o(y, k) dy +  / [5u(y) -  A5u(y)\6u(y) dy

1 /-V2 rl/2
> ~ 2 ^ i / 2  J u(y)Fo{y, k) dy +  (1 — ||A||2) j  ^[8u(y)]2dy,

where ||A ||2 is the operator norm of A, which results in

1 f 1' 2
mm J(u) = — jt  ̂J  u(y)F0(y ,k)dy.
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Hence solving equation (121) is equivalent to minimizing the functional J{u). Con
sidering that u(y) is an odd function, Cercignani [7] uses a linear function Ui(y) =  axy 
and a cubic function u3(y) =  a^y +  a2y3 as trial functions, respectively, to minimize 
the functional by determining the coefficients. The results in his paper have a few 
typos. We repeat Cercignani’s process to correct the typos in u\ and it3 and derive 
a fifth power approximation u5(y) = <i\y + a2y3 +  a3y5 to the velocity.
For iq, we have

J{u\) =  fljCn +  laibi,  (123)

where C n  and b\ are scalars:

A:( —1 +  4k2) k 2 k2 T / .,. 2k3 r M ,
Cl1 = ------- 4^172----+  +  +  ^ /3(1/ fc)

and

=  T  -  4 ^  -  d a w n  -

When ai =  —bi/Cu,  J(ui)  takes its minimum min J(u{) =  —b\/Cn-  
For u3, we have

J (« 3) = a T C a  + 2 a Tb, (124)

where a  =  [cq a2]r , C is a 2 x 2 matrix and 6 is a 2-tuple column vector (with Cn
and bi defined in equation (123)):

fc(-! +  2txl>2k -  12k2 + 192k4)
C u - C n -

k , k2 ........... 9k3 _  12fc4 . 12k5
+  s ^ 1/ * ) +  +  a ^ T * '3*1/ * ) +  +

fc(—5 +  127T1/2fc -  60fc2 +  69120fc6)
22 3207T1/2

k t /i /j \ 3fc2 r / 1 / l . 21A;3 12fc4 r / 1 / I . 36fc5 r / 1 ., ,
+  32TT&2 +  S t t ^  +  S t t ^  +  +

72fc6 . . . 72fc7 r .i / I .
+  +  ■ ^ ■ / 7(1A )

and
fc(—1 +  37r1/2fc — 24fc2 +  SGTr1/2̂ 3)

2 167T1/2

-  g ^ A d / * )  -  | ^ a ( i / * )  -  ^ / » d / * )  -  % h ( i / k ) .

When a  =  —C_16, J(u3) takes its minimum min J (u 3) =  —bT Cb.
For u5, we have

J(u5) = a T Ca  +  2ar b, (125)
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TTl/2

C 3 3  =

where a = [ai <22 <23] 7\  C is a 3 x 3 matrix and 6 is a 3-tuple column vector (with 
C1i,C i2>C,2i,C'22,&i and h2 defined in equation (124)):

k ( - 1 +  4n ^ 2k -  60k 2  +  2407r1/2fb3 -  19201b4 +  460801b6)
3 “  31 _  647T1/2

k  3fc2 r / 1 / I , 2 5 * ® , , , .  20*:4 r/-. / ,N
+ 32̂ 172 + 8 ^ 7 2  + g^iTi 3( /  ) + -̂ rj2 I^ ll k) + ^ITF7̂ 1/ ^

240fc6 240A;7 ...
+  “^ITT7̂ 1/* ) +  _^T75_77(1/fc),

^  fc(“ 7 +  267r1/2fc -  308fc2 +  10087T1/2*;3 -  67201b4 -I- 30965760A;8)
23 ”  632 “  17927rV2

k  k 2  41 k 3 39k 4

+  1 2 8 ^ Il(1/k) + 8 ^ h{1 /k )  +  3 2 ^ h { l / k )  +  4 ^ h { l / k )
225fc3 . . . 240/c6 r x 720fc7 r / i / I . 1440A;8 r ,

+  4 ^ 1 7 2  +  Ip iT F 7^ 1/^ )  +  - ^ - ^ ( l / f c )  +  78(1 / fc)

1440A:9 .
+ t 1/2

k(—63 +  280tr^lb -  37801b2 +  mOOTr1/2*:3 -  806401b4 +  1114767360001b10) 
33 “  ”  645127T1/2

5/c2 65A:3 _ ... 5A;4 ...
+  5 w 7 j / i ( 1 A ) + + m ^ h { 1 / k ) + ^ u i I>(1/k)

r M ) n  2 4 0 f c « , /IX 1200fc7 r „  ... 4800fc8 1/IN
+  + - ^ r u m

144004s , , , , , ,  28800410 r , 28800411 ,
+  - ^ 7 5 — -M 1/ * )  +  ^1/2 A o (1/ 4 ) +  ^ 7 3 - / 1 1 ( 1 / 4 )

and

fc (-l +  b-Klt2k  -  80k2 +  3607T1/2*;3 -  38401b4 +  72007r1/2lb5)
3 ~  6 4 ^ /2

k  51b2 5k 3 1 5ib4 60/b5
-  - ̂ hii/k) - - ^ u m
-  ^ W k ) .

When a  =  — C_16, J(u5) takes its minimum min J(u5) = —bT Cb.
Numerically, we compute the coefficient a  for Ui(y)(i = 1,3,5) with various values of 
Knudsen number k. Table 33 shows the dependence of u'(0) (from the chunk based 
collocation method with N  = 320) on the Knudsen number k. It also shows the 
values of the coefficients of the approximating polynomials with different Knudsen 
numbers. From Table 33, we see the data in Column 3, 4, 6 are comparable to 
the corresponding data in Column 2 with maximal error of 5.9%, 1.9% and 1.6%, 
respectively. Hence, u 5 (y) approximates the channel center velocity derivative better
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TABLE 33: The Knudsen number k  dependence of the channel center velocity deriva
tive u'(0) from the chunk based collocation method with N  = 320 and the Knud
sen number k  dependence of the coefficient a  of the approximating polynomials 
« i(y )(t  =  1,3,5)_____________________________________________________

k « ' ( 0 ) a i  in  t i i a i  in  t*3 d 2 in  U3 o i  in  u 5 a 2  in  115 a 3  in  tig
0 .0 0 3 0  9 9 3 9 3 9 8 0 9 9 4 7 1 8 4 0 .9 9 2 9 3 3 9 0 .0 0 7 2 1 3 9 0 .9 9 5 2 3 2 4 — .0 2 3 8 5 7 1 0 .0 8 8 0 2 7 2
0 .0 1 0 .9 8 0 0 8 1 0 0 .9 8 2 6 6 8 5 0 .9 7 6 9 5 7 6 0 .0 2 3 6 4 4 6 0 .9 8 3 5 8 9 2 — .0 6 8 7 3 7 6 0 .2 6 8 3 3 0 8
0 .0 3 0 .9 4 2 5 4 5 6 0 .9 5 0 2 4 7 3 0 .9 3 4 9 8 6 9 0 .0 6 7 2 5 8 6 0 .9 4 8 8 1 4 4 - .1 3 9 1 4 5 5 0 .6 3 2 9 0 3 4
0 .1 0 .8 3 5 2 8 5 8 0 .8 5 6 8 8 4 2 0 .8 2 2 7 1 2 0 0 .1 7 5 3 8 6 3 0 .8 4 2 4 3 4 7 - .1 5 4 0 4 8 0 1 .0 9 7 0 5 6 8
0 .3 0 .6 6 3 5 3 0 1 0 .6 9 5 0 2 6 7 0 .6 5 1 0 2 4 2 0 .2 6 2 5 7 7 1 0 .6 6 9 5 6 2 5 - .0 6 8 7 0 7 7 1 .1 5 7 5 6 2 3
1 .0 0 .4 4 4 2 2 8 5 0 .4 7 0 4 2 4 4 0 .4 3 5 9 1 5 3 0 .2 2 2 5 3 4 3 0 .4 4 7 9 0 7 8 0 .0 0 1 7 7 4 2 0 .7 8 7 3 8 3 7
2 .0 0 .3 2 7 4 7 4 6 0 .3 4 6 5 4 0 8 0 .3 2 1 8 8 4 2 0 .1 6 1 7 2 2 7 0 3 3 2 2 7 7 8 - .0 3 0 9 1 7 5 0 .6 9 0 2 5 9 2
3 .0 0 .2 6 7 2 0 7 0 0 .2 8 2 1 9 0 9 0 .2 6 2 9 6 5 0 0 .1 2 6 8 0 2 9 0 2 6 3 0 4 5 8 0 .1 2 5 3 0 1 6 0 .0 0 5 3 8 5 3
5 .0 0 .2 0 1 6 9 4 4 0 .2 1 2 2 5 2 0 0 .1 9 8 8 0 8 1 0 .0 8 9 0 5 5 7 0 .1 9 8 8 3 2 3 0 .0 8 8 6 4 6 1 0 .0 0 1 3 8 9 8
7 .0 0 .1 6 5 2 0 8 6 0 .1 7 3 3 9 7 1 0 .1 6 3 0 1 0 7 0 .0 6 8 9 2 9 2 0 .1 6 3 0 1 0 7 0 .0 6 8 9 2 9 4 - .0 0 0 0 0 0 6

1 0 .0 0 .1 3 2 1 9 5 6 0 .1 3 8 3 4 6 8 0 .1 3 0 5 8 4 4 0 .0 5 1 5 8 6 3 0 .1 3 0 5 7 8 7 0 .0 5 1 6 2 4 4 - .0 0 0 0 0 3 7

TABLE 34: The Knudsen number k  dependence of the shear stress Txy from the 
chunk based collocation method(CBCM) and from the variational method(VM) for 
U j { y ) { i  -- 1,3,5)____________________________________________________________

k C B C M V M  u i V M  ti3 V M  u 5
0 .0 0 3 -1 .4 9 0 9 1 7 1 6 1 7 3 5 5 2 2 IQ-'* - 1 .4 9 0 9 8 7 9 4 8 1 4 9 6 1 4 o 1 - 1 .4 9 0 9 8 4 1 6 1 7 0 1 5 1 4 1 0 ” '5 -1 .4 9 0 9 7 7 9 2 4 6 0 5 5 9 1 1 0 “ 3
0 .0 1 -4 .9 0 0 4 0 5 6 7 2 1 3 7 4 3 2 o 1 b - 4 .9 0 1 2 3 0 1 8 7 4 4 7 6 1 9 1 0 ~ 3 -4 .9 0 1 1 0 3 9 3 7 5 2 0 0 5 2 1 0 - , i -4 .9 0 0 9 3 3 9 6 6 9 4 2 9 9 4 1 0 " J
0 .0 3 -1 .4 1 3 7 9 8 6 0 8 6 0 6 2 6 8 1 0 “ * - 1 .4 1 4 4 3 4 6 9 3 3 8 1 8 5 3 1 0 ” * -1 .4 1 4 1 8 5 5 9 0 1 9 8 5 6 6 1 0 “ * - 1 .4 1 3 9 8 8 2 6 0 1 9 2 3 8 4 IQ- '2
0 .1 -4 .1 5 5 6 0 7 7 8 3 1 2 3 2 6 6 1 0 “ * -  4 .1 5 9 3 6 5 5 4 1 0 2 7 0 0 1 1 0 “ * - 4 .1 5 6 5 4 1 9 9 3 7 6 4 1 9 0 1 0 “ * -4 .1 5 5 8 4 4 0 5 0 0 9 4 1 3 7 1 0 “ J
0 .3 -9 .3 4 4 9 8 3 5 1 1 4 0 6 5 1 9 1 0 “ * -9 .3 5 0 4 4 1 8 8 7 1 1 0 4 0 6 1 0 “ ^ - 9 .3 4 5 5 3 7 9 7 7 6 2 3 3 7 4 1 0 “ * -9 .3 4 5 0 7 8 1 0 4 1 0 8 1 4 8 1 0 “ *
1 .0 -1 .6 9 4 6 2 5 7 5 3 3 6 8 5 2 6 1 0 ' 1 - 1 .6 9 4 7 8 5 5 7 4 1 8 6 9 2 2 1 0 - 1 -1 .6 9 4 6 3 5 0 6 1 1 0 0 6 0 9 1 0 “ 4 -1 .6 9 4 6 2 7 0 4 2 0 8 0 2 9 6 1 0 “ l
2 .0 - 2 .0 8 3 3 2 2 5 3 6 7 4 9 4 3 0 1 0 " 1 - 2 .0 8 3 3 6 7 7 9 3 0 6 8 5 0 4 1 0 " 1 - 2 .0 8 3 3 2 4 7 4 1 9 4 1 3 3 9 1 0 - 1 -2 .0 8 3 3 2 2 2 4 8 6 2 7 8 5 8 1 0 “ l
3 .0 -2 .2 6 6 4 3 7 4 9 7 6 5 8 1 0 4 1 0 “ * - 2 .2 6 6 4 5 6 4 8 2 8 5 5 6 7 2 1 0 _ 1 - 2 .2 6 6 4 3 8 3 5 6 0 5 5 5 7 0 1 0 _ 1 -2 .2 6 6 4 3 8 3 4 6 1 3 9 7 3 1 1 0 - 1
5 .0 -2 .4 4 6 6 3 2 6 7 8 4 5 5 9 9 9 1 0 _ i - 2 .4 4 6 6 3 8 4 0 1 5 5 1 3 3 3 1 0 ” 1 - 2 .4 4 6 6 3 2 9 1 9 2 7 0 7 3 0 1 0 - 1 - 2 .4 4 6 6 3 2 9 1 9 6 0 4 1 0 3 1 0 “ A
7 .0 - 2 .5 3 6 9 4 3 5 3 9 6 7 4 4 8 1 1 0 " 1 - 2 .5 3 6 9 4 6 0 0 7 8 2 2 5 8 0 1 0 _ 1 - 2 .5 3 6 9 4 3 6 3 9 8 4 1 6 6 0 1 0 - 1 -2 .5 3 6 9 4 3 6 3 9 8 4 1 2 4 9 1 0 " 1
1 0 .0 -2 .6 1 1 6 2 4 6 0 3 4 8 8 4 0 6 1 0 - 1 - 2 .6 1 1 6 2 5 5 8 0 1 4 1 2 0 1 1 0 - i - 2 .6 1 1 6 2 4 6 4 3 5 5 1 4 4 5 1 0 _ 1 - 2 .6 1 1 6 2 4 6 4 2 8 7 8 1 8 8 1 0 - 1

than Ui(y) and slight better than u3 (y). Since both u3(y) and u 5 (y) can depict 
the nonlinear feature of the Couette flow velocity profile, i t’s necessary to ask the 
question: Which model should we use to describe the Couette flow velocity effectively 
and efficiently? To answer this question, we turn to another point of view. Recalling 
equation (34), with purely diffusive upper and lower walls, i.e., a~ = a + = 0, the 
shear stress, Txy(u), can be rewritten in terms of min J(tt), namely,

'■xy
f..\ 1 h 0 - /k )  min J{u)
(u) = “ 4^72 -  1^75--------- —  <126>

We compute the shear stress from equation (126) for U i ( y ) ( i  = 1,3,5) with various 
values of the Knudsen number k.  Table 34 shows a comparison of the shear stress 
from the chunk based collocation method with N  =  320 and the shear stress from 
the variational method with tq(y)(i = 1,3,5) for various Knudsen numbers. From 
Table 34, we see the maximal error of the shear stress computed from the variational 
method by using U \ { y ) ,  u 3( y )  and u 5( y )  are 9.0 • 10-4, 2.7 • 10~4 and 1.3 • 10-4,
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respectively. Although, the error of u 5 (y) is one half of the error of u3 (y), the latter 
error is quite small. Considering efficiency, it is more appropriate to use a cubic curve 
to approximate the velocity profile.

4.3 CUBIC APPROXIM ATION TO COUETTE FLOW

In this section, we reconsider the cubic approximation to the Couette flow problem 
with purely diffusive walls. Although we can obtain the cubic approximation u 3 (y) 
to the velocity u(y) of the Couette flow problem, it is complicated in k  and it is not 
the optimal approximation in L2. However, we can improve the cubic approximation 
by the following cubic function:

«2(y) =  u'(0)y +  ay3, \y\ < h0 < 1/2, (127)

where u'(0) is computed with uN(y) given in Table 10 and a is the only parameter 
dependent on k in equation (127). We compute a by the least-square fitting of u2 (y) 
to u(y) and by using different flow domain sizes |y| <  ho, h0  =  0.1, 0.25, 0.4 and 0.5. 
The results are tabulated in Table 35. The coefficient a in equation (127) measures 
the strength of the nonlinear component of the velocity u(y). It should be noted from 
Table 35 that the maximum of a occurs at k = 1.0. However, if u(y) is normalized by 
u (l/2 ), then we see the term a/u{ 1/2) increases monotonically with k  as shown in 
Figure 21. For almost all cases of k, a increases monotonically as the domain size in 
which u2 (y) is used to appproximate u(y) increases. For all values of k  G [0.003, 10.0], 
the velocity u(y) is well approximated by u 2 (y) in the flow domain about the channel 
center. The L 2 global error of u2 (y) in the domain |y| < 0 .1  never exceeds 5 • 10“6. 
Other quantities like the boundary value u2(l/2 ), the half channel mass flow rate Q 
and the shear stress Txy can be use to measure the accuracy of u2 {y) in approximating 
u(y). The values of u 2 ( l /2 ) ,Q  and Txy computed from u 2 (y) are given in Table 36 
and Table 37. Comparing u2(l/2 ) in Table 36 and with the data of Table 10, we see 
the errors of u2(l/2 ) are less than 3%. Comparing the data of Q and Txy of Table 37 
computed by using u 2 (y) with the data of Table 13, we see the errors of Q are less 
that 1% and the errors of Txy are less than 0.5%. Thus, for pratical purposes and 
in terms of the above measurements, u2 (y) is an adequate approximation for u(y).

If the boundary value u( 1/2) is the quantity of primary concern, we can use the 
following approximation of the velocity uy:

u3(v) = u '(0)y + 4[2u(l/2) -  u'(0)]y3, \y\ < 1/2. (128)
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TABLE 35: The coefficient a of the cubic term in u2 (y) =  u'(0)y + ay3  and L 2  global 
error of u2 (y).

k a HSU2 H2
0 <  V <  0.1

0.003 5.099593062063754 10” ** 1.387416890726450 l b ” 1 0 ...
0.01 3.343744310958851 10" 8 3.018312188907554 10” 11
0.03 5.281661481222335 10 ~ 4 8.615577123508974 10“ 8
0.1 3.221450332360452 10“ * 1.724997898197065 10“ °
1.0 1.087385972974718 10“ 1 4.631343201891701 1 0 - 6

2.0 8.404038575996586 io-,J 4.469282519835852 1 0 " °
3-0 6.752579776310266 10“ * 4.247256374952163 10“ b
5 .0 4.852427628554858 l 0 - 2 3.903912283246445

01oiH

7 .0 3.799335117677678 10“ * 3.663665126306314

01oH

10.0 2.876474290181471 10“ * 3.410930773482218 10” *
0 <  V <  0.25

0.003 8.910398731314538 10“ y 1.644013286614896 10“ 1U
0.01 2.281723886791297 10” 7 4.460931942661247 i 0 - 9
0.03 9.362491604139115 10“ 4 6.026274060272408 i 0 - 6
0.1 3.801461087150716 10~>J 8.586732529157279 10“ b
1.0 1.166555192399757 10“ 1 2.128157496862178 10“ 4
2.0 8.965402727287951 10“ * 2.042116189364138 10“ 4
3.0 7.187268534084894 10” * 1.936725914101620 10~*
5.0 5 .153603790568363 10“ * 1.777257280703251 10“ 4
7.0 4 .030682982958223 10“ * 1.666780655119464 10“ 4

10.0 3 .048715410738038 10“ * 1.551114351650349 10 4
o < y <  0.4

0 .003 3.461904416529674 10~* 1.567671040975640 10“ 10
0.01 1.856312338363668 10” b 1.782432352486531

01o

0 .03 3.299567364766678 10” 8 1.450084228468318 10” *
0.1 5.579151702265811 10” ^ 1.013531724190039 10_S
1.0 1.375949468072168 10“ x 2.084057222480417 10- 3
2.0 1.043359531536905 10“  * 1.972366748527839 10”  3
3 .0 8 .318922556028895 10” * 1.861238739383532 10- 3
5 .0 5 .934281798850302 10“ * 1.701043912144287 10“  3
7 .0 4 .629066041789258 10“ * 1.592616799844646 1 0 ~ 3

10.0 3 .493410766837902 1 0 - a 1.480376752127701 1 0 ~ 3
0 <  y <  0.45

0.003 1.019246570609792 10“ ' 2 .467123049928927 10_ ”
0.01 1.451549152540907 10~* 2.144411513469176 10“ ”
0.03 6.572911061238614 10“ * 4.940184918247531 1 0 ~ 4
0.1 6 .996991026752306 10“ * 2.361733077307577 1 0 ~ 3
1.0 1.517910790377233 10_1 4.327565380978811 1 0 ~ 3
2.0 1.141552197717352 10“ 1 4.058963119981552 1 0 ~ 3
3 0 9.071566848876420 10“ * 3.817658857583769 1 0 ~ 3
5.0 6 .450797155323322 10” * 3.479542775938702 10- 3
7.0 5 .023949416869138 10“ * 3.253945303818349 1 0 ~ 3

10.0 3.786238847877981 10” * 3.022084185455364 10- 3
o <  v ^  0 .5

0.003 1.004492580134579 10- 3 4.148750667025172 1 0 ~ 4
0.01 4.397838806966825 1 0 -3 1.346080444053811 1 0 ~ S
0.03 2.219498738086498 10” gj 3.746758468324083 1 0 ~ 3
0.1 1.055162854697281 10_ i 8 .374694271083522 10- 3
1.0 1.801024605942818 10” 1 1.163865625409967 I Q - ‘J
2.0 1.333459015123582 10- i 1.067311848993107 10- 3
3.0 1.053062819728655 10“ A 9.954121683657420 10- 3
5.0 7.444629837254586 10” * 9.006831059797778 10- 3
7.0 5 .780969662306304 10” * 8.395321211779156 10- 3

10.0 4 .345906835580813 10“ * 7.777547893488955 10- 3

There is no fitting parameter in the above approximation of u(y), because u^{\/2)  = 
u( 1/2) and u^O) =  u'(0) and both u (l/2 ) and u'(k) are provided by the accrate 
solution given by Table 10. We compute the L 2 global error, the half channel mass 
flow rate Q and the shear stress Txy by using the approximate solution u$(y). The 
results are tabulated in Table 38 and Table 39. The L 2 global errors of u3 (y) are larger
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TABLE 36: The Knudsen number k  dependence of u2(l/2 ).
k * 2 ( 1 / 2 )

0 .0 0 3 4 .9 7 0 9 5 4 6 2 1 2 4 3 9 4 1 1 0 “ ±  0 .1599%
0 .0 1 4 .9 0 5 9 0 2 3 0 8 0 4 8 7 5 6 1 0 “ ±  0 .5029%
0 .0 3 4 .7 4 0 4 7 1 7 3 3 3 4 9 5 8 3 1 0 ” ±  1 .2414%
0 .1 4 .3 0 8 3 2 4 1 8 5 0 7 2 8 2 7 1 0 " ±  2 .3553%
0 .3 3 .5 6 3 8 6 8 8 0 3 7 3 1 9 0 6 1 0 “ ±  2 .9481%
1 .0 2 .4 4 6 2 7 0 4 2 4 4 7 5 9 8 2 1 0 ” ±  2 .8723%
2 .0 1 .8 0 4 0 5 5 2 6 1 5 7 7 2 4 6 1 0 ” ±  2 .6132%
3 .0 1 .4 6 7 6 6 7 8 8 2 1 6 7 1 4 3 1 0 ” ±  2 .4340%
5 .0 1 .1 0 1 5 3 0 0 3 2 0 5 4 5 3 5 1 0 ” ±  2 .2037%
7 .0 8 .9 8 3 0 5 2 9 4 7 5 6 8 6 2 2 1 0 ” ±  2 .0567%

1 0 .0 7 .1 5 3 0 1 7 3 0 7 0 3 2 4 5 4 1 0 ” ±  1 .9088%

TABLE 37: The Knudsen number k  dependence of the half channel flow rate Q and 
the shear stress Txy computed from u 2 {y) =  u'(0)y +  ay3.

k Q
0 .0 0 3 1 .2 4 2 5 8 1 7 0 3 3 4 5 3 3 9  • 1 0 ” 1 ±  0 .0110% -1 .4 9 0 9 0 9 8 2 3 7 0 1 4 8 1  - 1 0 ” J ±  1 .2 1 5 3  • 1 0 “ iU
0 .0 1 1 .2 2 5 7 8 8 4 1 4 6 9 8 6 0 0  * 1 0 ” 1 ± 0 .0 3 7 4 % -4 .9 0 0 4 2 4 7 9 9 3 0 5 5 8 0  • 1 0 ” J ±  1 .9 7 9 0  • 1 0 ” a
0 .0 3 1 .1 8 1 7 0 7 7 1 6 8 3 3 4 1 2  • 1 0 “ l ± 0 .1 3 2 2 % - 1 .4 1 4 0 4 8 2 5 6 5 2 1 4 5 3  • 1 0 ” * ±  2 .4 9 6 6  • 1 0 _ti
0 .1 1 .0 6 0 5 9 4 1 2 6 6 6 3 5 6 2  • 1 0 “ l ± 0 .3 3 7 3 % - 4 .1 6 5 3 4 3 4 5 2 2 3 4 1 0 6  ■ 1 0 _ ii  ±  9 .7 3 5 7  • 1 0 ” a
0 .3 8 .6 0 1 8 9 8 9 8 6 0 8 9 5 3 3  ■ 1 0 “  ̂ ±  0 .4882% - 9 .3 7 0 5 4 4 5 1 8 6 1 0 2 1 2  • 1 0 “ * ±  2 .5 5 6 1  • 1 0 “ 4
1 .0 5 .8 3 4 2 6 5 9 6 6 5 1 1 3 9 0  • 1 0 ” '̂  ±  0 .5092% - 1 .6 9 6 0 7 0 0 6 8 5 0 9 7 4 3  - 1 0 ” 1 ±  1 .4 4 4 3  - 1 0 _ i
2 .0 4 .3 0 1 7 8 5 1 8 2 8 3 0 0 5 7  ■ 1 0 ”  ̂ ±  0 .4700% - 2 .0 8 3 9 7 7 6 0 2 2 7 1 4 7 5  * 1 0 “ 1 ±  6 .5 5 0 7  • 1 0 “ a
3 .0 3 .5 0 4 6 2 8 6 3 9 8 3 5 2 5 6  • 1 0 ~ 2 ±  0 .4393% - 2 .2 6 6 8 0 9 8 7 5 8 9 5 6 2 3  ■ 1 0 ” 1 ±  3 .7 2 3 8  • 1 0 ” S
5 .0 2 .6 4 9 0 1 7 4 0 0 8 2 1 7 0 7  ■ 1 0 “ JJ ± 0 .8 3 6 5 % - 2 .4 4 6 8 0 1 5 4 5 1 4 8 5 7 6  ■ 1 0 " 1 ±  1 .6 8 8 7  - 1 0 ” S
7 .0 2 .6 4 9 0 1 7 4 0 0 8 2 1 7 0 7  - 1 0 “ a ±  0 .8365% -2 .5 3 7 0 4 0 1 3 3 0 5 6 3 9 0  ■ 1 0 ” 1 ±  9 .6 5 9 3  - 1 0 ” B

1 0 .0 1 .7 2 0 3 4 9 5 3 2 4 5 2 1 6 3  • 1 0 - i  ± 0 .3 4 4 2 % - 2 .6 1 1 6 7 6 6 8 4 3 8 1 5 8 2  ■ 1 0 ” 1 ±  5 .2 0 8 1  • 1 0 ” fi

than those of U2 {y) given by equation (127) by a factor no more than 3; the errors in 
Q and TXy are also larger than those of U2 (y), although they remain relatively small. 
The errors in Q and Txy are bounded by 2.4% and 0.7%, respectively. Comparing 
the cubic approximations uz(y) in the variational method, u2(y) by fitting and uz(y) 
to the velocity u(y), we see u2(y) is the best choice of the three to be used for practical 
purposes, for instance, as a  model for the velocity at the walls.

TABLE 38: The Knudsen number k  dependence of the L2 error of the approximate 
solution uz{y) =  u'(Q)y +  4[2u(l/2) — tt'fO)]?/3._______

k 11^*3 II2
0 .0 0 3 1 .1 4 6 9 6 4 9 3 2 1 7 4 5 3 6 1 0 “ 3
0 .0 1 3 .6 3 4 7 6 7 7 5 9 7 3 7 6 6 8 1 0 “ y
0 .0 3 9 .2 1 3 0 6 4 5 9 9 3 1 1 8 7 4 1 0 ” 3
0 .1 1 .8 3 5 0 6 8 5 3 3 9 1 8 9 7 7 1 0 “ ^
0 .3 2 .3 8 2 2 0 1 7 6 0 3 2 2 5 3 6 1 0 ” y
1 .0 2 .3 5 9 5 7 3 6 5 5 2 0 3 8 3 4 1 0 ” *
2 .0 2 .1 4 6 4 3 6 3 6 3 7 8 3 4 4 0 1 0 “ *
3 .0 1 .9 9 5 3 2 3 3 3 8 5 3 6 8 0 9 1 0 " ^
5 .0 1 .8 0 0 0 0 7 8 6 4 1 3 8 1 7 0 1 0 ” *
7 .0 1 .6 7 5 3 2 9 4 4 5 5 9 4 9 7 1 1 0 ~ 2

1 0 .0 1 .5 5 0 1 5 5 7 7 2 0 7 8 5 8 6 1 0 “ *
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TABLE 39: The Knudsen number k  dependence of the half channel mass flow rate Q 
and the shear stress Txy computed from the approximate solution u3(y) =  u'(0)y + 
4[2u(l/2) -  u'(0)]y3.__________________________________________________

fc Q Txv
0 .0 0 3 1 .2 4 3 5 7 6 7 9 4 7 8 7 8 8 1 1 0 ” 1 ±  0 .0910% - 1 .4 9 0 9 1 0 5 9 7 4 8 4 5 8 6 1 0 “ ±  8 .9 5 3 1 1 3 2 3 5 5 9 7 0 2 7 1 0 - i u

0 .0 1 1 .2 2 8 8 8 7 8 5 2 1 5 9 9 8 3 1 0 ” 1 ±  0 .2903% -4 .9 0 0 5 1 4 0 6 3 0 3 0 0 5 7 1 0 “ ±  1 .0 9 0 5 3 3 6 1 5 5 7 2 3 3 4 1 0 “ 7
0 .0 3 1 .1 8 9 0 9 8 3 3 5 2 3 6 0 8 3 1 0 “ 1 ±  0 .7585% -1 .4 1 4 6 1 7 8 0 4 2 4 9 1 8 9 1 0 “ ± 8 .1 9 2 0 2 7 3 1 7 4 1 8 0 4 1

0I©

0 .1 1 .0 7 3 5 8 4 4 0 4 7 4 4 7 3 0 1 0 “ A ±  1 .5663% -4 .1 8 3 0 6 0 9 8 6 1 3 8 1 6 9 1 0 “ ±  2 .7 4 5 3 2 0 3 5 7 8 9 5 1 8 1 I q - 4

0 .3 8 .7 3 7 2 2 0 1 0 0 8 0 0 1 9 8 1 0 “ * ±  2 .0690% -9 .4 2 5 8 3 8 9 9 2 1 5 1 2 2 5 1 0 “ ±  8 .0 8 5 5 4 8 0 7 9 4 2 3 2 7 1 1 0 - 4

1 .0 5 .9 2 4 6 9 4 6 8 5 7 8 4 8 0 9 1 0 “ * ±  2 .0670% -1 .6 9 9 7 0 6 4 8 0 1 5 8 8 7 9 1 0 ” ±  5 .0 8 0 7 2 6 7 9 0 6 4 3 8 6 4 1 0 " 4
2 .0 4 .3 6 2 2 9 4 8 4 8 0 3 3 7 6 6 1 0 “ * ±  1 .8833% -2 .0 8 5 7 1 7 8 5 2 3 6 9 1 0 4 1 0 “ ±  2 .3 9 5 3 1 5 6 1 9 7 2 5 9 4 6 i o ~ +
3 .0 3 .5 5 0 3 9 6 8 4 3 3 6 6 4 1 8 1 0 “ * ±  1 .7510% -2 .2 6 7 8 2 1 8 8 1 3 5 6 4 6 5 1 0 “ ±  1 .3 8 4 3 8 3 6 9 8 3 7 8 7 3 3 1 0 " *
5 .0 2 .6 6 8 5 3 0 0 4 9 2 2 9 3 0 3 1 0 “ * ±  1 .5793% -2 .4 4 7 2 7 0 5 1 3 7 4 1 6 1 8 1 0 " ±  6 .3 7 8 3 5 2 8 5 6 2 2 6 1 2 2 1 0 " *
7 .0 2 .1 7 9 0 1 5 1 6 9 1 6 2 7 2 1 1 0 ” ’J ±  1 .4694% -2 .5 3 7 3 1 1 3 1 6 8 5 3 7 7 2 1 0 " ±  3 .6 7 7 7 7 1 7 9 2 9 2 0 3 9 2 1 0 ” 5

1 0 .0 1 .7 3 7 7 4 8 7 8 1 4 8 9 1 6 7 1 0 ” * ±  1 .3590% - 2 .6 1 1 8 2 4 2 4 7 3 0 6 5 7 8 1 0 ” ±  1 .9 9 6 4 3 8 1 8 1 7 2 8 3 4 4 1 0 " a

4.4 THE VELOCITY DEFECT, SLIP VELOCITY AND THE HALF 
CHANNEL MASS FLOW RATE

In this section, we discuss the velocity defect and slip velocity and the half channel 
mass flow rate of the Couette flow problem with purely diffusive walls. The linear 
velocity u*(y) =  u'(0)y is the hydrodynamic component of the velocity u(y). Thus, 
the kinetic component of the velocity u(y) can be characterized by the velocity defect, 
defined as:

Ud =  7777̂ “ ^  “  « ' ( % ] •  ( 1 2 9 )u ( l / 2 )

The velocity defect shows the structure of Knudsen layer in the velocity profile u(y). 
For Kramers problem which has only one wall, the flow domain is a semi-plane with 
y > 0. The velocity defect is a function of y/k .  For the Couette flow, the velocity
defect Ud is not a function of only y /k ,  but a function of both y / k  and k.
The microscopic slip velocity us and the macroscopic slip velocity Us are defined by:

us = Uw -  u(l/2)  = 1/2 -  u (l/2 ), (130)

Us = Uw — u '(0)/2 =  [1 -  «'(0)]/2, (131)

where Uw = 1/2 is the normalized velocity of the wall at y =  1/2. The velocity 
at the wall and the velocity derivative at the channel center are u( 1/2) and u'(0), 
respectively, obtained by the high precision solution of equation (72). It is noted 
that the difference between us and Us is due to the nonlinearity in u(y).
Figure 22 shows the profiles of velocity defect Ud{y) and the velocity defect Ud(y) 
normalized by its maximum value at the boundary Ud(l/2) for k = 0.03, 0.1, 1.0 
and 10.0. The velocity defect shows a non-monotonic dependence on k: it increases
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rapidly to its maximal value at k «  1, then decreases slightly and slowly as k enlarges, 
as seen in Figure 22. The reason for this non-monotonic k  dependence of u&(y) can 
be explained as follows. From Figure 21 we see that the microscopic slip velocity 
us(y) increases along with k, hence the magnitude of the velocity u(y) decreases. On 
the other hand, the kinetic component of the velocity, i.e., u(y) — u'(0 )y increases 
with k. Hence, the nonlinearity in the velocity u(y) increases while its magnitude 
u(l/2)  decreases as k  increases. Therefore, the non-montonic k dependence of the 
velocity defect u^(y) is due to the competition between the increasing nonlinearity 
and the decreasing magnitude of u( 1/2), which is characterized by the quantity 1 — 
2 u(i°/2 ) • However, the non-monotonic k dependence of the velocity defect u&(y) can 
be removed when it is normalized by its maximum u^( 1/2). From Figure 22 we see 
u<j(y)/ud(l/2) increase monotonically with k.

The microscopic slip velocity us can be directly extracted from the high precision 
solutions of u(y). To gain some insights concerning the k dependence of us, we can 
use the approximate solutions to u(y). To capture the singular behavior of u(y), we 
can use ui(y)  from equation (119) given in terms of Abramowitz functions I 0  and I\. 
Similarly, us can be approximated in terms of / 0 and h  with the formula:

where the coefficients A0, A\  and A 2  are obtained by the least square fitting of us 
with 0.003 < k <  10. The data of us = 1/2 — u( 1/2) are extracted from the the data 
of u( 1/2) given in Table 10. The approximation in equation (132) has the correct 
asymptotic behaviors of us, i.e., us =  0 at k  =  0 and us —> 1/2 as k oo.
Taking into account the asymptotic behaviors of Iq and I\ at 0 and oo, we can use 
the simpler approximation for us:

where the coefficients Bi  and B 2 are obtained by the least square fitting in the interval 
0.003 < k < 0.3. Surprisingly and usefully, u s 2  in liquation (133) also yields a good 
approximation for the whole range of k.
If one needs an even simpler approximation for ua which maintains the correct limits 
at k =  0, one can use the rational approximation:

VSF'
2

)  + A ,  ( /,( l/fc )  -  1 )  . (132)

C,k (134)
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FIG. 22: The velocity defect itd(y) (top) and the normalized velocity defect
ud(y)/ud(l/2)  (bottom) for k =  0.03, 0.1, 1.0 and 10.0. The normalized velocity 
defect increases monotonically as k increases.

where the coefficients C\ and C2 are obtained by the least square fitting in the interval 
0.003 < k < 0.3. We can set C2 =  2C\ to satisfy the asymptotic limit of us at k —>■ 00. 
However, this increases the L 2 error in the fitting range of k.
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TABLE 40: The values of parameters in the models for the microscopic slip velocity
u s , the fitting range of k  for the parameters and the L 2 error of the approximations
in the corresponding fitting range of k.______________

A p p r o x im a tio n C o e ff ic ie n ts R a n g e  o f  k \ \ 6 u s \ \ 2

E q .(1 3 2 )
A 0 =  0 .4 7 0 1 6 2 3 4 8 8 5 4 1 7 2 2

0 .0 0 3  <  k  <  1 0 .0 1 .1 2 0 5  • 1 0 - 3A i  =  —0 .3 8 6 9 5 2 5 9 1 6 0 6 3 2 4 2
A 2 =  0 .9 3 0 3 0 8 8 9 4 9 3 8 5 2 9 5

E q .(1 3 3 ) B i  =  1 .2 7 9 7 5 8 6 9 7 8 2 6 3 1 4 0 .0 0 3  <  fe <  0 .3 4 .6 5 9 9  • 1 0 - 4& 2 =  - 6 .5 6 8 5 7 5 9 2 6 0 0 9 8 2 7 2

E q .(1 3 4 ) C i  = 0 .7 0 3 7 9 3 1 8 8 0 4 4 1 6 3 6 0 .0 0 3  <  fc <  0 .3 5 .0 1 1 2  • 1 0 - 4C 2 =  1 & 6 7 0 4 0 3 4 8 8 3 5 8 6 6

E q .(1 3 4 ) C i  = 0 .6 1 7 1 8 9 8 5 5 0 5 0 4 0 5 8 0 .0 0 3  <  k  <  0 .3 3 4 4 1 5  • 1 0 “ 2
C 2 =

E q .(1 3 5 )
D i  = 0 .7 0 4 9 6 0 0 5 8 0 1 6 0 2 8 5

0 .0 0 3  <  k  <  0 .3 9 .4 3 6 3  • 1 0 “ 5D 2 =  — 1 .3 2 0 9 5 5 3 8 1  i  2 2 8 6 2
L>3 =  1 .4 8 8 3 4 8 6 0 9 4 2 0 1 5 8

Finally, we can use the following cubic polynomial to approximate u2  of k  <  1:

u s 4  =  Dik  +  D 2 k2 + D 3 k3, (135)

where the coefficients D\, D 2 and D3  are obtained by the least square fitting for 
0.003 < k < 0.3. The values of the coefficients in approximations uai, us2, u s 3  and 
us4, given by equations (132)-(135) in the range of k in which the coefficients are ob
tained are tabulated in Table 40 along with respective L 2 errors. Figure 23 illustrates 
the k dependence of the microscopic slip velocity u 3 along with the approximations 
of us given by equations (132)-(135). The approximation of equation (132) matches 
us very well, the asymptotic values of us in both k  =  0 and k —> oo are captured 
and the L 2 global error is 1.1205 • 10-3 in the range of 0.003 < k  <  10.0. Al
though the coefficients B x and B 2 in equation (133) are obtained in the interval 
0.003 < k < 0.3, the approximation of equation (133) is indistinguishable from that 
of equation (132). The approximations of equations (134)-(135) are only valid for 
small values of k, i.e., 0.003 < k < 0.3. The L 2 errors of these approximations on 
the inteval 0.003 < k < 0.3 are 5.0112 • 10-4 and 9.4363 • 10-5, respectively. It is 
noted that though the approximation of equation (134) with C2  =  2Ci has correct 
asymptotic limits at both k — 0 and k  —>■ oo, the case with C 2  ^  C\ actually fits us 
better in the same interval. When we consider the slip velocity models which can 
be used as boundary conditions in the Navier-Stokes equations, the macroscopic slip 
velocity Us is used [12]-[16j. The approximations for Us can be directly derived from 
those for the velocity, for instance, u\(y)  of Equation (119), which is written in terms 
of Abramowitz functions Iq  and I 4. We can approximate Us in terms of /_  i and Iq
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FIG. 23: The k dependence of the slip velocity ua. The circles are obtained from 
the high precision solution of the integral equation (72) given in Table 10. The solid, 
dash, dot and dash-dot lines are the approximations of ua by equations (132)-(134) 
with C2 7̂  Ci and equation (135), respectively. The lines of equations (132)-(133) 
overlap each other.

by using the derivative of u\{y) and derive the following formula:

Us i =
1 +  2 i 1/_-1(l/2AQ +  2 i 2/ 0(l/2fc)

1 +  A 3k
(136)

where the coefficients A\, A 2 and A 3  are obtained by the least square fitting of Us 
with 0.003 < k <  10.0. The data of Us = [1 — u'(0)]/2 are extracted from the data 
of «'(0) given in the Table 10. The above approximation of Us includes the correct 
asymptotic behavior of Us, i.e., Ua =  0 at k = 0 and Us —► 1/2 as k oo.
Utilizing the asymptotic behavior of /_ i and I q  at 0 and oo, we can get rid of the 
Abramowitz functions in the approximation of Ua to derive:

{tiBi  +  t2 B2) exp - 3  (4fc)v—2 /3 +  1 +  A;

(kB 3  + 1)(1 +  k)
(137)

where

ti  =  >/7t/3(4k ) 1/ 3  + A;ln(l 4- 2k) — 3,yk/2, 

t 2  =  \ / n / 3  + \ fnkj2,
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TABLE 41: The values of parameters in the models for the macroscopic slip velocity
U s , the fitting range of k  for the parameters and the L 2 error of the approximations
in the corresponding fitting range of k.___________________________

Approximation Coefficients Range of k

E q .(136)
A i  =  0.4366767230964805

0.003  <  k  <  10.0 6 .6859 ■ 1 0 ~ 3A 2 =  -0 .2665031912984401
A 3 =  1 .831497775849215

E q .(137) B i =  0.8876382348909353 0.003  <  k  <  10.0 2 .8859 ■ 1 0 ~ 3B 2 =  0.4524044608543894
B 3 =  2.086076009043359

E q .(138)
C i =  1.020794919617355

0.003  <  k  <  0 .3 1.9980 ■ 10 - 4C2 -  -2 .1 91441518439700
C3 =  2.193562264423130

where 7 =  0.57721566490153286060 • • • is the Euler constant. The coefficients B lt B 2  

and B 3  are obtained by the least square fitting in the interval 0.003 < k  < 10.0. It is 
noted that equation (137) also matches the correct asymptotic behavior of Us when 
k  —y 0 and k —»• 00.
If one only considers small values of k, one can use the following cubic polynomial 
approximation of k:

Us 3 =  Cifc +  C2 k 2  +  C3 k3, (138)

where C\, C2  and C3  are obtained by the least square fitting for 0.003 < k < 0.3. 
The values of the coefficients in the approximations Us 1, Us 2  and Us 3  given by equa
tions (136)-(138), respectively, are tabulated in Table 41 along with the L 2 error of 
the approximations in the range of k  in which the coefficients are obtained.
Figure24 shows k  dependence of the macroscopic velocity Us along with the approx

imations of Us given by equations (136)-(138). The approximation of equation (136) 
matches the asymptotic value of Us as both k  -> 0 and k  —»■ 00 exactly and the L 2 

global error is 6.6859 ■ 10-3 in the range of 0.003 <  k < 10.0. The approximation of 
equation (137) is indistinguishable from that of equation (136) when k > 0.3. Sur
prisingly, the L 2 global error of the approximation from equation (137) in the range 
of 0.003 < k <  10.0 is 2.8859 • 10-3, which is even lower than that of approximation 
from equation (136). The approximation of equation (138) fits Us with the L 2 error 
of 1.9880 - 10-4 in the range of 0.003 < k < 0.3 which manifests it is a very good 
approximation for small values of k.
The half channel mass flow rate Q is a measure of not only the effect due to the slip 

velocity us (or Us), but also the structure of the Knudsen layer in the velocity profile 
u(y) [9]. Based on the approximation of the velocity u(y) given by equation (119),
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FIG. 24: The k  dependence of the slip velocity Us. The circles are obtained from 
the high precision solution of the integral equation (72) given in Table 10. The 
solid, dash and dash-dot lines are the approximations of us by equations (136)-(138), 
respectively. The lines of equations (136)-(137) overlap each other when k > 0.3.

we can approximate Q with the following formula:

k
Q  i 1 +  A3k

—  +  A xk +  h { l / k )  -  2 /x(l/2fc)^

+  A 2k ( ^  +  I 2 ( l /k )  -  2 I 2 ( l / 2 k) (139)

where the coefficients A i} A 2  and A 3  are obtained by the least square fitting on the 
range 0.003 < k < 10.0. The approximation Qi of Q from equation (139) conserves 
its asymptotic behavior as k —> 0 and k —> oo. By using the asymptotic behavior 
of the Abramowitz functions A and I2, one can approximate Q without using the 
Abramowitz functions but also conserve the asymptotic behavior of Q when k —> 0 
and k —t oo by using the following formula:

1 +  8Bx ln(l +  k2)
Q i (140)

8(1 +  B 2 k ) ’

where the coefficients B\  and B 2 are obtained by the least square fitting on the range
0.003 < k < 10.0. For small k < 1, we can use the following rational approximation:

1 +  8 Cyk2

Q s 8(1 +  C2 k) ’
(141)
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TABLE 42: The values of parameters in the models for the half channel mass flow rate
Q ,  the fitting range of k  for the parameters and the L 2 error of the approximations
in the corresponding fitting range of k.___________________________

A p p r o x im a tio n C o e ff ic ie n ts R a n g e  o f  k HWIIa

E q .(1 3 9 )
A j  =  0 .4 3 3 9 8 9 6 7 3 1 4 5 6 6 4 5

0 .0 0 3  <  k  <  1 0 .0 2 .7 4 5 1  ■ 1 0 ~ 3A 2 ~  —0 .2 0 3 7 1 7 3 0 9 4 0 7 9 7 7 9
A 3 =  1 .9 l6 4 3 9 £ f t )3 0 6 5 8 7

E q .(1 4 0 ) B  i  =  0 .0 3 7 7 1 0 2 9 2 5 4 1 7 6 3 0 9 0 .0 0 3  <  fc <  1 0 .0 9 .6 7 9 6  • 1 0 - 3B 2 =  1 .6 6 5 0 3 7 5 7 4 8 9 4 3 8 0

E q .(1 4 1 ) C i  =  0 .1 1 8 7 8 3 6 1 2 9 6 6 7 8 2 2 0 .0 0 3  <  k <  0 .3 9 .0 5 6 4  1 0 ' 4C 2 =  1. $ 4 ^ 2 6 5 ^ 4 0 ^ 4 4 9 4

E q .(1 4 2 )
D i  =  - 0 .2 5 2 9 9 9 4 2 6 7 3 9 1 5 3 5

0 .0 0 3  <  fc <  0 .3 2 .8 2 0 9  1 0 “ 5D 2 =  0 .6 $ ? £ T O 3 $ $ 3 1 5 1 7 2
D 3 =  - 0 .9 ^ 7 6 4 5 6 6 3 5 6 3 9 1 7

where the coefficients C\ and C2  are obtained by the least square fitting on the range
0.003 < k < 0.3. We can also use a cubic polynomial to fit Q:

Q 4 = l  + D 1k + D2 k2 + D 3 k3, (142)
O

where the coefficients D\, D2, D 3  and D 4  are obtained by the least square fitting 
on the range 0.003 < k <  0.3. The values of the coefficients in the approximations 
of equations (139)-(142) are tabulated in Table 42 along with the L 2  error of the 
approximation in the range of k in which the coefficients are obtained.
Figure 25 illustrates the half channel mass flow rate Q normalized by its value at k,

1.e., Q0  =  1/8 along with the approximations of Q given by equations (139)-(142), 
which are also normalized by Qq. The approximation Qi  of equation (139) in terms 
of Abramowitz functions Ii and I 2 on the range 0.003 < k < 10.0 has correct limits 
at k =  0 and k = oo and captures the values of Q in Table 13. It is noted that the 
simple formula Q2 of equation (140) matches Q quite accurately with correct limits 
at k =  0 and k =  oo, as indicated by the small L 2 global error. We also see that the 
cubic polynomial approximation Q4  is very accurate with L 2 error of 2.8209 ■ 10~5 
on the range 0.003 < k  < 0.3.

4.5 DIRICHLET BOUNDARY CONDITION, EFFECTIVE
VISCOSITY AND VELOCITY REPRODUCING BY  LATTICE 
BOLTZMANN EQUATION

The approximations of velocity and velocity slip enable us to reconsider the Cou
ette flow problem in the Navier-Stokes equation framework for the whole range of 
the Knudsen number. That is one can specify the velocity slip and design the stress 
tensor of Navier-Stokes like equation of which the solution is an approximation to the
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FIG. 25: The k dependence of the normalized half channel mass flow rate Q / Q q. The 
circles are obtained from the high precision solution of the integral equation (72) given 
in Table 13. The solid, dash, dot and dash-dot lines are the approximations of Q / Q o  
by equations (139)-(142), respectively. The lines of equations (139)-(140) overlap 
each other.

velocity of the steady Couette flow problem. Actually, we have two types of Navier- 
Stokes models: one has constant kinematic shear viscosity with the macroscopic slip 
velocity Us as its boundary condition; the other has coordinate y dependent kine
matic shear viscosity, named effective viscosity, with the microscopic slip velocity us 
as its boundary condition. Both models, like what we have obtained from integral 
equation, have constant shear stress. However, the former produces linear velocity 
profile, thus can not capture the Knudsen layer. The latter model produces a nonlin
ear velocity profile, thus caputers the Knudsen layer. In this section, we set up the 
latter model by choosing a target velocity model of the steady Couette flow problem, 
specifying a proper Dirichlet boundary condition and finding the effective viscosity 
for the stress tensor in the Navier-Stokes equation. Then, we solve the Navier-Stokes 
equation by using lattice Boltzmann equation. As the result, the target velocity 
profile is reproduced.
For simplicity, we choose the approximation uz{y) of the velocity u(y) from equa
tion (128) as our target and use the approximated microscopic slip velocity us2 given 
by equation (133) as the Dirichlet boundary condition. To dertermine the effetive
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viscosity, we take a look at the Navier Stokes momentum equation:

H*>#,
p - j— =  —V p + V  - {pi/[Vu + V u T — (2V - u/D)l]  +  pC(V • u)l} ,  (143)

Ul'

where I is the identity tensor and D  is the dimension of the flow. For 2-D flow, the 
velocity u  =  (u , v)T, p and p  are the density and static pressure, respective and v and 
C are the kinematic shear viscosity and bulk viscosity, respectively. For steady planar 
Couette flow problem, u =  u(y),v = 0 and the density p and the static pressure p 
are constants. The kinematic viscoisties are independent of x. Consequently, one 
has f  =  0, V p =  0, V (p i'V u r ) =  0 and V  • u  =  0. Hence, equation (143) can be 
simplified as:

v p  = C  (144)
d y

where C  is a constant to be determined.
To determine the effective viscosity v, we need to follow three steps. First, we 
compute the value of u at the channel center, i.e. i'(O), by using kinetic theory. 
Then, we determine the constant C  in equation (144). Finally, we derive the v 
profile by repeatedly using equation (144).
In kinetic theory, the mean free path A of gas is related with kinemtic viscosity by 
the formula:

A =  (145)

where R = kb/m is the Regnault constant and T  is the temperature. Equation (145) 
is derived without boundary. Hence, we take the value of v  in equation (145) as the 
value at farthest position from the wall, i.e. i'(O). By using the definition of Knudsen 
number in terms of A and the channel height d,

* “ # •  (146) 

we can write u(0) in term of the Knudsen number k  as

=  g W g g f
7T

From equation (144) and equation (147), we have

c - «  0 K (0 ) =
7 r
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Substituting u3(y) for u(y) in equation (144), we can solve for u as the formula:

_  C
u'{y)

= __________ 2 k d V 2 RTu>(0 )__________
7r[u'(0)-M2y2(2u(l/2 )/d3 - u '( 0 ) /d 2)]' 1 '

With the effective viscosity v  given by equation (148), the Navier-Stokes equa
tion (143) can be solved with the wall boundary condition given by equation (133) 
and periodic boundary condition in the stream-wise direction to obtain a solution 
identical to u^{y). We will prove this assertion by reproducing the velocity profile 
using lattice Boltzmann method with the above mentioned boundary condition. 
Lattice Boltzmann equation without external force is the following evolution equation 
of discrete distribution functions for moving particles:

f i{x  + Ci5t , t  + 5t) -  f i (x , t )  =  Sli(f (x ,t) ) ,  i = 0,1,- • • ,Q  -  1, (149)

where f i (x ,  t) is the distribution function associated with the particle at time t, mov
ing from position x  with velocity Cj and f  =  (fo, f i ,  ■ • ■ , I q - i ) t ■ At time t  all the 
particles within consideration are located on a structured lattice (normally a carte
sian mesh grid) with a  spacing 5X = c5t. The set {c*} is a symmetrical finite vector 
set called the discrete velocity set of the Lattice Boltzmann equation. The particle on 
a lattice grid x  is only allowed to move with a velocity i.e., Ci, in the discrete velocity 
set. The choice of the discrete velocity set determines the macroscopic hydrodynamic 
equation to which the lattice Boltzmann equation recovers with Chapman Enskog 
expansion. In the current case, we use the classical D2Q9 velocity set below to make 
sure equation (149) recovers the Navier-Stokes equations with 2nd order precision in 
space-time,

f (0,0)c, i = 0,
C i = l  (± l,0 )c , (0 ,± l)c , i =  1,2,3,4, (150)

[ (± l ,± l) c ,  i = 5,6,7,8.

where c — Sx/5t is the unit of velocity. Conventionally, we set Sx =  1 and St = 1, 
thus c =  1. The RHS of equation (149) is the discrete collision term whose specific 
form depends on the model we choose. To match the D2Q9 discrete velocity set, 
we use the multiple relaxation times (MRT) model and the discrete collision vector 
Q ( f )  = (Q0, n u - - , 0 8)r ( / )  reads:

f i ( / )  = —M_1S(m -  m eq),  (151)
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where the tranformation M mapping the distribution functions /  to their moments 
m  reads:

M

f 1 1 1 1 1 1 1 1 1 >
- 4 -1 - 1 -1 - 1 2 2 2 2
4 - 2 - 2 -2 - 2 1 1 1 1
0 1 0 -1 0 1 -1 - 1 1
0 - 2 0 2 0 1 - 1 -1 1
0 0 1 0 - 1 1 1 -1 -1
0 0 - 2 0 2 1 1 - 1 - 1
0 1 -1 1 -1 0 0 0 0

\ 0 0 0 0 0 1 - 1 1 - 1  )
,0, Sq, 0, Sq , Si / ,  S f ) is the diagonal matrix ofand S =  diag(0, s(

Currently, we set se =  s£ = s„ and the MRT model given by equation (151) reduces 
to a two relaxation times (TRT) model, in which s„ and sq are the only two relax
ation ratios to determine. The moments of the distribution function are:

— (/?, e, e, j x, qx , j y, qv, Pxxi Pxy) • 

The equilibrium distribution functions /®9 are given by

f t WiP
2 d 2d

where wQ =  4/9, tux_4 =  1/9, =  1/36. For isothermal flow, the temperature
T  is a free variable. However, the speed of sound cs = y/R T  is not. We have 
cs =  c j \ /3 =  y/3/3. Consequently, the equilibrium moments are:

m e q M f eq =  p{ 1, —2 +  3 |tt|2, 1 — 3|w|2, u, —u, v, —v, u2  — v2, uv)T.

Among the nine moments, the density p and the momentum j  = (jx , j y)T are con
served quantities, which are unchanged in collision and are computed by:

P = fu  J = X )  ^  =  ***• (152)
t=0 i=l

The kinematic shear viscosity v  and bulk viscosity £ are the same in TRT model and 
are related with the relaxation ratio sv by:

(153)
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Considering the symmetry of the Couette flow, we only simulate the flow by the 
lattice Boltzmann equation in the upper half channel. Starting from the channel 
center, we place N  grid points ordered from 1 to N  with spacing Sx = d/(2N  — 1) 
along the direction of the channel height in the upper half channel. In the stream- 
wise direction from the inlet to the outlet of the flow, we place M  grid points ordered 
from 1 to M  with the same spacing. We should note that the unit of length of the 
lattice Boltzmann simulation is different from that of the integral equation where 
d = 1. Here, since 5X = 1, in the lattice Boltzmann equation unit, the channel 
height d equals 2N  — 1. The upper boundary of the channel is place at the position 
y =  N  +  1/2. For the rest of this section, we consider all quantities in the lattice 
Boltzmann equation unit, then by using equation (148) and equation (153), the 
relaxation ratio s„ is computed by

s- w  =  f e T T
 __________ 27r{u'(0) +  12[2u(l/2) -  ^(0)10 -  \ f / { 2 N  -  l ) 2}__________

~  4\/6(2N  -  l)fcn'(O) +  7r{«'(0) +  12[2u(l/2) -  u'(0)](j -  l ) 2/(2TV -  I)2} ’
(154)

where j  = 1, 2, • • • , N.  In lattice Boltzmann simulation, the relaxation ratio su(j) 
given by equation (154) guarantees that the recovered Navier-Stokes equation has 
correct kinematic shear viscosity u given by equation (148). The relaxation ratio sq 
does not affect any hydrodynamic parameter in the Navier-Stokes equation and can 
be regarded as a free parameter. In the simultion, we use the following relationship, 
equation (155), between the relaxation ratios sq and s„ [17] to compute sq{j) (j  = 
1,2,-- - , AT)

(155)O  o i /

We use the bounce-back boundary given by equation (156) to implement the Dirichlet 
boundary condition for the upper boundary; the periodic boundary condition given 
by equation (157) and equation (158) for the left inlet and right outlet, respectively; 
and the asymmetric boundary condition given by equation (159) at the channel cen
ter,
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f 4 ( i ,N) = f 2 ( i ,N  + l)
f 7 {i, N ) =  M i  + 1, N  +  1) -  p(N)( l /2  -  us)Uw/3  (156)
M h  N ) =  M i  - l , N + l )  + p(N)(  1/2 -  us)Uw/ 3

/i(l,J7) =  /i(A f H- l , j )
/ 5( U )  =  / 5( M + U )  (157)
/ 8( U )  =  / 8( M + l , j )

M M , j )  = M 0 J )
M M J )  = M O J )  (158)
M M , j )  = M 0 , j )

M h  i) =  /*(*, i)
/ 6(«, 1) = /r(<, 1) (159)
/e(b 1) =  /s(b  1)

* =  1,2,--- ,M;  j  =  1,2,-- - ,AT,

where £/„, is the speed of the upper wall in LBE simulation, which can be given 
arbitrarily with the restriction of Mach number 2Uw/ca < 0 . 1 .  In the result, the 
macroscopic velocity u  from equation (152) is normalized by 2Uw.
Numerically, in the stream-wise direction, we fix the number of grids M  = 3; in the 
span-wise direction, we vary the number of grids. We use N  = 1001, 2001, 4001 
and 8001, respective, for the cases of Knudsen number k  =  0.03, 0.1 and 1.0 and 
use N  =  201, 401, 801 and 1601, respective, for the case of k = 10.0. The 
error and L 2  error of the lattice Boltzmann simulation produced velocity u3(y) com
pared to the target velocity approximation U3  for the cases of Knudsen number
k = 0.03, 0.1, 1.0, 10.0 with different grid sizes are tabulated in Table 43, in which 
the rate of convergence for each case is also computed by using the L 2 error.

From Table 43, we see when the number of grids N  is greater than 1000, the L 2  

error of each simulation is at least less than 10~6. The corresponding error is 
more than one magnitude lesser. For the case k — 10.0, one does not need very 
dense mesh, when N  is greater than 200, the L 2 error is roughly 10”6. On balance, 
Table 43 shows that the lattice Boltzmann simulation with effective viscoisty is con
vergent and converges to the target function efficiently with the order of 1.5.
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TABLE 43: The L 00 error and L 2 error of the velocity u3(y) from lattice Boltzmann 
equation compared to the target velocity u^iy) and the rate of convergence a  of the 
lattice Boltzmann simulation computed from L2 error. _______

k N 1! <5*3 II GO ll i f i s l l s

0 .0 3

1001 7 .0 3 8 9 1 S 2 2 6 0 6 5 5 0 4 8  • 1 0 ” ” 2 .2 2 1 7 5 2 1 7 9 8 4 5 7 2 3 1  • 1 0 " ’
2001 1 .7 6 1 0 5 2 1 9 2 9 6 1 1 8 7 8  • lO ” 1* 7 .8 5 7 5 3 5 0 2 2 0 1 5 4 9 1 4  • 1 0 “ *
4001 4 .4 0 4 2 9 5 2 6 1 8 2 8 3 9 4 8  ■ 1 0 ” ‘ u 2 .7 7 7 0 7 5 4 0 4 2 2 0 1 8 6 7  • 1 0 ” *
8001 1 .1 0 1 3 1 4 0 3 9 9 6 4 0 5 2 0  • 1 0 “ lu 9 .7 7 4 8 5 8 4 1 8 4 5 4 2 4 8 3  • 1 0 ” ”

a 1.5C 26

0.1

1001 1 .9 3 8 6 5 2 8 7 7 1 2 0 3 6 1 5  ■ 1 0 “ “ 6 .0 8 7 3 5 9 1 8 2 3 9 3 2 5 5 1  • 1 0 ” '
2001 4 .8 5 0 3 1 7 6 4 7 5 2 0 0 8 6 0  • 1 0 “ U 2 .1 5 3 0 0 0 1 5 5 8 1 3 6 4 4 0  ■ 1 0 ” '
4001 1 .2 1 3 0 2 9 2 3 2 6 1 6 2 3 6 2  • 1 0 “ ” 7 .6 1 3 0 5 0 9 3 0 9 2 5 9 7 6 4  • 1 0 ” *
8001 3 .0 3 3 2 8 7 5 1 0 0 5 6 9 3 6 8  • 1 0 ” lu 2 .6 9 0 7 9 4 9 9 9 6 2 3 3 1 0 1  • 1 0 ” *

a 1 .5 t105 ..............

1 .0

1001 2 .0 4 3 2 8 9 1 2 6 7 8 5 1 9 7 1  ■ 1 0 ” * 6 .3 7 3 1 6 2 3 6 4 4 8 3 7 8 9 5  • 1 0 ” 7
2001 5 .1 1 2 1 7 8 1 8 0 7 7 7 2 4 9 3  • 1 0 ' " 2 .2 5 4 0 9 7 2 8 2 0 5 6 4 8 7 7  • 1 0 ” '
4001 1 .2 7 8 5 0 5 9 6 7 7 6 1 1 3 4 3  • 1 0 ” “ 7 .9 7 0 9 0 6 6 1 8 3 3 7 2 5 5 2  ■ 1 0 ” *
8001 3 .1 9 6 9 3 6 0 4 9 2 2 1 2 2 1 8  • 1 0 ” IU 2 .8 1 8 3 3 6 8 7 0 3 6 9 4 1 7 7  ■ 1 0 ” *

a i .S c (OS

10.0

201 7 .2 3 1 2 1 0 8 8 7 0 2 6 4 9 5 7  • 1 0 ” “ 1 .0 1 8 9 9 6 7 7 1 7 9 5 9 0 7 0  • 1 0 ” *
401 1 .8 1 4 6 6 5 1 4 0 3 7 6 0 9 2 7  • 1 0 ” ® 3 .6 0 9 4 5 3 9 9 7 2 1 2 3 6 3 8  ■ 1 0 “ '
801 4 .5 4 5 2 7 3 5 6 0 3 0 7 9 8 3 0  ■ 1 0 ” “ 1 .2 7 7 3 3 1 2 7 8 5 5 1 8 9 4 1  ■ 1 0 ” '

1601 1 .1 3 7 3 4 4 8 0 1 6 7 1 6 0 2 6  • 1 0 ” ” 4 .5 1 8 1 6 1 3 2 8 9 8 0 0 1 7 3  • 1 0 ” *
Ot 1.5c 16
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C H A PTER  5 

M OLECULAR FLOW

In this chapter, we implement the MD simulation of the molecular Couette flow 
with Knudsen number ranging from 1.0 to 10.0 by using the open souce molecular 
dynamics simulation package LAMMPS [18]. The quality of the density profiles and 
the velocity profile from our MD simulation is much better than that of Barisik 
et a/’s results [44, 45]. We model the density profiles and the velocity profiles by 
using the effective radial distribution functions, the solutions of the integral equation 
for the rarefied Couette flow and the density and velocity profiles from our MD 
simualtion. By using the modeled density and velocity functions, we construct the 
effective viscosity, which is in the stress tensor term of the Navier-Stokes equation. 
At last, we utilize the nonuniform mesh TET-LBE simulations with ID and 2D wall- 
gas interction, respectively, to reproduce the density profiles and the velocity profiles 
of the molecular Couette flow, in the Navier-Stokes equation framework.

5.1 THE 2D MOLECULAR DYNAM IC SIMULATION OF
RAREFIED COUETTE FLOWS

In this section, we implement the molecular dynamic simulation for steady gaseous 
planar Couette flow of Argon with Knudsen number k ranging from 1.0 to 10.0 by 
using the open source molecular dynamics simulation package LAMMPS [18].
The units of the MD simulations are related to the Lennard-Jone’s potential:

lW r ) = 4 k r „ [ ( ^ ) 12- ( ^ ) “] (160)

The unit length is the zero inter-particle potential distance a  =  0.3405nm; the unit 
temperature is the characteristic temperature To =  119.8K. The unit mass is the 
mass tuq =  6.63 • 10-26kg of one simulated molecule. We set the Boltzmann constant 
kb = 1.3806 • 10~23J /K  to be unity. The unit time is r  =  ay/mo/(kbTo). The unit 
velocity is vq =  y f  .kbTo/mo. Considering the structure of the molecule, the speed 
of sound is cs =  \J jkbT/ m 0, where the adiabatic index 7 =  5/3 for monatomic 
molecules. In this case, it is Argon. In the current MD simulation, we set the Mach
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FIG. 26: The cross section of the MD simulation box for the planar gaseous Couette 
flow.

number M  = 0.6 and the temperature T  =  298/119.8. Then, the speed of the upper 
and lower moving walls in MD unit are U^ = ± 4 ^  =  ~  ±0.610837.
Figure 26 shows a sketch of a cross section of the MD simulation box. As seen 
from Figure 26, the cross section has three zones, the upper and lower walls and the 
computational domain of the Argon gases confined between the walls. The walls are 
made of wall molecules. We adopt the (1,1,1) FCC lattice structure [44, 45] for the 
wall molecules. Specifically, each wall consists of three layers of wall molecules in 
a staggered lattice. As we zoom in, we see three adjacent wall molecules form an 
equilateral triangle with one molecule on each of its verteces and the wall lattice is an 
extension of the equilateral triangle. The length of the lattice of the walls, namely, 
the length of the edge of each equilateral triangle is I =  0.3810/0.3405 ~  1.1189. The 
dimensions of the simulation box are the length of the wall denoted by L md in length, 
the height of the computational domain denoted by H md plus two times the wall 
thickness, i.e., y/3l in height, and the width in the third dimension is perpendicular 
to the cross section shown in Figure 26. When simulating the Couette flow with 
different rarities, we use different channel lengths and heights and a fixed channel 
width to ensure the high quality of the MD simulation. Generally, we use longer and 
narrower channels for more rarefied flows; and use shorter and higher channels for 
less rarefied flows. We fix the width of the simulation box as W  =  1. This is because 
LAMMPS is intrinsically in 3-D. To implement 2-D simulation, we technically zero
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out the dimension in width by initially enforcing the width component of position 
coordinate of all molecules (both the wall molecules and the gas molecules) identically 
equal to 0.5 and setting the width component of velocity and force equal to 0 at each 
timestep for all molecules. In the simulation, we use a periodic boundary condition 
at the inlet and outlet of the channel, as well as a t the lateral width direction. 
The forces applied to the wall molecules are also removed at each timestep, so that 
the walls move uniformly, the upper one along the stream wise direction, the lower 
one along the opposite stream wise direction. We set the cut-off distance of the 
intermolecular force equal to 3. We use Langevin thermostat for the wall molecules 
and the Nose-Hoover thermostat for the gas molecules. The start temperature and 
stop temperature of the Nose-Hoover thermostat are the same, equal to T, while the 
damping temperature is set to 0.1. Apart from the initialization, the gas molecule 
temperature is computed by using only the span-wise component of the gas molecules 
velocity. The simulation time step is 0.002, which is equivalent to 4.3116fs.
The number of gas molecules N  in the simulation is determined by the Knudsen 
number k  of the simulated system and the size of the simulation box. In 3D space, 
the mean free path of a monatomic hard spherical molecule is

A =  v/27T0V (161)
where 0  is the diameter of the gas molecule (for Argon 0  =  0.142/0.3405 ~  0.4170), 
n is the number density. W ith the width component of velocity and force being zero 
mentioned above, the calculation of the mean free path in equation (161) should be 
modified for the 2D cases by

A =  —  - i ----------- . (162)
\/2(4\/3  +  7r)02n

Recalling the definition equation (146) of Knudsen number k with d = Hm d> we can 
use equation (162) and the formula n  =  N / ( L mdH m dW)  to obtain

k _  V 2 ^ L W
~  (4\/3  + n ) 0 2 N ‘

Consequently, the number of gas molecules N  is determined by

=  i/tor Lm dW
(4v/3 +  7r)0 2k

We ran LAMMPS on a two-processor Intel Xeon E5-2660 2.2GHz 20 Core CPU with 
Knudsen number k ranging from 1.0 to 10.0 for 3 • 108 timesteps (approximately
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TABLE 44: The length L MD and height HMd of the computational domain, the 
number N  of gas molecules in the MD simulations and simulating time (6 • 108 
timesteps) in D/HH/MM/SS for Knudsen number 1.0 < k < 10.0

k l M D H m d N s im u la t in g  t im e
1 .0 1560* 1301 2 4 9 8 1 /1 2 /4 0 / 1 2
2 .0 15601 651 1249 1 / 1 0 /3 3 / 2 6
3 .0 15601 1 3 0 1 /3 8 3 3 1 /0 9 /5 4 / 0 5
4 .0 15601 6 5 1 /2 6 2 5 1 /1 3 /1 9 / 1 3
5 .0 31201 261 9 9 9 2 /1 4 /2 4 / 0 1
6 .0 31201 6 5 1 /3 8 3 3 2 /2 1 /3 0 / 5 1
7 .0 31201 1 3 0 1 /7 714 2 / 1 3 /5 5 / 3 5
8 .0 46801 6 5 1 /4 9 3 7 4 / 0 5 /3 8 / 4 4
9 .0 46801 1 3 0 1 /9 8 3 3 4 / 0 5 /2 3 / 1 6

10 .0 46801 131 750 3 / 1 8 /3 5 / 4 2

1.2935ms) to ensure the equilibrium state has arrived and then continue running 
another 3 • 108 timesteps for statistical averaging over one dimensional strips of bins 
with bin size equals 0.2. The length L md and height H md of the computational 
domain, the corresponding number of gas molecules N  in the MD simulations and 
the simulating time (6 • 108 timesteps) for various Knudsen numbers are tabulated in 
Table 44. From Table 44 we see, in order to obtain qualitative velocity and density 
data, the computational cost is quite high.

In order to obtain dimensionless velocity and density, we set up the y-axis in the 
spanwise direction pointing to the upper wall with the origin in the channel center. 
We also use the following renormalization after the statistical averaging for the MD 
data. The spanwise coordinate is normalized by the height of the computational 
domain Hmd  s o  that the channel height is normalized to be 1 and —1 / 2  < y <  1 / 2 .  

The macroscopic velocity is normalized by 2 Uw. The density is nomalized by the 
arithmetic mean of the number density. Figure 27-31 shows the velocity and density 
profiles of the MD simulations for various Knudsen numbers, in which the velocity 
profile is compared with corresponding high precision velocity from integral equation 
with purely diffusive walls.
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FIG. 27: The velocity profile (red solid line in the left figures) and density profile 
(red solid line in the right figures) of MD simulation with Knudsen number k = 1.0 
and 2.0. The blue dash circle line in the left figures are the correponding high 
precision solution of velocity from equation (72). From the top row to the bottom 
row the corresponding value of k increases. The three dashed lines from the top to 
the bottom on the top of each figure represent the position of centers of the inner 
most wall molecules, the position of \/2cr distance from the first dashed line and the 
position of 3a distance from the first dashed line, respectively. The three dashed 
lines on the bottom of each figure are located similarly.

In all the figures, we draw two pairs of parallel dashed baselines, three on the 
top and three on the bottom. Take the three top baselines for example: the first 
line is the position of the center of the inner most top wall molecules, namely, the 
line through the centers of top wall molecules that are aligned closest to the gas 
molecules, the second and the third lines are the lines in the channel that are \ / 2 a 
and 3cr away from the first line, respectively. The three bottom baselines are drawn 
similarly with respect to bottom wall. Hence, the region outside the first line is wall, 
without any gas molecule. The second line is approximately the turning point of 
repulsive and attractive wall-gas interaction, that is the region between the first and 
second lines could be regarded as the repulsive wall force region, while the region
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FIG. 28: The velocity profile (red solid line in the left figures) and density profile 
(red solid line in the right figures) of MD simulation with Knudsen number k =  3.0 
and 4.0. The blue dash circle line in the left figures are the correponding high 
precision solution of velocity from equation (72). From the top row to the bottom 
row the corresponding value of k increases. The three dashed lines from the top to 
the bottom on the top of each figure represent the position of centers of the inner 
most wall molecules, the position of \ / 2 a  distance from the first dashed line and the 
position of 3cr distance from the first dashed line, respectively. The three dashed 
lines on the bottom of each figure are located similarly.

between the second and the third lines could be regarded as the attractive wall force 
region. The third line is approximately the wall force cutoff position. The region 
between the pair of the third lines of the top and the bottom walls is regarded free 
from wall force effect. Hence, from Figure 27-31 we see in the region without wall-gas 
interaction, the velocity from MD simulation matches the velocity from the integral 
equation with diffusive walls and the density in this region is almost a constant. In 
the attractive force region, the both the velocity and the density are increasing as 
the position approaches to the wall. The peak of density and velocity are reached 
near the second line. In the repulsive force region, the density drops abruptly as 
the position approaches further to the wall; the velocity drops to 0 near the wall,
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FIG. 29: The velocity profile (red solid line in the left figures) and density profile 
(red solid line in the right figures) of MD simulation with Knudsen number k =  5.0, 
and 6.0. The blue dash circle line in the left figures are the correponding high 
precision solution of velocity from equation (72). From the top row to the bottom 
row the corresponding value of k  increases. The three dashed lines from the top to 
the bottom on the top of each figure represent the position of centers of the inner 
most wall molecules, the position of \ / 2 a  distance from the first dashed line and the 
position of 3cr distance from the first dashed line, respectively. The three dashed 
lines on the bottom of each figure are located similarly.

however, it shows a seemly random fluctuation of stronger or weaker intensity in the 
repulsive force region, even with statistical averaging over 3 ■ 10® timesteps.

5.2 MODELING THE MACROSCOPIC RESULTS OF THE 2D 
MOLECULAR DYNAM IC SIMULATION

In this section, we model the density profile and the velocity profile of the MD 
simulation for the rarefied gaseous planar Couette flow in a micro-scale channel by 
using smooth functions. The density and velocity models enable us to construct 
the stress tensor in the Navier-Stokes equation so that we can reproduce the MD 
simulation results by solving the Navier-Stokes equation.
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FIG. 30: The velocity profile (red solid line in the left figures) and density profile 
(red solid line in the right figures) of MD simulation with Knudsen number k =  7.0 
and 8.0. The blue dash circle line in the left figures are the correponding high 
precision solution of velocity from equation (72). From the top row to the bottom 
row the corresponding value of k increases. The three dashed lines from the top to 
the bottom on the top of each figure represent the position of centers of the inner 
most wall molecules, the position of \ / 2 a  distance from the first dashed line and the 
position of 3cr distance from the first dashed line, respectively. The three dashed 
lines on the bottom of each figure are located similarly.

The form of the density function comes from the 2D steady Navier-Stokes equation 
with external force:

p(u ■ V )tt =  — V p -I- V  • +  VwT — (V  • it)/] -f p£(V ' u )l} +  Pa , (164)

where p is the density, u  =  (u , v)T is the velocity, p =  fc(,Tp/m0 is the static pressure 
with kb, T  and m0 being the Boltzmann constant, the ambient temperature and the 
mass of the gas molecule, respectively, v is the kinematic shear viscosity, £ is the 
kinematic bulk viscosity, I is the identity tensor, a  = (ax, ay)T is the acceleration 
applied to the flow.
In the micro-scale planar channel, we set up the coordinates system such that the
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FIG. 31: The velocity profile (red solid line in the left figures) and density profile 
(red solid line in the right figures) of MD simulation with Knudsen number k = 9.0 
and 10.0. The blue dash circle line in the left figures are the correponding high 
precision solution of velocity from equation (72). From the top row to the bottom 
row the corresponding value of k increases. The three dashed lines from the top to 
the bottom on the top of each figure represent the position of centers of the inner 
most wall molecules, the position of distance from the first dashed line and the 
position of 3a distance from the first dashed line, respectively. The three dashed 
lines on the bottom of each figure are located similarly.

origin is located on the channel centerline, the x-axis points in the streamwise di
rection and the y-axis points to the upper wall. Due to symmetry, we only consider 
the upper half channel. We normalize the y coordinate by the height of the MD 
computational domain H m d - So, 0 <  y < 1/ 2. If we ignore the lattice structure of 
the wall, the net wall-gas interaction in the streamwise direction is zero. With this 
simplification, the Couette flow problem is a one dimensional problem. Therefore, 
all the quantities are functions of y, i.e., independent of x. Besides, we have v = 0
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and ax =  0. Denoting ij- =  ', equation (164) reduces to:

[(In it')' +  (lnp)']^ +  v' , =  0 

ay -  kbT ( \n p Y /m 0. = 0

Solving these equations, we have

puu' =  P,

P = Pooem° f a»dv/kbT := PooS»,m,p(l/2 -  y),

(165)

(166)

where P  is a constant, which can be estimated in the bulk region by using MD 
data. Equation (165) gives a relation of density, shear viscosity and velocity. Equa
tion (166) is the model for the density profile and p ^  is the density in the bulk region 
normalized by gn,m,p{ 1/2). Further, gn,m,p(r) is the effective radial distribution func
tion with respect to p; yn,m,p(^) is defined as:

9n,m,P{r) = e x p | ^  _  aP ] }  ’ r  G (O’ 1/ 2]- (167)

where r is the distance from the upper wall, T0 is the characteristic temperature of 
the gas molecules, ap is the effective diameter with respect to density, ap is a real 
number constant and n  and m  are natural number constants, representing the powers 
of the replusive and attractive parts, respectively.
The parameters op and ap in equation (167) can be determined by using the peak 
position (yp, pp) of the density profile and the bulk region density p^ .  Namely, we 
solve the equations:

p{yP) =  Pp> 

p'{yP) =  0-

The solutions are

CLn —

T m
In Pp

4T0(n -  m) Poo.

:— — ----------i n  £ e -
4T0(n -  m) p ^

l / n

(1/2 - y P),

T m
l n - ^

- m /n

(168)

(169)
4T0(n -  m) Poo,

To determine the integers n and m, the 10-4-3 potential for Lennard-Jones fluid 
confined between two walls [19] provides one option: n = 10 and m =  4. However, the 
shape of the density by using this parameter shows that the attractive part is slightly
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stronger. We adjust the value of m  by trying m = 5 and m  = 6. By observation, 
we find n  =  10, m  = 4 is a good choice. Hence, the density p is approximated by 

Poo*7lO,6,p(l/2 y)-
Inspired by the density model, we use the multiplication of the cubic function u4{y) =  
ciy +  C3J/3 and the effective radial distribution function gn,myU{r) with respect to 
velocity to model the velocity profile. The coefficients ci and c3 of u4(y) are obtained 
by least square fitting of the high precision solution of equation (72) from the channel 
center to the wall-gas interaction cut-off position. The function gn,jn,u(r) is defined 
as:

9n,m,u(r ) =  exp { ^ T  [ ( - y )  “ ““ ( t 1)  ] }  ’ r e  (°> 1/ 21> ( 17°)

where r is the distance from the upper wall, To is the characteristic temperature of 
the gas molecules, cru is the effective diameter with respect to velocity, au is a real 
number constant and n and m  are natural number constants.
We assume u(y) = u4(y)gnTnu(l /2  — y ). The parameters cru and au in equation (170) 
can be solved from the following equations by using the peak position (t/p, up) of the 
velocity profile

u{yP) = Up, 

u'(yP) =  0.

The solutions are

au = t1/n( 1/2

u'4(yP)a ,

where
t =

u4(yP) 

u'4{yP)

Vp)

(1/2 -  i/p) +  n I n - Ur\

U4(yp)

(1/2 ~ y p) + m  In

4T o(n  — m )
- m / n

(171)

(172)

4 T0(n — m).M V p) u4(yp)
The integers n  and m  in equation (171) and equation (172) are obtained by the trial 
and error method based on the shape of the velocity profile. We find n =  10 and 
m =  3 are appropriate parameters for the velocity profile. Hence, the velocity is 
approximated by {c4y +  c3y3)gw<3,u( l /2  -  y).
The values of parameters p00) ap, ap for density and cj, c3, au, au for velocity are 
tabulated in Table 45 and Table 46, respectively, with Knudsen number 1.0 < k < 
10.0. It is seen from Table 45 and Table 46 that all the parameters except for au 
vary monotonically with respect to the Knudsen number k.
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TABLE 45: The Knudsen number k  dependence of the paramters p^ , a pi a p for the
density ________________________________________________

k Poo a P
1 .0 1 .0 0 9 6 5 6 4 5 8 7 0 0 5 8 3 6 6 .8 4 0 7 6 2 7 4 4 3 2 5 1 4 4 3

l0

1 .2 9 5 3 8 7 1 5 9 3 9 6 2 7 1 4
2 .0 1 .0 1 6 4 9 7 0 7 4 4 3 0 5 6 7 7 1 .3 7 7 6 0 0 6 5 3 4 9 1 8 1 1 4 1 0 " * 1 .3 3 0 2 4 0 8 6 4 3 8 8 5 2 8 2
3 .0 1 .0 2 3 2 7 7 2 2 3 6 8 4 0 9 1 7 2 .0 7 4 2 0 7 6 6 0 9 7 4 6 2 3 4 1 0 " ^ 1 .3 5 1 1 8 9 5 6 4 6 1 5 9 0 1 8
4 .0 1 .0 2 8 5 7 7 4 8 0 2 2 4 4 1 9 4 2 .7 7 2 7 0 4 7 3 3 3 0 8 2 1 9 1 1 0 " * 1 .3 6 3 7 7 3 6 0 7 2 4 2 2 5 1 5
5 .0 1 .0 3 4 2 9 1 2 3 5 7 6 1 3 7 7 6 3 .4 7 1 1 5 0 9 3 3 7 3 6 9 7 2 4 1 0 " * 1 .3 7 2 8 3 1 4 2 1 9 4 0 1 0 7 0
6 .0 1 .0 3 8 6 6 7 0 5 7 9 9 7 1 2 4 0 4 .1 8 2 3 2 0 6 6 9 2 9 8 1 2 7 8

10

1 .3 9 1 8 1 8 2 3 9 2 0 7 0 2 2 0
7 .0 1 .0 4 4 6 7 1 7 2 5 5 5 6 7 7 3 2 4 .8 4 4 0 0 5 1 2 8 5 1 9 0 3 1 4 1 0 “ * 1 .3 5 3 6 6 1 8 7 1 5 3 0 9 6 1 0
8 .0 1 .0 4 9 7 8 0 0 3 9 9 2 0 3 9 2 3 5 .6 0 5 8 4 1 0 2 8 8 8 3 3 2 8 0 1 0 ” * 1 .4 2 2 9 5 9 5 0 7 0 7 6 0 7 1 7
9 .0 1 .0 5 2 7 6 2 8 1 9 3 6 4 4 4 6 0 6 .3 0 0 1 5 9 9 0 5 2 0 8 7 1 5 9 1 0 ” a 1 .4 1 7 9 5 0 8 1 2 0 2 8 9 9 9 4

1 0 .0 1 .0 5 4 1 7 3 9 0 6 4 9 8 5 0 4 3 6 .9 9 6 8 8 0 7 1 9 1 1 2 9 1 9 0 10 - 2 1 .4 0 9 6 0 2 8 7 3 6 9 2 8 3 9 2

TABLE 46: The Knudsen number k  dependence of the paramters c\, C3, cru, au for 
the velocity____________________________________________________________

k Cl C3 v-u.
1 .0 0 .4 3 8 1 2 2 1 6 4 8 1 6 8 8 3 0 4 2 .0 2 1 1 0 8 2 9 7 1 7 2 3 1 3 5 1 0 " 1 5 .6 3 3 2 3 8 2 6 1 0 5 1 6 2 6 1 1 0 " J 0 .5 4 2 7 3 6 9 3 4 4 6 5 2 0 3 7 7
2 .0 0 .3 2 3 2 6 7 8 1 1 9 6 6 5 2 4 8 2 1 .4 8 7 4 8 8 5 6 9 2 5 4 5 1 8 9 1 0 " 1 1 .1 7 9 1 4 2 1 4 2 3 8 1 9 8 6 3 1 0 " ^ 0 .7 4 2 1 1 9 9 9 7 7 6 6 4 5 7 8 7
3 .0 0 .2 6 3 9 8 7 6 7 6 6 5 7 2 9 7 7 8 1 .1 7 1 6 6 6 1 9 1 3 6 9 2 6 4 7 1 0 " A 1 .8 2 1 9 7 4 2 2 9 2 2 0 6 2 5 3 1 0 - '1 0 .9 1 2 2 1 3 3 9 2 4 8 2 7 9 6 7 6
4 .0 0 .2 2 7 0 4 0 7 4 3 0 2 3 5 9 0 5 6 8 .8 1 5 0 7 6 0 0 4 3 4 8 3 2 3 9

11O

2 .4 8 2 1 0 9 5 2 8 8 6 6 8 9 7 2 io_a 1 .0 5 7 0 0 3 4 4 8 6 7 4 2 2 8 4
5 .0 0 .2 0 0 1 9 0 4 5 6 4 0 8 4 5 7 8 1 7 .5 3 2 4 7 0 0 1 8 4 5 6 1 5 9 7

*1O

3 .1 5 0 6 6 9 8 4 7 0 1 0 6 5 9 2 io_a 1 .1 7 6 0 0 9 3 3 0 4 0 6 5 4 5 5
6 .0 0 .1 7 9 9 6 4 5 3 0 6 8 4 1 0 0 1 5 6 .5 8 3 1 3 9 0 8 7 7 9 2 1 2 6 7 O I K 3 .8 3 5 4 6 8 3 2 9 0 0 3 6 1 4 1 1 0 " * 1 .2 9 2 8 6 2 6 1 5 7 1 4 2 8 9 1
7 .0 0 .1 6 4 3 9 9 0 0 0 0 2 9 3 8 1 4 6 5 .4 5 6 5 5 8 7 8 9 8 8 8 7 6 5 1

1O

4 .5 0 5 3 6 8 8 5 0 3 9 8 6 1 5 3 1 0 “ * 1 .3 5 6 1 3 8 6 8 7 1 3 9 3 8 9 9
8 .0 0 .1 5 1 4 5 6 2 9 9 6 7 4 7 4 0 9 7 4 .9 1 5 7 6 0 7 3 8 7 8 2 0 4 2 1 10"'* 5 .2 1 9 0 3 6 2 9 0 6 5 5 2 6 0 1 1 0 ” * 1 .4 8 9 6 8 2 6 8 2 9 5 4 8 1 3 8
9 .0 0  1 4 0 7 0 1 3 7 7 7 8 5 1 1 3 3 8 4 .4 7 4 5 9 5 4 3 8 7 3 6 0 3 0 1

110rH 5 .9 1 2 7 3 0 5 9 7 3 4 0 4 0 9 1 1 0 " ^ 1 .5 6 3 4 5 0 7 5 3 5 9 1 2 7 8 3
10 .0 0 .1 3 1 5 9 4 5 2 4 4 2 5 8 9 4 5 9 4 .1 0 7 5 9 8 0 3 5 0 0 4 0 3 6 3 1 0 ~ * 6 .6 1 5 2 3 1 4 7 7 0 3 4 3 9 5 9 1 0 “ * 1 .6 2 6 3 5 0 1 7 6 6 6 9 4 6 0 6

The velocity profiles and density profiles in Figure 27-31 should be theoretically 
anti-symmetric and symmetric about y-axis, respectly. However, due to statistical 
error, the anti-symmetry and symmetry are not shown in the figures. To tackle this 
issue, we modify the density Pmd(v) and velocity umd(v) from MD by pmd(v) and 
umd(v), respectively

Pmd(v) =  [Pmd(v) +  P m d ( — ? / ) ] / 2 ,  

umd(v) =  [umd{v) ~  « m d ( - ! / ) ] / 2 .

Figure 32-36 shows the comparison of the modeled velocity (cij/ +  C3y3)pio,3,u( l /2 — y) 
with the modified MD velocity umd(v) and the high precision solution of the integral 
equation (72); and the comparision of the modeled density poopi0,6,p(l/2 — y) with 
the modified MD density Pmd(v) for the Knudsen number ranging from 1.0 to 10.0.
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FIG. 32: Comparison of the velocity from the model (cij/ +  c3y3)gio,3,u( l/2  — y), 
the modified MD data umd(v) and the high precision solution of the integral equa
tion (72) (left) and the comparison of the density from the model Poo5io,6,p(l/2 — y) 
and the modified MD data Pmd(v) (right), with Knudsen number k — 1.0 and 2.0.

The velocity profile of the Couette flow in micro-scale channel should be approxi
mated more accurately by the high precision solution of the integral equation in bulk 
flow region without the influence of wall-gas interaction; whereas in the near wall 
region, where the wall effect exits, the MD data is more accuate both for the velocity
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FIG. 33: Comparison of the velocity from the model (c^y +  c3y3)gWi3tU( l /2  — y), 
the modified MD data umd{v) and the high precision solution of the integral equa
tion (72) (left) and the comparison of the density from the model Poo<?io,6,p(l/2 — y) 
and the modified MD data Pmd(v) (right), with Knudsen number k =  3.0 and 4.0.

profile and density profile. From Figure 32-36, we see for velocity, that our model 
matches both the high precision solution of the integral equation and the modified 
MD velocity in correct region with smooth connection and for density, our model 
captures the modified MD density profile. On balance, our models only utilize the
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FIG. 34: Comparison of the velocity from the model (c iy  +  c3y 3)p 1o,3,u ( l / 2  — y), 
the modified MD data umd(v) and the high precision solution of the integral equa
tion (72) (left) and the comparison of the density from the model P oo<?io ,6,p (  1/2 — y) 
and the modified MD data pMD{y) (right), with Knudsen number k  =  5.0 and 6.0.

peak information of the MD data and an approximation of the solution to an integral 
equation but approximate the velocity and density effectively.
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FIG. 35: Comparison of the velocity from the model (ciy +  c3y3)gw^ u( l /2  — y ), 
the modified MD data u m d { v ) and the high precision solution of the integral equa
tion (72) (left) and the comparison of the density from the model Poo5io,6,p(l/2 — y) 
and the modified MD data Pmd(v) (right), with Knudsen number k = 7.0 and 8.0.

5.3 REPRODUCING MD DATA B Y  USING LATTICE 
BOLTZMANN EQUATION

In this section, we reproduce the velocity profile and density profile from MD sim
ulation by using two relaxation time (TRT) lattice Boltzmann equation [48]. Since
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FIG. 36: Comparison of the velocity from the model (C\y +  c3t/3)<7io,3,u(l/2 — y), 
the modified MD data u m d ( v )  and the high precision solution of the integral equa
tion (72) (left) and the comparison of the density from the model Ax>£io,6,p(l/2 — y) 
and the modified MD data PMo(y) (right), with Knudsen number k — 9.0 and 10.0.

the MD data in the replusive force region suffer from statistical noise severely, thus 
are not reliable, we only reproduce the velocity and density functions in the attrac
tive force region and the bulk flow region. Therefore, the repulsive wall force region 
forms a gap between the LBE compuational domain and the MD wall. We denote
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the height of the gap by Cw and call it the inner cutoff distance. To simplify the 
problem, we first zero out the x-component of the wall force by averaging in the 
streamwise direction. Specifically, every gas molecular in the shaded region of Fig
ure 37 is subject to the force field of the equivalent physical wall consisting of thirteen 
wall molecules: six on the first layer, five on the second and two on the third. Sup
pose we draw a red horizontal line segment in the shaded region with distance y from 
the channel center line. We denote by anet y(x, y) the y-component accelaration at 
coordinate (x,y), deduced by net Lennard-Jones force of the thirteen wall molecules, 
then the averaged ID accelaration ay(y) can be presented as the following integral 
and the corresponding 256 points Gauss-Legendre quadrature ({xj} are the shifted 
and scaled abscissas; {iCj} are the weights) numerically;

After this simplification, the net wall force at any point in the channel only has a 
y-component with its magnitude varying also along the y-axis. We use the bisection 
method to precisely calculate the zero wall force critical position where the repulsive 
wall force region switches to the attractive wall force region. This critical position 
should be the position where both the density profile and the velocity profile reach 
the peak, therefore is yp. Hence, the LBE computational domain is a rectangle from 
0 (channel center line) to yp (peak position) in the spanwise direction and with the 
distance between two adjacent wall molecules I indented by a half LBE grid size on 
both sides in the streamwise direction. We first consider a uniform mesh for LBE. 
Fixing the number of grids M  in the streamwise direction (from 1 on the left to 
M  on the right) the LBE grid size is computed as 5X =  l /M.  Consequently, in the 
spanwise direction, we should put yp/6x + 1 grids (form 1 on the bottom to N  on the 
top). To ensure N  is an integer and the inner cutoff distance Cw is fixed, we slightly 
adjust the channel height by setting the number of grids in the spanwise direction as 
N  =  [yp/5x\ +  1, namely we round p/Sx + 1 to its closest integer. Figure 38 shows a 
comparison between the MD configuration and the LBE computational domain, in 
which the channel height adjustment is subject to the restriction of integer number 
of LBE grids. The upper MD wall and the upper equivalent physical wall in LBE

256

(173)
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FIG. 37: Computation of the ID acceleration by averaging.

which is located at yp +  Cw overlap in the limit of 8X -* 0.
It should be noted that the ID acceleration computed by ay(y) from equation (173) 

needs to be modified before we use it in LBE. This is because the ID force from 
equation (173) only consider the wall force impact to the attractive force region. 
However, when the Knudsen number k is not very big, the collective impact of the 
bulk flow to the attractive force region cannot be neglected. We modified the force 
ay(y) by multiplying by a ratio tv , i.e., ay(y) =  rvay(y), where ry is the quotient 
of a proper wall potential to the ID acceleration ay(y) induced potential V\{y) when 
y =  yp. The proper wall potential is the formal potential Vr10,6(r ) obtained from 
Equation (167) and defined by:
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FIG. 38: The MD configuration and the LBE computational domain.

» W r )  =  f  [ ( f ) 10 -  ap ( f  y ]  . r  -  i  ( l  -  J ^ )  . y  6 IP.aJ. (174)

where T0, T ,a p,ap have the same definition as in equation (167) and are listed in 
Table 46 for 1.0 < k  <  10.0. The potential V\{y) is defined by the following integral 
and evaluated numerically by using a 256 points in the Gauss-Legendre quadrature 
({j/j} are the shifted and scaled abscissas; {wi} are the weights),

Ll(?/) f  ®y(®) y   ̂ [Vp d" C w 3(7, yp]
Vp+Cw —3(7 

256

~  ~ Y l ay ^ w^  (175)
i —1

where a  is the unit of length in MD simulation. Hence, the modified acceleration 
ay{y) is computed as

®v(y) =  ay(y)v ioAc w)/Vi(yp), y e [ y p + c w -  3cr, yp]. (176)

In LBE simulation, the unit length is 5X, dj is the counterpart of ay(y), defined by

aj =  ay((j -  l )^ )5 xKo.6(Gw) /y 1(yp), j 0 < j  < N,  (177)

where j 0 — N  — [(3<r -  CW)/8X\ -  1.
We include the external wall-gas interaction into the MET-LBE equation (149) in 
which the collision vector t t ( f )  is modified as

Q ( f )  =  —M_1[S(m -  m eq) -  8t ( l  -  S / 2 ) F ] ,  (178)
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where we use the Guo-Zheng-Shi force model F  for MRT-LBE [20] given by equa
tion (179)

F  =  y[0, 6{axu +  ayv), —6(axu + ayv), ax, —ax, ay, —ay, 2(axu — ayv), axv +  ayu]T.
(179)

Meanwhile the formula for j  in equation (152) should be modified as

j  =  p(u  -  5ta/2). (180)

In the case of ID wall-gas interaction, Equation (179) and Equation (180) reduce to 

F  =  p[0, 6djV, —6djV, 0, 0, dj, —dj, —2djv, dju]T,

jx =  pu,

j y  =  p { v  ~  S t d j / 2 ) .

The relaxation ratios sv and sq in LBE simulation are determined by equation (153) 
and equation (155), respectively. The shear viscosity v(y) is computed from equa
tion (165) and we have

P  p(0)i/(0)u,(0)
n y )  p(y)u'(y) p(y)u'(y) ’

where p(y) and p(0) are computed with our density model Poo3io,6,p(l/2 — y), ^(0) 
is evaluated by equation (147) with d = 2yp and u'(y) is computed by our velocity 
model (cjy +  c3y3)yio,3,u( l /2  — y). W ithout specifying the unit we use, 1/2 in yio,6,p 
and yio,3,u should be replaced by yp + Cw. Moveover, we find the position yi such that 
the line going through the point (yi, (ciyi +  c3yf)yi0)3,u(yp + CW-  yi)) and the peak 
point (yp, up) is tangent to the graph of the curve (cxy  +  c3y3)y10>3,u(yp +  Cw — y) at 
(yi> (ciyi +  c3yf)yiol3ju(yp +  Cw — yx)). We compute the slope of the line and denote 
it as u'(yi). In LBE simulation, we have

____4-̂ /2/3fccipp<;io)6,p(2/p-f-Cii;)ffio,3,u(yp+Crn))____ 1 I IS I -I- 1
1*910,6,p(Vp+Cw-yj)l(c iy+ c3y3)gio,3,u(yp+Cw-y)Yv=yi ’ — 3 — {.Vl/ x j  (181)

"j 4 \ J 2 /3fcci ypffio.6,p (j/p +CW )gio,3,u (yp+Cw) r  / c ~i , j  • <̂ - j y
*9io,6,p(Vp+Cw-yj)u'(yi) ’ I ” 1 '  x > — 3 —

where yj = {j -  1 )5X.
It is noted that the wall-gas interaction only exerts in the attrative force region, 
where y € [yp +  Cw — 3cr, yp]. This region becomes attenuated as the Knudsen num
ber k grows bigger. In order to resolve the wall force, one needs a very fine grid.
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FIG. 39: The sketch of the interface of Tier 3 mesh with grid size of 9Sx and Tier 4 
mesh with grid size of 278X. The dash line grids are ghost grids.

However, the fine grid becomes ridiculously redundant in the much wider bulk flow 
region where no external force exits. Hence, we should consider a nonuniform mesh. 
For instance, we use four sets of uniform mesh with different mesh sizes to patch the 
LBE computational domain. Specifically, we use the finest mesh with grid size 8X to 
cover the attractive force region (M  grids in the stream-wise direction, named Tier 
1 mesh), followed by three layers of secondary mesh with grid size 35X (M /3 grids 
in the stream-wise direction, named Tier 2 mesh) and then followed by three layers 
of tertiary mesh with grid size 9SX (M /9 grids in the stream-wise direction, named 
Tier 3 mesh) and at last cover the rest of the region up to the channel center by the 
coarsest mesh with grid size 275X (M/27  grids in the stream-wise direction, named 
Tier 4 mesh).
On the four boundaries of the LBE computational domain, we use the bounce-back 

speculative reflection combined boundary condition given by equation (182), with (3 
the fraction of bounce-back and (1 — f3) the fraction of speculative reflection on the 
top; use periodic boundary condition on the left and right given by equation (157) 
and equation (158), where M  is replaced by M /3, M /9 and M /27 in Tier 2, Tier 3 
and Tier 4 mesh, respectively and use an antisymmetric boundary condition on the 
bottom given by equation (183)
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f 4 ( i , N ) = f 2{ i , N + l ) ,
|  f 7(i, N ) =  p ( f 5(i + 1 ,N  +  1) — p(N)Uw/ 6 ) +  (1 -  0 ) f 6(i -  1, N  + 1), (182)
[ f 8(i, N )  = p ( f 6(i - 1 , N + 1 ) +  p(N)Uw/6) + (1 -  0 ) / 5(s +  1, JV +  1),

1 < i <  M,

\ < i <  M/27.

Besides the four boundaries, we have inner boundaries of meshes with different size of

Figure 39, we see at the interface layer between two meshes we have five different 
type of grid points: inner point, boundary point, ghost point, inner interpolation 
point and boundary interpolation point. The inner points are points where the fine 
mesh and coarse mesh overlap. After collision and streaming, / 2, / s ,/6 are passed 
from the coarse mesh to the fine mesh and f 4 , f 7, fs  are passed from the fine mesh 
to the coarse mesh. More details of the information interchange between two meshes 
will be discussed later. The boundary points are almost the same as the inner points 
but are boundary points on the coarse mesh. Thus, on these points, after collision 
and streaming, we implement periodic boundary condition on the coarse mesh by 
using the information of corresponding ghost points and then interchange information 
betweent the coarse and fine grids. Ghost points are free from collision and streaming 
and are only used to store temporary information. The inner interpolation points 
are only grid points on the fine mesh, thus lack values of f 2 , f 5 , f 6- We impose 
the lacking value on these points by interpolation. After the distribution values 
on inner points and boundary points have been updated, the values of / 2,/s  and 
fe on a inner interpolation point are computed by using corresponding values on 
its adjacent two inner points (or one inner point one boundary point) via linear 
interpolation. The boundary interpolation points are only grid points on the fine 
mesh and are also boundary points of the mesh. Thus, on these points, the order 
of implementation is collide, stream, implement periodic boundary condition and at 
last after the boundary points have been updated, compute / 2, /s  and / 6 by using 
the corresponding values on the boundary points via linear interpolation.

(183)

grids. Figure 39 shows the sketch of the interface of Tier 3 and Tier 4 meshes. From
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We have discussed how to implement the evolution of patched meshes spatially. 
However, we need to consider the implementation temporally as well. Since the grid 
size of the coarser mesh is three times that of its adjacent finer mesh and the D2Q9 
LBE velocity set given by Equation (150) is fixed, the timestep of the coarser mesh 
is also three times of that of its adjacent finer mesh, i.e., 3St and St , respectively. 
Hence, the evolution time between the two meshes are not completely matched. 
Consequently, not only the inner interpolation points and boundary interpolation 
points need spatial interpolation but all the finer grid points on the interface layer 
need temporal interpolation. For instance, both of the two meshes initiate and 
evolve at time to. Then, only the finer mesh evolves at time t0 +  St and at time 
to +  28t . At time to +  35t, both meshes evolve again. We implement linear temporal 
interpolation of / 2, / s ,/6 for a coarser grid on the interface lay at time t0 4- St and 
to +  2St, respectively, and then pass them to its overlaped finer grid at respective 
time.
On balance, the process of the nonuniform mesh LBE is as follows, in which /* and 
g% are multidimensional arrays for storing the distributions of Tier i(i = 1,2,3,4):

Step 1: Store macroscopic quantities, i.e., the velocity and the density. Initialize 
f x, f 2, f 3, f 4 by using the macroscopic quantities. Set flagx = flag 2  = f lag3 = 
0 and iter = 0. Go to Step 2.

S tep2: If iter = checkNum,  adjust f 1, f 2, f 3, / 4 in 0 direction to keep mass conser
vation, then compute macroscopic quatities and corresponding L 2 error with 
respect to the stored macroscopic quantities. Check if the stop criterion is 
satified. Stop if the criterion is satisfied, otherwise set iter = 0, update the 
stored macroscopic quantities and continue. If iter < checkNum,  implement 
collision and streaming for f l , f 2, f 3, / 4 and store the results in gx,g2,g3,g4- 
Go to Step 3.

Step 2': If iter = checkNum,  adjust gl ,g2,g3,g4 in 0 direction to keep mass conser
vation, then compute macroscopic quatities and corresponding L2 error with 
respect to the stored macroscopic quantities. Check if the stop criterion is 
satified. Stop if the criterion is satisfied, otherwise set iter =  0, update the 
stored macroscopic quantities and continue. If iter < checkNum,  implement 
collision and streaming for gx,g2,g3,g4 and store the results in Z1, / 2, / 3, / 4- 
Go to Step 3'.
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Step 3: Implement the top, left and right boundary condition for g1. Then, imple
ment inner boundary condition for missing distributions of g1 at the interface 
between Tier 1 and Tier 2 meshes by using spacetime interpolation of f 2,g2 on 
the inner points and boundary points of the interface, f lagi  =  f lagi -I- 1. If 
f lagi = 1, go to Step  4, else, set f lagi = 0, go to Step 5.

StepZ': Implement the top, left and right boundary condition for f x. Then, imple
ment inner boundary condition for missing distributions of f 1 at the interface 
between Tier 1 and Tier 2 meshes by using spacetime interpolation of f 2,g2 on 
the inner points and boundary points of the interface, f lagi — fl&gi +  1- If 
f lagi = 1) go to Step  4', else, set f lagi  =  0, go to Step 5'.

Step A: Implement collision and streaming for g1 and store the results in f 1. Go to 
Step 3'.

Step A1'. Implement collision and streaming for f 1 and store the results in g1. Go to 
Step 3.

Step 5: Implement the left and right boundary condition for g2. Then, receive the 
missing distributions of g2 from g1 a t the interface between Tier 1 and Tier 2 
meshes. After that, implement inner boundary condition for missing distribu
tions of g2 at the interface between Tier 2 and Tier 3 meshes by using spacetime 
interpolation of f 3,g3 on the inner points and boundary points of the interface. 
f lag2  = flag 2  +  1. If f lag 2  =  1, go to Step 6, else, set f lag 2 = 0, go to Step 7.

Step 5': Implement the left and right boundary condition for f 2. Then, receive the 
missing distributions of f 2 from f 1 at the interface between Tier 1 and Tier 2 
meshes. After that, implement inner boundary condition for missing distribu
tions of f 2 at the interface between Tier 2 and Tier 3 meshes by using spacetime 
interpolation of f 3,g3 on the inner points and boundary points of the interface. 
f lag 2  = flag 2  + 1. If f lag 2 =  1, go to Step 6', else, set f lag 2 =  0, go to Step 7'.

Step 6: Implement collision and streaming for g2 and store the results in f 2. Go to 
Step 5'.

Step 6': Implement collision and streaming for f 2 and store the results in g2. Go to 
Step 5.
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Step 7: Implement the left and right boundary condition for g3. Then, receive the 
missing distributions of g3 from g2 at the interface between Tier 2 and Tier 3 
meshes. After that, implement inner boundary condition for missing distribu-

flagz =  flags +  1- If flags =  1, go to Step 8, else, set flags =  0, go to Step 9.

Step 7': Implement the left and right boundary condition for f 3. Then, receive the 
missing distributions of f 3 from f 2 a t the interface between Tier 2 and Tier 3 
meshes. After that, implement inner boundary condition for missing distribu
tions of f 2 at the interface between Tier 3 and Tier 4 meshes by using spacetime 
interpolation of f 4,g4 on the inner points and boundary points of the interface. 
flags =  f lags  +  1- If flags  =  1, go to Step  8', else, set flags =  0, go to Step 9'.

Step 8: Implement collision and streaming for g3 and store the results in f 3. Go to

Step 9: Implement the left and right boundary condition for g4. Then, receive the 
missing distributions of g4 from g3 at the interface between Tier 3 and Tier 
4 meshes. After that, implement bottom  boundary condition for g4. iter — 
iter +  1. Go to Step 2'.

Step9': Implement the left and right boundary condition for f 4. Then, receive the 
missing distributions of f 4 from f 3 at the interface between Tier 3 and Tier 
4 meshes. After that, implement bottom boundary condition for f 4. iter =  
iter +  1. Go to Step 2.

Since the timesteps in different patches of mesh are different, i.e., St, 35t , 95t and 27St 
on Tier 1, 2, 3 and Tier 4 mesh, respectively, we should use equation (153) very 
carefully to compute the relaxation ratio s„ in different patches of mesh. We have

tions of g3 at the interface between Tier 3 and Tier 4 meshes by using spacetime 
interpolation of f 4, g4 on the inner points and boundary points of the interface.

Step 7'.

Step S': Implement collision and streaming for f 3 and store the results in g3. Go to 
Step 7.

Vj/St  +  l / 2 ’

^ 7 (9 < 5 t)+ l/2 ’

V j / ( 3 6 t ) + l / 2 ’

3 i / j /5 t+ l /2  ’

1

j  in Tier 1 mesh, 

j  in Tier 2 mesh, 
j  in Tier 3 mesh, 

j  in Tier 4 mesh,

(184)
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TABLE 47: The Knudsen number k dependence of mesh sizes and the parameter (3 
indicating the fraction of bounce back boundary condition in TRT-LBE simulation 
with ID wall-gas interaction for the molecular Couette f

k Tier 1 TFer’S Tier 3 Tier 4 0

1 .0
81 x  143 2 7  x  3 9 x 3 3 x  187

0 .6 5 5i'62  x  2 6 6 54  x  6 18 x  6 6  x  Af4
3 2 4  x  572 108 X 12 36  X 12 12  X 74 8

2 .0
81 X 156 2 7  X 3 9 x 3 3 X 8 9

0 .6 7162 X 312 5 4  X 6 18 X 6 6  X 178
3 2 4  x  62 4 108 X 12 36  x  12 12  x  3 5 6

3 .0
81  X 143 2 7  x  3 9 x 3 3 x  5 7

0 .6 9162  x  286 54  X 6 18 X 6 6  x  114
3 2 4  X 57 2 108 X 12 36  X 12 12  X 2 2 8

4 .0
81  X 163 2 7  X 3 9 x 3 3 X 4 0

0 .7 0 7162 X 32 6 5 4  x  6 18 x  6 6  X 8 0
3 2 4  X 63 2 108 X 12 3 6  x  12 12 X 160

5 .0
81  X 143 2 7  X 3 9 x 3 3 x  31

0 .7 2...162" x" 2 8 8 " ' 5 4  x  6 16 x  6 6 x  62
3 2 4  x  57 2 108 X 12 36 X 12 12 x  124

6 .0
81 x  156 2 7  x  3 9 x 3 3 X 24

0 .7 3162 X 312 54 x  6 18 X 6 6 X 48
3 2 4  X 62 4 168 x  12 "'"36"x""lY” 12 x  26

7 .0
81 X 166 2 7  x  3 9 x 3 3 x  19

0 .7 4162 x  332 5 4  X 6 18  x  6 6  x  38
3 2 4  X 66 4 108 x  12 36 x  12 12 X t 6

8 .0
81 X 153 2 7  x  3 9 x 3 3 x  16

0 .7 4 5162 x 3o6 54  x  6 18 x  6 6  x  32
3 2 4  x  61 2 108 X 12 3 6  x  12 12 X 6 4

9 .0
81  x  161 2 7  x  3 9 x 3 3 X 13

0 .7 5 5162 X 322 54  X 6 18 X 6 6  X 26
3 2 4  X 64 4 168 x  12 36 x  12 12 X 52

10.0
81 X 156 2 7  X 3 9 x 3 3 X 11

0 .7 6 2162 X 31 2 5 4  X 6 16 x  6 6  x 22
32 4  x  62 4 108 X 12 36 X 12 12 X 4 4

ow.

where Uj is computed from equation (181).
Numerically, we implement the nonuniform mesh TRT-LBE to simulate the molec
ular Couette flow with Knudsen number 1.0 <  A; <  10.0. The mesh sizes and the 
parameter (3 indicating the fraction of bounce back boundary condition are tabulated 
in Table 47. For each value of Knudsen number k, we implemented three TRT-LBE 
simulations, respectively, on three nonuniform meshes with basic, doubled and qudru- 
pled mesh sizes, in order to show the grid convergence of our simulation.
Figure 40-44 show the comparison of the streamwise velocity profiles (left) and the 
comparison of the density profiles (right) for various Knudsen numbers: from the ID 
wall-gas interaction TRT-LBE simulation with different nonuniform mesh given in 
Table 47, the MD simulation and the high precision solution of the integral equations 
for velocity.
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FIG. 40: Comparison of the streamwise velocity profiles (left) and the comparison of 
the density profiles (right) for Knudsen number k  =  1 and 2: from the ID wall-gas in
teraction TRT-LBE simulation with different nonuniform mesh given in Table 47, the 
MD simulation and the high precision solution of the integral equations for velocity.

From Figure 40-44, we see the ID wall-gas interaction TRT-LBE simulations with 
three different meshes almost overlap. Hence, our LBE simulation is convergent. For 
all values of Knudsen number k  that we have implemented simulations, the density 
profiles from LBE simulations match well with the corresponding MD simulation.
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FIG. 41: Comparison of the streamwise velocity profiles (left) and the comparison of 
the density profiles (right) for Knudsen number k  =  3 and 4: from the ID wall-gas in
teraction TRT-LBE simulation with different nonuniform mesh given in Table 47, the 
MD simulation and the high precision solution of the integral equations for velocity.

The streamwise velocity profiles from LBE simulation also show very good agree
ment with that of the MD simulation in both the bulk flow region and the near wall 
region. However, when the Knudsen number k > 7.0, the streamwise velocity in the 
near wall region is a little off the velocity profile of the corresponding MD simulation.
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FIG. 42: Comparison of the streamwise velocity profiles (left) and the comparison of 
the density profiles (right) for Knudsen number k = 5 and 6: from the ID wall-gas in
teraction TRT-LBE simulation with different nonuniform mesh given in Table 47, the 
MD simulation and the high precision solution of the integral equations for velocity.

This is in accordance with the fitting model of the velocity, which shows that a  more 
accurate model for velocity is desirable in our future work.
A better near wall forcing model than the ID wall-gas interaction is the 2D wall-gas 
interaction which also takes the stream-wise component of the wall-gas interaction



145

0.5

0.4

0.3
* = 7.0
LBE coarse mesh 
LBE finer mesh 
LBE finest mesh 
MD
Integral Equation ■

0.2 0.05 0.1 0.15 0.2
U

0 .5,

0.4

0.3

* = 7.0
LBE coarse mesh 
LBE finer mesh 
LBE finest mesh 
MD

0.2 0.5
P

0.5

0.4

0.3 -

*=8.0
LBE coarse mesh 
LBE finer mesh 
LBE finest mesh ~ 
MD
Integral Equation -

0.2

0.05 0.15 0.20.1
P

0.4

0.3

*=0.8
LBE coarse mesh 
LBE finer mesh 
LBE finest mesh 
MD

0.2 -

0.5
P

FIG. 43: Comparison of the streamwise velocity profiles (left) and the comparison of 
the density profiles (right) for Knudsen number k  =  7 and 8: from the ID wall-gas in
teraction TRT-LBE simulation with different nonuniform mesh given in Table 47, the 
MD simulation and the high precision solution of the integral equations for velocity.

into account. Since the wall molecules are moving in the streamwise direction, the 
wall-gas interaction is time dependent. However, we will not compute the wall force 
field at each and every time step, because such computation is highly time consum
ing. Our tack is that we choose an appropriate upper wall speed Uw such that after
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FIG. 44: Comparison of the streamwise velocity profiles (left) and the comparison 
of the density profiles (right) for Knudsen number k =  9 and 10: from the ID 
wall-gas interaction TRT-LBE simulation with different nonuniform mesh given in 
Table 47, the MD simulation and the high precision solution of the integral equations 
for velocity.

Nt time steps every wall molecule has moved exactly one LBE grid length. By doing 
so, the wall motion is temporally periodical with period M N t. Then, the 2D wall-gas 
interaction is also periodic with the same temporal period. The wall velocity Uw is
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FIG. 45: The Galilean transform of a grid point in the LBE with 2D wall-gas inter
action

computed as:

u = - i -  =  L
” M N tS, A',

Using the periodicity, it suffices that we just compute the wall force field M N t times 
for different wall molecule positions. However, it is not necessary. We compute the 
2D wall-gas interaction only once at initialization and store it for later use. We 
denote by o nct(x, y) the accelaration at coordinate (x, y) deduced by net Lennard- 
Jones force of the thirteen molecules at t = 0. Then, on grid point a nct(x,y)
is modified as:

a i j  = a nct((i -  1 /2 )4 , (j ~  l)6x)&xViofi(Cw)/Vi(yp), 1 < i < M , j 0 < j < N  (185) 

where j 0 = N  -  [(3ct -  CW)/5XJ -  1.
By using the Galilean transform [49] (Page 6) and interpolation of we are able to 
compute the 2D wall-gas interaction at any time step on each and every grid point. 
Figure 45 illustrates how we use the Galilean transform.
Assume that two adjacent wall molecules are initially (t — 0) located at the position 

on the left side of Figure 45 and we have computed the wall force on every grid 
point at t = 0. We explain the method we use to compute the wall force deduced 
accelaration applied on a grid point at time t, which is initially located at the grid 
(i , j )  in the left side coordinate system at t =  0. After t — n N t + s steps, as shown in
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Figure 45, the left wall molecule has moved to the position of the dashed molecule. 
So, at time t = n Nt +  s, we can translate the spatial coordinate to the right side of 
Figure 45, where the previous grid (i , j )  becomes (i, j).  We need to determine, in 
the right coordinate system, which two grid points are the closest left (ii, j) and the

where n =  n(mod M)  and 0 < n < n. Hence, the time dependent acceleration is 
computed as

Numerically, we implement the nonuniform mesh TRT-LBE with 2D wall-gas inter
action to simulate the molecular Couette flow with Knudsen number 1.0 <  k <  10.0. 
We use the coarse meshes that are tabulated in Table 47. The parameter (3 indicating 
the fraction of bounce back boundary condition are the same as in the TRT-LBE 
simulation with ID wall-gas interaction.
Figure 46-50 shows the comparison of the streamwise velocity profiles (left) and the 
comparison of the density profiles (right) for various Knudsen numbers: from the 
2D wall-gas interaction TRT-LBE simulation at three positions (left x = 1/6, center 
x = 1/2 and right x = 51/6) along x-axis, the MD simulation and the high precision 
solution of the integral equations for velocity.

closest right (ir, j )  neighbors of Meanwhile, what is the ratio a  of the distance
from (ii, j) to ( i , j )  to the distance from to (ir, j ). The answers to these two
questions are

i — h +  M, i <n ,  
i — n, i > h,

ir — 1, ir > 1,
M, ir = 1,

s
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FIG. 46: Comparison of the streamwise velocity profiles (left) and the comparison of 
the density profiles (right) for Knudsen number k =  1 and 2: from the 2D wall-gas 
interaction TRT-LBE simulation at three positions (left x = 1/6, center x  =  1/2 and 
right x = 51/6) along x-axis, the MD simulation and the high precision solution of 
the integral equations for velocity.

From Figure 46-50, we see the 2D wall-gas interaction LBE-TRT simulations only 
have a slight difference to the corresponding ID wall-gas interaction LBE-TRT sim
ulations. Both the streamwise velocity profiles and the density profiles at x  =  1/6
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FIG. 47: Comparison of the streamwise velocity profiles (left) and the comparison of 
the density profiles (right) for Knudsen number k =  3 and 4: from the 2D wall-gas 
interaction TRT-LBE simulation at three positions (left x — 1/6, center x = 1/2 and 
right x =  51/6) along x-axis, the MD simulation and the high precision solution of 
the integral equations for velocity.

(left) and x = 51/6 (right) overlap and are lower than the corresponding MD peak 
values at the peak position. At x  — 1/2 (center), both the streamwise velocity profiles 
and the density profiles have an overshoot with respect to the MD peaks at the peak
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FIG. 48: Comparison of the streamwise velocity profiles (left) and the comparison of 
the density profiles (right) for Knudsen number k =  5 and 6: from the 2D wall-gas 
interaction TRT-LBE simulation at three positions (left x = 1/6, center x = 1/2 and 
right x  =  51/6) along x-axis, the MD simulation and the high precision solution of 
the integral equations for velocity.

position.
It should be mentioned that we use the same machine to run our codes for TRT-LBE
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FIG. 49: Comparison of the streamwise velocity profiles (left) and the comparison of 
the density profiles (right) for Knudsen number k  =  7 and 8: from the 2D wall-gas 
interaction TRT-LBE simulation at three positions (left x  =  1/6, center x  =  1/2 and 
right x  =  5//6) along .x-axis, the MD simulation and the high precision solution of 
the integral equations for velocity.

simulation with ID and 2D wall-gas interactions as we have run LAMMPS. The sim
ulating times of the ID wall-gas interaction TRT-LBE simualtions with three sets of 
nonuniform mesh, the 2D wall-gas interaction TRT-LBE simulations with the coarse
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FIG. 50: Comparison of the streamwise velocity profiles (left) and the comparison of 
the density profiles (right) for Knudsen number k =  9 and 10: from the 2D wall-gas 
interaction TRT-LBE simulation at three positions (left x  =  1/6, center x — 1/2 and 
right x = 51/6) along x-axis, the MD simulation and the high precision solution of 
the integral equations for velocity.

nonuniform mesh and the MD simulations are compared and tabulated in Table 48.
From Table 48, we see the TRT-LBE simulations with ID wall-gas interaction in 

the finest nonuniform mesh are over one hundred times faster than the corresponding
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TABLE 48: The simulating times (in seconds) of the ID wall-gas interaction TRT- 
LBE simualtions with three sets of nonuniform mesh, the 2D wall-gas interaction 
TRT-LBE simulations with the coarse nonuniform mesh and the MD simulations

if co ra se  m esh  ( I D ) co r a se  m esh  (2 D ) fin er  m esh  ( I D ) f in e s t  m e s h  ( I D ) M  T>
1 .0 5 3 .5 0 3 5 .6 4 2 3 9 .5 7 8 6 2 .2 1 1 3 2 0 1 2
2 .0 4 8 .7 8 2 8 .2 8 1 9 8 .1 6 7 6 2 .2 0 1 2 4 4 0 6
3 .0 3 6 .1 4 2 5 .8 9 2 2 6 .1 8 7 6 6 .3 9 1 2 2 0 4 5
4 .0 4 9 .7 4 2 4 .1 3 2 4 8 .2 7 7 6 7 .2 1 1 3 4 3 5 3
5 .0 8 1 .4 0 2 7 .2 7 2 2 5 .5 6 7 7 4 .7 8 224641
6 .0 6 1 .4 7 2 6 .4 9 2 1 4 .0 3 7 7 1 .9 8 250251
7 .0 7 4 .2 8 2 3 .4 4 2 0 7 .4 7 7 7 7 .1 6 2 2 2 9 3 5
8 .0 6 9 .6 6 2 4 .9 2 2 6 3 .1 5 7 8 6 .0 8 3 6 5 9 2 4
9 .0 3 6 .8 0 2 6 .9 3 17 9 .5 4 7 7 6 .5 6 3 6 4 9 9 6

1 0 .0 6 2 .2 2 2 5 .5 3 2 0 2 .3 0 7 5 7 .5 0 3 2 6 1 4 2

MD simulations. The TRT-LBE simulations with 2D wall-gas interaction are even 
faster than the corresponding LBE simulations with ID wall-gas interaction. This 
may be because the 2D wall-gas interaction model is more compatible with the ef
fective viscosity, which accelarates the convergence.
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C H A PTER  6

CONCLUSION

We first summarize the thesis and then discuss future work as an extension of 
this thesis.
In Chapter two, we deduced a detailed derivation of the integral equations for velocity 
with arbitrary accommodation ratio at the boundary from the BGK equation for the 
harmoneous-oscillating Couette flow problem, the Kramers problem and the planar 
Poiseuille flow problem. The integral equation for the oscillating Couette flow con
tains four parameters: the Knudsen number k, the normalized relaxation time r  and 
the accomodation ratio ot^ at the upper and lower walls, repectively. The integral 
equation for the Kramers problem has only one parameter, the accommodation ratio 
a  at the wall. The integral equation for planar Poiseuille flow has three parameters: 
the Kunsen number k and the accomodation ratio at the upper and lower walls. 
These derived integral equations provide relatively simpler and high quality models 
for studying the velocities and stresses of rarified isothermal shear driven flows and 
pressure gradient driven flows, which take Maxwell type boundary condition into 
account.
In Chapter three, we use two methods to solve the integral equations derived in 
Chapter two with high precision. The first method is our Chebyshev collocation 
method. The main idea of this method is to use two truncated Chebyshev series to 
approximate the solution of the integral equation. The first series is an approxima
tion of the solution in the bulk region. The other series is an approximation of the 
solution in the near boundary regions. By using a subset of the Chebyshev collo
cation points, we substitute the first truncated Chebyshev expansion at the chosen 
collocation points into the integral equation to derive a linear system for the coeffi
cients of the Chebyshev expansion. Solving the linear system, we obtain a solution 
to the integral equation in the bulk region. Due to the boundary singularities of 
the solution, this solution is not as accurate near the boundary as it is in the bulk 
region. To improve the rate of convergence of the solution at the boundaries, we 
introduce another truncated Chebyshev series to approximate the solution near the
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boundaries. We use the Chebyshev collocation method to solve the integral equa
tion for the steady Couette flow problem with purely diffusive boundary condition. 
The error analysis is given. Our solutions for various Knudsen numbers are shown 
to have at least 11 digits of precision. The second method is the chunk based col
location method. This method, instead of cutting the whole domain into the bulk 
region and the near boundary region, divides the domain into many more nonuniform 
subintervals with finer subintervals near the pre-estimated singularities. On each of 
the subintervals, the solution of the corresponding integral equation is approximated 
by a low degree Gauss-Legendre expansion. We choose Gauss-Legendre collocation 
points of corresponding degree on each subinterval and then substitute the piecewise 
Gauss-Legendre expansions at the chosen collocation points into the integral equa
tion to derive a linear system for the expansion coefficients for all subintervals. We 
do not directly solve this linear system, instead, we implement a linear transform to 
convert the linear system for the expansion coefficients into a linear system for the 
solutions on all collocation points. The converted linear system is a strong diagonal 
dominant dense linear system, which is solved efficiently by the generalized minimal 
residual (GMRES) algorithms with high precision. The expansion coefficients on 
each subinterval is obtained by using inverse linear transform and the solution at 
an arbitrary position is evaluated easily. We use the chunk base collocation method 
to solve the integral equations for the steady Couette flow problem and the planar 
Poiseuille flow problem with a wide range of Knudsen numbers and the Kramers 
problem with various accommodation ratios at the upper and the lower walls. The 
error analysis is given. Our solution of the integral equations have at least 13 digits 
of precision.
In Chapter four, we analyze the velocity profile of the steady Couette flow problem 
with purely diffusive boundary condition at the upper wall and the lower wall. We 
derive an approximation of the velocity in terms of Abramowitz functions of order 0 
and order 1. We compute the L 2 error of the approximation and compute the shear 
stress from the approximated solution. We reproduce Cercignani’s variational ap
proach for the linear and the cubic approximation of the velocity and find out typoes 
in their results. We derive a fifth degree approximation of the velocity by using a 
variational approach. We compare the errors of the linear, cubic and the fifth degree 
approximation of the velocity in term of the procision in computing the shear stress.
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The comparison shows cubic approximation is an effective and cheaper approxima
tion. We derive two more cubic approxiamtions to the velocity, one by fixing the 
coefficient of the linear term and fitting the cubic coefficient, the other by fixing both 
the linear and cubic coefficients according to accurate shear stress and half channel 
mass flow rate. The L2 errors the two cubic approximation are also computed. We 
analyze the Knudsen number dependent velocity defect, slip velocity and half chan
nel mass flow rate. By using least square fitting and the asymptotic behaviors of 
Abramowitz functions of order —1,0,1 and 2, we derive several approximations of 
the velocity defect, the microscopic slip velocity and the macroscopic slip velocity, 
and the half channel mass flow rate in terms of functions of the Knudsen number k. 
The fitting errors of these approximations are all discussed, showing the good per
formances of these approximations. The analysis of the velocity profile of the steady 
Couette flow gives insights into the Knudsen layer of the shearing flows, which can 
be used to remodel the rarefied shear flows in a Navier-Stokes framework. We show 
a simple example of how we use one of the velocity approximations to model the 
effective viscosity in the Navier-Stokes equation. By solving this Navier-Stokes equa
tion one can reproduce the velocity profile. We validate this idea by using lattice 
Boltzmann equation with Dirichlet boundary condition to solve the Navier-Stokes 
equation with effective viscostiy.
In Chapter five, we implement the molecular dynamics simulation of the planar 
steady gaseous Couette flow in micro channels with Knudsen number ranging from
1.0 to 10.0 by using the open source package LAMMPS [18]. We model the stream- 
wise velocity profiles and the density profiles from the MD simualtions. By using 
the same wall-gas interaction as MD simulation and the effective viscosity derived 
from our velocity and density models, we reconsider the molecular Couette flow in 
the Navier-Stoke equation framework. We use nonuniform mesh TRT-LBE simula
tion [48] with diffusive and speculative reflection combined boundary condition to 
solve the Navier-Stokes equation with one dimensional wall-gas interaction and two 
dimensional wall-gas interaction, respectively. The produced velocity profiles and 
the density profiles show convincing agreement in the bulk region with the high pre
cision solution of the integral equation with purely diffusive boundary condition, and 
in both the bulk region and the near wall attractive wall-gas interaction region with 
the MD simulation.
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In Chapter two, we derived the integral equation for the harmoneous-oscillating Cou- 
ette flow. However, we haven’t solved the integral equation numerically. This is 
because, at the moment, we are not able to precisely evaluate the Abramowitz func
tion with the argument in the fourth quadrant of the complex plane. Specifically, 
we recall the integral equation for the harmoneous-oscillating Couette flow with pure 
diffusive boundary condition:

To solve this equation, we need to evaluate the Abramowitz functions In with complex 
argument z = x  — y i , ( x , y  > 0) precisely. These Abramowitz functions have complex 
values and can be split into a real part and an imaginary part:

Due to the oscillating terms cos(y/t)  and sin(y/t), the real part A(X,y) and the 
imaginary part Bn(x, y) are hard to approximate. In the future, we are going to 
study high precision approximation of A n(x,y)  and Bn(x,y).  Up to know, we have 
known, for fixed value of y, A n(x,y)  and Bn(x,y)  are the solutions to the regular 
singular I VP in x,

2 h n  [ ' » ( n r 1 *172 - » > )  ~ ( n r ^ + 1 / 2 ) ) ]  • v  e  l - 1 / 2 ’ 1/21

In(z) =  In(x -  y i ) =  An(x, y) +  iBn(x, y)

where

xA': + yB’: - A :  + 2An = 0 , 

x B -  y A "  -  B"  +  2Bn = 0, (186)
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subject to the initial conditions,

f°° 2An(0, y ) =  tne t cos(y/t)  dt,
JoJ poc

' tne~t2 sin (y/t)  d t,
0

poo

A'n( 0, y) =  y) = -  tn~le~t2 cos (y/t)  d t,
Jo

Jpoo
' tn~le~i2 sin(y/t) d i,
0

Jpoo

' tn~2e~f2 cos(y/t) df,
0J rOC
' tn~2e~t2 sin (y/t)  df.
o

The initial conditions are discuss by Kruse et al [21]. We can use Macleod’s [1] 
method of Chebyshev expansion to obtain the initial values. However, we still need 
a substantial breakthrough to precisely solve the system of Equation (186).
In Chapter five, we use the TRT-LBE simulation with bounce back speculative re
flection combined boundary condition to reproduce the density profiles and stream- 
wise velocity profiles of the steady Molecular Couette flows with Knudsen number
1.0 < k  < 10.0. The accommodation ratio [3 indicating the fraction of bounce back 
for cases of different Knudsen numbers are obtained by trial and error. We are going 
to discover the relationship between the Knudsen number and the accommodation 
ratio in the future.
As a more challenging future work, we plan to implement high quality molecular 
dynamics simulations for the molecular planar Poisouillc flow with a wide range of 
Knudsen numbers. This is a body force driven flow. The magnitude of the force 
added to each molecule at every time step and time step size need to be chosen deli
cately. The main difficulty of the MD simulation is that the rarity of the flow makes 
the system hard to relax to equilibrium. When we obtain quality MD data for the 
molecular planar Poiseuille flow, we are going to model the density profiles and the 
velocity profiles of the flow. Then, we can discuss the molecular plannar Poiseuille 
flow in the Navier Stokes equation framework by modeling the corresponding stress 
tensor according to the modeled density profiles and velocity profiles. Finally, we 
will reproduce the density and the velocity of the molecular planar Poiseuille flow by 
LBE simulation. The study of molecular planar Poiseuille flows will give us insights 
into the Knudsen layer of body force driven flow in microscale channnels.
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A P P E N D IX  A

THE PROPERTIES A N D  THE APPRO XIM ATIONS OF 

ABRAM OW ITZ FUNCTIO NS

In this section, we summarize the properties of Abramowitz functions In(x) and 
the approximation formulae to In (x) .  The properties and formulae can be found in 
the work of Macleod [1] and the Handbook of Mathematical Functions edited by 
Abramowitz and Stegun [2].
The n th order Abramowitz function I n defined in equation (28) satisfies the following 
differential equation and recurrence relations,

i C - ( n - l ) / :  +  2/B = 0 , (187)

C i  + 4  =  0, (188)

2 In =  (n —  l ) / „ _ 2  +  x l n- 3 . (189)

The first order Abramowitz function I\ has the series expansion:

00

Ii = ^2 (a i In x  +  bi )x l (190)
i= 0

with a0 =  ai =  0 ,a2 =  —1,60 =  l , 6j =  7t1 / 2 , 6 2 =  3(1 — 7 ) / 2, where 7 =
0.57721566490153286060- • • is the Euler’s constant. For i > 3,

2d j_2

a i ~  i{i — l)(i — 2) ’
, 2bi—2 "b (3i2 — 6i +  2)a,
' =  i(i -  l ) ( i - 2 )  '
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Thus, the first few terms of Ii read

h (x )  +  | ( 1  -  l ) x 2 +  Y ^ g (18^ ”  3 ) x4 +  ' ' '

21 f1 1 2 ^ .  1 4 ^- r l n a : ---------- - x  H t t t - x  — • • • I .
\ 2  24 1440 J

In general, In can be approximately by the following asymptotic formulas

(191)

/  7T(1 a)/2fn(t) -  -Ka/2gn{t) +  ( -1  )nhn(t)xn+l lnx, 0 <  X  < 2,
In{x) ~  (192)

\  (tt/ 3)1/ (v/3)n/ e~l'qn(i>), x  > 2,

where t =  x2/2  — 1, v  =  2(a;/2)2/3, <t =  | [(™ +  1)/2J — [n /2 j| and the symbol [-J is the 
largest integer less than or equal to the given quantity. The functions f n,gn, hn and 
qn are analytic functions. When n =  0,1,2, Macleod [1] obtained accurate Cheby- 
shev expansions diTt{t) for f n,gn,hn and YZ' d?T,(^) for qn. Y2' means the first 
term in the summation is halved. The coefficients of the Chebyshev expansion for 
f n,gn, hn and qn with n  =  0,1, 2 are tabulated in Table 49-Table 51, respectively.

TABLE 49: Coefficients of Chebyshev expansions for fo,go, h0 and go
Jo d0 -0 .6 8 1 2 1 9 2 7 0 9 3 5 4 9 4 6 9816 10 ° 90 <*0 1 .9 7 7 5 5 4 9 9 7 2 3 6 9 3 0 6 7 4 0 7 10u

d i -0 .7 8 8 6 7 91981 6 1 4 9 2 5 2495 1 0 ° d l -0 .1 0 4 6 0 2 4 7 9 2 0 0481 948 5 1 0 ” 1
d 2 0 .5 1 2 1 5 8 1 7 7 6 81881 954 3 10 1 d 2 0 .6 9 6 8 0 7 9 0 2 5 3 6 2 5 3 66 10 3
d 3 -0 .7 1 0 9 2 3 5 2 8 9 4 5 4 1 2 96 1 0 ” 3 d 3 -0 .5 8 9 8 2 9 8 2 9 9 9 9 6 5 9 9 1 0 ” 4
d/\ 0 .3 6 8 6 8 18085 0 4 2 8 7 10 5 d i 0 .5 7 7 1 6 4 4 5 5 3 0 5 3 2 0 10 5

d 5 -0 .9 1 7 8 3 2 3 3 7 2 3 7 1 0 ~ 8 d 5 -0 .6 1 5 2 3 0 1 3 3 6 5 7 5 6 1 0 ” 6
do 0 .1 2 7 0 2 0 2 5 6 3 10 10 do 0 .6 7 8 5 3 9 6 8 8 4 7 6 7 10 7
d 7 -0 .1 0 7 6 8 88 1 0 - 13 d 7 -0 .7 2 3 0 6 2 5 3 7 9 0 7 10 ~ 8
dg 0 .5 9 9 1 0 - 17 d a 0 .6 3 3 0 6 6 2 7 3 6 5 1 0 ” 9

90 d o -0 .6 0 5 0 6 0 3 9 4 3 0 8 6 8 2 7 3190 1 0 u do -0 .9 8 9 4 5 3793 IQ -1 1

d  i - 0 .4 1 9 5 0 3 9 8 1 6 3 2 0 1 7 7 9803 10 ° d  io -0 .1 6 8 1 9 8 0 5 3 0 1 0 ~ 10

d2 0 .1 7 0 3 2 6 5 1 2 5 19037 0 3 3 3 1 0 ” 1 d l l 0 .6 7 3 7 9 9551 1 0 -1 1
d 3 -0 .1 6 9 3 8 9 1 7 8 4 2 4 9 1 3 97 1 0 “ 3 d 12 -0 .2 0 0 9 9 793 9 1 0 ” U
d* 0 .6 7 6 3 8 08951 9 7 1 0 1 0 “ 6 d l3 0 .5 4 0 5 5 903 IO” 12
d$ -0 .1 3 5 7 2 3 5 3 6 2 55 1 0 ” 8 d  14 -0 .1 3 8 1 6 6 7 9 1 0 ” 12
d6 0 .1 5 6 2 9 7065 1 0 "  11 d l5 0 .3 4 2 2 2 05 1 0 ” 13
d 7 -0 .1 1 2 8 8 7 1 0 - 14 d i e -0 .8 2 6 6 8 6 10 “ 14
dg 0 .5 5 1 0 - 18 d l7 0 .1 9 4 5 6 6 i o - 14

ho do 1 .3 8 2 0 2 6 5 5 2 3 0 5 7 4 9 8 9 7 0 5 1 0 ° d i s -0 .4 4 2 6 8 1 0 ~ 15
d i -0 .3 0 0 9 7 9 2 9 0 7 3 9 7 4 9 0 4355 1 0 ° d i9 0 .9 5 6 2 I 0 ” ie
d 2 0 .7 9 4 2 8 8 8 0 9 3 6 4 8 8 7 241 1 0 ” 2 d20 -0 .1 8 8 3 i o - 16
d 3 -0 .6 4 3 1 9 10276 8 4 7 5 6 3 1 0 ~ 4 d21 0 .3 0 1 1 0 ” 17
d i 0 .2 2 5 4 9 8 3 0 6 8 437 4 1 0 " 6 d22 -0 .1 9 IO” 18
d 5 -0 .4 1 2 2 0 9 6 6 1 9 5 1 0 - 9 d 23 -0 .1 4 I Q - i S

do 0 .4 4 1 8 5 282 1 0 ” 12 <*24 0 .1 1 I O - 1 8

d 7 -0 .3 0 1 2 3 I O 15 d 2 S -0 .4 I O " 19
dg 0 .1 4 I Q - 1 8 d 26  

d 2  7
0 .2

-0 .1
IO” 19 
1 0 ” 19

Apart from Io(x), h (x )  and I^ix), we also need to compute /_ i(x). I - i (x )  is
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TABLE 50: Coefficients of Chebyshev expansions for f i , g i , h i  and q\
A , .  I 1 A 7 0 A K  1 0 0 * 7  7 Q 7 f t «  f J 7 3 f i Q  i n f l  I n .  \ 9 1 3 0 1 3  f U Z A O  Q f l f iR S  A Q A A SSi do 1 .4 7 2 8 5 19257 7 9 7 8 8 0 7 3 6 9 10° <J1 do 2 .1 3 0 1 3 6 4 3 4 2 9 0 6 5 5 4 9 4 4 8 10u
d l 0 .1 0 9 0 3 4 9 7 5 7 0 1 6 8 9 5 6 2 5 7 10° di 0 .6 3 7 1 5 2 6 7 9 5 2 1 8 5 3 9 9 3 3 IO- 1
d i -0 .1 2 4 3 0 6 7 5 3 6 0 0 5 6 5 6 9 7 5 3 10° d i -0 .1 2 9 3 3 4 9 1 7 4 7 7 5 1 0 6 4 7 10 2
dz 0 .3 0 6 1 9 79468 5 3 4 9 3 31 5 1 0 “ 2 d 3 0 .5 6 7 8 3 2 8 7 5 3 2 2 8 2 6 5 1 0 ” 1
d ,j -0 .2 2 1 8 4 10323 07651 1 1 0 - 4 <*4 - 0 2 7 9 4 3 49391 7 7 6 4 6 10" 5
<*5 0 6 9 8 9 9 78834 451 1 0 “ 7 do 0 .5 6 0 0 2 14736 787 1 0 "  7
<*6 -0 .1 1 5 9 7 0 7 6 4 4 4 IO- 9 do 0 .2 3 9 2 0 0 9 2 4 2 79 8 IO " 7
d7 0 .1 1 3 8 9 776 1 0 - 1 2 d7 -0 .7 5 0 9 8 4 8 6 5 0 09 10 "8
dg -0 .7 1 7 3 1 0 -  1 6 ds 0 .1 7 3 0 1 5 3 3 0 7 76 1 0 " 8
dg 0 .3 1 0 - 19 do -0 .3 6 6 4 8 8 7 7 9 5 5 1 0 " °

91 do 0 .3 9 7 9 1 2 7 7 9 4 9 0 5 4 5 0 3 5 2 8 10u d 10 0 .7 5 2 0 7 5 8 3 0 7 1 0 “ 10
d i -0 .2 9 0 4 5 2 8 5 2 2 6 4 5 4 7 2 0 8 4 9 10° <*l 1 -0 .1 5 1 7 9 9 0 2 0 8 10" 10
d i 0 .1 0 4 8 7 8 4 6 9 5 4 6 5 3 6 3 5 0 4 1 0 "  1 <*12 0 .3 0 1 7 1 371 0 1 0 “ u
dz -0 .1 0 2 4 9 8 6 9 5 2 2 6 9 1 3 36 1 0 " 3 <*13 -0 .5 8 5 9 6 71 8 I O " 12
<*4 0 .4 1 1 5 0 2 7 9 3 9 9 1 1 0 IO- 6 0 .1 0 9 1 4 455 1 0 ~ 12
<*5 -0 .8 3 6 5 2 6 3 8 9 4 0 1 0 ~ 9 <*15 -0 .1 8 7 0 5 36 1 0 - 13
dG 0 .9 7 8 6 2 59 5 i o - 1 2 dio 0 2 6 2 5 4 2 1 0 “ “ 1
d7 -0 .7 1 8 6 8 i o - 1 5 d i 7 -0 .1 4 6 2 7 1 0 - > 5
<*8 0 .3 5 1 0 ’ 18 <*18 -0 .9 5 0 0 1 0 - ‘6

h i d 0 0 .8 4 1 5 0 2 9 2 1 5 2 2 7 4 9 4 7 0 3 0 10° <*19 0 .5 8 7 3 10 18
di -0 .7 7 9 0 0 5 0 6 9 8 7 7 4 1 4 3 3 9 5 1 0 - 1 <*20 -0 .2 4 2 0 1 0 - 16
d i 0 .1 3 3 9 9 2 4 5 5 8 7 8 3 9 0 99 3 10 2 <*21 0 .8 6 8 10 17
<*3 -0 .8 0 8 5 0 39071 5 2 7 8 8 3 IO- 5 d n -0 .2 9 0 1 0 - 1 7

d4 0 .2 2 6 1 8 58281 72 8 10 7 <*23 0 .9 3 10 18
d 5 -0 .3 4 4 1 3 9 5 8 3 8 I O - 10 <*24 -0 .2 9 I O - 18
do 0 .3 1 5 9 8 58 10 13 <*25 0 .9 10 19
d 7 -0 .1 8 8 4 I O " 16 <*26 -0 .3 i o - 1 9

<*8 0 .1 10 19 <*27 0.1 10 19

TABLE 51 : C o e f f i c i e n t s  o f  C h e b y s h e v  e x p a n s i o n s  f o r  / 2 , (/2 , h 2 a n d to

Si do 1 .0 3 6 1 2 16280 4 2 4 3 7 13846 10u 92 <*0 2 .4 6 4 9 2 3 2 5 3 0 4 3 3 4 8 5 6 8 9 3 10u
d i 0 .1 9 3 7 1 24 6 6 2 6 7 9 4 5 7 0 0 1 2 10° d\ 0 .2 3 1 4 2 7 9742 2 2 4 8 9 0 5 4 3 2 10°
d2 -0 .7 2 5 8 7 58 8 3 9 2 3 3 0 0 7 378 1 0 - 1 <*2 -0 .9 4 0 6 8 17301 0 0 8 5 7 73 IO- 3
dz 0 .1 7 4 7 9 0 5 9 0 8 6 4 3 2 7 39 9 IO- 2 <*3 0 .8 2 9 0 2 7 0038 0 8 9 7 3 3 1 0 - 4

d \ -0 .1 2 8 1 2 23233 7 5 6 5 4 9 IO " 4 <*4 -0 .8 8 3 8 9 4 7 0 4 2 4 5 8 6 6 1 0 ~ 5
<*5 0 .4 1 1 5 0 18153 651 IO- 7 <*5 0 .1 0 6 6 3 8 5 4 3 5 6 7 9 8 5 IO " 5
<*8 -0 .6 9 7 1 0 4 7 2 5 6 4 10 -10 <*6 -0 .1 3 9 9 1 12853 8 5 2 9 IO - 6
d7 0 .6 9 9 0 1 83 1 0 “  13 <*7 0 .1 9 3 9 7 9 3 2 0 8 445 IO - 7
<*8 -0 .4 4 9 2 IO " 16 <*8 -0 .2 7 7 0 4 9 9 3 8 3 75 IO " 8
d Q 0 .2 1 0 “ 19 do 0 .3 9 5 9 0 6 8 7 1 8 6 IO - 9

91 do 1 .4 6 2 9 0 15719 8 6 3 0 7 41 1 5 0 10u <*10 -0 .5 4 0 8 3 5 4 3 4 2 1 0 “  10
dy 0 .2 0 1 8 9 4 6 6 8 8 3 1 5 4 0 1 4317 10° <*11 0 .6 3 5 5 4 6 0 7 6 1 0 “ “
d 2 -0 .2 9 0 8 2 9 2 0 8 7 9 9 7 1 2 9 022 IO- 1 <*12 -0 .3 8 4 6 1 6 1 3 i o - 1 2

dz 0 .4 7 0 6 1 0 4 9 0 3 5 2 7 0 0 50 1 0 “ 3 <*13 -0 .1 1 6 9 6 0 6 7 1 0 “ 12
d \ -0 .2 5 7 9 2 2 0 8 0 3 5 9 3 3 3 1 0 - 5 <*14 0 .6 8 9 6 6 71 1 0 “ 13
<*5 0 .6 5 6 1 3 3 7 1 2 9 46 IO- 8 <*15 -0 .2 5 0 3 1 13 10"  13
do -0 .9 1 4 1 1 0 2 0 3 1 0 “ n <*16 0 .7 8 5 5 8 6 I O - ’ 4
d 7 0 .7 7 4 2 7 6 1 0 - 1 4 <*17 -0 .2 3 0 3 3 4 1 0 - 1 4

do -0 .4 2 9 1 0 “ 17 <*18 0 .6 4 9 1 4 1 0 - 15
h i do 0 .3 0 1 1 7 22501 0 9 1 0 4 8 8881 10u <*19 -0 .1 7 7 9 7 i o - 1 5

di -0 .1 5 8 8 6 6 7 8 1 8 3 1 7 6 2 3783 1 0 “ 1 <*20 0 .4 7 6 6 1 0 “ 16
d i 0 .1 9 2 9 5 9 3 6 9 3 5 5 8 4 5 26 1 0 “ 3 <*21 -0 .1 2 4 6 1 0 - 1 6

dz -0 .9 0 1 9 9 5 8 7 8 4 9 3 0 0 1 0 “ 6 <*22 0 .3 1 6 1 0 “ 17
d \ 0 .2 0 6 1 0 5 0 4 1 8 37 10 8 <*23 -0 .7 7 10 18
<*5 -0 .2 6 5 1 1 1806 1 0 -  n <*24 0 .1 8 I O " 18
do 0 .2 1 0 8 6 4 10 14 <*25 -0 .4 10  19
d7 -0 .1 1 1 1 0 ~ 17 <*26 0.1 1 0 - 19

computed in three intervals. In the first interval 0 < x  <  e, we use the following 
formula,

I - X{ x )  =  V[  ( x )
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which is derived from equation (188). For x  > t, we use the following formula,

r / 2I l ( X) ~  7o(X)I - l { x )  =  -------------------
X

where both Iq(x)  and I2{x) are given by the first and second asymptotic formula in 
equation (192) for the second interval e <  x  < 2.0 and the third interval x > 2.0, 
respectively. Hence, I~\ (x)  is computed with the following formula:

f ~ ^ 2  + n l/2x + ( ||7  — ifH) x 2 — In 2 , 0 < x  < c,
I - i { x )  ~  i  *U2\V2 {t)-fo{t)\ _  {2g2(t) -5b(<)] +  [2x 2h2{t) -  /i0(f)] lnx, c < x  <  2.0,

[ (7r/3 )1/2e_l/ -  9o(^)] , a: >  2.0,
(193)

where t — x 2/ 2  — l , u  =  2(x/2)2/3 and c =  1.5 x 10-8.
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A P PE N D IX  B

NO NEXISTEN CE OF THE DERIVATIVE OF VELOCITY  

AT THE BO UNDARIES FOR THE STEAD Y COUETTE  

FLOW PROBLEM  W ITH  PU R E  DIFFUSIVE  

BO U N D A R Y  CO NDITION

In this section, we prove limy_>i/2-  u'(y) —> oo for the steady Couette flow problem 
with pure diffusive boundary condition.
Differentiation of equation (72) leads to the following equation

- i m  f Z i 1- '  ( ^ ) u { s ) d s  =  k G "<*•*>■ <194>
Because

I Z  “(s) d s = -  J Z ,  s ' -  d 1 ^ - ) ,i(s) ds

=  -G -x(y , k)u(l /2)  +  J  / - i  u(s)  ds,
i*l/2

- 1 / 2

equation (194) becomes

*1/2 , 1 - 2 m(1/2)
’ - 1 / 2

With y  —> 1/2—, equation (195) leads to

»l/2 

’  —  1 / 2

Since I~i(y) is decreasing, with the fact that u(y) < 1 /2  and «'(?/) > 0, we have

u ' ( l / 2 —) =  oo.

u'w - 7.k  J ' - 1 (/nr1) “'Wds = 1 2 2J n 2)a-'(v’k)- (195)

A m - )  =  -  / . l ( i / * ) i + r  / . .  ( i r * )  a ' (s )dS.
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Now we prove u(y) < 1/2 and u'{y) > 0.
From equation (72) we get

raaxu f 1̂ 2 , ( \ v  — s | \  , 1 „  , , .
“ (#■ *) s  / 1/2 ( - j - )  d» + *)

Thus
m axu =  u(y*) <  ^ ^ k 1/2 -  G0(y*,k)] F  Fo(y*, k)

and we have
, , ,  „  F„(y’,k)  „  F „(l/2 ,* ) ,  ,

“ W  S  maX”  £  2G ^ k )  5  2G0(l/2 , fc) < 1/2‘ 
From equation (195) we have

/  r 1/2
,'-'(F)'- 

( F ) u , ( 5 ) d s

G-i(y ,k) .

- 1 /2

1 — 2u (l/2 )
2irl/2k

Assuming m inu' =  u'(y»), one comes to

, 1/2

min u'
- 1 / 2

= min u'G0(yt , k)tt~1/2

Thus, we have 

This completes the proof.

«'(*/) > m inu' > 1^ G -i(y ., fc) > 0.
2kG0{y*, k)



170

A P PE N D IX  C

LINEAR TRANSFO RM  A N D  INVERSE TRANSFO RM  

BETW EEN  GAUSS-LEGENDRE POLYNOMIAL  

EXPANSIO N COEFFICIENTS A N D  THE  

APPRO XIM ATED FU N C TIO N  VALUES AT THE  

CO RRESPO NDING  G AUSS-LEGENDRE ABSCISSAS

In this section, we establish the relation between the expansion coefficients and 
the nodal function values of the Legendre polynomial expansion of the function. 
Let Lm(x) be the m th degree Gauss-Legendre polynomial and Lm(x) be the shifted 
and rescaled m th degree Gauss-Legendre polynomial on the interval [a, 6]. Then, the 
( M —l) th order Legendre polynomial expansion of u(x) on the interval [a, b) is written 
as

M

U { X )  =  C m L m - l i x ) ,
m = l

where cm is the rnth coefficient. Let {arm}m=i and be the finite sequence
of M th order standard Gauss-Legendre quadrature abscissas and the correspond
ing shifted and rescaled Gauss-Legendre abscissas on the interval [a, 6], respectively. 
Then, by using =  Lj_i(xi), the values of u(x) on the shifted and rescaled
abscissas can be computed by Qc = u, where

( L0(xi) L\(x\)  Lm_i(xi) ^
L 0(x 2) L i (x 2) ••• L m - \ { x2)

w — ,

 ̂ L o(x m ) L i (x m ) ■■■ L m - i (x m ) )

C =  (ci c2 • • • CM)T , U = (m(xi) u(x2) ■ ■ ■ u(xm ))T ■

Let {um}m=i anb {&m}m=i be the weights of the M th order standard Gauss-Legendre 
quadrature and the shifted and rescaled Gauss-Legendre quadrature on [a, b], respec
tively. Then a)j =  . Since M th order Gauss-Legendre quadrature is exact for



171

the integration of polynomials up to (2M  — l )4/l degree, by using the orthogonality 
of the Legendre polynomial, we have

f b M
I IA 7 - 1 I I 2 ci ~  /  L j - i ( x )  y :  Cj Lj - i (3?) d x

J a  t = l

f b -=  I Lj- i(x)u(x) dx 
J a  

M

i=  1
I Mb — a

where

Thus,
2 j - V

— 1 r ( \  t ~  \
C j  =  ------   2 ^ U 3 i L j - i { X i ) u { X i ) .

i —1

Then, the Legendre polynomial expansion coefficients c of u(x) can be computed by 
Pu  =  c, where

(  ^ ^ L o i x  i)u>i 2i - i L0(x 2)a; 2 ••• ^ L 0 ( i m)wm ^

^ y d - L ^ X i ) ^  - L x( x 2)u}2 • • •

\  l(x2)u)2  ••• /

w  =  («(xi) u(x2) • • ■ u {x m ) ) T  , C =  (ci c2 • • • CM ) T  ■

Obviously,
(? =  P ~ \
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GAUSS-LEGENDRE Q UADRATURE

In this section, we explain how we compute the abscissas and weights of the M ih 
order Gauss-Legendre quadrature. The Gauss-Legendre abscissas are obtained by 
Newton’s iteration,

x n + 1 —  x n j ,  / \ • ( 1 9 (3 )
M\^n)

We choose the M th order Gauss-Chebyshev abscissas {cos 2̂ I7r}j)f==1 as the initial 
guess. The value of M th degree Legendre polynomial is obtained by the Bonnet’s 
recursion formula:

L0(x) = 1 

L\{x) = x

m L m(x) = (2m -  1 )xLm_1(x) -  (m -  1 )Lm_2(x), m  =  2,3, • • • ,M.  (197)

The value of derivative of M th degree Legendre polynomial is computed by

v M(x) =  I  (198)

Once the abscissas is at hand we can compute the corresponding weights. A fre
quently used formula for the weights of the M th order Gauss-Legendre quadrature 
is

=  ( i  -  * j [ L ' M (X a ) r  (199)

However, when M  is big, the points in the abscissas will accumulate near ±1. This 
will cause severe cancellation error when computing 1 — x 2rn. An alternative formula 
for the weights is given by Frank Lether[3] without proof:
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Now, we prove it. By using equation (197), for any n, we have 

nLn(x)(n -  l)L„_2(x) -  (n -  1 )2L2n_x(x)

-  2(n -  l)xL n_i(x)L„_2(x) +  (2fc -  3)L2_2(x)

=nLn(x)(n -  l)Z,n_2(x) -  (n -  l)L„_i(x)[(2n -  3) s i n_2(x) -  (n -  2)Z,n_3(x)]

-  2(n -  l)xL n„1(x)Ln^2(^) +  (2n -  3)L2_2(x)

= (n  -  l)L n_2(x)[nI/n(x) -  (2n -  3)xLn_x(x) -  2xLn_i(x)]

+  (n -  l)L„_i(x)(n -  2)Ln_3(x) +  (2n -  3)L2_2(x)

= -  (n -  l ) 2L2_2(x) +  (2n -  3)L2n„2(x) +  (n -  l)X,„_i(x)(n -  2)L„_3(x)

= (n  -  l)L„_i(x)(n -  2)Ln_3(x) -  (n -  2)2L 2n 2{x). (201)

Denote L_i(x) =  0, then using equation (198), equation (201) and the fact Lm (i „,) = 
0, we have

M-l
(! — x m) ^ 2 ( 2j  +  l)^?(®m)

2=0
M —1

=  ^  ^{(2j  4 - 1 )Z/j(xm) xmZ/j(xm)[(ji 4 -  l)£ /+ i(xm) +  j L j —i (xm)]}
3= 0

1 (3'm)-^^-Lji/(xm) 4" {2M l)Z /^_j(xm)
M—2

+  +  l)x mLj+i(xm)Lj(xm) 4 - (2j 4 - l)L 2(xm)]
j =o

= (M  -  1 )LM_2(xm)M LM(xm) -  (M -  l ) 2L ^ _ x(xm)
M—2

4 -  ]T][-2(.7 +  l)^m ^j+ i(^m )ij(xm) 4 -  (2j 4 - l)L 2(xm)] 4 -  M 2L2M_l (xm) 
j=o

= M 2 L2M_l {xm)

M  [Z/jv/_i(xm) xmZ/jv/(xm)]

= ( l - x ^ ) 2[Z/M(xm)]2. (202)

From equation (202), we have
2

( l - ^ ) [ L 'M(xm)P 
  2_________

J2jLq1(2J +  l ) ^ 2(^m)
We use equation (200) to compute the weights of the M th order Gauss-Legendre
quadrature.



174

A P P E N D IX  E

VELOCITY OF FREE M OLECULAR COUETTE FLOW  

W ITH  ARBITRARY ACCOM M ODATION RATIOS

In this section, we derive the velocity of free molecular flow with Couette flow 
setup and arbitrary accommodation ratios at upper and lower walls.
The steady collisionless Boltzmann equation is

£ • v /  =  0, (203)

where /  =  / ( r ,£ )  is the distribution function, r  and £ are the position and the 
velocity of the particle, respectively. With same setup and process of normalization 
as the Couette flow problem, we can write

/  =  7r-3/2p C 3e~l€|2 ^1 +  ,

with g = g(y,£x,fiy)- Hence, equation (203) can be rewritten as

dg 
—  =  0 
dy  ’

leading to g = g(£x,€y)- Denoting

/OO
$,xe~e*g d£x,

•OO

the velocity of the free molecular flow is

/OO 

•OO
roo

= 7T“1/2 /  M O  +  4> {-iy)Y^J d£y (204)
JO

Recalling the boundary condition equations (22)-(23) for the Couette flow problem, 
the boundary condition for the current case due to independence of <j> with y  is

0 ( £ y )  =  - ( i - a  ) / 2  +  a  4 ( - £ y )

4>(-4) = ( l - a +)/2 + <*+0 (U
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where £y > 0. We have constant solution of 4>(£y) and </>(—£y),

(hit ) -  . (1r<> 1+•«..(!. .nil 
YdS y)  2(1—a "  a + ) ’

Yd $ y )  -  2 ( l - a - a + )

Substituting them into equation (204), we have

MZy) + 0(~Cy) _  ~  Q+
2 2(1 — a~a:+)
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