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ABSTRACT

MODELING AND SIMULATION OF SHAPE CHANGES OF RED 
BLOOD CELLS IN SHEAR FLOW

John Gounley 
Old Dominion University, 2014 

Director: Dr. Yan Peng

A description of the biomechanical character of red blood cells is given, along 

with an introduction to current computational schemes which use deformable cap­

sules to simulate red blood cell shape change. A comprehensive twx>- and three- 

dimensional framework for the fluid-structure interaction between a deformable cap­

sule and an ambient flow is provided. This framework is based on the immersed 

boundary method, using lattice Boltzmann and finite element methods for the fluid 

and structure, respectively. The characteristic response and recovery times of vis­

coelastic circular and spherical capsules are compared, and their dependence on sim­
ulation parameters is shown. The shape recovery of biconcave capsules in two and 

three dimensions is also considered, focusing on the role of simulation parameters and 

steady-state behaviour in two dimensions, while studying the capsule characteristics 

which lead to shape recovery and shape memory in three dimensions. Finally, the 

notion of interpreting membrane viscosity as an additional fluid viscosity is studied 

and a computational scheme based on power law fluids is described.
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0 Rate of deformation tensor
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(It Time step
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E b Bending stiffness modulus
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F Deformation gradient tensor

f Fluid probability distribution function

ft Bending force density



V

f(eq) Maxwellian equilibrium probability distribution function

fvol Volume penalty force

G Ratio of shear elasticity moduli in SLS

G Right Cauchy-Green tensor

9h Smoothed delta function

H Domain height in y-direction

h Mesh unit

H{d) Heaviside function of signed distance <1

j Fluid momentum

K Flow consistency index

k Fluid shear rate

K u Penalty coefficient for capsule volume

( Arc length

M Moment transformation matrix

m Velocity moments

m («X.) Maxwellian equilibrium moments

n Unit outward normal vector

N Number of triangles in mesh

11 Flow behaviour index

N l Linear shape function

P Body forces on capsule

P Body force acting on fluid

Ps.irf Matrix projecting to capsule surface plane



q Transverse shear tension

Re Reynolds number

S Relaxation parameter matrix

SLS Standard linear solid viscoelastic model

t Tangent vector

tn Time at n-th timestep

U Capsule velocity

u Fluid velocity

1/ Fluid viscosity ratio

V* Artificial fluid viscosity ratio

Vc Capsule volume

VrQ Initial capsule volume

Wt, Helfrich bending energy

IFv// Neo-Hookean elastic energy

It'sk Skalak elastic energy

Xr Position on Lagrangian capsule mesh

Xj Position on Eulcrian fluid grid

r* Inclination angle of membrane element with respect to direction of flow'

T Phase angle

/3t Principal directions, i =  1,2

i] Membrane viscosity ratio

T Position of membrane element with respect to inclination angle of capsule

7  Shear rate on capsule surface
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K Curvature in two dimensions, mean curvature in three dimensions

K() Initial curvature

Kg Gaussian curvature

A Membrane stretch ratio

A, Principal stretches, i  = 1,2

A lb Laplace-Beltrami operator

M Fluid viscosity

/ '« Ambient fluid viscosity

Vc Fluid viscosity inside capsule

V s Membrane viscosity

V m em Membrane viscosity in power law model

V Kinematic viscosity

CT Cauchy stress tensor

Oi Principal stresses, i  = 1,2

T In-plane tension

V Shear elastic timescale

Tr Recovery time

Ts Response time

Tv Viscoelastic timescale

Till Initial recovery time

TR2 Latter recovery time

0 Inclination angle of capsule with respect to direction of flow

S Bulk viscosity
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CHAPTER 1

INTRODUCTION

1.1 RED BLOOD CELLS

A red blood cell is an anudeate fluid-filled membrane, the cytoplasm of which 

contains an oxygen-transporting metalloprotein called hemoglobin. The membrane 

has two components: the cytoskeleton on the cytosolic (internal) side and a bilayer of 

lipid molecules on the external side [1], The cytoskeleton is a protein network, a mesh 

of spectrin heterodimers bound to the membrane at the mesh nodes by various pro­

teins. Lipids are fatty molecules which, having a hydrophilic head and hydrophobic 

tails, naturally form bilayers in fluids. The resu lting bilayers are. effectively, two- 
dim ensional fluids them selves, as the lipids readily exchange p laces w ith  neighbors 

in their monolayer.

Red blood cells undergo substantial shape changes in vivo. The rest shape of a 

red blood cell is understood to be a biconcave discoid, with an approximately 8/nn 

diameter and 2/trn height [4]. However, the diameter of capillaries may be as small as 

3 -  4pm, passing through which requires the red blood cell to deform to a bullet-like 

shape [51]. These significant yet routine changes in shape are complicated by certain 

blood diseases, such as sickle cell anemia, in which a hemoglobin mutation stiffens red 

blood cell membranes, making them less able to deform and recover their shapes [10], 

Better knowledge of the mechanics underlying red blood cell shape changes would 

be of use in understanding how they are distorted by sickle cell anemia and how this 

distortion might be countered by treatm ent [61]. Thus, an improved understanding 

of red blood cell deformation and recovery, and howT different aspects of the cell effect 

these processes, is of interest.

The changes in shape during the circulation of blood are caused by the ambient 

fluid in blood, plasma, deforming the red blood cell. The other components of blood 

- white blood cells and platelets — account for less than 1% of blood volume and 

may be discounted for the sake of simplicity. The red blood cell membrane resists 

this deformation by the ambient fluid in several ways [4, 25]. First, the cytoskeleton
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acts like a lattice of springs, causing elastic resistance to shear deformation. Second, 

the bilayer resists the membrane being bent during deformation, displaying a quality 

denoted as bending stiffness. Third, the fluidic nature of the bilayer means that it 

resists frictional forces, as a viscous fluid; this property is referred to as membrane 

viscosity. Finally, both the cytoskeleton and bilayer have surface incompressibility, 

creating an isotropic elastic response to changes in surface area. Additionally, the 

hemoglobin inside the red blood cell adversely impacts deformation, as its viscosity 

(ca. 6 centipoise) is roughly five times that of plasma (ca. 1.2 centipoise). As a 

result, the shape changes of a red blood cell may be modeled as a fluid-structure 

interaction problem.

1.2 RED BLOOD CELL SHAPE

Despite red blood cell membranes being among the most, studied biological mem­

branes, two important, and related, properties of red blood cells remain without 

complete explanations. The first m atter of uncertainty is the precise biomechanical 
source for the shape of m ature red blood cells. While immature red blood cells, 

called reticulocytes, have a predictably spherical shape, mature red blood cells have 

a biconcave discoidal shape. From a biological perspective, a non-spherical shape is 

advantageous: the ratio of surface area to volume is higher and, consequently, facil­

itates the diffusion of oxygen across the red blood cell membrane. However, there 

is disagreement about whether the cytoskeleton, bilayer, or some combination of the 

two causes the biconcavity.

The second uncertainty is why red blood cells have shape memory. Discovered by 

the experiments of Fischer, shape memory means that, during recovery, an element of 

the membrane returns to the same (or opposite, homologous) position on the surface 

where it was located prior to deformation [25]. W hether shape memory is a trivial 

consequence of the red blood cell’s biconcave shape, or a separate consideration, is 

unclear, since the antecedent is unresolved.

Experimental evidence inclining credence in both potential causes of biconcav­

ity exists. Hereditary elliptocytosis, in which the cytoskeletal bonds are weakened, 

causes ellipsoidal red blood cells [38]. On the other hand, when the bilayer of (nor­

mal) red blood cells is removed, a spherical shape results [59]. Literature may be 

found which unequivocally declares one or the other to be the cause [1],

These questions are clarified by two terms from Fischer [25]: the reference shear
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deformation and reference curvature. To understand reference shear deformation, 

imagine increasing the volume of a red blood cell until it becomes spherical. Define 

the local shear deformation of each element of the cytoskeleton in tha t state to be the 

reference shear deformation of tha t element. If the reference shear deformation were 

uniformly zero over the entire cytoskeleton, then the cytoskeleton is unstressed in the 

spherical configuration and would not support shape memory. On the other hand, if 

the cytoskeleton were to support shape memory and be unstressed in the biconcave 

configuration, the reference shear deformation would be non-zero for (at least) some 

elements. The reference (or spontaneous) curvature describes the configuration in 

which the bilayer has a minimum amount of bending energy.

As Fischer notes, the fluidic, uniform nature of the bilayer is not consistent with 

a non-uniform reference curvature [25]. However, the bilayer does have an im portant 

internal/external phospholipid asymmetry, in terms of electrochemical potential [1], 

which could cause a constant non-zero reference curvature, as proposed by Helfrich 

[27, 47, 41]. On the other hand, there does not seem to be an a priori biomechanical 

restriction on the uniformity of the reference shear deformation.

If non-constant reference curvature were not possible, a red blood cell’s hypothet­

ically non-uniform reference shear deformation would seem to be the obvious cause 

of shape memory, as Fischer proposes. This non-uniform reference shear deformation 

may or may not also play a role in causing the biconcave shape. On the other hand, 

Pozrikidis has shown tha t a constant negative reference curvature is entirely consis­

tent with, and perhaps even advantageous for, the biconcave shape [47]. This leads 

Pozrikidis to describe a comprehensive theory of the red blood cell’s biconcave shape: 

the cytoskeleton is nearly unstressed and the biconcave shape is caused by constant 

negative reference curvature, the membrane’s incompressibility, and the cell's volume 
deficiency.

1.3 M EM BRANE RESPONSE A N D  RECOVERY

Investigations into the shape recovery of red blood cells from deformation have 

largely followed experimental and theoretical avenues, as opposed to computational 

approaches. These studies primarily aimed at measuring the time course of shape 

recovery and determining the dominant mechanisms by which it occurred. Evans 

and Hochmuth, studying recovery from micropipette aspiration, argued tha t the 

recovery was dominated by the membrane’s viscoelasticity, which they described
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using a Kelvin-Voigt model [21]. This model led them to characterize the recovery 

by an exponential decay function with relaxation time r =  in which fia is the 

membrane viscosity constant and E s is the shear elasticity modulus [21], Subsequent 

studies of red blood cell shape recovery from optical tweezing [13] and shear flow 

[7, 58] found similar results and employed the same model. Additionally, Sutera et 

al. suggested tha t the fluid viscosity ratio also influenced the shape recovery time 

[58]. On the other hand, Fischer’s experiments of red blood cell shape recovery from 

tank-treading in shear flow suggest a time course of shape recovery tha t is 10 — 100 

times larger than these studies find, which might, indicate the incompleteness of the 

Kelvin-Voigt model in describing recovery from shear flow [25].

However, recent work has challenged the applicability of Kelvin-Voigt and, per­

haps, invalidated the results based on this model. Puig-de-Morales-Marinkovic et 

al., studying the viscoelasticity of red blood cells using optical magnetic twisting cy­

tometry (MTC), found that the dynamic response could not be explained by linear 

viscoelastic models [48]. Rather, they observed tha t the membrane displayed the vis­

cous character of a power law fluid. Since then , power law responses have- been noted 

by experimentalists using optical tweezing [6G, 67], dynamic scattering microscopy 

[2], and diffraction phase microscopy [62]. As the bilayer consists of cholesterol, in 

addition to several types of lipids, it is perhaps not unreasonable tha t a collection of 

these diverse elements display non-Newtonian properties [1],

1.4 M EM BRANE VISCOSITY

Likewise, the viscoelasticity of red blood cells has presented one of the more chal­

lenging aspects of their modeling and simulation. W ithin the modeling paradigm and 

scale considered here, standard approaches exist for modeling the capsule’s elastic­

ity, bending stiffness, and fluid viscosity ratio. While neo-IIookean constitutive laws 

are adequate to describe the red blood cell’s shear elasticity, Skalak has developed 

constitutive laws for biomechanics which integrate both shear and isotropic elasticity 

[23, 53]. Skalak laws have been clearly compared to their Hookean and neo-Hookean 

counterparts [5] and have been extensively implemented (e.g., [34, 36, 46, 64]). Simi­

larly, Helfrich’s model for the shape energy of fluid membranes has been the subject of 

considerable analysis [27, 41] and recent implementation [36, 64]. Finally, straight­

forward computational methods for smoothing the fluid viscosity ratio across the 

capsule interface have been developed, including solving a Poisson Equation across
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an index field [60] and using a smoothed Heaviside function [39, 68].

Models of membrane viscosity, however, are less settled. The pairing of the elastic 

cytoskeleton and viscous bilayer, subject to the same deformations, naturally suggests 

the Kelvin-Voigt viscoelastic model. Consequently, the vast majority of existing com­

putational models implement Kelvin-Voigt [19, 35, 69]. More recently, Yazdani and 

Bagchi noted numerical instabilities when implementing Kelvin-Voigt, opting instead 

for the more versatile standard linear solid (SLS) model and adjusting its parameters 

so as to approximate Kelvin-Voigt [63]. Studies using stochastic mesoscopic methods 

have opted for other viscous models. For instance, Fedosov et al. developed a general 

dissipative model within the framework of dissipative particle dynamics (DPD) [24], 

while Noguchi and Gompper’s multi-particle collision dynamics (MPCD) simulations 

of vesicles used bond-flipping for membrane viscosity [40], Interestingly. Fedosov e.t 

al. simulated twisted torque cytometry with DPD [24] and their results agree well 

with Puig-de-Morales-Marinkovie et al. [48], though with a slightly larger power law 

exponent. There does not, however, appear to be a deterministic implementation of 

the power law proposed by experimentalists.

1.5 SCOPE & OUTLINE

This thesis has four principal aims. First, it will develop a comprehensive, ex­

tensible computational model of the fluid-structure interaction between plasma and 

a single red blood cell [46]. Second, it will show how the shape recovery of capsules 

differs from deformation, and quantify the role tha t the capsule’s shape and param ­

eters play in these processes. This will help to reconcile computational work, which 

has largely focused on deformation and dynamics, with experimental investigations, 

which generally considered shape recovery. Third, it will consider the potential me­

chanical causes of a red blood cells’ biconcave shape and shape memory. Biological 

and theoretical studies have proposed several ideas, and the perspective of a com­

putational study would be of interest. Fourth, in light of the recent m aturation 

of membrane viscosity implementations, it will propose a new model for membrane 

viscosity, capable of describing its non-linear character. To achieve these aims, the 

following four chapters are organized as follows:

In Chapter 2, a complete methodology for modeling and simulation of the interac­

tion between a fluid-filled capsule and an incompressible viscous fluid is presented in 

two and three dimensional settings. Based on lattice Boltzmann, immersed boundary,
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and finite element methods, the method is benchmarked against published results. 

Both the two and three dimensional versions of the structural model include the 

capsule’s shear elasticity, bending stiffness, and membrane viscosity. Additionally, a 

method is presented for simulating different fluid viscosities inside and outside of the 

capsule.

In Chapter 3, circular and spherical capsules are placed in shear flow, deformed 

until reaching equilibrium, and recover their shapes after the shear flow is stopped. 

The response and recovery times of the capsules are measured using an exponential 

model and compared. The dependence of these characteristic times on various cap­

sule parameters is considered. Additionally, differences between the two and three 

dimensional structural models are observed in this context.

In Chapter 4, the shape recovery of two dimensional biconcave capsules from 

shear flow is studied, with attention to the dependence; on capsule parameters. The 

different courses of recovery for tank-treading and tumbling capsules are compared, 

and a general two-part recovery process is posited. Further, the shape recovery 

of a three d im ensional biconcave; capsu le from shear flow is studied, for different 

preferred elastic and bending configurations. Particular attention is given to the 

possible mechanisms of the undeformed biconcave shape and of shape memory, in 

terms of the three dimensional model presented.

In Chapter 5, the idea of simulating membrane viscosity as a fluid viscosity is 

investigated. Considered in the context of a spherical capsule, a relationship between 

the effects of the fluid and membrane viscosity ratios is drawn. A proof-of-concept 

study is conducted, concluding tha t certain im portant aspects of shape change caused 

by membrane viscosity in a solid viscoelastic model may be adequately modeled using 

an artificial fluid viscosity ratio. The successful, albeit limited, results of this study 

are leveraged to posit a new model for simulating membrane viscosity as a power law 

fluid. A comparison of the deformation of a spherical capsule with a solid viscoelastic 

model and the power law fluid model is conducted, showing tha t the models differ 

little in shear flow.
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CHAPTER 2

METHODOLOGIES

The general problem of a deformable fluid-filled capsule in an ambient flow re­

quires a methodology for handling the fluid-strueture interaction. Hou et al. divide 

existing fluid-strueture interaction methodologies into two groups: monolithic and 

partitioned [29]. In the monolithic approach, a single algorithm is used to describe 

the fluid and structure. Conversely, partitioned methods use separate algorithms for 

the fluid and structure, along with an additional method to describe the interaction 

between them. A partitioned approach is selected for this model, configured around 

the immersed boundary method. Developed by Peskin for modeling blood flow in the 

heart, the immersed boundary method is based on transferring data between an Eu- 
lerian fluid domain and a Lagrangian structural mesh, using discrete delta functions 

[43]. A multiple-relaxation-time lattice Boltzmann method is employed to simulate 

the fluid flow, along with two and three dimensional finite element models to describe 

the capsule.

The case of a single capsule in simple shear flow is considered, with the Reynolds 

number Re =  0.05. The Reynolds number is defined as Re =  ^ , in which p is the)la ' f
fluid density, k in the fluid shear rate, a is the equivalent radius of the capsule, and p a 

is the viscosity of the fluid surrounding the capsule. A capsule with equivalent radius 

a has, in two dimensions, the same area as a circular capsule with radius a. In three 

dimensions, a capsule with equivalent radius a has the same volume as a spherical 

capsule with radius a. The x-axis is the direction of flow, the y-axis is the direction 

of the velocity gradient, and (in three dimensional settings) the ,2-axis is the direction 

of undisturbed flow vorticity. The domain is theoretically infinite in the x- and z- 

direetions. In the subsequent simulations, however, domains of [0 ,16a] x [0,12a] in 

two dimensions and [0,10a] x [0,10a] x [0,8a] in three dimensions are considered, 

in which a is the equivalent radius of the capsule. Previous analyses by Sui et al. 

[56] in two dimensions and Li and Sarkar [36] in three dimensions have shown these 

domains to be sufficient to avoid wall effects. The time step dt and spatial step dx 

are related as h =  dt =  dx, with h being set as 0.05 in two dimensions and 0.1 in



three dimensions. Letting H  be the size of the domain in the ^-direction, the shear 

flow may be described in terms of shear rate k as

In all simulations, the center of capsule is centered in the domain, with respect to 

x-, y-, and 2 -axes.

2.1 LATTICE BOLTZMANN

In both the two and three dimensional models, a lattice Boltzmann method 

(LBM) is used to describe the fluid flow. Based on the Boltzmann Equation of statis­

tical physics, lattice Boltzmann methods offer an alternative to traditional methods 

for solving the incompressible Navier-Stokes equations. W ithin the low Mach and 

Reynolds number region, LBM exhibits stability that exceeds many traditional meth­

ods [31]. Despite its statistical origins, LBM is fully deterministic, using the averaged 

behaviour of particles. The expression f i ( x j , t n) represents the distribution of parti­
cles at lattice node Xj with velocity c* at time tn. Particle velocities, like time and 

space, are discretized, so that a particle has one of a given finite set of velocities. In 

the two and three dimensional simulations, the D2Q9 and D3Q19 velocity models, 

respectively, are employed [31, 32]. The integers following ‘D’ and ‘Q ’ denote the 

number of spatial dimensions and number of discrete velocities, respectively.

Using the multiple-relaxation-time approximation of the collision integral, the 

lattice Boltzmann Equation may be described as

in which f, m, and rrdeq) represent vectors of Q-dimensions, the components of which 

are the distribution functions for each particle velocity c*, the velocity moments, and 

the Maxwellian equilibrium moments, respectively [18, 32].

The lattice Boltzmann m ethod’s time evolution thus consists of two steps: col­

lision and streaming. W ith the MRT approximation, as represented on the right 

side of Equation (2), probabilities f  at each lattice node Xj are mapped to their mo­

ment space by the matrix M . W ithin this moment space, the noil-conserved moments 

m ( x j , t n) relax toward their equilibria rrdeq)(xj, tn), according to their specified relax­

ation parameters s* on the diagonal of matrix S. After this relaxation, the moments 

are mapped by the matrix back to probability space.

( 1)
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Following [18] and [31], the D2Q9 velocity discretization may be compactly for­

mulated as

(3)
(0,0) for i =  0

(cos[(i -  l) |] ,s in [( i -  1 )|]) for i =  1 : 4

(cos[(2r -  9)f],sin[(2i -  9 )f])^ 2  for * =  5 : 8

since the ratio = I. Likewise, the velocity discretization for D3Q19 is describeddt

as

(4) C ]  • • • c 1 9

0 1 - 1  0 0 0 0 1 1 - 1  - 1  1 - 1 1 -1  0 0 0 0

0 0 0 1 -1  0 0 1 - 1  1 - 1  0 0 0 0 1 1 -1  -1

0 ' 0  0 0  0 1 - 1 0  0 0 0 1 1 - 1  - 1  1 - 1  1 - 1

The Maxwellian equilibrium distribution is described in terms of the velocity dis­
cretization as

(5) f l q = UiP 1 + 3(cj • u) + -(Cj • u)2 :U

for which the two dimensional weights are loq — | ,  uj\...,t =  jp and w5 . 8 =  In three 

dimensions, the weights are w .̂,6 =  T , aiKj a;7...i8 =  ^  [18, 31].

Unlike the Bhatnagar-Gross-Krook (BGK) approximation, in which all relaxation 

rates are the same, a multiple-relaxation-time scheme is optimized to ensure Galilean 

invariance and isotropy, while minimizing dissipation and dispersion. For D2Q9, the 

transformation matrix is

(6 ) M =

1 1 1 1 1 1 1 1 1

- 4 -1 - 1 -1 -1 2 2 2 2
4 - 2 - 2 - 2 - 2 1 1 1 1

0 1 0 -1 0 1 -1 -1 1

0 - 2 0 2 0 1 -1 -1 1

0 0 1 0 - 1 1 1 -1 - 1

0 0 - 2 0 2 1 1 -1 -1

0 1 -1 1 -1 0 0 0 0

0 0 0 0 0 1 -1 1 -1
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By Lallemand and Luo [31], the resulting moments are relaxed according to the 

relaxation parameters

( 7) S - ,S0 A’l S 2 *'3 >s r. ■‘’6 *7  >s 8

Parameters s(), s3, and s5 are not relevant to the model, since they describe conserved 

moments (density p and momenta j x and j y). The kinematic viscosity u is related to 

the relaxation parameters s7 = s$ for components of the pressure tensor pxx and pxy

as

(8)
3 V,s'7 2J

Additionally, the parameters s,j =  sfi for energy flux components qx and qy are related 

to the viscosity as

(9 ) S4 — 3; •s 8

■‘’8

The bulk viscosity £ is related to the relaxation parameter .s’] for energy e as

Finally, the moment t related to the energy square, which is relaxed by s2, only alters 

the higher-order hydrodynamic terms in D2Q9; consequently, let s2 =  1.61.

For D3Q19, according to [18] and [32], the transformatioi
( i i )

M =

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

30 - 1 1 - 1 1 - 1 1 11 - 1 1 - 1 1 8 8 8 8 8  8 8 8 8 8 8
12 - 4 - 4 - 4 - 4 - 4 - 4 1 1 1 1 1 1 1 1 1 1 1 1
0 1 - 1 0 0 0 0 1 -  1 1 - 1 1 1 1 -  1 0 0 0 0

0 - 4 4 0 0 0 0 1 - 1 1 - 1 1 - 1 1 - 1 0 0 0 0

0 0 0 1 1 0 0 1 1 - 1 - 1 0  0 0 0 1 1 - 1
0 0 0 - 4 4 0 0 1 1 - 1 - 1 0  0 0 0 1 - 1 1 - 1

0 0 0 0 0 1 - 1 0 0 0 0 1 1 - 1 1 1 1 -  1 - 1
0 0 0 0 0 - 4 4 0 0 0 0 1 1 - 1 - 1 1 1 - 1 - 1
0 2 2 - 1 -  1 - 1 - 1 1 1 1 1 1 1 1 1 -  2 - 2 - 2 - 2

0 - 4 - 4 2 2 2 2 1 1 1 1 1 1 1 1 - 2 - 2 - 2 - 2
0 0 0 1 1 -  1 -  1 1 1 1 1 - 1  -1 1 - 1 0 0 0 0

0 0 0 - 2 - 2 2 2 1 1 1 1 - 1  - 1 - 1 - 1 0 0 0 0

0 0 0 0 0 0 0 1 - 1 - 1 1 0  0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0  0 0 0 1 - 1 - 1 1

0 0 0 0 0 0 0 0 0 0 0 1 - 1 -1 1 0 0 0 0
0 0 0 0 0 0 0 1 - 1 1 - 1 - 1  1 - 1 1 0 0 0 0

0 0 0 0 0 0 0 - 1 - 1 1 1 0  0 0 0 1 - 1 1 - 1
0 0 0 0 0 0 0 0 0 0 0 1 1 - 1 - 1 - 1 - 1 1 1

m atrix  is defined HS
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The diagonal matrix of relaxation parameters is

The conserved density p and momenta j x, j y, and j z are related to sq, s3, s5, and S7 , 

the choices of which do not alter the model. The kinematic viscosity v is related to 

the relaxation parameters ,s<j =  ,sn =  a-13 =  6 14 =  ,s15 for components of the pressure 

tensor 3pXX) pwu,, pxy, pyz, and pyz by the equation

Similarly, the bulk viscosity £ is related to the relaxation param eter sq for energy e

The relaxation parameters ,s4, .s6, and ,s8 for mass fluxes qx, qy, and qz must be 

identical for the sake of isotropy; they are set. equal to ,sg. The remaining parameters 

s2 for energy square c, ,s10 and ,si2 for 37rxx and ■nWWl and sq6, sq7, and ,sq8 relating 

to rnx, rny, and rnz are higher-order terms which do not alter the hydrodynamics. 

Consequently, these remaining parameters are set equal to 1.8.

of the fluid viscosity inside the capsule. p c, to the ambient fluid viscosity pa. To 

implement a non-unity fluid viscosity ratio over a time-dependent region, the fluid 

viscosity at each node must be computed every timestep, so tha t the relaxation 

parameters for that node may be appropriately adjusted. In practice, this is only 

necessary for nodes which are near the capsule boundary, as the others will not 

change from one timestep to the next. To compute the new viscosity at a node, 

not only whether the node lies inside or outside of the capsule must be determined, 

but the fluid viscosity contrast across the capsule interface must also be smoothed, 

for the sake of the stability of the fluid solver. In the context of multiphase flows, 

Tryggvason et al. used a Poisson Equation to determine fluid density at grid points 

near the interface [60]. Alternatively, N’Dri et al. employed and Zhang et al. refined 

a method using a Heaviside function and based 011 the shortest normal distance from

(13)

by

(14)

2.2 FLUID VISCOSITY

The dimensionless fluid viscosity ratio V  of a capsule is defined to be the ratio
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the fluid node to the membrane [39, 68]. For this consideration, the approach of 

Zhang et al. is adopted.

To determine the viscosity of a fluid node at a given timestep, the Lagrangian 

node nearest to the fluid node is selected. The dot product of the vector between 

these two nodes and the unit outward normal from the Lagrangian node is calculated. 

The sign of this dot product produces a reliable indication of whether the fluid node 

under consideration is inside or outside of the capsule. Next, the shortest (normal) 

distance d from the fluid node to the capsule boundary is approximated. The sign of 

d for a fluid node is set, to be positive if located outside of the capsule, or negative if 

inside of the capsule.

W ith the signed distance d having been determined, a smoothed Heaviside func­

tion of d from [68] is defined, as

(15) H{d) =
0 d < —2h:

J < 1 + £  +  } ,* ,  g )  —2/i <  d <  2/i;
1 d > 2/i.

Finally, the viscosity ft at the node is determined using H(d), by the equation

(16) p(x) = nr + (/x„ -  fic)H[d(x)].

in terms of viscosity fir inside the capsule and ambient viscosity //,0.

2.3 IM M ERSED BO UNDARY

In the immersed boundary method, the fluid is simulated across the entire sim­

ulation domain and the structural mesh moves without altering the Eulerian mesh. 

The fluid velocity near the capsule boundary is used to determine the velocity of 

the capsule; the capsule’s velocity may then be used to update the position of the 

capsule. The fluid-structure interaction requires that a no-slip condition be main­

tained at the capsule boundary [29], which deforms the capsule and leads to body 

forces. The incompressible Navier-Stokes Equations are solved, using LBM, with the 

addition of these forces to determine the fluid velocity.

A smoothed Dirac delta function is used to transfer the necessary data between 

the two grids. The smoothed Dirac delta function in d-dimcnsional space is defined

by

(17) 4 (x )  =  Sh(x l )5h(x2) ■ ■ ■ Sh(xd) , x e  R d
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in which the one dimensional discrete delta function is given as

(18) =

The smoothed delta function is employed to determine the fluid velocity at capsule 

gridpoints, based on the local fluid velocity, and to spread the body forces created 

by capsule deformation to the nearby fluid. The capsule velocity U  is determined at 

Lagrangian node X,. by

in which Xj and u denote Eulerian fluid node position and velocity, respectively. 

Subsequently, this velocity is used to update the position of the Lagrangian grid by 

the forward Euler method:

Similarly, body forces P  at X c, which result from the deformation of the capsule, are 

distributed to the fluid grid points by

as the area of the elements has already been incorporated into calculation of P  at X,.. 

Subsequently, the forces exerted on the fluid are incorporated into the fluid simulation 

according to the update method described in [33] and [42]. In the collision phase of 

LBM, after computing the hydrodynamic moments, momenta j  =  j y, at 

gridpoint Xj are updated to according to the forces p, as

After using j '  to find the equilibrium moments nTeq\  the momentum is updated 
again, as

and j"  is used to compute the probability distribution after the collision phase. The 

advection step of LBM is not altered by the addition of forces acting on the fluid.

(19)
j

( 20 ) X c(f„ +  dt) — X c(tn) -+■ U ( X c)dt,

( 2 1 )
C

(22 ) j ' (X j )  =  j ( X j )  +  — p(Xj) .

(23) j " ( X j )  =  j ' ( X j )  +  ~ p  (Xj )
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2.4 TWO DIM ENSIONAL STRUCTURAL ALGORITHM

In two dimensional simulations, capsules which are either initially circular or 

biconcave are considered. Each capsule is discretized into 140 line segments, which 

are initially equally-sized. The configuration of the biconcave capsule in the jy-plane 

is described by

(24) x  = aa siny

(25) y =  a —(0.207 +  2.003sin2 y -  1.123sin4 y) cosy

for cell radius ratio a  =  1.39, equivalent radius a = 0.5, characteristic length 1.48a, 

and angle y ranging from -0.57r to 1.57T [56]. The biconcave capsule is also inclined 

by a 45° angle to the positive x-axis.

2.4.1 M ETHODOLOGY

The capsule is assumed to be massless and initially unstressed. Due to this 
algorithm’s use of the immersed boundary method, velocity is continuous across 

the membrane. However, a jum p in interfacial tension across the interface does 

exist. Consequently, using Gauss’ divergence theorem, Pozrikidis [45] derives the 

force equilibrium Equation for complete tension T = r t  + r/n as

(26) f  = - ( P surf -V) • ( r t  +  qn)

for in-plane tension r , transverse shear tension q, tanget vector t, and outward normal 

vector n. The projection matrix P surf =  I -  nn projects the gradient to the capsule 

surface, so tha t P surf V  is the surface gradient. In two dimensions, the Equation 

may be simplified by the Frenet-Serret formulae to
r\

(27) f =  -  — (Tt + qh)

for capsule curvature k. and derivatives taken with respect to capsule arc length L 

Further, the transverse shear tension q is simply the derivative of bending moment 

m with respect to arc length, as q — The necessary first and second derivatives 

with respect to arc length are performed with five-point centered difference methods 

for arbitrarily spaced abcissae.

The viscoelastic character of the capsule membrane is described using the Kelvin- 

Voigt viscoelastic model, with a viscous dashpot in parallel with an elastic spring (see

dq- 'd r
KT d L

n -
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Figure 4). For Kelvin-Voigt, in-plane tension is simply the sum of the elastic and 

viscous contributions, as

Strain for each element of the capsule is given in terms of the stretch ratio A, which 

is defined by the ratio of a line element’s current length £ and initial length £0, as

For the sake of simplicity, Hooke’s law is employed to describe the capsule’s shear

in which E„ is the shear elasticity modulus [56]. The tension due to membrane 

viscosity is defined by

culated by a one-sided second order finite difference method. The capsule’s isotropic 

elasticity is not explicitly included in the two dimensional algorithm. Transverse 

shear tension is the result of bending stiffness and defined as

in which E b is the bending stiffness modulus, k is the curvature, and k() is the pre­

ferred curvature [46, 56]. As noted by Pozrikidis, Equation (32) is, strictly speaking, 

only correct for small deviations from the preferred curvature, but is sufficient to 

account for the qualitative role of bending stiffness here [46]. For both circular and 

biconcave capsules, /c0 is set equal to the initial curvature. Curvature k is calcu­

lated with periodic cubic spline interpolation; if the capsule surface is defined by the 

function cr =  F(x),  then

Thus, the two dimensional capsule is unstressed, by either viscoelastic tension or 

bending moments, at. the initial shape configuration.

(28) r  =  Te + r„

(29)

elasticity and determine the elastic tension Te. This model takes the form

(30) re =  E s{A -  1),

(31)
i d \

Tu /Cs ,A at

in which p., is the membrane viscosity coefficient [69]. The time derivative of A is cal-

(32)

(33)
± F "

(1 +  F '2)3/2 '
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Three structural non-dimensional parameters may now be defined, in addition to 

the aforementioned non-dimensional fluid viscosity ratio V . The capillary number 

Ca is defined as

/Q/i \ n  ll*ka(34) Ca =
Ea

in terms of ambient fluid viscosity /ra, shear rate k, equivalent capsule radius n, and 

shear elasticity modulus Es. The capillary number Ca represents the ratio of viscous 

fluid shear to solid elastic force, and is also referred to as the dimensionless shear 

rate in the literature. The bending stiffness Et, is defined as

(35) E„ =
aEs

for bending stiffness modulus E B and represents the ratio of bending to shear resis­

tance. Finally, the membrane viscosity ratio ij is defined as

(36) n =  ^
«/'a

for m em brane v iscosity  coefficient pis and equivalent radius a;  thus, rj is the ratio of 

m em brane to  am bient fluid viscosity.

2.4.2 VALIDATION

The standard parameter for describing the deformation of a capsule is the Taylor 
deformation parameter,

(37) D =  L ~ W
{ ’ Ty L + W '

In two dimension simulations, L  and W  are defined to be the capsule length and 

width, respectively. Due to the discrete nature of the capsule model from which L 

and W  are measured, graphs of Dxy in two dimensions are not perfectly smooth, but 

this does not reflect a corresponding lack of smoothness in the capsule geometry. In 

three dimensions, however, L and W  are defined to be the major and minor axes 

of an ellipsoid in the xy-plane with the same moment of inertia as the capsule, as 

stated by Clausen and Aidun [12]. The formula for the moment of inertia is

(38) I,

in terms of node position vector r and unit outward normal n. From the eigenvalues of 

the moment of inertia matrix, the ellipsoid’s major and minor axes may be calculated.
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Figure 1. Comparison witli Sui et al. for shear elasticity. Ca varies for Eh = 0, for 
V = 1 and 7/ =  0.

In all subsequent results, shape deformation and recovery will be quantified in terms 

of Dxy.

The results from the two dimensional algorithm are compared with a similar 

approach by Sui et al., in which immersed boundary and BGK lattice Boltzmann 

methods were used [56]. Figure 1 considers the deformation of an elastic capsule, with 

respect to the Taylor deformation parameter, for different capillary numbers Ca. The 

results agree well, though this approach overshoots the equilibrium value somewhat 

for Ca — 0.4. This difference may be the result of the very fine multiblock fluid grid 

used in the neighborhood of the capsule in [56]. Similarly acceptable agreement is 

observed in Figure 2 for different values of the bending stiffness Eh- Once again, 

slight deviations in the equilibrium values are observed, which are acceptable in light 

of the coarser grid here. Similar comparisons for fluid and membrane viscosity ratios 

are omitted, due to a lack of published data.

2.5 THREE DIM ENSIONAL STRUCTURAL ALGORITHM

The three dimensional capsule surface is discretized into triangular elements.
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Figure 2. Comparison with Sui et al. for bending stiffness. E (, varies for Ca =  0.04, 
for V — 1 and 7/ =  0.

Meshes for spherical and biconcave capsules are produced by generating an icosa­

hedron. Using the approach of Ramanujan and Pozrikidis for an octahedron, each 

edge of the icosahedron is bisected and these points are used to split each face of the 

icosahedron into four equal triangles [49]. This process is repeated until the mesh is 

sufficiently fine. A mesh with 2562 vertices and 5120 triangles results is considered 

sufficient, based on the fluid grid and Yazdani’s convergence analysis [65], Then, 

each triangle in the mesh is projected onto a circle or biconcave capsule. Spherical 

capsules have a radius a =  1. The shape of the biconcave capsule is given by the 

definition

(39) x = aa sin y cos 4>

(40) y — — (0.207 +  2.003sin2 y ~ 1.123sin4 \ )  cos y

(41) z — ao sin y sin (p

for equivalent radius a =  1, a — 1.3858, and angles from 0 to 2ir [46]. Addi­

tionally, the resulting biconcave capsule is inclined at a 45° angle with respect to the 

horizontal in the xy-plane.
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2.5.1 CAPSULE MODEL

The capsule’s elastic character is described by a finite element model. The cap­

sule itself is considered to be inassless and composed of a network of zero-thickness 

triangles, surrounding the interior fluid. By comparing a given triangle to its ini­

tial (undeformed) configuration, the strains and corresponding stress resultants on 

each triangle may be computed. However, a deformed triangle is often no longer 

in the plane of the undeforined triangle. While this rotation does not contribute 

to the stress on the element, it does complicate the comparison between deformed 

and undeformed triangles. Consequently, for the purpose of calculating strains, the 

approach of Charrier et al. is adopted [9, 52], mapping the undeformed and deformed 

triangular elements to the common 2  =  0 plane. Figure 3 shows the result of this 

mapping for undeformed triangle ’x.iXjXk and deformed triangle X tXjXfc. In this 

way, triangle deformation has been reduced to plane stretching and the displacement 

vector u = X -  x and the deformation gradient matrix ^  + fy1, for

i , j  = 1,2, may be calculated.

In the absence of body forces and acceleration, the principle of virtual work is 

(42, X ( ^ K fl'  =  °

in terms of Cauchy stress tensor components al} and virtual displacements Suj, being 

integrated over volume V. While the determination of the stress tensor for elastic 

and viscoelastic membranes will be discussed in the two subsequent sections, the 

derivation of the finite element model is presented here. Since

m i  a  =  ( ^ , ,)■>«, +■

the principle may be written as

(44) ^  A  ( a . ^ d V  =  ^  ^  {Su^dV.

Replacing ~  on ^ ie ^ 6 ^  °f Equation (44) and using the
divergence theorem on its left side, this may be written as

(45) j  riitJijSujdA =  J  a i j ^ ^ - F ^ d V
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Y

X,
X

Figure 3. Undeformed triangle x tXjXk and deformed triangle X tX j X k. For the sake 
of simplicity, and are mapped to the origin, while the edges xii.j and X ,X j  are 
m apped to  the x-axis.

for components n ( of the outward normal vector. Expanding arbitrary displacements 

6uj in terms of linear shape function N l, as <hij — N l6n?j, the result is

Contracting the surface traction force Pj =  JA t^a^N^lA ,  the Equation simplifies to

(46)

(47)

Assuming linearity of the linear shape function over the triangle, this simplifies to

(48)

Since displacement 5ul} is arbitrary, one may reduce and transpose:

(49)
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The linear shape functions N l and their coefficients are defined as

(50) ai =  yj -  yk

(51) It, -  .rk x,

(52) a  = x}yk -  x kyj

(53) 2Aq =  di'Xi +  blyl +  r,

(54) N*
diX +  b,y +  c,

2 An

and N J and N k are derived by cycling t

(49) may be more clearly expressed as

(55)

j  —» k■ — i [52]. As a result,. Equation

>xi Pxk V ^  T =  —  <rF~r
a,. a,j ak

= A,A2< rF -T
Ui (ij (ik

Pyt Pyj Pyk_ 2A0 hr bj bk_ 2
b> hj hk_

in which Pxi represents the force in the ^-direction at vertex i of the triangle, a  is 

the Cauchy stress tensor, and F is the deformation gradient tensor. The element 

volume V  is related to the undeformed area A0 of the triangle as V  =  AiA2A0, for 

principal stretches Ai,A2. W ith the forces thusly calculated, they are mapped from 
the xy-plane back to global coordinates and summed over every triangle constituting 

the membrane surface.

2.5.2 ELASTIC STRESS

For a purely elastic capsule, the Cauchy stress caused by deformation is de­

termined using a two-dimensional constitutive law. Comprehensively discussed by 

Barthes-Biesel et al. [5], there are two hyperelastic constitutive laws of particular 

interest here. First, a Mooney-Rivlin law, such as the ueo-Hookean law, has purely 

shear elasticity and, consequently, does not enforce surface area conservation. The 

neo-Hookean constitutive law may be expressed by the enorgy-strain relation

(56) E „ .W N„ =  y  (A? +  A£ + Ar2A22 3).

for shear elasticity modulus Es and principal stretches Ai,A2 [9]. The principal 

stretches are the positive square roots of the eigenvalues of the right Cauchy-Green 

tensor G =  Fr F. Second, a Skalak constitutive law includes both shear elasticity 

and the local conservation of surface area. The energy-strain relation for the Skalak 

constitutive law considered here is

E i
4

(57) W SK Ai +  A 2 — 2 ) 2 +  2 ( A i  +  A2 — 2) 2{\\Xi  -  1) +  C { \ \ \ l  -  l )2
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with the additional parameter C  representing the ratio of the area dilation modulus

setting C  this large requires an impracticably small timestep [64]. This consideration 

uses C  =  15, which permits some change in capsule surface area, while preventing 

significant dilation or compression. Spherical capsules may be adequately described 

by a neo-Hookean constitutive law; indeed, some dilation of a sphere is necessary for 

any sort of deformation. For biconcave capsules, however, the incompressibility of 

the membrane is a significant factor. Consequently, in subsequent results, spherical 

and biconcave capsules are described by neo-Hookean and Skalak constitutive laws, 

respectively. From these constitutive laws, the principal stresses may be derived for 

the Neo-Hookean law as

In concert with principal directions /3i ,/32 of the principal stretches A), A2, the prin­

cipal stresses may be used to compose the stress tensor

W ith <t known, the forces caused by the deformation may be calculated using Equa­

tion (55).

2.5.3 VISCOELASTIC STRESS

If the capsule has both shear elasticity and membrane viscosity, the relation be­

tween stress and strain may instead be described by a solid viscoelastic model. In the 

Kelvin-Voigt (KV) model, also used in the preceding two-dimensional model, mem­

brane stress is computed as the sum of elastic and viscous stress resultants. Schemat­

ically, this may be represented by a spring and dashpot, in parallel (see Figure 4). In 

response to the instability caused by Kelvin-Voigt, observed for the preceding two

to the shear modulus [5]. Measures of C  for red blood cells are on the order of 10r>, but

(59)

(58)

and for the Skalak law as

(60)
i aw.SK

( ^ 1 ( ^ 1  -  1) +  C'(A]A2)2(A?A2 -  l ) j

(61)
1 c1WSk

^ ^ ( ^ 2 ( ^ 2  -  1) +  C(AiA2)“(AjA2 -  l ) j .
Ai 8 X2

(62)
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Figure 4. Schematic of the Kelvin-Voigt solid viscoelasticity model

dimensional model and noted by Bagchi and Yazdani for a three dimensional model, 

the standard linear solid (SLS) model is an attractive alternative. SLS considers a

Maxwell element (which has a spring and dashpot in sequence) in parallel with a

spring, as in Figure 5. Consequently, SLS approximates Kelvin-Voigt as the spring 

in the Maxwell element becomes sufficiently stiff. Approximating Kelvin-Voigt with 

SLS has the advantage of combining the improved stability of the SLS model with 

the time-independent elastic modulus of Kelvin-Voigt. Following Yazdani and Bagchi

[63] and a convergence analysis (see Figure 12), the ratio of shear elasticity moduli 

G  =  = 50 is considered to be sufficiently large to describe Kelvin-Voigt. All sub­

sequent viscoelastic simulations using SLS are conducted with this approximation of 

the Kelvin-Voigt model.

To determine the stress resultant a,  the non-linear theory of viscoelasticity is em­

ployed, which describes the standard linear solid model, with neo-Hookean elasticity. 

The resulting constitutive stress-strain relation is

(63) (Tij = —pSij + goFikFjk + \ f .\kFjt f  y x(t -
2 J  o Ot

for deformation gradient F, right Cauchy-Green tensor G =  Fr F, shear modulus 

go = I f , and relaxation function gx(t) =  \ E me~tlTm [11, 52], Here, Em is the shear 

modulus of the Maxwell element and the relaxation time constant rm =  ^  is given 

in terms of membrane viscosity fts. This computational model can be adapted to 

several viscoelastic paradigms. Since a two dimensional membrane is considered,
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Figure 5. Schematic of the standard linear solid (SLS) viscoelasticity model

incompressibility requires tha t hydrostatic pressure p is

(64) p  =  po| F  | “ 2 +  ^  J  Pi (t  -  r ) — dr

In the interest of computational efficiency, the time integrals in Equations (63) 

and (64) are approximated by assuming that G and | F |~2 vary linearly over a single 

timestep [52], W ith this assumption, one may define the integral in Equation (63) 

at time tn as

(65) I ( t„ ) =  /  V < '" - T)/T« ^ d r .
Jo <h

Knowing this integral at time tn, I(fn+i) may be simplified as

r1-!! pi (fr
(66) l ( t n+l) =  /  e dT

Jo ( h

f  ” e W n+. - r ) / r „ ^ (ir +  f  " + 1 g-Un + i - r J /T R ^ G ^
Jo or  J tn dr

and

(67) I (tn+1) = e~'ll/TRI(tn) + TRG{tn+]) G{tn)(l -  e - d,/TR)
at

The same procedure is followed for the integral involving | F |~2 in Equation (64). As 

a  result, the incorporation of membrane viscosity does not appreciably increase the 

computational cost of the algorithm.
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However, the SLS method proposed here has a significant limitation: it is re­

stricted to the neo-Hookean constitutive law and, consequently, cannot be used for 

a Skalak-like constitutive law. Consequently, for the remainder of this work, the vis­

coelastic model is only used with spherical capsules. To overcome this limitation, the 

more general and powerful approach developed by Yazdani and Bagchi is necessary, 

of which the previous algorithm is a felicitous special case [63]. A very brief depiction 

of their model follows:

The elastic stress in Equation (62) is decomposed into its deviatoric and volu­

metric parts, as

(68) cre = a dev + a voll

and calculated using the shear elasticity modulus E (0) =  E„ +  E m. Additionally, the 

time-dependent shear modulus is written as a Prony series, as

(69) E(t)  = E a + Erne~t' T"',

a formalism tha t may be extended to an arbitrary number of Maxwell elements by the 
addition of the corresponding exponential decay functions. W ith these definitions, 

the viscoelastic stress-strain relation may be written as

(70) <Tl)e =  rrrfCT +  SYM ( j f  F f ‘(t -  s) ■ crdev(t -  s) • F,(t -  s )ds)  + o voll

in which F t (t -  s) = is the deformation gradient between times t -  s and t.

The operator S Y M  enforces the theoretical symmetry of the integral. In the interest 

of simplicity, the volumetric stress has not been transformed, although a similar 

process suffices to do so. The numerical analysis necessary to efficiently compute 

this Equation is non-trivial, and has been clearly worked out in Dassault’s ABAQUS 

Theory Manual [14].

2.5.4 BEN D IN G  STIFFNESS

Helfrich’s formulation of the bending energy of a zero-thickness membrane is given

as

(71) Wh = f  ( 2 k  — c q ) 2 ( I S  + Eg f  KgdS
«/S •/ s

for the bending stiffness modulus E b of mean curvature, the bending stiffness mod­

ulus Eg of Gaussian curvature, capsule surface area S,  mean curvature k , Gaussian
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curvature k 9 , and spontaneous curvature c0 [64]. For a closed surface, Js KgdS  is in­

variant, according to the Gauss-Bonnet theorem and, consequently, may be omitted. 

For the first integral in Equation (71), on the other hand, Ou-Yang and Helfrich [41] 

take the first variation and derive the bending force density at a node as

(72) ( 2 k  +  t 'o ) ( 2 k 2 -  2 k 9 -  c0 k ) +  2 A Lb  « n.

in which A lb is the Laplace-Beltrami operator. Spontaneous curvature Co is not 

simply the three dimensional analogue of the two dimensional preferred curvature 

Aq. For spherical capsules, the choice of spontaneous curvature is Co =  0, which 

indicates tha t the membrane does not have an internal/external asymmetry and leads 

to fj, =  0 for the undeformed sphere. Several spontaneous curvatures are considered 

for biconcave capsules and discussed in more detail in Chapter 4.

The curvature of the capsule at each node was calculated using the quadratic 

surface fitting approach described by Garimella and Schwartz [26]. For each node X p, 

the outward unit normal vector for each triangle surrounding X p is calculated and an 

unweighted average of these vectors is used as an approximate outward unit normal 

vector n  to X p. Based on this normal vector, the rotation matrix R  =  [ i q ,^ ,^ ] 7 

may be constructed, in which

(I -  n n r )i
(73)

(74)

(75)

(I
r 2

-  h n T|| 
r .3 x iq

r  3 n

for i =  x. This rotation matrix is used to map each neighboring node X j of node 

X p, according to the equation

(76) x ' =  R (X J -  X p

Using these n neighboring nodes (between 5 and 6, depending on the particular 

node), a system of Equations is constructed, as

(77)

a
x\  Xiyx y\ y\ b

f'
z l

X 2n X n V n yl X n Vn_

i

Zn
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m

Figure 6. Neighborhood of vertex point P  on the spherical surface. The dashed lines 
enclose the Voronoi region about P,  based on the circurncenters of the triangular 
elements.

The icosahedron-based mesh has 12 nodes with n =  5, while the remainder have 

n  =  6. If n = 5, the system of Equations is determined and is solved with LAPACK’s 

DGESV routine [3]. For n =  6, the system is over-determined and a least-squared so­

lution is found using LAPACK’s DGELS routine [3]. From the solution, calculations 

may be made for Gaussian curvature ng,

b2
(78)

mean curvature k.

(79)

4ac
(l + tP + e2)2

a +  c + ae2 +  cd2 -  bde
K

(1 + d2 + e2)3/2 

and an improved unit outward normal vector n

(80)
1

n
(1 +  d2 +  e2)*/2

R -l
—d

—e 

1

The discrete Laplace-Beltrami operator, acting on mean curvature k a t node X p
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, may be represented as

(81) Albk(Xp) = ^ £  Wj[/c(Xp)-/c (X j]
ie/v(xp)

for nodes Xj belonging to the set N ( X P) of nodes which neighbor X p [50]. The 

approach of [44] is followed, in setting the weights Uj as

(82) = cot(n 4 ± cot^ >

in which aj  and (3j are defined as in Figure 6 . Similarly, the normalization factor d 

is defined with the Voronoi region av0r,

(83) d = av0r =  g ^ 2  [cot(oj) +  co t(/J)]||X p -  X J | 2

;'eN( p)

as given by [37] and depicted by area enclosed by the dashed line in Figure 6 .

For biconcave capsules, net compressive or dilatory bending forces can lead to 

changes in the capsule volume. To maintain an approximately constant volume of
the capsule, a penalty function is employed, which produces an isotropic force to

counter the change in volume. Borrowed from Yazdani, the definition of the penalty 

function is

(84) fvol =
Co

for capsule volume Vc, initial capsule volume VJ), and penalty coefficient K v [65]. 

This force is then added to bending and elastic (or viscoelastic) forces, which are 

distributed to the fluid by Equation (21).

2.5.5 VALIDATION

The results from this algorithm are compared with published data for the de­

formation of spherical capsules in shear flow. First, an elastic capsule at different 

capillary numbers is considered in Figure 7, against the results of Sui et al. [57] using 

a front-tracking lattice Boltzmann method, and Ramanujan and Pozrikidis [49] us­

ing a boundary element method. The algorithm proposed here slightly outperforms 

Sui et al. at larger Ca, being closer to the higher-order method of Ramanujan and 

Pozrikidis. Second, a comparison with Le [34] is made for different levels of bending 

stiffness. The results compare well, except for Eb =  0, where Le’s method over­

shoots the results of the method proposed here. This is somewhat surprising, given
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Figure 7. Comparisons for different capillary numbers Ca at V  =  1, with Eb =  0 and 
rj =  0. Open circles are from Sui et al. [57] and filled triangles are from Ramanujan 
and Pozrikidis [49].

the general robustness of Le’s thin-shell method; due to the excellent agreement with 

Ramanujan and Pozrikidis for these parameters in Figure 7, the deviation here seems 

acceptable. Third, an additional comparison with [57] and [49] is conducted in Figure 

9 for a fluid viscosity ratio V = 5, to evaluate the Heaviside approach for smooth­

ing the viscosity jum p across the capsule interface. This algorithm perforins well, in 

terms of approaching the results from the boundary element method. Though the al­

gorithm still overshoots Ramanujan and Pozrikidis as the capsule enters steady-state 

behaviour, particularly for Ca =  0.2, it clearly outperforms Sui et al. in steady-state. 

This last result is a pleasant surprise, since Sui et al. used somewhat finer Eulerian 

and Lagrangian meshes than are employed here.

Additionally, while there is not extensive published data with which the vis­

coelastic algorithm may be compared, its general behaviour may be evaluated. The 

convergence of the viscoelastic algorithm is considered in Figure 10 for increasingly 

fine meshes and is seen to converge nicely. Figure 1 1  considers the initial deformation 

of a spherical capsule with a viscoelastic membrane and varied ?/. The shear elasticity 

ratio G = 50 is fixed for each 77, so tha t the model approximates the behaviour of
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Figure 8. Comparisons for different bending stiffness Eb, with Ca =  0.05, V  =  1, 
and 77 =  0. Filled circles are from Le [34].
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Figure 9. Comparisons for different capillary numbers Ca at V  = 5, with E b ~  0 and 
T) — 0. Open circles are from Sui et a l.  [57] and filled triangles are from Ramanujan 
and Pozrikidis [49].
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Figure 10. Convergence analysis of the viscoelastic model with capsule meshes having 
N  = 1280, 5120, and 20480 triangles. Capsule parameters are Ca =  0.05, Eb =  0, 
V = 1, r) = 10, and G =  50.

Kelvin-Voigt. To consider the convergence of the model to Kelvin-Voigt as G be­

comes large, Figure 12 compares G values for a given r/. As the difference between the 

deformation for G  =  10 and G =  25 is almost indiscernible, using G =  50 certainly 

seems sufficient to approximate Kelvin-Voigt.
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Figure 11. Comparison for different membrane viscosity ratios r? for G = 50. Other 
parameters are Ca =  0.05, Eb — 0, and V  — 1.
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Figure 12. Comparison for different shear elasticity ratios G for // =  10. Other 
parameters are Ca =  0.1, Eb = 0, and V — 1.
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CHAPTER 3

RESPONSE AND RECOVERY OF CIRCULAR AND 

SPHERICAL CAPSULES

Diaz and coworkers [20] considered the response and recovery of an elastic capsule 

in elongational flow. Finding tha t the capsule’s response and recovery times could 

be determined by an exponential fitting of the Taylor deformation parameter, they 

investigated how these characteristic times depended on simulation parameters such 

as the fluid viscosity ratio and the capillary number. The response and recovery 

times of a capsule are im portant to understanding how a capsule will react in more 

complicated, time-dependent flows, as arise in medical and industrial applications 

[22]. Diaz et al. [19] extended their consideration to the response of a viscoelastic 
capsule in clongational flow and compared the respective impacts of different fluid 

and membrane viscosity ratios.

However, many of the attractive aspects of clongational flow, such as simpler 

computation due to axisymmetry, may also potentially restrict the applicability of 

its results. For instance, fluid and membrane viscosity ratios do not affect the steady- 

state shape of a capsule in elongational flow, and the capsule’s membrane does not 

rotate around the capsule [8]. In contrast, the deformation of a capsule in shear 

flow has dynamical and angular aspects which do not occur in elongational flow. 

Additionally, the steady-state shape of a capsule in shear flow depends on a range 

of parameters — capillary number, bending stiffness, membrane and fluid viscosity 

ratios — as do the capsule’s angle of inclination and tank-treading frequency.

Nonetheless, Diaz and coworkers [20] applied their exponential-fitting methodol­

ogy to the results of Ramanujan and Pozrikidis [49] for the deformation of a spherical 

capsule in shear flow. They found instructive parallels between their results, includ­

ing a near constant ratio between response times in elongational and shear flows, for 

capsules with equal steady-state deformation, as measured by the Taylor deforma­

tion parameter. This striking comparison, however, is limited because Ramanujan 

and Pozrikidis did not model the membrane viscosity, and neither study incorporated 

bending stiffness. This chapter considers the analogy in more complete two and three
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dimensional settings, with elastic and viscoelastic capsules that may resist bending 

and have a non-unity fluid viscosity ratio.

3.1 SETUP

An initially unstressed circular or spherical capsule was positioned in the cen­

ter of the shear flow domain. Shear flow deformed the capsule until the system 

had reached its equilibrium behavior. During this process, the Taylor deformation 

parameter Dxy increases from 0 to a maximum value Dmax at time tmax. Subse­

quently, at equilibrium, Dxy either maintains a near-constant value or undergoes a 

damped oscillation, depending on the steady-state behaviour. The shear flow was 

then stopped, by adjusting the boundary conditions. Denote this stopping time as 

tstap and let Dstop =  Dxy(tslop), after which the system was allowed to relax. As a 

result, the capsule gradually recovered its initial circular shape and Dxy —> 0. An 

instance of deformation and recovery is displayed in Figure 13, with A — tmax and 

B  = tstap■ Though it often is the case tha t Dmax ss Dst0j., this is not necessary, and 
does not occur for large V  and/or r/.

Previous experimental and theoretical studies have generally measured the recov­

ery process with respect to the membrane stretch ratio A (or an equivalent parameter) 

[13, 21], or the width-to-length ratio ^  [7]. The Taylor deformation parameter has 

been chosen here for two reasons. First, it is currently the standard metric for mea­

suring the shape changes of capsules and was used by Diaz’s group [19, 20]. Second, 

it reflects, however imperfectly, the entire capsule shape, rather than the focusing 

on a particular segment of the shape. It does not uniquely represent the capsule’s 

shape, but neither do the other metrics.

Both the deformation and decay curves of the Taylor deformation parameter 

were found to be approximately exponential, as Diaz and colleagues had proposed 

[19, 20]. A least squares method is used to determine the capsule’s response and 

recovery times by fitting exponential functions to Dxy. First, the response time r, is 

determined with the model

(85) Dxy(t) =  Dmax[l -  er l^ kT’\

fitted to D xy over the interval t =  [0, fmQX], where k is the fluid shear rate. Second, 

the function

(86) Dxy(t) = Dstop[e-(/(fĉ ]
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Figure 13. Example of spherical capsule shape deformation and recovery. Points A 
and B  indicate times tmax and tstop, respectively. Simulation parameters are Ca =  0.1, 
Eb =  0, V  =  5, and ?; =  1.

is fitted to Dxy for t =  [£Sfop, oo] to define the recovery time rr . Since Drnax and 

Dstop are factored out, the response and recovery times characterize how quickly the 

capsule arrives at the steady-state deformation and recovers the original shape, re­

spectively, independent on the extent of deformation or recovery. A large response 

or recovery time indicates a slower response or recovery process, since it describes a 

slow exponential decay in the models. Figure 14 shows an example of a Dxy curve 

compared with data points from the best fitting response and recovery exponen­

tial curves; the exponential curves provide sufficient, if imperfect, description of the 

simulation results.

In general, exponential fittings for the response and recovery models had a cor­

relation coefficients R 2 > 0.99. However, this failed to be the case in two sets of 

instances. For larger Eb, the recovery model was less accurate, with R 2 as low as 

0.92. Also, for high V  or r/, the response model only had correlation coefficients 

R 2 > 0.97. In contrast, Diaz et al.'s fitting for response times in elongational flow 

had correlation coefficients in excess of 0.98 in all instances [19].

This simulation and analysis was performed for circular and spherical capsules in
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Figure 14. Example of exponential fitting for sphere with Ca =  0.05, Eb = 0.025, 
V = 1, and ;/ =  0

two and three dimensions, respectively. For both settings, simulations are conducted 

for a variety of the four dimensionless parameters: Ca, E b, V, and ?/. In this way, 

the roles of each parameter in determining the characteristic times of capsule shape 

change can be isolated. In the following graphics, the param eter being varied is 

placed on the x-axis, with the dimensionless response time A:rs and recovery time 

krT on the y —xis. Additionally, when useful, the characteristic times are considered 

in the context of their respective timescales, using the notation and definitions of 

Yazdani and Bagchi [63].

3.2 CAPILLARY N U M BER

Figure 15 shows response and recovery times over a range of capillary numbers 

for circular and spherical capsules. The constant parameters in the two and three 

dimensional settings are comparable, but not identical. The relationships between 

the characteristic times and the capillary number are quite similar for the circle and 

sphere: recovery time krr is almost directly proportional with Ca, while response
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Figure 15. For circular (left) and spherical (right) capsules, response times t s  (solid 
lines and rectangles) and recovery times rr (dotted lines and triangles) from sim­
ulations varying capillary numbers Ca. Unvaried parameters for circular capsules 
are Eb = 0.05, V  =  1, and 77 =  0. Unvaried parameters for spherical capsules are 
Eb = 0.025, V = 1, and 77 =  0.

time krs rises linearly but modestly with Ca. The basic result is intuitive, as in­

creasing Ca means that the capsule’s reaction to deforming fluid forces or the lack 

thereof is decreased. Thus, it takes longer for the capsule to either reach steady-state 

deformation or recover the initial shape.

To understand the sharp difference in how strongly the characteristic times de­

pend on Ca, it is worthwhile to consider the characteristic times normalized by the 

elastic timescale re — Plotted in Figure 16, the normalized recovery time Tr/Te

is nearly constant for Ca > 0.1. Conversely, the normalized response time r fl/ r e con­

tinues to decrease as Ca rises. This contrast between response and recovery seems 

reasonable, as the recovery is driven (in part) by the stored elastic energy in the 

capsule, which is proportional to Es, and it would be plausible to expect the recov­

ery time to be inversely proportional to the stored elastic energy. Thus, normalizing 

the recovery time by a timescale tha t is also inversely proportional to E s naturally 

produces an approximately constant value. For very small Ca with circular capsules, 

krr is too large for this relationship to hold. One possible explanation is that, when 

shear flow is stopped at the boundaries, it takes a small amount of time for the flow
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Figure 16. For circular (left) and spherical (right) capsules, normalized response 
(solid lines and rectangles) and recovery times (dotted lines and triangles) from the 
simulations in Figure 15. Characteristic times are normalized by the shear timescale 
T e -

nearer to the capsule to slow. While this delay is too small to alter the relationship 

for the longer times that a larger Ca requires, it may account for the deviation shown 

here. On the other hand, capsule deformation is driven by a continual flow adding 

energy to the fluid-structure interaction system. As a result, increasing the capillary 

number leads only to a small increase in krs, with the rate of increase declining as 

Ca rises.

Diaz and coworkers [20] generally observed the same relationships seen in Fig­

ure 16 during their simulations using elongational flow, including the near constant 

normalized recovery time Trl r e, However, one significant difference is observed: in 

elongational flow, t s / tp starts to increase when Ca is very large. The reason for this 

discrepancy seems to be the difference between what constitutes a large capillary 

number in elongational and shear flows. For Diaz and coworkers, the increase is 

observed for Ca in the range of 0.06 -  0.08, while capsule breakup (due to excessive 

deformation) in their elongational flow occurs near Ca = 0.09. On the other hand, 

the maximum value of Ca =  0.4 considered in the two and three dimensional models 

of shear flow does not approach the value at which breakup occurs.

Ultimately, two general observations may be made, based on these results. First,



39

the capsule’s elastic character has substantially different effects on the shape defor­

mation and recovery of circular and spherical capsules; one process is not simply 

the reverse of the other. Second, the two and three dimensional models produce 

nearly equivalent qualitative results, though the constant ratio r r / r e is cleaner for 

the spherical capsule. This similarity occurs despite a Hookean law being used for 

the circular capsule and a neo-Hookean law for the spherical capsule.

3.3 BEN D IN G  STIFFNESS

Bending stiffness is modeled rather differently in the two and three dimensional 

versions of the algorithm. In two dimensions, bending stiffness is associated with a 

specific preferred curvature for each element of the capsule. As elements of the capsule 

deviate from that curvature, bending moments result. For an undeformed circular 

capsule, no bending moment exists in Equation (32) and, as a result, no bending 

forces result. On the other hand, in three dimensions, bending energy depends on 

spontaneous curvature c0. For a sphere, c0 =  0 makes the resultant force in Equation 
(72) equal to zero. T hus, it is the first variation th at is m inim ized by the spontaneous  

curvature, and not the bending energy in Equation (71).

A comparison of the response and recovery times of circular and spherical cap­

sules over a range of bending stiffnesses Eb is shown in Figure 17. A clear inverse 

relationship between krT and Eb may be observed for both the circular and spherical 

capsules. In both settings, a capsule with Eb — 0 still recovers its shape, thanks 

to the hydrodynamics, and krr —> 0 as Eb becomes large. Thus, increased bending 

stiffness causes the capsules to recover their initial shapes more quickly, independent 

of the extent of the deformation from which they must recover.

This similarity, however, does not extend to the response times: while the spher­

ical capsules’ fcr, has the same inverse relationship with Eb tha t krr has, this is not 

the case for circular capsules. Instead, /cr, undergoes only a slight, almost linear 

decline as Eb rises for circular capsules. Thus, in addition to decreasing the extent 

of the capsule deformation, as was clear in Figures 2 and 8 , bending stiffness also 

decreases the time tha t it takes for the capsule to reach steady-state. However, this 

decrease is much less for circular capsules than spherical capsules.

Thus, a meaningful difference exists here between response and recovery times, 

in the two and three dimensional models. In the three dimensional mode, the role 

of bending stiffness in altering the time necessary for shape change is qualitatively
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Figure 17. For circular (left) and spherical (right) capsules, response times t s (solid 
lines and rectangles) and recovery times rr (dotted lines and triangles) from simula­
tions varying reduced bending stiffness moduli Eb. Unvaried parameters for circular 
capsules are Ca =  0.04, V  — 1, and r) =  0. Unvaried parameters for spherical 
capsules are Ca =  0.05, V  =  1, and 77 =  0.

symmetric for response and recovery, while these processes are asymmetric in the two 

dimensional model. Interestingly, for larger Eb in both two and three dimensions, 

fcTs  ~  k r T, which suggests that for a sufficiently stiff capsule, the particular model of 

bending stiffness being used does not make a significant difference.

3.4 FLUID VISCOSITY RATIO

As the method for implementing a non-unity fluid viscosity ratio in Chapter 2  

is identical for the two and three dimensional versions of the model, it would be 

natural tha t characteristic times have the same relationships with V  for circular and 

spherical capsules. As may be seen in Figure 18, this is indeed the case. Both k r s 

and k r r  have approximately linear relationships with V,  with the time required for 

response and recovery increasing with the fluid viscosity ratio. Note tha t the steady- 

state deformation of a capsule with small V  is, c e t e r i s  p a r i b u s ,  much larger than a 

capsule with a larger V  (compare, for instance, a given Ca in Figures 7 and 9). As 

the response and recovery times shown here are independent of the extent of the 

deformation, taking into account the extent of the deformation means tha t the time
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Figure 18. For circular (left) and spherical (right) capsules, response times ts (solid 
lines and rectangles) and recovery times rr (dotted lines and triangles) from simula­
tions varying fluid viscosity ratio V. Unvaried parameters for circular capsules are 
Ca =  0.04, Et, =  0.05, and r; =  0. Unvaried parameters for spherical capsules are 
Ca =  0.05, E b = 0.025, and r? =  0.

necessary for response or recovery seems to grow even more quickly with V.

As Ramanujan and Pozrikidis have noted, increasing V  has the effect of decreasing 

the ratio of “deforming stresses to restoring tensions” [49]. The difference between 

how strongly the characteristic times depend on V  is the same reason noted in the 

discussion of the capillary number, except from the opposite side of the coin: recovery 

is driven by the dissipation of finite amount of energy stored in the membrane, while 

deforming stress is supplied by the continual shear flow. Thus, the speed of the 

capsule’s recovery process is more adversely impacted by a high fluid viscosity inside 

the capsule than is the capsule’s response to deformation. As V  -> 0, during which 

the capsule’s response and recovery is (relatively) unimpeded by the fluid inside the 

capsule, the characteristic times tend toward krT «  krs.

3.5 M EM BRANE VISCOSITY RATIO

Though a Kelvin-Voigt viscoelastic model is described in both the two and three 

dimensional simulations, the membrane viscosity ratio had very different relation­

ships with the characteristic times in two and three dimensions. Seen on the left
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Figure 19. For circular (left) and spherical (right) capsules, response times t s (solid 
lines and rectangles) and recovery times t t (dotted lines and triangles) from simula­
tions varying membrane viscosity ratio r\. Unvaried parameters for circular capsules 
are Ca =  0.04, Eb = 0.05, and V — 1. Unvaried parameters for spherical capsules 
are Ca =  0.05, Eb = 0.025, and V  = 1.

side of Figure 19, both krs and krr were virtually independent of the membrane vis­

cosity ratio r) for circular capsules; only the slightest of increases in krs and krr are 

observed. While the range of r] considered was, admittedly, not large, the shapes of 

the capsules considered were also identical. Though the largest rj value shown here 

does not represent an upper bound, meaningfully larger r? led to instabilities in the 

two dimensional Kelvin-Voigt model.

On the other hand, in three dimensions, the characteristic times displayed a 

clear linear dependence on r/, as on the right side of Figure 19. Here, the superior 

stability of the SLS implementation of Kelvin-Voigt allowed much larger r\ values to 

be considered. Still, even for 7/ < 4, the difference between circular and spherical 

capsules is substantial. It is possible tha t the SLS implementation of Kelvin-Voigt is 

to blame for the difference, but it is not apparent how: Figure 12 shows that the model 

clearly approaches a shear elasticity modulus ratio G-independent approximation of 

Kelvin-Voigt. More likely, the difference is caused by the dimensions of the problem. 

Stress in Kelvin-Voigt is proportional to the derivative(s) of principal stretch(es) A 

with respect to time As a result, it may be tha t the two principal stretches in three
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Figure 20. For spherical capsules, normalized response (solid lines and rectangles) 
and recovery times (dotted lines and triangles) from the simulations in Figures 18 
(left) and 19 (right). Characteristic times are normalized by the shear timescale rP 
(left) and viscoelastic timescale r„ (right).

dimensions undergo significantly larger changes in time than the single principal 

stretch in two dimensions.

More interestingly, for spherical capsules, the relationships between the charac­

teristic times and r] display a striking qualitative similarity to the aforementioned 

relationships with V. Further, the similarity remains when each set of results is 

normalized in Figure 20 by its respective timescale: elastic timescale re = for 

the variation of V  and viscoelastic timescale r„ =  for the variation of 77. The 

result is, perhaps, unprofound: whether solid or fluid, viscosity is the same basic- 

physical quality and, as a result, ought to have comparable basic impacts on the 

fluid-structure interaction. Yet it is nonetheless promising: perhaps the model may 

be simplified by using a fluid viscosity ratio to approximate the effects of a membrane 

viscosity ratio, or vice versa. Alternately, perhaps the fluid and membrane viscosity 

models could be accurately incorporated into a single model. These suggestions will 

be revisited in Chapter 5.
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CHAPTER 4 

SHAPE RECOVERY OF BICONCAVE CAPSULES

4.1 TWO DIM ENSIONS

A biconcave capsule in shear flow has several types of steady-state behaviour. 

Skotheirn and Secomb’s theoretical investigations of biconcave capsule dynamics sug­

gest three distinct behaviours: ( 1 ) tumbling, (2 ) tank-treading with oscillations in the 

angles of inclination, and (3) interm ittent tumbling and tank-treading [54]. In gen­

eral, a tumbling capsule is characterized by flipping end-over-end, as if it were a rigid 

body. Consequently, while there is shape change during tumbling behaviour, a bicon­

cave capsule remains largely biconcave. On the other hand, tank-treading involves 

the membrane rotating around the capsule. During tank-treading, the shape of the 
capsule and its angle of inclination may undergo periodic oscillations. In the event of 

significant angular oscillations, this may be denoted as a separate behaviour: ‘swing­

ing'. The interm ittent behaviour has been further clarified by Yazdani and Bagchi, 

who have identified a new behaviour they call ‘breathing’ [64], in which the cap­

sule undergoes significant shape changes without angular oscillations. Simulations 

have shown that the capillary number, bending stiffness, fluid viscosity ratio, and 

membrane viscosity ratio all play some role in determining a capsule’s equilibrium 

behavior [40, 54, 56, 63, 64].

However, the terminology in this consideration will be restricted to tank-treading 

and tumbling. Beyond the obvious advantage of simplicity, there are two reasons for 

such a restriction. First, juxtaposing tank-treading and tumbling capsules provides 

an instructive comparison in itself, as these behaviours occupy relatively opposite 

positions in the parameter space. Each capsule parameter can be meaningfully varied, 

while maintaining the same sort of equilibrium behaviour. Second, the subtler modes 

explored in [64] are not accessible with a two dimensional model, due to both the 

simpler geometry and the im portant differences between bending stiffness in two and 

three dimensions.

For ensembles of biconcave capsules with both tank-treading and tumbling steady- 

state behaviours, the capsules are deformed in shear flow. After the capsules reach
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steady-state behaviour, the shear flow is abruptly stopped. For reasons that will be 

discussed later, shear flow is stopped when tumbling capsules have a reached a spec­

ified angle of inclination and when the membranes of tank-treading capsules are at a 

specific point in their rotation. The capsules subsequently undergo a relaxation pro­

cess and, except for one case, recover their initial biconcave shapes. These recoveries 

are modeled and their dependence on simulation parameters is compared.

4.1.1 TANK -TREADING  CAPSULES

A tank-treading two-dimensional biconcave capsule, deformed in shear flow, has 

an oblong, oval shape [56]. While the capsule membrane tank-treads in the clockwise 

direction in the equilibrium state, the Taylor deformation parameter and angle of 

inclination undergo small oscillations. Denote the time when shear flow is stopped as 

tstcrp and let Dstop =  Dxy(tstop). After tstop, it is observed tha t the Taylor deformation 

parameter briefly decreases from Dstop to a minimum value Dmin, at a time which is 

denoted tmin. Subsequently, Dxy undergoes a much slower and longer increase back 
to its undeformcd value, Dxy ~  0.812. Call this final value D 00 and the time at which 

it is achieved tx .

An example of the recovery is depicted in Figure 2 1 , with Dstop, Dmin, and 

being reached at times A = tstop, B  =  tmm, and C  =  respectively. The corre­

sponding capsule shapes at these times are shown in Figure 2 2 . Note that, beyond 

the capsule shortening, little shape change occurs between A and B.  Nor does tank- 

treading occur within this interval; the position of the capsule node denoted in Figure 

22 is nearly identical at A and B. In contrast, the major curvature changes necessary 

to return to biconcavity occur almost entirely between B  and C.

The only exception to this behaviour occurred for capsules with Eb =  0. In 

such cases, the initial behavior was similar to capsules with bending stiffness: after 

shear flow was stopped, Dxy declined modestly over a short interval, from a D stop to 

a D min. However, upon reaching D min, the capsule underwent no further significant 

change in shape; thus, D mjn ~  A * , .  Figures 2 3  and 2 4  display the Taylor deformation 

parameter after shear flow is stopped and the shapes corresponding to the denoted 

times, respectively. As before, designate A  =  tslop, B  — tmin, and C  =  foo- With 

Eb =  0, the explicit curvature preference k0 has no effect. Since an explicit curvature 

preference is the only aspect of the model related to the biconcave shape, this shape 

is not recovered.
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Figure 2 1 . Shape recovery in terms of Dxy for a tank-treading capsule with bending 
stiffness. Capsule parameters are Ca = 0.067, Eb =  0.0014, V' = 1 , and ?/ =  6 .
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Figure 22. Shapes corresponding to times A  (dashed), D (dotted), and C  (solid) in 
Figure 21. Solid circles indicate the current position of an element initially located 
at the end of the undeformed capsule.



47

0.75

0.7

065

0 6

k*dt

Figure 23. Shape change in terms of Dxy for a tank-treading capsule without bending 
stiffness. Capsule parameters are Ca =  0.135, £& =  0, V =  1, and t) =  0.
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Figure 24. Shapes corresponding to times A  (dashed), times B  and C  (dotted), and 
initial shape (solid) in Figure 23. Solid circles indicate the current position of an 
element located at the end of the undeformed capsule.
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The non-moiiotonic recovery path in Figure 21 suggested tha t perhaps two dis­

tinct physical mechanisms were present: one acting over a brief timescale and ac­

counting for the initial decline in Dxy, and another causing the shape recovery and 

operating over a longer period. To test this hypothesis, it seemed tha t modeling the 

recovery in two phases would be instructive. Exponential curves were fitted to the 

initial phase, from Dst0p to Dmin, and the latter phase, from Dmin to and the 

values of Ictr were compared. The resulting model equations, then, are

(87) Dxy(t) = Dmin +  (D stop -  Dmin)e-'/< fcT"'>

(8 8 ) Dry{t) = +  (D min - D ^ y - W ^

over the time intervals [t.stop, <mm] ail<l [tmmJoc], respectively, with the beginning 

of each interval reset to t =  0. The same least-squares approach from Chapter 3 

was used for the exponential fitting. Let and k r R 2  denote the recovery times 

which characterize the initial and latter phases, respectively. The fitted results had a 

coefficients of correlation R 2 > 0.95 and the majority of cases were in excess of 0.98. 
The poorest fits occurred for k r R \ at small Ca, perhaps due to the same lingering 

flow observed at small Ca for circular capsules.

An ensemble of capsules with varied simulation parameters were considered, 

within the tank-treading parameter space, and the results are displayed in Figures 25 

— 28. In each figure, a single parameter is varied, while all others remain constant. 

The fundamental difference between the recovery times which characterized the two 

phases was their duration: k r Rl  was generally 0 ( 1 0 “1) and k r R1 was typically 0 (1 0 ). 

Further, significant differences were observed between the roles of a given simulation 

parameter in the two phases. To facilitate such comparisons, the vertical axes in 

Figures 25 — 28 were scaled such tha t the right axis, for k r R 2 , was 100 times k r R l 's  

left axis.

The capillary number had the same role in both phases, as both k r R \ and k r R2 

were nearly directly proportional with Ca in Figure 25. These relationships with the 

capillary number are thus quite similar to that of Ca and k r R for a circular capsule. 

In contrast, in Figure 26, it was found that k.TR2 was approximately inversely pro­

portional with Eb- During the first phase, however, the recovery time k r R \ decreased 

only slightly for larger bending stiffness. The fluid and membrane viscosity ratios 

had opposing roles over the two phases, as may be seen in Figures 27 and 28. It 

may be observed tha t k r R2 was almost directly proportional with V,  but there was
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Figure 25. For a tank-treading capsule, krm (triangles, left axis) and hr/a values 
(squares, right axis) are compared for different Ca. The relationships between the 
parameter and the recovery times are approximated by solid {hrm) and dotted (At/^) 
lines. Unvaried parameters are Eb = 0.0014, V  =  1, and 77 =  0.

a much weaker linear relationship between V  and the initial recovery time A”rm . On 

the other hand, while a significant, linear relationship prevailed between Ar/fl and 

//, the latter recovery time k r ^  was clearly independent of the membrane viscosity 

ratio.

In sum, the first phase of recovery is dominated by the capsule’s viscoelastic char­

acter. Bending stiffness is irrelevant and the fluid viscosity ratio plays a secondary 

role. Indeed, for 77 > 0, one might make the approximation Ar/ji ~  Ca ■ rj. This is 

significant because Ca -77 ~  the viscoelastic relaxation time used to characterize 

recovery from micropipette aspiration and optical tweezing with the Kelvin-Voigt 

model [13, 21, 28]. A comparable approximation of the second recovery phase would 

be kTm ~  This phase focuses on the necessary changes for the capsule to

return to its biconcave shape and for capsule elements to return to their initial po­

sitions. In general, the dependence of 77*2 011 capsule parameters is very similar to 

the recovery times krj{ of a circular capsule: direct proportionality with Ca, inverse 

proportionality with Eb, and a strong linear dependence 011 V.

Further, the two order of magnitude difference in scale is also consistent with
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Figure 26. For a tank-treading capsule, krm  (triangles, left axis) and kr ^ 2 values 
(squares, right axis) are compared for different Eb. The relationships between the 
parameter and the recovery times are approximated by solid (A:r/?i) and dotted (krR2) 
lines. Unvaried parameters are G =  0.067, V  =  1 , and rj — 0.
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Figure 27. For a tank-treading capsule, krm  (triangles, left axis) and values 
(squares, right axis) are compared for different V. The relationships between the 
parameter and the recovery times are approximated by solid (krm ) and dotted ( k r ^ )  
lines. Unvaried parameters are G =  0.067, Et, = 0.0014, and 77 =  0.
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Figure 28. For a tank-treading capsule, krm  (triangles, left axis) and values 
(squares, right axis) are compared for different rj. The relationships between the 
parameter and the recovery times are approximated by solid (k r m ) and dotted (kTi n ) 
lines. Unvaried parameters are G = 0.067, Eb =  0.0014, and V  = 1.

experimental results. Evans and Hochrnuth’s measurements from micropipette as­

piration measured A ; r «  10_1 seconds [21]. On the other hand, Fischer reported 

measuring 10 — 30 seconds for experiments of the shape recovery of red blood cells 

from tank-treading in shear flow [25]. One wonders if such a contrast may be ex­

plained by the two phases proposed here. Recovery from micropipette aspiration 

involves a small part of the membrane recovering from enormous viscoelastic stress, 

which is described by the first recovery phase. However, since micropipette aspiration 

does not involve the entire cell changing shape, the longer second recovery phase is 

absent. On the other hand, as seen here, recovery from tank-treading in shear flow 

necessitates both phases and consequently occurs over a much longer time.

An additional factor in the time course of shape recovery was the phase angle. 

Adopting the definition by Le [34], the position of an element membrane is quantified 

in terms of its phase angle 3 as

(89) 3 (t) = a(t) -  0 (t) -  [a(0 ) -  0 (0 )],

in which a(t)  and B(t) are the current inclinations with respect to the flow field of a
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Figure 29. The angle of inclination 9 of the capsule’s major axis and the angle of 
inclination a  of a membrane element (filled circle) are measured with respect to the 
x-axis, using the center of the capsule as the origin. Note that for a point at the end 
of the capsule (filled square). 0  =  a.

membrane element and capsule’s major axis, respectively, and o ( 0 ) and 0 (0 ) are the 

initial values of these angles. A depiction of 0 and o is given in Figure 29. For a two 

dimensional simulation, the dependence of the recovery on the phase angle is due 

to membrane elements having a preferred curvature; consequently, a given element 

of the capsule returns to the same (or opposite, homologous) position it held prior 

to the deformation and where it was unstressed. If phase angle j5 is small, then the 

capsule will recover its shape more quickly than for a larger phase angle. Figure 30 

compares the shear recovery of tank-treading capsules with phase angles of 0 .1 1  

and 0.49 radians at the stop of flow for an element initially at the end of the capsule, 

but identical parameters otherwise. Note that this phase angle helps determine the 

capsule’s angle of inclination after shape recovery. To control for the dependence of 

the recovery on the phase angle, the ensemble of above simulations were conducted 

with /3 =  0.49 radians for an element initially at the end of the capsule. Thus, two 

dimensional tank-treading capsules display shape memory, as a trivial consequence 

of the capsule’s explicit preferred curvature.



53

3.75

3.25

2 75

X

3 75

3 25

2 75

2.25 L

X

3 75

3 25

2 75

2 25 ■

X

3 75

3 25

2 25J-

X

3 75

3 5

X

3 75

3 25

2 75

2 25 -
3 5

X

Figure 30. The shape recovery of capsules with phase differences of 0.11 (solid line) 
and 0.49 (dashed line) radians are compared at times k*dt = 0, 12.5, 25, 37.5, 50, and 
75 after shear flow is stopped. Circles are the current location of an element initially 
at the end of both capsules. Order of graphs in time is left-to-right, top-to-bottom.
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Figure 31. Shape recovery of capsules stopped at angle of inclination — |  (solid line) 
and |  (dotted line). Capsule parameters are otherwise identical.

4.1.2 TUM BLING CAPSULES

For biconcave capsules whose parameters are such that their steady-state behavior 

is tumbling, a different course of shape recovery is observed. After shear flow is 

stopped, the course of shape recovery was such tha t the Taylor deformation parameter 

essentially increased or decreased monotonically from Dstop to its initial value, Dx . 

W hether decreasing or increasing occurs is determined by the angle of inclination 9 of 

the capsule’s major axis when the shear flow is stopped. In Figure 31, the solid and 

dashed lines depict the capsule’s recovery for angles — |  and | ,  respectively, with 

identical simulation parameters otherwise. The corresponding capsule shapes are 

shown in Figure 32. To facilitate comparisons, all following simulations for tumbling 

capsules were conducted with an angle of — f  when the shear flow is stopped.

Nonetheless, when attem pting to describe this recovery by fitting an exponen­

tial curve to Dxy, it was found tha t a single exponential decay function failed to 

adequately describe this recovery. In contrast to tank-treading capsules, in which 

a qualitative change naturally suggested separating the recovery into two distinct 

phases, no such intrinsic division was present, for a tumbling capsule. Even so, a
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Figure 32. Deformed shapes for — |  and |  at t, = 0 (solid and dashed lines, respec­
tively) and recovered shapes at t = 7.5 (dash-dot and dotted lines, respectively).

quantitative difference between the early and late portions of the shape recovery 

suggested tha t modeling the recovery as two phases would be instructive. As a 

result, a pair of exponential curves are fitted to the recovery of D ry, as

(90) Dxy(t) = D o  +  ^ (D stop -D oo)

over the time interval [tstap, too], with the beginning of the interval reset to t = 0 . 

For the range of parameters considered, this model fit the results with a coefficient 

of correlation R 2 > 0.97. In general, the two recovery times differed by one order of 

magnitude: krfn was 0 ( 1 0 ^1) and k r was 0 (1 ).

The dependence of these recovery times on simulation parameters is considered 

in Figures 33 — 36. To reflect the aforementioned difference in order of magnitude, 

recovery times are plotted on differently scaled axes, as with the tank-treading cap­

sules. Most of the relationships noted for a tank-treading capsule remained applicable 

to tumbling capsules. As with circular and tank-treading biconcave capsules, both 

recovery times were almost directly proportional to Ca. Similarly, bending stiffness 

and the fluid viscosity ratio had fairly negligible impacts on kTfn , but A:t/?2 varied di­

rectly with V  and inversely with Eb- Finally, for the membrane viscosity ratio, both
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Ca

Figure 33. As Ca is varied, data  points for krm  and k t m  are denoted by gradients 
(left axis) and circles (right axis), respectively. The approximate parameter rela­
tionships with kriii and k r are represented by solid and dotted lines, respectively. 
Unvaried parameters are £), =  0.05, V  =  5, and q =  0.

recovery times increased modestly with q for the tumbling capsule, though krm  still 

had a higher dependence on q. W ith tha t caveat about the membrane viscosity 

ratio, the approximations made for tank-treading capsules remain, on a basic level, 

applicable here: krn\ ~  Ca ■ q and A; 77*2 ~
* J b

4.1.3 COM PARISON

The courses of shape recovery for tank-treading and tumbling capsules are, osten­

sibly, quite different. Despite this, there are two obvious parallels in the descriptions 

of their recovery. First, there seem to be two distinct aspects of the recovery, oper­

ating on different timescales. Second, despite the differences in the capsules and in 

the models, the recovery times for these two phases display very similar dependence 

on the simulation parameters.

Another lens through wdiich these recoveries may be compared is the decay of 

membrane tension r  and bending moments rn. Figures 37 and 38 compare tension 

and bending moments during the recovery of tank-treading and tumbling capsules. 

Both the tension and bending moments are normalized by their values when shear
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Figure 34. As Eb is varied, data  points for kTm and krm  are denoted by gradients (left 
axis) and circles (right axis), respectively. The approximate parameter relationships 
with krm  and krR 2  are represented by solid and dotted lines, respectively. Unvaried 
parameters are Ca =  0.4, V = 5, and i] — 0.
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Figure 35. As V  is varied, data points for krm  and kr R 2  are denoted by gradients (left 
axis) and circles (right axis), respectively. The approximate parameter relationships 
with kTm and kTR 2  are represented by solid and dotted lines, respectively. Unvaried 
parameters are Ca =  0.4, Eb =  0.05, and 7/ =  0.
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Figure 36. As rj is varied, data  points for krm  and krR 2  are denoted by gradients (left 
axis) and circles (right axis), respectively. The approximate parameter relationships 
with kTm and krR2 are represented by solid and dotted lines, respectively. Unvaried 
parameters are Ca =  0.4, Eb =  0.0125, and V =■ 5.

flow is stopped, and plotted against Dxy. As the undeformed shape is free of tension 

and bending moments, so also are capsules that have completed shape recovery.

In Figure 37, for a tank-treading capsule, one may observe that during the initial 

phase of recovery —- when D ry is decreasing — tension r  decreases very rapidly. 

Indeed, the time periods in which Dxy decreases and r  sharply declines end nearly 

simultaneously. As tension is the result of the membrane’s viscoelasticity, it is un­

surprising tha t the viscoelastic parameters determine the characteristic time of the 

initial recovery phase. The remaining tension, however, is dissipated very slowly 

during the second phase of recovery. In contrast, bending moment rn decreases at a 

modest rate through both recovery phases. As a result, the dependence on bending 

stiffness is seen primarily in the longer, latter recovery phase.

For the tumbling capsule considered in Figure 38, there is a similar sharp initial 

decrease in k r , which ends near t — 1. This matches nicely with the capsule’s first 

recover time, tri =  0.283, since the duration of the phase ought to be approximately 

3t/ji (since e~ '5 «  0.05). As with the tank-treading capsule, it is followed by a much 

slower decline in tension. Further, the bending moment also decreases by nearly
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Figure 37. Viscoelastic tension and bending moments during recovery of a tank- 
treading capsule. Parameters are Ca =  0.067, Ei, = 0.0014, V  =  1, and rj =  12.
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Figure 38. Viscoelastic tension and bending moments during recovery of a tumbling 
capsule. Parameters are Ca — 0.4, Et, =  0.05, V = 5, and t] = 0.
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50% during this initial phase, before entering a slower decline. The initial rate of 

the decline in the bending moment m  was higher than for tank-treading, which is 

reasonable since the shape recovery is more rapid as wrell.

Thus, for both tank-treading and tumbling capsules, the recovery in the Taylor 

deformation parameter may be described by two phases. The first phase, dominated 

by viscoelastic dissipation, is brief and does not necessarily involve the capsule be­

coming more biconcave. The second phase, 011 the other hand, consists primarily 

of shape recovery and, along the way, dissipating the remaining stress. This second 

process is dominated by the capsule’s bending stiffness and, indeed, does not occur 

without it. Nonetheless, the capillary number and fluid viscosity ratio play major 

roles in determining the time course of the second phase.

4.2 THREE DIM ENSIONS

A three dimensional study of biconcave capsule shape recovery is a necessary 

complement to a two dimensional consideration. Certain m atters of interest, such 
as the roles of simulation parameters in determining the length of the recovery, may 

be efficiently investigated in two dimensions. However, two im portant differences 

between the two and three dimensional models prevent a two dimensional simula­

tion from contributing to the study of a red blood cell’s biconcave shape and shape 

memory. First, as is clear in the earlier part of this chapter, a biconcave capsule in 

two dimensions will recover its shape and display shape memory if the preferred cur­

vature kq is set to be the initial curvature. In three dimensions, however, Pozrikidis 

has clearly delineated how a constant curvature preference may lead to a biconcave 

shape [47]. Second, the three dimensional network of elastic springs is potentially 

able to support a biconcave shape or cause biconcave shape memory, neither of which 

are theoretically possible in two dimensions.

The instability of three dimensional capsules in shear flow has been a major issue 

in previous studies, especially for biconcave shapes, and this problem remains in 

this work. W ithout even considering the membrane buckling caused by membrane 

viscosity [63], an elastic capsule without bending stiffness encounters non-physical 

buckling in many current models [36, 63, 64, 55]. The clear exception would seem to 

be Le’s thin shell model, which is capable of simulating an elastic capsule without 

bending stiffness for long times (k*dt =  60) [34]. Even with the stabilizing influence 

of bending stiffness, Yazdani and Bagchi’s algorithm was not necessarily stable for
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more than one period of a biconcave capsule dynamics and deformation [64]. As shape 

recovery from tank-treading, by necessity, requires long simulations, capsules without 

bending stiffness are not considered. Specific instances of instability in subsequent 

simulations are discussed when encountered.

4.2.1 SETUP

Introduced by Helfrich, the spontaneous curvature cq is a phenomenological pa­

rameter which describes the internal/external asymmetry of the lipid bilayer, as 

opposed to a specific curvature preference [15]. A bilayer which has inside/outside 

symmetry has c0 =  0 , while positive and negative e0 indicate spontaneous curvature 

in the same direction and opposite, respectively, of the mean curvature of a sphere. 

Analysis of experimental data with Helfrich’s model has indicted that the red blood 

cell shape is consistent with a constant spontaneous curvature c0 < 0 [16]. More 

recently, Pozrikidis’ analysis has suggested tha t c0 «  — 2 would be most advanta­

geous for causing the sort of biconcavity observed in red blood cells [47]. Yazdani 
and Bagchi selected c-q = —2.09 in their simulations of biconcave capsules and, in 

order to avoid needless multiplication of entities, the same value will be considered 

below [63].

While Deuling and Helfrich suggest that spontaneous curvature may depend on 

capsule deformation [16], there does not appear to be any biophysical basis for a spa­

tially dependent spontaneous curvature — tha t is, a spontaneous curvature analogous 

to the explicit curvature preference in the two dimensional model. Nevertheless, a 

spatial dependent spontaneous curvature is an intriguing characteristic, as Cq = 2 k  

would minimize the bending energy functional in Equation (71) (albeit not the force 

density in Equation (72)).

In Pozrikidis’ theory of the undeformed shape of red blood cells, the cytoskeleton 

is assumed to be unstressed or, at least, nearly unstressed in its undeformed state 

[47]. Seemingly all computational investigations to date have modeled an unstressed 

cytoskeleton; that, is, the undeformed biconcave elastic configuration is the preferred 

elastic configuration and, recalling Fischer’s terminology from the introduction, the 

reference shear deformation is non-uniform [25]. The role of the reference shear 

deformation may be tested by comparing capsules with this non-uniform reference 

shear deformation to capsules with a uniform reference shear deformation. The 

uniform reference shear deformation is based on a uniform spherical mesh, with the
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Table 1. Ensemble of three dimensional capsule descriptions in terms of reference 
shear deformation and spontaneous curvature

Description Reference Shear Deformation Spontaneous curvature
A Non-uniform: Biconcave Co =  -2.09, -1 ,  and 0
B Non-uniform: Biconcave Co =  2  k

C Uniform: Spherical cn =  -2 .09

same surface area as the initial biconcave shape. Additionally, the uniformity of the 

reference shear deformation means that the capsule will have elastic stress in the 

initial biconcave shape.

W ith these thoughts in mind, three possible descriptions of the undeformed bi­

concave shape of red blood cells are considered. Tabulated in Table 1 , they describe 

whether or how the cytoskeleton or bilaver are stressed in the undeformed configu­

ration. In case A, which aims to describe Pozrikidis’ theory, the cytoskeleton has a 
non-uniform reference shear deformation, but a constant spontaneous curvature Co 

stresses the bilayer. Case B also includes a non-uniform reference shear deformation, 

but paired with a non-constant spontaneous curvature which minimizes the bending 

energy functional. Finally, case C considers a negative and constant spontaneous 

curvature, along with a uniform reference shear deformation.

For each of the three cases, the biconcave capsule is deformed in shear flow. After 

the capsule reaches steady-state behaviour, the flow is stopped at t = 15 and the 

capsule is allowed to relax. The choice of t =  15 as the stop time is determined by 

two competing factors. The stop time must be late enough for all capsules to have 

clearly reached steady-state, while still early enough that sufiicient time remains for 

relaxation before numerical instability and mesh degradation adversely affect the re­

sults. When considering the relaxation process, two questions are of interest: to what 

extent does the capsule recover its undeformed shape and, if recovery is observed, 

do elements of the capsule return to their initial positions? A brief description as to 

how these two questions are to be answered follows:

Two factors will be necessary to judge whether, or to what extent, a capsule has 

recovered its undeformed shape. The mapping of Taylor deformation parameters 

values to the shapes that Dxy describes is onto, not one-to-one. Consequently, to
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determine whether or not the capsule has recovered its shape, a qualitative compari­

son between initial and current shapes will be made, in addition to tracking whether 

the Taylor deformation parameter recovers the value for an undeformed capsule, 

Dxy «  0.51.

W hether capsule elements return to their original positions — and, therefore, the 

capsule displays shape memory — will be quantified in terms of the phase angles of 

the elements of the capsule. Referenced in Equation (89), a more complex definition 

is necessary in three dimensions. As seen on the left side of Figure 39, the current 

position of a capsule element T is defined by

(91) T = a xy -  exy

in which a  is the inclination angle of the capsule element and 0  is the inclination 

angle of the capsule’s major axis, with both of these angles measured with respect 

to the x-axis and in a plane parallel to the xy-plane. W ith this definition of capsule 

position, define the phase angle j3 of a capsule element as

(92) J(t) =- m  -  r(o)

Capsule elements do not undergo significant changes in the 2 -direction, and so it is 

sufficient to consider phase angles parallel to the xy-plane. Thus, since J  =  0 for all 

elements of an undeformed capsule, shape memory requires J  -» 0  for all elements 

during shape recovery. In the subsequent simulations, the phase angles for five initial 

positions T(0) are considered, as depicted on the right side of Figure 39. Since the 

capsule is symmetric with respect to the origin, a given T(0 ) actually has two initial 

‘positions’ on the capsule and, consequently, /i —>■ 0  if it were to return to either 

position.

4.2.2 CASE A: NON-UNIFORM  REFERENCE SHEAR DEFORM A­
TION & CONSTANT SPONTANEOUS CURVATURE

A capsule with a constant spontaneous curvature and an elastic configuration 

unstressed in the undeformed biconcave shape is the standard description of a cap­

sule in computational studies. Capsules with spontaneous curvature c = —2.09 and 

bending stiffnesses Eb = 0.025 and 0.05 are considered in Figure 40. After shear 

flow is stopped at t = 15, the Taylor deformation parameter declines sharply toward 

the undeformed value of Dxy «  0.51. However, this decline stops suddenly nearly
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Figure 39. At left, the current position T of a capsule element is defined by the 
difference between the inclination a  of the capsule element and inclination 6  of the 
capsule, with these inclinations measured with respect to the x-axis. At right, a 
range of initial capsule positions f  are depicted, for an undeformed capsule.

t. =  18-19, after which negligible change in Dxy ~  0.545 is observed through t = 40. 

Subsequently, numerical instability disrupts the results and no further recovery in 

Dxy is observed.

Considering the capsule shapes themselves helps to demonstrate the limited na­

ture of the recovery observed here. To control for the capsules’ time-dependent angles 

of inclination 9, the capsules are mapped to 6  = 0  and the central slices of the cap­

sule parallel to the xy- and y2:-planes are extracted. The results are displayed in 

Figures 41 and 42 for Eb = 0.05 and 0.025, respectively. In both cases, it may be 

observed tha t the capsule regains its biconcavity during the interval between t = 15 

and t = 20. during which the significant decrease in DXj/ occurs. In the time that 

follows, the capsule becomes somewhat more ‘biconcave’, but not nearly to the extent 

of the undeformed shape. Thus, while a meaningful change in the Taylor deforma­

tion parameter does not occur after t =  2 0 , the capsule is still recovering its shape, 

however slow this process may be. A slight left-to-right asymmetry is also clear, 

in the slices parallel to the xy-plane: the concavity is skewed to the top right and 

bottom left of the capsule. This suggests that further tank-treading of the membrane 

is necessary for a complete shape recovery. On the other hand, in the yz-plane, the
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Figure 40. Dxy during deformation and recovery for <"o ■= —2.09. Additional capsule 
parameters are Ca =  0.5, V  =  2, and r\ =  0. Vertical line in this and subsequent 
Figures indicates the stop of shear flow at t — 15.

membrane does have left-to-right symmetry, since the change in the ^-direction of 

capsule elements is minimal during both deformation and recovery.

The incompleteness of the tank-treading process is confirmed by Figure 43, which 

considers the phase angle (3 for several elements T of each capsule during the recovery 

process. Observe tha t for one segment of the membrane, which includes the interval 

r(0) = [—0.742,0.318], the phase angle when shear flow stops is small, with (3 < 0.5. 

The complement of this segment, which includes T(0) = [0.742, ± f ] ,  has a much 

larger phase angle, however. During the recovery process depicted, each phase angle 

decreases by approximately 40 — 70%, though the phase angles for T(0) = 0.742 and 

± |  are still quite large. Recalling the right side of Figure 39, it may be observed 

tha t the interval of the membrane containing T(0) =  0.742 and is the same 

section skewed in Figures 41 and 42. Thus, at least part of the incompleteness of 

the shape recovery may be ascribed to incompleteness of the tank-treading process, 

which nonetheless is ongoing wdien the simulation was concluded.

To consider the extent to which the results observed are dependent on the sponta­

neous curvature c0 =  —2.09, simulations with identical parameters and Eb =  0.05 are



----------  Undeformed ----------  Undeformed
t -15 (flow stops) t » 15 (flow stops)

---------- t-20 ---------- t-20
---------- t* 30 ---------- t * 30
----------  t = 40 ----------  t * 40

Figure 41. Shape change in xy-plane for Eb = 0.05, as shown in Figure 40

----------  Undeformed ----------  Undeformed
t ■ 15 (flow stops) t» 15 (flow stops)

---------- t-20 ---------- t-20
---------- t -  30 ---------- t -  30
----------  t* 40 ----------  t -  40

Figure 42. Shape change in xy-plane (left) and ?/2 -plane (right) for Eb = 0.025, 
shown in Figure 40
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Figure 43. Phase angle ,4 during recovery for Co =  —2.09, for Eb = 0.05 (left) and 
Ei, =  0.025 (right).

conducted for capsules with Co =  0 and - 1 . In Pozrikidis’ analysis, such spontaneous 

curvatures are consistent with an undeformed biconcave shape, but not as felicitous 

as Co «  —2. The shape change for these spontaneous curvatures in terms of Dsy is 

displayed in Figure 44. Both the dynamics in shear flow and the relaxation process 

after flow stops are nearly identical to co =  —2.09. Dxy decreases to 0.545 by t =  19- 

20, but does not recover further. Instead, during the period after t =  20, the capsule 

becomes more biconcave, as seen in Figures 45 and 46, but still clearly differs from 

the undeformed shape. As with c0 — —2.09, numerical instability disrupts results 

for larger times. Further, the phase angles j3 depicted in Figure 47 behave similarly 

to those for c0 =  —2.09: all phase angles decline significantly during the period of 

recovery, but still have some elements with J  > 0.5 at the end of the simulation.

Therefore, it may be concluded tha t a clear, if incomplete, recovery of the initial 

biconcave shape has occurred. While much the qualitative character of the initial 

shape is recovered, the capsules at the end of these simulations are insufficiently 

biconcave. This insufficient biconcavity is, in turn, the reason that Dxy does not 

attain  its initial value since, ceteris panbxis, a more biconcave capsule will have 

a lower Taylor deformation parameter. Still, the incomplete recovery in shape is 

accompanied by a similarly clear movement of capsule elements toward their initial 

positions, consistent with the capsule displaying shape memory.
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Figure 44. Dxy during deformation and recovery for c0 =  0 and cq — — 1.

----------  Undeformed .............  Undeformed
t = 15 (flow stops) t -  15 (flow stops)

---------- t-20 ---------- t-20
---------- t -  30 ---------- t -  30

Figure 45. Shape change in xy-plane (left) and yz-plane (right) for t'o =  0, as shown 
in Figure 44



Undeformed 
t * 15 (flow stops) 
t» 20

Undeformed
t * 15 (flow stops)
t»20

Figure 46. Shape change in xy-plane (left) and yz-plane (right) for c0 =  — 1, 
shown in Figure 44
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Figure 47. Phase angle p  during recovery for cq =  0 (left) and cn =  - 1  (right).
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Several causes for the incompleteness of the recovery observed here may be 

posited. First, and perhaps most obviously, the numerical stability necessary for 

very long simulations is lacking here. Either or both the fluid grid and the structural 

mesh may be too coarse, leading to the unphysical numerical instability observed 

and consequently preventing complete shape recovery. Since the decline of the phase 

angles ft -> 0 is ongoing at the end of these simulations, longer stable simulations 

would presumably lead to more complete shape recovery. Second, other aspects of 

the numerical implementation may be to blame. For instance, both the local surface 

area of the capsule and the capsule volume are nearly conserved, varying less than 

2 — 3% from their undeformed values. This may, nonetheless, be too large a deviation 

and inhibit the subtle shape recovery process. Third, the three dimensional model 

of the red blood cell may be incomplete, or incorrect. In particular, the membrane 

viscosity of the capsule was not included in any of these simulations (as the vis­

coelastic model described in Chapter 3 was restricted to neo-Hookean constitutive 

laws) and the inclusion of this dissipative mechanism may be necessary for shape 

recovery. Alternatively, other aspects of the model, such as the bending energy, may 

not be sufficiently accurate: recall Dueling and Helfrich mentioned tha t spontaneous 

curvature may be deformation-dependent [16].

In any event, for the three constant spontaneous curvatures considered, a sig­

nificant but incomplete shape recovery process occurred. Clear biconcavity was 

observed, but not to the extent of the undeformed capsule shape. Furthermore, 

since ft decreased in each simulation, each capsule seemed to display the effects of a 

shape memory. Since the constant spontaneous curvature seems an unlikely cause for 

membrane elements ‘remembering’ their initial positions, the capsule’s non-uniform 

reference shear deformation would seem to be the impetus for the shape memory 

displayed here. To test this hypothesis, it is necessary to compare these results 

with those for a capsule with a uniform reference shear deformation. This capsule 

description is considered in Case C.

4.2.3 CASE B: NON-UNIFORM  REFERENCE SHEAR DEFORM A­
TION & M INIMIZED BENDING  ENERGY

Though lacking a biological basis, minimizing the bending energy by setting Co =  

2k  is an intriguing proposition. Paired with a preferred elastic configuration which 

is unstressed in the undeformed biconcave shape, it suggests an ideal model. In
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Figure 48. Dxy during deformation and recovery for c0 — 2 k  with Eb =  0.05 and 
0.025.

contrast to the case of a constant spontaneous curvature, both the shear elasticity 

and bending stiffness aspects of the capsule model have the same explicit preferred 

configuration. One could imagine such a model leading to a fast, clean, and simple 

shape recovery.

The deformation and relaxation of capsules with c n =  2 k  in terms of Dxy is 

displayed in Figure 48, for Eb =  0.05 and 0.025. While the deformation and dynamics 

in shear flow are not dissimilar from capsules with constant t'o, the relaxation process 

differs significantly. After flow stops at t = 15, Dxy declines monotonically, well past 

the value D nj ~  0.51 for an undeformed capsule. In doing so, the capsule becomes 

slightly more ‘biconcave’ than its undeformed shape. The decline of Dxy is, initially, 

somewhat slower for Eb = 0.025 than Eb = 0.05, but the general trend is quite 

similar. As with a non-positive constant c0, the simulation becomes unstable after 

t — 42.5 and further recovery cannot be observed.

During the recovery, particularly for Eb -  0.05, the capsule comes very close to 

recovering its initial shape, as may be observed in Figures 49 and 50. In the capsule 

slices parallel to the xy-plane, it is clear tha t the capsule continues to become more
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----------  Undeformed ----------  Undeformed
t -  15 (flow stops) t •  15 (flow stops)

---------- t-20 ---------- t-20
---------- t -  30 ---------- t-30
—------- t= 40 ---------- t -  40

Figure 49. Shape change in £y-plane (left) and ys-plane (right) for c0 =  2k with 
Eb = 0.05, shown in Figure 48

biconcave, tending away from the undeformed shape. While the bending force density 

Equation (72) is admittedly not zero in the undeformed biconcave shape for c0 =  2k , 

it appears that this initial shape is not a stable equilibrium at all.

Further, the capsule displays no indication of shape memory a surprising result, 

inasmuch as both elastic and bending energy are minimized by capsule elements 

being in their initial positions in the initial biconcave shape. As described in Figure 

51, the phase angles do change slightly during the recovery, but not significantly 

enough to indicate any sort of shape memory. Thus, introducing this non-constant 

spontaneous curvature has the effect of canceling out the shape memory tha t was 

observed in Case A, although shape memory in the absence of shape recovery is a 

somewhat meaningless notion. If nothing else, a constant non-positive spontaneous 

curvature is seen to be more consistent with both shape memory and shape recovery 

than is this particular non-constant spontaneous curvature.

4.2.4 CASE C: UNIFORM  REFERENCE SHEAR DEFORM ATION & 
CONSTANT SPONTANEOUS CURVATURE

In addition to being interesting in itself (as it does not appear to have been done 

before), considering a uniform reference shear deformation in concert with a constant
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----------  Undeformed
t = 15 (flow stops)

 , =  20
---------- t=30
-------------  , =  40

----------  Undeformed
t * 15 (flow stops)

 , =  20
---------- ,= 30
  , = 40

Figure 50. Shape change in icy-plane (left) and yz-plane (right) for cq =  2 k  with 
Eb = 0.025, shown in Figure 48

1(0) = 0.318 
T(0) = -0.318 
T(0) = -n/2 
1(0) -  0.742 
r(0) = -0.742
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k*dt

['(0) = 0.318 
r(0) = -0.318
1 (0 ) =  -71/2

T(0) = 0.742 
r(0) = -0.742

25 30
K*dt

Figure 51. Phase angles p  during recovery for c n = 2 k  with Eb =  0.05 (left) and 
0.025 (right).
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spontaneous curvature allows an enlightening comparison with Case A, in which the 

reference shear deformation was non-uniform. In particular, did the shear elasticity 

or bending stiffness cause the shape recovery tha t was observed, and is the preferred 

elastic configuration solely responsible for the shape memory tha t was displayed? 

For the preferred elastic configuration, a spherical elastic configuration is used. This 

allows for a very uniform reference shear deformation that leads to significant elastic 

stress in the undeformed biconcave shape. The spherical configuration used has the 

same surface area as the undeformed biconcave configuration it replaces.

Keeping the same parameters as in Figure 40, with Ei, =  0.05 and r0 =  -2.09, the 

shape change in terms of Dxy is considered in Figure 52. Note tha t during the defor­

mation in shear flow (t < 15), the capsule seems to lack the characteristic periodic 

behaviour typical of three dimensional biconcave capsules in shear flow [34]. This is a 

predictable result, in that neither the shear elasticity or bending stiffness models have 

any sort of anisotropic character. Similarly, one would expect comparable behaviour 

during relaxation: without an anisotropic preference, minimal tank-treading should 
occur. As a result, one would expect shape recovery to occur as a single process, 

rather than the two parts observed in Case A.

Indeed, this is largely what the results show: Dxy decays monotonically toward 

the undeformed value and, indeed, gets closer to recovering its initial shape than any 

capsule in Case A. Further, the capsule slices in Figure 53 do not display the signif­

icant left-to-right asymmetry observed for Case A. Instead, the slices of the capsule 

parallel to the xy- and 7/2 -planes both recovered their biconcavity and continued to 

approach the initial biconcave shape during the duration of the simulation. While the 

recovery remains incomplete, the capsule nonetheless has a more complete recovery, 

despite the additional elastic stress in the initial biconcave shape.

W ith a uniform reference shear deformation, the capsule’s isotropic character im­

plies tha t a capsule element may take any position on the membrane of the recovered 

biconcave shape. As a result, there is no need for tank-treading during the recovery 

process and the phase angles of capsule elements should remain constant. Figure 54 

shows tha t is, indeed, the case: ti values for the range of initial capsule positions F(0) 

remained basically constant. While some changes are observed, these are consistent 

with the sort of small changes in inclination angle tha t occur during the recovery of 

an triangular element.

These results, when compared with Case A, indicate several broad conclusions.
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Figure 52. Dxy during deformation and recovery for a uniform reference shear defor­
mation and cq — —2.09

------------  Undeformed ------------  Undeformed
t » 15 (flow stops) t -  15 (flow stops)

------------ t - 2 0 ------------ t - 2 0
------------ t -  30 ------------ t*  30
------------ t -  40 ------------ t -  40

Figure 53. Shape change in xy-plane (left) and 1/2 -plane (right) for a uniform refer­
ence shear deformation and c() =  -2 .09, as shown in Figure 52
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Figure 54. Phase angle (1 during recovery for a uniform reference shear deformation 
and c'o =  —2.09

First, in this model, the capsule’s reference shear deformation looks to be the source 

of the capsule’s shape memory. It may not be necessary tha t the elastic configuration 

be unstressed in the resting position, but there must be some non-uniformity in the 

reference shear deformation. Second, a constant non-positive spontaneous curvature 

in the range considered would seem to be a sufficient condition for a capsule to recover 

(at least most of) its undeformed biconcave shape: whether paired with a stressed 

or unstressed preferred elastic configuration, substantial shape recovery occurred.

Stepping back from the mathematical model to the biological entity on which it 

is based, one may now speculate about the biomechanieal causes of the biconcavity 

and shape memory of red blood cells. The shape memory which is displayed in the 

above simulations would seem to have been caused by the capsule’s preferred elastic 

configuration, the biophysical analogue of which is the red blood cell’s cytoskeleton. 

Fischer reached the same conclusion for the cause of shape memory, as he argued 

tha t other aspects of the red blood cell membrane simply lack the anisotropy neces­

sary for shape memory [25]. The issue of whether the cytoskeleton or lipid bilayer 

(or, perhaps, some combination of the two) causes the biconcavity of red blood cells
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is somewhat murkier, and this consideration makes no pretense of settling the ques­

tion. W hat has been established is that a constant negative spontaneous curvature 

(reflecting the asymmetric character of the lipid bilayer) is sufficient for a capsule 

to recover biconcavity after tank-treading. This result is, of course, limited by a 

variety of factors, of which the most significant is the incompleteness of the recovery 

observed here. However, this result matches a long-standing theory, stretching from 

Deuling and Helfrich in the 1970s to Pozrikidis in recent years, based on analytical 

investigations of the resting shapes of red blood cells. W hether this precludes or sug­

gests a role for the cytoskeleton in maintaining the biconcave shape is not altogether 

clear, and further investigation will be necessary.

4.3 TWO A N D  THREE DIM ENSIONAL COM PARISON

Several im portant differences prevailed between the shape recovery of biconcave 

capsules in two and three dimensions. In two dimensions, a clear two-part recov­

ery process was observed for tank-treading capsules. Studying the recovery times 

showed that two similar phases described the shape recovery of tumbling capsules 

in two dimensions as well. In the three dimensional simulations, only capsules with 

tank-treading steady-state behaviour were considered. For these capsules, the in­

completeness of the shape recovery observed precludes any conjecture about whether 

a single or multiple phase(s) are necessary to describe the recovery process. Longer 

simulations and a more stable methodology will be necessary whether a single or 

multiple recovery process(es) occur. Further, membrane viscosity ought to be in­

cluded, in order to determine whether it provides a necessary dissipative mechanism 

in three dimensional shape recovery.

More clear, however, are the basic mechanisms active in the shape recovery pro­

cess. In two dimensions, the explicit curvature preference enforced by the bending 

stiffness accounts for the shape recovery: without an explicit curvature preference, 

the capsule did not recovery biconcavity. As a one-dimensional elastic (or viscoelas­

tic) mesh in two dimensions does not have any shape preference, the only role played 

by the viscoelastic configuration in shape recovery was dissipative. Similarly, the 

shape recovery observed in three dimensions seems to be the consequence of bending 

stiffness as well. For a constant spontaneous curvature, this is substantiated by the 

considerable shape recovery observed in Case C, despite the elastic configuration be­

ing significantly stressed in the biconcave shape. On the other hand, the supposed
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analogue of the two dimensional explicit curvature preference — with co =  2 k  — did 

not seem to lead to a stable shape, much less the initial biconcave shape.

Conversely, the causes of the shape memory and related tank-treading during 

shape recovery have different causes in two and three dimensions. In two dimensions, 

the explicit curvature preference of bending stiffness drives capsule elements to their 

original positions via tank-treading. The limited shape memory observed in three 

dimensions, however, was caused by the preferred elastic configuration, at least when 

paired with a constant spontaneous curvature. Thus, clear differences in the two and 

three dimensional models have been observed for curvature parameters kQ and c0 

that lead to shape recovery, and for the bending stiffness and elastic mechanisms 

responsible for shape memory.
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CHAPTER 5

ALTERNATE MODELS OF MEMBRANE VISCOSITY

The results of Puig-de-Morales-Marinkovic et al. have caused a paradigm shift 

in how researchers view the membrane viscosity of red blood cells. Using optical 

magnetic twisting cytometry to apply a time-dependent (oscillatory) load to the red 

blood cell membrane, they measured the elastic and frictional moduli at different 

oscillation frequencies. While the elastic modulus was nearly constant, the frictional 

modulus increased with the frequency, according to a power law with exponent n «  

0.64. Noting the inconsistency of this observation with solid viscoelastic theory, the 

lipid bilayer and its viscous character were considered to be the likely mechanism, 

although the authors suggested other possibilities. Puig-de-Morales-Marinkovic et ill. 

conclude that “a power law fluid taken in parallel with a Hookean [elastic] stiffness 
is an appropriate phenomenological model to describe the dynamic responses of the 

[red blood cell] in the linear range” [48].

The observed power law response has been rapidly confirmed by subsequent ex­

periments [67, 66, 2, 62] and threatens to invalidate long-standing aspects of red blood 

cell models. For instance, Puig-de-Morales-Marinkov et al. note tha t the entire con­

cept of measuring characteristic times, a practice begun by Evans and Hochmuth [21] 

and continued here, becomes meaningless in a power law scheme [48]. Beyond the 

work of Fedosov et al., however, computational research has lagged behind this devel­

opment and a deterministic computational power law model does not yet appear to 

exist. This is perhaps unsurprising, as stable and comprehensive three dimensional 

viscoelastic models are themselves quite recent: Yazdani and Bagchi’s study [63] wras 

only published in 2013.

Instead, since a fluid model has been posited to describe the effects of mem­

brane viscosity, perhaps membrane viscosity could be modeled as a fluid viscosity. 

The basic idea is not new: Keller and Skalak proposed incorporating the effects of 

membrane viscosity into their model by artificially altering the fluid viscosity ratio, 

thereby replacing the viscosity of the membrane with extra fluid viscosity inside of 

the capsule [30]. The basic plausibility of such an idea has been shown by subsequent 

computational work: The effects of the fluid and membrane viscosity ratios on the
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response and recovery times of spherical capsules in Chapter 3 were qualitatively 

similar. Similarities in the dynamics and deformation caused by these ratios have 

also been noted in previous studies, for both shear and elongational flows [19, 63]. 

In all three cases, the solid Kelvin-Voigt model (or an approximation thereof) was 

used for the membrane viscosity. Even without reference to the power law model, 

the idea of using an artificial fluid viscosity ratio to simulate membrane viscosity 

is attractive, given the comparative ease with which non-unity fluid viscosity ratios 

may be implemented in current computational schemes.

One way to begin evaluating the equivalence of fluid and membrane viscosity 

ratios would be to consider the characteristic times of a spherical capsule. In Chapter 

3, there seemed to be a natural similarity between them, but whether or not such a 

comparison is merely superficial is not immediately evident. For instance, an artificial 

fluid viscosity ratio changes the nature of the fluid, while the forces caused by a solid 
viscoelastic law alter the velocity of the flow: these are very different aspects of the 

fluid-structure interaction. To address the depth of this relationship, a few questions 

suggest themselves: Are these roles of the fluid and membrane viscosity ratios even 

independent? If so, can a simple relationship be established between them? Finally, 

could such a relationship be used to establish an efficient computational scheme?

The independent roles of the fluid and membrane viscosity ratios in determining 

response times of a spherical capsule have been noted for elongational flow. Diaz et 

al. found tha t a bilinear model in r/ and V  sufficed to describe krs, as

with coefficients as,b„,cs depending on Ca [19]. In particular, for large Ca, they 

found a , ~  bs. Diaz et al. use these coefficients to posit an artificial fluid viscosity 

ratio,

for which an elastic capsule would have the same response time as a viscoelastic 

capsule. Using such a model, one could theoretically simulate the deformation of

5.1 ARTIFICIAL VISCOSITY MODEL

5.1.1 BILINEAR MODEL

(93) krs =  as(Ca)r] +  bs(Ca)V  +  c,(C7/.).

(94)



81

kr a(Ca, Eb) b(Ca, Eb) c(Ca, Eb)
krs(Ca =  0.05, Eb = 0) 
krr{Ca =  0.05, E b = 0)

0.0208 ±  0.0039 
0.0534 ±  0.0028

0.0590 ±0.0149 
0.2711 ±0.0109

0.4158 ±  0.0638 
0.3986 ±  0.0466

kr3(Ca = 0.05, Eb ~  0.025) 
kTr{Ca =  0.05, Eb =  0.025)

0.0157 ±0.0039 
0.0299 ±  0.0018

0.0550 ±0.0158 
0.1380 ±0.0075

0.2567 ±  0.0638 
0.2209 ±  0.0303

krs(Ca = 0.2, Eb =  0) 
k.Tr (Ca = 0.2, E b =  0)

0.0417 ±0.0110 
0.2438 ±  0.0128

0.1464 ±0.0410 
1.0120 ±0.0477

0.685 ±0.1402 
1.614 ±0.162

Table 2. Coefficients from fitting response and recovery times for a range of vis­
coelastic capsules using Eqs. (95) and (96). The adjacent ranges are the bounds of 
a 95% confidence interval.

a capsule with fluid viscosity ratio V  and membrane viscosity ratio ?/ by simply 

simulating a capsule with fluid viscosity ratio V*.

It would be interesting if a comparable pair of bilinear equations were adequate for 

both the response and recovery times in shear flow. As this model also incorporates 

bending stiffness, the coefficients of the bilinear model depend on both the capillary 

number and bending stiffness. Using the same notation, whether the two models

(95) krs = as(Cn, Eb)n +  bs(Ca , Eh)V  + cs(Ca, Eb).

(96) krT — ar(Ca, E b)i/ +  br(Ca, Eb)V  ±  cr(Cu, Eb).

might fit the data is considered. A successful fit would show the independence of the

fluid and membrane viscosity ratios and suggest possible relationships between the

two viscosity ratios.

Capsules with Ca =  0.05 and 0.2 are simulated, for a range of ?/ and V  using 

the viscoelastic model, and the characteristic times are calculated. Plausible fits 

for ensembles with and without bending stiffness are observed, which are charted in 

Table 2. The model fit very well for krT, with a correlation coeffic ient R 2 > 0.99 for 

all three cases. The model fit more poorly for krs, with R 2 ~  0.91 for Ca =  0.05 and 

Eh = 0, R 2 «  0.96 for Ca =  0.05 and E b = 0.025, and /?2 «  0.95 for Ca =  0.2 and 

Eb -  0. As a result, the accuracy of the coefficients for A:rs does not approach that 

of Diaz et al. Given that they reflect the error from the exponential model fittings 

being compounded with the bilinear model fitting, these seemed to be acceptable 

levels of error. A few instructive inferences are apparent from the data:
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The coefficients a, and bs for krs and botli ensembles with Ca =  0.05 are surpris­

ingly similar, suggesting that their dependence on Eb may be small. More interesting, 

however, are the ratios ^  and Starting from the base ensemble for Ca =  0.05 

and Eb = 0 with ^  «  2.8, the ratio of response coefficients increases to ^  ss 3.5 with 

the both addition of bending stiffness Eb = 0.025 and the higher capillary number 

Ca =  0.2. Conversely, the ratio ^  «  5 for the base ensemble decreases to jp ~  4.6 

with the inclusion of bending stiffness Eb =  0.025 and falls to ^  «  4.1 at the higher 

capillary number Ca =  0.2. These ratios for the response coefficients do not align 

with Diaz et al, who observed — «  2 for Ca =  0.005 and ss 1 for Ca =  0.05 in
( I s  d s

elongational flow. Thus, while Diaz et al. observe a decrease in the ratio as Ca 

becomes larger in elongational flow, a modest increase is observed in shear flow.

5.1.2 ARTIFICIAL V  AND r/

Such a model may be used in two ways. First, an artificial fluid viscosity ratio V*, 

in excess of the actual fluid viscosity ratio V, may be used to simulate the effects of 
membrane viscosity ratio ?/. This is accomplished by rearranging Diaz et «/.’s model, 

as

(97) t, = - { V - V ) .
a

Presuming tha t the fraction |  is known a prion  for the desired Ca and Eb, one 

can determine an artificial fluid viscosity by which the effects of having a membrane 

viscosity ratio t) may be included. Alternately, an artificial membrane viscosity ratio 

7/ may be used to simulate the effects of a fluid viscosity ratio V * in excess of the 

actual fluid viscosity ratio V, as

(98) V* = V + j >i ,
b

with knowledge of the reciprocal fraction f .  In either case, the upshot is tha t one 

may simulate both a particular fluid ratio and a particular membrane viscosity ratio 

with a single algorithm. Either a membrane viscosity method or a method for non­

unity fluid viscosity ratios would be necessary to do this, but one would not need 

both.

To consider whether these models fit sufficiently well to satisfy and extend Diaz 

et a/.’s hypothesis, a comparison is made between the response and recovery times of 

the Kelvin-Voigt viscoelasticity model and the artificial fluid viscosity ratio model.
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Figure 55. For a spherical capsule without bending stiffness, characteristic times 
krs (solid lines) and krT (dotted lines) for actual fluid viscosity ratios (squares) and 
artificially calculated fluid viscosity ratios (triangles). The capillary number is Ca = 
0.05.

First, an artificial membrane viscosity ratio rj is used to simulate the effects of a 

different fluid viscosity ratio V*, as in Equation (98). In Figure 55, square data 

points depict the characteristic times of capsules with Ca =  0.05, Eb =  0, and // =  0, 

plotted against their different fluid viscosity ratios V. In contrast, the triangular 

data points are the characteristic times of capsules with identical Ca and Eb, but 

with V  =  0.2 and various rj. The x-axis values for these triangular data  points are 

V * in Equation (98), derived by plugging in V — 0.2 and the particular value of 

The same methodology is used in Figure 56, in which square data  points represent 

characteristic times for Ca — 0.05, E b =  0.025, and tj = 0, with various fluid viscosity 

ratios. On the other hand, the triangular data comes from the characteristic times of 

capsules with the same Ca and Eb, but V  =  1 and different values of i]. In both cases, 

the derived relationship between V  and rr matches very well. The results for r, are 

still acceptable, but noticeably poorer. This is unsurprising, given the exponential 

fittings for r ,, particularly at large V  and r;, were much poorer than for ry.

Second, the same results may also be viewed through the lens of the membrane
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Figure 56. For a spherical capsule with bending stiffness, characteristic times kr„ 
(solid lines) and krr (dotted lines) for actual fluid viscosity ratios (squares) and 
artificially calculated fluid viscosity ratios (triangles). The capillary number is Ca = 
0.05.

viscosity ratio. In Figures 57 and 58, square data points are characteristic times of 

capsules plotted against their membrane viscosity ratios p. In Figure 57, the constant 

parameters are Ca =  0.05, Eb = 0, and V  — 0.2, while the unvaried parameters are 

Ca =  0.05, Eb =  0.025, and V = 1 for Figure 58. Triangular data  points, on the 

other hand, originate in capsules with the same Ca and Eb values, but have p =  0 

and various fluid viscosity ratios V*. In these cases, the “extra” fluid viscosity V* — V  

is used to determine the artificial membrane viscosity 7/, using Equation (97), which 

provides their x-axis values.

5.1.3 MODEL VIABILITY

Of course, several major caveats to the artificial viscosity model proposed here 

are evident. First, the methodology is only useful a posteriori. One needs to know 

the coefficients a and b a priori. As these coefficients vary with Eb and Ca, this is 

a substantial requirement. Second, and more importantly, the ratio of the a and 

b coefficients differs for r , and r r . As a result, one could not accurately simulate
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Figure 57. For a capsule without bending stiffness, characteristic times krs (solid 
lines) and krr (dotted lines) for actual membrane viscosity ratios (squares) and ar­
tificially calculated membrane viscosity ratios (triangles). The capillary number is 
Ca =  0.05.
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Figure 58. For a capsule with bending stiffness, characteristic times krs (solid lines) 
and krr (dotted lines) for actual membrane viscosity ratios (squares) and artificially 
calculated membrane viscosity ratios (triangles). The capillary number is Ca =  0.05.
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both response and recovery phases with the same ratio in one model. Third, while 

the effective fluid and membrane viscosity ratios may ensure tha t the characteristic 

times are sufficiently accurate, this does not imply that local or global aspects of 

capsule deformation (much less capsule dynamics) are equal. Indeed, Diaz et al. 

show that, even in elongational flow, local stretching of elements of the capsule will 

differ somewhat for two different configurations with the same r, [19].

Interestingly, Yazdani and Bagchi have suggested a comparable model for sim­

ulating membrane viscosity as an artificial viscosity ratio. In their formulation, 

V* =  V  +  cj), in which (p is the ratio of dissipation in the membrane to the dis­

sipation inside the capsule [63]. Yazdani and Bagchi show that this approach is 

effective in recovering a spherical capsule’s tank-treading frequency. Their result is 

particularly promising, in that it deals more with capsule dynamics than the capsule 

shape changes considered here. Ideally, a model for replacing membrane viscosity 

with an artificial fluid viscosity ratio would reasonably describe both dynamics and 

shape changes.

In conclusion , the influence of the fluid and membrane viscosity ratios on a eaj>- 

sule’s characteristic times are effectively independent, as they fit a basic bilinear 

model. Further, a sufficiently exact relationship may be defined that an artificial 

fluid viscosity ratio may be used to simulate membrane viscosity and vice versa. 

These results serve as proof-of-concept for the notion that membrane viscosity may 

be reinterpreted as fluid viscosity, while still maintaining the essential aspects of 

its role in the shape change of a capsule. However, basing a methodology for im­

plementing membrane viscosity using an artificial viscosity method would require 

compromise between ^  and in addition to a prohibitive amount of a priori data. 

On the other hand, in a multiscale framework or a large simulation of many capsules, 

it may be sufficient to simply take membrane viscosity into account and an artificial 

fluid viscosity ratio may be an efficient avenue for doing this.

5.2 PO W ER LAW MODEL

W ith the viability of using fluid viscosity to simulate the viscosity of the mem­

brane having been shown, a more accurate and extensible methodology based on this 

idea may be designed. Rather than relying on an unchanging alteration of the fluid 

viscosity ratio, the viscosity of each element of the zero-thickness membrane is cal­

culated at each timestep using a power law fluid model. Such a model is capable of
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either Newtonian independence of, or non-Newtonian dependence on, the local rate 

of deformation tensor (also denoted as the strain rate tensor). The viscosity on each 

element of the membrane may then be distributed to nearby fluid nodes by using the 

immersed boundary method and added to the actual fluid viscosity at those nodes. 

In this way, the viscosity of the membrane is translated into additional fluid viscosity 

in the nearby nodes, but with the necessary temporal and spatial dependence tha t 

is lacking in the artificial viscosity model.

A power law model for membrane viscosity, interpreting membrane viscosity as 

a fluid viscosity, has several potential advantages over conventional solid viscoelastic 

models. First, using a power law improves the modeling framework’s fidelity to the 

current understanding of red blood cell membranes. Whatever the power law model’s 

other drawbacks, it presents an opportunity not available to solid viscoelastic models. 

Second, membrane viscosity described by a solid viscoelastic model has been shown 

to cause buckling and wrinkling during capsule deformation, particularly in capsules 

without bending stiffness [63]. It is not yet certain tha t a biological basis for this 
particular buckling and wrinkling exists. However, a power law model transfers 

this instability in the membrane to the robustly stable lattice Boltzmann method. 

Third, a power law model is governed by two parameters the flow consistency 

index, describing the membrane’s viscosity independent of space and time, and flow 

behaviour index, which determines the non-Newtonian character (or lack thereof) of 

the viscosity. As opposed to the single membrane viscosity coefficient in the Kelvin- 

Voigt model, this enhances the flexibility of the model.

The implementation of this approach is as follows: first, the velocity gradient V u 

of the fluid is calculated in the region containing the capsule, using a second order 

centered difference method. Second, using the discrete delta function, the velocity 

gradient V U  is determined at each node X r on the capsule, as

Subsequently, the rate of deformation tensor D is derived as the symmetric part of 

V U  in the plane of the interface, as

with projection m atrix P surf =  I -  nn, where n is the outward normal vector [6]. For 

simplicity’s sake, the dependence of membrane viscosity on surface area dilation is

(99) VU(X„) =  -  X j)V u(xj)/i3.
J

( 100)
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ignored, although the method could be extended to include it. Then, the shear rate 

is

( 1 0 1 ) 7  =  ^ 2 t,r(D2)

and the membrane viscosity /tmem of the capsule element is given by the power law

( 102 )

for flow consistency index K  and flow behaviour index n  [17]. For a Newtonian

fluid, n =  1 and K  is simply the dynamic viscosity. Values of n > 1 and n < 1

correspond to non-Newtonian shear-thickening and shear-thinning (pseudoplastic) 

fluids, respectively. The membrane’s viscosity is distributed to nearby fluid nodes by 

again using the discrete delta function, as

(103) Pmem(Xj) =  £  5h(X c ~  X,) (Xc) ^ ,
c

using the Voronoi area a ^  about X (. and scaling by spatial step h. Then, at each 
fluid node, the fluid and membrane viscosities are added:

(104) M(x) M/iiiid(x) +  //'tnem(x).

Based on /<, the relaxation parameters s at x  may be appropriately updated, accord­

ing to Section 2.1. A convergence analysis in Figure 59 shows this power law method 

for incorporating membrane viscosity is independent of the Lagrangian grid, with the 

accuracy of the coarser grid only suffering as the capsule arrives at the equilibrium 

deformation.

Among the drawbacks of a power law model, it does increase computational cost 

somewhat, at least in the following implementation, due largely to the calculation of 

the velocity gradient. Another potential additional cost — updating the viscosity and 

relaxation parameters at fluid nodes near the interface — does not present, a problem 

in this implementation, as such an update is already being made (see Section 2.2).

5.2.1 SHEAR FLOW

Of immediate interest is whether the deformation in shear flow of a spherical 

capsule with membrane viscosity described by the power law model is qualitatively 

similar to capsules with Kelvin-Voigt viscoelasticity. Selecting a small flow consis­

tency index K  =  0.01//a, the flow behaviour index n is varied in Figures 60 and 61.
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Figure 59. Convergence analysis of the power law model with capsule meshes having 
N  =  1280, 5120, and 20480 triangles. Capsule parameters are Ca =  0.05, Eb = 0, 
V  = 1, K  =  0.1 jia, and n — 0.64.

Perhaps surprisingly, the results are simple and intuitive. The spherical capsule is 

deformed to an (eventually) stable ellipsoidal shape, described by an approximately 

constant Dxy. As n decreases from one toward zero, the membrane viscosity in­

creases and capsule deformation is restricted. Additionally, decreasing n  changes the 

capsule’s behaviour from stationary tank-treading to undergoing damped oscillations 

prior to tank-treading. For these cases with small n, the Taylor deformation param­

eter oscillates before reaching equilibrium and these oscillations decay more slowly 

for smaller values of n. All three of these observations agree with those made by 

Yazdani and Bagchi using Kelvin-Voigt viscoelasticity [63]. Thus, it seems tha t the 

dependence of the membrane viscosity on the shear rate 7  in the power law model 

docs not appear to produce significant qualitative alterations in the deformation or 

behaviour of a spherical capsule.

If the two models have qualitatively similar results, how do they compare quanti­

tatively? Capsules with Kelvin-Voigt viscoelasticity are shown in Figures 62 and 63 

for fj,s = 10, 20, and 50 times ambient fluid viscosity p a. Alongside are shown cap­

sules with membrane viscosity described by the power law model, for K  =  0 .0 1 , 0 .0 2 ,
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Figure 60. Taylor deformation parameter Dxy for K  =  0.01//a, with n =  1 (dashed), 
n =  0.64 (dotted), n =  0.56 (long dash), n =  0.48 (dash-dot), and n =  0.32 (solid). 
Other capsule parameters are Ca =  0.1, = 0, and V  =  1 .
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Figure 61. Angle of inclination 0 in the xy-plane for K  — 0.01//n, with n =  1 (dashed), 
n =  0.64 (dotted), n  =  0.56 (long dash), n =  0.48 (dash-dot), and n =  0.32 (solid).
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and 0.05 times /ia, and all having n = 0.64. All other parameters in the two models

Ca = 0.05, Eb = 0, and V = 1  - are identical. This particular comparison

is instructive because the membrane viscosity parameters selected are comparable 

with those of a red blood cell. For the power law, Puig-de-Morales-Marinkovic et 

al. found n  =  0.64 in their experiments [48]. Estimates of //., vary substantially, 

as they typically involve assuming tha t a Kelvin-Voigt model describes a particular 

phenomena and deriving //, from their results [21]. In any event, //., =  10//„ (i.e., 

71 = 10) is considered an approximate value [63].

For each pair with /rA. =  1000A', the initial deformation measured by Dxy is nearly 

identical. For larger times, both Dxy and angle of inclination 6 diverge somewhat as 

they approach steady-state. In all three cases, the power law model leads to slightly 

smaller deformations and smaller angles of inclinations than does Kelvin-Voigt. This 

divergence at steady-state is reasonable. As the capsule approaches equilibrium, 

viscous stress in the Kelvin-Voigt model becomes negligible. In contrast, since n < 1, 

the viscous effects created by the power law rise as 7  becomes small and remain as 

it sta y s small. Consequently, there is a decrease in Dxy as the capsule arrives at 

its steady-state deformation. However, the general dynamic behaviour between the 

models remains strikingly similar, with both models transitioning from tank-treading 

to damped oscillations for larger /i, and K .

This agreement between Kelvin-Voigt and power law models suggests that, 

frankly, the time-dependence of the power law viscosity has little effect 011 defor­

mation in shear flow. One might have anticipated that n 1 might amplify the 

time-dependence of 7 , leading to qualitatively different, non-linear changes than 

varying K . Yet, as can be seen in Figure 64, the range of 7  values on the cap­

sule changes little, whether during deformation or after achieving steady-state. This 

lack of substantial variability 011 the part of 7  has a further effect: changes to n and 

K  have qualitatively similar results. As seen in Figure 65, increasing K  produces 

the same results for Newtonian (n =  1) membrane viscosity in the power law model 

as are observed for K  =  0 .0 1 /7 , and the non-Newtonian n — 0.64. Thus, similar 

equivalent deformations are observed, with and without dependence 011 7 . Since the 

power law model is, therefore, acting like a linear Newtonian model in shear flow, it 

is unsurprising that it should agree well with the linear Kelvin-Voigt model for small 

deformations.
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Figure 62. Taylor deformation parameter Dxy for /is =  10, 20, and 50 times /rn 
(dotted lines) and K  = 0.01, 0.02, and 0.05 times jia (solid lines). Other capsule 
parameters are Ca =  0.1, Eh =  0, and C =  l.

0.8

0 6

>0.4
X K = 0.01)it and )i, = 10)4,

K = 0.02)1, and )i, = 20)1,
0 2

K = 0.05)1, and n, = 50n,

o 5 10
K'dt

15 20

Figure 63. Angle of inclination 8 in the xy -plane for p., =  10, 20, and 50 times y a 
(dotted lines) and K  =  0.01, 0.02, and 0.05 times p u (solid lines).
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Figure 64. Maximum and minimum values of 7  on sphere in the power law model. 
Parameters are Ca =  0.1, Eh =  0, V  =  1, K  =  0.1//,,, and n — 0.64.
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Figure 65. Relative effects of n and K on the capsule deformation. Other parameters 
are Ca =  0.1, Ef, = 0 , and V = 1.
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5.2.2 OSCILLATORY SHEAR FLOW

Puig-de-Morales-Marinkovic et al.'s experimental observations which necessitated 

a power law model for red blood cells occur in an oscillatory magnetic field, the 

frequency of which was varied by several orders of magnitude. While the inclusion 

of electric or magnetic fields is beyond the scope of this consideration, an oscillatory 

flow is not. Thus, if 7  for shear flow is too well-behaved for non-linear effects to 

occur, one wonders if oscillatory shear flow might be an appropriate venue for such 

observations. The deformation and dynamics of elastic capsules in an oscillatory 

shear flow has been explored computationally by Zhao and Bagchi, but their results 

did not take into account membrane viscosity [70]. In the same experimental setup 

as with shear flow, capsules with membrane viscosity described by the Kelvin-Voigt 

and power law models are placed in the center of an oscillatory shear flow. For 

a simulation domain of [0, H]3, we defined the velocity at y — 0 and y = H  as 

u — ± ^ k  s i n ^ j ,  for period T.

The same trio of capsules which led to roughly equivalent initial deformations in 
shear flow are considered here: the Kelvin-Voigt model with y s =  10//„, the power 

law model with n =  1 and K  =  0.42//a, and the power law model with n = 0.C4 and 

K  = 0.01/ra. The oscillation has period T  = 4 and the first three periods are shown in 

Figure G6 . Once again, the initial deformation measured by the Taylor deformation 

parameter agrees very well for all three capsules. However, since the steady-state 

behaviour involves continual shape change, this general agreement remains for the 

duration of the simulation, in contrast to the results in shear flow. Indeed, the only 

differences appear when the direction of flow changes, as the power law model with 

n =  1 is consistently less deformed than its counterparts, which continue to agree 

astonishingly well.

On a qualitative level, all three methods have equal responses to flows in both 

directions, after reaching equilibrium. Further, the three models stay approximately 

within phase. These general results are consistent with the findings of Zhao and 

Bagchi for spherical capsules without membrane viscosity [70]: the deformation of 

the capsule is periodic with the flow and the response to flow from either direction 

is equal after the capsule reaches equilibrium behaviour. Figure 67 displays the 

maximum shear rate observed on the sphere, as a function of the fluid velocity u(t) 

a t y = H , for a single period after the capsule has reached steady-state behaviour. 

At this modest oscillation frequency, 7  changes by a factor of 6  — 8  over a period,
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Figure 6 6 . Deformation measured by Dxy for ensemble of capsules with membrane 
viscosity from Kelvin-Voigt and power law models in an oscillatory shear flow. Other 
parameters are Ca =  0.1, Ei, = 0, and V = 1.
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Figure 67. Maximum values of 7  over one period of an oscillatory shear flow, for the 
capsules considered in Figure 6 6 . The x-axis is the flow velocity u (t) at the top of 
the simulation domain, y = H ,
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which is clearly not sufficient to observe the sort of effects found by Puig-de-Morales- 

Marinkovic et al. and Fedosov et al..

The results shown over the last several pages may be interpreted as a negative 

result: a method for simulating membrane viscosity using a power law fluid model 

does not produce substantially different results than the Kelvin-Voigt model in stan­

dard venues like shear or oscillatory shear flow. Yet a negative result here is also 

useful, in terms of understanding how Puig-de-Morales-Marinkovic et al.'s result im­

pacts previous computational studies and analysis based on solid viscoelastic models. 

For a spherical capsule in the ubiquitous shear flow setting, the models are nearly 

equivalent for small deformations and are, at worst, qualitatively similar at larger 

deformations. As a result, it seems that the results of previous computational work 

with solid viscoelastic model are not significantly challenged by Puig-de-Morales- 

Marinkovic et a/.’s finding. Further analysis will be necessary to determine whether 

this similarity between the powrer law and Kelvin-Voigt extends to biconcave capsules 

in shear flow; published data about the latter case does not yet appear to exist.

Similarly, Puig-de-Morales-Marinkovic et al. [48] question the meaning of expo­

nential recovery models, like those used for micropipette aspiration [2 1 ] and optical 

tweezing [13], being based on the Kevlin-Voigt viscoelastic model. Happily, this con­

cern is less relevant to the sort of data  analysis developed by Diaz and coworkers

[20] and performed in Chapters 3 and 4. In these computational studies, exponential 

curves were fitted over the entire recovery process and, as a result, are not susceptible 

to the artifactual interpretations resulting from fitting curves over intervals of arbi­

trary duration. Further, shape response and recovery in a fluid-structure interaction 

setting is not purely viscoelastic anyway and, consequently, the distinction between 

power law and exponential viscoelastic recovery is less relevant.
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CHAPTER 6

CONCLUSIONS

Despite the significant attention tha t computational researchers have shown to 

red blood cells in recent years, substantial holes remain in the current understanding. 

Computational researchers focused on a deformable capsule’s response to deforma­

tion, while experimentalists considered the shape recovery of red blood cells. This 

leads to a certain disconnect between the theories, with little clarity as to how a 

theory in one realm is applicable to the other. As a result, a computational study of 

shape recovery is of interest . Further, recent developments by experimentalists seem 

to have invalidated the popular Kelvin-Voigt viscoelastic model’s applicability to the 

membrane viscosity of red blood cells. It has not been clear how the proposed power 

law model, from the domain of complex fluids, may be included in a computational 
model or how it compares to Kelvin-Voigt in typical simulation settings.

In order to begin addressing these topics, comprehensive two and three dimen­

sional models for the fiuid-structure interaction of a deformable capsule in an ambi­

ent flow have been presented. The model is centered around the immersed boundary 

method, using lattice Boltzmann and finite element methods for the fluid and struc­

tural components. When considered with respect to existing methods for deformation 

in shear flow, the model is demonstrated to be sufficiently accurate.

Building on the work of Diaz and colleagues [20, 19], exponential models are 

proposed for the response and recovery of circular and spherical capsules, in terms 

of the Taylor deformation parameter. These models generally fit the data from the 

simulations conducted very well. Considering the roles of the capillary number, 

bending stiffness, and fluid and membrane viscosity ratios separately, the differences 

between response and recovery become apparent, along with the differences between 

the two and three dimensional versions of the model. While the effects of these 

four parameters on the steady-state deformation of circular and spherical capsules 

are well known, these results demonstrate how these parameters influence the speed 

with which a capsule reaches a steady-state deformation or recovers the undeformed 

shape.
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The recovery model is extended to two dimensional biconcave capsules, with en­

sembles of tumbling and tank-treading capsules being considered separately. For both 

equilibrium behaviours, a two-phase recovery process is observed, a phenomenon for 

which experiments may provide some biophysical basis. The first, recovery phase 

centered on viscoelastic dissipation, and parallels nicely with models for the shape 

recovery of red blood cells from micropipette aspiration. On the other hand, the 

second recovery phase was found to contain the actual shape recovery and was con­

sistent with results for circular capsules. This two-phase model helps to clarify how 

the capsule’s undeformed biconcave shape influences the shape recovery process.

In simulations of three dimensional biconcave capsules, the roles of the capsule’s 

reference shear deformation and spontaneous curvature were considered, as these as­

pects are not included in two dimensional models. Partial, but incomplete, shape 

recovery was observed for capsules with constant spontaneous curvature, whether the 

capsule had a uniform (stressed) or non-uniform (unstressed) reference shear defor­

mation. On the other hand, tank-treading behaviour consistent with shape memory 
during recovery was displayed by capsules with a non-uniform reference shear de­

formation, but not with a uniform reference shear deformation. These admittedly 

limited results are consistent with theories tha t attribute the red blood cell’s bicon­

cave shape to the bending stiffness of the lipid bilayer and propose the non-uniform 

reference shear deformation of the cytoskeleton as the impetus for red blood cell 

shape memory.

Finally, the notion of using additional fluid viscosity to simulate the effects of 

membrane viscosity was tested for spherical capsules and Kelvin-Voigt viscoelastic­

ity. The basic notion was validated, though the naive approach does not lead to a 

particularly useful computational model. Instead, the model is extended to the power 

law model proposed by Puig-de-Morales-Marinkovic et al., whereby membrane vis­

cosity is calculated on the capsule surface and distributed by the immersed boundary 

method to nearby fluid nodes as an additional fluid viscosity. This method is shown 

to approximate Kelvin-Voigt for the initial deformation in shear flow and the poten­

tially non-Newtonian effects are considered.

Future work will be necessary to resolve the causes of numerical instability en­

countered and discussed in Chapter 4, and clarify the extent to which they have a 

physical basis. Subsequently, further investigations of the shape recovery of biconcave 

capsules will be carried out, to test whether the incomplete shape recovery observed
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here becomes complete. Additionally, future work will involve applying both Yazdani 

and Bagchi’s viscoelasticity method and the power law model to biconcave capsules.
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