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ABSTRACT

ANALYSIS OF CONTINUQUS LONGITUDINAL DATA WITH
ARMA(1, 1) AND ANTEDEPENDENCE CORRELATION
STRUCTURES

Sirisha Mushti
Oid Dominion University, 2013
Director: Dr. N. Rao Chaganty

Longitudinal or repeated measure data are common in biomedical and clinical
trials. These data are often collected on individuals at scheduled times resulting in
dependent responses. Inference methods for studying the behavior of responses over
time as well as methods to study the association with certain risk factors or covari-
ates taking into account the dependencies are of great importance. In this research
we focus our study on the analysis of continuous longitudinal data. To model the
dependencies of the responses over time, we consider appropriate correlation struc-
tures generated by the stationary and non-stationary time-series models. We develop
new estimation procedures depending on the correlation structures considered and

compare those procedures with the existing methods.

The first part of this dissertation focuses on the robust correlation structure gen-
erated by the first-order autoregressive-moving average (ARMA(1, 1)) stationary
time-series model. ARMA(1, 1) correlation structure is characterized by two cor-
relation parameters and this correlation structure reduces to the AR(1), MA(1) and
CS structures in special cases. Although standard efficient procedures are preferable
to estimate the correlation parameters, there are computational challenges in imple-
menting them. To overcome these challenges we employ an alternative estimation
procedure based on pairwise likelihoods. A typical advantage of this approach is that
the inference procedure does not involve complex computations and it results in a
closed form expressions for the estimators of the correlation parameters. We show
that the estimates obtained using the pairwise likelihood method for ARMA(1, 1)
correlation structure arc highly efficient asymptotically when compared to that of

maximurm likelihood.
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The second part of the dissertation studies correlation structures generated by non-
stationary time-series model known as antedependence models of first order. These
correlation structures are capable of modeling the non-constant correlations between
the same-lagged observations. Note that while this correlation structure has been
extensively studied in the case of heterogeneous variance, we model homogenous vari-
ance and use a recent and new method known as quasi-least squares to estimate the
correlation parameters. A major advantage of the quasi-least squares method is thag
it vields closed form expressions for the estimators of correlation parameters unlike
the maximum likelihood method. We provide the asymptotic and small-sample prop-

erties of these estimators and compare their performance using relative efficiencies.
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CHAPTER 1

INTRODUCTION

1.1 LITERATURE REVIEW

Longitudinal data occur frequently in many scientific studies including clinical
trials, psychology and public health studies. In these studies, data are typically
collected by following individuals over a period of time. Valid inference methods
for longitudinal data are of great importance in scientific research. In longitudinal
studies, data is collected on the variables of interest on individuals at scheduled times.
The analysis in longitudinal studies usually focuses on how the variables change over
time and how they are associated with certain risk factors or covariates. Various
statistical models and methods for longitudinal data analysis have been developed
over the past few decades. Davis (2002) provides a comprehensive introduction
to a wide variety of statistical methods for the analysis of repeated measurements.
Others authors Liang and Zeger (1986) and Diggle et al. (2002) discussed further

the statistical analysis methods for continuous and discrete data.

As stated in Davis (2002), key strength of longitudinal studies is that this is
the only type of design in which it is possible to obtain information concerning
individual patterns of change. This type of design also economizes on the number of
subjects. However, there are difficulties associated with analyzing such kind of data.
For instance, the analysis becomes complicated by the natural dependence among
the responses obscrved on the same subject, and in some instances the response
from a subject may be missing, resulting in an unbalanced or partially incomplete
data, which further complicates the analysis. Many approaches have been studied to

address these complications.

Weiss (2005) discusses the importance of the choice of correlation structures

to model the dependency among the responses observed on the same subject. In

This dissertation follows the style of Journal of the American Statistical Association
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particular Weiss (2005) elaborates on the techniques to choose an appropriate model
or generate additional correlation models. Choosing the correct correlation model is
crucial in longitudinal studies since it has an impact on the precision of regression
parameter estimator. The regression coefficients measure effect of the covariates on
the responses, which is the main objective in any statistical analysis. Hence, several
methods were suggested to estimate the correlation parameters accurately in the

literature.

Recent works in the field of longitudinal studies concentrate on developing ro-
bust estimation procedures for estimating the association parameters. Some of these
works use the composite likelihood method as an alternative to standard likelihood-
based inference to overcome the difficulties caused by high-dimensional interdepen-
dencies. For example, Kuk and Nott (2000), Varin and Vidonib (2006} and
Zhao and Joe (2005) discuss the idea of composite likelihood and some modifications

in order to model different types of data.

1.2 MODEL SPECIFICATIONS

In this section we introduce some basic notation to facilitate the discussion in
this dissertation. Recall that longitudinal data consists of responses or measure-
ments taken at different time points on several independent subjects in a study.
Let y;; denote the response observed on subject i observed at time point j for
i=1,2,...,n; 7 =12,...,t;. We represent the response vector on subject i as
a t; dimensional vector Y; = (yu, Yz, - - -, ;) Suppose g = (Tij1, Tisz, - - - Tijp) be
the p x 1 vector of covariates observed along with y;;. For convenience we restrict
our attention to the balanced data case, that is, we assume £; = ¢ for all ;. Extension
of our results to the unbalanced case is straightforward. In addition we also assume
that the responses y;; are continuous but the covariates z;; could be either discrete
or continuous. Let X; = (x;1, T3, ..., Z;) be the ¢ x p matrix of covariates observed
on subject i. The main interest in longitudinal studies is to study the relationship
between response Y; and covariates X; by taking into consideration the within subject

dependency among the responses.

Specification of a multivariate family of probability density functions f{Yi|X;; 8},

indexed by the parameter € often involves modeling the marginal distribution
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flyislzs;;6). A natural and convenient set of candidate models for the marginal

distribution is the exponential family given by

F(yislzis; 0) = exp Hyvy — bvig)} /a(9)] My ¢),

where a(.), b(.) and h(.) are some known functions, ¢ is a constant that quantifies
over-dispersion. Here v;; is a function of the parameter  and it is known as the
canonical parameter. It is easy to check that E(y;) = pi; = V(v;) and Var(y;) =
a(¢}b”(vi;). In generalized linear models we assume that the mean p,; is a function

of the covariates given by
g(“ij) = x;j B,

where g(.) is a known monotone and differentiable function, commonly known as the
link function since it links the mean with the covariates. Here 8 = {$1,...,5,) is an
unknown p x 1 vector of regression coeflicients. When g{-) equals the inverse of ¥/(-),

it is known as the canonical link function and it satisfies
vy = () wy) = 9lpy) = 24 8. (1)

If we assume that y;;'s (1 € j <t} are independent then the multivariate density
f(¥i}Xi; 6) is simply

t

FX50) = [ [ fwistess; 0).

=1

However, the independent assumption is invalid for longitudinal setting since the
observations y;; are dependent with respect to j for each value of 7. Therefore, var-
ious types of multivariate distributions are proposed to feature different association
structures present in longitudinal data. For instance, in this dissertation, we assume
that the responses are continuous and hence multivariate normal distribution can be
employed to construct the joint distribution. Furthermore, under the assumption of
continuous responses the canonical link function in equation (1) can be taken as the
identity function. Thus, we model E(Y;) = p; = X!8 and Cov(Y;) = ¢R(A) where
A is a vector of parameters that determine the correlation matrix and ¢ is a scale
parameter that does not change with 7 and ¢. Hence, the parameter vector in our
model is § = (', ¢, A').
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In any statistical analysis, estimation of the regression coefficient 3 plays a vital
role since it quantifies the effect of the covariates on the responses. However, to ob-
tain accurate estimates for regression coefficients it also becomes equally important
that we estimate the correlation parameters A accurately and efficiently. There are
several estimation methods proposed in literature such as method of moments, max-
imum likelihood method and many other robust estimation procedures to estimate
the correlation parameters and to calculate their standard errors. However, before
studying the estimation procedures, emphasis is laid on practical aspects of choosing
an appropriate correlation structure. It is desirable to choose the correlation model
that fits the data best since the use of the correct or optimal correlation model in-
creases the efficiency of the regression estimator. However, increase in the number
of parameters of the correlation structure corresponds to increase in the number of
estimating functions. Hence, choosing a suitable and parsimonious correlation struc-
ture is equally important. In the following section we describe few such potential

correlation struchures.

1.3 CORRELATION STRUCTURES

The selection of the correlation structure to model the complex dependency
among the correlated responses observed on the same subject plays a vital role.
In the literature, a large number of correlation models have been proposed as well
as methods to generate additional covariance models have been studied. However,
in this research we focus on the popular parameterized correlation models which are
generated by the time series models. A parameterized correlation matrix R{\) is one
where all correlations in the matrix are functions of a parameter A whose dimension

g is usually small.

The primary class of correlation structures we consider in this dissertation are
autoregressive-moving average of first order, autoregressive of order one, moving av-
erage of first order and compound symmetry structure. We also consider a special
case of non-stationary correlation models known as antedependence correlation struc-
tures. We discuss the motivation and properties of each correlation structure. We
also study the positive definite ranges of the parameters involved particularly for the

first-order autoregressive-moving average correlation structure.
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1.3.1 AUTOREGRESSIVE MOVING AVERAGE STRUCTURE

A general structure for the correlation matrix considered for analyzing real world
longitudinal data is the first-order autoregressive-moving average or ARMA(L, 1),
which is a generalization of the first-order autoregressive {(AR(1)), moving average
(MA(1)} and compound symmetry (CS) structures. The ARMA(1, 1) correlation

matrix of dimension ¢ is given by

[ 1 Yo v - e
~ 1 yoooyp e yptd
RN=Rnp)=| 2 v 1 v |, (2)
\ 90872 40t oyttt s 1)

where A = (7, p). We can see that this correlation structure is characterized by
two parameters Ay =y and Ay = p. The first parameter v is known as the lag one
correlation because

Corr (y5, yi(j+1)) =,
whereas the second parameter p is the additional decrease in correlation for each

additional lag. Thus, lag k correlation is given by

Corr{yij, Ui j+x)) = ypF L
The rate of decrease of lag k correlation is directly proportional to k, and it
depends on the value of p. The ARMA(L, 1} structure is appropriate for longitudinal
data that exhibit this correlation pattern.

1.3.2 AUTOREGRESSIVE, MOVING AVERAGE AND COMPOUND
SYMMETRY STRUCTURES

As discussed in Section 1.3.1 the AR(1), MA(1) and CS structures are spe-
cial cases of the autoregressive-moving average correlation structure. Unlike the
ARMAC(1, 1) correlation structure, these three correlation structures are determined
by only one correlation parameter and hence they are more parsimonious correlation

models, The idea of reducing the correlation models to a simpler form depends on
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how we want to characterize the correlations between the repeated measurements or
in other words which pattern better fits the data. These correlation structures were
studied extensively in the literature and hence in this dissertation we discuss briefly

their theoretical properties.

First-order autoregressive or AR(1) correlation structure often is an adequate
model for longitudinal data. This correlation model arises from first-order Markov
process and is extensively studied in time series analysis, see Fuller (1996). In case

of ¢ repeated measurements, the AR(1) correlation matrix is given by

( 1 p p2 p3 pt—l
1 ’02 pt-2
RN=Rp)=| 0 p 1 p - g3 |, (3)
\pt—l P2 pttd gt ] )

In the AR(1) model the correlation between two observations y;; and y;(jx) depends

on the absolute value of the time difference between them, that is,
Corr(ysj, Yigj+a)) = pF for k > 1.

Notice that the correlation decreases exponentially with the time lag. The farther
apart two observations are, the lower is the correlation between them. In longitudinal
studies, it is common for correlations to diminish as the lag between the time points
increases and AR(1) structure serves as a potential candidate model to account for

the dependency.

Another simpler correlation structure is the first-order moving average in which
each response is assumed to be correlated only with its succeeding and preceding

responses. The MA(1) correlation matrix is given by

[1p00 -~ 0)
p 1 p 0 --- 0
RN =R@)=|0p1p 01 (4)

K 0600 - 1/
Here p characterizes the correlations between two neighboring responses, that is,

COTT(%;,-', yé(j:&l)) =p
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and any two responses separated by lag more than one are uncorrelated. Compound
symmetry (CS) correlation structure is another correlation model used commonly
in clustered data studies, and occasionally in longitudinal studies. The compound

symmetry correlation matrix has the following form

/1999---9\
p 1 pop

RMN=Rp=|pp tp - p{. (5)
\p ppp - 1)

Here Corr{yi;,y) = p forall j # k. Even though this structure is employed in
some longitudinal studies, it is most appropriate for clustered data where there is no
reason to believe that some pairs of observations have strong or weak correlations

than other pairs.

1.3.3 ANTEDEPENDENCE STRUCTURE

In Sections 1.3.1 and 1.3.2 we discussed the commonly used correlation models for
analyzing longitudinal data. These are stationary models because the correlations
only depend on the lag rather than the time point at which the measurcments were
taken. However, there are instances where the correlations vary according to the
time point and vary even for two pairs of observations with the same lag. Such
dependencies are captured by the antedependence correlation models. A first-order
antedependence correlation structure accommodating different correlations between

observations lagged same distance apart, is given by

( =3
A YA Y VAR | 1
=1
P
Py 1 Py PyPy Hﬂj
=2
t—1
R\ =R = . 6
(A)=Rlp,p, -~ p,) S 1 P HPJ- (6)
§=3
T '
Hpj HPj HPJ- Hpj e 1
3

J=4 )

\ j=1 © j=2 0 =
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This ¢ dimensional antedependence structure is characterized by ¢ — 1 correlation
parameters. Although parsimony is being compromised compared to the stationary
correlation models, it is essential to consider these models to analyze the varying
correlations between equally lagged observations. A detailed description of the an-
tedependence structure and its corresponding time series concepts will be discussed
in Chapter 3.

1.4 ESTIMATION PROCEDURES

Methods for estimating the regression and correlation parameters have been well
researched in the literature for longitudinal data with AR(1), MA(1} and CS corre-
lation models. However, methods of estimating the parameters of the ARMA(1, 1)
correlation structure in the context of longitudinal data are scanty. Thus, focusing
on the ARMA(1, 1} correlation structure we will first study parameter estimation in
a repeated measures setting in Section 1.2. Later, we extend the estimation methods
to other correlation structures defined in Section 1.3.2 and study robust properties
of the methods.

Under the normality assumption the maximum likelihood estimate of the regres-
ston parameter and the scale parameter are in a closed form. Besides the maximum
likelihood estimates are well known to be optimal. The maximum likelihood method
is the standard estimation procedure, nevertheless, applying this method to estimate
the correlation parameter A involves intense computations in most cases. Therefore
we employ a new algorithm for the estimation of A depending on the correlation struc-
ture considered. The alternative methods discussed in this dissertation are pairwise
likelthood method for ARMA(1, 1) and quasi-least squares method for first-order

antedependence correlation structure.

Pairwise likelihood method is a two-stage approach which first maximizes the
complete likelihood of ¥; to obtain the estimate of the regression coefficient £ and
the scale parameter ¢. The second stage consists of maximizing likelihood composed
of two-dimensional densities, resulting in the estimator of A. As a result of the first
stage, the functional form of the estimates of 8 and ¢ turn out to be the same as that

of maximuin likelihood since both methods maximize the same likelihood function.

The pairwise likelihood method is discussed elaborately in Chapter 2 along with
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the mathematical details involved. In this dissertation, we also study the asymptotic
efficiency of the pairwise likelihood method with respect to the optimal maximum
likelihood method.

The quasi-least squares method is also a well known two-step estimation proce-
dure developed to overcome the computational shortcomings of the maximum likeli-
hood. This method, based on the principle of gencralized least squares, is developed
as a distribution-free estimation procedure. Detailed discussion of the quasi-least
squares method and its performance compared to maximum likelihood method is

given in Chapter 3.
1.4.1 MAXIMUM LIKELIHOOD ESTIMATION

Assume that Y] is distributed as a t dimensional multivariate normal with mean
X;f and covariance Cov(Y;} = ¢R(A) for i = 1,2,... n, where A = (A1, Ag,.. ., Ay),
i1s a g-dimensional vector of unknown correlation parameters. Further assume that
Y., 1 €4 < n are independent. Let 8 = (8, ¢, X')’. The likelihood function is given

by

Ln(9|}[la ey Yn) = H(2ﬁ)4% 1¢5R(’\)|_% exp {_E%ﬁ (}/1 - —){iﬁ)JF RLI()") (Y; - X%JB)}

= @n) Yo ¥ RN F exp {_515“ (R*I(A)zn)}, )

i=1

n

where Z, = > (Vi — X;8) (¥; — X:f)". The loglikelihood function is

=1
6,(8) = logL.(8IYi,....Y.)

= const — _n b pt

= const 3 log(9) 2log {R(A\}] 2¢,Jtr(R (A) Z,) . (8)

'To find the maximum likelihood estimate of § we equate to zero the partial derivatives

of (8) with respect to 8 and ¢. Thus, estimators B and ¢ are given hy

n -1 n
8 = (Z}X{R-l(i)xi) (;XER‘I(X)K),

7= L3 (v-xB) B R (v x5), (9)
=1
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10

where A is an estimate of A. We obtain the estimates of the correlation parameters by
equating to zero the partial derivative of (8) with respect toeach A; forj =1,2,...,4q.
This results in the following score equations
n 1, OR(A) 1 1, W OR(A)
——tr [ 71X — YA)—~RYXN Z,) =0,
Qr( ()aAj)+2¢tr(R ()G B ) 0, (10)
for 1 < j < g. For different parameterized correlation matrices R{)\) we can ob-

tain simplified expressions for tr (R_l(,\)g-(‘:—i’_ﬂ) and (R_I(A)%}%R"I(A)). Further

details about the maximum likelihood estimation for different correlation structures

are given in Section 2.3.1 of Chapter 2, along with an overview of the computational

complexities involved,

In the literature there are other estimation procedures such as restricted maxi-
mum likelihood method, where § is estimated by maximizing the following modified

loglikelihood function

t
log RL,(6) = const — % log(¢) — glog |R(N)] — glog IX'R™1(0) X
1 1
- —t - Zn).
The function (11) is similar to (8) except that it involves an extra term
—2log|X'R~*(A)X|. We do not pursue the restricted maximum likelihood in this

dissertation.
1.4.2 PAIRWISE LIKELIHOOD METHOQOD

Pairwise likelihood method is a special case of composite likelihood method which
has been studied extensively in the context of diserete longitudinal data. Composite
likelihood method was initiated by Besag (1977) and further developed by Lind-
say (1988) and many other authors including Zhao and Joe (2005). Composite
likelihood provides a useful inference alternative for full likelihood based inference.
The inference function is derived by multiplying a collection of component likeli-
hoods, whether or not they are independent; the particular collection used is often
determined by the context. The inference function obtained by this method retains

some properties of the likelihood from a complete model.

The simplest composite marginal likelihood is the inference function constructed

under independence assumption of the margmmals. This inference function permits
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inference only on marginal parameters. If parameters related to association are also
of interest it is necessary to model pairs of observations as in the pairwise likelihood,

see Varin and Vidonib (2006). The inference function in this case is

n t
log PLu(6) = > > log f(us, vislzes 7173 6).
i

i=1 j<ji=

Thus, instead of specifying the full distribution, we only need to specify a partial
structure for the distribution f(¥;|X;;6). This eases the issues related to complex
modeling and the advantages become more obvious when the dimension of Y; in-

creases.

Construction of the above likelihood and solving for the estimates is the second
stage estimation in the pairwise likelihood method. To obtain the estimates of the
parameters we derive the estimating equations with respect to each of the correlation
parameters. In addition to that, for continuous responses, based on the correlation
structures the above likelihood is being modified accordingly with inference focused
on the dependence parameters. The pairwise likelihood estimation method is ex-
plained in detail in the later chapters depending on the correlation model that is

being considered.
1.4.3 QUASI-LEAST SQUARES METHOQOD

The quasi-least squares method developed by Chaganty (1997), Shults and Cha-
ganty (1998) and Chaganty and Shults {(1999), is an extension of the method of
generalized least squares. This method uses the quasi-score or quasi-loglikelihcod
function {12} to obtain the estimates of correlation parameters. For the regression
parameter estimates, this method uses the same functional estimates as the maxi-
mum likelihood method. However the method differs from the maximum likelihood
in the way the correlation parameters arc estimated. The advantage of this method
is that it results in closed form expressions for the correlation parameter estimates
for many commonly used correlation structures. Chaganty {2003) establishes the

consistency and efficiency of the correlation parameters.

The quasi-loglikelihood function used in the quasi-least squares method, under
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the assumption of homogeneous variance, is given by,

L)

Q) = (Vi ~ X:if) RTH(A) (Yi — X.8) = tr (R7'(X) Z,) (12)

=1

A minimization of {12} with respect to A is done to obtain the first step estimate X,

which is the solution of the equation

0 - 2 (w (' z) -u (B Z) - (13)

where fn is Z,, evaluated at the estimate E of .

It is shown in Chaganty and Shults (1999) that X is a biased estimate of A due
to the fact that the expectation of (13) evaluated at A in not zero, that is,

tr (8R_1(X) Zl)] = tr (8R-1(:{) E(Zl)) = otr (?w%;-(w& R(A)) # 0.

E OA OA

Thus, we try to adjust the bias by equating the above expression, to zero and solve
for A for fixed value of . The drawbacks associated with considering the original
expression with ¢ is discussed in Chaganty and Shults (1999). Quasi-least squares
estimation method overcomes these drawbacks by considering only the trace term.

Thus at the second stage of the quasi-least squares method, we solve the equation

OR™(N) _
tr (T R(,\)) =0, (14)

to get the estimate X, which is asymptotically unbiased. Thus, to obtain the final
quasi-least squares estimates we iterate between (9}, (13) and (14) until convergence.
We then use A to obtain the final estimates of 3 and ¢. Chaganty (2003) discusses the
estimation of correlation parameters for patterned correlation matrices and studied

their asymptotic distributions.
1.5 ASYMPTOTIC THEORY

In this section we briefly discuss the statistical properties of the estimates de-
rived using the maximum likelihood, pairwise likelihood and the quasi-least sqau-

res method. In the case of n independent observations ¥1,...,Y, from the model
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f(YiX;;8) and n — oc with ¢ fixed, some standard asymptotic results are summa-

rized below.
1.5.1 MAXIMUM LIKELTHOOD METHOD

The asymptotic theory for the maximum likelihood estimators is well known.
Under the normality assumption, the asymptotic covariance matrix for the ML es-
timators can be derived using the loglikelihood function given in eguation (8). For
a sample of n observations, the Fisher information matrix Z,(8) is found by taking
the negative expectation of the second derivative of the loglikelthood function £,.(8)

with respect to #. Then, under the regularity conditions, Z,(#) is given by

-5 (2549)

According to Cramer’s theorem, the maximum likelihood estimate @:ML of 6 is ap-

proximately distributed as multivariate normal with mean # and covariance matrix
Z,1(#), for large n.

1.5.2 PAIRWISE LIKELIHOOD AND QUASI-LEAST SQUARES
METHODS

The theory of unbiased estimating equations can be used to derive the asymptotic
variances and covariances for the pairwise likelihood and quasi-least squares estima-
tors. For these alternative methods discussed in this dissertation, we make use of the
following theorem given in Joe (1997), to obtain the asymptotic covariance matrix

of the parameter estimates.

Suppose h;(6) is an unbiased equation for 8, that is, E(h:(6)) = 0. Let 6, be the
root of the equation Y., k;(#) = 0. Under the regularity conditions, for ¢ fixed and
large n, we have E?;gt is approximately distributed as multivariate normal with mean

6 and covariance matrix G~1(0)/n, where G(#) is known as the Godambe information
matrix given by G{(#) = D(8) M~1(6) (D(8))’, where

Do) = ~+ > E (%@) and  M(0) = %Z Cov{hi(8)).

This result due to Godambe, is actually a generalization of the Cramer’s theorem.
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The estimating equations in the pairwise likelthood method are obtained by taking
the derivative of the pairwise likelihoods constructed as a linear combination of the
scores associated with each loglikelihood term. Thus the large sample properties of

the pairwise likelihood estimator, Bor »

estimating equations. Similarly, by considering the unbiased estimating equations

follow from the above stated theory of unbiased

used to obtain the quasi-least squares estimates, we can establish the corresponding
asymptotic theory. Particular cases of the above two methods are discussed in detail

in Sections 2.4.2 and 3.4.2 respectively.

1.6 DATA EXAMPLES

We will use three motivational real data examples to illustrate the methods in
this dissertation. These data examples exhibit the dependency patterns similar to

the correlation patterns described in Section 1.3.

1.6.1 OZONE DATA

The first example is the Ozone data. In recent years, the amount of ozone in the
atmosphere has decreased which results in a direct exposure to the harmful sun rays
and its one of the reasons why ozone is being looked at a lot by scientists who study
climate and changes in earth systems. Hence, a study of the ozone in the atmosphere

helps in understanding the change in the pattern of the levels.

This data set records ozone over a three-day period during late July 1987 at 20
locations (ANAH, AZUS,...,.WSLA) in and arcund Los Angeles, California, USA.
Five hourly recordings during the peak hours of the day are recorded starting from
Ipm to Spm giving us a set of 20 x 6 x 3 ozone readings. Measurement units are
in parts per hundred million. The data has 60 = 20 x 3 records with 5 longitudinal

measures each. Table 1 shows a subset of the Qzone data.

The objective in this study is to assess the effect of day on ozone readings. The
repeated response variable is the ozone readings observed on each day between 1pm to
5pm at an hourly interval. We consider day as the covariate having three levels(Day-
1, Day-2 and Day-3) and the data is balanced.
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Table 1. Ozone Changes Data

Hour
Site Day 13 14 15 16 17
ANAH 1 10 9 7 6 6
2 8 8 7 8 6
3 10 12 11 9 7
AZUS 1 13 13 13 10 8
2 18 17 12 13 10
3 19 24 21 16 13
BURK 1 8 9 8 7 5
2 15 14 11 7 4
3 16 17 15 10 6
CELA 1 8 8 7 6 5
2 8 9 8 6 4
3 8 10 11 8 5
CLAR 1 14.7 169 17.3 168 13.3
2 187 239 229 188 158
3 194 252 286 263 176
FONT 1 12 16 18 16 13
2 15 19 22 19 16
3 11 17 14 23 21
WSLA 1 8 6 7 6 5
2 7 7 5 5 5
3 9 9 7 6 5

1.6.2 OXYGEN SATURATION DATA

The second example is the oxygen saturation data. This data is the result of a

study to check the effectiveness of three different methods of suctioning an endotra-

cheal tube. The first is standard suctioning, and the second is & new method using

a special vacuum, and the third is manual bagging of the patient while suctioning.

The outcome is the oxygen saturation levels measured at five time points: baseline,

first suctioning pass, second suctioning pass, third suctioning pass, and 5 mins post

suctioning. The covariate is method of suctioning which has three levels. Twenty-five
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ICU patients were randomized to each of the three methods. Table 2 displays the

oxygen saturation data.

Table 2. Oxygen Saturation Study

Time
ID Method sl 32 53 s4 sH

1 1 95 96 94 97 95
2 1 94 94 92 93 95
3 1 94 93 92 91 93
24 1 98 100 100 100 96
25 1 91 90 92 92 92

1 2 94 95 95 95 Y4
96 96 95 95 W
3 2 92 94 93 94 92

[\]
(W]

24 2 95 96 97 96 94
25 2 94 93 94 94 94
1 3 92 97 98 97 91

9 99 97 99 99
3 3 94 96 96 98 96

[RN]
WV

24 3 95 94 97 98 97
20 3 95 93 92 93 95

1.6.3 CATTLE GROWTH DATA

The third data example considered in this dissertation is thc Cattle growth
data Kenward {1987). In this experiment, cattle were given two treatments, la-
beled A and B, to treat intestinal parasites. The response, weights (in Kgs) of the
cattle, were recorded 11 times over a 133-day period with the first 10 measurements
on each cow recorded at two-week intervals and the last measurements recorded one-
week after the tenth measurement. Thirty cattle were randomized to each of the

two treatments. Thus, here we have a longitudinal data measured at 11 time points
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on each subject{cow)}, with treatment as the only covariate with two-levels. The

objective is to study the effects of the treatment on the cattle weight loss. Table 3

displays the partial data for Treatment-A and Treatment-B.

Table 3. Weights of Cattle from Growth Study

Week

Treatment Cow 0 2 4 G 8 10 12 14 16 18 19
A 1 233 224 245 258 271 287 287 287 290 293 297
2 231 238 260 273 290 300 311 313 317 321 1326

3 232 237 245 265 285 298 304 319 317 334 329

4 230 246 268 288 308 309 327 324 327 336 341

5 215 216 239 264 282 299 307 321 328 332 337

29 233 241 252 273 301 316 332 336 339 348 345

30 221 219 231 251 270 272 287 204 292 202 209

B 1 210 215 230 244 259 2606 277 202 202 200 264
2 230 240 258 277 277 293 300 323 327 340 343

3 226 233 248 277 297 313 322 340 354 365 362

4 233 239 253 277 292 310 318 333 336 353 338

29 221 232 251 274 284 295 300 323 319 333 322

30 233 238 254 266 282 294 295 310 320 327 326

1.7 QUTLINE OF THE THESIS

This dissertation is organized as follows. In Chapter 2, we study the ARMA(1, 1),

AR(1), MA(1) and compound symmetry correlation structures. We provide a brief
summary of the time series model which generates the ARMA(1, 1), AR(1),MA(1)

and compound symmetry correlation structures and discuss the positive definite

range of the parameters characterizing each of the four correlation structures. We

introduce the alternative approach known as pairwise likelihood method to estimate

the correlation parameters incase of each correlation structure and define the esti-

mation procedure in particular for each correlation structure. Next we discuss the

asymptotic properties of the estimators obtained using pairwise likelihood method
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and compare these estimators with maximum likelihood estimators using the asymp-
totic relative efficiency. We analyze the ozone data in Table 1 and oxygen saturation
data in Table 2 using the pairwise likelihood and maximum likelihood methods and
compare the results. The R code that we developed is used to compute the pairwise

likelihood estimates of the parameters in the data analysis.

In Chapter 3, we introduce first-order antedependence correlation structure, We
provide, using a real life data given in Table 3, the appropriateness of using the
first-order antedependence correlation structure to model! the dependencies among
the responses that exhibits a peculiar correlation patterns. Next, we study some of
the properties of these first-order antedependence correlation structures. We discuss
two methods of estimation procedures, maximum likelihood and quasi-least squares
method to estimate the correlation parameters under the assumption of first-order
antedependence correlation model. In this chapter, we also study the large-sample
properties of the estimators obtained using each of these estimation methods and
discuss the large-sample and small-sample efficiencies between the maximum likeli-
hood and quasi-least squares estimators. Using these two estimation methods, we

analyze the data introduced in Table 3.

In Chapter 4, we summarize the alternative approaches used in case of each
correlation structure and the advantages associated with these methods compared to

the standard estimating procedures in each case.

Finally, we end this dissertation with an Appendix that contains the impor-
tant formulae used in deriving the parameter estimators and their corresponding
asymptotic properties. We have also provided the matrix derivatives used in case
of first-order antedependence correlation structure and R programs that compute
the estimates and the asymptotic covariance matrices in case of ARMA(1, 1) and

first-order antedependence correlation structures.
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CHAPTER 2

PAIRWISE LIKELIHOOD METHOD

2.1 INTRODUCTION

In this chapter, we focus on the inference for parametric models where the likeli-
hood function is difficult to evaluate due to complex dependencies involved in longi-
tudinal studies. In these situations, alternative approaches based on modifications of
the likelihood have been advocated by several authors. Well known examples include
the pseudo-likelihood, partial-likelthoods and composite likelihoods and many more.
A related idea is to use approximate likelihoods by compounding low-dimensional
marginal densities, for example, on the univariate or bivariate marginal distribu-
tions. In this dissertation, the term pairwise likelihood method is proposed for this
class of low-dimensional likelihoods. The pairwise likelihood is a special case of a

more general class of composite likelihoods given in Lindsay (1988).

In light of the growing interest in solving different complex applications, we em-
phasize on the development of the theory of pairwise likelihood method which uses
only pairwise joint distributions to construct the likelihoods. Later we outline the
efficiency and robustness of pairwise likelihood method by discussing the asymptotic
and small sample properties of the estimators obtained using pairwise likelihood

method.

In the context of longitudinal data analysis, the robustness of pairwise likelihood
method depends on the choice of correlation structure used to model the complex
dependencies among the serially correlated responses of the same subject. Hence,
the next section attempts to study the properties of the correlation structure and

their impact on revising the pairwise likelihood method.
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2.2 PROPERTIES OF CORRELATION STRUCTURES

In Section 1.3 we introduced several correlation structures that could be used for
analyzing longitudinal data. In this section we study the properties of each of these

correlation structures to an extent relevant for their applicability in the analysis.

2.2.1 AUTOREGRESSIVE MOVING AVERAGE OF ORDER (1,1}
CORRELATION STRUCTURE

Recall that ARMA(1, 1) correlation structure given by eguation (2), has two
correlation parameters v and p. The lag one correlation is quantified by -,
Corr(y;;, ¥i;-13) = 7, and p is the additional decrease in correlation for each ad-

ditional lag. Thus the lag k correlation is given by Corr(yi;, yi-x)) = 707

Derivation of the ARMA(1, 1) Correlation structure

The correlation matrix (2) is generated by the autoregressive moving average time
series model of order (1, 1). Time series models are studied to account for the fact
that data taken over time may have an internal structure (such as autocorrelation,
trend or seasonal variation) that should be accounted for. Similarly, in longitudinal
studies we are interested in studying the dependencies among the data collected over
time, however, in these studies the data is observed only for a small fixed number of

time points but observations are collected on large number of independent subjects.

ARMAC(1, 1} time series model is defined as the sequence {¢{; : s € (0,1,2,...}},

satisfying the difference equation

(s — pc.s—l = €5+ Q€ 1,
where ¢, is a sequence of uncorrelated random variables with mean zero and vari-

ance o2, For any & > 1, the auto correlation function is

(¢ + p)(1 + o) Pl = L
(1+ ¢@* + 2pp)

Note v = (¢ + p)(1 + ¢p)/(1 + ¢* + 2p)} is a reparametrization of the coefficients
involved in the ARMAC(1, 1) time series model.

COIT(C..,. ) C5+k) =

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



21
Properties of ARMAC(1, 1) Correlation Structure

Three interesting special cases arises from ARMA(], 1) correlation structure

R(~v, p) depending on the value that p takes.

1. When p = 1, the matrix R(vy, p) reduces to C8 structure.
2. When p = «, the matrix R(vy, p) reduces to AR{1) structure.

3. When p = (, the matrix R(v, p) has MA(1) structure.

Thus, the correlation matrix R{7y, p) given in (2) encompasses the three most
commonly used correlation matrices and therefore could be used as a robust model
for the correlation between repeated measurements in longitudinal data analysis. It
is of interest to know the ranges of the parameters v and p such that the correlation

matrix {2) is positive definite. We pursue this in the next section.

Pasitive Definite Range for ARMAC(], 1) Correlation Parameters

The positive definiteness of & correlation mafrix imposes some restrictions on the
ranges of the correlation parameters involved. Hence, the correlation parameters,
v and p, in the matrix R{y, p) also have restriction based on the dimension of the
matrix. We show these restrictions for ¢ = 3 case only, since it is cumbersome to

obtain the ranges for general ¢. For t = 3, we have

L v e
R(’\) = R(F}‘f! P) = Y 1 i 3 (15)
w v o1

where A = (v, p). We want to investigate the ranges of the parameters v and p

such that the correlation matrix (15) is positive definite. In order for R(y, p) to be

positive definite all of its leading principal minors should have positive determinants.

The determinant of the first leading principal minor is 1 —-~?% , which is positive if and

only if —1 < 7 < 1. The determinant of the second leading principal minor equals

1~ 2% 4+ 2v%p — v%p%. For fixed 7 this is quadratic equation in p, whose roots are
1 (292 — 1) 1

pr=— and pp=-—"—"=2y——
¥ ¥ ¥
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Note that py > ps for v > 0 and py < p; for v < 0. Thus R{}) is positive definite if
and only if

(i) 0<y<lip<p<p and (i) -1<7<0, p <p<ps (16)

~1.0 -05 0.0 0.5 1.0

Figure 1. Positive definite range for 3 x 3 casc

Figure 1 displays the graph of the positive definite ranges for the two parameters

v and p. Now, when £ = 4, the correlation matrix is of the form

1y 9p 26
S SN S B 7
R(A) = R(v,p) = (17)
v v 1o«
1w v v 1
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Figure 2. Positive definite range for different values of ¢.
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The determinant of {17) is

[ROA)| = =0 +47°0° — (27* + 490" + 4%+ (1 =32 + 1), (18)

As we discussed earlicr, R(}) is positive definite if and only if all of its leading
principal minors have positive determinants. We have already given the restrictions
imposed by the leading principal minors of the sub matrix of dimension three. So,
R(A) in (17) is positive definite if the determinant (18) is positive together with the
restrictions (16). Note that the (18) is a fourth order degree polynomial in p for fixed
. Thus, it is difficult to analytically obtain the restrictions. Hence, using a trial
and error numerical scheme, we investigated the positive definite region of y and p
graphically for arbitrary dimension t. Figure 2 displays the positive definite region

for 4 and p for several values of £.

The positive definite range for any general ¢ requires all the principal sub-matrices
of lower order to have positive determinants which results in narrower positive definite
range for (v, p) as ¢ increases as shown in the Figure 2. However, from the graphs
in Figure 2, it can be seen that the positive definite range does not become rapidly

narrower after certain value of ¢.

In the context of time series, stationarity condition restricts p to be between —1
and 1, see (Fuller (1996)). This may seem to be contradicting with the presented
positive definite range in Figure 1 since the positive definite range includes values
greater than 1 for p. The reason can be attributed to the difference in the designs
considered for a longitudinal and time series data. It is well-known that in time series
a response variable for a single subject is observed on a large number of equally spaced
time points whereas in longitudinal study, multiple responses from different subjects
are observed at a fixed but varying and small number of time points. Hence, for
large i in longitudinal study it is expected that the positive definite range for v and
p should satisfy the stationarity conditions. This conjecture can be clearly visnalized
from the Figure 2. For large values of ¢, we can see in Figure 2 that the positive
definite range for p becomes smaller and tends to lie within the stationarity bounds
of —1 and 1, except at the value of ¥ = 0. Since at v = 0 the correlation matrix
becomes identity matrix which is positive definite irrespective of the value of p. As
mentioned earlier in this section, special cases of ARMA(1, 1) are AR(1), MA(1)

and CS are well studied in the literature. For the sake of completeness, in the next
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section we provide some propertics of these structures.

2.2.2 PROPERTIES OF AUTOREGRESSIVE, MOVING AVERAGE
OF FIRST-ORDER AND COMPOUND SYMMETRY CORRELATION
STRUCTURES

First-order autoregressive or AR(1) correlation structure depends on only one
correlation parameter. In the AR(1) model, p defines correlation between two ob-
servations ¥;; and yigrky as Corr(yy;, Yugeny) = pF for k > 1, ¢ = 1,2,...,n and
j = 1,2,...,t. The AR(l) model exhibits an exponentially decreasing correla-
tion pattern. The first-order moving average or MA(1) is also a one parameter
correlation model. Here p characterizes correlation between successive responses
Corr(yij, Yigjay) = pfor i = 1,2,...,n and j = 1,2,...,&. Compound symme-
try correlation structure (CS) is another potential one parameter correlation model.
Here the correlation between any two observations from the same subject is given by

Corr(yij yip) =pforalli=1,2,... ,nand j# 3 =1,2,...,1.

Derivation of the AR(1), MA(1) Correlation Structures

In this section we define the time series models which generates the AR(1) and
MA(1) correlation structures. The correlation matrix (3) is generated by the AR(1)
time series model defined by (, = p(;_1 + ¢, and the auto correlation function for
k> 1is

Corr{(s, (s+x) = pk-

Similarly, the correlation matrix (4) is generated by the MA(1) time series model

defined by the process (; = ¢, + pe.~1. The auto correlation function is

p k=541,

0 elsewhere

Corr(Cy, Ge) = {

where ¢, is a sequence of uncorrelated random variables with mean 0§ and variance

o? in both the models.
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Positive definite conditions for the AR(1), MA(1) and CS8 structures

The paramcter p defines the correlation between the successive observations in
case of AR(1) and MA{1) and it defines the correlation between any two observations
in case of CS correlation structure. Hence, p satisfies the properties of the correlation
coefficient and as a result it satisfies the condition —1 < p < 1 with further restric-
tions imposed depending on the correlation structure. The positive definite range for
p in AR(1} correlation structure is —1 < p < 1. In theory p can be negative, but in
longitudinal data studies negative correlations are rarely observed and hence we con-
sider the positive definite range to be between 0 < p < 1 only. Further, the positive
definite ranges for p in case of CS structure is —r—7 << 1 and in case of MA(1)

structure, the positive definite range is —1/(2 cos(;{3)) < p < —1/(2cos(;5))-

Once again, in all cases we assume p > 0.

As discussed in Section 1.2, we have longitudinal data on » subjects. The response
vector is represented as Y; = (ya, iz, - - -, ¥it)’ with the corresponding covariate X; =
(ZTits Tigs -« -, Tit) for i = 1,2,... n. The primary interest in longitudinal studies is
to study the relationship between response Y; and covariates X; using the model
E(Y;) = u = Xif and Cov(Y:) = #R(A). In the previous sections we have discussed
few potential correlation models for B(A) generated by stationary time series models.
The estimators for 8 and ¢ are given in (9). We next discuss methods of estimation

for the correlation parameter A.
2.3 PARAMETER ESTIMATION

In this section we discuss the different methods of estimating the parameters in-
volved in the regression model. Although the regression coefficients are of primary
interest in the statistical analysis, at this point we concentrate on the methods of
estimating the correlation parameters. As discussed in Section 1.4 we study two
different methods of estimating the correlation parameters, the maximum likelihood
method and the pairwise likelihood method. We have proposed the pairwise likeli-
hood method in order to overcome the complexities that arise due to the maximum
likelihood method of estimation. A detailed discussion on each estimation method
along with the difficulties associated with the maximum likelihood method are given

in the following sections.
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Recall, for each estimation procedure the following estimators for 8 and ¢ are

used.
n -1 n
B = (ZX:R“‘(Z\‘)&) (ZX:R*(X)Y;),
=1 i=1
- 1 PR N ~
b= (- X:8) = () (- X.8)

where ) is the vector of the correlation parameter estimators obtained using the two

estimation procedures outlined next.
2.3.1 MAXIMUM LIKELTHOOD ESTIMATION

As discussed in Section 1.4.1, for any general ¢, the score equations for the corre-

lation parameters A; reduces to

n oR 1 & -~ OR -

——tr [ R7! —u) + —= E Y — X, 8) (R*I——R_l) Y, - X;8) =0 19

( Gri) 20 ( ) AN, ( ) (19)
where expressions for 3, 5 are as defined in equation (9) and we wrote R(A) = R for

convenience,

To study the complexities involved in solving equation (19), we consider the
simple case of t = 3 with R as the ARMA(1, 1} correlation structure. In case of
ARMA(1, 1) the dimension of A is two with A = (A;, X2} = (7, p). Hence the terms

tr (R“lgﬁ) and R*la—RR_l in (19) for (A1, A2} = {9, p) can be expressed as below.

O OA;
For A; =+,
oR 4 2vo(y —
tr (R-l__) S L 2y = p)
/) (2P —w-1) |R|
and
( 20 | 20-7*)0-p) 29* _ (i-7p) Pelrmp)iol-71)?
w|R| i w? w R [ A2
OR 2 2 2
-1¥"t -1 __ 242 {1-p) —2 294 (1-7p)
B y R = BA% w R %‘2 fﬁ' =R ,
72 p(y—p)2+e(l-4%)? 2y2  (l-yp)  29(1—vp) | 21p{1—4%){y—p)
\ |R? Z}T T TwIR) w R + |RIZ

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



28

where w = (29 —yp — 1).

For Ay = p and w as defined above, we have
2~
o (R“@) _ (-0
dp |7
and

( P ¢ S 0 0 ) B i € e 0 73{7—9)2%(1—?2)2\

|Rf? wlR] IR
R -Q—}—%-R_l — 7(1-1p) 25 1 (1-7p)
ap wiR| w? w?

Pl=pPHr1-9%2  i-qp) 220 -4%)(1—p)
TR w|R| |R? /

Note that when ¢ = 3, inverse of R(}) is given by

1-7° y 7(y — o)
|B| 29! —yp =1 |R|
R_l()\) _ v . (’}’,O + 1) Y
292 —yp—1 29 —yp-1 297 —yp-1
Yy —p) ¥ 1-7
(R 29 —vp -1 | R|

Hence the score equations for v and p in (19) reduces to

n dy 2yp(y — p))

2 ((27'2—7;0“1) TR )T
‘!x zn:(yaf ~ X:BY (R_la—RR_l) (i — X:B) =0, (20)
20 ‘= Oy

and

Tt

2
() S B R - XB) =0 )

It is difficult to solve equations (20) and (21) simultaneously and obtain closed
form expression for the estimates of v and p. Alternatively, we can solve the two
equations simultaneously using numerical techniques. Apart from computational
intensities, these techniques can be highly sensitive to the choice of initial values.
Additionally, solving the score equations {20) and (21) becomes computationally
intensive as the number of repeated measures increases on each subject. Hence, we

propose a more simpler and reliable procedure, the pairwise likelihood method, to
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come up with estimators for the correlation parameters. This method also relies

on the normality assumption for the response vector Y; similar to the maxirmin
likelihood method.

2.3.2 PAIRWISE LIKELTHOOCD METHOD

The motivation for the pairwise likelihood method was discussed in the earlier
sections. In Section 1.4.2 we elucidated the method as a general case of composite
likelihood method. As explained before, pairwise likelihood and maximum likelihood
methods differ conceptually in terms of likelihood construction. In maximum like-
lihood method, we use the likelihood given in {7} which is constructed using the
complete data on each subject. On the other hand, a new likelihood is constructed
in pairwise likelihood method based on successive and/or alternative pairs of data
on each subject. We then cstimate the correlation parameter A by maximizing this
newly constructed likelihood. Although; we lose some information but for some cor-
relation structures the contribution of the observations other than successive and
alternative pairs is minimal in estimating the correlation parameters. In the fol-
lowing sections we further elaborate the pairwise likelihood method specific to each

correlation structure that we presented in Section 1.3.

Pairwise Likelihood Method for ARMAC(1, 1) Correlation Structure

As discussed in Section 1.3.1; the two parameters <, p govern the association in
ARMAC(1, 1} correlation structure. Thus, we employ the pairwise likelthood method
for estimation of A = {7, p). The pairwise likelihood estimators are obtained by
maximizing the likelihood functions constructed using the pairs formed by taking the
successive and the alternate repeated measures, because the successive pairs, y; and
Yi(j+1), provides the information about the correlation parameter v and the alternate
pairs, ¥; and Yy(j42), involve p in their correlations. Although some efficiency loss
may occur in the pairwise likelihood method due to omission of the information that
can be obtained using the other pairs, an obvious advantage is the substantial gain
in the ease of computation due to the fact that the dimension of the correlation

structure is much simpler.
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To estimate 7, as a first step, consider the successive pairs of the response vector
Y;. Define Yii; = (i, wig+n) for j =1,2,--- ,t —1;1 = 1,2,--- ,n. Based on the

normality assumption of Y; we have

ij s 1
Yy = ( Yij ) ~ N (( ,leﬁ ) ,(pRl) where Ry = ( K ) . (22)
Yi5+1) Tig+1)P v 1

Define Zh’j as
I z..
Zujﬁ( Pty )=( “ )
Yigj+1) — g(j.H)ﬁ Zi(§+1)

Thus, considering all such pairs, the loglikelihood function for 4 in case of
ARMA(1, 1) model is given as:

n t-1
> —log(2m) —logé — 3 log | Raf —

i=1 j=1

2¢ lej Rl Zl"i' (23)

Equating to zero the derivative of the above loglikelihood function with respect to

results in the following score equation.

t—1 OR 1 o OR
. 5 )tr(R{lgf;l—) ZZZIM (Rl wlRl )zh-j =0 (24)
i=1

i=1

t—1 OR 1 5R
hi = —( 5 )tr (Rll 1) Zzhj (R1 ‘_le ) Zh’J’: (25)

then (24) can be written as hy = Z hi;. Since R,y given in (22) has simpler form,
3R1 d 1

the terms tr | Ry Iw——) nd Ry —am-,;-Ri simplifies to a closed form expressions.

Oy

Thus, equation {24) on further simplification reduces to the following cubic equation

in .

(26)
+

n -1
n{t —1)p — (22, + z?.;m)] T+ [Z Z zu+1] = 0.

i=1 j=1

It is easy to obtain closed form solutions for the roots of cubic polynomial and find

the feasible estimate of ~.
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In the next step, we estimate p by considering the alternate pairs of the re-
sponse vector Y; and follow a similar procedure given in the first step. Define
Yoi; = (W, Yigey) for j = 1,2,--- ;¢ — 2;4 = 1,2,--. ,n. Based on the normal-

ity assumption of Y;,

Yij i 1
Yai; = ( By ) NN(( , ! ),@Rg) where R, = b .
Yigj+2) :Ei(j+2),3 TP 1
¥ s - .
Yij+2) — i(j+2)16 Zij42)

Thus, considering all such pairs, the loglikelihood function of p for a fixed value of v

is given as:
n t-1
Z Z —log(2n) — log ¢ — — log \Ry| — =23, Ry' Zog.
i=1 j=1
The score equation of p becomes

_”(t;Q)tr(Rgl%%) : Zn:tZE: Zais ( 8—&232 )Zze'j = 0. (27)

r*lj'l

Let

t— B8R 1 2 OR
hiy = __( 2y (R21 2) é—gzzz,j (Rz 8—232 )sz (28)
j=1

then (27) can be written as hy = Z hi, which further reduces to the following cubic
=1
equation in p.

n t-2
—ng(t — 2)v'p’ + [ Zfzuznmz)}
]

i—1 j=
f—

* [n‘ﬁ(t —2)y — 7 {2 + 2542
1 j=1

=
M

g+

k1] -
Z Z Zij 31(3-1-2)]

i i=1 j=1

[
[

(29)

Based on above likelihoods the estimation procedure in case of ARMA(L, 1) cor-

relation structure can be described as follows:

Step 1: Choose initial values 8y and ¢ for 5 and ¢.
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Step 2: Solve the cubic equation (26) with 8y, ¢ to obtain a solution for 7, say 7o.

Step 3: Solve the cubic equation (29} with 8y, ¢ and ~ to obtain a solution for p,
say po.

Step 4; Using o and pg, update the value of # and ¢ using the equation (9) and

denote them as ; and ¢;.

Step 5: Replace 81=f and ¢;= ¢y and repeat Steps 2 - 4 until convergence is

achieved.

We denote the final pairwise likelihood estimates by Opr = ( ,5, X)

2.3.3 PAIRWISE LIKELIHOOD METHOD FOR OTHER CORRELA-
TION STRUCTURES

We repeat the same procedure outlined in the previous section to obtain the
estimates in case of AR(1), MA(1) and CS correlation structures. However, we make
a slight modification to the method keeping in mind the fact that there is only one
correlation parameter involved in these correlation structures. Hence, we consider
only the successive pairs to construct the likelihood as mentioned in the first step
of pairwise likelihood method in case of ARMA(1, 1). The likelihood equation turns
out to be same in all the three correlation structures, because they have p as the
correlation between the successive measures. Thus, the likelihood function for p is

same as equation (23) with R; equals

The score equation for p is given as

n i1
hit —ng(t —1)p* + [Z > zijza:mu} o’
nt:i—JI;] n t—1 (30)
+ [n(t - 1)¢ —~ Z Z (ZE,_, + 2.ﬁj+1))] p+ [ZZ zz'jzz'(j-}—lj] ={.
=1 j=1 i=1 j=1

See A.1 for a feasible root of this cubic polynomial in a closed form. The same

iterative procedure in the previous section can be followed to obtain the estimates of
B8, ¢ and p.
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2.4 ASYMPTOTIC VARIANCES

To find the efficiency of pairwise likelihood estimators when compared to maxi-
muin likelihood estimators we use the asymptotic theory described in Section 1.5. In
order to calculate these efficiencies, we need the asymptotic variance of the estimates
from each of the estimating procedures. In the following section we derive these

asymptotic variances for each of the estimating procedures.
2.4.1 MAXIMUM LIKELIHOOD ESTIMATORS

The asymptotic variances and covariances for the maximum likelihood estimators
defined in Section 1.5.1 are given by the inverse of the Fisher Information matrix. The
diagonal elements are the variances and the off-diagonals represent the covariances.

In general, the Fisher information matrix for parameter 8 = (8, ¢, A) is

_{ LB O
Z,(0) = ( 0 Lo ) ‘ (31)

Note that the dimension of I;(¢, A} depends on the dimension of A. For example,
in the model with ARMA(1, 1) correlation structure the dimension of (¢, A) is 3.

Hence, in this model Z,(#) can be represented as

I(8) 0 0 0
I(¢)  I{é,7) I(¢,p)
I{$,y) I(y)  I(v,p)
I(¢.p) I{v,p) I(p)

Ze(0) (32)

Similarly for the other correlation structures, AR(1), MA(1} and CS, the dimen-
sion of Is(¢, A} is 2, and T¢(#) can be represented as

I(B) 0 0
o)y=| 0 I¢) Hsp |- (33)
0 I¢,p) Ip)
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The individual terms in Z,{(#) are given below.

o -s(%8) -1

I(¢) =-E (3;‘;5)) 22%

I(¢,7) :—E(%) :%I(R_I%?)

I(¢.p) =—E (%2;‘5%) S (R_ ij) "
o -o(5) -3 (o)

100 = (5an) =3v(%55)

0 = () -3 ),

where R can be any correlation matrix as defined in Section 1.3 and #(f) as in (8).
We left the expressions in (34) in their general form without further simplifications

for each correlation structure that R can take.
2.4.2 PAIRWISE LIKELTHOOD ESTIMATORS

The asymptotic variances and covariances for the pairwise likelihood estimators
are obtained using Godambe information matrix, G(#), as explained in Section 1.5.2.

Recall that the Godambe information matrix for # is given as

G(6) = D(6) M~ (9) (D(B))

where D(§) = w% Z E (?%é@> and M(9) = %2 Cov(h(6))

t=1
Similar to the Fisher information matrix discussed in the previous section, the
dimension of Godambe information matrix also depends on the type of correlation
structure. Therefore, we give expressions for the Godambe information matrix for

each of the correlation types.
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Pairwise Likelihood estimators for ARMA(1, 1)

In the pairwise likelihood estimation procedure for ARMA(1, 1) correlation struc-
ture, the vector of unbiased estimating equations k;(§), for i =1,2,--- ,n, are given

hi(0) = (ga(8), 9:2(6), hia(6), hia(8))',

where %;1(6) and h;2(6) are the estimating equations corresponding to the correlation
parameters y and p respectively that are defined in equations (25) and {28). The
estimating equations g;1(#) and ¢;,(8) correspond to the regression coefficients 5 and
the residual variance ¢ respectively. Note that the estimating equations for g;;(6)

and g;; are same for any of the correlation structures R and are given as

1

ga(f) = —~X{R™'Z,
oy
and
2(0) = 2+ = ZIR71Z,
Gia - 2‘;,) 2¢2 i t

The terms in the Godambe information matrix D(#) and M(9) for the ARMAC(L, 1)

correlation structure are as follows.

D(Q)zuli [ahi(g)] _ 0 Dy Dy Dy
ni el 0 Ds Dy 0 |’
0 D42 D43 .D44
where
. 1 = agﬂ(é?) _ i i f o1
Dn = —;;E( 35 = w;x,.jz X;,
LG (0920
Dy = - 1;:13( 30 = 557"
_ 1y 9g2(8)y 1 _.OR
Dy = H;E( 7 = i R 5 )
_ 1y 8ga(0)y _ 1 _,0R
Doy = _EZE( 3 = 2¢tr R 3 )
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where

M,

My

M3

My,

M. 33

_D32 - —%ZE
i=1
D3y = —iiE
33 = n
1 n
D42 = “;ZE
=1
1 T
Dys = ~HZE
t==]

1 T
H Zl Va,r(gﬂ)

1 i
=) Var(giz)

i=1

1 n
n Zl CO"(Q@Q: hﬂ)

1 n
n Z Cov(gi, i)

=1

i n
E Zl: Var(hﬂ)

H

ahﬂW)) _ Tt -1)
I ¢l — %)%
amﬂm) N (t — 1M1+~
oy (1-9%)2 7
Bhiz(ﬂ)) _ et —2)
O¢ Pt — 2’
8Mﬂm) _ ({t=2)y0(1 +4%0%)
&y (1—~%p%2
Bha(ﬁ)) _ =271 ++%7)
8}9 (1 o ,72p2)2 !

My O 0 0
0 Moy My My,
0 My Mz My
0 My Mgy My

A
Eﬁ;){%ﬂ X,

¢
262
~(t-1)
$(1—?)
—y*p(t = 2)
(1 — v2p?)

(t —1)(1+~%)
(1—~2)?

+(t - (R A R A,)

+ Y a(RIARA).

Jje—h>1
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Here jo > 57, =1,2,--- ,t—1 and

B 1 -2y 1497
AP 14+ 2y )]

cj2=j1—1 12—f1
A=) a0
1~ ,Tp72*J1”2 ,-yp.n-—;n—'i

Rl JiJzRﬁ 3132)

Now,

My =

NP
l.'mw

=~ Z Covihi, ) = %
nd

where R} and R are as defined in (35) a
R()) defined in {2) then

Yirde
Aj1j2 = (

Y{i4+1)s2

The last term My, is given by

1 1L
My = = Var(h
44 n 21: ar( 2)
{t = 2v*(1 ++%0") ‘A
(1 - 1222 + (¢~ 3) (AL RIAY) + (¢ -
+ Y tr(RjAR;A),
ja—1n>2
where jo > 31 = 1,2,--- ,{ — 2 and
R = g =27 1+
(1=72"2 \ 14420 —2yp
2
A, — ( Y oY ) ’
¥ oy

o ~od
A, = Yp P ,
I ~vp

,}.pjz—jl -1 ,\,pjz*h—H
A Wp??“jl*\?’ f}/p_',?__:!'l"l )

)

37

) .

J
(3 ) Let 75 be the (7, 7) th element of

Yi1(i2+2) )
Y +1)52+2

1) tr(Ry A2 Ry AL)

2
) : (36)

The asymptotic covariance matrix for the pairwise likelihood estimators of 8 is

1676 = -D7(6) M(6) (D™ (8)).
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Pairwise Likelihood estimators for other correlation structures

In the pairwise likelihood estimation procedure for AR(1), MA(1) and CS correla-
tion structures, the vector of unbiased estimating equations h;(8), fori =1,2,-- -, n,

is given as
hi(0) = (9a(8), 9:2(0), ha(0))',

where h;; (6) are the estimating equations corresponding to the correlation parameter
p and they are defined in equation (30) as by = 3", hi1(#). Similar to ARMA(1, 1)
case, gi(f) and g:2(0) are the estimating equations corresponding to the regression
coefficient 5 and the residual variance ¢ respectively and their expressions are given
in Section 2.4.2. Also, D(8) and M () have similar expressions as in Section 2.4.2

but with slight modifications as given below

Lo

( m— ; X/R'X, 0 0 )

Do) = ’ w w(0'5) |,
0 —plt—1) (- 1D{l+p%)

\ o1 — °)? (1 p2)2
with R as the corresponding AR(1), MA(1) or CS correlation structure. Also, M(#)
is given by

My O 0
M(#) = 0 My My i,
0 My My

where

1 & 1 —
—_ — . == — Xr _1Xi
ﬂ’.{u - i:E 1 Vaf(gzl) né ii 1 1R

1 s}
ﬁvﬂfgg = ;;Var(gig) = :-2"55
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o ig _ —plt—1)
My; = ngco"(f}iz,hn) = m
1 t=1){1+p A a7
Mz = };ZVar(hu) . (13_(;}2)2'0)+(t_2)tr(R1AlRlA1)
i=1

+ Y tr(RjARA),

jz—h=1
where j, > 71 =1,2,--+-,t —1 and
1 -2 1+ p*
Rij= | T gl (37)
(1-p% 1+p% =2p

A= P pz Ao p.'i2—:.‘1 F}jr’j1+1
1) ot pren |

The asymptotic covariance matrix for the pairwise likelihood estimators is

~G76) = 2D7(0) M) (D7 O)).

2.5 ASYMPTOTIC COMPARISONS

Based on the asymptotic theory given in Section 1.5, we have shown that the
pairwise likelihood method vields consistent estimators. We know that the maximum
likelihood cstimators are consistent asymptotically. Hence, we compare the efficiency
of these two estimators using asymptotic relative efficiency. The asymptotic relative
efficiency of pairwise likelihood estimator(gpL) to maximum likelihood estimator(gML)
is defined as the ratio of asymptotic variance of 8, and 8, . These variances are
obtained as the diagonal elements of asymptotic covariance matrices Z; '(4) and

G~1(8) derived in Section 2.4.

As we have seen, pairwise likelihood method differs from the maximum likelihood
method in the way the correlation parameters are estimated. The analytical estima-
tors of 8 and ¢ remain unchanged irrespective of the method of estimation. Thus, it
is sufficient to study the efficiency of ouly the correlation parameter estimators ob-
tained from the two methods. It can also be observed from Z; *(#) and G~1(#) that
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the asymptotic covariance matrices for 8 are identical. As a consequence, the rela-
tive efficiency is equal to 1 entailing the equivalent performance of pairwise likelihood
and maximum likelihood method for the regression parameter estimators. For each
correlation parameter, we compute the efficiency of pairwise likelihood estimators to
maximum likelihood estimator by taking the ratio of the corresponding asymptotic

variances from Z;(#) and G71(6).

We can observe that the computations for asymptotic relative efficiency does not
depend on the value of n. Hence, to start with, we compute the asymptotic variances
for fixed values of ¢t = 4 and ¢ = 3 and we let the values of correlation parameters
vary between -1 and 1. In case of ARMA(L, 1), for each of several combinations
of v and p in the positive definite range we calculate asymptotic relative efficiency.
Later we plot efficiencies for different values of v and p. Similar asymptotic relative
efficiency computations are performed for the correlation parameter p using AR(1),
MA(1) and CS correlation structures.

2.5.1 ASYMPTOTIC RELATIVE EFFICIENCIES FOR PAIRWISE
LIKELIHOOD ESTIMATORS IN CASE OF ARMA(], 1}

We consider the ARMAC(L, 1) correlation matrix and compute the asymptotic
relative efficiency (ARE} for pairwise likelihood estimators of v and p . We choose
several combinations for the pair (v, g) and calculate the asymptotic variances using

the formulas derived in Sections 2.4.1 and 2.4.2.

Table 4 provides the asymptotic relative efficiency of pairwise likelihood estimator
of v when £ = 4 and ¢ = 3. In this table, for each value of v, we present the
positive definitte range of p described in Section 2.2.1. For the values of (v, p) in the
positive definite range, we present the AREs of 4. Here we see the ARE of v is very
high over a wide range of v and p, indicating that the pairwise likelihood estimator
variance is almost as small as that of the maximum likelihood estimator, and only
for extreme values of v close to the boundary the efficiency of the pairwise likelihood
method decrease when compared to the maximum likelihood method. However, the

efficiencies remain more than 0.8.

Figure 3 provides a graphical representation of the asymptotic relative efficiency

of v for all values of v and p in the positive definite range. The interpretations for
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Table 4. Asymptotic Relative Efficiency of v for ARMA(IL, 1)

v Rangeof p p ARE ~ v Range of p p ARE~
-0.985 (-1,-0.964) -0.99 0.98387 0.005 (-1, 1) 0.10 1
-0.98 0.9815 0.25 0.9989

-0.97  0.9815 0.35 0.9962

-0.745 (-1, -0.355) -0.85 0.9932 0.5 (-0.366,1) (.28 0.9879
-.75 1 .40 0.9984

-0.65  0.9827 0.55 0.9997

-0.55  0.7242 0.75 0.9952

-0.505 (-1, 0.3495) -0.75 (.9952 0.74 (0.3415,1) 055 0.7815
-0.50 1 0.65 0.9862

-0.40  0.9982 0.75 0.9999

-0.35  0.9952 0.85 0.9929

0.005 -1, 1) -0.34  0.9962 098 (0.952,1) 096 0.8777
-0.20  0.9995 0.97 09461

-0.05 1 0.98 1

NOTE: Range of p is the positive definite range. The parameter values are
t=4and ¢ =3.

AREs of v given based on Table 4 can be clearly seen in the Figure 3. We next study
the AREs of p.

Table b presents the asymptotic relative efficiency of p with values of v and p
in the positive definite range for £ = 4 and ¢ = 3. We can observe that the ARE
of p is high when the values of p are close to zero and the AREs decreases as we
move farther away from zero. The same pattern follows for any fixed value of 4. For
values of 7y close to zero, the ARE of p is almost close to one, indicating that pairwise

likelihood method is equivalent to maximum likelihood method.

Figure 4 displays the asymptotic relative efficiency plot for p. In this figure, we
can observe that the ARFEs of p follows a bell-shaped pattern for any fixed value of
~. The AREs tend to remain small for extreme values of p and they increase as the

value of p approaches zero.
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Figure 3. AREofyfort=4and ¢ =3

Therefore, after investigating the AREs, we can conclude that asymptotically the
pairwise likelihood method is comparable to maximum likelihood method for most

of the plausible correlation values.

2.5.2 ASYMPTOTIC RELATIVE EFFICIENCY FOR PAIRWISE LIKE-
LIHOOD ESTIMATORS IN CASE OF OTHER CORRELATION
STRUCTURES

We now consider the AR({1), MA(1) and CS correlation structures and compute
the asymptotic relative efficiency (ARE) for pairwise likelihood estimators of p. For
each value of «v in the positive definite range, we calculate the asymptotic variances

using the formulas derived in Sections 2.4.1 and 2.4.2.
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Table 5. Asymptotic Relative Efficiency of p for ARMA(1, 1)

v Range of p p ARE p ~ Range of p ¢ AREp
-0.985 (-1,-0.964) -0.99 0.8801 0.005 -1, 1) 0.10 0.9823
-0.98 0.9294 0.25 0.8928

-0.97  0.9539 0.35 0.8080

-0.745  (-1,-0.355) -0.85 0.8450 0.5 (-0.366,1) 0.28 0.8015
-0.75  0.8896 0.40 0.8836

-0.65 0.8416 0.55 0.9201

-0.55 0.8513 0.75 0.7860

-0.505 (-1, 0.3495) -0.74 0.7895 0.74 (0.3415,1) 0.55 0.8358

-0.50 09172 0.65 0.8435
-0.40 0.8791 0.75 0.8905
-0.35  0.8477 0.85 0.8407
0.005 (-1, 1) -0.34  0.8083 0.98 (0.952,1) 0.96 0.6670
-0.20 0.9225 .97 0.9707
-0.05 0.9940 0.98 0.9281
NOTE: Range of p is the positive definite range. The parameter vahies are

t=4and ¢ =3.

In case of AR(1), the AREs of v are all equal to 1, indicating that the pairwise

likelihood method is equally efficient as maximum likelihood method for any ?.

Table 6 {a) and 6 (b) provides the asymptotic relative efficiency of 4 when ¢t = 4
and ¢ = 3 for MA(1) and CS correlation models. In this table, for each value of ~
in the positive definite range described in Section 2.2.2, we present the AREs of ~.
Here we see that in case of MA(1), the ARE is high for values of v close to zero,
indicating the performance of pairwise likelihood method compared to the maximum
likelihood method. Further, in case of CS correlation model, the AREs of + follow an
interesting cubic pattern of increasing efficiency as the value of 4 approaches upper

boundary value of one.
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Table 6. Asymptotic Relative Efficiency of « for MA(1) and CS Structures with

t=4dand ¢ =3
(a) MA(1) (b) CS
~  ARE of 5 v  AREof v

0.6 0.3751 0.3 0.2716
0.5 0.1902 -0.25 0.0838
-0.45 0.0246 0.2 0.0005
-0.4 0.0432 -0.15 0.0861
-0.35 0.2262 -0.1 0.2385
-0.3 0.4368 -0.05 0.3841
-0.25 0.6216 0 0.5000
0.15 0.8736 0.05 0.5855
-0.1 0.9454 0.1 0.6459
'0'03 U'Qfﬁﬁ 02 07147
0.05 0.9866 0,‘3 0.7426
0.1 0.9454 0.35 0.7485
015  0.8736 04 07517
0.2 0.7671 0.5 0.7552
0.25 0.6216 0.55 0.7579
0.35 0.2262 0.7 0.7802
0.4 0.0432 0.75 0.7957
0.45 0.0248 0.8 0.8171
0.5 0.1902 0.9 0.8841
0.6 0.3751 0.95 0.9343
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Figures 5 and 6 provides a graphical representation of the asymptotic relative
efficiency of «y for all plausible values of v . The interpretations for AREs of vy given
based on Table 6 (a) and 6 (b) can be clearly seen in the Figures 5 and 6.

2.6 ANALYSIS OF REAL DATA

To illustrate the application of the two likelihood estimation methods, in this
section we present the analysis of the two continuous longitudinal data that we
introduced in Sections 1.6.1 and 1.6.2.

2.6.1 OZONE DATA

Table 1 in Chapter 1 displays a sample subset of the ozone data. The response,
ozone levels in the environment are recorded at five different time points beginning
from 7 am to 12 noon during one hour interval. These observations are taken on
three consecutive days. A research interest focuses on modeling the change in ozone
levels during the day. The data we analyze here contain n = 60 records. We assume
a ARMA(1, 1) correlation structure to model the dependencies among the ozone

recordings from the same day.
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Table 7. Parameter Estimnates for the Qzone Data

PLE MLE

Parameter Estimate SE  p-value Estimate SE  p-value

Intercept 11.7864 0.9086 <« 0.0001 11.6561 0.9582 <« 0.0001

Day-1 -2.5743 1.2849 0.0451 -2.5657 1.3550 0.0434
Day-2 -1.4618 1.2849 0.2552 -1.4361 1.3550 0.2937
@ 23.5020 3.2509 < 0.0001 26.3972 3.5082 < 0.0001
y 0.8422 0.0236 <« 0.0001 .8595 0.0195 <« (.0001
o 0.7895 0.0429 <« 0.0001 0.7747 0.0367 < 0.0001
—2¢ 1497.5 1487.2

For the response model in Table 7, the pairwise and the maximum likelihood esti-
mates arc approximately close to each other. The p-values from both the approaches
reveal that there is significant difference between the Day-1 and Day-3 ozone levels
with a negative estimate indicating that the levels are low on Day-1 compared to
Day-3. The p-value of 0.2552 implies that the difference between Day-2 and Day-3

is not significant.

2.6.2 OXYGEN SATURATION DATA

Table 2 displays a subset of the oxygen saturation data. The main research
interest in this study is to examine the effectiveness of three different methods of
suctioning an endotracheal tube: Standard suctioning, a new method using a special
vacuum, and manual bagging of the patient while suctioning is taking place. Oxygen
saturation was measured at five time points: baseline, first suctioning pass, second
suctioning pass, third suctioning pass, and 5 mins post suctioning. Twenty-five ICU
patients were randomized to each of the three methods. We assume ARMA(1, 1)
correlation and apply both maximum likelihood and pairwise methods to estimate

the parameters.

Table 8 provides the point estimates, standard errors and the p-values for both
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Table 8. Parameter Estimates for the Oxygen Saturation Data

PLE MLE

Parameter Estimate SE  pvalue Estimate SE  p-value
Intercept 95.892 0.5164 <« 0.0001 95.896 0.4739 < .0001
New Method -0.4153 0.7303 0.5695 -0.416 0.6702  0.5368
Manual Bagging 0.2806 0.7303 0.7008 0.288 0.6702 0.6687
¢ 8.6627 1.6994 < 0.0001 7.7119 0.9514 < .0001
~ 0.7001 0.0530 < 0.0001 0.6601 0.0459 <« .0001
o 1.0175 0.037 < 0.0001 1 0

—-2¢ 1600 1599.4

the estimation methods. The estimates and standard errors are similar. The p-values
of 0.5695 and 0.7008 for the new method and the manual bagging procedure show
that there is no significant difference between the methods. Hence, all the three

methods perform equivalently.
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CHAPTER 3

ANALYSIS OF ANTEDEPENDENCE MODELS

In Chapter 2, we studied a class of correlation models which exhibits the station-
ary characteristics defined in terms of the time-series models. Stationary in com-
bination with correlation models implies the equality of variances across time and
the correlations depend on the absolute differences between the measurement times.
We also discussed consequences of the stationary conditions on the positive definite-
ness of the correlation models in case of first-order autoregressive moving average.
In this chapter, we study the correlation structures generated by antedependence
models whose parameters are not constrained due to the restrictions imposed by the

stationary conditions.

Antedependence models are one of the several large classes of available correla-
tion models for longitudinal data. The most well-known members of the class are
autoregressive models, but antedependence models are much more flexible and gen-
eral. An interesting property of antedependence models is that they do not impose
any stationary assumptions on the parameters unlike the stationary autoregressive
counterparts. Thus, antedependence models differ from other models in that they
allow the parameters to change over the course of the longitudinal study and as a
result they are suitable for modeling longitudinal data that exhibits non-stationary
characteristics. For instance, antedependence models can be used to accommodate
correlations that not only depend on the lag but also on the time of observation,
More general class of antedependence models are defined by considering heteroge-
neous variances for repeated measures. However, in our work we focus on the case
where the variances are homogeneous. A very general class of antedependence models
of higher orders exists and have been discussed in the literature. In this dissertation

we focus only on the first-order antedependence models.

Much of the existing literature focuses on the parametric modeling of the longitu-
dinal data that exhibits serial correlations using the correlation structures generated

by the stationary time series models. As a result, relatively little attention was given
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to the more generalized antedependence structures in compared to their usefulness.
Although, existing software packages permits one to use this structure to model the
correlations, they however are prone to convergence problems. In this chapter, we
will implement one such generalized structure and discuss an alternative method for
estimating the parameters. This alternative method known as quasi-least squares,
overcomes several drawbacks of the traditional methods of estimation. This chapter
is organized as follows. We discuss the antedependence correlation mode] in Sec-
tion 3.1. A motivating example is given in Section 3.2. The maximum likelihood and
the quasi-least squares methods of estimation for the antedependence model are dis-
cussed in Section 3.3. Asymptotic theory and efficiency calculations are reported in

Sections 3.4, 3.5 and 3.6. In Section 3.7, we analyze the data discussed in Section 3.2.
3.1 ANTEDEPENDENCE CORRELATION STRUCTURES

Modeling covariance or correlation structure parsimoniously is crucial to effi-
ciently estimate the data’s mean structure and its corresponding standard error.
One such parsimonious correlation structure that can be considered for analyzing
the longitudinal data is the antedependence correlation structure. Great flexibility is
provided by the antedependence structure in modeling correlations. These structures
allow the correlation to vary between the observations, which is one of the common
scenarios that we encounter in longitudinal studies. The ¢ dimensional first-order

antedependence structure which accommodates such a distinctive feature is given by

R\ =Rlp p, - p,,) =

( 1 Py PPy P1P5P4 Tt PPy Py \

P 1 Py PaPy3 Ctt PaPy Py

PPy Py 1 Pz T P3Py Py (38)
\ PrPoy---Pyy PPy Py PaPye--Poy Pabs---Pry 1 /

From (38), we can see that the parameter vector that characterizes the correlation
structure is A = (p,, p,, Py, .-, £,,)- Thus, in the case of balanced data with ¢ time

points, there are ¢ — 1 correlation parameters. The correlation parameter o, is the
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lag one correlation between observations at time-points ;7 and 7 + 1, that is,

Corr(yij, Yij+1) = Py

for j=1,2,...,t—1andi=1,2...,n This manifests the non-stationary behavior
of the antedependence models. The correlation between two observations depend
on the time as well as on the time lag between them. For example, correlation
between the observations from the subject 7 taken at first and second time points is
p,> that is, Corr(yir, Yiz) = p,, whereas the correlation between observations taken
at second and third time points is given by Py, that is, Corr{yis, 1i3) = p,, and
sitnilarly Corr{yi—1), Y2} = pr-1. Furthermore, higher lag correlations are completely
determined by the lag one correlations and they are calculated by taking the product

of the intervening lag one correlations. Thus, we have
Corr(yi, Yix) = p, = H p, for I>k=12...¢t-14i=12.,n

As a result clearly the hlgher lag correlations also vary over time.
3.1.1 TIME SERIES MODEL FOR ANTEDEPENDENCE

The antedependence correlation structures arise from antedependence time series
models. For example, a first-order antedependence correlation model arises from the

first-order time series antedependence model given by

Cs = ps—lgs—l + €sy (39)

where €; is a sequence of uncorrelated random variables with mean zero and vari-
ance 2. Note that k > 1,

Corr(Cs, Cork) = PP 1Pyrn - Posicr

which depends on the time point s. From the above model we can see that the
number of autoregressive coefficients is one less than the total number of repeated
observations. In addition, the autoregressive coefficients are unconstrained. Thus,
with these properties, model (39} becomes highly inefficient in the time series context
since the series length is usually very long. However, this model turns out to be much
more general compared to its stationary counterparts in the context of longitudinal
data. There is another definition of antedependence variables due to Gabriel (1962)
and Macchiavelli and Arnold (1994).
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Definition 3.1. The sequence of random variables Y|,Ys,....Y; are said to be an-
tedependent of orderp, or AD(p) for 0 < p < t—1, if Y, given at least p immediately

preceding variables, is independent of all further preceding variables fork = 1,2, ... t.

Several other equivalent but simpler definitions of antedependence variables ex-
ists in literature. However, definition 3.1 refers back to the Gabricl’s definition. It
1s noteworthy to mention that the antedependence generally depends on the partic-
ular ordering of the variables. Therefore, antedependence conditions on a permuted
set is not equivalent to partial independence conditions of the original indexed vari-
ables. Nevertheless, this doesn’t lead to any major concern since the ordering in the

longitudinal data is universal, namely chronological order.

The extreme case p = 0 refers to the mutual independence structure and the
extreme case p =1 — 1 is equivalent to full dependence. In addition, it follows from
the definition that the AD{p} variables are nested,

AD{0} C AD(1) c AD(2) C--- C AD(t - 1)

which means that if the random variables Y7, Y5, ..., Y; are AD(3) then by definition
Y1,Y2,.. ., Y; also satisfies the conditions for AD{7) for 0 <i< j <t —1.

Thus the antedependence models partition the set of all dependence structures

depending on the order.
3.1.2 PROPERTIES OF THE ANTEDEPENDENCE MODELS

Antedependence models generalize the AR(1) model in the sense when p; = p for
all 7, the correlation matrix {38) reduces to the AR(1) correlation structure (3). The

determinant of R(A) of the antedependence structure (38) is

-1

R =TT (1-4)- (40)
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The lower diagonal elements of R~1(\) = (r¥) are given by

¢ 1 . ]
T ==
11
073 1=y =t
(1-p2,
t—p° p?
7o 13 ..
= =7 350- ) i=j#1,t (41)
31 i
T =g+ 1
— 2 b=
(1~ p2)
| 0 i—7> 1

In the special case t = 4, the inverse can be written explicitly as

[ 2 ) 0 0 )

a2 —_— 2
1 o5 1 P;
2.2
P 1~'01’02 Py 0
_ TN — 2 2
t—p2 (1-p3{(1-p2) 1-p
R\ =
2 2
0 T8, 1 —pp P
_ T — — 2
1—p (I=-pH(1=-p2) 1-p2
=P 1
0 0 3
2 _ 2
\ b=dp =45 )

Thus the inverse is a tridiagonal matrix. The nonzero elements are in a closed form
and they have a nice pattern. This nice form of the inverse makes it easy to implement

alternative methods of estimation.
3.1.3 POSITIVE DEFINITE RANGE

It 1s easy to see that the antedependence correlation matrix (38) is positive def-
mnite if and only if —1 < p; < 1for j = 1,2...,(t — 1). In practical longitudinal
data analysis the occurrence of negative correlations is not common. Hence in this
dissertation we restrict the range to 0 < p; < 1 for all j, even though this restriction

is not necessary for the estimation procedures that we discuss in later sections.
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3.2 MOTIVATING EXAMPLE

We discussed in Chapter 2, different methods of estimating the correlation param-
eters for several correlation structures. We assume these correlation structures are
generated by stationary time series models such as ARMA(1,1), AR(1) and MA(1).
However, these correlation models may not be proficient in case of longitudinal data

exhibiting non-stationary correlations as illustrated in the example below.

Recall the cattle growth data presented in Table 3, Section 1.6.3. The data
consists of weights {in kg) recorded at 11 sequential time points of cattle receiving
two treatments, A and B, for intestinal parasites. Consider the weights of cattle
receiving treatment A. Table 9 provides sample correlation matrix computed using

the 30 observations.

Table 9. Sample Correlation Matrix for Cattle Growth Data

0.824 1

0.764 0.907 1

0.658 0.844 0.925 1

0.635 0.804 0.879 0942 1

0.585 0.741 0.846 0.914 0.943 1

0.524 0.628 0.748 (.824 0.872 0.830 1

0.529 0.667 0.771 0.837 0.893 0.942 0.932 1

0.516 0.600 0.712 0.769 0.838 0.904 0.934 0.969 1

0.475 0.584 0699 0.734 0.798 0.865 0.884 0.943 0.964 1
0.478 0.551 0.679 0.713 0.773 0.830 0.864 0924 0958 0984 1

NOTE: Sample correlations for Treatment-A.

From Table 9, we note that the correlations decrease within the columns. Hence,
using stationary autoregressive models seems to be an appropriate choice to model
such data. However, on further exploration we can observe that same-lag correlations
(within each sub-diagonal) are not constant but instead tend to increase over time
violating the stationary condition. Thus, for this data the first-order antedependence
correlation structure defined in (38) seems to be an appropriate model. We revisit

this data analysis in Section 3.7.
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In the fellowing sections we discuss the maximum likelihood and guasi-least
squares methods for estimating the regression and the correlation parameters in case
of antedependence correlation models. In addition, we briefly discuss the complexities

involved 1n using the pairwise likelihood method introduced in Chapter 2.
3.3 ESTIMATION PROCEDURES

We consider the setup described in Section 1.4.1. Data consists of responses Y; =
(yi1, %2, - - -, Yue)’ and corresponding covariates X; = (z;1, %, ..., %) on subject 1,
fori =1,2,...,n. The subjects are assumed to be independent. We assume E(Y;) =

= X;8 and Cou(Y;) = ¢R(}A), where the correlation matrix R(A) is of the form
given by (39). The estimates of 8 and ¢ can be obtained using the formulas in (9). I
this section we focus on two methods of estimating the correlation parameters in the
antedependence correlation matrix, namely, the maximum likelihood and the quasi-
least squares method. A detailed discussion on each of the estimating methods are
given in the following sections along with the drawbacks of pairwise likelihood method
in case of antedependence correlation structure. We also evaluate the performance
of the quasi-least squares with respect to the optimal maximum likelihood method

of estimation.
3.3.1 MAXIMUM LIKELIHOOD ESTIMATION

Maximum likelihood estimation procedure for antedependence correlation struc-
ture is similar to the maximum likelihood method for ARMA (1, 1) correlation struc-
ture given in Section 2.3.1. Using the determinant (40) and the inverse (41) of the

antedependence structure R{\), we can reduce the Gaussian loglikelihood in (8) to

t—1 n

0e) = const——log(ff) —% Zlog( ﬂpj) 2;2{ : 2231
7

=1
t-1 _
2, Ao 1 1
-2 ZigZigi+1) + 177 Z + zﬂ'z
jzzll_pg 3<1(3+1) Z: 1__)02 ) (J+1) 1 — ’Of-l ¢

(42)
where Zt' = (Y; — Xhﬁ) = (Zﬂ,Zig, N .,z-u,); for 7 = 1,2, ]

To maximize £(#) with respect to P, we take the derivative of (42) with respect
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to each ?, and equate it to zero. The resulting score eguation reduces to a cubic

equation in ?; given by

z Zijzz'(j-i-l)] ;032. - [Z (ij + z?{jH)) - ?’1‘35] Pt {Z Zijzi(j+1)] = (.

i=1 =1 i=]
(43)

-n(ﬁ,o;’ +

The estimate of each correlation parameter p; can be obtained solving the above
cubic polynomial and it does not depend on the estimate of gy for 5° # j. Thus the
maximum likelihood final estimates are obtained using an iterative procedure. We
start with an initial value for § and ¢ and use them to solve (43) for p; resulting in
p;. Update the value of A and ¢ using p; in (9). Iterate this process until convergence

and obtain gML = (E, a, X) as the final maximum likelihood estimate of 6.
3.3.2 DRAWBACKS OF THE PAIRWISE LIKELIHOOD METHOD

In this section we briefly illustrate the shortcomings of using the pairwise likeli-
hood method introduced in Chapter 2 for estimating the antedependence correlation
parameters. As described in Section 2.3.2 the pairwise likelihood estimators for cor-
relation parameters are obtained by maximizing the likelihood functions constructed
using the bivariate random vectors formed by considering pairs that involve the cor-
responding correlation parameter. For the antedependence correlation structure in
(38), it can be noted that the correlations are characterized by product of lag-one
correlations. Hence, to estimate the correlation parameter p;, we consider the pairs
constructed using the components of Z; = Y; — X that involve p;. For illustration
purposes, we describe the pairwise likelihood method for ¢ = 4 case. Note that, when

t = 4, the antedependence correlation matrix is

1 PL PPy PPy
£ 1 2, P04
pi0y Py 1 Ps
PL1PPs PoPs  Pg 1

R(A) = R(,Ole pg: ,03) =

To estimate p;, we need to consider the following three pairs {z1, 2i2), (2, 2i3)
and (zy, zi) of observations. Since Corr(zy, z:2) = g, Corr{zi, 23) = py p2, and

Corr{z;y, zi4) = p1 P2 p3, the pairwise likelihood constructed from these pairs can be
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used to derive a score equation for p;. Similarly we can derive a score equation
for p; constructed by the pairwise likelihood using the pairs (29, zi3), (20, i) and
(zi1, zi3). Finally we can get a score equation for p3 using the pairs {23, 2u4), (zi2, Zi)
and {z1, z4). The simultaneous solution of these three equations wil} give estimates

of the three parameters p;, py and ps.

We can quickly notice two problems with this approach. First, the number of pairs
required to construct the likelihood function for each ?; depends and grows with the
value of . As a consequence, it becomes cumbersome to construct the likelihoods
for large values of t. Second, the score equation for each P involves all the other
correlation parameters and there is a need to implement an iterative procedure to
solve all the ¢ equations simultaneously. The number of iterations required to solve
for the correlation parameter estimates also increases with ¢ thus compromising the
advantage of computational ease associated with the pairwise likelihood method.
Justification of this failure can be attributed to the non-stationarity characterization
of antedependence time series models as described in Section 3.1.1. However, one can
explore the pairwise likelihood method in case of first-order antedependence models
by considering only the bivariate distributions of successive pairs to construct the
likelihood function.

Instead of pairwise likelihood method, we use quasi-least squares method to esti-
mate the correlation parameters in antedependence model, as an alternative to maxi-
mum likelihood. Quasi-least squares method was developed in Chaganty {1997) and
Chaganty and Shults {1999} and we describe this method in the following section for

antedependence correlation structure.
3.3.3 QUASI-LEAST SQUARES

The quasi-least squares method uses the quasi-loglikelihood function which is
defined as

n

Q) =D (Yi = XiB) RN (Y — XiB) = tr (R7(N) Za),

i=1

where Z,, = z Y - X:8) (Vi = X:8) = ZZ,;Z;. When R()) is the antedepen-
i=1 =1

dence structure, using the inverse formula given in (41) we can reduce the above

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



58

expression to

n 1 S t—2 1— p2p?
. 2 3 e 1" 3+1 2
Qe) = z {‘1 _ pg' zjy — 2 Z 1 - o2 ZiiZij+1) ; (1- pjg)(l e i(j+1)

i=1 1 =1 f it

1
- . zft} , (44)

where Zi = (Y; - X-‘fﬁ) = (zﬂ,z,,-g, . .,213)’ for ¢ = 1,2, Cea g T

Recall from Section 1.4.3, that the quasi-least squares estimation method es-
timates the correlation parameters in 2 steps. In step 1 we minimize the quasi-

loglikelihood function (44) with respect to each o, Equating the derivate of (44) to

zero we get
aQ(o OR™(\
S = ("‘“é""(“l Zﬂ)
Py P;
72 2 2 2
- Z; (1 —p2)2 {pj 2z = £, (2 + Zin) + zszi(:iﬂ)} = 0,

= J
(45)
for j =1,2,...,t — 1. The quadratic equation is positive at p; = —1 and negative at

p; = 1. Hence there is a unique solution to the equation (45) in the interval (-1, 1),

and this root is the step 1 estimate of p; given by

T T 2 T 2
E (25 + 2ig4n) — {Z (zegsr + zf(jﬂ))] —4 |:Z zfizi(ﬁ"ﬂ)]
=1 =1 =1

5= . (48)

k)
2 (Z Z:‘jzi(j-+-l))
i=1

As shown in Chaganty and Shults {1999) the equations (45) are biased at the initial

estimates f); since

OR(X) B OR1(X)
tr (Tp_' ZR)] = tr (T E(Zn))

- bu (MR(A)) 40, o

E

dp

3

where A = (o ff} .., b, )- Instep 2, the QLS method obtains an asymptotically
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unbiased estimate of A by solving the equations

~1fY
tr(?%ﬁg—)fi()\))zo for j=1,2 . t-1 (48)
J

The above equation can be written in a closed form

Coay (49)
P;
and the solution is given by
20,
pi= 77— (50)
(1 +p )
3
for j =1,2,...,t— 1. In terms of the z;’s we have
2) 2zpe)
h = - 61)
2 2
> G+ )
=1

One of the advantages of the QLS method is that the estimates of 8 and p; do not
depend on ¢. To summarize, the iterative procedure for obtaining the QLS estimates
of 3, ¢ and ?; for y =1,2,...,£ — 1 can be described as follows:

Step 1: Compute Z, using an initial value of E for 5.

Step 2: Compute A = (5,,5,,---,5, ) using (51).

Step 3. Update the value of /3, say B, using X and {9).

Step 4: Replace 3 with E and repeat Steps 1 - 3 until convergence.

Step 5: At the end, compute & using the formula (9). The QLS estimate of € is given

by HQL - (ﬁ! ¢)1 A)

Clearly the big advantage of the QLS method is that there are closed form expressions
for the estimates of all the parameters in the model. In addition, even though
we have stated that it is a two step procedure, it is essentially a one step for the

antedependence model since ,6; can be computed directly from the Z;’s.
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3.4 ASYMPTOTIC THEORY

We compare the performance of quasi-least squares estimates with maximum
likelihood estimates for antedependence correlation models using asymptotic relative
efficiency criterion. In order to calculate these efficiencies, we need the asymptotic
variance of the estimates from each of the estimating procedures. The asymptotic
variance of quasi-least squares and maximum likelihood estimators can be derived

using the asymptotic theory described in Section 1.5.

3.4.1 MAXIMUM LIKELIHOOD

The asymptotic variances and covariances for the maximum likelihood estimators
are obtained as the inverse of Fisher information matrix Z;(8), which is defined in
Section 1.5.1. We derive Z,(6) for the antedependence correlation structure. For ease
of notation we use K for R(}) in the following expressions. The general expression for
Fisher information matrix in case of for any given ¢ is given below. For convenience,

only the upper diagonal elements are provided, since the matrix is symmetric.

[ 1(8) 0 0 0 - 0
I(d)) I(qb: :01) I(¢7102) e I(éa pt-l)
I(p,) o - 0
Z,(8) = o) - 0 (52)

\ 1p.,) )

where the individual elements

I(8) =-E (3;2(3)) _ %;XJRﬂX“
o =27 -2

19.p) =-E (gj—"gé?) ] (1_f2?)
CRCI
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for 3 =1,2,...,t —1. When t = 4 we have

1 \
- XR'X; 0 0 0 0
(2 > x
Tl_t _np1 _np-z _npg
2@ U-p) (-p) (-9
2
—n(l+p7) 0
T,(0) = (1- pf)z
. 2
~n(l+ p;) 0
= 72p
—n(l + pi)

\ T

Clearly Z, (6) is the asymptotic covariance matrix for the maximum likelihood esti-

mates.
3.4.2 QUASI-LEAST SQUARES

The asymptotic variances for the quasi-least squares estimators can bhe obtained
using the theory of unbiased estimation equations and the associated Godambe in-
formation matrix, G(8) stated in Section 1.5.2. Recall that,

G(68) = D(0) M~(6) (D(8)Y,

where D(0) = _:'1_1 z E (afgéﬂ)) and M(8) = %Z Cov{h;(8)). For quasi-least
i=1

squares procedure the vector h;(#) involved in the unbiased estimating equation for

6 is given by
hi(ﬁ') = (9&'1(9)1 9£2(9)> hu(e); sy hi(t—l)(g))!

where g;1(f) and g,2(#) are the estimating equations corresponding to the regression
cocfficicnts 5 and the residual variance ¢ respectively. Expressions for g, () and
g:i2(8) are given in Section 2.4.2. Similarly, 4;;(#) is the unbiased estimating equation
for the correlation parameter p; and it is given by
OR™L(A
hi.’."(g) = {r ( 8:5( ) (ZiZ: - qﬁR(A))) )

J
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where J is the solution to the equation

OR1(X)
tr ( 5, R()\)) =0,

for 7 =1,2,...,t — 1. The Godambe information matrix for the quasi-least squares

estimate SQL is

gQL(Q) = DQ (9)‘WIHI(9)(DQL(9))I»
where the matrix DQL(Q) = —:—1 ; E ( Bf;éﬁ)) has the structure
[ D) © 0 0 -0\
0 D(¢) Di¢.p) Didp,) --- Didp,,)
0 0 Dip,) 0 e 0
Da@=1 o 0 Dlp) - O (53)
\ 0 0 0 0 0 D) |

The individual elements of DQL(H) are

=~_Z (39“ ):—ZX’ R'X;

FEED

1 — 89:i2(6 ¢
o0 =2 E(%57) -5

B 0%g:2(9) __h
Dig,p) = _E( 99,86 ) - m
a?hi g “2¢(1+:5;2)
D{p) = ‘E( 35_2( )) AR

where p. is the Step 1, QLS estimate of p;- Similarly, MQL(B) . Z Cov(h,{#)) has
n ~—

the following form

M, (6) = 0 Mg O : (54)
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where

1 1 v .,
ﬂif(ﬁ) = mTI Z Var(gﬂ) = “T-I—(f; Z XiR_IX,;
i=1 =1

t

1 n
ﬂf(gﬁ) = ;L- Z V&I’(gt‘g) = 555
1=1

and M(X) = (my) of order (£ — 1) is the covariance matrix of h;;’s. The elements are

2 2
[ 20° ploy, - )%p for >k
(1+2)01+5)
4¢?
My = 4 = for 1=k
(1+22)
My for I <k.
.

When t = 4, the matrices above can he written as

( n—;ZX;R"lXi 0 0 0 0 )
=1
0 t —p, ~Py Py
2¢*  ¢(1-p?) ¢(1— p) ¢{1—p2)
—24(1 + 7%)
0 0 — 0 0
Dy (6} = (1-p%)°
o 0 0 —2¢(1 +72)
(1 —p2)
~2¢(1 + p?
0 0 0 ( ﬂi )
\ i-7r
and jWQL(ﬁ) =
1 < _ \
( — Y X/R'X;, 0 0 0 0
nq); :
0 5% 0 0 0
0 4¢* 2¢° p,p, 2% p,p2p,
{(1+7%) A+2)(1+752) (1+22)(1+72)
0 26 p,p, 447 2¢% p,p,
(1+8H)(1+72) (1+ 2%) (1+2)(1+72)
. A 2¢% p,plp, 2¢% p,p, 44°
\ A+t + 7)) (1+2){1+72) (1+72) /
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3.5 ASYMPTOTIC EFFICIENCY COMPARISONS

In this section we present the asymptotic relative efficiencies of the quasi-least
squares estimator with respect to the maximum likelihood estimators for the antede-
pendence model. These asymptotic relative efficiencies are calculated by taking the
ratio of diagonal elements of the covariance matrices Z,7}(8) and Qéé (0). Figure 7
has visualization of the asymptotic relative efficiency of p, for all values of p, and
p, in the unit interval when ¢ = 3 and ¢ = 3. Clearly, the efliciency surface shows
that the quasi-least squares estimate is a good competitor for the optimal maximum
likelihood estimator over the entire positive definite range. Selected values of the
asymptotic relative efficiency of p, for several values of p, are in Table 10. We ob-
serve that the ARE of p, is very high over a wide range of p, and p,, indicating that
the quasi-least squares estimator variance is almost as small as that of the maxi-
mum likelihood estimator. Only for extreme values of p,, that is, values close to the
boundary (—1, —0.95), the efficiency of the quasi-least squares method is low when
compared to the maximnum likelihood method. But the efficiency does not fall below
0.85.

Similarly, the AREs of p, when ¢ = 3 for several values of p, are in Table 11
when ¢t = 3 and ¢ = 3. From the table values we can see that the ARE of P, 18 very
high over a wide range of p, and p,, indicating that the quasi-least squares estimator
once again estimates even the correlation parameter p, with as good precision as the
maximum likelihood. Only for extreme values of p, close to the boundary (0.95,1),
we see some drop in the efficiency but it does not drop below 0.85. The surface plot
of the efficiency is in Figure 8. The conclusions drawn regarding the ARE for p, from

Table 11 can be seen clearly in this Figure 8.

Next, the asymptotic relative efficiencies of the estimates for the parameter ¢ are
given in Table 12 and also in Figure 9. The efficiencies presented here are not similar
to the efficiencies calculated in other cases. Here we fix the value of ¢ and then study
the efficiencies with respect to values of correlation parameters since variance of ¢
depends on A as explained in Section 3.4.2. Both the Table 12 and the Figure 9 show
the efficiency of ¢ is high as expected since the functional form of a is the same for
both the methods.

Finally in Table 13 we give the asymptotic relative efficiencies of quasi-least
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Figure 7. ARE of p; for t =3 and ¢ =3

squares estimates of the three correlation parameters and the scale parameter for

= 4. All the efficiency calculations are done using ¢ = 3. The efficiency pattern
that we observed for ¢t = 3 seems to hold even for £ = 4 and we believe this will be the
same for large values of ¢ as well. Thus in conclusion we can say that the quasi-least
squares method is a good competitor to the maximum likelihood method in case of

antedependence correlation models.

3.6 SMALL SAMPLE EFFICIENCIES

In this section we study the small-sample performance of the two estimation

procedures, the maximum likelihood and the guasi-least squares, assuming that the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



66

10 11 12 13

ARE p,
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Figure 8. ARE of p; for ¢ =3 and ¢ = 3

longitudinal data comes from a multivariate distribution with antedependence corre-
lation structure. In the simulations we took the number of repeated measurements ¢
to be 3. This will enable us to create three dimensional surface plots of the efficiencies

because there are only two correlation parameters, p, and p,.

To evaluate the small-sample performance, we fix the sample size n = 30 and set
the scale parameter ¢ = 3. In the simulation model we considered two covariates.
The values for the first covariate x;;; are simulated from uniform distribution between
0 and 1. The second covariate z;;, is dichotomous taking values 0 and 1 with equal
probability. We fixed the true regression coefficients as the intercept Fy = 22.5, the
coefficient of x5, as 8; = 2.5 and 5, = 0.5 for the coefficient of ;3. Using these as
true parameter values and the covariates we simulated 1000 sets of samples consisting

of 30 observations from the three dimensional multivariate normal distribution with
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Figure 9. ARE of ¢ for £t =3

mean that is specified by the regression parameter and the generated covariates and
the antedependence correlation structure for several values of the two correlation
parameters p1 and p; in the positive definite range. For each set of simulated data,
we obtained estimates of the regression and the correlation parameters using both
maximum likelihood and the quasi-least squares. Since the two methods differ in
the estimation of the correlation parameters, we calculated the mean square errors
(MSE) for the two correlation parameters p; and ps and the relative efficiencies (RE)

as the ratio
_ MSE of ML estimator

" MSE of QLS estimator’

If the ratio is more than 1, we can conclude that the QLS method performs better

RE

than the maximum likelihood method and vice versa.

The relative efficiencies (RE) of the QLS estimates of the correlation parameters
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are presented in Table 14. Some efficiency values in Table 14 are greater than one
indicating that the QLS estimates are more efficient than the maximum likelihood
estimator for some values in the correlation parameter space. In particular the effi-
ciency of the QLS estimate of p, is greater than 1 for small values of p, irrespective
of the true value of p,. However the efficiencies are low for large positive and large
negative values of p,, that is, at the extreme values of p,. Similarly the relative
efficiency of the QLS estimate of the correlation parameter p; is more than one when
g = 0.3 irrespective of the value of p,. For some values in the parameter space
the QLS is less efficient when compared to the maximum likelihood estimate but in
case the efficiency falls below 0.71 and for positive values of p, and p, it does not
fall below 0.75. The relative efficiencies of the QLS estimates of the two correlation
parameters p; and pe are plotted in Figures 10 and 11 respectively over the entire

positive definite range of the correlation matrix.

12 14

1.0

ARE p,
05 08

04

4.2

0g

Figure 10. p; RE for QLS and MLE for t =3

Table 15 displays the small-sample efficiencies of the QLS estimates of the three
correlation parameters in the antedependence model for ¢ = 4. Once again the values
in the table show that QLS outperforms the maximum likelihood in some cases and
it is a good competitor in other cases. In the next section we revisit the analysis of

the cattle growth data discussed in Section 3.2.
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Figure 11. po RE for QLS and MLE for t = 3

3.7 ANALYSIS OF CATTLE GROWTH DATA

To illustrate the application of two estimation methods, in this section we present
the analysis of the continuous longitudinal data that we discussed in Section 1.6.3. In
this study sixty cattle are evenly assigned randoinly to two treatments A and B. Their
weights were taken at eleven different time points. Table 3 displays a subset of the
cattle growth data. The main interest in this research study is to examine whether
there is a significant difference between the treatment groups A and B. As discussed
in Section 3.2 we assume first-order antedependence correlation structure to model
the dependencies among the weights. Since the responses are collected at eleven
time-points, under the assumed correlation model there are ten different correlation
parameters. We used the quasi-least squares and the maximum likelihood methods
to estimate the parameters. Table 16 contains the point estimates, standard errors
and the p-values for both the estimation methods. From Table 16, we can observe
that the two methods give results that are in agreement. The p-value of (0.9202 for
the treatment group A implies that there is no significant difference between the two

groups regarding the weights of the cattle.
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Table 10. Asymptotic Relative Efficiency of py for Antedependence

P p,  AREp, Py P, AREp,
-0.95 -0.95 0.9783 0.005 0.1 1
-0.7 0.8836 0.5 1

-0.3 0.7900 0.8 1

0.005 0.7690 0.3 -0.95 0.9978

0.1 0.7711 -0.7 0.9870

0.5 0.8279 -0.3 0.9742

0.8 0.9183 0.005 0.9709

-0.75 -0.95 0.9861 0.1 0.9712
-0.7 0.9241 0.5 0.9797

-0.3 0.8579 0.8 0.9912

0.005 0.8421 0.6 -0.95 0.9911

0.1 0.8439 -0.7 0.9500

0.5 0.8851 -0.3 0.9042

0.8 0.9473 0.005 0.8929

-0.5 -0.95 0.9938 0.1 0.8941
-0.7 0.9647 0.5 0.9233

-0.3 0.9314 0.8 0.9656

0.0065 (.9231 0.85 -0.95 0.9823

0.1 0.9240 -0.7 0.9045

0.5 0.9455 -0.3 0.8246

0.8 0.9759 0.005 0.8059

0.005 -0.95 1 0.1 0.8080
-0.7 1 0.5 0.8571

-0.3 1 0.8 0.9333

0.005 1 0.95 0.9823

NOTE: The parameter values are ¢ = 3 and ¢ = 3.
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Table 11. Asymptotic Relative Efficiency of p; for Antedependence

Py p,  AREp, Py p,  AREp,
-0.95 -0.95 0.9783 0.005 8.1 0.9967
-0.7 0.9879 0.5 0.9231

-0.3 0.9978 0.8 0.8242

0.005 1 0.3 -0.95 0.7900

0.1 (.9998 -0.7 0.8739

0.5 0.9938 -0.3 0.9742

0.8 (.9843 0.005 1

-0.75 -0.95 (.9005 0.1 0.9971
-0.7 0.9433 0.5 0.9314

-0.3 0.9891 0.8 0.8414

0.005 1 0.6 -0.95 (.8531

0.1 0.9988 -0.7 0.9146

0.5 0.9702 -0.3 0.9831

0.8 0.9272 0.005 1

-0.5 -0.95 0.8279 0.1 0.9981
-0.7 0.8984 0.5 0.9545

-0.3 0.9797 0.8 0.8914

0.005 1 0.85 -0.95 0.9373

6.1 0.9977 -0.7 0.9647

0.5 0.9455 -0.3 0.9933

0.8 0.8713 0.005 1

0.005 -(.95 0.7690 0.1 0.9993
-0.7 0.8596 .5 0.9817

-0.3 0.9709 0.8 0.9545

0.005 1 (.95 0.9373

NOTE: The parameter values are £ = 3 and ¢ = 3.
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Table 12. Asymptotic Relative Efficiency of ¢ for Antedependence

£y p, ARE¢ P, p, ARE¢®
-0.95 -0.95 0.9908 (.005 0.1 1
0.7 0.9684 05  0.9890
-0.3 0.927 0.8 0.9474
0.005  0.9131 0.3  -095  0.9270
0.1 0.9148 0.7 0.9731
0.5  0.9469 0.3 0.9985
0.8 0.9782 0.005 0.9984
075  -095  0.9734 0.1 0.9985
0.7 0.9808 0.5 0.9923
0.3 0.9658 08  0.9575
0.005 0.9569 0.6 -0.95 0.9577
0.1 0.9581 0.7 0.9825
0.5 0.9757 -0.3 0.9846
0.8 0.9799 0.005 0.9793
05  -095  0.9469 0.1 0.9800
0.7 0.9807 0.5 0.9879
0.3 0.9923 08  0.9752
0.005 0.9890 0.85 -0.95 0.9827
0.1 0.9895 0.7 0.9761
0.5  0.9917 0.3 0.9483
0.8  0.9699 0.005  0.9369
(.005 -(1.95 0.9131 0.1 0.9383
0.7 0.9654 0.5 0.9631
-0.3 0.9984 0.8 0.9803
0.005 1 0.95  0.9827

NOTE: The parameter value is t = 3.
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Table 13. Asymptotic Relative Efficiency of A and ¢ for Antedependence when £ = 4

I Py Py ARE p, ARE p, ARE p, ARE ¢
0.005 0.005 0.005 1 1 1 1
0.5 1 1 0.8889 0.9877

0.95 1 1 0.6890 0.9033

0.5 0.005 1 0.8889 1 0.9877

0.5 1 0.9000 0.9000 0.9756

0.95 1 0.9207 0.7132 0.8932

(.95 0.005 1 0.6890 1 0.9033

0.5 1 0.7132 0.9207 0.8932

0.95 1 0.7627 0.7627 0.8237

0.5 0.005 0.005 (0.8889 1 1 0.9877
0.5 0.9000 1 0.9000 1

0.95 0.9207 1 0.7132 0.9572

0.5 0.005 0.9000 0.9000 1 0.9756

0.5 0.9143 0.9143 0.9143 0.9%84

0.95 0.9422 0.9422 0.7469 0.9484

0.95 0.005 0.9207 0.7132 1 0.8932

0.5 0.9422 0.7469 0.9422 0.9088

0.95 (.9880 0.8184 0.8184 0.8868

(.95 0.005 0.005 0.6890 1 1 0.9033
0.5 0.7132 1 0.9207 0.9572

0.95 0.7627 1 0.7627 1

0.5 0.005 0.7132 0.9207 1 0.8932

0.5 0.7469 0.9422 0.9422 0.9484

0.95 0.8184 0.9880 0.8184 0.9977

0.95 0.005 0.7627 0.7627 1 0.8237

0.5 0.8184 0.8184 0.9880 0.8868

0.95 0.9583 0.9583 (0.9583 {.9805

NOTE: The parameter value is ¢ = 3.
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Table 14. Small-Sample Efficiency of gy and p, for Antedependence

pp P REp REp — p p REp REp,
-0.95 -0.85 0.9765 0.9660 ¢ 03 1.0300 1.0297
-0.7  0.8547 0.9848 0 1.0303 1.0501

-03 0.7314 0.9984 0.1 1.0440 1.0425

0 06926 1.0024 0.5 1.0357 0.9454

0.1 07611 1.0058 0.8 1.0150 0.7697

0.5 0.7616 0.9956 0.30 -095 1.0007 0.7831

0.8 0.9140 0.9798 -0.7 1.0053 0.8961

095 0.9814 0.9503 -0.3 1.6060 1.0205
-0.75 -095 09785 0.8689 0 1.0212 1.0504
-0.7 09357 0.9400 0.1 1.0i85 1.0560

-0.3 0.8472 1.0055 0.5 1.0118 0.9227

0 0.8054 1.0232 0.8 1.0080 0.7619

0.1 0.8414 1.0113 0.60 -0.95 0.9906 0.8466

0.5 0.8736 0.9859 -0.7 09621 0.9311

0.8 0.9378 0.9155 -0.3 09107 1.0002

0.95 09801 0.8455 0 09113 1.0339

-0.5 095 0.9953 0.7181 0.1 0.8911 1.0388
-0.7 0.9717 0.8563 0.5 09185 0.9606

-0.3 0.9562  1.0350 0.8 0.9695 0.8207

0 09720 1.0528 0.80 -0.95 09732 0.8892

0.1 0.9609 1.0385 -0.7 0.8814 0.9601

0.5 0.9671 0.9566 -0.3 0.8335 1.0210

0.8 0.9876 0.8601 0 0.8047 1.0163

0.95 0.9954 0.7651 0.1 0.8072 1.0134

0 -0985 1.0033 0.7690 0.5 0.8260 0.9752
-0.7 1.0128 0.8305 (0.8 0.8831 0.8348

NOTE: The parameter values are t = 3 and ¢ = 3;
_46[} = 225, ﬁ1 = 2.5 and ﬁg ={.5.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 15. Small-Sample Efficiency of p;, po and p3 for Antedependence

P Py Py RE p, REp, REp,

0.005 0.005 0.005 1.0782 1.0691 1.0459
0.5 0.9101 1.0654 1.0731

0.95 0.6187 1.0475 1.0786

0.5 0.005 1.0978 0.9304 1.058

0.5 0.9054 0.9404 1.0614

0.95 0.5186 0.9348 1.036

0.95 0.005 1.0505 0.5545 1.0294

0.5 0.9518 0.6355 1.0251

0.95 0.6697 0.6245 1.0023

0.5 0.005 0.005 1.0734 1.0727 0.9031
0.5 0.8997 1.0725 0.909

0.95 0.6289 1.031 0.936

0.5 0.005 1.0593 0.8975 (.9455

0.5 0.9475 0.9244 0.9158

0.95 0.6168 0.9356 0.9646

0.95 0.005 1.0465 0.591 0.9343

0.5 0.9395 0.6149 0.9436

0.95 0.7026 0.7279 0.9934

0.95 0.003 0.005 1.0659 1.0702 0.5969
0.5 0.9331 1.0423 0.6445

0.95 0.6859 1.0064 0.7189

0.5 0.605 1.0415 0.9569 0.6089

0.5 0.9579 0.9718 0.607

0.95 0.7553 0.9864 0.724

0.95 0.005 1.0082 0.6864 0.6897

0.5 0.9931 0.7022 0.7054

0.95 0.8809 0.8811 0.922

NOTE: The parameter values are f =4 and ¢ = 3;
fo =225, p1 = 2.5 and f; = 0.5.
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Table 16. Parameter Estimates for the Cattle Growth Data
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QLS MLE

Parameter Estimate SE p-val Estimate SE p-val
Intercept(Gs) -0.0838 1.1815  0.9435 -0.0834 1.1805  0.9437
Treatment-A(S;) 0.1676 1.6709  0.9201 0.1668 1.6695  0.9204
¢ 0.9801 1.0995  0.3727 0.978% 1.0297  0.3418
o1 0.8377 0.2983  0.0050 0.8383 0.2750  0.0023
o) 0.9212 0.1514 <0.0001 0.9219 0.1356 <0.0001
73 0.9263 0.1419 <«0.0001 0.9270 0.1268 <0.0001
P4 0.9416 0.1135 <«0.0001 0.9422 0.1007 <0.0001
o5 0.9584 0.0815 <0.0001 0.958% 0.0718 <0.0001
D6 0.9462 0.1047 <0.0001 0.9470 0.0925 <0.0001
o7 0.8946 0.1997 <0.0001 0.8936 0.1834 <0.0001
g 0.9656 0.0675 <0.0001 0.9645 0.0622 <0.0001
Pa 0.9066 0.1781 <0.0001 0.9041 0.1657 <0.0001
010 0.9314 0.1325 <0.0001 0.9308 0.1203 <0.0001
-2¢ -657.2232 -657.1442
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CHAPTER 4

SUMMARY

In this dissertation we studied the alternative estimation procedures for various
dependent models used to analyze continuous longitudinal data. In Chapter 2, we
considered the ARMA (1, 1}, AR{1}, MA(1) and compound symmetry correlation
structures to model] the dependencies in the longitudinal measurements. We dis-
cussed restrictions on the parameter vector A to guarantee positive definiteness of
the associated correlation matrix H(A) in each case and stated few other properties
in the context of time-series. We studied the pairwise likelihood approach to esti-
mate correlation parameters for the ARMA (1, 1) correlation structure along with
the regression coefficients and residual variance. Asymptotically, we showed that
pairwise likelihood estimators of the correlation parameters are nearly as efficient as

the maximum likelihood estimators when the data is normally distributed.

In Chapter 3, we considered the first-order antedependence correlation structure
to model] the dependency in the longitudinal data. We outlined the drawback of the
pairwise likelihood method and studied another alternative method of estimation,
known as quasi-least squares. We studied properties of the quasi-least squares esti-
mates in the context of the antedependence model. It is relatively easy to implement
because the method uses estimates that are in a closed form. Asymptotic relative
efficiency calculations showed that the quasi-least squares is a good competitor to
the maximum likelihood method to estimate the correlation parameters. Using sim-
ulations we showed that the quasi-least squares estimators could be more efficient
than the maximum likelihood estimators in small samples for some values in the

correlation parameter space.

In conclusion we showed that there are alternative methods of estimation for
analyzing continuous longitudinal data using structured correlation matrices. These
alternative methods are not only easy to implement and overcome some difficulties
associated with the maximum likelihood method but they are also highly efficient in

estimating the correlation parameters.
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APPENDIX A

SOME FORMULAS AND DERIVATIVES

A.1 CLOSED FORM ROOT OF A CUBIC POLYNOMIAL

For the cubic equation gs3a® + az0? + a10! + ag = 0, we have used the following

closed form root

2
a = 30 (a2 — 3aia3) cos{d) — 3a_;’

1 - 4
where 0 = 5 reeos l—§ (2a3 — 9a1aa; + 27apa3) (a5 — 3ayas) 3/2} + g
The above formula can be found in Hasza (1980), who showed that the root falls in
the interval (-1, 1) for the cubic polynomials that arise in some of the estimation

procedures discussed in this dissertation.
A.2 MATRIX DERIVATES

The following matrix derivatives can be found in Harville (1997). We have used
these derivatives repeatedly in this dissertation. Suppose R{x) is a symmetric matrix

whose elements are functions of the parameter a. Then

Olog |R{c)l _y, \OR(e)
T““(H ) 50 )
OR Ya) B OR(a) _
e = ~ R (e}~ R (@)

2 p--1

TR o a2 s M) s
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A.3 DERIVATIVES FOR ANTEDEPENDENCE CORRELATION
MATRIX

Let H(A) be the antedependence correlation matrix defined in (38), where A =
(p £y -2 p, ). Note that R7Y(X) is given in (41). We denote the (z, j) th element
of a matrix A by [A];;. Then we have

(2
1'9’“2 i=j=Fk k+1
BR-1(A) o
ot W ) (1+6)
9 ko =k j=k+1i=k+1, j=k
Ly | G=pp ’
0 otherwise
and
¢ =P, o
t=7=k k+1
L=7
1 i=k j=i+1;
1-pt i=k+4+1, j=i-1
—p.... P,
1’ = i=k j<i
BR(N) O
RN ={ PP o
P - i=k 7>2+1
Pe 1 1—p?
Pig P : o
— i=k+1 j<i-1
1 I
—-p . p
‘1" =2l =k 1, >
L 0 otherwise.
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If X=(p,..., ), then

1 i=k g=14+1;
(1+52  i=k+1,j=i-1
Pigr Pir . .
P S =k it
IR N py| =d a+5)
dp, 3
Y Pig- Py . o
T3, 1=k+1 j<i-1
(1+p7)
0 otherwise.

“

Further, for I = k, the diagonal elements are

Ry 2 ) M 0 (1-57)? ’
I, 9 |, * .
» 0 otherwise

and for { # k, all the diagonal elements are zero.
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APPENDIX B

R PROGRAMS

B.1 PAIRWISE LIKELIHOOD ESTIMATORS

Here we provide the R-program that computes the parameter estimates for pairwise
likelihood estimators and estimated variances{asymptotic) for pairwise likelihood and

maximum likelihood estimators with ARMA(1,1) correlation model.

Remarks: The following gives the notation for the observed data used in the program.
Y: Matrix of responses with each row consisting of the observations from each subject

X orig: Matrix of covariates

Code:

library(psych)
library (MASS)

library(matrixcalc)

# Generates the correlation matrix R for ARMA{1,1) model
corrmatrixARMA <- function(ti,gamm,rho)
{

H= powH(ti)

R=gamm#* (rho ~H)

diag(R)=1

return(R)

# Function used in calculting the derivatives and the ARMA
(1,1) correlation matrix

powH <- function(ti)

{ times <- 0:(ti-1)

H <<~ abs{outer(times, times, "-"))} -1
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diag(H)=0

return (H)

# Estimates beta
betaest <- function(i,R0,Y,X¥_data)
{ ti=ncol(Y)
n= nrow(Y)
if (i==1) RO=diag(ti)
cl=matrix(0,p,p’
¢2= matrix(0,p,1)
x=c¢(i:n)
dim(x)=length{x)
ca=apply{x,1, function(x,X_orig)
{bl=cbind(rep(1,ti) ,matrix{rep(X_origlx,],ti),ti,
ncol(X_ orig), byrow=TRUE))
b2=as.matrix{(¥Iix,])
cle<—-cl+t(bl)%*Ysolve (RO)%*%bl
c2<<~c2+t(bl)Y*Y%solve (RO} %*%b2
},X_ orig=X_oxrig)
betal=solve{cl)¥%*%c2
return{betald)

# Computes the residuals Z=Y-X’beta for a time-independent
covariates
residZ <- function(betald,Y,X_data)
{ n=nrow(X_data)
ti=ncol(Y)
jl=matrix{1,arow=n,1)
X=cbind(jl,X_data)
Xi=X%*%betal
X10=rep (X1, each=ti)
return(Y-matrix (X10,n,ti,byrow=TRUE))
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# Calculates the negative log-likelihood at a given set of
parameters
mlogl <- function(theta,Z)
{ betal= as.matrix (theta[1l:p])
phi=thetal[p+1]
gamm=theta[p+2]
rho=theta[p+3]
n=nrow(Y)
ti=ncol (Y)
R<-corrmatrixR(ti, gamm,rho)
nlogl<-(n*ti/2)*log(2*pil)+{n*ti/2)*2og(phi)
+{(n/23*log(det (R)) +(1/(2*phi))=*
sum(diag(ginv(RY%*%t (Z2)%*%Z))

return(nlogl)

# Estimates gamma, rho
plest <~ function(thetal,Z)
{
betal=thetal [1:p]
phi0=thetal [p+1]

#gamma etimate
a3g=-n*(ti-1) *xphiQ
clg=c(1:(ti-1))
c2g=c(2:t1)
a2g=sum(rowSums (azs.matrix(Z{,cigl*Z[,c2gl)))
alg=n+(ti-1)*phi0-sum(rowSums (as.matrix(Z[,clgl~2
+ Z[,c2gl"2)))
a0g=sum(rowSums (as.matrix(Z[,c1gl*Z[,c2g]}))
# roots using polyroot
prootg <- polyroot(c(alg,alg,a2g,adg))
k=round (Im(prootg) ,5)
gammaO= Re{prootglk == 01)

#rho estimate
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adr=-n*(ti-2)*phi0+gammal0 -4

clr=c{1:{ti-2))

c2r=c(3:ti)
a2r=sum (rowSums (as.matrix(Z[,clr]*Z[,c2r])))*ganmad "3
alr=(n*(ti-2)*phi0-sum{rowSums (as.matrix(Z{,clr]"2

+ Z[,c2r]172))) )+ gamma0 "2

a0r=sum(rowSums (as.matrix(Z[,clr]*Z[,c2r])))*gammal
prootr <- polyroot{(c(alr,alr,a2r,a3r))

k=round (Im(prootr),b)
rho0= Re(prootr [k == 0])
theta2=¢ (gammaC,rho0)

return (theta2)

# Calculates the asymptotic variances using the analytical
expressions
AREPL_ARMA <- function(ti,n,theta_pl,X_orig)
{
j <- cbind(rep(1:ti,each=ti),rep(1:ti))
j <<= j0i[,11 < jE,21,]
gpl=theta_pl [p+2]
rpl=theta_pl [p+3]
phipl=theta_pl [p+i]
R=corrmatrixBR(ti,gpl,rpl)

In_pl=matrix{0,p+3,p+3)

cl=matrix{(0,p,p)

x=c(1:1)

dim(x)=length(x)

cazapply(x,1, function{(x,X_orig,R)

{bl=cbind(rep(1l,ti) ,matrix(rep(X_orig(x,],ti),ti,

ncol{X_orig), byrow=TRUE))

cl <<- ci+t{bl)¥*%solve(R)Y*%Dbl
return{cl)

},X_orig=X_orig,R=R)
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&7
Iti_pl= cil/(a*phipl)
H=powH(ti)

dRg= rpl™H # derivative of R wrt gamma
diag(dRg)=0

Hi=H-1
Hi [Hl== -1] = 0
dRr= H*{gpl*rpl~H1i) # derivative of R wrt rho

I22_pl= ti/(2%phipl~2)

I23_pl= tr(solve(R,tol=tol)%=*%dRg)/(2*phipl)

I24_pl= tr(solve(R,tol=tol)%*%dRr)/(2*phipl)

I32_pl= -gpl*{(ti-1)/(phipl*(1~gpl~2))

I33_pl=(ti-1)*(1+gpl~2)/(1-gpl~2) "2
a=(1+gpl~2+rpl~2)/(1-gpl~2%rpl~2) "2

I42 _ pl=-gpl~2%rpl*{(ti-2)/(phipl*(1-gpl~2*rpl~2))

I43_pl= {ti-2)*gpl*rpl#*a

I44 _pl= (ti-2)#*gpl-2*a

In2_pl= matrix(c(I22_pl,I32_pl,I42_pl, I23_p1,I33_pl,
143_pl, 124_pl,0,144_pl),3,3)

In_pl[tl:p,t:pl=I11_pl

In_pli(p+1):(p+3),(p+1):(p+3)]= In2_pl

Mo_pl=matrix(0,p+3,p+3)
Mo_pl{l:p,1:pl=I11_pi
M22_pl= I22_pl
M23_pl= M32_pl= -gpil*(ti-1)/(phipl*(1-gpl~2))
M24_pl= M42 _pl= -gpl 2*rpl=(ti-2)/{(phipi*{i-gpl~2*rpl-2))
Al=matrix(c(gpl,1,gpl*rpl,gpl),2,2)
Ristar=matrix(c{-2%gpl,1+gpl~2,1+gpl~2,-2%gpl)
/(1-gpl=2)-2,2,2)
jl1 <- cbind(rep(1:(ti-1),each=ti-1),rep(l:(ti-1)))
j1 <= j1lji1[,1] < j1[,21,]
if (isTRUE{(length(ji)!=0})
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{ if (is.pull{nrow(j1)))
{ x=1
il <- matrix(c(j1),length(x),2)

}
ji_m <- ji1(j31f,21~j1[,1]1 > 1, 1]
if (isTRUE(length(jl_m)!=0))
{ if (is.null(nrow(jl_m))) x=1 else x=c(l:mrow(jl_m))
dim(x)=length{x)
ji_ml=matrix(c(jl_m),length(x) ,2)
al=apply(as.matrix(x),1,function(x,gpl,rpl,Ristar)
{ j1= ji_milx,1]
j2= ji_milx,2]
A=R{c(j1,j1+1),c(j2,j2+1)]
return(tr (Rlstari*«%A%*YRistary*x%t{(4}))
}.gpl=gpl,rpl=rpl,Ristar=Ristar)
} else al=0
M33_pl=((ti-1)*(1+gpl~2)/(1-gpl~2)"2)
+(ti-2)*tr(Ristar*%A1%«%Ristari*%t(A1l)) + sum(al)

j2 <- cbind{(rep(1:(ti~2),each=ti-2) ,rep(i:(ti-23))

j2 <- j2l(j2{,1} < j2[,2],]

if (isTRUE(length(j2)!=0)>

{ if (is.null{nrow(j2))}{ x=1

j2 <- matrix{c{j2),length(x),2)}

}

j2_m <- j2{j2(,2]-j2(,13 > 2, 1]

R2star=matrix (gpl*c(-2+gpl*rpl,1+gpl ~2*rpl~2,

1+gpl~2%rpl~2,~2*gpl*rpl)/(1-gpl~2%rpl~2)
"2,2,2)

Al=matrix(c(gpl,gpl,gpl*rpl~2,gpl) , 2,2}

A2=matrix (c(gpl*rpl,!,gpl*rpl~3,gpl*rpl),2,2)

if (isTRUE(length(j2_m)!1=0))

{ if (is.null(nrow{(j2_m))) x=1 else x=c(l:nrow(j2.m))
dim(x)=length(x)}
a2=apply(as.matrix(x),1,function(x,gpl,rpl,Ristar)
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{ j1= j2_mlx,1]
j2= j2.mlx,2]
j2_m=matrix{c(j2_m),length(x),2)
mp2=matrix(c{(j2-j1-1, j2-j1+1,

j2~j1-3, j2-31-1),2,2)

A=gpl*rpl "mp
return(tr (Ristar¥%+%A%+%Ristar*«%t(a)))

}.gpl=gpl,rpl=rpl,Ristar=Ristar)

} else a2=0

M44_pl=((ti-2)*gpl 2*(1+gpl~2%rpl~2)/(1-gpl-2#rpl~2)"-2)
+(ti-3)*tr(R2stari%*%A1%*%R2star¥+Y%t(A1))
+((ti-4)*+tr(R2starf*%A2%»YR2starf«%t (AR)))

j3_m <- cbind(rep(1:(ti-1),each=ti-2),rep(1:(ti-2)))
R=corrmatrixR{ti,gpl,rpl)
x=c(i:nrow(j3_m))
dim{(x)Y=length(x)
a3=apply(x,1, function(x,gpl,rpl,j3.m,R)
{ j1= j3_mlx,13
j2= j3_m{x,2]
Ajtj2=matrix(c(R[j1,j21 ,R[j1+1,j2].
R[j1,j2+2), RIj1+1,3§2+21),2,2)
return{tr(Ristar¥%*%4j1j2%*%R2stard*%t (4j1j2)))
}, gpl=gpl,rpl=rpl,j3_m=j3_m,R=R)
M34_pl = sum{a3)/2
M43 _pl= M34_pl
Mo_pl[(p+1):(p+3),(p+1) :(p+3)i=matrix(c(M22_pl, M32_pl,
M42_pl, M23_pl, M33_pl,M43_pl, M24_pl,
M34_pl,M44_pl),3,3)
V_pl= (solve(In_pl,tol=tol)%*% Mn_pl¥*¥
t(solve(In_pl,tel=tol)))/n
vars_pl=as.matrix(diag(V_pl))

return(round(vars_pl,5))
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# Main program

tol <<~ .Machine$double.eps”™3
n <<- nrow(Y)

ti <<- ncol(Y)

p <<- ncol(X_orig)+t

i <=1

ca=numeric (p+5)

thetapl .new=numeric {p+3)

repeat

{ thetapl_old=thetapl_new
if(i==1) RO=diag(ti) else RO=corrmatrixARMA(ti,

thetapl_old[p+2] ,thetapl_old{p+3])
betal=betaest (i,R0,Y,X_orig)
Z <<- residZ(betal,Y,X_orig)
phiO=tr{Z%*%solve (RO %4*%t (Z))/(n*xti)
thetal _pl=c(betal,phi0)
theta2.pl= plest{thetal_pl,Z)
thetapl_new=c{thetal _pl,theta2_pl)
nlogl= mlogl{thetapl_new,Z)
ca=rbind(ca,c(i,thetapl_new,nleogl))
if (norm(as.matrix(thetapl_new-thetapl_old),"f")
<.Machine$double.eps”.26) break()

i=i+l

}

theta_pl=matrix(thetapl _new,1,)

# The PL estimates for beta, phi, gamma, rho i#
betanames=paste("beta" ,0:{p-1))
colnames {(theta_pl) = c(betanames,"Phi","Gamma","Rho")

print (round{theta_pl,4))

# The negative log-likelihood value
print{(rbind("negative log-likelihood”,nlogl))

# negtaive loglikelihcod values at each iteration

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



91

coluames (ca)= c("iteration”",colnames (theta_pl),"nlogl")

print(ca{-1,})

# Calculate the asymptetic variances for the pairwise
likelihood estimators
pl_vars = AREPL_ARMA (ti,n,theta_pl,X_orig)

B.2 QUASI-LEAST SQUARES AND MAXIMUM LIKELIHOOD
ESTIMATORS

Here we provide the R-program that computes the parameter estimates using
quasi-least squares and maximum likelihood method in case of first-order antedepen-
dence correlation structure. The code also includes the computations for obtaining
the estimated variances{asymptotic) for quasi-least squares and maximum likelihood

estimators,

As mentioned in previous section, Y represents the matrix of responses with each
row consisting of the observations from each subject and X orig is the matrix of

covariates

# Generates the correlation matrix R for antedependence
correlation matrix
corrmatrixANTE <- function(ti,rho)
{
x <= list(1l:ti)
ind <- as.matrix(expand.grid(rep(x, 2)))
r <- apply(ind, 1, function(ind,rho}
{ xt<-ind[1]
x2<-ind [2]
elem<-ifelse(x1>x2, prod{(rho[(x2:(x1-1)1),
ifelse(x1==x2,1,prod(rho{x1:(x2-1)])))
return{elem)
},rho=rho)
RAnte<-matrix(r,ti,ti)

return(RAnte)
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# Estimates beta
betaest <- function(i,RO,Y,X_data)
{ ti=ncol(Y)
n= arow(Y)
if (i==1) RO=diag(ti)
cl=matrix(0,p,p)
c2= matrix(0,p,1)
x=c{(1l:n)
dim(x)=length{x)
ca=apply(x,1, function(x,X_orig)
{bl=cbind(rep{(1l,ti) ,matrix(rep(X_origlx,],ti),ti,
ncol (X_orig), byrow=TRUE)})
b2=as.matrix(Y[x,])
cl<<~c1+t{(bl)¥*Y%solve(RO)%*Ybl1
c2<<~c2+t(bl)4*%solve (RO) %*% b2
}.X_orig=X_orig)
betalO=solve (cl)¥%*¥%c2

return{betal)

# Computes the residuals Z=Y-X’beta for a time-independent
covariates
residZ <- function(betal,Y,X_data)
{ n<-nrow(X_data)
ti<-ncol(Y)
jl<-matrix(1l,nrow=n,1)
X<-cbind{j1,X_data)
X1<-X¥%*Ybetad
X10<-rep{(X1l,each=ti)}
return (Y-matrix (X10,n,ti,byrow=TRUE})

# Calculates the negative loglikelibhood for a given set of

parameters
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mlogl <- function(theta,Z)

{ betal«- as.matrix(thetall:pl)
phi<-theta[p+1]
rho<~theta[(p+2):(length{theta))]
n<-nrow(Z)
ti<-ncol(Z)

R <- corrmatrixANTE(ti,rho)
nlogl<-(n*ti/2)*log(2*%pi)+(n*ti/2)*log (phi)
+(n/2)*log{det(R)) +(1/(2*phi))=*
sum{diag (ginv (R)%*%t(Z)%*%Z))
return{nlogl)

# Calculates the Step-2 quasi-least squares estimates for
correlation parameters
glest <- function{Z)
{ cig<-c(1:(ti-1))
c2g<-c(2:ti)
a<~colSums (as.matrix(Z[,clgl~2 + Z[,c2gl"2))
b<~-colSums (as.matrix(Z{,ci1gl*Z{,c2g]l)>
rhosl<-(a-sqrt(a~2-4*b~2))/(2*b)
rhos2<- 2*b/a

return{rhos2)

# Calcultes final quasi-~-least squares estimates(iterative
procedure)
thetaglfunc <- function(Y,X_data,p)
{
n <~ nrow(Y)
ti <- ncol(Y)
i <- 1
ca<-numeric (p+ti+2)
thetaql _new<-numeric{(p+ti)
repeat

{ thetaql_old=thetaql _new
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betal<-betaest(i,R0,Y,X_data)
Z <~ residZ(betal,Y,X_data)
rhol<- glest(Z)
RO<~corrmatrixANTE(ti,rhol)
phil <- sum(diag(solve{(RO,tol=tol} %U+At(Z)I%*%Z))/{(n*ti)
thetagql _new<-c(betal, phil, rhot)
nloglql<- round(mlogl(thetaql_new,2),8)
ca<-rbind(ca,c(i,thetaql_new,nloglql))
if (norm(as.matrix{(thetaql _new[-{(p+1)]
-thetaql_old[-(p+1)]),"f")<.Machine$double.eps~.25)
break ()
i<—i+1
}
theta_ql<-matrix(round(thetagl_mew,5),1,)
return{theta_ql)

# Calcultes maximum likelihood estimates for correlation
parameters
mlest <- function(Z,phi)
{ n<-nrow(Z)
ti<-ncol(Z)
clg<-c(1:{ti-1))
c2g<-c(2:t1)
a3<-rep(-n*phi,ti-1)
a2<-colSums(as.matrix(Z[,clgl*Z[,c2gl))
ai<--(colSums(as.matrix(Z{,cigl~2 + Z[,c2g]~2))-n=*phi)
af<-a2
a<—- matrix(c(al0,al,a?,ad),ti-1,4)
x<-c(l:nrow(a))
dim(x)<-length(x}
rhohatml<-apply(x,1,function(x,a)
{ cc<-alx,]
proot <- polyroot (cc)
k<-round{(Im{proot) ,5)
if (length{prootlk == 01)>1)
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rhohat <-Re (proot [Re {(proot)>0])
else rhohat<- Re(prootlk == 0])
return{rhohat)}
},a=a)

return{rhohatml)

# Calcultes final maximum likelihood estimates(iteratve
procedure)

thetamlfunc <- function(Y,X_data,p)

{

n <- anrow(Y)

ti <- ncol(Y)

i <-1

ca<-numeric(p+ti+2)

thetaml _new<-numeric (p+ti)

repeat

{ thetaml _old<-thetaml_new
if (i==1) RO=diag(ti) else RO=corrmatrixANTE(ti,
thetaml _old [(p+2):(p+ti)])
betal<-betaest (i,RC,Y,X_data)
Z < residZ(betal,Y,X_data)
phil <- sum(diag{(solve(RO,tol=tol) ¥%*%t(Z)%*%Z))/(n*xti)
rhol<- mlest (Z,phil)
thetaml_new<-c(betal, phil, rhol)
nloglml<- reound(mlogl{thetaml _new,Z) ,6)
ca<-rbind(ca,c(i,thetaml _new,nlogiml))
if {(norm{as.matrix(thetaml_new[-(p+1)]
-thetaml_old[~(p+1)]),"f")<.Machine$double.eps”.25)
break ()
i<-1i+1
}
theta_ml<-matrix(round(thetaml _new,5),1,)
return{theta_ml)
}
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# Sub-function to calculate elements in Godambe information
matrix
elemM2ql <- function(xl,x2,phiql,rho,rhotild)
{
den<-{1+rhotild[x1] 2)* (1+rhotild[x2]1"2)
if (abs(x1-x2)==0) elem<- 4*phiql~2/{1l+rhotild[x1]"2)"2
if (abs(x1-x2)==1) elem<-2*phiql~2*rho[x2]*rho[x1]/den
if (abs{x1-x2)>1)
{
elem<-ifelse{x1>x2,2*phigl ~Z*rho[x2]
*(prod(rho [(x2+1) : {x1-1)])"2)*rho[x1]/den,
2+phiql - 2#rho [x1]*{prod(rho[(x1+1) :{x2-1)])"2)
*rho [x2] /den)
}

return(elem)

#AREs for QL3 estimators
AREGQL_ANTE <- function(ti,n,theta_est,X_orig)
{
phigl<- theta_est[1]
rhoql<-theta_est [2:ti]
rhotild<- (1-sqrt(l1-rhoql~2))/(rhoql)
R<-corrmatrixANTE(ti,rhoql)

In_ql<-matrix(0,p+ti,p+ti)
ci=matrix(C,p,p)
x=c(1:n)
dim(x)=length(x)
ca=apply(x,1, function{x,X_orig,R)
{bt=cbind(rep(1,ti),matrix(rep{X_origlx,],ti),
ti,ncol(X_orig),byrow=TRUE))
cl <<~ cl+t(bl)¥*¥%solve{R)%*%b1
return(ct)
},X_orig=X_orig,R=R)
In_qlli:p,1:p] = c¢1/(n*phiql)
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In_ql[(p+1},(p+1)] <~ ti/(2*phiql~2)
In_qllp+1,(p+2) : (p+ti)]l<- ~-rhoql/(phiql*{i-rhogl~2))
In_ql[(p+2):(p+ti),{(p+2):(p+ti)] <~

diag{c(-2*phiql* (1+rhotild~2)/(1-rhotild"2) "2))

Mn_ql<-matrix(0,p+ti,p+ti)
Mn_ql(1:p,1:p) = c¢1/(n*phiql)
Mo_ql{{p+1),(p+1)] <~ ti/(2%phiql~2)
x <- list(1:(ti-1))
ind <- as.matrix(expand.grid(rep(x, 2)))
r<- apply(ind, 1, function(ind,rho, rhotild,phiql)
{ x1<~ind [1]
x2<-ind [2]
elem<~elemM2ql (x1,x2,phiql,rho,rhotild)
return{elem)
},rho=rheql,rhotild=rhotild,phiql=phiql)
Mo_ql[(p+2) : (p+ti),(p+2) : (p+ti)]<- matrix(r,ti-1,ti-1)
G_ql<-(solve(In_ql,tol=tol)¥%+*% Mo_ql¥%+*%
t(solve(In_ql,tol=tol)})/n
vars_ql<-as.matrix{diag(G_ql))

return (round (vars_ql ,5))

#AREs for ML estimators
AREML_ANTE <- function(ti,n,theta_est,X_orig)
{
phiml <~ theta_est[1]
rhoml<-theta_est {2:ti]
rhotilm<- (1-sqrt(l-rheml~2))/(rhoml)
R<-corrmatrixANTE(ti, rhaml)

In_ml<-matrix(0,p+ti,p+ti)
cl=matrix(0,p,p)

x=c(1l:m)

dim{x)=length(x)

ca=apply(x,1, function{x,X_orig,R)
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{bl=cbind(rep(1,ti),matrix(rep(X_origfx,],ti),
ti, ncol(X_orig),byrow=TRUE))
cl <<- cl+t(bl}¥*%solve(R)%+%b1
returan(cl)
},X_orig=X_orig,R=R)
In_ml[i1:p,1:p] <- c¢1/(n*phiql)
In_ml[(p+1),(p+t)] <~ ti/(2*phiml~2)
In_ml[(p+2):(p+ti) ,p+1]1<~ In_ml[p+1,{p+2):(p+ti)] <-
-rhoml/(phiml*(1-rhoml~2))
In_mwl[(p+2) : (p+ti) ,(p+2):(p+ti)] <-
diag(c((1+rhoml~2)/(1-rhoml~2)"2))
V_m}l <- solve(In_ml)/n
vars_ml <- as.matriz(diag(round(v_ml,5)))

return{round(vars_ml ,4))

# MAIN PROGRAM

tol <<- ,Machine$double.eps”3
n <<~ nrow(Y)

ti <<- ncol(Y)

P <<~ ncol(X_orig)+1
rhonames<-paste("Rho" ,1:{(ti-1))
betanames=paste ("beta”" ,0:(p-1))

# (LS estimates of the parameters and their variances
theta_ql <- thetaqlfunc(Y,X_orig,p)

colrnames (theta_ql) = c{(betanames,"Phi",rhonames)
print(round(theta_qgl1,5))

vars_ql <- AREQL_ANTE(ti,n,theta_gl[(p+1):(p+ti)],X_orig)

# ML estimates of the parameters and their variances
theta_ml <- thetamlfunc(Y,X_orig,p)

colnames (theta _ml) = c{betanames,"Phi",rhonames)
print{round(theta_ml,5))

vars_ml <- AREML_ANTE(ti,n,theta _ml[(p+1):(p+ti)],X_orig)
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