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ABSTRACT

OPTIMAL CONTROL MODELING AND SIMULATION, W ITH 
APPLICATION TO CHOLERA DYNAMICS

Chairat Modnak 
Old Dominion University, 2013 

Director: Dr. Jin Wang

The theory of optimal control, a modern extension of the calculus of variations, 
has found many applications in a wide range of scientific fields, particularly in epi
demiology with respect to disease prevention and intervention. In this dissertation, 
we conduct optimal control modeling, simulation and analysis to cholera dynamics. 
Cholera is a severe intestinal infectious disease th a t remains a serious public health 
threat in developing countries. Transmission of cholera involves complex interactions 
between the human host, the pathogen, and the environment. The worldwide cholera 
outbreaks and their increasing severity, frequency and duration in recent years un
derscore the gap between the complex mechanism of cholera transmission and our 
current quantitative understanding and control strategies for this disease.

We incorporate multiple time-dependent intervention strategies, including vac
cination, antibiotic treatment, and water sanitation, into cholera epidemiological 
models and seek solutions that best balance the costs and gains of the controls. Pon- 
tryagin’s Maximum/Minimum principle allows us to  construct the optimal control 
system that involves the state equations, the adjoint equations, and the optimality 
condition th a t characterizes the controls. The system is then numerically solved 
using an iterative procedure based on the Forward-Backward Sweep Method. We 
discuss in detail the mathematical models and numerical results for various scenarios 
and their implications to public health administration on disease control.

In the last part of this dissertation, we investigate new iterative algorithms with 
improved convergence properties compared to  the original Forward-Backward Sweep 
Method. We discuss the applications of such numerical algorithms to  optimal-con
trol problems as well as other types of constrained dynamical systems. We conduct 
careful error analysis and present several numerical examples to validate the analytic 
results.
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CHAPTER 1 

INTRODUCTION

In recent historic events, we have seen tha t giving an early warning has saved 
a lot of lives and has given information to cities to  reduce cost from infrastructure 
destruction, although higher accuracy is still needed for better predictions. Fortu
nately there are many scientists and mathematicians trying to utilize mathematical 
models to provide better understanding of the dynamics of nature. There are nu
merous models that have been proposed and currently been used in society both 
commercially and publicly such as weather forecast models, hurricane path models, 
flash flood watch models, stock market forecast models, economy prediction models, 
and disease outbreak models. As an example, we have witnessed the deadly hurri
cane Sandy th a t came to the Atlantic coast in 2 0 1 2 ; however, even though it was the 
most destructive hurricane in 2012, not many lives were lost. The reason is several 
new models have been used by both national and local television channels to  send 
out early warning for evacuations. As a result, many lives have been saved.

In addition, we need better models to forecast complex systems such as, wildfires, 
disease outbreaks, floods, horrific tsunamis, earthquakes, meteors, landslides, and 
droughts. These destructive forces of nature and diseases could possibly be predicted 
by using mathematical models. In particular, mathematical models have become 
increasingly important to understand the complex dynamics of diseases.

In this dissertation, we are concerned with cholera, a  severe intestinal infectious 
disease caused by the bacterium Vibrio cholerae th a t remains a serious public health 
threat in developing countries. We have in recent years, witnessed an increasing num
ber of cholera outbreaks worldwide including one of the largest cholera epidemics in 
modern history tha t took place in Haiti from 2010-2012 with more tha t 530,000 
reported cases and over 7,000 deaths. Major cholera outbreaks also include those 
in Sierra Leone (2 0 1 2 ), Ghana (2011), Nigeria (2010), Vietnam (2009), Zimbabwe 
(2008), and India (2007), among others. Current estimates by World Health Orga
nization show 3-5 million cholera cases every year in the world.

The transmission of cholera involves both direct (i.e., human-to-human) and in
direct (i.e., environment-to-human) routes, due to the multiple interactions between
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the human host, the pathogen, and the environment. In order to better understand 
the complex transmission dynamics of cholera, a number of mathematical models 
have been proposed and analyzed; we will briefly review some of these works in Sec
tion 2.2. No doubt these studies have improved our knowledge of cholera dynamics. 
However, the worldwide cholera outbreaks and their increasing severity, frequency 
and duration in recent years underscore the gap between the complex mechanism of 
cholera transmission and our current quantitative understanding and control strate
gies for this disease.

A focus of this dissertation is to formulate optimal control models to investigate 
cholera dynamics and explore control strategies tha t best balance the costs and gains 
in fighting cholera. In doing so we will combine mathematical modeling, analysis, 
and numerical simulation to seek optimal control solutions. Our results will improve 
the understanding of the complex mechanism of cholera transmission and can provide 
useful guidelines for public health administration for the prevention and intervention 
of cholera outbreaks. We start our discussion in Chapter 2 with a background of 
optimal control, followed by a  review of some representative mathematical models 
of epidemic and endemic cholera. In Chapter 3, we discuss our models with optimal 
controls and numerical simulations. Mathematical equations, model parameters and 
diagrams are also carefully presented. In addition, we have expanded our study to 
several interesting cases to better understand the disease outbreak. In Chapter 4, 
we study new iterative algorithms for solving optimal control and other types of 
constrained dynamical problems. Algorithms, examples, mathematical formulations 
and error analysis are presented. In the last Chapter, we conclude our study and 
discuss future work.



CHAPTER 2

BACKGROUND

2.1 O PTIM AL CONTRO L

Optimal control theory is a  modern extension of the calculus of variations to 
find an optimal path or value tha t gives either maximum or minimum points of 
functions. An optimal control problem contains state variables, control(s) and an 
objective function(s). It can be a system of differential equations, partial differential 
equations, discrete equations, integro-difference equations, and stochastic differential 
equations. In this chapter, we will show some dynamic problems in order to have a 
better understanding about the optimal control theory.

First consider the optimal control of growth model formulated by Cohen [1]. The 
model is a system of two differential equations

=  u{t)xi(t),

=  (1  ~ u { t ) ) x 2(t),

0  < u(t) < 1 ,

£ i(0 ) > 0 , x 2(0 ) > 0 ,

where u (t) is the fraction of the photosynthate partitioned to vegetative growth, 
x \ (t) is the weight of the vegetative part a t time t and x 2(t) is the weight of the 
reproductive part. In order to keep plants growing, this problem is maximizing the 
growth of the reproductive part. Thus, the goal is to find the optimal value of u(t) 
to maximize the functional

I Zn(x2(t))d: 
Jo

This optimal control problem has two state variables, x \  (t) and x 2(i), and one 
control u(t). The objective functional is a natural logarithmic function here because 
we believe that plants have linear growth.

King and Roughgarden used optimal control to solve this problem. They set up 
the maximum value of control to be 1 and the minimum value to be 0  for a five day
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observation. The results showed tha t from the starting day to  about 2 days, the value 
of control was constantly 1 and had the constant weight of the reproductive growth. 
Meanwhile, the weight of the vegetative part was increasing. For the next half day, 
the weight of the vegetative part was slowing down and the weight of the reproductive 
growth started increasing. At the time, the values of control were decreasing and 
their values were between 0.4 and 0.6. After this day, the value of control became 
constantly zero, the weight of reproductive part kept increasing and the weight of the 
vegetative part stayed constant. This study shows tha t a t one time, the plant uses all 
of its photosynthate for vegetative growth and later will use it into some vegetative 
and some reproductive growth. This is a simple optimal control example th a t has 
only one control in the system to  affect the state variables in order to maximize or 
minimize the objective functional in an optimal way. Next we will consider a  bigger 
system tha t has more state variables and a  control.

The following model is developed by Thalya Burden, Jon Ernstherger and K. 
Renee Fister [5] from the original model discussed in Panetta  and Kirschner [6 ] to 
investigate using cytokines to treat cancer done in conjunction with adoptive cellular 
immunotherapy(ACI)

There are three state variables in this model; x(t),  the activated immune system 
cells; y(t), the tumor cells; z(t), the concentration of IL-2 in the single tumor-site

adoptive celluar immunotherapy given. All parameters are assumed to be positive 
constants. The first equation is for the rate of change for the effector cell population 
where c is the antigenicity rate of the tumor and s\ is a critical parameter [6 ]. The 
parameter /i2 in the second term is the rate of death of the effector cells, therefore, the 
term represents the natural death of the cells. The last term  indicates the saturated 
effects of the immune response. The second equation represents the rate of change of 
the tumor cells, and the last equation gives the rate of change for the concentration

dx
—  =  cy -  fj,2x  +

f t  = r i y ( l  -  w
dz p2xy  
at g3 + y

92 +  y

axy

s ( 0 ) =  l ,y ( 0 ) =  l ,z ( 0 ) =  1 .

compartment. The function u(t) is the control th a t represents the percentage of

of IL-2.
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The control, u(t), is chosen to be a  piecewise continuous function with a  minimum 
of 0 and a  maximum of 1. When u(t) =  1, it shows that the maximal immunotherapy 
should be applied. In this study, they want to minimize the cost of the control while 
maximizing the effects of the immunotherapy. Therefore, they define the objective 
functional as

The goal of their study is to characterize the optimal control, u*, satisfying

The study shows reasonable and promising results that at first the control started 
at a maximum amount and then reduces sharply to zero. As there is no activity of 
the control, the cancer cells start to rise in number and tha t causes the control to 
come back and reduce the number of the cancer cells. The study seems to  give logical 
and reasonable output. Optimal control theory can be applied to many areas. In the 
next example, still a simple model, we will look at an economic model of production 
planning.

This example is an application of optimal control in economics [7]. The model 
contains one state variable x(t), one known continuous function r(t) and one control

—  =  —r( t) +  u(t), x(0) = x0, x(t)  > 0 , 0 <  u(t) < A, 0 < t < T,

the rate of demand for the commodity a t time t, and u(t) denote the rate of produc
tion at time t. The control is a piecewise continuous function tha t is controlled by 
the production planner, and x 0 is the initial stock level.

Let h be a function of the rate of production and b be the cost per unit time of 
storing a unit of commodity. Therefore, the cost per unit time, at time t, of operating 
the system is

J (u) =  x(t) -  y ( t ) +  z(t) -  u(t ) ) 2 dt

max J (u ) =  J(u*)
0 < u < l

u { t )

where the state variable x(t) denotes the stock of a commodity at time t, r ( t) denotes

f ( t , x ( t ) ,u ( t ) )  = h{u{t)) +  bx(t).

The total cost is given by
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The goal is tha t when the demand and initial stock are given, the production 
planner tries to determine the control at time t  while the total cost is minimized.

From the previous three examples, we can see tha t the formulation of optimal 
control problem mainly involves three parts; state variables, controls and objective 
functional. In general, an optimal control problem can be formed by a system of 
equations where state variables are described by [7]

with a  function <f> defined to be a real valued function. Generally, an optimal con
trol problem aims to find the optimal control, u(t), so th a t the functional ,/(</>, u) is 
minimized or maximized. To achieve this goal, we need to use Pontryagin’s Maxi
mum/Minimum principle and some numerical methods [1]. The Pontryagin’s Max
imum principle is described below; the minimum principle is similar and is not in
cluded here.

T h eo rem  1. I f  u*(t) and x*(t) are optimal for our problem as described above, 
then there exists a piecewise differentiable adjoint variable, A (t), such that 
H(t,x*(t) ,u(t) ,  X(t)) < H(t,  x*{t), u*(t), A(£)) for all controls u at each time t, where 
the Hamiltonian H  is

x{t) — x ( x 1(t), x 2(t), ■ ■ ■ , x n(t))

in n-dimensional euclidean space with initial conditions at time t  =  0

X ( t 0 ) = X 0 =  x ( x \ ,  X%, ■ ■ ■ ,  Z q ) .

The state of the system varies with time according to  the system of differential 
equations or the system of partial differential equations

where u(t) is the control. The objective functional is in the form

H  = f ( t , x(t) ,u(t ))  -I- A(t)g(t, x(t),u{t)),

and

A'(f) =  -  

A(T) =  0,

dH(t,  x*(t),u*(t), A(t)) 
dx

where to < t < T.
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After formulating the Hamiltonian and applying the theorem above, our optimal 
control problem now includes two systems of differential equations th a t need to be 
solved. The first system is from the original state equations and the second one is 
the system of adjoint equations. One necessary condition for the optimality is th a t 
at u*:

Due to the presence of both initial conditions ( for the state equations ) and final 
time conditions ( for the adjoint equations ), and the fact th a t most models of our in
terest are nonlinear, the optimal control system has to be solved numerically. We will 
use the Forward-Backward Sweep Method [1] to conduct the numerical simulation. 
The steps are described as follows:

Assume that u = u(t, x, A) can be found explicitly from the optimality condition.
Step 1. Make an initial guess for u  (usually 0) on the entire domain.
Step 2. Using the initial condition x(0) =  a and the values for u, solve x 

forward in time over the domain.
Step 3. Using the transversality condition A(T) =  b (usually 0) and the values 

for u and x, solve A backward in time.
Step 4■ Update u by the new x  and A values. We use the optimality condition

to update control u at this step.
Step 5. Check convergence. If values in this iteration and the last one are 

negligibly close, output the current values as solutions; otherwise, return to Step 2.
In the next chapter, we will present optimal control in cholera modeling and use 

this technique to conduct the numerical simulation.

2.2 M ATHEM ATICAL M O DELS O N CH O LERA  D Y N A M IC S

Optimal control theory can be applied to many epidemiological models. In this 
chapter, we apply optimal control to various cholera models. Cholera is an acute 
intestinal infectious disease caused by the bacterium Vibrio cholerae. The Vibrio 
cholerae could survive for a long time in the water and th a t an environmental reser
voir of Vibrio cholerae could be responsible for endemic cholera. Recent cholera 
outbreaks in Haiti (2010-2011), Nigeria (2010), Kenya (2010), Vietnam (2009), Zim
babwe (2008-2009), etc., continue leading to a  large number of infections and receiv
ing worldwide attention [8 ].
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The dynamics of cholera involve multiple interactions between the human host, 
the pathogen, and the environment [9], which contribute to both direct human-to- 
human and indirect environment-to-human transmission pathways. In an effort to 
gain deeper understanding of the complex dynamics of cholera, several mathematical 
models have been published.

2.2.1 TH E  K ER M A C K  A N D  M C K E N D R IC K  M ODEL

The very first compartmental model was presented in 1927 by Kermack and McK- 
endrick [2], and it has played a major role in mathematical epidemiology. The model 
includes three state variables S, I  and R,  where S  represents the susceptible state 
or the population not yet infected with the disease, I  is the state of the population 
that has been infected and also can spread the disease to the S  state, and R  is the 
recovered from the disease state and it is a safe state  th a t cannot give the disease 
to any other states. The model can be shown in figure 1. The model is a system of 
differential equations with three state variables

dS
dt
d£
dt

dR
dt

—kSI ,  

kS I  -  II, 

II,

FIGURE 1: The SIR model.

where k is the rate of infection or the contact rate, I is the rate of recovery and 
S  + 1 + R  = N,  where N  is the total population. In their study, the total population 
was considered as a fixed population and k and I were constants. The success of the 
model in predicting disease outbreaks was the beginning of the large body of stud
ies in mathematical epidemiology, particularly, in mathematical modeling of cholera.
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Below we summarize several representative cholera models.

2.2.2 TH E  ROLE OF TH E A Q U A TIC  R ESERVO IR B Y  C O D EQ O ’S 
W ORK

Codego in 2001 proposed a cholera model [16] tha t explicitly accounted for the 
environmental component, i.e., the Vibro cholerae concentration in the water supply, 
into a basic Susceptible-Infective-Recovered model. The incidence (or,the infection 
force) was modeled by a logistic function to  represent the saturation effect. The 
model was an extension of Capasso’s model [3], which was introduced in 1973 to 
describe the cholera epidemics in Italy and it is shown as follows:

^  =  n(H — S) — a \(B)S ,  
at

~  = aX(B)S — rl, 

dB
=  B(nb — mb) +  el,

(J/b

S{0) =  H, 1(0) >  0 ,5 (0 ) =  0,

where A(B) is the probability of a person to  catch cholera and it depends on the 
concentration of Vibro cholerae in the consumed water. It can be calculated from 
the following equation

A (B) B
K + B

The symbols in the equations axe listed below:

• S  is a state variable tha t represents the number of susceptibles.

• I  is a state variable tha t denotes the number of infected.

• B  is a state variable tha t represents the concentration of toxigenic Vibro 
cholerae in water.

• H  is the total human population.

•  n is birth and death rates in the human population.

• a is the rate of exposure to contaminated water.
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• K  is the concentration of Vibro cholerae in water th a t yields 50% chance of 
catching cholera.

• r  is the rate at which people recovers from cholerae.

• nb is the growth rate of Vibro cholerae in the aquatic environment.

• mb is the loss rate of Vibro cholerae in the aquatic environment.

•  e is the contribution of each infected person to the population of Vibro cholerae 
in the aquatic environment.

nH

Environmental
factors nb — mb

FIGURE 2: The diagrammatic representation of the Codego model.

2.2.3 TH E E X T E N SIO N  OF CO DG O ’S M ODEL B Y  H ARTLEY, M O R 
RIS, A N D  SM ITH

Hartley, Morris and Smith [10] in 2006 extended Codego’s work to include a hy- 
perinfectious state of the pathogen, representing the “explosive” infectivity of freshly 
shed Vibro cholerae, based on the laboratory observations [1 1 , 12]. This model was 
rigorously analyzed in [51].

The diagram shows tha t their susceptible state becomes the infected state after 
consuming concentrations by ingesting water contaminated with rate from HI 

vibrios or /?£, from non-HI vibrios. The modified model now has five state variables
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FIGURE 3: The diagrammatic representation of the Hartley, Morris and Smith 
model.

that give the following system of differential equations

^  =  b N - p LS  BJ ;  — /3h S  B "  - b S ,
dt kl +  B l fin + B jj

§  = feg B.Lr  + P h S  B “  - (7 +  t )I ,dt kl +  Bi, kh +  Bj{
dR
dt

dBH
dt

dBL
dt

= 7 /  — bR,

=  £ I ~ x B h ,

=  XB h - 6 l B l .

The parameters are described as follows:

•  Pl is the rate of drinking non-HI Vibro cholerae.

• fin is the rate of drinking HI Vibro cholerae.

•  kl is the non- HI Vibro cholerae concentration.

• b is the natural human birth and death rate.

• x  is the rate of decay from hyper- to reduced infectiousness.

•  £ is the rate of contribution to HI Vibro cholerae.

•  5l is the net of non-HI vibrios in the environment.
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• 7  is the rate of recovery from cholera.

2.2.4 A TH RESH O LD PA TH O G EN  D E N S IT Y  M ODEL

Joh, Wang, Weiss et al, [4] in 2009 Modified Codego’s model by a threshold 
pathogen density for infection, with a  careful discussion on human-environment con
tact and in-reservoir pathogen dynamics. They called their model an iSIR model 
where “i” represents the indirect transmission dynamics from contact with reservoirs 
containing human pathogens but not from human to human directly as shown be
low as state B.  They assumed tha t there is an explicit incorporation of a minimum

1 t 1
tiN 

------> s a(B>-TC*% 1 8
----- > R

\  fX W

B

FIGURE 4: The diagram shows the state B which denotes the pathogen density 
along with other main state variables in the iSIR model.

infectious dose of pathogen to cause infection, and it is an increasing function a ( B ) 
in the system of differential equations:

^  =  - r , ( B ) S  -  /j.S, +  ,</Y1 

~  =  a ( B ) S - n I - S I ,

f  " 5 , ^ R '

where a ( B ) is the transmittability of the disease function:
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, m _ J °  (B < c)
Q( ) ~  | (B > c)I (B—c)n+Hn lD -  W.

where n is a positive integer. The additional parameters are described below.

• 7r is the pathogen growth rate.

• fj, is the per capita human birth or death rate.

• 6 is the recovery rate. .

•  f  is the pathogen shed rate.

• a is the maximum rate of infection.

• c is the threshold pathogen density of infection.

• r  is the maximum per capita pathogen growth efficiency.

•  H  is the half-saturation pathogen density.

2.2.5 ESTIM A TIN G  TH E R E P R O D U C T IV E  N U M B E R S FO R  TH E  
Z IM B A B W E A N  CHOLERA O U T B R E A K

More recently, Mukandavire et al. [13] proposed a model to study the 2008- 
2009 cholera outbreak in Zimbabwe. The model explicitly considered both human- 
to-human and environment-to-human transmission pathways. The results in this
work demonstrated the importance of the human-to-human transmission in cholera
epidemics, especially in such places as Zimbabwe, a land-locked country in the middle 
of Africa.

In this model susceptible individuals become infected by ingesting environmental 
vibrios with the rates of ingestion of hyperinfectious vibrios given as,

Ae =  ~ ~ b  and A h =  Phi,
K  +  J D

where e represents environment-to-human transmission and h denotes human-to- 
human transmission. The parameters pe and Ph are rates of ingesting vibrios from 
the contaminated environment and through human-to-human , respectively. The 
system of differential equations of this model is
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UN

SB

FIGURE 5: The model flow diagram.

~ = f x N -  -  f a S I  -  fiS,
dt k + B

2.2.6 A W A TER BO R N E PA TH O G EN  M ODEL

Moreover, Tien and Earn [28] in 2010 published a water-borne disease model 
which also included the dual transmission pathways, with bilinear incidence rates 
employed for both the environment-to-human and human-to-human infection routes. 
No saturation effect was considered in Tien and Earn’s work. The model was the 
extension of the SIR model by adding a water state into the system and called 
the SIWR model. The model contains four state equations, where “W ” stands for 
pathogen concentration in water reservoir:
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txN -  bw S  -  b jS I  -  nS,  

b w W S  +  brSI  - 7 1 -  til,  

a l  -  £W,

7 /  -  nR,

where bw here is the transmission rate for water-to-person. The model can be de
scribed as a diagram below.

b,SIfiN

FIGURE 6 : The model flow diagram for the SIWR.

2.2.7 A  M ODEL OF O PTIM AL IN T E R V E N T IO N  STRATEG IES FO R  
CHOLERA

A rigorous global stability analysis was conducted [19] for many of the afore
mentioned models. In addition, Neilan et al. [20] in 2010 modified the cholera 
model proposed by Hartley, Morris and Smith [10] and added three control measures 
into the model. They consequently analyzed the optimal intervention strategies and 
conducted numerical simulation based on their model. No human-to-human infection 
route is considered in this work.

The model contains six differential equations and three controls, u(t), v(t) and

dS
dt
dl_
dt

dW
dt
dR
dt
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1 - p

FIGURE 7: The diagram of the model developed by Neilan et al. shows two states 
of B and of I.

m(t),  are introduced in the system:

B L(t)dS
dt

dt
dls
dt

= - ( 1  -  m(t))  

=  p (l - m { t ) )

Pl

Pl

kl + B L(t) 
B L(t)

- r r  =  (1  - P ) ( l  - m { t ) )

kl +  B L(t)
BUt)

+ Ph 

+ Ph

Bii( t)
kh +  Bn(t)  

B„{t)

Pl -

kh +  B H(t)
B H(t)

T P h ~

S ( t ) + u R ( t )  — v(t)S(t),  

S ( t ) — (ei +  7  x)7^(t), 

S(t)

dR
dt

dBH
dt

dBL
dt

k l  +  B i ( t )  k h  +  B t f ( t )

-  (1  -  u(t))(e2 + i 2 ) h ( t )  -  u(t)(e3 + 7 3 )Is (t)

=  v(t)S(t) +  7 \ l A { t )  +  72(1  -  u(t))Is (t) +  7 3 « ( i)^ s ( i)  -  

=  mlA(t) + ~ £BH(t),

= £BH(t) — SB d t ) ,

where Is  refers to individuals with symptomatic infections, and I  a refers to those with 
asymptomatic infections. In addition, the control u(t) represents the proportion of 
people with symptomatic infections who receive combined rehydration and antibiotic 
treatment, v(t) denotes the vaccination rate that moves susceptible individuals to the 
immune class, and m ( t ) is the sanitation rate. All other parameters are described 
below.



• p is the proportion of infections being asymptomatic.

•  t \  is the cholera-related death rate(asymptomatic).

•  e2 is the cholera-related death rate(symptomatic).

•  e% is the cholera-related death rate (symptomatic with treatment).

• 71 is the recovery rate(asymptomatic).

•  72 is the recovery rate(symptomatic).

•  73 is the recovery rate(symptomatic w ith treatm ent).

•  rji is the shedding rate(asymptom atic).

•  r)2 is the shedding rate(symptomatic).

•  kh is the half saturation constant (hyper inf.).

•  kl is the half saturation constant(less-inf-).

•  pH is the ingestion rate(hyperinf-).

•  Pl is the ingestion rate(less-inf.).

•  u) is the immunity wanning rate.

•  5 is the bacteria death rate.

•  £ is the bacteria transition rate.
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CHAPTER 3 

OPTIMAL CONTROL IN CHOLERA MODELING

3.1 M O DELING  CHO LERA D Y N A M IC S W IT H  CONTROLS

We aim to  better understand the effects of different control measures coupled 
with multiple transmission pathways of cholera, so as to gain useful guidelines for 
the effective prevention and intervention strategies against cholera epidemics. To 
tha t end, we study cholera dynamics with control measures incorporated into the 
model of Mukandavire et al. [13] which involve both the environment-to-human and 
human-to-human transmission modes. We modify the original model by adding three 
types of controls: vaccination, therapeutic treatm ent (including hydration therapy, 
antibiotics, etc.), and water sanitation. In general, these control measures are func
tions of time. We will examine how the effects and costs of control measures can be 
best balanced. Specifically, we will formulate a state-adjoint system and derive the 
necessary conditions for the optimal control strategies. We will then use numerical 
simulation to explore various optimal control solutions involving single and multiple 
controls.

3.1.1 M ATHEM ATICAL M ODEL

Let S(t), I( t)  and R(t)  denote the susceptible, the infected, and the recovered 
human population sets, respectively. The total population N  = S + 1 + R  is assumed 
to be a constant, which is a reasonable assumption for a relatively short period of time 
and for low-mortality disease such as cholera. Let also B  denote the concentration 
of the vibrios in the environment(e.g., contaminated water). The cholera model 
developed in [13] is a combined system of human populations and the environmental 
component(SIR-B), with the environment-to-human transmission represented by a  
logistic(or, Michaelis-Menten type) function and the human-to-human transmission 
by the standard mass action law.

We now extend this model by adding vaccination, treatm ent and water sanitation. 
We assume these controls are implemented continuously; specifically, we make the 
following assumptions:
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• Vaccination is introduced to the susceptible population at a rate of v(t), so 
that v(t)S(t)  individuals per time are removed from the susceptible class and 
added to the recovered class.

•  Therapeutic treatment is applied to the infected people at a rate of a(t), so tha t 
a(t)I(t)  individuals per time are removed from the infected class and added to 
the recovered class.

•  Water sanitation leads to the death of vibrios a t a rate of w(t).

As a result, we obtain the following dynamical system:

=  p N - P ' S - ^ - P h S I - t t S - v W S ,K ~r £>

~  PeS~ T n  + P h S I  -  ( 7  +  fj)I -  a(t)I,K. ~j~ Jd

=  £1 -  SB — w(t)B.

In addition, we have the equation for R: 

fin
(4) - ^ ^ I - n R  + a(t)I + v(t)S,

though this equation is not needed in the model analysis since R  — N  — S  — I.  
The diagram of this model is the same as Figure 5. In this system, the param
eters p, f, <5,7 , k, pe, and /?/, are all positive constants; p. denotes the natural hu
man birth/death rate, £ is the rate of human contribution (e.g., shedding) to Vibro 
cholerae, 5 is the natural death rate of Vibro cholerae, 7  is the rate of recovery from 
cholera, k is the pathogen concentration tha t yields 50% chance of catching cholera, 
and /3e and fih represent rates of ingesting virbrios from the contaminated water and 
through human-to-human interaction, respectively. A typical set of numerical values 
for these parameters are listed in Table 1. In particular, when all controls are set 
to zero, i.e., v = a = w = 0 , the above system is reduced to the original model 
developed in [13].

(1)

(2)

( 3 )

dS
dt
dJ
dt

dB
dt
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Parameter Symbol Value Source
Total population N 1 0 ,0 0 0 0
Natural human birth and death rate A* (43.5 yr)~ l [141
Concentration of Vibro cholera in environment K 106 cells/ml [161
Rate of recovery from cholera 7 (hday)~l [10]
Rate of human contribution to Vibro cholerae 10 cells/ml-day [101
Death rate of vibrios in the environment <5 (30day)-1 [101
Ingestion rate from the environment Pe 0.075/day [13]
Ingestion rate through human-human interaction Ph 0 .0 0 0 1 1 /day [13]

TABLE. 1: Cholera model parameters and values.
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3.1.2 O P T IM A L  C O N T R O L  S T U D Y

Now we turn to optimal control study on the model (1 - 3) with time-dependent 
controls v ( t ) , a ( t ) and w ( t ) .  We consider the system on a time interval [0,T]. The 
functions v ( t ) ,  a ( t ) and w ( t )  are assumed to be at least Lebesgue measurable on [0,T], 
The control set is defined as

Q =  { ( v ( t ) , a ( t ) , w ( t ))\0 <  v ( t )  <  umax, 0 <  a f t )  <  a max, 0 <  w ( t )  <  w max} ,

where v max, a max and wmax denote the upper bounds for the effort of vaccination, 
treatment, and sanitation, respectively. These bounds reflect practical limitations 
on the maximum rates of controls in a given time period.

The presence of time-dependent controls makes the analysis of the system (1 - 2) 
difficult. In fact, the disease dynamics now depend on the evolution of each control 
profile. In what follows, we perform an optimal control study on this problem. We 
aim to minimize the to tal number of infections and the costs of controls over the 
time interval [0,T]; i.e.,

( 5 )

f  I ( t ) + C 2 i v ( t ) S ( t ) + C 2 2 v ( t ) 2+ C31a ( t ) I ( t ) + C 32a ( t ) 2+CAi w ( t ) + C 4 2w ( t )  
Jo 1

Here the parameters Cy (i =  2,3,4; j  = 1,2), with appropriate units, define the 
appropriate costs associated with these controls. Quadratic terms are introduced to 
indicate nonlinear costs potentially arising a t high intervention levels [17, 18, 20]. 
Particularly, the cost terms associated with the sanitation, c ^ w f t )  +  C42w ( t ) 2, are 
taken from [20]. The minimization process is subject to the differential equations (1 
- 3), which are now referred to as the state equations. Correspondingly, the unknowns 
5 , 1 and B  are now called the state variables, in contrast to the control variables v, a 
and w. Our goal is to determine the optimal control, v*(t), a*{t) and so as to
minimize the objective functional in (5).

Here we first establish the following theorem on the existence of optimal control:

T h eo rem  2. There exists (v*(t),a*(t),w*(t)) € fi such that the objective functional 
in (5) is minimized.

Note tha t the control set is closed and convex, and the integrand of the objective 
functional in (5) is convex. Therefore, based on the standard optimal control theorem
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in [2 2 ], the conditions for the existence of optimal control are satisfied, as our model 
is linear in the control variables.

We will follow the method described in [1 , 17], also briefly reviewed in Chapter 
2 of this thesis, to seek the optimal control solution. This method is based on 
Pontryagin’s Maximum Principle [21] which introduces the adjoint functions and 
represents an optimal control in terms of the state and adjoint functions. Essentially, 
this approach transfers the problem of minimizing the objective functional (under 
the constraint of the state equations) into minimizing the Hamiltonian with respect 
to the controls.

Let us first define the adjoint functions As, A/ and Ab  associated with the state 
equations for S', I  and B,  respectively. We then form the Hamiltonian, H, by mul
tiplying each adjoint function with the right-hand side of its corresponding state 
equation, and adding each of these products to the integrand of the objective func
tional. As a  result, we obtain

H  = I ( t ) +  C2i v ( t ) S ( t )  +  c22v ( t )2 +  c31a ( t ) I ( t )  +  c32a ( t )2 + C n w ( t )  +  c42m(i) 2 

B
+  A s 

+  Aj 

+  A b

fxN

PeS-

-PeS

B

, _ PhS J  -  fxS -  v(t)S
K +  LJ

+ phs i  -  ( 7  +  / J . ) I  -  a(t)I
k +  B  

S I - 6 B -  w (t)B ^.

To achieve the optimal control, the adjoint functions must satisfy

(6)

( 7 )

(8)

dXs dH
dt dS

— A/ Pe
d \ i dH
dt d l

d \ s dH
dt dB

=  ~c 2iv(t) +  As 

B

Pe
B

K + B +  P h i  +  11 +  v ( t )

+ P h i ] ,K + B

=  - 1  -  c3 1a(t) +  AsPhS -  A/ phS  -  ( 7  +  n) -  a(t) 

k S  . „ kS
A sPe A i P e +  A,(K + B)  2 ' - ^ e (K + B f

with transversality conditions (or final time conditions):

(9) As ( T ) = 0 ,  A/(T) =  0, A B(T)

(5 -1- w ( t )

0 .

The characterizations of the optimal controls, v*(t),a*(t) and are based on
the conditions

(10)
dH
d v

=  0 ,
dH
da

=  0 ,
dw 0 ,
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respectively, subject to the constraints 0  <  v < vmax, 0  <  a < amax, and 0  <  w  < 
iomax- Specially, we have

(1 1 ) =  max 0 ,m in(v(t),i;max)

(1 2 ) a*(t) =  max 0 , min(a(t), amax)

(13) w * ( t )  =  max 0, min(n;(t), w max)

where

(14) v(t) =

(A, -  c3,)/(t)
(15) o(t) =

(16) w(t) =

2C32 
ABB(t) -  C41

2C42
We summarize the above results by the theorem below:

T h eo rem  3. Given an optimal control (v*(t) , a*(t) , w*(£)) and corresponding solu
tions to the state equations (1 -3) , there exist adjoint variables satisfying the system 
(6 - 8 ). Furthermore, the optimal control of the problem (5) is represented by ( 1 1  - 
13).

The overall optimal system, which consists of the state equations with the initial 
conditions, the adjoint equations with the transversality conditions, and the opti
mal control characterization, has to be solved numerically. We apply the Forward- 
Backward Sweep Method [1] to solve the optimality system in an iterative manner. 
First, the state equations (1 -3 )  are solved forward in time by a fourth-order Runge- 
K utta method, with an initial guess for the control variables. Next, the adjoint 
equations (6  - 8 ) are solved backward in time using the solutions of the state equa
tions. The control is then updated with the new values of the state and adjoint 
solutions, and the process is repeated until the solutions converge. See chapter 2  for 
a more detailed description.

To carry out the numerical simulation, we list the values for the various transmis
sion rates in the state equations (1 - 3) in Table 1. Particularly, we take the values 
of p, (3e and (3h from Zimbabwean cholera data  [13]; their values are thus specific to 
Zimbabwe and may be different for other cholera endemic places. Meanwhile, the 
cost parameters in (5) are assigned with appropriate values [20]. We also set the 
initial infection number I (0) =  1000 and the entire period of time T  = 100 days.
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We first consider the following set of values for the cost parameters

(17) c2i =  2, c22 =  10, c31 =  10, c32 =  10, c4i =  10, c42 =  20.

The per capita cost for vaccination, C21, takes a lower value than other costs, based 
on the fact tha t vaccination is usually the most commonly used intervention strategy 
for various infectious diseases. In particular, the World Health Organization [14] has 
recently strengthened its recommendation for using oral cholera vaccines to control 
epidemic and endemic cholera.

Figure 8 shows the infection curves for the model without controls, i.e., v  = a = 
w  = 0, and tha t with the optimal controls. It is clearly seen th a t the infection 
level has been significantly reduced due to  the incorporation of the three types of 
controls. For comparison, let us also consider the case with vaccination being the 
only control measure. The optimal control problem can be reformulated to determine 
the optimal strategy for vaccination, by simply setting the other two controls to 
zero (i.e., a =  w =  0) and using the same cost parameters for vaccination. The 
infection curve with this vaccination only strategy is also shown in Figure 8 . As can 
be expected, the infection level with vaccination only is slightly higher than that 
with multiple controls, yet it still shows significant improvement compared to the 
no-control infection curve.

Figures 10 and 11 show the profiles of the optimal vaccination rates in these two 
cases, i.e., with three controls combined and with vaccination only. We observe a 
common pattern that the optimal vaccination rates are a t the maximum ( «max =  
0.7) initially and remain a t tha t level for several days ( about 7 days for the first case, 
and 9 days for the second case), before decreasing to  almost zero. The shorter period 
th a t the maximum vaccination rate stays in the first case is due to the combination 
of the other two types of controls. Additionally, we sketch the profiles of the optimal 
treatm ent rate and sanitation rate in Figure 13. We observe that the therapeutic 
treatm ent starts with the maximum rate (vmax = 0.5) but rapidly decays to a level 
close to zero, whereas the sanitation rate remains a t a relatively low level for a much 
longer period of time.
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FIGURE 8 : Infection curves for the cholera without control (v = a — w — 0), with 
three controls in optimal balance, and with vaccination only (a = w =  0 ) in optimal 
setting, based on the cost parameters in (17).
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FIGURE 9: The figure shows a regular shape of recover state  for the model without 
control.
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FIGURE 10: Optimal vaccination rate with three controls based on parameters in
(17).
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FIGURE 11: Optimal vaccination rate with vaccination only based on parameters
in (17).
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FIGURE 12: Optimal balance of the treatm ent rate based on parameters in (17).
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FIGURE 13: Optimal balance of the sanitation rate based on parameters in (17).
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Next we consider another set of values for the cost parameters, by decreasing the 
per capita cost for the therapeutic treatm ent and increasing the cost for sanitation:

(18) C21 =  2 , C22 =  1 0 , C31 =  2 , C32 =  1 0 , C41 =  1 0 0 , C42 =  2 0 .

The vaccination cost is kept the same as before. We again conduct simulations 
for the optimal strategy of the three controls combined and that for vaccination only. 
The results are presented in Figures 14 - 18.

6000
- With Three Controls 
• Without Control 
■ Vaccination Only5000
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T5 3000
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1000
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FIGURE 14: Infection curves for the cholera model without control (v = a = w = 0), 
with three controls in optimal balance, and with vaccination only (a = w = 0 ) in 
optimal setting, based on parameters in (18).
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FIGURE 15: Optimal vaccination rate with three controls based on parameters in 
(18).
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FIGURE 16: Optimal vaccination rate with vaccination only based on parameters
in (18).
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FIGURE 17: Optimal balance of the treatm ent rate based on parameters in (18).
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FIGURE 18: Optimal balance of the sanitation rate based on parameters in (18).
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W ith the reduced costs for therapeutic treatment, we observe th a t both the 
strength and effective period of the optimal vaccination ra te  are decreased (See Figure 
15) to achieve the optimal balance between controls. The treatment rate starts with 
the maximum (vmax =  0.5) and stays there for more than 20 days, then gradually de
cays but remains at significant level throughout almost the entire period of 1 0 0  days. 
The increased level of treatm ent also accounts for the rapid decay of the infection 
curve starting from the very beginning (see Figure 14). This observation indicates 
that there is an interaction between the vaccination and treatm ent in achieving the 
optimal balance; their relative costs play an important role in determining the length 
and strength of each control.

In addition, we see there is no significant change to  the level of the optimal 
sanitation rates based on the two different sets of cost parameters ( see Figure 13 
and 18), which implies that the role of water sanitation in containing a cholera 
outbreak seems to be minor in the optimal balance of controls, under our model and 
population settings. Particularly, we note tha t our model parameters are specific to 
Zimbabwe, a land-locked country in middle Africa where the level of contact between 
infected people and the estuarine environment is relatively low.

Finally, we mention tha t similar patterns are observed for different initial infection 
sizes and different values of cost parameters, and other results are not shown here.

3.2 A  R E FIN E D  CHO LERA M ODEL W IT H  O PTIM AL CO NTRO L

In the previous section, we have presented a basic model to  study cholera dynam
ics with optimal control. We note tha t the model relies on (unrealistic) assumptions 
tha t each control has 100 % efficacy. In what follows, we improve this model by 
considering more realistic efficacy of the controls, and by introducing a new class of 
vaccinated people. Thus, our model classifies the human population, denoted by N ,  
into the susceptibles (S), the vaccinated (I/), the infected or infectives (/) , and the 
recovered (R ).

We assume th a t individuals are born and die at an average rate /i. The concen
tration of vibrios in contaminated water is denoted by B. Susceptible individuals ac
quire cholera infection either by ingesting environmental virbrios from contaminated 
aquatic reservoirs or through human-to-human transmission, a t rates Xe =  (1—p)£^§ 
and Xh = (1  -  p)(3hl respectively, with the subscripts e and h denoting environment- 
to-human and human-to-human transmissions, respectively. Here, k is the pathogen
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concentration tha t yields 50% chance of infection cholera, and p =  ep is the sanita
tion induced preventability to cholera infection, which is a  product of the sanitation 
efficacy e and compliance p. We further assume th a t susceptible individuals are vac
cinated at rate (f>(t), where t  is the time variable, with a  vaccine th a t has a degree 
of protection a  =  (1  — e), where e is the vaccine efficacy. Infected individuals are 
treated a t rate r ( t ) ,  and some recover naturally a t a rate 7  into the recovered class. 
Infected individuals contribute to Vibro cholerae in the aquatic environment at a 
rate £, and vibrios have a net death rate (5 in the environment. In addition, water 
sanitation leads to the death of vibrios at a  rate v(t).

We thus have the following system of differential equations describing the cholera 
dynamics with controls:

j o  r  / ?  “i

(19) - = f i N - ( l - p )  + Phi s  -  {<j>{t) + p)S,dt
dV

(2 0 ) —  =  <j>{t)S -  a ( l  -  p) P e - — B +  Phidt
d l

B
V - p V ,

B
(2 1 ) -  =  (1  -  p) ^  + phI  {S +  aV )  -  (r(t) +  7  +  p )h

k + B

(22) ^  -  ( 6  +  v(t))B, 

together with
HR

(23) £ £  =  ( r (t) + 7  j j . / x A

The diagram of this model is shown in Figure 19. Since N ,  the total population, is 
fixed such tha t N  = S  + V  + I  + R, we will not need equation (23) in our model 
analysis.

In what follows, we perform an optimal control study on this problem to explore 
how the intervention effects, costs can be best balanced, and the control strategy can 
be best designed to account for the complex and multiple transmission pathways of 
cholera.

We consider the system on a time interval [0, T] for some T  > 0. The control is 
defined as

(24) T =  {(c/){t),T(t),u(t)) | 0 < #(t) Pi 0 max> 0  <  r ( t) <  r max, 0 <  v{t) P  k'max})

where (j>max,Tmax and i/max denote the upper bounds for the effort of vaccination, 
treatment, and sanitation, respectively. These bounds reflect practical limitations 
on the maximum rates of controls tha t can be implemented in a given time period.
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FIGURE 19: The diagram of a refined cholera model with optimal control.

We aim to minimize the total number of infections and the costs of controls over 
the time interval [0, T];i.e.,

• rmn I
(<!>,'

min [  \l( t)  + c2\(j>{t)S{t) +  c220 (t) 2 +  c3 ir ( t) I ( t)  +  c32r ( f ) 2 
r  J Q l

(25) ■bC4iy(t)S(t) +  C42M(t)2 dt.

Here again the parameters Cij,i =  2 ,3,4; j  =  1 , 2 , define the appropriate costs asso
ciated with these controls. Quadratic terms are introduced to account for nonlinear 
costs potentially arising at high intervention levels [17, 18, 20]. The minimization 
process is subject to the differential equations in (19 - 22), which we refer to as the 
state equations. Our goal is then to  determine the optimal control, r*(t) and 
z/*(f), so as to minimize the objective functional in (25).

We first note tha t the control set F is closed and convex, and the integrand of 
the objective functional in (25) is also convex. Meanwhile, our model is linear in the 
control variables. Hence, based on the standard optimal control theorems in [22], we 
obtain the following theorem.

T h e o re m  4. There exists ((j>*(t), t *(t ) , v*(t)) G U such that the objective functional 
in (25) is minimized.

To proceed, we will again use the Pontryagin’s Maximum/Minimum principle [2 1 ] 

to seek the optimal control solution. We define the adjoint functions X s ,^ v , ^ i  and 
Ab  associated with the state equations for S, V, I  and B, respectively. We then form
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the Hamiltonian, H, by multiplying each adjoint function with the right-hand side of 
its corresponding state equation, and adding each of these products to  the integrand 
of the objective functional. As a result, we obtain

H  =  I(t) + c2i<f>{t)S(t) + c220 (t) 2 +  c31t(£)I(£) + c32t (£ )2 +  Ciiv(t)B(t) +  c42t/ (£ )2

+  As 

+  Av 

+  A i 

+  A b

p N  -  (1  -  p) + Phi] s  -  (0 (f) 4- At) S']
K  +  B

'[Pert,-

(1 -  p) [Pe- ^ - 5  + Phi] (S  + a V )  -  (r(t) +  7  +  p)I

m s  -  a ( l  -  p) [Pe-rT~ 5  +  Phi] V  ~  pV \
k  + B

B
k  + B  

Z I - ( 6  + v(t))B

To achieve the optimal control, the adjoint functions must satisfy

d \ s
dt

d \ y
dt
d \ i
dt

dXs
dt

8 H
o s '
d H

'd V '
OH

‘ d l  ’ 
dH
d B '

These yield 

dXs

(26)

(27)

(28)

(29)

dt

dXy
dt

dXj
dt

dXs
dt

—c2 i<t> + X s 

— A y(j) — A j

A y

( 1  ~  P)[P

(! -  P) [P> 
B

B
e k  + B  

B
k  + B

+ P h i ]  + (4> +  P )  

+  P h l ]

~  p )  [Pe——p + P h i ]  + P
s k  + B  

BCT(! _  p) [pe— g  +  ph!]

=  — 1 — c z x t  + As(l — p)PhS +  Xycr(l — P)phv  

—  A/ [(1 — p)Ph(S  +  aV)  — ( r  +  7  +  p)] — A

=  —£41  ̂+  As(l — p )P e
k S  . . .  k V+ Xv a ( l  -  p ) P e

{ k  + B) ■ ( k  + B)2

-  A / ( l  -  p)Pe- j  - t . i  -i- ab (5 +  ;/),
(k + B y
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with transversality conditions (i.e., final time conditions):

(30) AS(T) =  0, Xv (T) = 0, Xj (T)  =  0, XB(T) = 0.

The characterizations of the optimal controls, cj)*(t),T*(t) and i are based on the 
conditions

,01. d H  A d H  n d H  n
 ̂  ̂ d4> ~  ’ dr ~  ’ dv ~  ’

respectively, subject to the constraints given in (24). Thus we have

(32) (/)* (t ) =  max[0, m in(0(t), <£max)],
(33) r*(t) = max[0, m in(f (£), rmax)],

(34) u*(t) =  max[0, min(^(t), i/max)],

where

0 ( £ )  —  _  c 2 i ) S ( t )

f ( t )  =  

v ( t )  =

2 C22
(A / - c 3i)J(f) 

2 C 3 2  

(XB -  cn)B(t)
2C42

Again to summarize, our optimal control problem consists of the state  system (19 
- 22) with initial conditions, the adjoint equations (26) - (29) with the transversality 
conditions, and equations (32) - (34) to characterize the optimal controls. Such a 
problem has to be solved numerically. Similar to the previous model, we apply the 
Forward-Backward Sweep Method [1] to solve it in an iterative manner.

The various transmission rates are listed in Table 1. We assume th a t the unit 
costs for vaccination and treatment are about the same, whereas the cost per percent 
reduction of vibrio concentration through sanitation is doubled. We further assume 
that for each control, the per capita cost a t the quadratic level is about 2 0 % of tha t 
at the linear level. Thus, we assign the following set of values (with appropriate 
units) to the cost parameters in (25):

(35) c2i =  50, c22 =  10, c3i =  50, c32 =  10, c41 =  100, c42 =  20.

Based on practical observations and empirical values [8 , 14], we set the upper bounds 

of the rates for the three controls as <pmax — 0.7, r max =  0.5, and vmax =  0.1.
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We also set the initial infection number 7(0) =  1000 and the entire period of time 
T  =  100 days.

Figure 20 shows the infection curves for the model without controls, i.e., 4>(t) =  
r(t)  =  v(t) =  0, and that with the optimal controls implemented. We clearly see 
th a t the number of infections has been significantly reduced due to the incorpora
tion of the three types of controls. Here we also present the case with vaccination 
being the only control measure; in this case the optimal control problem is reformu
lated to determine the optimal strategy for vaccination, by setting r(t) — v{t) =  0 

and using the same cost parameters for vaccination. The infection curve with this 
vaccination-only strategy is shown in Figure 20 with the dash-dot-line. We observe 
tha t with vaccination only, the infections still reach a high level, though the peak 
value is lower than tha t without controls. This is evidence tha t multiple intervention 
methods, which target both the direct and indirect transmission routes of cholera, 
would achieve better results than a single control such as vaccination only.

Figure 21-23  further show the profile of each of the three controls in their optimal 
balance. We observe tha t both the vaccination rate and the treatm ent rate start with 
their maximum values and remain a t th a t level for a number of days (about 7 days 
for vaccination, and 35 days treatm ent), before decreasing to lower levels of strength. 
The pattern is similar for sanitation, except tha t the start of maximum sanitation 
rate lags for 1 - 2 days.
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FIGURE 20: The infection curves for the model without controls and with the 
optimal controls implemented.
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FIGURE 21: The optimal vaccination rate.
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FIGURE 22: The optimal treatm ent rate.
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FIGURE 23: The optimal sanitation rate.
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As can be expected, the costs of these controls directly affect the strength and 
duration of the controls in their optimal balance. For demonstration, we now assume 
that the linear per capita costs for vaccination and treatm ent (i.e., C 2 1  and C 3 1 )  can 
be significantly reduced compared to those in (35), and consider the following cost 
parameters:

(36) C21 =  2, C22 =  10, C31 =  2, C32 =  10, C41 =  100, C42 =  20.

This set of cost parameters lead to  improved control results. The reason is th a t with 
lower costs for vaccination and treatm ent, these two controls can be implemented with 
higher average strength and longer duration, thus further reducing the infections. 
Indeed, Figure 24 and 25 show the profiles for the optimal vaccination and treatm ent 
rates in this case, where we see th a t the vaccination and treatm ent remain a t their 
maximum levels for about 12  days and 60 days, respectively; both are significantly 
longer than those in Figure 20 - 23. In addition, the vaccination rate now stays at 
the level of 0.3 from day 20 until near the end of the time interval.
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FIGURE 24: The optimal vaccination rate.
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3.3 SIM ULA TIN G  O PTIM AL V A C C IN A T IO N  TIM ES D U R IN G  
CHO LERA O U T BR E A K S

Although the use of vaccines has been increasingly recognized as an effective 
control measure in cholera endemic regions, current strategies and experiences for 
reactive use of cholera vaccines after an outbreak has started to remain limited, and 
guidelines for cholera vaccination in complex epidemic and emergency settings (e.g., 
refugee camps) are urgently needed [52]. In particular, question on the optimal time 
frame to pursue mass vaccination during a cholera outbreak remains to be answered.

In this section, we use mathematical modeling and simulation techniques to shed 
light on the value of vaccination in controlling ongoing cholera outbreaks. Partic
ularly, we will formulate a new optimal control model and explore optimal times 
during epidemics for deploying cholera vaccines th a t best balance the gains and costs 
of vaccination.

3.3.1 M ETH O D S

We modified our model in Section 3.2 with vaccination as the only control:
JO D
- £  = ? > * -  Wc- ^ t b  + M s  ~  W(i) +

(37) ^  = <P(t)S -  + M V  -  k V,
J f  D
* - M ^ T 5  +  A ')< s  +  * v ) - ( . T  +  ri / .

d t  s

In addition, the equation for the recovered individuals is given by

(38) =  7 /  -  ,,R.

The diagram of this model is the same as Figure 19. We will construct an optimal 
control model [17, 18, 20] to seek an answer on the “best time”, in terms of the total 
costs (or efforts), to deploy the vaccine after the onset of an outbreak. We aim to 
minimize the following objective functional:

(39) J  \ c Q l { t ) +  c 1̂ { t ) S { t )  d t ;

(40) 4>{t) = 0 when t  < d ,

where the parameter Co denotes the average cost incurred by each infected individual 
and Ci denotes the per capita cost of the vaccines, and where d  is the time w h en
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vaccination starts. For simplicity, we consider only the linear control in the objective 
functional in (39). We emphasize th a t the constraint (40) distinguishes our optimal 
control model from those common ones [1]. The parameter d can be varied, which 
allows us to explore the optimal vaccination strategies with different starting times.

Since the realistic value of the cost parameter Co is difficult to estimate, we will 
consider the following objective functional, instead, to make the discussion slightly 
simpler:

(41) J(4>, d) =  f  I( t)  +  C2 i 4>(t)S(t) dt; 4>{t) = Q when t < d .
J  o ' -  -*

That is, we have normalized the cost of each infection to  1 in the above equation; 
correspondingly, C21 is now the normalized cost parameter associated with vaccina
tion. This objective functional can also be interpreted as a balance between the gain 
of the control (i.e., reduction of infections) and the cost of the control.

For a given value of d (0 <  d < T ) , a control set is defined as

(42) T(d) =  { 0 (i) | 0 <  <p(t) — 0 max ) <t>(t)= 0  if t < d } ,

over which the optimal control problem (41) can be solved. Here <pmax denotes the 
upper bound of the vaccination rates which reflects practical limitations on the effort 
of vaccination th a t can be pursued in a given cholera epidemic setting.

We first note that for each d , the control set T(d) is closed and convex, and the 
integrand of the objective functional in (41) is also convex. Meanwhile, our model 
is linear in the control variable cj>. Hence, based on the standard optimal control 
theorems in [22], there exists a 4>*{t) for any 0 <  d < T  such th a t the objective 
functional in (41) is minimized. Indeed, the optimal control is also unique for small
T  due to the Lipschitz property of the state equations and the boundedness of the
state variables [22, 24]. In view of this, let us denote

(43) f{d)  =  d) =  min J(<£, d).
<t>

In what follows, we will again apply the Pontryagin’s Maximum/Minimum Prin
ciple [21] to seek the optimal control solution. We first define the adjoint functions 
As, Xy, A/, and Ab associated with the state equations for S, V, I  and B , respec
tively. We then form the Hamiltonian H, using the objective functional in (41) and 
the state equations in (37):

<i T T  r/.\ t / 1  dS  d\^ d i  d!3
(44) H  = I(t) + C2 i<p(t)S(t) +  A5 —  +  +  B~dt ‘
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To achieve the optimal control, the adjoint functions must satisfy

dXs _  d H  dXv  _  d H  d \ j  _  d H  d \ B  d H
^ } d t  ~  d S ’ d t  ~  d V '  d t  ~  d l ’ d t  ~  d B '

These yield

= ~ C214>(t) +  X${Pe——T7 +  Phi)at K, +  jD

+  A s(<P(t) + fP) — A V<i>{t) — A i(Pe—— +  Phi),K, “T"

I F  = Xva(Pe^ f  B  +  M  +  Xv^  ~  X l W e ^ T B  +  M ) '

^  =  - 1  +  AsPhS +  AvoPhV  -  Xj(Ph(S + a V )) +  A, ( 7  +  /x) -  AB£,

—  =  XSPeS (K + B }2 +  Xv (T& V (k + B f  ~  Xl^ S  +  a V \ K + B )2 +  Xb6’ 

with transversality conditions (i.e., final time conditions):

(46) As (T) =  0, \ V(T) = 0, A,(T) =  0, AB(T) =  0,

and

d H  .
-qq =  (C21 +  Ay — A s)S{t).

Meanwhile, the characterization of the optimal control, <fr*(t),  is based on the switch
ing condition [1, 23]:

Bf f  r)H
(47) <j>* =  <pmax if —  < 0; (j>* = 0 if —  > 0,

subject to the constraints given in (42). Numerically, we have verified tha t the value 
of the switching function ^  is never zero on a non-empty time interval; tha t is, the 
case of singular control does not occur in our optimal control study.

In summary, given the optimal vaccination <f>*(t) and corresponding solution to 
the state system (37), there exist adjoint variables satisfying the system (45). Fur
thermore, the optimal control is characterized by equations (42) and (47). Using the 
forward-backward sweeping method, we have conducted numerical simulation to our 
optimal control model, and the simulation results are presented in next section.

3.3.2 RESULTS

We list in Table 2 the model parameters and their values used in our numerical 
simulation. Figures 26 and 27 show typical scenarios for the infected number versus
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time without vaccination (the solid line) and th a t with vaccination (the dashed line). 
In Figure 26, vaccination starts right a t the beginning of the cholera epidemic, i.e., 
d — 0 in the objective functional in equation (41), whereas in Figure 27, vaccination 
starts 2 days after the onset of the epidemic, i.e., d =  2 . For each case, the model is 
numerically solved to obtain the optimal control solution. The cost param eter is set 
as C21 =  1.0 in the optimal control simulation. It is clear tha t in both cases vaccina
tion significantly reduces the number of infections throughout the cholera outbreak. 
In particular, the peak value of the infection is about 5,200 if no vaccination is imple
mented; this number is reduced to 800 (or, 85% reduction) with optimal vaccination 
starting from the very beginning, and to 1, 500 (or, 71% reduction) with optimal 
vaccination starting from day 2 .

Figures 28 and 29 show the profiles of the optimal control, <p*(t), corresponding 
to Figures 26 and 27, respectively. In each case, we see th a t vaccination starts at the 
maximum rate 70% (note that vaccination starts at d =  2 in case b) and remains a t 
this level for most of the 100-day period, then decreases to zero toward the end of the 
time. A bang-bang type of control is displayed for each case. The vaccination rate in 
case (a) stays a t the maximum strength longer than that in case (b), as the infection 
curve corresponding to case (a) decays to 0  slightly slower than th a t corresponding 
to case (b); see the dashed lines in Figures 26 and 27.

Our focus, however, is to investigate the settings where vaccination is pursued af
ter the onset of the cholera outbreak and to seek optimal times to deploy the vaccines. 
To tha t end, we have carefully examined different choices of the cost parameter c21 
and the vaccination starting time d . For a given value of c2i , we vary the value of d 
in the range 0 < d < T , where T  is set as 100 days; for each value of d , we conduct 
the optimal control simulation for the objective functional (41) on the domain (42), 
and evaluate the minimized cost f ( d ) . We then plot the curve f(d)  vs. d to display 
the variation of the minimal cost with respect to the time for starting vaccination 
after the onset of the outbreak.

We note th a t when d is large; i.e., when vaccination is applied near or after the end 
of the cholera outbreak, the effects of vaccination are tiny and f(d)  is approximated 
by Jq I ( t )d t  ~  5 x 104. In fact f(d)  -> 5 x 104 as d —> T .  This is demonstrated 
in Figures 30 and 31. For case (a), c2\ =  0.1; for case (b), c2i =  0.5. Though 
the two curves look similar, the difference in c21 , the normalized per capita cost for 
vaccination, is represented by the slight difference of the initial positions, i.e., the
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values / (0 ) ,  between the two curves. We observe that /(0 )  ~  3.4 x 104 in case (a) 
and /(0 )  «  3.8 x 104 in case (b). We also observe that f ( d ) is increasing with d for 
both curves.

6000
 Without Control
-  -  -  With Optimal Control
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4000
"O
«  3000

2000
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** IBilW 
8040 60

Time(in days)
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FIGURE 26: The number of infected individuals versus time for the case without 
vaccination and tha t with optimal vaccination when optimal vaccination starts from 
t= 0 .

Next, we have conducted the simulation using various values of the cost parameter 
C2 1 . For each value of C21 , we run the optimal control simulation for d in the range 
of 0 < d < T  and plot the curve for f(d)  vs. d. Some typical results are presented in 
Figure 32 - 35. We clearly observe th a t as the value of c2i increases, the initial value 
of /(d ) , i.e., / ( 0 ), also increases, a natural consequence of the increased per capita 
cost of vaccination. Meanwhile, for each value of C2 1 , the curve of f (d )  approaches 
5 x 104 as d —> T . The more interesting pattern, however, is that different sizes of 
C21 lead to two different behaviors of the curve f { d ) . We found tha t when C21 < 1.4 
{e.g., Figure 30 - 33), f{d)  always increases with d and approaches 5 x 104 eventually. 
In contrast, when C21 > 1 .4  (see Figure 34 and 35 for two typical examples), then 
/(d ) remains approximately a constant, 5 x 104, for all values of d . This latter 
scenario illustrates an extreme in the control strategy, <j>* =  0 ; i.e., no vaccination. 
The implication is that if the unit cost of the vaccines is too high (i.e., higher than 
a certain value), then we should give up vaccination to achieve the optimal control,
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FIGURE 27: The number of infected individuals versus time for the case without 
vaccination and th a t with optimal vaccination when optimal vaccination starts from 
t= 2 .

in the sense to minimize the objective functional in (41).
Based on our model, the main numerical observation is th a t if the normalized per 

capita cost of the cholera vaccine is lower than a critical value, ~  1.4, then the 
earlier the vaccine is deployed, the better; in other words, the optimal time would 
be d = 0 . In contrast, if C21 is higher than  the critical value c?n , then vaccination 
would not contribute to the optimal control; consequently, there is no optimal time 
for vaccination deployment.

3.3.3 D IS C U S S IO N

In this section we have formulated an optimal control model to analyze the effects 
of cholera vaccines in epidemic settings in an attem pt to understand optimal times 
to pursue vaccines tha t best balance the gains and costs of vaccination for cholera.

The optimal strategy depends on what we aim to optimize. Obviously, if the sole 
purpose of the disease control is to minimize the total number of infected people, i.e.,

(48) min f  I (t ) d t ,
Jo
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FIGURE 28: Case(a): Profile of the optimal control, <p*(t) when optimal vaccination 
starts from t= 0 .

then vaccination should always be applied regardless of the price and should always 
be applied in the very beginning (t  =  0) to  achieve this minimum. However, med
ical resources are generally limited and cost factors have to  be taken into account. 
Meanwhile, immediate response with mass vaccination at the onset of a cholera out
break may not always be feasible. In this study, we have incorporated the costs of 
vaccination into the objective functional so as to seek an optimal balance between 
the reduction of infection and the costs of the control measure. Our results imply 
that as long as the cholera vaccine prices are sufficiently low, vaccination should be 
deployed and should always start from, or immediately after, the onset of a cholera 
outbreak. If, however, the vaccine prices are higher than a certain value, then other 
types of control measures should be sought to replace vaccination so as to achieve 
the best outcome in balancing the gains and costs.

The findings in this work contribute to our knowledge base on the value of vaccina
tion in epidemic cholera settings and could provide useful guidelines for public health 
administration to better control ongoing cholera outbreaks. There are, however, sev
eral limitations in this study. We have assumed th a t the cholera vaccines are of
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FIGURE 29: Case(b): Profile of the optimal control, </>*(t) when optimal vaccination 
starts from t = 2 .

sufficient quantity for mass administration. In practical cholera epidemic and emer
gency settings, the availability of such vaccines could be limited and, consequently, 
the vaccination strategy would likely change. Meanwhile, we did not distinguish the 
human population with ages in our model, whereas in reality different age groups 
might have different transmission dynamics of the disease and exhibit different de
grees of protection from vaccination. A model incorporating age structure will be 
constructed and analyzed in Section 3.4 of this dissertation. In addition, though 
our study here has focused on vaccination as the control measure against cholera 
outbreaks, as already demonstrated in previous sections, a  combination with water 
sanitation, hygiene, rehydration, and other appropriate medical treatm ents would 
most likely yield the best results in fighting cholera.
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FIGURE 30: The curves of f ( d ) vs. d when C21 =  0.1.

Parameter Symbol Value Source
Total population N 10,000 -
Natural human birth and death rate (43.5yr) -1 [13]
Concentration of Vibro cholerae in environment K 106 cells/ml [16]
Rate of recovery from cholera 1 (5 day) -1 [10]
Rate of human contribution to Vibro cholerae £ 10 cells/ml-day [10]
Death rate of vibrios in the environment 5 (30 day) -1 [1.0]
Ingestion rate from the environment Pe 0.075/day [13]
Ingestion rate through human-human interaction 0 h 0 .00011/day [13]
Maximum vaccination rate 0 m ax 70% [14]
Efficacy of cholera vaccines e 75% [15]

TABLE. 2: Parameter values for the cholera model with vaccination.
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3.4 O PTIM A L  CONTRO L A P P L IE D  TO CHOLERA M O D EL W IT H  
A G E ST R U C T U R E

In this section, we extend our study to an age-structure model to investigate the 
impact of different ages on cholera dynamics and the corresponding control strategy. 
Furthermore, inspired by the model in [20] ( see Sec.2.2.7 ), we divide the human 
population into the symptomatic classes ( denoted as S , I s  and R s  ), the asymp
tomatic classes ( denoted as S, IA, and R a ), and the vaccinated class ( V  ). Now 
the system contains seven partial differential equations and two ordinary differential 
equations:

Bi,(t) . a ( \ Bn{t)d S  d S _  
dt da + Ph (o)- S(a , t )

(49)

(50)

(51)

(52)

d l s ^  d l s  _  
dt da P

KL(a) + B L(t) ' KH(a) + BH(t).

+  5(a) S(a, t ) +  iS(a, t) +  Is(a , t) H- I A{a, t ) + Rs(a,  f) +  R A(a, t )

4- V (a , t ) — d(a)S(a,t) + uj3S(a,t)  +u>4Y ( a }t) — u(a ,t)S(a ,t) ,  

Bh(t)  , Q Bn(t)

dRs  d R s
dt da

d S  d S _  
dt da

dlA dlA 
dt da

kl (o) +  B L(t) kh (o) +  BH(t)l

d(a) + 7 2 (a) +  e2(a) Is(a,t) ,  

d(a) + cj2(a) R s (a, t) +  7 2(a )/s (a, t),

BjL{t) , a t \ B H(t)

S(a, t)

+  /?//(a)- S(a, t)
KL{a) +  B L(t) KH(a) + BH(t)-

d(a) +  ai3(a) +  u(a , t ) S (a , t ) +  uJi(a)RA(a, t) +  u)2(a)Rs(a,t),

B L{t) , Q { \ B f f( t)P M - +  /3/r(a)- S(a, t)

(53)

(54)

(55)

(56)

(57)

KL(a) +  B L(t) nH(a) +  B H(t)

d(a) +  ei(a) +  7 1 (a) IA(a,t)

. (1 T/3 / \ BL{t) , a ( \ BH{t)+  (1 -  P) Pl (o-)— 7"Y p /.x +  y3/r(a)— j  -• •  -  —L *7 , (a) +  B L(t) *7 r(a) +  B a i t )
f)R f)R r i

= -  d (a )+ u q (a ) R A{a,t) + 7 1  (a)IA(a, t),

d V  d V  r i r i
+  =  u(a, t) S(a, t) +  5 (0 , t)J — |w4(a )+ d (a )  V(a, t),

S(a, t ),

dt
dBL

dt

pA pA
=  /  rfi(a)IA(a,t)da +  /  r}2(a)Is (a,t)da -  x ( t )BH{t), 

Jo Jo

= X(t)BH(t) -  5(t)BL(t),
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The natural domain for this system is

{{t,a) | 0 < t < T ,  0 < a < A}

where T  > 0 is the final time and A > 0 is the maximum age under consideration. 
The initial conditions are

S(a, 0 ) =  S0{a), I s (a, 0 ) =  ISo(a), Rs(a,  0) =  R So(a),

(58) S(a,0) = S0(a), IA(a, 0) =  IAo(a), RA{a, 0) =  R Ao(a),

V(a,  0) =  V0(a), B H(0) =  B Hq, B l {0) =  B Lo,

and the boundary conditions are

5(0,0 = 0,

(59) R s {0, t) -  j  j / s (a, t) +  I A(a, t) +  R s (a, t ) +  R A(a, t ) f(a)da,

R a {0 ,0  =  0, 7^(0 ,0  =  0 =  7S(0,0  =  5 (0 ,0  =  V(0, t).

We aim to minimize the following objective functional

J(u) = l l  ^ i(a )7 s (a , t ) +  A 2(a)u(a, t ) ^5(a, t) +  S (a , t)

(60) +  I A(a, t ) +  R a (a, +  ^A^{a)u2{a, t ) dadt,

where A j , A 2 and A 3 are appropriate cost parameters, generally depending on the 
age a.

The adjoint equations are as follows:
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— ( ( ^ 1  ) t  +  ( A l ) a )  =  —C ^ l  +  bXi — (d +  / i ) A i  +  p C ^ 2

(61) +  (1 — p)CAs +  1.1X7 4- A 2 (a)u,

( ( ^ 2  )t +  (^ 2 )0 ) =  ~ (d  +  7 2  +  6 2 ) ^ 2  +  b \ i  +  7 2 A3

(62) 4 -772A3 4 -A3(0, i) / (a )  4-v4i(a),

(63) —((A 3)t +  (As)a) =  — (d +  W3)A3 +  6Ax 4- W2A4 4- As(0, t)f(a)  

~  ((A4)t +  (A^a) =  —CA4 — (d + W3)A4 — A4u(a, t ) +  6 A1

(64) +  A1W3 4- CA5 4- u[a , i)A7 +  A2(a)u(a, t),

— ((Xs)t + (A5)a) =  —(d + ei +  7 i)A5 4- 6A1 4- ajiAg 4- 771 As

(65) 4- A3(0, t) f (a )  4- A 2(a)u(a, t ),

— ((Ae)t +  (Ae)a) =  ~{d 4- ^i)A 6 +  6A1 +  (U1A4

(6 6 ) + A 3(0 , t ) f (a )  + A 2(a)u(a,t),

(67) — ((Ar)t 4- (A7)a) =  — {d +  Wi)A7 4- b\ i  4- U4 X1 ,

d\< rA
x ( A g  — Ag) +  H(t)  f  (—Xi+pX2 +  ( l —p)\5)S(a,t)  

Jo L
(6 8 ) 4- (A5 — A4)5(o, t)j da,

J\ rA _
- - j ^ -  — —6X9 + K(t)  J  ĵ (—Ai + pA 2 4- (1 — p)X5)S(a, t)

(69) 4- (A5 — X^S^a,  t)J da,

with

(70) Ax(a,T) =  0 for a G (0, A), 1 < i <  7,

(71) Ai(i4,<) =  0 for a € (0, T), 1 < * <  7,

(72) A8(T) =  A 9(T) = 0.

Note that we have used the notations

( (a , t)  = l3L(a)— ? ± -  + (3H(a)- B h
kl + Pl kh +  B h  '

H(t) = lhi 7 1 z K un ^  and K ( t ) = / 3 L- K l
(.KH + B Hy  w  HlJ{KL + B L{t)Y'

The characterization of the optimal control is

(7 3 ) u*(a, t) =  3  ^ A-l5-+  -  X^ S  + A h r  M s  + s  + i a + Ra ) j
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where

°
if x  < 0

5S(x) =
I ^

if 0 < x  < Max
Max if x  > Max.

We use Max =  1 in this study and

f(a)  =
is in 2

0

for 15 < a <  45 

otherwise.

The parameters are presented in Table 3. We have conducted some preliminary 
numerical simulation for this optimal control age-structure model, and the results 
are presented in Figures (36)-(43).
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O 6  y r s s
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100

FIGURE 36: Profile of the optimal control, u.
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Parameter Value
Ingestion rate of non-hyperinfective cholera bacteria, P i 0 .0 2  day -1
Ingestion rate of hyperinfective cholera bacteria, P h 0 .0 0 2  day -1
Saturation constant of non-hyperinfective cholera bacteria, k l 1 0 3 cells/ml
Saturation constant of hyperinfective cholera bacteria, k h Y  cells/ml
Natural mortality rate of humans, d n a P  day _1
Natural birth rate of humans, b # 8  day ' 1
Proportion of infections being symptomatic, p 0 .1
Waning immunity rate of asymptomatic recovered humans, uj\ 0 .0 1  day-1
Waning immunity rate of symptomatic recovered humans, u >2 0 .0 0 2 2  day ' 1
Rate of transfer from asymptomatic susceptibles

(10 x 365) dayto symptomatic susceptibles, w z

Waning immunity rate of vaccinated people, U 4 (10x365) day
Recovery rate of asymptomatic infections, 71 0.5 day ' 1
Recovery rate of symptomatic infections, 72 0 .2  day ' 1
Cholera induced death rate of asymptomatic infections, e \ 0.000205 day ' 1
Cholera induced death rate of symptomatic infections, e2 0.0041 day ' 1
Shedding rate of asymptomatic infected individuals, rji 0.008 , . cells,m l—d a y—human
Shedding rate of symptomatic infected individuals, 771 q 0 cells

m l —d a y —human
Rate of vibrio moving from HI to non-Hi state, x 5 day ' 1
Death rate of vibrio in the environment, 6 M day ' 1
Initial symptomatic susceptible population, So 9000
Initial asymptomatic susceptible population, So 1 0 0 0
Initial asymptomatic infections, / a(0) 0
Initial symptomatic infections, I s (0) 0
Initial recovered population from asymptomatic state, AU(0) 0
Initial recovered population from symptomatic state, R s ( 0) 0
Initial vaccinated population, Vo 0
Initial non-hyperinfective state, B l 0 10
Initial hyperinfective state, B h0 0
Final time, T 1 0 0  days
Maximum age, A 72 years

TABLE. 3: Parameter values for the age structure model [26].
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FIGURE 43: Three dimensional plot of u  with time and ages.
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3.5 O PTIM AL CO NTRO L FO R  M U LT IG R O U P CHOLERA  
M O D ELIN G

So far in our discussion we have focused on the time evolution of cholera dy
namics and have not considered the spatial spread of the infection. It is well known 
that the transmission and spread of infectious diseases are complicated by spatial 
heterogeneity th a t involves distinctions in ecological and geographical environments, 
demographic structures, human activity levels, contact and mixing patterns, and 
many other factors. Consequently, such spatial heterogeneity will likely lead to dis
tinct control strategies in different regions.

One of the most successful approaches to investigate spatial heterogeneity in 
mathematical epidemiology is the multigroup modeling, where the entire population 
is divided into n  (n > 2 ) distinct groups, and disease transmission occurs both 
within the same group and between different groups ( reflecting the movement of 
human hosts and/or pathogen from one region to another ). In this section, we will 
take a first step to conduct an optimal control study for a two-group cholera model. 
For simplicity, we will consider bilinear incidence for both the direct and indirect 
transmission pathways ( see Sec. 2.2.6 for such work in Tien and Earn’s model ), 
and we will use vaccination as the only control measure.

Our two-group cholera model thus takes the form below:

——  ̂ =  / J - i N i  —  ( A n S ' i R i  +  A 1 2 S 1 . B 2 )  —  ( P n S i h  +  P 1 2 S 1 I 2 )  — —  u i ( t ) S i ,

=  ( A n S ' i R i  -I- X 12S 1B 2 )  +  ( f l n S i I i  +  P 12S 1 I 2 )  ~  1 +  7 i ) / i ,

(74) dl t = i x h ~ 5lBu

~ (X21S2B1 +  X22S2B2) — (P21S2I1 +  P22S2I2) — l̂ 2S2 — U2 { t)S2 ,

= (A21<S,2Rl + X22S2B2) + (P21S2I1 + P22S2I2) ~ (^ 2  + 7 2) 2̂ , 
dB -2 r o
~dT ~  b l2  ~  h B 2 '

The parameters Ajj (i, j  =  1,2) represents the cross transmission rate from 
vibrios in group j  to  susceptibles in group i, and = 1 , 2 ) represents the
cross transmission rate from infectives in group j  to susceptibles in group i. Other 
parameters have similar meanings as before, with subscript i(i — 1 , 2 ) referring to 
the zth group.

In our optimal control study, we aim to minimize the total number of infections
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and the ( linear ) costs of vaccination for both groups over the time domain [0, T]\
i.e.,

(75) min [  (h ( t )  + cui(t)Si(t)  +  I2(t) + cu2(t)S 2 (t))dt.
(U l(t) ,u2(t)) J 0

The Hamiltonian H  in this case is given by

H  — I l ( t )  +  C U i ( t ) S i ( t )  +  h f )  +  C U 2 ( t ) S 2 ( t ) +  ^ S2^~dt^^

+ **< £> + » * < § > + W £ ) + w ^ ) ,
=  I l f )  +  C U \ ( t ) S i ( t )  +  1 2 ( f )  +  CW2(i)iS2(t) 

+  Asj fj-iNi — ( \nS1B 1  +  Ai2<Si2?2) — (P11S1I1 +  812S1I2) — fJ-iSi ~  u i f ) 8 i

+  As2 H2 N 2 — (X2lS 2 B 1 +  X2 2S2 B 2 ) — (P2 1 S 2 I 1 +  8 2 2 S2I2 ) ~  ^ 2 8 2  — U2 (t)S2 

+  A/j j^(An5iBi +  X12S 1B 2 ) +  (8 \ \S \ I \  +  f a S J t )  — (fi\ +  7 i)7 ij ,

+■Xj2 [(A2i52Bi + A22S2B2) + (P21S2I1 + 822S2I2) — f 2 + 72)̂ 2j j

+  ABi [6 / 1 Si B x + XB2 &I 2 — S2 B 2

Here the adjoint functions must satisfy

dXSl d H  
dt  ~  dSx

= —cui +  A s^A n^i +  Ai25 2 +  P u h  +  Pi212 +  ^ 1  +  ^i)

(76) — A/j (An-Bi +  X12B 2 +  0 n l \  +  P u h ),
dXS2 _  d H

d t  dS2

=  —CU2 +  As2(A2i-Bi +  X22B2 +  021 f  +  022^2 +  1̂ 2 T  V>2 )

(77) — A/2(A2i5 i  + X22B2 + 02i h  +  022h ) ,

dA/j d H
~ d f  =  ~ d l 1

=  — 1 + Xs10 n S i  + Asa^l^ — X j f P n S i  — Hi — 71)

(78) — A i2(02iS2 — AjBj^i),
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dXh d H
dt ~  d l2

=  ~1 +  ^SiPnSl  +  Xs2022S2

(79) — A/j(/?i2Si) — Xl2(022S 2 — I*- 2 — 7 2 ) — As!^2 ,
d \ Bx _  d H

dt dB±
(80) =  AsjAnS1! +  Ag2 A2i S2 — X ^X uS i  — Xj2X2i S2 +  XBl5i,

dXB2 d H
dt ~  d B 2

(81) =  As,Ai2<Si +  Xs2X22S 2 — Xi1X\2S\  — Xj2X22S2 +  XB2S2,

with transversality conditions:

(82) ASl (T) =  0, AS2 ( T ) =  0, A/j (T) =  0, A/a (T) =  0, ABl (T) =  0, A*2 (T) =  0. 

Meanwhile, we note that
Q r r  p s r j

(83) ^ = Cl5 1 - A 5lS'1 and —  =  c2S2 -  ASaS2.

Therefore, again, the characterization of the optimal controls are based on the switch
ing conditions [1, 23]:

(84) u{ =  uw  if

and

(85) u*2 = u2_  if

For our numerical simulation we list all the parameters in Table 4 and Table 5. 
We have performed some preliminary runs in our optimal control simulation to this 
two-group model. In particular, we have chosen cross transmission rates in such a 
way that 0i2 > 02i and A12 > A2i, while keeping other transmission parameters the 

same between the two groups: £1 =  £2 =  £ , An =  A22 =  A, fj.i =  jj,2 = fj,, 71 =  72 =  7 , 
Si = 52 = 6, fin =  022 = 0- This simple setting allows us to  investigate ( and focus 
on ) the impact of distinct cross transmission rates on the optimal control strategy 
for each group. The results for this scenario are presented in Figures (44)-(47). As 
can be naturally expected, the higher disease transmission from group 2 to group 
1 ( than th a t in converse route ) results in higher levels of infections and pathogen 
concentration in group 1, which necessitates longer duration of vaccination in group
1.

§ ^ < 0 ;  t*; =  0 if | ^ > 0 ,
U l L \  O U i

7T— < 0; U2 =  0 if >  0.
UU2 UU2
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Parameter Symbol Value Source
Total population 
Natural human birth

N 10,000

and death rate of group 1 
Natural human birth

Mi (43.5yr)-1 [13]

and death rate of group 2 
Rate of recovery from

M2 (43.5yr)-1 [13]

cholera of group 1 
Rate of recovery from

71 (5 day)-1 [10]

cholera of group 2
Rate of human contribution

72 (5 day)-1 [10]

to Vibro cholerae of group 1 
Rate of human contribution

6 10 cells/ml-day [10]

to Vibro cholerae of group 2 
Death rate of vibrios

6 10 cells/ml-day [10]

in the environment of group 1 
Death rate of vibrios

Si (30 day)-1 [10]

in the environment of group 2 
Ingestion rate from

s2 (30 day)-1 [10]

the environment to humans in group 1 
Ingestion rate from

^ i i 0.0001/day -

the environment to humans in group 2 
Ingestion rate through human-human

A22 0.0001/day -

interaction of group 1
Ingestion rate through human-human

/?n 0.00011/day [13]

interaction of group 2 P22 0.00011/day [13]
Maximum vaccination rate of group 1 Ui 0.7
Maximum vaccination rate of group 2 U2 0.7 -

TABLE. 4: Parameter values for the two-group cholera model.
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Parameter Value
Cross transmission rate from
vibrios in group 2 to susceptibles in group 1, /?12 0.0005
Cross transmission rate from
vibrios in group 1 to susceptibles in group 2, fi2i 0.0001
Cross transmission rate from
infectives in group 2 to susceptibles in group 1, A12 0.00008
Cross transmission rate from
infectives in group 1 to susceptibles in group 2, A2i 0.00001
The initial population, iVi(O) 5000
The initial population, N 2(0) 5000
The initial infectious population, /i(0) 100
The initial infectious population, I2{0) 10
The initial susceptible human populations, S\ (0) 4900
The initial susceptible human populations, S2(0) 4990
The initial population of the concentration of the vibrios, -Bi(O) 0
The initial population of the concentration of the vibrios, B2(0) 0
The cost parameter, c 3
Time 100 days

TABLE. 5: The additional parameter values for the numerical implementation.
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FIGURE 44: Profile of the optimal controls u\ and u2 from two groups.
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CHAPTER 4

ITERATIVE ALGORITHM

As we have seen from our previous discussion, for most optimal control prob
lems, numerical simulation is the only feasible means to gain the (approximate) solu
tion. The numerical method we have been using is the Forward-Backward Sweeping 
Method (FBSM), which is essentially an iterative procedure. The advantages of the 
FBSM are th a t it is straightforward to  implement, easy to code up, and it can be 
applied to a wide range of problems. The disadvantage, however, is th a t the FBSM 
often encounters problem in convergence: generally the method does not have fast 
convergence, and in some situations it does not converge a t all. Using different ways 
of control update, e.g., replacing the control u by a convex combination between the 
previous control values and the current value, could help speed the convergence in 
some cases but such improvement is limited by the type of the problems, and often 
at the cost of losing accuracy [1].

In this chapter, we will explore several possible ways to improve the convergence 
of the original FBSM, by introducing the idea of locally refined iterative procedures. 
We will conduct rigorous error analysis for both the FBSM and our proposed methods 
for comparison. Next, we attem pt to extend the concept of local iterative algorithms 
to more general problems of the kind. To tha t end, we will illustrate the application 
of local iterative algorithms to a class of constrained dynamical problems involving 
second-order differential-algebraic equations.

4.1 LOCALLY R EFIN ED  FB SM  FO R  O PTIM AL CONTROL  
PRO BLEM S

4.1.1 ER R O R  ANALYSIS FO R  FB SM

Despite its popularity, there is no rigorous error analysis on the FBSM that 
has been published so far. In what follows, we will first conduct a  careful analysis 
on the convergence and accuracy for the FBSM, based on which we will explore 
improvements.



70

Let’s consider the governing equations

(86)

(87)

(88)

x(t) -  g(t,x(t),u{t)),

M*) =  ~ [fx ( t ,x ,u )  +  A (t)gx(t,x,u)],  

u(t) =  h(t, x, u ),

with 0 < t  < T. Meanwhile, we have an initial condition for x  and a final time 
condition for A :

Equation (8 8 ) is the optimality condition, and it is assumed tha t u(t) can be 
represented in terms of t, x  and A. The numerical formulation of this system is

(91) uk+1 =  h(t, x k+\  \ k+1), 0 <  t < T,

for the (k + l ) th iteration (k =  0,1,2, • • •). In particular, x fc+1(0) =  a and Afe+1(T) =  b. 
To start, i.e., for the 0th iteration, an initial guess u° = 0 (0 <  t < T)  is usually
made. Let x, A, and u denote the exact solutions of equations (8 6  - 8 8 ). Let also 
x k+1, Afc+1, and uk+1 denote the exact solutions of equations (89 - 91) a t the (k +  l ) </l 
iteration, k = 0 , 1 , 2 , • • •.

Next, we introduce the error functions

x(0 ) =  a, 

A (T) =  b.

(89) x k+1 =  g(t, x k+1,u k), 0 < t < T,

(90) \ k+1 = - [ f x{ t ,xk+1,u k) + \ k+1gx( t ,x k+1,u k)], 0 < t <  T,

(92)

(93)

(94)

ek(t) =  x k(t) — x(t), 0  <  t < t,

ek(t) =  Ak(t) -  A(t), 0 <  t < T,

ek(t) = u k( t ) - u ( t ) ,  0 < t < T ,

for k = 1,2,3, • • •. Note tha t

(95)

and

(96) e*(T) =  0 ,
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for each k. Note also tha t we have not considered yet the truncation errors due to 
the ODE solvers employed. We will use the maximum norm in this error analysis: 
for any continuous function y ( t) defined on [0, T],

(97) | Ml =  m ax |y (f) |.

D efin ition  5. A function F: 3£m —> 9? is called Lipschitz continuous with a Lipschitz 
constant L i f  for all X  =  (x\, x 2, ■ ■ ■ , xm) and Y  =  (yi, y2, ■ ■ ■ , ym) in

(98) \F (X ) -  F(Y)\ < L d ( X ,Y ) ,

- m  -I |
where d(X, Y )  = Y){xi -  yf)2 .

Li=l
We will establish the following result.

T h eo re m  6 . Let h(t, x, X),g(t, x, u ), f x(t, x, u ) and gx(t, x, u ) be all Lipschitz contin
uous with Lipschitz constants Lh, Lg, L fx, Lgx, respectively. Denote

(99) M x =  max |A(i)|, M gx =  max \gx(t)\.

Also assume T L g < 1 ,T M gx <  1. Then

( 100)

fc+1| l< 7 l | e £ | | ,

where 7  is defined in (109), and if  7  <  1, the iterative scheme (89 - 91) converges 
on [0, T\ with any start-up error.

R em ark  7. I f  a function is Lipschitz continuous, then it must be continuous.

Proof of Theorem. Consider that

|e£+1(i)| =  |u*+1(i) - u ( t )| =  \h (t ,xk+1, Xk+1) -  h(t,x,X)\

<  Lh^ { x k+l -  x )2 +  (A fc+ !  -  A ) 2

<  L h(\xk+1(t) -  x ( i ) |  +  |A fc+1( f )  -  A ( t ) | )

<  Lh\\xk+1 — x | |  +  Z/*.| |Afc+1 — A | | ,

for all 0 <  t < T. Hence,

( 1 0 1 )

l|eJ+1|l< £ < .l l^ + ,ll +  i - . l l ^ +Il|.
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Next,

ekx+\ t )  = ekx+1{ 0 )+  f e kx+l{T)dr 
Jo

=  0  +  /  [g(r,xk+1,u k) - g ( r , x , u )

Thus

\ e t +l (01  <  f  g (r ,x k+1,u k) -  g (r ,x ,u )  dr  
Jo

<  f  Lg\xk+l — x\ +  Lg\uk -  
Jo L

<  TLg\\xk+1 -  x\\ +  T L g\\uk -  «||,

dr

which yields 

( 102)

Hence,

(103)

where

(104)

Similarly,

\\ek+1\ \ < T L g \ \ e k+1\ \ + T L 9\\ek \\.

\\ek+1\\<TI3\\ek\\,

1 - T L g

e*+ 1( 0  =  e^+1(T) -  £  e \+l(r)dr

=  0 - f  ~ [ f x{T,xk+1,u k) -  f x(r ,x ,u )

+  >>k + 1 g x { T ,  X k + 1 , u k )  -  A g x ( r ,  x , u ) dr.
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Thus

leA+1OOI < j  I fx ( r ,x k+l,u k) -  f x(r ,x , u) dr+

|Afc+I5 I (r,a:fc+1,tifc) -  Xgx(r ,x k+l,u k) dr+ 

J C | Agx(r, x k+1, uk) -  Agx(r, x ,u )  dr

T j 1

s /  m *‘+i : „
r T

_fe+i „ n  , n„.fc
9 x

II +  £ / , l l “ ‘  - u \ \ ] d r  + J  M „ | |At+1 -  A l l *

xk+1 - x | |  +  ||u fc - u \ \ ]  dr,

which yields

l l O l  <  r i , , ( | | e ‘ +1H +  lk J ll)  + ™ „ | | 4 « | |

(105)

Hence,

(106)

where

(107)

+  T M ALs,( ||e *+1|l +  l l4

l ^ + , l l < ^ T | | e J « | | + a , T | | e J | | ,

U)
L f x +  M \ L 5i

1 — T M .gx

Substituting (103) and (106) into (101), we obtain 

(108)

I l l ' l l  <7 ll<£ ll,

with

(109)
7 = T  Lh[( 1 + u)T)fd + u \ .

Since (108) holds for any k, we obtain, by iterating back on k:

( 110)

I l l ' l l  < 7 2l l4 - 1l l < - - < 7 ‘ + ,l|e ;il.
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where |je°|| measures the start-up error. Particularly, if u° =  0 is set, then ||e°|| =  
|H |.  Based on (103), (106) and (110), it is clear th a t the iterations converge for all 
t  e  [0 ,T] if 7  < 1 . □

R em ark  8 . Base on (109), it is always possible to pick T  small enough so that 
7  <  1 is satisfied; and the smaller T ,  the faster convergence. However, in most 
practical applications, we may not have the choice of changing the domain. This is 
one motivation for our locally refined FBSM.

R em ark  9. When numerically implementing the FBSM, since the exact solutions are 
unknown, the convergence check is usually based on the backward errors uk+1 — uk, 
etc. I f  we redefine the error functions

( 111)

e £+ 1( 0  = u k+1(t) - u k(t),

( 112)

e r i W =  xfc+1( t ) - x fc(t),

(113)
ek+1(t) = Xk+1(t) -  Ak(t),

then it is easy to see that the error estimates (103), (106) and (108) still hold.



75

4.1.2 LOCALLY R E FIN E D  FB SM  A N D  E R R O R  ANALYSIS

The result in Theorem 6  from the previous section, particularly the criterion 
7  <  1, does provide some insight into the convergence property of the FBSM. Note 
th a t 7  depends on T,  the length of the time domain, as well as the Lipschitz con
stants associated with the functions involved in the system. Hence, for larger time 
domains (necessary for long-term study of disease dynamics) and/or more sophisti
cated epidemic models where those Lipschitz constants may not exist or may not be 
small enough, the condition 7  < 1 can be easily violated which could cause trouble 
in convergence. Numerically, this issue stems from the way the iterative procedure 
is performed in the FBSM: for each iteration, the state and adjoint equations are 
solved in the entire domain. Thus, errors due to initial guess can easily accumulate 
through each global iteration, leading to  divergent results.

Based on this observation, better iterative methods can be naturally designed 
with focus on reducing the errors from each global iteration. A starting point is to 
introduce an inner cycle of local iterations within each global iteration. That is, we 
divide the global domain [0, T] into a set of intervals [tj,tj+1] (j = 0,1, • • ■ , N),  then 
we solve the optimal control system on each interval [tJ: t,+i] through an iterative 
manner (referred to as the local iteration) until convergence achieved, and then move 
to next interval. A shooting method, either going forward or backward in time, 
can be combined with the local iterative procedure to deal with the separation of 
the initial condition for the state variables and the final condition for the adjoint 
variables. Below we will discuss in detail the locally refined iterative algorithms 
applied to optimal control problems, with a focus on error analysis.

We first consider the locally refined FBSM in a special case:

(114)

* ( 0  =  0 (t>z,u),

(115)
A(t) =  s(t , u, A) independent of x ,

(116)
u(t) — h(t, A) independent of x.

The iterative procedure is only needed for A and u. Specifically, we solve A and u 
backward in time from t  =  T  to t  =  0, with local iterative procedure performed on
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each interval At the (k  +  l ) th iteration, we have

(117)
uk+1 = h(t,Xk), tn^ < t < t n,

(118)
Afe+1 =  s{t, uk+\  Xk+1), < t < t n.

The error analysis can be easily conducted, assuming that s is also Lipschitz contin
uous with Lipschitz constant L s. First,

(119)
||wfc+1 — w|| <  Lh\\Xk — A||.

Next,

Afe+1(f) =  Afc+1(tn) -  J  ” Afc+1(r )d r

=  A k+1(tn) -  s (t, uk+\ X k+1)dr.

Note tha t Xk+1(tn) is a constant independent of k, it is determined from the 
calculation on the previous interval [tn, t n+x]. At the current interval [fn_i, tn], 
A°(tn) =  Â  (t„) =  • • • =  Xk(tn) for any k. Thus,

|Afe+1(f) — A(£)| <  |A*+1(fn) — A(£n)|

4- |s(r, ufc+1, Afe+1) — s(r, u, A)|dr.

Denote the constant |Afe+1(fn) — X(tn)\ = cn > 0. Then

||Afc+1 -  A|| < c„ +  LsA t\\uk+1 -  u\\ + L sAt\\Xk+1 -  A||.

Let A t  be small enough such that A t L s < 1 . Then

(1 2 0 )

Substitution of (119) into (120) yields 

(1 2 1 )
||Afe+1 — A|| < dn + I A* — A||,
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where

( 122)

1 — A t L s ’ 7

Iterating back on k, (121) yields

A t L sLh 
1 -  A t L s

Clearly, the iterations converge if 7  < 1 , which can always be satisfied with sufficiently 
small A t  ( see 122).

R em ark  10. By the assumption that convergence is already achieved in the previous 
interval [tn,£n+i]> we have cn = |Afe+1(tn) — A(fn)| <  e for some (arbitrarily) small e.

Next we consider another special case

Iterations are only performed for x and u. We solve x  and u  forward in time from 
t  = 0 to t =  T. On each interval [fn_ i , in], we conduct the local iterations

(123)
x(t) =  g(t,x , u),

(124)
u(t) =  h(t, x) independent of A,

(125)
H*) =  ~ [fx ( t ,x ,u )  + A gx(t ,x ,u ) .

(126)
u,k+1 =  h(t, x k), 1 < t  < t n,

(127)
=  g ( t ,x k+1,u k+1) , tn_ 1 < t < t n,

for k = 0 , 1 , 2 , • • ■.
Similar analysis can be conducted to obtain th a t if



then the iterative procedure will converge. Again this can be satisfied by setting A t 
small enough.

Now for a general case, we can perform the following steps.
Step 1. Make initial guesses for x  and u  on [0,T]; denote these values by x°(t) 

and u°(i), 0 <  t < T.
Step 2. Solve A(t) backward from t =  T  to t = 0, using

(129)

H*) = -[ fx ( t ,x ° ,u ° )  +  Agx(t, x° , u0)],

(130)
A (T) =  b.

Denote the solution by A°(t), 0 <  t < T.
Step 3. Solve x, u and A forward in time with local iterative procedure . On 

each interval conduct the iterations

(131)
uk+1 =  h ( t ,x k, Afc),

(132)
= 9 { f , x k+1,u k+1),

(133)
Afe+1 =  - \ f x{ t ,xk+1,u k+1) + A k+1gx{ t ,x k+1,u k+1)], 

for k  =  0 , 1 , 2 , • ■ •.
Step 4■ After convergent solutions are achieved on each interval throughout 

[0,T), re-set these solutions to x°(t),u°(t) and A°(t),0 < t < T. Then check the 
value of |A°(T) — 6 |: If |A°(T) — b\ < e, task completed; otherwise, go to Step 2 for 
next round of iterations.

Using similar analysis as before, we obtain, based on the formulation (131 - 133),
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Substitution of (134) and (136) into (135) yields

(137)

II4+1II <  11411,

where

(138)
7  =  AtT/jfcu +  /?(1 +  Atcu)],

and where j3 and u  are defined in (104), (107), respectively, but with T  replaced by 
A t. That is,

(139)
n _  Lg _  Ljx +  M\Lgx
P 1 -  A t L g  ’ l - A t Mto '

The condition 7  < 1 would ensure the convergence. Thus, when A t is small enough, 
the convergence is guaranteed. Compare (138) to  (109) and we can see the condition 
is much weaker for our current method. If, instead, (131 - 133) are replaced by

(140)

(141)

(142)

Then we have

(143)

(144)

(145)

x k+1 = g ( t ,x k+\ u k), 

uk+1 = h ( t ,x k+1, Xk),

X k + 1  =  - f x(t, x k+1,u k+1) +  Ak+1gx(t, x k+1,uk+1)

lex+1|l <  At/3||e*||, 

I4 +1II <  i i . l l 4 +1ll +

II4II £  “ A t||e ‘ || +  w A t||eJ||.

Substituting (143) and (145) into (144), we obtain 

||e£+1|| <  A t L h(P + u)\\eku\\ +
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This inequality can be rewritten as

(146)

I l l ' l l +  o « l <  7 1411+ alleJ-1!

where

A ,  ~ L h{fi +  a;) +  y/L l{P  + u y  + 4Lhul3a  = A t-------------------------  ,

and

(147)
A4.Lh{P +  id) +  y j  L\{f3 +  to)2 + 4Lhuj3

7  =  A t -------------------
2

We clearly observe from (146) that as long as 7  <  1 (which is guaranteed for small 
A t), the iterative method will converge.

A simple example described below is to  illustrate the methods mentioned in this 
section:

f - T

mm x (t) +  f  x(t)u2(t)dt, 
Jo

subject to x(t)  =  ^ ( £ )  — x(t)u(t), x(0 ) =  a,

and it is very easy to  find the exact solution as

1u*(t) =
I  +  e0.5(i—T) >

A ^  =  1 +  g0.5(t—T) •

The analytical solution will be used to compare with our numerical solution.
We use T  = 10 and a = 1 in the numerical simulations shown below.
We also check the number of iterations before the convergence of each method 

and it is shown in Table 6 .
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1®
+  Locally Refined Method 
O Original FBSM Method 
*  A lternative Locally R edefined Method 
x Exact

0.9
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0.7

0.6

x 0.5

0.4

0.3

0.2

0.1

T

FIGURE 48: The graph shows th a t all methods can solve x  very well.

Method Number of Iterations

Regular Forward-Backward Sweep Method 32
Locally Refined FBSM 20
Alternative Locally Redefined Method 20

TABLE. 6: Number of iterations for convergence.
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+ Locally Refined Method 
0  Original FBSM Method 
*  Alternative Locally Redefined Method 
x Exact

T

FIGURE 49: The graph shows the numerical results for the adjoint variable, A.
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+ Locally Refined Method 
O Original FBSM Method 
*  Alternative Locally Redefined Method 
x Exact
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T

FIGURE 50: The graph shows the control variable, u , calculated numerically by all 
methods.
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4.2 LOCAL ITER A TIV E A LG O R ITH M S FO R  A  CLASS OF  
C O N ST R A IN E D  D Y N A M IC A L  PR O BLEM S

In this section, we extend the idea of locally refined iterative procedures to the 
study for a class of constrained dynamical problems involving second-order linear 
differential-algebraic equations:

(148)
A i(t)x  + E i(t)x  + Ci(t)x  = r i ( t ) — Bi(f)A,

(149)
A 2(t)y +  E 2(t)y -I- C2(t)y = r2(t) -  B 2(t)A,

(150)
D-i{t)x +  D2(t)y =  d(t),

where x  and y are unknown vectors with the same or different dimensions, x  and y 
denote the first derivatives, and x  and y  the second derivatives, in time for x  and 
y, respectively, and A is an algebraic unknown (in the sense that its derivative does 
not appear) which couples x  and y. Here the unknowns x, y  and A have dimensions 
rii x l , r i2 x 1 and TI3 x 1 , respectively. Correspondingly, A i ,E \  and C\ are square 
matrices of dimensions rii x ni,r i j  x 1 for j  =  1,2. Meanwhile, the matrices Bj  and 
D j(j = 1,2) have dimensions rij x n3 and n 3 x rij, respectively, and d is a vector 
of dimension n 3 x 1 . Generally Bj  andDj may not be square matrices; we typically 
have n 3 < n j ( j  = 1,2) in most practical applications, meaning th a t equation (150) 
merely supply partial information, as additional constraint, for x and y when making 
connection between the two solutions. Finally, we note tha t the entries of these 
matrices or vectors are in general functions of t, where t  £ [0, T] for some constant 
T  > 0. We assume all these functions are continuous on [0, T] in this work.

Equations (148) - (150) represent a  class of dynamical systems where the entire 
dynamics are determined by those from two sub-systems, x  and y, subject to certain 
constraints. Such problems could have many applications in science and engineering, 
especially in physical/mechanical discipline. Two-body rigid motion [27], two-phase 
flow [46, 47] and fluid-structure interaction [33, 31, 48] are just a few typical exam
ples th a t can be modeled, at the linear level, by equations (148) - (150). In many 
of these practical applications, the two sub-systems for x  and y often have different 
computational requirements in terms of accuracy and efficiency. The proposed it
erative approach will not only improve the accuracy of the numerical solution but
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also allow us to employ different ODE solvers and use different local meshes for x  
and y, since the solution procedures for x  and y will be uncoupled through the local 
iterations.

To ensure the well-posedness of the dynamical problem and the validity of the 
numerical algorithm, we will further make the following assumptions for the system 
(148 - 150):

(A l)  The matrices Ai(t)  and A 2(t) are invertible for all t  G [0,T].
(A2-1) The n3 x n 3 matrix D i( t)A ^ l (t)Bi{t) is invertible for all t  G [0, T\. 
(A2-2) The ra3 x n 3 matrix D 2(t)A 2 1(t)B2(t) is invertible for all t G [0,T).

We will assume that (A l) and a t least one of (A2-1) and (A2-2) hold in this study.

4.2.1 A L G O R IT H M S  A N D  E R R O R  A N A LY SIS

The dynamic problem (148) - (150) can be assembled into a block-matrix system 

(151)

'At 0 Bt X 'E i 0  0 X 'Ct

1oo

X n
0 a 2 b 2 V + 0 e 2 0 y + 0 C2 0 y = r2

A d 2 0 A 0 0  0 A 0 1
oo

A d

Regardless the dimensions of B j and D j(J  — 1,2), the two coefficient block-matrices 
(each consisting of 9 blocks) are always square matrices of dimensions (ni +  n 2 +  
n3) x (m  + n 2 +  n 3).

The iterative method presented below decoupled the computation for x  and y 
while strictly maintaining the constraint. It is based on splitting the leading coeffi
cient block matrix in equation (151). The first approach is to impose the constraint
(150) to  equation (148). Consequently, the leading terms (i. e., those with the second 
derivatives of the unknowns) in equation (151) are decomposed as

(152)

Ay 0  Bt X 0  0  0 X

0 A 2 0 V + 0  0 b 2 y
Di 0  0 A o d 2 0 A

The first part in (152),as well as all other terms in equation (151) associated with 
the unknowns and their first derivatives, will be computed at the current iteration, 
labeled as i + 1, whereas the second part in equation (152) will be evaluated using
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the values from the previous iteration, i. This leads to an iterative scheme with two 
separated equations,

(153)

A t B x

D x 0
x i+1
Ai+1

+
E i 0 

0  0

x i+1
.Ai+i

Cl 0 

0  0

x*+1

Ai+1
n

d -  D2y%

and

(154)
A 2yi+1 +  E 2yi+1 +  C2yi+1 = r2 -  B 2 A‘+1,»+1

where the superscript i denotes the solution a t the itth  iteration, i =  0 , 1 , 2 , ■ • •. 
At each iteration, equations (153) and (154) will be solved separately by employing 
some ODE solvers.

The second approach is to impose the constraint (150) to equation (149), so tha t 
the leading terms in equation (151) are decomposed as

(155)

A i  0 0 X 0 0 B i X

0 A 2 b 2 y + 0 0 0 y

1---
- o b to O i A 1 b o o 1 A

Correspondingly, an iterative scheme based on (155) can be constructed by

(156)

A 2 b 2 
d 2 0

yi +1

A<+1
+

E 2 0 
0 0

y i+1
Ai+1

+
c 2 0  

0  0

yi+1

Xi+1
f  2

d — D ix 1

and

(157)
A ix i+1 +  E xxi+1 + Cxxi+1 = n -  B iAi+1.

Equations (156) and (157) will also be solved separately by some ODE solvers at 
each iteration.

L em m a 11. Let F  = be a square matrix, where A, B , C  and D are
A  B  
C  D

matrix sub-blocks of arbitrary size, with A and D being square. Then the matrix F
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is invertible i f  and only i f  A  and D  — C A XB  are invertible, and the inverse of F  is 
given by

(158)

A B
-1

'A -1 + A~XB (D  -  C A~l B)~xC A ~l —A ~XB (D  -  C A~xB )~ l
C D —(D -  C A - 1B ) - lC A - 1 (D -  C A - ' B ) - 1

See [53], for example, for a proof of Lemma 11. Based on this result, it is straight
forward to obtain

L em m a 12. The leading coefficient matrix, , o f equation (153) is in-
TLi B ! 
Dr 0

vertible under the assumptions (A l)  and (A2-1). Similarly, the leading coefficient 
A 2 I?2matrix,

(A2-2).
D 2 0

, of equation (156) is invertible under the assumptions (A l)  and

The following theorem is a direct consequence of Lemma 12 and classical differ
ential equation theory.

T h e o re m  13. Let assumptions (A l)  and (A2-1) hold. Also assume y% is continuous. 
Then the system of (153) and (154) has a unique solution { x l+1 ,y%+x, A*+1} on [0,T] 
with a given initial condition. Similarly, i f  the assumptions (A l) and (A2-2) hold 
and x% is continuous, then the system of (156) and (157) has a unique solution 
{x l+l,y l+x, At+1} on [0, T] with a given initial condition.

Proof. We show the second half of the theorem; the proof for the first half is
A 2 B 2similar. Assume (A l) and (A2-2) hold. Then the matrix is invertible

based on Lemma 12. Let 

sides of equation (156) to o

Gr G2 
g 3 g 4

>tain

(159) y ^  + G ^ y ^  + G ^ y

and

D2 0

denote the inverse and multiply it to both 

G\r2 +  G3d — G2 D 1X),

(160) Ai+1 +  G3E 2 yi+1 +  G3C2 yi+1 = G3r2 +  G4d -  G4D xx l.
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Since all coefficient matrices are assumed to be continuous, clearly equation (159) 
has a unique solution for yt+1 on [0, T ] . Consequently, Al+1 is uniquely solvable 
based on equation (160). Finally, since A x is invertible, equation (157) has a unique 
solution for x l+1. □

Theorem 13 ensures the solvability of the iterative formulation based on equations 
(156) and (157), or (153) and (154). Consequently, they build the ground for a local 
iterative procedure to advance the solution from t = tn to  t =  tn+1. The procedure 
is presented below, and equations (156) and (157) are employed here for illustration.

Assume that x(tn), y ( tn), A(fn), and x(tn) are known. We construct a local mesh 
by dividing the interval [tn, tn+1] into a set of subintervals. For example, if it is 
uniformly divided into N subintervals, then the local mesh points are given by tnj  = 
tn + j  ■ A t / N  for 0 < j  < N .  We also assume that x%(t) ,y t (t), and x%{t) are 
known for tn < t < tn+x. Particularly, for the first iteration with % =  0, we make an 
initial guess by setting

x°(t) = x(tn), y°(t) = y(tn), A°(t) = A(tn), x°(t) = x{tn), for tn < t < tn+1.

For i > 0, we carry out the following steps to obtain the  solution at the ( i+ l) th  
iteration.

Step 1. Compute yl+l and AJ+1 on [tn, tn+i] by solving equation (156) with the 
initial conditions

(161)
yl+1{tn) =  y(tn), y l+l{tn) = y(tn), Xl+1(tn) = X(tn).

The numerical solution of (156) and (161) is then reported a t t = tn+l. We calculate 
the norms of the backward errors

=  |'|y1+1(tn+i) “  yJ(W i)ll, and =  ||At+1(tn+i) -  A^tn+^H-

Step 2. Compute x l+1 on [tn, tn+1] by solving equation (157) with the initial 
conditions

(162)

x t+1(tn) =  x (tn), and xl+1(tn) =  x(tn).

We calculate the norm of the backward error

sx = ||a;l+1(fn+i) -  ^(trH-i)!!-



89

Step 3. Check the convergence. If

m a x(£x,£y,£X) < s0,
where so is the given error tolerance, then the convergence has been achieved. S tart 
the iterative procedure for the next time step, n  =  n  +  1 . Otherwise, set i =  i +  1 

and return to Step 1.
To facilitate the error analysis, we will use the Loo norm, denoted by || • || , for 

constant matrices and vectors. For any constant vector u = [u\, U2 , ■ ■ ■ , un]T and 
matrix A = [a,ij}mxn , we have

n

I N I  =  maxi<i<n N | , \\A\\ =  maxi<i<m ^ K j | ,
1=1

and

(163) ||j4u|| < \ \A \ \ I N I -

Meanwhile, we introduce the following M-norm, denoted by || • \\m , 
for both vector-valued and matrix-valued continuous functions. Let u =  
[«i(£), U2 (t) , ••• , un(t))T be a vector whose entries are continuous functions of 
t  on some closed interval [a, 6]. We define

(164) IMOHm = mwc max N(f)| = -max. max N(t)|.
1 < i < n  a < t< b  a < t < b  l<^<n

Similarly, let A(t) =  {al3{t)\mxn denote a m atrix with each entry being a continuous 
function of t on [a, 6]. We define

n n

(165) I |̂ 4(t) I \ m — max max >|aj,(t)| = max max > laMt)!.
11 v "  a < t< b  l < i < m  J V/ I  l< i< m  o < « 6  ^  3

J=1 J=1

Next, we show th a t the matrix M-norm (for A {t) ) and vector M-norm (for u ( t ) ) 
are consistent, and this result will be frequently used in our error analysis.

L em m a 14.

(166) \\A{t)u(t)\\M < ||.A(t)||M ||u(t)||M

Proof. We have
n n n ~

A u ( t)  =  ^  a-mj uj(t)
j=1 j= l  j=i
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Hence,

n n

\\Au{t)\\M =  max m a x  I J ]  a+fft) ufit) < max m a x  £  | a ^ ) |  h ( i ) |
\ < i < m  a < t< b  j - i  j =i

71
< max X > , ( f ) |  ( l K t ) | | „ )  =  P ( t ) | | M IK «)IU

1=1

The proof is then complete. □

R em ark  15. It is easy to observe that i f  I\ and I 2 are two intervals such that u(t) 
and A(t) are defined on both intervals and that I\ C I 2 , then

IK f) ||M,/i < ||u(*)IIm,j2 , and \\A(t)\\M,h  <  POOI|m , / 2 

where || • ||m , / 3 refers to the M -norm imposed on the interval I  j , j  =  1 ,2 .

L em m a 16. Let U(t) be the solution vector of the “one-step” initial value problem

(167) /  ^  = S(t) ° {t) + m  U{t) + H{t) ’ tn ~  t ~ tn+1
\ U ( t n) = 0, U(tn) = 0

where S ( t ) is a continuously differentiable matrix-valued function, and R ( t) and H(t) 
are continuous matrix- and vector-valued functions, respectively. Then for sufficiently 
small A t , U(t) satisfies

(168) \\U(t)\\M < l A t 2 (l  + 0 ( A t ) ) \ \H ( t ) \ \M,

where the M-norm is imposed on [tn , tn+i \ .

Proof. For t G [tn , tn+l] , we have

U(t) = U{tn) +  f  U(r) dr 
J t n

= U(tn) + ( t - t n)U (tn) +  f  [ T iJ{r) dr dr
J t-n J  tn

=  0 +  0 +  /  f  ^S(r)U(r) + R (r)U (r) + H(r) dr dr.
J  tn J tn

Using integration by parts, we obtain

U(t) = f  S ( t)U ( t)  dr +  f  f  f (R(r) -  S(r))U (r)  +  H(r)
Jtn Jtn Jtn L

drdr.
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Taking the M-norm on both sides, we have

\\U\\M < A t | |5 | |M ||f / |k  +  ^ A t2 ( | | i2 - 5 ||M ||t / | |M  +  | |^ | |M )

which yields

It is thus clear tha t (168) holds for sufficiently small A t . □

L em m a 17. (Gronwall Inequality [44, 49]) L e tu (t) > 0  andg(t) >  0  be continuous

holds for a < t  < b .

In what follows, we let x(t), y{t) and X(t) be the exact solution of the original 
problem (151) at time t .  It is necessary to introduce several other notations before 
conducting the error analysis. Below we will concentrate on the iterative scheme
(156) and (157), and similar analysis can be conducted for the other method, (153) 
and (154).

Based on equation (148), it is clear that x(tn+i) is the value of the exact solution 
to the following “one-step” initial value problem at t = tn+1:

Meanwhile, based on equation (157), we denote the exact solution of the following

where Ai+1(t) represents the solution of the (i +  l) th  iteration for A(t) on [tn , tn+i ] .
Furthermore, we introduce the hat notation to denote the numerical values of the 

solutions and their derivatives. For example, and i :n+1 refer to  the numerical

real-valued functions on the interval [a, b] . I f  there are constants K  > 0 and L  > 0 
such that

for all t € [a, b], then the inequality

u(t) <  L + K  g(s) u(s) ds

A\ z  +  Ei z  -f- Ci z  — ri — Bi  A (t) 

^ifn) ~  x{tn )̂ , ■Z(tn) — •i'(^n)-

7̂1 ^  t  ^  tn+l,

one-step initial value problem at t  =  tn+i by :

Ai z +  Ei z  +  Ci z  =  ri — Bi Xt+1(t) 

z(fn) =  3-(^n) > z(fn) = •&(fn )i
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values of x(tn+1) and x ( tn+i ) , respectively. Also, x ^ x (i =  0, 1, • ■ ■) denotes the 
numerical solution at tn+\ for the (i +  l) th  iteration. Similar hat notations are used 
for y and A .

In addition, we let x %̂+i denote the exact solution of the initial value problem 
given below at t =  tn+\ :

A \ z  T  Ei z  T  Ci z — Ti — Bi  A*"^(t), tn ̂  t  ^  tn.(_i,

z(tri) — Xn i ^(fn) — Xn.

Here in the initial conditions, xn is the numerical approximation of x(tn) and can 
be calculated, for example, using a backward difference formula. We may assume 
that xn is computed at the same order of accuracy as that of with an appropriate 
numerical formula as long as x(t) is reasonably smooth. This means, there exists a 
constant c\ > 0 such that

(172) \\xn - x ( t n)\\ < c i\\x^  -  x{tn)\\.

We may define , y^+i , and etc., in a similar way. Below we will focus 
our attention on the error analysis for x , since the error estimates of y and A will 
immediately follow the results for x .

T h eo rem  18. Let the assumptions (A l)  and (A2-2) hold. Let also the matrix J  be 
defined as

(173)
J = - ( D 2A21B2)~1(DiAr1B1).

I f  II^IIm <  I; then for sufficiently small A t ,  the iteration (156)(157) converges for  
all t € [tn, tn+i] with any start-up error and any tolerance.

Proof. Let ej.+1(t) denote the difference between the exact solutions of (169) and 
(170) on the interval [tn , tn+1] . Also define e*+1(t) in a similar way. In particular, 
we have

(174) e ^ 1(tn+1) =  “  *(<n+i). 4 +1(^ + 1) =  yj+\ -  y(tn+i),

and

(171)

(175) j + \ t n) =  e ^ ( t n) =  0, exi+1(tn) = eyi+\ t n) =  0 .
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In addition, we let eA+1(£) =  A(t) — Al+l( t ) . When tn < t < tn+\ , these error 
functions satisfy

(176) Tli exl+1 +  E\ exi+1 +  C\ ex+1 = - B 1 ei+lA

(177) A 2eyl+1 + E2eyl+l + C 2e;+1 =  - b 2ei+lA

(178) and D2 eyl+l +  Di ex = 0 .

In what follows, we proceed in several steps to complete the proof of this theorem.
Step 1: We establish the relationship between the norms of those error functions 

introduced above.
Equation (176) yields

(179) exi+1 = - A ^ e ^ 1 -  A ^ E ^ J ^  -  A ^ B . e ^ 1,

from which we can solve ezx+1 in terms of eA+1( i ) . Based on Lemmas 14 and 16, we 
obtain the estimate

(180) | |4 +1| k  < i A t 2 (l +  0 ( A t ) ) | | ^ r 15 1 ||M ||ei+1 ||M,

where the norm || • \\m , defined in equation (164), is evaluated on the interval 
[tn , tn+i] . Similarly, from equation (177) we can derive

(181) | |4 +1||m <  ^ A t 2 {l + 0 ( A t ) ) \ \ A ^ B 2\\M \\e ^ 1\\M.

Meanwhile, if we take the M-norm on both sides of equation (179), we have

(182) ||ex*+1||M <  ||J41 1Bi||M ||eA+1||M +  ||^4r1C,i||M||e^+1||M +  ||-^ r1-£'i||M||ext+:l||M-

Using Taylor series expansions at t = tn for ê +1(t) and e*+1( t ) , and applying the 
initial conditions (175), we can easily obtain

(183) \\ex +1\\M <  A t\\exl+l\\M and | |4 +1||m < ^ A t2 j|ex*+1||M,

as well as

(184) ||eyl+1||M <  A t||e yl+1||M and ||e*+1||M < ^ A t2 ||eyi+1||M-

Substituting (183) into (182), we obtain

(185) ^ l - A t \ \ A ^ E 1\ \ M - l A t 2\ \ A ^ C 1\\M ) \ \ e xi+1\\M < W A ^ B ^ m ^ W m .
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A  =  1 -  A tW A ^ E ^ M - - A ^ W A ^ W m .

Let us denote

(186)

Then A  >  0 for sufficiently small A t . Thus we have

(187) | |A1+1||m < A ^ P r ^ i l U l l e ^ l l M .

In a similar way, we obtain

(188) 

with

(189) a -  —  1 A + l l  A - l  II _ .  ̂A + 2 11 \  —1

|e /+1|U  — 02 111 ''̂ 2  ̂-®211M11 ® 11M >

A  =  i - A t \ \ A ? E 2\\M - - A t 2\\Az1c 2\ M-

Step 2: We establish a recurrence relation for ||e,i+ l|
\ M  ■

Let us put equations (177) and (178) into a block-matrix form 

(190)

A 2 B 2 
D2 0

eyi+1
+

»
0 eyi+l

+

»

0

1+1

. e^ +1 . 0 0 L e^ +1 J 0 0 . e> .

Based on Lemma 12, the matrix
A 2 b 2 
d 2 0

its inverse. Using the formula (158), we have

is invertible; let
Gi G2
G:i Gi

0

-Dix*

denote
1

<N

i
'  A 2 1 -  A21B2(D2A21B2) l D 2A2X A2lB2{D2A2 1B2) 1 *

g 3 g 4 {D2A2l B2y lD2A 2l - ( d ^ b -,)-1

(191)

Prom equation (190), it is easy to obtain

(192) e*A+1 =  -G iD x e J  -  G3E 2eyi+1 -  G3C2eyi+1.

Substituting equation (179) for exl , we obtain

(193) e j*-1 =  G4D lA ^ 1B l e \+G 4Di (  A ^ C ,  elx+ A ^ 1E l e j  ) - G 3E 2eyi+1- G 3C2eyi+1. 

Then using the results in (183) and (184), we have

IK+1||m < ||G47 W A | | M | | e lA||M + ( m G iD x A ^ E ^ M  

+  ^ A t 2\\G4D i A i 1Ci\\M^\\e-xi\\M +  (A t\\G 3E 2\

(194) + - A f 2 ||G 3C2 ||M)||<V+1 ||M-

M
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Finally, substitution of (187) and (188) into (194) yields

(195) ||e\+1||M < \\G4D iA 1 1B \\\m ||e\||M  +  au A t 1 1 1 1 +  a.2 A t  ||e^+1||M> 

where

=  (\\G 4D 1A ^ E 1\\M + ^A t\\G 4D 1A ^ C 1\\M) P i 1\ \A ^ B 1\\M,

«2 = ^ \\GzE2 WM + 2 ^ II^ 3̂ 2 ||m ^2 111-̂ 2 

Note that G4 =  — {D^A^1 Bz)~l from equation (191). Let us denote

(196) J  =  G4D 1A ^ 1B 1 = - ( D 2A ^ 1B 2) - 1(D1A i 1B 1).

Let us also denote

(197) 7  =  (1 — a 2 A t)-1 ( ||J ||m  +  QU A t).

Then 7  > 0 for sufficiently small A t . Thus the inequality in (195) becomes

( 1 9 8 )  l le A+ 1 | | M  <  7 l | e \ | | M ,

which holds for any i . Iterating back on i , we obtain

(199) |K +1||m < V lle ilk .

Step 3: We establish similar error estimates for ||ê .+1||M and 
By evaluating equation (192) at i = 0 and using the results in (184) and (188), 

we obtain

(200) lleillM <  ||G4-Di||m IMx0||m +  0L2 A t  ||e)J|jvf.

That is,

(201) ll^ll \m  < ~ & 2 A t)~ l \\G4D i\\M \\ex0\\M,

where ex° measures the start-up error of our iterative procedure.
Combining the results in (180), (199) and (201), we obtain

(202) ||4 +]||m <  y  ■ ± A t^ l  + 0 ( A t ) ) \ \ A ? B 1\\M \\G4D 1\\M \\ex°\\M.

Meanwhile, if we combine the results in (181), (199) and (201), we obtain

(203) ||e^+1||M < 7 * • - A t2 ( l  +  O (A t)) ||A2 152||m  H ^D iIIm  ||ex°||M-

Based on the results in (199), (202) and (203), it is clear that the iterative scheme 
is convergent if and only if 7  < 1. Hence, Theorem 18 holds for sufficiently small 
A t. □
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If, instead, the iterative method (153) and (154) is used, the analysis can be 
conducted in the same way as above and we can easily obtain the following Corollary.

C o ro lla ry  19. Let the assumptions (A l )  and (A2-1) hold. Let also

(204)
J  = - ( D 1A f 1B 1)~1(D2A ^ B 2).

I f \ \J \ \M < 1/ then for sufficiently small A t ,  the iteration (153) and (154) converges 
fo r all t £ [tn, t n+1] with any start-up error and any tolerance.

4.2.2 EX AM PLES

E xam ple  1. We first consider a one-dimensional example where x  and y  are both 
scalars:

(205)
x = %x + 9A,

(206)

y =  y +  A,

subjected to the constraint

(207)
x  =  2 y.

The initial conditions are given as

(208)
x(0) =  0, x(0) =  2.

The exact solution of this problem can be easily found as

(209)
x =  2sin(i), -y = sm(t), A =  —2sin(t).

Based on the formulas (173) and (204), it is straightforward to obtain

(210)

| | J | | „  =  9 > 1  and ^ < 1-
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Hence, the iterative method (153) and (154) should be used to ensure convergence; 
th a t is, the constraint should be placed on x. This yields the following iterative 
procedure at the (i + l) th  iteration:

(211)

x i+1 = 2 y \

(212)

Ai+i = l^ i+ i _ 8xi+i);

and

(213)
yi+l _  yi+1 +  A*+l

We choose the computational domain as [0,10], which is equally divided into a set 
of intervals, each with length A t. We consider different values of A t in the numerical 
tests. Meanwhile, we divide each interval [tn, tn+1] into N uniform subintervals when 
implementing the iterative procedure, so th a t the local mesh has a grid spacing of 
A t /N .  The convergence tolerance is set as £o =  10~7. Using the analytical solution
(209), we can easily verify the overall accuracy of the numerical approach by checking 
the errors at the end of the computation, t = 10. Table 7 shows a typical set of results 
when combining the iterative procedure (211)-(213) with two common ODE solvers, 
the forward Euler method (explicit, first-order) and the trapezoidal rule (implicit, 
second-order), respectively. The quantity R x is defined as

(214)
SAt(lO) -  x(10) 

x *Ai/2( 1 0 ) - z ( 1 0 )  ’

where x(10) stands for the exact solution at t  = 10 and £ a<(10) denotes the numerical

R x Ry Rx
Euler 1.99 1.99 1.90

Trapezoidal rule 4.02 4.02 4.02

TABLE. 7: Example 1 - Order of accuracy for the iterative algorithm using the 
forward Euler method and the trapezoidal rule as the ODE solvers, respectively.
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approximation to x(10) with the stepsize A t. In a similar way we define Ry and R \. 
We clearly see first-order accuracy (with Euler) and second-order accuracy (with 
trapezoidal rule) achieved in the end of the computation, which are consistent with 
the accuracy of the ODE solvers.

Figure 51 shows a  set of simulation results using the iterative approach with the 
Euler method, for A t == 0.25. We observe excellent agreement between the numerical 
solution and the exact solution. The results with the trapezoidal rule show similar 
pattern and are not presented here.

— —  e x a c t s o lu tio n  y  

A  n u m e ric a l s o lu tio n  y 

-  -  e x a c t s o lu tio n  x  

O  n u m e ric a l s o lu tio n  x 

'  «  e x a c t s o lu tio n  X 

o  n u m e r ic a l s o lu tio n  X

0 4 5 6 71 2 3 8 9 10
T im e

FIGURE 51: Comparison between the numerical approximation and the exact solu
tion for Example 1.
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E x am p le  2. Next, we consider the following dynamical equations where x and y  are 
both vectors of two components:

(215)

"2 1" Xl ’- 2  - I Xl ' o '
3 4 x 2 - 7  - 2 _x2 2A

"3 4' m ’- 5 - 3 ' Vi +
’a'

1 5 y*. - 1 - 5 y*. 0

(216)

subjected to the constraint

(217)
%2 =  2yi, or x2 =  2y1.

The initial conditions are given as

(218)
xi(0) =  1, ±i =  0, 3/i(0 ) =  0, yi(0) =  l, 3/2(0 ) =  2, and y2(0) =  0.

The exact solution of this problem can be found as 

X\ =  cos(t), x 2 = 2sin(t), y\ =  sin(i),

(219)
t/2 =  2 cos (t), X — 2 sin (£) — 2 cos(t).

Equations (215) - (217) can be assembled into a  block-matrix system in the form
of (151):

(220)

2 1 0 0 0 ' Xi
3 4 0 0 2 ±2

0 0 3 4 -1 Vi
0 0 1 5  0 V2
0 1 - 2 0  0 A

- 2 - 1 0  0 0 

- 7 - 2  0 0 0
0 0 - 5 - 3  0
0 0 - 1 - 5  0
0 0 0 0 0

Xi "o'
X2 0

yi = 0

y2 0
A 0
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If the local iterative scheme (156) and (157) is applied, we obtain, a t the ( i+  l) th  
iteration,

(221)

and

(222)

3 4 - 1 y\+1
1 5  0 yi+1

- 1 0  0 Xi+1
+

3 0 
5 0

0 0 0

1

0

V2+1 = 0
Xi+1 - x \

*2 l" 'xi+ f ’- 2 - l ' x i 0
3 4 Xl2 l_ - 7 - 2 1x 2 2Ai+1

W ith some algebra, equation (221) may be further manipulated to decouple the com
putation for yl+1 and At+1 so as to simplify the solution procedure. Using equation 
(173), we obtain

J  =  - { D 2A ^ B 2y \ D 1A-11B 1) =  ^  • ^ =  0-88 < 1.

Based on Theorem 13, the local iterative procedure (156) and (157) will converge for 
this problem.

If, instead, the local iterative scheme (153) and (154) is applied, we have

(223)

2 1 0 

3 4 2 
0 1 0

x l 2 1 0 ^ +1 0
;;.i+1 x2 + 7 2 0 x 2 = 0
A*+1 0 0 0 A i+i 2y\_

and

(224)

3 4 
1 5

y\+l
y ? 1

- 5  - 3  
- 1  - 5

y\+l

yi+1
+

Am

0

Using equation (204), we obtain

t; in
J  = - ( D 1A ^ B 1) - 1(D2A ^ B 2) =  2 .  ±2 >  i.

Hence, the iterative scheme (153) and (154) will not converge.
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Rx Ry Rx
Euler 2.03 2.04 2.07

Trapezoidal rule 4.04 4.00 4.01

TABLE. 8: Example 2 - Order of accuracy for the iterative algorithm using the 
forward Euler method and the trapezoidal rule as the ODE solvers, respectively.

Below we present numerical results to confirm these predictions. We again set 
the computational domain as [0,10], and divide each interval [tn, t n+i] into equally 
spaced subintervals when implementing the iterative procedure. The convergence 
tolerance is set as eo =  10~7. We focus on the iterative scheme (156) and (157), and 
employ again the forward Euler method and trapezoidal rule as the ODE solvers.

Figure 52 shows the simulation results using the iterative approach with the 
trapezoidal rule, for A t  = 0.25. We again observe tha t the numerical solution closely 
matches the exact solution. The results with the Euler method show similar pattern 
(not presented).

Next, we verify the overall accuracy of the numerical simulation by checking the 
errors at the end of the computation, t = 10. Table 8 shows the values of R x ,Ry  
and Rx for the Euler method and trapezoidal rule, respectively. We clearly observe 
first-order accuracy for the Euler and second-order accuracy for the trapezoidal rule.

In addition, we have applied the iterative scheme (153) and (154) to compute 
this problem. We find the numerical solution does not converge no m atter what 
ODE solvers are applied and how small A t  is. This is consistent with the analytical 
prediction.

E x am p le  3. Now we consider an example where the coefficient matrices and vectors 
are functions of t:

’ 1 o ' Xi
+

—21 t + 1 x2
—2 sin(f) cos(f) 
2 cos(f) sin(f)

Xi -1  l" Xi
+

;i 2. 0 1 5 2_
(225)

2 ’  -1  "

- A
2(eos(f) — sin(t)) t -  1
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’ 5 —3 Pi +
10 6 P .

2 cos (t) — sin (t) 
2 sin(t) cos(t)

yi +
' 3 - 2" y\

P . 12 5 P .
(226)

'2 ’  1 "

- A
0 -1

subjected to the constraint

(227)
— 2yi, or x 2 = 2y1.

The initial conditions of this problem are given as

(228)
Zi(0) =  l, i 1(0) =  0! yi(0) =  0, yi(0) =  1, y2( 0) =  0, and y2(0) =  0.

The exact solution of this problem is the same as given in (219).
Similar to Example 2, the local iterative schemes (153) and (154) and (156) and 

(157) can be applied to this problem ( note the assumptions (Al), (A2-1) and (A2-2) 
are all satisfied). From equation (173), we have

J  = - ( D 2A ^ 1B 2y \ D 1A i 1B 1) =  -10 .

Thus, the iterative method (156) and (157) will not converge for this problem. In
stead, from equation (204), we obtain

J  =  - { D 1A ? B 1) - \ D 2A Z 1B 2) =

which indicates tha t the iterative method (153) and (154) will converge for this 
problem.

Based on the iterative scheme (153) and (154), the following two major steps are 
performed for the (i +  l) th  iteration:
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Step 1. Solve for £i+1, x^"1 and At+1 from the system

1 0 - 1

1r*“(

i

—2 sin(t) cos(t) 0 X1
—2f t +  1 t -  1 1x2 + 2 cos(t) sin(f) 0 ~i+1 x2

0 1 0 Ai+i 0 0 0 Ai+1

(229)

- 1 1 0 ~*+lx \ 2
+ 0 1 0 ™*+1 ■"2 = 2(cos(t) — sin(t))

0 0 0 Am 2yi

W ith some algebra, the system (229) can be reduced to three separate equations:

(230)
x:i+l =  2 y\,

—(t +  l)x j+1 +  [2cos(t) — 2(t — 1) sin(t)]xt1+1 — (f — l)x i+1 =

— (t + l)x 2+1 — [(t — 1) cos(f) +  sin(t)]i:2+1

(231)
— tx  2+1 +  2 (f — 1) +  2(cos(f) — sin(f)), 

for x)+1 and x ^ 1, respectively, and

(232)
Ai+1

for Ai+1. 
Step 2.

5

Solve for y\+1 and yl+i from the system

2 s in ( t )x j+1 +  cos(t)x2+1 xi+1+  x.i+1

i+1

10 6
y\+1

yi+1 +
2 cos(t) 
2 sin(t)

— sin(t) 
cos (f)

>i+1'

l

(233)

’ 3 - 2 y \+1 '2 ■ Ai+1 ‘

12 5 y l2+\ 0 —Ai+1

Figure 53 shows the simulation result using this iterative approach with the trape
zoidal rule, for A t =  0.05. The pattern is similar to th a t in Figure 52; i.e., the 
numerical solution closely follows the exact solution. Also note that Examples 2 and 

3 have the same exact solution. Meanwhile, we observe similar accuracy (i.e., first 
order with the Euler and second order with the trapezoidal rule) for the numerical 
solution (see Table 9).
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Rx Ry Rx
Euler 2.01 2.03 1.99

Trapezoidal rule 4.00 3.83 4.00

TABLE. 9: Example 3 - Order of accuracy for the iterative algorithm using the 
forward Euler method and the trapezoidal rule as the ODE solvers, respectively.

z>.

T im e

■ ■ ■ " "  e xa c t s o lu tio n  x1

A n u m e ric a l s o lu tio n  x1

e x a c t s o lu tio n  x2
X n u m e rica l s o lu tio n  x2

............. e x a c t s o lu tio n  y2

O n u m e ric a l s o lu tio n  y2

e xa c t so lu tio n  X
D n u m e rica l so lu tio n  X

FIGURE 52: Comparison between the numerical approximation and the exact solu
tion for Example 2.
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Time

exact solution x1
A numerical solution x1
• exact solution x2
X numerical solution x2

exact solution y2
n numerical solution y2

exact solution \
0 numerical solution).

FIGURE 53: Comparison between the numerical approximation and the exact solu
tion for Example 3.
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E x am p le  4. Now we consider a  linearized plane stress problem. Figure 54 shows a  
solid arch whose left and right edges are completely constrained on the walls. The 
arch is discretized into a finite element model with 6 nodes and 3 Constant Strain 
Triangular (CST) elements. The whole structure can be viewed as two separate 
substructures joined at Node 1: the left substructure is made of two (triangular) 
elements and the right substructure has one element.

The equations of motion for the left and right substructures, respectively, are 
given by

(234) 

and

(235)

M l x l +  Jx,(i) x L = 0,

M r X r  +  Jft (t )  X r  — 0,

where M l and M r are the (constant) mass matrices, and Jz,(t) and Jr (€) are the 
stiffness matrices which are assumed to be time-dependent. The displacement vector 
xl of equation (234) consists of the displacements at Nodes 1 and 2 as

. t
x L = .

On the other hand, the displacement vector xr of equation (235) consists of the 
displacements at Node 1 of the right substructure,

xr =  ( u f , v ? )  .

The stiffness matrix Jz,(t) and the mass matrix M l of equation (234) are given

by

M t )

and

Mr

‘ 0.3 +  0.1 cost -0 .04 0.04 0.2 cost
-0 .04 0.6 -0 .4 -0 .02
0.04 -0 .4 0.2 0.02

- 0.2 cos f -0 .02 0.02 0.15 +  0.44 cost

0.04 0 0.02 0
0 0.04 0 0.02

0.02 0 0.15 0
0 0.02 0 0.15
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FIGURE 54: Structural configurations in Example 4.

Meanwhile, the matrices JR(t) and M r of equation (235) are given as

0.1 cost 0 ' 0.26 0
and M r  =

0 0.2 0 0.26

The joint conditions between the left and the right substructures a t Node 1 can 
be represented by the following constraint which has to be maintained at all times:

(236) Ui = u f  and u f =  u f .

The initial displacements are set as all zero:

(237) x L{0) =  (0, 0, 0, 0)T and x R(0) =  (0, 0)T,

whereas the initial velocities are given by

(238) ± i(0 )  =  (1, - 2 , 2 ,  - l ) r  and ± r(0 )  =  ( l , - 2 ) T

The exact solution to this problem is

j «  j i

££,(<) =  (s in i , — sin(2 t), s in(2 i), —sin t) and x R(t) — [ s in t , —sin(2t)) ,
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which can be used to measure the accuracy of our numerical solution.
Based on the Theorem of Lagrange Multipliers [25], we obtain the following equa

tions to describe the constrained dynamics of the entire structural system:

(239) M l Xl + J i{ t)  xl = —B r X,

(240) M r xr  + Jn(t) xr  =  —B r X,

(241) and D r  x r  +  D r  x r  =  0.

Here A is the algebraic unknown (or, the Lagrange multiplier in this case) and A =  

[Ai, A2]t - Meanwhile,

’ 1 0 0

1O

’ - 1  o ’
, B r  =

o i 0 i
o

0 - 1

and B r  = D r and B r  =  D R .

Equations (239-241) constitute a  constrained dynamical problem, and we will 
then apply our proposed iterative approach to solve this problem. Before applying 
the numerical algorithm, we can easily evaluate, based on equations (173) and (204), 
that

| |J | |  =  \ \ (Dr M ^ 1B r ) - 1( D l M £ 1B l )\\ «  6.96 > 1,

and
|| J | |  =  \ \ (Dl M £ 1B l )~1( D r M r 1B r )\\ «  0.14 < 1.

Hence, the local iterative scheme (153) and (154) should be used to ensure con
vergence. Specifically, we perform the following steps to obtain the solution at the 
(i -f- l) th  iteration:

Step 1. First evaluate part of x 1̂ 1 (i.e., (uf')l+1 and (t 'f) t+1) based on (241):

(242) K ) l+1 =  ( « f ) \  and (u f)l+1 =  (u f ) \

Then compute the other components of x 1̂ 1 (i.e., (u^)t+1 and (w^)l+1) and A*+1 by

1
> i_l
 

SI
. ± 1

(243)
(u%)i+1

. (v%)i+1 .

+  Jl {B)
(v f) l+1

(vk)i+x

=  -

1
o 

o
<

1

This systems consists of four scalar equations; the last two equations are used to 
calculate (u% )*+1 and , then the first two equations are applied to evaluate
A)+1 and A3,+1.
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Calculate the backward errors E\ and ex .

Step 2. Compute x 1̂ 1 by solving

(244) Mr x * 1 +  JR(t) 4 +1 =  Ai+1.

Also calculate the backward error ey .

Step 3. Check the convergence.

Applying this iterative procedure to the system (239-241), we observed similar 
patterns of convergence and accuracy as those demonstrated in the previous two 
examples. A typical set of numerical results are presented in Figures 55 - 58 which 
show excellent agreement between the numerical solution and the exact solution on 
the interval [0, 10].
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0.8

0.6

0.4

0.2

- 0.2

-0 .4

- 0.6

- 0.8

time

—  exact solution 
o numerical solution

FIGURE 55: Comparison between the numerical and the exact solutions for Example
4 for =  wf.
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—  exact solution 
o numerical solution

FIGURE 56: Comparison between the numerical and the exact solutions for Example 
4 for uf =  vP.
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—— exact solution 
o numerical solution

time

FIGURE 57: Comparison between the numerical and the exact solutions for Example
4 for u -̂
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0.8

0.6

0.4

0.2

CN
>

- 0.2

-0 .4

- 0.6

- 0.8

time

—  exact solution 
o numerical solution

FIGURE 58: Comparison between the numerical and the exact solutions for Example
4 for rtf'.



CHAPTER 5

CONCLUSIONS

In this dissertation, mathematical modeling of cholera dynamics with optimal 
controls and new iterative algorithms for solving optimal control problems have been 
investigated. In the beginning of Chapter 3, we extended the original model proposed 
by Mukandavire et al. to  investigate optimal control strategies. We modified the 
model by adding three types of controls: vaccination, therapeutic treatm ent, and 
water sanitation. We then followed the Forward-Backward Sweep M ethod to find the 
optimal control solutions. Numerical simulations showed th a t with the incorporation 
of any of the three controls, the level of infection was reduced compared to the 
original model without controls. Specifically, with all three controls, such reduction 
is significant. An interesting result showed th a t the improvement has been achieved 
even with vaccination only.

Results from this simple model motivated our interest for more careful explo
ration on cholera dynamics with controls. By using more realistic assumptions on 
control parameters and by introducing an additional class of vaccinated individuals, 
we formulated a refined optimal control model for cholera. The numerical simulations 
showed similar patterns, i.e., the number of infections has been significantly reduced 
when all three controls were applied. This confirms our observation th a t multiple 
intervention methods should be used whenever possible.

We have seen from our numerical simulations th a t vaccination is a very effective 
control measure. However, with the cost of vaccines and their limited availability, a 
mass vaccination may not always be possible in reality. This led us to propose a new 
optimal control model to investigate optimal times during.epidemics for deploying 
cholera vaccines tha t best balance the gains and costs of vaccination. Our study 
showed th a t if one has access to sufficient resources of vaccines, a mass vaccination 
should be deployed immediately after an outbreak. In reality, however, this may not 
always be feasible, and it suggests th a t vaccination should be deployed strategically 
in combination with other types of control methods.

The complexity of cholera dynamics is yet to be better understood. We continued 
our study to an age-structure model to investigate the impact of different ages on
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cholera dynamics and the corresponding control strategies. The numerical simula
tions demonstrated tha t ages could affect the infections. We expect more results on 
this topic to be reported in near future.

We closed Chapter 3 with our interest in a multigroup cholera modeling. We 
proposed a first step to  a two-group cholera model. Preliminary numerical results 
showed that the higher disease transmission from group 2 to  group 1 results in higher 
levels of infections and pathogen concentration in group 1. Correspondingly, that 
leads to longer duration of vaccination in group 1.

In Chapter 4, we turned to the study on iterative algorithms for optimal con
trol problems. We introduced a locally refined Forward-Backward Sweeping Method 
to improve the convergence of the original FBSM. Error analysis and numerical 
simulations were also presented. We then extended the idea of locally refined itera
tive procedure to  the study for a  class of constrained dynamical problems involving 
second-order linear differential-algebraic equations. Examples and numerical results 
were presented to validate our analysis. We expect applications of such iterative 
algorithms to a wider range of scientific and engineering problems.

All numerical simulations were conducted by Matlab program (license number 
: 347959 ) on a personal computer owned by Old Dominion University running 
Windows 7 Enterprise, Intel(R) Core(TM)2 Duo E7300 2.66 GHz processor, 4.00 
GB memory, and 64-bit Operating System.

All parameter values in this dissertation were taken from published research pa
pers and they were cited in this work.



116

REFERENCES

1. S. Lenhart and J. T. Workman, Optimal Control Applied to Biological Mod
els, Chapman and Hall/CRC, London, (2007).

2. W. O. Kermack, A. G. McKendrick, A Contribution to the Mathematical 
Theory of Epidemics, Proceedings of the Royal Society, 115, No.772, (1927), 
700-721.

3. V. Capasso, S. L. Paveri-Fontana, A mathematical model for the 1973 cholera 
epidemic in the European mediteranean region, Revue d epidemoligie et de 
sante Publique, 2, No.27, (1979), 121-132.

4. R. I. Joh, H. Wang, J. S. Weiss, Dynamics of indirectly transmitted infectious 
disease with immunological threshold, Bulletin of Mathematical Biology, 71, 
(2009), 845-862.

5. T.Burden, J. Ernstberger, and K. R. Fister, Optimal Control Applied to Im 
munotherapy, Discrete and Continuous Dynamical Systems-Series B, 4, No.l,
(2004), 135-146.

6. D. Kirschner and J. C. Panetta,Modeling immunotherapy of the tumor - im
mune interaction, J. Math. Biol., 37, (1998), 235-252. 585 (1998).

7. L. D. Berkovitz, Optimal Control Theory, Springer-Verlag, New York, (1974).

8. Center for Disease Control and Prevention web page: www.cdc.gov.

9. E. J. Nelson, J. B. Harris, J. G. Morris, S. B. Calderwood, Cholera transmis
sion: the host, pathogen and bacteriophage dynamic, A. Camilli, Nat. Rev. 
Microboil. 10, (2009), 693-702.

10. D. M. Hartley, Jr. J. G. Morris, D. L. Smith,Hyperinfectivity: A Critical 
Element in the Ability o f V. cholerae to Cause Epidemics?, PLoS Med. 3,
(2005), e7.

11. A. Alam, R. C. Larocque, J. B. Harris, et al.,Hyperinfectivity o f 
human-passaged Vibrio cholerae can be modeled by growth in the infant 
mouse,Infection and Immunity, 73, No.10, (2005), 6674-6679.

http://www.cdc.gov


117

12. D. S. Merrell, S. M. Butler, F. Qadri, et al., Host-induced epidemic spread of 
the cholera bacterium, Nature, 417, (2002), 642-645.

13. Z. Mukandavire, S. Liao, J. Wang, H. Gaff, D. L. Smith, J. G. Mor
ris, Estimating the reproductive numbers fo r  the 2008-2009 cholera outbreaks 
in Zimbabwe, Proceedings of the National Academy of Sciences, 108, (2011), 
8767-8772.

14. World Health Organization web page: www.who.org.

15. K.A. Date, A. Vicari, T.B. Hyde et al., Consideration for oral cholera vaccine 
use during outbreak after earthquake in Haiti, 2010-2011, Emerging Infectious 
Diseases, 17, N o.ll, (2011), 2105-2112.

.16. C. T. Codego, Endemic and epidemic dynamics o f cholera: the role o f the 
aquatic reservoir, BMC Infectious Diseases, 1, (2001), 1-14.

17. E. Asano, L. J. Gross, S. Lenhart, L. A. Real, Optimal control o f vaccine 
distribution in a rabies metapopulation model, Mathematical Biosciences and 
Engineering, 5, (2008), 219-238.

18. B. Buonomo, A simple analysis o f vaccination strategies fo r  Rubella, M ath
ematical Biosciences and Engineering, 8, (2011), 677-687.

19. J. Tian, J. Wang, Global stability fo r  cholera epidemic models, M athematical 
Biosciences, 232, (2011), 31-41.

20. R. L. M. Neilan, E. Schaefer, H. Gaff, K. R. Fister, S. Lenhart, Modeling 
optimal intervention strategies for cholera, Bulletin of Mathematical Biology, 
72, (2010), 2004-2018.

21. L. S. Pontryagin, V. G. Boltyanski, R. V. Gamkrelize, E. F. Mishchenko, The 
mathematical theory of optimal processes, Wiley, New York, (1967).

22. W. H. Fleming, R. W. Rishel, Deterministic and stochastic optimal control, 
Springer, New York, (1975).

23. H. D. Gaff, E. Schaefer,. S. Lenhart, Use o f optimal control model to pre
dict treatment time for managing tick-borne disease, Journal of Biological 
Dynamics, 5, (2011), 517-530.

http://www.who.org


118

24. E. Jung, S. Iwami, Y. Takeuchi, T. -C. Jo, Optimal Control strategy for  
prevention of avian influenza pandemic, Journal of Theoretical Biology, 260, 
(2009), 220-229.

25. A. D. Belegundu, T. R. Chandrupatla Optimization Concepts and Applica
tions in Engineering, Cambridge University Press, New York, (1999).

26. A. Alexanderian, M. K. Gobbert, K. R. Fister, H. Gaff, S. Lenhart, El Schae
fer, An age-structured model for the spread of epidemic cholera: Analysis and 
simulation, Nonlinear Analysis: Real World Applications, 12, (2011), 3483- 
3498.

27. E. J. Haug Intermediate Dynamics, Prentice Hall, (1992).

28. J. H. Tien, D. J. D. Earn, Multiple transmission pathways and disease dy
namics in a water borne pathogen model, Bulletin of Mathematical Biology, 
72, (2010), 1502-1533.

29. D. A. Knoll, D. E. Keyes, Jacobian-free Newton-Krylov methods: a survey of 
approaches and applications, Journal of Computational Physics, 193, (1996), 
2303-2317.

30. K. C. Park, C. A. Felippa, A Variational principle for the formulations of 
partitioned structural systems, International Journal for Numerical Methods 
in Engineering, 47, No.1-3, (2000), 395-418.

31. R. Unger, M. C. Haupt, P. Horst, Application o f Lagrange Multipliers for  
Coupled Problems in Fluid and Structural Interactions, Computers and Struc
tures, 85, (2007), 796-809.

32. Y. Xu, A matrix free Newton/Krylow method for coupling multi-physics sub
systems, Ph.D. Dissertation, Purdue University, (2004).

33. R. Glowinski, T. W, Pan, T. I. Hesla, D. D. Joseph, J. Periauz, A dis
tributed Lagrange multiplier/fictitious domain method for the simulation of 
flow around moving rigid bodies: application to particular flow, Computer 
Methods in Applied Mechanics and Engineering, 184, (2000), 241-267.

34. A. R. Gourlay, A note on trapezoidal methods for the solution of initial value 
problems, Mathematics of Computation, 24, (1970), 629-633.



119

35. A. Prothero, A. Robinson, On the stability and accuracy of one-step methods 
for solving stiff systems of ordinary differential equations, Mathematics of 
Computation, 28, (1974), 145-162.

36. P. Kunkel, V. Mehrmann, Differential-Algebraic Equations: Analysis and Nu
merical Solution, European Mathematical Society Publishing House, Switzer
land, (2006).

37. U. M. Ascher, L. R. Petzold, Computer Methods for Ordinary Differential 
Equations and Differential-Algebraic Equations, Society for Industrial and 
Applied Mathematics, Philadelphia, (1998).

38. K. E. Brenan, S. L. Campbell, L. R. Petzold, Numerical Solution of Initial- 
Value Problems in Differential-Algebraic Equations, Elsevier Science Publish
ing, North-Holland, (1989).

39. J. R. Cash, Efficient numerical methods fo r  the solution of s tiff initial-value 
problems and differential algebraic equations, Proceedings of the Royal Soci
ety of London A, 459, (2003), 797-815.

40. E. Hairer, G. Wanner, Solving Ordinary Differential Equations II: S tiff and 
Differential Algebraic Problems, Springer, (1996).

41. G. H. Golub, C. F. Van Loan, Matrix Computations, The Johns Hopkins 
University Press, (1996).

42. T. Sauer, Numerical Analysis, Person Addison-Wesley, (2004).

43. S. H. Strogatz, Nonlinear Dynamics and Chaos: with Applications to Physics, 
Biology, Chemistry, and Engineering, Westview Press, (2001).

44. E. A. Coddington, N. Levinson, Theory o f Ordinary Differential Equations, 
6th edition, Tata McGraw-Hill, New Dehli, (1982).

45. C. Moler, C. Van Loan, Nineteen dubios ways to compute the exponential of 
a matrix, twenty-five years later, SIAM Review, 45, (2003), 1-46.

46. R. Scardovelli, S. Zaleski, Direct numerical simulation of free surface and 
interfacial flow, Annual Review of Fluid Mechanics, 31, (1999), 567-603.



120

47. J. Wang, G. Baker, A numerical algorithm for viscous incompressible inter
facial flows, Journal of Computational Physics, 228, (2009), 5470-5489.

48. J. Wang, A. Layton, Numerical simulations of fiber sedimentation in Navier- 
Stokes flows, Communications in Computational Physics, 5, No. 1, (2009), 
61-83.

49. T. H. Gronwall, Note on the derivative with respect to a parameter o f the 
solutions of a system of differential equations, Annals of Mathematics, 20, 
(1919), 292-296.

50. J. Wang, C. Modnak, G. Hou, Convergence analysis of an iterative algo
rithm for a class of constrained dynamic problems,Applied Mathematics and 
Computation, 219, (2012), 1200-1221.

51. S. Liao, J. Wang, Stability analysis and application of a mathematical cholera 
model, Mathematical Biosciences and Engineering, No. 8, (2011), 733-752.

52. K. A. Date, A. Vicari, T. B. Hyde et al., Consideration for oral cholera 
vaccine use during outbreak after earthquake in Haiti, 2010-2011, Emerging 
Infectious Diseases, 17, No. 11, (2011), 2105-2112.

53. D. Bernstein, Matrix Mathematics, Princeton University Press, (2005).



121

VITA

Chairat Modnak
Department of Computational and Applied Mathematics 
Old Dominion University 
Norfolk, VA 23529

PREVIOUS DEGREES:
B.S. Mathematics, March 1998, Naresuan University.
M.S. Applied Mathematics, March 2001, King M ongkut’s Institute of Technology. 
M.S.. Mathematics, July 2007, Ohio University.

SCHOLARSHIP:
The Higher Educational Strategic Scholarships for Frontier Research Network (SFR 
Network), Thailand, 2002-2007.
The National Science Foundation support (One Quarter Project), Ohio University, 
USA, 2005.
The Graduate Teaching Assistantship, Old Dominion University, USA, 2007-2011. 
The National Science Foundation support (Summer Project), Old Dominion Univer
sity, USA, 2008-2012.

Typeset using MjgX.


	Old Dominion University
	ODU Digital Commons
	Summer 2013

	Optimal Control Modeling and Simulation, with Application to Cholera Dynamics
	Chairat Modnak
	Recommended Citation


	00001.tif

