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ABSTRACT 

A LEAST SQUARES CLOSURE APPROXIMATION FOR 

LIQUID CRYSTALLINE POLYMERS 

Traci Ann Sievenpiper 

Old Dominion University, 2011 

Director: Dr. Ruhai Zhou 

An introduction to existing closure schemes for the Doi-Hess kinetic theory of liq-

uid crystalline polymers is provided. A new closure scheme is devised based on a 

least squares fit of a linear combination of the Doi, Tsuji-Rey, Hindi-Leal I, and 

Hinch-Leal II closure schemes. The orientation tensor and rate-of-strain tensor are 

fit separately using data generated from the kinetic solution of the Smoluchowski 

equation. The known behavior of the kinetic solution and existing closure schemes 

at equilibrium is compared with that of the new closure scheme. The performance 

of the proposed closure scheme in simple shear flow for a variety of shear rates and 

nematic polymer concentrations is examined, along with that of the four selected 

existing closure schemes. The flow phase diagram for the proposed closure scheme 

under the conditions of shear flow is constructed and compared with that of the 

kinetic solution. The study of the closure scheme is extended to the simulation of 

nematic polymers in plane Couette cells. The results are compared with existing 

kinetic simulations for a Landau-deGennes mesoscopic model with the application 

of a parameterized closure approximation. The proposed closure scheme is shown to 

produce a reasonable approximation to the kinetic results in the case of simple shear 

flow and plane Couette flow. 
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C H A P T E R I 

INTRODUCTION 

The interest in simulating liquid crystalline polymers comes from their applications in 

materials manufacturing. In general, a liquid crystalline polymer describes a polymer 

which has the fluidity of a liquid and the molecular ordering of a crystal. In partic-

ular, nematic liquid crystalline polymers are rigid rod-like or disk-like spheroids. All 

molecules tend to have a uniaxial symmetry and are oriented along some direction, 

being almost parallel to one another [2]. They are anisotropic and elastic. They 

can store stresses that depend on the orientation of the molecules [3]. The complex 

structures of nematic polymers create a variety of bulk properties of materials in-

cluding: electrical conductivity, thermal conductivity, strength, gas impermeability, 

liquid impermeability, and they are lightweight [4,5]. Liquid crystalline polymers 

are essential in the production of desired high-performance materials such as aircraft 

parts, liquid crystal displays (LCDs), and bullet-proof vests (Kevlar). Much of the 

development of super strong polymers today is done through experimentation. In 

an effort to reduce experimentation time and streamline this process, researchers are 

trying to better understand how these materials form. Of particular interest is the 

potential to injection mold liquid crystalline polymers into high strength parts [4,6]. 

Injection molding is the process by which a molten material, often a plastic, is forced 

into a preformed die. The flow experienced by molecules during the injection molding 

process is very complicated, and so it is not easy to determine their final orientation 

which has a direct correlation to the physical properties of the material. In contrast, 

during the extrusion of fibers processing operation, the flowing material experiences 

mostly elongational flow. The result is that the polymers tend to orient along the 

flow direction [4]. 

Over the past few decades, liquid crystalline polymers in the nematic phase have 

been successfully modeled by S. Z. Hess, M. Doi, G. Marrucci, P.L. Maffettone, R.G. 

Larson, and H.C. Ottinger. In most studies, the orientation of the rigid-rod nematic 

polymers are described in terms of a probability distribution function [1,4,6-18]. This 

is referred to as the Doi or Doi-Hess kinetic theory for liquid crystalline polymers 

[19,20]. This approach involves solving a differential equation for a second order 

moment tensor which describes the orientation of the polymers. In order to solve 

for the second moment tensor, information from higher moments must be known, 
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which in turn rely on even higher moments. This can be solved numerically through 

the use of spherical harmonic expansions [1,8,9,14]. This method is computationally 

intensive, even in the simplest flow cases such as homogeneous shear flow. As a result, 

closure approximations are employed to represent the higher order moments in terms 

of the lower second order moments. This results in the differential equation being 

a closed system written in terms of second moment tensors which, computationally 

speaking, is significantly less expensive to solve. More recently, studies have been 

conducted where the orientation of the rigid-rod nematic polymers are described 

in terms of hierarchy of alignment tensors [5]. Again, this means that lower order 

moments rely on higher order moments resulting in a need for closure approximations. 

The simplest closure for liquid crystalline polymers is the Doi closure [19,21]. 

Under equilibrium conditions, the exact solution for the Doi-Hess kinetic theory has 

two critical bifurcation points [8-10]. The Doi closure does not give an accurate 

prediction for these points under equilibrium conditions [10,21]. For simple shear 

flow, the Doi closure does not simulate any of the periodic flow states [4,6,13,21]. 

In general, homogeneous shear flow is considered to be one of the most difficult flow 

types for the closure schemes to approximate. As a result, there is a wealth of infor-

mation for both the kinetic solution and the solution simulated using various closure 

schemes under simple shear flow conditions. For more complex flows such as elonga-

tional flows [10], fiber flows [11], and extrusion dominated flows [6], the Doi closure 

outperforms many of the other closure rules. The two Hinch-Leal closures [22] are 

more complicated to implement and less testing has been done of them. They were 

derived in an ad hoc manor with the main purpose being to capture the two criti-

cal bifurcation points of the equilibrium solution to the kinetic equation. The first 

Hinch-Leal closure is the simpler of the two. Like the Doi closure, it does not give an 

exact solution to the critical bifurcation points at equilibrium [10]. However, the first 

Hinch-Leal does predict periodic flow under homogeneous shear flow conditions. Un-

der stronger shear flow conditions, its results are abnormally bad [6,13]. The second 

Hinch-Leal closure introduces an exponential term into the closure approximation. 

The exponential term makes it very difficult to do any non-numerical analysis on the 

closure scheme. Unlike the Doi and first Hinch-Leal closures, the second Hinch-Leal 

closure does give an accurate prediction of the two critical bifurcation points from 

the kinetic solution [10]. Similar to the performance of the first Hinch-Leal closure 

under shear flow conditions, the second closure scheme predicts periodic flow and has 
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pathological results under strong shear flow conditions. For strong flow conditions in 

near shear flow, the second Hinch-Leal closure simulates spurious periodic flow [6,13]. 

Under the conditions of complex flows, the Hinch-Leal closures do not outperform 

the Doi closure [10,11]. 

More recently, the Tsuji-Rey and Bingham closures have been suggested. The 

Tsuji-Rey closure differs from the other closures in that it is written completely in 

terms of second-order traceless tensors [3]. Qualitatively, its performance under equi-

librium conditions and in the case of simple shear flow is similar to the performance of 

the Doi closure rule [13], but it does have the advantage of predicting some periodic 

flow. The Bingham closure is a closure approximation for nematic polymers based on 

the canonical distribution subspace theory, specifically the Bingham distribution [4]. 

Like the second Hinch-Leal closure, this closure gives an accurate prediction of the 

two critical bifurcation points from the kinetic solution under equilibrium conditions. 

Unlike the Doi, Tsuji-Rey, and Hinch-Leal closures, the Bingham closure performs 

well over a wide range of parameters and it is therefore a better approximation to 

the exact Doi kinetic theory for the homogeneous shear flow problem [4,6]. However, 

it also has its fair share of shortcomings. While the Bingham closure predicts all 

types of periodic flow and the subsequent chaos flow phase, it fails to predict the re-

turn of the flow-aligning phase at high shear rates [7]. For more complex flows, such 

as the flow between rotating eccentric cylinders, the Bingham closure only behaves 

satisfactorily at low shear rates [17]. 

In addition to the Doi, Tsuji-Rey, first and second Hinch-Leal closures, and the 

Bingham closures, there are many other closures such as those derived from alignment 

tensors [5] or hybrids of the above closures [10,11]. As a general rule, they all have 

some defect when compared with the kinetic solution at equilibrium or under simple 

shear flow conditions. Further, considering the vast array of complex flow types, it 

is very difficult to compare the results from simulations utilizing closure schemes in 

order to determine which is best for complex flow. It is clear that none of the closures 

rules discussed are perfect and there is not a "one size fits all" closure in terms of all 

flow types. 

In summary, the time and monetary cost of experimentally producing new super 

strong polymers is very high. As a results, scientists and engineers are interested 

in being able to model these materials. However, the mathematical model is com-

putationally intensive in its original kinetic form. Specifically, the solution depends 
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on information from higher order moments. As a result, the kinetic equations uti-

lize closure rules which approximate higher order moments in terms of lower order 

moments and thus produce a closed system of differential equations. However, the 

current closure schemes have many shortcomings and therefore there is a need to de-

rive a better closure scheme. Ideally, a new closure scheme would be more accurate 

in both the equilibrium and shear flow conditions. In the case of more complex flows 

it should perform as well as the other closure schemes, as comparison with the kinetic 

solution is not possible. In Ottinger's recent paper "On the Stupendous Beauty of 

Closure" [18], he suggests that "closure should not be considered as a helpful math-

ematical approximation but as the cornerstone of establishing autonomous levels of 

description." Considering the discussion above and Ottinger's statement, it is evident 

that there is a need to develop an improved closure scheme. 
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C H A P T E R II 

LEAST SQUARES FIT 

In this chapter, a new closure rule is derived using a least squares fit on data that 

is simulated from existing closure rules. First, the Doi kinetic theory is introduced 

and the computational costs of simulating it is discussed. Next, the four existing 

closure rules used in the least squares fit are defined and the application of general 

least squares on their simulated data is presented in detail. Finally, a new closure 

rule, referred to as the DQ closure, is proposed. 

II. 1 THE DOI KINETIC THEORY 

Let f(m,t) describe the orientational probability distribution function (PDF) for 

rigid, rod-like or plate-like, spheroidal molecules with axis of symmetry m on the 

unit sphere. The dimensionless Smoluchowski (kinetic) equation for / ( m , t) is given 

by [1,2,8,12-14]: 

21 
Dt 

= n-

with Jeffrey orbit [1,8,12-14] 

Dr(m)[Kf + — fllV 1Z • [m x rh/] 

rh = f ] m + a [ D m - D : m m m ] , 

(1) 

(2) 

where DT(m) is the dimensionless rotational diffusion coefficient; 1Z is the rotational 

gradient operator TZ = m x ^ ; A; is the Boltzmann constant; T is the absolute 

temperature; D and ft denote the dimensionless rate-of-strain and vorticity tensors 

in the flow field v, 

D = I ( W + Vv T ) , H = - ( V v - V v T ) . (3) 

In this chapter, only simple shear flow is considered. That is, the velocity, v = 

Pe(y, 0, 0), is linear in the flow gradient direction y (x is the flow direction, and z is 

the vorticity direction) [1,8,14]. It follows directly from (3), that D and ft can be 

written as: 

D = 
Pe 

/o 1 0 \ 

V 

1 0 0 

0 0 0 
n = 

Pe 
( 

\ 

0 1 0 

- 1 0 0 

0 0 0 

\ 

(4) 
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where the Peclet number, Pe, is the normalized flow rate parameter. The geometry 

parameter a from the Jeffrey orbit (2) is given by, 

r 2 - l 
a = ^TI' (5) 

which parametrizes the effect of the molecular aspect ratio r = L/d of the length L of 

the rigid rod (or the thickness of the plate) to the diameter d of the circular traverse 

cross-section as depicted in Fig 1. Fig. 2 is the graph of geometry parameter a as 

a function of molecular aspect ratio r from (5) which shows that, for an extremely 

long rod, the lim a = 1; while for an extremely thin plate, lima = — 1. Because of 
r—too i—>0 

the symmetry results [13,23] between a and —a, only a > 0 is considered. Also, a 

typical physical value of r is r = 50, which makes a ?x 0.98. Therefore, the geometry 

parameter is simply taken to be a = 1.0 in this research. 

•» 

FIG. 1: Rigid-rod molecule with length L of the symmetry axis m and diameter d 

of the circular traverse cross-section. 

The second moment of the PDF, M, determines the Maier-Saupe mean-field 

excluded-volume potential, V, with dimensionless nematic polymer concentration 

JV [1,12,17]. 

M = 

V = 

(mm) = / r 
J\\m\\=l 

— N k T m m : M 
2 

dm; (6) 

(7) 
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FIG. 2: Semi-log graph of geometry parameter a as a function of molecular aspect 
ratio r. 

Where the symbol (•) indicates the average taken over the unit sphere, and the second 

moment has the characteristic i r (M) = 1. Note, there are some other potentials, for 

example the Onsager potential [24], but here only the Maier-Saupe potential is used. 

The Smoluchowski equation (1) is very complicated to solve in its current form, 

especially when heterogeneity is introduced into the system. Solutions of the differen-

tial equation can be found in the form of spherical harmonic expansions. The result is 

a system of infinitely many differential equations that can be solved numerically after 

suitable truncation at a high computational cost [9,13,14,25]. Usually, the kinetic 

equation is referred to as an infinitely many dimensional problem Instead of solving 

this problem, mathematicians and scientists have derived an alternate method to 

solve the dynamic equation of the second moment orientation tensor Q, where Q is 

the traceless portion of M 

Q = M - ±1, (8) 

which is symmetric. The resulting system is, therefore, only 5-dimensional. 

Taking the second moment of the kinetic equation, the dimensionless dynamic 



equation [12,13] for Q is: 

^ - n - Q + Q-fi-a[D-Q + Q D] 

2 1 
= - a D — 2aD : (mmmm) — -

3 N ' A 
Q - A M Q + - I ) Q + ATQ: (mmmm) (9) 

3 

where A is the approximation for D~l. It is in the dimensionless dynamic equation 

(9) that the fourth order tensor (mmmm) appears. This term results in the second 

order system having a dependency on higher (fourth) order moments. Upon close 

inspection of (9) it can be seen that (mmmm) does not need to be explicitly known in 

order for Q to be solved, rather the second order tensors which result from the tensor 

contractions D : (mmmm) and Q : (mmmm) must be determined. A description 

of the tensor notation can be found in the appendix. While the exact values of these 

contractions cannot be calculated without deriving the fourth moment equation for 

(mmmm), an approximation to the contractions in terms of lower (second) moments 

can be made. These approximations have been widely used in the literature and are 

referred to as closure rules or closure schemes. Some well known ones are the Doi 

closure, Tsuji-Rey closure, Hinch-Leal 1 closure and Hinch-Leal 2 closure (see Table I 

below). As discussed in the introduction, these rules capture some of the phenomena 

described in the kinetic equation, but no single closure gives satisfactory results for 

all flow conditions. The purpose here is to derive a new rule based on the numerical 

simulations of the kinetic equation in an effort to get better results. 

M and Q share an orthonormal frame of eigenvectors, referred to as optical 

axes or directors, nz,i = 1,2,3, with M having corresponding ordered eigenvalues, 

dx, % = 1, 2,3, such that 0 < d$ < d2 < di < 1 for stable solutions and di + d2 + d$ = 1. 

Q has eigenvalues dt — | . The eigenvalues can be referred to in terms of order 

parameters, where each dz describes the degree to which m is aligned with respect 

to the primary director n,. The major director is denoted by ri! for which di is the 

unique maximum [8,13]. 

From the spectral decomposition 

0 = $ ^ d , m n „ (10) 

the second moment equation (8) has an equivalent form in terms of the directors, 

rij,« = 1, 2,3, (using the identity J2^ni = I) [13]: 

Q = s ( m i l ! - V ) + P ( n 2 n 2 - ^ i ) , (11) 
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s = d1-d3, /3 = d2-d3, (12) 

where the order parameters s and (3 describe the alignment of the axis. The maximum 

normalized birefringence is defined as the maximum of |dj — dj\ [13]. Birefringence 

is a physical property of liquid crystalline polymers; it describes how light passes 

through the optical axes. If s = (3 = 0, the system is in its isotropic phase and all 

eigenvalues are equal. The system is in its nematic uniaxial phase when di = dj ^ dk', 

there is one unique eigenvalue. Lastly, if all three eigenvalues differ, the nematic is 

biaxial and s and j3 are both non-zero [8,13]. Geometrically, M and Q uniquely 

define an orientation axis and radius [13]. 

II.2 FORMULATION OF DQ CLOSURE RULE 

Current closure rules were developed by devising a single approximation method 

that could describe both D : (mmmm) and Q : (mmmm) effectively. Recall 

that D is a rate of strain tensor with one non-zero independent component in the 

simple shear case, and Q is a symmetric and traceless second moment orientation 

tensor with five independent components. Since D and Q have different physical 

meanings, the approach taken in the development of the new closure rule is to treat 

D and Q separately. If preexisting closure rules for approximating D : (mmmm) 

and Q : (mmmm) are linearly combined in such a manner as to minimize their 

differences from the actual values for D : (mmmm) and Q : (mmmm) respectively, 

a more accurate closure rule may be devised. The derivation of this new rule is the 

focus of this chapter, and it will be referred to as the DQ closure rule (DQ). 

The four closure rules being utilized are the Doi (DOI) [19], Tsuji-Rey (TR) [3], 

Hinch-Leal 1 (HL1) and Hinch-Leal 2 (HL2) closure rules [22]. The four closure 

schemes are given in Table I in terms of A, where A is any traceless symmetric second 

order tensor. They will be referred to by their abbreviations for the remainder of this 

paper. A few characteristics of the closures rules should be noted. The Doi closure 

rule is by far the simplest rule to implement, both analytically and numerically, as 

it contains the least number of terms [2]. It is also a component of the other three 

closure rules. The Tsuji and Rey closure rule is written in terms of A : Q4, where A 

is any traceless symmetric second order tensor and Q4 is the fourth rank order tensor 

parameter related to Q [3]. For the purpose of the DQ closure rule, the component 

rules are written in terms of A : (mmmm) [13]. The Hinch-Leal closures are designed 
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to match the exact solution of the kinetic equation under equilibrium conditions (in 

the absence of flow). Therefore, many of the coefficients in the terms are found 

through interpolation or other ad hoc methods [22]. Also, note the appearance of the 

exponential terms in the HL2 closure. This term makes the analytical study of the 

HL2 closure and the proposed DQ closure challenging in many cases and not feasible 

in others. 

TABLE I: Closure rules for approximating Q : (mmmm) 

Rule A : (mmmm) m 

DOI: (A : M) M 

TR: \[(A: M ) M + A • M • M + M • A • M + M 2 • A - (M 2 : A)I] + | A : M I 

HL1: \ [6M • A • M - M (A: M) - 2 ((MM) : A) I + 2M : AI 

HL2: M (M: A) + 2 [M • A • M - M 2 (M 2 : A) / (I : M2)] 

+ a [ ^ A - A ( A . M + M . A - | ( M : A ) l ) ] 

where a = exp [2 (1 - 3M2 : I) / (1 - M 2 : I ) ] . 

The DQ closure rule states: 

D : (mmmm) ~ x iDOI + i 2 T R + x 3 H L l + x4HL2 

Q : (mmmm) « x 5DOI + x 6 TR + x 7 HLl + x8HL2 (13) 

where Xi,...,xg, are coefficients which minimize the error of the respective closure 

rule. General least squares curve fitting is utilized to find these eight coefficients. 

II .2.1 The Applicat ion of Genera l Least Squares 

General least squares can be applied to curve fitting a set of data points in the 

following manner [26,27]. For an m x n matrix A and a vector b, the residual r can 

be expressed as r = r(x) = Ax — b. The general least squares problems is to find a 

vector x that minimizes the quantity 

m 

J2r* = IMI* = i i A x - bii2 = ( A x - b ) T ( A x - b ) • (14) 

From (14), the set of solutions x which minimizes ||r||2 can be found from 

A T A x = A T b . (15) 
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Solving for x yields the matrix equation 

x = ( A T A ) - 1 ( A T b ) 

From the DQ closure rule (13), define 

I DOh TRX HLli ZZL2j ^̂  

DOI2 TR2 HL3i HL23 

(16) 

A = 

DOIm TRm HLlm HL%, 

, b = 

/ 

( v,\ 
2/2 

\ym J 

,x = 
X2 

XZ 

\ £4 / 

where yt, i = 1,2, ...,m, is the actual value of D : (mmmm) calculated from the 

kinetic simulations, and DOIj, TR,, HLlj, and HL2j are approximations to that 

tensor contraction calculated from the corresponding closure rules. By solving (16), 

the coefficients Xi, ...,£4 can be found. Similarly, to find £5, ...,£8) V% would be the 

actual value of Q : (mmmm). Given that the process to solve for £1,...,£4 and 

£5,..., X8 are the same, the remainder of this section will focus only on how x\,..., £4 

are found. The results from the least squares fit for both sets of coefficients will be 

discussed in the next section. 

II.2.2 Solving the System of Equations 

In order to solve for the coefficients £i...£4, AUTO bifurcation software [28] is used 

to generate the data needed to calculate b, the y% values. Consider the PDF 

L 1 

/(m,*) = ^ ^ a/m(0>T(M) 
2=0 m=-l 

Yr(e,<p) = pr(cosey (17) 

where Y™ are complex spherical harmonic expansions and P/™ are normalized Leg-

endre polynomials for / even; m is a representation of the molecule axis in spherical 

coordinates (a vector on the unit sphere with polar angle 9 and azimuthal angle (f>); 

and L is the order of truncation in the Galerkin method [8]. Through the use of this 

spherical harmonic expansion (17), Forest, Zhou, and Wang were able to derive a sys-

tem of fifteen explicit equations for (mmmm) in terms of fourteen independent a/m 

components [14], as well as a system of five explicit equations for Q in terms of five 

independent a\m components [23]. When implemented in AUTO, the kinetic equation 
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is solved using a system of equations with 65 components corresponding to the trun-

cation L = 10 [8,14,23]. By post-processing the data files from AUTO in MATLAB, 

values for Q and ( m m m m ) can be obtained. Using those values, D : (mmmm) and 

Q : (mmmm) can be computed from the kinetic simulation. Recall from (4), D is 

known and its value is completely dependent on the Peclet number. Finally, by using 

the same Q values, the approximations for D : (mmmm) and Q : (mmmm) from 

each of the pre-existing closure rules (DOI, TR, HL1, and HL2) can be calculated. 

Note, for each kinetic solution for D : (mmmm) and Q : (mmmm) calculated for 

a given Q, there are four corresponding approximations to the contraction, one for 

each closure scheme. 

AUTO is run for a variety of N and Pe values. For each run of AUTO, Pe is 

set to a predetermined constant ranging from 0.1 to 10.0, reflecting both weaker and 

stronger shear flow. The geometry parameter is set to a = 1.0 for all computations 

in this study, representing large aspect ratio rod-like liquid crystalline polymers as 

per (5) and Fig. 2. Recall in (4) it was shown that for the case of simple shear flow, 

D and $7 depend solely on the value of the Peclet number Pe. N varies during each 

run of AUTO between 0.0 and 8.0. The data generated from each run of AUTO is 

combined into a single large data file with 47,497 entries for different combinations 

of N and Pe, including all stable and unstable steady solutions. The data set is used 

to calculate accurate values of D : (mmmm) and Q : (mmmm) , as well as the 

approximations for D : (mmmm) and Q : (mmmm) from each of the preexisting 

closure rules (DOI, TR, HL1, and HL2). Then the coefficient sets Xi,...,X4 and 

£5, ...,x8, are each found from a single least squares fit. Table II lists the values of 

the coefficients for 0 < Pe < = 10. 

TABLE II: Coefficients from the least squares data fit 

DOI TR HL1 HL2 Simple Sum Weighted Sum 

£ l £2 X3 £4 

-0.09873244 0.30939743 0.67545960 0.03690273 0.92302731 1.00037667 

£5 £ 6 £ 7 £ 8 

-0.02891184 0.17859696 0.19104295 0.62051140 0.96123947 1.00588871 

The values for x\...x^ and x$...x%, respectively, are averaged over the range of Pe 

and then summed in two different ways. A simple sum and a weighted sum (ws). 
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Each closure rule should satisfy the condition tr (A : (mmmm)) = A : M, where A 

is a second moment tensor. DOI, HL1, and HL2 closure rules fulfill the condition, 

while the TR closure rule does not. For TR, tr (D : (mmmm)) = 1.25 (D : M), and 

similarly tr (Q : (mmmm)) = 1.25 (Q : M) . A detailed analysis of the trace of each 

closure rule can be found in the Appendix. The weighted sum takes this into account 

and is expanded as £i + 1.25£2 + £3 + £4- The new closure rule is a linear combination 

of the other four rules, therefore the coefficients' sum should equal 1 for the condition 

tr(Q : (mmmm)) = Q : M to be satisfied. Note, that the weighted sum does not 

equal one, but it is relatively close to one. Given that this was a numerical fit, the 

results are being considered acceptable and these coefficients are used for evaluating 

the performance of the DQ closure rule. 

II.3 S T A T E M E N T O F THE D Q C L O S U R E R U L E 

Notice that many of the terms in the DOI, TR, HL1, and HL2 closure schemes 

repeat. By combining like terms, the proposed closure rule can be simplified. The 

DQ closure is stated below: 

D : (mmmm) « -0.1196 (D : M) M + 0.9617(M • D - M) 

+0.0773(M M D + D M • M) - 0.3475 (D: M 2) I 

+0.3733 (D: M) I + 0.0369 ( - 2 (D: M2) M 2 / (I: M2) 

+a »D-1(DM + MD) + | ( D : M ) I 
) 

(18) 

Q : (mmmm) 0.5980 (Q : M) M + 1.6042(M Q M) 

-0.1211 (Q: M 2) I + 0.1359 (Q: M) I 

+0.6205( - 2 (Q: M2) M 2 / (I: M2) 

+a | | Q ^ Q M + !(Q:M)I 
) 

(19) 

where M Q M = M M Q = Q M M and M Q = Q M. The same equalities 

do not hold for the case of D : (mmmm) . 

In addition to doing a single least squares fit on the data generated from these four 

existing closure rules, several other approaches were made to design a new closure 
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rule. Originally, the data files were arranged according to the Peclet number, and 

£1,.. . , £8 were found at each value of Pe. The values of x\,..., £8 were then averaged 

to determine the values of the coefficients for the new closure rule. Alternatively, mul-

tiple attempts were made at fitting the common terms listed in the the pre-existing 

closure rules directly, as opposed to fitting the closure rules and then combining the 

common terms as was done above. However, the variance in all of these approaches 

was calculated and found to be the smallest for the single least squares fit of the 

DQ closure rule. Multiple other metrics were used in determining which approach 

yielded the most acceptable results, the clear favorite being the single least squares 

fit from the four existing closure. 
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C H A P T E R III 

BIFURCATION DIAGRAMS IN (N, s) SPACE IN EQUILIBRIUM 

In this chapter, the proposed DQ closure is examined under equilibrium, or no flow, 

conditions. The second moment equation is written in terms of its major director and 

a single order parameter. By substituting this equivalent form of Q into the dimen-

sionless dynamic equation (9), the bifurcation diagrams at equilibrium for each of 

the four existing closure rules and the new proposed closure rule can be constructed. 

From its bifurcation diagram, the isotropic and nematic flow phases and transitions 

of the proposed DQ closure are examined in detail. In addition, the critical bifurca-

tions from the equilibrium diagrams of the five closure rules are compared with each 

other, as well as to the known solution of the kinetic equation [8-11,21]. 

I I I . l E Q U A T I O N OF T H E O R D E R P A R A M E T E R 

The following lemmas are straightforward, and will be used frequently. 

Lemma III .1.1 Let A, B , C ; and D be second order symmetric tensors. Suppose 

that B = C + D. Then A : B = A : C + A : D . 

Lemma I I I . 1.2 Let A and B be second order symmetric tensors. Then A : B = 

i r ( A - B ) . 

Recall from the earlier description of Doi kinetic theory that M and Q share 

an orthonormal frame of eigenvectors, referred to as directors, nt,i = 1,2,3, with 

M having corresponding ordered eigenvalues, d%,i = 1,2,3. At equilibrium, the 

material must be either uniaxial, meaning exactly two of the eigenvalues must be 

equal, d% = d3 ^ dk, or isotropic, wherein in all three eigenvalues are the same, 

di = c?2 = ^3 [8,13]. For the case of simple shear flow at equilibrium, f3 = 0 in 

(12) and so s = d\ — d3 is now the single order parameter where d\ corresponds to 

the unique major director ni [8,13]. Using the harmonic expansions for the second-

moment M, the second-moment orientation tensor Q, and the dimensionless dynamic 

equation for Q, the bifurcation diagrams at equilibrium can be given in terms of the 

order parameter, s, and the nematic concentration, AT 
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The major director n is defined as 

n 

in spherical coordinates, where 

/ sin 9 cos 4> 

sin 9 sin <f> 

cos 9 

\ 

nn = 

sin2 9 cos2 <p sin2 9 sin <p cos <f> sin 9 cos 9 cos <j> ' 

sin2 0 sin <f> cos 0 sin2 9 sin2 0 sin # cos 9 sin 0 

i sin 9 cos 0 cos <f> sin 0 cos 0 sin 4> cos2 9 j 

(20) 

(21) 

nn nn nn : nn = n T n = 1. (22) 

9 is the polar angle measured from the vorticity (z) axis and <f> is the latitude angle 

in the shear (x-y) plane. <f> is measured counter-clockwise from the positive flow 

direction (£); y is the flow gradient direction [8]. From the values of 9 and 0, the 

type of flow can be determined. Flow regimes will be explained in detail in the 

following chapters. In equilibrium, the second moment equation (8) can be written 

in terms of the major director n (20) and the order parameter s (12) [8,10,11,13]: 

Q = s I nn 
1, 

I = s n n T - x i (23) 

Subsequently, s can be found from (23) in terms of n and Q by applying Lemma 

III. 1.1 and the identity nn : nn = 1. 

Similarly, 

Q : nn = -s 

Q2 = s2 i n n + ^ I , 

Q2 : nn = -s2. 

(24) 

(25) 

(26) 

At equilibrium there is no flow, Pe = 0, therefore the dimensionless dynamic 

equation (9) simplifies to 

^ = ~Q + N (Q + ^I\ • Q - NQ : (mmmm) (27) 
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for A = 1, the usual approximation to Z)"1. Additionally, at equilibrium -^ = 0. 

The last term in (27) introduces a fourth order tensor to the equation, thus the 

system is not closed. The approximation of Q : (mmmm) by various closure rules 

will be addressed in the next sections. Contracting (27) with nn (or multiplying by 

n T from the left and n from the right) and having -^ = 0, (27) will be written in 

terms of the order parameter s and concentration A''. The expressions needed for the 

DQ closure scheme's equilibrium equation are derived below, and the basic process 

by which the schemes are written in terms of s is discussed. 

At the end of the chapter, the resulting functions are graphed, showing their 

bifurcation points under equilibrium conditions. The bifurcation diagrams of the 

existing four closure rules are compared to the proposed DQ closure rule and the 

location of critical bifurcation points is examined. 

III .2 T H E D Q C L O S U R E R U L E AT E Q U I L I B R I U M 

III .2.1 Rela t ions be tween s and N in D Q closure 

Recall the proposed DQ closure rule for the Q : (mmmm) contraction: 

Q : (mmmm) « 0.5980 (Q : M) M + 1.6042(M Q M) 

-0.1211 (Q: M2) I + 0.1359 (Q: M) I 

+0.6205 ((Q: M2) M 2 / (I: M2) + a 

a = exp [2 (1 - 3M2 : I) / (l - M 2 : I)] 

J | Q _ - Q M + | ( Q ; M ) I (28) 

Recall some of the basic properties of Q and M that will be of use in the deriva-

tion: 

Q = M - ^ 1 , tr(M) = 1, tr(Q) = 0. (29) 

Using (23), (26), and (29), and Lemmas III. 1.1 and III. 1.2, the DQ closure rule 

can be derived in terms of s. 

Q: M = tr(Q • Q) + ~tr(Q • I) = ^s2, (30) 

giving 
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( Q : M ) M = - s 2 Q + - I 

= - s 3 n n s3I + - s 2 I . 
3 9 9 

(31) 

Q - M - M = 

= 3 S 

nn + - I | + - [ nn 1 

3 J 3 V 3 
1. 

s nn 
1 T \ 1T 

3 1 + 3 J 

n n - 9 J + 9 S n n +3 IJ + 9 S , n n 
1. 

(32) 

Q : (MM) = tr(Q • M • M) = ^ s 3 + ^ s 2 . 

Note, M • Q = (Q + | l ) Q = Q (Q + | l ) = Q • M, and similarly 

Q M M = M Q M = M M Q . 

(33) 

(34) 

The only term left to put in terms of s and N is I : M 2 . By applying Lemma 

III. 1.2 it simplifies to 

I : M 2 = *r(M2) = ^ s 2 + i (35) 

Substituting (30), (31), (33), (32), and (35) into the DQ closure rule (28) gives 

an expression for the Q : (mmmm) in terms of s and N. Recall ir(nn) = 1. On 

contracting this equivalent form of (28) by nn, the result is an implicit function of s 

with respect to N. 

0 = + N - 0.7142s2 - 0.2006s + 0.1034 

a = exp [ -6s 2 / (l - s2)] (36) 

Due to the exponential term, an analytic expression for s = s(N) cannot be de-

termined. However, a graphical solution can be found by using an implicit numerical 

solver. 
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FIG. 3: Bifurcation diagram for the DQ closure rule under equilibrium conditions. 
The solid lines indicate the stable solutions; the dashed lines indicate the unstable 
solutions. 

III.2.2 Equilibrium bifurcation diagram 

When Pe = 0, there is no flow and thus there is no external field for ordering the 

anisotropic states. This means that the major director has no preferred orientation in 

the nematic phase; it can be oriented in any direction. By solving s(N) graphically for 

(36), in accordance with Bhave's study of the kinetic equation [21], the equilibrium 

bifurcation diagram for the DQ closure scheme is given in Fig. 3. From the study 

of the kinetic equation at equilibrium, much is known about the phase transitions of 

nematic liquid crystalline polymers [8-10,21]. 

The order parameter for the kinetic equation at equilibrium, as well as the DQ 

closure (see Fig. 3), falls into the range of — | < s < 1. Recall from the discussions 

of Doi kinetic theory and the equation of the order parameter (12), s is defined in 

terms of the eigenvalues, dz, i = 1,2,3. For s < 0, the system exhibits unstable 

oblate uniaxial symmetry (d% = d3 ^ dk) wherein the molecular axes m are aligned 

in planes at angle to the director axis. For s = 0, the system is in its isotropic 

base state (dk < dx = d3). For s > 0 the system exhibits prolate uniaxial symmetry 
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(di > dj = dk) wherein the molecular axes m are aligned about the director axis. 

At the upper limit of the order parameter, s = 1, the nematic is stable and perfect 

alignment of the molecular axes m about the director axis is achieved. At the lower 

limit, s = — \, the nematic is unstable and all molecules lie randomly in planes 

orthogonal to the director axis [13,21]. 

There are two critical bifurcation points from the isotropic base state s = 0. From 

Fig. 3, one can clearly see the bifurcation at s = 0 when N = 4.76. Here there is a 

phase transition from the stable isotropic phase for N < 4.76 to the unstable isotropic 

phase for N > 4.76. Additionally at the point s = 0,N = 4.76, the isotropic, s = 0, 

branch crosses with the nematic, s / 0, branch. The unstable prolate phase and 

stable isotropic phase collide and an unstable oblate phase emerges for s negative. 

For 0 < s < 0.275 and 4.32 < N < 4.76, the system is in its unstable prolate 

phase, or moderately aligned prolate phase. The second critical bifurcation point is 

at s = 0.275 and N = 4.32. Here a second order isotropic-nematic phase transition 

occurs and the stable prolate phase is born. Between 4.32 < N < 4.76, the system is 

both isotropic and nematic stable (bistable). With a decrease in concentration, the 

stable nematic state becomes a stable isotropic state at N = 4.32; with an increase in 

concentration, the stable isotropic state becomes a stable nematic state at N = 4.76. 

As s —> 1, the system is in its highly aligned stable prolate phase [8-10,21]. 

III.3 EXISTING CLOSURE SCHEMES 

The equilibrium equations for the existing closure schemes are well known [10,11]. 

The relation between order parameter s and concentration N at equilibrium are given 

below. By applying the substitutions for the Q and M terms given in the previous 

section, one can easily derive the expressions for the following expressions. 

Recall the Doi closure rule: 

Q : (mmmm) « (Q : M) M. (37) 

(27) can be written in terms of s and N as 

9s 2 Ar[ 4 2 2 21 n 

giving 

(38) 

(39) 



Recall the Tsuji-Rey (TR) closure rule: 

1 

4 
Q : (mmmm) ( Q : M ) M + Q - M - M + M - Q - M 

+ M 2 • Q - (M2 : Q) I + - Q : M I 

§f can be expressed in terms of the TR closure rule as 
dt 

giv ing 

9 8 2 nr 5 2 1 3 

" I S 5 + 1 8 S + 1 8 
= 0, 

s(N) = 
1± 

10 

The Hinch-Leal (HLl) closure rule for weak Brownian motion is 

1 

5 

- 2 ((MM) : Q ) I + 2 M : Q I 

Q : (mmmm) 6M • Q • M - M (Q : M) 

| | can be written in terms of the HLl closure rule as 

ds 2 *, -~rzs + — s + — 
45 45 45 

= 0, 

giv ing 

s(N) = 
1 + 

/ l 240 
Y x 49W 

The Hinch-Leal (HL2) closure rule for strong Brownian motion is 

Q : (mmmm) « M (M : Q) + 2 [M • Q • M - M 2 (M2 : Q) / (I : M 2 

Q = exp [2 (1 - 3M2 : I) / (1 - M 2 : I)] 

| | in terms of the HL2 closure rule is 

8s 

dt 
+ N 

4 2 10 2 
— s s H 
27 27 27 

n ( 8 3 § 2 2 4 \ / / , O 2 N / 3 2 

- 6 S ( 8 l S + 27S + 9 S + 81 j 7 ( 1 + 2S) +a{W9S + 

= 0 

a = exp [—6s2/ (l — s2)] , 

which can only be solved implicitly due to the exponential term. 

135 
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III.4 GRAPHICAL COMPARISON OF CLOSURE RULES 

Substituting the closure rule derivations for the approximation of Q : (mmmm) into 

(27) results in the five closed equations (36), (38), (41), (44), and (47). These are 

graphed in MATLAB using an implicit graphing tool [29], yielding the bifurcation 

diagrams for each closure rule at equilibrium. From the kinetic equation, it is known 

that the equilibrium solution has critical bifurcation points at N = 4.49 and N = 5.0 

[8,10]. N = 4.49 is a saddle-node bifurcation point [8]; it is located at the vertex of 

the parabola-like shape and indicates the transition from unstable to stable states 

as well as the birth of the nematic phases for N > 4.49 and s ^ O . Af = 5.0 is a 

transcritical bifurcation point [9] that is located at the s-intercept of the parabola-

like shape; for the line s = 0, it indicates the change from the stable isotropic phase 

to the unstable isotropic phase for all values of N > 5.0. 

TABLE III: Polymer Concentration Value (N) at Critical Points in Equilibrium 

Closure DOI TR HLl HL2 DQ 

saddle-node bifurcation 2.67 3.93 4.90 4.38 4.32 
transcritical bifurcation (s=0) 3.0 4.0 5.0 5.0 4.76 

The purpose of a closure rule is to simplify the analysis and computation, while 

also capturing the right physical phenomenon of the liquid crystalline polymers. 

Thus it is desirable for the graph of the new proposed DQ closure rule to have a 

saddle-node bifurcation and transcritical bifurcation at these two critical points, or 

at least be closer to them than the existing closure rules. Table III lists the values of 

the polymer concentration N at the saddle-node and transcritical bifurcation points 

for each closure depicted in Fig. 4. Each closure rule shares the same isotropic-

nematic phase transition features, at the vertex of the parabola-like shape of their 

respective bifurcation diagrams in Fig. 4, as those described in Fig. 3 for the DQ 

closure rule. From inspection of these equilibrium bifurcation diagrams and the 

corresponding table, it can be concluded that the HL2 closure rule artificially has 

the exact transcritical bifurcation point value as the kinetic equation, as well as 

the saddle-node bifurcation point which is closest to that of the kinetic equation. 

However, the new proposed DQ closure out performs the other three closure rules 

in comparing these two critical points. A shift parameter can be used to ensure the 
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FIG. 4: Comparison of the closure rules at equilibrium. N=5.0 is a transcritical 
bifurcation point and N=4.49 is a saddle-node bifurcation point from the kinetic 
solution. Top: DOI and TR closures. Bottom: HLl, HL2, and DQ closures. 
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DQ closure has the exact bifurcation points of the kinetic equation [16], but that is 

artificial. The HLl closure rule also yields the identical transcritical bifurcation point 

as the kinetic equation at equilibrium, but the error of its saddle-node bifurcation 

point is significant when compared to the HL2 and DQ closure rules. It is important 

here to note that when Hinch and Leal constructed both the HLl and HL2 closure 

schemes, they were done so in an ad hoc method [22]. They chose the coefficients 

for many of the terms in their rules so that, at equilibrium, the critical points of the 

closure schemes and the kinetic solution would be in agreement. 
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C H A P T E R IV 

DQ CLOSURE UNDER SHEAR FLOW CONDITIONS 

The goal of this portion of the research is to assess the validity of the proposed 

DQ closure scheme in comparison with the kinetic solution and four existing closure 

schemes. First, the proposed DQ closure rule is compared with the kinetic solution 

and the Doi (D), Tsuji-Rey (TR), Hinch-Leal 1 (HLl), and Hinch-Leal 2 (HL2) 

closure schemes. Various properties of the second moment tensor Q are studied. 

Upon completion of the initial study, simulations with the DQ closure scheme are 

run for a variety of N and Pe values. The resulting bifurcation diagrams in (Pe, Q) 

and (N, Q) space are generated noting the flow phases, along with other characteristic 

properties of Q. Using this information, a bifurcation diagram of all stable states for 

the DQ closure scheme is built in (N, Pe) space, indicating the characteristic flow for 

each stable region. Lastly, the normal stress differences and apparent viscosity of the 

solutions simulated with the DQ closure are studied for each flow type, and compared 

to the known behavior of the kinetic solution. In all cases, the shape parameter is 

set to a = 1.0. This restricts the study to large aspect ratio rod-like liquid crystalline 

polymers, as described by (5) and Fig. 2. 

In order to build the flow phase diagram for the solution, the bifurcation points 

need to be identified. As in previous research [1,7,8,12], AUTO bifurcation software 

is chosen. AUTO is designed to solve continuation and bifurcation ordinary differ-

ential equations. It identifies local bifurcation points based on the behavior of the 

eigenvalues, which are complex numbers. When an eigenvalue goes to zero there is 

a saddle node, transcritical, or pitch-fork bifurcation point (BP) which indicates a 

phase transition in the steady flow or periodic flow, but not between them. Note, 

AUTO does not differentiate between these three types of local bifurcation points. 

In order to change from steady flow to periodic flow, or vice versa, a Hopf bifurcation 

(HB) must occur. AUTO identifies a Hopf bifurcation by the eigenvalues being non-

zero and purely imaginary. When solving the periodic portion of an ODE, AUTO 

has the capability to identify periodic doubling bifurcation points (PD). In the last 

case, if a local bifurcation is found and it has an eigenvalue with a modulus of one; 

if that eigenvalue is -1 , then AUTO labels it a periodic doubling bifurcation. 
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IV. 1 COMPARISON OF PROPOSED DQ CLOSURE SCHEME WITH 

KINETIC SOLUTION A N D EXISTING CLOSURE SCHEMES 

The proposed DQ closure rule is compared with the kinetic solution and the Doi (D), 

Tsuji-Rey (TR), Hinch-Leal 1 (HLl), and Hinch-Leal 2 (HL2) closure schemes. Three 

sample parameters, Pe = 0.1, Pe = 10.0, and N = 6.0, are selected in an attempt 

to capture a variety of behavior. Additionally, the four existing closure schemes are 

compared with each other and the kinetic solution. 

At each sample N and Pe value, the flow phases for the solution generated by 

the DQ closure rule are listed. In order to determine the type of flow for any given 

(N,Pe) value, the eigenvectors (ni,n2,ns) of Q are calculated, where ni is the 

major director, ni is written in terms of its spherical coordinates 9 and (j> where 

ni = (sin 0 cos 0, sin 0 sin 0, cos#). From the values of 9 and <p, the type of flow can 

be determined. For steady stable solutions, if 9 = 90 it is in-plane flow aligning 

(FA), if 9 = 0 it is log-rolling (LR), and otherwise it is out-of-plane steady (OS). 

For stable periodic solutions, if 9 = 90 it is in-plane; for all other values of 9 it is 

out-of-plane. To determine the type of periodic flow, the value of 4> over a single 

period must also be observed. For 9 = 90, if 4> rotates between —90° and 90°, it is 

tumbling (T); otherwise it is wagging (W). For 9 ^ 90, if 4> rotates between —90° 

and 90°, it is kayaking 1 (Kl ) ; otherwise it is kayaking 2 (K2) [1,8,13]. 

IV.1.1 Pe = 0.1 

The first conditions under which the DQ closure rule is being studied are low shear 

rates, 0.0 < Pe < 1.0. In previous studies [8], the kinetic solutions for Pe = 0.1 

are generated, and therefore Pe = 0.1 is the chosen value for the initial study of 

the DQ closure scheme. Additionally, the nematic polymer concentration varies for 

0.0 < N < 8.0. Due to the wealth of research [8] that has been done on existing 

closure schemes and the kinetic solution under these shear flow conditions, the results 

from this section serve as a benchmarks for the kinetic and closure rule code in AUTO. 

From the data, three components of the second moment tensor Q are calculated 

and graphed versus the nematic polymer concentration N. The components are 

chosen based on current literature for the kinetic simulations [1,8,13]; they include 

the Z>2 norm of Q, the value of the a2o component from the spherical harmonic 

expansion (17) of the PDF, f(m,t), and the Leslie alignment angle, </>/_,, of Q which 
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corresponds to the peak angle of the PDF [1]. When the closure rules are implemented 

in AUTO, the resulting outputs are the five independent components of the second 

moment tensor Q. From this data, MATLAB is utilized to construct Q and calculate 

the Z/2 norm in post-processing. 

As discussed previously, when the kinetic solution is simulated in AUTO, the 

resulting output is a 65-parameter system. One of these parameters is the «20 com-

ponent from the spherical harmonic expansion (17) of the PDF. In terms of the 

second moment tensor Q, a2o can be found from the explicit definition [8]: 

_ 2 fir /87rn , , 
Qxx = - o \ / T a 2 0 + \—Re(a,22) 

6 V 5 V 15 

2 ft /&r" 

Qyy = - 3 Y 5 a 2 0 ~ Vl5 ^2 2 ' 

Q*3/ = - A / Y F / m ( a 2 2 ) 

/87T 
Qxz = ~\ zrRe(a2i) 

V 15 
/87r" 

Qyz = \ —Im(a2i). (48) 
V J-0 

The systems of equations in (48) is used to construct Q from the kinetic output and 

to calculate the a2o component from the closure rule output. The significance of 

using the 0,20 component is that it serves as a specific point of comparison between 

the kinetic simulation and the closure rule simulations, in contrast to the L2 norm 

of Q . 

Lastly, the Leslie alignment angle, 4>Li for steady solutions is calculated for each 

simulation. Recall, the Leslie alignment angle corresponds to the peak angle of the 

PDF / ( m , t) [1]. In post-processing, MATLAB is used to find the eigenvalues and 

eigenvectors of Q. The eigenvector corresponding to the largest eigenvalue signifies 

the major director, ni . The major director takes the form 

ni = (sin 0 cos 0, sin 0 sin 0, cos#). (49) 

Recall 9 is the polar angle measured from the vorticity (z) axis and (ft is the latitude 

angle in the shear (x-y) plane, (ft is measured counter-clockwise from the positive flow 

direction (x); y is the flow gradient direction [8]. In the case of in-plane flow aligning, 

9 = 90°, giving n! = (cos(ftL, sin(ftL, 0). For log-rolling, 9 = 0°, giving ni = (0,0,1), 

and so (J>L is not calculated. 
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TABLE IV: Monodomain attractors and phase transitions vs nematic polymer con-
centration N at fixed shear rate Pe = 0.1 for the DQ closure scheme. 

State FA LR 

N Region (0,4.8) (4.8,8.0) 

0 6 i i i 1 1 1 1 0 8 

FIG. 5: Comparison of the L2 norm of Q between the existing closure rules and the 
kinetic solution at Pe = 0.1. Top left: DOI closure. Top right: TR closure. Bottom 
left: HLl closure. Bottom right: HL2 closure. 
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FIG. 6: Comparison of the L2 norm of Q between the DQ closure rule and the kinetic 
solution at Pe = 0.1. 

For Pe = 0.1, periodic solutions exist for the kinetic solution as well as the TR 

and HL2 closure schemes. The periodic solutions shown in Fig. 5 through Fig. 8 occur 

at the Hopf bifurcations (HB) which indicate a phase transition from stable steady 

flow to periodic flow. The steady flow may be either in the plane or out of the plane. 

The in-plane steady flow is referred to as flow aligning (FA) and the major director 

of the rigid-rod nematic polymer aligns with the direction of shear flow in the plane 

of deformation. For out-of-plane steady flow (OS), the major director does not line 

in the plane of deformation and it is not aligned with the vorticity axis. When the 

major director is in a stable state of flow aligned with the vorticity axis, it is referred 

to as log-rolling (LR) [1]. For the condition Pe = 0.1, periodic solutions stemming 

from Hopf bifurcations which occur between any periodic or log-rolling regions are 

not given Table IV details the phase transitions identified by the DQ closure scheme 

at Pe = 0.1. Note that the only flow phases simulated are FA and the LR, with 

the transition occurring at N = 4.8. For the DQ closure scheme, AUTO does not 

generate an HB point for Pe = 0.1. The lowest point in (N,Pe) space that AUTO 

detects an HB point for the proposed closure scheme is (4.85,0.189). 

For the L2 norm of Q at Pe = 0.1, Fig. 6 indicates that the DQ closure scheme 
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FIG. 8: Comparison of the 020 component of Q between the DQ closure rule and the 
kinetic solution at Pe = 0 1. 

detects branches comparable to the kinetic solution. The branches correspond to the 

bifurcation points. However, Fig 6 also shows that the DQ closure scheme fails to find 

any HB points and thus fails to predict all types of periodic flow. Looking at Fig. 5, 

the TR closure generates a very small periodic solution at N m 3.5, and the HL2 

closure generates a periodic solution at N ~ 4.4. The kinetic solution has a HB point 

at AT « 4 5, thus indicating the birth of a periodic solution It is not of major concern 

that the periodic solutions from the closure schemes do not quantitatively align with 

those of the kinetic solution. It is more important that they predict some sort of 

periodic behavior. These types qualitative results are of particular significance for the 

manufacturing applications of liquid crystalline polymers How can one accurately 

design materials if the mathematical models they are using fail to predict entire flow 

phases? Extending the comparison of Q between the kinetic simulations and closure 

simulations down to a component-wise level, Fig. 7 and Fig. 8 indicate that similar 

observations for the existing closure schemes and proposed closure scheme can be 

made for the 020 component. 

Lastly, when calculating the Leslie alignment angle, </>L, for the steady solutions, 

the data is limited to the values of Q for which (ftL is determinable. This constraint 
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FIG. 10: Comparison of the Leslie alignment angle of Q between the DQ closure rule 
and the kinetic solution at Pe = 0.1. 

is easily implemented in post-processing by excluding all log-rolling solutions. The 

results are graphed in Fig. 9 and Fig. 10 where <ft>L is a function of the nematic 

concentration N over the domain 1.0 < N < 8.0. The kinetic solution consists of a 

primary curve which originates from the stable flow-aligning phase at low polymer 

concentration, and a secondary unstable curve for higher concentrations. Looking at 

the primary curves in Fig. 9, for the kinetic simulation, —45° < 4>L < 45°; there is 

a temporary change in stability around the angle 4>L ~ 35° and a permanent change 

from stable to unstable at 4>L ~ —10°. For the Doi simulation, 13° < 0L < 41° and 

the solution is entirely stable. For the TR simulation, —43° < (ftL < 41°. Unlike the 

kinetic solution, the TR solution has a permanent change in stability at <pL ~ 35°. For 

the HLl and HL2 simulations, -41° < (ftL < 41° and -40° < <ftL < 41°, respectively. 

Like the Doi closure, the HLl simulation fail to detect any unstable flow aligning 

solutions. The HL2 simulation fails detect the temporary change in stability around 

(ftL = 35°, but it does identify a permanent transition to instability at <pL ~ 5°. This 

is closer to the kinetic solution's transition point of 4>L ~ —10° than the other existing 

closures. Finally, for the DQ simulation depicted in Fig. 10, —41° < 4>L < 42°. Note 

that the DQ closure scheme also fails to detect the intermittent unstable solution, 
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however the transition to unstable occurs at (ftL « 5°, which agrees with the HL2 

closure scheme. Looking at the secondary curves in Fig. 9 and Fig. 10, it is clear 

that only the HLl and DQ closures simulate an unstable solution with a parabola-like 

curve for higher concentrations, similar to that of the kinetic case. 

IV.1.2 Pe = 10.0 

— I — kinetic stable 

• kinetc unstable 

kinetc periodic 

O— Doi stable 

Doi unstable 

i— kinetic stable 

- - kinetic unstable 

— kinetic periodic 

*—TR stable 

TR unstable 

E 04 

3 

55 6 5 

FIG. 11: Comparison of the L^ norm of Q between the existing closure rules and 
the kinetic solution at Pe = 10.0. Top left: DOI closure. Top right: TR closure. 
Bottom left: HLl closure. Bottom right: HL2 closure. 

Secondly, the DQ closure rule is being studied under the conditions of higher 

finite shear rates, 1.0 < Pe < 10.0. In previous studies [1], the flow phase diagram 

for the kinetic solution was generated for 1.0 < Pe < 10.0 and 4.5 < N < 6.5. The 

shear rate parameter is set to Pe — 10.0 and nematic polymer concentration varies 

for 0.0 < N < 10.0. The flow phase diagram is used to ensure that all branches of 
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FIG. 12: Comparison of the L2O norm of Q between the DQ closure rule and the 
kinetic solution at Pe = 10.0. 

the solution have been generated by the kinetic simulation in AUTO. AUTO is a 

numerical solver and so as parameter values change, the step sizes and the tolerances 

often need to be adjusted in order to capture all bifurcations. 

For Pe = 10.0, periodic solutions bifurcating from the steady stable flow exist 

for the kinetic solution as well as the HL2 and DQ closure schemes. The periodic 

solutions shown in Fig. 11 through Fig. 14 occur at Hopf bifurcations separating the 

stable steady flow regions from the periodic regions Periodic solutions stemming 

from Hopf bifurcations which occur between any periodic or log-rolling regions are 

not shown. For Pe = 10.0, the L2 norm of Q, the value of the 020 component of Q, 

and the Leslie angle (4>L) of Q are found and graphed for the kinetic solution and 

each closure rule. 

For the L2 norm of Q at Pe = 10.0, Fig. 11 indicates that the Doi closure scheme 

fails to find one unstable branch of the steady kinetic solution, while the solutions 

from the TR and HL2 closures more closely resemble the kinetic solution. The 

HLl closure fails to have the pitchfork shape of the kinetic solution within the given 

domain for N. The nematic solution was only run for 0.0 < N < 10.0 , at some point 

N > 10.0, the two upper branches of the HLl solution will intersect. There must be 
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and the kinetic solution at Pe = 10.0. Top left: DOI closure. Top right: TR closure. 
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FIG. 14: Comparison of the 020 component of Q between the DQ closure rule and 
the kinetic solution at Pe = 10.0. 

a bifurcation point in order for a branch to exist. Looking at Fig. 11, the HL2 closure 

generates a periodic solution at N ~ 4.65. The kinetic solution has a HB point at 

AT w 6.2, thus indicating the birth of a periodic solution. Fig. 12, indicates the DQ 

closure generates a periodic solution at N ~ 5.5. Note how the birth periodic solution 

for the HL2 closure is at the start of the pitchfork, just as in the case of the kinetic 

solution. In the case of the DQ closure, the birth of the periodic solution occurs 

at a polymer concentration much lower than where the pitchfork splits (N « 8.9). 

Alternatively, the location of the Hopf bifurcation and the resulting periodic solution 

for the DQ closure is closer to the kinetic solution than that of the HL2 closure. 

Table V gives a detailed description of the phase transitions at Pe = 10 0 under the 

DQ closure scheme. An initial phase transition occurs from FA to W at N = 5.75. 

This periodic branch undergoes a second phase transition to T at N = 9.55 and 

it ceases at N = 9 81. At N = 5 75, the FA branch becomes an unstable steady 

solution until N = 9.3, when a phase transition into LR occurs. The LR branch 

remains stable for the remainder of the domain in the simulation. 

Extending the comparison of Q between the kinetic simulations and closure simu-

lations down to a component-wise level, Fig. 13 and Fig. 14 indicate that the similar 

^ n n o u o o u » i n» , 

- kinetic stable 
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• DQ stable 
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- DQ periodic 
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TABLE V: Monodomain attractors and phase transitions vs nematic polymer con-
centration N at fixed shear rate Pe = 10.0 for the DQ closure scheme. 

State 

N Region 

State 

N Region 

FA 

(0,5.75) 

LR/T 

(9.55,9.81) 

W 

(5.75,9.3) 

LR 

(9.81,10.0) 

L R / W 

(9.3,9.55) 

observations for the existing closure schemes and proposed closure scheme can be 

made for the 020 component. The most significant observation from Fig. 11 and 

Fig. 13 is that the HL2 closure rule more closely resembles the kinetic solution than 

the other existing closures, but the solutions seem shifted to areas of lower polymer 

concentration than in the kinetic case. For the DQ closure, the opposite behavior 

occurs. Fig. 12 and Fig. 14 illustrate how the solution from proposed closure seems 

shifted to areas of higher polymer concentration when compared to the kinetic solu-

tion, with the exception of the location of the periodic solution for the DQ closure 

scheme. This observation will be of importance later. 

In the case of calculating the Leslie alignment angle, (ftL, for steady solutions, 

the data does not include log-rolling flow. The results are graphed in Fig. 15 and 

Fig. 16 where the (ftL is a function of the nematic concentration AT over the domain 

0 < N < 10.0. From Fig. 15, for the kinetic simulation, -22° < (ftL < 20°; there 

is a transitions from stable to unstable at 4>L ~ —5°. For the Doi simulation, there 

is very little change in the leslie alignment angle, 10° <</>/,< 12°, and there is no 

change in stability. For the TR simulation, —5° < <PL < 4°. For the HLl and HL2 

simulations, 0° < 4>L < 7° and —2° < 4>L < 3°, respectively. Like the Doi simulation, 

the HLl closure's simulation fails to detect any unstable steady solution, as in the 

case of Pe = 0.1. The TR and HL2 simulations both detect a transition from stable 

to unstable at <ftL « 0°. From Fig. 16 for the DQ simulation, — 5° < 4>L < 5°. Like the 

TR and HL2 simulations, the DQ closure identifies a change in stability at 4>L ~ 0°. 
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FIG. 15: Comparison of the Leslie alignment angle of Q between the existing closure 
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FIG. 16: Comparison of the Leslie alignment angle of Q between the DQ closure rule 
and the kinetic solution at Pe = 10.0. 

IV.1.3 N = 6.0 

Lastly, the closure rules are being compared under the conditions of varying finite 

shear rates with a constant nematic concentration. In previous studies [12], the 

kinetic solutions for constant polymer concentration N = 6 0 are generated. For this 

reason, N = 6 0 is the chosen for the study of the DQ closure scheme and the shear 

rate varies for 0.0 < Pe < 10 0. Due to the wealth of research [1,12] that has been 

done on the kinetic solution under these shear flow conditions, the kinetic solutions 

in Fig. 17 through Fig. 20 can be validated. This ensures a correct frame of reference 

for comparisons among the kinetic simulations and closure rule simulations. The 

Z/2 norm of Q and the value of the 020 component of Q are calculated and graphed 

for the kinetic solution and each closure rule at N = 6.0. The Leslie angle 4>L for 

N = 6.0 is discussed in a later section. 

For N = 6.0, periodic solutions were generated for the kinetic solution and the DQ 

closure scheme. In Fig. 17 and Fig. 19, it can be seen that the TR and HL2 closures 

do not attain a steady stable state at N = 6.0 for any shear rate in the domain 

0.0 < Pe < 10.0. While the Doi and HLl closures demonstrate both stability and 
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FIG. 17: Comparison of the L2 norm of Q between the existing closure rules and the 
kinetic solution at N = 6.0. Top left: DOI closure. Top right: TR closure. Bottom 
left: HLl closure. Bottom right: HL2 closure. 

TABLE VI: Monodomain attractors and phase transitions vs shear rate Pe at fixed 
nematic polymer concentration N = 6.0 for the DQ closure scheme. 

State LR LR/W 

Pe Region (0,1.18) (1.18,1.22) 

St^te K l / W W 

Pe Region (1.22,1.31) (1.31,10.0) 
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FIG. 18: Comparison of the L2 norm of Q between the DQ closure rule and the 
kinetic solution at N = 6.0. 

instability, AUTO did not detect an HB point from their steady stable flow phases 

In Fig. 17 through Fig. 20, the periodic solution for the kinetic and DQ closure rule 

solutions occur at the Hopf bifurcations separating the stable steady flow regions from 

the adjacent periodic regions. Periodic solutions stemming from Hopf bifurcations 

which occur between any periodic regions are not shown. In the next section, the 

types of flow for the DQ closure rule are inspected and all periodic solutions are 

given regardless of the region. Table VI gives a detailed description of the phase 

transitions at N = 6.0 under the proposed DQ closure scheme. The DQ simulation 

does not attain a steady flow aligning or out-of-plane steady state at this value. All 

stable flows in Fig. 18 and Fig. 20 are LR. A phase transition from LR to L R / W 

occurs at Pe = 1.18, and the LR phase ceases at Pe = 1.22 with the birth of the 

K l flow phase. This is a very interesting, and unexpected, characteristic of the DQ 

closure rule which will be examined further in the next section. 

IV. 1.4 S u m m a r y 

In sum, the DQ closure rule outperforms the other closure rules in many areas. For 

weak flow, Pe = 0 1, the DQ closure finds all steady branches the kinetic solution 
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FIG. 20: Comparison of the 0,20 component of Q between the DQ closure rule and 
the kinetic solution at N = 6.0. 

identifies, while the DOI, TR, and HLl do not. However, the proposed closure fails to 

identify any periodic solutions, while the HL2 and TR closure captures those types of 

solutions. Quantitatively, the values of those periodic solutions are not representative 

of the periodic solutions form the kinetic equation at Pe = 0.1. This failing of the 

proposed closure seems to disappear as the flow is increased; for Pe > 0 189, periodic 

flow can be identified For stronger flow, Pe = 10.0, the DQ closure finds both the 

steady and periodic branches that the kinetic solution identifies, while the DOI, TR, 

and HLl do not. When looking at both the weak flow and stronger flow, the DQ 

closures simulations have stable solutions which are more similar to those of the 

kinetic solution than any of the other four closures. 

When looking at the case of varying flow with steady concentration at N = 6.0, 

the DQ closure is the only closure rule in this study that identifies both the steady 

and periodic branches found in the kinetic solution. As a natural consequence, the 

general shape of the solution with the DQ closure rule more closely resembles that 

of the kinetic solution, and thus it is qualitatively superior. 

These combined results indicate that, in general, for a given region of nematic 

concentration, N, and flow rate, Pe, the proposed closure may be more likely to 
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capture similar attractors. In the following section, the attractors and transitions 

of nematic polymers for solutions using the DQ closure scheme will be investigated. 

These results will be compared with the known results of the kinetic solution. 

IV.2 ATTRACTORS A N D TRANSITIONS OF NEMATIC POLY-

MERS USING THE DQ CLOSURE SCHEME 

The DQ closure scheme is run for a variety of N and Pe values. The values are 

chosen based on a basic bifurcation diagram in (N, Pe) space that shows how the 

flow regions for the DQ closure rule are divided. Each region needs to have at least 

one N and one Pe value to ensure that all flow transitions are detected resulting in 

five sample parameters being chosen: Pe = 1.0, Pe = 5.0, N = 5.5, N = 6.0, and 

N = 8.0. All periodic solutions are generated for each parameter. 

IV.2.1 Pe = 1.0 

For Pe = 1.0, the norm of Q, the Leslie angle, and the components Qxx and Qxz are 

graphed. For Qx z = 0, it is an in-plane attractor; for Qxz ^ 0, it is an out-of-plane 

attractor. By selecting Pe = 1.0, all flow regions for the lower half of the bifurcation 

diagram for the DQ closure scheme in (N, Pe) space can be identified. 

TABLE VII: Monodomain attractors and phase transitions vs nematic polymer con-
centration N at fixed shear rate Pe = 1.0 for the DQ closure scheme. 

State 

N Region 

State 

N Region 

FA 

(0,5.15) 

K l / W 

(5.73, 5.78) 

OS K2 W 

(5.15,5.31) (5.31,5.63) (5.63,5.73) 

W / L R LR 

(5.78,5.86) (5.86,8.00) 

At Pe = 1.0, the DQ closure scheme simulates a multitude of flow types. Table 

VII gives a detailed description of the stable phase transitions, while Fig. 21 graphs 

the Z/2 norm of Q along with its phase transitions. At AT « 0, the solution is FA until 

N = 5.15, where it undergoes a bifurcation into OS flow. With a slight increase in 

the nematic concentration, the OS solution transitions into the out-of-plane periodic 

K2 phase at the occurrence of a HB point at N = 5.31. At N = 5.63, the out-

of-plane periodic solution transitions into a steady in-plane periodic W phase. The 
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FIG. 21: L2 norm of Q for DQ closure rule along with its phase transitions at 
Pe = 1.0. 

simulation enters a period of bi-stability at N = 5.73 with the birth of the K l flow 

phase. The solution continues to have bi-stability until a change in stability of the W 

flow phase at N = 5.86. While the solution is exhibiting periodic flow, the unstable 

steady flow branch exhibits a pitch-fork bifurcation as N increases. The top branch 

of the pitchfork has a Hopf-bifurcation at N = 5.78 which corresponds to the end of 

the stable periodic K l flow phase and the birth of the stable steady LR flow phase. 

The Leslie alignment angle, (ftL for steady solutions, does not include data from 

log-rolling flow phase The results are graphed in Fig. 22, where the 4>L is a function 

of the nematic concentration N over the domain 0 < N < 8.0. For the kinetic 

simulation, —40° < 4>L < 40°; there is a transitions from stable to unstable at 

(ftL « -5 ° . For the DQ simulation, -21° < (ftL < 25°. The DQ closure identifies 

a transition from stable to unstable at 4>L ~ —4°. This follows the general pattern 

of the Leslie alignment angle from the DQ closure scheme having a smaller range 

than that of the kinetic solution established during the simulations for Pe = 0.1 and 

Pe = 10.0. The order parameter dl (largest eigenvalue) for the flow aligning and 

log-rolling states at the flow rate Pe = 1.0 is given in Fig. 23. As the concentration 

N increases, the degree of alignment increases. In Fig. 24, for higher concentrations 
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FIG. 22: Leslie alignment angle of Q under the DQ closure at Pe = 1.0. 

FIG. 23: Order parameter (largest eigenvalue) dl for the DQ closure at Pe = 1.0. 
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FIG. 24: Components Qxx and Qxz vs N for Pe = 1.0 from simulation with DQ 
closure rule. Left: Qxx. Right: Qx z . 

of N and Q x x < 0 the solution is in its log-rolling state. As the concentration is 

decreased, a phase transition occurs and the solution enters its K l flow phase which 

is marked by a steep change in the value of Q x x from negative to positive. All other 

flow phases are marked by Q x x > 0. For Qx z ^ 0, one can see the transitions from 

in-plane, steady and periodic stable and log-rolling solutions, to out of plane steady 

and periodic solutions. 

IV.2.2 Pe = 5.0 

For Pe = 5.0, the norm of Q, the Leslie angle, and the components Q x x and QX2 are 

graphed. By selecting Pe = 5.0, all flow regions for the upper half of the bifurcation 

diagram for the DQ closure scheme in (A'', Pe) space can be identified. 

TABLE VIII: Monodomain attractors and phase transitions vs nematic polymer 

concentration AT at fixed shear rate Pe = 5.0 

State FA W T 

N Region (0,5.73) (5.73,7.70) (7.70,7.87) 

State T T K I T / L R LR " 

AT Region (7.87,8.07) (8.07,8.28) (8.28,10.0) 
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FIG. 25: L2 norm of Q for DQ closure rule along with its phase transitions at 
Pe = 5.0. 

FIG. 26: Leslie alignment angle of Q under the DQ closure at Pe = 5.0. 
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FIG. 27: Order parameter (largest eigenvalue) dl for the DQ closure at Pe = 5.0. 
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FIG. 28: Components Qxx and Qxz vs N for Pe = 5.0 from simulation with DQ 
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At Pe = 5.0, the DQ closure scheme simulates many flow types. Table VIII gives 

a detailed description of the stable phase transitions, while Fig. 25 graphs the L2 

norm of Q along with its phase transitions. At N za 0, the solution is FA until the 

occurrence of a HB point at N = 5.73, where it bifurcates into the in-plane periodic 

W phase and an unstable steady flow phase. Unlike the Pe = 1.0 case, the FA phase 

does not transition into the OS flow phase. While N is increasing, the period of the 

W solution is also increasing until it reaches a maximum of 90° at which point in 

enters the T flow phase at N = 7.70. The T branch remains stable until N = 8.28. 

The simulation enters a period of bi-stability at N = 7.87 with the birth of the K l 

flow phase. The solution continues to have bi-stability until the end of the stable 

in-plane periodic flow phase, T. While the solution is exhibiting periodic flow, the 

unstable steady flow branch exhibits a pitch-fork bifurcation as N increases. The 

top branch of the pitchfork has a Hopf-bifurcation at N = 8.07 which corresponds to 

the end of the stable periodic K l flow phase and the birth of the stable steady LR 

flow phase. 

The Leslie alignment angle, (ftL for steady solutions, does not include data from 

log-rolling flow phase. The results are graphed in Fig. 26, where the <pL is a function of 

the nematic concentration N over the domain 0 < N < 9.0. For the DQ simulation, 

—8° < 4>L < 9°; a transition from stable to unstable identified at 4>L ~ —2°. The 

order parameter dl (largest eigenvalue) for the flow aligning and log-rolling states 

at the flow rate Pe = 1.0 is given in Fig. 27. As in the case of the constant flow 

rate Pe = 1.0, for Pe = 5.0, the degree of alignment increases as concentration N 

increases. Additionally, the characteristic behavior of Qx x and Qx z for Pe = 5.0 is 

also similar to that of the case Pe = 1.0. In Fig. 28, for higher concentrations of N 

and Q x x < 0 the solution is in its log-rolling state. As the concentration is decreased 

slightly, a phase transition occurs and the solution enters its K l flow phase which is 

marked by a change in sign of Q x x from negative to positive. All other flow phases 

are marked by Q x x > 0. For Qxz ^ 0, one can see the transitions from in-plane, 

steady and periodic stable and log-rolling solutions, to out of plane stable periodic 

solutions. 
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IV.2.3 N = 5.5 

For N = 5.5, the norm of Q and the components Qx x and Qxz are graphed. By 

selecting N = 5.5, the flow regions with smaller N values and the lowest Pe bound-

aries for the DQ closure scheme in (N, Pe) space can be identified The Leslie angle 

(j>L for N = 5.5 is discussed in a later section. 

TABLE IX: Monodomain attractors and phase transitions vs shear rate Pe at fixed 
nematic polymer concentration N = 5.5 for the DQ closure scheme. 

State LR L R / W K2/LR K 1 / K 2 

Pe Region (0,0.61) (0.61,0.69) (0.69,0.73) (0.73,0.77) 

State K2 OS FA 

Pe Region (0.77,1.40) (1.40,1.49) (1.49,10.00) 

FIG. 29: Z/2 norm of Q for DQ closure rule along with its phase transitions at 
AT = 5.5. 

At N = 5.5, every flow type the DQ closure scheme simulates is identified, except 

for T. Table IX gives a detailed description of the stable phase transitions, while 

Fig. 29 graphs the L2 norm of Q along with its phase transitions. At Pe = 0, the 

solution is LR until the simulation enters a period of bi-stability at Pe = 0.61 with 
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FIG. 30: Components Qx x and QX2 vs Pe for N = 5.5 from simulation with DQ 
closure rule. Left: Q x x . Right: Qx z . 

the birth of the in-plane periodic W flow phase. With a slight increase in the shear 

flow strength, the periodic solution undergoes a phase transition into out-of-plane 

periodic K2 flow at Pe = 0.69. Another slight increase in the shear flow strength 

results in the cessation of the LR flow phase and the birth of the K l flow phase 

at the HB point, Pe = 0.73. The simulation remains bi-stable until Pe = 0.77, 

when the K l solution becomes unstable. At Pe = 1.40, there is a HB point which 

denotes the end of stable periodic K2 flow and the start of the OS solution. The OS 

region is very narrow which corresponds to the behavior of the kinetic solution [1]. 

At Pe = 1.49, the last phase transition in the domain 0 < Pe < 10.0 occurs for 

Pe = 1.49 with the change from OS to FA. This result is also in agreement with the 

kinetic solution over the same domain [1]. 

The behaviors of components Q x x and Qx z are depicted in Fig. 30. For low shear 

rates and Q I X < 0, the solution is in its log-rolling state. As Pe is increased slightly, a 

phase transition occurs and the solution enters its K l flow phase which is marked by 

a change in sign of Q x x from negative to positive. All other flow phases are marked 

by Qxx > 0. For Qxz 7̂  0, one can see the transitions from in-plane, steady and 

periodic stable and log-rolling solutions, to stable out of plane steady and periodic 

solutions. 
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IV.2.4 N = 6.0 

For N = 6.0, the norm of Q and the components Q x x and Q x z are graphed. By 

selecting N = 6.0, the flow regions with Pe boundaries near the center of the bi-

furcation diagram for the DQ closure scheme in (N, Pe) space can be identified. As 

noted in the previous section, the Leslie angle 4>L for N = 6.0 is discussed later. 

TABLE X: Monodomain attractors and phase transitions vs shear rate Pe at fixed 
nematic polymer concentration N = 6.0 for the DQ closure scheme. 

State LR L R / W 

Pe Region (0,1.18) (1.18,1.22) 

State K l / W W 

Pe Region (1.22,1.31) (1.31,10.0) 
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FIG. 31: Z/2 norm of Q for DQ closure rule along with its phase transitions at 

N = 6 0. 

At N = 6.0, only three flow types are identified from the simulation with the DQ 

closure scheme. Table X gives a detailed description of the stable phase transitions, 

while Fig. 31 graphs the L2 norm of Q along with its phase transitions. At Pe = 0, 
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FIG. 32: Components Qx x and Qx z vs Pe for N = 6.0 from simulation with DQ 
closure rule. Left: Q x x . Right: QX2. 

the solution is LR until the simulation enters a period of bi-stability at Pe = 1.18 

with the birth of the in-plane periodic W flow phase. A slight increase in the shear 

flow strength results in the cessation of the LR flow phase and the birth of the 

K l flow phase at the HB point, Pe = 1.22. The simulation remains bi-stable until 

Pe = 1.31, when the K l solution becomes unstable. In the remainder of the domain, 

1.31 < Pe < 10.0, the stable solution from DQ closure scheme is W. This result is not 

agreement with the kinetic solution over the same domain [1]. Of most significance 

is that the solution does not return to a stable FA state as the shear strength is 

increased. 

The behaviors of components Qx x and Qx z are depicted in Fig. 32; they are 

similar to that of the case N = 5.5. For low shear rates and Q x x < 0 the solution is 

in its log-rolling state. As Pe is increased slightly, a phase transition occurs and the 

solution enters its K l flow phase which is marked by a steep change in the value of 

Qx x from negative to positive. All other flow phases are marked by Qx x > 0. For 

Qxz 7̂  0, one can see the transitions from in-plane periodic stable and log-rolling 

solutions to stable out of plane periodic solutions. 

IV.2.5 N = 8.0 

For N = 8.0, the norm of Q and the components Q x x and Qxz are graphed. By 

selecting N = 8.0, the all flow regions for the far left of the bifurcation diagram for 
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the DQ closure scheme in (N, Pe) space can be identified. 

TABLE XI: Monodomain attractors and phase transitions vs shear rate Pe at fixed 
nematic polymer concentration Â  = 8.0 

State 

Pe Region 

State 

Pe Region 

LR 

(0,4.59) 

T 

(5.44,5.84) 

LR/T 

(4.59,4.79) 

W 

(5 84,10.0) 

K l / T 

(4.79,5.44) 

0 1 - steady unstable 

periodic unstable 

0 I 1 1 1 1 1 1 1 

0 1 2 3 4 5 6 7 
Pe 

FIG. 33: Z/2 norm of Q for DQ closure rule along with its phase transitions at 
N = 8.0. 

At N = 8 0, four flow types are identified from the simulation with the DQ 

closure scheme. The results are similar to those for N = 6.0, with the addition of a 

T flow phase. Table XI gives a detailed description of the stable phase transitions, 

while Fig. 33 graphs the L2 norm of Q along with its phase transitions. At Pe = 0, 

the solution is LR until the simulation enters a period of bi-stability at Pe = 4.59 

with the birth of the in-plane periodic T flow phase. A slight increase in the shear 

flow strength results in the cessation of the LR flow phase and the birth of the 

K l flow phase at the HB point, Pe = 4 79. The simulation remains bi-stable until 
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FIG. 34: Components Q x x and Qx z vs Pe for AT = 8.0 from simulation with DQ 
closure rule. Left: Qx x . Right: QX2. 

Pe = 5.44, when the K l solution becomes unstable. In the remainder of the domain, 

5.44 < Pe < 10.0, the stable solution from DQ closure scheme is periodic in-plane. As 

the shear flow strength is increased, the amplitude of the periodic rotation decreases 

until the T - W transition occurs at Pe = 5.84, resulting in stable W flow phase. As 

in the simulation for N = 6.0, this result is not agreement with the kinetic solution 

over the same domain [1], due to the failure of the DQ simulation to return to a 

stable FA state as the shear strength is increased. 

The behaviors of components Q x x and Qx z are depictedln Fig. 34; they are in 

agreement with the results of the previous cases. For low shear rates and Q x x < 0 the 

solution is in its log-rolling state. After a significant increase in the shear rate value, 

Pe, a phase transition occurs and the solution enters its K l flow phase, marked by 

a rapid change in sign of Q x x from negative to positive. All other flow phases are 

marked by Q x x > 0. For Qx z ^ 0, one can see the transitions from in-plane periodic 

stable and log-rolling solutions to stable out of plane periodic solutions. 

IV.3 THE TUMBLING-WAGGING TRANSITION 

The tumbling to wagging transition (T-W) occurs when the largest two eigenvalues 

of Q are equal. It is marked by a decrease in the rotation of (ft from 180°, the tumbling 

phase, to less than 180°, the wagging phase. In order to capture this transition, the 

differential equation for Q as a function of time (9) must be solved. The initial 
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conditions are to = 0 and Qo = s(nn T — | l ) . For any value of N around which the 

T - W transition occurs, the corresponding value of the order parameter s is given 

by the equilibrium diagram for the given closure (see Fig. 3). Additionally, since at 

to = 0 the differential equation is in a state of equilibrium, 9 = 90° and (ft = 0°, 

resulting in n = (1,0,0) from (20). 

Dimensionless time Dimensionless time 

FIG. 35: The eigenvalues from the solution of -^ for N = 6.8 from simulation with 
DQ closure rule during the tumbling phase. Left: Individual eigenvalues, d\,d2,d3. 

Right: Difference in the first and second eigenvalues, d\ — G?2-

The differential equation for Q (9) was solved using MATLAB's ODE15s ordinary 

differential equation solver. The nematic concentration is set to N = 6.8, resulting in 

s = .789 for the DQ closure (see Fig. 3). AUTO does not detect the T - W transition. 

In order to capture it, three different increasing shear rate values are chosen to depict 

T, T-W, and W phases respectively, while N remains constant. For each shear rate, 

the differential equation is solved for Q and its eigenvalues are graphed as a function 

of time. Fig. 35 depicts the tumbling solution of the DQ closure at N = 6.8 and 

Pe = 2.3. It can be seen that the largest two eigenvalues are close but not equal, 

d\ — d2 = 0.04. As the shear rate is increased to Pe = 2.44, the tumbling-wagging 

transition occurs, as detailed in Fig. 36. The largest two eigenvalues are equal to 1.0 

and di — d2 = 0. Subsequently, as the shear rate is increased to Pe = 2.6, the largest 

two eigenvalues are no longer equal and d\ — d2 = 0.05, marking the flow transition 

into the wagging phase for N = 6.8 as depicted in Fig. 37. 
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FIG. 36: The eigenvalues from the solution of ^ for N = 6.8 from simulation with 
DQ closure rule during the tumbling-wagging transition. Left: Individual eigenval-
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Right: Difference in the first and second eigenvalues, di — CI-

TABLE XII: Stable states for each region in the DQ closure rule bifurcation diagram, 
Fig. 38, labeled from I to X. 

Region 

I 
II 
III 

IV 
V 

Stable states 

FA 

OS 
K2 

W 
W / K l 

Region 

VI 
VII 
VIII 
IX 
X 

Stable states 

W/LR 
LR 

T/LR 
T/Kl 

T 
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FIG. 38: Bifurcation diagram of stable states in (N, Pe) space for DQ closure. Table 
XII lists stable state(s) for each region labeled from I to X. 

IV.4 BIFURCATION DIAGRAM FOR DQ CLOSURE RULE 

Using AUTO bifurcation software, the bifurcation diagram for the DQ closure rule 

is generated by varying the parameters for the nematic concentration and the Peclet 

number from 4.6 < N < 8.5 and 0 < Pe < 10, respectively. As previously explained, 

after the bifurcation lines are drawn, a sampling of N and Pe values are selected so 

that each region of the bifurcation diagram is covered by a constant Pe value and a 

constant N value. The characteristic flow regions for these select Â  and Pe values 

are determined using the methods detailed in the previous two sections. Using the 

flow regions for each constant N or Pe value, the type of flow is determined for each 

stable region of the bifurcation diagram in (N, Pe) space. Additionally, by choosing 

a representative sample of N and Pe values from the basic bifurcation diagram, one 

can ensure that all regions of the bifurcation diagram are correctly identified in terms 

of flow types and boundaries. The regions are labeled I through X in the DQ closure 

rule bifurcation diagram, Fig. 38. The corresponding stable flow states are listed in 

Table XII. Note that the diagram represents bifurcations in the region 4.8 < N <8.0 

and .8 < Pe < 5.5. 
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TABLE XIII: Stable states for each region in the bifurcation diagram, Fig. 39, from 
the kinetic simulation labeled from I to XIII [1]. 

Region 

I 
II 
III 
IV 
V 
VI 
VII 

Stable states 

FA 
OS 

Kl /CH 
CH 

T/LR 
K2 

K1/K2 

Region 

VIII 
IX 
X 
XI 
XII 
XIII 

Stable states 

K l / W 
K l 
W 

W/LR 
LR 

K l / T 

w 

4 75 5 525 55 575 6 625 65 

FIG. 39: Bifurcation diagram of stable states in (N, Pe) space for kinetic simulation 
[1]. Table XIII lists stable state(s) for each region labeled from I to XIII. 
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Courtesy of Forest, Wang, and Zhou [1], the bifurcation diagram for the kinetic 

simulation in AUTO is reprinted in Fig. 39 with the corresponding description of 

its flow regions in Table XIII. In comparison with the bifurcation diagram from the 

kinetic theory, from Fig. 38 it can be seen that the DQ closure rule fails to predict 

that for high Pe and N, the solution is FA. The cause of this is the asymptotic 

line of Hopf bifurcations at N = 5.75. While this is a significant shortcoming for 

the proposed closure rule, it is not unique among closure rules. It has been shown 

that the Bingham closure rule exhibits similar behavior [7]. It has an asymptotic 

Hopf bifurcation line at N = 5.86 and therefore fails to return to a steady stable 

FA state for high Pe and N values. Additionally, the DQ closure also fails to 

simulate chaos (CH). Chaos occurs when a periodic doubling bifurcation point spurs 

a second periodic doubling bifurcation point which spurs another periodic doubling 

bifurcation, and so on. 

The bifurcations in the DQ closure rule happen at much lower Pe values than the 

bifurcations in the kinetic solution. This, along with the presence of the asymptotic 

Hopf bifurcation of make it difficult to do a side by side comparison of the flow 

region in the bifurcation diagrams of stable states in (N, Pe) space for the kinetic 

solution and the proposed DQ closure rule. However, a more general comparison 

can be made if each diagram is broken up into quadrants. For the kinetic solution, 

consider N = 6.0 and Pe = 6.0 to be your dividing lines. For the DQ solution, 

consider N = 7.0 and Pe = 3.0 to be your dividing lines. For the quadrant with 

N and Pe small, both the kinetic solution and the closure scheme contain FA, OS, 

K l , K2, and W flow regions. The kinetic solution also has T and LR regions. For 

the quadrant with N small and Pe large, the kinetic solution demonstrates FA, OS, 

W, K l and K2 behavior, while the DQ solution demonstrates FA and W behavior. 

For the quadrant with N large and Pe large, both bifurcation diagrams of stable 

states contain LR, T, W, and K l regions. However, the DQ closure scheme fails to 

capture the FA, OS, and K2 behavior that the kinetic solution demonstrates. For 

the quadrant with N small and Pe large, both bifurcation diagrams of stable states 

contain T and LR regions. The DQ closure scheme also has a small K l region. 
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IV.5 COMPARISON OF FLOW CHARACTERISTICS FOR SEV-

ERAL CONCENTRATIONS 

In this section, the normal stress differences and apparent viscosity of the solutions 

simulated with the DQ closure are computed for each flow type detected by the 

proposed closure, as denoted in Fig. 38 and Table XII. The resulting data is graphed 

as a function of Pe and compared to the known behavior of the kinetic solution [1]. 

The extra stress in dimensional form is given by [1,8,14] 

r = (770 + 3<vfcTC3)D + ZavkT[Q - N(Q + -)Q + NQ : (mmmm)] 
o 

+ 3ukT[Ci (DM + MD) + C2D : (mmmm)] (50) 

where I/Q is the isotropic viscosity, £„,n = 1,2,3 are free parameters determined 

experimentally, and v is the molecular number density. 

The first and second normal stress differences Ni and A^, and the apparent 

viscosity 77 are given by 

•'M TXX Tyy 

^2 = Tyy - TZZ 

V = rxy/Pe (51) 

In the calculations for the normal stress differences Ni and N2 and the apparent 

viscosity 77, the free parameters are set to (1 = 0, (2 = 0.1, and £3 = 0.001, which are 

consistent with infinite-aspect ratio rod-like nematic polymers and prior research of 

the kinetic solution [1]. 

The order parameters, di,d2,d3, for the flow-aligning and log-rolling solutions 

from the proposed closure rule will be calculated. The resulting data is used to 

capture the degree of alignment, characterized by di as a function of shear rate 

Pe, as well as the maximum birefringence, characterized by di — d3, and the degree 

of biaxiality, characterized by o?2 — d3 [1,8,13]. Additionally, the Leslie alignment 

angles will be calculated for the flow-aligning phase alone. By looking at theses flow 

characteristics for multiple concentrations, the general behavior of the simulation 

with the DQ closure rule can be observed and compared to that of the kinetic solution. 
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IV.5.1 Flow aligning 

For the kinetic solution of the Smoluchowski differential equation, the FA state exists 

for any N and sufficiently high Pe. However, it has been shown that the DQ closure 

rule has an asymptotic region for N > 5.75, where the solution does not return to 

a FA state (see Fig. 38). Therefore, the study of the normal stress differences, Ni 

and N2 and apparent viscosity n is limited to the non-asymptotic region N < 5.75 

for this flow phase. 

Fig. 40 describes the normal stress differences and the apparent viscosity for the 

flow aligning state of the solution generated with the DQ closure scheme at N = 5.25 

and N = 5.5. As Pe increases, Ni increases and A^ and n decrease, which is in 

agreement with the kinetic solution. For the kinetic solution, Ni is positive for low 

polymer concentration, and negative for high polymer concentration [1]. While in 

Fig. 40, Ni is negative for both N = 5.25 and N = 5.5, the value of Nx decreases as 

the polymer concentration increases. 

Fig. 41 and Fig. 42 depicts the Leslie alignment angle and order parameters for 

the flow aligning state at the concentrations N = 5.25 and N = 5.5. As Pe increases, 

the Leslie alignment angle, 4>L, increases. Note, that 4>L < 0 in Fig. 41, but from 

Fig. 9, Fig. 15, Fig. 22, and Fig. 26, it is shown that for smaller concentrations, 

0L > 0. Additionally, by examining all of these figures, it can be concluded that (ftL is 

generally small for high shear rates, Pe > 1, in the stable flow aligning phase. Lastly, 

the order parameters for the flow aligning states at the concentrations N = 5.25 and 

N = 5.5. are given in Fig. 42. The graph on the left shows the degree of alignment, 

di, as a function of shear rate Pe. As Pe increases, the degree of alignment increases. 

The graph on the right shows the maximum birefringence, di — d3, and the degree 

of biaxiality, d2 — d3. Pe increases as the maximum birefringence increases and the 

degree of biaxiality decreases. All of these results are in agreement with the behavior 

of the kinetic solution [1]. 

IV.5.2 Out of plane steady 

For both the kinetic solution of the Smoluchowski differential equation and the so-

lution generated from the DQ closure scheme, the OS state exists for only a narrow 

band of (N, Pe) space. From the examination of Fig. 38, the study of the nor-

mal stress differences, Ni and N2 and apparent viscosity -n is limited to the region 
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5.2 < N < 5.5 for Pe < 2. 

Fig. 43 describes the normal stress differences and the apparent viscosity for the 

out-of-plane steady state of the solution generated with the DQ closure scheme at 

N = 5.25 and N = 5.5. As Pe increases, Ni and r? decrease, while AT2 increases. For 

the kinetic solution, as Pe increases, A/i decreases, while A^ and n increase. Addi-

tionally, the phase transition from FA to OS in the kinetic solution is characterized 

by a local minimum of Ni and local maximums of A^ and n [1]. Again, the behavior 

of Ni and A^ from the DQ closure simulation are in agreement with the kinetic so-

lution, while the phase transition for FA to OS in the DQ closure simulation is not 

characterized by a local minimum or maximum of n. 

IV. 5.3 Logrolling 

Fig. 44 describes the normal stress differences and the apparent viscosity for the 

log-rolling state of the solution generated with the DQ closure scheme at N = 5.25, 

N = 5.5, and N = 6.0. As Pe increases, Ni increases, while A^ and 77 decrease. For 

the kinetic solution, as Pe increases, Ni, N2, and n increase. In both the kinetic 

and DQ case, the change in 77 as Pe increases in small. Additionally in the kinetic 

solution, ATi > 0 an N2 > 0 [1]. Thus, the behavior of Nx from the DQ closure 

simulation is in agreement with the kinetic solution, while N2 and 77 are not. 

Fig. 45 depicts the order parameters for the log-rolling state of the solution at 

N = 5.25, N = 5.5, and Â  = 6.0. The graph on the left shows the degree of 

alignment, di, as a function of shear rate Pe. As Pe increases, the degree of alignment 

decreases. The graph on the right shows the maximum birefringence, di — d3, and the 

degree of biaxiality, d2 — d3. Pe increases as the degree of biaxiality increases, since 

all nematic equilibria (Pe = 0) are uniaxial [1]. The maximum birefringence initially 

increases with an increase of shear rate, but then there is a steady decline in the 

value di — d3 until a transition into the K l flow phase (see Fig. 29, Fig. 31, Fig. 38). 

All of these results are in agreement with the behavior of the kinetic solution [1]. 

IV.5.4 Kayaking 

Fig. 46 describes the normal stress differences and the apparent viscosity for the 

kayaking K l and K2 states of the solution generated with the DQ closure scheme 

at N = 5.25, Af = 5.5, and N = 6.0, and N = 5.25 and N = 5.5, respectively. 

As Pe increases, ATj and 77 decrease for both the K l and K2 flow phase, while N2 
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increases for the K l flow phase and decreases for the K2 flow phase. For the kinetic 

solution, as Pe increases, Ni increases and N2 decreases for both kayaking K l and 

K2 phases, while 77 increases during the K l phase and decreases during the K2 

phase. Additionally, the phase transition from OS to K2 in the kinetic solution is 

characterized by a local maximum of Nx and local minimums of N2 and 77 [1]. The 

behavior of N2 from the DQ closure simulation are in agreement with the kinetic 

solution, while the phase transition for OS to K2 in the DQ closure simulation is 

not characterized by a local minimum or maximum of Ni or 77; both are decreasing 

functions of Pe for both the OS and K2 flow phase. 

IV. 5.5 Tumbling/Wagging 

For the kinetic solution of the Smoluchowski differential equation, the tumbling and 

wagging states exists in a wide band of Pe for sufficiently large N (see Fig. 39), 

where for any given N, Pe has a finite range. In Fig. 38, it has been shown that the 

DQ closure rule has an asymptotic region for N > 5.75, where for some N in that 

region, Pe has an infinite range. Therefore, the study of the normal stress differences, 

N\ and N2 and apparent viscosity 77 is limited to the region around the asymptote 

N = 5.75 for this flow phase, where Pe is bounded. 

Fig. 47 describes the normal stress differences and the apparent viscosity for the 
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tumbling and wagging ( T / W ) steady states of the solution generated with the DQ 

closure scheme at N = 5.5 and N = 6.0. As Pe increases, Ni, N2, and 77 decrease. 

Also, Ni, N2, and 77 are all strictly positive. For the kinetic solution, as Pe increases, 

Ni and 77 decrease, while A^ increases. A^ and 77 are strictly positive, while Ni 

undergoes a sign change from positive to negative as the phases transition from 

tumbling to wagging [1]. While the DQ solution does simulate the phase transition 

from tumbling to wagging for N = 6.0, a sign change is not observed for A/i. 
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C H A P T E R V 

DQ CLOSURE IN PLANE COUETTE CELLS 

In this chapter, the performance of the proposed DQ closure rule is studied under 

the condition of plane shear flow in Couette cells. In the first section, the model 

used to simulate the flow is described. In the following sections, the results from 

the simulation utilizing the DQ closure are presented. These findings are discussed 

along with other known results for simulations of liquid crystalline polymers in plane 

Couette cells. 

V . l MODEL FORMULATION IN P L A N E COUETTE CELLS 

The model being developed considers plane shear flow of large aspect ratio rod-

like liquid crystalline polymers in a viscous solvent. Fig. 48 defines the coordinate 

system of the plane Couette cells, as well as the shear flow geometry. Here the 

liquid crystalline sample is placed between two large flat parallel plates located at 

y = ±/i, in Cartesian coordinates x = (x, y, z), giving a plate distance (or shear 

gap separation) of 2h [15,16,30]. Flow is induced by dragging the upper plate over 

the fluid with a constant velocity v = (^o,0,0), while the lower plate moves in the 

opposite direction with constant velocity v = (—vo, 0,0) . Variations in the direction 

of flow (x) and the vorticity direction (z), as well as transport in the vertical direction 

(y), are suppressed [15,16]. In accordance with (5) and Fig. 2, the rods are modeled 

as spheroids with axis of symmetry m, whose PDF in time and across the shear gap 

is the primary focus. 

There is an external and internal length scale in this problem, respectively the gap 

width 2h and the finite range I of molecular interaction, where I is the persistence 

length. The latter is set by the distortional elasticity in the Doi-Marucci-Greco 

(DMG) model. There are two time scales in the model as well. First, the bulk flow 

time scale (£0 = —) that is set by the plates moving at a constant speed relative to 

each other. Secondly, the nematic time scale (tn = L\s) which is set by the nematic 

average rotary diffusivity D®. The ratio j*- defines the Deborah number De [15,16]. 

There are also scales associated with solvent viscosity and three nematic viscosities, 

but they are not a priori known. 

The DMG model is nondimensionalized using the length scale h, the time scale 
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FIG. 48: Definition of Cartesian coordinate system and flow geometry for plane 
Couette cells. The liquid crystal sample is placed between two parallel plates, and is 
sheared by moving the top plate with a constant velocity v. The gap separation is 
2h. 

tn, and the characteristic stress To = 73-, where p is the liquid density and p is a 

positive exponent less than one [15,16,31]: 

v = %v, x = £x, i=-r, f = —, p=JL. 
h ' h ' t„' TO' ^ TO 

The following seven dimensionless parameters arise: 

Re = ^ , a = &jZ, Er = %, * = * § £ * . = 1,2,3, 9 = %, 

where Re is the solvent Reynolds number; a measures the strength of entropic relative 

to kinetic energy (c is a number density of nematic molecules, k is the Boltzmann con-

stant, and T is the absolute temperature); Er is the Ericksen number which measures 

short-range nematic potential strength relative to distortional elasticity strength de-

picted by the persistence length I; /jj, 1 = 1,2,3, are three nematic Reynolds numbers; 

and 9 is a fraction between 0 and 1 that corresponds to equal (9 = 0) or distinct 

(9 ^ 0) elasticity constants [15,16]. The expression E~p, 0 < p < 1, is used represent 

a length scale spectrum that can predict passages to distortions with extremely high 

Ericksen numbers (on the order of tens of thousands) [16]. For other parameters, 
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refer to [31]. For ease of reading, the tilde will be dropped on all variables. All 

figures correspond to normalized variables and length and time scales. The effect of 

translational diffusion is ignored, and instead the approximate rotary diffusivity is 

employed [2,16]. 

In the case of plane Couette flow, the dimensionless Smoluchowski (kinetic) equa-

tion for the PDF / = (m,x, t) is given by [16,31]: 

^ = H-[(Kf + fR,V)}-K-[mxmf], (52) 

with Jeffrey orbit rii (2). -g£ is the material derivative Ĵ  4- v • V; 1Z is the rotational 

gradient operator K = m x ^ ; D and fi (3) denote the symmetric and antisymmetric 

parts of Vv (or dimensionless rate-of-strain and vorticity tensors in the flow field 

v). The second moment of the PDF, M, and the Doi-Marucci-Greco potential, V, 

are [16,31]: 

M = M ( / ) = / mm/(m,x , f ) l im; (53) 
J\\m\\=l 

9 1 

(54) V = JN I + ^ A l M : m m + ̂  (mm : (VV • M)) 

The dimensionless forms of the balance of linear momentum, the stress constitu-

tive equation, and the continuity equation are [15,16,31]: 

dv 

lit 
= V - ( - p H - r ) , (55) 

( J - + Vs(a) J D + aa IM - ^ - NM • M + AHVI : M 4 

-a-^- (AM • M + M • A M - 2AM : M4) 

a (2 (AM • M - M • AM) + (VM : V M - (VVM) : M)) 
12£r 

~a 121b ̂ M'Md+Md'M ~4(vv 'M): M^ 
a9 

~Y2Er [ M d ' M ~ M ' Md ~ ( V V ' M ) ' M + Mto'aMv^ 

+ \jii(a) (D • M + M • D) + /i2(a)D : M 4 ] , (56) 

V - v = 0, (57) 
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where M^ is a symmetrized second variation of M and M4 is the fourth moment of 

/ , 

Md = VV • M + (VV • M ) T , M 4 = / m m m m / ( m , x, i)dm. (58) 

The dimensionless form for the orientation tensor Q is given as [15,31]: 

y = fiQ-Qn + a ( D - Q + Q - D ) | - a D - 2aD : M 4 
0% O 

-6Dr[F(Q)+ * 
3Er 

AQ : M4 - J(AQ Q + Q AQ) - ^AQ (59) 

F(Q) = f 1 - ^ ) Q - JVQQ + 7VQ : M 4 (60) 

where Dr is the dimensionless rotational diffusion coefficient, which will be approxi-

mated [2]. In the stress constitutive equation (56) and the dimensionless equation for 

the orientation tensor (59), the fourth order tensor M4 appears. This term results 

in the second order system having a dependency on higher (fourth) order moments. 

Upon close inspection of (56) and (59), it can be seen that M 4 does not need to be 

explicitly known; instead D : M4 , Q : M 4 , and AQ : M 4 must be determined. As in 

the case of simple shear flow, an approximation to the contractions in terms of lower 

(second) moments will be made by using the proposed DQ closure rule (18,19). 

In this study, consideration is limited to one-dimensional space (the interval be-

tween the two plates). The boundary conditions [15,16] for the velocity v = (vx, 0,0) 

are given by the Deborah number, 

vx(y = ±1) = ±De. (61) 

Homogeneous anchoring at the plates is assumed, given by the quiescent stable ne-

matic equilibrium 

Qli/=±i = so f n n - - J , (62) 

where so is determined from the bifurcation diagram for the DQ closure rule under 

equilibrium conditions, see Fig. 3 for details, n is the uniaxial order director, assumed 

to lie in the shear plane, at some experimentally dictated anchoring angle ipo with 

respect to the flow direction, 

n = (cos T/>O, sin ^ 0 ,0 ) . (63) 

The anchoring angle can be parallel (ifto = 0°), normal (ift0 = 90°), or tilted (0° < 

ifto < 90°) [15,16,30]. This study will focus only on parallel and normal anchoring. 
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Given the previously mentioned restrictions on the flow, such as the suppression 

of variations in the direction of flow (x) and the vorticity direction (z), as well as 

transport in the vertical direction (y), combined with the boundary conditions listed 

above, the momentum equation (55) reduces to a single equation for the velocity 

component vx, 

dvx 8TXV , . 

if = if" (64) 

The expression for rxy in terms of the DQ closure scheme is given in the Appendix. 

By solving the coupled system of differential equations, (59) and (64), with the use 

of a closure approximation, a simulation can be executed. 

V.2 SIMULATION IN PLANE COUETTE CELLS 

In this section, the numerical methods used to solve the partial differential equations, 

(59) and (64), are explained, and the values of the fixed parameters are defined. The 

simulation is run under parallel and normal anchoring conditions. The Leslie angle, 

the peak orientation angle as a function of time, and the flow velocity (vx) are studied 

for the in-plane flow states. Those results are used to compile a table of in-plane 

structure attractors and phase change for multiple decades of Deborah number (De) 

and Ericksen number (Er). Comparisons are made with known results for simulations 

of liquid crystalline polymers in plane Couette cells. 

V.2.1 Structure formation — simulation parameters 

As in the case of simple shear flow, for plane Couette flow the value of the molecular 

shape parameter (5) is restricted to a = 1. The nematic concentration is fixed to 

N = 5.5, which results in so = 0.685 at equilibrium from Fig. 3. Other parameters 

include Re = 100, 9 = 0, a = 2, m = 0.0004, p,2 = 0.15, and /i3 = 0.01. All 

approximations to contractions of the form A : M4 are done using the proposed DQ 

closure rule (18,19). 

In the simulation, four distinct spatiotemporal attractors arise and are listed in 

Table XIV and Table XV. These include the elastic-driven steady state (ES), the 

viscous-driven steady state (VS), the composite tumbling-wagging periodic state 

(TW), and the wagging periodic state (W). The ES and VS attractors are charac-

teristic of plane Couette flow and a detailed description of them is given in the next 

sections. The remainder of this chapter is a discussion of the content of Table XV. 
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TABLE XIV: Spatiotemporal attractors in plane Couette cells 

ES: elastic-driven steady state 

VS: viscous-driven steady state 

T W : composite tumbling-wagging periodic state 

W: wagging periodic state 

TABLE XV: In-plane structure attractors and phase transitions for multiple decades 
of deborah number (De) and Ericksen number (Er) at fixed nematic polymer con-
centration AT = 5.5 under parallel anchoring (ift = 0°) conditions with the DQ closure 
scheme. 
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FIG. 49: Definition of Cartesian coordinate system and flow geometry for plane 
Couette cells. The liquid crystal sample is placed between two parallel plates, and is 
sheared by moving the top plate with a constant velocity v. The gap separation is 
2/i. 

From inspection of Table XV and its accompanying graphical representation, 

Fig. 49, one can see the general relationship between Er and De values, and the flow 

regime. Plainly put, the Deborah number describes how fluid a material appears. 

The Ericksen number describe the deformation of the director field under flow. For 

Er sufficiently small, the ES steady state prevails for any De value; the elastic forces 

exceed the viscous forces and so the director field is not strongly affected by the 

flow field. In contrast, for polymers with De sufficiently large the material is highly 

fluid; the flow is strong enough that the rotational tendencies are dampened leading 

the VS steady state to prevail for sufficiently large Er. Er = oo corresponds to 

the monodomain simulations. Therefore, if the material is in a ES steady state as 

Er —> oo, it undergoes a phase transitions into a FA steady state, identical to the 

shear flow case. In the case were De is sufficiently small, increasing Er increases 

the rotational effects of the flow and the material undergoes a phase transition to 

the W or T W periodic flow regimes [3,16,30]. The characteristics of the T, T W , 

and W flow phases are similar to the monodomain case (see Fig. 35, 36, 37). The 

vs 

w 
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composite T W phase is a result of boundary effects, wherein the the oscillation near 

the boundaries will be less than 90° resulting in W , but equal to 90° in the middle of 

the plate resulting in T. As Er —> oo, if the material is in a T W phase, it transitions 

into a T phase as there is no boundary effect making it equivalent in structure to 

the shear flow tumbling attractor. From an in-plane periodic flow phase, increasing 

the De further leads to a phase transition to the VS steady state. These attractors 

are qualitatively consistent with previous research done by Tsuji and Rey [3,30] and 

Forest, Zhou, and Wang [16]. For normal anchoring conditions, a similar table can 

be constructed which will be quantitatively slightly different, but qualitatively the 

same as Table XV. 

V.2.2 Structure formation — numerical method 

TABLE XVI: Finite difference schemes 

Derivative Scheme 

1 2-point second-order central 

2 3-point second-order central 

Formula of Discretization 

-f(V-l)+f(V+l) 
2Ay 

f(y-i)-2f(yo)+f(y+i) 
(Ay)2 

As mentioned in the previous section, coupling (59), with (64) results in a system 

of partial differential equations. These are solved numerically by the method of lines 

(MOL) with a course finite difference grid, n = 100, in the space — 1 < y < 1. In 

MOL, the partial differential equations are discretized with respect to space, resulting 

in a new system of ordinary differential equations with respect to time. This new 

system of ordinary differential equations can be solved using any sufficient numerical 

ODE solver. 

The finite difference schemes for spatial derivatives from (3), (59), and (64), are 

described in the following. See Table XVI for a description of the discretization 

formulas used. AQ is found by discretizing Q using a 3-point second-order central 

difference scheme for the second derivative, d2Q/dy2. Recall, that any flow in the x 

or z direction is suppressed. Vv is discretized using a 2-point second-order forward 

difference scheme on a staggered grid for the first derivative dvx/dy. The staggered 

grid is created by finding the midpoints between every pair of adjacent points on 
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FIG. 50: Evolution of the peak orientation angle ((ft) midway between the plate gap 
(y = 0) for Er = 1 and two decades of De, with parallel anchoring conditions at the 
plates (ip0 = 0°). The strong distortional elasticity at sufficiently low Er leads to 
steady structure attractors with relatively fast convergence to steady state, indicated 
by arrested motion at the mid-plane. 

the current finite difference grid for y, and interpolating the velocity at those points 

if needed. This results in a "staggered" grid with a new array of velocity values 

corresponding to the midpoints of the spatial grid; it has one less element than the 

original velocity array. Similarly, rxy is discretized using a 2-point first-order forward 

finite difference scheme on a staggered grid for the first derivative drxy/dy. The 

resulting system of ODE's is solved using MATLAB's odel5s ordinary differential 

equation solver where the equilibrium behavior at t = 0 sets the initial conditions. 

odel5s, which is well suited for stiff ordinary differential equations like ours, utilizes 

a numerical differentiation formula with a variable time step. 

V.2.3 Elasticity-dominated steady states (ES structure attractors) 

The elastic driven steady state (ES) arrises when the spatial elasticity dominates; 

this occurs when the Ericksen number is sufficiently low and the value of the Deborah 

number is not huge. Here the elastic potential overwhelms the rotating effects due 

to viscous forces [16,30]. Fig. 50 through Fig. 52 focus on the peak orientation angle 
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(ft of the PDF, associated with the major director of the nematic liquid. This PDF 

feature and subsequent related properties are computed from the second moment 

tensor Q. As in the case of simple-shear flow, the eigenvector of Q corresponding to 

the largest eigenvalue signifies the major director, ni (49). Within the confines of 

parallel and normal anchoring conditions, all steady solutions will be in-plane and 

therefore the major director takes the form 

ni = (cos (ft, sin^, 0). (65) 

The comparable shape distortions of the PDF are detected by the largest eigenvalue, 

di, of the major director [16]. 

Fig. 50 focuses on the evolution of the peak orientation angle ((ft) at the center of 

the plate gap for Er = 1 and two decades of De, with parallel anchoring conditions 

at the plates (ift0 = 0°). The mid-plane orientation angle converges to a steady 

state at sufficiently low De, then acquires an oscillatory transient for De > 5. Of 

great interest is the fact that Forest, Zhou, and Wang [16] found De > 5 to be the 

point at which their solution acquired an oscillatory transient as well. The value of (ft 

computed after the time of convergence to a steady state is the Leslie alignment angle 

(4>L)- Note the quick convergence time of 3 units for the peak orientation angle ((ft) 

with De < 5. As time t approaches 3, for all De shown here, the transient oscillation 

shrinks until the entire gap becomes steady by t = 5. In the kinetic simulations, 

Forest, Zhou, and Wang [16] found that the entire gap became steady by t = 3. 

Qualitatively, the observations for these elasticity dominated steady states (ES) from 

simulations with the DQ closure scheme agree with the previous research [3,16,30]. 

Illustrations of De-dependent ES steady state structures across the plate gap 

are presented in Fig. 51 and Fig. 52. It is characteristic of the structure features 

of the ES attractors to be smoothly dependent [15,16,30]. In Fig. 51, the Leslie 

alignment angle (4>L) is given for Er = 1 and a variety of De values under parallel 

anchoring conditions. The figure on the left is for relatively small Deborah numbers, 

De = 1,2,3,4,5; the figure on the right is for relatively large Deborah numbers, 

De = 10,12,14,17, 20. These graphs illustrate that, for small De, the magnitude 

of <PL increases as De is increased, up until the point at which the peak orientation 

angle acquires an oscillatory transient for De > 5 (see Fig. 50) . For De > 5, the 

magnitude of 4>L decreases as De values are increased. In their previous research, 

Forest, Zhou, and Wang [16] found that for sufficiently large De , 4>L —> 0. That 

does not seem to be an unreasonable assumption to make for the simulation with the 
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FIG. 51: Steady states for fixed small Ericksen number (Er = 1) and increasing 
Deborah number across the plate gap with parallel anchoring (ift0 = 0°). 
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FIG. 52: Steady states for fixed small Ericksen number (Er = 1) and increasing 
Deborah number across the plate gap with normal anchoring (ift0 = 90°). 

DQ closure scheme. Fig. 52 depicts 4>L for Er = 1 and increasing Deborah numbers, 

De = 1,2,5,8,15, under normal anchoring conditions. The figure shows that as De 

is increased, 4>L decreases; for sufficiently large De, <ft>L —> 0. 

The focus of this study on ES steady state flow now turns to the shape distortion 

of the PDF, referred to as the molecular elasticity. This is measured by the order 

parameter di, the largest eigenvalue of the major director, n ^ This is an important 

feature for material properties, since the principal values of conductivity in a nematic 

polymer composite are directly correlated with the principal values of di of the PDF 

[16]. Recall, the eigenvalues (order parameters) describe the degree of alignment of 

the PDF with respect to the major director n ^ The liquid crystalline polymer is 

in its isotropic phase when all eigenvalues are equal, di = o?2 = d3 = 1/3. Larger 

values of di reflect focusing of the PDF around the major director. Some authors 

use di — c?2, the Flory order parameter, which measures the maximum normalized 

birefringence [8,13,16]. Fig. 53 gives a representative shape distortion profile across 

the plate gap for De = 2, Er = 1 with parallel and normal anchoring, from Fig. 51 

and Fig. 52 respectively. From the graph on the top of Fig. 53, one can see that the 

distortions are minor for parallel anchoring and are focused at the mid-gap of the 

plate. The graph on the bottom indicates that for normal anchoring conditions, there 
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FIG. 53: Degree of alignment in ES steady state for Er = 1 and De = 2 across the 
plate gap. Top: parallel anchoring (ip0 = 0°). Bottom, normal anchoring (ift0 = 90°) 
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are notable distortions near the plate boundaries. Again, these results from the DQ 

closure simulations agree with the results from prior research on the subject [15,16]. 
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FIG. 54: Evolution of the peak orientation angle ((ft) midway between the plate gap 
(y = 0) for Er = 500, De = 0.05 with parallel anchoring (ip0 = 0°). 

Lastly, the study of the ES steady state with the DQ closure scheme is extended 

to the case of moderate Er values at sufficiently low De, as in the case of Er = 

500, De = 0.05 shown in Fig. 54 and Fig. 55. In agreement with the results from prior 

research [16,30], as the Ericksen number is increased, Fig. 54 shows that convergence 

to the steady state is extremely slow; Fig. 55 shows the smooth steady state structure 

characteristic of the ES attractor. However, the transition from the ES regime to 

the T W regime at sufficiently high Er values observed in the kinetic simulation for 

De < 0.5 [16], does not occur in the simulation with the DQ closure. Instead, the 

ES steady state transitions into a W periodic state (see Table XV and Fig. 49), and 

the ES regime exists for a much larger range of Er values at low Deborah numbers 

(De < 0.5) than in the kinetic simulation. 

V.2.4 Viscous-dominated steady states (VS structure attractors) 

The viscous driven steady state (VS) arises when the viscous driving forces in-

duced by the moving plate overwhelm short range elasticity, which governs bulk 

monodomain dynamics. This occurs when the Deborah number is sufficiently high; 



FIG. 55: Leslie alignment angle across the gap in the ES steady state for the same 
parameters for Er = 500, De = 0.05 with parallel anchoring (ift0 = 0°) 

FIG. 56: Evolution of the peak alignment angle ((ft) midway between the plate gap 
(y = 0) for Er = 1000, De = 12, with parallel anchoring conditions at the plates 
(ip0 = 0°). Convergence to steady state is indicated by arrested motion at the mid-
plane. 



FIG. 57: Evolution of the peak alignment angle ((ft) across the entire plate gap for 
Er = 1000, De = 12, with parallel anchoring conditions at the plates (ifto = 0°). 
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FIG. 58: Leslie alignment 
allel anchoring (ift0 = 0°) 
Right: Normal anchoring. 

.gle (4>L) across the gap for Er = 1000, De = 12 with par-
normal anchoring (tft0 = 90°). Left: Parallel anchoring. 
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FIG. 59: Degree of alignment (di) across the gap in the V S steady state for Er = 

1000, De = 12 with parallel anchoring (ift0 = 0°) and normal anchoring (ip0 = 90°). 
Left: Parallel anchoring. Right: Normal anchoring. 

the molecular distribution at each gap height aligns along some preferred direc-

tion [16,30]. Fig. 56 shows the peak alignment angle (ft of the PDF at the midpoint 

of the plate gap (y = 0), associated with the major director of the nematic liquid, 

for Er = 1000 and De = 12 with parallel anchoring at the plates. Alternatively, 

Fig. 57 displays the peak alignment angle (ft of the PDF across the entire plate gap 

for the same parameter values, showing the dynamics of a coherent spatial structure. 

The underdamped oscillatory behavior of the peak orientation is characteristic of this 

regime [16,30], and convergence to a steady state is indicated by arrested motion at 

the mid-plane. 

Fig. 58 displays the Leslie angle and degree of alignment for Er = 1000 and 

De = 12 with parallel and normal anchoring respectively, and Fig. 59 displays the 

degree of alignment (di) with parallel and normal anchoring for the same parameter 

values. Note the rapid changes near the boundary layers and the flat interior profile 

for both the peak axis ((ft) and shape (di). These sharp boundary layers of the VS 

attractors provide a distinction from the ES regime where the director profile is 

parabolic. When comparing the parallel anchoring simulation to normal anchoring, 

the amplitude distortions in (ft and di are greater for the normal anchoring case, 

which is consistent with the results for Forest, Wang, and Zhou [16]. 

The steady state transition from the ES regime to the VS regime is explored in 

Fig. 60, with normal anchoring conditions and De = 12. The Ericksen number is 



91 

i 

1 

L 

1 

1 

1 

1 

1 

i 
i 

i 

i 

V 

i \ 

i \ 

\ 
\ 
\ 
\ 

s *» 

Er=1 

Er=5 

Er=50 

Er=500 

A 
/' 1': 1 1 

, 1 

/ ' l 

/ t 

/ ' ' 
y i i 

* i 

-08 -0 6 -04 -02 02 04 

FIG. 60: Structure continuation profiles with fixed Deborah number (De = 12) 
and varying Er across the plate gap with normal anchoring. The nematic structure 
features of ES attractors at low Er develop sharp boundary layers at high Er, 

characteristic of VS attractors. 

FIG. 61: The scaling behavior of the boundary layer thickness for De = 12 with 
normal anchoring. The solid line shows the exponential fit, Er~039, of the discrete 
dots from the closure rule simulation. 
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FIG. 62: Normal stress differences, Ni, AT2, and shear stress (rxy) for Er = 
1000, De = 12. Left: parallel anchoring. Right: normal anchoring. 
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increased in order to capture the Leslie angle as the attractors transition from ES 

for low values (Er = 1), to VS at higher values (Er = 500) where sharp boundary 

layers emerge. From mesoscopic model analysis [15], the scaling behavior of the 

boundary layer thickness is predicted to be Er'1/2 in the asymptotic limit of low De 

and Er. For De = 12, the behavior for simulations with the DQ closure is shown in 

Fig. 61. To produce this figure, the derivative of the alignment angle in the gap is 

calculated using a 2-point second-order finite difference scheme (see Table XVI). In 

the boundary layer, the numerical derivative is large, while in the interior region the 

derivative is small. The thickness of the boundary layer is estimated from the position 

in the plate gap where there is a sign change in the derivative values, indicating a 

transition from the boundary layer where the derivative is negative to the interior 

bulk region where the derivative is non-negative for y < 0 (see Fig. 60). The best 

exponential fit from the discrete data points in Fig. 61 is Er~039, which is consistent 

with the findings of Forest, Wang, and Zhou [16] who determined the boundary layer 

width scaling to be approximately Er~0A in their numerical results. 

Fig. 62 shows the normal stress differences, Ni = rxx—ryy and A^ = Tyy—Tzz, along 

with the shear stress (rxy) for both anchoring conditions. Except at the boundaries, 

the value of the first normal stress difference (N\) is negative, while the value of 

the second (A^) is positive. The sharp boundary layers appear in all stress data 

in Fig. 62. Further, it is important to note that the stress values are independent 

of the anchoring conditions, as indicated by the fact that at the interior points 

their values are almost equivalent. The stress results are very important because 

this data can be directly measured in a laboratory and their results have specific 

physical interpretations. For example, the sign of Ni determines whether the liquid 

is drawing the plates toward one another or pushing them apart. Sign changes within 

the sample require an average over the plate gap to determine effective normal stress 

differences [16]. These results are consistent with the findings of Forest, Wang, and 

Zhou [16], and thus qualitatively agree with the monodomain kinetic simulations [1]. 

V.2.5 Composite tumbling-wagging periodic states (TW structure at-

tractors) 

The ES and VS steady state attractors give way to spatiotemporal attractors when 

neither elasticity nor viscosity dominates [16]. The composite tumbling-wagging 

periodic state occurs when the major director oscillates from —90° to 90° in the 
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FIG. 63: Evolution of the peak orientation angle ((ft) for the T W attractor midway 
between the plate gap (y = 0) for Er = 500 and De = 3 with parallel anchoring. 90° 
and —90° imply the same director orientation. 

FIG. 64: Evolution of the peak orientation angle ((ft) for the T W attractor midway 
between the plate gap (y = 0) for Er = 500 and De = 3 with normal anchoring. 90° 
and —90° imply the same director orientation. 
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middle of the plate gap, similar to the tumbling attractor in the simple shear case. 

As a results of boundary effects, the oscillation of the major director is less than 90° 

near the plates, similar to the wagging attractor in the simple shear case [16,30]. 

Note, one only needs to observe the behavior at the mid-gap in order to identify 

the T W attractors. T W periodic regime exists at low to moderate De values with 

sufficiently large Er values [16,30]. The T W structures arises before the intermediate 

W state as the £>e value is increased for fixed Er to attain the VS steady state. The 

T W also arises after a transition from the ES or intermediate W states as the Er 

value is increased for fixed De. In this case, as Er —> oo, the T W mode becomes 

identical to the T mode from the simple shear case due to the absence of long-range 

elasticity and boundary effects. These patterns can be observed in Table XV and 

Fig. 49. 

Fig. 63 is an illustration of the T W structure attractor at the middle of the plate 

gap (y = 0) for Er = 500, De = 3, with parallel anchoring conditions. Here the 

solution oscillates between —90° and 90° with a constant wavelength. However, for 

the T W attractor with normal anchoring conditions seen in Fig. 64, the solution 

converges to a periodic solution after an initial transition. This is assumed to be 

a result of the numerical solver and the closure rule, and it is not characteristic of 

the kinetic solution. For lower Er or lower De values, this behavior is not observed. 

From Table XV, if the Deborah number is increased from De = 3, to say De = 6, 

the structure attractors will transition from T W to W. 

V.2.6 Wagging periodic states (W structure attractors) 

The wagging periodic state occurs when the maximum amplitude of oscillation of 

the major director is less than 90°, similar to the simple shear flow case, for any 

point between the plates. It exists for moderate De values with sufficiently large Er 

values [16,30]. The W structures arise as an intermediate state between the ES and 

T W states as the Er value is increased for fixed De, or between the T W and V S 

states as the De value is increased for fixed Er. This pattern can be observed in 

Table XV. Note that the transitions between T W and W occur at slightly lower 

Deborah and Ericksen numbers for the simulations with the DQ closure than for 

the kinetic simulations. Additionally, the wagging regime is in a smaller range of 

Deborah numbers (5 < De < 6) for the closure rule than for the kinetic simulations, 

where W arises for 6 < De < 8 for Er > 15 [16]. 
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FIG. 65: Evolution of the peak orientation angle ((ft) for the W attractor midway 
between the plate gap (y = 0) for Er = 500 and De = 6 with parallel anchoring. 

FIG. 66: Spatiotemporal structure of the alignment angle for Er = 500 and De = 6, 
with parallel anchoring conditions at the plates (ift0 = 0°). 
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FIG. 67: Spatiotemporal structure of the normal stress differences for Er = 500 
and De = 6, with parallel anchoring conditions at the plates (tp0 = 0°). Top: First 
normal stress difference Ni. Bottom: Second normal stress difference A^-
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In Fig. 63 and Fig. 64, the T W was observed for Er = 500, De = 3 with parallel 

and normal anchoring respectively. Upon increasing the Deborah number to De = 6, 

the structure attractors transition from T W to W. Fig. 65 is an illustration of the W 

structure attractor at the middle of the plate gap (y = 0) for Er — 500, De = 6, with 

parallel anchoring conditions (<ft0 = 0°). Initially the solution oscillates between —2° 

and —11° before it dampens to a steady periodic state, where ((ft) oscillates between 

—8.5° and —5.75°. Again, this transient dampening seems to be the result of the 

numerical solver and the closure rule, and not characteristic of the kinetic solutions. 

Fig. 66 is an illustration of the W attractor's spatiotemporal structure across the 

entire plate gap during a time interval where the solution is in its steady periodic 

state. Here one can see the evolution of the alignment angle: near the plates, the 

maximum angle of oscillation is approximately —7.5°, while at the mid-plate gap it 

is —5.75°. Additionally, Fig. 67 displays the spatiotemporal structure's of the first 

(Ni) and second (N2) normal stress differences under the same conditions. For Ni, 

sharp boundary layers are present and the value of N\ is negative as the solution 

oscillates about N\ = —0.425. For A^, boundary layers are present and the solution 

undergoes a sign change as it oscillates about the A^ axis. Recall that sign changes 

within the sample require an average over the plate gap to determine effective normal 

stress differences [16]. In their work, Forest, Wang, and Zhou found that both normal 

stress differences oscillated about their respective stress axes in the W regime [16]. 

Fig. 68 is an illustration of the W structure attractor at the middle of the plate 

gap for normal anchoring conditions ((ft0 = 90°) with the same parameter values. 

The solution has a very short dampening zone before it reaches the steady periodic 

state, where ((ft) oscillates between —9° and —5°. For lower Er values, this behavior 

is not observed. Note, how the oscillation is not centered about (ft = 0. This is not 

unexpected and overall the results agree with the prior research on the subject [16,30]. 

Finally, as the Deborah number is increased from De = 6, to say De = 8, the 

structure attractors will transition from W to VS as described in Table XV and 

Fig. 49. 

V.2.7 Velocity Profiles 

Previous studies have yielded an exactly solvable asymptotic formula for the velocity 

of steady-flow nematic structures in plane Couette cells [15]. In it, numerical solutions 

using the DOI closure are compared with a derived exact asymptotic formula in the 



99 

20 

15 

10 

5 

I 0 

-5 

-10 

-15 

-20 

0 5 10 15 20 25 30 35 40 45 50 

t 

FIG. 68: Evolution of the peak orientation angle ((ft) for the W attractor midway 
between the plate gap (y = 0) for Er = 500 and De = 6 with normal anchoring. 

ES attractor regime. An interesting result of the study is the emergence of non-linear 

velocity for the numerical solutions. The research showed that while the velocity was 

linear for the exact asymptotic solution under both anchoring conditions, the velocity 

exhibited qualitatively distinct velocity structures for the numerical solutions with 

normal and parallel anchoring conditions. The velocity profiles for the numerical 

solutions with normal anchoring displayed a greater degree of non-linearity and were 

of opposite concavity than those with parallel anchoring [15]. 

The velocity structure for the solution with the DQ closure under parallel an-

choring (ift0 = 0°) conditions for ES attractors is examined first. From the top row 

of Fig. 69, one can see that the velocity is nearly linear for Er = 1 and De = 0.05. 

As the Ericksen number is increased from Er = 1 to Er = 30, the magnitude of 

the Leslie alignment at the mid-gap of the plate increases and the velocity becomes 

increasingly non-linear. The bottom row Fig. 69 shows that the velocity profile for 

the solution with the DQ closure under normal anchoring (ift„ = 90°) conditions for 

the same parameter values. In contrast to the parallel anchoring case, as the Ericksen 

number is increased, the magnitude of the Leslie alignment angle decreases while the 

degree of non-linearity for the velocity increases. From Fig. 69, one can see the con-

cavity of the non-linear velocity under normal anchoring is opposite that of parallel 
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FIG. 69: Numerical solutions for the Leslie alignment angle and velocity structure 
for De = 0.05 and varying Er across the plate gap in the ES steady state. Top: 
parallel anchoring. Bottom: normal anchoring. 
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anchoring. These results are in agreement with the known numerical results using 

the DOI closure discussed earlier [15]. From a comparison of the different anchoring 

conditions in Fig. 69, it is clear that normal and parallel anchoring conditions have 

different velocity profiles. 

FIG. 70: Numerical solutions for the Leslie alignment angle and velocity structure 
for increasing De and varying Er across the plate gap in the ES steady state with 
parallel anchoring. Top: Er = 0.1. Bottom: Er = 0.5. 

As an extension of previous research [15,16,30], the effects of Ericksen number 

(Er) and Deborah number (De) on the phenomena of non-linear velocity structures 

under parallel (tp0 = 0°) and normal (ift0 = 90°) anchoring conditions are examined. 

Fig. 69, Fig. 70, Fig. 71, and Fig. 72 depict the velocity profiles over the range of 

Ericksen numbers from the ES attractor regime in Table XV for small Deborah 

numbers (De < 0.5). For the case of parallel anchoring, from Fig. 69, Fig. 70, and 

Fig. 72, it appears that increasing the Ericksen number has a much greater effect 



FIG. 71: Numerical solutions for the Leslie alignment angle and velocity structure 
for increasing De and varying Er across the plate gap in the ES steady state with 
normal anchoring. Top: Er = 0.1. Bottom: Er = 0.5. 
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FIG 72 Numerical solution for the velocity structure for Er = 500, De = 0 05 with 
parallel anchoring (ift0 = 0°) across the plate gap See Fig 54 for evolution of the 
peak orientation angle and Leslie alignment angle in the ES steady state for the 
same parameters 

on the velocity profile than by increasing the Deborah number In general, for a 

fixed De value, increasing the Er value increases the degree of non-linearity for the 

velocity structure For all given De values, the velocity is nearly linear for Er = 1 

under parallel anchoring conditions In Fig 72, the effect of weak flow is further 

examined for Er = 500 and De = 0 05 Here the velocity is highly non-linear at the 

plate boundaries The same behavior at high Ericksen numbers has been observed 

for the DQ closure under normal anchoring conditions Fig 69 and Fig 71 depict 

the velocity profiles for De = 0 05,0 1,0 5 with ift0 = 90° Similar to the parallel 

anchoring case, increasing the Ericksen number has a greater effect on the velocity 

profile than increasing the Deborah number However, for De = 0 5, the velocity 

is slightly non-linear for Er = 1 under normal anchoring conditions indicating that 

Deborah number does effect the velocity profile 

Extending this idea further, Fig 73 explores the effects of the Deborah number 

on the velocity profile m the ES attractor regime (see Table XV and Fig 49) for 
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FIG. 73: Numerical solutions of the velocity structure for Er = 1 and increasing 
De across the plate gap in the ES steady state. See Fig. 51 and Fig. 52 for the 
Leslie alignment angle in the ES steady state for the same parameters. Top: parallel 
anchoring. Bottom: normal anchoring. 
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a small Ericksen number (Er = 1). The top graph in Fig. 73 displays the velocity 

structure for Er = 1 with the Deborah number increasing from De = 1 to De = 8 

for parallel anchoring conditions. Note how the velocity is nearly linear for the given 

values of De. Alternatively, the bottom of Fig. 73 displays the velocity structure for 

normal anchoring with the same parameter values. Here the degree of non-linearity 

for the velocity structure increases as the Deborah number gets larger. 

In summary, normal and parallel anchoring conditions have qualitatively distinct 

velocity profiles; the non-linear velocity profiles for the two anchoring conditions are 

of opposite concavity. For the ES attractor regime, increasing the Ericksen number 

has a significant effect on the linearity of the velocity profile for both parallel and 

normal anchoring conditions. Additionally, under normal anchoring conditions, the 

degree of non-linearity of the velocity structure increases as the Deborah number gets 

larger for small Er values in the ES regime. The same phenomena is not observed 

with parallel anchoring conditions. 
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C H A P T E R VI 

CONCLUSIONS 

There is a current interest in simulating liquid crystalline polymers in order to bet-

ter understand their applications in material processing. Unfortunately, the kinetic 

model is computationally intensive and its solution depends on information from 

higher order moments. As a result, the kinetic equations utilize closure approxima-

tions to derive a system of differential equations which can be solved numerically at 

a relatively lower computational cost. However, most current closure schemes have 

many shortcomings. In response, a new closure scheme, the DQ closure, was de-

signed by doing a least squares fit on data from simulations with four current closure 

schemes, DOI, TR, HLl, and HL2, under simple shear flow conditions. The result-

ing DQ closure was compared with these and the Bingham closure schemes under a 

variety of flow conditions in order to determine its validity. 

Under equilibrium conditions, the bifurcation diagram from the proposed DQ 

closure scheme more closely resembled the kinetic solution's than either the DOI 

or TR; and the proposed closure performed as well, if not better, than the HLl 

closure at equilibrium. Additionally, the DQ closure gave an acceptable quantitative 

approximation to the kinetic solution without the use of artificial shift parameters, 

unlike in the case of the HLl and HL2 closures. 

For shear flow conditions, the performance of the DQ closure is superior to its 

component closure schemes and comparable to the Bingham closure, which is cur-

rently considered to be one of the best closure schemes. For Pe < 0.189, the proposed 

closure fails to predict any periodic flow. This can be a result of the numerical solver 

or the closure scheme, since this problem exists only within a smali range of flow 

rates. The DOI closure fails to predict periodic flow for all (N, Pe) space. For flow 

conditions with a minimal flow rate (Pe > 0.189), the DQ closure scheme simulates 

all attractor types except CH. For stronger flow with higher polymer concentration 

(Â  > 5.75), the DQ closure fails to predict a return to the FA regime, which is a 

known result from the kinetic simulations. It does succeed in predicting the other 

attractors in this region that the kinetic solution identifies, and its shortcomings are 

not unique. The Bingham closure also fails to predict the existence of the FA regime 

at sufficiently high Pe and N values. The HLl and HL2 closures are pathological at 

high Pe and N values. Also noteworthy is the ability of the DQ closure to identify 
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the T-W transition, which is not detected by AUTO and can only be found through 

post-processing the data. This transition occurs in the kinetic solution and its bifur-

cation properties are not widely agreed upon, and so it is of particular interest that 

a closure rule detected it in approximately the same (N, Pe) space as the kinetic 

solution. 

Lastly, the performance of the DQ closure was examined under conditions of 

plane Couette flow in cells with both parallel and normal anchoring conditions at 

the plates. In accordance with the kinetic solution and independent of anchoring 

type, the proposed DQ closure identified ES attractors for sufficiently low Er values; 

VS attractors for sufficiently high De and Er values; T W attractors for moderate 

De values with sufficiently high Er values; and the W transient state which occurs 

between the ES and T W regimes and the T W and VS regimes. The normal stress 

differences and shear stress calculated from the simulations with the DQ closure had 

the same behavior at the plate boundaries and were of the same sign as the kinetic 

solutions. Additionally, the velocity profiles from the solutions with the closure 

scheme displayed the same non-linear phenomena as solutions generated with existing 

closure schemes. Normal and parallel anchoring conditions gave qualitatively distinct 

velocity profiles and their corresponding velocity curves were of opposite concavity. 

Velocity results from simulations with the proposed closure suggested that increasing 

the Ericksen number has a greater effect on the velocity profile than increasing the 

Deborah number for the ES attractor regime. 

In summary, the DQ closure scheme gives a better qualitative approximation to 

the kinetic solution than its component rules, DOI, TR, HLl, and HL2. Without the 

use of artificial shift parameters, it gives an acceptable approximation to the kinetic 

solution at equilibrium. For shear flow conditions, it gives a more complete flow 

phase diagram than it component rules. It has limitations, but they are not unique 

or catastrophic. For flow in plane Couette cells, the DQ closure give a complete de-

scription of the attractor regimes in accordance with the known kinetic solutions and 

displays the phenomena of non-linear velocity common to other numerical solutions. 

Considering the success of the DQ closure under the equilibrium, plane shear 

flow, and plane Couette flow testing conditions, future work can be conducted in an 

attempt to improve the performance of the proposed scheme and better understand 

the phenomena associated with it. Research can be conducted on the T-W transition 

in the shear flow case for the both the kinetic solution and the closure rule solutions 
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in order to better understand if a bifurcation occurs during the transition, and if so, 

what type of bifurcation. Along similar lines, one can further inspect the non-linear 

velocity profile of solutions with closure rules verse the linear velocity profile of the 

kinetic solution in plane Couette cells. Additionally, research can be conducted to 

design a new least squares closure rule by fitting the data over a smaller area of 

(N, Pe) space to see if the accuracy of the quantitative and qualitative results can be 

increased. In doing such a least squares fit, the closure rules being used to simulate 

the data can also changed based on the space one is trying to predict the behavior 

for. For example, since HLl and HL2 perform poorly at high N and Pe values, one 

may choose to not use them in the least squares fit for that range. 
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APPENDIX A 

TENSOR NOTATION 

The following defines the tensor notation used in the text. 

For two second order tensors A and B, A • B is matrix multiplication: 

3 

A-B = ^AXJB3k. (66) 

3=1 

For two second order tensors A and B, the tensor contraction is defined as: 

3 3 

A:B = YJY,A^r (67) 
i = i j=\ 

For a second order tensors A and a fourth order symmetric tensor C, the tensor 

contraction is defined as: 
3 3 

A:C = J2Y,AJCljkl. (68) 
1=1 j = l 
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APPENDIX B 

TRACE OF THE CLOSURE RULES 

A valid closure rule for Q : (mmmm) must meet the condition 

tr(Q : (mmmm)) = Q : M, (69) 

where Q is symmetric and traceless and Q = M — | l . 

tr(Q) = 0 tr(M) = 1. (70) 

The following shows how the DOI, HLl, and HL2 closure rules fulfill the condition, 

while the TR closure rule does not for Q : (mmmm). The DOI closure rule is as 

follows: 

Q : (mmmm) « (Q : M)M. (71) 

Giving 

tr((Q : M)M) = (Q : M)(ir(M)) = Q : M, (72) 

showing that the condition is met. 

The HLl closure rule is as follows: 

Q : (mmmm) « i [6M • Q • M - M (Q : M) - 2 ((MM) : Q) I + 2M : Q / ] . (73) 
5 

First consider the terms M Q M and (MM) : Q. 

Define M M = G, where M M = M • M = M 2 

3 

G:Q = £G„QtJ. 
%j=\ 

i r ( M - Q - M ) = t r ( M - M - Q ) . 

i r ( M - M - Q ) = ir(G-Q). 
3 

tr(G-Q) = 5^G„Q„. 

.-. tr(M • Q • M) = (MM) : Q. (74) 

Using the above and that tr((Q : M)M) = Q : M from the Doi closure rule, the 



trace from HLl can easily be found. 

tr(-[6M • Q • M - MM : Q - 2(M2 : Q)I + 2M : Q/]) 

= (l[6tr(M Q M) - M : Qtr(M) - 2(M2 : Q)ir(I) + 2M : QtrCL)}) 
5 

= (\[6tr(M • Q • M) - M : Q - 6(M2 : Q)I + 6M : Q]) 

= \[5M : Q]. 

.-. tr(l[6M • Q • M - MM : Q - 2(M2 : Q)I + 2M : Q/]) = Q : M, 
5 

showing that the condition is met. 

The HL2 closure rule is as follows: 

Q: (mmmm) w M(M : Q) + 2 [M • Q • M - M2 (M2 : Q) / (I : M2)] 

(75) 

+a 
52 8 / 2 

- Q - - Q . M + M . Q - - ( M : Q ) I 
(76) 

a = exp [2 (1 - 3M2 : I) / (l - M2 : I)] . 

Given the symmetry of M and Q it simplifies to: 

Q : M w M ( M : Q ) + 2 [ M - Q - M - M 2 ( M 2 : Q ) / ( I : M 2 ) ] 

+a 
52 8 / 2 

S « " 2 l («1 -M-3(M:C»I 
(77) 

First consider the terms I : M2 and ir(M2). 

Let M2 = G. 
3 3 

7:M2 = I:G=^2ltJGt3 = ^2Gv. 
» , j= i %=\ 

3 

tr(M2) = tr(G) = J2Gn-
i = i 

.-. ( I :M 2 ) = tr(M2). 

Now consider the terms M : Q and tr(Q • M). 

(78) 

M:Q = J2M^3-
M = l 

tr(Q-M) = ^ Q t J M „ . 
i j = i 

. - .M:Q = fr(Q-M). 
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Using the above, the previous results tr(M • Q • M) = (M2 : Q) and tr((Q : M)M) = 

Q : M, the symmetry and trace of M and Q, it follows that: 

/ M 2 O 
tr(M(M : Q) + 2[M • Q • M - M2 f „ ^ 

52 8 9 

+a[—Q-- (2Q:M-- (M:Q) I ) ] ) 

= (M : Q)tr(M) + 2[tr(M • Q • M) - (j-^§) tr(M2)) 

52 8 9 

+a[— tr(Q) - ^(2tr(QM) - - (M : Q)ir(I))] 

= (M : Q) + 2[tr(M • Q • M) - ( ~ ^ j tr(M2)] 

+ a [ - | - ( 2 t r ( Q M ) - 2 ( M : Q ) ) ] 

= ( M : Q ) + 2 [ i r ( M - Q - M ) - ( M 2 : Q ) ] . (80) 

Giving 

„ / M 2 • O 

tr(M(M : Q) + 2[M • Q • M - M2 ( \ _J* 
52 8 2 

+ a [ 3 1 5 Q ~ 2i(Q • M + M • Q - g ( M : Q)1)]) = Q = M, (81) 

showing that the condition is met. 

The Tsuji-Rey closure rule is as follows: 

Q : (mmmm) « - ( Q : M ) M + Q M M + M Q M 

+M2 • Q - (M2 : Q) i] + ^Q : M7 (82) 

Which given the symmetry of M and Q simplifies to 

Q : (mmmm) « j[(Q : M)M + 3M • Q • M - (M2 : Q)I] + i ( Q : M)I. (83) 
T: O 

Finally, using the results tr(M • Q • M) = (M2 : Q) and tr((Q : M)M) = Q : M 

from above, the trace is as follows: 

tr(j[(Q : M)M + 3M • Q • M - (M2 : Q)I] + ~(Q : M)I) 

= j[tr((Q : M)M) + 3*r(M • Q • M) - (M2 : Q)ir(I)] + i (Q : M)tr(I) 

= i[(Q : M) + 3ir(M • Q • M) - 3(M2 : Q)] + (Q : M) 

= i ( Q : M) + (Q : M). (84) 
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Giving 

tr(^[(Q: M ) M + Q - M - M M - Q - M + M 2 - Q - ( M 2 : Q)I]) = | Q : M, (85) 

which does not meet the condition tr(Q : (mmmm)) = Q : M It must be noted 

that Tsuji and Rey constructed the closure rule for the contraction Q : (QQQQ) [3]. 

However, in the construction of the DQ closure rule, the higher order tensor needed 

to be (mmmm) . As a result, the fact that the trace of TR closure when applied to 

Q : (mmmm) was 1.25Q : M needs to be factored into the proposed DQ closure, 

but it does not prevent the TR closure from being utilized in the least squares fit. 
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APPENDIX C 

rxy FROM THE STRESS CONSTITUTIVE EQUATION 

Txy from the stress constitutive equation (56) is stated below in terms of the orien-

tation tensor Q. The DQ closure is used to approximate all tensor contractions with 

M4 . 

T*y = I "57 + ^a J D12 
2 

Re 

JK 
+ aa Q u + JV .6042J + Q12(1.4001/7 - .8021) - 1.2410-

H 

+ 0.6205exp(G) Q ^ Q i 2 - ^ J 

- 5.5112Q12 U ^ + Q l 3 ^ + Q 2 3 ^ H + Q2f^ 
ay* ay* oyz oyz 

3 2Q! 
+ ^ ^ (-5.55585Q2

2 - 2.98505QnQ22 - 0.04465/7 + 0.3251) 

0 p 2 Q n 0 92Qi3Q Q d2Q22\ a2Q23 
^ 2 3 Q O Ql3 ^-^-Qll + Ql3 Q ? — Ql3Q22 \ ay"1 ay^ oyz J ay 

+ 2.4820f-l,410e^)(-^-^) 

1 a /92Qnn ^ Q ^ d2Q13n 

" 6 ^ ^ Q l 2 + ^ Q 2 2 + " ^ ~ Q 2 3 

a 2 Q i 2 n a 2 Q 2 2 n a 2 Q 2 3 n \ , m , n ^ n ^ 
-Qn —5-1 -Q12 — r ^ - Q i 3 + /^i(a)Di2 Q n + Q22 + 

dy2 ^ dy2 ̂  dy2 ™J ^ ' ~ " ^ ' """ ' 3, 

+ /^(a)Di2 ( 0.3865/7 + 0.83855Q?2 + .92315QnQ22 + .3721(Q22 + Q n ) 

+ .mi _ 2^7 + om6Qexp{G) {*_ _ 8_ [Qn + Q22] 

where 



C = ^ Q i 2 + ^ ( Q n + Q22) + ^ Q 2 3 + ^ ^ Q i 2 + ^ Q 
a2Qi a2Qi 52Q2 a2Q2 

dy2 dy2 
dy2 dy2 dy2 

F = Q2i2[ Q n + 2QnQ 2 2 + Q22 + - Q n + ^Q 2 2 + -

+2Q12Q13 ( Q11Q23 + Q22Q23 + ^ Q 2 3 ) + Qi 3 Ql» , 

6(Q2i + Q2
2 + Q2

3 + Qj 2 + Qj 3 + QnQ22) 

(Q?i + Q2
2 + Q2

3 + Qi2 + Qi3 + Q11Q22 - 1 ) ' 

H = 2 ( Q 2 ! + Q 2
2 + Q 1 3 + Q2

22 + Q^3 + Q11Q22) + ~, 

J = Q11Q12 + Q12Q22 + Q13Q23 + 3Q12, 

K = 2 ( Q 2 ! + Q 2
2 + Q 2

3 + Q\2 + Q2
23 + Q11Q22) 

+ 3 Q n ( Q 1 2 — Q 2 2 — Q 2 3 — Q11Q22) 

+3Q22(Q
2

2 - Q?3) + 6Q12Q13Q23 + \ , 

d2Q 
P = — ^ f Q2

2 - Q22 - Q23 - 2Q11Q22 + - Q n + -Q22 

+ 2 ^ k (onQl2 + Q12Q22 + Q13Q23 + ?Q12 

22 / r^2 , r^2 — •> ~~ - 2 „ 4 . 32Q 
Qy2 I " Q n + Ql2 - Ql3 - 2QllQ22 + 3Q1I + gQ22 

5 2 Ql3 / 4 

+ ^ H f 2Q12Q23 - 2Q13Q22 + -Q1 3 

+2 

dy2 

23 52Q 

dy2 Q11Q23 + Q12Q13 + 3Q23 
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