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ABSTRACT

RAY- AND WAVE-THEORETIC APPROACH TO
ELECTROMAGNETIC SCATTERING FROM RADIALLY
INHOMOGENEOUS SPHERES AND CYLINDERS

Michael A. Pohrivchak
Old Dominion University, 2014
Director: Dr. John A. Adam

With applications in the areas of chemistry. physics, microbiology, metcorology,
radar, astronomy, and many other fields, electromaguetic scattering is an important
area of research. Many everyday phenomena that we experience are a result of the
scattering of electromagnetic and acoustic waves. In this dissertation, the scattering
of plane electromaguetic waves from radially inhomogeneous spheres and cylinders
using both ray- and wave-theoretic principles is considered. Chapters 2 and 3 examn-
ine the use of the ray approach. The deviation undergone by an incident ray from
its original direction is related to the angle through which the radius vector turus
from the point at which the ray enters the sphere to its point of exit. This angle can
be expressed in terms of a complicated improper integral. The resulting deviation
for several different refractive index profiles (some being singular) 1s examined to in-
vestigate properties of the refractive index profiles that allow for direct transmission
hows to exist, [n Chapter 4, the comnplementary approach of wave-theoretic anal-
ysis leads to the construction of exact electromagnetic solutions for the asymptotic
backseattered field produced by an incident plane wave. This has direct relevance to
radar applications in particular. The radial cigenfunctions can be evaluated exactly
(and also asymptotically) for the transverse electric and transverse magnetic modes.
This allows a determination of the high-frequency backscattered field by means of a

modificd Watson transformation.
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CHAPTER 1

INTRODUCTION

The following quote from a paper by Adam {1] explains in part why the ray- and
wave-theoretic approach to clectromagnetic scattering is such a fundamental topic:
“Georuetrical optics and wave {or physical) optics are two very different but
complementary approaches to describing many optical phenomena such as
the rainbow. However, there is a broad ‘middle ground’, the *semiclassical’
régime. Thus there are essentially three domains within which scattering
phenomena may be described: the scattering of waves by objects which in
size are (i) small, (ii) comparable with, and (iii) large, compared to the
wavelength of the incident (plane wave) radiation. There may be cousid-
erable overlap of region (i) with the others, depending on the problem of
interest, but basically, the wave-theoretic principles in region (i) tell us why
the sky is blue (amongst many other things). At the other extreme, the
‘classical’ domain (iii) enables us in particular to be able to describe the
basic features of the rainbow in terms of ray optics. The wave-particle du-
ality so fundamental in quantum mechanics is relevant to region (ii) because
the more subtle features exhibited by such phenomena involve both these

aspects of description and explanation.”

Solutionus of spherical scattering problems have practical applications in chem-
istry, physics, microblology. meteorology, radar, astronomy. and other fields [10}.
Many phenomena that we experience every day are related to the scattering of plane
clectromagnetic waves. Sound and light waves are scattered around objects that en-
able us to hear the sound and be illuminated by the light. The scattering of plane
electromagnetic waves provides an explanation of why the sky is blne and how a
rainbow 1s formed. There are several other reasons why it is important to have a
deep understanding of electromagnetic scattering by radially inhomogencous media.
Methods that are employed in this area can be very useful in exploring the combus-
tion of liquid hydrocarbons, the injection of sprays in high pressure environments,
as well as the spraying and dryving techniques utilized in the food, agricultural, and

pharmaccutical industries. Another exaple where the scattering of electromagnetic




waves by a radially inhomogeneous sphere 1s used is in biological studies to detect
blood and bacteria cells. Medical imaging uses the scattering of plane clectromag-
netic waves to identity and diagnose a range of health-related issues. Electromagnetic
scattering is also utilized in geophysical exploration to identify a new deposit of a
certain resource. Another example of the importance of electromagnetic scattering is
in the area of nondestructive testing of artifacts without causing damage to the envi-
ronment or other objects. The scattering of clectromagnetic plane waves by a radially
imhomogeneous sphere is a vast field with many practical and research applications.

This dissertation is organized as follows. In Chapter 2, the ray approach to
clectromagnetic scattering from a radialty inhomogeneous sphere for non-singular re-
fractive index profiles is discussed. The refractive index varies as a function of the
distance from the center of the sphere, v, where the refractive index profile is defined
for all values of . This discussion leads to the definition of a ray path integral which is
related to the deviation of a ray incident from infinity frow its original direction upon
the sphere at angle of incidence 7. The level of difhienlty i evaluating this integral
increases greatly even for simple profiles such as the linear profile. Chapter 3 presents
some singular refractive index profiles and evaluates the ray patl integral for those
profiles. The refractive index profiles in Chapter 2 and Chapter 3 were restricted
to be within the range of 1 to 4. These bounds were chosen because values less
than 1 and large positive values are physically impractical for optical wavelengths.
The theoretical considerations in this work do not depend on the upper bound of
4 or the lower hound of 1 and the graphs of the refractive index profiles could be
casily modified to accommodate larger and smaller values. Tt should be noted that
for nanomaterials, microwave wavelengths, plasinas, and other materials, there is no
limit to the value that the refractive index can take, as large positive values have been
observed as well as values less than 1. For each profile in Chapter 2 and Chapter 3,
certain conditions are discussed that allow for a zero-order (or direct transmission)
bow to exist. At the time of this paper being published, there is no known theorem
stating necessary and sufficient conditions on the refractive index profile for a zero-
order (or higher order) bow to exist. It is hoped that the research found in Chapter
2 and Chapter 3 will serve as valuable background for such conditions to be obtained
in due course. Some progress in this direction has been made by Adamn [2]. In Chap-

ter 4, a wave-theoretic approach is used to study electromagnetic scattering for a




specific refractive index profile. On the basis of this analysis, several other impor-
tant profiles can be investigated through (in principle) a judicious choice of variable
transformations. At short wavelengths, the leading term of the backscattered field
of a plane electromagnetic wave canuot be determined fully by simple geometrical
optics considerations (illustrating the comment made about régime (i) mentioned
in the first paragraph). Rather; it is obtained by utilizing a modified Watson trans-
formation of the exact solution. This transformation was developed for accelerating
the convergence rate of infinite series. This technique previously has been utilized in
the field of radar technology. The wave-theoretic analysis leads to the construction
of exact electromagnetic solutions for the asymptotic backscattered field produced
by an incident plane wave. The radial eigenfunctions can be evaluated exactly (and
also asymptotically) for the transverse clectric (TE) and transverse magnetic {TM)
modes. Subsequently, a determination of the high~frequency backscattered field can
be made. For two other profiles based on the hypergeometric equation, the corre-

sponding radial eigenfunctions are derived exactly so that the methods emnployed in

Chapter 4 may be applied to these profiles in future work.




CHAPTER I1

RAY APPROACH - NON-SINGULAR PROFILES

I1.1 INTRODUCTION

In the following work, ¢ will refer to the angle of incidence for the inconing ray, » is
the radial distance within a spherc of radius 4, and Df%) is the total angle of deviation
undergone by the ray from its original direction. The subscripts 0 and 1 will be used
to distinguish between the deviatious of the exiting ray for the direct transmission
and the primary bow, respectively. The angle of incidence, 1, is measured with respect
to the surface normal, as shown in Figure 1, and is therefore restricted between ()
and 7. However, it will be assumed that i € [0.005, %] This lower bound is placed
on the angle of incidence in order to avoid any potential numerical singularitics of
the deviation angle that may arise at an angle of incidence of 9. Rescaling by the
radius @, » € 0,1]. A well-known result is that the curvature of the ray path is
towards regions of higher refractive index n which is a consequence of Snel's law
of refraction generalized to continuously varying media. This tells us that within a
sphere, if d';rQ = n'(r) < 0 an incoming ray bends towards the origin: if #'(r) > 0, it
bends away from it. From Figure I it can be seen that in the case of n'{r) < 0, the

relationship between the angle of incidence and Dy(i) is
i+ 2801+ (¢t~ |Do(i}}) = 7.

Thus it follows that
[Do(2)] = 2t — 7 + 20(:). (1)

In cquation (1), 20(7) is the angle through which the radins vector turns from the
puoint at which the ray enters the sphere to its point of exit. For one internal reflection,
which corresponds to a primary bow, the ray undergoes an extra 26(:) deviation so
that

[ (2)f = 2 — m + 403).

We will follow the common approach and drop the absolute value notation. The

deviation formulae can be cxtended to higher order bows by adding an additional




Fig. 1. The ray path for direct transmission through a radially inhomogeneous unit
sphere for #/(r} < 0 {reproduced from {1} and [2]).

20(2) for each subsequent bow. The quantity ©(i) is an improper definite integral to
be defined m this section. Except for a few spectfic n(r) profiles, analytic expressions
for ©(2) are difhceult to obrain. In this chapter, we evaluate ©(¢) for four profiles and
will see how for even simple profiles (such as the linear profile) the evaluation of the
integral becornes quite challenging,

In a spherically symmetric medinm with refractive index n{r) each ray path sat-

isfies the following equation [4]
rifr)sin ¢ = constant,

where (,5 is the angle between the radius vector r and the tangent to the ray at that
point, where we note that + = |r[. The above expression may be thought of as
the optical analogue of the conservation of angular momentum for a particle moving
under the action of a central force. The result, kuown as Bouguer’s formaula (for
Pierre Bouguer, 1698-1758), implies that all the ray paths (8} are curves lying in
planes through the origin where § is the polar angle. By using elementary differential

geometry, we can establish that,

sin g —




From the equation for sin ¢, we can determine a formula for the angular deviation
of a ray. ©(2), within the sphere and, as a result, the total angle of deviation D{i)
through which an incoming ray at an angle of incidence 7 is rotated mnay be calculated.
The formula for ©(i) has been found to be [2], [17]

1
dr
O(z) = sini ] —— (2)
r/rint{r) —sin®i
r{i}
where the lower limit r.(¢} is the point at which the integrand is singular and is
therefore the solution of

re(i)nfr.(i)) = sini. (3)

The quantity r.(2) is the radial point of closest approach to the center of the sphere
which is sometimes called the turning point. For a zero-order bow to exist for some

critical angle of incidence . € [0.[}05, 32'-], it 1s necessary and sufficient that
Dy(ie) = 0. (4)

I the next several sections in this chapter, we will evaluate equation {2) for var-
ious profiles to determine eguation (1). We will then employ that result in equation
{4), and utilize the resulting equation to impose conditions on the refractive index
that allow for a zero-order bow to exist. This technique will be applied only to those
refractive index profiles whose derivative of the deviation angle is readily obtainable
algebraically. In the plots of the refractive index profiles in this chapter, we indicate
the portion of the profile that is natur@lly practical for optical wavelengths by a solid

line and the naturally impractical values by a dashed line.
I1.2 PROFILE 1

Consider (as previously discussed in {23])

Onyre ) -
'Hf_'.f') —_ ..E_ILHZ__‘ ny = TJ(])._ ("
14 re

<t
R

where ¢ is a positive real constant. The refractive index profile in cquation (5) is

singular at » = 0 for ¢ > 1. The refractive index profile is also singular at » = 0 for

¢ < 0. In order to avoid this singularity, it will be asswined that 0 < ¢ < 1. We give

the plot of equation (5) in Figure 2 with », = 3; and ¢ =

1
4’
When ¢ = 1, the refractive index profile in equation (5) results in the well-known
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Maxwell’s fish-eye profile. Maxwell’s fish-eye profile was studied by James Clerk
Maxwell in 1854, but without the spherical mirror. The reason why it is called
the fish-eve profile is because Maxwell thought of this profile by cousidering the
crystalline lens in fish. The fish-eye mirror makes a perfect lens, but it is a rather
peculiar lens that contains both the object and the image inside the optical medinn.
The fish-eye mirror could transfer embedded images with details significantly smaller
than the wavelength of light over distances much larger than the wavelength, a nseful
foatare for nanolithography [3].
We note that

rin’(r) = —jﬁjl;
(Lbre)?
Substituting this into equation (2) gives
1 1
.- 2
(1) = sine :.:Tr = 321_“ : : (1 +:) =dr.
,‘Eifi’zjw_ﬁinzz- " . 'r\/r'F —%ﬁ(lw-?)z

re(t) (Ber




Then, letting

. sini
L= 5
n)
the integral for ©(z) becomes
( 1 1 3
2
: . dr pe!
o) = 2 N - -
., 2., 2 . 2.,
'r\/-rF —a*(l +re)? \/rr - @2(1 4 1 )?
. r:"(i) 7‘((1.) )
{ 1 { \
dr e
= 4 + dr ’
- 2y gy 2 ~e 2 o 2.
?’\/-»u?(-r'F)* b (1 —2a%)rs —a? \/?'r — a*(1 + re)?
reft) refi)
\ 7
(6)

= a[l1(r) + L{r)].
Next, we calculate 7.{7). which is determined fromn equation (3). Then we will evaluate

the integrals f,(r) and fo(r).
We have from equation {5) that

2nire _
1 (g = sin¢ (7)
[
Accordingly, we find that

1

T sin i

= - =4
1_1’_?,5 2'”.1

L, 1
alré) —ré+a=0.
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This is simply a quadratic equation in terms of r+ which has the solutions

1+ V1 —4a?

20

L
Te —

Since r.(z) 1s the radial point of closest approach to the center of the sphere, we take
the smaller of the two quadratic solutions

1~ 1 —4da?

2a

T

r

Hence 1t follows that

2a

mn:Fiﬁzg?Y- (8)

Now we will utilize equation (8) in the expressions for £;(r) and f>() and solve

both integrals. First

1
dr
I(r) = S (9)
=@t (- 2y - a2
[ FRRVATTY ] ‘
2i
[n equation (9), make the change of variables
2
no=7rr.
Then we obtain
2 .
dey = S
C
and
@ Sy = £
T 2 )

We note that

(7)) (F—Jtﬁﬁy) Cndﬁjﬁy
vi(ratt)} = ¥y . A _f(i-vi—-4e”

2a 2a
=2Vt - @t 41 - 44
B 402
1—-2a% - V1 —4a?

;e

2a




to

and w1(1) = 1. Using this and the relationships from the previous page, equation (9)

becomes

d?-‘l
v/ ~a2vf 4 (1 — 24?)v; — a2

(10)

Furthermore, using equation (A.5), where r = ;. A = a2 B =1-23 and (' =

—a?, equation (10) can be evaluated as follows

—2a% + (1 - 2a%) v

v/ (1 — 2a2)? — 44

(1 - 2a% — 2&2] :
' — a2 - 244 a2
my'l—4da 1-2 22&1@_%

.9 1 0g2y | L2221 74a2 | 92
« 1 ~ 4a* C |- 2a ) [ 252 2a
= - d[("‘!ln ﬁ — arcsin
w._l_:!g REY]
[ A T T

Iiw) = }ia arcsin l

L.?:a?___g.iﬁffi,ﬁ_i
21

20

C .
= —— Arcsin

S { arcsin _ 1 - 'lr}:';J — aresin [“ _ 2“ — {1 - 247 \/- —da? - da ] }
20 i J (1 - 2a.~)\/1 —da? ~ (1 — 4a?)
. - 1 - 442 - oA 1 _As2
- { resin V1 — 4a2] — aresin { n u 2(.; V1 lul J}
2a ! ] (1 - 2a%)/1 —4a® — (1 — 44?)
= ; {mcsm vVi1-— 3a?| - arcsin (- 1)}
{1
:L{ar(’mu V1 —4a? —l—g—} (11)
2a

Let
(t = aresin [\/1— ‘1&“’] i

Then it follows that

cos (v = 2a,

where we take the positive root since & € [0. 7]. Therefore we discover that
.7 o
&=, —arcsin (24),

and hence we obtain the result

hr) = ;“a {7 ~ aresin (24)} . (12)
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Next we evaluate I,{r), where

p2-1

9
\/?- vaz 1+1§)

In equation (13), make the change of variables

dr. (13)

l—l-irl

ty = 1+ re.
Then we find that
2
dry = Zpe Ly

and

C
5(1!'(-‘2 =7

RIS

Ly,

We note that

vz (refe)) = 1 + (ﬂ)
i

S 20° =1 —da? 1 -+1-4da?
2a? - 242
and v2(1) = 2. Using this and the above relationships, equation (13) becomes (noting

that 1 — 1 = 7¢)

2
« duy
[-- '1_.1-_,) = — 7“__ ]1
2{ 2 Vi -1 —a%nd (1)
1 t 142
26k
Using equation (A.9), where r = . D = —a®, E = 1, and F = —1, equation (14)

can be evaluated as follows {(where j — v/~ 1)

2
) > g .
Iy (1) = __q_’; log [2 \/&2 (@2vf — vy + 1) — 2a°1, 4 1}
= 1 V1302
2a2

2a

= —Q{ log [‘2&\/-’1&2 - 1-1a* + 1}




12

=TT 1 - VTS
—log [2a¢/ @ { ————} - | —————— | +1

2a? 2a°

~ 24* (]—1@) + 1”

{ log [2;(1\/1 Y PO 4&.‘3}

]
2a

—log [\/l -2v1=—4da?+ 1 -4a2 - 2(1 — V1 —4a?) + 4a?

+ V1 - "'lf;.i;] }
cJ {}()g [Qj&.\/l ~4a2 41— fldzJ }

2a V1 - 4a?
= L log [2_;‘&_ +v1 - flﬁ.z} . (15)
20

Using the formnla

arcsin z = —j log [jz +v1 - 32] . (16)

we have that
aresin (2a) = — 7 log [2}& + V1 - <'1(12} , (17)
Applying this to equation (15), we find that
I{r) = o arcsin (24) 18
2{r) = — aresin (2a) .
2{ 5 arcsin (18)

Thercfore, upon using equations {12) and (18) in cquation (6) yields
T (19)
Hence, for the refractive index in equation {5) we have the resnlt

Do(2) = 2i — 7 + 20(7)
=2t - % 4+ ow

=x{r—1)+ 2 (20}

We note that Dy(i) = 2 # 0 for any value of i. Thus, uo zeto-order bow is possible

for the profile given by equation (5).
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I1.3 PROFILE 2

Consider next the refractive index profile

n(r)=n(o)\/1_ﬁ Enn\/l——;?, (21)

which was considered in [19]. The refractive index profile in equation (21) is kuown
as the parabolic refractive index profile. An application of the parabolic refractive
index profile Is round optical fibers where the refractive index of the core of the fiber
is a quadratic function that varies with the distance from the optical fiber axis. We
note that 12 is a constant that will be determined. Let (1) = 1y > 1. Then we find

that

"2

g — — 22
n —n? (22)

Let A == sinz. We first calculate 7.(7). Using equation {3), we want to solve
Mk =02y — 20l 1+ KT =0, (23)

Consequently, we determine that

o ndE/ml—AmE — a2 24
Fo = 3 2y2 2 : (2 )
2{ng - nt)

For a spherce of radius 1, the radial point of closest approach is bounded by
0<r. <1, r.€R. (25)

Further restrictions are imposed on r.(i) that are dependent on the values of iy and
ny. We will analyze two cases here.
Case |: I <ny < ng.

This implies that 1 < »7 < ng and nZ —n? > 0. If the expression for +¥ iu equation

{24) is substituted into equation (25), we have that

0 < nd /g - A - nK?
B 2(nf, - i)

0< n} \fnd — Alnd — K2 < 2af - ),

<1,

"l i 4 2 _ 2 s L2 ‘ 2
~1y < :t\/n(, —A(ng — ni}N? < ng — 2n7,

; ] 2 g .2 ) ‘
1 > Fo/nd —4nd —nd)K? > 207 — nd, (26)
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We are interested in determining whether we choose the positive root or negative
root in equation (24). Suppose na — 2n? < 0. If this is the case, then we must take
the minus root in equation (24). On the other hand, if we suppose nj - 2n? > 0,

then ny > 2n%. Then squaring both sides of equation (26) vields
0<A? <n? (27)

Since n? > 1 and A? = sin?i < 1, equation (27) is always satisficd. As a result, we
may take the plus or minus root if n3 — 2n? > 0. Sinee r.(i) is the radial point of
closest. approach, we will take the minus root in equation (26). Thus, we take the
minus root in equation (24). As a result of the restriction in the second equation of

equation {25), we must have the constraint
ny > 4(ns — n?)R2. (28)

Y . . ’
The largest number that A~ can attain is 1 so that the strongest requirement we can
lizve is that

ny > A(ng —~ ni). (29}

Sutmmarizing for Case 1, we find that

nZ — \/n“ 1(nZ —n3)K?
2(”0 nf)

Fe =

{30)

where equation (29) wust be satisfied.
Case 2: 1 < ng < ny.
This implics that 1 < a3 < n and nf —n? < 0. If the expression for r2 in equation

(24) is substituted into equation (25), we have that
nd £/ —4(ng - n3)K?
2(nj — i)

0> ni £ /nd — 4} - n¥)R2 > 2(nf — n?). (31)

0< < 1,

Since we need the middle term in equation (31} to be negative, we must take the

negative root in cquation {24). Squaring both sides of equation (31) vields
g | 8 .
2. 2 Qe
0 <K <ni. (32)

Since 'n,f > 1, equation (32) is always satisficd. We note that o — 4(n2 - ni )% >0

since nf — n? < 0. As a result, the second equation of cquation (25) will always be




satisfied for Case 2. Hence for Case 2 we determine that

nd — /nj — 4(nk = nf)K2 (33)
2(nd - n?) '

.=

We have looked at Cases 1 and 2 and have determined that the expression for

ro{2} Is the same for these two cases. Now we evaluate ©(4).

Substituting equation (21) into equation (2} gives us

1 1
oWk | s
rrin?(r) - K .r.\/TZ [ﬂﬁ (1 _ }_";)] A

r-{i] re(i)
/ \/ﬂn —%f - K
re{d)
1
i rdr
= A = (34)
f‘z\/ﬂn?" - QQT‘ K2

1
Let x = r°. Then dx = 2rdr and rdr = Edr We note that

, : na n ns — niyk?
€ (rei)) = r2(i) = —~ \/Z(EHZ ”0) !
0

and z(1) = 1. Using these relationships, we obtain that

, K dx
o) = - S (35)
- r\/nolwﬁﬂr‘z h?
réld)
) . ‘ na 2 .
Upon using equation {A.5), where A = ~72 B =, and (. — =R*, we find that
K 1 —2KR* 4 nir
O(1) = arcsin 0

-_ '5—,2 Tﬁ
VK zAfnf — 45—




16

1
1 ) HOI 2K?
= —arcsin
* 3
2 \/”u 1(n§ — nf) K2 r2(3)
) ni - 2K?
= ~< aresin _ :
Vo~ dn - nd)K?
ni-nd\/nl-4(n2-n3)K? 34
. 2(713 —n%) — 2K
— aresin ey o
ng—4{n5~n IS AL
2?11“——710 : \/ ny — 4(ng — n{)K*
2 2}:\’2
= —{ arcsin > —
Vg — 4(nd — nd)K?
. 2 _ 2y '
— arcsin gy — 4(7:,,3 ~nf)R? ~nd\/n} — 4(nk — n?)R?2
niy/nd — A2 - n3)K? ~ {nd - A4(ng — n})K?)
1 _ n — 2K* T
== {arcsm 4()# + = {36)
2 ny — Ang — nj)R? 2
Therefore, for the refractive index in equation {21). we obtain the result
[)()(.’) =2i — 7+ 2@(?)
2 g2
.7 ng — 24
=2i — = + arcsin 0 —— (37}
2 Vrd = 4n2 - nf) K2
Differentiating equation (37) with respect to 7 vields
Dy(i)
9. Asinicost {i (g = nd){nd — 2K7) }
Vg~ 4(nd - nf)l\'z — (n§ — 2K7?) ng —4(n§ ~ nf) K*
COS T ning — 2K?%(n3 — n?
=2 - 2 { iL (ng — 1) (38)
\/”'1 —RZ | nd - 4AnE—n?)K?
Recall that a zero-order bow exists if D4(i.}) — 0, where ¢ {0.005, 7] This is
satisfied in equation (38) if
cos{ic) nfng 2(n2 — n?)sin i,
2 _ an?, 7 a2 | = b
n? = sin i, — 4(n2 — n?)sin® e,
cos(z nil? — 2sinti
, (f) : [ ; r}zl- (39)
Vni —sin® e, ngL? — 4sin®i,

Let

COS &, nIL? — 2sin?i,

S . . 27 4 aiml,;
n.‘l? - 51,112 te g L‘a — dsin {e
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For a zero-order bow to exist, we must have that A(i.) = 1. Since n"f > 1, then
n.f —sin®i, > 1 — sin? 4, = cos? i.. For this reason, we must have that

1 i 1

< = ™.
Vn? o-sini.  Veostio  cosi

As a consequence, we obtain that

272 5 DT A
ni L — 2sin® 4,
h(i) < ————-% = g{i,).
T 212 — 4sin®y, ‘
We note that g(i.) < 1, if we have the condition
nf[,z - 2sin?i,
ngl? — dsin 4,

Consider Case 1 where n2 —n? > 0. Since n3L? - 4sin?4, > 0 for Case 1, we have

that g(i;) < 1if

202 .9 272 L9
niL® = 2sin“i. < ngl” — 4sin® i,

2 2

O 2 D b
2sin?i, < (nf - 021 = nd.

2 -
Accordingly, A(i.) < Lifsin® s, < 2 for Case 1. As avesult, a zera-order bow cantot

. g . P . -_2 . A N
exist for Case | if sin?i, < ﬂf Consequently, if %i > 1, a zero-order bow cannot exist

for Case 1. Therefore, in order to guarantee the existence of a zero-order bow for
Case 1, we must have that i;l < 1. In other words, we must have that ng < 2 in
order for a zero-order how to exist for Case 1.

In Figures 3-6, we give the plots of equations (21) and (37} for both Casc 1 and
Case 2. For Case 1, Dj(i) = 0 at approximately 7 = 1.28 {(or 73.34°) and ¢ = 1.49

(or 85.52°), and for Case 2, I)(i) = 0 at approxitately i = 0.22 {or 12.78°).
iI.4 PROFILE 3

Consider the profile (as mentioned in [8])
n(r) = a — b, (10)
where o and & are constants. The refractive index profile in equation (10) has been

wsed as an example profile to discuss an extension of the rainhow Airy theory to

nomniform spheres [8]. We are interested in evaluating, where A = sing,

i

fr

r/rini(r) — K2

A1) = K (41)

relt)




Fig. 3. Case 1: Plot of equation {21) with ny =

2and ny = 1.01

™

Fig. 4. Case 1: Plot of equation (37} with ng =

% and n; = 1.01.
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Fig. 5. Case 2: Plot of equation (21) with ny = :: and n; = 2.

P
Sox
N’
o - -
)
35t 4
G-M/ ]
] | ! J I |
< 0.2 PR} 0.6 01 1 i2 14 1.6
1
Fig. 6. Case 2: Plot of equation {37) with ng = : and ny = 2,
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First, as a consequence of equation (3), we study the equation
b —ar 4+ K = 0. (42)

Equation {42) has three solutions, which we call 7, ry, and . where r. is the mininal
distance of approach of the light ray from the center of the sphere. Using the standard
results between solutions of a cubic equation, we have the following relations among

the solutions of equation (42):

P Ty b e = 0, (43a)

Tty T rote Y. = %s (43b)
IS

T{MoT,. = —%. (43¢)

We will use equations (13a)-(13c¢) to derive three nore relations between the solutions

of equation (42). From cquation (43a}, we obtaiu that
(mtret+riln+rs+r) =0
Correspondingly, we discover that
rE 4 2rimy + 2ryre + 75 4 2rare i =0
Then we have that

. . ,
'rf +ory+ rf = =2{ryry + ryre + rare)

-1

=2 (44)

wheve equation (43b) has been used in the second line. Frowm equation (43h), we

determine that )

a
{ryry + rore + v ) (e + rere i) = .

b‘Z
As a result, we find that
2
rirs b 2rirare + 2river. + rars + 2ryrarl 4 rip? = (iz‘
2 : ‘ a’
"'12"5 + 'rgrf + Tfrﬁ + 2rrgr(ry F 1) = =
a?

4t ) =
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where we used equation {43a) in the third line. Sgnaring both sides of {43¢) yields

that, ,
O
rirsr? = R (16)
Now we rewrite the integrand in equation (41}. We have that
1 _ 1 1
r/rind(r) — K2 ry/ra ~ br?)? ~ K2 r\/? — 2abr? + 6%t — K2
_ B 1
rv/a?r? — 2abrt + 625 — K2 e/ K2 = a?r? 4 Qabet — 526
_ 1
}|b| !>2 g;,z + 2%.‘,.-1 — 8
_ 1
Flblr iR - i i 0 ¢ i) v+ 17 4 g 2t — o6

(47)

where we have utilized equations (44)-(46) (and recall j = /—1). Focusing on the

polynomial under the radical, we find that

rirde? - il vl () v rz)} + i+t =0°
=it =2y )t el — S ]+ et = rhee?
SR ] Y e i
= (2= #) I~ G )
= (=) (P =) (7 ) (48)

Utilizing equation (18) in equation (47) yiclds
1 ~ 1
r /il (r)y — K2 Glblr /(2 ) (02 — 03 (02 — 13)

Equation {49} may be further rewritten as

(19)

1
ez = ) (2 - 13) (12 = 1)

,
|b RV RV AR S AV T Tl B

1 r
- _ — S s0)
I |2 A [ \/rﬁ—r'éx/rf—rz}
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Let
(51a)
{51h)
and \ .
2 e _Te T
a” =1 - 5=t (51c)
We have the following refations
2 .2 r? -
1—a’sm®¢= 3 (H2a)
<
2 502 i
Lo posin® e = 55—y, (52D)
=T
2 2
7T
1 —sin?¢ = ~- j {(52c)
i -
and
d r
—(8inQ) = —————— — (52d)
dr \/}? — f;,; 12— 2
Upon using equations (52a)-(52d) in equation (50) gives us
1 J 4 (sin &)
T/ rind(r) — K? [blrey/r2 = "'"12 (l — a?sin? d)) \/(l - p? sin® r_D) (1 — sin? d)]
_ sing
_ J d { / dt }
27z dr ) (- i) ST ) (1= 1)
3 d ,
e Zii(6.alp), (53)

bl =ty

where IT (¢, az,p) is the incomplete elliptic integral of the third kind, ¢ is given by
equation (51a), o is given by equation (51¢), and p is given by equation (51b).
Integrating (53) in the interval v € [r (i), 1] we obtain that

@(i) — _,_,]_\..1_—..._11 (q‘l), f}-‘z‘ 1“) ) (5'1)

blrd/r2 — i

Therefore we determine that

K
[bry/ i1

Doliy =2i -7 + 2 It ((,-‘J_, o, p) . (55)

2
e r
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As can be seen from equation (55), the caleulation of D)(7) is quite difficult. In order
to avoid these highly involved calculations, we will only provide the graph of Dg(:)
from equation (55).

In Figures 7 and &, we plot equations {40) and (565) for the case n'{(r) > 0, where
a=2and b= -5 When «/(r) > 0, a zero-order bow exists at an incidence angle of

approximately 0.26 (or 14.82°).
I1.5 PROFILE 4

Consider the linear profile (previously mentioned in [1])
n(r) =a+ br. (56)

where a and & are counstants. The linear refractive index profile has been utilized
with respect to absorption measurements of noulinear optical liquids in the visible
and near-infrared spectral region [9].

Using equation (56} in equation (2) gives us

1
d .
Ofr) == sin — T__i
r‘\/rg (a+ )? — sin?i
)
i

ro(t

1’."
- SECEE— (57)
r\/'rz(ﬂ P Br)° 1
(i)
where
A-Z
i
b
R= -
q
and
¢ = siny.
We note that
1 1
- - = 4

,.\/Tg (A+Br)? -1 VB A+ (B + Ar - 1)
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Fig. 7. Plot of eguation (40) with @ = 2 and b = —5.
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Fig. 8. Plot of cquation (55) with a = 2 and b = -5,
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and
2 . 1 1
Br? 4 Ar— 1 = —5( VA T 4B ); +1 E(ﬂ—l— \/_;‘12—!—-'13)1‘_1 .
I.Jf_‘.t 1
e I S ; A2 4 ; A2 298
k=- [A + /(A" + 4B) (4B - A )}. (58)

where we take the positive root if 4B — A% > 0 and we take the negative root if
45 — A* < 0. We now give two results that velate to k that we use later. We have
that

1o
h—1l=—— [Az FAB £ /(A2 + 4B) (1B — A?)}

1B
Az . 48 ———
- m*’,lg [\/AQ TiB+jViB - ,42] .

Accordingly, we discover that

9 42 +1AB 7 Y )
—_ — / EEN R 2 42 B : . 2
(k= 1) = S [1 FAB 4B+ A% £ 2] (AR 1) (A5 1)}
A4 dB L, .
= : J 2 153 1f3 — 2 . FE
i [A N EET DI Y, )] (59)

Also we have that

A?

o 2 L, AT -ABT AR AB) (18~ A2 .
(k+ 17 = (b= 1" +tk = — {1J: 18 qu] (60)

We will now take several steps to simplify the integrand in equation (57) in order

to allow us to perform the integration. We find that

B 4% (A7 AR (A — A2 }
g(r) =
AR [ 2 4 5\ (AT 4 4R) (1B — A7) ]
VAL A2 & /AT AR) (1R - ]
- k-1
IWVATTAB VE V2BE + IH o)
— glr) — ' .
58 k-1 TBE -1

We also find that

V2B [VAZXiB ] ]

g9(r) = -

Bk — 1) 2 B A ) (B A=)




A+VATAE | VATIE
7 7

2

2BA
- Bk~ 1){r\/(13r'2 + Ar + 1) (Br2 + Ar - 1)
(“”"?m*‘ B 1) QWJ }

/(B Ar £ ) (Bri+ Ar - 1)

\/m {,"H v"?m} " ,‘1'25-45'}‘
& (k~1)/(Bri+ Ar+ 1){Br2+ Ar - 1)
(a. VTR, . 1) VAT
(k-0 V(Br2+ Ar F 1) (B2 4+ Ay — 1)
V2Bk A+ VAT4 4B —_—
=Y ( ‘ S i ) 1(r) - VAT 4B,
where
YATHAD ;
- i J
H{r)=
(k — )\/(Br2+ Ar + 1)
P !
SR A= VATaR) 4 1] [3 (A1 VA T 1B 1]
and
(’“‘@Wr _ 1)
P(r) =

Hr).
rvA?+ 4B r)
Once we determine /7{r) and P(r), we will be able to evaluate 6(i}. We now give

some results that will be used to evaluate H(r) and P(r).

(,4 F VAT 48) (,4 ~ VAT 4!3) - _4B. (61a)
A+ VA2 + 4B 18 (61b)
= e — 3 i)
A~ VA HAB (4 JAT14R)
and
,  AZdB
AB(k—1)t = F |42 4 /(A 1 4B) (1B - |
2R
AT—aB) 1 . - ,
- “L‘EF_) [A"" + /(¥ AB AR )]

2

+ A [,42 £ V(A2 +AB) (A8 - ,4'2)}

1]
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= AB(k+1) - 4%k = —AB (k* + 2k + 1) ~ 44%k
= 4B (K +1) - 2k (48 + 24%) . (61c)

Utilizing equation (61c). we are able to derive another useful result that will be used
in the calculation of //{r).

A3k — )% + 4ABK - )% + 48B(k ~ 1)*

= 4B%(k - 1)%r? + 4AB(k — 1)*r —4B(k* + 1) — 2k(4B + 24%)

214B* + 4B*? - ‘2&:(482)] +7 {mn + 1ABE — 2;;.-(4/113)]

4B + 4Bk* + 2k(4B + 2A%)

= —2&[4[32?2 +dABr +4B + 2;12] pAB(L + BWBr 4+ Ar — 1)

2

—k(A — VA T+ 48) l; (/1 VAT 4!3):‘ - 1}

- k(./‘; bV AL 48) [— % (A — v A2 +ﬂ§) r o+ 1}

2

H

2
1 —
+k(A —VAZ+ le) [E (;4 + VAT + -'lb') r=1

- (/1 + VAT Y zﬁ?) (A — VAT + r-m)

S

1
2
e vaTam) (4~ varm)

lulr--*

erersa |

(A - \/m)H l}

2

“

— % (A - VA4 r'IH) r+ .l] .

2
—k(A VA2 4+ 43)
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Thus we obtain the result
43%(k — 1¥*r* + 4AB(k — 1)%r + 4Bk —1)?
1 -
= { —k (A - VAT fm) [5 (A + VAT + .'m) r - 1}
(A VATTI) |4 (A~ VETEB) 1 4 }
x { (4 - vAT+1B) E (4+ VaT+R)r - 1]
(4+\/42+4 )[ ( \/Az+4r) -+1}}. (61d)
We provide two more results that will be useful in the evaluation of H(r) and P(r).
( - VA2 +4B ) { (H VAZ+ 4l )? —1}
+ (41 VAL AR) [ (A-VAELIRYr ¢ 1}

= -A+ VA4 AB+ A+ VAT + 4B =2V A2 1 4B (61e)
and
2 ; 2 P
AETAE = T\/A 2+ 113 N r\/A 2+ i
1 Ar AT ¥ AL
== (A+\/A2+4B)r— 1o ATy YATRIE
2 2 2
1 1
=3 (A VAT 1 -m) r—14 [‘Q (A VE +4B) r+ 1] (61)

Now we calculate f1{r). To this end, we see that

H{r}
VAZ-48 ;
5
\/B(k —13r2 4+ Ak — 1)%r + (k- 1)*?

1

X

A - VAT AR + 1} [%(.’1 + VAT AR - 1

1

V=Blk - D22~ Ak = 1)2r — (k- 1)2




[ YARTAB
a2
X —_—

!~ 5(A~ VAT +4B)r + 1] [;(A VAT AB)r ~ 1]

1

[—’f%} [— Bl — 122 — Ak = 1)2r — (k - 1)‘-*}

VATHIR [ A+ yATHAB
2 A=A+

{— HA- VAT AR + .1] [;(,4 + VAT AR - 1]

Using equations (61a) and (61b), we find that

Hir)
1

X [_ —_— —eee - P
{— YA - VAT AB)r 4 1} [;‘;(A + VAT 1B — 1}

Upon using equations (61c) and (61d), we obtain that

H(r)
1

{—k(,4—\/f47+43) [g(.4+v";if¥4b)r-1] —(A+VATEIR [- Ja-var *:I_B’)r+l:| }

(A—vAZ+1B)

1
T
‘ {(A—\/AL--IH} [%(,u-\/.xlfma)r_l] +h(A+VATIR) I:—,';{A-\/.m)r+lJ }
\ - (A VAZZaD)

A4V ATLAB
A- VAT AR

J { A= VA2+4B)r + 1] [5(/1 VAT AR - 1]
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As a result, we determine that

f(r)
1

{ —k(A-VATH4B) [%(m \/—/-17+4H)'r—lji —{A+VATER) [-%(A—\/AT“...‘B)TH} }

~k{A-VATAB) [%[Mdﬁi@)»-—:jl

1
X
{(A-\/’Am} [%(Awﬁﬂ?}’z)r...l] ~k{A-VATAR) [- i (A-Jm)r+i] }
\ (A—VATHaR) [%[/LFJzﬂ-!-éB)r—ljl

{ VAZPiB
2
X —
V=R~ (A - VAETAB) r+1

A+VAT I
AV A2+ }

3
2

[% (A+ VA% + 1B)r — i}

Hence, we discover that

H(r)
B 1
1 + A+ \/AT"'W? - % (/1 - \/m;)‘r' 1
k(A AZF413) s{A+VAZ-1B)r—1
1
X
1+ KA+VAZEAR) | | - 3(A=VATHIR)r+1
A-/AZ+4R AV A aBr -1

WL

X { ~ 2 S
{ \/—g (/\—\/A2+4B)7‘+1

(A VATZAH)

. M A- VAZTHIE) Y (62)

[% (A+ VA2 +4B)r - 1}

2
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Let

- [ A+\/A?+1 H (A A2 £ AB)r + 1 63)
SN @ = -
KA~ VAT +4B) | L §(A+ VAT +4B)r ~ 1
and

3 {(A+ VA* + 1B}

k(A - VAZ+4B)
Using the definition of 3, equation {63) may be written as

A—VAZ+ AR +1
sing = \[ ( VA4 1B)
2(/1 + VA +41)r - 1
Differentiating equation {64) with respect to r yiclds that

[ -V

(A + VATFIB) \/ —1(A -

24 AB)r + 1]

[%(/1 + VATV AB)r - 1} 2

(A - A2+ 4B ){ (A+ VAT AB)r — 1}

— VAT +4AB)r 4 1{5(,4 b VAR AB)r - 1}

(A+ VAT + 45)[— YA - VATYAB)r + 1]
{. —nruan

]
2
\/—;—13(,.4 — VA2 +AB)r + 1 [%(A + VA2 + 4B — 1]
Using equation (61e), we have that

d ( ) VALLIH \/—
— | sing | = 2
dr

VA - VAT IR +1

4

%A+\/Wr—1}

_ (A+VAZaR)
k(A-— VATHB)

% (A+ VA +4B) r - 1}
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Using equation (63) and equation (65) in equation (62) gives us that

) ()
\/(1 — sin? @) (1 — A2 sin? (;;)
a7 it
) E{ / V-2~ kfm}
- £ F(g, k). (66)

fdr
where (¢, k) is the incomplete elliptic integral of the first kind, ¢ is given by equation
T

{63), and k is given by equation (58). We now turn our attention to evaluating 7(r).

To that end, we have that

(ﬁ:ﬂfi@r_l)
1

2

rv A2+ 4B
Aey/FTAB, |
‘ ! d inao
e —— | SIG .
i i

r)

P{)

2

NI TEwT , N
(1 — sin® q-‘;) (l - k2sin? qﬁ)

Utilizing equation (61f), we find that
P(r)
[é (A + \/m) ro 1]

) %(A+ Verm) 1+ [,, g(_q - mﬁ)+ 1]

X — 1 smng
, ) dr
\/(1 — sin® cﬁ) (1 — k?sin? f,b)

1
""""" “da \/;1.§+4B)r+]]

$(A+VAZ CAB)r -1
! d o
-~ [ §in
dr '

X

\/(l — sin? (,I')) (1 — k2 gin® (,‘))
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1
1_+ ~HA-VATTAB)r ¢ 1
HA+VAZ1B)r - |

l d ( . )
X -] sin ¢
; ‘ dr '
\/(1 — sin? rﬁ) (1 — k%sin? gb)

1

| HA-VATZAB) " | (A+VATEaB) ] [ - (A VA 4By ]
A«VATHAB | k(A-VATHE) L (A+VATVAR r -1

1 d’( ) ) .
X ~ 1 sing §. (67)

‘ dr
(l — sin® (f)) (I — k2sin? qb)

s KA - VAT Al
& = .
A+ VA2 4 4B

Applying this and equation (63) in equation (67) yields

, 1 1 d{ .
(1 — sin? (;J) (l ~ k?sin? r,-j)

BN

d dt
- Z{ h/ (_T:r:rg.‘f?)\/(l —2)(1 - kz,z‘}}

- ;—jI'I(zp. a’ k), (69)

or

Let

(68)

where TH(¢, o, k) is the incomplete elliptic integral of the third kind, ¢ is given by
equation (63), «” is given by equation (68), and & is given by equation (58). As a

consequence of equations (66) and (693), we obtain the result

o) = __\/iisg-{ (A + \/ﬁ‘z-wllf) d \/W e, I )}

B 2 dr

Therefore, integrating the above in the interval r € [r.(7). 1] gives ns that

o) = /g(r)dr'
o)

\/ﬁ{ (A+\/A TiB )

= — VAT L ABN(¢, o A)} (70)
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As a result, we discover that

V2 Bk A+ VAZEAR
B 2

F($, k) — VA2 + 4BII{¢, a® k)
(71)

As can be seen from equation (71), the calculation of D}(z) is extremely difficult. The

Do{iy =21 — 7 -2

calculation of the derivative of the deviation angle would involve differentiating the
incomplete elliptic integrals of the first and third kind since their arguments ¢, o?,
and & are functions of the angle of incidence 7 In order to avoid these highly involved
calculations, we will only provide the graph of Dy(i) from equation (71).

In Figures 9 and 10, we plot cquations (56) and {71) for the case n’(r) > 0. A
zero-order bow exists at an angle of incidence of approximately 0.15 {or 8.41°).

In this chapter, we have shown that the evaluation of the ray path integral ©(:) is
algebraically possible for a few refractive index profiles using the geometrical optics
approach. As a consequence, the deviation angle My(i) is readily determined. For
two of the refractive index profiles in this chapter, we were able to discuss certain
constraints that needed to be satisfied in order for a zero-order bow to exist. As we
have seen with the refractive index profiles in equations (40) and (56), the formula
for the deviation angle can becoine quite complicated. As a result, the caleulation of
the derivative of the deviation angle is not readily obtainable algebraically.

in the next chapter, we will extend the geometrical optics approach to several
singular refractive index profiles. We will follow the saine procedure as we have done
in this chapter by Arst determining the ray path integral ©(7) and then the deviation
angle Dg(i). For the refractive index profiles in the next chapter whose derivative
of the deviation angle is readily obtainable algebraically, we will then determine

necessary conditions on the parameters of the refractive index profile that allow for

the existence of a zero-order how.
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[M1g. 9. Plot of equation {(56) with a = 2 and b= 7.

Dq(2)

Fig. 10. Plot of eqnation (71) witha = 2 and =7,
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CHAPTER III

RAY APPROACH - SINGULAR PROFILES

III.1 INTRODUCTION

In this chapter, we study refractive index profiles that have at least one singular
point in the domain r € [0.1]. For each profile, we evaluate the integral (2) and
examine the derivative of (1) for those refractive index profiles whose derivative of
the deviation angle is readily obtainable. With respect to the refractive index profiles
discussed in this chapter, the asymptotes and the less practical portions of the profile
(for optical wavelengths) are indicated by a dashed line. Geometrical optics describes
light propagation by considering how individual rays will be modified as they pass
through a particular medinm. This branch of optics provides guidelines, which meay
rely on the wavelength of the ray. that allow for the propagation of rays through a
medium. A drawback of the geometrical approach is its inability to account for optical
phenomena such as diffraction and interference. For example, as stated in [14], it has
been shown that, in the optical limit (as the wavelength approaches 0), geometrical
optics incorreetly predicts the amplitude and phase of the backscattered signal for
spherically symmetric lenses with refractive indices that include a point singularity
at the origin. Consequently, in this case, correction factors to the geonetrical optics
approach need to be obtained by an asymptotic analysis of the exact solution that
is valid for short wavelengths. When rays propagate in inliomogenecous media, a
condition that is sometimes placed on the applicability of geometrical optics is that
the refractive index profile in the medinm mnust be slowly varying [13]. Plasmas are
an excellent example of media, which in limiting cases, may exhibit poles, zeros or
both in the refractive index. For exarnple, a cylindrically confined laboratory plasma
may possess a resonance, cutoff. or both at some finite radii. If the frequency of
the incident wave is much greater than the collision frequency of the plasma, as it
oceurs when the plasma is probed by a laser beam, then the squared refractive index
is essentially a real quantity, and it is infinite at a resonance and zero at a cutoff

{this is equivalent to saying that collisions are neglected) [13], [15]. The current and
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fitture applications of plasmas provides reasons why the study of singular refractive

index profiles is of considerable value.
111.2 PROFILE 1

Consider the refractive index profile (as previously disenssed in [18] and {23])

Nobme

n{r) :7L,r%’1(2—r'g’) ny=n{l) > L. (72)

The profile given by equation (72) is singular at » = 0if one of the following conditions

is satisfied:

b <0,
b>1.

We will show that in order for a zero-order bow to exist, we must have b > 2. Con-
sequently, the second singularity condition > 1 will be met in order to guarantee

the existence of a zero-order bow.

urg lens. A Luneburg lens is a dielectric sphere whose refractive index decreases from
a large value at the center of the sphere to the index of the surrounding medium at
its surface [5] in such a way that, in the coutext of ray theory, an electromagnetic
plane wave incident on the lens focuses at the axial point on the shadowed side of
the lens surface [18]. The Lunchurg lens focuses light rays or other electromagnetie
radiation on points on the surface of its sphere that lie in the direction of incidence.
Luneburg lenses are uscful in microwave technology, for exanple for satellite track-
ing. A single Luneburg lens can focus signals from several satellites on its surface.
Movable detectors placed at the radio images can follow the signal by feedback-they
track the satellites on the Luneburg sphere {3].
We note that

7“2712(1-) = 71127'%(2 _ 7;2)

Using this in equation (2) gives us

1 1
, . dr sing dr
O(i) = sins - - 2 .
2 2. . a. m i, o 2 z.
r\/u;zﬁ»(Q — ) — s’ ! 7'\/—‘%:2—‘ +2re — (rh)?

(i) re (i}




Letting

the above equation for Of7) becomes

1
i {
O)=a = :
?'\/—(1-2 +2rs — (ri)?
re(i)

We also have that

>t

)2

n{r.i)) = nn'(.%'l(’z -7
and
re(On(r7)) = reh (2 = b )3,
In order to determine r.(7), we must solve the equation
7111‘,:%(2 - 7‘,'2")§ = SN,

Then we obtain the result

(7'('.%)2 - ‘.Zrcg -+ (1,2 = O-.

Tb

24 V1= A2 |
2:%—&:11\/1—(&
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As a consecuience of the definition of 7.(1) as a minimum value, we must have that

'r‘.% e R

where we note that «® < 1so that 7. € R. As a result of the definitions of @ and 7,

we see that @® < 1 is always satisfied. Thus it follows that

|3

reli) = {1 - m_—}

{75)
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Substituting equation {(75) into eqnation (73) yields the expression for ©(:) as

—=. (76)
\/ a2 + 2% - (rh)?
l v1-aZ

In equation {76), make the change of variables

2
U= 710,
Then we see that
9 .
du = Zri= 1y
b
and i , b
dr 2,3 ) dtr
pu— :,-'h d —_
; ( ) 2 u
We note that .
3

w(ry(i)) = u{ [l —V1- ug] } =1—-VIl-a?

and u(1) = 1. Using this and the above relationships, equation (76) becomes

1

ab du
2 v —aZ 4 Qu — u?
1-vVI-a?

(77)

Utilizing equation (A5), where r = . A = —~1. 8 = 2, and ' = ~a?, equation {77)

can be evaluated as follows

o) = %91 Arcsin [

(1

—2a* 21;] !

uv4d — 4a?
1

2

1-V71 a2

=

uvl —a| e

b{ ) rl—ae] ) { — 1 - a? - q? J}
= =< arcsi | - = | — arcsin
2 LV~ a? \/1-(1 \/1~a2

b [, _ gt .
:a{arcsin \/1—02] —arcsin[ i - vI-& a, }}

1— a2~ (1-a?

) "
= - Aresin
2 S

= g{ arcsin | V1 — (;"E:’ — arcsiu{ -~ 1)}
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+ —
2

il } (78)

!
= é{ aAresin [\/1 —a?

Let

= AICSIN [\/I - {12] )
Then we have that
COS ¥ = «,

where we have taken the positive root since a € [0, ]. Thus we find that
. s :
a = arcsin {V1 - a?| = 5 —arcsing.

Using equation (79), equation (78) becomnes

(1) = { - arcsina i g} = g{ﬂ' — ar{::iitm.}. (80}

e =

(SRR

As a consequence, we obtain the result

Do(i) = 26 — 7 + 20(i) = 2i — 7 + b1 — barcsin (51:1 i).
71

Therefore we determine that

Dold) = m(b — 1) + 2i — baresin (ﬂ) (81)
o

. . .. i w
For a zero-order bow to exist for some eritical angle of incidence i, € [U.U()S, ;—],
it is necessary and sufficient that

Di(ic) = 0. (82)

Differentiating equation (81) with respect to i and setting the result equal to zero

yields that _
COS ip
2 b
vt —sin? i
Then we discover that
,  Ccost i,
4=15 7 T2
n{ — sinc 1,
2

An® - 14 cos?ic) = b cosi,,
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2. 4ni- 1)
087 1. = ——
( -4
Accordingly, we see that
1
n? —1\?
cost, = 21 — . 83
() -

If we restrict ourselves to the case b > 0. then we must have that

5 ni-1 %<l
- bz....'.l -

-n'f -1 1
-4 =4
4nf —4 <V — 4,
b > an?,
b>2ny > 2. {81)

where we drop the minus sign since 1y > 1 and b > 0. Therefore, we have established
that a zero-order bow can exist for n(r) in equation (72) if b > 2n;. We note that a
zero-order bow cannot exist if 2y = 1. If 5) = 1, then Di(d) = 2 — b which has a root
at b = 2. However, the right hand side of equation (83) becomes singular at b = 2,
and conscquently, 735(i} # 0.

In Figmres 11 and 12, we plot equations (72) and (81) with »y = 1; and & = In
Figure 11, we notice the singularity at » = 0 since b > 1. We note that an extrennun

of Do(i) ocenrs at an angle of tncidence of approximately 1.04 (or 59.39°).
II1.3 PROFILE 2

Consider the inversely linear refractive index profile; previously vensidered by

Gould and Burman [16} and Adam and Laven [17], which is given by

1
3= 35
n{r) e (89)

where a and b are constants. The refractive index profile given by equation (85)
is singular when r = —f—;. The inversely lincar profile given by equation (85) has
applications in atmospheric and terrestrial physics [16].

We note that \
r

(ar + b2

rin®(r) =




Fig. 11. Plot of equation (72) with n, = % and b= 4.

8.6
&

bl o
—

Fig. 12. Plot of equation (81) with ny = 3 and b = 1.
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Substituting this into equation (2) yields

1
, o ar -+ b
O(¢) = sing ( ) dr
r/r? = (ar + b)2sin?
€
Tr'(l]
. dr
= {asi1e
\/(i — a2 sin? -.i) 12 — 2abrsin®i — b2sin’ i
+ bsini

. ‘ . . 2 . 3 . o -
i‘\/(l — a2sin® a) 12 - 2abrsin® i — bsin® ]

1 1

Ir j
(i) = a . “ . -+ 8 il e
\/(1 —a?)r? — 200,37 — 3¢ T \/(1 o) r? — 208 — 32

re(i) redi)

= fl:jl +- b‘-fg. (86)

Next we caleulate r.(2). Using equation (3}, we want to solve the following equa-
tion for r.(7):
re(7)
arp{e) + b

This equation may be rearranged to obtain

= Sin4.

re(t) = ro(i)asint + bsinz

= (i) + 3.

Then we have the result

roli) = ——. (87)
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We now turn our attention back to the integrals /; and I, appearing in equation

(86). The integral for f; is given as
1

d:f‘

I = .
1 \/(1 N - 2e3r — 32

B

1 n

Utilizing equation {A.9), with D =1 —a®, E = —2af, and F = , we find that

1

. I R - : .
I = 1—2—log {2\/1 —a?/(1-a?)rt—2a3r - 24 2(1 - a¥)r - '20«,3]
-

K

1~

l .
= — < log2+log |V]I—a?y/l—a?2 =203 — 32 +1-a* - a3
= log 2+ log :
V-

32 200,32
~log?2 og[vlwu\/l—a : _ - 32

(1-a)2 1-a

3
. w3
l — al}

1 (l ——az)

1
= e g log V1-al \/1 — (o + 3} + 1 - afa+,3)
1 —a?
(1 2¢y,3% .
~log ,/—*“—\/ ta) 208 B4 31+ @) — o3
1—a 1l —a

1
- ﬁ{ log {\/1 — 21— (o + 3+ 1 —ala+,3)
— (X

Fr ol - 2aP - Aok
~ log {m\/ ol o Al 3]}

1 — o

1
- #1——2{ log [\/1 - rrg\/l —(a+ 3P +1 - afa+ :f):l - log ,.-"3}
—

1 1—a/1-{a+2+1-ala+j
:7_—-—1__”2{1%{\/ Vi (ot ks )] } (88)




Next we evaluate [, where

- dr
IQ = 3y 0 9"
/{1 = a?)r? = 203r — 2
__.d_
1-n
Using A = 1 —a® B = —2a3, and € = —3% in cquation (A.5) gives us
RS T ) V4 o
2 = — aresin —— : r
r\/r'la-Jﬁ" +434 1 - a?) ||
i .
1 o [-28% - 2047
= —arcsin | ———
R B ™
T o
; “ 1
3+ ar
= — arcsin —w]
.'.- L r 3

1 o

3 + i}
C % {arcsin [—(3 + )] = aresin [ (_m_i{w“_)] }
! I—cor

3 {arcsin [— (3 + )] — arcsin [ (1 ~ 0 + )]}
= i {aus:ll[ ----- A+ )] ~ aresin{-1)}

1 g
=3 {aI‘(“%iIl [~(8 + a)] + z)}

1
=3 {E — aresin (« + :f)} (89)

Utilizing equations (88) and (89) in cgnation (86). we {ind that

-l /1 - (ot 32+ 1-ala+3 T ,
aG) = "_’__ﬁ___ log v e \/ ________ ( :r ) ( ) + — —arcsin (o + 3}
1 —a? i3 2
(90)
We will rewrite the logarithnuic expression in equation {(90) in terms of the inverse

cosine function. We first note that (where 3 = /—1)

@ Vi-a?/1—{(at 32 +1-ala+.3)
0g
V 1 - 0’2 & a-}

.-I(vt.
- - ......_...‘fi.__._.__ iun

VvaZ -1

l:;\/nz—l\/l (x+ 3% + 1—(&((14—;3)}
3 '
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Let
1 —afo+ )
_ R

Then we see that .
, =200+ 3} + a*{or 4 ,3)?

32
and
9 32— 1+ 2ala+ 3) - a*a + 3)?

| — ~2 = =

A{a+ A2+ — 1 - (o + 3)?

. EE

ot =1 = (a+ 3Pe? - 1]

i
e =11 (et 3)F
- g ‘

Thus, it is discovered that

N B e VARl Gt

i 3

Using the formula

arccos z = —jlog[z + jv1 — 27 (91)

anl the relationships on this page, O(4) may be expressed as

. o 1 -ala+ 3 7
) = ﬁ ArcCeos [—”(?—)} -+ g - aresin{er + .3)
¥ 1~ + {3
= L Arccos [—Q(E—I-r * )] + arccos{v + 3}
ot — | 3
asing 1 —afa + bYsin®i

----~-—~} + arccos[{a + b) sin i]. (92)

= B e arcecos [
\/(12 sin”¢ — 1

where we utilized our definitions for a and 3.

bsin 7

Using equation (92) in equation (1), it is obtained that

1 — afa + b)sin?

bsind

. RIS
Do{e) = 24—+ 2{ L arccos [
2

sin®i — 1

} + arccos{(a + b) sin /] } .
(93)
As can be seen from equation (93), the caleulation of D{(z) is quite difficult. Once

the calculation of the derivative of equation (93} is made, the requirement for the

existence of a zero-order bow results in a sixth-order linear equation that is not readily
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solvable algebraically. In order to avoid these highly involved calculations, we will
only study the behavior of Dg(7) from equation (93). Since we want Dy(i) € R, we
require that

R
a’sin®i > 1. (94)
As a result of the domain of the inverse cosine function, we also require that

1 - a(a + b) sin1 <1

-1 < —
bsini

(95a)

-1 < (a}b)sing < L. (95h)

We assume 2 2 0.005. The cosecant function is decreasing on the interval [0.005, 2],
so that in order to avoid imaginary numbers, we must have that |a] > ¢5¢0.005.

In Figures 13 and 14, we plot equations (83) and (93) with ¢ = =205 and b =
204.5. We have chosen these values of ¢ and b in order to satisfy the constraints
in equations (94), {95a), and (95b). In Figure 13, we notice the singularity at » =
—2 ~ .9976. In Figure 13, we have focused the view in the vicinity of the singularity
of equation (85). We note that to the left of the view, as r approaches zero from
the right; the refractive index approaches % A zero-order bow exists at an angle of

incidence of approximately 0.07 {or 3.78°),
II1.4 PROFILE 3

Consider the refractive index profile (as mentioned in [213)

a
rin(br)

n{r) —

(96)

where o and b are constants. The refractive index profile in equation (96) is singular
at r = 0 and r = ?1). This profile is undefined if & < 0. Equation (96) is plotted in

Figure 15 with a = —llﬁ and b = % A singularity is observed in the figure at » = 0
}

and r = ¢ = % The refractive index profile i equation {96} has applications in radio

wave propagation {21].

We nofe that ,
o2

(In(br))*

Next we find r.(i). Using equation (3). it is found that

rin(r) =

In{br.} = .

sing
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Letting 7 = == 7.(i) is given by
. 1
ro(i) = ™. {97)
b
Thus, we obtain the result
| 1
. . dT‘ . dr
O{i) = sin1 \/ = = sint -
rin? ) —sin= ¢ 7 & — §in?y
Ty Gy T
re(i) relt}
! 1
dr In( b:
- = dr
7y ey o 1 2 {
. sin? i{ln{br)) m “
(i)
]
In(br
- b o (98)

ry/m? — (In(br))?




i. .
Let u = In{br). Then du = . We note that u{r.) = m and u(l) = Inb. As a result,
N

the integral for ©(i) becomes

Inb
u
8u1:/¥—f———mL 99
=) e %)
1
Let v = m? — u®. Then dv = —2udu and udu = u;jdv. We have that v(m) = 0 and

v(lub) = m? — (Inb)*. Now equation (99) becomes

m? —{lnb)?

1
(1) = / { - ;Zw:"%}dn
0
m2 - (In b)*
L
= =7
0

= —y/m? - (luh)’.

Hence, we determine that

Oi) = —y/a?ese i — (Inb)*, (100)

and the derivative is given by

Yo . .
a’ese?icots

\/;.2 ese2i — (Ind)’

Therefore, for the refractive index profile in equation {96), a zero-order bow exists if

&'(i) =

(101)

a?esc? i cot i,

- o) (102)
\/a2 cse? i, — {(Inh)?

Since 7, 18 in the first quadrant, and the trigonometric functions are all positive in
the first quadrant, equation {102) cannot be satisfied. This tells us that & zero-ovder

bow is not possible for the refractive index profile given by equation (96).
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II1.5 PROFILE 4

Consider the refractive index profile (which was considered in [21))

n(r) = — & (103)

ry/In{br)
where @ and b are constants. The refractive index profile in equation (103) is singular
atr =0, r — %, and undefined for & < 0, as was the case for the previous profile in
equation (96). In addition, the refractive index profile in equation (103) is a purely

imaginary munber in the domain (0, 1). In Figure 16, equation (103) is plotted with

a = 3 and & = 11; the singularity at r = -i; = ﬁ is clearly visible. The refractive

index profile in equation {103} has applications in radio wave propagation [21..
We note that )
r2nt(r) = m——

Cnfbr)’

Next we find 7.(4). Upon using equation {3), it is found that




Hence, we determine that
1

‘wlll l

= 3N

B(i) = sin¢ =
\/?2112 —sin“g

l

re

n(br)
i n(br) dr. (105)
\/!HTI._ \/m— In(br) ln(bﬂ‘"))2
dro o

Te (?) —f”'

In order to evaluate the integral in (105}, let & = In{br). Then dr = —. We have
,
=m" and z(1) = Inb. Consequently, equation (105} becomes

that #{r.) =
ind
da

) / T
vmir — x?
m2
; b
2
—— m2 % -
=t -vmiz — 2? + — arccos :
2 n 2

/ « .
= —\/mglnb - (Inb)* + al((,U‘s( 2. _n )

m? ”’
~ 5 arceos | -2~ -“i —
2

?n _ l b
—\/T112 Inb — (In b) Arceos ( L )
arccos(—1)

m?
\/ N 2 m? 2Ind
= —y/m*lnb— (Ind)” + 5 |areeos 1— -, (106)

!?1‘2

The formula
arccos u = m — arccos{ —u)

can be rearranged so that
ATCCOS U — T = — arceos{ —u).

The last term appearing in brackets in equation (106} may therefore be written as

2111!)) (‘21nb )
— T = - arccos -1].
m?

arccos [ 1 — ;
m?




Thus, we discover that

Inb
G_')(?) — ___,,_.....,,,,::I,. ..... (ff
mir — z*
m?
; 2 2Inbd
7 \/'mzlnb ~ (lud)* + " arccos I? -1,
2 m?

so that the final equation for G{i} is given by

2
\(i) = ~ {\/(12 cscilnd — (Inb) b+ - 2 cse? 1 arceos (212 b sinfi — l)}

a2

o a’ 2. 2Indh .
= — |[VInbhva®esc?i — Inb + 5 C5¢” i arccos smsinti— 1. (107)

(4]

Differentiation of (107) yiclds

ol

(*az ese? i eot ;i)

0 . 1 Alndh ]
+ 7 osct e | — = ———= S COs ¢
\/1 - (2—:.5” sin® ¢ - 1) @
. , 2mb
— 28624 cot i arccos ( 5 sini - l) }]
[£4

&) = — lv’lnb (a®csc? i —Inb)

B a® esc z(ottvlnb ?(«,( tcostlnd
— 2 — “""‘h"“‘_""‘_‘“‘_‘_""‘_‘l_z
a?csc?i —Inb \/1 zhz.h%m i-1)
. , _ 2lnb , ., .
+ a?esc?icot ¢ arccos (2 sinfi—11. (108)
¢

We note that

2lub : A(Inb)? At
1. - sin?7 - 1) =1- (Inb) sin'i — - Jam 741
al al a?

4{Inb)* 4lnd .,
= — sint i + S 2
at a?
4lnb ., Inbsin® i
=z sin® 1 [1 = 2 ——-}
4inb

= ——sints [uQ csc? i~ In h] .
a’

Then it is found that

,ooatescticotivind  afesc®icotivind
O'i) = + =1
I — 111

vateseZi —Inb

a® cse?




a4

2 9. . 2Inb
+ a® ¢s¢” i cot i arccos 5 sinz - 1
@

g 2y1Int 2lnb .
= aesc?icots - I,l ! + arccos (% SN~ g — l) : {(109)
vatcsc?i —Inb a

Therefore, for the refractive index profile in equation (103). a zcro-order bow exists
if

. 2v/In! 2b .
1+ a®esc? i, coti, : I_l ! + arceos —wlim sin’ i, - 1) =0.  (110)
vafescti, —Inb a*

The second term in equation {110) is positive due to the definition of ¢.. This tells
us that in order for equation {110} to be satisfied; the last ternu must be negative.
In other words, we must have that the inverse cosine function is negative. However,
for the set of real numbers, the inverse cosine function is always positive. Therefore,

a zero-order bow cannot exist for the profile given by equation (103).
111.6 PROFILE 5

Consider the refractive index profile (as previously discussed in [16])

:
n.(-r)—.1/;—;+?—’_+- ¢, (111)

where ¢, b, and ¢ are constants. The refractive index profile in equation (111) is
singular at » = 0. The refractive index profile given by equation (111) has applications
in atmospheric and terrestrial physics [16]. Let A = sinz. Determining r.(i) from

the equation r.n(r.} = K yields that

a+bro b o =K%

erl 4 bre+a— K2—0.

Accordingly, we find that

_ =bE b —defa — R
B 2¢ '

(1) (112)

We must have that 0 < r.(s} < 1 and r.(7) € R. Iu order to guarantee that the radial
point of closest approach to the center of the sphere, r.(i). is a real quantity, it is

required that

¥ > de(a — K.
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There are numerous cases for this profile where we can study the behavior of the
constants that would determine whether we choose the positive or negative sign in
equation (112}, Since we require that n(r) € R, we will not consider the case where
all three constauts arc negative. Regardless of whether ¢ > 0 or ¢ <« 0, the first

condition above would result in the following inequality
a<K*<a+b+e

In other words, it is required that a + b+ ¢ > 1. From the fact that 0 < K2 < 1, it
is found that

a>a—K?>a-~1

Since a — K? < 0, (we will see from the equation for ©(;) why we cannot have
K? = a) this inequality is satisfied only if @ < 1. Using @ — K2 > « -~ 1 in the

condition b* > de{a ~ K?) tells us that
b > defa - 1).

Without loss of generality, we assume that o <2 0,0 > 0, and ¢ > 0. As o result, we
must take the positive root in cqnation (112). We note that @ and & must be small
andl large enough, respectively, so that equation {111} is real for all values of r in our

domain. Thus we obtain the resnlt

fr

i 1
dr d
@)=k / =K / : 113
) ~ rin?(r) — K*? Jorf(a= K2) +br + cr? (113)
re (i) redi)

may be evaluated as

13

o) =

K -y |
VAE - rv/B? —dcla - K?) ’r-(i)
N ArCsin { 2a—K?) +b ] o { 2(a — K*) 1 br, }
= N arcs — ALCS _
K —a \/‘!}2 - Acla - K?) Te \/b2 — Ae(a - K2)
(114)

aresin l

We note that

—t2 by S —defa— K2
2({1.-* h,2)+ ( b +H bgr-l{ K ])

2a - K%+ br,

20

:r",:\/:‘)2 — de(a — K'?) (--b-:—‘/bz -lr.{u---h'2)) \/b'z P Py




_dela— K?) 4 [-b? 4+ by/b? ~ dca — K?)]

~by/B? — defa - K2) 4+ 12 - defa — K2)

- b — defa ~ K?) - b\ﬂjZ —~ 4dela - K7?) -
0 = dcla - K?) = by/b? - dc(a — K?) T

Henee, it follows that

(i) = —k—{ aresin [ Ho- KT 4D } + %} (115)

vK?-a VP2~ dcla — K2)

From the forumula,
arcsin z 4+ arceos 1 = —‘.
X
it is determined that
arcsin z + g + arccos z = 7.
Thus we see that
e

arcsin z -+ ; = T = arccos z.

Using the relation

Arccos = = 7 — arceos{—z).

it is found that

. s
arcsin = + 5= arccos(—z).

Using this result in equation (115} yields

o)) =

(116)

2(a — K*) + b :'

arccos [ el
\/b2 ~def{a — K?)

K
VK2 —a

Because of this, we determnine that

- e — ]2
Do(i) =21 — 7 + 2{ hm Arceos [ _ Ma_ KO+ ] } {117)

K2 —a VI — dcla — K2}

Due to the complicated nature of Dy(7), we will only provide the graph of (i) from

cquation (117).
In Figures 17 and 18, we give the plots of equations (111) and (117), respectively,

with @ = b — 2, and ¢ = 5. We notice from Figure 17 that equation {111) is

1

w00
singular at 7 == 0. For the values of a, b, and ¢ given above, Dg(7) has two extrema on
our interval [0.005, 7] at angles of incidence of approximately 0.13 and 0.62 (or 7.17°
and 35.73°, respectively). As a result, two zero-order bows occur on our interval for

the refractive index profile given by equation {111).
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I11.7 PROFILE 6

Consider the refractive index profile, mentioned in [10] and {11], which are given
by
n(r) = ar’, (118)

where 7 is of either sign, 0 < b < r < a, and o > 0. The profile in (118) has
a singularity at » = 0 if < 0. In order for a zero-order bow to exist, it will be
shown that 5 < 0. The refractive index profile in equation (118) has been used to
show that melting ice crystals may be strong contributors to the glory ray. Also, this
refractive index profile was studied to provide a more general explanation of both the
rainhow ray arnd the glory ray phenomena by analyzing the scattering processes of
inhomogeneous particles [11}. Using equation (118) in equation (2) where K = sini,
we find that

i

]
dr dy
O =K = e S— 119
) j ry elyrdn=l) — 2 / rvAarr -1 (119)
re(1)

re(i)

where p = 2(n+ 1) and A = K—i > 0. Next we calenlate r(i). The equation r.n(r.) =
K 1mnplies that
ar)™ = K.

¢

Consequently, we determine that

In order to evaluate the integral in equation {119}, make the change of variables

vt = Art.
Thus, it is obtained that
dr  2dv
T
We note that ]
(i) = VA () = VAS = )

with ©(1) = VA, Using these substitutions, equation (119) becomes

VA




where we note that  # —1. Therefore, it is discovered that

1 . 1
Ofi) = — [ar(:r;f:c (?:—) — arcsec (%rf”)J = o [eu’csec (-g-) - arcsec(l)}

1
= arcsec (a ) (121}

n+1 K

If we have that

=ar?" b<r<a
by continuity at v = b,
o = mb™?
As a result, it is found that
o) | Ty 129)
1) = aresee | —— |.
n+1 1Y (
Therefore, we determine that
Do(i) = 20 = 7 4 — LN (123)
i) =26 ~7- ATCSeC _ 2
0 n+1 i
Differentiating cquation (121) with respect to 7, we see that
1 i 1 COS ¢t
(i) = =] —ceotiescr| = - ,
@ g (1}5)2—1[ } )+ Lya? - K2
A zerc-order bow exists if ©'(7) == —1. Hence, for the refractive index profile in

equation (118}, a zero-order how exists if

COS i,
— = () + 1),
VvV ad —sin® i,

cos’io = (n + 13a? - sin® i),
[ -sin?i, = (p+ 1)%a% = (4 + 1)®sin? ..,

1— (g + 1% =sin®i (1 - (5 + 1)9).
1 —{n+ 1)%a?

sin? 1o ==
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where 7 # 0. From the calculation of ©'(), we require that o? — A% > 0 so that
©'(:) € R. Thus a? > K? which implics that o® > 1. Because of this, we must have
that @ > 1 or @ < —1. However, due to the equation of r (i} and the assumption
that o > 0, we must have that a > 0. From the first line of equation (124), since
ic € [0.005, 3], we must have that 7 +1 > 0. So > —1. There are now two cases to
consider:
Cage 1: -1 <n<O.

Then (5 + 1)* < L and so 1 — (n+ 1)? > 0. From equation {(124), we must have

that 1 = (n + 1)%a? > 0. So we have that o® < Hence —ﬁ < a < - Also

i
(nt1)2" ntt

from equation (124), we require that
1 - {n+1)%*
1-(n+1)* -
Since 1 — (n+ 1) > 0, equation (125) tells us that 1 — (4 1)20% <1 — (5 +1)%. As
a result, (7 + 1)? — {7+ )% < 0. Thus {5 + 1)’[1 ~ a?} < 0. Hence o? > 1, which

(125)

results in either o > 1 or o < —1. We already know that we cannot have o < —1.

As a result, only a > 1 is allowed. Summarizing, if -1 < n < 0. we must have that

1
< < T (126)
a > 1. (127)

Case 22 17 >0,

Then (4 1)* > 1 and so 1 — (5 + 1)? < 0. Utilizing the restriction in equation
(125), we must have that 1 — {4 1)%a® > 1 - (n + 1)2. Hence we require that
(n +1)%[1 —a® > 0. Thus

o < 1.

which results in the inequality
“i<ac<l (128)
However, in order to avoid tmaginary numbers in the derivative of ©(7) and the
calculation of 7.(v), we require that o > 1. Since equation {128) contradicts this
requiremnent, a zero-orvder bow cannot exist when 7 > 0. As a result, a zero-order
bow is possible only for Case 1 where we have that —1 < 5 < 0.
We give the plots of equations (118) and (123) in Figures 19 and 20, respectively,
with a = -; and n = —%. The singularity at » = 0 of equation (118) in Figure 19 is
clearly visible. For the given values of o and #, a zero-order bow exists at an angle

of incidence of approximately 0.84 (or 47.87°).
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Fig. 19. Plot of equation (118) with o = —1' and 7 = —2.

(1%

T T T T 1 Ll
tol -
isf ]
—~~ B ]
o
pa—
Q
S .
15_\ i
12K —
] | ! | 1 1 1 !
) tx i 66 o8 ! L 1: 16
7

Fig. 20. Plot of equation (123) with o = 2 and 5 = — .

-1




62

CHAPTER IV

WAVE APPROACH

IV.1 INTRODUCTION

In this chapter, the wave approach to electromagnetic scattering will be con-
sidered. In the previous two chapters, we considered the ray approach where light
is described using ray considerations. With regard to the wave approach, light is
described by assuming that 1t takes on a wave form. Our main goal in this chap-
ter will be to determine the leading order estiiate of the far backscattered field
at short wavelengths for an electromagnetic wave for a particular refractive index
profile. The far backscattered ficld at short wavelengths is also known as the bigh-
frequency backscattered field. The far backscattered field is given by an infinite
series which converges slowly at short wavelengths, The Watson transformation will
he employed to speed up the convergence of this scries by converting the series to
a contour integral. Once this is done, the radial cigenfunctions will be derived for
ficlds of magnetic- and electrie-type. These eigenfunctions are necessary in order to
calculate the asymptotic expansions for the transverse electric {TE) and transverse
magnetic {(TM) modes. Once these expansions are obtained, the Mie solutions [6],
[7] will be calculated which will allow for the determination of the high-frequency
backscattered field. Two cases will be considered where in one case the leading order
estimate of the high-frequency backseattered ficld may be determined.

Consider an incident plane electromagnetic wave propagating in the positive z

direction with the free space wavemunber &, whose electric vector
E™ = ¢t (129)

has unit amplitude and is polarized in the direction of the coustant unit. vector é.

We note that & = 27”, where A is the wavelength.

The incident plane wave given by equation (129) produces the far backscattered

field (which corresponds to a linear combination of outgoing spherical waves) (22

i 1
BN = o D (-1 (n + ~) (an = bu), (130)

2
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where [22]

ka) — Mo (ka)

_ ¥nlka) |

ﬂ-n - Q:l(kd) . ﬂ!n(:“(k&_) \ (].(3].)
o (ka) - My, (ka

by, = —y““”f) Lt fl)f (132)
C:;(A.'U) - ‘qfricra(ka)

ka T
tha(kit) = ?T.; Jupr(ka),  Golkid) = /%Hf:% (ka), (133)

_ 1 [s () g o L[
iy — kd 5‘1(1})(1’} My — Aj(‘l 7—;(‘1](‘1:)

i = /—1, and the prime indicates differentiation with respect to the argument. The

(134)

z=1 r=1

functions ¢, (k@) and ¢, (ka) are the Riccati-Bessel functions. It should be noted that
the 7 that appears in equations (130)-(134) is not the refractive index profile. In this
chapter, n will represent the separation constant. The refractive index profile in this
chapter will be denoted by the function R(x). The functions Af, and A, are known as
the transverse electric (TE) and transverse magnetic {TM) modes, respectively. With
respect to the TE modes, there is no electric field in the direction of wave propagation.
In other words, there is only a magnetic field in the direction of wave propagation.
As a result, the functions S,(x) appearing in the first equation of equation {134)
are known as the radial eigenfunctions for fields of magnetic-type. On the other
hand, with regard to TM modes, there is no magnetic ficld in the direction of wave
propagation. This means that only an electric field is present in the direction of wave
propagation. Because of this, the functions T,(r} appearing in the second equation
of equation (134} arc known as the radial eigenfunctions for fields of clectrie-type. In
order for the leading order estimate of the far backscattered field to be caleulated for
short wavelengths, the Mie solutions which are given by equations {131) and (132)
must be determined. Before this can be accomplished, the asymptotic expansions
for the TE and TM modes must be calculated using equation (131) which requires
the determination of the radial eigenfunctions for fields of magnetic- and electrice-
type, respectively. We note that @ = 2 is the radial distance from the center » = 0
of the sphere, normalized to the radius r = a of the boundary of the sphere. The
radial eigenfunctions S{V(z) and T{!(x) are those particular solutions of the radial

differential equations

Te

S"(x) + {[)’\.’ﬁ.R(JE)]g _ f!(—rij}_—}l}b'”(f) = () {135)
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and
Ri{x . . (n+ 1)1, .
Tz} ~ Qﬂﬂ;(:}:) + < [kaR(2)])? - nr+ 1) Ta(x) =0. (136)
R(x) x?
where R(x) is the refractive index profile of the sphere. We note that the radial
eigenfunctions are finite over the interval 0 < x << 1 for the refractive index profiles

we will consider.
1V.2 PROFILE 1

Consider the wavemunber {(from [21])

LA |
anr2 3

where

m(r) = kn(r),
k is the free space wavenumber, and n(r} is the refractive index in terms of ». Let
"= (138)

and
by =a™ " (139)

so that we can write equation (137) in terms of «:

aglzal =" aga?iyi~!
m(z) = 1420 14z0

The differential equations from 21} and {22! nwst coincide in order to connect the
analysis from these two papers. In order for the differential equations from Westcott
[21] (which are in terins of 7} and Uslenghi and Weston [22] (which are iu terms of

) to coincide, we must have that

o

ag = coha' "2, (140}

where ¢p is a constant. We note that in [22] ¢, = 2. Using equation (140), it is

determined that .
C{p‘i.’.L’ 2 -1

RR() = 14 g

= m(z), (141)

where 1t is noted that in [22]




where ¢y = 2 in [22] and dp is any positive real constant. In Appendix D, we show
how to relate the differential equations fraan [21], which are in terms of 7, to the ones
in equations {135) and (136), which are in terms of z. Consider the refractive index
profile given by

(.’n;r:%"l

1V.2.1 Converting the Sum to a Contour Integral

The high-frequency backscattered field that is given by equation {130) converges
extremely slowly 1o the limit k@ -» oo, in other words, for short wavelengths. As a
result, we will utilize the Watson transforination which replaces a slowly converging
series with a contour integral. This integral converges at a much faster rate than the

series. Let

2
dy = =. (143)
(¥
If we consider ¥ — n + § as a complex number, then, using equations (143) and
, 1 Vids + 1
(151), 7. has branch peints at v = :i:[— do— 1 and vy at v o= di- 91— As
( iy

. 0 .
a result of the location of the poles of the integrand, we choose the branch cuts in

. 1 1 o
the complex v plaue along the real axis between ~5 and +§. Along the imaginary

. _\/{f()+1 ~\/([Q‘f‘ 1
axis, we choose the branch cuts between —-.1— atdd +{—m
i

iy
replace the summation in equation (130} with a line integral taken along the clockwise

. Now we will

contour €' of Figure 21, which encloses those poles of the integrand that are located

By following a transformation of the type of Watson’s, the line integral along C

is replaced by the sum of:

e A line integral whose contour consists of a path () extending from the fourth
through the first to the second quadrant, plis the arc of a circle of large radins
with center at v = () extending from the second through the first to the fourth

quadrant, and
e A residue series due to the poles of the integrand which He in the first quadrant.

The contour 7] crosses the real v axis between

vV (f(] + 1

above +i———, avoiding the branch cuts. The result obtained thus far is still
0

3 , : .
and 5 and the imaginary v axis

b | =
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Fig. 21. Contours of integration in the complex v plane, where a description of €
and /) can be found on the previous page and a description of 'y can be found on
page 93.

exact. Hence, upon using the Watson transforination, we determine that the high-

frequency backscattered field is given by

; ikt v
EY e G f — T, 1 — b, 1 |dy, (doha > 1} (144)
2kr | cosmr 2 2
-1
In Figure 21, we show the branch cuts and the contours that we will use to evalnate
cquation (144). The quantity (G.U_% —b,_1) in equation (144) must now be evaluated
2
for v} = O[(ka)2*| where ¢ is an arbitrarily small positive nuniber. Before this can
be accomplished, the radial eigenfunctions for ficlkds of magnetic- and electric-type
must be calculated. Then, the asymptotic expansions for the TE and TM modes

must be determined. Once this is done, the Mie solutions can be evaluated and, as

a result, the high-frequency backscattered field can be calculated.
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1V.2.2 Radial Eigenfunctions for Fields of Magnetic-Type

First consider fields of magnetic-type. From {21], the radial eigenfunctions for the
refractive index profile /() in equation (142) are given by

Llfe-Da

u(ry =[] = (1+ bu’r“)%zﬂ(a. by ¢; —bor™),

where 4 Fi(a, b;¢; 2) is the hypergeometric function. Writing this in terms of r and

renaming the function SUx), it is found that
(yyoy _  AElsLe oA o
S, )[.z.) =2 (14 22 8 (a, by e — o),

where [21]

1 1 1 1. L
L= 3¢~ ch, M= 5/-1 - ZAz’ N = 5(:,4 ~abA=a+b—-c+1,
and [21]
1 1 9 .9
L fuasas H — 5(2?‘? + 1)2!’1 --.
M= —aiby o2,
N = —alb;'a

These two sets of equations will be used i order to determine the constants o, b,
. . . . He! T .
and ¢ in the hypergeometric function in S ,(1 )(.-r:), Utilizing our values for ag and g in

the second set of equations for L, M, and N, we see that

11 " .
L —~—=(2n+ 1%

1 4
y T ady ~ - 3 Ry ="
M= - (rﬁkza)' a0 % = —{eokd)?a 2,
and
N = ~(coha)?a™?.

We now determine the constants @, b, and ¢ of the hypergeometric function. Solvine
1y Y [ 8

the cquation that relates L to ¢,
¢ — 2+ 1L =0,

yields that

24+ 21 - 4L —
c=""" T lxVi-dL=1t 1 =1+ 2n+1)202

9
4
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2 1\? 2
=1+— (n—h—) =1+ -y, (145)

w 2 x

1 . : : :
where v = n + 3 We are now interested in solving for A since A relates the three
constants of the hypergeometric function by the equation A = a+b— ¢+ 1. To that

end, solving the eqnation that relates A to M,
A2 QA+ 4AM =0,

implies that

242y -4M
==

A P21+ d{ckd)?a-2 =1 — /1 + (2c0kac—1)2,  (146)

where we have taken the minus sign in (146). From the equation A =a+b— ¢+ 1

and equation {145), it is found that

b=A4A—a+c—-1=A—-a+ —v
(r

Multiplying both sides of the equation N = 1¢A - ab by 2, nsing the above equation

for b, and rearranging terms yields

2N =cA - 2a0b=cA - 2a(A - a4 gu)
u

= 2a* — 2a(A + irf) +cA
¥

— 2a* -~ 2afc — \/l + (2c0kaa=")2} + cA.

Then it follows that

20* ~ 2alc = /T + (2cohaa 2] + cA + 2cokia™" Y = 0,

This equation is a quadratic equation in the constant « which is readily solvable. As

a result,

c— 1+ Qcpkaa1)2

a =

2
\/[n ~ /1 + (2e0kan=1)2)2 — 2[cA + 2{cokan 1)?]
+
2
{{: — V14 Qeokaa1)2 + Ve2 - 2c + 1}

{c — V14 (2cpkaae V)2 4 /(¢ - 1)2}

B = NS =



= —E{(‘ ~ 1+ (2c0haa=1)2 + ¢ ~ 1}
= ¢ - % é\/l + (2eghan-1)?

2 11 R
=14 V-5 5\/1 b (2cpkia1)?

= -1-[1 - \/'1——--;“(.2(:01{&(1"‘1)2] ] zv.
2 v

Let

4= % Iil \/1 + (2cphaa 1)2i|,

Then the constant 2 is found to be

v

2
a=g3+ —w
Y

. A . I
We note that 3 = o Thus, we determine that the constant b is given by

-

2 1 2 2 4
b=A—-a+ —-v=A4- e ~ v+ iy =L =3
I 2 a P! 2

It is noted that

1
2

i 2 i 1
| l+(c=Na|=={1l+—va]=-(1+2v}=v+ =
2 x 2

Thercfore, the radial cigenfunctions for ficlds ol magnetic-type are given by

s

. 2 2
Sy = 27731+ %) P (3 + St =),

1V.2.3 Radial Eigenfunctions for Fields of Electric-Type
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(147)

(118)

(119)

For ficlds of electric-type, the radial cigenfunctions for the refractive index profile

R(z} in equation (142) are given hy [21]

LAY

pi sf{e-1)a 3
a(r) = b3 1T ™) T R, e = by —bor®).

Writing in terms of 2 = Z {and recalling that by = a7}, we obtain that

T1te e - he]

w(x)y =272 (L4 2%y 77 o F{a.c~ b —2™)

fesllafa-1 2-q

=z TFT x7T (14 3:")"""_;_'(1 b Fi(a,e = by, —x™)

Doda 1 n

= 57" {1+ :}:“)3:'!:'""2 (1+.£%) "':'g"_l-gﬂ(a, e—bo;—1")
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= co[R(@)] 7' TV (),

n

where
a-h-1

TiV () = £ (L+ ™)y 7 3F(a,c— b, —x")

and the equations for the constants L, M, and N which determine the constants a,

b and ¢ in the hypergeometric function are now given by [21]

| 1 9
I = 5{_{'1 - 3(2?1 + l)gﬂ_z
] -
= :2-(1«_1 - U2(t"2.
] 1 )
ﬂf _ _5”__.1 3(2-” + 1)”(].—2
1 9 e
m ._5.:1‘1 — U"(k_z,
ahd
f\;_ M’}.‘b—|_1*. 2 —2
= lagb, 5(2:: + 1) |
= rr.gfiin_l - 2:#2} a?
r . , ,
= {{coha)® — ZVJJQ ‘
Let .. B
1 2 4,
'}‘i:§ 1;|:;—|—‘—_;2—U“. (151)

Then the equation that relates L to o,
¢t~ 24+ 41 =0,
implies that
c=1+v1-4L =1+

=1+2y.. (152)

Also, the equation that relates 4 to M,

A? — 24 + 1M =0,

implies that

I
Az1:1:\/1—/1;1!:1+\/;+—+-—5w’=l+27+, (153)
x 8]




We have that
b=A-at+ec—-1=1+2y—a+2v-=1-at2(v+7v.)
Then it s discovered that

2N =cA = 20b=cA—2a[l —a+2{y, +~v_)]
= 20" — 2a[l + 2(7+ + 7_}] + cA.

Thus, we find that
20> = 201+ 2(v4 + 7)) + A = 2N = 0.

Hence, it follows that

2142074 + 7)) £ 2/ 14209 + v )] — 2(cA - 2N)
1

l . , rey. ¢ e
= 5{1 4+ 2(y- 4 ) \/-—-l +4(v2 +4%) - Ja2{2? ~ ((.!(;kﬂ-)‘!]}

=

1 8 4
= 2{1 f‘) '}(+ + Y- 1+2+a“2*!/‘2——f)2+ 2((,{]&”) }

= vy + -+ 2[1-ﬂ1 } ﬂ_z(r”k”)}

1
=¥s + -+ 2{1~ \/l + Ztgﬂmfr"l)z}

— B+ 7+ 7, (154)

where we have uscd equation (147). As a result, it is obtained that

b=1=3~{(yv_ +v)+2(v. +4.) =1~ 34 v + 4. (155)
We note that
1 1
E((’u-—l) E[(l% 2y_ )aul} = (r}.__+%—%,
1 1
2-(“—5—1) 5 Ity el -y -y -1 =731,

and

c—b=1+2v_-143 v -y =3+7 —74




Therefore, the radial cigenfunctious for fields of electric-type are given by

TOr) = 2 #5731+ 1) P (34 1o + 7o B4 7- — 71 1+ 2v_1 —~2%). (156)

IV.2.4 Asymptotic Expansions for the TE Modes

We will now use the expression for the radial eigenfunctions for fields of magnetic-
type given by equation (150) to calculate the asymptotic expansions for the TE
modes. To that end, we must determine Af, which is given by the first equation of
equation (134). First, we must obtain an expression for the derivative of the radial
cigenfunctions for fields of magnetic-type. Differentiating equation (150) with respect
to x yields that
da (3 + *{%.’A 31+ %1/; —z")

d(—z")

1

IL'?l)’(:l’r,) — ,,u+%(1 + ;'L“”)H (—-(’EJJ”_I)

I

a 2 2
X oI (3 + —u. il + —u; -r)

s 3(3 + = 2 2
—zt "+ (144 ) **1&:“ '*—-22F1( F + —V LA+ L2+~ —a)
(Y

B

2 9 JER ik S T
b+ %) A3+ v 51+ v - )[“' 4 - J
z 1+ z= T

Then it follows that

SV ()

Sr(:})(lf)
_ adr® + (14 2%Wv + %)
a1+ xm)
a3+ 2r) L eRBH 2+ 134 12+ 2 —a)
i+ ) 2R3+ 281 2y —a)

Utilizing this in the first equation of equation {134), we find that the TE modes

are given by

Vo= 1 (a3 +—2( —f‘%) f}.ﬁ(;"?-Jr—%v}gFl(’f—i—gu -{_1 a4+1;2+ lz.y-_l)
Tt ka 2 1+ 2y G320, 3t 4 2o 1)

1o+ 2 a3(3 + gy)zﬁ'(j+ 241,34+ 01:2+ 2 t/—l) (157)
T %k Rl 20) R Indilt Zn 1) >
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The hypergeometric functions in equation (157) can be expressed in terms of gamima

functions using the following formulae from the Digital Library of Mathematical

Functions: Tla—b+ i)I“(la +1)
”““““‘b+1“4]:rm+1n(a*bgl) (158)
JFabez) = (1— 2) zﬂ@r_br~:1) (159)
and
’”(a b g 3) i (‘”* f’””u; )réw.-;->"‘v<aa-+lé)r(ém |
{160}

For 2z #A0,-1,-2,...,

Py =X— 70, 162
First consider
2
2F|(.!3 b= 30+ —py 1),
x 6% ‘

Since
2 2
3+ —v—-—Jd+1=1}F —p
(Y

44

from equation {158), it is found that

y y (] ~ 20— 4+ 1
T I B L (1 -0 1+)
v o ﬂ?+—u-Ulkj£ 3+1)
I(L—-2y) TE+1+1
S (T NN SR R
F(1+ v -5 103+ 1+ 2p)
Let R
) L+ 2w+ bi
N 9
Then it is discovered that
z=1l4+-v+J
Y

and

1
2 2 v




T4

2 ) .2 .
Thus for 1+ —v+ 3 #0.-1.-2,.. (ie. —v # —1,-2, -3, ..., using (162), we find
(v (v
that . | )
FE+1+ v A -l=Lrp 1
Al o Ve (160)
E (;-I $- 1 + HV) r 142043 I-, }-.—zv-j-'ﬁ'
2 2
Therefore it is obtained that
L2 2 729 D(1 + 2y
o3+ —v 3 1+ EV;_I) — VT ( ‘: ) {165}
¥ . 4\ A
C(1+ 1y — 41 (“’ : *)
Now consider 5
JF](J%- V'+‘1 3*124'—11 —1]
Using equation (159}, we see t.ha.t.
2 2
B+ v+ L3+ 124 —p 1)
o 13
r 2 2 2 1
=2 LR+ S 1,2 S - 124 S )
'} G a 2
wpb-Zoet g 2 2, 3042,1 "
w2 2R3+ —v+ 114+ —v - 324 =y =} {166)
x v 2

Since

1 2 1 2 _ 2
- 3—}——.‘/—!—1 +-|1t —v—Fi4+1=2+ —v,
9 2 x O

upon using equation (160), equation (166} beconmes

i £

2 2
2F1(H—+———z/-+ L3A+1L,24 — v —1)

. 2
— 9= Zv-l VT ‘ U (2 + Eu)
o

i+ r%u-} l—+l——§u+,d‘

1
[r[;(d + 3+ 1)}1‘[%(1 + 2y~ 3) 4 %]

X

1
{%(i+—p+1)+u}i [7‘2(1 + 2y — i)ﬂ
_gea-Zu- 1\/~ (2+—p)
(83

{ : 1 ; : }
X el v . = .
!‘(I'*_,,"*'S)F(l + E];.v - -2{) (L + rf + 2 }F(”"”‘”)

(167)




Hence, it follows that

24 v+ 1,3+ 124 2oy -1)
2Fl(d+ 2y, 3 1+ =y —1)

- 1 L, B 1~%y: 8
1Tz 4 2y !1 Pl + 2o QJF(—“—Q )] o)
— :2_3 m y .% - B . )
AU Gv 0(1 + Lv+ )r(ﬂar—)

From the relation

it is found that
169}

1 3 1 3
I VA | o I -
(u'y ‘2) ((I’y 2)’ (170)
(1 i

o
TN
[
+
il &
A
N’
i
RN
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2
<
SN’
~
TN
+
Sl e
<
SN’

|

Using equations (169)-(171) in equation (168) yields that

1 i3 i H H_;;I’-Hf
f‘ (_;_+__V 1”1 ]’_{_ j_ 2 +- ;J .__1) _ 1_1_%1/ |:] (;V })F(ZI _“)_)r( 2 )]
B+ Zv i+ 21y 23 | - v
2 ( +- sv, 1-1- S 1) 2.3 (%V—F %)F(iu%— _})[‘(1 ....... nd__f)
(172)

Upon utilizing cquation (172} in equation {157) gives us that

Ly — Oty - Hp{ e
v L oty f‘*'(.f3+?;“){1 v =2l Gy z)r( : )
il . E By - as  mecimise o
" 2ka 2ka 2ka | , e
a a a (’;/-i— I5)I (-i_u 4 r‘;)r‘(inz_g)
L el )Py = PTG+ 59) 173
""" Bt Rl 4 Do+ ) (173
= . 1+ Q(E%” - ﬁ)r(i 2)F 1+ -‘E“_f-i) |
2k F(-};U—f— ';)I( V—i-] fi‘)
Let
2
A=z -v—d=dpw -3
oY
and

2
B=—v + .':} B d[]U 4 ’_-f_-;!
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where equation (143} has been utilized. Then we see that

oL fo, BT
v-3 " 2ka A '

We have the following formula:

?EZ:‘;; ~ z“"bé G"E‘:‘ 0) oot {Go(a..b) " G‘(:‘ b, G”(;j‘ ) +0(z—"*)], (174)
where

Golab) = 1

Ghlab) = %(a — Bt b—1)

Gz(a,b)—TI-Q- ( a;b) [3(a+b-—1)2—(a—b+1) .

i B 2 (__l)k+l )
k)OO k]2 (2k -1y

We also have the following formmulae:

( " ) ={-1)* ( Tkl ) , n<0 and k>0
3 k

1 (—1F 5071
(1)-5110-)

Then it follows that

It is noted that

and

and

First, consider
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For this quotient of Gamina functions, a = 5 and b = 0. Then, using equation (174)

we obtain that
_ 1 Ly 3(- 3y - 3
r(%) (B)z{ (-1 iz a)( 3 2 ‘
~g ) e ; + O(B"‘)}
reg)  \2 3 (5
BV L EEDED
(2 (1 e HHED o]
B\: 1 1
== | R O3 #) %
(2) { TR )}
Thus it is discovered that
[y /p\? L ,
M=) - — e 75
') (z) { in T ap OB )} (175)
In a similar fashion, we find that
I(4) A\t 1 1 , i,
i—'—(_%) ~ (E) {1+a+ ?242 +'()(f‘1 ]} (1(())

Hence, combining equations {(175) and (176), it is found that

1
(4~ }}{1 1B T mE

/11’(’—;)1‘(""
MG | vAB {1 LA
INENE! 44 3242
(177)
Therefore we determine that
M, ! 1+ \/ 1+—1L ! FO(A™ 1—L- ! OB
SE BT do 4A T 3242 1 T R
(178)
where
2 2 .
Aw —p— 3 =dyw — 3, D=~ 3 =dyw+ 4. (179)
x v
We note that (178) is valid provided that
|A] > 1, |13 = 1. (180)

As a consequence, the asymptotic expansions for the TE modes are given by

d[] . 3 1 vt
M i~{1=-2 i)+ - — Yk

i v 2—dy~4i, .,
— —{k
+ ( ) T (ka)
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if v\* v v Ayt
*s(f?) +o[(m_}3]+o[(w} ! O[(m) J] 1y

IV.2.5 Asymptotic Expansions for the TM Modes

We will now nse the expression for the radial cigenfunctions for fields of electric-
type given by equation (156) to caleulate the asymptotic expansions for the TM
modes. To that end, we must determine M, which is given by the second equation of
equation (134). First, we must obtain an expression for the derivative of the radial
eigenfunctions for fields of clectric-type. Differentiating cquation (156) with respect

to x yields that

T (2) = 2™+ §75(1 4 1)

AP (34 - Ay Ity — v L+ 2y -2”) -1
X - X
d{~x)

XoF (At + v I+ — v 1+ 2y =0

F; . ~ £ .~ -1
= R () B+ 7 B+ y- =y )y
L+ 2~_

XoF {3+ v by b L34y, — v+ 1,24 2v_; —2")

o x— - o 1
. [cr(;j ~ 1)z! s +§ 5}
14 ae 2

X ol 3+ v_ 4y, B4+v — v 1+ 2v_: ----;r.-")}

I ~ a L -1
— -5 (1+ _-;_-“);-;—1{ alf+y + 'Y-{ ){(ei Fy- =y
s N ‘_F}/_

x2Fi (3o byt LA+ =y + L2+ 2y —27)
: [QH - a4 [0y, + 5 -0+ r")}

x{l+ x7)

XoF (3 4+ v+ v, 8 by — vy 1+ 292, —1:“}},



Then we see that

T}El}j(m] alf - 1a™ + [(r}'_ 15 = %](1 + xY)

TTEI}[I) B J(l —+ 1_'“)
Loty ) B - !
L+ 2~

2B+t Lty e+ L2429 ")
2];11(;3—1_’}(-——‘{_7...,'{5‘!‘7_ ""’}‘__,l +27n_;_$a) '

Using this in the second equation of equation {134), it is found that the TM

modes are given by

AL = -
2ka
B+ -1
ka(l+ 27.)
By b A LSy e 24 2y - 1)
By v By — vl 42y -1) '

- {;’5~1+2q«_+1—§
8§

Let _
2R B vt F LI by — e+ 242y 1)

Byt by -1+ 2y -1)

P

Then it is found that

- d-1+2y. 1-2 [(3++) -3 _
ﬂ'{” = ! - @ L 5 ) v
“{ da T o Mty (182)

From the relation

2Fi{abierz) = (11— 2) % F{a. e — bie; — 1),
it is determined that
1

2Fi(a,by6-1) = 27 Fi{a e — biei 5)
Then we discover that
2F (B + vy + L3 by — vy + 124 2y~ 1)
S AR SO Y ST RNUPVERENET [ [ I RN SV IS R %)
and

2Bty by, v — v T 200 -1)
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By g 1
=27 A vt v L= By v 1+ 27 ),

Thus we determine that

_ R4y by b L= 3y F 24 290, %)

183
2R+ e 1=y L+ 2y:3) (183)

We have the integral representation [20]
R x oy al /mﬁ”'“IWbUIQH (184)
2P0 AL =) = S e oy Ly b )di, ‘

27 T Jo
which is vahd for

Rez > Reh > 0, Re A > 0. (185)

We will apply equation (184) to equation (183). Letting b = g +v. + 94, + 1, A =
1- 347 4+79..C=2+2vy_ h=1,and z = 2 in the numerator of equation (183)

gives us that

)

SR S

P B+ yoFre+ L=+ by 24 2y

2]-!”’7- Yy > .
= ) /I‘-”‘*“’“”e‘QHFI(J yo by + L2+ 2y_ 0)dt. (186)
0

T{1—-3+v- +17,

Sitmilarly, letting &6 = 3 L 4- + v, A =1 F+ . + 9., C = 1+ 2y_,h = 1, and

z = 2 in the denominator of equation (183) gives us the result

, 1
PYATToR o T e S R T S 5)

21 o2 S L

= e f YTV B (B by v 1+ 2y 8)dE (187
F(l—-_,3+'y_ i f“)./ t 1 1( Y Y+ Y )’ ( )
0

Utilizing equations (186) and (187} in equation (183), it is obtained that

f - BB oy oy + 2 2y )de
P=2g . (188)
2 [y A e (Bt oy F e L+ 2y )i
0

Using the notations from the Digital Library of Mathematical Functions (DLMFE),

(Filarb: 2z} = M{a, b, z).
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which is Kummer’'s function. We will also use Olver’s function which is denoted by
M(a, b, z).

We have the following relations from the DLMI:

M(a,b.z) = T(b)M(a, b, 2}, (189)
Mla,b.2) = M(b - a, b, --2), (190}
and
goen
Ma, b, —z) = o) /S_TT“_§b_5Jb_1(2v/§)(fT. (191)
Q
{}

Combining equations (189)-(191), it is obtained that
Mlabz) ="M~ a.b,—z) = THMD — a. b, —=)

7o 1-b) iy
l(f) /{: T b @ —h-—]b l 2\/?]1‘!?’

T (h —a)
0
22200 (b
_esharE) o S LIl N ON e (192)
C{b - a)
Constder
IFI(QJ by by 24 2y [.} = -"1-‘((.'7‘ +y- e+ 1242y, f.). (195)

In equation (193), ¢ = 3+v_+vi+1land b= 2 +2v_. We have that h—1 = 1+ 2v_.
We note that

S0~ = —5(1+27.),

[

b—a=242v_ -3 —~v. —v, = L=1—-3+~v. — vy,
| 1 1
E(b — ].) — {1 = 5(1 + 2'}1_) - ;'f — - — ¥+ — 1= _.H i A §
Consequently it follows that
/ TTp i ’”_”J’hn (2V17)dr.

b}

e I+ 2'\,

Fils+y_ v+ 124 2v.:0) =
1 l(a +’}( +f++ 1 ¢ 4 r) F(l “.{7) + v. —

(194)

Now consider

VPB4 vy b b+ 290 = M3 v+ v, L+ 2y 1)
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For this Kummer function, ¢ = 3++v. +~v, and b = 14+2y_. We have that b—1 = 2v_.
We note that

\ 1 . .
b-D-a=52v)-d -7 -y =-3-7.

Accordingly, it is determined that

. . ,.EL—T—I_—' 1 + 2~
VR B+, s L 2750) = = (1+27)

o0
— T e o SV d -
D1 -3 +7- —’n)/t T . (Vi) (195)

}

The integral representations in equations (194) and (195) are valid if
ki — | > 1. (196)
Therefore we discover that

fa o] xD
Joay ot g Hdy T f (:‘Tr_’j_"’"'_%JlJrh__(2\/;)(??
0 o

, T(2+2v)
= sr— — = o
2r(1+27.) f Y v e 2t v (g j e Ty - o {QVQT)rfT
0 0

Using that T(2 + 2y_) = (1 + 2v_)['(1 + 2_), the above equation for P becomes

oo 13 By : 1
| fore=f=ge7tdt fe=Tr=79 73 ] Lo, (2VET)dT
p= (5 +~,_) g S (197)
JrreBetdr femmr=9=vi fo, (24/17)dr
0 0
In equation (197), make the change of variables
t— o, 7= w? (193}

where it is noted that dt = 2udu and dr = 2wduw. Using these substitutions, equation
{197} becomes

> o o)
. T ) S 92 ITY S 2 ‘
) | due™ u2r- z‘jj dwe ™ wT = o (2uw)
o 0
P={c 1 o (199)
2 r o . ) O('. . ) , . -
[ due—*u2- =2+ [ dpe=w"y-2v 2001 ) (Quar)

0 0
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Now we apply Sommerfeld’s integral representation, which is given by

L Q2uw) = — /dﬂ?w'_‘“"”'"” {(200)
2m
T
to equation (199} where the eontour £ begins at 7 = - 7-+i00 and ends at 7 = 7400,

This gives us that

e o) jo <)
fdue—u‘_uiin—m fdu_,e—u?u;“ﬁm. -2 [‘ chi{l-‘21_..}r—‘zimnsinv
0

1 1) »
£ .
P=[-+~_]= . . {201
2 ¥ w2y 2y, 2341 [ 22y, —284] 2iy. 7 -2iuwsin T (201)
f due- ¥yl [dw(;\—u. 27 284 fdre-rjr L= 2iU SN g
0 0 X

Consider the following change of variables
v = Vkat, w = Vkan, (202)

where it is seen that du = \/EEHE and dw = Vkady. Using these relationships, the

numerator of equation (201) may be written as

o o0
T - Y S _ . N TP,
/duc T z-ﬁh/du.le W 25/(?1’(-:'“ 2. )7 - Jiwesin g
( 0 ¥y
B nc
. Chag? e . _ ckdnt O L “y—yy =i
= ﬁ.'.a/ffff:. Rag" . 23 qyre /d-r;c kan® = 2ve 20 gy -
0 0
% /‘.LITF:'(1+2“;.\j‘r—‘.}ik:‘:fuﬁiur
5
o oc
— (k&)l---'ﬂi/d‘ff?—k&ﬁ-‘r{?v.; 28I € /dnp—kfmz-—(‘),'”,423}1111;
0 0
w /dTFt'(H'}!') )7 —2ikalysin
%
N 4 . . o o 2__ . R 1
— (k(l)l 2’j/(J!T{?‘(H_?F?_}TV/(‘{T}E kan* —~(2y, =23} nn
i) 0
e o)
X /d;—f}-—k&fzﬁ—}ikr‘[{qﬁiu'r-i—(‘.}'}. -23}Ing
e
b

(203)

and the denominator of equation (201) may be written as
Q0 ok

gl - — 2 S RO . i ' 05 ot
/d?.‘.t‘? u ?}.2’” 28+1 /dﬂa’(? L 2, -28+1 /({,}_ezw_f 2ruw sin T

0 0 S




o jo
= k&/d&e—ké&?{?’n —2.‘j+l(k&)'}..ﬁ...;j=-.% fﬁf?}f?_kﬁ”zr}_?‘"'-‘ _2’3H(k(1) ok

0 0

% /d»re?')‘--?—%kﬂ{qsinr
T
x
= (kﬁ)z_w/d?cz” T/d?ge"‘""ilz—(2ﬂr*+2ﬁ—l]lnn
X 0

s o]

34

% ] (i&(’.’ kg2 - 2ikaLysin T+(2v4 —28+1) lu{l

0

(201)

Upon using equations {203) and (204} in equation {201), it is obtained that

[» o] oc
. ! drefl+2r-)r ] d'ne'”‘”a ~{2v4+23) Ing ’ d&_—kaﬁ = 2ikansinr~{2v4 -2 In¢
P2 +7- 5 0 0
== = =

a f dredy 7 J dnp—k&ﬂz—(?"y, ~23-~131nny f d‘ge—k:l{"’—?'ik(i{t;sh1 T2y, =2841)In&
% .

0 0

(205)

The result in equation (205) is exact and valid for |v| = O (k&)%ﬂ} . We can asymp-

totically evaluate the integrals in equation (205) by using the method of steepest

descents. It is found that {where ¢g = 2)

5+ v 5 1
P -2 4t 110 =)+0 — %
" {1 F tan ,f(u}H ! (m) + Lké)z} H)(m)}‘ (206)

where

f(!).) — - - _;.T.dﬂkf; Y. — §HT(Tt.3-II. 5

Henee, the asymptotic expansions for the TM modes are given by

¥} L. rvo( LY vol 2 o 2 2

(
(

07)

Note: there is a discrepancy between the present derivation of results (181) and

206) and those in [22]. | have made multiple attempts to resolve this, including

getting in contact with both authors, each of whom is now aware of the discrepancy

and hopes to help me resolve it. For the present, however, the analysis will proceed

on the basis of their results being the correct ones.)




IV.2.6 The High-Frequency Backscattered Field

We have calculated the asymptotic expansions for the TE and TM modes in the
previous two sections. We are now in a position to determine the difference of the
Mie solutions, given by «, ~ b, which appears in the expression of the high-frequency
backscattered field given by equation {144}, Once this is accomplished, we will be
able to achieve the main objective of this chapter and determine the leading order
estimate of the high-frequency backscattered ficld for a specific value of the positive
real constant d. The Debye asymptotic expansious are used for the Bessel functions

appearing in

| 2 1 i
i) ~ o f =281 4 Of = ) _ 208
1Y (ka) Jmm{ b ( (ka) +C {(MJ} (208)
, 2 17 2 1
HY (ki) ~ ' — Of — 13, 20¢
W' (ki) ~ p— i+0l(=) [ +ol )t (209)
where

' "o Y o[ (Y] of 210
p=cxp (| v+ 5 = 2ka— + 7 “+- m ) (210)

We now calculate the iutegrand in equation (144). First, we note that

and

iy —irw N33%
[ & €

COS T = ------.2------ - 5 (1+ (:'.*2?'?”’)‘

The contonr integral in the high-frequency backseattered field is now given by

v ve " R
/\a;\-m} (uv g - bu___i)dv = 2/ Toc o (rr.v_% - bv_%)a‘u? (doka > 1).

-' ' (211)

N

(o6 1
. . . 1
We have from equations (131), (132), and using that v = n + 3

_("v"’}:;(k(}') — M, fri"n(;""‘}')) 'a'f"':i(‘l"'&) - fﬂ[n t"i"u('l".‘"")
= Ay — Oy = - - - ~- =
Culka) — MuGu(ka) Ch{ha) — MG (ha)
= [‘:L'f”irb n Ii':a][q! - ﬂ:fnc,i] + h’ll";a — Mnﬂ"n][é'ﬁ - M n(ﬂ]

[ :; - ﬂ‘rncﬂ] Ir“::: - ﬂ"‘(n(.’n]
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M n f""_' n I-’n Lo 7
(M~ K1) (G, - 4 o

) — ‘ﬁfn(‘n)(c:a - M,G)

From equation (133}, we have that

(ki) = “;"' oas(k),  Galki) = ﬁ”—;@n,{j}; (k).

Differentiation of these tunctions yields the results

. wka 1 T |
W, =4/ TJ:H% +- ;j\/g(ku.) 2Jn+%
and
TR gay LT -t g
¢, = 5 n+,;}*2 2(&.0) H :
Thus, it is determined that
. o . wka (1y m {1 wha ' (1 w (1)
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wka | ' 1
== LJH% Hf:j% ~ s H::J
wha . 1 .
= TW{JH%UM), H:l:%(ka)}
rha [ 22
=% |l ="

where W is the Wronskian. As a result. we find that

(A, — M,
a, — by = A = M) (213)
(C:l - "q‘(nCn)(qu - f."l(nCn)

From equations (181) and (207). it is discovered that
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V—dy—4i . i f v\
2 kay e S
16g A S(kd)
v Y :
+0me]+okmw

- [1 - % + tan f(v) {1 +()(f—’&) + O[%} + o(;}ﬂ)}

~ —f - tsz(v){l + O(i) +0

—1

v 1
= {1 FO(Z) + O(%) tanf[u)} 1+O(E) +()(;&;)]




~ [—-i—t.auf(v)]{l +o( )+o(;”)} (214)

Utilizing equation (214) in equation (213) vields that

L 1 - itan f(v) ] 1 -
ty — by @ o M“gn)[ + 0O (ﬂn‘) *—O(k(}.)] {215)

We are now interested in calculating the denominator in equation (215). To that

\/'(ka)_ih’“ \/mmnn“
ol )]+
1

-

end. it is found that

G = Mo =/ 5 ki Y,
f?ku
Wp&n

‘\:lb--‘

{1 1
— -+ O|(k
(ka) * 2ka e h @)
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and
G~ Mol = ﬂ(ka 2\/2 (k&) P H m_%—\/';“nrﬂn“
~‘/%7 wa‘{mo{(é) +o(£5)}
(o) ol )
V5l o) ol
o )] o)l o) ol
{1 m(ka) +0{(g)3]}{1— %ﬂ+tnnf(u)}
{1 +0(A )+0[ k:)]Jro(M)}}
LS [l - (1 - ”7“ + tsz(v))]

\/-_ {1 + ((l - %) + i.t.a.nf(:I/)]~ (217)

Using equations (216) and (217) in equation {215) gives us that

i

3

| -

| — ¢tau f{v)

G ]
[I'H)(A"};.) +O(;”)}
(1 —itan f(¥))e'™elt e e -i%a [1 + O[( -’ ] + O[(;ﬁ}:s

)

|

?.i[‘—f;l -3t z} 1+-z(1_ & +itan_{(v}:‘
l1+0( )+0($)}

(1 _ ltdllf(f/ A ,—2iké —fM 1+ O A:_ +() IE]]
~ , (218)

2[#3 - L :} [Hﬂ(l - -fg) +itan f(v )}

= by~
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Hence utilizing equation (218) in equation (211) it follows that

v ¢~ 2ika
a, s —b,_1 jdv ~ T
. COsS Y P 3 fél By g

1

y du{l f'; o itan () —-[1 m(k—‘i) +(.)(£;)] }
¢ 1 -+-?'.(1 - dﬁ) + 1tan f(v) “ “

2

(219)
We will only consider the case where we have that

¢ the optical rays do not make more than one turn about the center of the lens

and
e at least one ray emerges in the backscattering direction.
These considerations vield the following bounds on dy:
1 ‘_: (f{) '<_‘ 2

If dy < 2, the integrand in equation (219) has poles at those points of the complex

v plane for which

1
1+i(1— %) +7tan f{v) =0

!/
1 - (—2“ + tan f(v) =i

tan f{v) — —(2 ;dn-) 41

f{#) = arctan [ - (2 _‘;dﬂ) + r] (220)

Thus, it is found that

Using the formula

tat ii itz
arctan : = - log ,
9% .

?i“"o
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it 1s determined that

et 2-do\ ] _ 1, i (58) 41
arctan 5 | 2 0g £+(2__‘dﬂ)_?_

Utilizing equation (221) in equation {220) vields that

i 4 .
f{u}falog{ﬁl-}v (2 dﬂ)z]. (222)

Let.

4 : :
= ~1-+ (2 — (fn)?' =2 + iy

We have the formula

logzy =Inr+:0,

r=/al +yi, & = Argz.
[ 16 1 16
=]l + —. | e 3 H [ A S I
a t 2= dnjg' nr 5 n [ + (2 _d‘})z]

We also have the fonula © = Argz = argzsy + 27r, where r € Z. Since z; is in

where

[t i5 seen that

quadrant II, arctan{-p) = —arctanp, and 2 - dy > (), it is discovered that

1 4
argz; = arclail - r——— '+ T o= — ar¢tan + .
9 [ (?“doﬂ (2—%)

Thus, it is obtained that

4
6 = — arctan (.M_) 4T i 2Qnr.

- g

As a result, we determnine that

log 1ln 1+ 16 -4 arcta 1 + 742
M= = el % SN J DR ¥ g5 25 )l (R w4+ 2mr).
BTy 2= dy)? 2" dy

Therefore, it follows that

Z

; 16 1 4 i
—Imle — 2 arets -
fv) 4]n [.—F - d(})'z] +2‘1rctm(2_dﬂ) 5~



91

Since —r € Z and letting —r = m € Z, we sce that

16 l 4
f(v) = iln [1 + m} + 3 arctan (2 — d(,) - g + . (223)

Substituting the function f{r) into equation (223) gives us that

E T dka+t L aretan - i’l 1+ 16 +1 t 1 T4
_—— = v Y_ — —arefan — = - P E— — arciall et m
g T Ty T T a2 2-do) 27
and

3r+ dk1+l fuct’ml+ arctar 4 +il L+ 16
iy =TT — — { ArCle - H al} ol 318 P E——
Tom o T gk 2 2= dy 1 (2= do)?

Letting v. = Re~v_ +7lm~_ and equating rcal and imaginary parts, it is found that

the integrand in equation (219} has poles at those points of the complex v plane for

which
3 i 4
Rey_ =m - 1 + -29ka + 3 |ie'u'ct.‘dn% + arctan (2 — du)} (224)
and
1 16 ‘
Iy = In { - d“)z] (225)

where m is any integer.

The contributions to the backscattered field that arise from the poles enclosed
by ) and by the semicircle at infinity cannot be neglected when compared with
the coutour integral contribution when dy < 2. This tells us that the dominant term
in the high-frequency backscattered field does not arise from specular reftection as
in the case of the lens dy = 2. Therefore the dominant tenn in the high-frequency
backscattered field is not obtaivable by evaluating the contour integral by the saddle
point method if dy < 2. Because of this, we will no longer consider the case when
dy < 2.

We will now turn our attention to the evaluation of the integral in equation (219)
when dg = 2. This will allow for the determination of the leading order estimate of
the high-frequency backscattered field by using equation (144). Substituting dy = 2
into equation (219} and using the result in equation (144) yields that
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EM o _2 ek o 2ika
2ihr
v 2l —atan f{v) v 1
1 Tk - 14+ O — O — 1. 226
X/(V1+ T l+zt.anf(z/)[ * (}fu) * (ka):r (226)

(&)
We have that
L —dtan f(r) (1 —itan f(»))(1 ~itan f(»))

L+ i tan f(v) 1+ tan? [{v)
1 - tan? f(;/) ~ E:l_j"_(:/l
~ sec? f(v) Fse? f(v)

= cos® f(v) = sin? f(v) — 2isin f(v)cos f(v)
=cos2f(v) —isin2f(v)

—_— - 2if ()

-3 E 0 P aretan L
— o713 2wk Zurw,_+t.’m'_‘t..m2

i keit — i i 1
_ __,iCZU.'ka—'an'y_ ~rarctan 7

Using this result in equation (226) gives us the high-frequency backscattered field
when dp = 2 as

Sk
€ ﬁ__r'[Qkﬁ[?T— 1) i arctan %.

EPS ~ e
€2kr
}f fy——te et o ) wof 227)
x 1) e YRR T — —— 1. 2
) ”1 i-("'z"””( ka ka (227
[

Let M be a positive number, large compared with unity but independent of ka. In
other words, M can be described as follows:
M>»1, litn E = (}.
ka—oo Al

When dy = 2. it can be showu that the line integral along the are of the circle
vanishes as the radius tends to infinity. Also, when dy = 2, the contributions to the
backscattered field due to the poles in the first quadrant mav he neglected because
we only want the dominant terw of the high-frequency backscattered field, and this
arises from an asymptotic estimate of the line integral along the contour €. Now,
we will split the contour €5 into three parts, by singling out the portion near v = 0
along which |v| < M (see Figure 21). Along this central portion, we have that

2

¢~ ] (|v| < AL
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so that the corresponding integral is O(1). whereas the integral along the entive
contour ' is O(ka). Since we only want the leading tenn in the asymptotic estimate,
we may neglect the central portion of C). Along the remaining part of the contour,
it is determined that

Yo~ (|| > M).

Then it follows that

v il ~2iny v —iYr i
dy———¢"'ha 2imy- o dy ——— Zimy
14 =y . 1 + e~2imy
[ (&

We note that

1% "y et 2

dy————Il+e 7™ ¢ "G = fve 'Rdy
1 + Yy
(&)1 (o)
ka .2
=20 o)

2 p
1

As a consequence, it is discovered that

v LT _-—z"—'.-’f-
/dl’m {1 | f }( ka o~ ()(1)

I
Thus we obtain that
.2
v N ve b _
/(il/m(?_“'_"fzmu ~ = /(i!/i“m + ()(l} (ll‘/’l e t‘[) (228)
& &
Consider ,
ve ik
/dvlt—,.
1 +e S

[&)
Since the integrand has no branch cuts, we may connect the two portions of the
contour with a line through the origin » = 0. The result of this is an added O(1)

tertr. That being so, it is found that

Vz 'll?
ve tka re 'k
[ (!!/—'—'——1 i (.___2',”} ~ /d!/"i‘“::“(-?_zmu + ()(l)

(&) LoV

where the contour €, in the uncut v plane consists of that portion of C) along which
v} > M, plus the dashed hue of Figure 21. Hence, utilizing this in equation {228),

it is deterinined that

']/2

v 2, ve ‘xi
] . 3—11—5—2ur'v. ~ L - + 001
_/{V1+e—?inu( l:/( /l+c—£mu ( )

17 a
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Substituting this into equation (227), we find that

ikr

¢
Eb.s. ~
¢ 2hr

2kd(n—1)—arctan 1]

.,;2
ve tew v 1 .
- 3 _— - 2
X {‘/dv_l e e {1 1 O(k&) +O(k(’1)} +()(1)}. (229)

18

E.'z.{

We now focus on the terms containing inteerals in equation {229):
g |

.2 X
' pe ki . 1
dy——— 1+ O — O —
/ T+e '3”“’{ + (kd) * (k&.)]
&

-2
o2 st 1 2
pe kR ek et kR
~ ——dy+ | B———dv+ — | ———r
] 1 4 g2 / 1 4 e-2tv ka f 14 e -2
(& 2 (&
1 .
ka
Consider \
ve s
h— f ———dv. 231
e
Let x = 2imv. Then x* = —4n%y%. We also note that
1
v=—r and dv= —duz
21 i
Upon using these substitutions, equation (231) becomes
1 7'...:1.. x2
e 7%
h=—-—— | ——dx. 232
! ‘lﬂz / 1 4+ e 7 ( )
7
Letting _
_ 1
dn2ka’
and using the result found in [24], we obtain that
/ 1 / we o ; i 1 7 " ??r"é N
- —— de = ——| - — — —+ —0+...1.
U [ e A72{ 28 6 = 60
¢

Since § ~ O((ka)™!) and ki > 1, it is determined that




95

Thus, we see that

ka  .»

I~ —eih (233)
2

Now consider ,

1 pie i
Iy = — dv. 234
2 ké/1+ff‘?‘”” Y (234)

s

Using the same relationship for # that was previously used, equation {234) becomnes

i 1 1 226! T i
ka\  4n? J\2ix / T4e=
B
i\ 1 faewmT
= == |— | ———dx. 235
(ai:rzka)’zrl/ L+es O (235)

()

Utilizing the same definition for 4 as before, it is found that

- 2 a2
6 [ ale o
I = 0T dr. (236)
T, €7
IS
Since |1 + ¢7*] > I, we obtain that
< 20 M2 = S
e g a3 . 2 g2
/ " —dr| < /:rze o d;r-*-r.?[r’e 5 dz,
+ e~
B - 0

where we have noted that the integral is symmetric in 2. We know that for a > 0

and p € R

T r
2 | utet gy, (—)
) AP
0

‘ - . 3 .. :
Lettmgu =2,a =40 and p = 5 it is determined that

50
4 T
/ e dy = (_%z = ﬁé_g. {237)
2

Using equation (237) in equation (236). it is discovered that

1
1 y |I"2 e 2 ir :Q i 1 3un
fy o~ fih = L (4r &“) = .a‘/_?(ka,)%m _ k& i [\/E(ka.)"ap_—q }

dy/w A\ i 2 2
~ B 0ka) ) (238)
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Substituting equations (233} aud (238} into equation (230), the terms containing

integrals in the backscattered field reduce to
k 5 . 1 . . ;T 1
——2—6“‘? 1 +0((ka)"2) + O((k&)‘l)} ~oy 272 [1 + ()((k&.)_i)} (239)

Utilizing equation (239) in equation (229), wheu dy = 2, the leading order estimate

of the high-frequency backscattered field is found to be

BP" e efltr ottt {1 + O|(ka) ) } (240)
;

IV.3 PROFILE 2

We will now consider another refractive index profile that is based on the hypoer-
geometric equation and derive the radial eigenfunctions for fields of magnetic- and
electric-type. The hope is that the analysis that was done in the previous section for
the refractive index profile R(x) in equation {142) may be extended to this refractive
indlex profile in future work. First, consider the wavenumber

p

(L + byr) (211)

m{r) =

Then, writing (241} in terms of & = 2. we have that

(£

m(z) = wall + %)

where we have taken by = a9, Taking the refractive index profile to be, which we
call Profile 2,

()}
r(1+ 2y

we must have that ag = cpha. Then it is seen that

Hg(;{.‘) =

cok

m(x) -

B {1+ 2%)
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IV.3.1 Radial Eigenfunctions for Fields of Magnetic-Type

We are now interested in calculating the radial eigenfunctions for fields of

magnetic-type for the refractive index profile

0

[1)2(;!5) = m

From {21], the radial eigenfunctions for fields of magnetic-type, in terms of 7, are

given hy
{r-1)uw

u(r) = [b{? 'r] {1+ hm‘")% oFi{a, b ¢; —ber®).

Writing this in terms of 7, it is determined that

Sy = o (L+2")2 oFi{a. b e, —a™). (242}

[S{FN

where [21]

and [21]

L= —iﬂ + {aé — %(2?1 + l]"} vt
1 R
=3 + {(cokar)* — v*} o
- % +{gs — vV}a"?
M = ago? = (cokan ) = gia?,
N —2ada? — 2¢20 2.

From the fornmila ¢ — 2¢ + 4L = 0, it is found that

94 o/ T4 e r ,
6=y =lEvi-db=1+ 1—1+f1n«—2[u2—9§]x1-+—-\/rg§
(¥

2

= 1+4+doy/v? — ¢
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Similarly, we obtain that

A=1+ 1—4,11:1--—m:1“m

= 23,

where 3 in this equation is different from the one used with Profile 1 in the previous

section. We have that

b=A—-a+c-1=A~a -!--(lg\/;'z—gﬁz?,ﬁf—-a%-dm,‘uzdgg,

Consequently, it follows that

2N =cA —2ab=2¢3 - 2a(23 — a+ doyJv* — ¢}

= 2¢3 4 2a* - 20(23 4 do/v? — go)-

Thus gives us that
207 — 20(23 4+ dygy/v? — gd) + 203 - 2N = 0.
Accordingly, it is discovered that

223 + doy/v? — ¢f) £ 2\/4,-32 + 43dg V¢ — g3 + di(v? — g3) — 2(2c — 2N)
4

33

= é :‘2,-"} + dy \/ﬂ + \/4;‘3 — dbgi + 473dy \/u2 ~ @i+ d5(v? ~ g3) - 1e3 + -"INJ
= % F'2ﬁ +dgyJv? - gh £ \/ A3 + doy /12 — o) - ot + A7 — g3) - ded ;?ﬂ
- % "2,i +doy/v* - gi + \/4(':_.3 —Bgt + L2 - g - ted+ "’13\’]

= 5|2+ o/l gtk 7 ) i+ S

23 +dy \/ v i £ - g) — digi + 241‘1!;5}

23 + dor /v — _qf, -+ dor/}

. P
= 3 4 50 {u + /2 - !}3].

DS | — DO —

As a result, it is found that
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We note that

and

Combining all of the above. we obtain that the radial eigenfunctions for fields of

magnetic-type for Profile 2 are given hy

S0y = V¥ 02 (1 4 o)
'/ - d :
o G PR e P PN
oy~ i _) (243)

IV.3.2 Radial Eigenfunctions for Fields of Electric-Type

We now determine the radial eigenfunctions for fields of clectrie-type for Profile
2. From [21], the radial cigenfunctions for fields of clectric-type, in terms of r, are

given by

Il‘r- e 1)
u bt
3y = [h{)r] (1 + hyr™) =7 21*1(.{: e - by ey ~bpr™).
Writing this in terms of x; and renaming the resulting function +(:r), we have that
1t[-" Lite-1}o b1l a
wz) =2 (1+2)7 4Fa,c - bc; —%)
a--b

:Ig[(c a~ 1] l( +In)l(1+.‘rﬂ) "”?"."]2,1'11((1,..(’—(‘)',(.';‘*:L'”)
= ¢o[Ralx)) 1T (),

where

TW(g) = ;{:%{(”_””_l](l + -.r.'”)ﬂ_zﬁgf’;(u,(' — by —a®)

{1

and {21]
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1 -
+{‘}'n vha
:3 1
1,; aad ---:1“ - (Y -~ 5(2‘” + i) ?
3 :
T e e e (Y ~—V2H :
1
1 1
N==snt 1t - s -0

i

'
no
<

v

2

!

f

t

We fiud that

=14 doy/v* — gi,
A=12VI-4M =1+V1+3+40 1 4022 =1+ 2V + oV w22
/ b 3
=142 1+2+(—0v25 1+ 24,
2 4
b=A—a+c 1=A-aldyn/v?—g:
N =cA—-2ab~ cA~-2a [Amu%-dmf qﬂ}.

Thus it is seen that

2% — 2a {4 + doy/ v ‘Tn] +eA—=2N =0,

yielding that

{/14-{3(”#;/ —qgj_\/ A+ dogr /12 —r,rn) - 2{cA - N)}

T2

l 5 B a9 r
E{A +dyyJut — i & \/,4- + 2Ad, \/uz ~ g+ d3(v? — gd) — 2(eA f\]}
1 .

§{A + dy yz—rfﬂ:\//izﬁ- 2A(c — 1y + B (v? — ¢3) - 2cA + -'1N}

H ) / . 5

5{ At d“ v~ gk VAN =D +HAN + 07 - .ua)}

1 A .

E{A + u'n v~ g+ \/ Vb 2p0) (=1 4 2p00) + AN + d5{v? — gf})}

1 5

-Q{A—l—d[. - qni\/dlpl +AN =1+ B2 —gﬁ)}.
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We note that
Apd = 4+ 2dy + A3

and
AN = =2 = 2dy — 2430,

Then, it is determined that
Aut + AN — 1+ &(v* - g5) = 1 — dagl.

Hence, it follows that

1 . o . . 1 . : 3D
= ._Z{A = dﬂ\/M —g5 £ \/l - tfﬁgﬁ} = 5{/1 + dn\/u" — gt - \/1 - dﬁgﬁ}

d _ ,
=34+ jjq V2 — gt

and

b=A—-a+c~-1=1+ 2 ~, ')’-“‘Hl——V"U"“"JD"{'“(fn\/;"'—_}“

ey .
=1-8+4+u + *E P‘2 _qé.

We have that

((;ml){,_l.“g v .‘?rga ...... 1

2 B 2 ‘
a.-b-1 f+m+ﬁ“\/ q(]—1+)’—;.rl—iﬂ\/ -9 -1
2 2
=f3-1,
- 2 do /75
c-b=11dy\/v —-q”——l+ 3—;;]—72- e gy
{
=8 -+ 2 vt — gj.

Thercfore it is obtained that the radial cigenfunctions for fields of eleetrie-type for

Profile 2 are given by

T2y = ¢ . (1 + a2)"!

o

_ iy . .
xQFl(ffﬂr-l*En\/”? BB =y + /v — gt

2
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IV.4 PROFILE 3

We will now consider one final refractive index profile that is based on the hvper-
geometrie equation and derive the radial eigenfunctions for ficlds of magnetie- and
electric-type. Like the previous refractive index profile, it is hoped that the analysis
that was carried out for the refractive index profile R{z) given by equation (142}
may be extended to this refractive index profile in future work. First, consider the
waveniimber

ty)

Yo e 245
mir) rv' 1+ bore (215)

Then, writing (245) in terms of z, it is seen that
g

mr = —.
() a1+ 2o

where we have taken Hy = &~
call Profile 3,

- Taking the refractive index profile to be, which we

gy
a4 an ‘

we must have that ag = cphad. As a consequence, we determine that

}—1’.3 (1) =

ok

m\r) = —.
)= T

IV.4.1 Radial Eigenfunctions for Fields of Magnetic-Type

From [21i, the radial eigenfunctions for fields of magnetic-type for Profile 3, in

terms of 7, are given by

1

u(r) = [hﬁl‘r] (14 bor™)2 o Fy(a.b: oy —bgr™).

Writing this in terms of «, we obtain that

14 (e 1hee :

Sy =2 "7 (14 7 yFila. bye; —z®), (246)

[EIFN

where [21]

1 1 . .
I = y b {uﬁ - 1(2?1 b I))‘} ™
1

=y {(cokd)? = A a?

‘

1
= '—1—}—{96—1/2'}(]« Hr
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M =10

[ fl =2 L 02 =2
N = a5a™" = gja™".

From the equation ¢® — 2¢ + 4L = 0, we have that

c=:1im71+d(1\/rg§-

Using that A = 0, solving the equation A? — 24 + 40 = 0 for A yields that either
A=0o0r A =2 Asaresult of our problem, we must have that 4 = 2. We also have

thatb=A~a+ec—-1=2~a+c—1=1-a+c¢ Then it is determined that
2N =cA - 2ab = 2c - 2a(l — a+¢) = 20> = 2a(c+ 1) + 2¢.

Hence 20* — 2a{c + 1) + 2¢ ~ 2N = 0 and as a result a* —afc + 1)+ e — N = 0.

Because of this, we see that

1

u.—-ﬁ{(%-li\/ + 1)4 —fl((—l"\)}
1

=3{ c+ 1+ Vet+2e +1—-4;+1N}
1

=3 (+1:t\/ —2c+ 1+ diga
1

35{ ilﬂ:\/(—l +(ff}gu}
1

:5{ +]:|:\/dn —gn)id"‘qn}
: +1+4+4d

= - v
2 [ gy

3/ o

1+‘“(u+\f —g[ﬁ)_

Hencee it follows that

4!
b—4—r1+(—1-*1—a+f’:€-—29(u+ —gn)

1 }
—l—ig—q(u- VQ—_E,*(‘;').

We note that
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and

A 1
5~

Therefore, we obtain that the radial cigenfunctions for fields of magnetic-type for

Profile 3 are given by

Sy = R (1+ %)
d() d(} .,
x-;,F](l+—2~( v+a/v —r;n)l—? v—\ﬂlug,‘f;
1+ doy/v? - g5: —3?") . (247)

IV.4.2 Radial Eigenfunctions for Fields of Electric-Type

From [21}; the radial cigenfunctions for ficlds of clectric-type for Profile 3, in terns
of r, are given by
. 1: 1'2—1Jn
u{r) = [f)[‘)‘ T] (14 byr ) )fl(a ¢ — b ey —byre).
Writing this in terms of z, and renaming the resulting function w(z), vields that

L~ [ - Lier a-hi
2

w(x)=ux" {1+ ) """"" 2:’1(a ¢ —be —a™)

{r=1jn-}

=x 2 a'(1+ :r")% (1+ .r‘")"f o {a e = biey ~at)
= ([;[R 1)] ,T“) )

where
{re- l)a 1

T:Ei)(l') = (t+ ") = oFyfa, e — b e —-a™)

and [21]

1 . . 9
L= 1 + {aﬁ — El (2n + 1)2}a—“
= 1 + {(;2 - (/2} ot
1 9o
1 . oy d2
- 5+ {!}(2} - UZ} —‘_'Q‘
V= — 1(‘> +1)V a2 Lo
A =—-20n - éﬂf
1
- —ra? - —a!

2
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_d§* +dg
4 3
N=<a’- i (2n + 1)2 o — 1{1« -1
9 2

‘[(23(93 - QVQJ — dy
1 )

Since our L for electric-type fields is the same as that for magnetic-type fields for

€= l—f‘d{)”b"z—gg.

A:livl—‘}lﬂ’f:l:}:\fl‘i‘(fﬂ+{{§V£

= 1+,t£2_

Profile 3, we have that

It is found that

We have that

b=A-a+c—1=A~atdnv?— ¢

and

2N =cA - 2ab=cA~2a (A — o+ dyy/v? — gf,)
. L 5
= 2a* — '2(1(/1 + d{)\/b’z — qé) +cA.

From the second equation, we sec that

2a% . 2rr.(,4 + doy/ V2 — _1‘;3) +eA=-2N =0

Solving for a, we obtain that

A+ d{; ,,2 - ge ik \/‘12 + 2AdoJv? — gf + B2 — §2) — 2(cA - 2;"\"}}

a =

RS | —

A+ dg vt g5+ \//—12 + 24{c — 1) + B{(1? — g3) ~ 2cA + IIN}

B r— Do N2 = B =

{
{
{A+d<, qni\/’\ ~2) + AN + Bl —qﬁ}
{0
{

At dy u* — g5+ \/;;2 +AN — 1+ d3(12 - qn]}
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We note that

pa AN — 1+ & — ¢d)
=14do+dyt® + (gt — 20°)dE ~dy — 1 + div® — d3gd
= (.

Cousequently, it is determined that

1 ‘ 1 ] 1 ' i
= 3 {A + dll\,f v - 9(21} = 5 {1 - ptg ¥ dorf 1% — 51{2}} =3 [1 + (f[}\} - !}é] +f—2—.

Hence it follows that,

b=A—a+dn/t?—gi=2a—a=aq.

We note that

{c—La-1 o 5 1
T VP rde g

a—b=20,

. l /
¢ —b=14dy/v?- (}g [1 1t dyy /14 — q{i] - {;)
Y e - 1t
2 14+ dgy/v? — g5 -

Therefore we obtain that the radial eigenfunctions for fickds of electric-type for Profile

3 are given by

!(1}( ) == I\/r‘in—ﬁ
| . . 2
X 2F (3 {1 + dyy/ ")n] + i‘i.‘ 5 {l + dyyfv? - 9{21} - Ej‘
1+ dy \/113 - g% —:r"), (248)

Tl
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CHAPTER V

CONCLUSIONS

In this dissertation, we have analyzed aspects of both ray and wave formulations
of electromagnetic scattering from radially ihomogeneous spheres and cylinders.
The deviation of an incident ray from its original direction upon the sphere at angle
of incidence 7 is related to a ray path integral where the integrand is singular at
the lower limit. We have evaluated this integral for ten refractive index profiles and
noted that evaluation of the integral could be extremely complicated for even simple
refractive index profiles. For example, even a linear profile leads to a ray path integral
evaluated 1u terms of incomplete elliptic integrals of the first and third kinds. Once
this integral was calculated, we could calenlate the deviation undergone by a ray that
is directly transmitted through the sphere (in other words, the internal reflection is
ignored}. In some cases, we were able to deterniine restrictions on the refractive
index profile paramecters that allow transmission to oceur.

With respect to the wave-theoretic formulation, the leading term of the backscat-
tered field of a plane clectromagnetic wave is obtained by using a modified Watson
transformation of the exact solution for a specific refractive index profile. This analy-
sis lead to the construction of the exact electromaguetic solutions for the asymptotic
backscattered field produced by au incident plane wave. The radial eigenfunctions
were evaluated exactly and asymptotically for the TE and TM modes. Consequently,
the high-frequency backscattered field could be determined. In the appendices, we
considered a variety of topics such as evaluating two integrals that were necessary
for the calculation of the ray path integral for several profiles, verification of solu-
tions that were utilized in the wave-theoretic analysis, and coupling two differential
equations.

There is much potential for future work associated with the topics addressed
here. In order to determine necessary and sufficient conditions on a refractive index
profile that enable a zero-order bow (or Ingher-order bows) to exist, it appears that
a much more general result for the derivative of the ray path integral is required.
Obtaining such a result is a challenge due to the nature of the improper integral

al its complicated dependence on the angle of incidence of the incoming ray. It
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is believed that deeper results from the theory of integral equations are required
for such a result. It is hoped that the analysis presented here will be valuable in
deterruining the properties of the refractive mudex profile that allow for the existence
of a direction transmission (and higher-order) bows in radially inhomogeneous media.
It 1s nmportant to note that the wave analysis in Chapter 4 can readily be extended
(in principle at least) to the radial cigenfunctions of the two other profiles that arc
based on the hypergeometric equation that we considered in Chapter 4. Furthennore,

this analysis may also be apphed to refractive index profiles that are based on other

1
Iy

well-known equations such as Bessel's equation and Whittaker's equation.
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APPENDIX A

DERIVATION OF TWO INTEGRALS

We derive formulae for the evaluation of two integrals. First, consider

1

AT Bt O

Jir) =

We have that

I == im0

2/ -C 1
r V—AACTE — ABCr — 402

_ 2Vl Ly
o r BT OAAC) . AC? S ABCr - Bt
2v=C 1

r SR = AAC) — 20 + Br)?

I(BTIIAC

_ L ! 1 [ %Q}
- V=C \/1— B VBT —4AC|

f'\, 2 3AC

1 [ z(r]
\/—('\/ 2 VBT AAC r2 |
A —LB:

Integration of equation {A.1} with respect to » gives us that

)= [ s

1 1 l 20 i
— - — dr.
v-C g, | VBEAACL
1 - [r\/hsf—-mﬁJ
Lct
200+ Br

112

(A.3)
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Then it follows that

dy =

1 r(B) - (2C + Br) p —2(
T =
VB —14( 2

Utilizing equations (A.3) and (A.4), equation {A.2) becomes

r

1 dv 1
B v _C' - v ]. - ijQ - ‘,‘l "(J‘

1 _ [ 20+ Br ] ,
= Aresin | — | .

V-C

I{r)

arcsin v + ()

where C; is a constant.

Next, consider

1

g{r) = O—
9(r) VDrE+Er+ F

We have that

i+ E HDr? + Fr+ F
o(r) = VT | 1 [%w{_r+F+2\/‘U(I T +1r+{lJ
2D v Er+ FY+2Dr+ E VDD + Er + F)
-4 1 [ D@D+ 1)
VD2/D(Drr+ Er+ F)+2Dr + E[/D(Dr* + Er + F)

+ 29} . (A6)

Let

w=2/D(Dr + Er+ F)+2Dr + E. (A7)

Then we sce that

d = [%}:},_*_ } QD:[ dar. (A.8)
VDD + Er + F)

Utilizing equations {A.7) and (A.8), we fiud that

1 dw 1
J(r) = == | — = —logw + C
{r) /g(r)c r \/ﬁ/ o JD 0g u 2
1 -
= /i log [2-\/.0([)1'2 + Fr+ F)+2Dr + E] + s, (A.9)

where C, is a constant.
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APPENDIX B

SOLUTION OF A SYSTEM OF NON-LINEAR

EQUATIONS

Consider the following nonlinear system:

ar’ 4+ bry +c =10, (B.1a)
ay* + bry +d =0 (B.1b)

Applying the quadratic formula to equation {B.1b) te solve for y, we determine that

s VB — dad

y = o (1B.2)
Utilizing equation (B.2) in equation (B.1la) vields that
w4 bl b + Va2 — dad Y
2a
Then it follows that
20 2% - b*2? + brvbia? — dad 4 2ac = 0
+ha V122 — dad = VPu? — 2022 — 2ac
bt (h%x® — dad) = (V*0? = 20*2* = 2ac)?
blat — dab?da? = blat — 2062 — 2ab*ea®
— 2a°V 1t 4 dats! + Aates?
— 2ab*cx® + Aatce® 4 4a’c?
a(b® ~ a®)at + (Mo - b°d - 2a°c)xr* ~ ac® - 0. (B.3)

Applying the quadratic formula to equation {B.3), it is fonnd that

g —(bPe —b*d — 2a%c) £ V(b2c - 02d - 202c) (B¢ — B2d — 2a%¢) + da? (B2 - a?)

i 2a{h? — a?)

(B.4)

We will simplify the expression under the vadical in equation (B.4});

(BPc — b2d — 2u%c)(bPc — VPd — 2d°¢) + 4a* (b - ?)




= bt - bled - 20207 - bled 4+ B + 2a%bed - 2db0 P
+ 28V ed 4 4o’ P + AP A (W - o)

= b — 2ed + B d? + daPhied

= b*(b%c? — 2b°cd + b*d® + da’cd).

Using this result in equation (B.4) gives us that

,  —(b%c — b%d — 2a%c) + bv/dated + bict — 2b%cd + b2 d?
T =
2a{b? — a?)
. o — b4d — 2a%c — bv/Aaled + b2c? - 202cd + b2

2a(a* - &) (B.5)
Therefore, we discover that
b2c — B2d — 2a%c — bvda2ed + b2 — 202¢d + B2d2
r= 5 , {B.6)
2a(a? - H*)

where we have taken the positive root since z is assumed to be positive in our
problern.
Now we find . Multiplying equation (B.1b) by -1 and adding equation (B.1a) to

the resulting equation yields that
a(r* —y) te--d=0

Then it is seen that

Thus, we obtain that

. , d—¢ 5 ec—d
¥ =22 — = 2% 4 . (B.7)
a a

We will use eqnation (B.5) in equation {B.7). To that end, we have that

2 Ve =0d—2a% + 2(a® — ¥)(c — d) = bVaPed + b2? — 262ed + BA°

4 2a{a? — b?)

o  Be=0d=2a%c+ 2a7c = 2Pc — 2d°d + 26*d — b/ AaPcd + WP — 2Ped + BA?
ot =
B 2a(a? — b?)

2 _ b?d — b2 — 2a°d — by Aa?cd + b2c2 — 2b%cd + B2 (B.3)
. 2a(a? — b?) ‘ '
As a result, it is determmined that

Wd — b2 — 2a2d — Inda2ed + 022 — 20%cd + D22
y=/— - : (B.9)
2a{a® - b?)
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where we have taken the positive root since y is assumed to be positive in our problem.

We note that adding equations (B.1la) and (B.1b) gives us that
a(e? +y2) + ey +c+d = 0.
Cousequently, it is fonnd that

2497 4 Wy = —{+d). (B.10)

afr
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APPENDIX C

VERIFICATION OF SOLUTIONS FROM WESTCOTT

(1968)

In a paper by Westcott [21], he provides solutions for several wavenumbers m{r)

in the medium to the differential equation

d*u n{n+1)
72 + {rng”(r) ———?-‘-E-----}u =1{), (C.1)
where
m.fff('r) = m*(r) for ficlds of magnetic-type, and — (C.2a)
\ ) £ \ , y
mg(r) = m(r) — 'rn.(r)d? ) for fields of electric-type. (C.2b)

We note that m{r) = kn{r), where & is the free space wavenumber and 7(r) is the
refractive index profile. In this appendix, we will verify that the solutions given by
Westeott satisfy equation (C.1). Since many of the second derivative calculations of
the provided solutions are rather long, we will only suinmarize the results for the
second derivative that we derived. We will denote solutions of equation {C.1) for

fields of electric-type by ug(r) and for fields of magnetie-type by uy(r).
C.1 PROFILE BASED ON BESSEL’S EQUATION

Consider the wavenumber i21]
m{r) = ar’ (C.3)

where ¢ and b are constants. Equation (C.1) with equation {(C.3) has solution [21]

[
u(r} < r2Z,(z), (C.4)
where Z, denotes any solution of Bessel's equation of order v and : = ﬁr’b“.

Differentiating equation (C.4) twice, we ohtain that

W'{r) o r T b+ D' - (b4 1)%7 - 1 u(r). (C.5)
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The order v is different for ficlds of electric- and magnetic-type.
C.1.1 Fields of Electric-Type

For this case, we have that [21]

b 2n+ 1 :
! l+b+{‘2(1+b)} ' (C6)

First, it is noted that {using equation {C.2h))

0 o Db+ 1)
mf_”(r) =a*r? — o (C.7)
Using equations (C.5) and (C.6), it is found that
\ 2n 4 1) apr) L
ur;;(” o 12 [b(b + 1) + w — %R —E:! ug(r)
=77+ 1) + n{n + 1) — & r 0 D]up(r). (C.8)

Using equations {C.7} and (C.8) in eqnation (C.1), we discover that

wp(r) + {mf”(r) - E(n + D

}ul.;(?'} x (3,

which verifies that the solution of equation {(C.1) for the wavenumber in equation
(C.3) is given by equation {C.4) where v is defined by equation (C.6) for fields of

electric-type.
C.1.2 Fields of Magnetic-Type

For this case, it is given that [21]

n+j .
y=i2 (C.9)

Using equations {C.2a) and (C.3), we lind that
mipp(r) = m*(r) = a®r™. (C.10)

Upon using equations (C.5) and (C.9), it is determined that

(C.5
" -2 1\ 2 2(b-1) 1 —2: 2_2(b41)
wpe(r) oxr o 3 -a‘r ~7 uag(r) —r “n{n + 1) - a’r Jeear(r).
(C.11)
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Utilizing equations (C.10) and (C.11) in equation {C.1), we obtain that

H.i{_f(?) + {?flgff('r) he f(—?g—u}um (7') X {},

which verifies that the solution of equation (C.1) for the wavenumber in equation
(C.3) is given by equation (C.4) where v is defined by equation (C.9) for fields of

magnetic-type.

C.2 PROFILES BASED ON WHITTAKER’S EQUATION

C.2.1 Profile 1

First, consider the wavenumber [21]

a
m(r) = : C.12
(r) rlnbr’ ( )
where a and b are constants.
For fields of electric-type, independent solutions are given by (21]
. 1
up(r) x reWy {+(2n + 1) nbr}, (C.13)

where ¢ = —(2n 4+ 1)"1,d = % ~ ¢, and Wicq(2) is Whittaker’s function. Differ-

entiating equation {C.13) twice with respect to v, we find that
up(r) o< v 2{£(2n + 1) Inbr} 1{(2:1 +1)? [ Fot (d.z - :11—) {£(2n + 1) Inbr} '1]
Fn{n+ 1}{(2n+ 1) lnbr}ug(r)
= r72{(2n + l)lnbr}_'{(Qn + 1)2{---- et (d” - %){(Qn + 1) Inbr} iJ
+n(n+1}(2n + 1) br}ug('r)

= 1'_2{(2?:. + 1Inbr}? [ -+ ((12 - %){(‘2?; + l)lnlrr}"lJ

+ -n.(n -+ 1)}.’,{”(7‘)
.-2{ C@2adt1)e (-]

- ubr + (In br)? + n{n + 1)}”8(7') (C.14)
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2f 1 i + n{n +1) ()
- T . (7).
Inbr  {Inbr)? A

where the definitions for ¢ and d from the previonus page have been used. We also
find that
3 (r) a’ 1
m r) = — — — — .
off r2(lubr)2 r2inbr

Hence, it {ollows that

up(r) + {'—'”fff("') - E"("%;"Q}ug(r) o 0.

For fields of magnetic-type, independent solutions are given hy [21]

war(r) o (rln br)%Zi,{ + ?'('n, + —;) lnbr}, (C.15)

with v = /1 — g% and ¢ = /1. Differentiating equation (C.15) twice with respect

to 7 vields that
, , 1
wy(ryoc (rin br)'"‘"‘[(vz — I) +n(n+ 1){ln b?’)?} uar(r)
. | _ o
= [(r Inbr) 2 (u“ - —1) +n{n+1)r } upr(r)

= [ (rInbr)™ + n(n + L Jus(r).

[t 1s seen that
mfﬂ(r) =a’(rlnbr) 2
Accordingly, it is found that

)+ {miggt0) - ) o

C.2.2 Profile 2

Now, consider the wavenutuber [21]

e

ryInbr ’

(C.16)

m(r) =

where ¢ and b are constants.
For fields of electrie-type, the independent solutions of equation (C.1) for the

wavenumber in equation (C.16) are given by {21]

up(r) « r%‘v‘l"ﬂ.‘g{iﬁn + 1) Inbr}, (C.17)
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with

2
(L“—%
o=

= : C.18

2n+1 ( )
Using equation {C.14) with ¢ given by cquation (C.18) and d = 0, we obtain that
the second derivative of equation (C.17) is

1oy o o2 270 Lo el
i) o 2{ lnbr  A(lnbr)? et 1)}11!5(7 )
C.2b))

It is noted that (from equation

- 3

mf”(r) = =

(V]

a1 4o L
Inbr  2inbr  A(lnbdr)2 |

As a result, we discover that

n{n+1
up(r) + {mg”(r) - n(nl,::-—l}u;;(r} x 0.

For ficlds of magnetic-type, the independent solutions of equation (C.1) for the
wavenumber in equation (C.16) are {21]

up(r) x -7‘%14';‘.‘%{:*:(271. 1) Inbr}, (C.19)
with

at

¢ = : (.20

2n +1 ( )
Upon utilizing cquation (C.14), with ¢ given by equation (C.20) and d = 1, we find
that the second derivative of equation (C.19) is

wy{r) ’""2{ - IITU;”' +on(n + 1)}“1\{(7’)'

We have thatf

2 2 a?
mg (1) = m*(r)

Cr2lnbe
Accordingly, it is obtained that

, , nin+1
wy () + {m.;”(r) — %}UM {r) x 0.

C.3 PROFILES BASED ON THE HYPERGEOMETRIC EQUATION

For each of the three profiles that we will consider in this section, independent,
solutions for equation {C.1} for fields of electric- and magnetic-type, respectively,

may be written as (where = = —37® with the constants a and 3) {21]
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up(r) x al?'mﬁz'ﬂﬁ(l ;)?':'g'i'l' 2Fi{a, e —bie;2)
+ agar'l':'['f'é:y—q(l - 2)" 3"12,‘-’](1 +a—-cl-62-¢z) (C2la)
up(r) o ayr S (L= 2) 50 0, b o 2)

b agr "210(1—z)g"gﬂ(l+(:—c,1+b—c;2—c;s), (C.21h)

where «y and ay; are constants and 2 Fy{a. b; ¢; z) is Gauss's hypergeometric function,

We note that the constants a, b, and ¢ will be different. for each profile. Let

1 1,
L : EC"‘ :i'(. .
M= -1—.4 - -1~A2,
2 A (C.22)

1
N = am’l — b,
A=atb-c+ L
The constants a, b, aud ¢ in equations (C.21a) and {C.21b} may be detennined by
equation (C.22} and another sct of cquations for L, M, and N that will be different

for each profile. Differentiating equations (C.21a) and (C.21b) with respect to »,

after several steps, it is obtained that

(-t ()1

wp(r) 'I‘_QUF;(T‘){ O

[(LH%)QZ_{_%] } (( )
- . L 23a

andl

. N =2 22?—N.23 1 ( 1
() o f"zumfr){ | {]ln =E =+ (E - L)oﬁ = 71}. (C.23b)

We will now consider three profiles and show that the solutions of equation (C.1)

are given by equations (C.21a) and (C.21b) for ficlds of electric- and magnetic-type.

respectively.
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C.3.1 Profile 1

First, consider the wavenumber [21]

ap

m(r)

(C.24)

where ¢g 18 a constant.
For fields of electric-type for the wavenumber in equation (C.24), we are given
that [21]

and

] |
N = ~§(2n + 1) a - ;2- —a "

Using these definitions, it is found that (using equation (C.23a))

W) _’.fj.*.ff\.(.fl{[_-)- (n +1) — ala+ D)z + [ofa + 1) + nln + 1)]=2
'y (r Ao 2n(n + oe{ex z + [ n{n + 1)}z
—afy + n{n+ 1)}

rup(r)
(1-2z)?

, : e+ 1)z
= r"}'u.,r;;(-r_){ 1 i“z)z +n{n+ 1) - n(rlr_ﬁ—;_)_}‘

{ —ag+nln+ D[l - 229 24+ ala+ Hz(z - 1)}

Using equation {C.2b), it is also found that

2 .
" B ag n{n+ 1}z
g7} = P2(1—22 21 -z)

Thus, it follows that

up(r) + {mf_”(r) -

n(nijl) }"‘k:("') x0.

.
For fields of magnetic-type for the wavenumber in equation (C.24), we are given
that [21]

1 5 1 : ‘
LL=—+ {r:.f, - —(2n+ 1)2}0—3‘

4 r.'l




2 _a
A= af)a <,
and
2 -
N =2aia~?

Using these definitions for L, M, N, and equation (C.23b), it is discovered that

2.2 9.2
anz’ — 2u5z
Wy (1) o 2'::5;(1‘){——0(1 — w),,n

- ai +n(n+ 1)}

From equation {C.2a), it is also discovered that
az

2y
W’-c;/(?)—m-

Therefore we ohtain that

1w (1) + {msz(-,.) _ n(”'r—jl)}”‘“(.r) x 0.

C.3.2 Profile 2

Next, consider the wavenumber [21]

wgrs !
m{r} - )

S C.25
1+ e’ (€-25)

where aqg is a constant.
For fields of electrie-type for the wavenmmber in equation (C.25), we are given

that [21]

1 e
[, = %”—l — :1-(27?. + 1}2”“2,
1 1 S
M = —E(y - —1(271 + 1}2&“-,

and
. 1 . .
N = {aéﬁ‘l —5(2n+ 1)2}“'"'2.

Utilizing these definitions (and equation {C.23a)), it is obtained that
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; 1.
ugp(r) T(lt_fi}ﬁ()?{ [ag_{i’_l -2n{n +1) - 59‘2} z
1, | )
+ 1" + S+ n{n + 1)z

1 1.
ik +n{n + 1) + Zﬂz}

r2unr (1 ) | |

2 1.
+agd e+ Sa [32 - l] }

2 1, o237 a2 -1)
=7 “ug(r){zl-a“ +n(n+1)+ (10_ = + 2(1 - z_)_a_,

. 1 ., 231 la(l4 -
= r'"z':_.;,:,;(?‘){ia“ +n(n-+1)+ 0y - { )}

Using equation {C.2b), it is also obtained that

2 cx, -2 o—2 2 2

2, agrer r A VL

i =i (5 8) -5 )
2.1 2
_2 agi3™ 'z 1 |« x
=7 - i -z ——lz+41
{ (- 1_3[4( ) 2( )H

_pel %P L, a(142)
R (1-2)* 4 21z |

As a result, we see that

r {(n+ 1
() {mfﬂ(;ﬂ) — “(17:_)}113(?') o 0.

For fields of magnetic-type for the wavenumnber in equation (C.23), we are given

that [21]

1 1 g
[L= 1 E(Zn. + 1%,

¢

M= —aﬁ;i‘%ﬁ,

and

N=-ap o
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Upon using these definitions for £, M, N, and equation (C.23b), it is found that

u.g,'i s

() o 7'_2u.w(r){—'“—“;)-§ + n(n+ l)}_

a

We also find that . ) ’
2 2.3—1
agrer a3z _y

mfﬁ(r) = e = —(1 — :)21

Hence, it is deterimined that

n(n +1)

(1) + {mfﬁ(?') - }u‘a,.;(r) x 0.

C.3.3 Profile 3

Finally, consider the wavenumber [21]

an

m.(r) == W

where ag, «v, and 3 are constants.

(C.26)

For fickds of electric-type for the wavenumber in equation (C.26), it is given that

[21)
1 . , 1
L= {(_zg - 3(271 + 1)2}{1‘_2 + 1
1 PP |
M= —E(2n+ Ha™ - 50_"
and

H Y , 1
N = {11.‘2, — 5('211. + 1)“}(.1_2 — ;2-(r"l_

Using the above definitions (and equation (C.23a)), we obtain that

[a.?, ~2n{n +1) — lada + 1)] z [%02 +n{n-+ 1)+ %n] o

up(r) o 7'"“3%(7']{ |

(1-—2z)?
. —ai+n{nt1)
(1-2)?
107+ 4o ola+
= 7-_2'11.5(?'){ 1 —Oz +nln+ 1)+ (1=}
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2 | . 1,22 1.2,
) £ . :j(ka z(l‘ PANES 5(? <
=71 “up(r - e tnn - 1) - + - .
el ){ T ( ) - ( E }

Upon using equation {C.2b}, it is also obtained that

al + yaist %Qz(a+l)}
1

2 -2
me, r) =1 n
ot1(7) {l—z T —
2 Loz o222 4 102.(1 - &
- ?__2{1(1,0 S0 N 102" + S =( ,,)}

+ .
-z 1-2z (1—2)?

of aj %r_x:: %a"!z - §a222
=7 + + 3 .
1-z 1-: (1-2z)

Thus, it follows that
nin+1
up{r) + {mfﬁ(r] "*("*"72""*—')—}?1.;.;(7') ox 0.
r
For fields of magnetic-type for the wavenwnber in equation (C.26), we are given

that [21]

L= ;li + {ag - %('Zn. 4 1)2}“-'{
M =0,

and
N =ala2

Utilizing these definitions for 7, A7, N, and equation (C.23b), it is found that

ad(:? - z)
5

ugy(r) o r un(r) { Eea

-2 agz 2
= rupn () - —ay+n(n+1)

~ag +n{n+ 1)}

1-=

af

= 3‘_21.',‘”(?‘J{ - ]‘-"

Using equation (C.2a), we also find that

b n{n + 1)}

ek

2,.-2
ag

1 -z

mf_”(?') =m?(r) =

Consequently, we discover that

, . nin+1
wy (r) -+ {mi”(-r) — %}HM(T) o 0.
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APPENDIX D

RELATING WESTCOTT (1968) TO USLENGHI AND

WESTON (1970)

In this appendix, we show how the set of differential equations found in [21] are
refated to equations (135) and (136) (whicl are the ones found in [22]). From [21],

we have the following differential equation

d*u , n{n+1)
) + {m;”(-r] - 1w =0, (D.1)
where
m?ﬁH = m?(r) for fields of magnetic-type and (D.2)
o . * 1 _ .
mesy = m*(r) — m(r) e { m(?‘)} for Gelds of electrie-type. (D.3)

The above is in terms of 7. We want 1o show that equation {(D.1) with equations
(D.2) and (D.3) is cquivalent to equations (135) and {136), respectively. It is noted
that equations (135) and (136) are in terins of @ Recall that

r
T -
(1

—

Then it follows that

{_f ddr 1 r_f

dr  drdr  adr

and

d? 1 &

dr? a2 dre?

First, consider fields of magnetic-type and denote the solntion of equation (D.1)

as ups(r). Using equation (D.2), we have the differential equation

Y + {!nz(?') - ke }'fa.u(?‘) =0. (D-4)

dr? 72




Let
uni(r) = Sple) (D.5)

and
m(r) = kR(z), (D.6)

Using equations (D.5) and (D.6), writing equation (D.4) in terms of r vields that

1 d*S, oz 1)),
&_'Z da? + {MR(I)} - W}S,,(I) = (.

Hence, we have that.

Shz) + {[de(z:)}z - M}S,,(J) —0,

2
ae

which is equation {135).
Next consider fields of clectric-type and denote the solation of equation {D.1) by

ug{r}. We have the following differential equation

dup n{n+1) .
(i7‘21‘ + {mfﬂ(r) — r—z}u,g;(r) e U, (DE)

where mf’;f f(r) 1s now given by equation (D.3). Let
up(r) = eo[R(z)] 'Ta(x). (D.8)

Using equations (D.3) and (D.6), writing m?;,(r} in terms of x, it is seen that

2 (7Y = m3(r) — n (r)—(-li --—1
mep(r) = m m(r)==;

m{r)
g RA(@) ﬁ 1
= [kIt(2)]? @l dr2 [}{R(.I')J
= [kR(x))* - R{E;) (;i.j{[h’(;r)]“}

_ %{[kdﬂ(;{:)]? _ R(I‘)%{[R(J)]I}}

We note that

2
“;'3 { [R(:r.)]"'l} - f;{—ﬂ'zf—z = ~[~2RVR + R'R7Y
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=R! [2(5?’{{"‘)’2 - h’."h’"],

Hence, it is found that

p ]' 2 1 !
irnﬁ”(?‘) = g{[kfzfﬂ(‘r)]‘ + R R(x)]™" — AR (Y R(x)]™H)? } (D.9)
We have that
dug 1 d? cp d { d _
— = T: : =555 - ‘n
dr? a2 dr? {CG Rl T (I)} a* dz [ffi‘ RIS
) id , P fo d 1 fpa-1;
_ = R-'T
=T [R T — RR Tn] T [R (T, — R'R™'T,}
=5 {R“{T::— AR (CRPR R
a
— R'RYT, - RR'T,}
(D.10)

{[]l!? [F;;_QR!H |T-‘+{2 R.’R ) {ff{{~l}'}';l:|

fa’,‘-

Substituting equations (D.8)-(1D.10} into equation (D.7) gives us that

(.'[;[R(:t.‘)]"} [1" x) — 2R (X)[R(z}}” lT’( )

+ {Q(RI(:.'".)Hf(:}:)]_l)2 — R"{z)[R(x)] "I}TH(:}:)J

+{ kaR(oP + R (2)[R(x)] !

oty - MY }rn[ff(.r)l“m-J - 0.

— 2{R'(a

Thercfore, it is obtained that

TYT(.'I:) f:(IJ)T!( ) {[;\ ]{ ] _ 'H,+1)}Tn($) — 0

which is equation (136). We have shown how the r-dependent differential equations

of {24] relate to the z-dependent differential equations of [22],
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APPENDIX E

COUPLING TWO EQUATIONS FROM SAMADDAR

(1970)

In a paper by Samaddar [25], he discusses the oblique incidence scattering from
a radially inhomogeneous cylindrical structure with cylindrical coordinates {(p, ¢, z).
He begins with Maxwell's equatious for the clectric field E and the magnetic ficld
H. This leads to the inhomogeneous wave equations for E and H. Then he studies
the z-component for these wave equations, denoted by F, and /{,. For an oblique

incident plane electromagnetic wave, the fields E, and ¥, may be put in the form

F,= eu”.l‘::z(p, &),
H, = r‘."h‘:ﬁz(p, &),

where h = Kysin@ with K2 = w?pgeq. 0 being the angle which the incident wave
vector makes with the normal to the radially inhomogeneous cylinder, w being the
angular frequency, ¢; being the permittivity of free space, sy being the permeability
of free space, and «(p) being the inhomogeneous dielectric constant. Using the above
representations for £, and I{,, the coupled equations for E. and I1. inside the source-

free inhomogeneous cylinder take the following form:

” v . R (py O] - hopod () O,

Vid Kie(p) - b = gt = |, = TN E1l
[ e+ Kaelp) -k Ké{p) = h2ap| ° (KZp) — hH)p O’ (E.1)
. . , Kid(p) 074 hweoe'(p)  OF. .

Cr Kie(p) R — 2 L = — -
[vt T Koelp) Keelp) —h2ap] " (Kie(p) — h?)p 8¢’ (£:2)

where 5 , 2
1 ¢ ? 1 ¢
Vie —— p,(— + —"‘(“""‘
pop\’ dp P2 ?

If we assumne that

X

j'z b Z Cind}Rn(pJ

nH= —0x
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and

o

}}z = Z '”-mé*-'n(f")‘

iz 00

equations (E.1) and (E.2) may be written as

Ld{ d 9 n?  hi(p) d ],
— |5 ' — e — | R,
[P‘ dp (pdp) tle) Pt n¥p) dp ()

inhwige'(p) |,

= qibn P)< E3)
o (p) ( (
1d 7 ’ n® Ki(p) d
- = T TS T T g N Ty L()‘Yl
[P dp (pd-ﬁ) trl) - *(p) dp (e)
inhwegd (p)
= ) (), E.14
) (») (E.4)
where
Plo) = K2dlp) — R (ES5)

(E.4) can be expressed as

2 1 hA(p) ) d 2y, Lot R -
';?Un(p) — {_ + i ,( (,0) }{—Un(f)) + {”H(ﬁ) b -_,]n t _L"'E_(“p) }Un(!})

p ) Jdp ? i)
- ey ) (E6)
m*p)
o {l K (p)) d , L—n? RZ(p)
= Valp) = { =+ =% }WVH K {?“ ) 4+ ——— }Vn
px: {r) PR 7ol G (pY+ 4n{p) p: pETI (p)
inhwege'(p) _
= 7 {f” Y. E.7
et (p) (v) (ED

Our goal in this appendix is to combine equations (E.6) and (E.7) into one differential
equation for either U,(p) or V,.(p).

Irom (E.6), we have that

; 22 1 ]2 f ) 42 Ry
Voo i) {U:_ { *_ lt(p)} s {nz(ml i (;;)}Uﬂ]‘ (E£3)

nhwg ¢ (p) ; 3 () I mE(p)

where we note that the dependence of U/, aud V,, on p has been assumed and the
primme denotes differentiation with respect. to p. Differentiating equation (E.5) with

respect to p yields that

2y’ = K2 (£.9)
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Differentiating equation {E.8) with respect to p gives us that

‘ 1 R 1 Zh2e” — hie'(2nn
p?i |:{ r::f — {__ b 4 - } U:: - { - = + noai h € (2”” )}U;;
; .

P p* U

. 1 - ,”2 h2¢
+ {”z + ~ }l” n
P ,m,i

+ {2?}:‘}, 2l - 3 N prithe” — W2 (2pmy + ) }.’fﬂ}

p°n’
N 2pnm’ + n?) — prit”
7

" 1 B3 b=n? A%,
X UY ~ =4 =2 Un + 4P+ ——— + 5 el |-
P i ol o

Then we see that

. 2 2 2.1
; P pm?. L, ) ) y W et
V, = [ —Uy { -~ o+ Kip+ oY }{-*:1

nhwpy | ¢

oot
n o

nhwyi,

2
7 ¢ nl t ’ + h
F28 4 1 3 Fie

nl 2. 2042, 2,1
PO 7€ K{ph©c 5 hope ,
S v S S S T K R N1
p! () 72 !

o 251 = n? R2e" h K3d h.z o 5y nte”
+ {.’\5,0-}';2 e/ Bl ( ) + L —+ .‘\f,p-r;z + !—, g
J['J 4

2 RS 252, ¢ 4 2 2
7 hpe he i3 pc ? n¢{l —n
+ {_L _hpe 3 nRope } il + M

7o I 12 ()2
. K21 — 0% N 7°(1=n%) "1 - n®)
z pre ple')?
K2hze  h? hz o
+ 2+ — Ul
7 P ¢

Thus, it follows that

. 2 2.1
) F7i/ - » : mye ’
V! = e [M.Tu:: | {(hrf — h%)p — : }U,;

nhwjg | ¢ (¢")?
/M € I (5 TV VLT
— K+ — >
{ ¢ pe! N CO LN
, n(l-n% gt ppld”
{Qf\éﬁ?f - = T
e ¢ (¢}
K2(1 ~ n? (1 — n?
(Gl B Mt R V7R (E.10)
p ple’)?

Upon differentiating equation (E.10) with respect to p, it is found that
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" nhwpg ' (¢/)? )

i [@W N {f’(p(‘Znanf] m}{
4 7 n

. ‘ sl
+ (KR~ By — "’(’:f)? }{

+ {.‘{'2 Rl ((ﬁ) (p(m*e” -+ 2 ") + ") = 2¢ (" Ppn*\
4 : n
{¢')!
A 2/ 2 2
7l il - y 7
+{[_“{_n+l¥ !/2 (.'I:z}{ TH
€ pe
APy p+ oty - L1 n? 2ty pe! — A (pd" + )
, -n
(e')? 22(c')?
L e Ve + 2m'e) - 20
(€7 “
2 2 4 10
o L=n) o prle
+ 2Rt - ——— + = — :
{ o7 p;t;, o ((r)z
N K21 — n."z) () - ”z) v
P p(c)?
e ) o f 200 12" — 12 (07" + 2pe’)
+ {2!\5(2?}?; p+1°) — (1 —n?) ( TIT:
p'()
. Arne — oyt KEH1—n?)
(" 7
(PG A A ) ) - 200 !
(o
) p(f_'.’)g('ﬁ?fm + 2n”ffﬂ) T]Jt”( )mr(n + (tf)Q) )
-~ (1 = n*) Ual-
Py
Consequently, it 15 determined that
rn i f”f (f) 2 ” J{”J' ! P-’igf—” p e
V, = —— UM 4+ S KEp+ - + K2p -~ Wy — == 31
" nhupg l - { R ) e O }

(/)2 T T {{r)z (/)3
3 2 2
1 1 (1 Con ) 2 ?} ! 1"t
b LR {7,
o pe! it e (/)2
4 4 2 2 2.0 2
2 2 1 me 9 K ¢ 7
+{2.‘\0p7} +?—— ({!)2+(l—n)(——w— 221)

n‘z[m héz (u 2((_»)2”2

{!\'{L}? _ h2 _ _”‘z‘p(_m ‘(\rgp(u ”2(1; N 2{}”2((..';]2

TR T TR

"?2(1 _ “2) . ”-I
P! ¢

+ 2K —
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4 .1 2.1
pie K§ 1’ )
-~ 1—~n)( - 9) }Uﬂ

(e')* ( p o pld)?

2 " 2
4 5 nte 2y K;
{H\n( pot 2R+ (1= ) ((}2(6)2 TRl TR

N 2}(2?‘}2 _ ndfﬂ N Qp?}'l(t”)z puitm
ey (P (<)?
C2KGentS oyt KL -0

o ()2 N 0

2 M 2 nt 2.n
+ (1= n?) 2n2(¢" ) L _ e Kye vl
ple T R pd) pe

Therefore, we obtain that

; 2 2 2,
o ¢ & r(iv) a2 p2 _{L _ 21{”11 t 17
V! = ——nhw“[ UL + {(2!\0 Ko+ % - S }Un
207 (") Ppe  Kgpe” pyt of(L-mf) )
+ MR NN p EL R
((_r).i ((sz J ¢ pff
_” 2,‘,)”‘1#:! Q({n)z”‘z ”z{m hrz 7
{”\nﬂ?}' +— = ((.;)2 - (t.')s + ( 1)2 + !
72 2.0 2
TR L S 8 V7
p ool p

LAY 4 1

. y o 2" Pt 21]4 1 2!\’2;)1}'2(_”
+ 2R p + AKEP + : . .
{ 0l f o’ ([:).1 ((:)g ((1)2 ¢
202" e 21)" 2HE
pd): 0 pld P

22N R K"
e o T o [ (1

+(1-n J[

We will now caleulate the terms on the left-hand side of equation (E.7) using
equations (E.10) and (E.11). We have that

1 i n, n2e” . )
—--V, = - Ul + - — (Kg =) Uiy
P 7w '”.hw,un [ {_; 7t ({,")2 ( 0 ! ) "

LR T A
p T T g R

.M 4

e n

— 2K

()2 pe

2 2. 2
7 a3 K _
1 -2 — 4+ —— - =21 Y17, F.12
+ n )]:p'it’ + Pz pe } } :| (E.12)
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and
LGSV 2 4 Ropc" KGR = W)e'p
7 " nhwug 0 ¢ n? "
72 o (@
Kipmte” . .
+ {__m:i? £ - Kin® — 2K pe’
h? gt Kz h.l 7
+(1-n )[ + = “2 }Un . (E.13)
pd A

Using equation (E.8), we also have the following relations

7

q 6 4
f mt o, [0t o [ Ui ) :
9V, = ﬂfw,u [ -, — { o —{—f.r,zn?;)}(.":: + { vl +{1- HQ)—! + 0%y }UH} , (E.14)

pe

J N X 4 I A
2 V'H-_ ( ! )|:n;{[n_{ 2;+_}{f;+{1+(1_ 32) ” +}—}U" .
It nhwpn pe ple P

p€ g p?
(E.15)

anxd

Kie _ i K2 ﬁ+fﬂ'§fw.2r.’ TR N :’_\”{,&(l ) . REh*! U

o mhpg | ° P 1) o’ 0° mr [

(E.16)
Utilizing equations (E.11) and {E.12)-(E.16) in the left-hand side of equation (E.7)
yields that

V) - {-1- + K‘i'!}l-’;i - {772 Ml '"2”'2 + hﬁ;’}m
P 7 I i
: . . . 2 ) 2 2 .
= Ly oK ptypr LT T ez Ly
nhwpy | ‘

o {7
N {2[)’!}2(6”)2 e KEp ot (1 - n?)

- — — + + wen it = o
(/)2 (/)2 ¢! ¢ pe!
2 1t
e 2 2
i _:TJ—.E — KU + h
K§pe Kicdp KEhidp

4 2 "
- o1} n (I- —n ) -2 17
" n? + ”2_ } T + — + f\n t'_f'n

o 25t 2emie” 2"V nP RE
{anior+ 5 - R - B

+ 2(1 _ -n?) {hf] _ qu-'—" - 7."2 1\’5 T’]-'l

p Pl p2 ’
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K, . KR - n)  Kge"
~ = b e — Ko - ;
ple’) 7 p ¢
4 2 2 2 2 "2 240 1
- , n(l —n h=(l1—n K Kih'e
—n—!-hz'r;zp—— }([F" )_ ( )___.ﬂ_ n;f_}[;;
¢ ¢ e o 1
,  2m 4((.”)“ "t 2Rt
1,272 1 e i o
(- n?) 212" N 217 B 2KE 2?}2((”)2 02 hgt”
n p').(fr)‘z pH(: p'z p(f;)ﬁl P(t ye !
. ; ; {
7 l__.f." 2 2.4 }'{2
S N
(¢')* pe PR p
K2mpt” o . S [ K2 KB KX
+ .__[l‘_(._’i'.____ ~ Kin* = 2Rgpd + (1 - ﬂ.z)[ ”(: + —; - L:]
« e P P
7 S . 2o 7
+ p—{‘r— + {1 - nz)# + R 4 (1 — n“)# +(1- nz)i]?:-
h? K2  K2h%
+(1-n? )= + K3+ (1 - )——?— -0-—-— Ual.
p* p o
Simplifying the above, it is obtained that
1,.!” _ 1 + !\ 1/! T}2 _l_ ]' — n'2 + ]\-{:}3(" Lf'
R ?,'2 p* pit J
. ¢ 2 4
! {Jf; w) ~3 2 3{1?;‘ J "
= — Ul Ny —h)p— —— U/
nhwyn i: ¢ {( 0 ) (e'}? } "
2% (e” -.*;2{;-5.”’ 2ot 5 21
! (e)? (/)2 ¢/ F{1=n );T
r;"’c” Kah*dp f\nf A
(F’)?- + 2 U,
! n?
, . . anl(n 2”2({”)2 szm I}.Zf_ﬂ
+ ¢3K2 % — Wiyt — — — — + ; — =
{ R L N () K (T i

N K¢ B RZh%! b Kg  2pte” _ by 3 E T
— P [)((;)2 {JE{_J 0 ‘n
6

{2!‘3 2, 2)(77?.1(*}’)? ,O??ifm n-l I B I\A(.‘}Z,()T}zfﬂ . ﬂ

]
()3 - (¢')? () ¢! (';
i ) K[‘f h2e

p(’; pn2

A G .

+ (1 -2y S 4 S . - -
( H)L}E(U)‘* it el () e

2 & ) 2 hz (
+i+(1_.”_~);?“+ 2]}1,,1] (E.17)

pe! A
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Let

Then equation ( E.17) becomes

b P 7 p? o |

= lﬂ nu) 1 {(k?} - h?)p - _2_!:;_.}{_,’_:’

nhw';.'g €

N 2 ¢ f
—i—{?f(;) ~f7+2f?;2+‘2(l~—nz)~;
4 4 p°
2 !--2 ! 2 N )
- f& K (.‘4) f_( Ki - h‘*)}!_f:

pe’ 3

2 1 ‘ ny 2
+ {ff’(:sh’g L - f” ﬂ(f_f)
.0 ¢
ff;’" fe” 4 Kg(f VP f

+ ' D) (}'\5 - hi‘)
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Upon using equation {(K.18) in equation {E.7) gives us that
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( ) 1 ENTHAY-
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5 ((7) o)
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vhw) ot
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We see that equation (E.19) is a fourth-order differential equation for the function

U, (p) which is what we wanted to derive in this appendix.
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