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ABSTRACT

MODELING AND SIMULATION OF SHAPE CHANGES OF RED
BLOOD CELLS IN SHEAR FLOW

John Gounley
Old Dominion University, 2014
Director: Dr. Yan Peng

A description of the biomechanical character of red blood cells is given, along
with an introduction to current computational schemes which use deformable cap-
sites to simulate red blood cell shape change. A compreheusive two- and three-
dimensional framework tor the fluid-structure interaction between a deformable cap-
sule and an ambient flow is provided. This frammework is based on the immersed
houndary method, using lattice Boltzmann and finite element methods for the fluid
and structure, respectively. The characteristic response and recovery times of vis-
coelastic cirenlar and spherical capsules are comnpared, and their dependence ou siim-
ulation parameters is shown. The shape recovery of biconcave capsules in two and
three dimeunsions is also considered, focusing on the role of simulation paraneters and
steady-state behaviour in two dimensions, while studying the capsule characteristics
which lead to shape recovery and shape memory in three imensions. Finally, the

notion of interpreting membrane viscosity as an additional fhuid viscosity is studied

ard] a computational scheme based on power law fluids is deseribed.
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CHAPTER 1

INTRODUCTION

1.1 RED BLOOD CELLS

A red blood cell 1s an anucleate fluid-filled membrane, the cytoplasm of which
contains an oxygen-transporting metalloprotein called hemoglobin., The membrane
has two components: the cytoskeleton on the cytosolic (internal) side and a bilayer of
lipid molecules on the external side [1]. The cytoskeleton is a protein network, a mesh
of spectrin heterodimers bound to the membrane at the mesh nodes by various pro-
teins. Lipids are fatty molecules which, having a hydrophilic head and hydrophobic
tails, naturally form bilavers in fluids. The resalting bilayers are, effectively, two-
ditnensional fluids themselves, as the lipids readily exchange places with neighbors
in their monolaver.

Red blood cells nndergo substantial shape changes @ wino. The rest shape of a
red blood cell is nnderstood to be a biconcave discoid, with an approximately 8pm
diameter and 2zun height [1]. However, the diameter of capillarics may be as small as
3 —4um, passing through which requires the red blood cell to deforin to a bullet-like
shape {51]. These siguificant yet routine changes in shape are complicated by certain
blood diseases, such as sickle cell anenua, in which a hemoglobin mutation stiffens red
blood cell membranes, making them less able to deform and recover their shapes [10)].
Better knowledge of the mechanics underlying red blood cell shape changes wonld
be of use in understanding how they are distorted by sickle cell anemia and how this
distortion might be countered by treatment [61]. Thus, au improved understanding
of red blood cell deformation and recovery, and how different aspects of the cell effect
these processes, iy of interest.

The changes in shape during the circulation of blood are cansed by the ambient
fimd in blood. plasma, deforming the red blood cell. The other components of blood
--- white blood cells and platelets - account for less than 1% of blood volume and
may be discounted for the sake of simplicity. The red blood cell membrane resists

this deformation by the ambient fluid in several ways [4, 23], First, the cytoskeleton




acts like a lattice of springs, causing elastic resistance to shear deformation. Second,
the bilayer resists the membrane being bent dunng deformation, displaying a quality
denoted as bending stiffness. Third, the fluidic nature of the bilayer means that it
resists frictional forces, as a viscous fluid; this property is referred to as membrane
viscosity. Finally, both the cytoskeleton and bilayer have surface incompressibility,
creating an isotropic elastic respouse to changes in surface area. Additionally, the
hemoglobin inside the red blood cell adversely impacts deformation, as its viscosity
(ca. 6 centipoise} is roughly five times that of plasma {ca. 1.2 centipoise). As a
result, the shape changes of a red blood cell may be modeled as a fluid-structure

interaction problem.
1.2 RED BLOOD CELL SHAPE

Despite red blood cell membranes being among the most studied biological mem-
branes, two important, and related, properties of red blood cells remain without
complete explanations. The first matter of uncertainty is the precise biomechanical
source for the shape of mature red blood cells. While immmature red blood cells,
called reticulocytes, have a predictably spherical shape, mature red blood cells have
a biconcave discoidal shape. From a bioclogical perspective, a non-spherical shape is
advantageous: the ratio of surface area to volume is higher and, consequently, facil-
itates the diffusion of oxygen across the red blood cell membrane. However, there
is disagreement about whether the cytoskeleton, bilayer, or some combination of the
two causes the biconcavity.

The second uncertainty is why red blood cells have shape memory. Discovered by
the experiments of Fischer, shape memory means that, during recovery, an elemment. of
the membrane returns to the same {(or opposite, homologous) position on the surface
where it was located prior to deformation [25). Whether shape memory is a trivial
consequence of the red blood cell’s biconcave shape, or a separate consideration, is
unclear, since the antecedent is unresolved.

Experimental evidence inclining credence m both potential canses of biconcav-
ity exigts. Hereditary eliiptocytosis, in which the cyvtoskeletal bonds are weakened,
causes ellipsoidal red blood cells [38]. On the other hand, when the bilayer of (nor-
mal) red blood cells is removed, a spherical shape results [549]. Literature may be

found which unequivocally declares one or the other to be the cause {1}.

These questions are clarified by two terins from Fischer [25]: the reference shear




deformation and reference curvature. To understand reference shear deformation,
tmagine increasing the volume of a red blood cell until it becomnes spherical. Define
the local shear deformation of each element of the cytoskeleton in that state to be the
reference shear deformation of that element. If the reference shear deformation were
uniformly zero over the entire cytoskeleton, then the cytoskeleton is unstressed in the
spherical configuration and would not support shape memory. On the other hand, if
the cytoskeleton were to support shape memory and be unstressed in the biconcave
configuration, the reference shear deformation would be non-zero for (at least) some
elements. The reference {or spontaneous) curvature deseribes the configuration in
which the bilayer has a minimum amount of bending energy.

As Fischer notes, the fluidic, uniform nature of the bilayer is not consistent with
a non-uniformn reference curvature [25]. However, the bilayer does have an important
internal/external phospholipid asymmetry, in terms of electrochermical potential [1],
which could cause a constant non-zero reference curvature, as proposed by Helfrich
127, 47, 41}. On the other hand, there does not seemn to be an a priors biomechanical
restriction on the uniformity of the reference shear deformation.

If non-constant reference curvatire were not possible, a red blood cell’s hypothet-
ically non-uniform reference shear deformation would seem to be the obvious cause
of shape memory, as Fischer proposes. This non-uniform reference shear deforination
tuay or may not also play a role in causing the biconcave shape. On the other hand,
Pozrikidis has shown that a constant negative reference curvature is entirely consis-
tent with, and perhaps even advantageous for, the biconcave shape [17]. This leads
Pozrikidis to describe a comprehensive theory of the red blood cell’s biconcave shape:
the cytoskeleton is nearly unstressed and the biconcave shape is caused by constant
negative reference enrvature, the membrane’s incompressibility, and the cell’s volume

deficiency.
1.3 MEMBRANE RESPONSE AND RECOVERY

Investigations into the shape recovery of red blood cells from deforination have
largely followed experimental and theoretical avemies, as opposed to computational
approaches. These studies primarily aimed at measuring the time course of shape
recovery and determining the dominant mechanisms by which it occurred. Evans
and Hochmuth, studying recovery from micropipette aspiration, argued that the

recovery was dominated by the membrane’s viscoclasticity, which they described




using a Kelvin-Voigt model [21]. This model led them to characterize the recovery
by an exponential decay function with relaxation time r = %}é~, in which 1, is the
membrane viscosity constant and F is the shear elasticity modulus [21]. Subsequent
studies of red blood cell shape recovery from optical tweezing {13] and shear How
17, 58] found similar results and employed the same model. Additionally, Sutera et
al. suggested that the Huid viscosity ratio also influcuced the shape recovery time
(58]. Ou the other hand, Fischer’s experiments of red blood cell shape recovery from
tank-treading in shear flow suggest a time course of shape recovery that is 10 — 100
times larger than these studies find, which might indicate the incompleteness of the
Kelvin-Voigt model in describing recovery from shear flow {25].

However, recent work has challenged the applicability of Kelvin-Voigt and, pez-
haps, invalidated the results based on this model. Puig-de-Morales-Marinkovic et
al., studying the viscoelasticity of red blood cells using optical magnetic twisting cy-
tometry (MTC), found that the dynamic response could not be explained by linear
viscoelastic models [48]. Rather, they observed that the membrane displayed the vis-
cous character of a power law fluid. Since then, power law responses have been noted
by experimentalists using optical tweezing [66, 67], dynamic scattering microscopy
[2], and diffraction phase microscopy [62]. As the bilayer consists of cholesterol, in
adldition to several types of lipids, it is perhaps not unreasonable that a collection of

these diverse clements display non-Newtonian properties [1].
1.4 MEMBRANE VISCOSITY

Likewise, the viscoelasticity of red blood cells has presented one of the maore chal-
lenging aspects of their modeling and simulation. Within the inodeling paradigin and
scale considered here, standard approaches exist for modeling the capsule's elastic-
ity, bending stiffness, and fluid viscosity ratio. While neo-Ilookean constitutive laws
are adequate to describe the red blood cell’s shear elasticity, Skalak has developed
constitutive laws for biomechanics which integrate both shear and isotropic elasticity
{23, 53]. Skalak laws have been clearly compared to their Hookean and neo-Hookean
counterparts [5} and have been extensively implemented {e.g., [34, 36, 46, 64]). Simi-
larly, Helfrich’s model for the shape encrgy of fluid membranes has been the subject of
considerable analysis [27, 41] and recent implementation [36, 64]. Finally, straight-

forward computational methods for smoothing the fluid viscosity ratio across the

capsule interface have been developed, including solving a Poisson Equation across




an index field [60] and using a smoothed Heaviside function (39, 68].

Models of tmeinbrane viscosity, however, are less settled. The pairing of the elastic
cytoskeleton and viscous bilayer, subject to the same deformations, naturally suggests
the Kelvin-Voigt viscoelastic model. Consequently, the vast majority of existing com-
putational models tmplement. Kelvin-Voigt [19, 35, 69). More recently, Yazdani and
Bagchi noted numerical instabilities when implementing Kelvin-Voigt, opting instead
for the more versatile standard linear solid (SLS) model and adjusting its parameters
s0 as to approximate Kelvin-Voigt [63]. Studies using stochastic mesoscopic methods
have opted for other viscous models. For instance, Fedosov et al. developed a general
dissipative model within the framework of dissipative particle dynamics (DPD) [24],
while Noguchi and Gompper's multi-particle collision dynamics (MPCD) siinulations
of vesicles used boud-flipping for membrane viscosity [40]. Iuterestingly. Fedosov et
al. stinulated twisted torque cytowmetry with DPD {24] and their results agree well
with Puig-de-Morales-Marinkovic et al. (48], though with a slightly larger power law
exponent. There does not, however, appear to be a deterministic nuplementation of

the power law proposed by experimentalists.
1.5 SCOPE & OUTLINE

This thesis has four principal aims. First. it will develop a comprehensive, ex-
tensible computational model of the fluid-structure interaction between plasma and
a single red blood cell [46]. Sccond, it will show how the shape recovery of capsnles
differs from deformation, and quantify the role that the capsnle’s shape and param-
eters play in these processes. This will help to reconcile computational work, which
has largely focused on deformation and dynamics, with experimental investigations,
which generally considered shape recovery. Third, it will consider the potential me-
chanical causes of a red hlood cells” biconcave shape and shape memory. Biological
and theoretical studies have proposed several ideas, and the perspective of a com-
putational study would be of interest. Fourth, in light of the receut maturation
of merbrane viscosity implementations, it will propose a new model for membranc
viscosity, capable of describing its non-linear character. To achieve these aiins, the
following four chapters are orgauized as follows:

In Chapter 2, a complete methodology for modeling and simulation of the interac-
tion between a {luid-filled capsule and an incompressible viscous fluid is presented in

two and three dimensional scttings. Based on lattice Boltzmann, immersed boundary,
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and finite element methods, the method is benchmarked against published results.
Both the two and three dimensional versions of the structural nodel include the
capsitle’s shear elasticity, bending stiffness, and membrane viscosity. Additionally, a
method is presented for simulating different fluid viscosities inside and outside of the
capsile.

In Chapter 3, circular and spherical capsules are placed i shear flow, deformned
unti} reaching equilibrinm, and recover their shapes after the shear flow is stopped.
The response and recovery times of the capsules are measured nsing an exponential
model and compared. The dependence of these characteristic times on various cap-
stle parameters is considered. Additionally, differences between the two and three
dimensional structural models are observed in this context.

In Chapter 4, the shape recovery of two dimensional biconcave capsules from
shear flow 1s studied, with attention to the dependence on capsule parameters. The
different courses of recovery for tank-treading and tumbling capsules are compared,
and a general two-part recovery process is posited. Further, the shape recovery
of a three dimensional biconcave capsule from shear flow is studied, for different
preferred elastic and bhending configurations.  Particular attention is given to the
possible mechanisms of the undeformed biconcave shape and of shape memory, in
terms of the three dimensional model presented.

In Chapter 5, the idea of sitnulating membrane viscosity as a fluid viscosity is
investigated. Considered in the context of a spherical capsule, a relationship between
the effects of the fluid and membrane viscosity ratios is drawn. A proof-of-coneept.
study is conducted, concluding that certain itnportant aspects of shape change caused
by tembrane viscosity in a solid viscoelastic model may be adequately modeled using
an artificial fluid viscosity ratio. The suecessful, albeit linted, results of this study
are leveraged to posit a new model for simmulating membrane viscosity as a power law
fliid. A comparison of the deformation of a spherical capsule with a solid viscoclastic
model and the power law fluid model is conducted, showing that the models differ

little in shear flow.




CHAPTER 2

METHODOLOGIES

The general problem of a deformable fiuid-filled capsule in an ambient flow re-
quires a methodology for handling the fluid-structure interaction. Hou et al. divide
existing fluid-structure interaction methodologies into two groups: monolithic and
partitioned {29]. In the monolithic approach, a single algorithm is used to describe
the fluid and structure. Conversely, partitioned niethods use separate algorithms for
the fluid and strueture, along with an additional method to describe the interaction
hetween them. A partitioned approach is selected for this model, configured around
the immersed boundary method. Developed by Peskin for modeling blood flow in the
heart, the immersed boundary method is based on transferring data between an BEu-
lerian fluid domain and a Lagraugian structural mesh, using diserete delta fuuctions
{43]. A multiple-relaxation-time lattice Boltzinann method is employed to simulate
the flnid flow, along with two and three dimensional finite element models to describe
the capsule.

The case of a single capsule in simple shear flow 1s considered, with the Reynolds
number Re = 0.05. The Reynolds munber is defined as Re = %9—, in which p is the
fluid density, & in the fluid shear rate, a is the equivalent radius of the capsule, and p,
is the viscosity of the fluid surrounding the capsule. A capsule with equivalent radius
« has, in two dimensions, the same area as a circular capsule with radius «. In three
dimensions, a capsule with equivalent radius « has the same voluine as a spherical
capsule with radius «¢. The z-axis is the direction of flow, the y-axis is the direction
of the velocity gradient, and (in three dimensional settings) the z-axis is the direction
of undisturbed flow vorticity. The domain is theoretically infinite in the z- and 2-
directions. In the subsequent simulations, however, domains of {0, 16a] x [0,124] in
two dimensions and {0, 10a] x [0, 10a] x [0,84] in three dimensions are considered,
in which a is the equivalent radins of the capsule. Previous analyses by Sui et al.
[56] in two dimensions and Li and Sarkar [36] in three dimensions have shown these

domains to be suflicient to avoid wall cffects. The time step df and spatial step de

are related as h = dt = dx, with & being set as 0.05 in two dimenstons and 0.1 in




three dimensions. Letting H be the size of the domain in the y-direction, the shear

flow may be described in terins of shear rate & as

(1) u:[(y—%ﬂ)k,o,o]

In all simulations, the center of capsule is centered in the domain, with respect to

£, y-, and z-axes.
2.1 LATTICE BOLTZMANN

In both the two and three dimensional models, a lattice Boltzmann method
(LBM) is used to describe the fluid flow. Based on the Boltzmann Equation of statis-
tical physics, lattice Boltzinann methods offer an alternative to traditional methods
for solving the incompressible Navier-Stokes equations. Within the low Mach and
Reynolds number region, LBM exhibits stability that exceeds many traditional meth-
ods [31]. Despite its statistical origins, LBM is fully deterministic, using the averaged
behaviour of particles. The expression fi(x;, ¢,.) represents the distribution of parti-
cles at lattice node x; with velocity ¢; at time ¢,. Particle velocities, like time and
space, are discretized, so that a particle has one of a given finite set of velocitics. In
the two and three dimensional simnlations, the D2Q9 and D3Q19 velocity models,
respectively, are employed [31, 32]. The integers following ‘D’ and ‘Q’ denote the
nmumnber of spatial dimeusions and mimber of discrete velocitics, respectively.

Using the multiple-relaxation-time approximation of the collision integral, the

lattice Boltzmann Equation may be described as
(2) f(x; + cdi, tn + di) ~ f(x;,8.) = —M™'S[m(x;,t,) — m(m)(x), )]

in which f, m, and m®¥ represent vectors of Q-dimensions, the components of which
are the distribution functions for each particle velocity ¢;, the velocity moments, and
the Maxwellian equilibrium moments, respectively {18, 32].

The lattice Boltzmann method’s time evolution thus consists of two steps: col-
lision and streaming. With the MRT approximation, as represented on the right
side of Equation (2), probabilities £ at each lattice node x; are mapped to their mo-
ment space by the matrix M. Within this moment space, the non-conserved morments
m(x;, t,) relax toward their equilibria m(""‘)(xj, tn ), according to their specified relax-
ation parameters s; on the diagonal of matrix 8. After this relaxation, the moments

are mapped by the matrix M~! back to probability space.



Following [18] and 31|, the D2Q9 velocity discretization may be compactly for-
mulated as
(0,0) for i =0
(3) ¢; = § (cos[(i ~ 1)2].sin[(i - 1)Z]) for i=1:4
(cos{(2 — 9) %] sin[(2i — 9)I))V2 fori=5:8

since the ratio % — 1. Likewise, the velocity discretization for D3QIL9 is described

as

(4) [C] "'Cw] =

601 -r0 0006011 -1-11 -1 1 —-140¢ 0 0 0
66 o1 -1 06 1 -1 1 -10 ¢ O 01 1 -1 -1
¢¢6 0006 1 -0 o0 0 01 1 -1 -1 1 -1 1 =1

The Maxwellian equilibriom distribution s described in terms of the velocity dis-

cretization as

. ) 9 b 3
(5) £ = w14 3(es w) -+ S(e ) - S
for which the two dimensional weights are wy = g, Wiq = é and wy..x = % I three

dimensions, the weights are wy = :1, Wy.g = %, and wr..qs = % (18, 31].

Unlike the Bhatnagar-Gross-Krook (BGK) approximation, in which all relaxation
rates arc the same, a multiple-relaxation-time scheme is optinized to ensure Galilean
invariance and isotropy, while minimizing dissipation and dispersion. For D2Q9, the

transformation matrix is

1 1 1 1 11 1 1 1

-4 =1 -1 -1 =12 2 2 2

-2 -2 -2 —21 1 1 1

1 0 -1 01 -1 -1 1

(6) M = -2 0 2 01 -1 -1 |
0 1 0 -11 1 -1 —1

0 0 -2 0 21 -1 -1

0 1 -1 1 -106 0 0 0

0 0 0 0 01 -1 1 —1]
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By Lallemand and Lno [31], the resulting moments are relaxed according to the

relaxation parameters
(7) S= {50 51 Sz 83 Sy S3 S S7 8w

Parameters s,, 83, and s5 are not relevant to the model, since they describe conserved
moments (density p and momenta j, and j,). The kinematic viscosity v is rclated to
the relaxation parameters s; = sy for components of the pressure tensor p., and Pry

as

1/1 i
8 v = ( — ).
( ) 3 87 2
Additionally, the parameters s; = s for energy flux components ¢, and ¢, are related

to the viscosity as

2 - 54
g = 3t
(9) Sy 3 o

The bulk viscosity £ is related to the relaxation parameter sy for energy ¢ as
171 1
10 - _(_ - ,,)_
( ) E 6 81 2
Finally, the moment ¢ related to the energy square, which is relaxed by s, only alters
the higher-order hydrodynamic terts in D2Q9; consequently, let s, — 1.64.

For D3Q19, according to [18] and (32}, the transformation matrix is defined as
(1)

1 1 1 1 1 } I S S S S U R T B SR
30 —tb -1t -11 11 1w 1 % & & ¥ ®& 8 B & ¥ 8 8
12 1 4 -4 -4 -4 -4 @ 1 1 1 1 1 1 1 1 1
0 1 -t 0 0 0 0 1 -1 1 -t 1 -1 { -1 0 0 o
0 —4 4 0 0 0 0 1 -1 1 -1 1 -1 1 =1 0 0 0
0 0 0 1 -1 0 O 1t ¥ -1 ¢ 0 0 0 1 -1 1
0 0 R 4 0 0O 1L 1 -1 -1 0 0 o 0 ! -1 1
0 0 0 0 0 1 -t 0 o 0o o 1 1 1 -1 1 1 -t
0 0 0 0 0 -4 1 0o 0 o © 1 1 -1 -1 1 1t -1
M=| 0 2 2 1 [ R S S T U U S S I ST R S
0 -4 -4 2 2 2 2 1 1 1 1 1 1 1 1 =2 =2 -2
0 0 0 1 1 1 -1 1 1 1t t -1 -1 -1 1 @ 0 o
0 0 0 -2 -2 2 2 1 1 1 1 -4 -1 -1 -1 0 0 0
0 0 0 06 0 0 0 1 -1 -1 1 0 6 0 6 0 0 @
0 0 0 0 0 0 0 0 0 o 0 ©0 0 0 0 1 -1 -1
0 0 0 0 0 0 0 0 0 0 0 1 -t -1 1 0 6 0
0 0 0 0 0 0 0 I -1 t -1 -1 1 -1 1 0 o6 0
0 0 0 0 0 0 -1 -1 I 1 6 0o o 8 1 -1 1
L0 0 0 0 0 O 0 0 ¢ 8 1 1 -1 -1 -1 -1 1
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The diagonal matrix of relaxation parameters is
(12)

S = [Sn S1 S8z 83 Sg 83 S¢ ST 8¢ Sgo Sip Sir S12 Sz Sie Sis Se Siy “"15]

The conserved density p and momenta j.. j,, and j, are related to sy, s3, s, and sz,
the choices of which do not alter the model. The kinematic viscosity v is related to
the relaxation parameters sy = $1; = s13 = $14 = 815 for components of the pressure
tensor 3pzz, Puw Prys Pysr &l py. by the equation

(13) =55 2)

Similarly, the bulk viscosity £ is related to the relaxation parameter s, for energy ¢
by

(1) e=3(-3)

The relaxation parameters sy, sg, and s for mass flaxes ¢, gy, and g, must be
identical for the sake of isotropy; they are set equal to sq9. The remaining parameters
sy for energy square ¢, sy and 512 for 3n.; and 7, and sy, $17, and sz relating
to g, my, aud m arce higher-order terms which do not alter the hydrodynamics.

Consequently, these rewaining parameters are set equal to 1.8,
2.2 FLUID VISCOSITY

The dimensionless fuid viscosity ratio V' of a capsnle is defined to be the ratio
of the fluid viscosity inside the capsule. jz., to the ambient fluid viscosity j,. To
implement & non-unity fluid viscosity ratio over a time-dependent region, the thuad
viscosity at each node must be cowputed every timestep, so that the relaxation
parameters for that node may be appropriately adjusted. In practice, this is only
necessary for nodes which are near the capsule boundary, as the others will not
change from one timestep to the next. To compute the new viscosity at a node,
not only whether the node lies inside or outside of the capsule must be determined,
but the fluid viscosity contrast across the capsule interface must also be smoothed,
for ithe sake of the stability of the fluid solver. In thie context of multiphase flows,
Tryggvason et ol used a Poisson Equation to determine fluid deunsity at grid points
ncar the interface [60]. Alternatively, N'Dri ef ¢l employed and Zhang ef al. refined

a method using a Heaviside function and based on the shortest normal distance from
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the fluid node to the membranc 139, 68]. For this consideration, the approach of
Zhang et al. is adopted.

To determine the viscosity of a fluid node at a given timestep, the Lagrangian
node nearest to the fluid node is sclected. The dot product of the vector between
these two nodes and the unit outward normal from the Lagrangian node is caleulated.
The sign of this dot product produces a reliable indication of whether the fluid node
under consideration is inside or outside of the capsule. Next, the shortest (normal)
distance d from the fluid node to the capsule boundary is approximated. The sign of
d for a fluid node is set to he positive if located outside of the capsute, or negative if
inside of the capsule.

With the signed distance d having been determined, a smoothed Heaviside func-

tion of d from [68] is defined, as

0 d < -2h;
(15) H{d) = i(l + % + %Sil] ;—f) ~2h < d < 2h;
1 d > 2h.

Finally, the viscosity j+ at the node is determined using A {d), by the equation
{16) (%) = pte + (pta = g ) Hd(x)].
in terms of viscosity g, inside the capsule and ambient viscosity p,.

2.3 IMMERSED BOUNDARY

In the immersed boundary method, the fluid is simulated across the entire sim-
ulation domeain and the structural mesh moves without altering the Eulerian mesh.
The fuid velocity near the capsule boundary is used to detennine the velocity of
the capsule; the capsule’s velocity may then be used to update the position of the
capsule. The fluid-structure interaction requires that a no-slip condition be main-
tained at the capsule boundary [29], which deforms the capsule and leads to hody
forces. The incompressible Navier-Stokes Equations are solved, nsing LBM, with the
addition of these forces to determine the fluid velocity.

A smoothed Dirac delta function is used to transfer the necessary data between

the two grids. The smoothed Dirac delta function in d-dimensional space is defined

by

(17) 6r{x) = Ox(21)0n(xs) - - - dnlry), x € R




in which the one dimensional discrete delta function is given as

" {l + cos(%)} |z| < 2k

(18) on(z) =
0 [.‘f.‘| > 24

The smoothed delta function is employed to determine the fluid velocity at capsule
gridpoints, hased on the loeal fluid velocity, and to spread the body forees ereated
by capsule deformation to the nearby fluid. The capsule velocity U is determined at

Lagrangian node X, by

(19) UX) = 38X, ~ x;)ufx, Jh!
J

in which x; and u denote Eulerian fluid node position and velocity, respectively.
Subsequently, this velocity is used to update the position of the Lagrangian grid by

the forward Euler method:
(20) X (b + dt) = X, {t,) + U(X, )t

Similarly, body forces P at X, which result from the deformation of the capsule, are

distributed to the fluid grid points by
(21) p(x;) = Y 3(Xe - x,)P(X,),

as the area of the elements has already been incorporated into calculation of P at X,.
Subsequently, the forces exerted on the fluid are incorporated into the fluid sinmlation
according to the update method described in [33] and {42]. Iu the collision phase of
LBM, after computing the hydrodynamic moments, momenta j = (J.m Jus jz) at

gridpoint x; are updated to according to the forces p, as

. o Lt

(22) §06) = 36) + SP(x,).

After using }’ to find the equilibrium moments m{®® the mnomentum is updated

again, as

(23) ¥05) =105) + px,)

and j” is used to compute the probability distribution after the collision phase. The

advection step of LBM 1s not altered by the addition of forces acting on the fluid.




2.4 TWO DIMENSIONAL STRUCTURAL ALGORITHM

In two dimensional simmulations, capsules which arc either initially circular or
biconcave are considered. Each capsule is discretized into 140 line segiwents, which
are initially equally-sized. The configuration of the biconcave capsule in the xy-plane

is described by

(24) L= aesiny
(25) y = (1%(0.207 +2.003sin? x — 1.123sin® x) cos x

for cell radius ratio o = 1.39, equivalent radius « = 0.5, characteristic length 1.48«,
and angle x ranging from —0.57 to 1.57 [56]. The biconcave capsule is also inclined

by a 45° angle to the positive x-axis.
2.4.1 METHODOLOGY

The capsule is assumcd to be massless and initially unstressed. Due to this
algorithm’s use of the iminersed boundary method, velocity is continuous across
the membrane. However, a jump in interfacial tension across the interface does
exist. Consequently, using Ganss’ divergence theorem, Pozrikidis [45}) derives the

force equilibrium Equation for complete tension T = 7t + ¢i as
(26) f= ~(Puur-V) - (1t + gn1)

for in-plane tension 7, transverse shear tension ¢, tanget vector t, and outward normal
vector N The projection matrix Pgy,s = I - nn projects the gradient to the capsule
surface, so that Py, -V is the surface gradient. In two dimensions, the Equation

may be simplified by the Frenct-Serret formulae to

(27) f— —(f;)f(f‘t + i) = [m’ - gz]n - [3—; + h-.q]i;
for capsule curvature x and derivatives taken with respect to capsule arc length £
Further, the transverse shear tension ¢ is simply the derivative of bending tmornent
m with respect to arc length, as ¢ = ‘?ﬁ The necessary first and sccond derivatives
with respect to arc length are performed with five-point centered difference methods
for arbitrarily spaced abeissac.

The viscoelastic character of the capsule membrane is described using the Kelvin-

Voigt viscoelastic model, with a viscous dashpot in parallel with an clastic spring (sce
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Figure 4). For Kelvin-Voigt, in-plane tension is simply the sum of the elastic and

viscons contributions, as
(28) T =T, + Ty

Strain for each element of the capsule is given in terms of the streteh ratio X, which

is defined by the ratio of a line element’s current length £ and initial length 4, as

(1)
(29) A = 4
fo
For the sake of simplicity, Hooke's law is emploved to describe the capsule's shear

elasticity and determine the elastic tension 7. This model takes the forin

(30) 7= EJ(\ ~ 1),

in which E; is the shear elasticity modulus [56]. The tension due to membrane

viscosity is defined by

31 1 oA
(31) Tv = H-sxa‘
in which jz, is the membrane viscosity cocfficient [69]. The time derivative of A is cal-
culated by a one-sided second order finite difference method. The capsule’s isotropic
elasticity is not explicitly included in the two dimensional algorithm. Transverse
shear tension is the result of bending stiffness and defined as

om 0

(32) 4="7 = EB&

(v = ro),

in whichh Ep is the bending stiffness modulus, & is the curvature, and &y is the pre-
ferred curvature [46, 56]. As noted by Pozrikidis, Equation {32) is, strictly speaking,
only correct [or small deviations [rom the preferred curvature, but 1s sullicient to
account for the qualitative role of hending stiffness here [46]. For both circular and
biconcave capsules, «y is set equal to the initial curvature. Curvature x is calcu-
lated with periodic cubie spline interpolation; if the capsule surface is defined by the

function o = F(ix), then

:t‘F‘H

(33) FT TR

Thus, the two dimensional capsule is unstressed, by either viscoelastic tension or

bending moments, at the initial shape configuration.
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Three structural non-dimensional paraneters may now be defined, in addition to
the aforementioned non-dimensional fluid viscosity ratio V. The capillary muunber

Ca is defined as

(34) Ca = Hakd

‘E’.s
in terms of ainbient fluid viscosity g, shear rate &, equivalent capsule radius a, and
shear elasticity modulus £,. The capillary nmber Ca represents the ratio of viscous
fluid shear to solid clastic force, and is also referred to as the dimensionless shear
rate in the literature. The bending stiffness Fy is defined as
Ep
al,

for bending stiffness wodulus Ey and represents the ratio of bending to shear resis-

(35) By =

tance. Finally, the membrane viscosity ratio n is delined as

Hs

a)t'{ﬂ

(36) N =

for membrane viscosity coefficient gy and equivalent radius «; thus, 5 is the ratio of

membrane to ambient fluid viscosity.
2.4.2 VALIDATION

The standard parameter for describing the deformation of a capsule is the Taylor
deforination parameter,
L-W
YL+ W

[n two dimension siinulations, L and W are defined to be the capsule length and

(37)

width, respectively. Due to the diserete nature of the capsule model from which L
and W are measured, graphs of D, in two dinensions are not perfectly sinooth, but
this does not reflect a corresponding lack of smoothness in the capsule geometry. In
three dimensionus, however, I and W are defined to be the major and minor axes
of an ellipsoid in the zy-plane with the same moment of inertia as the capsule, as

stated by Clausen and Aidun [12]. The foriuula for the moment of inertia is

X _ 1 .
(38) I;; = /\( (rkrkdt-j — -r,--rj)rﬁ/ = 5/){(?;:1-@1‘;&6,& — 'r‘i'rjrknk)rf&

in terms of node position vector r and unit outward normal n. From the eigenvalues of

the moment of inertia matrix, the ellipsoid’s major and mninor axes may be calculated.
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V=1and n=0.

In all subsequent results, shape deformation and recovery will be quantified in terms
of D,

The results from the two dimensional algorithin are compared with a similar
approach by Sui ef «l., in which immersed boundary and BGK lattice Boltzmann
methods were used [56]. Figure 1 considers the deformation of an elastic capsule, with
respect to the Taylor deformation parameter, for different capillary numbers Ca. The
results agree well, though this approach overshoots the equilibrium value somewhat
for Ca = 0.4. This difference may be the result of the very fine multiblock fluid grid
used in the neighborhood of the capsule in [56]. Similarly acceptable agreement is
observed in Figure 2 for different values of the bending stifhness E,. Once again,
slight deviations in the equilibrium values are observed, whicl are acceptable in light
of the coarser grid here. Shnilar comparisons for fluid and membrane viscosity ratios

are omitted, due to a lack of published data.
2.5 THREE DIMENSIONAL STRUCTURAL ALGORITHM

The three dimensional capsule surface is discretized into triangular elements.
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Figure 2. Comparison with Sui et al. for bending stiffness. Fy, varies for Ca = 0.04,
for V.=1and n=0.

Meshes for spherical and biconcave capsules are produced by generating an icosa-
hedron. Using the approach of Ramanujan and Pozrikidis for an octahedron, cach
edge of the icosahedron is bisected and these points are used to split each face of the
icosahedron into four equal triangles [49]. This process is repeated until the mesh is
sufficiently fine. A mesh with 2562 vertices and 5120 triangles results is considered
sufficient, based on the fluid grid and Yazdani’s convergence analysis [65). Then,
cach triangle in the mesh is projected onto a circle or biconcave capsule. Spherical

capsules have a radius ¢ = 1. The shape of the biconcave capsule is given by the

definition

{39) = acesiny cos @
(40) y = i%f({).?[}? +2.003sin® y — 1.123sin? ) cos
{41) 2 = gaosin ysin g

for equivalent radius ¢ = 1, a = 1.3858, and angles x, ¢ from 0 to 27 [46]. Addi-

tionally, the resulting biconcave capsule is inclined at a 45° angle with respect to the

horizontal in the zy-plane.




2.5.1 CAPSULE MODEL

The capsule’s elastic character is described by a finite element model. The cap-
sule itself is considered to be massless and composed of a network of zero-thickness
triangles, surrounding the interior fluid. By comparing a given triangle to its ini-
tial (undeformed) configuration, the strains and corresponding stress resultants on
each triangle may be computed. However, a deformed triangle is often no longer
in the plane of the undeformed triangle. While this rotation does not contribute
to the stress on the clement, it does complicate the comparison between deformed
and undeformed triangles. Consequently, for the purpose of calculating strains, the
approach of Charrier et al. is adopted [9, 52|, mapping the undeformed and deformed
triangular clements to the common z = 0 plane. Figure 3 shows the result of this
mapping for nndeformed triangle x;x;x; and deformed triangle X, X; X, In this
way, triangle deformation has been reduced to plane stretching and the displacement
vector u = X ~ x and the deformation gradient matrix Fj; = 435 = §,; + g—;‘:, for

dr,
&, 7 = 1,2, may be caleulated.

In the absence of body forces and acceleration, the principle of virtual work is

['30',"3' . ;o
(12) /V(E}X-:)(mjrﬂ =

in terms of Cauchy stress tensor components a5 and virtual displacements du;, being
integrated over volume V. While the determuination of the stress tensor for elastic
and viscoelastic membranes will be diseussed i the two subsequent sections, the
denvation of the finite elernent model is presented here. Since

o - a )
Oa—xi(a,;jdu_,-) = (OX O’,J)OTJJ ‘O X, (Ouj)

the principle may be written as

(14) ﬁ | % (si6u;)av = ]L a d(i, (5, )av.

dh; P, du, . . . .
Replacing L:J ;’ %ﬁig—f} - {d;' F.! on the right side of Equation (41) and using the

{13)

divergence theorem on its left sule, this may be written as

3]
{(45) -/n oi0u;dA = -/!'J'U ;” Foldv




Figure 3. Undeformed triangle x;x;x; and deformed triangle XX, X,. Tor the sake
of simplicity, ; and X; are mapped to the origin, while the edges x.¢; and X, X; are
mapped to the w-axis.

for components »; of the outward normal vector. Expanding arbitrary displacements

Au; in terms of linear shape function N, as du; = N’h’-u.ﬂ, the result is

(')Pu”
46 n;o;; NS dA = g, 00 Yav,
(16) [ noNiian= [ oS,
Contracting the surface traction force f’; == [1 n,,-rr,;l,f\.*'td,fl, the Equatiou simplifies to

HN!
(47) Plon = f 5, ‘,) Filoydv.

Assuming linearity of the linear shape function over the triangle, this simplifies to

ON
(18} Pff)u --m.*d F ‘o, V.

Since displacement r')'u;- is arbitrary, one may reduce and transpose:

JONY
R Vg

(49) Pj = 0;:Fy]

Lkd
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The lincar shape functions N and their cocfficients are defined as

(50) =Y — Uk
(51) b, =y — &;
(52) € = Tk ~ LkYj
(53) 240 = ai + by + €,
(54) yis et by + ¢

240
and N7 and N* are devived by cyeling i » j » & -» 1 [52]. As a result, Equation

{19) may be more clearly expressed as

(55) P P Pu =L F-T wp 0 ag :A_i/}:zdw_qh
1;‘_,,-[ Pyj Pyk QAD bj b)' bk 2 (),’ bJ bk

;g

in which Py, represents the force in the x-direction at vertex ¢ of the triangle, o is
the Cauchy stress tensor, and F is the deformation gradicnt tensor. The element
volutne V' is related to the undeforined area Ay of the triangle as V = A Ay A, for
principal stretches Ay, As. With the forces thusly calculated, thiey are mapped from
the xy-plane hack to global coordinates and summed over every triangle constituting

the membrane snrface.
2.5.2 ELASTIC STRESS

For a purely elastic capsule, the Cauchy stress caused by deformation is de-
termined using a two-dimensional constitutive law. Comprehensively discnssed by
Barthes-Biesel et al. [5], there are two hyperelastic constitutive laws of particular
interest here. First, a Mooney-Rivlin law, such as the neo-Hookean law, has purely
shear elasticity and, consequently, does not enforee surface area conservation. The

neo-Hookean constitutive law may be expressed hy the encrgy-strain relation
56 A7 _ E“ /\2 /\2 —‘2}‘—2 .
(“)b) W NH -- *é-( 1 + 2 + /\1 2 .;)

for shear elasticity modulus E, and principal stretches Ay, A, [9]. The principal

stretelies are the positive square roots of the eigenvalues of the right Canchy-Green

and the local conservation of surface area. The energy-strain relation for the Skalak

constitutive law considered here is

E,

(57) Wgk = T

(()n e = 22200 A — 2) — 200302 — 1) + C(A2A2 - 1)2)
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with the additional parameter €' representing the ratio of the area dilation modulus
to the shear modulus [5]. Measures of C for red blood cells are on the order of 10°, but
setting C' this large requires an impracticably small timestep [64]. This consideration
uses ' = 15, which permits some change in capsule surface area, while preventing
significant dilation or compression. Spherical capsules may be adequately described
by a neo-Hookean constitutive law; indeed, some dilation of a sphere is necessary for
any sort of deformation. For biconcave capsules, however, the incompressibility of
the membrane is a significant factor. Consequently, in subsequent results, spherical
and biconcave capsules are described by neo-Hookean and Skalak constitutive laws,
respectively. From these constitutive laws, the principal stresses may be derived for

the Neo-Hookean law as

LOWwy By r., 1
58 = = e (M sm)
(58) a1 Ar AN Adg \ ATAS

1 OWxn E : 1
59 S L R et (/\2 - =
(59) 72T N PYPYANE DYDY

and for the Skalak law as

B 1 dWggk _ E; 2,42 2/v242
(60) A T ok (,\j(,\1 1)+ O AN - 1))
: 1 (r)\‘VSK Eg 242 D22
1y T —— — - —_ + (. o} Lo )
(61) e b (/\?(,\2 1) + C(A\ A )2 (A2A2 1))

In concert with prineipal directions 8, 3, of the principal stretches Ay, A, the prin-

cipal stresses may be used to compose the stress tensor
(62) a = 0./3,08; + 023,03,

With o known, the forces caused by the deformation may be calculated using Equa-

tion (53).
2.5.3 VISCOELASTIC STRESS

[f the capsule has both shear elasticity and membrane viscosity, the relation be-
tween stress and strain may instead be described by a solid viscoelastic model. In the
Kelvin-Voigt (KV) model, also used in the preceding two-dimensional model, mem-
hrane stress is computed as the sum of elastic and viscous stress resultants. Schemnat-
ically, this may be represented by a spring and dashpot in parallel (see Figure 4). In

response to the instability caused by Kelvin-Voigt, observed for the preceding two
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Hs

Figure 4. Schematic of the Kelvin-Voigt solid viscoelasticity model

dimensional model and noted by Bagehi and Yazdani for a three dimensional model,
the standard linear solid (SLS) model is an attractive alternative. SLS considers a
Maxwell element (which has a spring and dashpot in sequence) in parallel with a
spring, as in Figure 5. Consequently, SLS approximates Kelvin-Voigt as the spriug
in the Maxwell element becomnes sufficiently stiff. Approximating Kelvin-Voigt with
SLS has the advantage of combining the improved stability of the SLS nodel with
the time-independent elastic modulus of Kelvin-Voigt. Following Yazdani and Bagchi
[63] and a convergence analysis (see Figure 12), the ratio of shear elasticity moduli
G = Lg“ = 50 is considered to be sufficiently large to describe Kelvin-Voigt. All sub-
sequent viscoelastic simulations using SLS are conducted with this approximation of
the Kelvin-Voigt model.

To determine the stress resultant &, the non-linear theory of viscoelasticity is em-
ployed, which deseribes the standard linear solid model, with neo-Hookean elasticity.

The resuiting constitutive stress-strain relation is
. - 1 V. ! E)Gu T
(63) R N R

I3 T

for deformation gradient F, right Cauchy-Green tensor G = F''F, shear modulus
o = %, and relaxation function g(t) = %Eme“f“" (11, 52]. Here, E,, is the shear
modulus of the Maxwell element and the relaxation time constant 7, = %—* is given
in terms of membrane viscosity g, This computational model can be adapted to

several viscoelastic paradigms. Since a two dimensional membrane is considered,
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Figure 5. Schematic of the standard linear solid (SLS) viscoelasticity model

incompressibility requires that hydrostatic pressure p is

. 1/ a|F|?
(64) = go| E I_z + 5 / gi{t = 7) '"“|‘}|
40

T

[n the interest of computational efficiency, the time integrals in Equations (63)

and (64) are approximated by assumning that G and | F|~? vary linearly over a single

timestep [52). With this assumption, one may define the integral in Equation (63)
at time ¢, as

tn ‘)
(65) I(t,) = / e n 08y

SO0 /7

Kuowing this integral at time t,, ¥t,,;) may be sunplified as

fm i 06
(66) 1(;.,1..H):[ JRTIRyI
Jo r)T

fn < tnt
:j E,_—(rn+| 'T}_J‘TR(‘?;G{ET +/ IF ftna1—7)/TR " ()G fT
0 (37“ te (9

-

and

G(tnt1) — Gita)

1 _ .‘_—:R_,’TR
dt (1—¢ )

(67) I(ﬁn_._l) - Efﬂdﬁ’/ml(f,t) + TR

The same procedure is followed for the integral involving | F|~2 in Equation (64). As

a result, the incorporation of membrane viscosity does not appreciably increase the

computational cost of the algorithm.
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However, the SLS method proposed here has a significant limitation: it is re-
stricted to the neo-Hookean constitutive law and, consequently, cannot be used for
a Skalak-like constitutive law. Consequently, for the remainder of this work, the vis-
coelastic model is only used with spherical capsules. To overcome this limitation, the
more general and powerful approach developed by Yazdani and Bagchi is necessary,
of which the previous algorithm is a felicitous special case [63]. A very brief depiction
of their model follows:

The elastic stress in Equation (62) is decomposed into its deviatoric and volu-

metric parts, as
v . ety t'oil
(68} . =" to

and calculated using the shear elasticity modulus E(0) = E, + E,,. Additionally, the

time-dependent shear maodulus is written as a Prony series, as
(69) E(t) = E,+ E e /™,

a formalism that may be extended to an arbitrary number of Maxwell elements by the
addition of the corresponding expounential decay functions. With these definitions,
the viscoelastic stress-strain relation may be written as

1 dE(s)
E(0}) ds

t
(70) O = %" +SYM (/ FoUt—5)- 0%t —s) Tt — s)d.s') + 0"
0

in which F,(t — s) = %%‘l is the deformation gradient between times t — ¢ and 1.
The operator SY M enforces the theoretical symmetry of the integral. In the interest
of simplicity, the volumetric stress has not been transformed, although a similar
process suffices to do so. The munerical analysis necessary to efficiently compute
this Equation is non-trivial, and has been clearly worked out in Dassault’s ABAQUS

Theory Manual [14].
2.5.4 BENDING STIFFNESS

Helfrich's formulation of the bending energy of a zero-thickness membrane is given
as
7 EB 2 v 1
(?1) W, = ? (2?‘\,‘ - C{]) dS + Eg n“{gds
s Js

for the bending stiffness modulus £ of mean curvature, the bending stiffness mod-

ulus E, of Gaussian curvature, capsule surface area S, mean curvature x, Gaussian
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curvature . and spontaneous curvature ¢q [64]. For a closed surface, [ xqdS is in-
variant, according to the Gauss-Bonnet theorem and, consequently, may be omitted.
For the first integral in Equation (71), on the other hand, Ou-Yang and Helfrich [41]

take the first variation and derive the bending force density at a node as
(72) £, = Eg [(2,{ 4 ) (282 — 2y — cor) + 2 Arp K|,

in which App is the Laplace-Beltrami operator. Spontaneous curvature ¢p is not
sitnply the three dimensional analogue of the two dimensional preferred curvature
ko. For spherical capsules, the choice of spontaneous curvature is ¢ = 0, which
indicates that the membrane does not have an internal/external asymmetry and leads
to £, = 0 for the undeformed sphere. Several spontancous curvatures are considered
for biconcave capsules and discussed in more detail in Chapter 4.

The curvature of the capsule at each node was calculated using the quadratic
surface fitting approach described by Garimella aud Schwartz [26]. For each node X,
the outward unit normal vector for each triangle surrounding X, is caleulated and an
unweighted average of these vectors is used as an approximate outward unit normal
vector fi to X,. Based on this normal vector, the rotation matrix R = [r}, 1y, r4)7

may be constructed, in which

(I — an’)i
73 S
%) A aaT
(74) Iy =Tz XTI
(75) r = f

for 1 = x. This rotation wmatrix is used to map each neighboring node X; of node

X, according to the equation
(76) x' = R(X; -X,)

Using these n neighboring nodes (between 5 and 6, depending on the particular

node}, a system of Equations is constructed, as

a
ooy ¥ox oyl |b 23
{77) : | =
Ii LnlYn y?. In Yu d Zn
€&
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Figure 6. Neighborhood of vertex point P on the spherical surface. The dashed lines
enclose the Voronoi region about ?, based on the circumcenters of the triangular
clerments.

The icosahedron-based mesh has 12 nodes with n = 5, while the remainder have
n = 6. [f n = b, the system of Equations is determined and is solved with LAPACK’s
DGESV routine [3]. For n = 6, the system is over-determined and a least-squared so-
lution is found using LAPACK's DGELS routine [3]. From the solution, calculations

may be made for Gaussian curvature k,,

(78) o Aae — b2
o (1+ d? + )2

mean curvature R,

a+ ¢+ ae? + ed? - bde
(14 d? 4 €2)3/2

(79) K=

and an improved unit outward normal vector n

= LR
(1+ % + 7)1

(80)

The discrete Laplace-Beltrami operator, acting on mecan curvature ~ at node X,
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, tnay be represented as

1
(81) A r(X,) = = - oy [K(Xp) - K(X)

JEN(X,)

for nodes Xj belonging to the set N(X,) of nodes which neighbor X, [50]. The
approach of [44] is followed, in setting the weights w; as
_cot{a;) +cot{3;)
- 2

(82) wj

in which a; and f; are defined as in Figure 6. Similarly, the normalization factor d

is defined with the Voronol region ayer,

(83) d = ayor = é Y [eot(ay) + cot(B)] X, — X2
JEN{p)
as given by [37] and depicted by area enclosed by the dashed line in Figure 6.

For biconcave capsules, net compressive or dilatory bending forces can lead to
changes i the capsule volume. To maintain an approximately constant volume of
the capsule, a penalty function is employed, which produces an isotropic force to
counter the change in volume. Borrowed from Yazdani, the definition of the penalty

function is

Ve — Voo

r
o)

( 84 ) fw'_;l = [{t.'

for capsule volume V;, initial capsule volume Vg, and penalty coeflicient K, [65].
This force is then added to bending and elastic {or viscoelastic) forces, which are

distributed to the fluid by Equation (21).
2.5.5 VALIDATION

The results from this algorithm are compared with published data for the de-
formation of spherical capsules in shear flow. First, an elastic capsule at different
capillary numbers is considered in Figure 7, against the results of Sui et al. [57] using
a front-tracking lattice Boltzinann method, and Ramanujan and Pozrikidis [49] us-
ing a boundary element method. The algorithm proposed here slightly outperforms
Sui et al. at larger Ca, being closer to the higher-order method of Ramanujan and
Pozrikidis. Second, a comparison with Le [34] is made for different levels of bending

stiffness.  The results compare well, except for By = 0, where Le’s method over-

shoots the results of the method proposed here. This is somewhat surprising, given




29

i ,l--—— Prasent method
| © Sutet al
I R&P

Ca=0.2 03500 0 (g
04sf :e'fi)’g—‘

: 4(46 ~ Q_O_Q_Q..Q_Q.,Q__Q._
S AT

_ Q_Qd_Q_Q_O_._Q__D_.W; e}
H”H Ca=0.05

el r—————
esr T Eazwo.ozfs

SLw RGNS A

T o

DX\'

f Ca=0.0125
0 P I I | TSI WOTT TR
0 1 2 3 4

k*dt

Figure 7. Comparisons for different capillary numbers Ca at V = 1, with Ep = 0 and
n = 0. Open circles are from Sui et al. [57] and filled triangles are from Ramanujan
and Pozrikidis {49).

the general robustness of Le’s thin-shell method; due to the excellent agreement with
Ramanujan and Pozrikidis for these parameters in Figure 7, the deviation here seems
acceptable. Third, an additional comparison with [57] and [19] is conducted in Figure
9 for a fluid viscosity ratio V = 5, to evaluate the Heaviside approach for smooth-
ing the viscosity jump across the capsule interface. This algorithin performms well, in
terms of approaching the results frotu the boundary element method. Though the al-
gorithm still overshoots Ramanujan and Pozrikidis as the capsule enters steady-state
behaviour, particularly for Ca = 0.2, it clearly outperforms Sui et al. in steady-state.
This last result is a pleasant surprise, since Sui ef al. used somewhat finer Eulerian
and Lagrangian weshes than are emploved here.

Additionally, while there is not extensive published data with which the vis-
coelastic algorithm may be compared, its general behaviour may be evaluated. The
convergence of the viscoclastic algorithm is considered in Figure 10 for increasingly
fine meshes and is seen to converge nicely. Figure 11 considers the initial deformation

of a spherical capsule with a viscoelastic membrane and varied 7. The shear elasticity

ratio ¢ = 50 is fixed for each 7, so that the model approxiruates the behaviour of
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Figure 8. Comparisons for different bending stiffness E,, with Ca = 0.05, V = 1,
and n = 0. Filled circles are from Le [34].
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Figure 9. Comparisons for different capillary nimbers Ca at V = §, with E, = () and
n = 0. Open circles are from Sui et al. (57} and filled triangles are from Ramanujan
arxl Pozrikidis [49].
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Figure 10. Convergence analysis of the viscoelastic model with capsule meshes having
N = 1280, 5120, and 20480 triangles. Capsule parameters are Ca = 0.05, £, = 0,
V=1 n=10 and ¢ = 5.

Kelvin-Voigt. To consider the convergence of the model to Kelvin-Voigt as G be-
cowes large, Figure 12 compares G values for a given . As the difference between the

deformation for &' = 10 and & = 25 is almost indiscernible, using G = 50 certainly

seems sufficient to approximate Kelvin-Voigt.
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CHAPTER 3

RESPONSE AND RECOVERY OF CIRCULAR AND

SPHERICAL CAPSULES

Diaz and coworkers [20] considered the response and recovery of an elastic capsule
in clongational flow. Finding that the capsule’s response and recovery times could
be determined by an exponential fitting of the Taylor deformation parameter, they
investigated how these characteristic times depended on simulation parameters such
as the fluid viscosity ratio and the capillary number. The response and recovery
tunes of a capsule are important to understanding how a capsule will react in more
complicated, time-dependent flows, as arise in medical and industrial applications
[22]. Diaz et al. [19] extended their consideration to the response of a viscoelastic
capsule in clongational flow and compared the respective impacts of different finid
and membrane viscosity ratios.

However. many of the attractive aspects of elongational fow, such as simpler
computation due to axisymmetry, may also potentially restrict the applicability of
its results. For instance, fluid and membrane viscosity ratios do not affect the steady-
state shape of a capsule in elongational low, and the capsule’s membrane does not
rotate around the capsule [8]. In contrast, the deformation of a capsule in shear
flow has dynamical and angular aspects which do not occur in clongational flow.
Additionally, the steady-state shape of a capsule in shear flow depends on a range
of parameters — capillary number, bending stiffness, membrane and fluid viscosity
ratios — as do the capsule’s angle of inclination and tank-treading frequency.

Nonetheless, Diaz and coworkers [20] applicd their exponential-fitting methodol-
ogy to the results of Ramanujan and Pozrikidis [49] for the deformation of a spherical
capsule in shear flow. They found instructive parallels between their results, includ-
ing a near coustant ratio between response times in elongational and shear flows, for
capsules with equal steady-state deformation, as measured by the Taylor deforma-
tion parameter. This striking comparison, however, is imited because Ramanujan

and Pozrikidis did not model the membrane viscosity, and neither study incorporated

bending stiffness. This chapter considers the analogy in more complete two and three
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dimensional settings, with elastic and viscoelastic capsnles that may resist bending

and have a non-unity fluid viscosity ratio.
3.1 SETUP

An initially unstressed circular or spherical capsule was positioned in the cen-
ter of the shear flow domain. Shear flow deformed the capsule until the system
had reached its equilibrium behavior. During this process, the Taylor deformmation
parameter D, increases from 0 to a maximum value Dy, at time #,,.. Subse-
quently, at equilibrium, D, either maintains a near-constant value or undergoes a
damped oscillation, depending on the steady-state behaviour. The shear flow was
then stopped, by adjusting the boundary conditions. Denote this stopping time as
tstop and let Dgygy = Doy (tstop), after which the system was allowed to relax. As a
result, the capsule gradually recovered its initial circular shape and D,, — 0. An
instance of deformation and recovery is displayed in Figure 13, with 4 = {,,., and
B =t . Though it often is the case that Dy & Dyop. this is not necessary, and
does not occur for large V' and/or 7.

Previous experimental and theoretical studies have generally measured the recov-
ery process with respect to the membrane stretch ratio A (or an equivalent parameter)
[13, 21], or the width-to-length ratio # [7]. The Taylor deformation parameter has
been chosen here for two reasons. First, it is currently the standard metric for mea-
suring the shape changes of capsules and was used by Diaz’s group {19, 20]. Second,
it reflects, however imperfeetly, the entire capsule shape, rather than the foeusing
on a particular segment of the shape. It does not uniquely represent the eapsule’s
shape, but neither do the other metries.

Both the deformation and decay curves of the Taylor deformation parameter
were found to be approximmately exponential, as Diaz and colleagues had proposed
[19, 20]. A least squares method is used to determine the capsule’s response and
recovery times by fitting exponential functions to Dy,. First, the response time 7, is

determined with the model
(85) Day(t) = Dy [1 = ¢ ¥*™)],

fitted to Dy, over the interval t = [0, tyee]. where k is the fluid shear rate. Second,

the function

(36) Dyy{t) = Dyple™ /)]
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Figure 13, Example of spherical capsule shape deformation and recovery. Points 4
and B indicate times {0, and ¢gp, respectively. Simulation parameters are Ca = 0.1,
E, =0, V=5 and =1

is fitted to Dy, for ¢ = [top, 00] to define the recovery time 7. Since Dy, and
Duop are factored out, the response and recovery times characterize how quickly the
capsule arrives at the steady-state deformation and recovers the original shape, re-
spectively, independent on the extent of deformation or recovery. A large response
or recovery time indicates a slower response or recovery process, since it describes a
slow exponential decay in the models. Figure 14 shows an example of a D, curve
compared with data points from the best htting response and recoverv exponen-
tial curves; the exponential curves provide sufficient, if imperfect, deseription of the
sinulation results.

In general, exponential fittings for the response and recovery models had a cor-
relation coefficients R2 > 0.99. However, this failed to be the case iu two sets of
instances. For larger F, the recovery model was less accurate, with 2 as low as
0.92. Also, for high V or 5, the response model only had correlation coefficients
R? > 0.97. Iu contrast, Diaz et al.’s fitting for response times in elongational flow

had correlation coefficients in excess of 0.98 in all instances [19)].

This simulation and analysis was performed for circular and spherical capsules in




36

02
[ I e S
& '|
015 & .
[ ¢ i
| 4 i
4 |
Zoq k4 5
a . I III. ?
3 7
| U
0.05 4 &
T Y
I » ‘.
j .
1 N
N S L e
eu 2 4 = t

Figure 14. Example of exponential fitting for sphere with Ca = 0.05, E, = 0.025,
V=1andn=90

two and three dimensions, respectively, For both settings, sirnulatious are conducted
for a variety of the four dimensionless parameters: Ca, Fy, V, and 7. In this way,
the roles of each parameter in determining the characteristic times of capsule shape
change can be isolated. In the following graphics, the paratneter being varied is
placed on the z-axis, with the dimensionless response time k7, and recovery time
ktr on the y—xis. Additionally, when useful, the characteristic times are considered
in the context of their respective timescales, using the notation and definitions of

Yazdani and Bagchi [63].
3.2 CAPILELARY NUMBER

Figure 15 shows response and recovery times over a range of capillary numbers
for circular and spherical capsules. The constant parameters in the two and three
dimensional settings are comparable, but not identical. The relationships between

the characteristic times and the capillary number are quite simitar for the circle and

sphere: recovery time k7, is almost directly proportional with Ca, while response
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Figure 15. For circular (left) and spherical {right) capsules, response times 7, (solid
lines and rectangles) and rccovery times 7. (dotted lines and triangles) from sim-
ulations varying capillary numbers Ca. Unvaried parameters for circular capsules
are £y = 0.05, V = 1, and = 0. Unvaried parameters for spherical capsules are
Ey=0025,V =1,and = 10.

time k7, rises linearly but modestly with Ca. The basic result is intuitive, as in-
creasing Ca means that the capsule's reaction to deforming fluid forces or the lack
thereof 1s decreased. Thus, it takes louger for the capsule to either reach steady-state
deformation or recover the initial shape.

To understand the sharp difference in how strongly the characteristic times de-
pend on Ca, it is worthwhile to consider the characteristic times normalized by the
elastic timescale 1, = %{‘“—“ Plotted in Figure 16, the normalized recovery time 7, /7.
is nearly constant for Ca > .1. Conversely, the normalized response time 7,/7, con-
tinnes to decrease as Ca rises. This contrast between response and recovery seeins
reasonable, as the recovery is driven (in part} by the stored elastic energy in the
capsule, which is proportional to Eg, and it would be plausible to expect the recov-
ery time to be inversely proportional to the stored elastic energy. Thus, normalizing
the recovery time by a timescale that is also inversely proportional to F; naturally
produces an approximately constant value. For very small Ca with circular capsules,

k7 s too large for this relationship to hold. One possible explanation is that, when

shear flow is stopped at the boundaries, it takes a small amount of time for the flow
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Figure 16. For circular {left) and spherical (right) capsules, normalized response
(solid lines and rectangles) and recovery times (dotted lines and triangles) from the
simulations in Figure 15. Characteristic times are normalized by the shear timescale
Te-

nearer to the capsule to slow. While this delay is too small to alter the relationship
for the longer times that a larger Ca requires, it may account for the deviation shown
here. On the other hand, capsule deformation is driven by a continual flow adding
energy to the fluid-structure interaction system. As a result, increasing the capillary
number leads only to a small increase in k7, with the rate of increase declining as
Ca rises.

Diaz and coworkers [20] generally observed the same relationships seen in Fig-
ure 16 during their simulations using elongational flow, including the near constant,
normalized recovery time 7,./7.. However, one significant diflerence is observed: in
elongational flow, 7, /7, starts to increase when Ca is very large. The reason for this
discrepancy seems to be the difference between what constitutes a large capillary
number in elongational and shear flows. For Diaz and coworkers, the increase is
observed for Ca i the range of 0.06 - 0.08, while capsule breakup (due to excessive
deformation) in their elongational flow occurs near Ca = (0.09. Oun the other hand,
the maximumn value of Ca = 0.4 considered in the two and three dimensional models
of shear flow does not approach the value at which breakup occurs.

Ultimately, two general observations may be made, based on these results. First,
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the capsule’s elastic character has substantially different effects on the shape defor-
mation and recovery of circular and spherical capsules; one process is not simply
the reverse of the other. Second, the two and three dimensional models produce
nearly equivalent qualitative results, though the constant ratio 7,./7. is cleaner for
the spherical capsule. This similarity occurs despite a Hookean law being used for

the circular capsule and a neo-Hookean law for the spherical capsule.
3.3 BENDING STIFFNESS

Bending stiffness is modeled rather differently in the two and three dimensional
versions of the algorithun. In two dimensions, bending stiffness is associated with a
specific preferred curvature for each element of the capsule. As elements of the capsule
deviate from that curvature, bending moments result. For an undeformed circular
capsule, no bending moment exists in Equation (32) and, as a result, no bending
forces result. On the other hand, in three dimensions, bending energy depends on
spontaneocus curvature ¢g. For a sphere, ¢g = 0 makes the resultant force in Equation
(72) equal to zero. Thuws, it is the first variation that is minimized by the spontaneous
curvature, and not the bending energy in Equation (71}

A comparison of the response and recovery times of circular and spherical cap-
sules over a range of bending stiffnesses £y is shown in Figure 17. A clear inverse
relationship between At and E, may be observed for both the circular and spherical
capsules. In both settings, a capsule with £y, = { still recovers its shape, thanks
to the hydrodynamics, and k7, — 0 as Ej becomes large. Thus, increased bending
stiffness causes the capsules to recover their initial shapes more quickly, independent
of the extent of the deformation from which they must recover.

This similarity, however, does not extend to the response times: while the spher-
ical capsules' kr; has the same inverse relationship with £, that &7, has, this is not
the case for circular capsules. Instead, k7, undergoes ounly a slight, almost linear
decline as F rises for circular capsules. Thus, in addition to decrcasing the extent
of the capsule deformation, as was clear in Figures 2 and 8, bending stiffness also
decreases the time that it takes for the capsule to reach steady-state. However, this
decrecase is much less for circular capsules than spherical capsules.

Thus, a meaniugful difference exists here between response and recovery times,

in the two and three dimensional models. In the three dimnensional mode, the role

of bending stiffness in altering the time necessary for shape change is qualitatively
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Figure 17. For circular (left) and spherical (right) capsules, response times 7, (solid
lines and rectangles) and recovery times 7, {dotted lines and triangles) from simula-
tions varying reduced bending stiffness moduli Fy. Unvaried parameters for circular
capsules are Ca = 0.04, V = 1, and n = 0. Unvaried parameters for spherical
capsules are Ca = 0.05, V = 1, and 5 = (.

symuietric for response and recovery, while these processes are asynumetric in the two
dimensional model. Interestingly, for larger £, in both two and three dimmensions,
k7, & k1, which suggests that for a sufficiently stiff capsule, the particudar model of

bending stiffness being used does not make a significant difference.
3.4 FLUID VISCOSITY RATIO

As the method for implementing a non-unity fluid viscosity ratio in Chapter 2
is identical for the two and three dimensional versions of the model, it would be
natural that characteristic times have the same relationships with V for circular and
spherical capsules. As may be seen in Figure 18, this is indeed the case. Both kTt
and k7, have approximately linear relationships with V', with the time required for
response and recovery increasing with the fluid viscosity ratio. Note that the steady-
state deformation of a capsule with small V' is, ceterts paribus, much larger than a
capsule with a larger V {(compare, for instance, a given Ca in Figures 7 and 9). As

the response and recovery times shown here are independent of the extent of the

deformation, taking into account the extent of the deformation means that the time




41

L ———— 1.5
£
--—a— KT, : . P
e
- &= kT, - L
e . .
151 . ! K
. P+ -
4 -,
- 7’
P
X 1} - - P e
x - X ,
v " el
- B o
e T , e
A e 05k e -
. T , e
osp - o &
L
@
»n/
1 P | L 1 s i 1 1 1
0
0 i 2 3 4 5 0 2 4 § ? 10
v v

Figure 18. For circular {left) and spherical {right) capsules, response times 73 {solid
lines and rectangles) and recovery times 7, {dotted lines and triangles) from simula-
tions varying fluid viscosity ratio V. Unvaricd parameters for circular capsules are
Ca = 004, E, = 0.05, and = 0. Unvaried parameters for spherical capsules are
Ca =0.05, £, = 0.025, and 7 = 0.

necessary for response or recovery seems to grow even more guickly with V.

As Ramarmmjan and Pozrikidis have noted, increasing V has the effect of decreasing
the ratio of “deforming stresses to restoring tensions” [49]. The difference between
how strongly the characteristic times depend on V' is the same reason noted in the
discussion of the capillary number, except from the opposite side of the coin: recovery
is driven by the dissipation of finite amount of encrgy stored in the membrane, while
deforming stress s supplied by the continual shear flow. Thus, the speed of the
capsule’s recovery process i1s more adversely impacted by a high fluid viscosity inside
the capsule than is the capsule’s response to deformation. As V' — 0, during which
the capsule’s response and recovery is {relatively) nnimpeded by the finid inside the

capsule, the characteristic times tend toward A7, & k7,.
3.5 MEMBRANE VISCOSITY RATIO

Though a Kelvin-Voigt viscoclastic model is described in both the two and three
dimensional simulations, the membrane viscosity ratio had very different relation-

ships with the characteristic times in two and three dimensions. Seen on the left
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Figure 19. For circular (left) and spherical (right} capsules, response times 7, (solid
lines and rectangles) and recovery times 7, {dotted lines and triangles} from simula-
tions varying membrane viscosity ratio . Unvaried parameters for circular capsules
are Ca = 0.04, Ey = 0.05, and V' = 1. Unvaried parameters for spherical capsules
are Ca = 0.05, Fp = 0.025, and V = 1.

side of Figure 19, both &7, and k7. were virtually independent of the membrane vis-
cosity ratio » for circular capsules; ounly the slightest of increases in k7, and k7, are
observed. While the range of 7 considered was, admittedly, not large, the shapes of
the capsules considered were also identical. Though the largest  vahie shown here
does not represent an upper bound, meaningfully larger n led to instabilities in the
two dimensional Kelvin-Voigt model.

On the other hand, in three dimensions, the characteristic times displayed a
clear linear dependence on n, as on the right side of Figure 19. Here, the superior
stability of the SLS implementation of Kelvin-Voigt allowed much larger n values to
be considered. Still, even for n < 4, the difference between cireular and spherical
capsules is substantial. It is possible that the SLS implementation of Kelvin-Voigt is
to blame for the difference, but it is not apparent how: Figure 12 shows that the model
clearly approaches a shear elasticity modulus ratio G-independent approximation of
Kelvin-Voigt. More likely, the difference is caused by the dimensions of the problem.

Stress in Kelvin-Voigt is proportional to the derivative(s) of principal stretch(es) A

with respect to time. As a result, it may be that the two principal stretches in three
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Figure 20. For spherical capsules, normalized respouse {solid lines and rectangles)
and recovery times {dotted lines and triangles) from the simulations in Figures 18
(left) and 19 (right). Characteristic times are norinalized by the shear timescale 7.
{left) and viscoelastic timescale 7, (right).

dimensions undergo significantly larger changes in time than the single principal
stretch in two dimensions.

More interestingly, for spherical capsules, the relationships between the charac-
teristic times and 5 display a striking qualitative similarity to the aforementioned
relationships with V. Further, the similarity remains when each set of results is
normalized in Figure 20 by its respective timescale: elastic timescale 7, = ‘—I{‘—“ for
the variation of V and viscoelastic timescale 7, = f;— for the variation of n. The
result is, perhaps, unprofound: whether solid or fluid, viscosity is the same basic
physical quality and, as a result, ought to have comparable basic inpacts on the
fluid-structure interaction. Yet it is nonctheless promising: perhaps the model may
be simplified by using a fluid viscosity ratio to approximate the cffects of a membrane
viscosity ratio, or vice versa. Alternately, perhaps the fluid and membrane viscosity

inodels could be accurately incorporated into a single model. These suggestions will

be revisited in Chapter 5.




CHAPTER 4

SHAPE RECOVERY OF BICONCAVE CAPSULES

4.1 TWO DIMENSIONS

A biconcave capsule in shear flow has several types of steady-state behaviour.
Skotheim and Secomb’s theoretical investigations of bicoucave capsule dynamics sug-
gest three distinct behaviours: (1) tumbling, (2) tank-treading with oscillations in the
angles of inclination, and (3) intermittent tumbling and tank-treading [54]. In gen-
eral, a tumbling capsule is characterized by flipping end-over-end, as if it were a rigid
body. Consequently, while there is shape change during tumbling behaviour, a bicon-
cave capsule remains largely biconcave. Ou the other hand, tank-treading involves
the membrane rotating around the capsule. During tank-treading, the shape of the
capsule and its angle of inclination may undergo periodic oscillations. In the event of
significant angular oscillations, this may be denoted as a separate behaviour: ‘swing-
ing”. The intermittent behaviour has been further clarified by Yazdani and Bagchi,
who have identified a new behavionr they call ‘breathing' [64], in which the cap-
sule undergoes significant shape changes without angular oscillations. Simulations
have shown that the capillary number, bending stiffness, fluid viscosity ratio, and
membrane viscosity ratio all play some role in determining a capsule’s equilibrium
behavior 40, 54, 56, 63, 64].

However, the terminology in this consideration will be restricted to tauk-treading
and twmbling. Beyond the obvious advantage of simplicity, there are two reasons for
such a restriction. First, juxtaposing tank-treading and tumbling capsules provides
an instructive comparison in itself, as these behaviours occupy relatively opposite
positions in the parameter space. Each capsule parameter can be meaningfully varied,
while waintaining the same sort of equilibriutn behaviour. Second, the subtler modes
explored in [64] are not accessible with a two dimensional moedel, due to both the
simpler geometry and the important differences between bending stiffness in two and
three dimensions.

For ensembles of biconcave capsules with both tank-treading and tumbling steady-

state behaviours, the capsules are deformed in shear flow. After the capsules reach




steady-state behaviour, the shear flow is abruptly stopped. For reasons that will be
discussed later, shear flow is stopped when tumbling capsules have a reached a spec-
ified angle of inclination and when the membranes of tank-treading capsules are at a
specific point in their rotation. The capsules subsequently undergo a relaxation pro-
cess and, except for one case, recover their initial biconcave shapes. These recoveries

are 1odeled and their dependence on simulation parameters is compared.
4.1.1 TANK-TREADING CAPSULES

A tank-treading two-dimensional biconcave capsule, deformed in shear flow, has
an oblong, oval shape [56]. While the capsule membrane tank-treads in the clockwise
direction in the equilibrium state, the Taylor deformation parameter and angle of
inclination undergo small oscillations. Denote (he time when shear flow s stopped as
tstop and let Dyeop = Doy (tstop). After 85, it is observed that the Taylor deformation
parameter briefly decreases from Dy, to a minimun value Dy, at a time which is
denoted ¢,,,;,. Subsequently, D,, undergoes a much slower and longer increase back
to its undeformed value, Dy = 0.812. Call this final value D, and the time at which
it is achieved 1.

An example of the recovery is depicted in Figure 21, with Dgop, Dipin, and Dy
heing reached at times A = ty4, B = ty, and C = t,, respectively. The corre-
sponding capsule shapes at these times are shown in Figure 22. Note that, beyond
the capsule shortening, little shape change occurs between A and B. Nor does tank-
treading occur within this interval; the position of the capsule node denoted in Figure
22 is nearly identical at A and B. In contrast, the major curvature changes necessary
to return to biconcavity oceur almost eutirely between B and C.

The only exception to this behaviour occurred for capsules with E, = 0. In
such cases, the initial behavior was similar to capsules with bending stiffuess: after
shear low was stopped, Dy, declined modestly over a short interval, from a Dgp to
a Dnin. However, upon reaching Dy, the capsule underwent no further significant
change it shape; thus, Dy, = Do. Figures 23 and 24 display the Taylor deformation
parameter after shear flow is stopped and the shapes corresponding to the denoted
times, respectively. As before, designate A = t,,,, B = tpn, and C = t. With
Ey = 0, the explicit curvature preference ky has no effect. Since an explicit curvature
preference is the only aspect of the model related to the biconcave shape, this shape

is not recovered.
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Figure 21. Shape recovery in terms of Dy, for a tank-treading capsule with bending
stiffness. Capsule parameters are Ca = 0.067, £, = 0.0014, V' =1, and y = 6.

35

325¢

Figure 22. Shapes corresponding to times A (dashed), B (dotted), and € (solid) in
Figure 21. Solid circles indicate the current position of an element initially located
at the end of the undeformed capsule.
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stiffness. Capsule parameters are Ca = 0.135, £y, =0, V =1, and n = 0.
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initial shape (solid) in Figure 23. Solid circles indicate the current position of an
element located at the end of the undeformed capsule.
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The non-monotonic recovery path in Figure 21 suggested that perhaps two dis-
tinct physical mechanising were present: one acting over a brief timescale and ac-
counting for the initial decline in D,,,, and another causing the shape recovery and
operating over a longer period. To test this hypothesis, it seemed that modeling the
recovery in two phases would be instructive. Exponential curves were fitted to the
initial phase, from Dyop t0 Dmin, and the latter phase, from Dy, to Dy, and the

values of ATg were compared. The resulting model equations, then, are

(8?) ny(r) = Dmin t- (Dstup - Dmin) f-’_t;(krm)

(88) Dig(f) = JD-—,L + (Dmin _Dw)(:"t/(k“'HZ)

over the time intervals [taop, tmin] and [fmin,ts), respectively, with the beginning
of each interval reset to ¢ = (. The same least-squares approach from Chapter 3
was used for the exponential fitting. Let A7y and Arps denote the recovery times
which characterize the initial and latter phases, respectively. The fitted results had a
coefficients of correlation R? > 0.95 and the majority of cases were in excess of 0.98,
The poorest fits occurred for Argpy at small Ca, perhaps due to the same lingering
flow observed at small Ca for circular capsules.

An ensemble of capsules with varied simulation paranicters were considered,
within the tank-treading parameter space, and the results are displayed in Figures 25
— 28 In cach fipure, a single parameter is varied, while all others remain constant.
The fundamental difference between the recovery times which characterized the two
phases was their duration: krgy was generally O{1071) and Aty was typically O(10).
Further, significant differences were observed between the roles of a given sitnulation
parameter in the two phases. To facilitate such comparisons, the vertical axes in
Figures 25 — 28 were scaled such that the right axis, for k7gs, was 100 times Arg(’s
left axis.

The capillary number had the same role in both phascs, as both ktp and krps
were nearly directly proportional with Ca in Figure 25. These relationships with the
capillary number are thus quite similar to that of Ca and A7y for a circular capsule.
In contrast, in Figure 26, it was found that Arp, was approximately inversely pro-
portional with £y, During the first phase. however, the recovery time A7p, decreased
only slightly for larger bending stiffness. The fluid and membrane viscosity ratios

had opposing roles over the two phases, as may be seen in Figures 27 and 28. It

may be observed that k7p, was alinost directly proportional with V', but there was
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Figure 25. For a tank-treading capsule, g (triangles, left axis) and Arpy values
(squares, right axis) are compared for different Ca. The relationships between the
parameter and the recovery times are approximated by solid (k7 ) and dotted (k7o)
lines. Unvaried parameters are Ey, = 0.0014, V = 1, auxd 5 = 0.

a much weaker linear relatiouship between Voand the initial recovery time krgy. On
the other hand, while a significant hnear relationship prevailed hetween Arg, and
77, the latter recovery titne A7y, was clearly independent of the membrane viscosity
ratio.

[ sun. the first phase of recovery is dominated by the capsule’s viscoelastic char-
acter. Bending stiffness is irrelevant and the fluid viscosity ratio plays a secondary
role. Indeed, for 5 > 0, oue might make the approximation krpy ~ Ca - 5. This is
significant because Ca-n ~ £, the viscoelastic relaxation time used to characterize
recovery from micropipette aspiration and optical tweezing with the Kelvin-Voigt
model (13, 21, 28]. A comparable approximation of the sccond recovery phase would

' CaV
be krpy ~ T

This phase focuses on the necessary changes for the capsule to
return to its biconcave shape and for capsule elements to return to their initial po-
sitions. In general, the dependence of 742 on capsule parameters is very similar to
the recovery times k7 of a circular capsule: direct proportionality with Ca, inverse
proportionality with £y, and a strong linear dependence on V.

Further, the two order of magnitude difference in scale is also consistent with
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Figure 27. For a tank-treading capsule, k7ry (triangles, left axis) and k7py values
(squares, right axis) are compared for different V. The relationships between the
parameter and the recovery times are approximated by solid (k7p,) and dotted (krgy)
lines. Unvaried parameters are G = 0.067, £y, = 0.0014, and n = 0.
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Figure 28. For a tank-treading capsule, Arp; {triangles, left axis) and Atge values
{squares, right axis) are compared for different 7. The relationships between the
parameter and the recovery times are approximated by solid (k7g;) and dotted (A7re)
lines. Unvaried parameters are G — 0.067, Fp = 0.0014, and V = 1.

experimental results. Evans and Hochmuth's measuremnents from micropipette as-
piration measured Arp ~ 107! seconds [21]. On the other hand, Fischer reported
measuring 10 — 30 seconds for experiments of the shape recovery of red blood cells
from tank-treading in shear flow {25 . One wonders if such a contrast may be cx-
plained by the two phases proposed here. Recovery fromn micropipette aspiration
involves a small part of the membrane recovering from enormous viscoelastic stress,
which is described by the first recoverv phase. However, since micrapipette aspiration
does not involve the entire cell changing shape, the longer second recovery phase is
absent. On the other hand, as seen here, recovery from tank-treading in shear flow
necessitates both phases and consequently occurs over a much longer time.

An additional factor in the time course of shape recovery was the phase angle.
Adopting the definition by Le [34), the position of an element membrane is quantified

in terms of its phase angle 3 as

(89) A(t) = a(t) - 6(t) - [a(0) - 8(0)],

in which «(t) and 6{t) are the enrrent inclinations with respect to the flow field of a




Figure 29. The angle of inclination ¢ of the capsule's major axis and the angle of
inclination « of a membrane element (filled circle) are measured with respect to the
z-axis, using the center of the capsule as the origin. Note that for a point at the end
of the capsule (filled square), 0 = ¢.

wembrane element and capsule’s major axis, respectively, and «(0) and #(0) are the
initial values of these angles. A depiction of # and « is given in Figure 29. For a two
dimensional simnulation, the dependence of the recovery on the phase angle is due
to membrane elements having a preferred curvature; consequently, a given cleinent
of the capsule returns to the same (or opposite, homologous) position it held prior
to the deformation and where it was unstressed. If phase angle 3 is small, then the
capsule will recover its shape more quickly than for a larger phase angle. Figure 30
compares the shear recovery of tank-treading capsules with phase angles 3 of (.11
and .49 radians at the stop of flow for an elenient initially at the end of the capsule,
but identical paramecters otherwise. Note that this phase angle helps deterinine the
capsule’s angle of inclination after shape recovery. To control for the dependence of
the recovery on the phase angle, the ensemble of above simulations were conducted
with J = 0.49 radians for an element initially at the end of the capsule. Thus, two
dimensional tank-treading capsules display shape memiory, as a trivial consequence

of the capsule’s explicit. preferred curvature.
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Figure 30. The shape recovery of capsules with phase differences of 0.11 (solid line)
and 0.49 {dashed line) radians are compared at times &*df = 0, 12.5, 25, 37.5, 50, and
75 after shear flow s stopped. Circles are the current location of an element initially
at the end of hoth capsules. Order of graphs in time is left-to-right, top-to-bottom.
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Figure 31. Shape recovery of capsules stopped at angle of inclination —% (solid line)

and g (dotted line). Capsule parameters are otherwise identical.

4,1.2 TUMBLING CAPSULES

For biconcave capsules whose parameters are such that their steady-state behavior
is tumbling, a different course of shape recovery is observed.  After shear flow is
stopped, the course of shape recovery was such that the Taylor deformation parameter
essentially increased or decreased monotonically from Dy, to its initial value, Dy,
Whether decreasing or increasing occurs is determined by the angle of inclination 8 of
the capsule’s major axis when the shear flow is stopped. In Figure 31, the solid and

T

dashed lines depict the capsule’s recovery for angles —% and %

5 ¢, respectively, with

wdentical simulation parameters otherwise. The corresponding capsiule shapes are

shown in Figure 32. To facilitate coinparisons, all following simulations for tumbling

capsules were conducted with an angle of —% when the shear flow is stopped.
Nonetheless, when attempting to describe this recovery by fitting an exponen-

tial curve to [);,, it was found that a single exponential decay function failed to

adequately describe this recovery. In contrast to tank-treading capsules, in which

a qualitative change naturally suggested separating the recovery into two distinet

phases, no such intrinsic division was present for a tumbling capsule. Even so, a
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Figure 32, Deformed shapes for -3 and ¢ at ¢ = 0 {solid and dashed lines, respec-
tively) and recovered shapes at t — 7.5 {dash-dot and dotted lines, respectively).

(uantitative differenice between the early and late portions of the shape recovery
suggested that modeling the recovery as two phases would be instructive. As a

restutt, a pair of exponential curves are fitted to the recovery of Dy, as
1 )k m
(90) Dey(t) = Do + 3 (Dmp '_'Doo) (c Hikmay) ) o t/{kmz))

over the time interval [f. tx), with the beginuing of the interval reset to ¢ = 0.
For the range of parameters considlered, this model fit the results with a coefficient
of correlation R > 0.97. In general. the two recovery times differed bv one order of
magnitude: Arg was O(10°1) and A7pe was O(1).

The dependence of these recovery times on simulation paraneters is considered
in Figures 33 - - 36. To reflect the aforementioned difference in order of magnitude,
recovery times are plotted on differently scaled axes, as with the tank-treading cap-
sules. Most of the relationships noted for a tank-treading capsule remained applicable
to tumbling capsules. As with circular and tank-treading biconcave capsules, hoth
recovery times were alimost directly proportional to Ca. Similarly, bending stiffness
and the flnid viscosity ratio had fairly negligible impacts on krgy, but krpe varied di-

rectly with V' and inversely with Ey. Finally, for the membrane viscosity ratio, both
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Figure 33. As Ca is varied, data points for A7) and Arpy are denoted by gradients
(left axis) and circles {right axis). respectively. The approximate parameter rela-
tionships with A7g, and k7g, are represented by solid and dotted lines, respectively.
Unvaried parameters are £y, = 0.05, V =5, and n = 0.

recovery times increased modestly with 5 for the tumbling capsule, though kg, still
had a higher dependence on 5. With that caveat about the membrane viscosity

ratio, the approximations made for tank-treading capsules remain, on a basic level,

applicable here: A7y ~ Ca -5 and krpg ~ (;:
4.1.3 COMPARISON

The courses of shape recovery for tank-treading and twnbling capsules are, osten-
sibly, quite different. Despite this, there are two ohvious parallels in the descriptions
of their recovery. First, there scem to be two distinct aspects of the recovery, oper-
ating on different timescales. Second, despite the differences in the capsules and in
the models, the recovery tiines for these two phases display very similar dependence
on the simulation parameters.

Another lens through which these recoveries may be compared is the decay of
membrane tension 7 and bending moments m. Figures 37 and 38 compare tension
and bending moments during the recovery of tank-treading and tumbling capsules.

Both the tension and bending moments are normalized by their values when shear
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Figure 35. As V' is varied, data points for kry and &7je are denoted by gradients (left
axis) and circles {right axis), respectively. The approximate parameter relationships
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axis) and circles {right axis}), respectively. The approximate parameter relationships
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flow is stopped, and plotted against 1);,. As the undeformed shape is free of tension
and bending moments, so also are capsules that have completed shape recovery.

In Figure 37, for a tank-treading capsule, one may observe that during the initial
phase of recovery - when D), is decreasing -— tension 7 decreases very rapidly.
Indeed, the time periods in which D, decreases and 7 sharply declines end nearly
sitmultancously. As tenston 1s the result of the membrane's viscoelasticity, it is un-
surprising that the viscoelastic parameters determine the characteristic time of the
initial recovery phase. The remaining tension, however, is dissipated very slowly
during the second phase of recovery. In contrast, bending mommnent e decreases at a
modest rate through both recovery phases. As a result, the dependence on bending
stiffness is seen primarily in the longer, latter recovery phase.

For the tnmbling capsule considered tu Figure 38, there is a similar sharp initial
decrcase in k7, which ends near ¢t = 1. This matches nicely with the capsule’s frst
recover time, 7 = 0.283, since the duration of the phase ought to be approximately

37 (since ¢ = 0.05). As with the tank-treading capsule, it is followed by a much

slower decline in tension. Further, the bending moment also decreases by nearly
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Figure 37. Viscoelastic tension and bending moments during recovery of a tank-
treading capsule. Parameters are Ca = 0.067, £, = 0.0014, V = 1, and 5 = 12.
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50% during this initial phase, before entering a slower decline. The initial rate of
the decline in the bending moment m was higher than for tank-treading, which is
reasonable since the shape recovery is more rapid as well.

Thus, for both tank-treading and turubling capsules, the recovery in the Taylor
deformation parameter may be described by two phases. The first phase, dominated
by viscoelastic dissipation, is brief and does not necessarily involve the capsule be-
coming more biconcave. The second phase, on the other hand, consists primarily
of shape recovery and, along the way, dissipating the remaining stress. This second
process is dominated by the capsule’s bending stiffuess and, indeed, does not oceur
without it. Nonetheless, the capillary munber and fluid viscosity ratio play major

roles in determining the time course of the second phase.
4.2 THREE DIMENSIONS

A three dimensional study of biconcave capsule shape recovery is a necessary
complement to a two dimensional consideration. Certain matters of interest, such
as the roles of simulation parameters in determining the length of the recovery, may
be efficiently investigated in two dimensions. However, two miportant differences
hetween the two and three disnensional models prevent a two dimensional simula-
tion from contributing to the study of a red blood cell’s biconcave shape and shape
memory. First, as is clear in the earlier part of this chapter, a biconcave capsule in
two dimensions will recover its shape and display shape memory if the preferred cur-
vature s is set to be the initial curvature. In three dimensions, however, Pozrikidis
has clearly delineated how a constant curvature preference may lead to a bicoucave
shape [17]. Second, the three dimensional network of elastic springs is potentially
able to support a biconcave shape or cause biconcave shape wemory, neither of which
are theoretically possible in two dimensions.

The mstahlity of three dimensional capsiles in shear flow has been a major issue
in previous studies, especially for biconcave shapes, and this problem remains in
this work. Without even considering the membrane buckling caused by membrane
viscosity {63], an clastic capsule without bending stiffiess encounters non-physical
buckling in many current models [36, 63, 64, 55]. The clear exception would seem to
be Le’s thin shell model, which is capable of simunlating an elastic capsule without

bending stiffiess for long times (k*dt = 60) [31]. Even with the stabilizing influence

of bending stiffness, Yazdani and Bagchi's algorithm was not necessarily stable for
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more than one period of a biconcave capsule dynamics and deformation {64}, As shape
recovery from tank-treading, by necessity, requires long siinulations, capsules without
bending stiffness are not considered. Specific instances of instability in subsequent

simulations are discussed when encountered.
4.2.1 SETUP

Introduced by Helfrich, the spontaneous curvature ¢y is a phenomenological pa-
rameter which deseribes the internal/external asymunetry of the lipid bilayer, as
opposcd to a specific eurvature preference [151 A bilayer which has inside/outside
symietry has ¢y = 0, while positive and negative ¢y indicate spontaneous curvature
in the same direction and opposite, respectively, of the mean curvature of a sphere.
Analysis of experimental data with Helfrich's model has indicted that the red blood
cell shape is consistent with a constant spontancous eurvature ¢y < 0 [16]. More
recently, Pozrikidis’ analysis has suggested that ¢, = —2 would be most advanta-
geous for causing the sort of bicoucavity observed in red blood cells [47}. Yazdaui
and Bagchi selected ¢y = —2.09 in their simulations of biconcave capsules and, in
order to avoul needless multiplication of entities, the same value will be considered
below [63)].

While Deuling and Helfrich suggest that spontancous cirvature may depend on
capsitle deforiation [16], there does not appear to be any biophysical basis for a spa-
tially dependent spontaneous curvature --- that is, a spontaneous curvature analogous
to the explicit curvature preference in the two dimensional model. Nevertheless, a
spatial dependent spontaneous curvature is an intriguing characteristic, as ¢y = 2x
would minimize the bending energy functional in Equation (71) (albeit not the force
density in Equation (72)).

In Pozrikidis’ theory of the undeforined shape of red blood cells, the cytoskeleton
15 assumed to be unstressed or, at least, nearly unstressed in its undeformed state
i47]. Secmingly all computational investigations to date have modeled an unstressed
eytoskeleton; that is, the wndeformed biconcave clastic configuration is the preferred
clastic configuration and, recalling Fischer's terminology from the introduction, the
reference shear deformation is non-uniform {25]. The role of the reference shear
deformation wmay be tested by comparing capsules with this non-uniform reference
shear deformation to capsules with a uniform reference shear deformation. The

uniform reference shear deformation is based on a uniforin spherical mesh, with the
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Table 1. Ensemble of three dimensional capsule descriptions in terins of reference
shear deformation and spontaneous curvature

Description | Reference Shear Deformation | Spontanecous curvature ‘
A Non-uniform: Biconcave g = —2.09 ~1, and 0
B Non-uniform: Biconcave g = 28
C Uniform: Spherical oy = —2.09

same surface arca as the initial biconcave shape. Additionally, the uniformity of the
reference shear deformation means that the capsule will have clastic stress in the
inttial biconcave shape.

With these thoughts in mind, three possible descriptions of the undeforined bi-
concave shape of red hlood cells are considered. Tabulated in Table 1, they describe
whether or how the cytoskeleton or bilaver are stressed in the undeformed configu-
ration. In case A, which aims to describe Pozrikidis’ theory, the cytoskeleton has a
non-uniforin reference shear deformation, but a constant spontaneous curvature g
stresses the bilayer. Case B also inclndes a non-uniform reference shear deformation,
but paired with a non-constant gpontaneous curvature which minimizes the bending
energy functional. Finally, case C considers a negative and constant spontancous
curvature, along with a uniform reference shear deformation.

For cach of the three cases, the hiconcave capsule is deformed in shear flow. After
the capsule reaches steady-state behaviour, the flow is stopped at t = 15 and the
capsule is allowed to relax. The choice of t = 15 as the stop time is determined by
two competing {actors. The stop time must be late enough for all capsules to have
clearly reached steady-state, while still early enough that suflicient time remains for
relaxation before numerical instability and mesh degradation adversely affect the re-
sults. When considering the relaxation process, two questions are of interest: to what
extent does the capsule recover its undeforined shape and, if recovery is observed,
do elements of the capsule return to their initial positions? A brief description as to
how these two questions are to be answered follows:

Two factors will be necessary to judge whether, or to what extent, a capsule has

recovered its undeformed shape. The mapping of Taylor deformation payameters
[ )

values to the shapes that 1), describes is onto, not one-to-one. Consequently, to
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determine whether or not the capsule has recovered its shape, a qualitative compari-
sont hetween initial and current shapes will be made, in addition to tracking whether
the Taylor deformation parameter recovers the value for an undeformed capsule,
Dy, =~ 0.51.

Whether capsule elements return to their original positions — and, therefore, the
capsule displays shape memory — will be quantilied m terins of the phase angles 3 of
the elements of the capsule. Referenced in Equation (89), a more complex definition
is necessary in three dimensions. As seen on the left side of Figure 39, the current

position of a capsule element T i< defined hy
(91) I =y — 8y

in which o 15 the inelination angle of the capsule clement and 8 is the inclination
angle of the capsule’s major axis, with both of these angles measured with respect
to the z-axis and in a plane parallel to the zy-plane. With this definition of capsule

position, define the phase angle 3 of a capsule element as
(92) ) - () - 1)

Capsule elements do not undergo significant changes in the z-dircction, and so it is
sufficient to consider phase angles parallel to the y-plane. Thus, since ;3 = 0 for all
elements of an undeformed capsule, shape mewmory requires ;3 — 0 for all elements
during shape recovery. In the subsequent simulations, the phase angles for five initial
positions '(0) arc considered, as depicted on the right side of Figure 39. Since the
capsule is symmetric with respect to the origin, a given I'{0) actually has two initial
‘positions’ on the capsule and, consequently,  -» 0 if it were to return to either

position.

4.2.2 CASE A: NON-UNIFORM REFERENCE SHEAR DEFORMA-
TION & CONSTANT SPONTANEQUS CURVATURE

A capsule with a constant spontaneous curvature and an elastic configuration
unstressed in the undeformed biconcave shape is the standard deseription of a cap-
sule in computational studies. Capsules with spontaneous curvature ¢ = —2.09 and
bending stiffnesses I = 0.025 and 0.05 are considered in Figure 40. After shear

flow 1s stopped at ¢ = 15, the Taylor deformation parameter declines sharply toward

the undeformed value of D,y = 0.51. However, this decline stops suddenly ncarly
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Figure 39. At lelt, the current position I' of a capsule element is defined by the
difference between the inclination a of the capsule element and inclination 8 of the
capsule, with these inclinations measured with respect to the z-axis. At right, a
range of initial capsule positions I are depicted, for an undeformed capsuile.

t = 18-19, after which negligible change in D, =~ 0.545 is observed through ¢ = 40.
Subsequently, munerical instability disrupts the results and no further recovery in
D, 1s observed.

Considering the capsule shapes themselves helps to demonstrate the limited na-
ture of the recovery observed here. To control for the capsules’ time-dependent angles
of inclination 8, the capsules are mapped to 8 = 0 and the ceutral slices of the cap-
sule parallel to the zy- and yz-planes are extracted. The results are displayed in
Figures 41 and 42 for £, — 0.05 and 0.025, respectively. In both cases, it may be
observed that the capsule regains its biconcavity during the interval between ¢t = 15
and ¢t = 20. during which the significant decrease in D, occurs. In the time that
follows, the capsule becomes somewhat more ‘biconcave’, but not neariy to the extent
of the undeformed shape. Thus, while a meaniugful change in the Taylor deforma-
tion parameter does not oceur after # = 20, the capsule is still recovering its shape,
however slow this process may be. A slight left-to-right asymmetry is also clear,
in the slices parallel to the xy-plane: the concavity is skewed to the top right and

bottom left of the capsule. This suggests that further tank-treading of the membrane

is necessary for a complete shape recovery. Ou the other hand, in the yz-plane, the
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Figure 40. 1), during deformation and recovery lor ¢ = —2.09. Additional capsule

parameters are Ca = 0.5, V = 2, and 5 = (. Vertical line in this and subsequent
Figures indicates the stop of shear flow at ¢ = 15.

membrane does have left-to-right symmetry, since the change in the s-direction of
capsule elements is minimal during both deformation and recovery.

The incomnpleteness of the tank-treading process is confinmed by Figure 43, which
considers the phase angle 3 for several elements I of each capsule during the recovery
process. Observe that for one segment of the membrane, which includes the interval
F(0) — [-0.742,0.318’, the phase angle when shear flow stops 1s small, with 3 < 0.5.
The complement of this segment, which includes T'(0) = [0.742, £7], has a much
larger phase angle, however. During the recovery process depicted, each phase angle
decreases by approximately 40 -- 70%, though the phase angles for I'(0) = 0.742 and
+3 are still quite large. Recalling the right side of Figure 39, it may be observed
that the interval of the membrane containing I'(0) — 0.742 and %3 is the same
section skewed in Figures 41 and 42. Thus, at least part of the incompleteness of
the shape recovery may be ascribed to incompleteness of the tank-treading process,
whichi nonetheless is ongoing when the simulation was concluded.

To consider the extent to which the results observed are dependent on the sponta-

neous curvature ¢g = —2.09, simulations with identical parameters and £, = 0.05 are
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Figure 41. Shape change it ry-plane for F, = 0.05, as shown in Figure 40
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Figure 42. Shape change in wy-plane (left) and yz-plane (right) for £, = 0.025, as
shown in Figure 40




15f N - 115 15k Tt e qt5
{ | '_ | -
1 - - -1 1 - - - 41
3 e ~ ] P T - .
3 | - ;
05 ; Hos osf o5
£ b ~ I
_____ R SR - . - -~} - . _
= af i B aof T ' N [}
| .
I . I
o5 | ———= I(0)=0.318 , 405 05 . o5
| I(0) = -0.318 ; |/ 1o =0318
i Lo 1oy=-2 | | 1{0)= -0.310
F . 1(0)=0.742 | 1" F - MO} =-m2 ]
' (0) = -0.742 le = - - T{(0)=0.742 |
A | R - ~ [ 0)= i
] e T T L s I e Y - 15
15 P 25 30 35 40 a5 13 20 % 35

Figure 43. Phase angle ;3 during recovery for ¢ = —2.09, for £, = 0.05 (lcft) and
Fy = 0.025 {right).

conducted for capsules with ¢ = 0 and —1. [n Pozrikidis® analysis, such spontaneous
curvatures are consistent with an undeformed biconcave shape, but not as felicitous
as ¢g =~ —2. The shape change for these spontancous curvatures in terms of Dy, is
displayed in Figure 44. Both the dynamics in shear llow and the relaxation process
after flow stops are nearly identical to ¢p = —2.09. D, decreases to 0.545 by ¢ = 19-
20, but does not recover further. Instead, during the period after t = 20, the capsule
becomes more biconcave, as seen in Figures 45 and 46, but still clearly differs from
the undeformed shape. As with ¢ — —2.09, numerical instability disrupts results
for larger times. Further, the phase angles 3 depicted in Figure 47 behave similarly
to those for ¢ = --2.09: all phase angles deeline significantly during the period of
recovery, but still bave some elements with 3 > (1.5 at the end of the simulation.
Therefore, it may be concluded that a clear, if incomplete, recovery of the initial
biconcave shape has occurred. While much the qualitative character of the initial
shape is recovered, the capsules at the end of these simulations are insufficiently
hiconcave. This insufficient biconcavity is, in turn, the reason that Dg, does not
attain its initial value since, ceteris paribus, a more hbiconcave capsule will have
a lower Taylor deformation parameter. Still, the incomplete recovery in shape is
accompanied by a similarly clear movement of capsule elements toward their initial

positions, consistent with the capsule displaying shape memory.
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Figurce 44. D, during deformation and recovery for ¢y = 0 and ¢y = —1.
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Figure 45. Shapc change in zy-plane (left) and yz-plane (right) for ¢ = 0, as shown

in Figure 44
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Figure 46. Shape change in zy-plane (left) and yz-plane (right} for ¢ = —1, as
shown in Figure 44
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Figure 17. Phase angle 3 during recovery for ¢y = 0 (left) and ¢y = —1 (right).
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Several causes for the incompleteness of the recovery ohserved here may be
posited. First, and perhaps most obviously, the mumnerical stability necessary for
very long simulations is lacking here. Either or both the fluid grid and the structural
mesh may be too coarse, leading to the unphysical mumerical instability obscrved
and consequently preventing complete shape recovery. Since the decline of the phase
angles ;3 -+ 0 is ongoing at the eud of these simulations, longer stable simulations
would presumably lead to more complete shape recovery. Second, other aspects of
the numerical implementation may be to blame. For instance, both the local surface
area of the capsule and the capsule volume are nearly conserved, varying less than
2 — 3% fromn their undeformed values. This may, nonetheless, be too large a deviation
and 1mhibit the subtle shape recovery process. Third, the three dimensional model
of the red blood cell may be incornplete, or incorrect. In particular, the membrane
viscosity of the capsule was not included in any of these simulations (as the vis-
coelastic model deseribed in Chapter 3 was restricted to neo-Hookean constitutive
laws) and the inclusion of this dissipative mechanisin may be necessary for shape
recovery. Alternatively, other aspects of the madel, such as the bending encrgy, may
not be sufficiently accurate: recall Dueling and Helfrich mentioned that spontancous
curvature may be deformation-dependent [16].

In any event, for the three constant spontaneous curvatures considered, a sig-
nificant but incomplete shape recovery process occurred. Clear biconcavity was
ohserved, but not to the exteut of the undeformed capsule shape. Furthermore,
since ;3 decreased in each sitnulation, each capsule seamned to display the effects of a
shape memory. Since the constant spontaneous curvature seems an unlikely cause for
membrane elements ‘remembering’ their initial positions, the capsule’s non-uniform
reference shear deformation would seem to be the impetus for the shape memory
displayed here. To test this hypothesis, it is necessary to compare these results
with those for a capsule with a uniform reference shear deformation. This capsule

description is considered in Case C.

4.2.3 CASE B: NON-UNIFORM REFERENCE SHEAR DEFORMA-
TION & MINIMIZED BENDING ENERGY

Though lacking a biological basis, minimizing the bending energy by setting ¢y =
2k 18 an intriguing proposttion. Pawred with a prelerred elastic configuration which

is unstressed in the undeformed biconcave shape, it suggests an ideal model. In
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Figure 48. D, during deformation and recovery for ¢ = 2 with £, = 0.05 and
(.025.

contrast to the case of a constant spoutaneous curvature, both the shear elasticity
and bending stiffness aspects of the capsule model have the same explicit preferred
configuration. One could imagine such a meodel leading to a fast, clean, and simple
shape recovery.

The deformation and relaxation of capsules with ¢y = 2x in terms of D, is
displayed in Figure 48, for £, = 0.05 and 0.025. While the deformation and dynamies
in shear flow are not dissimilar from capsules with constant ¢y, the relaxation process
differs significantly. After flow stops at £ = 15, /), declines monotonically, well past
the value Dy, = 0.5]1 for an undeformed capsule. In doing so, the capsule becomes
slightly more ‘biconcave’ than its undeformed shape. The decline of D, is, initially,
somewhat slower for £, = 0.025 than E, = 0.05, but the general trend is quite
similar. As with a non-positive constant ¢y, the simulation becomes unstable after
t = 42.5 and further recovery cannot he observed.

During the recovery, particularly for £, = 0.05, the capsule comes very close to

recovering its initial shape, as may be observed i Figures 49 and 50. In the capsule

slices parallel to the ry-plane, it is clear that the capsule contimes to become more
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Figure 49. Shape change in ry-plane (left) and yz-plane {right} for ¢y = 2x with
Ey = (.05, shown in Figure 48

biconcave, tending away from the undeformed shape. While the bending force density
Equation {72) is admittedly not zero in the undeformed biconcave shape for ¢y = 2k,
it appears that this initial shape is not a stable equilibrium at all.

Further, the capsule displays no indication of shape metnory --- a surprising result,
inasmuch as both elastic and bending energy are minimized by capsule elements
being in their initial positions in the initial biconcave shape. As described in Figure
51, the phase angles do change slightly during the recovery, but not significantly
enough to indicate any sort of shape memory. Thus, introducing this non-constant
spontaneous curvature has the effect of canceling out the shape memory that was
observed in Case A, although shape memory in the absence of shape recovery is a
somewhat meaningless notion. If nothing else, a constant non-positive spontaneous
curvature is scen to be more consistent with both shape memory and shape recovery

than is this particular non-constant spentaneous curvature.

4.2.4 CASE C: UNIFORM REFERENCE SHEAR DEFORMATION &
CONSTANT SPONTANEOUS CURVATURE

In adddition to being interesting in itself {(as it does not appear to have been done

before), considering a uniform reference shear deformation in concert with a constant
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Figure 50. Shape change in zy-plane (left) and yz-plane (right) for ¢y = 2~ with
Ey = 0.023, shown in Figure 48
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spontaneous curvature allows an enlightening comparison with Case A, in which the
reference shear deformation was non-uniform. In particular, did the shear elasticity
or bending stiffness cause the shape recovery that was observed, and is the preferred
elastic configuration solely responsible for the shape memory that was displayed?
For the preferred elastic configuration, a spherical ¢lastic configuration is used. This
allows lor a very uniform reference shicar deformation that leads to significant clastic
stress in the undeformed biconcave shape. The spherical configuration used has the
same surface area as the undeformed biconcave configuration it replaces.

Keeping the same parameters as in Figure 10, with £y, = 0.05 and ¢g = —2.09, the
shape change in termns of D, is considered in Fignre 52. Note that during the defor-
mation in shear flow (¢ < 15), the capsule seems to lack the characteristic periodic
hehaviour typical of three dimeusional biconcave capsules in shear flow [34]. Thisis a
predictable result, in that neither the shear elasticity or bending stiffness models have
any sort of anisotropic character. Similarly, one would expect comparable behavionr
during relaxation: without an anisotropic preference, mininal tank-treading should
occur. As a result, one would expect shape recovery to occur as a single process,
rather than the two parts observed in Case A.

Indeed, this 1s largely what the results show: D, decays monotonically toward
the undeformed value and, indeed, gets closer to recovering its initial shape than any
capsule in Case A. Further, the capsule slices in Figure 53 do not display the signif-
icant left-to-right asyminetry observed for Case A. Instead, the slices of the capsule
parallel to the xy- and yz-planes both recovered their biconcavity and continued to
approach the initial biconcave shape during the duration of the simulation. While the
recovery remains incomplete, the capsule unonetheless has a more complete recovery,
despite the additional elastic stress in the initial biconcave shape.

With a uniform reference shear deformation, the capsule’s isotropic character im-
plics that a capsule element may take any position on the membrane of the recovered
biconcave shape. As a result, there is no need for tank-treading during the recovery
process and the phase angles of capsule elements should remain constant. Figure 54
shows that is, indeed, the case: .3 values for the range of initial capsule positions 1'(0)
remained basically constant. While some changes are observed, these are consistent
with the sort of small changes in inclination angle that occur during the recovery of
an triangular element.

These results, when compared with Case A, indicate several broad conclusions.
: I
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First, in this model, the capsule’s reference shear deformation looks to be the source
of the capsule’s shape nemaorv. Tt may not be necessary that the elastic configuration
be unstressed in the resting position, but there must be some non-uniforimity in the
reference shear deformation. Second, a constant non-positive spoutaneons curvature
in the range considered would seem to be a sufficient condition for a capsule to recover
(at least most of) its undeformed biconcave shape: whether paired with a stressed
or unstressed preferred elastic configuration, substantial shape recovery occurred.
Stepping back from the mathematical model to the biological entity on which it
is basad, one may now speculate about the biomechanical causes of the biconcavity
and shape memory of red blood cells. The shape memory which is displayed in the
above simulations would seem to have been caused by the capsule’s preferred elastic
coufiguration. the biophysical analogue of which is the red blood cell’s cytoskeleton.
Fischer reached the saine conclusion for the cause of shape wnemory, as he argued
that other aspects of the red blood cell membrane siinply lack the anisotropy neces-

sary for shape wemory [25]. The issue of whether the cytoskeleton or lipid bilayer

(or, perhaps, some combination of the two) causes the biconcavity of red blood cells




is somewhat murkier, and this consideration nakes no pretense of settling the ques-
tion. What has been established is that a constant negative spontaneous curvature
(reflecting the asymmetric character of the lipid bilayer) is sufhcient for a capsule
to recover biconcavity after tank-treading. This result is, of course, limited by a
variety of factors, of which the most significant is the incompleteness of the recovery
observed here. However, this result matches a long-standing theory, stretching from
Deuling and Helfrich in the 1970s to Pozrikidis in recent years, based on analytical
investigations of the resting shapes of red blood cells. Whether this preciudes or sug-
gests a role for the cytoskeleton in maintaining the biconcave shape is not altogether

clear, and further investigation will be necessary.
4.3 TWO AND THREE DIMENSIONAL COMPARISON

Several important differences prevailed between the shape recovery of biconcave
capsules in two and three dimensions. In two dimensions, a clear two-part recov-
ery process was observed for tank-treading capsules. Studying the recovery times
showed that two similar phases described the shape recovery of tumbling capsules
in two dimensions as well. In the three dimensional shinulations, only capsules with
tank-treading steady-state behaviour were considered. For these capsules, the in-
completeness of the shape recovery observed precludes any conjecture about whether
a single or multiple phase(s) are necessary to describe the recovery process. Longer
simulations and a more stable methodology will be necessary whether a single or
multiple recovery process{es) occur. Further, membrane viscosity ought to be in-
clhuded, in order to determine whether it provides a necessary dissipative mechanisin
in three dimensional shape recovery.

More clear, however, are the basic mechanisms active in the shape recovery pro-
cess. [n two dimensions, the explicit curvature preference enforced by the bending
stiffness accounts for the shape recovery: without an explicit curvature preference,
the capsule did not recovery biconcavity. As a one-dimensional elastic (or viscoelas-
tic} mesh in two dimensions does not have any shape preference, the only role played
by the viscoelastic configuration in shape recovery was dissipative. Similarly, the
shape recovery observed in three dimensions scerns to be the consequence of bending
stiffness as well. For a constant spontaneous curvature, this is substantiated by the

constderable shape recovery observed in Case C, despite the elastic configuration be-

ing significantly stressed in the biconcave shape. On the other hand, the supposed
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analogue of the two dimensional explicit curvature preference — with ¢ = 2k — did
not seem to lead to a stable shape, much less the initial biconcave shape.
Converscly, the causes of the shape memory and related tank-treading during
shape recovery have different causes in two and three dimensions. In two dimensions,
the explicit curvature preference of bending stiffness drives capsule elements to their
original positions via tank-treading. The limited shape memory observed in three
dimensions, however, was caused by the preferred elastic configuration, at least when
paired with a constant spontanecus curvature. Thus, clear differences in the two and
three dimensional models have been observed for curvature paraeters kg and ¢q

that. lead to shape recovery, and for the bending stiffness and elastic mechanisms

respousible for shape memory.
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CHAPTER 5

ALTERNATE MODELS OF MEMBRANE VISCOSITY

The results of Puig-de-Morales-Marinkovie et al. have caused a paradigm shift
in how rescarchers view the membrane viscosity of red blood cells. Using optical
magnetic twisting eytometry to apply a time-dependent {oscillatory) load to the red
hlood eell mambrane, they measured the elastic and frietional moduli at different.
oscillation frequencies. While the elastic modulus was nearly constant, the frictional
modulus increased with the frequency, according to a power law with exponent n
0.641. Noting the inconsistency of this observation with solid viscoelastic theory, the
lipid bilayer and its viscons character were considered to be the likely mechanism,
although the authors suggested other possibilities. Puig-de-Morales-Marinkovie et al.
conclude that “a power law fluid taken in parallel with a Hookean [elastic] stiffness
is an appropriate phenomenological model to describe the dynamic respouses of the
[red blood cell] in the linear range” 48].

The observed power law response has been rapidly confirmed by subsequent ex-
periments [67, 66, 2, 62] and threatens to invalidate long-standing aspects of red blood
cell models. For instance, Puig-de-Morales-Marinkov ef «l. note that the entire con-
cept of weasuring characteristic timnes, a practice begun by Evans aud Hochmuth [21]
and continued here, becomes meaningless in a power law scheme [48]. Beyond the
work of Fedosov et al., however, computational rescarch has lagged behind this devel-
opment and a deterministic computational power law model does not yet appear to
exist. This is perhaps nnsurprising, as stable and comprehensive three dimensional
viscoelastic models are themselves quite recent: Yazdani and Bagehi's study [63] was
only published in 2013.

Instead, since a fluid model has been posited to describe the effects of mem-
brane viscosity, perhaps membrane viscosity could be modeled as a fluid viscosity.
The basic idea is not new: Keller and Skalak proposed incorporating the ctfects of
membrane viscosity into their model by artificially altering the fluid viscosity ratio,
thereby replacing the viscosity of the membrane with extra fluid viscosity inside of
the capsule [30]. The basic plausibility of such an idea has been shown by subsequent

computational work: The effects of the fluid and membrane viscosity ratios on the
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response and recovery times of spherical capsules in Chapter 3 were qualitatively
similar, Similarities in the dynamics and deformation caused by these ratios have
also been noted in previous studies, for both shear and elongational flows [19, 63].
In all three cases, the solid Kelvin-Voigt model (or an approximation thereof) was
used for the membrane viscosity. Even without veference to the power law model,
the idea of using an artificial fluid viscosity ratio to shinulate membrane viscosity
is attractive, given the comparative ease with which non-unity fluid viscosity ratios

may be implemented in current computational schemes.
5.1 ARTIFICIAL VISCOSITY MODEL

One way to begin evaluating the equivalence of fluid and membrane viscosity
ratios would be to consider the characteristic times of a spherical capsule. In Chapter
3, there seemed to be a natural similarity between them, but whether or not such a
comparison is merely superficial is not immediately evident. For instance, an artificial
fluid viscosity ratio changes the nature of the fluid, while the forces cansed by a solid
viscoelastic law alter the velocity of the flow: these are very different aspects of the
Huid-structure mteraction. To address the depth of this relationship, a few questions
suggest themselves: Are these roles of the fluid and ymembrane viscosity ratios even
independent? If so, can & simple relationship be cstablished between them? Finally,

could such a relationship he wsed to establish an efficient computational scheme?
5.1.1 BILINEAR MODEL

The independent roles of the fluid and membrane viscosity ratios in determining
response tirmes of a spherical capsule have been noted for elongational flow. Diaz et

al. found that a bilinear model in n and V sufficed to describe A7y, as
(93) kry = a ,{(Ca)y + b {Ca)V + e,(Cua).

with coefficients ag, by, ¢ depending on Ca [19]. In particular, for large Ca, they
found ¢, = b,. Diaz et al. usc these cocflicients to posit an artificial fluid viscosity
ratio,

{94) Vi=V+ ?—Hn‘
Js

for which an elastic capsule would have the same response time as a viscoelastic

capsule. Using snch a model, one could theoretically simulate the deformation of
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kr a(Ca, k) H(Ca, Ey) c(Cua, Ey)
k7,(Ca = 0.05, B = 0) 0.0208 £ 0.0039 | 0.0590 &+ 0.0149 | 0.4158 £ 0.0638
kr.(Ce = 0.05, E, = 0) 0.0534 £ 0.0028 | 0.2711 & 0.0109 | (13986 £ 0.0466
kt,(Ca = 0.05, By = 0.025) | 0.0157 & 0.0039 { 0.0550 £ 0.0158 | 0.2567 + 0.0638
k7.{Ca = 0.05, B3, = 0.025) | 0.0299 + 0.0018 { 0.1380 £ 0.0075 | (.2209 £ 0.0303
krs(Ca = 0.2, Ey = 0) 0.0417 £0.0110 { 0.1464 £ 0.0110 | 0.685 £ 0.1402
k1, (Ca =02, E, = 0) (0.2438 £0.0128 | 1.0120 £ 0.0477 | 1.614 + (.162

Table 2. Coefficients from fitting response and recovery times for a range of vis-
coclastic capsules using Egs. (95) and (96). The adjacent ranges are the bounds of
a 95% confidence interval.

a capsule with fluid viscosity ratio V. and membrance viscosity ratio 5 by simply
simnlating a capsule with fluid viscosity ratio V*.

[t would be interesting if a comparable pair of bilinear equations were adequate for
both the response and recovery tines in shear flow. As this model also incorporates
bending stiffness, the coeflicients of the bilinear model depend on both the capillary

number and bending stiffness. Using the same notation. whether the two models

(95) k7y = @ (Ca, Ey)n + b (Ca, )V + e {Ca, I5).
(96) kre = a.(Ca. Eg)n + b (Ca, E)V . (Ca, Ey).

might fit the data is considered. A successful fit would show the independence of the
fluid aud membrane viscosity ratios and suggest possible relationships between the
two viscosity ratios.

Capsules with Ca = 0.05 and 0.2 are siinulated, for a range of 5 and V using
the viscoelastic model, and the characteristic titnes are calenlated. Plausible fits
for ensembles with and without bending stiffness are observed, which are charted in
Table 2. The model fit very well for k7, with a correlation coctlicient 22 > 0.99 for
all three cases. The model fit more poorly for Ay, with R? = 0.91 for Ca = 0.05 and
Ey =0, R* ~ 0.96 for Ca = 0.05 and E, = 0.025, and 2% ~ 0.95 for Ca = 0.2 and
Ey = 0. As a result, the accuraey of the cocflicients for A7, does not approach that

of Diaz ¢t al.. Given that they reflect the error from the exponential model fittings

being componunded with the bilincar model fitting. these seemed to be acceptable

levels of error. A few instructive inferences are apparent {rom the data:
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The coeflicients ¢, and b, for A7, and both ensembles with Ca = 0.05 are surpris-
ingly similar, suggesting that their dependence on £y, may be small. More interesting,
however, are the ratios :-:i and ﬁ’“— Starting from the base ensemble for Ca = 0.05
and Ep = 0 with gi =~ 2.8, the ratio of response coefficients increases to 2-1 =~ 3.5 with
the both addition of bending stiffuess £y, = 0.025 and the higher capillary nuber
Ca = 0.2. Conversely, the ratio ﬁ—:j = 5 for the base ensemble decreases to :_: = 4.6
with the inclusion of bending stiffness £, = 0.025 and falls to gl ~ 4.1 at the higher
capillary number Ca — 0.2. These ratios for the respounse cocfficients do not align
with Diaz et al, who observed z— 2 2 for Ca = 0.005 and g., = 1 for Ca = 0.05 in

clongational flow. Thus, while Diaz et al. observe a decrease in the ratio %‘L as Ca
~

becomes larger in elongational flow, a modest increase is observed in shear flow.
5.1.2 ARTIFICIAL V AND 7

Such a model may be used in two ways. First, an artificial fluid viscosity ratio V'*,
in excess of the actual fluid viscosity ratio V', may be used to simulate the effects of
membrane viscosity ratio 2. This is accomplished by rearranging Diaz ¢f al.’s model,
as
(97) n=—-(V"-1).

a
Presuming that the fraction g 18 known a priort for the desired Ca and Ey, one
can determine an artificial fluid viscosity by which the effects of having a menibrane
viscosity ratio n may be inchided. Alternately, an artificial membrane viscosity ratio
7 may be used to simulate the effects of a fluid viscosity ratio V™ in excess of the

actual fluid viscosity ratio V, as

(98) Ve=v 4y,
)

with knowledge of the reciprocal fraction §. In either case, the upshot is that one

may sinmlate both a particular fluid ratio and a particular membrane viscosity ratio
with a single algorithm, Either a membrane viscosity method or a method for non-
unity fluid viscosity ratios would be necessary to do this, but one would not need
both.

To consider whether these models fit sufficiently well to satisfy and extend Diaz

et al’s hypothesis, a comparison is made hetween the response and recovery times of

the Kelvin-Voigt viscoelasticity model and the artificial fluid viscosity ratio model.
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Figure 55. For a spherical capsule without bending stiffness, characteristic times
k7, (solid lines) and k7, {dotted lines) for actual flnid viscosity ratios (squares} and
artificially caleulated fluid viscosity ratios {triangles). The capillary number is Ca =
0.05.

First, an artificial memmbrane viscosity ratio n is used to simulate the effects of a
different fluid viscosity ratio V', as in Equation {(98). In Figure 55, square data
points depict the characteristic times of capsules with Ca = 0.05, E, = 0, and 5 = 0,
plotted against their different fluid viscosity ratios V. In contrast, the triangular
data points are the characteristic times of capsules with identical Ca and £, but
with V' = 0.2 and various 5. The w-axis values for these triangular data peints are
V* in Equation {98), derived by plugging in V" = 0.2 and the particular value of 9.
The samne methodology is used in Figure 56, in which square data points represent
characteristic times for Ca = 0.05, B}, = 0.025, and 5 = 0, with various fluid viscosity
ratios. On the other hand, the triangular data comes from the characteristic times of
capsules with the same Ca and Fy, but V' = 1 and different values of 3. In both cases,
the derived relationship between V' and 7, matches very well. The results for 7, are
still acceptable, but noticeably poorer. This is unsurprising, given the exponential
fittings for 7., particularly at large V and #, were much poorer than for 7,.

Second, the same results may also be viewed throngh the lens of the membrane
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Figure 56. For a spherical capsule with bending stiffness, characteristic timmes A7,
(solid lines) and &7, (dotted lines) for actual fluid viscosity ratios (squares) and
artificially calculated fluid viscosity ratios {triangles). The capillary number is Ca =
0.05.

viscosity ratio. In Figures 57 and 58, square data points are characteristic times of
capsules plotted against their membrane viscosity ratios #. In Figure 57, the constant,
parameters are Ca = 0.05, £, = 0, and V = 0.2, while the unvaried parameters are
Ca = 0.05, E, = 0.025, and V = 1 for Figure 58. Triangular data points, on the
other hand, vriginate in capsules with the sane Ca and E, values, but have n = 0
and various fluid viscosity ratios V*. In these cases. the “extra” fluid viscosity V* -V
is used to determine the artificial membrane viscosity 7, using Equation {97), which

provides their x-axis values.
5.1.3 MODEL VIABILITY

Of course, several major caveats to the artificial viscosity model proposed here
are evident. First, the methodology is only useful a posteriori. One needs to know
the coefficients ¢ and b « priori. As these coeflicients vary with Ey and Ca, this is
a substantial requirement. Sccond, and more importantly, the ratio of the ¢ and

b coethcients differs for 7, and 7. As a result, one could not accurately simulate
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Figure H7

For a capsule without bending stiffness, characteristic times A7y (solid

lines) and k7, (dotted lines) for actual membrane viscosity ratios (squares) and ar-
tificially calculated membrane viscosity ratios (triangles). The capillary number is

Ca = 0.05.
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Figure 58. For a capsule with bending stiffness, characteristic times k7, (solid lines)
and k7, {dotted lines) for actual mewbrane viscosity ratios (squares) and artificially
calculated meimnbrane viscosity ratios (triangles). The capillary number is Ca = 0.05.
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hoth response and recovery phases with the sae ratio in one model. Third, while
the effective fluid and menbrane viscosity ratios may ensure that the characteristic
times are sufficiently accurate, this does not imply that local or global aspects of
capsule deformation (much less capsule dyunamics) are equal. Indeed, Diaz et al.
show that, even in elongational flow, local stretching of elements of the capsule will
differ somewhat for two different configuratious with the same 7, [19].

Interestingly, Yazdani and Bagchi have suggested a comparable model for sim-
ulating membrane wviscosity as an artificial viscosity ratio.  In their formulation,
V* = V + ¢, in which ¢ is the ratio of dissipation in the membrane to the dis-
sipation inside the capsule {63]. Yazdani and Bagchi show that this approach is
effective in recovering a spherical capsule's tank-treading frequency. Their result is
particularly promising, in that it deals more with capsule dynanics than the capsule
shape changes considered here. Ideally, a model {or replacing meinbrane viscosity
with an artificial fluid viscosity ratio would reasonably describe both dynamics and
shape changes.

Tn conchision, the influence of the fluid and membrane viscosity ratios on a cap-
sule’s characteristic times are effectively independent, as thev fit a basic bilinear
model. Further, a sufficiently exact relationship mav be defined that an artificial
fluid viscosity ratio may be nsed to simulate membrane viscosily and vice versa.
These results serve as proof-of-concept for the notion that membrane viscosity may
be reinterpreted as fluid viscosity, while still maintaining the esseutial aspects of
its role in the shape change of a capsule. However, basing a methodology for im-
plementing membrane viscosity using an artificial viscosity method would require
compromise between gi and gf, in addition to a prohibitive amount of a priorz data.
On the other hand, in a multiscale framework or a large simulation of many capsules,
it may be sufficient to simply take membrane viscosity into account and an artificial

fluid viscosity ratio may be an efficient avemie for doing this.
5.2 POWER LAW MODEL

With the viability of using fluid viscosity to simulate the viscosity of the mem-
brane having been shown, a more accurate and extensible niethodology based on this
idea may be designed. Rather than relying on an unchanging alteration of the fluid

viscosity ratio, the viscosity of each element of the zero-thickness membrane is cal-

culated at each timestep using a power law flnid model. Such a model is capable of
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cither Newtonian independence of, or non-Newtonian dependence on, the local rate
of deformation tensor (also denoted as the strain rate tensor). The viscosity on each
element of the membrane may then be distributed to nearby fluid nodes by using the
immmersed boundary method and added to the actual fluid viscosity at those nodes.
In this way. the viscosity of the membrane is translated into additional fluid viscosity
in the nearby nodes, but with the necessary temporal and spatial dependence that
is lacking in the artificial viscosity model.

A power law model for membrane viscosity, interpreting membrane viscosity as
a fluid viscosity, has several potential advantages aver conventional solid viscoelastic
models. First, using a power law improves the modeling framework’s fidelity to the
current understanding of red blood cell membranes. Whatever the power law model’s
other drawbacks, it presents an opportunity not available to solid viscoelastic models.
Second, membrane viscosity described by a solid viscoelastic model has been shown
to cause buckling and wrinkling during capsule deformation, particularly in capsules
without bending stiffness [63]. It is not vet certain that a biclogical basis for this
purticular buckling and wrinkling exists. However, a power law maodel transfers
this instability in the membrane to the robustly stable lattice Boltzinann method.
Third, a power law model 1s governed by two parameters — the flow consistency
index; describing the membrane’s viscosity independent of space and time. and How
behaviour index, which determines the non-Newtonian character (or lack thereof) of
the viscosity. As opposed to the single membrane viscosity coefficient in the Kelvin-
Voigt model, this enhances the Hexability of the model.

The implementation of this approach is as follows: first, the veloeity gradiont Va
of the fluid is calculated in the region containing the capsule. using a second order
centered difference method. Second, using the discrete delta function, the velocity

gradient VU is deterinined at cach node X, on the capsule, as

(99) VU(X,) = Y 6u(X. — x;)Vu(x;)h’.
J
Subscquently, the rate of deformation tensor D is derived as the symuetric part of

VU in the plane of the interface, as

1
(100) D= 5 P (VU + (VU)T) P

with projection matrix Py = I — nn, where 1 is the outward norinal vector [6]. For

simplicity’s sake, the dependence of membrane viscosity on surface area dilation is
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ignored, although the method could be extended to include it. Then, the shear rate

15

(101) v = y/2tr(D7)
and the membrane viscosity jimen: of the capsule clement is given by the power law
(102} Hmem — ‘;\'_?u—l?

for flow consistency index K and flow behaviour index n [17]. For a Newtonian
fluid, » = 1 and K is simply the dynamic viscosity. Values of n > 1 and n < 1
correspond to non-Newtonian shear-thickening and shear-thinning (pscudoplastic)
fluids, respectively. The membrane’s viscosity is distributed to nearby flnid nodes by
again using the discrete delta function, as

a’V(}r
h'

(10:3) .u'mum(xj) = Z (Sh(xc - x_}) }"’mem(Xc)

using the Voronol area ay,, about X, and scaling by spatial step h. Then, at cach

fluid node, the fluid and membrane viscositios are added:

(101) ,U.(X) = “ﬂmﬁd(x) + Hmem(x)‘

Based on g, the relaxation parameters s at x may be appropriately updated, accord-
ing to Section 2.1, A convergence analysis in Fignre 59 shows this power law method
for incorporating membrane viscosity 1s independent of the Lagrangian grid, with the
accuracy of the coarser prid only suffering as the capsule arrvives at the equilibriwun
deformation.

Among the drawhacks of a power law model, it does increase computational cost
somewhat, at least in the following inplementation, due Jargely to the caleulation of
the velocity gradient. Another potential additional cost — updating the viscosity and
relaxation parameters at fluid nodes near the interface does not present a problem

in this implementation, as such an update is already being made {see Section 2.2).
5.2.1 SHEAR FLOW

Of immediate interest is whether the deformation in shear flow of a splerical
capsule with membrane viscosity described by the power law model is qualitatively

similar to capsules with Kelvin-Voigt viseoclasticity. Selecting a small flow consis-

tency index K = 0.01y,, the {low behaviour mdex n is varied in Figures 60 and 61.
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Figure 59. Convergence analysis of the power law model with capsule meshes having
N = 1280, 5120, and 20480 triangles. Capsule parameters are Ca = 0.05, £, = 0,

Perhaps surprisingly, the results are simple and intnitive. The spherical capsule is
deformed to an (eventually) stable ellipsoidal shape, described by an approxiinately
constant D,,. As n decreases from one toward zero, the membrane viscosity in-
creases and capsule deformation is restricted. Additionally, decreasing n changes the
capsule’s behaviour from stationary tank-treading to undergoing dainped oscillations
prior to tank-treading. For these cases with small n, the Taylor deformnation param-
eter oscillates before reaching equilibrinm and these oscillations decay more slowly
for smaller values of n. All three of these observations agree with those made by
Yazdani and Bagchi using Kelvin-Voigt viscoelasticity [63]. Thus, it scems that the
dependence of the membrane viscosity on the shear rate v in the power law model
docs not appear to produce significant qualitative alterations in the deforiation or
behaviour of a spherical capsule.

If the two models have qualitatively similar results, how do they compare quanti-
tatively? Capsnles with Kelvin-Voigt viscoelasticity are shown in Figures 62 and 63
for gy, = 10, 20, and 50 times ambient fluid viscosity jz,. Alongside are shown cap-

sules with membrane viscosity described by the power law model, for K = 0.01, 0.02,
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and 0.05 times p,,, and all having » = 0.64. All other parameters in the two modcls

is nstructive because the membrane viscosity parameters selected are comparable
with those of a red blood cell. For the power law, Puig-de-Morales-Marinkovic ef
al. found n = 0.64 in their experiments [48]. Estimates of p, vary substantially,
as they typically involve assuming that a Kelvin-Voigt model describes a particular
phenomena and deriving g, from their results [21]. In any event, p, = 104, (i.c.,
n = 10) is considered an approximate value [63].

For each pair with ys, = 10004, the initial deformation measured by D, is nearly
identical. For larger times, both Dy, and angle of inclination # diverge somewhat as
they approach steady-state. In all three cases, the power law model leads to slightly
smaller deformations and swaller angles of inclinations than does Kelvin-Voigt. This
divergence at steady-state is reasonable.  As the capsule approaches equilibrivm,
viscous stress in the Kelvin-Voigt model becomes negligible. In contrast, since n < 1,
the viscous effects created by the power law rise as vy becomes small and remain as
it. stays small. Consequently, there is a decrease in D,, as the capsule arrives at
its steady-state deformation. However, the general dynamic hehaviour between the
models remains strikingly similar, with both models transitioning from tank-treading
to damped oscillations for larger g, and K.

This agreement between Kelvin-Voigt and power law models suggests that,
frankly. the time-dependence of the power law viscosity has little effect on defor-
mation m shear flow. One might have anticipated that n # 1 might amplify the
tiine-dependence of v, leading to qualitatively different, non-linear changes than
varying K. Yet, as can be seen in Figure 64, the range of v values on the cap-
sule changes little, whether during deformation or after achieving steady-state, This
lack of substantial variability on the part of v has a further effect: changes to n and
K have qualitatively similar results. As seen in Figure 65, increasing A produces
the same results for Newtonian (n — 1) membrane viscosity in the power law model
as are observed for K = 0.01y, and the non-Newtonian n = 0.64. Thus, similar
equivalent deformations arc observed, with and withont dependence on . Since the
power law model is, therefore. acting like a lincar Newtonian model in shear flow, it

1s unsurprising that it should agree well with the lincar Kelvin-Voigt model for small

deformations.
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Figure 62. Taylor deformation parameter D, for g, = 10, 20, and 50 times g,
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parameters are Ca = 0.1, £y =0, and V = 1.
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Figure 65. Relative effects of n and K on the capsule deformation. Other paraneters
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5.2.2 OSCILLATORY SHEAR FLOW

Puig-de-Morales-Marinkovic ef al.’s experimental observations which necessitated
a power law model for red blood cells ocenr in an oscillatory magnetie field, the
frequency of which was varied by several orders of magnitude. While the inclusion
of electric or magnetic fields is beyond the scope of this cousideration, an oscillatory
flow is not. Thus, if ¥ for shear flow is too well-behaved for non-linear effects to
oceur, one wonders if oscillatory shear flow might be an appropriate venue for such
observations. The deformation and dynamics of elastic capsules in an oscillatory
shear flow has been explored computationally by Zhao and Bagehi, but their results
did not take into account membrane viscosity [70]. In the same cxperimental setup
as with shear flow, capsules with membrane viscosity described by the Kelvin-Voigt
and power law models are placed i the center of an oscillatory shear flow. For
a simulation domain of [0, /1], we defined the velocity at y = 0 and y = H as
1 = i%ksin(%—f‘), for period 7.

The same trio of capsules which led to roughly equivalent initial deformations in
shear flow are considered here: the Kelvin-Voigt model with gy — 104, the power
law model with # = 1 and A = 0.42y,, and the power law model with n = 0.64 and
K = 0.01p,. The oscitlation has period T' = 4 and the first three periods are shown in
Figure 66. Once again, the initial deformation measured by the Taylor deformation
parameter agrees very well for all three capsules. However, since the steady-state
behaviour involves continual shape chauge, this general agreement remains for the
duration of the simulation, in contrast to the results in shear flow. Indeed, the only
differences appear when the direction of flow changes. as the power law model with
n = 1 is consistently less deformed than its counterparts, which continue to agree
astonishingly well.

On a qualitative level, all three methods have equal responses to flows in both
directions, after reaching equilibrium. Further, the three models stay approximately
within phase. These general results are consistent with the findings of Zhao and
Bagchi for spherical capsules without membrane viscosity [70]: the deforination of
the capsule is periodic with the flow and the response to flow from either direction
is equal after the capsule reaches equilibrium behaviour.  Figure 67 displays the
maximum shear rate observed on the sphere. as a function of the fluid veloaity ()

at y = H, for a single period after the capsule has reached steady-state behaviour.

At this modest oscillation frequency, v changes by a factor of 6 — 8 over a period,
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which is clearly not sufficient to observe the sort of effects found by Puig-de-Morales-
Marinkovic et al. and Fedosov et al.

The results shown over the last several pages may be interpreted as a negative
result: a method for siimilating membrane viscosity using a power law fluid model
does not produce substantially different results than the Kelvin-Voigt model in stan-
dard venues like shear or oscillatory shear flow. Yet a negative result here is also
useful, in terms of understanding how Puig-de-Morales-Marinkovic et al.’s result im-
pacts previous computational studies and analysis based on sohd viscoelastic models.
For a spherical capsule in the ubiquitons shear flow setting, the models are nearly
equivalent for small deformations and are, at worst, qualitatively similar at larger
deformations. As a result, it seemns that the results of previous computational work
with solid viscoelastic model are not significantly challenged by Puig-de-Morales-
Marinkovic et al’s finding. Further analvsis will be necessary to determine whether
this similarity between the power law and Kelvin-Voigt extends to biconcave capsules
in shear flow; published data about the latter case does not vet appear to exist.

Similarly, Puig-de-Morales-Marinkovie ef af. [48] question the meaning of expo-
nential recovery models, like those used for micropipette aspiration [21] and optical
tweezing [13], being based on the Kevlin-Voigt viscoclastic model. Happily, this con-
cern 18 less relevant to the sort of data analysis developed by Diaz and coworkers
[20] and performed in Chapters 3 and 4. In these computational studies, exponential
curves were fitted over the entire recovery process and, as a result, are not susceptible
to the artifactual interpretations resulting from fitting curves over intervals of arhi-
trary duration. Further, shape response and recovery in a fluid-structure interaction

setting is not purely viscoelastic anyway and, consequently, the distinction between

power law and exponential viscoelastic recovery is less relevant.
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CHAPTER 6

CONCLUSIONS

Despite the significant attention that computational researchers have shown to
red blood cells in recent years, substantial holes remain in the current understanding.
Computational researchers focused on a deformable capsnle’s response to deforma-
tion, while experimentalists considered the shape recovery of red blood cells. This
leads to a certain disconnect between the theories, with little clarity as to how a
theory in one realm is apphicable to the other. As a result, a computational study of
shape recovery is of interest. Further, recent developiments by experimentalists scem
to have invalidated the popular Kelvin-Voigt viscoelastic model’s applicability to the
membrane viscosity of red blood cells. It has not been clear how the proposed power
law model, from the domain of complex fluids, may be included in a computational
niodel or how it compares to Kelvin-Voigt in typical simulation settings.

In order to begin addressing these topics, comprehensive two and three dimen-
sional mwodels for the fluid-structure interaction of a deforiable capsule in an aunbi-
ent flow have heen presented. The model is centered around the immersed boundary
method, using lattice Boltzmann and finite element methods for the fluid and strue-
tural components. When considered with respect to existing methods for deformation
in shear flow, the model 1s demonstrated to be sufliciently aceurate.

Building on the work of Diaz and collcagues 20, 19], exponential models are
proposed for the response and recovery of circular and spherical capsules, in terms
of the Taylor defortnation paraneter. These models generally fit the data [rom the
sitmulations conducted very well.  Cousidering the roles of the capillary number,
bending stiffuess, and fluid and membrane viscosity ratios separately, the differences
between response and recovery become apparent, along with the differences between
the two and three dimensional versions of the model. While the effects of these
four parameters on the steady-state deformation of circular and spherical capsules
are well known, these results demonstrate how these paramcters influence the speed

with which a capsule reaches a steady-state deformation or recovers the undeformed

shape.
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The recovery model is extended to two dimensional biconcave capsules, with en-
sembles of tumbling and tank-treading capsules being cousidered separately. For both
equilibrivin behaviours, a two-phase recovery process is observed, a phenoienon for
which experiments may provide some biophysical basis. The first recovery phase
centered on viscoelastic dissipation, and parallels nicely with models for the shape
recovery of red blood cells from micropipette aspiration. On the other hand, the
second recovery phase was found to contain the actual shape recovery and was con-
sistent with results for circular capsules. This two-pliase model helps to clarify how
the capsule’s undeformed hiconcave shape influences the shape recovery process.

In sitmulations of three dumensional bicoucave capsules, the roles of the capsule’s
reference shear deformation and spontaneous curvature were considered, as these as-
pects are not included in two dimensional models. Partial, but incomplete, shape
recovery was observed for capsules with constant spontaneous curvature, whether the
apsule had a uniform (stressed) or non-uniformn (unstressed) reference shear defor-
mation. On the other hand, tank-treading behaviour consistent with shape memory
during recovery was displayed by capsules with a non-uniform reference shear de-
formation, but not with a uniform reference shear deformation. These admittedly
limited resuits are consistent with theories that attribute the red blood cell's bicon-
cave shape to the bending stiffniess of the lipid bilayer and propose the non-uniform
reference shear deformation of the cytoskcleton as the impetus for red blood cell
shape memory.

Finally, the notion of using additional fluid viscosity to simulate the effects of
membrane viscosity was tested for spherical capsnles and Kelvin-Voigt viscoelastic-
ity. The basic notion was validated, though the naive approach does not lead to a
particularly useful computational model. Instead, the wnodel is extended to the power
faw model proposed by Puig-de-Morales-Marinkovic et al., whereby ruembrane vis-
cosity i calculated on the capsule surface and distributed by the inmersed bonndary
method to nearby fluid nodes as an additional fluid viscosity. This method is shown
to approximate Kelvin-Voigt for the initial deformation iu shear ow and the poten-
tially non-Newtonian cffects are considered.

Future work will be necessary to resolve the causes of mumerical instability en-
countered and discussed in Chapter 4, and clarify the extent to which they have a

physical basis. Subsequently, further investigations of the shape recovery of biconcave

capsules will be carried out, to test whether the incomplete shape recovery observed
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here becomes complete. Additionally, future work will involve applying both Yazdani

and Bagchi's viscoelasticity method and the power law model to biconcave capsules.
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