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ABSTRACT

COPULA-BASED ZERO-INFLATED
COUNT TIME SERIES MODELS

Mohammed Sulaiman Alqawba

Old Dominion University, 2019

Director: Dr. Norou Diawara

Count time series data are observed in several applied disciplines such as in environmen-

tal science, biostatistics, economics, public health, and finance. In some cases, a specific

count, say zero, may occur more often than usual. Additionally, serial dependence might be

found among these counts if they are recorded over time. Overlooking the frequent occur-

rence of zeros and the serial dependence could lead to false inference. In this dissertation,

we propose two classes of copula-based time series models for zero-inflated counts with the

presence of covariates. Zero-inflated Poisson (ZIP), zero-inflated negative binomial (ZINB),

and zero-inflated Conway-Maxwell-Poisson (ZICMP) distributed marginals of the counts

will be considered.

For the first class, the joint distribution is modeled under Gaussian copula with autoregres-

sion moving average (ARMA) errors. Relationship between the autocorrelation function of

the zero-inflated counts and the errors is studied. Sequential sampling likelihood inference

is performed. To evaluate the proposed method, simulated and real-life data examples are

provided and studied. For the second class, Markov zero-inflated count time series models

based on a joint distribution on consecutive observations are proposed. The joint distribution

function of the consecutive observations is constructed through copula functions. First

or second order Markov chains are considered with the univariate margins of ZIP, ZINB,

or ZICMP distributions. Under the Markov models, bivariate copula functions such as

the bivariate Gaussian, Frank, and Gumbel are chosen to construct a bivariate distribution

of two consecutive observations. Moreover, the trivariate Gaussian and max-infinitely

divisible copula functions are considered to build the joint distribution of three consecutive

observations. Likelihood based inference is performed, score functions are derived, and

asymptotic properties are studied. Model diagnostic and prediction are presented. To

evaluate the proposed method, simulated and real-life data examples are studied.
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CHAPTER 1

INTRODUCTION AND MOTIVATION

Count time series data are observed in several applied disciplines such as in environmen-

tal science, biostatistics, economics, public health, and finance. In some cases, a specific

count, say zero, may occur more often than usual. For example, for monthly counts of

sandstorms in some areas, rare diseases with low infection rates, and crimes such as arson,

the observed counts may include a considerable frequency of zeros. However, during certain

periods, these counts could take larger values. Additionally, in practice these zero-inflated

counts usually observe serial dependence when the data is collected over time. Overlooking

the frequent occurrence of zeros and the serial dependence could lead to false inference.

In many real-life time series examples, the series are not stationary and observe some

sort of trend and seasonal features. Figure 1 shows an example of such time series. It

shows the monthly counts of strong sandstorms recorded by the AQI airport station in

Eastern Province, Saudi Arabia. One can see: (a) the frequent occurrence of zeros in the

distribution of the counts, (b) serial dependence, (c) decreasing trend, and (d) seasonality

in the series. Standard time series models fail to account for such problems. Motivated by

these problems, we propose and develop two classes of copula-based time series models for

zero-inflated counts with the presence of covariates. Copula is a multivariate distribution

with uniform margins and allows modeling the dependence structure separately from the

univariate marginal distributions.

There is a vast literature on modeling zero-inflated counts. Lambert (1992) was the first

to model these types of counts via generalized linear model (GLM) assuming the counts

follow zero-inflated Poisson (ZIP) distribution. Later on, other distributional assumptions

such as the zero-inflated negative binomial (ZINB) distribution in Ridout et al. (2001) and

zero-inflated Conway-Maxwell-Poisson (ZICMP) distribution in Sellers and Raim (2016)

were proposed. With dependence structure, much of the research of dependent zero-inflated

counts is on longitudinal and clustered data analysis (see for examples, Hall and Zhang

(2004), Buu et al. (2012), and Choo-Wosoba and Datta (2018)).
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Figure 1: Time series plot of monthly count of sandstorms, bar-plot of distribution of

sandstorm counts, autocorrelation function, and the circular plot.

However, recently growing interest on modeling time series of zero-inflated counts has

emerged. To analyze air pollution related emergency room visit counts with excessive zeros,

Hasan et al. (2012) proposed a three level random effect ZIP model. Under another class of

time series models, the integer-valued generalized autoregressive conditional heteroscedatic

(INGARCH), Zhu (2012) introduced ZIP and ZINB INGARCH models to fit zero-inflated

time series of counts. Gonçalves et al. (2016) also introduced zero-inflated INGARCH

model but with compound Poisson distribution. In state-space representation, Yang et al.

(2015) proposed dynamic models to handle time series of zero-inflated counts with both

ZIP and ZINB distributions. Yau et al. (2004) modeled zero-inflated time series counts of

work place injuries using a mixed autoregressive model. They assumed the data followed

the ZIP distribution and a correlation structure that is of first ordered autoregressive process.

There is a vast literature on modeling zero-inflated counts. Lambert (1992) was the first

to model these types of counts via generalized linear model (GLM) assuming the counts

follow zero-inflated Poisson (ZIP) distribution. Later on, other distributional assumptions

such as the zero-inflated negative binomial (ZINB) distribution in Ridout et al. (2001)



3

and zero-inflated Conway-Maxwell-Poisson (ZICMP) distribution in Sellers and Raim

(2016) were proposed. With dependence structure, much of the research of dependent

zero-inflated counts is on longitudinal and clustered data analysis (see for examples, Hall

and Zhang (2004), Buu et al. (2012), and Choo-Wosoba and Datta (2018)). However,

recently growing interest on modeling time series of zero-inflated counts has emerged. To

analyze air pollution related emergency room visit counts with excessive zeros, Hasan

et al. (2012) proposed a three level random effect ZIP model. Under another class of time

series models, the integer-valued generalized autoregressive conditional heteroscedatic

(INGARCH), Zhu (2012) introduced ZIP and ZINB INGARCH models to fit zero-inflated

time series of counts. Gonçalves et al. (2016) also introduced zero-inflated INGARCH

model but with compound Poisson distribution. In state-space representation, Yang et al.

(2015) proposed dynamic models to handle time series of zero-inflated counts with both

ZIP and ZINB distributions. Yau et al. (2004) modeled zero-inflated time series counts of

work place injuries using a mixed autoregressive model. They assumed the data followed

the ZIP distribution and a correlation structure that is of first ordered autoregressive process.

To add flexibility in the correlation structure of continuous time series data, copula has

been proposed by many authors (see for examples, Joe 2014, Guolo and Varin 2014, and

Patton 2009). However, there is not much literature for count time series data as there is for

continuous measurements due to computational complexity. Joe (2016) suggested copula-

based Markov model for time series of counts. Masarotto and Varin (2012) introduced

marginal regression models for count time series data where the serial dependence being

captured by a Gaussian copula, with a correlation matrix corresponding to a stationary

autoregressive moving average (ARMA) process. They performed statistical inference

through an approximated likelihood function using sequential importance sampling tech-

nique. Lennon (2016) and Jia et al. (2018) also applied the same models but suggested

different estimation methods including approximate Bayesian computation of the likelihood

function and pseudo Gaussian likelihood estimation, respectively.
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1.1 OVERVIEW OF THE DISSERTATION

In this dissertation, we propose and develop two classes of copula-based zero-inflated

count time series models. In Chapter 2, we review the background and the literature needed

to construct the proposed two classes of models. In particular, we provide an overview of

the time series literature in both the continuous and discrete cases and discuss why some of

these models fail in handling count time series with excess zeros. Next, we review some of

the zero-inflated count regression models applied to the marginal distributions. The chosen

marginal distributions are the ZIP, ZINB, and ZICMP margins. Then, we present the copula

theory needed to build the dependence structures of our models.

In Chapter 3, we extend the work done in Masarotto and Varin (2012) by including

a class with zero-inflated distributions such as the ZIP, ZINB and ZICMP distributions

whereas the joint distribution is modeled under Gaussian copula with autoregression mov-

ing average (ARMA) errors. Relationship between the autocorrelation function of the

zero-inflated counts and the errors is studied. Sequential importance sampling likelihood

inference is performed to estimate both the marginal regression parameters and the depen-

dence (or copula) parameters. We run residual analysis to evaluate the performance of the

models. To evaluate the proposed method in this chapter, simulation studies are conducted.

We apply the proposed models on two real-life examples from two different areas to show

the potential of such class of models.

In Chapter 4, we introduce a class of Markov models similar to the one in Joe (2016) but

with zero-inflated margins. The chapter concentrates on building a class of Markov zero-

inflated count time series models based on a joint distribution of consecutive observations.

The joint distribution function of the consecutive observations is constructed through copula

functions such as the Gaussian, Frank, and Gumbel copula functions. We list some of the

model properties and review how to measure the dependence structure when the chosen

copula function is not Gaussian. We perform maximum likelihood estimation method,

derive score functions, and show asymptotic properties using results from Billingsley

(1961). Model selection and prediction are implemented to assess the performance of the

models. Simulation studies are also conducted to evaluate the estimation method and the

asymptotic behavior of the parameter estimates. Finally, we apply the proposed models on

two real-life examples from two different areas.

In Chapter 5, we summarize the work the dissertation and discuss future directions.
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Some results and selected R codes are provided in Appendices A and B.
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CHAPTER 2

BACKGROUND

2.1 TIME SERIES ANALYSIS

A time series is a sequence of random variables, {Yt}, taken over an equally spaced

discrete time, that is, t = 1, . . . , n for some fixed n. The observed values, {yt} are usually

referred as the realization of the stochastic process {Yt}. An important feature of a time

series is that consecutive observations are serially dependent. Hence, time series analysis

concerns with accounting for the serial dependence. A complete description of a time series

process is the joint multivariate distribution of the observed values, that is

F (y1, . . . , yn) = Pr(Y1 ≤ y1, . . . , Yn ≤ yn). (1)

However, constructing these multivariate distributions is quite challenging especially when

the time series is discrete and observed an unusual behavior such as the zero inflation.

As mentioned in the introduction, the main objective of this dissertation is to build a

multivariate distribution as given in (1) to describe the zero-inflated count time series

through two different classes of copula based models.

Important definitions in the time series context are given without making any assump-

tions. First, we will define both strictly and weakly stationary time series as given in

Shumway and Stoffer (2011).

Definition 1. A strictly stationary time series is one for which the probabilistic behavior of

every collection of values

{Y1, . . . , Yk}

is identical to that of the time shifted set

{Y1+h, . . . , Yk+h}.
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That is,

Pr(Y1 ≤ y1, . . . , Yk ≤ yk) = Pr(Y1+h ≤ y1+h, . . . , Yk+h ≤ yk+h)

for all k = 1, . . . , n, and all h = 0,±1,±2, . . . .

The strictly stationary condition in Definition 1 is quite strong for most applications.

Hence, weaker condition has been imposed on time series data. The definition of the weak

condition is the following.

Definition 2. A weakly stationary time series, Yt, is a finite variance process such that

1. the mean µ = E(Yt) is constant and does not depend on time t, and

2. the autocovariance function

γ(h) = Cov(Yt, Yt+h)

depends on the time, t, through only h.

Next, we review some statistical models for analyzing time series and stochastic pro-

cesses. We start with one of the most popular processes, the autoregressive moving average

(ARMA) process in Subsection 2.1.1. We define the process and discuss its properties,

and why the analysis for such processes fails when the observations of the time series are

discrete. In Subsection 2.1.2, we review several statistical models that are appropriate for

handling count time series. We start with the discrete version of the ARMA process, and

then discuss how modeling count time series evolved over time with thinning-operators

based models and GLM-based models.

2.1.1 AUTOREGRESSIVE MOVING AVERAGE (ARMA) MODELS

One of the most popular linear processes to fit a stationary time series process is the

ARMA process. This type of process is constructed through a combination of two process,

the autoregressive (AR) process and the moving average (MA) process. That is, assume

{ǫt} is a stationary time series process. Then, an autoregressive process of order p (p ≥ 0)

would be modeled as

ǫt =

p∑

i=1

ϕiǫt−i + ηt; ηt ∼ WN(0, σ2
η)
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where WN represents a stationary white noise, and ϕ1, . . . , ϕp are constant (ϕp 6= 0). On

the other hand, the moving average process of order q (q ≥ 0) would be modeled as

ǫt =

q∑

j=1

δjηt−j + ηt; ηt ∼ WN(0, σ2
η)

where δ1, . . . , δq are constants (δq 6= 0). Hence, combining the above two processes yields

to the autoregressive moving average processes of order (p, q), i.e. ARMA(p, q) and it is

given by.

ǫt =

p∑

i=1

ϕiǫt−i +

q∑

j=1

δjηt−j + ηt. (2)

In most applications, the white noise in (2) follows the Gaussian distribution, i.e. ηt ∼
N(0, σ2

η), so the process would be called Gaussian ARMA, which will play an important

role in the copula based model presented in Chapter 3.

The ARMA process can also be represented as

ϕ(B)ǫt = δ(B)ηt,

where ϕ(B) = 1−
∑p

i=1 ϕiB
i, δ(B) = 1+

∑q
j=1 δB

j and B is the back shift operator such

that Bǫt = ǫt−1 and Biǫt = ǫt−i. Hence, important characteristics of the ARMA process

can be derived, which are the causality and invertibility.

An ARMA(p, q) process is said to be causal, if it can be expressed as a moving average

process, i.e.

ψ(B)ǫt =
∞∑

i=0

ψiǫt−i = ηt,

where ψ(B) =
∑∞

i=1 ψiB
i, and {ψi} is a given sequence of constants given by solving

ψ(B) = δ(B)/ϕ(B), and satisfying
∑∞

i=1|ψi|<∞; we set ψ0 = 1.

An ARMA(p, q) process is said to be invertible, if it can be expressed as

ǫt =
∞∑

i=0

πiηt−i = π(B)ηt,

where π(B) =
∑∞

i=1 πiB
i, and {πi} is a given sequence of constants given by solving
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ψ(B) = ϕ(B)/δ(B), and satisfying
∑∞

i=1|πi|<∞; we set π0 = 1.

Obtaining the autocovariance, γ(h) of an ARMA(p, q) process required recursive

solutions of homogeneous equations, known as the difference equations. The general

homogeneous equation for the autocovariance of a causal ARMA process is given by

γ(h)− ϕ1γ(h− 1)− · · · − ϕpγ(h− p) = 0, (3)

for h ≥ max (p, q + 1) with initial conditions

γ(h)−
p∑

i=1

ϕiγ(h− i) = σ2
η

q∑

j=h

δjψj−h,

for 0 ≤ h ≤ max (p, q + 1). When h = 0, we have

γ(0)−
p∑

i=1

ϕiγ(i) = σ2
η

q∑

j=h

δjψj,

so that

σ2
η =

γ(0)−
∑p

i=1 ϕiγ(i)∑q
j=h δjψj

, (4)

where the coefficients ψh can be found recursively by

ψh = ϕh + δh + δh−1ψ1 + δh−2ψ2 + · · ·+ δ1ψh−1

where ϕh = 0 for h > p, δh = 0 for h > q, and ψ0 = 1. Dividing (3) through by γ(0) gives

a similar recursion on ρ(h) = γ(h)/γ(0), the autocorrelation function. More details on the

ARMA process and its properties can be found on Brockwell and Davis (2013) and Box

et al. (1994) for examples.

2.1.2 DISCRETE TIME SERIES MODELS

Analyzing and modeling discrete time series data have drawn interests because of

the challenges related to the discreteness of the data. Such data violate the assumptions

made on typical linear models such as ARMA models. In this subsection, we review

several statistical classes models that are appropriate for handling discrete time series.
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Comprehensive reviews of discrete time series can be found in MacDonald and Zucchini

(1997), McKenzie (2003), Kedem and Fokianos (2005), and Davis et al. (2016).

The first attempt to provide a class of models that fit discrete time series data was

introduced by Jacobs and Lewis (1978a,b,c). Their models are similar to the ARMA

process and are called discrete ARMA (DARMA). They provide a stationary time series of

dependent random variables with marginal distributions and dependence structure specified

independently. Although the DARMA class of models is very attractive in theory, its

construction is unusual for applications (McKenzie, 2003). In addition, the models are only

capable of providing positive autocorrelation. Most of the applications of these models are

on the hydrological literature (see for examples, Buishand, 1978, Chang et al., 1984b,a,

1987, and Delleur et al., 1989).

Another popular class of models that fits count time series data is the one in which

models are based on the idea of thinning operators. Such models and their properties

are studied extensively by many authors. McKenzie (2003), Weiß (2008), and Joe (2016)

reviewed a variety of classes of count time series data based on thinning operators. Different

marginal distributions and thinning operators were discussed in Steutel and Van Harn

(1979), McKenzie (1985, 1986, 1987, 1988), Al-Osh and Alzaid (1987, 1988, 1991),

Alzaid and Al-Osh (1988, 1990, 1993), Zhu and Joe (2006), and Zhu and Joe (2010a,b).

Generalized linear models (GLMs) have been also introduced to model time series data with

added covariates using regression setting. Fokianos (2015) reviewed such models under

different distributional assumptions and links functions. Although the Poisson distribution

is traditionally the first choice to model count data, other researchers have been considering

alternative distributions. The most common alternative to model counts is the negative

binomial (NB) distribution, which also allows for overdispersion in the data. Davis and

Wu (2009) proposed a similar model to the Poisson model with logarithmic link function

but with NB distribution and logit link function. Chen et al. (2016) also considered the

NB distribution for modeling count time series data but with an autoregressive conditional

model. Zhu (2011) proposed a negative binomial INGARCH(p, q) process denoted as

NBINGARCH(p, q). Yang et al. (2013) applied similar approach with zero-inflated

distributions, specifically, the ZIP and ZINB distribution.

Most of the above models fails to incorporate certain marginal distributions without fac-

ing complications and violating important assumptions. Furthermore, including covariates

and accounting for non-stationarity are challenging and sometimes not possible with the



11

framework of some of the models mentioned in this section. Next, we review zero-inflated

regression models and copula theory. We conclude this chapter by brief overview of copula-

based count time series models and how they can be extended to zero-inflated counts, which

is the contribution of this dissertation.

2.2 ZERO-INFLATED COUNT REGRESSION MODELS

In this section, we will revisit the zero inflated regression models under different

distributional assumptions. First, we will consider the zero-inflated Poisson regression

model with independent counts (Lambert, 1992). Then other distributional assumptions

such as the zero-inflated negative binomial distribution (Ridout et al., 2001), and the

zero-inflated Conway-Maxwell-Poisson (Sellers and Raim, 2016) are considered.

2.2.1 ZERO-INFLATED POISSON DISTRIBUTION

Suppose Yt denotes a random count at time t. We say that Yt is distributed as

ZIP (ωt, λt), the zero-inflated Poisson distribution with parameters ωt and λt, if

Yt ∼




0, with probability ωt,

Poisson(λt), with probability 1− ωt,
(5)

for t = 1, . . . , n, so that

Yt =




0, with probability ωt + (1− ωt)e

−λt ,

yt, with probability (1− ωt)e
−λtλytt /yt!, yt = 1, 2, . . . ,

where ωt ∈ [0, 1] is the zero-inflation parameter as often referred to, and λt > 0 is the

intensity parameter, or the mean, of the baseline Poisson distribution . The probability mass

function (pmf) of the ZIP distribution can also be written as

fYt(yt) = ωtI{yt=0} + (1− ωt)
e−λtλytt
yt!

, (6)

where I{yt=0} is in an indicator function.
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Note that (5) is a mixture of a degenerate distribution with point mass at zero and Poisson

distribution. Hence, defining a new binary variable, say vt, that takes the value zero if yt

comes from the Poisson distribution and the value one if yt comes from the degenerate

distribution, we have

vt ∼ Bernoulli(ωt), (7)

so that

Yt|vt ∼ Poisson((1− vt)λt), (8)

where v′ts are assumed to be independent. From (7) and (8), we can see that if ωt is zero,

the ZIP distribution becomes the ordinary Poisson distribution.

Furthermore, for any integer yt ≥ 0, the cumulative distribution function (cdf) of Yt for

t = 1, . . . , n is given by

FYt(yt) = Pr(Yt ≤ yt)

=

yt∑

m=0

Pr(Yt = m)

= ωt + (1− ωt)e
−λt

yt∑

m=0

λmt
m!

. (9)

The first two moments can be derived using (7) and (8). The mean of Yt is given by

E(Yt) = E[E(Yt|vt)] = E[(1− vt)λt] = (1− ωt)λt,

and the variance of Yt is given by:

Var(Yt) = E[Var(Yt|vt)] + Var[E(Yt|vt)]

= E[(1− vt)λt] + Var[(1− vt)λt]

= (1− ωt)(1 + ωtλt)λt. (10)

Notice that unless ωt = 0, the variance is greater than the mean. Thus, the zero inflation

results in overdispersion, which cannot be captured by the ordinary Poisson distribution.
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Following GLM (Nelder and Wedderburn, 1972), the regression model to the ZIP dis-

tributed random variables is fitted using the proposed method by Lambert (1992). The idea

is to simultaneously fit two GLM’s for: 1) the intensity parameter λt, with the logarithmic

link function, and 2) the zero-inflation parameter ωt for t = 1, . . . , n with the logit link

function, which are given by

log (λt) = β′xt, (11)

and

logit(ωt) = log
( ωt
1− ωt

)
= γ ′zt, (12)

where xt = (x1t, . . . , xkt)
′ and zt = (z1t, . . . , zlt)

′ are the associated covariates that affect

the intensity parameter λt and the zero-inflation parameter ωt, respectively. In addition,

β′ = (β1, . . . , βk) and γ ′ = (γ1, . . . , γl) are the regression coefficients for the log-linear

model given in (11) and the logit model given in (12), respectively. Note that, xt and zt are

not necessarily the same. Clearly when they are the same, this ZIP regression model has

twice as many parameters as the ordinary Poisson regression model. However, in the case

where the zero-inflation parameter does not depend on covariates, then vector reduce to a

scaler that takes the value one, i.e. zt = 1 for t = 1, . . . , n (Lambert, 1992).

2.2.2 ZERO-INFLATED NEGATIVE BINOMIAL DISTRIBUTION

Although the ZIP distribution is the most popular candidate to handle zero-inflations,

other distributions are also considered in the literature due to the inflexibility associated with

the ZIP distribution. One of the drawbacks of ZIP is that it cannot deal with over-dispersion

especially among the non-zero values that come from the Poisson distribution. And when

the counts are dependent, the ZIP parameter estimates can be biased (Yau et al., 2003).

An alternative is to replace the one parameter Poisson distribution with the two parameter

negative binomial distribution resulting in ZINB distribution.

The ZINB distribution (or the NB distribution) has always been the natural second

choice after the ZIP distribution (or the Poisson distribution) since it has the ability to handle

the over-dispersion among the count data. We say Yt is distributed as ZINB(ωt, λt, κt),

the zero inflated negative binomial with parameters ωt, λt and κt if the pmf is given by

fYt(yt) = ωtI{yt=0} + (1− ωt)
Γ(κt + yt)

Γ(κt)yt!

( κt
κt + λt

)κt( λt
κt + λt

)yt
, (13)
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where ωt ∈ [0, 1] is the zero-inflation parameter, λt > 0 is the intensity parameter, or the

mean, of the baseline negative binomial distribution, and finally κt ≥ 0 is the dispersion

parameter.

For any integer yt ≥ 0, the cdf of Yt for t = 1, . . . , n is given by

FYt(yt) = ωt +
(1− ωt)

Γ(κt)

( κt
κt + λt

)κt yt∑

m=0

Γ(κt +m)

m!

( λt
κt + λt

)m
. (14)

The moments can be derived via a latent variable as with the ZIP distribution. Let vt for

t = 1, . . . , n takes the value zero if yt comes from the NB distribution and the value one if

yt comes from the degenerate distribution at point mass zero. Then, the latent variable vt is

distributed as

vt ∼ Bernoulli(ωt),

so that

Yt|vt ∼ NB(κt, (1− vt)λt).

Then based on this hierarchical representation, the mean of the ZINB distributed random

variable Yt is given by:

E(Yt) = E[E(Yt|vt)] = (1− ωt)λt,

and the variance of Yt is given by:

Var(Yt) = E[Var(Yt|vt)] + Var[E(Yt|vt)]

= (1− ωt)(1 + ωtλt + λt/κt)λt. (15)

Here, regardless of ωt value, the variance of Yt is always greater than the mean. This

suggests that the overdispersion if found in the count data would be always captured by the

ZINB distribution.

We will simultaneously fit three GLM’s for: 1) the intensity parameter λt, with the

logarithmic link function, 2) the zero-inflation parameter ωt for t = 1, . . . , n with the logit

link function, and finally 3) the dispersion parameter κt, with the logarithmic link function
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just like the intensity parameter. That is,

log (λt) = β′xt, (16)

logit(ωt) = log
( ωt
1− ωt

)
= γ ′zt, (17)

and

log(κt) = α′wt, (18)

where xt = (x1t, . . . , xkt)
′, zt = (z1t, . . . , zlt)

′ and wt = (w1t, . . . , wmt)
′ are the associated

covariates that affect the intensity parameter λt, the zero-inflation parameter ωt, and the

dispersion parameter κt, respectively. In addition, β = (β1, . . . , βk)
′, γ = (γ1, . . . , γl)

′ and

α = (α1, . . . , αm)
′ are the regression coefficients for the log-linear model given in (16), the

logit model given in (17) and the log-linear model given in (18), respectively.

2.2.3 ZERO-INFLATED CONWAY-MAXWELL-POISSON DISTRIBUTION

Recently, Sellers and Raim (2016) have introduced ZICMP model, which essentially

replaces the Poisson distribution in the ZIP model by the Conway-Maxwell-Poisson (CMP)

distribution (Conway and Maxwell, 1962; Shmueli et al., 2005). Note that ZICMP is a

generalization of ZIP since the Poisson distribution is a special case of CMP distribution.

An added advantage of ZICMP is that it not only can handle over-dispersion but also under-

dispersion in the counts. The ZICMP is highly flexible because it allows the dispersion to

be in any direction.

The probability mass function of the zero inflated CMP distribution with parameters ωt

, λt and κt (ZICMP (ωt, λt, κt)) is given by

fYt(yt) = ωtI{yt=0} + (1− ωt)
λytt

(yt! )κtZ(λt, κt)
, (19)

where as before ωt ∈ [0, 1] is the zero-inflation parameter, and λt ≥ 0, κt ≥ 0 are the

parameters of the underlying CMP distribution. The infinite series Z(λt, κt) =
∑∞

j=0
λjt

(j!)κt

is the normalizing function of the CMP distribution.
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For any integer yt ≥ 0, the cdf of Yt for t = 1, . . . , n is given by

FYt(yt) = ωt +
(1− ωt)

Z(λt, κt)

yt∑

m=0

λmt
(m! )κt

. (20)

The moments of the CMP distribution are not in a closed formed. However approximations

have been suggested (see Shmueli et al. 2005 for more details). Assuming that vt is

distributed as CMP (λt, κt) for t = 1, . . . , n with the first and second moments given in

Shmueli et al. (2005) by

E(vt) = λt
∂ logZ(λt, κt)

∂λt
,

E(v2t ) =
λt∂E(vt)

∂λt
+ [E(vt)]

2.

Hence, the expected value of the ZICMP is given by

E(Yt) = (1− ωt)E(vt),

and the variance

Var(Yt) = E(Y 2
t )− [E(Yt)]

2

= (1− ωt)E(v
2
t )− (1− ωt)

2[E(vt)]
2

= (1− ωt)
λt∂E(vt)

∂λt
+ (1− ωt)[E(vt)]

2 − (1− ωt)
2[E(vt)]

2

= (1− ωt)
(λt∂E(vt)

∂λt
+ ωt[E(vt)]

2)
)
,

where the expected of the CMP, i.e. E(vt) is approximated by

E(vt) ≈ λ
1/κt
t − κt − 1

2κt
.

Using this approximation, one can approximate the expected value and variance of the

ZICMP by

E(Yt) ≈ (1− ωt)
(
λ
1/κt
t − κt − 1

2κt

)
,
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Var(Yt) ≈ (1− ωt)
[λ1/κtt

κt
+ ωt

(
λ
1/κt
t − κt − 1

2κt

)2]
. (21)

Similar to the ZINB, the ZICMP regression model uses the same link functions given

in (16), (18) and (17). In the next section, we will describe the use of copulas to construct

multivariate distributions for a time series of count variables with given zero-inflated

marginal distributions.

2.3 COPULAS

The multivariate normal distribution is a natural extension of the univariate normal

distribution to higher dimensions and it plays a central role in statistical theory. However,

there is not one but several multivariate extensions of univariate discrete distributions to

higher dimensions. And copulas facilitate such extensions and construction of mutivariate

distributions with given continuous or discrete marginals, to model various types of depen-

dence. An extensive and detailed discussion of copulas is contained in Joe (2014). A n

dimensional copula C(a1, a2, . . . , an) : [0, 1]
n → [0, 1] is simply a multivariate cdf with

all n univariate marginals uniform on the unit interval, and it satisfies the following three

properties.

1. C(1, . . . , ut, . . . , 1) = ut, for ut ∈ [0, 1], and t = 1, 2, . . . , n.

2. C(u1, u2, . . . , un) = 0 if at least one ut = 0 for t = 1, 2, . . . , n.

3. For any ut1 , ut2 ∈ [0, 1] with ut1 ≤ ut2 , for t = 1, 2, . . . , n,

2∑

j1=1

2∑

j2=1

. . .
2∑

jn=1

(−1)j1+j2+···+jnC(u1j1 , u2j2 . . . , unjn) ≥ 0.

Property 3 ensures that probability of n-dimensional rectangles is non-negative. Suppose

Ft is the cdf of Yt for t = 1, 2, . . . , n. Then a multivariate cdf for Y = (Y1, Y2, . . . , Yn) is

given by

F (y1, y2, . . . , yn) = C(F1(y1), F2(y2), . . . , Fn(yn)).

If the marginal distributions Ft(·)’s are continuous with pdfs ft(·)’s then the density function

is given by
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f(y1, y2, . . . , yn) = c(F1(y1), F2(y2), . . . , Fn(yn))
n∏

t=1

ft(yt), yt ∈ R,

where c is the copula density given by c(u) = ∂C(u)/∂u, where u = (u1, . . . , un), and

0 ≤ ut ≤ 1 for t = 1, . . . , n. When all the margins are integer valued as given on page 27,

Joe (2014), the multivariate probability mass function can be obtained as

f(y1, y2, . . . , yn) = P (Y1 = y1, Y2 = y2, . . . , Yn = yn)

=
2∑

j1=1

2∑

j2=1

. . .
2∑

jn=1

(−1)j1+j2+···+jnC(u1j1 , u2j2 . . . , unjn), (22)

where ut1 = Ft(yt) and ut2 = Ft(yt−). The term Ft(yt−) is the left-hand limit of Ft at yt,

which is equal to Ft(yt − 1) when Yt is integer valued random variable. A comprehensive

list of copulas can be found in Nelsen (2007) and Joe (2014). Next, we review some of

these that are used in this dissertation.

2.3.1 COPULA FUNCTIONS

There are numerous copulas available, and one of the most popular copulas in the

literature is the Gaussian copula. The Gaussian copula shares many of the properties of

multivariate normal (Gaussian) distribution such as the correlation structure. Therefore,

the flexibility to manipulate the association structure by using the Gaussian copula will be

taken advantage of. This copula and other copula functions are defined next.

Gaussian Copula

The copula associated with standard multivariate Gaussian distribution called Gaussian

copula, and its function is given by

C(u1, . . . , un) = ΦR(Φ
−1(u1), . . . ,Φ

−1(un)), ∀ui ∈ [0, 1], (23)
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where Φ−1 is the inverse CDF of a standard normal and ΦR is the joint CDF of a stan-

dard multivariate normal distribution with covariate matrix equal to the positive definite

correlation matrix R. The Gaussian copula density is defined as:

c(u1, . . . , un) =
φR(Φ

−1(u1), . . . ,Φ
−1(un);R)∏n

t=1 φ(Φ
−1(ut))

, ∀ui ∈ [0, 1],

where φ is the pdf of a standard normal and φR is the joint pdf of a standard multivariate

normal distribution.

When the dimension n = 2, the bivariate Gaussian copula with correlation parameter

reduces to a scaler, ρ, is given by

C(u1, u2; ρ) = Φρ(Φ
−1(u1),Φ

−1(u2)), ,

for ui ∈ [0, 1], i = 1, 2 and −1 ≤ ρ ≤ 1. The density function given as

c(u1, u2; ρ) =
Φρ(Φ

−1(u1),Φ
−1(u2))

φ(Φ−1(u1))φ(Φ−1(u2))
.

The conditional distribution is then given by

C(u1|u2; ρ) = Φ
(Φ−1(u1)− ρΦ−1(u2)√

1− ρ2

)
.

Bivariate Frank Copula

The bivariate Frank copula (Frank, 1979) is given by

C(u1, u2; δ) =
1

δ
log

(1− e−δ − (1− e−δu1)(1− e−δu2)

1− e−δ

)
,

for ui ∈ [0, 1], i = 1, 2 and −∞ < δ <∞. The density is then given by

c(u1, u2; δ) =
δ(1− e−δ)e−δ(u1+u2)

1− e−δ
.

The conditional distribution function of the Frank copula is given by

C(u1|u2; δ) = e−δu2 [(1− e−δ)(1− e−δu1)−1 − (1− e−δu2)]−1.
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Bivariate Plackett Copula

The bivariate Plackett copula (Plackett, 1965; Mardia, 1967) is given by

C(u1, u2; δ) =
1

2(δ − 1)
{1 + (δ − 1)(u1 + u2)−

[(1 + (δ − 1)(u1 + u2))
2 − 4δ(δ − 1)u1u2]

1/2},

for ui ∈ [0, 1], i = 1, 2 and 0 ≤ δ <∞. The density is then given by

c(u1, u2; δ) =
δ[1 + (δ − 1)(u1 + u2 − 2u1u2)]

[(1 + (δ − 1)(u1 + u2))2 − 4δ(δ − 1)u1u2]3/2
.

The conditional distribution function of the Plackett copula is given by

C(u1|u2; δ) =
1

2
− 1

2

(δ − 1)u2 + 1− (δ + 1)u1
[(1 + (δ − 1)(u1 + u2))2 − 4δ(δ − 1)u1u2]1/2

.

Bivariate Gumbel Copula

The bivariate Gumbel copula (Gumbel, 1960) is given by

C(u1, u2; δ) = exp {−([− log u1]
δ + [− log u2]

δ)1/δ},

for ui ∈ [0, 1], i = 1, 2 and 1 ≤ δ <∞. The density is then given by

c(u1, u2; δ) = exp {−[xδ + yδ]1/δ}

×[(xδ + yδ)1/δ + δ − 1][xδ + yδ]1/δ−2(u1u2)
−1,

where x = − log u1, y = − log u2.

The conditional distribution function of the Gumbel copula is given by

C(u1|u2; δ) =
1

u2
exp {−[xδ + yδ]1/δ}[1 + (x/y)δ]1/δ−1.
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The bivariate reflected or survival Gumbel copula is given by

C(u1, u2; δ) = u1 + u2 − 1 + exp {−([− log u1]
δ + [− log u2]

δ)1/δ}.

Mixtures of Max-id Copula

If the gaol is to construct a multivariate copula function with closed form expression,

one can use the idea of mixing max-infinitely divisible (max-id) distributions (Joe and Hu,

1996). A multivariate distribution is called max-id if all its powers are positive and also

proper distribution function. Let H be max-id n−variate copula, and let ψ be the Laplace

transform (LT) function of a positive random variable. Then, a multivariate distribution is

given by

Fψ,H =

∫ ∞

0

HstdFS(s) = ψ(− logH), t ≥ 0,

for some positive random variable s ∼ FS with a copula function given by

Cψ,H(u1, . . . , un)

= ψ
(
− logH(exp {−ψ−1(u1)}, . . . , exp {−ψ−1(un)})

)
, (24)

for all ui ∈ [0, 1]. Several special cases of (24) have been studied and applied to different

applications. The Archimedean copula is one example and can be given by

Cψ,H(u1, . . . , un) = Fψ,H

( n∑

i=1

F−1
ψ,H(ui)

)
.

Joe and Hu (1996) extended the Archemedian copula to a class of copulas through mixing

max-id copula with the form

Cψ,H(u1, . . . , un)

= ψ
(
−

∑

1≤i<j≤n

logHij(e
−piψ

−1(ui), e−piψ
−1(uj)) +

n∑

i=1

vipiψ
−1(ui)

)
, (25)
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where pi = (vi + n− 2)−1, i = 1, . . . , n, and vi is usually non-negative parameter and can

be fixed.

An application using the max-id copula in (25), would be in the case of constructing the

transition probability of Markov chains with the one-parameter LT functions chosen to be

the positive stable and logarithmic series, which are defined as follow. The positive stable

function is given by

ψ(s) = exp {−s1/δ}, δ ≥ 1,

with corresponding functional inverse given by

ψ−1(t) = (− log t)δ.

The logarithmic series function is given by

ψ(s) = −θ−1 log [1− (1− e−δe−s], δ ≥ 0,

with corresponding functional inverse given by

ψ−1(t) = − log
[1− e−δt

1− e−δ

]
.

Further detials on such a problem will be discussed in Chapter 4. For further discussions

on the copula functions in general and their properties, one can refer to Nelsen (2007) and

Joe (2014).

2.3.2 COPULA-BASED COUNT TIME SERIES MODELS

Employing copula to build the correlation structure of continuous time series data has

been proposed by many (see for examples, Joe 2014, Guolo and Varin 2014, and Patton

2009). However, for count time series data still not as much literature as in the continuous

case due to computational complexity. Joe (2016) suggested copula-based Markov model for

time series of counts. Masarotto and Varin (2012) introduced marginal regression models for

count time series data with the serial dependence being captured by a Gaussian copula, with

a correlation matrix corresponding to a stationary autoregressive moving average (ARMA)

process. They preformed statistical inference through an approximated likelihood function
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using sequential importance sampling technique. Lennon (2016) and Jia et al. (2018) also

applied the same models but suggested different estimation methods including approximate

Bayesian computation of the likelihood function and pseudo Gaussian likelihood estimation.

Next, in Chapter 3, we extend the work done in Masarotto and Varin (2012) by including

a class with zero-inflated distributions such as the ZIP, ZINB and ZICMP distributions

whereas the joint distribution is modeled under Gaussian copula with autoregression moving

average (ARMA) errors. In Chapter 4, we introduce a similar class of Markov models to

the one in Joe (2016) but with zero-inflated margins. The chapter concentrates on building

a class of Markov zero-inflated count time series models based on a joint distribution on

consecutive observations. The joint distribution function of the consecutive observations is

constructed through copula functions such as the Gaussian, Frank, Gumbel copula functions.
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CHAPTER 3

REGRESSION MODEL FOR ZERO-INFLATED COUNT TIME

SERIES USING GAUSSIAN COPULA

3.1 INTRODUCTION

Masarotto and Varin (2012) describe Gaussian copula model that underlines the re-

gression setting when covariates are present to model time series data. That is, consider

a general regression model with zero-inflated count time series Yt as response variable,

and Xt as vectors of covariates or independent variables, then the regression model can be

represented as:

Yt = g(Xt, ǫt;θ), for t = 1, . . . , n,

where g(.) is a function of the covariates Xt and the stochastic latent variable or error ǫt,

which capture the serial dependence. The parameter θ is a vector of the marginal regression

coefficients.

3.2 THE MODEL

We follow the ideas in Masarotto and Varin (2012) and extend them to construct

a regression model for zero-inflated time series count data in the presence of covariates.

Suppose that the errors ǫt for t = 1, . . . , n follow a stationaryARMA(p, q) process, given in

(2), with Gaussian noise, ηt for t = 1, . . . , n that are independent and identically distributed

normal random variables with variance σ2
η . Then the error vector ǫ = (ǫ1, . . . , ǫt)

′ follows a

multivariate normal distribution with mean 0 and covariance matrix R(ρ) where ρ = (ϕ, δ)

is a function of the ϕ = (ϕ1, . . . , ϕp)
′ and δ = (δ1, . . . , δq)

′, the autoregressive and moving

average vector of parameters, respectively. As in Masarotto and Varin (2012), we make the

assumption σ2
η = h(ρ) so that R(ρ) will be a correlation matrix, where h(ρ) is given in (4)

but with γ(0) = 1.



25

Consider as a special case the process ARMA(1, 0) (or AR(1)). Here the process ǫt is

governed by

ǫt = ϕǫt−1 + ηt.

With the assumption σ2
η = 1− ϕ2, the correlation matrix takes the form

R(ρ) = R(ϕ) = [ϕ|i−j| ],

which is known as autoregressive of order one. Note that the marginally ǫt is standard normal

and the joint cdf of the vector ǫ = (ǫ1, . . . , ǫt)
′ is multivariate normal with mean 0 and

covariance matrix R(ρ). Thus the cdf of ǫ is ΦR(ρ)(ǫ1, ǫ2, . . . , ǫn) and the induced copula

is the Gaussian copula in (23), since ut = Φ(ǫt) is uniform on [0, 1] for t = 1, 2, . . . , n.

Let Ft be one of the cdfs given in (9), (14) or (20). Following Masarotto and Varin

(2012), a general regression model for the zero-inflated count Yt is

Yt = F−1
t {Φ(ǫt)|Xt;θ}, for t = 1, . . . , n, (26)

where

F−1
t (u) = inf {z ∈ R : Ft(z) ≥ u}, u ∈ (0, 1)

is the generalized inverse (quantile function) of the cdf Ft. The vector Xt = (xt, zt,wt)
′

consists of covariates corresponding to the intensity (mean) parameter λt, the zero-inflation

parameter ωt and the dispersion parameter κt if exists, respectively. Notice that some of

the covariates could be constant across time. The vector θ = (β,γ,α)′ is the unknown

regression parameter that needs to be estimated from the data.

Constructing the model in (26) in such a way ensures that the zero-inflated count Yt

follows the desired distribution Ft(.) by the integral transformation theorem. Such model

appears in the literature under different names (see for examples, Masarotto and Varin,

2012, Jia et al., 2018, and Lennon and Yuan, 2019). Generally, the model falls under the

class of nonlinear state-space model since the zero-inflated counts, {Yt} are assumed to be

generated using a nonlinear function of the latent or state ARMA process, {ǫt}.

Another representation of such model is as follow. Assume we know the latent variable

ǫt, then the zero-inflated count, yt, is the smallest integer for which the cdf of yt is greater
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than or equal to Φ(ǫt), i.e. Ft(yt|Xt;θ) ≥ Φ(ǫt), which is proportional to

Φ−1(Ft{yt − 1|Xt;θ}) < ǫt ≤ Φ−1(Ft{yt|Xt;θ}), for t = 1, . . . , n.

That is, the zero inflated count time series are given by

Yt =




0, if 0 < ut ≤ Ft{0|Xt;θ}),

yt, if Ft{yt − 1|Xt;θ} < ut ≤ Ft{yt|Xt;θ}, yt = 1, 2, . . . ,

where ut = Φ(ǫt) ∈ (0, 1), or equivalently

Yt =




0, if −∞ < ǫt ≤ Φ−1(Ft{0|Xt;θ}),

yt, if Φ−1(Ft{yt − 1|Xt;θ}) < ǫt ≤ Φ−1(Ft{yt|Xt;θ}), yt = 1, 2, . . . ,

for t = 1, . . . , n.

Ft{0|Xt;θ} is the probability of Yt = 0 and is given by

P (Yt = 0|Xt;θ}) = ωt + (1− ωt)e
−λt ,

for the ZIP,

P (Yt = 0|Xt;θ}) = ωt +
(1− ωt)

Γ(κt)

( κt
κt + λt

)κt
Γ(κt),

for the ZINB, and

P (Yt = 0|Xt;θ}) = ωt +
(1− ωt)

Z(λt, κt)
,

for the ZICMP.

Note that since the counts are zero-inflated, the probability that the count is zero affects

the range of ǫt such that the range of ut when Yt = 0 is wider in comparison with Yt > 0.

In other words, the zero-inflation parameter ωt affects the range of ut when Yt = 0 whereas

the intensity parameter λt and the dispersion parameter κt (if existed) affect the ranges of

ut when Yt > 0.

The joint distribution function of the zero-inflated count time series, Yt, for t = 1, . . . , n

follows the Gaussian copula given in (23), that is,

F (y1, . . . , yn) = P (Y1 ≤ y1, . . . , Yn ≤ yn)
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= P (F−1
1 {Φ(ǫ1)|X1;θ} ≤ y1, . . . , F

−1
n {Φ(ǫn)|Xn;θ} ≤ yn)

= P (Φ(ǫ1) ≤ F1(y1|X1;θ), . . . ,Φ(ǫn) ≤ F1(yn|Xn;θ))

= P (ǫ1 ≤ Φ−1(F1(y1|X1;θ)), . . . , ǫn ≤ Φ−1(Fn(yn|Xn;θ)))

= ΦR(ρ)

(
Φ−1(F1(y1|X1;θ)), . . . ,Φ

−1(Fn(yn|Xn;θ))
)
, (27)

and it holds only if (26) holds.

In a linear regression model with normal errors, the correlation of the responses, say

Yt and Ys, agrees with the correlation of the corresponding errors, ǫt and ǫs for t 6= s.

However, in our model the function, F−1, is nonlinear, hence the correlation of Yt and Ys is

not necessarily linear function of the correlation of ǫt and ǫs. Jia et al. (2018) studied the

relationship between the autocorrelations of the two processes {Yt} and {ǫt} and defined a

function that links the autocorrelations of the two processes {Yt} and {ǫt} using Hermite

expansions. Next, we define the function for the ZIP, ZINB, and ZICMP distributions and

study the relationship of the autocorrelations of the zero-inflated counts {Yt} and the latent

{ǫt} process.

3.2.1 AUTOCORRELATION FUNCTION OF THE ZERO-INFLATED COUNTS

In the model (26), the serial dependence or autocorrelation of the observed zero-inflated

counts {yt} is captured through the latent process {ǫt}, which follows an ARMA process

with well known autocorrelation structure, which consists of the parameter vector ρ that

can be estimated. Hence, to obtain the autocorrelation of the observed zero-inflated count

process {Yt}, say ρY (t− s), one can define a function that links it to the autocorrelation

function of {ǫt}, say ρǫ(t − s) for t 6= s. Using Hermite expansions (see Chapter 4 of

Pipiras and Taqqu, 2017), Jia et al. (2018) derived a function that links the autocovariance

function of {yt}, i.e. γY (t − s) to autocovariance/autocorrelation function of {ǫt}, i.e.

γǫ(t− s) = ρǫ(t− s) for t 6= s, as follow

γY (t− s) =
∞∑

k=1

k! gk,t(θ)gk,s(θ)(γǫt(t− s))k
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=
∞∑

k=1

k! gk,t(θ)gk,s(θ)(ρǫ(t− s))k, (28)

for t 6= s and t, s = 1, . . . , n, where gk,t(θ)’s are the Hermite coefficients, and can be given

by

gk,t(θ) =
1

k!

∞∑

m=0

φ{Φ−1(Ft(m|Xt;θ))}Hk−1{Φ−1(Ft(m|Xt;θ))}, (29)

as defined in Jia et al. (2018), where Hk(.) is the Hermite polynomial and is given by

Hk(z) = (−1)kez
2/2 d

k

dzk

(
e−z

2/2
)
, z ∈ R.

Hence, the autocorrelation function of the zero-inflated counts is given by

ρY (t− s) =
γY (t− s)√

γY (t, t)γY (s, s)

=

∑∞
k=1 k! gk,t(θ)gk,s(θ)(ρǫ(t− s))k√

γY (t, t)γY (s, s)
, (30)

where γY (t, t) is the variance of Yt at time t for t = 1, . . . , n, and given in (10), (15), or

(21) for the ZIP, ZINB, or ZICMP.

Note that if ρǫ(t− s) = 0, then ρY (t− s) = 0, and if ρǫ(t− s) = 1, then

ρY (t− s) =

∑∞
k=1 k! gk,t(θ)gk,s(θ)√
γY (t, t)γY (s, s)

=

√
γY (t, t)γY (s, s)√
γY (t, t)γY (s, s)

= 1.

However, when ρǫ(t − s) = −1, ρY (t − s) is not necessarily −1. Proof of (28) can be

found in page 285, Pipiras and Taqqu (2017).

The following conclusions mentioned in Masarotto and Varin (2012) can be drawn from

(30).

1. Given the covariates Xt and Xs, Yt and Ys are independent if ǫt and ǫs are uncorre-

lated.
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2. Given the covariates Xt and Xs, the sign of the autocorrelation between Yt and Ys is

the same as the one corresponding to the autocorrelation between ǫt and ǫs.

3. Given the covariates Xt and Xs, the absolute value of the autocorrelation between ǫt

and ǫs is greater or equal than the one corresponding to the autocorrelation between

Yt and Ys, i.e.

|ρY (t− s)|≤ |ρǫ(t− s)|.

These conclusions provide an advantage of using this model over an observation driven

model for instance in term of interpretation. In addition, the first property indicates that if

the latent process, ǫt, follows an AR(1), for example, then the response Yt only depends on

Yt±1 for t = 1, . . . , n. The second property is obvious given the non-decreasing function

used in the model (26).

Note that when there are no covariates and the zero-inflated count process {Yt} is

assumed to be stationary, then (30) becomes

ρY (h) =
1

γY (0)

∞∑

k=1

k! gk(θ)
2(ρǫ(h))

k (31)

for h = 0,±1,±2, . . . where

gk(θ) =
1

k!

∞∑

m=0

φ{Φ−1(F (m;θ))}Hk−1{Φ−1(F (m|θ))}.

Next, we calculate the Hermite coefficients for the ZIP, ZIINB, and ZICMP marginals,

and study the relationships between the autocorrelation of the underlined process {ǫt} and

the autocorrelation of the observed process {Yt} following one of the ZIP, ZIINB, and

ZICMP marginals. First, the expressions in (29) and (30) involve finite summation terms,

thus we truncate these terms as suggested in Jia et al. (2018) as follow. For the Hermite

coefficients in (29), the distribution function Ft(m|Xt;θ) converges to one relatively

quickly as m → ∞ because we are considering zero-inflated marginal distributions that

have light tails. Therefore, the finite summation in (29) is truncated by m(θ)− 1, where

m(θ) is the smallest value for which the distribution function Ft(.) is approximately

one. For m ≥ m(θ), the terms φ{Φ−1(Ft(m|Xt;θ))}Hk−1{Φ−1(Ft(m|Xt;θ))} in (29)

are approximately zero and can be omitted. For the link function in (30), its right hand

is multiplied by ρǫ(h)
k, and when ρǫ(h) is relatively small (which is the case for most
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{ǫt} considered for the zero-inflated counts), the terms k! gk,t(θ)gk,t+h(θ)(ρǫ(h))
k are

approximately zeros for large values of k. Thus, truncating the summation in (30) by an

appropriate value, say K, will not affect the calculation of the link function.
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Figure 2: The relationship between ρǫ(h) and ρY (h) using (31) for the ZIP distribution with

ω = 0.2, 0.4, 0.6, and 0.8 and λ = 4 (top) and ω = 0.25 and λ = 2, 4, 6, and 8 (bottom)

Figure 2 plots the link function in (31) that describes the relationship between the
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autocorrelation functions of the state or latent process {ǫt} and the zero-inflated count

process {Yt} following the ZIP distribution. After truncating the summation in the link

function given in (31) by several values of K, we decided to choose K = 25 because no

significant changes occurred when choosing K > 25. The left graph shows the relationship

between autocorrelation functions when fixing λ at 4, and changing the values of ω. One

can see that as the zero-inflation parameter ω decreases, the line tends to be more linear,

i.e. ρǫ(h) ≈ ρY (h), especially when ρǫ(h) ∈ (0, 1). However, when ρǫ(h) ∈ (−1, 0), the

difference between ρǫ(h) and ρY (h) increases as ω increases, which suggests that negative

serial dependence among zero-inflated counts is quite unusual. On the other hand, fixing ω

at 0.25 and changing the value of λ as shown in the right graph of Figure 2, one can see

minor changes on the line as λ increases. In general, as the mean of the zero-inflated count,

Yt, increases the difference between ρǫ(h) and ρY (h) decreases.

Figures 3 and 4 show that similar conclusions can be drown when considering the ZINB

and ZICMP distribution. The zero-inflated parameter ω plays a significant rule in affecting

the relationship between ρǫ(h) and ρY (h). In addition, when the numerical value of ρY (h)

deviates from the theoretical value as in the case when ρǫ(h) = 1, Jia et al. (2018) suggested

partial correction of the numerical value of ρY (h). This occurs mostly when the value of

ρǫ(h) is close to one, which is quite rare since we are dealing with low counts (zero-inflated)

that usually do not observe strong serial dependence (Joe, 2016).
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Figure 3: The relationship between ρǫ(h) and ρY (h) using (31) for the ZINB distribution

with ω = 0.2, 0.4, 0.6, and 0.8 and λ = 4 (top) and ω = 0.25 and λ = 2, 4, 6, and 8
(bottom). The dispersion parameter κ = 3 always.
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Figure 4: The relationship between ρǫ(h) and ρY (h) using (31) for the ZICMP distribution

with ω = 0.2, 0.4, 0.6, and 0.8 and λ = 4 (top) and ω = 0.25 and λ = 2, 4, 6, and 8
(bottom). The dispersion parameter κ = 0.9 always.
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3.3 STATISTICAL INFERENCE

3.3.1 PARAMETER ESTIMATION

We intend to estimate the parameter vectors ϑ = (θ,ρ)′ using a maximum likelihood

estimation (MLE) method. Based on the probability density function define in (22), the

likelihood function is given by

L(ϑ;y) = Pr(Y1 = y1, . . . , Yn = yn)

=
1∑

j1=0

. . .
1∑

jn=0

(−1)j1+···+jnF (y1 − j1, . . . , yn − jn), (32)

where F (y1, . . . , yn) for jt = 0, 1 is given in (27), and can be expressed as

ΦR(ρ)(D+
1 , . . . ,D+

n ) =

∫ D+

1

−∞

. . .

∫ D+
n

−∞

φR(ρ)(ǫ1, . . . , ǫn)dǫ1 . . . dǫn, (33)

where D+
t = Φ−1{Ft(yt|Xt;θ)}. Therefore, maximizing (32) requires the evaluation of 2n

multivariate distribution functions, and with time series data usually n is quite large so the

number of functions will be astronomically large and almost impossible to be optimized. In

addition, straightforward optimization methods of the likelihood function are not available

yet due to the many-to-one mapping given in (26). In addition, calculating the finite

difference in (32) numerically might result in negative values when the dimension is large

(Nikoloulopoulos, 2016).

However, for some cases where the copula functions do not have a closed form, the

probability density function can be evaluated by integration over a rectangle (Panagiotelis

et al., 2012). In fact, for the Gaussian copula with discrete margins, the likelihood function

is given by the following n-dimensional rectangular integral

L(ϑ;y) = Pr(Y1 = y1, . . . , Yn = yn)
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=

∫

D1(y1;θ)

. . .

∫

Dn(yn;θ)

φR(ρ)(ǫ1, . . . , ǫn)dǫ1 . . . dǫn,

=
1√

|R(ρ)|(2π)n

∫

D1(y1;θ)

. . .

∫

Dn(yn;θ)

e−
1

2
ǫ′R(ρ)−1ǫdǫ (34)

where

Dt(yt;θ) = [Φ−1{Ft(y−t |Xt;θ)},Φ−1{Ft(yt|Xt;θ)}] (35)

for t = 1, . . . , n and φR(ρ)(.) is the probability density function of an n-dimensional normal

distribution with zero mean vector and a variance covariance matrix given by R(ρ). For

small n, notable works have been done on precisely approximating the normal integral

given in (34) (see for examples, Joe 1995 and Genz 1992). However, for large n, as of

the case for time series data, evaluating the likelihood function using these deterministic

approximations is computationally intensive and is inefficient especially when the number

of covariates is large.

Recently, several techniques emerged to estimate copula based multivariate models with

large dimension. Some of these techniques employ Monte Carlo approximation methods

to obtain the ML estimates of the parameter such as the Monte Carlo EM algorithm by

Lennon (2016) and the sequential importance sampling by Masarotto and Varin (2012)

and Jia et al. (2018). Jia et al. (2018) also suggested applying pseudo Gaussian likelihood

estimation method that is both simpler than the sequential importance sampling method and

comparable to in terms of efficiency. Bayesian estimation methods were also considered

for estimating Gaussian copula models in Pitt et al. (2006). Panagiotelis et al. (2012)

extended the the principles of vine pair copula constructions to discrete margins, which

significantly reduced the computational burden of evaluating the 2n multivariate copulas to

just evaluating 2n(n− 1) bivariate copula functions. Lennon (2016) applied the pair copula

construction technique to time series of count with negative binomial margins. Here we

obtain the ML estimates of our model’s parameters using sequential importance sampling

that was suggested by Masarotto and Varin (2012). In the next subsection, we describe the

sequential importance sampling method used to approximate the likelihood function for the

zero-inflated count responses and discuss in details some special cases.

3.3.2 SEQUENTIAL IMPORTANCE SAMPLING
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Masarotto and Varin (2012) argued that applying simple Monte Carlo approximations of

the likelihood given in (34) used in importance sampling (IS) are quite inefficient. However,

they suggested sequential importance sampling method inspired by the popular Geweke-

Hajivassiliou-Keane (GHK) algorithm (Geweke, 1991; Hajivassiliou et al., 1996; Keane,

1994) which was proven to be quite efficient in approximating the multivariate probability

integral given in (34). They assumed sampling from the following truncated normal density

given by

ft(ǫt|yt, ǫt−1, . . . , ǫ1;ρ), t = 1, . . . , n (36)

as a replacement of the difficult to control, ft(ǫt|yt, yt−1, . . . , y1;ρ) over the interval given

in (35). In addition, since we assume that the joint distribution of the errors is multi-

variate normal distribution with variance covariance matrix R(ρ), the conditional density

φ(ǫt|ǫt−1, . . . , ǫ1;ρ) is of univariate normal distribution with mean

mt = E(ǫt|ǫt−1, . . . , ǫ1) (37)

and variance

v2t = Var(ǫt|ǫt−1, . . . , ǫ1), (38)

for t = 1, . . . , n. The quantities mt and v2t can be efficiently obtained through the Cholesky

decomposition of R(ρ). That is, letting ǫ = Lz where z ∼ Nn(0, In), in which LL′ is the

Cholesky decomposition of the covariance matrix R(ρ) since it is assumed that R(ρ) here

is a symmetric positive definite matrix, i.e. R(ρ) = LL′. In addition, L is a lower triangular

matrix with real and positive diagonal elements, i.e.

L =




l11 0 0 . . . 0 0

l21 l22 0 . . . 0 0

l31 l32 l33 . . . 0 0
...

...
...

. . .
...

...

ln−11 ln−12 ln−13 . . . ln−1n−1 0

ln1 ln2 ln3 . . . lnn−1 lnn



n×n

,
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with the components are generally given by

ltt =
(
rtt −

t−1∑

j=1

l2tj

)1/2

, ∀t, (39)

and

lit =
1

ltt

(
rit −

t−1∑

j=1

lijltj

)
, ∀i > t, (40)

where rit are the components of the correlation matrix R(ρ). Also,

ǫ′R(ρ)−1ǫ = z′L′(LL′)−1Lz = z′L′(L′)−1L−1Lz = z′z,

and

dǫ = dLz = |L|dz = |R(ρ)|1/2dz.

Hence, if D− ≤ ǫ ≤ D+, where

D− = (Φ−1{F1(y
−
1 |Xt;θ)}, . . . ,Φ−1{Fn(y−n |Xt;θ)})′,

and

D+ = (Φ−1{F1(y1|Xt;θ)}, . . . ,Φ−1{Fn(yn|Xt;θ)})′,

then D− ≤ Lz ≤ D+ ⇐⇒ L−1D− ≤ z ≤ L−1D+. That is,




D−

1

l11
D−

2
−l21z1
l22
...

D−

n −
∑n−1

t=1
lntzt

lnn



≤




z1

z2
...

zn



≤




D+

1

l11
D+

2
−l21z1
l22
...

D+
n−

∑n−1

t=1
lntzt

lnn




Thus, following Genz (1992)’s transformation method, the multivariate integral given in

(34) can be expressed as:

L(ϑ;y) =
1√
(2π)n

∫ b′
1

a′
1

e−
z2
1
2

∫ b′
2
(z1)

a′
2
(z1)

e−
z2
2
2 . . .

∫ b′n(z1,...,zn−1)

a′n(z1,...,zn−1)

e−
z2n
2 dz,
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with

a′t(z1, . . . , zt−1) =
D−
t −

∑t−1
j=1 ltjzj

ltt

and

b′t(z1, . . . , zt−1) =
D+
t −

∑t−1
j=1 ltjzj

ltt

Now, we can transform the zt’s separately using Masarotto and Varin (2012)’s idea by

setting zt = ǫt(ut) where ǫt(ut) is given by

ǫt(ut) = mt + vtΦ
−1{(1− ut)at + utbt}, t = 1, . . . , n (41)

to draw from the truncated normal density given in (36) where u1, . . . , un are n independent

draws from a uniform random variable on the unit interval (0, 1),

at = Φ

[
Φ−1{Ft(y−t |Xt;θ)} −mt

vt

]
, (42)

and

bt = Φ

[
Φ−1{Ft(yt|Xt;θ)} −mt

vt

]
, (43)

for t = 1, . . . , n.

The likelihood function is then approximated by the following sequential sampler

algorithm.

1. For k = 1, . . . , K,

(a) generate n independent uniform(0, 1) random variables, u
(k)
1 , . . . , u

(k)
n ;

(b) compute the randomized errors ǫ
(k)
t = ǫt(u

(k)
t ) using (41);

2. estimate the likelihood by:

L̂(ϑ;y) =
1

K

K∑

k=1

{ n∏

t=1

φ(ǫ
(k)
t |ǫ(k)t−1, . . . , ǫ

(k)
1 ;ϑ)

ft(ǫ
(k)
t |yt, ǫ(k)t−1, . . . , ǫ

(k)
1 ;ϑ)

}
, (44)

where K denotes the number of replication. Börsch-Supan and Hajivassiliou (1993) give

a way to show that L̂(ϑ;y) is an unbiased estimator of L(ϑ;y). The following lemma is
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similar to the one in their paper.

Lemma 1. The likelihood approximation L̂(ϑ;y) given in (44) is an unbiased estimator of

L(ϑ;y).

Proof. It is sufficient to show the Lemma for K = 1. The expected value of L̂(ϑ;y) is

given by

E[L̂] =

∫
L̂(z)f(z)dz,

where f(z) denotes the sequential truncated draws that generate (36), i.e.

f(z) =
n∏

t=1

ft(zt|yt, zt−1, . . . , z1) if T (y) = D− ≤ Lz ≤ D+

= 0 otherwise.

By the definition of L̂, (44),

E[L̂] =

∫ ∞

−∞

( n∏

t=1

ft(zt|yt, zt−1, . . . , z1)

)

×
( n∏

t=1

φ(zt|zt−1, . . . , z1)

ft(zt|yt, zt−1, . . . , z1)

)
dz1 . . . dzn

=

∫ ∞

−∞

n∏

t=1

φ(zt|zt−1, . . . , z1)dz

=

∫

T (y)

n∏

t=1

φ(zt|zt−1, . . . , z1)dz

= Pr(D− ≤ Lz ≤ D+) = L(θ,ρ;y).

Therefore, L̂(ϑ;y) is an unbiased estimator of L(ϑ;y).

Thus, the maximum likelihood estimate of ϑ can be obtained by:

ϑ̂ = arg max
ϑ

L̂(ϑ;y). (45)

This optimization will yield a Hessian Matrix that can be inverted to obtain standard
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errors for the model parameters. Other possibilities of calculating the standard errors for

the model parameters are through the heteroscedasticity and autocorrelation consistent

sandwich estimators of the standard errors (Andrews, 1991) and a block bootstrapping

(Lahiri, 2013). The latter allows for deriving confidence intervals too, and under (26), a

block bootstrap of the process {Yt} corresponds to that of {ǫt} (Jia et al., 2018).

Special Cases: AR(1) and MA(1) Correlation Structures

As a special case of the proceeding algorithm, assume the latent process {ǫt} follows

an AR(1) process. The correlation matrix, R(ρ), is then given by

R(ρ) =




1 ϕ ϕ2 . . . ϕn−2 ϕn−1

ϕ 1 ϕ . . . ϕn−3 ϕn−2

...
...

...
. . .

...
...

ϕn−2 ϕn−3 ϕn−4 . . . 1 ϕ

ϕn−1 ϕn−2 ϕn−3 . . . ϕ 1




n×n

.

The Cholesky factorization of R(ρ) is LL′, and the lower triangular components of L can

be found using (39) and (40). In particular, the components of first column of L are given

by

l11 = 1,

l21 = ϕ,

l31 = ϕ2,

...

li1 = ϕi−1,

...

ln−11 = ϕn−2,

ln1 = ϕn−1,

the components of second column are

l22 = (1− ϕ2)1/2,
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l32 =
1

(1− ϕ2)1/2
(ϕ− ϕ3) = ϕ(1− ϕ2)1/2,

...

li2 =
1

(1− ϕ2)1/2
(ϕi−2 − ϕi−1ϕ) = ϕi−2(1− ϕ2)1/2,

...

ln−12 = ϕn−3(1− ϕ2)1/2,

ln2 = ϕn−2(1− ϕ2)1/2,

and the components of third column are

l33 = {1− [ϕ4 + ϕ2(1− ϕ2)]}1/2 = (1− ϕ2)1/2,

...

li3 =
1

(1− ϕ2)1/2
[ϕi−3 − (ϕi+1 + (1− ϕ2)ϕi−1]

=
1

(1− ϕ2)1/2
[ϕi−3 − ϕi+1 − ϕi−1 + ϕi+1]

=
ϕi−3

(1− ϕ2)1/2
(1− ϕ2) = ϕi−3(1− ϕ2)1/2,

...

ln−13 = ϕn−4(1− ϕ2)1/2,

ln3 = ϕn−3(1− ϕ2)1/2.
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Following the same pattern, a general form of the below diagonal components of L for

i > t > 1 is given by

lit = ϕi−t(1− ϕ2)1/2.

and a general form of the diagonals of L for t > 1 is given by

ltt =
{
1−

[
ϕ2(t−1) + (1− ϕ2)ϕ2(t−2) + · · ·+ (1− ϕ2)ϕ2(2) + (1− ϕ2)ϕ2

]}1/2

=
{
1−

[
ϕ2(t−1) + (1− ϕ2)

t−1∑

j=2

ϕ2(j−1)
]}1/2

=
{
1−

[
ϕ2(t−1) − (1− ϕ2)ϕ2(t−1) + (1− ϕ2)

t−1∑

j=1

ϕ2(j−1)
]}1/2

=
{
1−

[
ϕ2t + (1− ϕ2)

t−1∑

j=1

ϕ2(j−1)
]}1/2

=
{
1−

[
ϕ2t + (1− ϕ2)

ϕ2 − ϕ2t

1− ϕ2

]}1/2

=
{
1−

[
ϕ2t + ϕ2 − ϕ2t

]}1/2

= (1− ϕ2)1/2.

In summary,

ltt =




1 for t = 1,

(1− ϕ2)1/2 for t > 1,

and

lit =




ϕi−1 for t = 1,

ϕi−t(1− ϕ2)1/2 for i > t > 1,
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so that

L =




1 0 0 . . . 0 0

ϕ (1− ϕ2)1/2 0 . . . 0 0

ϕ2 ϕ(1− ϕ2)1/2 (1− ϕ2)1/2 . . . 0 0
...

...
...

. . .
...

...

ϕn−2 ϕn−3(1− ϕ2)1/2 ϕn−4(1− ϕ2)1/2 . . . (1− ϕ2)1/2 0

ϕn−1 ϕn−2(1− ϕ2)1/2 ϕn−3(1− ϕ2)1/2 . . . ϕ(1− ϕ2)1/2 (1− ϕ2)1/2



n×n

.

Hence, the conditional mean and variance given in (37) and (38), respectively, are given by

mt =
t−1∑

j=1

ltjǫj

= ϕt−1ǫ1 + ϕt−2(1− ϕ2)1/2ǫ2 + · · ·+ ϕ(1− ϕ2)1/2ǫt−1

= ϕt−1ǫ1 + (1− ϕ2)1/2
t−1∑

j=2

ϕt−jǫj

for t > 1 and mt = 0 for t = 1, and

v2t = l2tt = (1− ϕ2)

for t > 1 and v2t = 1 for t = 1.Thus, the quantities defined in (42) and (43) are given by

at = Φ

[Φ−1{Ft(y−t |Xt;θ)} −
(
ϕt−1ǫ1 + (1− ϕ2)1/2

∑t−1
j=2 ϕ

t−jǫj

)

(1− ϕ2)1/2

]
,

for t > 1 and at = Ft(y
−
t |Xt;θ) for t = 1, and

bt = Φ

[Φ−1{Ft(yt|Xt;θ)} −
(
ϕt−1ǫ1 + (1− ϕ2)1/2

∑t−1
j=2 ϕ

t−jǫj

)

(1− ϕ2)1/2

]
,

for t > 1 and bt = Ft(yt|Xt;θ) for t = 1, respectively.

Next, assume the latent process {ǫt} follows an MA(1) process. The correlation matrix,
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R(ρ), is then given by

R(ρ) =




1 δ1 0 . . . 0 0

δ1 1 δ1 . . . 0 0

0 δ1 1 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 1 δ1

0 0 0 . . . δ1 1



n×n

,

where δ1 = δ/(1+ δ2). The Cholesky factorization of R(ρ) is LL′, and the lower triangular

components of L can be found using (39) and (40), which reduce to be given by

ltt =




1 for t = 1,

(1− ltt−1)
1/2 for t > 1,

and

lit =





rii−1

li−1i−1
for t = i− 1,

0 for t < i− 1,

which can be calculated recursively. Hence, the lower triangular matrix L has the form

L =




1 0 0 . . . 0 0

r21 (1− l21)
2 0 . . . 0 0

0 r32
l22

(1− l32)
2 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . (1− ln−1n−2)
1/2 0

0 0 0 . . . rnn−1

ln−1n−1
(1− lnn−1)

1/2



n×n

.

To obtain expressions of ltt and lit, consider the first several terms, that is,
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l11 = 1, l21 = δ1,

l22 = (1− δ21)
1/2, l32 = δ1

( 1

1− δ21

)1/2

,

l33 =

(
1− 2δ21
1− δ21

)1/2

, l34 = δ1

(
1− δ21
1− 2δ21

)1/2

,

l44 =

(
1− 3δ21 + δ41

1− 2δ21

)1/2

, l54 = δ1

(
1− 2δ21

1− 3δ21 + δ41

)1/2

,

l55 =

(
1− 4δ21 + 3δ41
1− 3δ21 + δ41

)1/2

, l65 = δ1

(
1− 3δ21 + δ41
1− 4δ21 + 3δ41

)1/2

,

l66 =

(
1− 5δ21 + 6δ41 − δ61

1− 4δ21 + 3δ41

)1/2

, l76 = δ1

(
1− 4δ21 + 3δ41

1− 5δ21 + 6δ41 − δ61

)1/2

,

l77 =

(
1− 6δ21 + 10δ41 − 4δ61
1− 5δ21 + 6δ41 − δ61

)1/2

, l87 = δ1

(
1− 5δ21 + 6δ41 − δ61
1− 6δ21 + 10δ41 − 4δ61

)1/2

.

Following the pattern, we find that

ltt =




G

1/2
1t if t is even,

G
1/2
2t if t is odd,

(46)

where,

G1t =

∑t/2
j=0(−1)j

(
t−j
j

)
δ2j1

∑t/2−1
j=0 (−1)j

(
t−j−1
j

)
δ2j1

,

and

G2t =

∑(t−1)/2
j=0 (−1)j

(
t−j
j

)
δ2j1

∑(t−1)/2
j=0 (−1)j

(
t−j−1
j

)
δ2j1

.

Then,

lit =




δ1G

−1/2
1t if t is even,

δ1G
−1/2
2t if t is odd,

(47)

for i > 1. Hence, the conditional mean and variance given in (37) and (38), respectively,

are

mt =




δ1G

−1/2
2t ǫt−1 if t is even,

δ1G
−1/2
1t ǫt−1 if t is odd,
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for t > 1 and mt = 0 for t = 1, and

v2t =




G1t if t is even,

G2t if t is odd,

Thus, the quantities defined in (42) and (43) are given by

at =





Φ

[
Φ−1{Ft(y

−

t |Xt;θ)}−δ1G
−1/2
2t ǫt

G
1/2
12

]
if t is even,

Φ

[
Φ−1{Ft(y

−

t |Xt;θ)}−δ1G
−1/2
1t ǫt

G
1/2
1t

]
if t is odd,

for t > 1 and at = Ft(y
−
t |Xt;θ) for t = 1, and

bt =





Φ

[
Φ−1{Ft(yt|Xt;θ)}−δ1G

−1/2
2t ǫt

G
1/2
12

]
if t is even,

Φ

[
Φ−1{Ft(yt−|Xt;θ)}−δ1G

−1/2
1t ǫt

G
1/2
1t

]
if t is odd,

for t > 1 and bt = Ft(yt|Xt;θ) for t = 1, respectively.

For higher order dependence structures, one can numerically compute the Cholesky decom-

position matrices.

3.4 MODEL ASSESSMENT

3.4.1 RESIDUALS

To check the goodness of a regression model fit, residuals analysis is often the first

choice to consider. For an ordinary linear regression model with independent normal

responses, considerable literature and techniques were developed to analyze the residuals.

Most of these techniques suggest obtaining normally distributed residuals, which indicate

the regression model is adequately fitted. For non-normal responses, discrete specifically,

using the usual residuals, that is the difference between the fitted and the predicted values,

provides residuals that might depart from normality. Dunn and Smyth (1996) introduced
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randomized quantile residuals that are i.i.d. as standard normal even if the responses are

discrete and dependent. These residuals are given by

rt(ut) = Φ−1{q−t + ut(qt − q−t )}, t = 1, . . . , n, (48)

where qt = Ft(yt|yt−1, . . . , y1; ϑ̂), q
−
t = Ft(y

−
t |yt−1, . . . , y1; ϑ̂), and ut’s are draw from the

uniform (0, 1) distribution. The randomization component, ut is to insure the residuals are

independent and continuous. Assuming the assumptions of our model holds, these residuals

will be normally distributed (Masarotto and Varin, 2012). Since there is a randomization

component in (48), it is advised to plot the quantile residuals multiple times and see if there

is any consistent pattern, otherwise it should be ignored (Dunn and Smyth, 1996).

3.4.2 PREDICTION

An important advantage of using the model (26) is that prediction of the time se-

ries of counts, Yt, can be obtained directly once we predict the latent ARMA process,

{ǫt}, given in Equation (2). Jia et al. (2018) suggested one way to estimate the latent

process by the conditional expectation of ǫt given the observed zero-inflated count Yt,

which is nothing but the mean of the truncated normal distribution over the interval

(Φ−1{F1(y
−
1 ;θ)},Φ−1{F1(y1;θ)}] (see Appendix A.1 for more details). That is, ǫt is

estimated by

ǫ̂t = E(ǫt|Yt = yt) =
φ(Φ−1{Ft(y−t |Xt;θ)})− φ(Φ−1{Ft(yt|Xt;θ)})

Ft(yt|Xt;θ)− Ft(y
−
t |Xt;θ)

, (49)

for t = 1, . . . , n. Hence, one can apply standard prediction methods of ARMA process to

predict ǫn+1. For example, a one-step-ahead prediction of AR(1) process using best linear

prediction method is given by

ǫ̃n+1 = ϕ̂ ǫ̂n,

where ϕ̂ is the ML estimate of the autocorrelation of the latent process. See Shumway and

Stoffer (2011) for more details on predicting ARMA process. In application, the predicted

value of Yt is given by

Ỹn+1 = F−1
n+1{Φ(ǫ̃n+1)|Xn+1; θ̂}, (50)

where θ̂ is the ML estimate of the vector θ = (β′,γ ′,α′)′, and ǫ̃n+1 is a one-step-ahead
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prediction for ǫn+1.

Another way of prediction, is to consider the conditional expectation of Yt given the

past Yt−1 = yt−1, . . . , Y1 = y1, which is given by

E(Yt|Yt−1 = yt−1, . . . , Y1 = y1;ϑ) =

∑

yt∈S

ytPr(Yt = yt|Yt−1 = yt−1, . . . , Y1 = y1;ϑ) =

∑

yt∈S

yt
Pr(Yt = yt, Yt−1 = yt−1, . . . , Y1 = y1;ϑ)

Pr(Yt−1 = yt−1, . . . , Y1 = y1;ϑ)
. (51)

3.5 SIMULATED EXAMPLES

To evaluate the performance of the proposed method, comprehensive simulation studies

are conducted. We carry out the simulation in the statistical software R (R Core Team,

2013). In Subsection 3.5.1, we provide simple simulated examples in order to understand

the relationships between the latent or space process {ǫt} and the zero-inflated count process

{Yt} and their corresponding autocorrelation functions. In Subsection 3.5.2, we provide

more comprehensive simulation study to evaluate the estimation method proposed in this

chapter.

3.5.1 EXAMPLE I

In this simulated example, we generate zero-inflated count process following the ZIP

distributions through an AR(1) process, and study the relationship between the two pro-

cesses.

Based on the proposed model given in (26), the zero-inflated count process is generated

as follow.

1. Generate normally distributed process such that:

(a) ǫt ∼ N(0, 1) for t = 1, . . . , n.

(b) ǫ ∼ Nn(0, R(ϕ)) where R(ϕ) is an AR(1) correlation matrix
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2. Compute ut = Φ(ǫt), for t = 1, . . . , n, where Φ is the cdf of standard normal

distribution.

3. Compute yt = F−1
t (ut), i.e. choose the smallest value of yt ∈ 0, 1, 2, . . . for which

the cdf of yt is greater than or equal to ut, i.e. Ft(yt) ≥ ut, where Ft is the cdf of ZIP

distribution.

Figure 5 shows the densities of the zero-inflated counts {Yt} following the ZIP marginals

with λ = 4.3 and ω = 0.25 generated through the normally distributed errors {ǫt} which

follows an AR(1) process with ϕ = 0.35. As discussed in Section 3.2, the construction of

the model given in (26), ensures that the process {Yt} follows the desired ZIP marginal by

the integral transformation theorem, which can be seen in the left graph of Figure 5, and the

errors are normally distributed as seen in the right graph of Figure 5.
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Figure 5: Histograms of the zero-inflated counts {Yt} following the ZIP marginals with

λ = 4.3 and ω = 0.25 (top), and the underline process {ǫt} followingAR(1) with ϕ = 0.35
(bottom)

In addition, we plot the zero-inflated counts {Yt} against {ǫt} and {ut} where ut = Φ(ǫt)

for t = 1, . . . , n in Figure 6. Due the zero-inflation in the counts, the ranges of ǫt and pt

at Yt = 0 are wider. In fact, Yt = 0, whenever ut ∈ (0, P (Yt = 0|λ = 4.3, ω = 0.25)]

or equivalently ǫt ∈ (0,Φ−1(P (Yt = 0|λ = 4.3, ω = 0.25))]. At Yt > 0, the ranges of

ǫt and ut is controlled by the intensity parameter λ = 4.3, which explains why they are

relatively wider around λ than further from it. This explains how the zero-inflated process

is generated by the discretization of the latent Gaussian ARMA process.
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Figure 6: scatter plots of {Yt} against {ut} where pt = Φ(ǫt) (top), and {Yt} against {ǫt}
(bottom).

Figure 7 shows the sample autocorrelation functions (ACFs) of the two processes {Yt}
and {ǫt}. There is clear similarity between the two sample ACFs in which |ρY (h)| is

slightly less than |ρǫ(h)|. This agrees with the finding discussed in Section 3.2.1. In fact,

using the link function defined in (31), and given that ρY (1) = ϕ = 0.35, the first order

autocorrelation corresponding to the zero-inflated counts ρY (1) equals to 0.33.
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Figure 7: Autocorrelation function (ACF) of the zero-inflated count process {Yt} (top) and

ACF of the error process {ǫt} (bottom).

3.5.2 EXAMPLE II

In this example, we run the same simulation algorithm as in Example I but with different

sample sizes from the ZIP, ZINB, and ZICMP marginals and under the AR(1) and MA(1)

dependence structures to evaluate performance of the estimation method. First, we consider

the AR(1) dependence structure. Only one covariate Xt is considered and chosen to be

the same for the intensity parameter across all distributional assumptions. The covariate is
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given by

xt = 0.6xt−1 − 0.4xt−2 + ζt, ζt
i.i.d.∼ N(0, 1),

that is, the log linear model is given by

log (λt) = β0 + β1xt,

whereas the zero-inflated and dispersion parameters are chosen to be constant across time

when we simulate from all the distributions and ZINB and ZICMP distributions for the

dispersion parameter, that is, ωt = ω and κt = κ for t = 1, . . . , n. We consider the

following models under stationary AR(1) errors with the parameter ϕ = 0.5:

• ZIP with β = (4.3, 0.3)′ and ω = 0.25;

• ZINB with β = (4.3, 0.3)′, ω = 0.2 and κ = 0.5;

• ZICMP with β = (5, 0.3)′, ω = 0.2 and κ = 0.5.

We generate 500 simulated datasets for each of the above models with the sample sizes,

n = 100, 200 and 500. The evaluation criterion is chosen to be the mean absolute deviation

error (MADE), which is given by

1

m

m∑

i=1

|ϑ̂i − ϑ|,

where m is the number of replications, i.e. m = 500.

The parameter estimates were obtained using the R package “gcmr” (Masarotto and

Varin, 2017) after constructing our own codes for the marginal models of the ZIP, ZINB,

and ZICMP distributions. A summary of the simulation results are shown in Table 1, which

represents the count time series ZIP, ZINB, and ZICMP models with stationaryAR(1) errors.

The results indicate that the proposed estimation method produces reasonable estimates and

relatively small MADEs. In addition, as the sample size increases the parameter estimates

seem to converge to the true parameter values.The box plots displayed in Figures 8, 9,

and 10 show how the performance enhanced when the sample size increased. Although

we did not discuss the asymptotic properties of the parameter estimates obtained from the

simulated likelihood function, several authors (see for examples, Gourieroux and Monfort,

1990 and Lee, 1999) proved that such methods provide normally distributed estimates. To
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assess the approximate normality of the estimates, Q-Q plots of the ML estimates for the

500 ZIP, ZINB and ZICMP replicates of length n = 500 are shown in Figures 11, 12, and

13.

Table 1: Mean of estimates, MADEs (within parentheses) for zero-inflated models with

AR(1) dependence structure.

Model n β0 β1 ω κ ϕ

ZIP 100 4.3012(0.0159) 0.2998(0.0071) 0.2448(0.0524) 0.4847(0.0716)

200 4.3008(0.0111) 0.3000(0.0056) 0.2518(0.0545) 0.4945(0.0479)

500 4.3004(0.0074) 0.3000(0.0038) 0.2505(0.0446) 0.4985(0.0293)

ZINB 100 4.2597(0.2068) 0.3002(0.0872) 0.1946(0.0581) 0.5470(0.1060) 0.4702(0.0809)

200 4.2797(0.1382) 0.3015(0.0667) 0.1980(0.0408) 0.5245(0.0714) 0.4864(0.0533)

500 4.2904(0.0912) 0.2987(0.0457) 0.1993(0.0238) 0.5121(0.0439) 0.4936(0.0329)

ZICMP 100 5.3744(0.7838) 0.3214(0.0482) 0.1956(0.0690) 0.5568(0.1477) 0.4726(0.0783)

200 5.2059(0.5138) 0.3124(0.0341) 0.1986(0.0581) 0.5329(0.0329) 0.4868(0.0526)

500 5.1010(0.3234) 0.3059(0.0216) 0.1994(0.0513) 0.5167(0.0167) 0.4949(0.0319)
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Figure 8: ML estimates for the 500 ZIP-AR(1) models of length n = 100, 200, and 500
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Figure 9: ML estimates for the 500 ZINB-AR(1) models of length n = 100, 200, and 500
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Figure 10: ML estimates for the 500 ZICMP-AR(1) models of length n = 100, 200, and 500
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Figure 11: Q-Q plots of the ML estimates for the 500 ZIP-AR(1) process of length n = 500.
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Figure 12: Q-Q plots of the ML estimates for the 500 ZINB-AR(1) process of length

n = 500.
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Figure 13: Q-Q plots of the ML estimates for the 500 ZICMP-AR(1) process of length

n = 500.
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Second, we consider the MA(1) dependence structure. No covariates are considered,

so the intensity parameter λ, zero-inflated parameter ω, and the dispersion parameter κ (if

existed) are constant across time. The dependence parameter of the latent MA(1) process

is chosen to be δ = 0.5 across all three marginals. The marginal parameters are then given

by

• ZIP with λ = 4.3 and ω = 0.25;

• ZINB with λ = 4.3, ω = 0.25 and κ = 0.5;

• ZICMP with λ = 3′, ω = 0.2 and κ = 0.25.

Table 2 shows a summary of the simulation results for the ZIP, ZINB, and ZICMP

models with with stationary MA(1) errors. The summary shows that the proposed esti-

mation method performs well with the latent process {ǫt} following MA(1) process. The

box plots displayed in Figures 14, 15, and 16 show the increase in the dimension enhances

the performance of the estimation method. Also, the estimates seem to be asymptotically

normally distributed, which can be seen in Figures 17, 18, and 19.

Table 2: Mean of estimates, MADEs (within parentheses) for zero-inflated models with

MA(1) dependence structure.

Model n λ ω κ δ

ZIP 100 4.3223(0.1903) 0.2533(0.0347) 0.5167(0.0869)

200 4.3205(0.1290) 0.2521(0.0272) 0.5038(0.0578)

500 4.3088(0.0933) 0.2514(0.0176) 0.4961(0.0368)

ZINB 100 4.4940(0.8777) 0.2462(0.1281) 0.6227(0.2387) 0.5289(0.1102)

200 4.3317(0.7072) 0.2293(0.1099) 0.5556(0.1712) 0.4958(0.0661)

500 4.2904(0.4367) 0.2413(0.0721) 0.5305(0.1041) 0.4955(0.0456)

ZICMP 100 3.2587(0.5566) 0.3421(0.1421) 0.2585(0.0491) 0.5119(0.0842)

200 3.1520(0.3189) 0.3400(0.1400) 0.2544(0.0375) 0.4992(0.0554)

500 3.1229(0.2183) 0.3397(0.1397) 0.2549(0.0241) 0.4978(0.0366)
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Figure 14: ML estimates for the 500 ZIP-MA(1) models of length n = 100, 200, and 500
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Figure 15: ML estimates for the 500 ZINB-MA(1) models of length n = 100, 200, and 500
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Figure 16: ML estimates for the 500 ZICMP-MA(1) models of length n =
100, 200, and 500
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Figure 17: Q-Q plots of the ML estimates for the 500 ZIP-MA(1) process of length n = 500.
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Figure 18: Q-Q plots of the ML estimates for the 500 ZINB-MA(1) process of length

n = 500.
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Figure 19: Q-Q plots of the ML estimates for the 500 ZICMP-MA(1) process of length

n = 500.
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3.6 APPLICATIONS

3.6.1 INJURY DATA

In this section, we applied the proposed models using the occupational health data

presented in Yau et al. (2004) and Yang et al. (2015). The application concerns the

assessment of a participatory ergonomics intervention in reducing the incidence of work

place injuries among a group of cleaners in a hospital. The data consists of 96 monthly

counts of work-related injuries, starting from July 1988 and ending in October 1995. The

participatory ergonomics intervention was commenced on November 1st 1992. That is, 57

observations were pre-intervention and 39 post-intervention. Empirical mean and variance

of the time series of counts are 1.4688 and 3.8306, respectively. A bar plot of the distribution

of series is displayed in Figure 20, from which we can see that the distribution of the time

series of injury counts has more zeros relative to a Poisson distribution with the same

empirical mean. Yau et al. (2004) stated that the frequent occurrence of zeros is due to the

heterogeneity in risk and the dynamic population of cleaners. The zeros represent about

48% of the sample. The count series and the corresponding sample autocorrelation function

of the series are shown in Figure 21. We can see from the plots that there exist frequent

occurrence of zeros and low ordered autocorrelation. In addition, the difference between

the count series before and after the intervention is intriguing.
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Figure 20: Bar plot of the injury counts series
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Hence, we fit several models to investigate whether the participatory ergonomics inter-

vention reduces the injury counts or not. In addition, we study the serial dependence of the

counts. The models take the form given in (26) with the following log-linear function for

the intensity parameter

log (λt) = β0 + β1xt, t = 1, . . . , 96,

where xt is a binary variable that takes the value zero if t < 57, the intervention time, and

one otherwise. The zero inflation parameter, ω, is assumed to be constant across time.

The same is assumed on the dispersion parameter, κ, when we take the ZINB and ZICMP

distributions. Thus, the main model is given by

Yt = F−1
t {Φ(ǫt)|xt;θ}, t = 1, . . . , 96

where θ = (β0, β1, γ, α)
′ with γ = logit(ω) and α = log(κ). The latent random process,

the errors, are generally given by the ARMA(p, q) process. However, here and after fitting

multiple models, we consider only those with the errors following AR(1) process, which

correspond to the smallest Akaike information criterion (AIC) (Akaike, 1974).
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Figure 21: Injury counts series: the time series plot and the sample autocorrelation.

Table 3 shows the three copula-based zero-inflated models we proposed in this chapter

along with the copula-based Poisson and NB models introduced in Masarotto and Varin

(2012) all with the AR(1) correlation structure. The Poisson model seems to perform

moderately less than the other models because it fails to account for the overdispersion

in the counts caused by the zero inflation. On the other hand, adding more probability

to the event zero improves the performance of the fitted model since it accounts for the

overdispersion and the frequent occurrence of zeros. This is why the ZIP, ZINB and

ZICMP models perform better in term of AIC than the Poisson and NB models. All five

models suggest that the work-related injuries significantly decreased after implementing

the participatory ergonomics intervention since the value of β̂1 is always less than zero.
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However, the degree of significance of β̂1 is less prominent after accounting for the zero

inflation.

Table 3: Parameter estimates (standard errors) for the copula-based models fit to the injury

count series.

Parameter ZIP ZINB ZICMP Poisson NB

β0 1.0794 (0.1044) 1.0282 (0.1398) 0.3611 (0.3751) 0.7148 (0.1019) 0.6945 (0.1730)

β1 -0.8605 (0.3065) -0.9410 (0.3187) -0.6981 (0.2429) -1.0989 (0.2326) -1.0837 (0.3219)

γ -0.5180 (0.3036) -0.7492 (0.3951) -0.9074 (0.4513)

α 0.7185 (0.6340) 0.4785 (0.5149) 0.9557 (0.3135)

ϕ 0.1201 (0.1117) 0.1186 (0.1222) 0.1227 (0.0889) 0.1012 (0.0695) 0.1000 (0.1183)

AIC 310.02 308.42 308.64 345.66 313.27

To examine the model assumptions, we first test the assumption that the latent process

{ǫt} has a unit variance. Since the process is serially dependent, standard variance tests

are not appropriate because they are sensitive to dependency. An appropriate method to

test whether σǫ = 1 or not would be in using the stationary block bootstrap (SBB) to draw

confidence interval (CI) of the variance (Politis and Romano, 1994 and Lahiri, 2013). Table

4 shows the estimated value of σǫ for zero-inflated marginals and the ordinary Poisson

and NB marginals. After estimating the latent process using (49), we draw SBB 95% CIs

for σǫ under each marginals. The results show that 1 is included in all the CIs except for

the Poisson marginal, which suggests that choosing the Poisson leads to violation of the

assumption.

Table 4: SBB 95% CI of ǫ variance

for the injury count series.

Model σ̂ǫ SBB 95% CI

Poisson 1.6589 (1.2040, 2.1560)

NB 1.1314 (0.9120, 1.3810)

ZIP 0.9306 (0.6741, 1.2104)

ZINB 0.8394 (0.6636, 1.0336)

ZICMP 1.1544 (0.9310, 1.4050)

Figure 22 features the randomized quantile residuals in normal probability and autocor-

relation plots of the copula-based ZIP, ZINB and ZICMP models. The normal probability

plots suggest the randomized quantile residuals of these three models follow the normal
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distribution, and the autocorrelation plots indicate the absence of the serial dependence

in the residuals. These findings suggest that the proposed models in this chapter fit the

data adequately. Models with more complicated correlation structures such as AR(2) and

ARMA(1, 1) were also considered and fitted to the data. No significant improvements were

found and thus we recommend using AR(1), which is the correlation structure suggested in

both Yau et al. (2004) and Yang et al. (2015).
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Figure 22: Injury counts series: q-q plots (left) and autocorrelation plots (right) for sets of

randomized residuals of the ZIP, ZINB and ZICMP models.
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3.6.2 SANDSTORMS DATA

The data set used in this example consists of the monthly count of strong sandstorms

recorded by the AQI airport station in Eastern Province, Saudi Arabia. The station happens

to be is located in one of the major dust producing regions in the world (Idso, 1976).

Sandstorm is a weather event that results from strong wind releasing dust from the ground

and transfers it long distances (Goudie and Middleton, 2006). Sandstorms can cause many

environmental and human-related hazards. For examples, sandstorms impact the air quality,

disturb daily activities, and transportations. Hence, studying and accurately analyzing the

behavior of these phenomena is important to successfully forecast such events.

The monthly counts studied here are characterized as strong sandstorms by the AQI

airport station. Tao et al. (2002) stated that a strong sandstorm reduces the level of visibility

to less than 500 m and with average wind speed of 17.2 to 24.4 m/s. The counts of these

events contain zero inflation. Several works have been applied on handling rare events such

as strong sandstorms (see for examples Tan et al., 2014 and Ho and Bhaduri, 2015). Here

we apply the proposed zero-inflated count time series regression models using Gaussian

copula.

The data set consists of 348 monthly counts of strong sandstorms, starting from January

1978 to December 2013. The main objective was to apply the proposed models and

investigate if there were any significant seasonal and trend components. Additionally, we

investigated if there were any other predictors that affected the frequency of sandstorms

such as the monthly counts of dust haze events, maximum wind speed, temperature, and

relative humidity.
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Figure 23: Time series plot of monthly count of sandstorms, the autocorrelation function,

bar-plot of distribution of sandstorm counts, and circular plot of the monthly mean count of

sandstorms.

Figure 23 shows the sandstorms series plot, the autocorrelation function, bar-plot of

the distribution of sandstorm counts, and circular plot of the monthly mean count of

sandstorms. From the time series plot and the bar-plot, we could see that the distribution

of the sandstorm counts had more zeros relative to a Poisson distribution with the same

empirical mean. These zeros represented about 59% of the sample. Decreasing trend could

also be observed from the time series plot. Additionally, seasonality was also captured from

the autocorrelation function and circular plot. In fact, from the circular plot, we concluded

that most sandstorms occurred during spring time, i.e. March, April, and May months.

Thus, trend and seasonal covariates were added to the models.

Hence, we fit several models to investigate the trend and seasonality effects along with

the other covariates mentioned above. After performing model selection based on AIC, we

ended up with the following models taking the form of (26), with the log-linear function of
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the intensity parameter given by

log (λt) = β0 + β1 (t× 10−3) + β2x1t + β3x2t + β4x3t,

and the logit function for the zero-inflation parameter given by

logit(ωt) = γ0 + γ1z1t + γ2z2t + γ3z3t,

for t = 1, . . . , n, where x1t = z1t = cos (2πt
12
), x2t = z2t = sin (2πt

12
), and x3t = z3t is the

monthly count of dust haze events. The log-function of the dispersion parameter (if existed)

is given by log (κ) = α, i.e. it was chosen to be constant across time. Thus, the main model

was given by

Yt = F−1
t {Φ(ǫt)|Xt;θ}, for t = 1, . . . , 348,

where θ = (β0, . . . , β4, γ0, . . . , γ3, α)
′ and Xt = (x′

t, z
′
t,wt)

′, in which the inten-

sity covariates were xt = (t × 10−3, x1t, x2t, x3t)
′, the zero-inflation covariates were

zt = (z1t, z2t, z3t)
′, and no covariates with the dispersion effect, i.e. wt = 1 for t = 1, . . . , n.

The latent random process, the errors, were generally given by the ARMA(p, q) process.

However, after fitting multiple models, we considered the dependence structure that fol-

lowed AR(1) autocorrelation.

Table 5 shows the three copula-based zero-inflated models we proposed in this chapter

along with the copula-based Poisson and NB models introduced in Masarotto and Varin

(2012), all with the AR(1) correlation structure. The results of all models are comparable.

However, the Poisson and NB model seem to perform moderately less than the other models

because they fail to account for the overdispersion in the counts caused by the zero inflation

and the zero inflation itself. On the other hand, adding more probability to the event zero

improves the performance of the fitted model because it addresses the problem of zero

inflation and over dispersion. This is why the ZIP, ZINB, and ZICMP models are better fit

than the ordinary Poisson and NB distributions in this application.
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Table 5: Parameter estimates (standard errors) for the copula-based models fit to the

sandstorms count series.

Parameter ZIP ZINB ZICMP Poisson NB

β0 0.9977(0.1175) 0.9709(0.1570) 0.7978(0.1888) 0.2003(0.1147) 0.2996(0.1965)

β1 -4.1493(0.6065) -4.7477(0.7976) -2.4523(0.5772) -5.1453(0.5517) -5.8397(0.9643)

β2 -0.2004(0.0885) -0.1813(0.1243) -0.1089(0.0723) -0.4634(0.0814) -0.4385(0.1391)

β3 0.3461(0.0938) 0.4231(0.1239) 0.2093(0.0786) 0.7879(0.0888) 0.7751(0.1352)

β4 0.0627(0.0088) 0.0645(0.0123) 0.0435(0.0094) 0.0974(0.0085) 0.0950(0.0163)

γ0 0.7647(0.2622) 0.5656(0.3047) 0.6629(0.2119)

γ1 0.6163(0.2460) 0.6648(0.2925) -1.0047(0.2132)

γ2 -0.8931(0.2401) -0.8363(0.2736) -0.1496(0.0344)

γ3 -0.1489(0.0424) -0.1659(0.0524) -0.2466(0.1613)

α 0.6400(0.2437) 1.1733(0.2230) 0.9195(0.2009)

ϕ 0.2580(0.0623) 0.2503(0.0724) 0.2870(0.078) 0.1539(0.0419) 0.2488(0.0740)

AIC 910.9 895.62 905.6 1017.3 923.06

Furthermore, Table 5 shows that the zero-inflated models are capable of accounting for

first order autocorrelations. The autocorrelation coefficients, ϕ̂’s, are similar across models

although the zero-inflation models suggest stronger autocorrelation among the observations.

For the marginal parameters, θ, the estimates are quite similar between the ZIP and ZINB,

and slightly different from the ZICMP. All models suggest significant decreasing trend

in the number of strong sandstorms since β1 < 0. Seasonality also significant at annual

frequencies since β2, β3, γ1 and γ2 are significantly different from zero. Finally, the affect

of dust haze is significant since both β4 and γ3 are significantly different from zero.

Table 6: SBB 95% CI of ǫ variance

for the sandstorm series.

Model σ̂ǫ SBB 95% CI

Poisson 1.8121 (1.4710, 2.1640)

NB 1.0916 (0.9600, 1.2410)

ZIP 1.1094 (0.6741, 1.2104)

ZINB 1.0707 (0.9230, 1.219)

ZICMP 1.1737 (0.9840, 1.381)

Table 6 shows the estimated value of σǫ for zero-inflated marginals and the ordinary

Poisson and NB marginals. After estimating the latent process using (49), we draw SBB
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95% CIs for σǫ under each marginals. The results show that 1 is included in all the CIs except

for the Poisson marginal, which suggests that choosing the Poisson leads to violation of

the assumption. Figure 24 features the randomized quantile residuals in normal probability

and autocorrelation plots of the copula-based ZIP, ZINB and ZICMP models. The normal

probability plots suggest the randomized quantile residuals of these three models follow

the normal distribution, and the autocorrelation plots indicate the absence of the serial

dependence in the residuals. These findings suggest that the proposed models in this chapter

fit the data adequately. Models with more complicated correlation structures such as AR(2)

and ARMA(1, 1) were also considered and fitted to the data with the same covariates. No

significant improvements were found and thus we recommend using AR(1). However,

dropping the trend and seasonality covariates and running the models with only the dust

haze covariate yields significant AR(2) and ARMA(1, 1) dependence structures. Figure

25 shows the predicted values of the sandstorm counts from the three proposed models.

The predicted values were calculated using the conditional expectation of Yt given the past

Yt−1 = yt−1, . . . , Y1 = y1. The plots indicate that our copula-based zero-inflated models

adequately predict the injury counts.
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Figure 24: Sandstorm counts series: q-q plots (left) and autocorrelation plots (right) for sets

of randomized residuals of the ZIP, ZINB and ZICMP models.
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CHAPTER 4

MARKOV ZERO-INFLATED COUNT TIME SERIES MODELS

WITH COPULA-BASED TRANSITION PROBABILITIES

4.1 INTRODUCTION

This chapter concentrates on building a class of Markov zero-inflated count time series

models based on a joint distribution on consecutive observations. The joint distribution

function of the consecutive observations is constructed through copula functions. The

Markov chains considered here are of first or second order with the univariate margins of

ZIP, ZINB, or ZICMP distributions as defined in Section 2.2. Higher-order Markov models

may be applied too by extending the work for second order models. However, zero-inflated

count time series, and low counts in general, correspond to low order dependence structure

quite often (Joe, 2016). Therefore, the work done in this chapter is mainly concerning first

and second order Markov models.

For first order Markov models, bivariate copula functions such as the bivariate Gaussian,

Frank, and Gumbel are chosen to construct a bivariate distribution of two consecutive

observations. For second order Markov models, trivariate Gaussian copula function will be

employed. In addition, other copula functions can be used to construct the trivariate joint

distribution through suitable functions discussed later in this chapter.

The idea of constructing Markov chains with copula-based transition probabilities was

first introduced in Chapter 8 in Joe (1997) as an application of copula theories. The advan-

tage of using this model over the one introduced in Chapter 3 is that the n−dimensional

multivariate distribution can be broken down to a function of n− 1 bivariate or trivariate

joint distributions. The bivariate or trivariate joint distributions are far more easier to handle

than the n−dimensional joint distribution especially if n is large, and that is the case for

most time series data.

Before discussing the proposed models, we will give brief review of Markov chains, the
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big umbrella of the class of zero-inflated models we plan to present here. The theory of

Markov chains is available in a great number of literature (see for examples, Cox and Miller

(1965) and Serfozo (2009)). In discrete time series context, Raftery (1985) and later Adke

and Deshmukh (1988) introduced a simple class of Markov chains models for a sequence of

discrete time series variables, say {Yt}, with values in a infinite, or finite, countable set S.

For first order Markov chains, consider the discrete-time stochastic process {Yt} (count

time series) for t = 1, . . . , n on the infinite countable set S = Z
+, the set of nonnegative

integers. The sequence {Yt} of S−valued random variables is defined on a probability

space (Ω,F , P ), where P is a probability measure on a σ−field F in an event-space Ω, and

S is the state space of the process, and the count Yt ∈ S is the state of the process at time t,

for t = 1, . . . , n. Now, the first order Markov chains is defined as follow.

Definition 3. A stochastic process {Yt}, for t = 1, . . . , n on a countable set S is a first

order Markov chain if, for any yt, yt−1 ∈ S ,

P (Yt = yt|Yt−1 = yt−1, . . . , Y1 = y1) = P (Yt = yt|Yt−1 = yt−1). (52)

The right hand of (52) is the probability that the Markov chain jumps from state yt−1 to

state yt, and it is known as the Markov property. That is, at any time t, the next state yt+1 is

conditionally independent of the past y1, y2, . . . , yt−1 given the present state yt. For higher

order Markov chains, Raftery (1985) introduced a class of simple models that accounts

higher order dependence structure. In addition, the use of Markov chains was also found

in count time series models based on thinning operators, as mentioned in Section 2.1.2.

Another class that used Markov chains is found in constructing the count time series models

based on multivariate distributions with random variables in a convolution-closed infinitely

divisible class (Joe, 1996 and Jung and Tremayne, 2011). Here, we extend the work done

by Joe (2014) on constructing the count time series models through copula-based joint

distributions of consecutive observations. When the Markov process is continuous, the

copula-based Markov models have been extensively examined by many (see for examples,

Darsow et al., 1992, Joe, 1997, Chen and Fan, 2006, and Ibragimov, 2009).

The next sections detail the proposed class of Markov zero-inflated count time series

models with copula-based transition probabilities. A parametric copula family is used for

the joint distribution function of two consecutive counts in the case of first order Markov

chain or three consecutive counts in the case of second order Markov chain. The use of
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copula here allows to avoid some strict distributional assumptions on the marginals such as

the infinite divisibility condition (Joe, 2016). The latter condition is not necessarily satisfied

when we assume the counts follow a zero-inflated distribution. In addition, the copula-based

models extend nicely to non-stationary processes through time-varying parameters in the

univariate margins given in (9), (14), and (20), which is the goal of this chapter.

4.2 MARKOV CHAIN MODELS

A general form of first order Markov models with copula-based transition probabilities

as defined in Joe (2014) is given by

Yt = g(ǫt;Yt−1),

where {ǫt} is an i.i.d stochastic continuous latent process, and g(.) is assumed to an

increasing function in ǫt for t = 1, . . . , n. Thus, the observed value Yt depends on the past

through only Yt−1. If the process {Yt} is continuous, then there exists a simple stochastic

representation for the Markov model. However, for for discrete process, as in the case here,

there is no simple stochastic representation for the model (Joe, 2016).

4.2.1 FIRST ORDER MARKOV MODELS

Suppose {Yt} is zero-inflated count time series first order Markov chains following

one of the distribution introduced in Section 2.2. Let ft and Ft be the pdf and the cdf of

Yt, respectively. Then, taking advantage of the chain rule of probability and the Markov

property, the multivariate joint density distribution of Y1, . . . , Yn is given by

Pr(Y1 = y1, . . . , Yn = yn) =
n∏

t=1

Pr(Yt = yt|Y1 = y1, . . . , Yt−1 = yt−1)

= Pr(Y1 = Y1 = y1y1)
n∏

t=2

Pr(Yt = yt|Yt−1 = yt−1), (53)

the transition probability, i.e. conditional probability in the right hand of (53) depends

on the joint density function of Yt, Yt−1 and can be found using the copula functions as
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introduced in Chapter 2. That is, let

F12(yt, yt−1) = C(Ft(yt|Xt;θ), Ft−1(yt−1|Xt−1;θ); δ),

where C(.; δ) is a bivariate copula function with parameter vector δ. The covariates

Xt = (xt, zt,wt), for t = 1, . . . , n are the covariates corresponding to the intensity (mean)

parameter λt, the zero-inflation parameter ωt and the dispersion parameter κt if existed,

respectively. Notice that in some cases, these parameters or part of them are constant

across the time when the covariates are not significant and dropped from the model. The

parameter vector θ = (β′,γ ′,α′)′ is the unknown marginal regression coefficient. Hence,

the transition probability is given by

Pr(Yt = yt|Yt−1 = yt−1) =
Pr(Yt = yt, Yt−1 = yt−1)

ft−1(yt−1|Xt−1;θ)
, (54)

where

Pr(Yt = yt, Yt−1 = yt−1) = F12(yt, yt−1)− F12(y
−
t , yt−1)− F12(yt, y

−
t−1) + F12(y

−
t , y

−
t−1),

and y−t = yt − 1 since Yt is a discrete random variable, for all t.

Several choices of the bivariate copula function C(.; δ) can be selected depending on

the degree and the sign of the dependence and the tail behavior of the copula. For example,

if there is symmetry, the Gaussian copula is recommended. However, Gumbel or reflected

Gumbel copula perform better than Gaussian copula in the existence of tail dependence

(Joe, 2016). Moreover, the Frank and the Gaussian copulas are both reflection symmetric

and allow for negative dependence (see Chapter 2 for more details).

Next, we will discuss the immediate extension of the first order Markov models. That

is, the second order Markov models where the zero-inflated count Yt depended on the past

two counts.

4.2.2 SECOND ORDER MARKOV MODELS

Suppose {Yt} is zero-inflated count time series of second order Markov chains following

one of the distribution introduced in Section 2.2. Let ft and Ft be the pdf and the cdf of

the observed count Yt, respectively. Now, the multivariate joint distribution of Y1, . . . , Yn is
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given by

Pr(Y1 = y1, . . . , Yn = yn) =
n∏

t=1

Pr(Yt = yt|Y1 = y1, . . . , Yt−1 = yt−1)

= Pr(Y1 = y1) Pr(Y2 = y2|Y1 = y1)

×
n∏

t=3

Pr(Yt = yt|Yt−1 = yt−1, Yt−2 = yt−2)

= Pr(Y1 = y1, Y2 = y2)

×
n∏

t=3

Pr(Yt = yt|Yt−1 = yt−1, Yt−2 = yt−2), (55)

where the conditional probability of Y2 given Y1 = y1 can be evaluated using (54). However,

for the second order transition probabilities of Yt given Yt−1 = yt−1 and Yt−2 = yt−2, we

need to fit an appropriate trivariate copula function for the joint distribution of Yt, Yt−1 and

Yt−2 for t = 3, . . . , n.

The most popular choice is the trivariate Gaussian copula. Using the joint multivariate

distribution with discrete margin given in (22) and the Gaussian copula function given in

(23), the transition probabilities of Yt given Yt−1 = yt−1 and Yt−2 = yt−2 for t = 3, . . . , n

is given by

Pr(Yt = yt|Yt−1 = yt−1, Yt−2 = yt−2) =
Pr(Yt = yt, Yt−1 = yt−1, Yt−2 = yt−2)

Pr(Yt−1 = yt−1, Yt−2 = yt−2)
,

where the joint distribution is given by

Pr(Yt = yt, Yt−1 = yt−1, Yt−2 = yt−2) =

F123(yt, yt−1, yt−2)− F123(yt, yt−1, y
−
t−2) −

F123(yt, y
−
t−1, yt−2)− F123(y

−
t , yt−1, yt−2) +

F123(yt, y
−
t−1, y

−
t−2) + F123(y

−
t , yt−1, y

−
t−2) +
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F123(y
−
t , y

−
t−1, yt−2) + F123(y

−
t , y

−
t−1, y

−
t−2), (56)

where the function F123(.) is given by

F123(yt, yt−1, yt−2) =

ΦR(δ)(Ft(yt|Xt;θ), Ft−1(yt−1|Xt−1;θ), Ft−2(yt−2|Xt−2;θ)),

for t = 3, . . . , n where R(δ) is a 3× 3 correlation matrix, with δ = (δ1, δ2)
′ as a vector of

the dependence structure parameters. The covariates Xt = (xt, zt,wt), for t = 1, . . . , n

are the covariates corresponding to the intensity (mean) parameter λt, the zero-inflation

parameter ωt and the dispersion parameter κt if existed, respectively. The parameter vector

θ = (β′,γ ′,α′)′ is of the unknown marginal regression coefficient. The bivariate copula

margins F12 and F23 of the trivariate copula function F123 are the same and given by the

bivariate Gaussian copula in this case.

Another way of evaluating the trivariate joint density function, when the Gaussian

copula function is chosen, can be through integration over rectangle probability. That is

Pr(Yt = yt, Yt−1 = yt−1, Yt−2 = yt−2) =

∫

Dt(yt;θ)

∫

Dt−1(yt−1;θ)

∫

Dt−2(yt−2;θ)

φR(δ)(zt−2, zt−1, zt)dzt−2dzt−1dzt, (57)

where

Dt(yt;θ) = [Φ−1{Ft(y−t |Xt;θ)},Φ−1{Ft(yt|Xt;θ)}]. (58)

Although the Gaussian copula function in (57) has no closed form, there are several

accurate deterministic approximations of the function when the dimension is low such as

the case here with the trivariate Gaussian or the bivariate Gaussian. Further discussion on

these approximation methods is on Section 4.3.

Another way of calculating the trivariate joint distribution, if the closed copula function



87

are desired, can be found by employing the Laplace transform (LT) of a non-negative

random variable through a max-infinite divisible (max-id) copula given in (25). Joe and Hu

(1996) stated that when the copula functions in (25) were chosen to be C12 = C23 = H ,

where H is a permutation symmetric max-id bivariate copula function, and C13 is the

independent copula function with v1 = v3 = 1 and v2 = 0, then the model would be

appropriate for generating a second order Markov chain.

Hence, the function F123(.) in (56) becomes the following trivariate max-id copula

F123(yt, yt−1, yt−2) =

ψ

( ∑

j∈{t,t−2}

[
− logH(e−0.5ψ−1(Fj ;δ1), e−0.5ψ−1(Ft−1;δ1); δ2) +

1

2
ψ−1(Fj; δ1)

]
; δ1

)
,(59)

where Fj = Fj(yj|Xj;θ) for j = t, t − 2 and t = 3, . . . , n. The function ψ(.; δ1) is the

Laplace transform, and the function H(.; δ2) is a permutation symmetric max-id bivariate

copula function. The bivariate margins of (59) are given by

Fi2(yj, yt−1) = ψ

(
− logH(e−0.5ψ−1(Fj ;δ1), e−0.5ψ−1(Ft−1;δ1); δ2)

+
1

2
ψ−1(Fj; δ1) +

1

2
ψ−1(Ft−1; δ1); δ1

)
, (60)

for i = 1, 2, j = t, t− 2, and

F13(yt, yt−2) = ψ(ψ−1(Ft; δ1) + ψ−1(Ft−2; δ1); δ1).

The above trivariate max-id copula is suggested to be used when there is stronger depen-

dence for measurements at nearer time points (Joe, 2016). He also stated that in the case of

large value clustering (such as when the time series observes seasonality) a good choice for

H(.; δ2) is the bivariate Gumbel copula and ψ(.; δ1) is the positive stable Laplace transform,

which results in having the function F123(.) in (59) to be a trivariate extreme value copula

(see Appendix A.2 for the full expression of such functions).

The Gaussian copula and the max-id copula can be extended to fit Markov models

of order greater than 2. In the next subsection, we will state some of the properties and

advantages of using copula-based transition probabilities instead of applying traditional

methods such as the one based on thinning operators.
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4.2.3 MODEL PROPERTIES

A summary of some of the properties and advantages of using copula-based transition

probabilities are given in Joe (2016). For copula-based transition probabilities, the following

properties hold.

• Any marginal distribution can be used. Hence, in our case the ZIP, ZINB, and ZICMP

distributions are considered.

• The serial dependence can be positive or negative depending on the choice of the

copula function, unlike the case based on thinning operator where only positive

autocorrelation can be used.

• Covariates can be included in the model to fit non-stationary time series through the

parameters of the univariate regression model.

• Extension from first order Markov model to second order (or even higher) Markov

model can be easily obtained by employing the techniques presented in Section 4.2.2.

• More options of serial correlation functions are available than those based on thinning

operators.

• Estimation via Likelihood inference can be easily applied especially if the copula

family has a simple form.

4.2.4 MEASURE OF DEPENDENCE

When the chosen copula family is the Gaussian, interpreting the dependence parameter,

δ, is straightforward since it corresponds to the Pearson’s correlation. However, for other

copula families, there is no clear meaning of the value of the dependence parameter δ. Each

dependence, or copula, parameter family has different range depending on the copula family.

Consequently, it is difficult to compare and interpret the values from different families.

In order to compare the degree of dependence through the copula parameter δ, one can

apply the copula-based Kendall’s tau correlation coefficient. If the margins are continuous,

the value of Kendall’s tau depends only on the parameter δ (Nelsen, 2007). However, for

discrete margins, as of the case here, the value of Kendall’s tau depends on the choice of the
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marginal distributions too since there is a chance of a tie when deriving the concordance

probability. One can use the value of Kendall’s tau that depends only on the parameter δ

but then it would account only on the dependence dominated by the middle of the data

(Nikoloulopoulos and Moffatt, 2019). Nikoloulopoulos and Karlis (2010) derived a formula

for Kendall’s tau for discrete margins. Through their formula, they showed that the value

of Kendall’s tau was affected by the choice of the marginal distribution. For normalized

versions of Kendall’s tau, one can refer to Goodman and Kruskal (1954) and Nešlehová

(2007). In this chapter, we compare between the dependence of different copula families

using the value of Kendall’s tau given in Nelsen (2007).

4.3 STATISTICAL INFERENCE

4.3.1 LOG-LIKELIHOOD FUNCTIONS

Inference or estimation method performed for the Markov models’ parameter vector

ϑ = (θ′, δ′)′ presented in this chapter is the maximum likelihood estimation (MLE)

method. As stated before likelihood inference method is easily applied when the chosen

copula family has simple form. In addition, likelihood inference gives us the advantage of

performing hypothesis testing through the likelihood ratio statistics and model selection

through the log-likelihood function. Next, we give a detailed description of the likelihood

functions of the two models presented earlier.

For the first order Markov models, the likelihood function is given by

L(ϑ;y) = Pr(Y1 = y1;θ)
n∏

t=2

Pr(Yt = yt|Yt−1 = yt−1;ϑ),

with the log-likelihood given as

l(ϑ;y) = log Pr(Y1 = y1;θ) +
n∑

t=2

log Pr(Yt = yt|Yt−1 = yt−1;ϑ)

= log f1(y1|X1;θ) +
n∑

t=2

log
Pr(Yt = yt, Yt−1 = yt−1;ϑ)

ft−1(yt−1|Xt−1;θ)

= log f1(y1|X1;θ)
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+
n∑

t=2

[
log{C(Ft(yt|Xt;θ), Ft−1(yt−1|Xt−1;θ); δ)

− C(Ft(y
−
t |Xt;θ), Ft−1(yt−1|Xt−1;θ); δ)

− C(Ft(yt|Xt;θ), Ft−1(y
−
t−1|Xt−1;θ); δ)

+ C(Ft(y
−
t |Xt;θ), Ft−1(y

−
t−1|Xt−1;θ); δ)}

− log ft−1(yt−1|Xt−1;θ)
]
, (61)

where θ and δ are the parameter vectors of the marginals and the dependence structure,

respectively. The log-likelihood function in (61) has closed form if the copula family

chosen to define C(.; δ) has a closed form. For the Gaussian copula family, the likelihood

function involves a bivariate integral of the normal probability in C(.; δ) which means that

the function is not in a closed form. That is,

C(Ft(yt|Xt;θ), Ft−1(yt−1|Xt−1;θ); δ) =

∫ D+
t

−∞

∫ D+

t−1

−∞

φR(δ)(zt, zt−1)dzt−1dzt,

where D+
t = Φ−1(Ft(yt|Xt;θ)) and D+

t−1 = Φ−1(Ft−1(yt−1|Xt−1;θ)), for t = 2, . . . , n

and the 2× 2 correlation matrix R(δ) is given by

R(δ) =

[
1 δ

δ 1

]
.

However, accurate deterministic approximation methods of the normal probability integrals

are available for low dimensions on standard softwares, see Hothorn et al. (2001) for

example. In contrast, choosing Frank copula family, for instance, will lead to a closed form

likelihood function that can be maximized easily. The copula function in this case will be

given by

C(Ft(yt|Xt;θ), Ft−1(yt−1|Xt−1;θ); δ) =
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−1

δ
log

[
1− (1− e−δFt(yt|Xt;θ))(1− e−δFt−1(yt−1|Xt−1;θ))

1− e−δ

]
,

for t = 2, . . . , n, which obviously has a closed form and hence the log-likelihood function

given in (61) has a closed form. Consequently, maximizing the function would be much

faster. Other copula families also provide a closed form log-likelihood function such as the

Gumbel and the reflected Gumbel copulas.

For second order Markov models, a general form of the log-likelihood function is given

by

l(ϑ;y) = log Pr(Y1 = y1, Y2 = y2)
n∑

t=3

log Pr(Yt = yt|Yt−1 = yt−1, Yt−2 = yt−2)

= log Pr(Y1 = y1, Y2 = y2)

+
n∑

t=3

[
log Pr(Yt = yt, Yt−1 = yt−1, Yt−2 = yt−2)

− log Pr(Yt−1 = yt−1, Yt−2 = yt−2)
]
, (62)

where the bivariate and trivariate joint densities depend on the choice of the copula con-

struction methods presented in Section 4.2.2. When the Gaussian copula function is chosen,

the log-likelihood function in (62) can be given by

l(ϑ;y) = log
{ ∫

D1(y1;θ)

∫

D2(y2;θ)

φR(δ)(z2, z1)dz2dz1

}

+
n∑

t=3

[
log

{ ∫

Dt(yt;θ)

∫

Dt−1(yt−1;θ)

∫

Dt−2(yt−2;θ)

φR(δ)(zt−2, zt−1, zt)dzt−2dzt−1dzt

}

− log
{ ∫

Dt−1(yt−1;θ)

∫

Dt−2(yt−2;θ)

φR(δ)(zt−2, zt−1)dzt−2dzt−1

}]
, (63)

where Dt(yt;θ) is given by (58). The expression in (63) is not in a closed form, and

approximations are needed for the rectangle probabilities. However, for the trivariate

max-id copula, the log-likelihood function can take a closed form and is given by

l(ϑ;y) = log
{ 1∑

j1=0

1∑

j2=0

F12(y1 − j1, y2 − j2)
}
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+
n∑

t=3

[
log

{ 1∑

j1=0

1∑

j2=0

1∑

j3=0

(−1)j1+j2+j3F123(yt − j1, yt−1 − j2, yt−2 − j3)
}

− log
{ 1∑

j1=0

1∑

j2=0

F12(yt−1 − j1, yt−2 − j2)
}]
, (64)

where F12(yt−1, yt−2) and F123(yt, yt−1, yt−2) are given by (60) and (59), respectively.

Hence, the maximum likelihood estimates of ϑ = (θ′, δ′)′ can be obtained by:

ϑ̂ = arg max
ϑ

l(ϑ;y).

This optimization will produce a Hessian Matrix that yields the observed Fisher information

matrix. To get the standard errors of the ML estimates of ϑ, one can take the inverse of the

Fisher information matrix. In the next sections, score functions are derived and asymptotic

results are derived to prove that the inverse of the Fisher information matrix of the likelihood

functions in (61) and (62) evaluated at the MLE of ϑ can be used as an estimated covariance

of matrix of ϑ̂.

4.3.2 SCORE FUNCTIONS

The score functions of the log-likelihood functions given in (61), (63), and (64) can be

obtained from the following general definition of the function.

S(ϑ) =
∂l(ϑ;y)

∂ϑ

=

[
∂l(ϑ;y)

∂θ
,
∂l(ϑ;y)

∂δ

]
, (65)

where θ = (γ,β,α)′ is a vector of the marginal parameters and δ is a vector of the

dependence (or copula) parameters. The function in (65) requires the derivation of the

marginal pdfs and cdfs of the ZIP, ZINB, and ZICMP distributions alongside the copula

functions.

In particular, consider the log-likelihood function of the first order Markov process
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given in (61). Thus, (65) is given by

S(ϑ) =

[
∂l(ϑ;y)

∂γ
,
∂l(ϑ;y)

∂β
,
∂l(ϑ;y)

∂α
,
∂l(ϑ;y)

∂δ

]
, (66)

where
∂l(ϑ;y)
∂α is omitted when the ZIP distribution is considered. The components of (66)

for the marginal parameters are given by

∂l(ϑ;y)

∂θ
=
f ′
1,θ

f1
+

n∑

t=2

[
∆C ′

t,θ

∆Ct
−
f ′
t,θ

ft

]
,

where θ can be any marginal parameter, ft is the marginal pdf and f ′
t,θ is its corresponding

partial derivative with respect to the marginal parameter θ,

∆Ct = C(Ft, Ft−1; δ)− C(F−
t , Ft−1; δ)

− C(Ft, F
−
t−1; δ) + C(Ft, Ft−1; δ),

∆C ′
t,θ is its corresponding partial derivative with respect to the marginal parameter θ, Ft is

the marginal cdf, F ′
t,θ is its corresponding partial derivative with respect to the marginal

parameter θ, and F−
t = Ft(y

−). For the dependence parameter δ, the partial derivative is

given by

∂l(ϑ;y)

∂δ
=

n∑

t=2

∆C ′
t,δ

∆Ct
.

The partial derivative of the copula function with respect to the marginal parameter θ can be

obtain using the chain rule, that is if θ = γi a regression coefficient of a covariate associated

with the zero-inflated parameter ωt for i = 1, . . . , l and t = 1, . . . , n, then

∂C

∂γi
=
∂C

∂Ft

∂Ft
∂ωt

∂ωt
∂γi

+
∂C

∂Ft−1

∂Ft−1

∂ωt−1

∂ωt−1

∂γi
,

if θ = βi a regression coefficient of a covariate associated with the intensity parameter λt

for i = 1, . . . , k then

∂C

∂βi
=
∂C

∂Ft

∂Ft
∂λt

∂λt
∂βi

+
∂C

∂Ft−1

∂Ft−1

∂λt−1

∂λt−1

∂βi
,
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and finally if θ = αi a regression coefficient of a covariate associated with the dispersion

parameter (if existed) κt for i = 1, . . . ,m then

∂C

∂αi
=
∂C

∂Ft

∂Ft
∂κt

∂κt
∂αi

+
∂C

∂Ft−1

∂Ft−1

∂κt−1

∂κt−1

∂αi
.

The partial derivative with respect to the dependence parameter δ is basically given by

∂C

∂δ
.

The partial derivatives of the link functions are given as follow,

∂ωt
∂γi

=
zite

γ′zt

(1 + eγ′zt)2,

∂λt
∂βi

= xite
β′xt ,

and
∂κt
∂βi

= wite
α′wt .

The following are the partial derivatives of the marginal distributions with respect to

ωt, λt, and κt (if existed). For the ZIP distribution, the partial derivatives of the density

function given in (6) are

∂ft(yt)

∂ωt
= y0,t −

e−λtλytt
yt!

,

where y0,t is 1 if yt = 0 and 0 otherwise, and

∂ft(yt)

∂λt
= (1− ωt)

1

yt!

[
e−λtytλ

yt−1
t − e−λtλytt

]

= (1− ωt)
e−λtλyt−1

t (yt − λt)

yt!
.

The partial derivatives of the cdf of the ZIP distribution given in (9) are

∂Ft(yt)

∂ωt
= 1− e−λt

yt∑

m=0

λmt
m!

,
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and

∂Ft(yt)

∂λt
= (1− ωt)

[
e−λt

yt∑

m=0

m
λm−1
t

m!
− e−λt

yt∑

m=0

λmt
m!

]

= (1− ωt)e
−λt

[ yt∑

m=1

λm−1
t

(m− 1)!
−

yt∑

m=0

λmt
m!

]

= −(1− ωt)e
−λt

λytt
yt!
.

For the ZINB distribution, the marginal density given in (13) can be expressed as

ft(yt) = ωty0,t + (1− ωt) exp{Q1},

where

Q1 = log(Γ(κt+yt))−log(Γ(κt))+κt log(κt)−κt log(κt+λt)+yt log(λt)−yt log(κt+λt).

Hence,

∂ft(yt)

∂ωt
= y0,t − exp{Q1},

∂ft(yt)

∂λt
= (1− ωt)

[
− κt
κt + λt

+
yt
λt

− yt
κt + λt

]
exp{Q1}

=
κt(1− ωt)(yt − λt)

λt(κt + λt)
exp{Q1},

and

∂ft(yt)

∂κt
= (1− ωt)

[
Γ′(κt + yt)

Γ(κt + yt)
− Γ′(κt)

Γ(κt)
+ 1 + log(κt)

− κt
κt + λt

− log(κt + λt)−
yt

κt + λt

]
exp{Q1}

= (1− ωt)

[
1 + ψ(κt + yt)− ψ(κt) + log

(κt + λt
κt

)
− κt + yt
κt + λt

]
exp{Q1},

where ψ(.) = Γ′(.)
Γ(.)

is the digamma function.

The partial derivatives of the cdf of the ZINB distribution are obtained after expressing the
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cdf given in (14) as

Ft(yt) = ωt + (1− ωt) exp{Q2}

where

Q2 = κt log(κt)− κt log(κt + λt)− log(Γ(κt)) + log

yt∑

m=0

eqm ,

and

qm = log(Γ(κt +m))− log(m! ) +m log(λt)−m log(κt + λt).

Hence,

∂Ft(yt)

∂ωt
= 1− exp{Q2},

∂Ft(yt)

∂λt
= (1− ωt)

[
− κt
κt + λt

+

∑yt
m=0

(
m
λt

− m
κt+λt

)
eqm

∑yt
m=0 e

qm

]
exp{Q2}

= (1− ωt)
κt

κt + λt

[
1

λt

∑yt
m=0me

qm

∑yt
m=0 e

qm
− 1

]
exp{Q2},

and

∂Ft(yt)

∂κt
= (1− ωt)

[
1 + log(κt)−

κt
κt + λt

− log(κt + λt)− ψ(κt)

+

∑yt
m=0

(
ψ(κt +m) m

κt+λt
eqm

)

∑yt
m=0 e

qm

]
exp{Q2}

= (1− ωt)

[
1 + log

( κt
κt + λt

) κt
κt + λt

− ψ(κt)

+
1

κt + λt

∑yt
m=0mψ(κt +m)eqm∑yt

m=0 e
qm

]
exp{Q2}.

For the ZICMP distribution, the marginal density given in (19) can be expressed as

ft(yt) = ωty0,t + (1− ωt) exp{Q3},
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where

Q3 = yt log(λt)− κt log(y! )− Z,

where Z = Z(λt, κt). Hence,

∂ft(yt)

∂ωt
= y0,t − exp{Q3},

∂ft(yt)

∂λt
= (1− ωt)

[ yt
λt

− ∂Z

∂λt

1

Z

]
exp{Q3},

and

∂ft(yt)

∂κt
= (1− ωt)

[
− κt
yt!

− ∂Z

∂κt

1

Z

]
exp{Q3}.

The partial derivatives of the cdf of the ZICMP distribution are obtained after expressing

the cdf given in (20) as

F (yt) = ωt + (1− ωt) exp{Q4}

where

Q4 = log

yt∑

m=0

(m! )−κtλmt − log(Z).

Hence,

∂Ft(yt)

∂ωt
= 1− exp{Q4},

∂Ft(yt)

∂λt
= (1− ωt)

[∑yt
m=1m(m! )−κtλm−1

t∑yt
m=0(m! )−κtλmt

− ∂Z

∂λt

1

Z

]
exp{Q4},

and

∂Ft(yt)

∂κt
= −(1− ωt)

[∑yt
m=0(m! )−(κt+1)λmt∑yt
m=0(m! )−κtλmt

+
∂Z

∂κt

1

Z

]
exp{Q4}.

For a bivariate copula function, C(Ft, Ft−1; δ), the partial derivative with respect to the

marginal distribution function, Ft, is the conditional copula function Ft−1 given Ft, and
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vice versa. That is
∂C

∂Ft
= C(Ft−1|Ft; δ),

∂C

∂Ft−1

= C(Ft|Ft−1; δ).

For example, if the copula function is chosen to be the Gaussian copula, then

∂C

∂Ft
= Φ

(Φ−1(Ft−1)− δΦ−1(Ft)√
1− δ2

)
,

∂C

∂Ft−1

= Φ
(Φ−1(Ft)− δΦ−1(Ft−1)√

1− δ2

)
,

and
∂C

∂δ
= φ(Φ−1(Ft),Φ

−1(Ft−1); δ).

For the bivariate Frank copula,

∂C

∂Ft
= e−δFt [(1− e−δ)(1− e−δFt−1)−1 − (1− e−δFt)]−1,

∂C

∂Ft−1

= e−δFt−1 [(1− e−δ)(1− e−δFt)−1 − (1− e−δFt−1)]−1,

and

∂C

∂δ
=

1

δ

[
e−δ − Ft−1e

−δFt−1(1− e−δFt)− Fte
−δFt(1− e−δFt−1)

(1− e−δ)− (1− e−δFt)(1− e−δFt−1)

]

+
1

δ2
log

[
1− e−δ

(1− e−δ)− (1− e−δFt)(1− e−δFt−1)

]

One can also obtain the ML estimates of ϑ through solving the score function, that is

S(ϑ) = 0.

4.3.3 ASYMPTOTIC PROPERTIES

To draw some inference on Markov processes, Billingsley (1961) gave important results

that basically state that, under certain regularity conditions, the asymptotic likelihood
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theory and numerical maximum likelihood from the i.i.d case can be extended to hold with

dependent data following Markov process. First, we will consider the first order Markov

model with the corresponding log-likelihood given in (61). As listed in Joe (1997), the

regularity conditions needed to hold to use the results from Billingsley (1961) for the

first order Markov process are verified. Before we list the regularity conditions, assume

that we have {Yt} for t = 1, . . . , n a first order Markov chain with state space S, and

Pr(Yt = yt|Yt−1 = yt−1;ϑ) is a family of transition densities with respect to a counting

measure and with column vector parameter ϑ of dimension r in the parameter space Θ. In

addition, for asymptotic analysis, rewrite the log-likelihood function given in (61) as

ln(ϑ) =
n∑

t=2

p(ϑ; yt−1, yt), (67)

where

p(ϑ; yt−1, yt) = log Pr(Yt = yt|Yt−1 = yt−1;ϑ),

for t = 2, . . . , n. Note that the first probability, Pr(Y1 = y1;θ) is omitted from the function

since the first observation, y1, is asymptotically insignificant.

Regularity conditions are as follow.

(a) The maximum likelihood estimate ϑ̂ of ln(ϑ) is assumed to satisfy

∂

∂ϑ
ln(ϑ) = 0.

(b) All states of the Markov chain communicate with each other (meaning that there are

no transient states).

(c) The set of y for which Pr(y|x;ϑ) is positive does not depend on ϑ.

(d) Let ∂p

∂ϑ
be the column vector of partial derivatives pi = ∂p/∂ϑi,

∂2p

∂ϑ∂ϑ
′ be the matrix

of second-order partial derivatives with components denoted by pij , and the third-

order (mixed) derivatives are denoted by pijk for i, j, k = 1, . . . , r. Then, pi, pij, and

pijk for i, j, k = 1, . . . , r exist and are continuous in ϑ.

(e) For ϑ ∈ Θ, there exists a neighborhood Nϑ of ϑ such that for all i, j, k,

Eϑ

[
sup

ϑ
′

∈Nϑ

|pijk(ϑ′, Y1, Y2)|
]
<∞.
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where Eϑ means expectation assuming that the true parameter value is ϑ and Y1 start

with a stationary distribution.

(f) For i, j = 1, . . . , r,

Eϑ[|pi(ϑ, Y1, Y2)|2] <∞,

and Σ(ϑ) = (σij(ϑ)) is a non-singular r × r matrix with

σij(ϑ) = Eϑ[pi(ϑ, Y1, Y2), pj(ϑ, Y1, Y2)].

Now, given these regularity conditions, the following asymptotic results from the i.i.d

case hold form our Markov processes (Billingsley, 1961). In particular, there exists a root

ϑ̂n of
∂

∂ϑ
ln(ϑ) = 0

such that

1. The ML estimator ϑ̂n of ϑ = (θ′, δ′)′ converges in probability to the true value of ϑ,

say ϑ0. That is, ϑ̂n is a consistent estimator of ϑ.

2. The ML estimator ϑ̂n is asymptotically normal. That is,

n1/2(ϑ̂n − ϑ0)
d−→ Nn(0,Σ

−1(ϑ0)).

3. The log-likelihood ratios for hypotheses involving nested models for the parameter ϑ

have asymptotic chi-square distribution. That is,

2[max
ϑ

ln(ϑ)− L(ϑ0)]
d−→ χ2

r.

Hence, as in the i.i.d case, the numerical maximization of (67) yields the observed

Fisher information matrix which can be used as an estimated covariance matrix of ϑ̂. That

is, for large n,

n−1Σ−1(ϑ̂) ≈ I−1
n (ϑ̂),

where

I−1
n (ϑ̂) = −

[∂2ln(ϑ)
∂ϑ∂ϑ′

∣∣∣
ϑ̂

]−1

= −
[∂2

∑n
t=2 p(ϑ; yt−1, yt)

∂ϑ∂ϑ′

∣∣∣
ϑ̂

]−1

.
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Joe (1997) argued that the theory in Billingsley (1961) still applies for higher-order

Markov processes, assuming the order is known. He also stated that extension of the

asymptotic theory to the case where the transition probabilities depend on covariates should

be possible.

4.4 MODEL SELECTION AND PREDICTION

Choices of models should depend on their goodness of fit and predictive performances.

There are several tools proposed to assess the models fit. It is advised to try more than one

statistical model and compare results. One of the method used to compare fits of different

models is the Akaike (Akaike, 1974) information criterion (AIC), which is given by

AIC1 = −2l(ϑ̂;y) + 2r,

where ϑ̂ is the MLE and r is the number of parameter in a model. Differently, one might

use the AIC as a penalized log-likelihood with the penalty being the number of parameters

in a model (Joe, 1997). That is,

AIC2 = l(ϑ̂;y)− r.

Many authors used these AICs to perform model selection for copula-based models

(see for examples, Dias et al., 2004 and Palaro and Hotta, 2006). However, for larger

sample size, the Bayesian information criterion (BIC) tends to provide better measure of fit

(Shumway and Stoffer, 2011). The BIC is given by

BIC = −2l(ϑ̂;y) + r log n.

Another way of comparing models performances is to evaluate their predictive perfor-

mances. To measure predictive performance of a model, one might calculate the root mean

square prediction error (RMSPE), and then pick the model with minimal RMSPE. The

RMSPE for Markov models is defined in Joe (2014) as

RMSPE =
{ 1

n− p

n∑

t=1+p

[
yt − Ê(Yt|Yt−1 = yt−1, . . . , Yt−p = yt−p; ϑ̂)

]2} 1

2

, (68)
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where p is the Markov model order, and Ê(.; ϑ̂) is the conditional expectation with the

parameter vector equal to the MLE of the model.

Note that the conditional expectation Ê(.; ϑ̂) in (68) is an estimation of E(.;ϑ), which

can be used to predict the value of Yt for t = 2, . . . , n. Also, this expectation depends

on the choices of the marginal distributions and the copula family. A general form of the

conditional expectation is given by

E(Yt|Yt−1 = yt−1, . . . , Yt−p = yt−p;ϑ) =

∑

yt∈S

ytPr(Yt = yt|Yt−1 = yt−1, . . . , Yt−p = yt−p;ϑ) =

∑

yt∈S

yt
Pr(Yt = yt, Yt−1 = yt−1, . . . , Yt−p = yt−p;ϑ)

Pr(Yt−1 = yt−1, . . . , Yt−p = yt−p;ϑ)
.

Residuals analysis is also an alternative choice to evaluate the model fit. However,

for dependent discrete data, standard methods, the difference between the predicted and

the fitted values, provide residuals that depart from the normal distribution. Dunn and

Smyth (1996) introduced randomized quantile residuals that identically and independently

distributed as standard normal even if the responses are discrete and dependent. These

residuals are given in (48).

4.5 SIMULATED EXAMPLES

To evaluate the performance of the proposed method and confirm the asymptotic results,

a comprehensive simulation study was conducted. We carry out the simulation in the

statistical software R (R Core Team, 2013). Out of the several processes to choose from,

we simulate first order stationary Markov processes with joint distribution of consecutive

observations following the bivariate Gaussian and Frank copulas. The marginal distributions

are chosen to be the ZIP, ZINB and ZICMP distributions. Since we assume the process is

stationary, we set the marginal distributions’ parameters, θ, to be constant across time. For

Gaussian copula, the marginal parameters are chosen to be

• ZIP with θ = (λ = 3, ω = 0.3)′ ;
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• ZINB with θ = (λ = 3, ω = 0.3, κ = 5)′;

• ZICMP with θ = (λ = 3, ω = 0.2, κ = 0.5)′;

and the dependence parameter for the bivariate Gaussian copula is chosen to be δ = 0.5

across all three models. We generate 500 simulated datasets for each of the above models

with the sample sizes, n = 100, 200 and 500. The evaluation criterion is chosen to be the

mean absolute deviation error (MADE), which is given by:

1

m

m∑

i=1

|ϑ̂i − ϑ|,

where m is the number of replications, i.e. m = 500.

The parameter estimates were obtained after constructing the log-likelihood function

given in (61) for the ZIP, ZINB, and ZICMP distributions. A summary of the simulation

results are shown in Table 7, which represents the count time series ZIP, ZINB, and ZICMP

models with joint distribution of consecutive observations following the bivariate Gaussian

copula. The results indicate that the proposed estimation method produces reasonable

estimates and relatively small MADEs. In addition, as the sample size increases the

parameter estimates seem to converge to the true parameter values. The box plots displayed

in figures 26, 27, and 28 show how the performance enhances when the sample size

increases. To assess the approximate normality of the estimates, Q-Q plots of the ML

estimates for the 500 ZIP, ZINB and ZICMP replicates of length n = 500 are shown in

figures 29, 30, and 31. These plots agrees with the asymptotic results given in Section 4.3.3.
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Table 7: Mean of estimates, MADEs (within parentheses) for Markov zero-inflated models

with Gaussian copula

Model n λ ω κ δ

ZIP 100 2.9992(0.2773) 0.2949(0.0591) 0.4840(0.0748)

200 3.0056(0.1698) 0.2961(0.0402) 0.4903(0.0542)

500 2.9980(0.1051) 0.2977(0.0249) 0.4933(0.0342)

ZINB 100 3.0078(0.3225) 0.2961(0.0661) 4.9338(1.6244) 0.4809(0.0801)

200 3.0109(0.2252) 0.2968(0.0581) 5.2743(1.4477) 0.4860(0.0581)

500 2.9990(0.1430) 0.2980(0.0290) 4.9858(1.0384) 0.4913(0.0362)

ZICMP 100 3.4689(0.6813) 0.2008(0.0488) 0.5516(0.0860) 0.4771(0.0747)

200 3.3383(0.4619) 0.2016(0.0332) 0.5404(0.0611) 0.4847(0.0540)

500 3.2545(0.2996) 0.2031(0.0210) 0.5326(0.0404) 0.4885(0.0336)
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Figure 26: Mean of ML estimates for the ZIP-Gaussian models of length n =
100, 200, and 500
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Figure 27: Mean of ML estimates for the ZINB-Gaussian models of length n =
100, 200, and 500
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Figure 28: Mean of ML estimates for the ZICMP-Gaussian models of length n =
100, 200, and 500
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Figure 29: Q-Q plots of the ML estimates for the 500 ZIP-Gaussian process of length

n = 500.
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Figure 30: Q-Q plots of the ML estimates for the 500 ZINB-Gaussian process of length

n = 500.
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Figure 31: Q-Q plots of the ML estimates for the 500 ZICMP-Gaussian process of length

n = 500.
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Next, we simulate a stationary Markov process with dependence structure following the

Frank copula. The marginal and dependence parameters are chosen to be

• ZIP with θ = (λ = 3, ω = 0.3)′;

• ZINB with θ = (λ = 4.1, ω = 0.25, κ = 0.5)′;

• ZICMP with θ = (λ = 4.1, ω = 0.25, κ = 0.5)′;

and the dependence parameter for the bivariate Frank copula is chosen to be δ = 3.2

across all three models. A summary of the simulation results are shown in Table 8, which

represents the count time series ZIP, ZINB, and ZICMP models with joint distribution of

consecutive observations following the bivariate Frank copula. Similar to the Gaussian

copula, the proposed method performs well. The box plots displayed in figures 32, 33,

and 34 indicate that the increasing in sample size improves the estimation. Figures 35,

36, and 37 show the Q-Q plots of the estimates with sample size n = 500. The normality

assumption of the parameter estimates is satisfied most of the time.

Table 8: Mean of estimates, MADEs (within parentheses) for Markov zero-inflated models

with Frank copula

Model n λ ω κ δ

ZIP 100 2.9897(0.2513) 0.2935(0.0556) 3.1585(0.5723)

200 3.0272(0.1916) 0.2902(0.0388) 3.1809(0.5316)

500 3.0409(0.1051) 0.2965(0.0249) 3.2226(0.3563)

ZINB 100 4.1530(1.1330) 0.2555(0.1434) 0.6780(0.2990) 3.0515(0.7628)

200 4.0739(0.8759) 0.2471(0.1177) 0.5307(0.1157) 3.1333(0.6089)

500 4.1200(0.5459) 0.2528(0.0768) 4.9858(1.0384) 3.1394(0.3645)

ZICMP 100 4.3895(0.5621) 0.2493(0.0509) 0.5167(0.0719) 3.2445(0.5745)

200 4.1753(0.4619) 0.2500(0.0355) 0.5082(0.0490) 3.2312(0.4222)

500 4.1159(0.3890) 0.2486(0.0203) 0.5052(0.0339) 3.2431(0.2785)
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Figure 32: Mean of ML estimates for the ZIP-Frank models of length n = 100, 200, and 500
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Figure 33: Mean of ML estimates for the ZINB-Frank models of length n =
100, 200, and 500



114

lambda omega

delta kappa

100 200 500 100 200 500

100 200 500 100 200 500

0.4

0.6

0.8

0.1

0.2

0.3

0.4

0.5

1

2

3

4

5

2.5

5.0

7.5

10.0

12.5

 

P
a
ra

m
e
te

r 
E

s
ti
m

a
te

s

n

100

200

500

Figure 34: Mean of ML estimates for the ZICMP-Frank models of length n =
100, 200, and 500
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Figure 35: Q-Q plots of the ML estimates for the 500 ZIP-Frank process of length n = 500.
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Figure 36: Q-Q plots of the ML estimates for the 500 ZINB-Frank process of length

n = 500.
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Figure 37: Q-Q plots of the ML estimates for the 500 ZICMP-Frank process of length

n = 500.
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4.6 APPLICATIONS

In this section, we discuss possible applications of the zero-inflated Markov models

presented in this chapter. First, we consider monthly counts of arson in the 23rd police car

beat plus in Pittsburgh, PA. The data is similar to the one studied in Zhu (2012), and it is

from the Forecasting Principles site (http://www.forecastingprinciples.com). Second, we

consider the sandstorm data discussed in Chapter 3. The data set consists of the monthly

count of strong sandstorms recorded by the AQI airport station in Eastern Province, Saudi

Arabia.

4.6.1 ARSON DATA

The data were monthly counts of arson in the 23rd police car beat plus in Pittsburgh,

PA. The data consisted of 144 monthly counts of arsons, starting from January 1990 and

ending in December 2001. Empirical mean and variance of these zero inflated counts were

1.1042 and 1.5625, respectively. Additionally, empirical mean and variance of these counts,

excluding zeros, were 1.8706 and 1.2092, respectively, which suggested non-zero counts

observed under-dispersion. A bar plot of the distribution of series is displayed in Figure

38, from which we can see that the distribution of the time series of the arson counts has

more zeros relative to a Poisson distribution with the same empirical mean. These zeros

represented about 41% of the sample. The count series and the sample autocorrelation

function of the series are shown in Figure 39. The plots show that there exist frequent

occurrence of zeros and low ordered autocorrelation.
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Figure 38: Bar plot of the arson counts series

Hence, we fitted several models with different marginal distributions and dependence

structures. The marginal distributions were chosen to be the ZIP, ZINB and ZICMP

distributions with constant marginal parameters, i.e. no covariates were considered here.

We considered both first order and second order dependence structures. In the first order

Markov models, we fitted the bivariate Gaussian, Frank, Gumbel, reflected Gumbel, and

Plackett copula functions for the joint distribution of two consecutive observations. For the

second order Markov models, we fitted the trivariate Gaussian and max-id copula functions

for the joint distribution of three consecutive observations. In the trivariate max-id copula

function, we chose the Laplace transform function, ψ(.), to be either the positive staple

Laplace transform (PSLT) or the log series Laplace transform (LSLT) with H(.; δ) chosen

to be the bivariate Frank copula. Out of these models, we selected three models, each with

different marginals, based on the model selection criteria AIC2, BIC, and RMSPE defined in

Section 4.4. Additionally, we considered fitting the ordinary Poisson and negative binomial

(NB) distribution in the seek of comparison.
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Figure 39: Arson counts series: the time plot, the sample autocorrelation and partial

autocorrelation function.

Table 9 shows comparisons of the ZIP, ZINB, ZICMP, Poisson, and NB Markov models

with the different dependence structures. The increase of the dependence order improved

the AIC and BIC. That is, the second order Markov models outperformed the first order

models. Also, accounting for the zero-inflation led to better AIC and BIC values except for

the ZICMP. However, in terms of the RMSPE, the ZICMP Markov models were superior to

any alternatives, and that might be due to the under-dispersion among the non-zero counts

observed in the data. Within each marginal, the values of the RMSPE were not significantly

different, but worth noticing that for the ZICMP the first order models outperformed the

second order models.
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Table 9: Comparisons of the ZIP, ZINB, ZICMP, Poisson, and NB models with different

dependence structures

Marginal Copula Order AIC2 BIC RMSPE

ZIP Gaussian 1 198.46 -388.02 1.05

Frank 1 199.39 -389.86 1.05

Gumbel 1 201.31 -393.71 1.07

ref.Gumbel 1 199.30 -389.69 1.06

Plackett 1 199.56 -390.20 1.05

Gaussian 2 194.35 -376.83 1.03

PSLT/Frank 2 195.59 -379.29 1.02

LSLT/Frank 2 195.39 -378.91 1.03

ZINB Gaussian 1 197.11 -382.36 1.05

Frank 1 198.03 -384.18 1.05

Gumbel 1 199.21 -386.54 1.05

ref.Gumbel 1 197.95 -384.03 1.05

Plackett 1 198.18 -384.49 1.05

Gaussian 2 193.16 -371.48 1.03

PSLT/Frank 2 193.62 -372.39 1.00

LSLT/Frank 2 194.00 -373.15 1.03

ZICMP Gaussian 1 211.38 -410.89 1.51

Frank 1 212.02 -412.16 1.52

Gumbel 1 215.32 -418.76 1.48

ref.Gumbel 1 212.02 -412.17 1.51

Plackett 1 212.23 -412.59 1.51

Gaussian 2 202.91 -390.97 1.30

PSLT/Frank 2 205.65 -396.46 1.17

LSLT/Frank 2 204.67 -394.49 1.30

Poisson Gaussian 1 203.55 -401.16 1.21

Gaussian 2 199.47 -390.02 1.39

NB Gaussian 1 198.65 -388.40 1.21

Gaussian 2 195.39 -378.89 1.48

Taking account the values of the AIC, BIC, and RMSPE, we selected the second order

Markov models with the trivariate Gaussian copula to handle the dependence structure for

the ZIP, ZINB, ZICMP, Poisson, and NB marginals. Table 10 shows the parameter estimates
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and standard errors of these models. Out of these models, the ZIP and ZINB distributions

were the best in terms of the values of the AIC and BIC. On the other hands, the ZICMP was

superior to the rest in terms of the RMSPE with a value equaled to 0.72. The corresponding

RMSPE values of the ZIP and ZINB distributions were 1.00 and 1.01, respectively, which

were less than the values corresponding to the Poisson and NB distributions.

Table 10: ML estimates, standard errors (within parentheses) for the Markov models. Note:

β = log (λ), γ = logit(ω), and α = log (κ)

Model β γ α δ1 δ2

Poisson 0.1284(0.0084) 0.2186(0.0265) 0.2301(0.0657)

NB 0.1136(0.0230) 2.7152(0.0259) 0.2677(0.0110) 0.2797(0.0027)

ZIP 0.3567(0.0465) -1.2392(0.0264) 0.2663(0.0653) 0.2896(0.1314)

ZINB 0.2843(0.0119) -1.5887(0.0169) 2.1001(0.0151) 0.2704(0.0234) 0.2934(0.0112)

ZICMP 1.7793(0.0360) -0.3658(0.0036) 2.2782(0.0202) 0.2502(0.0088) 0.2853(0.0115)

Figure 40 displays the predicted values, which were the conditional expectations of

Yt given Yt−1 and Yt−2 for t = 1, . . . , n following the ZIP, ZINB, and ZICMP marginals.

Within the zero-inflation distributions, the ZIP and ZINB produce similar predicted values.
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Figure 40: Predicted values using the conditional expectations of the Markov models fit to

the arson count series. Dots represent the observed counts.

4.6.2 SANDSTORMS DATA
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The data set discussed in this section consists of the monthly count of strong sandstorms

recorded by the AQI airport station in Eastern Province, Saudi Arabia. The data set consists

of 348 monthly counts of strong sandstorms, starting from January 1978 to December 2013.

The main objective was to apply the proposed models and investigate if there were any

significant seasonal and trend components. Additionally, we investigated if there were any

other predictors that affected the frequency of sandstorms such as the monthly counts of

dust haze events, maximum wind speed, temperature, and relative humidity.
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Figure 41: Time series plot of monthly count of sandstorms, the autocorrelation function,

bar-plot of distribution of sandstorm counts, and circular plot of the monthly mean count of

sandstorms.

Figure 41 shows the sandstorms series plot, the autocorrelation function, bar-plot of the

distribution of sandstorm counts, and circular plot of the monthly mean count of sandstorms.

From the time series plot and the bar-plot, we could see that the distribution of the sandstorm

counts had more zeros relative to a Poisson distribution with the same empirical mean.

These zeros represented about 59% of the sample. Decreasing trend could also be observed

from the time series plot. Additionally, seasonality was also seen from the autocorrelation

function and circular plot. In fact, from the circular plot, we concluded that most sandstorms
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occurred during spring time, i.e. March, April, and May months. Thus, trend and seasonal

covariates were added to the models.

Hence, we fitted several models with different marginal distributions and dependence

structures. The marginal distributions were chosen to be the ZIP, ZINB and ZICMP

distributions with the log-linear function of the intensity parameter given by

log (λt) = β0 + β1 (t× 10−3) + β2x1t + β3x2t + β4x3t,

and the logit function for the zero-inflation parameter given by

logit(ωt) = γ0 + γ1z1t + γ2z2t + γ3z3t,

for t = 1, . . . , n, where x1t = z1t = cos (2πt
12
), x2t = z2t = sin (2πt

12
), and x3t = z3t is the

monthly count of dust haze events. The log-function of the dispersion parameter (if existed)

given by log (κ) = α, i.e. it was chosen to be constant across time. We considered both first

order and second order dependence structures. In the first order Markov models, we fitted

the bivariate Gaussian, Frank, Gumbel, reflected Gumbel, and Plackett copula functions for

the joint distribution of two consecutive observations. For the second order Markov models,

we fitted the trivariate Gaussian and max-id copula functions for the joint distribution of

three consecutive observations. In the trivariate max-id copula function, we chose the

Laplace transform function, ψ(.), to be either the positive staple Laplace transform (PSLT)

or the log series Laplace transform (LSLT) with H(.; δ) chosen to be either the bivariate

Frank or Gumbel copulas. Out of these models, we selected two models, each with different

marginals, based on the model selection criteria AIC2, BIC, and RMSPE defined in Section

4.4.

Table 11 shows comparisons of the ZIP, ZINB, and ZICMP Markov models with the

different dependence structures. The increase of the dependence order improves the models.

The second order Markov models outperformed the first order Markov models in term of

the AIC2, BIC and RMSPE values. However, the second order parameters of the trivariate

Gaussian copula and the Laplace transform parameters, in the trivariate max-id copula, are

not always significant and dropped if necessary. Additionally, having the same dependence

structure, the Markov models with ZINB margins seem to fit the sandstorm data better

than the models with ZIP and ZICMP margins. Within the ZIP and ZINB margins, the

bivariate reflected Gumbel and Frank copula function are chosen to model the dependence
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structures. The trivariate Gaussian copula and the trivariate max-id copula with PSLT and

bivariate Gumbel copula function for the ZICMP margin. Hence, we want to show how

each dependence structures can be interpreted in term of the autocorrelation.

Table 12 shows that the zero-inflated Markov models are capable of accounting for

first order dependence. However, only the models with ZICMP margins account for the

second order dependence. The autocorrelation coefficients are similar when the dependence

structure is the same for the models with ZIP and ZINB margins. For the marginal

parameters, θ, the estimates are quite similar between the ZIP and ZINB, and slightly

different from the ZICMP. All models suggest significant decreasing trend in the number of

strong sandstorms since β1 < 0. Seasonality also significant at annual frequencies since

β2, β3, γ1 and γ2 are significantly different from zero. Finally, the affect of dust haze is

significant since both β4 and γ3 are significantly different from zero. To compare between

the Markov models in term of the dependence, we consider the Kendall’s tau. That is, the

Kendall’s tau, when the chosen copula function is the reflected Gumbel, is given by

τK = 1− δ−1
1 ,

so for the ZIP margin it equals to τK = 0.1908, which is similar to the one corresponding

to the ZINB margin, τK = 0.2156. When the copula function is the Frank, the Kendall’s

tau is then given by

τK = 1− 4
1−D1(δ1)

δ1
,

where D1(.) is the Debye function

D1(x) =
1

x

∫ x

0

t

et − 1
dt.

Thus, for the ZIP margin it equals to τK = 0.1664, which is similar to the one corresponding

to the ZINB margin, τK = 0.1870. In both cases, the ZINB distribution provides slightly

stronger dependence than the ZIP distribution.
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Table 11: Comparisons of the ZIP, ZINB, and ZICMP models with different dependence

structures

Marginal Copula Order AIC2 BIC RMSPE

ZIP Gaussian 1 435.55 -828.72 1.59

Frank 1 434.11 -825.84 1.58

Gumbel 1 438.32 -834.28 1.60

ref.Gumbel 1 433.87 -825.37 1.57

Plackett 1 435.21 -828.05 1.58

Gaussian 2 433.85 -821.48 1.56

PSLT/Frank 2 431.25 -820.13 1.56

LSLT/Frank 2 433.77 -825.16 1.55

PSLT/Gumbel 2 418.46 -794.54 1.62

ZINB Gaussian 1 425.86 -809.34 1.59

Frank 1 424.54 -806.71 1.59

Gumbel 1 428.20 -814.03 1.60

ref.Gumbel 1 424.15 -805.93 1.58

Plackett 1 425.5 -808.64 1.59

Gaussian 2 424.06 -801.89 1.56

PSLT/Frank 2 417.00 -787.78 1.57

LSLT/Frank 2 423.67 -801.11 1.57

PSLT/Gumbel 2 413.05 -779.87 1.63

ZICMP Gaussian 1 477.10 -911.82 1.91

Frank 1 475.06 -907.75 1.88

Gumbel 1 473.49 -904.6 1.79

ref.Gumbel 1 473.73 -905.1 1.87

Plackett 1 469.06 -895.74 1.77

Gaussian 2 449.97 -853.71 1.72

PSLT/Frank 2 457.44 -868.66 1.80

LSLT/Frank 2 450.91 -855.59 1.77

PSLT/Gumbel 2 455.12 -864.02 1.83
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Table 12: Parameter estimates (standard errors) for the copula-based Markov models fit to the sandstorms count series.

ZIP ZINB ZICMP

Parameter ref.Gumbel Frank ref.Gumbel Frank Gaussian PSLT/Gumbel

β0 0.9578(0.1190) 0.9705(0.1172) 0.9960(0.1564) 0.9391(0.1593) 0.8139(0.0577) 0.7701(0.1938)

β1 -4.2579(0.6098) -4.0715(0.6049) -4.9031(0.8052) -4.7335(0.8168) -2.3656(0.0302) -2.4943(0.6999)

β2 -0.2184(0.0890) -0.1789(0.0879) -0.1956(0.1233) -0.1836(0.1253) -0.0921(0.0107) -0.1248(0.0860)

β3 0.3722(0.0957) 0.3650(0.0950) 0.4371(0.1255) 0.4379(0.1283) 0.2203(0.0554) 0.2466(0.0827)

β4 0.0656(0.0088) 0.0638(0.0089) 0.0635(0.0121) 0.0636(0.0124) 0.0452(0.0024) 0.0426(0.0112)

γ0 0.6627(0.2717) 0.7264(0.2677) 0.5357(0.3077) 0.5926(0.3086) 1.1825(0.0481) 1.1292(0.2221)

γ1 0.6236(0.2561) 0.6615(0.2514) 0.6706(0.2991) 0.6607(0.3006) 0.6252(0.0717) 0.6266(0.2014)

γ2 -0.9051(0.2507) -0.8798(0.2427) -0.8819(0.2814) -0.7799(0.2799) -0.9827(0.0456) -0.9824(0.2070)

γ3 -0.1407(0.0444) -0.1498(0.0448) -0.1596(0.0538) -0.1664(0.0545) -0.1565(0.0181) -0.1467(0.0335)

α 1.4876(0.5709) 1.4303(0.5431) 0.8083(0.0186) 0.7540(0.1400)

δ1 1.2358(0.0765) 1.5326(0.4672) 1.2748(0.0896) 1.7328(0.5034) 0.2779(0.0444) 1.0242(0.0885)

δ2 0.1818(0.0238) 1.1922(0.1057)

τK 0.1908 0.1664 0.2156 0.1870 0.1793 0.1612
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Figure 42 displays the predicted values, which were the conditional expectations of Yt

given Yt−1 for the ZIP and ZINB Markov models and Yt given Yt−1 and Yt−2 for ZICMP

Markov models for t = 1, . . . , n. The ZIP and ZINB models perform better than the ZICMP

especially with the first hundred observations where non-zero counts are more frequent.

Within each margin, the reflected Gumbel and Frank copulas are very similar with the ZIP

and ZINB margins. However, with the ZICMP margin, the Gaussian copula is better than

the max-id copula.
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Figure 42: Predicted values using the conditional expectations of the Markov models fit to

the sandstorm count series. Dots represent the observed counts.
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CHAPTER 5

SUMMARY AND FUTURE DIRECTIONS

5.1 SUMMARY

Count time series data are observed in several applied disciplines such as in environmen-

tal science, biostatistics, economics, public health, and finance. In some cases, a specific

count, say zero, may occur more often than usual. However, during certain periods these

counts could take larger values. Additionally, in practice these zero-inflated counts usually

observe serial dependence when the data is collected over time. Overlooking the frequent

occurrence of zeros and the serial dependence could lead to false inference.

In this dissertation, we have proposed two classes of copula-based zero-inflated count

time series models. The first class used the marginal ZIP, ZINB, and ZICMP regression

models for zero-inflated count time series data with the serial dependence being captured by

a Gaussian copula, with a correlation matrix corresponding to a stationary autoregressive

moving average (ARMA) process. Likelihood inference is carried out using sequential

importance sampling. Simulated studies were conducted to evaluate the estimation method.

The studies show that the estimation method is accurate and reliable even for relatively

small sample size for the ZIP and ZINB models. However, for the ZICMP models, the

method is less consistent for smaller sample size. Model assessment to check the goodness

of the proposed models is done via residual analysis. The proposed models are applied on

the occupational health and sandstorms data. According to the residual analysis the models

fit the data adequately. A significant advantage of this model is that interpretations of the

model components are easily derived.

The second class also used the marginal ZIP, ZINB, and ZICMP distributions to build

Markov zero-inflated count time series models. The serial dependence being captured

through constructing bivariate and trivariate joint distributions of the consecutive observa-

tions. The joint distribution function of the consecutive observations is constructed through

copula functions such as the Gaussian, Frank, Gumbel copula functions. Model properties
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and dependence measurements are discussed. We also implemented model selection and

prediction to assess the models performance. Simulation studies were conducted to evaluate

the estimation method. The studies showed that the estimated parameters are consistent and

normally distributed. The proposed Markov models are applied on the arson data and again

on the sandstorms data. The models prove to be reliable on handling different zero-inflated

count time series data.

5.2 FUTURE DIRECTIONS

There are several directions one can take on related future work of this dissertation. The

following are some extensions.

5.2.1 MULTIVARIATE ZERO-INFLATED COUNT TIME SERIES MODELS

In practice, many time series components come as a vector instated of a single observa-

tion. For example, in our own sandstorms data, we can expand the data by including other

counts from different stations in Saudi Arabia. Hence, we can investigate both the temporal

autocorrelation within each time series from each station and the spatial correlation between

the stations. That is, we have a multivariate process {Yt} with dimension d for t = 1, . . . , n.

Then, besides the serial dependence within each series {Yti} for i = 1, . . . , d, we have

spatial dependence (or interdependence in general) between the different series {Yti} and

{Ytj} for i 6= j and t = 1, . . . , n.

The covariance matrix of such a process is given by

Cov(Yt+h,Yt) =




Cov(Yt+h,1, Yt,1) Cov(Yt+h,1, Yt,2) . . . Cov(Yt+h,1, Yt,d)

Cov(Yt+h,2, Yt,1) Cov(Yt+h,2, Yt,2) . . . Cov(Yt+h,2, Yt,d)
...

...
. . .

...

Cov(Yt+h,d, Yt,1) Cov(Yt+h,d, Yt,2) . . . Cov(Yt+h,d, Yt,d)



nd×nd

.

Copula theory can be applied to construct such models.

5.2.2 DIRECTIONAL DEPENDENCE OF COUNT TIME SERIES

In some cases, the time series counts come in pairs, and researchers are interested in
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studying the dynamic relationships of these pairs. Many of the methods applied to study

such dynamic relationships are plausible only if the random processes were continuous

or the relationships were symmetric. One of these methods is the Granger-causality test

introduced by Granger (1969), which has become a standard technique used to study the

causal relationship. Kim and Hwang (2017) introduced a new method of investigating the

casual relationships of two asymmetric time series processes by deriving measurements of

the directional dependence via a Gaussian copula beta regression model with generalized

autoregressive conditional heteroscedasticity (GARCH) marginals. Using directional de-

pendence measurements suggested in Sungur (2005) and Alqawba et al. (2019), we plan to

study the joint behavior of bivariate count time series using the proposed models in this

dissertation and other models in the literature.
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APPENDIX A

A.1 CONDITIONAL DISTRIBUTION OF THE LATENT ERROR VECTOR

GIVEN THE OBSERVED PROCESS IN CHAPTER 3

In Chapter 3, we used the model

Yt = F−1
t {Φ(ǫt)|Xt;θ}, for t = 1, . . . , n,

which is proportional to

Φ−1(Ft{Yt − 1|Xt;θ}) < ǫt ≤ Φ−1(Ft{Yt|Xt;θ}), for t = 1, . . . , n,

and hence when Yt takes the value yt, the latent variable ǫt falls in the interval

Dt(yt|Xt;θ) = (Φ−1{Ft(y−t |Xt;θ)},Φ−1{Ft(yt|Xt;θ)}] (Lennon, 2016).

Now, in our model, we assumed that the errors ǫ ∼ Nn(0, R(ρ)). Thus, given the

data Y = y, the conditional distribution of the errors is a multivariate truncated normal

distribution on the interval D = (D−,D+] where

D− = (Φ−1{F1(y
−
1 ;θ)}, . . . ,Φ−1{Fn(y−n ;θ)})′,

and

D+ = (Φ−1{F1(y1;θ)}, . . . ,Φ−1{Fn(yn;θ)})′.

The covariate vector Xt is omitted here for simplicity. The multivariate pdf of ǫ given

Y = y is then given by

f(ǫ|Y = y) =





exp {− 1

2
ǫ′R−1ǫ}

∫D+

D− exp {− 1

2
ǫ′R−1ǫ}dǫ

D− < ǫ ≤ D+

0 otherwise,
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where R = R(ρ) is the positive definite covariance and correlation matrix of the error, i.e.

its diagonal values are 1’s.

Therefore, the marginal distributions of ǫt|Yt = yt for t = 1, . . . , n are univariate truncated

normal on the interval Dt = (D−
t ,D+

t ] with pdf’s given by

f(ǫt|Yt = yt) =





φ(ǫt)
Φ(D+)−Φ(D−)

D− < ǫt ≤ D+

0 otherwise,

=





φ(ǫt)

Ft(yt;θ)−Ft(y
−

t ;θ)
D− < ǫt ≤ D+

0 otherwise,

The expectation of ǫt|Yt = yt is then given in (49), which is used to estimate the latent

variable ǫt.

A.2 TRIVARIATE MAX-ID COPULA FUNCTION WITH POSITIVE STABLE

LT AND BIVARIATE GUMBEL

The following is a derivation of the trivariate max-id copula function with positive stable

LT and bivariate Gumbel, which results the trivariate extreme value copula function. The

positive stable function is given by

ψ(s) = exp {−s1/δ1}, δ1 ≥ 1,

with corresponding functional inverse given by

ψ−1(t) = (− log t)δ1 .

Hence, the trivariate max-id copula given in (59) becomes

F123(yt, yt−1, yt−2) = exp

{
−

( ∑

j∈{t,t−2}

[

− logH(e−0.5(− logFj)
δ1 , e−0.5(− logFt−1)δ1 ; δ2)

+
1

2
(− logFj)

δ1
])1/δ1}

. (69)
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Now, if H(.; δ2) is chosen to be the Gumbel copula, i.e.

C(u1, u2; δ) = exp {−([− log u1]
δ + [− log u2]

δ)1/δ},

then (69) becomes

F123(yt, yt−1, yt−2) = exp

{
−

( ∑

j∈{t,t−2}

[
− log exp

{
−

(
[− log e−.5(− logFj)

δ1 ]δ2

+ [− log e−.5(− logFt−1)δ1 ]δ2
)1/δ2}

+
1

2
(− logFj)

δ1
])1/δ1}

= exp

{
−

( ∑

j∈{t,t−2}

[(
[
1

2δ2
(− logFj)

δ1δ2

+
1

2δ2
(− logFt−1)

δ1δ2
)1/δ2

+
1

2
(− logFj)

δ1
])1/δ1}

= exp

{
−

([ 1

2δ2
(− logFt)

δ1δ2 +
1

2δ2
(− logFt−1)

δ1δ2
]1/δ2

+
[ 1

2δ2
(− logFt−2)

δ1δ2 +
1

2δ2
(− logFt−1)

δ1δ2
]1/δ2

+
1

2
(− logFt)

δ1 +
1

2
(− logFt−2)

δ1

)1/δ1}
. (70)

The bivariate margins of (70) is then given by

Fj2(yj, yt−1) = ψ

(
− logH(e−0.5ψ−1(Fj ;δ1), e−0.5ψ−1(Ft−1;δ1); δ2)

+
1

2
ψ−1(Fj; δ1) +

1

2
ψ−1(Ft−1; δ1); δ1

)

= exp

{
−

(
logH(e−0.5(− logFj)

δ1 , e−0.5(− logFt−1)δ1 ; δ2)

+
1

2
(− logFj)

δ1 +
1

2
(− logFt−1)

δ1

)1/δ1}

= exp

{
−

(( 1

2δ2
(− logFj)

δ1δ2 +
1

2δ2
(− logFt−1)

δ1δ2
)1/δ2
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+
1

2
(− logFj)

δ1 +
1

2
(− logFt−1)

δ1

)1/δ1}
,

for j = t, t− 2, and

F13(yt, yt−2) = exp
{
−

[
(− logFt)

δ1 + (− logFt−2)
δ1
]1/δ1}

.
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APPENDIX B

SELECTED R CODES

All computations in this dissertations are written and implemented in the R software (R

Core Team, 2013). The following are a selection of R codes used on our work.

B.1 ZIP MARGINAL FUNCTION FOR THE GAUSSIAN COPULA

ZERO-INFLATED COUNT TIME SERIES MODEL

The following R function can be used to specify the ZIP marginal distribution when

the covariates are present on both the intensity parameter and the zero-inflation parameter

as presented in Chapter 3. The function is then can be applied to the R package “gcmr”

(Masarotto and Varin, 2017) to obtain the parameter estimates.

1 ZIP.marg.cov <- function(link = "log"){

2 fm <- poisson( substitute( link ) )

3 ans <- list()

4 ans$start <- function(y, x, z, offset) {

5

6 offset <- list( as.vector(offset$mean), as.vector(offset$precision) )

7 m <- zeroinfl(y ˜ x | z , EM = F)

8 lambda <- coef(m)

9 if( is.null(z) ){

10 pos <- NCOL(x)+1

11 lambda[pos] <- exp( lambda[pos] )

12 names(lambda)[pos] <- "Zero"

13 attr(lambda, "lower") <- c( rep( -Inf, NCOL(x) ), sqrt(.Machine$double.eps) )

14 }

15 lambda

16 }

17

18 ans$npar <- function(x, z) ifelse(!is.null(z), NCOL(x)+NCOL(z)+2, NCOL(x)+1)

19 ans$dp <- function(y, x, z, offset, lambda) {

20 nb <- length(lambda)

21 mu <- exp( cbind(1,x) %*% lambda[ 1:(NCOL(x)+1) ])

22 if( is.null(z) )

23 phi <- 0

24 else

25

26 phi <- as.numeric((exp( cbind(1,z) %*% lambda[ (NCOL(x)+2):(NCOL(x)+NCOL(z)+2) ] )

/(1 + exp( cbind(1,z) %*% lambda[ (NCOL(x)+2):(NCOL(x)+NCOL(z)+2) ] ))))
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27

28 cbind(dzipois(y, mu,phi), pzipois(y,mu,(phi)))

29 }

30 ans$q <- function(p, x, z, offset, lambda) {

31 nb <- length(lambda)

32 mu <- exp( cbind(1,x) %*% lambda[1:(NCOL(x)+1)] )

33 if( is.null(z) )

34 phi <- 0

35 else

36 phi <-as.numeric(exp( cbind(1,z) %*% lambda[ (NCOL(x)+2):(NCOL(x)+NCOL(z)+2) ] )/

(1 + exp( cbind(1,z) %*% lambda[ (NCOL(x)+2):(NCOL(x)+NCOL(z)+2) ] )))

37

38 qzipois(p, mu, (phi))

39 }

40 ans$fitted.val <- function(x, z, offset, lambda){

41 exp( cbind(1,x) %*% lambda[ 1:(NCOL(x)+1) ] )

42

43 }

44 ans$type <- "integer"

45 class(ans) <- c("marginal.gcmr")

46 ans

47 }

B.2 LOG-LIKELIHOOD FUNCTION OF THE MARKOV ORDER 1 ZIP

MODEL

The following R function is the negative log-likelihood of the Markov order 1 ZIP

model given in Chapter 4.

1 # Inputs arguments:

2 # param : parameter vector of the model

3 # y : a vector of the zero-inflated counts

4 # X : a matrix of the covariates associated with the intensity parameters

5 # Z : a matrix of the covariates associated with the zero-inflated parameters

6 # pcop: bivariate copula cdf

7 # cparlb: lower bound on the copula parameter

8 # cparub: upper bound on the copula parameter

9 ZIPnllk=function(param,y,X=0,Z=0,pcop=pbvncop,cparlb=0,cparub=30)

10 { n=length(y)

11 X=as.matrix(X)

12 if(nrow(X)==1) nc1=0 else nc1=ncol(X)

13 Z=as.matrix(Z)

14 if(nrow(Z)==1) nc2=0 else nc2=ncol(Z)

15 #nc1=ncol(X) # should be same length as bvec (beta vector)

16 #nc2=ncol(Z) # should be same length as gvec (gamma vector)

17

18 b0=param[1]



139

19 g0=param[(nc1+2)]

20 np=length(param)

21 cpar=param[np]

22 if(cpar<=cparlb | cpar>=cparub) return(1.e10)

23

24 if(nc1>0)

25 { bvec=param[2:(nc1+1)];

26 muvec=b0+X%*%bvec; muvec=exp(muvec)

27 }

28 else muvec=rep(exp(b0),n)

29

30 if(nc2>0)

31 { gvec=param[(nc1+3):(nc1+nc2+2)];

32 omegavec=g0+Z%*%gvec; omegavec=exp(omegavec)/(1+exp(omegavec))

33 }

34 else omegavec=rep(exp(g0)/(1+exp(g0)),n)

35 #thv=(muvec, omegavec)

36

37 cdf1=pzipois(y,lambda=muvec,pstr0=omegavec)

38 pmf=dzipois(y,lambda=muvec,pstr0=omegavec)

39 cdf0=cdf1-pmf

40 cdf0[cdf0<=0]=0

41 nllk=-log(pmf[1])

42 for(i in 2:n)

43 { tem=pcop(cdf1[i-1],cdf1[i],cpar) - pcop(cdf0[i-1],cdf1[i],cpar) -

44 pcop(cdf1[i-1],cdf0[i],cpar) + pcop(cdf0[i-1],cdf0[i],cpar)

45 condpr=tem/pmf[i-1]

46 if(condpr<=0. | is.na(condpr)) condpr=1.e-15

47 nllk=nllk-log(condpr)

48 }

49 nllk

50 }

B.3 LOG-LIKELIHOOD FUNCTION OF THE MARKOV ORDER 2 ZIP

MODEL WITH GAUSSIAN COPULA

The following R function is the negative log-likelihood of the Markov order 2 ZIP

model with Gaussian Copula given in Chapter 4.

1 # Inputs arguments:

2 # param : parameter vector of the model

3 # y : a vector of the zero-inflated counts

4 # X : a matrix of the covariates associated with the intensity parameters

5 # Z : a matrix of the covariates associated with the zero-inflated parameters

6 GauZIP2nllk=function(param,y,X=0,Z=0)

7 {

8 n=length(y)
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9 X=as.matrix(X)

10 if(nrow(X)==1) nc1=0 else nc1=ncol(X)

11 Z=as.matrix(Z)

12 if(nrow(Z)==1) nc2=0 else nc2=ncol(Z)

13 #nc1=ncol(X) # should be same length as bvec (beta vector)

14 #nc2=ncol(Z) # should be same length as gvec (gamma vector)

15 b0=param[1]

16 g0=param[(nc1+2)]

17 np=length(param)

18 rh1=param[np-1]; rh2=param[np] # acf lag1 and lag2

19 cpar=c(rh1,rh2)

20 if(any(cpar<=-1) | any(cpar>=1)) return(1.e10)

21 dt=1+2*rh1*rh1*rh2-2*rh1*rh1-rh2*rh2

22 if(dt<=0) return(1.e10)

23 if(nc1>0)

24 { bvec=param[2:(nc1+1)];

25 muvec=b0+X%*%bvec; muvec=exp(muvec)

26 }

27 else muvec=rep(exp(b0),n)

28 if(nc2>0)

29 { gvec=param[(nc1+3):(nc1+nc2+2)];

30 omegavec=g0+Z%*%gvec; omegavec=exp(omegavec)/(1+exp(omegavec))

31 }

32 else omegavec=rep(exp(g0)/(1+exp(g0)),n)

33 #thv=(muvec, omegavec)

34 cdf1=pzipois(y,lambda=muvec,pstr0=omegavec)

35 pmf=dzipois(y,lambda=muvec,pstr0=omegavec)

36 cdf1[cdf1>=1]=1-1.e-9

37 cdf0=cdf1-pmf

38 cdf0[cdf0<=0]=1.e-9

39 z1=qnorm(cdf1); z0=qnorm(cdf0) # convert to z values

40 # first probability

41 rmat12=matrix(c(1,rh1,rh1,1),2,2)

42 pmf12=pmvnorm(lower=z0[1:2],upper=z1[1:2],rep(0,2),rmat12)

43 nllk=-log(pmf12)

44 n=length(y)

45 rmat123=matrix(c(1,rh1,rh2,rh1,1,rh1,rh2,rh1,1),3,3)

46 for(i in 3:n)

47 { ii=(i-2):i

48 tem=pmvnorm(lower=z0[ii], upper=z1[ii], rep(0,3),rmat123)

49 tem=tem

50 condpr=tem/pmf12

51 if(condpr<=0. | is.na(condpr)) condpr=1.e-15

52 nllk=nllk-log(condpr)

53 ii=(i-1):i

54 pmf12=pmvnorm(lower=z0[ii],upper=z1[ii],rep(0,2),rmat12)

55 }

56 nllk

57 }
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