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ABSTRACT

METHODS FOR ANALYZING ATTRIBUTE-LEVEL
BEST-WORST DISCRETE CHOICE EXPERIMENTS

Amanda Faye Working
Old Dominion University, 2017
Director: Dr. Norou Diawara

Discrete choice experiments (DCEs) have applications in many areas such as social

sciences, economics, transportation research, health systems, and clinical decisions to

mention a few. Usually discrete choice models (DCMs) focus on predicting the prod-

uct choice; however, these models do not provide information about what attributes

of the products are impacting consumers’ choices the most. Today, it is common

to record the best and worst features of a product (or profile), also called attribute

levels, and the goal is to investigate and build models for estimation of attribute

and attribute-level impacts on consumer behavior. Attribute-level best-worst DCEs

provide information into what consumers find the most important when considering

different products. The design of attribute-level best-worst DCEs and the associ-

ated theory are discussed by Street and Knox (2012). Attribute-level best-worst

discrete choice models can help to market products to the consumers and are often

used in health economics research. These experiments help companies to best target

consumers with their products or services. The latter can better advertise their prod-

ucts by highlighting and/or downplaying certain key attributes (or attribute-levels)

to best earn the interests and business of consumers. We propose a time dependent

model that can adapt to changes that occur in areas such as public opinion. A time

dependent model accounts for the impact of time in a consumer’s perception of a

product and adjusts the utility to reflect that. These models are Markov processes

and are often found under dynamic programming. Rust (1994), provides time de-

pendent models for the usual DCEs. We extend this time dependent model to the

attribute-level best-worst DCEs. Two example studies are presented to examine the

dynamic versus static performance of transition matrices for estimation and inference

of attributes and attribute level effects with regards to the expected utilities.
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CHAPTER 1

INTRODUCTION

Discrete choice experiments (DCEs) and their modeling describe consumers’ be-

haviors. In these experiments, consumers are given a questionnaire or survey of a

series of choice sets. Their task is to choose one alternative from a set of alternatives

that benefits them the most. The alternatives, or products, being modeled play the

role of the explanatory variables in regression modeled. They may be goods, services,

policies, and/or scenarios. DCEs have applications in a multitude of fields including

but not limited to, health systems research, public policy, transportation research,

and economics. These experiments provide valuable information to businesses on

the impact the features of a product have on the likelihood of the product being

chosen over competitive alternatives. Best-worst scaling experiments are modified

DCEs to elicit further information about the best and worst product, or best and

worst attributes and attribute-levels of a product. Our research in the area DCEs

is on the attribute-level best-worst DCEs and their models. We make extensions to

the traditionally defined utility function and look at the impact of time on expected

utility using Markov decision processes (MDPs).

1.1 DCEs PROBABILITY

In DCEs, there exists a set of alternatives which are a set of products, services, or

scenarios from which respondents choose one alternative as their preference. Thur-

stone (1927) presented the idea to quantify people’s reaction to a set of alternatives,

or stimuli, that are described by a set of attributes from a product. This set is

called the choice set and includes all possible alternatives (Train, 2009). In some

experiments, the alternatives are divided into multiple choice sets from which each

respondent chooses one alternative. Let there n respondents and J alternatives in the

experiment. The response variable representing the choices made in the experiment



2

is binary data and denoted as:

Yij =

{
1, if ith respondent chooses jth alternative,

0, otherwise,
(1)

for i = 1, 2, . . . , n and j = 1, 2, . . . , J .

In the experiment, each of the alternatives is described by a set of K attributes or

characteristics of the product or scenario being modeled. The attributes describing

the product are presented in a profile, xj = (xj1, xj2, . . . , xjK), where xjk be the

value for the kth attribute for the jth alternative, where 1 ≤ k ≤ K and 1 ≤ j ≤ J .

Using this information about the different alternatives, the respondent chooses their

preferred alternative. These characteristics enter into the estimation of the gains or

benefits a particular product offers consumers through the utility function.

Many discrete choice models (DCMs) have been proposed under random utility

theory (RUT), which assigns a utility value to each alternative. In this setting,

individuals choose an alternative with the highest utility. Marschak (1960) developed

RUT where each alternative has an associated random utility function. Under RUT,

the utility for ith subject choosing the jth choice is defined as:

Uij = Vij + εij, (2)

where

Uij is the utility the ith subject receives from the jth choice,

Vij is the systematic component,

and εij is the unobserved or error component of the utility function,

for i = 1, 2, . . . , n and j = 1, 2, . . . , J .

Consumers act in a way to maximize their utilities. The probability that an

alternative is chosen given as:

P (Uij − Uik > 0,∀j 6= k) = P (Uij > Uik,∀j 6= k)
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= P (Vij + εij > Vik + εik,∀j 6= k)

= P (εik − εij < Vij − Vik,∀j 6= k),

which is the cumulative distribution function for εijk = εik − εij. Therefore, the

probability is then dictated by the distribution of the error terms.

The systematic, or observable, component of the utility is defined as Vij = x′jβ,

where xj = (xj1, xj2, . . . , xjK) is the set of explanatory variables, or attributes, cor-

responding to the jth alternative, 1 ≤ j ≤ J , and β is the associated regression

parameters. Van der Pol et al. (2014) explained that the utility function may be

expressed as a linear function, as seen here, a quadratic function, or may possibly be

written as a stepwise functions of the explanatory variables. The explanatory vari-

ables are the attributes, or characteristics, defining the product in the experiment.

One would imagine that information about the consumer would also be among the

explanatory variables. Consumer specific information such as gender, salary, and ed-

ucation, are all factors that motivate consumer behavior. However, consumer specific

information is often not included in choice models for the reasons that follow.

Let zi, i = 1, 2, . . . , n, represent subject specific information in the experiment.

With the inclusion of subject specific information in the utility function, the utility

would then be

Uij = x′jβ + ziθ + εij,

for i = 1, 2, . . . , n, j = 1, 2, . . . , J , with β and θ the associated parameter vectors

for the choice and subject, respectively. When taking the difference in utilities for

two alternatives, as is done when computing the probability in Equation (3), zi’s

cancel out. Train (2009) mentions the inclusion of subject specific information into

the model in the form of zij must be tied to the alternatives, where i = 1, 2, . . . , n

and j = 1, 2, . . . , J . Here, the subject’s information is also choice specific. Models

for including consumer information are captured under the multinomial logit (MNL)

or mixed multinomial logit (MMNL).

1.2 COMMON MODELS

DCMs look to model consumer behavior using statistical models. There is an
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ever growing set of models to apply to DCEs. We provide a few of the most common

type of models. However, for the research done in this dissertation, the conditional

logit model is used. The conditional logit model has some restrictions, namely the

independence between choices. Probit models and generalized extreme value models

are commonly utilized in cases where independence is unable to be assumed. Much

of the details about these models provided here come from Anderson et al. (1992)

and Train (2009) textbook on the simulations of DCEs.

In a book review, Thisse and Norman (1994) examined Anderson et al. (1992)

discrete choice model of product differentiation. Psychometric and quantitative sci-

ence literature have used DCMs integrating indicators in latent class constructs,

connecting attributes of a respondent with unobserved behaviors. This is seen in

Kamakura and Russell (1989) and Hurtubia et al. (2014) in a transportation and

travel discrete choice model study done in Nice, France and rural areas of Switzer-

land.

However, many authors have ignored the applicability in time dependent and less

restrictive model assumption cases. The models built here assume consumer choices

are homogeneous, characterizing patterns of choice substitutions by brand switching

or price sensitivities.

1.2.1 CONDITIONAL LOGIT

The conditional logit is a popular statistical model applied to consumer behavior.

Marschak (1960) states that the probability that an alternative is chosen can be done

under the logit model. McFadden (1974) proves that if the error terms are distributed

as type I extreme value distribution the probability an alternative is chosen is given by

the logit. One of the assumptions for this model is the independence from irrelevant

alternatives (IIA). The IIA axiom, or principle, also known as Luce’s choice axiom

(Luce, 1959), states that the choice probability is not altered by the inclusion or

removal of alternatives from the set of alternatives and is important in later models

proposed to predict consumer choice behavior. Let the error terms be independently

and identically distributed type I extreme value distribution. The probability density
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function and cumulative distribution function are then:

f(εij) = e−εie−e
−εij

(3)

and

F (εij) = e−e
−εij

, (4)

respectively.

In Equation (3), the probability that the jth alternative is chosen over the kth

alternative depends on their respective error terms in their utilities, εijk = εik − εij,
where i = 1, 2, . . . , n, j, k = 1, 2, . . . , J , and j 6= k. The difference of extreme value

variables are known to have a logistic distribution. The choice probability derived

by McFadden under Luce’s IIA axiom is then given by:

P (Uij > Uik,∀j 6= k) =
ex
′
ijβ

ΣJ
k=1ex

′
ikβ
, (5)

where i = 1, 2, . . . , n, j, k = 1, 2, . . . , J , and j 6= k.

Referring to Train (2009), the derivation of Equation (5) is as follows:

P (Uij − Uik > 0,∀j 6= k) = P (Uij > Uik, ∀j 6= k)

= P (Vij + εij > Vik + εik,∀j 6= k)

= P (εik < εij + Vij − Vik,∀j 6= k). (6)

The probability is then the cumulative distribution function of εik, and using the

independence and identically distributed condition on the error terms the probability

is expressed as:

P (Uij > Uik,∀j 6= k) = P (εik < εij + Vij − Vik,∀j 6= k)

=

∞∫
−∞

∏
j 6=k

e−e
−(εij+Vij−Vik)

e−εije−e
−εij

dεij
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=

∞∫
−∞

J∏
k=1

e−e
−(εij+Vij−Vik)

e−εijdεij

=

∞∫
−∞

e−e
−εij

J∑
k=1
−(Vij−Vik)

e−εijdεij.

We substitute t = e−εij with dt = −e−εijdεij, producing:

P (Uij > Uik,∀j 6= k) = −
∞∫

0

e
−t

J∑
k=1
−(Vij−Vik)

dt

=
1

J∑
k=1

e−(Vij−Vik)

e−t
∣∣∣∞
0

=
eVij

J∑
k=1

eVik
.

This derivation may also be found in the Anderson et al. (1992).

We add one more noticeable clarification. In the literature, people use the con-

ditional logit and multinomial logit interchangeably. Agresti (2007) among others

are very clear that there is in fact a difference between the two models. The multi-

nomial logit is a special case of the conditional logit model where the explanatory

variables are subject specific information, and in the conditional logit the explanatory

variables are the attributes about the product (Hoffman and Duncan, 1988). Agresti

(2007) states that there is a distinction between the two models; even though, Agresti

(1990) states that they are the same. Anas (1983) presents the MNL as a special case

approach at the intersection of information theory (entropy function) and the multi-

nomial logit. McFadden and Train (2000) present the MMNL model that includes

both subject specific and choice specific information in the set of explanatory vari-

ables. The MMNL models is more complex than the conditional logit model because

of its dependence on a mixing distribution and associated parameters. However, the

model does allow for heterogeneous preferences of the subjects in the model. There

exist other models that allow for heterogeneous preferences, or dependence among

the error terms. One such model would be the probit model.
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1.2.2 GEV

Generalized extreme value (GEV) models are a family of models wherein the

unobserved terms of utility have an extreme value distribution. The popular multi-

nomial logit and the nested logit models are among this family of models. McFadden

(1978) presented theory behind these distributions and their application to modeling

consumer behavior. GEV models are considered because they allow for dependence

among the error terms of the utility. Ben-Akiva and Bierlaire (1999) and Train

(2009) provide the choice probability and necessary conditions for GEV models that

are given below.

Let G be a non-negative and differentiable real-valued function of the systematic

component of the utility, that is G = G(eV1 , eV2 , . . . , eVJ ). The probability of the jth

alternative being chosen is given as

Pj =
eVj ∂G

∂eVj

G
, (7)

if the following four properties are satisfied for j = 1, 2, . . . , J .

Properties:

• G ≥ 0 for all positive values of eVj ,∀j = 1, 2, . . . , J .

• G is homogeneous of degree µ > 0.

• G→∞ as eVj →∞ for any j.

• For any 1, j2, . . . , jk ∈ 1, 2, . . . , J the following condition is satisfied

(−1)k
∂kG

∂eVi1 . . . ∂eVi1
≤ 0 ∀ eVi1 ∈ IRJ. (8)

Small (1987) extended the GEV models to ordinal data providing the ordered

generalized extreme value distribution (OGEV). Swait (2001) presented the Gen-

eration logit model termed GenL and demonstrated how the GEV models may be

utilized to generate choice sets for DCEs.

1.2.3 MULTIONMIAL PROBIT
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Hausman and Wise (1978) and Anderson et al. (1992) presented the probit model

as an alternative statistical model for choice data. The multinomial probit model

overcomes the limitation of independence of the unobserved terms in the utility that

exists in the conditional logit. In some DCEs, the assumption of independence seems

contradictory to the experiment. In DCEs, where multiple choices are made by each

individual, such as panel data, correlations among the choices would be a typical

assumption.

The multinomial probit model assumes that the error terms, εij, i =

1, 2, . . . , n, j = 1, 2, . . . , J , have a multivariate normal distribution with a mean of

zero and a variance-covariance matrix Σ. Referring to Equation (3), the probability

that the jth choice was chosen is the cumulative distribution function of εijk = εik−εij.
The multivariate normal distribution has some desirable properties. Some proper-

ties are that each εij has a normal distribution and the difference between normally

distributed variables also have normal distributions. There are J − 1 differences be-

tween the jth alternative and the other alternatives in the set. These J − 1 variables

have a multivariate normal distribution. Train (2009) defines these differences as

Ũijk = Uik − Uij, Ṽijk = Vik − Vij, and ε̃ijk = εik − εij.

Furthermore,

P (Uij > Uik,∀j 6= k) = P (Uij − Uik > 0,∀j 6= k)

= P (Uik − Uij < 0,∀j 6= k)

= P (Ũijk < 0,∀j 6= k)

= P (Ṽijk + ε̃ijk < 0,∀j 6= k)

=

∫
I(Ṽijk + ε̃ijk < 0,∀j 6= k)φ(ε̃ijk)dε̃ijk, (9)

where φ is the probability density function of the multivariate normal distribution

with a mean vector of zero and a (J − 1) × (J − 1) variance-covariance matrix Σj,
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where j = 1, 2, . . . , J . The density of the εijk is given as,

φ(ε̃ijk) =
1

(2π)
1
2 (J − 1)|Σj|

1
2

e−
1
2
ε̃′ijkΣ−1

j ε̃ijk , (10)

where i = 1, 2, . . . , n, j, k = 1, 2, . . . , J , and j 6= k.

1.3 OUTLINE OF DISSERTATION

This dissertation presents methods for modeling attribute-level best-worst dis-

crete choice experiments (DCEs) with the inclusion of time. In Chapter 2, attribute-

level best-worst DCEs are introduced. These models are a special case of the broader

best-worst scaling type models. A literature review of attribute-level best-worst

DCEs from their development to methods for modeling this data using models such

as conditional logit, multinomial logit, and probit is provided. Model definition as

well as probability theory and associated properties are defined. The scope of the

work covers the statistical methodology and a synthesized analysis and case studies

using simulated and aggregated data.

In Chapter 3, we extend the existing work done on partial profile models for

pairwise comparison of choices. Relevant literature about the models are presented.

An extension of these models with regards to attribute-level best-worst DCEs is done.

Attribute-level best-worst data are presented as indicator functions demonstrating

the equivalence of these models to the traditional attribute-level best-worst models.

The indicator functions are then generalized providing an alternative method for

defining attribute-level models. The functional form of the data definition provides

an adaptive model able to conform to changes in the profile, or set of attributes, over

time.

In Chapter 4, Markov decision processes (MDPs) are considered with regards to

time sensitive attribute-level best-worst DCEs. MDPs are sequential decision making

processes that determine an optimal decision policy that maximizes discounted re-

ward over time. Existing work done with MDPs with regards to DCEs have not been

extended to best-worst scaling type experiments. We define the necessary properties

for MPDs to function with regards to attribute-level best-worst DCEs. We present

static and dynamic transition matrices. Utility, acting as the rewards, are defined
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in multiple ways: 1) using the traditional definition provided in Chapter 2, and 2)

using the more malleable form in terms of the systematic component from Chapter

3.

In Chapter 5, estimation of consumer behavior models are provided using numer-

ical maximization under a criteria function is described. We also discuss different

possible variant of scenarios. Two different examples with mixed scenarios are pre-

sented. A hypothetical situation is simulated and analyzed. The scenarios are then

used to model MDPs under stationary and dynamic transition probabilities. We use

simulation methods to replicate a real world situation.

In Chapter 6, we provide concluding remarks and future work.
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CHAPTER 2

ATTRIBUTE-LEVEL BEST-WORST DISCRETE CHOICE

EXPERIMENTS

2.1 LITERATURE REVIEW

Discrete choice experiments (DCEs) and their modeling describe consumer con-

sumers’ behaviors. Given a set of descriptors about a product, one can estimate the

probability an alternative is chosen provided a statistical model appropriate to the

data. However, these models are limited in the information they provide. According

to Lancsar et al. (2013), there exist only two ways to gain more information from

traditional DCEs through the increase in sample size and/or the number of choice

sets evaluated by respondents adding to the burden on respondents in the experi-

ments. Louviere and Woodworth (1991) and Finn and Louviere (1992) presented

best-worst scaling experiments that are modified DCEs designed to elicit more in-

formation about choice behavior than the pick one approach implemented in the

traditional DCEs without the added burden on the respondents.

There exist three cases of best-worst scaling experiments. The cases are: 1)

best-worst object scaling, 2) best-worst attribute scaling, and 3) best-worst discrete

choice experiment (Lancsar et al., 2013; Flynn, 2010). The first case was introduced

in Finn and Louviere (1992). In case 1, a list objects, scenarios, or attributes are

given to respondents and they choose the best and worst alternative. Unlike in

traditional DCEs, no information about the object is provided to the respondents.

In case 2, profiles composed of attribute levels for each attribute describing a product

are determined. From the profiles, respondents are tasked with choosing the best and

the worst attribute-level pair. Case 3 most closely resembles the traditional DCEs

where a set of attributes describing the product are provided to the respondents and

the respondents choose the best and worst product from the choice set. In case 3,
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researchers may ask respondents to sequentially choose the best and worst options

repeatedly from the set until none are left to choose from (Lancsar et al., 2013).

These experiments overcome many limitations that exist in other experiments

designed to elicit consumer preferences. Ranking experiments or use of rating scales

are alternatives methods to gain information on the ordering in product preferences

are burdensome on the respondents and rating scales are unreliable due to bias and

do not translate across countries (Adamsen et al., 2013; Auger et al., 2007; Flynn,

2010; Loose and Lockshin, 2013; Massey et al., 2015). According to Yoo and Do-

iron (2013) a full ranking is obtained with best and worst choices, and are more

reliable (Louviere et al., 2013). In general, it is often easier to state what you love

or hate about something than to choose just one object from a set of objects. Mar-

ley and Louviere (2005) states that a single response, or choice, from a best-worst

scaling type of experiments provides more information than traditional DCEs, and

tend to be easier on respondents.

Although the experiments were presented in the early 1990’s, it was not until

Marley and Louviere (2005) that mathematical probabilities and properties were for-

mally determined and published. Marley and Louviere (2005), Marley et al. (2008),

and Marley and Pihlens (2012) provided the probability and properties to best-worst

scaling experiments for the three cases. Additionally, Lancsar et al. (2013) provided

the probability and utility definition for case 3 experiments that include the sequen-

tial best-worst choice from a set of choices. Other work found in the literature with

regards to these experiments are the design of the experiments and dealing with

taste heterogeneity. Louviere and Woodworth (1983) stated that orthogonal, main

effects, and fractional factorial designs provide better parameter estimates than other

designs. In application to best-worst scaling experiments, balance incomplete block

designs (BIBD)(Louviere et al. 2013; Parvin et al. 2016) and orthogonal main effects

plans (OMEPs) are popular designs (Flynn et al., 2007; Knox et al., 2012; Street and

Knox, 2012). These designs and their properties are examined by Street and Burgess

(2007). Louviere et al. (2013) looked at the design of experiments for best-worst

scaling experiments and stated that it is possible to determine individual parameter

estimates for the respondents.

In the Introduction, descriptions of common DCMs were described. While the
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conditional logit model is popular in application, it does not allow for taste het-

erogeneity, or heterogeneity in the error terms. Models accounting for taste het-

erogeneity has been explored in the literature for best-worst scaling experiments.

Mueller et al. (2009) and Goodman et al. (2006) dealt with taste heterogeneity in

their study by segmenting or forming more homogeneous clusters of products and

consumers. Lancsar et al. (2013) accounted for taste heterogeneity by including

subject specific information in the definition of the utility. As mentioned in the in-

troduction, subject specific information vary with the alternatives to be included in

the model. Lancsar et al. (2013) accomplished this by including interactions with

subject specific variables in the model. However,Agresti (2007) pointed out that the

inclusion of such interactions is problematic due to the number of parameters in the

model.

Although the research in the area of best-worst scaling experiments has increased,

there is a lack of literature on some topics. Louviere et al. (2013) revealed that no

sample size estimation methods exist for these experiments. Additionally, Lanc-

sar et al. (2013) noted that literature on the experiments is sparse and does not

include a ”comprehensive guide” for implementing these experiments.

This dissertation focuses on best-worst attribute scaling, also known as attribute-

level best-worst DCEs. These experiments seek to determine the extent to which

attributes and their associated attribute-levels impact consumer behavior. Lou-

viere and Timmermans (1990) introduced hierarchical information integration (HII)

for the examination of the valuation of attributes in DCEs. Under HII, the impact

of an attribute necessitates discerning the various levels of the attribute. An ex-

periment must be designed in a way to measure the different levels varying across

products to determine such an impact. In attribute-level best-worst DCEs, the levels

of attributes are well defined and vary across profiles, or products, providing suffi-

cient information to measure their impact. Attribute-level best-worst discrete choice

experiments provide more information into consumer’s choices of products than the

usual discrete choice experiments and add more value to the understanding of the

data (Marley and Louviere, 2005). Those models outperform the standard logit

modeling in terms of goodness of fit as mentioned in Hole (2011) in the context of

attribute attendance.



14

Traditional DCEs provide information about attributes but not the overall im-

pact of the attributes and their levels. In traditional DCEs, attributes are not scaled,

or broken down into categorical levels; therefore, the impact they have is subjective

(Flynn et al., 2007; Flynn et al., 2008; Lancsar et al., 2007). The parameter es-

timates in attribute-level best-worst DCEs provide information about the impact

of the attributes and attribute-levels where as in traditional DCEs the parameters

describe the change in level of an attribute (Yoo and Doiron, 2013). Lancsar et al.

(2007) presented five methods for determining the relative impact of attributes. Four

of the five models are possible with the traditional DCEs, and the last model is the

attribute-level best-worst scaling experiment. The methods for traditional DCEs are:

partial log-likelihood, marginal rates substitution, Hicksan welfare measure (appro-

priate in willingness to pay type problems), and probability analysis. Lancsar et al.

(2007) examined the all five models in a study in a health systems research study

dealing with cardiac patients and found the attribute impacts between the different

methods comparable. However, it was determined that the attribute-level best-worst

scaling provided greater precision in determining the impacts.

Other comparative studies have been done to examine the differences between

best-worst scaling experiments and traditional DCEs. Both Potoglou et al. (2011)

and Whitty et al. (2014) did empirical comparisons of traditional DCEs to attribute-

level best-worst DCEs. Potoglou et al. (2011) noted that direct comparisons of

attribute estimates are not possible due to the scaling of the attributes but found

no indication that traditional DCEs outperformed attribute-level best-worst DCEs

in the quality of life study. Whitty et al. (2014) study on preference in health care

technology found differences in preference weights between the best-worst scaling

experiments and traditional DCEs and questioned the use of one or both methods

in priority settings.

Understanding the impact attribute and attribute-levels have on utility is desir-

able. The guiding ideology in DCEs is that consumers behave in a way to maximize

utility. Understanding the impacts attributes and attribute-levels have on consumer

behavior provides information with regards to developing and advertising a product,

service, or policy to consumers. A preponderance of the literature on attribute-level

best-worst DCEs are empirical studies often in the area of health systems research

and marketing. Examples include Flynn et al. (2007) on seniors’ quality of life,
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Coast et al. (2006) and Flynn et al. (2008) on dermatologist consultations, Mar-

ley and Pihlens (2012) on cellphones, Knox et al. (2012) and (2013) on choices in

contraceptives for women.

While there exist literature on attribute-level best-worst DCEs, it is rather scarce

compared to the work done on traditional DCEs. In this chapter, we provide utility

definition and the resulting choice probabilities and properties. In Chapter 3 of this

dissertation, we use the utility definition and choice probabilities to extend the work

done by Großman et al. (2009) to fit models on a function of the attributes and

attribute-levels. In Chapter 4, we extend Markov Decision Processes (MDPs) to

these experiments. We utilize the model developed in Chapter 3 to apply in Chapter

4.

2.2 METHODOLOGY OF ATTRIBUTE-LEVEL BEST-WORST

Traditional DCEs and their models are built around the work done by Thur-

stone (1927) that a set of features or attributes describe a product, service, policy, or

scenario by which respondents use to judge alternatives. Consumers choose the alter-

native that provides them with the greatest utility compared to the other alternatives

available. Attribute-level best-worst scaling DCEs are modified DCEs designed to

elicit more information about the impact the attributes and attribute-levels have on

the utility of a product. As mentioned by Louviere and Timmermans (1990), an

experiment must be designed in a way to evaluate combinations of attribute-levels

to obtain information about attribute impacts on utility. Best-worst attribute-level

DCEs provide such an experimental design to attain these impacts.

Following the setup as described by Street and Knox (2012), there are K at-

tributes, or characteristics, that describe the products of interest, where the at-

tributes are denoted by Ak for k = 1, 2, . . . , K. Each attribute consists of lk levels for

k = 1, 2, . . . , K. A design is said to be a balanced design if lk = lk′ ,∀k 6= k′. In the

study on women’s contraceptives published by Knox et al. (2012) and (2013) an un-

balanced design was used. In their contraceptive data, there were K = 7 attributes,

with attribute levels l1 = 8, l2 = 3, l3 = 4, l5 = 4, l6 = 8, l7 = 9, and l8 = 6. The 2nd

attribute is the contraceptive’s effect on acne, and the levels associated with this at-

tribute are no effect, improves, or worsens acne symptoms. Flynn et al. (2007) used a
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balanced design for their quality of life experiment with five attributes (attachment,

security, role, enjoyment, and control) each with four attribute levels (none, little,

lot, and all) for attachment, security, and enjoyment and (none, few, many, all) for

role and control.

In the attribute-level best-worst DCEs, each product is represented by a profile

x = (x1, x2, . . . , xK), where xk is the attribute-level for the kth attribute, Ak, that

makes up the product for k = 1, 2, . . . , K. The attribute-levels take values from 1 to lk

for k = 1, 2, . . . , K. The number of possible profiles is given by ΠK
k=lli. Referring back

to the contraceptive data, their experiment would produce a total of 165, 888 profiles,

or products. In Knox et al. (2012), they specify there is a total of 27, 648 profiles,

but that is per the 6 attribute-levels of the attribute contraceptive effectiveness. In

Flynn et al. (2007), the total possible profiles is 1024. Full factorial designs are

generally not used due to the number of profiles. Often, OMEP designs are efficient

and optimal designs promoted in the literature that provide sufficient information

to estimate parameters (Louviere and Woodworth,1983; Street and Burgess, 2007;

Street and Knox, 2012). Using OMEP design, Knox et al. (2012) was able to reduce

the number of profiles to 32 profiles per each of the 8 product types, producing a

total 256 profiles considered. Similarly, Flynn et al. (2007) considered 32 profiles

using an OMEP design.

In these experiments, respondents are tasked with choosing a pair of attribute-

levels that contains that best and the worst attribute-level for a given profile. For

every profile the choice set is then,

Cx = {(x1, x2), . . . , (x1, xK), (x2, x3), . . . , (xK−1, xK), (x2, x1), ..., (xK , xK−1)},

where the first attribute-level is considered to be the best and the second is the worst.

From the profile Cx, the respondent determines from the τ = K(K−1) choices given

which is the best-worst pair.

In our setup, we extend the state of choices as follows. Let there be G profiles
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and the associated profiles are given as,

x1 = (x11, x12, ..., x1K)

x2 = (x21, x22, ..., x2K)

...

xG = (xG1, xG2, ..., xGK).

The corresponding choice sets for the G profiles are given in Figure 1. To simplify

the notation, let

C1 = Cx1 , C2 = Cx2 . . . , CG = CxG

.

C1 C2

𝑥11, 𝑥12
𝑥11, 𝑥13

𝑥11, 𝑥1𝐾
𝑥12, 𝑥13

𝑥1𝐾−1, 𝑥1𝐾

𝑥12, 𝑥11

𝑥1𝐾 , 𝑥1𝐾−1

. . .
. . .

. . .

𝑥13, 𝑥11

𝑥21, 𝑥22
𝑥21, 𝑥23

𝑥21, 𝑥2𝐾
𝑥22, 𝑥23

𝑥2𝐾−1, 𝑥2𝐾

𝑥22, 𝑥21
𝑥23, 𝑥21

𝑥2𝐾 , 𝑥2𝐾−1

. . .
. . .

. . .

.  . .

𝑥𝐺1, 𝑥𝐺2

𝑥𝐺1, 𝑥𝐺3

. . .𝑥𝐺1, 𝑥𝐺𝐾
𝑥𝐺2, 𝑥𝐺3

𝑥𝐺𝐾−1, 𝑥𝐺𝐾

𝑥𝐺2, 𝑥𝐺1
𝑥𝐺3, 𝑥𝐺1

𝑥𝐺𝐾 , 𝑥𝐺𝐾−1

. . .
. . .

CG

Figure 1: The G choice sets in an experiment with corresponding choice pairs

The total number of attribute-levels is L =
∑k

i=1 li, and J =
∑K

k=1 lk(L − lk) is

the total number of unique attribute-level pairs in the experiment (Street and Knox,

2012). Within each of the G choice sets there are τ = K(K − 1) choice pairs.

2.2.1 DATA



18

In the experiment, there is a total of J =
∑K

k=1 lk(L− lk) alternatives. However,

within a choice set there is a total of τ = K(K − 1) choices in each of the G choice

sets evaluated. Each respondent will have made G choices within the experiment.

The response variable representing the choices within each of the choice sets for the

experiment are binary data and denoted as:

Yisj =

{
1, if sth respondent chooses jth alternative in the ith choice set,

0, otherwise,
(11)

for i = 1, 2, . . . , G, s = 1, 2, . . . , n and j = 1, 2, . . . , τ .

For the attribute-level best-worst DCEs, the data, X is composed of indicators for

the best and worst attributes and attribute-levels. Consider the choice pair (xij, xij′)

from the choice set Ci, for i = 1, 2, . . . , G, j 6= j′, j, j′ = 1, 2, . . . , K, and 1 ≤ xij ≤ lj.

Let X be the J × p design matrix, where p = K +
∑K

k=1. The rows of X correspond

to the possible choice pairs. Let XA1 , XA2 , . . . , XAK be the data corresponding to the

attributes Ak, k = 1, 2, . . . , K. Then,

XAk =


1, if xij ∈ Ak for k = 1, 2, . . . , K,

−1, if xij′ ∈ Ak for k = 1, 2, . . . , K,

0, otherwise.

(12)

Let XAkxik be the data for the attribute-level 1 ≤ xik ≤ lk within attribute

Ak, ∀k = 1, 2, . . . , K. Referring to the choice pair (xij, xij′), the corresponding

data for the attribute-levels are given by,

XAkxik =


1, if xij = xik ∈ Ak is the best attribute-level,

−1, if xij′ = xik ∈ Ak is the worst attribute-level,

0, otherwise.

(13)

2.2.2 EXAMPLE

Let us consider an example with an unbalanced design, as was done in

Street and Knox (2012), where there are K = 3 attributes with attribute-levels,



19

l1 = 2, l2 = 3, and l3 = 4. There are 2 × 3 × 4 = 24 possible profiles, or products,

in this experiment. The total number of attribute-levels is L =
∑k

i=1 li = 9, and the

total number of choice pairs is J =
∑K

k=1 lk(L− lk) = 52.

The design matrix X is a J×p matrix. In this experiment, the number of columns

inX, or the number of explanatory variables in the experiment, is p = K+
K∑
k=1

lk = 12.

So, X would be a 52× 12 design matrix in this example.

Let us consider the profile xi = {xi1, xi2, xi3} = {1, 1, 1}. The first level for each

of the K = 3 attributes define the profile. The corresponding choice set to profile xi

would then be,

Ci = {(xi1, xi2), (xi1, xi3), (xi2, xi3), (xi2, xi1), (xi3, xi1), (xi3, xi2)}.

Suppose an individual chooses the pair (xi1, xi2). The data for this choice pair would

consist of: XA1 = 1, XA2 = −1, XA3 = 0, XA11 = 1, XA12 = 0, XA21 = −1,

XA22 = XA23 = 0, XA31 = XA32 = XA33 = XA34 = 0.

The data corresponding to the (xi1, xi2) choice pair in the design matrix X would

appear as (1,−1, 0, 1, 0,−1, 0, 0, 0, 0, 0, 0).

2.2.3 PROPERTIES AND PROBABILITY

For the purpose of this dissertation, we consider the conditional logit model for

the data. The details regarding the use of this model in the traditional DCEs were

provided in the Introduction. Here, we look at the probability theory and necessary

properties for the application of this model to attribute-level best-worst DCEs.

Marley and Louviere (2005) developed the probability theory for best-worst scal-

ing experiments including attribute-level best-worst DCEs. In attribute-level best-

worst DCEs, there are two components being modeled, the best choice and the worst

choice of attribute levels from a profile xi, where i = 1, 2, . . . , G. Under random util-

ity theory (Marschak, 1960), there are random utilities Uij corresponding to the K

attribute-levels in the profile. Consider the choice pair (xij, xij′), for i = 1, 2, . . . , G,

j, j′ = 1, 2, . . . , K, and j 6= j′. According to Marley and Louviere (2005), the def-

inition of utility consistent with random utility theory satisfies, Uij = −Uij′ and
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Uijj′ = Uij − Uij′ for i = 1, 2, . . . , G, j, j′ = 1, 2, . . . , K, and j 6= j′. The associated

probabilities satisfy:

Bxi(xij) = P (Uij > Uiq,∀q ∈ xi), (14)

Wxi(xij′) = P (Uij′ < Uiq,∀q′ ∈ xi), (15)

and

BWxi(xij, xij′) = P (Uij > Uiq > Uij′ , ∀q, q′ ∈ xi). (16)

Referring to Equation 2, utility consists of a systematic component, Vij, and an

error term, εij producing Uij = Vij + εij. The definition of utility associated with the

best-worst choice pair under random utility theory is given by:

Uijj′ = Uij − Uij′ = Vij − Vij′ + εij − εij′

for i = 1, 2, . . . , G, j, j′ = 1, 2, . . . , K, and j 6= j′. The definition of the utilities under

the random utility model are unable to be modeled under the conditional logit model

due to the definition of the error components (Marley and Louviere, 2005).

To use the conditional logit model, the choice probabilities have to satisfy the

inverse random utility theory (Marley and Louviere, 2005), where the utilities are

for the best and worst attribute levels are defined as:

Uij = Vij + εij, (17)

Uij′ = −Vij + εij, (18)

and

Uijj′ = Vij − Vij′ + εijj′ = Vijj′ + εijj′ , (19)

where j 6= j′, j, j′ = 1, 2, . . . , K, and i = 1, 2, . . . , G.

If we assume that the random error terms are independently and identically dis-

tributed type I extreme value distribution, or the Gumbel distribution, then the

choice probability comes directly from the conditional logit. The choice probability
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is then,

BWxi(xij, xij′) = P (Uijj′ > Uiqq′ ,∀q, q′ ∈ Ci)

= P (Vijj′ + εijj′ > Viqq′ + εiqq′ ,∀q, q′ ∈ Ci)

= P (εiqq′ − εijj′ < Vijj′ + Viqq′ , ∀q, q′ ∈ Ci), (20)

where j 6= j′, j, j′ = 1, 2, . . . , K, and i = 1, 2, . . . , G.

Since the error terms come from the type I extreme value distribution, their differ-

ence is a logistic distribution. It follows from McFadden (1974) that the best, worst,

and best-worst attribute-level choice probabilities are defined by the conditional logit

as:

Bxi(xij) =
exp(Vij)∑

xiq∈xi
exp(Viq)

, (21)

Wxi(xij′) =
exp(−Vij′)∑

xiq′∈xi
exp(−Viq′)

, (22)

and

BWxi(xij, xij′) =
exp(Vijj′)∑

(xiq ,xiq′ )∈Ci
exp(Viqq′)

, (23)

where j 6= j′, j, j′ = 1, 2, . . . , K, and i = 1, 2, . . . , G.

Marley et al. (2008) provide essential properties to the above probabilities. They

define the choice probability as:

BWxi(xij, xij′) =

b(xij)

b(xij′ )∑
∀(xij ,xij′)∈Cxi ,j 6=j′

b(xij)

b(xij′ )

, (24)

where xij is chosen as the best attribute-level, and xij′ is the worst attribute-level, and

b is some positive scale function or impact of attribute for j 6= j′, j, j′ = 1, 2, . . . , K,
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and i = 1, 2, . . . , G. Under the conditional logit, the scale function is defined as

b(xij) = exp(Vij), and the probability is as given in Equation (23).

Essential properties of probability hold for Equation (24),

BWxi(xij, xij′) ≥ 0, ∀i, j (25)

and ∑
∀(xij ,xij′)∈Cxi ,j 6=j′

BWxi(xi, xj) = 1, (26)

where j, j′ = 1, 2, . . . , K, j 6= j′, and ∀i = 1, 2, . . . , G.

With such assumptions, the consumer is expected to select choices with higher

BWxi values. We denote BWxi(xij, xij′) as P i
jj′ . Attribute-level best-worst models

are called maxdiff models because they maximize the difference in utility.

Associated properties of the maxdiff model mentioned in Marley et al. (2008) are:

2-invertibility For profile i,

P i
jj′P

i
j′j = P i

qq′P
i
q′q,

where 1 ≤ j, j′, q, q′ ≤ k and j 6= j′ and q 6= q′.

We show that this property holds for the conditional logit and the associated

choice probability in Equation (23). For profile i,

P i
jj′P

i
j′j =

exp(Vij − Vij′)∑
(xik,xik′ )∈Ci

exp(Vik − Vik′)
exp(Vij′ − Vij)∑

(xik,xik′ )∈Ci
exp(Vik − Vik′)

=
exp(Vij − Vij′ + Vij′ − Vij)( ∑
(xik,xik′ )∈Ci

exp(Vik − Vik′)

)2

=
1( ∑

(xik,xik′∈Ci
exp(Vik − Vik′)

)2

= P i
qq′P

i
q′q,

where j 6= j′ and j, j′ = 1, 2, . . . , K. We see that P i
jj′P

i
j′j does not depend on the
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choice pair (xij, xij′) as this information cancels out.

3-reversibility: For profiles i, i′, and i′′ ,

P i
jj′P

i′

qq′P
i′′

rr′ = P i′′

r′rP
i′

q′qP
i
j′j

where xij′ = xi′q, xi′q′ = xi′′r, and xij = xi′′r′ , and j 6= j′, q 6= q′, and r 6= r′

We show that this property holds for the conditional logit and the associated

choice probability in Equation (23). For profiles i, i’,i”, the conditions xij′ = xi′q,

xi′q′ = xi′′r, and xij = xi′′r′ place similar conditions on the systematic components

Vij′ = Vi′q, Vi′q′ = Vi′′r and Vij = Vi′′r′ and Vij = Vi′′r′ , where j 6= j′, q 6= q′, and

r 6= r′. Then,

P i
jj′P

i′

qq′P
i′′

rr′ =
exp(Vij − Vij′)∑

(xia,xia′ )∈Ci
exp(Via − Via′)

× exp(Vi′q − Vi′q′)∑
(xi′b,xi′b′ )∈Ci′

exp(Vi′b − Vi′b′)
×

exp(Vi′′r − Vi′′r′)∑
(xi′′c,xi′′c′ )∈Ci′′

exp(Vi′′c − Vi′′c′)
,

and

P i′′

r′rP
i′

q′qP
i
j′j =

exp(Vi′′r′ − Vi′′r)∑
(xi′′c,xi′′c′ )∈Ci′′

exp(Vi′′c − Vi′′c′)
× exp(Vi′q′ − Vi′q)∑

(xi′b,xi′b′ )∈Ci′
exp(Vi′b − Vi′b′)

×

exp(Vij′ − Vij)∑
(xia,xia′ )∈Ci

exp(Via − Via′)
,

where j 6= j′, q 6= q′, and r 6= r′.

Then applying the condition that Vij′ = Vi′q, Vi′q′ = Vi′′r and Vij = Vi′′r′ :

P i
jj′P

i′

qq′P
i′′

rr′ =
exp(Vij − Vij′)∑

(xia,xia′ )∈Ci
exp(Via − Via′)

× exp(Vij′ − Vi′q′)∑
(xi′b,xi′b′ )∈Ci′

exp(Vi′b − Vi′b′)
×

exp(Vi′q′ − Vij)∑
(xi′′c,xi′′c′ )∈Ci′′

exp(Vi′′c − Vi′′c′)

=
1∑

(xia,xia′ )∈Ci
exp(Via − Via′)

× 1∑
(xi′b,xi′b′ )∈Ci′

exp(Vi′b − Vi′b′)
×
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1∑
(xi′′c,xi′′c′ )∈Ci′′

exp(Vi′′c − Vi′′c′)

and

P i′′

r′rP
i′

q′qP
i
j′j =

exp(Vi′′r′ − Vi′′r)∑
(xi′′c,xi′′c′ )∈Ci′′

exp(Vi′′c − Vi′′c′)
× exp(Vi′′r − Vi′q)∑

(xi′b,xi′b′ )∈Ci′
exp(Vi′b − Vi′b′)

×

exp(Vi′q − Vi′′r′)∑
(xia,xia′ )∈Ci

exp(Via − Via′)

=
1∑

(xi′′c,xi′′c′ )∈Ci′′
exp(Vi′′c − Vi′′c′)

× 1∑
(xi′b,xi′b′ )∈Ci′

exp(Vi′b − Vi′b′)
×

1∑
(xia,xia′ )∈Ci

exp(Via − Via′)

where j 6= j′, q 6= q′, and r 6= r′. Terms cancel in the numerator resulting in:

P i
jj′P

i′

qq′P
i′′

rr′ =
1∑

(xia,xia′ )∈Ci
exp(Via − Via′)

× 1∑
(xi′b,xi′b′ )∈Ci′

exp(Vi′b − Vi′b′)
×

1∑
(xi′′c,xi′′c′ )∈Ci′′

exp(Vi′′c − Vi′′c′)

= P i′′

r′rP
i′

q′qP
i
j′j,

where j 6= j′, q 6= q′, and r 6= r′.

4-reversibility: For profiles i, i′, i′′, and i′′′,,

P i
jj′P

i′

qq′P
i′′

rr′P
i′′′

ww′ = P i′′′

w′wP
i′′

r′rP
i′

q′qP
i
j′j

where xij′ = xi′q, xi′q′ = xi′′r, xi′′r = xi′′′w, and xij = xi′′′w′ , and j 6= j′, q 6= q′, r 6=
r′ and w 6= w′.

We show that this property holds for the conditional logit and the associated

choice probability in Equation (23). For profiles i, i′, i′′, and i′′′, the conditions

xij′ = xi′q, xi′q′ = xi′′r, xi′′r = xi′′′w, and xij = xi′′′w′ place similar conditions on

the systematic components Vij′ = Vi′q, Vi′q′ = Vi′′r, Vi′′r = Vi′′′w, and Vij = Vi′′′w′ ,
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where j 6= j′, q 6= q′, r 6= r′ and w 6= w′. Then,

P i
jj′P

i′

qq′P
i′′

rr′P
i′′′

ww′ =
exp(Vij − Vij′)∑

(xia,xia′ )∈Ci
exp(Via − Via′)

× exp(Vi′q − Vi′q′)∑
(xi′b,xi′b′ )∈Ci′

exp(Vi′b − Vi′b′)
×

exp(Vi′′r − Vi′′r′)∑
(xi′′c,xi′′c′ )∈Ci′′

exp(Vi′′c − Vi′′c′)
× exp(Vi′′′w − Vi′′′w′)∑

(xi′′′d,xi′′′d′ )∈Ci′′′
exp(Vi′′′d − Vi′′′d′)

,

and

P i′′′

w′wP
i′′

r′rP
i′

q′qP
i
j′j =

exp(Vi′′′w′ − Vi′′′w)∑
(xi′′′d,xi′′′d′ )∈Ci′′′

exp(Vi′′′d − Vi′′′d′)
× exp(Vi′′r′ − Vi′′r)∑

(xi′′c,xi′′c′ )∈Ci′′
exp(Vi′′c − Vi′′c′)

×

exp(Vi′q′ − Vi′q)∑
(xi′b,xi′b′ )∈Ci′

exp(Vi′b − Vi′b′)
× exp(Vij − Vij′)∑

(xia,xia′ )∈Ci
exp(Via − Via′)

,

where j 6= j′, q 6= q′, and r 6= r′.

Then applying the condition that Vij′ = Vi′q, Vi′q′ = Vi′′r, Vi′′r = Vi′′′w, and

Vij = Vi′′′w′ :

P i
jj′P

i′

qq′P
i′′

rr′P
i′′′

ww′ =
exp(Vij − Vij′)∑

(xia,xia′ )∈Ci
exp(Via − Via′)

× exp(Vij′ − Vi′q′)∑
(xi′b,xi′b′ )∈Ci′

exp(Vi′b − Vi′b′)
×

exp(Vi′q′ − Vi′′r′)∑
(xi′′c,xi′′c′ )∈Ci′′

exp(Vi′′c − Vi′′c′)
× exp(Vi′′r′ − Vij)∑

(xi′′′d,xi′′′d′ )∈Ci′′′
exp(Vi′′′d − Vi′′′d′)

,

and

P i′′′

w′wP
i′′

r′rP
i′

q′qP
i
j′j =

exp(Vi′′′w′ − Vi′′′w)∑
(xi′′′d,xi′′′d′ )∈Ci′′′

exp(Vi′′′d − Vi′′′d′)
× exp(Vi′′′w′ − Vi′′r)∑

(xi′′c,xi′′c′ )∈Ci′′
exp(Vi′′c − Vi′′c′)

×

exp(Vi′′r′ − Vi′q)∑
(xi′b,xi′b′ )∈Ci′

exp(Vi′b − Vi′b′)
× exp(Vi′q − Vi′′′w′)∑

(xia,xia′ )∈Ci
exp(Via − Via′)

,

where j 6= j′, q 6= q′, and r 6= r′. We cancel terms in the numerator resulting in:

P i
jj′P

i′

qq′P
i′′

rr′P
i′′′

ww′ =
1∑

(xia,xia′ )∈Ci
exp(Via − Via′)

× 1∑
(xi′b,xi′b′ )∈Ci′

exp(Vi′b − Vi′b′)
×
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1∑
(xi′′c,xi′′c′ )∈Ci′′

exp(Vi′′c − Vi′′c′)
1∑

(xi′′′d,xi′′′d′ )∈Ci′′′
exp(Vi′′′d − Vi′′′d′)

= P i′′′

w′wP
i′′

r′rP
i′

q′qP
i
j′j,

where j 6= j′, q 6= q′, and r 6= r′.

We defined the utility for the choice pair (xij, xij′) under inverse utility theory in

Equation (19) as

Uijj′ = Vijj′ + εijj′ ,

where Vijj′ is the systematic component and εijj′ is the error term for j 6= j′, j, j′ =

1, 2, . . . , K, and i = 1, 2, . . . , G. The systematic component can be expressed as,

Vijj′ = Vij − Vij′ = (xij − xij′)
′β, (27)

where j 6= j′, j, j′ = 1, 2, . . . , K, and i = 1, 2, . . . , G. The data xij are indicators of

the attribute xij ∈ Aj and the attribute-level xij. The systematic component Vij can

be written as,

Vij = xijβ = βAj + βxijAj , (28)

where j 6= j′, j, j′ = 1, 2, . . . , K, and i = 1, 2, . . . , G.

Under the conditional logit, the probability that (xsj, xsj′) is chosen is given as,

P i
jj′ =

exp(Vijj′)∑
xj ,xj′∈Cs,xj 6=xj′

exp(Vijj′)
, (29)

where j 6= j′, j, j′ = 1, 2, . . . , K, and i = 1, 2, . . . , G.

Then Equation (24) with the choice of the scale function b(xij) = exp(βAj +

βxijAj) = exp(Vij) becomes Equation (29). This is seen by,

b(xij)

b(xij′)
= exp(Vij − Vij′) = exp(Vijj′), (30)

where j 6= j′, j, j′ = 1, 2, . . . , K, and i = 1, 2, . . . , G.

We assume the error terms come from a type I extreme value distribution and
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use the conditional logit model to estimate the p× 1 parameter vector,

β′ = (βA1 , βA2 , . . . , βAk , βA11, βA12, . . . , βA1l1 , . . . , βAk1, . . . , βAklk). (31)

The likelihood for estimating the model parameters based on a random sample n

individuals as in Equation (11) is given as:

L(β,Y) =
n∏
s=1

G∏
i=1

∏
j 6=j′

P
Yisj
ijj′ . (32)

Estimation of the parameters is done in SAS maximizing the likelihood given in

Equation 2.2.3.

Attribute and attribute-level data in the experiments are a series of 1′s and 0′s,

indicating the attributes and attribute-levels in the choice pair. When fitting a

conditional logit model to the data, parameter estimates for the last attribute and

last attribute-level for each attribute are not retrievable due to singularity issues.

According to Flynn et al. (2007), these parameter estimates are needed to determine

the impact of attribute, which is the essential purpose for experiments of this design.

To estimate these parameters, the following identifiability condition defined on the

parameters of the attribute-levels must be met,

Σlk
i=1βi = 0 (33)

or

βlk = −Σli−1
j=1 βj (34)

for all k = 1, 2, . . . , K (Street and Burgess, 2007; Flynn et al., 2007; Graßhoff et al.,

2003).

Suppose the last attribute-level for attribute k is chosen as the best, the the

other levels of the attribute would be XAk1 = XAk2 = . . . = XAklk−1 = −1 and the

parameter would be estimated as in Equation (34). Similarly, if the last attribute-

level for attribute k is chosen as the worst, the the other levels of the attribute would

be XAk1 = XAk2 = . . . = XAklk−1 = 1. Similar coding is unable to be applied to the

attributes, so the identifiability condition is only applied to the attribute-levels.
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CHAPTER 3

FUNCTIONAL FORM OF ATTRIBUTE-LEVEL

BEST-WORST DCEs

3.1 INTRODUCTION

A common goal in the analysis of DCEs is to build a functional form of the at-

tributes and estimate the associated parameters that reflect their utility. Generating

the design, after combining attribute-levels of the best and worst, requires simula-

tion of choice experiments (sometimes with large number of choice sets) and a model

expression that accounts for their weights. We will describe the designs for paired

comparisons and its adaptations to DCEs and a simulated example.

3.2 PAIRED COMPARISONS

In recent years, more of the literature on DCEs has been on methods for designing

efficient experiments of such types. One major issue is related to the fact that

effects could not be independently identified. By identifying the DCE, data become

unbiased as described in Street and Burgess (2007). Such conclusion can be found in

Fedorov (1972). Louviere and Woodworth (1983) discussed efficient designs of these

experiments included orthogonal arrays, main effects plans, and fractional factorial

designs. These experiments are the common choices for DCEs. Orthogonal arrays,

as presented by Hinkelmann (2011) are fractional factorial designs that are defined

by (R, k, l, t). The array is R × k array with elements of the l symbols, such that

any t columns of the array has t− tuplet as a row R/lt times. For example, if t = 2,

then any pair of columns would have each pair of symbols occur R/l2 times. R/lt is

referred to as the index of the array, t is the strengths, k is the number of constraints,

and l is the number of levels. Street and Knox (2012) examined the use of OMEPs,

which is an orthogonal array of strength t = 2, for attribute-level best-worst DCEs to
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maximize the information while decreasing the choice task for respondents. The work

done by Graßhoff et al. (2003), (2004), and (2013), and Großman et al. (2009) look

at the conditions for optimal designs when a functional form of the attributes is used

and paired comparisons of alternatives are studied. As mentioned in Graßhoff et al.

(2013), the quality of the outcome depends heavily on the design.

Our interest lies in the area of paired comparison best-worst attribute-level type

designs. Louviere et al. (2013) discuss the limitations inherent in paired comparison

type of studies due to the number of situations evaluated by respondents. However,

many researchers have developed methods for designing and models for paired com-

parison data. We consider the initial work done by Graßhoff et al. (2003) for paired

comparison experimental designs. Their work presents a functional form of the data

entered into the linear model of the form:

Y (s) = f(s)′β + ε(s), (35)

where Y is the observed response of dimension J , s = {s1, s2, . . . , sK} is a set of K

factors or attributes, f = {f1, f2, . . . , fK} is a set of regression functions, and ε(s) are

the error terms in the model.

We define f in the following way:

f(s)′β =
K∑
k=1

βkfk(sk, ak), (36)

where

ak ∈ RK are impact weights,

βk ∈ RK are the parameters,

fk ∈ RK → R are the activation function of the kth attribute.
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Let there be n subjects. The model, Y = Xβ + ε, can be written as,

X = f(s) =



f11(s1, a1) . . . . fK1(sK , aK)

f12(s1, a1) . . . . fK2(sK , aK)

. . . . . .

. . . . . .

. . . . . .

f1n(s1, a1) . . . . fKn(sK , aK)


n×K

,

β =


β1

β2

...

βK

 ,

and

Y =


Y1

Y2

...

Yn

 .

The values of β are found by,

β̂ = (X ′X)−1X ′Y

using the X and Y as defined above.

By extending this work to paired comparisons of alternatives, we propose two sets

of K factors/attributes, s = (s1, s2, . . . , sK) and t = (t1, t2, . . . , tK) corresponding to

the two alternatives being compared in the model. The paired comparison model is

then written as:

Y (s, t) = (f(s)− f(t))′β + εs,t, (37)

where there are two sets of K factors/attributes, s and t, corresponding to each

alternative, f is the set of regression functions, and with error function ε(s, t). It

is important to note that the same identifiability conditions we presented in the

previous chapter, Equation (34), are also imposed here in their design for the K
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factors.

Graßhoff et al. (2003) provided the conditions under which models expressed

as in Equation (37) are optimal. As mentioned in Ruseckaite et al. (2017), the

main drawback for such design is the fact that although alternatives are not the

choice, their utilities are the same; therefore, we bring in a distinction among the

alternatives. Specifically, D-optimal designs that maximize the determinant of the

information matrix are utilized. The information matrix associated with the paired

comparison data is,

M(s, t) = (f(s)− f(t))(f(s)− f(t))′, (38)

where M(t, t) = 0, no information is gained in comparing an alternative to itself, and

M(s, t) = M(t, s) (Graßhoff et al., 2004).

Green (1974) mentions that of the fractional factorial designs, orthogonal arrays

present the smallest number of profiles needed to estimate main effects from the

experiments. This is one of the reasons OMEPs are often used in best-worst scaling

experiments, especially the attribute-level best-worst DCEs as was done in Knox et al.

(2012) and Flynn et al. (2007).

There are some disadvantages to paired comparison experiments. For one, Lou-

viere et al. (2013) indicated that these experiments can be burdensome on re-

spondents. The number of comparisons respondents are asked to evaluate can be-

come overwhelming as the number of alternatives increase in the experiment. Lou-

viere et al. (2013) reviewed issues in the designs of experiments in terms of designs

becoming so complicated that respondents are burdened cognitively in the experi-

ment. They reference a study done by Deshazo and Fermo (2002) that presented

evidence of this burden on the respondents.

3.2.1 PARTIAL PROFILES

Often time, respondents lessen the burden of the choice tasks by considering a

subset of attributes when making their decisions. In Louviere and Timmermans

(1990), hierarchical information integration is proposed and is based on the belief
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that respondents assess choices, specifically their attributes, in a hierarchical fash-

ion. Hess and Hensher (2010) state that decisions are sometimes made after ignoring

some of the attributes or giving such attributes a lower level of importance. How-

ever, as they mentioned, more work is needed in the case where there are multiple

attributes, and where respondents could ignore some of the attributes, and include

the confounding component or variation in the modeling. In the work done by Hole

(2011), a two stage process for completing choice tasks is provided. In the first stage

of the process, respondents choose the subset of attributes they find meaningful in

the evaluation of each alternative. The second step is to choose the alternative that

provides them the highest utility.

There exists evidence that a subset of attributes may be used to evaluate al-

ternatives. In the work done by Großman et al. (2009), these subsets are partial

profiles. The work done here extends the generalized form of the model given in

Equation (37) to work in the case of partial profiles. Here, there still exists two

sets of factors, s and t. However, the set of factors are not required to have all

K factors represented, s = (s1, s2, . . . , sK1) and t = (t1, t2, . . . , tK2) where K1 ≤ K

and K2 ≤ K. The pairs of factors, (s, t) include only the factors represented in s

and t. Let there be K3 factors in common to sets s and t, where K3 ≤ K. Then,

(s, t) = {(s1, t1), (s2, t2), . . . , (sK3 , tK3)}. The model is then written as,

Y (s, t) = (f(s)− f(t))′β + εs,t, (39)

where the known regression functions f = {f1, f2, . . . , fK3}, the parameter vector is

β = {β1, β2, . . . , βK3}. The error terms, ε(s, t) are independently and identically dis-

tributed from a distribution with a mean of zero. The same identifiability condition

on the parameters still holds as in the previous model.

Others have considered methods for optimal designs with partial profiles.

Kessels et al. (2011) presents a flexible Bayesian method to determine optimal designs

where a couple of attributes are kept constant in each of the profiles and updates for

the mixture case is proposed by Ruseckaite (2017). However, Cuervo et al. (2016)

cites that the partial profile design by Großman et al. (2009) were of better quality.

It is easy to see the application of Großman et al. (2009) in case 3 of the best-worst

scaling experiments where best-worst pairs of alternatives are chosen based on their

attributes.
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3.3 GENERALIZATIONS TO DCEs

The models and associated designs discussed so far in this chapter have appli-

cations in DCEs. The work done by Graßhoff et al. (2003) and (2004) and Groß-

man et al. (2009) have dealt with experiments where only two alternatives are present.

In Graßhoff et al. (2013), these models were adapted to assess multiple paired com-

parisons in DCEs where there are more than two alternatives.

According to random utility theory, an alternative is chosen that provides the

greatest utility. As mentioned in Train (2009), the differences in utility are what

matter in these experiments. The work done by Graßhoff et al. (2013) can be put in

terms of utility and the probabilities defined accordingly.

Let there be a set of J alternatives each described by a profile,

xj = {xj1, xj2, . . . , xjK}, for j = 1, 2, . . . , J . The response variable is binary, 1 if the

alternative is chosen and 0 otherwise. Graßhoff et al. (2013) write their model in

terms of the expected value of Y . With Y being binary, its expected value is the

same as the probability of the jth alternative is chosen. The utility corresponding to

the jth choice is given by Uj = Vj + εj, where Vj = x′jβ is the systematic component

and εj is the error term for j = 1, 2, . . . , J . Thus we can express the model as in

Equation (3) as:

P (Uj − Uj′ > 0,∀j 6= j′) = P (Uj > Uj′ ,∀j 6= j′)

= P (Vj + εj > Vj′ + εj′ ,∀j 6= j′)

= P (εj′ − εj < Vj − Vj′ , ∀j 6= j′) (40)

where j, j′ = 1, 2, . . . , J .

Referring to Equation (35), the systematic component may be written as

Vj = fj(xj)
′β.

Then,

Vj − Vj′ = (fj(xj)− fj′(xj′))
′β
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. If the conditional logit model is used, that is the error terms are assumed to be

independent and identically distributed with a type I extreme value distribution, the

probability that the jth choice is chosen is then given by:

P (Yj = 1) = P (Uj > Uj′ ,∀j 6= j′)

= P (εj′ − εj < Vj − Vj′ ,∀j 6= j′)

=
exp(fj(xj)

′β)
J∑

j′=1

exp(fj(xj′)′β)

, (41)

where j, j′ = 1, 2, . . . , J .

As in Großman et al. (2009), xj and xj′ may be partial profiles. The model will

still be built as given in Equation (41), where the utilities Uj would be built on the

partial set of attributes rather than all K attributes. Doing so provides a generalized

regression model given in Graßhoff et al. (2013) in terms of utility. However, we can

also extend the model to attribute-level best-worst scaling DCEs.

3.4 EXTENSION TO ATTRIBUTE-LEVEL BEST-WORST DCEs

The attribute-level best-worst DCEs are modified traditional DCEs. Models and

theory done for traditional DCEs have not been completely evaluated in terms of

best-worst scaling experiments. It is of interest to us to extend the model built on

a function of the data as presented inGraßhoff et al. (2003), Graßhoff et al. (2004),

and Großman et al. (2009) to the attribute-level best-worst DCEs. In extending this

work to these experiments, we provide an additional way to define the systematic

component that provides flexibility not seen in traditional methods.

Considering functions of the attributes as they enter into the utility function is

not a new idea. Van der Pol et al. (2014) presents the systematic components of the

utility defined as linear functions, quadratic functions, or as stepwise functions of the

attributes. Graßhoff et al. (2013) define the functions as regression functions of the

attributes and attribute-levels in the model.
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In the attribute-level best-worst DCEs, a set of G profiles, or products, are exam-

ined. The profiles are given as xi = (xi1, xi2, ..., xiK), where xij is the attribute-level

in profile i = 1, 2, . . . , G that corresponds to the jth attribute, where j = 1, 2, . . . , K.

The choice task for respondents is to choose the best-worst pair of attribute-levels.

In the experiment, respondents make paired comparisons within the profiles instead

of between as in traditional DCEs.

In the attribute-level best-worst DCEs, the utility of the pairs is composed of the

utility corresponding to the best attribute-level and the worst attribute-level. The

regression functions presented in Graßhoff et al. (2003) are applied to the attributes

and attribute-levels within the respective systematic components. Let f be the set

of regression functions for the best attribute-levels in the pairs, and g the set of

regression functions for the worst attribute-levels in the pairs. The p× 1 parameter

vector β still must satisfy the identifiability condition given in Equation (34).

Let us consider the jth choice is given as (xij, xij′), where j 6= j′, j, j′ = 1, 2, . . . , K,

and i = 1, 2, . . . , G. The functional form of the data in the systematic component for

the best attribute-level, xij can be found referring back to equations (18) and (35)

to be,

Vij = f(xij)
′β, (42)

where i = 1, 2, . . . , G and j = 1, 2, . . . , K.

Similarly, the functional form of the data in the systematic component for the

worst attribute-level, xij′ is defined as,

Vij′ = −g(xij′)
′β, (43)

where i = 1, 2, . . . , G and j = 1, 2, . . . , K.

Having defined the systematic components for the best and worst attribute-levels,

the systematic component for the pair may be defined. As noted in Marley and Lou-

viere (2005), the inverse random utility model must be used so the properties are met

for the conditional logit model for the data. Taking the systematic components de-

fined in equations (42) and (43) together with Equation (19), systematic component
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for the pair (xij, xij′) is defined as:

Vijj′ = Vij − Vij′ + εijj′ = (f(xij′)− g(xij′))
′β, (44)

where j, j′ = 1, 2, . . . , K, j 6= j′, and i = 1, 2, . . . , G.

The probability an alternative is chosen depends on the definition of the utility

and the distribution of the error terms. From equations (42), (43), and (44), we have

the systematic components of the best, worst, and best-worst utilities defined. We

assume the error terms εij, εij′ , and εijj′ are independently and identically distributed

as type I extreme value distribution, where j 6= j′ and j, j′ = 1, 2, . . . , K. For the

best attribute-level choice, the probability is given, in reference to Equation (45),

under the conditional logit as:

Bxi(xij) =
exp(Vij)∑

xiq∈xi
exp(Viq)

=
exp(f(xij)

′β)∑
xiq∈xi

exp(f(xiq)′β)
, (45)

where i = 1, 2, . . . , G and j = 1, 2, . . . , K.

Similarly, the probability associated with the choice in the worst attribute-level

is given, in reference to Equation (46), under the conditional logit as:

Wxi(xij′) =
exp(−Vij′)∑

xiq′∈xi
exp(−Viq′)

=
exp(−g(xij′)

′β)∑
xiq′∈xi

exp(−g(xiq′)′β)
, (46)

where i = 1, 2, . . . , G and j′ = 1, 2, . . . , K.

Finally, the probability for the best and worst attribute-level pair is determined.

Referring back to Equation (24) under the conditional logit, the probability is:

BWxi(xij, xij′) =
exp(Vijj′)∑

(xiq ,xiq′ )∈Ci
exp(Viqq′)
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=
exp(Vij − Vij′)∑

(xiq ,xiq′ )∈Ci
exp(Viq − Viq′)

=
exp((f(xij)− g(xij′))

′β)∑
(xiq ,xiq′ )∈Ci

exp((f(xiq′)− g(xiq′))′β)
, (47)

where i = 1, 2, . . . , G, j, j′ = 1, 2, . . . , K, and j 6= j′.

The forms of the systematic components of the utilities as well as their associated

probabilities depend on the definition of the regression functions f and g. We define

the regression functions used in the traditional attribute-level best-worst model and

extend the definition of the regression functions to a more general form that provides

flexibility in the model that is not obtained in the traditional definition in the next

section.

3.4.1 REGRESSION FUNCTIONS DEFINITIONS

In Chapter 2, we provided the design, probabilities, and properties associated

with attribute-level best-worst DCEs. The data in these experiments are defined

as a series of 1′s, 0′s, and −1′s corresponding to the best and worst attributes and

attribute-levels in a given choice pair. There exist a set of functions f and g defined

on the attribute-level pair that produces traditional methods.

In the attribute-level best-worst DCEs, a set of G profiles, or products, are exam-

ined. The profiles are given as xi = (xi1, xi2, ..., xiK), where xij is the attribute-level

in profile i = 1, 2, . . . , G that corresponds to the jth attribute for j = 1, 2, . . . , K.

Let us consider the choice is given as (xij, xij′), where j 6= j′, j, j′ = 1, 2, . . . , K,

and i = 1, 2, . . . , G. Let f be the set of regression functions defined on the best

attribute-level in a pair and g be the set of regression functions defined on the worst

attribute-level in a pair.

In the traditional attribute-level best-worst DCE, the regression functions f and

g are defined as indicator functions. The indicator functions are p × 1 vectors. For

the attributes, they are defined as,

IAk(xij) =

{
1, if xij ∈ Ak,
0, otherwise,

(48)
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and for the attribute-levels,

IAkxk(xij) =

{
1, if xij = xk for xk ∈ Ak,
0, otherwise.

(49)

where j, k = 1, 2, . . . , K and i = 1, 2, . . . , G.

The systematic component using the regression functions f for the best attribute-

level, xij is given as,

Vij = f(xij)
′β

=
K∑
k=1

[
IAk(xij) +

lk∑
j=1

IAkxk(xij)

]

= IAj + IAjxij , (50)

where i = 1, 2, . . . , G and j = 1, 2, . . . , K.

The systematic component using the regression functions g for the worst

attribute-level, xij′ is given as,

Vij′ = −g(xij′)
′β

= −
K∑
k=1

[
IAk(xij′) +

lk∑
j=1

IAkxk(xij′)

]

= −IAj′ − IAj′xij′ , (51)

where i = 1, 2, . . . , G and j′ = 1, 2, . . . , K.

Using the systematic components for the best and the worst attribute-levels, the

best-worst systematic component for the pair (xij, xij′) is given as,

Vijj′ = Vij − Vij′

= (f(xij)− g(xij′))
′β
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=
K∑
k=1

[
IAk(xij) +

lk∑
xk

IAkxk(xij)

]
−

K∑
k=1

[
IAk(xij′) +

lk∑
xk

IAkxk(xij′)

]

=
K∑
k=1

[
IAk(xij)− IAk(xij′) +

lk∑
xk=1

(IAkxk(xij)− IAkxk(xij′))

]

= IAj + IAjxij − IAj′ − IAj′xij′

= IAj − IAj′ + IAjxij − IAj′xij′ , (52)

where j, j′ = 1, 2, . . . , K, j 6= j′, and i = 1, 2, . . . , G.

Using the indicator functions of the weights of the Ak and Akxk , a more general

form of the regression functions can be defined. Let bAk and bAkxk be constants

corresponding to the best attribute and attribute-levels in a pair, and wAk and wAkxk
be constants corresponding to the worst attribute and attribute-levels in a pair, where

xk = 1, 2, . . . , lk and k = 1, 2, . . . , K. The regression functions f and g are given as,

f(xij) =
K∑
k=1

[
bAkIAk(xij) +

lk∑
j=1

bAkxk IAkxk(xij)

]
(53)

and

g(xij′) = −
K∑
k=1

[
wAkIAk(xij′) +

lk∑
j=1

wAkxk IAkxk(xij′)

]
(54)

where j, j′ = 1, 2, . . . , K, j 6= j′, and i = 1, 2, . . . , G.

The regression functions defined in this way provide flexibility that the traditional

attribute-level best-worst DCEs. Consumer preference in products are constantly

changing new information about the product comes to light or as trends come and

go. Hence, the data collected today on a product may be obsolete tomorrow. The

addition of these constants to the regression functions provides researchers the ability

to scale the data to reflect current trends or changes in the products. For example, let

us consider the products being modeled are pharmaceuticals such as contraceptives

as was done by Knox et al. (2012) and (2013). If new information about a brand

of contraceptives posing a health risk was removed from the market, then using

regression functions it is possible to update the model to reflect this change. The
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attribute-level associated with the brand may have bkxk = wkxk = 0, where xk =

1, 2, . . . , lk and k = 1, 2, . . . , K to represent its removal from the market. For all the

pairs this attribute-level was in, the information the choice pair provides in terms of

the other attributes and attribute-levels would remain intact. The model would be

estimated again and the parameter vector, β, would provide the updated impact of

the attributes and attribute-levels in the experiment.

We utilize the new definition of the systematic components in the modeling of

attribute-level best-worst DCEs across time. In Chapter 4, we extend the work

done here to Markov Decision Processes. The generalized form of the systematic

components we provided allows for the evaluation of hypothetical future scenarios.

3.4.2 DATA EXAMPLE

In the simulated example an empirical setup is considered. We assume K = 3

attributes with l1 = 2, l2 = 3, and l3 = 4 attribute-levels in an unbalanced design.

There are 2× 3× 4 = 24 possible profiles, or products, in this experiment. The total

number of attribute-levels is L =
∑k

i=1 li = 9, and the total number of choice pairs

is J =
∑K

k=1 lk(L− lk) = 52.

We simulated data for n = 300 respondents for 24 profiles. Each choice set has

τ = K(K − 1) = 6 alternatives to choose from. Using the parameters given in

Table 1, we simulated data in R. The data was then exported from R into the SAS

environment. Using the SAS procedure called MDC (multinomial discrete choice),

the conditional logit model was fitted to the data. The parameter estimates for the

generated data are given in Table 1. The parameter estimates are close to the original

parameters for this example.

We consider an example where the model is built on the regression functions f

and g of the data. We define f and g as given in equations (53) and (54). The weights

used in the regression functions are given as:

bA1 = wA1 = −2.

bA2 = wA2 = 5.

bA3 = wA3 = 1.
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bA11 = wA11 = bA12 = wA12 = −2.

bA21 = wA21 = bA22 = wA22 = bA23 = wA23 = 5.

bA31 = wA31 = bA32 = wA32 = bA33 = wA33 = bA34 = wA34 = 1.

The conditional logit model is fit to the data and the resulting parameter estimates

are given in Table 1. The parameter estimates provide the adjusted attribute and

attribute-level impacts. In Chapter 5, we will evaluate the changes in expected utility

for this weighted data in comparison to the original data and model.

Table 1: Parameters and parameter estimates for Simulated Example

Estimates Functional Form

Parameters β β̂ SE β̂ SE

βA1 -2.0000 -2.0711 0.0621 0.9787 0.0289

βA2 1.5000 1.5248 0.0438 0.3042 0.0082

βA3 * * * * *

βA11 -2.0000 -2.0308 0.0619 0.9838 0.0288

βA12 2.0000 2.0308 * -0.9838 *

βA21 1.9900 2.0970 0.0804 0.3864 0.0148

βA22 -0.2900 -0.3567 0.0482 -0.0548 0.0092

βA23 -1.7000 -1.7403 * -0.3316 *

βA31 -0.9200 -0.8914 0.0407 -0.8867 0.0410

βA32 -0.1800 -0.1805 0.0368 -0.1806 0.0368

βA33 0.5000 0.4911 0.0369 0.4966 0.0366

βA34 0.6000 0.5808 * 0.5707 *

We can see the impact of weighting as a reciprocal change in the impact of

attribute 1 is noticed as its value goes from −2 to 0.9787. We will use these functional

forms and included time in them in Chapter 5 in the simulated example with scenarios

5 and 6.
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CHAPTER 4

MARKOV DECISION PROCESSES

4.1 INTRODUCTION

Markov decision processes (MDPs) are sequential decision making processes. A

decision process is said to be Markovian if the future depends on the present and

not the past. In that sense, a Markov process is a memoryless practice. MDPs seek

to determine the policy, or set of decision rules, under which maximum reward over

time is obtained. According to Puterman (2014), decision processes are defined by

the set (S,R,D), where S is the set of states, R is the set of rewards, and D is the

set of possible decisions for each time step. Let st ∈ S be the states occupied at

time t, rt(st) be the rewards associated with st, and dt(rt, st) is the decision based

on possible rewards and states at time t, where 0 ≤ t ≤ T . The rewards are defined

as the expected gain, or loss, associated with the state. With regards to DCEs, the

states are the choices pairs and the rewards are the utility associated with the choice

in alternative.

The definition of time is important in the methods for mapping the decision

processes. These processes may be discrete or continuous in time with finite or

infinite horizon. For the purpose of this dissertation, our interest is in discrete time,

finite horizon MDPs, that is t = 1, 2, . . . , T where T <∞. Numerical methods such

as dynamic programming are used to estimate the expected rewards for this type of

MDPs.

As the decision process is Markovian, the transition probability to the next state

st+1 based solely on the decision made at the current state, st, is p(st+1|st), where

t = 1, 2, . . . , T (Puterman, 2014). The transition probabilities are the drivers of this

sequential decision making process. The decision process maps the movement from

one state to another over time, t, based on rewards received and the optimal decision

set. The optimal decision rule is known as the policy, δ = (d∗1, d
∗
2, . . . , d

∗
T ), where
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d∗t is the decision at time t = 1, 2, . . . , T that yields the maximum expected reward

(Puterman, 2014).

MDPs are often applied in inventory monitoring systems. White (1985) provides

a literature review of applications for MDPs. Puterman (2014) provides examples

of a tire inventory problem and a bus engine replacement problem. For general

inventory problems, the decision is made whether or not to order more inventory

given the current state of the inventory and transition probabilities related to this

state and consumer demand of the products. In such, MDPs have applications in a

wide range of problems including econometrics as seen in Diebold et al. (1994). Rust

(1994) work focuses on applications in DCEs. It is our interest to extend the work

done for DCEs to attribute-level best-worst DCEs.

4.2 APPLICATION TO TRADITIONAL DCEs

The literature on DCEs primarily considers static, or non-time dependent, ex-

periments. The purpose is to apply statistical models to predict consumer behavior

under the belief that the choice in alternative is to maximize the utility gained from

a product (Marschak, 1960). MDPs follow a similar philosophy with the inclusion

of time into the experiments. MDPs are sequential decision making processes where

decisions are made under an optimal decision rule δ to maximize future rewards or

utilities. The aim is the same at every time point t = 1, 2, . . . , T , to determine the

decision/alternative that yields the greatest expected utility.

In DCEs, respondents are asked to choose an alternative based on a set of K

attributes describing the product. Let xt = (xt1, xt2, . . . , xtK) be the set of K at-

tributes, where xtj is the attribute level of attribute Aj, j = 1, 2, . . . , K describing

the product at time t = 1, 2, . . . , T . The state occupied at time t is defined on xt

and εt and is given by st(xt, εt) ∈ S (Rust, 1994). For DCEs, the reward received in

choosing an alternative is its utility, r(st, dt) = u(st, dt), where t = 1, 2, . . . , T .

Decision processes model the sequence of decisions based on expected rewards

and transition probabilities. The transition probability from one state to another is

defined as,

P (st+1|st) = P (st+1 = s′|st = s) = Pss′
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may also be defined in terms of the transition in decisions as P (dt+1|dt, xt). The

optimal decision made at time t is the dt that satisfies

max
dt∈D

E(Ut(xt, εt)), (55)

for t = 1, 2, . . . , T . In this setting, the transition probability can be tied to the

decision policy δ = (d∗1, d
∗
2, . . . , d

∗
T ), where d∗t is the decision at time t = 1, 2, . . . , T

that yields the maximum expected utility as in Equation (55) (Puterman, 2014).

The method for determining δ that produces the maximum expected utility at

each time step is done via dynamic programming. Numerical values of the expected

utilities are needed and require Monte Carlo estimation. Bellman (1954) utilized

dynamic programming to evaluate the value function, also known as Bellman’s equa-

tion, at each time step. Dynamic programming uses numerical methods to evaluate

the value function moving backwards in time. Rust (1994) and Rust (2008) presented

the use of dynamic programming for evaluating DCEs as MDPs.

The value function for DCEs defined by Bellman’s equation and is given as:

Vt(xt, εt) = max
dt∈D

T∑
t′=t

P t′

ss′

[
γt
′−tU(xt′ , dt′) + ε(dt′)|xt

]
= max

dt∈D
E

(
T∑
t′=t

γt
′−tU(xt′ , dt′) + ε(dt′)|xt, εt

)
, (56)

where dt ∈ D is the decision at time t, U(xt, dt) is the derived iterated/expected

utility, εt is the associated error term at time t, where t = 1, 2, . . . , T , and discount

utility rate is given by γ ∈ (0, 1) (Bellman, 1954 and 1956). The steps for determining

the value function follow (Rust, 1994; Arcidiacono and Miller, 2008; and Ellickson,

2011). There exist J value functions for each of the J alternatives in the experiments

evaluated at each time point t = 1, 2, . . . , T . The sum goes from t up to T because

it is evaluated using a backwards recursive method, that is we start at the last time

point and work our way backwards to earlier time points.

The value functions are computed recursively via dynamic programming. To

determine the value function, backwards recursion must be used. At the last time
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point, T , the value function is the utilities associated with the different states,

VT (xT ) = U(xT , dT ). (57)

Next we move one time step back and compute,

VT−1(xT−1, dT−1) = U(xT−1, dT−1) +
∑
dT∈D

γVT (xT )P (dT |dT−1),

and another,

VT−2(xT−2, dT−2) = U(xT−2, dT−2) +
∑
dT∈D

γVT−1(xT−1)P (dT−1|dT−2).

Following this pattern, we get

Vt(xt, dt) = U(xt, dt) +
T∑

t′=t+1

∑
dT∈D

γVt′(xt′)P (dt′ |dt), (58)

where t = 1, 2, . . . , T and VT is defined as in Equation (57).

The decision rule used by a respondent is the one under which the respondent

maximizes utility, but one cannot assume that a person’s perceived utility is not

impacted by time. To adjust for the impact of time on the expected utility, a discount

rate γ ∈ (0, 1) is considered. Frederick et al. (2002) reviewed the work done on the

discount utility, where they defined the discount function to be

D(k) =

(
1

1 + γ

)k
, (59)

where γ is a respondent’s discount factor after k time steps. The discount utility rate

weights the utility a person gains from an option at some time t + k based on their

current state at time t and guarantees the convergence in the infinite sum of rewards

in an infinite horizon MDP (Rothblum , 1975). We consider a finite horizon MDP

in this dissertation. By choosing γ ∈ (0, 1) we follow what has been proposed in the

literature until now to give higher rewards to immediate utility and lower rewards to

delayed utility (Feinberg and Schwartz, 1994).
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4.3 EXTENSIONS TO ATTRIBUTE-LEVEL BEST-WORST DCEs

While there exists some literature on the application of MDPs in traditional

DCEs, we have not encountered any work in the literature to extend these methods

to best-worst scaling DCEs. In this dissertation, we extend the use of MDPs to Case

2 of best-worst scaling models, the attribute-level best-worst DCEs.

In traditional MDPs, the value functions are computed for each of the J alterna-

tives, or products. At each time point, t = 1, 2, . . . , T , the decision dt is to choose

the alternative that provides the maximum expected utility given information about

the state st = (xt, εt), where xt is the set of K attributes. The decision made is

between alternatives in the traditional DCEs. In attribute-level best-worst DCEs,

the experiments model choices within products not between products.

In attribute-level best-worst DCEs, there are K attributes describing a product

each with lk levels, where k = 1, 2, . . . , K. The total number of products in these

experiments is
K∏
k=1

lk. The products are represented in the experiment by a profile.

The profile corresponding to the ith product is given as xi = (xi1, xi2, . . . , xiK), where

xik is the attribute level corresponding to the attribute Ak for k = 1, 2, . . . , K for

i = 1, 2, . . . , G. Within each choice set there are τ = K(K−1) choices. A respondent

is asked to evaluate G choice sets in the experiment.

MDPs model the decision process for respondents over multiple time points. For

attribute-level best-worst DCEs, the model is built within the choice sets correspond-

ing to each of the G choice sets. In traditional DCEs, there are J alternatives evalu-

ated at each time point producing J value functions at each time point. Attribute-

level best-worst DCEs require a respondents to evaluate a series of G choice sets each

with τ choices, thus there are τ value functions for each choice set in attribute-level

best-worst MDPs. Our interest is to further model the sequence of decisions made

by introducing the time element into the experiments. For attribute-level best-worst

DCEs, we consider discrete time finite horizon MDPs where:

• G choice sets are modeled across time.

• xtijj′ = (xij, xij′), are the attributes and attribute-levels corresponding to the

choices in set Ci, i = 1, 2, . . . , G, j 6= j′, j, j′ = 1, 2, . . . , K, and t = 1, 2, . . . , T .
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• The decision set depends on the choice set, called Di, and we evaluate dti ∈ Di,

where i = 1, 2, . . . , G and 1 ≤ dti ≤ τ .

• The set of possible states in the experiment depends on the choice set, called

Si, where sti = (xtij, x
t
ij′) ∈ Si, where j 6= j′, j, j′ = 1, 2, . . . , τ , i = 1, 2, . . . , G,

and 1 ≤ sti ≤ τ .

• Transition probabilities depend on a set of parameters θ that are assumed

known, or estimated from data (Arcidiacono and Ellickson, 2011).

• Transition probability matrices, P t
sis′i

, are dependent on the choice set being

evaluated.

In attribute-level best-worst DCEs, the MDPs model the choices in attribute-level

pairs within choice sets over time. Therefore, the transition probabilities and value

functions must be defined within the choice sets. Referring to Equation (58) the

value function in attribute-level best-worst DCEs is given as,

V t
i (sti, d

t
i) = U(sti, d

t
i) +

∑
s
′t+1
i ∈Si

γV i
t+1(s

′t+1
i , dt+1

i )P t(sis
′
i), (60)

where U(sti, d
t
i) represents the utility associated to the state sti and decision dti and

i = 1, 2, . . . , G. The decision dti = (xij, xij′) is a choice pair within Ci, where i =

1, 2, . . . , G, j, j′ = 1, 2, . . . , K, and j 6= j′. In the attribute-level best-worst DCEs,

there will be τ = K(K− 1) value functions per each of the G choice sets. One of the

disadvantages of these experiments is the “curse of dimensionality” (Rust, 2008). As

the number of attributes, attribute-levels, and profiles grow in the experiment, the

estimation process becomes exponentially more difficult as dynamic programming

requires an explicit discretization of the states, decisions, and the value function as

seen in Equation (60) depends on the utility and transition probabilities over time.

The ability to direct the system, via the transition probabilities, when it is of a higher

dimension becomes difficult, if not impossible.

In the following subsections, we provide definitions and insights regarding these

components to the value function. In Chapter 3, we provided a functional form of

the utility that we can apply in these time dependent processes. Furthermore, we

define dynamic transition probabilities that we apply to attribute-level best-worst
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DCEs. In Chapter 5, simulations of MDPs for the attribute-level best-worst DCEs

are provided.

4.3.1 UTILITY

Marschak (1960) presented random utility theory defining utility to include a

systematic component Vij and an unobserved component εij for i = 1, 2, . . . , n and

j = 1, 2, . . . , J . A consumer chooses the alternative that provides them with the

maximum utility. The utility function for traditional DCEs is given as in Equation

(2) by:

Uij = Vij + εij = x′ijβ + εij,

for i = 1, 2, . . . , n and j = 1, 2, . . . , J . For MDPs in the traditional DCEs, the utility

is then,

Ut(xt, dt) = x′tβ + εt, (61)

where t = 1, 2, . . . , T . Common models to determine the parameter estimates of

β are conditional logit, generalized extreme value distributions, and probit models

presented in the Introduction. We consider the conditional logit model in this disser-

tation. Stenberg et al. (2007) provided that the definition of utility/reward in MDPs

maybe constant over time or time-dependent/dynamic in nature.

The definition of utility in attribute-level best-worst DCEs that meets the nec-

essary IIA condition for the conditional logit model is given in Equation (19) under

the inverse random utility theory presented in Marley and Louviere (2005). For the

corresponding choice pair xtijj′ = (xtij, x
t
ij′) ∈ Cti the corresponding utility is given as,

U t
ijj′ = V t

ij − V t
ij′ + εtijj′ = V t

ijj′ + εtijj′ ,

where i = 1, 2, . . . , G, j, j′ = 1, 2, . . . , K, and j 6= j′.

Referring back to Chapter 3, the systematic component is defined as a model

built on functions of the best and worst attribute-levels in the pair, using Equation
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(44),

Vijj′ = (ft(xij)− gt(xij′))
′β, (62)

where β are the attribute and attribute-level coefficients, j, j′ = 1, 2, . . . , K, j 6= j′,

i = 1, 2, . . . , G, and ft and gt, t = 1, 2, . . . , T , are regression functions defined on

the best and worst attributes and attribute-levels, respectively. In the traditional

attribute-level best-worst DCEs, the functions ft and gt are given as indicator func-

tions of the best and worst attributes and attribute-levels as shown in Equation

(52).

However, using this functional form of the systematic component, we may consider

alternative definitions of the systematic component. In Chapter 3, we provide a

weighted function for ft and gt, given in equations (53) and (54). Let btAk and btAkxk
be weights corresponding to the best attribute and attribute-levels in a pair, and

wtAk and wtAkxk be weights corresponding to the worst attribute and attribute-levels

in a pair, where xk = 1, 2, . . . , lk, k = 1, 2, . . . , K, and t = 1, 2, . . . , T . The regression

functions f and g are given as,

f(xij) =
K∑
k=1

[
bAkIAk(xij) +

lk∑
j=1

bAkxk IAkxk(xij)

]
,

and

g(xij′) = −
K∑
k=1

[
wAkIAk(xij′) +

lk∑
j=1

wAkxk IAkxk(xij′)

]
,

where j, j′ = 1, 2, . . . , K, j 6= j′, and i = 1, 2, . . . , G.

Defining the systematic components according to the weighted function allows

the utility to change over time. We considered in Chapter 3 an example where an

attribute-level no longer exists in the future. The weighted functions of f and g

allowed us to update the parameter estimates, thus the utilities, using these weights.

It is conceivable in the future that an attribute-level scale may need to be adjusted for

possible bettering, worsening, or removal type of conditions for that attribute-level.

4.3.2 TRANSITION PROBABILITIES
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MDPs have infinitely many possible futures able to be considered in the sim-

ulations. The definition of transition probabilities are the vehicle that drives the

processes to these different futures. However, determining transition probabilities

for MDPs is a difficult task. One way for estimating the transition probabilities is

using maximum likelihood estimates (MLEs). An empirical solution to the transi-

tion probabilities may be determined by considering the transition probabilities as a

multinomial distribution (Lee et al., 1968).

In the attribute-level best-worst DCEs, there are τ choices within in a choice set

Ci, where i = 1, 2, . . . , G. There are τ states, and/or decisions, possible at each of the

time points. The transition probabilities are denoted as Pss′ = P (st+1 = s′|st = s),

where st, st+1 ∈ S and S = {1, 2, . . . , τ}. Let Ni be the respondents common to time

t and t + 1 in the experiment and niss′ be the number of respondents who chose s

at time t and s′ at t + 1, where t = 1, 2, . . . , T and i = 1, 2, . . . , G. The transition

choice probability is given by the multinomial distribution as:

f(pis1, pis2, . . . , pisτ ) =
Ni!

nis1!nis2! . . . nisτ !
pnis1is1 p

nis2
is2 . . . pnisτisτ , (63)

where s = 1, 2, . . . , τ , i = 1, 2, . . . , G, piss′ ≥ 0, and
τ∑

s′=1

piss′ = 1.

The likelihood function is then given by,

L(pis1, pis2, . . . , pisτ ) =
Ni!

τ∏
s′=1

niss′ !

τ∏
s′=1

p
niss′
iss′

and the log likelihood is given as,

log(L) = log

 Ni!
τ∏

s′=1

niss′ !

+
τ∑

s′=1

niss′log(piss′),

where s = 1, 2, . . . , τ , i = 1, 2, . . . , G, piss′ ≥ 0, and
τ∑

s′=1

piss′ = 1.

Due to the constraint
τ∑

s′=1

piss′ = 1, Lagrange multipliers, λ, are used and the
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Lagrangian function is given as:

G(pss′) = LL(piss′)− λ(
τ∑

s′=1

piss′ − 1),

where s = 1, 2, . . . , τ , i = 1, 2, . . . , G, piss′ ≥ 0, and
τ∑

s′=1

piss′ = 1.

We take the partial derivative of the Lagrangian to determine the MLEs:

∂G

∂piss′
= 0

niss′

piss′
− λ = 0

niss′

piss′
= λ

niss′ = λpiss′
niss′

λ
= piss′

,

where s′ = 1, 2, . . . , τ . Under the constraint,
τ∑

s′=1

piss′ = 1, the value of λ =
τ∑

s′=1

niss′ =

Ni. Thus, the MLE for

piss′ =
niss′

Ni

for s, s′ = 1, 2, . . . , τ and i = 1, 2, . . . , G.

The MLE of piss′ is computationally simple; however, access to the information

needed to compute it may not always be available. To compute the MLE of this

nature, we would need to have respondents evaluate the same choice sets at two

time periods, which is not necessarily an easy task. Furthermore, this is considering

the transition matrix is stationary. It is possible to consider a dynamic transition

matrix that changes over time, that is ptiss′ for t = 1, 2, . . . , T . A transition ma-

trix of this nature would need to have multiple time periods of data for the same

respondents evaluating the same choice sets to compute the empirical probabilities.

Instances where multiple time periods of data for respondents are not possible, one

must consider alternative methods for determining the transition probabilities.

There are infinitely many possible transition probabilities in MDPs. Common

methods for determining these probabilities is to take a Bayesian approach and the
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other is a rational observation according to Rust (2008). In the Bayesian approach, a

prior distribution is needed. However, as mentioned in Rust (2008), strong assump-

tions are made when using the prior distributions. According to Ghaoui and Nilim

(2005), knowledge about the assumed prior distribution must be complete. Alterna-

tively, the rational observation mentioned by Rust (2008) states that one can ratio-

nalize any circumstance for consumer behavior or preferences. Arcidiacono and El-

lickson (2011) indicates that the transition probabilities, Pss′ = P (st+1 = s′|st = s,θ)

are a probability function, where the parameters θ are assumed known. Rust (1994)

and Rust (2008) state that discrete decision processes, as we are considering in the

attribute-level best-worst models, the transition parameters and probabilities are of-

ten times non-parametrically identified. Chades et al. (2014) applied MDPs to solve

problems in an ecological setting. As they mentioned, to suggest guidance in tran-

sition probabilities would require running several scenarios. To our knowledge, such

technique has not yet been applied to consumer choice experiments with attribute

and attribute-level best-worst experiments.

We provide a definition of the parameters for the transition probabilities under

the rational observation that may be used in stationary or dynamic transition ma-

trices. This method maintains the researcher’s ability to guide the MDPs in the

direction of their choosing where the transitions occur at a rate determined by the

researcher. In such way, the researcher is able to consider a stationary or dynamic

transition probabilities to model an evolving MDP over time. The researcher may

also determine the amount of time points necessary for the system to converge to the

decision they were working towards.

In attribute-level best-worst choice models, a set of G choice sets are considered

in the experiment. Within each choice set there are τ = K(K − 1) choices. In

MDPs, there exists a set of states st ∈ S and possible decisions in dt ∈ D for

t = 1, 2, . . . , T . For attribute-level best-worst MDPs, the possible states in each

choice set are the alternatives, and the decision made at each time point will also be

one of the alternatives. For choice set Ci the state sti and decision dti are such that

1 ≤ sti, dti ≤ τ where i = 1, 2, . . . , G and t = 1, 2, . . . , T .

Let sit+1 = s′i and sit = si, where s′i, si ∈ Si for i = 1, 2, . . . , G and t = 1, 2, . . . , T .
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The transition probability is denoted as P t
iss′ = P t(s′i|si,θsi), where

θtsi = (θtsiA1
, θtsiA2

, . . . , θtsiAK , θ
t
siA11, . . . , θ

t
siAK lk

)

is the set of parameters guiding the transition from si to s′i, for i = 1, 2, . . . , G. In the

attribute-level best-worst models, the parameters would be the relative impact/pref-

erence associated with the attributes and attribute-levels corresponding to the dif-

ferent choice pairs, or states, given the current state is si, where i = 1, 2, . . . , G. Ac-

cording to Rust (2008) and Arcidiacono and Ellickson (2011), θtsi is assumed known

under some rationale with regards to respondent behavior or preferences.

The parameter estimates determined by fitting the conditional logit model,

as described in Chapters 2 and 3, produced β̂ a p = K +
K∑
k=1

lk vec-

tor. These parameter estimates measure the relative impact of each attribute

and attribute-level in the decisions made by respondents. The parameters

θtsi = (θtsiA1
, θtsiA2

, . . . , θtsiAK , θ
t
siA11, . . . , θ

t
siAK lk

) are the assumed impacts of the

attributes and attribute-levels in respondents decisions given they currently oc-

cupy state si. We define these parameters as functions of the parameter esti-

mates β̂, where there is a rate of change in the impacts over time. We define

θtsi = (asiA1(t)β̂A1 , asiA2(t)β̂A2 , . . . , asiAK (t)β̂Ak , asiA11(t)β̂A11, . . . , asiAK lk(t)β̂AK lk),

where a′is are the time factor change and β′s are fixed for i = 1, 2, . . . , G, 1 ≤ si ≤ τ ,

and t = 1, 2, . . . , T . The definition of the asi(t) depend on the state si and time

t = 1, 2, . . . , T . We have considered asij(t) = atsij, where if |asij| < 1 the impact of

the attribute or attribute-level would be lessening with time, where i = 1, 2, . . . , G

and j = 1, 2, . . . , K. If asij(t)β̂j = atsijβ̂j > 0, then the attribute or attribute-

level has a positive impact evolving at the rate atsij over time for j = 1, 2, . . . , K,

i = 1, 2, . . . , G, and t = 1, 2, . . . , T . A static, or non-time dependent, system is

considered if asij(t) = 1 , where i = 1, 2, . . . , G, j = 1, 2, . . . , K, and t = 1, 2, . . . , T .

As mentioned, these asij(t) are rates of change that guide how the dynamic tran-

sition of the decision process. We can easily consider them to be non-time dependent,

asij(t) = asij, defining the transition probabilities as stationary over time. As was

mentioned earlier, there are infinitely many possibilities in how we define the tran-

sitions. Rust (2008) states that using rational observation to define the transitions

any possible choice behavior on the respondents is possible. Chades et al. (2014)
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recommends running many scenarios to determine the transition probabilities that

will maximize the expected reward. Our definition also offers infinitely many possi-

bilities in terms of the definition; however, we defined a rate of change to consider

an evolving system. In this way, the researcher can determine what they consider

feasible rates and see if the system eventually evolves to the decision they desire and

how long it would take to get there.

Given θtsi , the transition probabilities may be determined using random utility

theory, or inverse random utility theory in the case attribute-level best-worst models

as shown in Chapter 2. Let s′ijj′ = (xij, xij′), where j 6= j′, j, j′ = 1, 2, . . . , τ , and

i = 1, 2, . . . , G. The probability that s′ijj′ is the chosen state means that given θtsi ,

the utility for s′ijj′ is the maximum utility. The transition probability is given as,

P t(s′ijj′ |si,θtsi) = P (U t
ijj′ > U t

ikk′ ,∀k 6= k′ ∈ Ci|si,θtsi)

= P t(V t
ijj′ + εtijj′ > V t

ikk′ + εtikk′ , ∀k 6= k′ ∈ Ci|si,θsi)

= P t(εtikk′ < εtijj′ + V t
ijj′ − V t

ikk′ ,∀k 6= k′ ∈ Ci|si,θtsi) (64)

where j 6= j′, j, j′ = 1, 2, . . . , τ , i = 1, 2, . . . , G, and t = 1, 2, . . . , T . If we assume the

random error terms are independently and identically distributed as type I extreme

value distribution, the probability would then be found using the conditional logit,

and is given as:

P t(s′ijj′ |si,θtsi) = P t(U t
ijj′ > U t

ikk′ ,∀k 6= k′ ∈ Ci|si,θtsi)

=
exp(V t

ijj′)∑
k,k′∈Ci

exp(V t
ikk′)

=
exp((ft(xij)− gt(xij′))

′θtsi)∑
k,k′∈Ci

exp((ft(xik)− gt(xik′))
′θtsi)

, (65)

where j 6= j′, k 6= k′, j, j′ = 1, 2, . . . , τ , i = 1, 2, . . . , G, and t = 1, 2, . . . , T .
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The transition matrix is then a τ × τ matrix of the form,

P t =



P t
i11 P t

i12 . . . P t
i1τ

P t
i21 P t

i22 . . . P t
i2τ

. . . . . .

. . . . . .

. . . . . .

P t
iτ1 P t

iτ2 . . . P t
iττ


=
(
P t
iss′

)

where i = 1, 2, . . . , G, s, s′ = 1, 2, . . . , τ , and where
τ∑

s′=1

P t
iss′ = 1. The transition

matrix may be either stationary or dynamic in nature. In our definition of θtsi ,

this is determined by the rate asij(t), where i = 1, 2, . . . , G, 1 ≤ j ≤ p, and t =

1, 2, . . . , T . In Chapter 5, we provide simulations under stationary and dynamic

transition probabilities and make comparisons.
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CHAPTER 5

EXAMPLES AND APPLICATIONS

We are now ready to conduct/formalize the attribute-level best-worst DCEs of

choosing the pairs and describing the optimal variation over time. Such a process

will be done at T = 5 time periods under the assumption that the consumer chooses

an alternative that provides maximum utility of attributes and attribute-levels. We

will use numerical maximization of the expected utility under Bellman’s equation of

the MDP.

Stationary transition probabilities are considered at first under Scenarios 1 and

3 and then dynamic transition probabilities are presented under Scenarios 2 and

4. Two options will be presented a simulated option and an aggregated real data

example from Flynn et al. (2007) of predictive and customer analytic expectation.

We consider T = 5 time epochs with a discount rate γ = 0.95.

Our computational process can be divided into 3 steps:

Sample data are generated on the basis of the coefficients.

Estimate of the expected utilities are computed using the transition probabili-

ties.

We repeat the process over time.

Under simulated option, we will also offer Scenarios 5 and 6 using the functional

form of the data as discussed in Section 4.2.

5.1 SIMULATED EXAMPLE

In the simulated example, an empirical setup is considered. We assume K = 3

attributes with l1 = 2, l2 = 3, and l3 = 4 attribute-levels in an unbalanced design.

There are 2× 3× 4 = 24 possible profiles, or products, in this experiment. The total
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number of attribute-levels is L =
∑k

i=1 li = 9, and the total number of choice pairs

is J =
∑K

k=1 lk(L− lk) = 52.

Louviere and Woodworth (1983), Street and Knox (2012), and Graßhoff et al.

(2004) discussed the benefits in using orthogonal arrays. Generally, orthogonal ex-

perimental designs are utilized in attribute-level best-worst DCEs due to the large

number of profiles in a full factorial design. There is a package in R called DoE.design

that creates full factorial and orthogonal designs for a given set of attributes and

attribute-levels. To obtain an orthogonal design, the oa.design function is used. For

this experiment, the orthogonal design returned the full factorial design, so we used

the full set of 24 profiles when simulating this data.

We simulated data for n = 300 respondents for 24 profiles. Each choice set has

τ = K(K−1) = 6 choices to choose from. Using the parameters given in Table 1, we

simulated data in R. The data was then exported from R into the SAS environment.

Using the SAS procedure called MDC (multinomial discrete choice), the conditional

logit model was fitted to the data. The parameter estimates for the generated data

are given in 1. The parameter estimates are close to the original parameters for this

example. Using the parameter estimates, the choice utilities were computed and are

used to determine the expected utility/value function. The best and worst 3 choice

pairs along with their utilities are presented in tables 3 and 4. The opposite of the

pairs with the highest utilities have the lowest utilities.
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Table 2: Parameters and parameter estimates for Simulated Example

Estimates Functional Form

Parameters β β̂ SE β̂ SE

βA1 -2.0000 -2.0711 0.0621 0.9787 0.0289

βA2 1.5000 1.5248 0.0438 0.3042 0.0082

βA3 * * * * *

βA11 -2.0000 -2.0308 0.0619 0.9838 0.0288

βA12 2.0000 2.0308 * -0.9838 *

βA21 1.9900 2.0970 0.0804 0.3864 0.0148

βA22 -0.2900 -0.3567 0.0482 -0.0548 0.0092

βA23 -1.7000 -1.7403 * -0.3316 *

βA31 -0.9200 -0.8914 0.0407 -0.8867 0.0410

βA32 -0.1800 -0.1805 0.0368 -0.1806 0.0368

βA33 0.5000 0.4911 0.0369 0.4966 0.0366

βA34 0.6000 0.5808 * 0.5707 *

Table 3: Choice pairs with the highest utility in the experiment

Best Attribute Level Worst Attribute Level Utility

2 1 1 1 12.3633

2 2 1 1 8.8012

3 4 1 1 7.6931

Table 4: Choice pairs with the lowest utility in the experiment

Best Attribute Level Worst Attribute Level Utility

1 1 2 1 -9.2594

1 1 2 2 -6.5358

1 1 3 4 -5.7929

5.1.1 SCENARIO 1
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We ran the simulation under this scenario with an advantageous proposed struc-

ture. The intent is to validate/justify our relative performance over time under

stationary sparcity.

In this example, respondents are assumed to make similar decisions at each de-

cision epoch that they made at the previous time point. The transition parameters

θtsi where sti = (xij, xij′) are defined as for the attributes as,

θtsiAk =


1.7|βAk |, if xij ∈ Ak,
−1.7|βAk |, if xij′ ∈ Ak,
βAk , otherwise,

(66)

and for the attribute-levels,

θtsiAkxik =


1.7|βAkxik |, if xij = xik where xik ∈ Ak,
−1.7|βAkxik |, if xij′ = xik where xik ∈ Ak,
βAkxik , otherwise,

(67)

where j 6= j′, j, j′, k = 1, 2, . . . , K, 1 ≤ xk ≤ lk, and i = 1, 2, . . . , G. The transition

parameters do not change with time, so the transition matrix is stationary. The goal

of this scenario was to design the transition probabilities in a way that the choice

made at t is most likely to be made at t + 1. If we considered asim(t) = βm for

i = 1, 2, . . . , G, and m = 1, 2, . . . , p, then the system would remain static and every

row of the transition matrix would be the same. Recall that p = K +
K∑
k=1

lk = 12

is the number of parameters. We consider 1.7|βm| when a state or choice pair at

time t + 1 has the same best attribute and attribute-level as the state occupied at

time t, and −1.7|βm| when a state or choice pair at time t + 1 has the same worst

attribute and attribute-level as the state occupied at time t. We consider |βm| to

control the direction of the impact making sure it is positive for the best attribute and

attribute-level of si and use −|βm| to make sure its negative for the worst attribute

and attribute-level of si. We use 1.7 to increase the impact of the best and worst

attributes and attribute-levels of si. The definition of asim(t) in this way insures that

states with common best and worst attributes and attribute-levels as the present

state occupied, sti = (xij, xij′), have a greater probability of being transitioned to,

where i = 1, 2, . . . , G, j 6= j′, j, j′ = 1, 2, . . . , K, and t = 1, 2, . . . , T .
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The value function/expected utilities for Profile 1 are displayed in Figure 3 along

with the difference in value function. Choice pair (x22, x12), where x22 is the 2nd

level of attribute 2 is the best and x12 is the 2nd level of attribute 1 is the worst,

corresponds to the highest expected utility. The opposite pair (x12, x22) is the worst

choice pair.

Table 5: Stationary transition matrix in Scenario 1 for Profile 1

(x12, x22) 0.9837 0.0000 0.0136 0.0000 0.0000 0.0027

(x22, x12) 0.0000 0.8924 0.0000 0.1074 0.0003 0.0000

(x12, x34) 0.0038 0.0000 0.9932 0.0000 0.0030 0.0000

(x34, x12) 0.0000 0.0038 0.0000 0.9613 0.0000 0.0003

(x22, x34) 0.0000 0.4289 0.0004 0.0002 0.5705 0.0000

(x34, x22) 0.0001 0.0004 0.0000 0.7113 0.0000 0.2882

The model applied here views the attribute-level best-worst DCEs as sequential

leading to a partial separation best-worst choices over time. Validity is guided by

the transition probabilities under Scenario 1, the participants follow the same choice

preferences. In Table 5, the transition probabilities are generally highest on the

diagonal and the same at each time period as we would expect in this setup. As

expected the trend in the utility is kept.

Color Choice Pair 

 (x12 , x22) 

 (x22 , x12) 

 (x12 , x34) 

 (x34 , x12) 

 (x22 , x34) 

 (x34 , x22) 

 

 

 

 

"black","red","blue","firebrick","magenta","seagreen" 

Figure 2: Legend corresponding to Figure 3
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Figure 3: Expected discounted utility and their differences over time for the Profile
1
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5.1.2 SCENARIO 2

In Scenario 2, respondents are allowed to make similar decisions at each time

epoch with a different rate of change, making the transition probabilities dynamic.

The transition parameters θtsi where sti = (xij, xij′) are defined as for the attributes

as,

θtsiAk =


1.7t|βAk |, if xij ∈ Ak,
−1.7t|βAk |, if xij′ ∈ Ak,
βAk , otherwise,

(68)

and for the attribute-levels,

θtsiAkxik =


1.7t|βAkxik |, if xij = xik where xik ∈ Ak,
−1.7t|βAkxik |, if xij′ = xik where xik ∈ Ak,
βAkxik , otherwise,

(69)

where j 6= j′, j, j′, k = 1, 2, . . . , K, 1 ≤ xk ≤ lk, and i = 1, 2, . . . , G.

The transition matrix at time t = 1 is kept the same as it was Scenario 1 in Table

5, and subsequent transition probabilities at time t = 2, 3, and 4 are given in tables

6, 7, and 8, respectively. The transition probabilities are highest on the diagonal

verifying the direction we wanted in the transitions. The value function/expected

utilities for Profile 1 are displayed in Figure 5 along with the difference in value

function. The same best-worst pair (x22, x12) is the optimal choice over time for

Profile 1 as it was in Scenario 1 with a slight difference in the expected utilities.

This is because the transition matrices are reinforcing those choices over time. This

explains why the transition matrix under Table 8 is the identity matrix as expected

under the trend in the utility.
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Table 6: Dynamic transition matrix in Scenario 2 at time t = 2 for Profile 1

(x12, x22) 0.9985 0.0000 0.0015 0.0000 0.0000 0.0000

(x22, x12) 0.0000 0.9873 0.0000 0.0127 0.0000 0.0000

(x12, x34) 0.0002 0.0000 0.9998 0.0000 0.0000 0.0000

(x34, x12) 0.0000 0.0019 0.0000 0.9981 0.0000 0.0000

(x22, x34) 0.0000 0.0337 0.0001 0.0000 0.9663 0.0000

(x34, x22) 0.0000 0.0000 0.0000 0.2082 0.0000 0.7918

Table 7: Dynamic transition matrix in Scenario 2 at time t = 3 for Profile 1

(x12, x22) 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000

(x22, x12) 0.0000 0.9997 0.0000 0.0003 0.0000 0.0000

(x12, x34) 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000

(x34, x12) 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000

(x22, x34) 0.0000 0.0002 0.0000 0.0000 0.9998 0.0000

(x34, x22) 0.0000 0.0000 0.0000 0.0058 0.0000 0.9942

Table 8: Dynamic transition matrix in Scenario 2 at time t = 4 for Profile 1

(x12, x22) 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000

(x22, x12) 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000

(x12, x34) 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000

(x34, x12) 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000

(x22, x34) 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000

(x34, x22) 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000
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Figure 4: Legend corresponding to Figure 5
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5.1.3 SCENARIO 3

In this scenario, respondents are allowed to make different decisions under a

stationary transition probability. Table 9 provide the transition probabilities for

choices with some of the most noticeable shifts. Respondents who used to consider

attribute 2 with positive utility are now considering it with negative utility because

−0.7T−1 = −0.24 has been attached to the transition probability of attribute 2.

Similar changes can be seen in 9. We provide the transition matrix for Profile 1 built

under this consideration in Table 10.

Table 9: Parameters and parameter estimates from simulations

Parameters (x21, x31) (x31, x21) (x21, x34) (x34, x21) (x11, x33) (x33, x11)

θ1 β̂1 β̂1 β̂1 β̂1 0.9β̂1 1.7β̂1

θ2 −0.7T−1β̂2 1.1β̂2 −0.7T−1β̂2 1.1β̂2 β̂2 β̂2

θ3 0.9β̂3 1.7β̂3 0.9β̂3 1.7β̂3 0.9β̂3 1.7β̂3

θ11 β̂11 β̂11 β̂11 β̂11 0.9β̂11 1.1β̂11

θ12 β̂12 β̂12 β̂12 β̂12 β̂12 β̂12

θ21 0.5β̂21 1.1β̂21 0.5β̂21 1.1β̂21 β̂21 β̂21

θ22 β̂22 β̂22 β̂22 β̂22 β̂22 β̂22

θ23 β̂23 β̂23 β̂23 β̂23 β̂23 β̂23

θ31 1.15β̂31 0.9β̂31 β̂31 β̂31 β̂31 β̂31

θ32 β̂32 β̂32 β̂32 β̂32 β̂32 β̂32

θ33 β̂33 β̂33 β̂33 β̂33 0.95β̂22 1.3β̂33

θ34 β̂34 β̂34 0.9β̂34 1.3β̂34 β̂34 β̂34

Note: A3 has no parameter estimate as it was the baseline category in the conditional
logit model. For the purpose of the transition matrix, we take β̂3 to be 0.5.
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Table 10: Stationary transition matrix in Scenario 3 for Profile 1

(x12, x22) 0.3060 0.0023 0.0131 0.0543 0.0011 0.6231

(x22, x12) 0.1475 0.0284 0.0172 0.2439 0.0076 0.5554

(x12, x34) 0.0522 0.2578 0.1806 0.0745 0.4013 0.0335

(x34, x12) 0.0250 0.4221 0.0731 0.1443 0.3004 0.0351

(x22, x34) 0.3396 0.0435 0.1255 0.1176 0.0449 0.3288

(x34, x22) 0.4094 0.0071 0.0470 0.0162 0.0062 0.4687

The value function/expected utilities for Profile 1 are displayed in Figure 7 along

with the difference in the value function over time. The choice pair that started as

the best (x22, x12), where x22 is the 2nd level of attribute 2 is the best and x12 is

the 2nd level of attribute 1 is the worst, has now been changed to (x34, x12) starting

at time t = 3. The intent was to validate the transition probability moving from

attribute 2 to attribute 3 as the best and from attribute-level x22 to x34 as the best.

The opposite pair (x12, x22) stayed the worst choice pair throughout the experiment.

The worst pair has not changed because the focus was on altering the best pair.

Color Choice Pair 
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Figure 6: Legend corresponding to Figure 7
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5.1.4 SCENARIO 4
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Scenario 4 is an extension of Scenario 3 in the sense that the coefficient associated

with the transition probabilities are dynamic in the fact that we exponentiated the

coefficient to the tth power. So, respondents are allowed to make different decisions

under a dynamic transition probabilities. Among the probabilities that have the

noticeable changes in the transition probabilities are given in Table 11.

Respondents who used to consider attribute 2 with positive utility are now con-

sidering it with negative utility because −0.7T−t has been attached to the transition

probability of attribute 2 changing over time. As for attribute 3, the coefficients

change at the rate 1.3t at the attribute-level x34. Similar changes can be seen in

the transition parameters given in Table 11. We provide the transition matrix for

Profile 1 at time t = 2, 3, 4 built under this consideration in tables 12, 13, and 14,

respectively.

Table 11: Parameters and parameter estimates from simulations

Parameters (x21, x31) (x31, x21) (x21, x34) (x34, x21) (x11, x33) (x33, x11)

θ1 β̂1 β̂1 β̂1 β̂1 0.9tβ̂1 1.7tβ̂1

θ2 −0.7T−tβ̂2 1.1tβ̂2 −0.7T−tβ̂2 1.1tβ̂2 β̂2 β̂2

θ3 0.9tβ̂3 1.7tβ̂3 0.9tβ̂3 1.7tβ̂3 0.9tβ̂3 1.7tβ̂3

θ11 β̂11 β̂11 β̂11 β̂11 0.9tβ̂11 1.1tβ̂11

θ12 β̂12 β̂12 β̂12 β̂12 β̂12 β̂12

θ21 0.5tβ̂21 1.1tβ̂21 0.5tβ̂21 1.1tβ̂21 β̂21 β̂21

θ22 β̂22 β̂22 β̂22 β̂22 β̂22 β̂22

θ23 β̂23 β̂23 β̂23 β̂23 β̂23 β̂23

θ31 1.15tβ̂31 0.9tβ̂31 β̂31 β̂31 β̂31 β̂31

θ32 β̂32 β̂32 β̂32 β̂32 β̂32 β̂32

θ33 β̂33 β̂33 β̂33 β̂33 0.95tβ̂22 1.3tβ̂33

θ34 β̂34 β̂34 0.9tβ̂34 1.3tβ̂34 β̂34 β̂34

Note: A3 has no parameter estimate as it was the baseline category in the conditional
logit model. For the purpose of the transition matrix, we take β̂3 to be 0.5.
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Table 12: Dynamic transition matrix in Scenario 4 at time t = 2 for Profile 1

(x12, x22) 0.4076 0.0009 0.0142 0.0259 0.0007 0.5508

(x22, x12) 0.1043 0.0506 0.0157 0.3361 0.0109 0.4823

(x12, x34) 0.0785 0.1708 0.2696 0.0497 0.3976 0.0337

(x34, x12) 0.0186 0.4735 0.0376 0.2341 0.1898 0.0464

(x22, x34) 0.3000 0.0641 0.1422 0.1353 0.0657 0.2926

(x34, x22) 0.3431 0.0039 0.0222 0.0607 0.0024 0.5678

Table 13: Dynamic transition matrix in Scenario 4 at time t = 3 for Profile 1

(x12, x22) 0.5142 0.0003 0.0143 0.0114 0.0004 0.4595

(x22, x12) 0.1149 0.0120 0.0065 0.2113 0.0021 0.6531

(x12, x34) 0.1081 0.1028 0.3686 0.0301 0.3595 0.0309

(x34, x12) 0.0109 0.4190 0.0108 0.4242 0.0667 0.0684

(x22, x34) 0.4179 0.0128 0.0744 0.0717 0.0130 0.4102

(x34, x22) 0.2122 0.0015 0.0053 0.0612 0.0005 0.7193

Table 14: Dynamic transition matrix in Scenario 4 at time t = 4 for Profile 1

(x12, x22) 0.6188 0.0001 0.0134 0.0046 0.0002 0.3629

(x22, x12) 0.1047 0.0047 0.0032 0.1554 0.0007 0.7314

(x12, x34) 0.1374 0.0563 0.4658 0.0166 0.2981 0.0259

(x34, x12) 0.0032 0.1847 0.0008 0.7117 0.0063 0.0933

(x22, x34) 0.4563 0.0040 0.0431 0.0420 0.0040 0.4505

(x34, x22) 0.0677 0.0003 0.0003 0.0579 0.0000 0.8737

The value function/expected utilities for Profile 1 are displayed in Figure 9 along

with the difference in the value function over time. The choice pair that started as

the best (x22, x12), where x22 is the 2nd level of attribute 2 is the best and x12 is

the 2nd level of attribute 1 is the worst, has now been changed to (x34, x12) between

t = 2 and t = 3 in contrast with Scenario 3. The intent to validate the transition

probability moving from attribute 2 to attribute 3 as the best as in Scenario 3.
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Figure 8: Legend corresponding to Figure 9
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Figure 9: Expected discounted utility and their differences over time for Profile 1

5.1.5 SCENARIO 5
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We ran the simulation under this scenario with advantageous proposed hybrid

structure of Scenario 1 using the functional form of the utility as described in Chapter

4. The transition matrix is stationary and defined as in Scenario 1. The weights

associated to the attributes and attribute levels are selected as:

bA1 = wA1 = −2.

bA2 = wA2 = 5.

bA3 = wA3 = 1.

bA11 = wA11 = bA12 = wA12 = −2.

bA21 = wA21 = bA22 = wA22 = bA23 = wA23 = 5.

bA31 = wA31 = bA32 = wA32 = bA33 = wA33 = bA34 = wA34 = 1.

Referring back to Chapter 3, the systematic component as a function of the best

and worst attribute-level in the pair, is as in Equation (44),

Vijj′ = (ft(xij′)− gt(xij′))
′β,

where f and g, as in Equation (53) and (54) are defined as,

f(xij) =
K∑
k=1

[
bAkIAk(xij) +

lk∑
j=1

bAkxk IAkxk(xij)

]

and

g(xij′) = −
K∑
k=1

[
wAkIAk(xij′) +

lk∑
j=1

wAkxk IAkxk(xij′)

]
.

The value function/expected utilities for Profile 1 are displayed in Figure 11 along

with the difference in the value functions over time. Choice pair (x22, x12), where x22

is the 2nd level of attribute 2 is the best and x12 is the 2nd level of attribute 1 is the

worst, still remains the choice with the highest expected utility as in Scenario 1. The

opposite pair (x12, x22) is the worst choice pair. The pair (x34, x22) has a sharp drop
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between time t = 3 and t = 4 because of the change in the weights applied to the

attributes and attribute-levels from Equation (44).
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Figure 10: Legend corresponding to Figure 11
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Figure 11: Expected discounted utility and their differences over time for Profile 1

5.1.6 SCENARIO 6
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We ran the simulation under this scenario with advantageous proposed hybrid

structure of Scenario 2 using the functional form as described in Scenario 5. The

value function/expected utilities for Profile 1 are displayed in Figure 13 along with

the difference in value functions. Choice pair (x22, x12), where x22 is the 2nd level

of attribute 2 is the best and x12 is the 2nd level of attribute 1 is the worst, still

remains the choice with the highest expected utility as in Scenario 5. The opposite

pair (x12, x22) is the worst choice pair. We also notice more shifts in expected utility

than in previous scenarios for Profile 1. Scaling the data makes the utilities shift in

much more extreme values.

Color Choice Pair 

 (x12 , x22) 

 (x22 , x12) 

 (x12 , x34) 

 (x34 , x12) 

 (x22 , x34) 

 (x34 , x22) 

 

 

 

 

"black","red","blue","firebrick","magenta","seagreen" 

Figure 12: Legend corresponding to Figure 13
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5.2 AGGREGATED DATA EXAMPLE
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We adapt our simulations of experiments to Flynn et al. (2007). The latter

conducted an attribute-level best-worst scaling type of study to examine the quality

of life of seniors. They considered a balanced design with five attributes (attachment,

security, role, enjoyment, and control) each with four attribute levels (none, little, lot,

and all) for attachment, security, and enjoyment and (none, few, many, all) for role

and control. The attribute-levels are about the hypothetical quality of life states of 30

people of age 65 or more studied at one time. In their paper, they provide a partial

look at their data and include the parameter estimates along with their standard

errors. Since the data is not entirely published/available, using their parameter

estimates, the data was generated under above rationale and simulations conducted.

There are K = 5 attributes, and each attribute with lk = 4, k = 1, 2, . . . , 5,

attribute-levels.

We use that study done by Flynn et al. (2007) as the basis for our simulations,

considering a full factorial study, with a total of 1024 profiles. As mentioned in

Street and Knox (2012), a full factorial design is often times costly and places an

overwhelming choice task on the shoulders of the respondents. Therefore, an optimal

partial factorial design, OMEP as in Chapter 3 was considered. In doing the compu-

tations in R, we utilized a package DoE.design. Using the oa.design option in that

R package, a subset of 32 profiles was produced and used in the simulations based

on a sample of n = 100 respondents.

Using the parameter estimates from Flynn et al. (2007), we generated data

from that model. We first compare the model parameters with those obtained in

Flynn et al. (2007). Using the model parameters, the utilities are estimated.

Attribute and attribute-level data in the experiments are a series of 1′s and 0′s,

indicating the attributes and attribute-levels in the choice pair. Looking Flynn et al.

(2007), the attribute-level data when the lthi attribute-level is chosen as best the data

is coded as −1 for the attribute-levels 1, 2, . . . , li − 1 and the data is coded as 1 for

the attribute-levels 1, 2, . . . , li − 1 when it is the worst to satisfy the identifiability

conditions. In fact Street and Burgess (2007) explained that for attribute-level point

estimates, they satisfy the following identifiability condition:

Σlk
i=1βi = 0
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or

βlk = −Σli−1
j=1 βj

for all k = 1, 2, . . . , K.

The data was then exported from R into the SAS environment. Using the SAS

procedure called MDC (multinomial discrete choice), the conditional logit model was

fitted to the data. The parameter estimates from the Flynn et al. (2007) paper and

from our simulated data are given in Table 15. The simulated data appears to be

similar to their data based on how close the parameter estimates are. Our Akaike

Information Criterion (AIC) statistic for the model is 16, 384; however, this provides

little to no insight with regards to the fit of the model as mentioned in Flynn et al.

(2010). The constant in the choice probability equation cancels out and has no

impact on the simulation of the choices.

The probabilities to simulate choice behavior were computed using Equation (23).

Using the original parameter estimates provided in Flynn et al. (2007), in Table 15,

the values of Vijj′ were computed. Lets consider the choice pair (Attachment None,

Enjoyment Lot). From Table 15, the associated parameter estimates with this pair

are given as,

β̂A1 = 0.8142 for Attachment,

β̂A3 = 0.2842 for Enjoyment,

β̂A1x1 = −1.8535 for Attachment None,

and β̂A3x3 = 0.6844 for Enjoyment Lot.

Referring to Equation (27) the value of Vijj′ for this pair would be,

V̂ijj′ = exp(V̂ij − V̂ij′) = exp((β̂Aj + β̂Ajxj)− (β̂Aj′ + β̂Aj′xj′ )

= exp((0.8142 + 0.2842)− (−1.8535 + 0.6844)).

Obtaining these values for all choice pairs the probabilities of choice selection were

determined per profile and consumer choices were simulated.
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Table 15: Parameter estimates from Flynn et al. (2007) paper and our simulation of
their data

Flynn et al. Simulated

Parameters Estimates SE Estimates SE

Constant -0.3067 0.0750 0.0500 *

Attachment 0.8105 0.0803 0.8142 *

Security * * * *

Enjoyment 0.2632 0.1010 0.2842 0.0394

Role 0.1908 0.0974 0.1611 0.0400

Control 0.1076 0.0971 0.1148 0.0402

Attachment None -1.9678 0.1129 -1.8535 0.0548

Attachment Little 0.1694 0.1012 0.1389 0.0532

Attachment Lot 0.9053 0.0905 0.9210 0.0561

Attachment All 0.8932 * 0.7936 *

Security None -0.6123 0.1180 -0.6262 0.0541

Security Little -0.3761 0.1302 -0.4077 0.0547

Security Lot 0.0373 0.1153 0.1027 0.0543

Security All 0.9511 * 0.9312 *

Enjoyment None -0.8888 0.1286 -0.8166 0.0542

Enjoyment Little -0.3367 0.1632 -0.3814 0.0544

Enjoyment Lot 0.6561 0.1493 0.6844 0.0548

Enjoyment All 0.5695 * 0.5136 *

Role None -0.8956 0.1239 -0.8903 0.0546

Role Few -0.0277 0.1532 -0.0079 0.0546

Role Many 0.4435 0.1363 0.4007 0.0546

Role All 0.4798 * 0.4975 *

Control None -0.8085 0.1122 -0.7254 0.0546

Control Few 0.0835 0.1596 0.0755 0.0552

Control Many 0.2780 0.1376 0.2592 0.0543

Control All 0.4471 * 0.3907 *

From the parameter estimates provided in Table 15, we can determine the choice

pairs with the highest and lowest utilities for the experiment. The choice pairs with
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the highest utilities are given in Table 16, and the pairs with the lowest utilities are

given in Table 17. The pair (x13, x51) provides the greatest utility of any pair in

the experiment as seen in Table 16. The pair (x13, x51) has the attribute Attach-

ment and attribute-level Lot as the best and attribute Control and level None as the

worst. Looking at the attribute and attribute-level impacts, or the parameter esti-

mates, given in Table 15, this choice pair having the highest utility makes sense. We

see that the attribute attachment has the largest impact in comparison to security,

which was also noted in Flynn et al. (2007). The attribute with the smallest impact

in comparison to security was control. Looking at the attribute-levels for these at-

tributes, we see that the level lot for attachment has the largest positive impact, and

attribute-level none for control has the largest negative impact.

Table 16: Choice pairs with the highest utility in the experiment

Best Attribute Level Worst Attribute Level Utility

1 3 5 1 8.9107

1 3 4 1 7.7977

1 4 5 1 7.2599

1 3 3 1 6.9108

1 4 4 1 6.6562

1 3 2 1 6.4402

Table 17: Choice pairs with the lowest utility in the experiment

Best Attribute Level Worst Attribute Level Utility

5 1 1 3 -4.3159

4 1 1 3 -4.1167

5 1 1 4 -3.9912

3 1 1 3 -3.9082

4 1 1 4 -3.8493

2 1 1 3 -3.7974

5.2.1 SCENARIO 1
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For the simulated data of Flynn et al. (2007), we consider MDPs where the

respondents are more likely to choose the same alternative at each time point. The

transition parameters θtsi , where sti = (xij, xij′) are defined as for the attributes as,

θtsiAk =


3|βAk |, if xij ∈ Ak,
−3|βAk |, if xij′ ∈ Ak,
βAk , otherwise,

(70)

and for the attribute-levels,

θtsiAkxik =


3|βAkxik |, if xij = xik where xik ∈ Ak,
−3|βAkxik |, if xij′ = xik where xik ∈ Ak,
βAkxik , otherwise,

(71)

where j 6= j′, j, j′, k = 1, 2, . . . , K, 1 ≤ xk ≤ lk, and i = 1, 2, . . . , G. The goal of this

scenario was to design the transition probabilities in a way that the choice made at t

is most likely to be made at t+ 1. If we considered asim(t) = βm for i = 1, 2, . . . , G,

and m = 1, 2, . . . , p, then the system would remain static and every row of the

transition matrix would be the same. Recall that p = K +
K∑
k=1

lk = 25 is the number

of parameters. We consider 3|βm| when a state or choice pair at time t + 1 has the

same best attribute and attribute-level as the state occupied at time t, and −3|βm|
when a state or choice pair at time t+ 1 has the same worst attribute and attribute-

level as the state occupied at time t. We consider |βm| to control the direction of the

impact making sure it is positive for the best attribute and attribute-level of si and

use −|βm| to make sure its negative for the worst attribute and attribute-level of si.

We use 3 to increase the impact of the best and worst attributes and attribute-levels

of si. The definition of asim(t) in this way insures that states with common best and

worst attributes and attribute-levels as the present state occupied, sti = (xij, xij′),

have a greater probability of being transitioned to, where i = 1, 2, . . . , G, j 6= j′,

j, j′ = 1, 2, . . . , K, and t = 1, 2, . . . , T .

Table 16 reveals that attachment one of the most important preference for the

DCEs. In fact it confirms the result obtained in Flynn et al. (2010). Since only one

level of attachment is represented in each profile, we do not compare the attribute-

levels with those found in Flynn et al. (2010). Flynn et al. (2010) mention that the
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opposite relative preference are for attachment and control. We see the same pattern

in Tabel 16.

The value function/expected utilities for Profile 1 are displayed in Figure 15

along with the difference in value function. Choice pair (x12, x51), where x12 is the

attribute-level little of attribute attachment is the best and x51 is the attribute-level

none of attribute control is the worst, corresponds to the highest expected utility.

This makes the simulation study a solution as mentioned in Flynn et al. (2007) in

the best-worst studies of expected heterogeneity in respondents preferences.

The value function/expected utilities for Profile 9 are displayed in Figure 17

along with the difference in value function. Choice pair (x34, x11), where x34 is the

attribute-level all of attribute enjoyment is the best and x11 is the attribute-level none

of attribute attachment is the worst, corresponds to the highest expected utility. In

Profile 1, the attribute attachment as the best, and in Profile 9, attachment is the

worst. As mentioned in Flynn et al. (2007), the levels for attachment have a greater

range than the other attributes. This range of levels is how attachment is the best

attribute in one profile and the worst in another.
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Table 18: Stationary transition matrix in Scenario 1 for Profile 1

(x12, x23) 0.518 0.000 0.038 0.001 0.081 0.000 0.192 0.000 0.000 0.069 0.001 0.032 0.002 0.014 0.011 0.002 0.026 0.001 0.012 0.002

(x23, x12) 0.000 0.487 0.000 0.226 0.000 0.105 0.001 0.044 0.010 0.002 0.022 0.001 0.052 0.000 0.010 0.002 0.024 0.001 0.011 0.002

(x12, x33) 0.025 0.000 0.703 0.000 0.037 0.000 0.088 0.000 0.065 0.000 0.003 0.002 0.008 0.001 0.000 0.043 0.000 0.018 0.005 0.001

(x33, x12) 0.000 0.076 0.000 0.703 0.000 0.051 0.000 0.021 0.000 0.021 0.003 0.002 0.008 0.001 0.032 0.000 0.075 0.000 0.005 0.001

(x12, x42) 0.091 0.001 0.063 0.001 0.331 0.000 0.032 0.000 0.006 0.012 0.031 0.002 0.030 0.002 0.044 0.002 0.043 0.002 0.008 0.009

(x42, x12) 0.000 0.223 0.000 0.320 0.000 0.262 0.001 0.063 0.005 0.010 0.006 0.008 0.024 0.002 0.008 0.005 0.034 0.001 0.028 0.002

(x12, x51) 0.025 0.000 0.018 0.000 0.038 0.000 0.701 0.000 0.002 0.003 0.004 0.002 0.065 0.000 0.005 0.001 0.093 0.000 0.043 0.000

(x51, x12) 0.000 0.076 0.000 0.110 0.000 0.051 0.000 0.681 0.002 0.003 0.003 0.002 0.000 0.020 0.005 0.001 0.000 0.014 0.000 0.031

(x23, x33) 0.003 0.011 0.229 0.000 0.012 0.002 0.029 0.001 0.469 0.000 0.025 0.001 0.058 0.001 0.000 0.101 0.001 0.043 0.013 0.002

(x33, x23) 0.082 0.000 0.001 0.034 0.013 0.003 0.031 0.001 0.000 0.501 0.001 0.036 0.002 0.015 0.078 0.000 0.185 0.000 0.013 0.002

(x23, x42) 0.009 0.038 0.020 0.018 0.103 0.003 0.100 0.003 0.040 0.009 0.211 0.002 0.206 0.002 0.098 0.004 0.095 0.004 0.018 0.019

(x42, x23) 0.226 0.001 0.016 0.015 0.020 0.012 0.084 0.003 0.001 0.215 0.001 0.176 0.006 0.042 0.019 0.013 0.079 0.003 0.065 0.004

(x23, x51) 0.002 0.010 0.005 0.005 0.011 0.002 0.206 0.000 0.011 0.002 0.023 0.001 0.422 0.000 0.011 0.002 0.196 0.000 0.091 0.000

(x51, x23) 0.095 0.000 0.007 0.006 0.015 0.003 0.001 0.038 0.001 0.090 0.001 0.042 0.000 0.557 0.014 0.003 0.001 0.040 0.001 0.087

(x33, x42) 0.014 0.006 0.002 0.058 0.053 0.002 0.051 0.002 0.001 0.088 0.035 0.003 0.034 0.003 0.319 0.000 0.312 0.000 0.009 0.010

(x42, x33) 0.011 0.005 0.324 0.000 0.010 0.006 0.040 0.001 0.214 0.000 0.006 0.009 0.027 0.002 0.000 0.251 0.001 0.060 0.031 0.002

(x33, x51) 0.004 0.002 0.000 0.016 0.006 0.001 0.110 0.000 0.000 0.024 0.004 0.002 0.073 0.000 0.036 0.000 0.672 0.000 0.049 0.000

(x51, x33) 0.004 0.002 0.113 0.000 0.006 0.001 0.000 0.015 0.075 0.000 0.004 0.002 0.000 0.023 0.000 0.050 0.000 0.668 0.000 0.035

(x42, x51) 0.010 0.004 0.007 0.006 0.008 0.005 0.272 0.000 0.00 0.009 0.00 0.008 0.179 0.000 0.008 0.005 0.258 0.000 0.211 0.000

(x51, x42) 0.020 0.009 0.014 0.013 0.073 0.002 0.002 0.078 0.009 0.019 0.048 0.004 0.002 0.118 0.070 0.003 0.002 0.082 0.000 0.432
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Color Choice Pair Color Choice Pair 

 (x12 , x23)  (x23 , x42) 

 (x23 , x12)  (x42 , x23) 

 (x12 , x33)  (x23 , x51) 

 (x33 , x12)  (x51 , x23) 

 (x12 , x42)  (x33 , x42) 

 (x42 , x12)  (x42 , x33) 

 (x12 , x51)  (x33 , x51) 

 (x51 , x12)  (x51 , x33) 

 (x23 , x33)  (x42 , x51) 

 (x33 , x23)  (x51 , x42) 

 

 

  

 

"black","red","blue","firebrick","magenta","seagreen","chocolate","forestgreen","darkslateblue","slateg

ray","violetred","turquoise","thistle","maroon4","orange3","hotpink2","green3","aquamarine4","blue4"

,"orangered" 

Figure 14: Legend corresponding to Figure 15.
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Figure 15: Expected discounted utility and their differences over time for the Profile
1
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Color Choice Pair Color Choice Pair 

 (x14 , x24)  (x24 , x44) 

 (x24 , x14)  (x44 , x24) 

 (x14 , x34)  (x24 , x51) 

 (x34 , x14)  (x51 , x24) 

 (x14 , x44)  (x34 , x44) 

 (x44 , x14)  (x44 , x34) 

 (x14 , x51)  (x34 , x51) 

 (x51 , x14)  (x51 , x34) 

 (x24 , x34)  (x44 , x51) 

 (x34 , x24)  (x51 , x44) 

 

 

  

 

"black","red","blue","firebrick","magenta","seagreen","chocolate","forestgreen","darkslateblue","slateg

ray","violetred","turquoise","thistle","maroon4","orange3","hotpink2","green3","aquamarine4","blue4"

,"orangered" 

Figure 16: Legend corresponding to Figure 17
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Figure 17: Expected discounted utility and their differences over time for the Profile
1
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5.2.2 SCENARIO 2

In Scenario 2, respondents are allowed to make similar decisions at each time

epoch with a different rate, making the transition probabilities dynamic. For the

simulated data as in Flynn et al. (2007), we consider MDPs where in the respondents

are more likely to choose the same alternative at each time point. The transition

parameters θtsi where sti = (xij, xij′) are defined as for the attributes as,

θtsiAk =


3t|βAk |, if xij ∈ Ak,
−3t|βAk |, if xij′ ∈ Ak,
βAk , otherwise,

(72)

and for the attribute-levels,

θtsiAkxik =


3t|βAkxik |, if xij = xik where xik ∈ Ak,
−3t|βAkxik |, if xij′ = xik where xik ∈ Ak,
βAkxik , otherwise,

(73)

where j 6= j′, j, j′, k = 1, 2, . . . , K, 1 ≤ xk ≤ lk, and i = 1, 2, . . . , G.

The transition matrix at time t = 1 is kept the same as it was Scenario 1 in Table

18, and subsequent transition probabilities at time t = 2, 3, 4 are given in tables

19, 20, and 21, respectively. The same best-worst pair (x12, x51), where x12 is the

attribute-level little of attribute attachment is the best and x51 is the attribute-level

none of attribute control is the worst, corresponds to the highest expected utility as

it was in Scenario 1 with a slight difference in the expected utilities. This is because

the transition matrices are reinforcing those choices over time. This explains why the

transition matrix under Table 21 is the identity matrix as expected under the trend

in the utility. We also note a clustering in Figure 19 of the expected utilities into 5

groups. This membership in the utilities seems to better capture the estimates from

the DCEs as was suggested in Flynn et al. (2010) when they considered gender in

the quality of life study.
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Table 19: Dynamic transition matrix in Scenario 2 for Profile 1 at time t = 2

(x12, x23) 0.980 0.000 0.002 0.000 0.005 0.000 0.012 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(x23, x12) 0.000 0.974 0.000 0.015 0.000 0.007 0.000 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(x12, x33) 0.000 0.000 0.999 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(x33, x12) 0.000 0.000 0.000 0.999 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(x12, x42) 0.048 0.000 0.033 0.000 0.748 0.000 0.170 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(x42, x12) 0.000 0.129 0.000 0.185 0.000 0.650 0.000 0.036 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(x12, x51) 0.000 0.000 0.000 0.000 0.000 0.000 0.999 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(x51, x12) 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.998 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(x23, x33) 0.000 0.000 0.016 0.000 0.000 0.000 0.000 0.000 0.973 0.000 0.000 0.000 0.001 0.000 0.000 0.007 0.000 0.003 0.000 0.000

(x33, x23) 0.001 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.980 0.000 0.000 0.000 0.000 0.005 0.000 0.012 0.000 0.000 0.000

(x23, x42) 0.000 0.031 0.001 0.001 0.012 0.000 0.003 0.000 0.033 0.000 0.737 0.000 0.167 0.000 0.011 0.000 0.003 0.000 0.000 0.002

(x42, x23) 0.180 0.000 0.000 0.000 0.000 0.001 0.002 0.000 0.000 0.171 0.000 0.600 0.000 0.033 0.000 0.002 0.002 0.000 0.008 0.000

(x23, x51) 0.000 0.000 0.000 0.000 0.000 0.000 0.016 0.000 0.000 0.000 0.000 0.000 0.962 0.000 0.000 0.000 0.015 0.000 0.007 0.000

(x51, x23) 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.001 0.000 0.000 0.000 0.989 0.000 0.000 0.000 0.002 0.000 0.005

(x33, x42) 0.000 0.000 0.000 0.032 0.000 0.000 0.000 0.000 0.000 0.048 0.000 0.000 0.000 0.000 0.749 0.000 0.170 0.000 0.000 0.000

(x42, x33) 0.000 0.000 0.193 0.000 0.000 0.000 0.000 0.000 0.127 0.000 0.000 0.000 0.000 0.000 0.000 0.643 0.000 0.036 0.000 0.000

(x33, x51) 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.998 0.000 0.000 0.000

(x51, x33) 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.998 0.000 0.000

(x42, x51) 0.000 0.000 0.000 0.000 0.000 0.000 0.168 0.000 0.000 0.000 0.000 0.000 0.111 0.000 0.000 0.000 0.160 0.000 0.561 0.000

(x51, x42) 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.037 0.000 0.000 0.000 0.000 0.000 0.055 0.000 0.000 0.000 0.039 0.000 0.868
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Table 20: Dynamic transition matrix in Scenario 2 for Profile 1 at time t = 3

(x12, x23) 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(x23, x12) 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(x12, x33) 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(x33, x12) 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(x12, x42) 0.001 0.000 0.000 0.000 0.996 0.000 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(x42, x12) 0.000 0.002 0.000 0.004 0.000 0.993 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(x12, x51) 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(x51, x12) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(x23, x33) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(x33, x23) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(x23, x42) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.996 0.000 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(x42, x23) 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.000 0.992 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(x23, x51) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(x51, x23) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000

(x33, x42) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.996 0.000 0.003 0.000 0.000 0.000

(x42, x33) 0.000 0.000 0.004 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.993 0.000 0.001 0.000 0.000

(x33, x51) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000

(x51, x33) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000

(x42, x51) 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.004 0.000 0.990 0.000

(x51, x42) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001 0.000 0.998
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Table 21: Dynamic transition matrix in Scenario 2 for Profile 1 at time t = 4

(x12, x23) 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(x23, x12) 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(x12, x33) 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(x33, x12) 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(x12, x42) 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(x42, x12) 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(x12, x51) 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

(x51, x12) 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

(x23, x33) 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

(x33, x23) 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

(x23, x42) 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

(x42, x23) 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

(x23, x51) 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

(x51, x23) 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

(x33, x42) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

(x42, x33) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

(x33, x51) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

(x51, x33) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

(x42, x51) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

(x51, x42) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
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Color Choice Pair Color Choice Pair 

 (x12 , x23)  (x23 , x42) 

 (x23 , x12)  (x42 , x23) 

 (x12 , x33)  (x23 , x51) 

 (x33 , x12)  (x51 , x23) 

 (x12 , x42)  (x33 , x42) 

 (x42 , x12)  (x42 , x33) 

 (x12 , x51)  (x33 , x51) 

 (x51 , x12)  (x51 , x33) 

 (x23 , x33)  (x42 , x51) 

 (x33 , x23)  (x51 , x42) 

 

 

  

 

"black","red","blue","firebrick","magenta","seagreen","chocolate","forestgreen","darkslateblue","slateg

ray","violetred","turquoise","thistle","maroon4","orange3","hotpink2","green3","aquamarine4","blue4"

,"orangered" 

Figure 18: Legend corresponding to Figure 19
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Figure 19: Expected discounted utility and their differences over time for the Profile
1
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5.2.3 SCENARIO 3

In this scenario, respondents are allowed to make different decisions under a sta-

tionary transition probability. Among the probabilities that have noticeable changes

in transition are displayed in 22. Respondents who would consider attachment the

best attribute are now deflecting it with the rate of 0.3 and those that used to con-

sider the attribute-level control all as the best is inflated at a rate of 2.1. Similar

changes can be seen in 22. We provide the transition matrix for Profile 1 built under

this consideration in Table 23.

The value function/expected utilities for Profile 1 are displayed in Figure 21 along

with the difference in value function. The same best-worst pair (x12, x51), where x12

is the attribute-level little of attribute attachment is the best and x51 is the attribute-

level none of attribute control is the worst, corresponds to the highest expected utility

as it was in Scenario 2 with a slight difference in the expected utilities. The clustering

is much more perceptible.
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Table 22: Transition parameters for Scenario 3

Parameters (x12, x33) (x12, x31) (x12, x41) (x12, x51) (x33, x51) (x43, x11) (x54, x11)

θ1 0.3β̂1 0.3β̂1 0.3β̂1 0.3β̂1 0.85β̂1 β̂1 β̂1

θ2 0.85β̂2 0.85β̂2 0.85β̂2 0.85β̂2 0.85β̂2 0.85β̂2 0.85β̂2

θ3 β̂3 β̂3 0.85β̂3 0.85β̂3 0.95β̂3 0.85β̂3 0.85β̂3

θ4 0.85β̂4 0.85β̂4 β̂4 0.85β̂4 0.85β̂4 0.95β̂4 0.85β̂4

θ5 0.85β̂5 0.85β̂5 0.85β̂5 β̂5 β̂5 0.85β̂5 0.95β̂5

θ11 0.85β̂11 0.85β̂11 0.85β̂11 0.85β̂11 0.85β̂11 0.9β̂11 0.9β̂11

θ12 0.7β̂12 0.7β̂12 0.7β̂12 0.7β̂12 0.85β̂12 0.85β̂12 0.85β̂12

θ13 0.85β̂13 0.85β̂13 0.85β̂13 0.85β̂13 0.85β̂13 0.85β̂13 0.85β̂13

θ14 0.85β̂14 0.85β̂14 0.85β̂14 0.85β̂14 0.85β̂14 0.85β̂14 0.85β̂14

θ21 0.85β̂21 0.85β̂21 0.85β̂21 0.85β̂21 0.85β̂21 0.85β̂21 0.85β̂21

θ22 0.85β̂22 0.85β̂22 0.85β̂22 0.85β̂22 0.85β̂22 0.85β̂22 0.85β̂22

θ23 0.85β̂23 0.85β̂23 0.85β̂23 0.85β̂23 0.85β̂23 0.85β̂23 0.85β̂23

θ24 −0.80β̂24 −0.80β̂24 −0.80β̂24 −0.80β̂24 −0.80β̂24 −0.80β̂24 −0.80β̂24

θ31 0.85β̂31 0.50β̂31 0.85β̂31 0.85β̂31 0.85β̂31 0.85β̂31 0.85β̂31

θ32 0.85β̂32 0.85β̂32 0.85β̂32 0.85β̂32 0.85β̂32 0.85β̂32 0.85β̂32

θ33 0.9β̂33 0.85β̂33 0.85β̂33 0.85β̂33 1.50β̂33 0.85β̂33 0.85β̂33

θ34 0.85β̂34 0.85β̂34 0.85β̂34 0.85β̂34 0.85β̂34 0.85β̂34 0.85β̂34

θ41 0.85β̂41 0.85β̂41 1.70β̂41 0.85β̂41 0.85β̂41 0.85β̂41 0.85β̂41

θ42 0.85β̂42 0.85β̂42 0.85β̂42 0.85β̂42 0.85β̂42 0.85β̂42 0.85β̂42

θ43 0.85β̂43 0.85β̂43 0.85β̂43 0.85β̂43 0.85β̂43 0.70β̂43 0.85β̂43

θ44 0.85β̂44 0.85β̂44 0.85β̂44 0.85β̂44 0.85β̂44 0.85β̂44 0.85β̂44

θ51 0.85β̂51 0.85β̂51 0.85β̂51 0.70β̂51 0.70β̂51 0.85β̂51 0.85β̂51

θ52 0.85β̂52 0.85β̂52 0.85β̂52 0.85β̂52 0.85β̂52 0.85β̂52 0.85β̂52

θ52 0.85β̂52 0.85β̂52 0.85β̂52 0.85β̂52 0.85β̂52 0.85β̂52 0.85β̂52

θ53 0.85β̂53 0.85β̂53 0.85β̂53 0.85β̂53 0.85β̂53 0.85β̂53 0.85β̂53

θ54 0.85β̂54 0.85β̂54 0.85β̂54 0.85β̂54 0.85β̂54 0.85β̂54 2.1β̂54

Note: Security has no parameter estimate as it was the baseline category in the
conditional logit model. For the purpose of the transition matrix, we take β̂2 to be
0.5.
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Table 23: Stationary transition matrix in Scenario 3 for Profile 1

(x12, x23) 0.032 0.046 0.025 0.059 0.048 0.031 0.099 0.015 0.030 0.049 0.057 0.026 0.119 0.012 0.073 0.020 0.153 0.010 0.080 0.018

(x23, x12) 0.052 0.023 0.041 0.029 0.079 0.015 0.165 0.007 0.028 0.043 0.053 0.023 0.110 0.011 0.067 0.018 0.139 0.009 0.072 0.017

(x12, x33) 0.052 0.028 0.023 0.063 0.048 0.031 0.099 0.015 0.017 0.086 0.035 0.041 0.074 0.020 0.079 0.019 0.165 0.009 0.080 0.018

(x33, x12) 0.075 0.012 0.023 0.040 0.069 0.013 0.144 0.006 0.009 0.099 0.028 0.033 0.058 0.016 0.092 0.010 0.192 0.005 0.063 0.014

(x12, x42) 0.053 0.029 0.025 0.060 0.050 0.031 0.102 0.015 0.019 0.081 0.037 0.041 0.075 0.020 0.077 0.019 0.156 0.009 0.079 0.019

(x42, x12) 0.086 0.014 0.041 0.029 0.078 0.015 0.166 0.007 0.017 0.072 0.031 0.038 0.067 0.018 0.065 0.018 0.139 0.009 0.074 0.016

(x12, x51) 0.055 0.030 0.027 0.063 0.051 0.033 0.093 0.018 0.020 0.085 0.038 0.044 0.069 0.024 0.079 0.021 0.143 0.012 0.074 0.023

(x51, x12) 0.085 0.014 0.041 0.029 0.078 0.015 0.017 0.007 0.016 0.071 0.032 0.037 0.068 0.017 0.066 0.018 0.141 0.008 0.073 0.016

(x23, x33) 0.046 0.027 0.034 0.036 0.071 0.018 0.147 0.008 0.026 0.047 0.054 0.023 0.112 0.011 0.073 0.017 0.151 0.008 0.073 0.017

(x33, x23) 0.042 0.023 0.021 0.048 0.063 0.016 0.132 0.008 0.016 0.064 0.042 0.021 0.098 0.010 0.096 0.010 0.200 0.005 0.066 0.015

(x23, x42) 0.047 0.027 0.037 0.034 0.073 0.017 0.149 0.009 0.028 0.045 0.056 0.023 0.114 0.011 0.070 0.018 0.143 0.009 0.072 0.018

(x42, x23) 0.048 0.027 0.038 0.034 0.070 0.018 0.15 0.009 0.028 0.046 0.053 0.024 0.112 0.012 0.067 0.019 0.144 0.009 0.076 0.017

(x23, x51) 0.050 0.029 0.039 0.036 0.076 0.019 0.138 0.010 0.030 0.047 0.058 0.025 0.105 0.014 0.073 0.020 0.132 0.011 0.069 0.021

(x51, x23) 0.047 0.026 0.037 0.034 0.071 0.018 0.153 0.008 0.028 0.045 0.053 0.024 0.114 0.011 0.068 0.018 0.146 0.009 0.076 0.016

(x33, x42) 0.067 0.014 0.020 0.047 0.064 0.015 0.130 0.007 0.009 0.102 0.029 0.033 0.060 0.016 0.097 0.010 0.197 0.005 0.063 0.015

(x42, x33) 0.077 0.016 0.034 0.036 0.069 0.018 0.148 0.008 0.016 0.079 0.032 0.039 0.068 0.018 0.071 0.018 0.015 0.008 0.075 0.017

(x33, x51) 0.071 0.015 0.022 0.050 0.066 0.016 0.119 0.009 0.010 0.108 0.030 0.035 0.055 0.020 0.100 0.011 0.181 0.006 0.059 0.018

(x51, x33) 0.076 0.016 0.034 0.036 0.070 0.017 0.151 0.008 0.016 0.078 0.032 0.038 0.069 0.018 0.072 0.017 0.155 0.008 0.075 0.016

(x42, x51) 0.082 0.017 0.040 0.036 0.074 0.019 0.138 0.010 0.018 0.079 0.034 0.041 0.063 0.023 0.071 0.020 0.132 0.011 0.070 0.020

(x51, x42) 0.077 0.016 0.037 0.034 0.073 0.017 0.153 0.008 0.017 0.074 0.034 0.037 0.070 0.018 0.070 0.018 0.146 0.009 0.074 0.017
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Color Choice Pair Color Choice Pair 

 (x12 , x23)  (x23 , x42) 

 (x23 , x12)  (x42 , x23) 

 (x12 , x33)  (x23 , x51) 

 (x33 , x12)  (x51 , x23) 

 (x12 , x42)  (x33 , x42) 

 (x42 , x12)  (x42 , x33) 

 (x12 , x51)  (x33 , x51) 

 (x51 , x12)  (x51 , x33) 

 (x23 , x33)  (x42 , x51) 

 (x33 , x23)  (x51 , x42) 

 

 

  

 

"black","red","blue","firebrick","magenta","seagreen","chocolate","forestgreen","darkslateblue","slateg

ray","violetred","turquoise","thistle","maroon4","orange3","hotpink2","green3","aquamarine4","blue4"

,"orangered" 

Figure 20: Legend corresponding to Figure 21
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Figure 21: Expected discounted utility and their differences over time for the Profile
1
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5.2.4 SCENARIO 4

Scenario 4 is an extension of Scenario 3 in the sense that the coefficient associated

with the transition probabilities are dynamic. In fact, we exponentiate the coefficient

to the tth power. So, respondents are allowed to make different decisions under a

dynamic transition probabilities. Among the probabilities that have the noticeable

changes in the transition probabilities are given in Table 24.

In this scenario, respondents are allowed to make different decisions under a

dynamic transition probability. Among the probabilities that have noticeable changes

in transition are displayed in 24. Respondents who would consider attachment the

best attribute are now deflecting it with the rate of 0.3t and those that used to

consider the attribute-level control all as the best is inflated at a rate of 2.1t. Similar

changes can be seen in 24. We provide the transition matrix for Profile 1 at time

t = 2, 3, 4 built under this consideration in tables 25, 26, and 27, respectively.

The value function/expected utilities for Profile 1 are displayed in Figure 23 along

with the difference in the value function over time. The pair that started as the best

(x12, x51) , where x12 is the attribute-level little of attribute attachment is the best

and x51 is the attribute-level none of attribute control is the worst, has converted to

(x33, x51), where x33 is the attribute level lot of attribute enjoyment. The clustering

in expected utilities is much more perceptible.
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Table 24: Transition parameters for Scenario 4

Parameters (x12, x33) (x12, x31) (x12, x41) (x12, x51) (x33, x51) (x43, x11) (x54, x11)

θ1 0.3tβ̂1 0.3tβ̂1 0.3tβ̂1 0.3tβ̂1 0.85tβ̂1 β̂1 β̂1

θ2 0.85tβ̂2 0.85tβ̂2 0.85tβ̂2 0.85tβ̂2 0.85tβ̂2 0.85tβ̂2 0.85tβ̂2

θ3 β̂3 β̂3 0.85tβ̂3 0.85tβ̂3 0.95tβ̂3 0.85tβ̂3 0.85tβ̂3

θ4 0.85tβ̂4 0.85tβ̂4 β̂4 0.85tβ̂4 0.85tβ̂4 0.95tβ̂4 0.85tβ̂4

θ5 0.85tβ̂5 0.85tβ̂5 0.85tβ̂5 β̂5 β̂5 0.85tβ̂5 0.95tβ̂5

θ11 0.85tβ̂11 0.85tβ̂11 0.85tβ̂11 0.85tβ̂11 0.85tβ̂11 0.9tβ̂11 0.9tβ̂11

θ12 0.7tβ̂12 0.7tβ̂12 0.7tβ̂12 0.7tβ̂12 0.85tβ̂12 0.85tβ̂12 0.85tβ̂12

θ13 0.85tβ̂13 0.85tβ̂13 0.85tβ̂13 0.85tβ̂13 0.85tβ̂13 0.85tβ̂13 0.85tβ̂13

θ14 0.85tβ̂14 0.85tβ̂14 0.85tβ̂14 0.85tβ̂14 0.85tβ̂14 0.85tβ̂14 0.85tβ̂14

θ21 0.85tβ̂21 0.85tβ̂21 0.85tβ̂21 0.85tβ̂21 0.85tβ̂21 0.85tβ̂21 0.85tβ̂21

θ22 0.85tβ̂22 0.85tβ̂22 0.85tβ̂22 0.85tβ̂22 0.85tβ̂22 0.85tβ̂22 0.85tβ̂22

θ23 0.85tβ̂23 0.85tβ̂23 0.85tβ̂23 0.85tβ̂23 0.85tβ̂23 0.85tβ̂23 0.85tβ̂23

θ24 −0.80tβ̂24−0.80tβ̂24−0.80tβ̂24−0.80tβ̂24−0.80tβ̂24−0.80tβ̂24−0.80tβ̂24

θ31 0.85tβ̂31 0.50tβ̂31 0.85tβ̂31 0.85tβ̂31 0.85tβ̂31 0.85tβ̂31 0.85tβ̂31

θ32 0.85tβ̂32 0.85tβ̂32 0.85tβ̂32 0.85tβ̂32 0.85tβ̂32 0.85tβ̂32 0.85tβ̂32

θ33 0.9tβ̂33 0.85tβ̂33 0.85tβ̂33 0.85tβ̂33 1.50tβ̂33 0.85tβ̂33 0.85tβ̂33

θ34 0.85tβ̂34 0.85tβ̂34 0.85tβ̂34 0.85tβ̂34 0.85tβ̂34 0.85tβ̂34 0.85tβ̂34

θ41 0.85tβ̂41 0.85tβ̂41 1.70tβ̂41 0.85tβ̂41 0.85tβ̂41 0.85tβ̂41 0.85tβ̂41

θ42 0.85tβ̂42 0.85tβ̂42 0.85tβ̂42 0.85tβ̂42 0.85tβ̂42 0.85tβ̂42 0.85tβ̂42

θ43 0.85tβ̂43 0.85tβ̂43 0.85tβ̂43 0.85tβ̂43 0.85tβ̂43 0.70tβ̂43 0.85tβ̂43

θ44 0.85tβ̂44 0.85tβ̂44 0.85tβ̂44 0.85tβ̂44 0.85tβ̂44 0.85tβ̂44 0.85tβ̂44

θ51 0.85tβ̂51 0.85tβ̂51 0.85tβ̂51 0.70tβ̂51 0.70tβ̂51 0.85tβ̂51 0.85tβ̂51

θ52 0.85tβ̂52 0.85tβ̂52 0.85tβ̂52 0.85tβ̂52 0.85tβ̂52 0.85tβ̂52 0.85tβ̂52

θ52 0.85tβ̂52 0.85tβ̂52 0.85tβ̂52 0.85tβ̂52 0.85tβ̂52 0.85tβ̂52 0.85tβ̂52

θ53 0.85tβ̂53 0.85tβ̂53 0.85tβ̂53 0.85tβ̂53 0.85tβ̂53 0.85tβ̂53 0.85tβ̂53

θ54 0.85tβ̂54 0.85tβ̂54 0.85tβ̂54 0.85tβ̂54 0.85tβ̂54 0.85tβ̂54 2.1tβ̂53

Note: Security has no parameter estimate as it was the baseline category in the
conditional logit model. For the purpose of the transition matrix, we take β̂2 to be
0.5.
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Table 25: Dynamic transition matrix in Scenario 4 at t = 2 for Profile 1

(x12, x23) 0.028 0.059 0.024 0.069 0.042 0.039 0.079 0.021 0.035 0.048 0.061 0.027 0.114 0.015 0.071 0.023 0.133 0.013 0.076 0.022

(x23, x12) 0.054 0.025 0.049 0.028 0.085 0.016 0.158 0.009 0.033 0.041 0.057 0.024 0.107 0.013 0.064 0.021 0.119 0.011 0.069 0.020

(x12, x33) 0.045 0.037 0.021 0.078 0.042 0.039 0.078 0.021 0.019 0.086 0.038 0.043 0.071 0.023 0.080 0.020 0.150 0.011 0.076 0.022

(x33, x12) 0.062 0.010 0.011 0.055 0.058 0.011 0.108 0.006 0.005 0.136 0.023 0.027 0.044 0.014 0.126 0.005 0.237 0.003 0.047 0.013

(x12, x42) 0.047 0.038 0.025 0.071 0.049 0.036 0.081 0.022 0.023 0.079 0.044 0.040 0.073 0.024 0.082 0.022 0.137 0.013 0.070 0.025

(x42, x12) 0.091 0.015 0.049 0.028 0.082 0.017 0.159 0.009 0.020 0.069 0.033 0.041 0.064 0.021 0.062 0.022 0.120 0.011 0.072 0.019

(x12, x51) 0.049 0.040 0.026 0.075 0.046 0.043 0.069 0.029 0.024 0.083 0.042 0.048 0.062 0.032 0.078 0.026 0.116 0.017 0.067 0.030

(x51, x12) 0.089 0.015 0.048 0.027 0.083 0.016 0.164 0.008 0.019 0.067 0.034 0.039 0.066 0.020 0.063 0.021 0.124 0.011 0.071 0.018

(x23, x33) 0.044 0.033 0.035 0.042 0.068 0.021 0.128 0.011 0.030 0.048 0.059 0.024 0.110 0.013 0.075 0.019 0.140 0.010 0.071 0.020

(x33, x23) 0.032 0.022 0.010 0.075 0.048 0.015 0.090 0.008 0.008 0.091 0.040 0.018 0.074 0.010 0.135 0.005 0.253 0.003 0.050 0.014

(x23, x42) 0.045 0.033 0.040 0.037 0.078 0.019 0.130 0.011 0.034 0.043 0.067 0.022 0.112 0.013 0.075 0.020 0.125 0.012 0.064 0.023

(x42, x23) 0.047 0.032 0.041 0.038 0.068 0.022 0.132 0.012 0.033 0.046 0.056 0.027 0.109 0.014 0.065 0.023 0.127 0.012 0.076 0.020

(x23, x51) 0.049 0.036 0.043 0.040 0.076 0.023 0.114 0.015 0.037 0.047 0.065 0.027 0.098 0.018 0.073 0.024 0.109 0.016 0.063 0.028

(x51, x23) 0.046 0.032 0.040 0.037 0.069 0.021 0.136 0.011 0.033 0.045 0.057 0.026 0.112 0.013 0.067 0.022 0.131 0.011 0.075 0.019

(x33, x42) 0.049 0.013 0.009 0.071 0.051 0.013 0.086 0.008 0.005 0.138 0.027 0.024 0.044 0.015 0.144 0.004 0.240 0.003 0.042 0.015

(x42, x33) 0.074 0.020 0.035 0.042 0.066 0.022 0.129 0.011 0.018 0.081 0.034 0.042 0.067 0.022 0.073 0.020 0.141 0.010 0.074 0.020

(x33, x51) 0.054 0.014 0.010 0.078 0.050 0.015 0.076 0.010 0.005 0.151 0.026 0.030 0.039 0.020 0.141 0.006 0.212 0.004 0.042 0.019

(x51, x33) 0.072 0.019 0.034 0.041 0.068 0.021 0.133 0.011 0.018 0.079 0.040 0.040 0.069 0.020 0.074 0.019 0.146 0.010 0.074 0.019

(x42, x51) 0.081 0.022 0.044 0.040 0.073 0.024 0.114 0.015 0.023 0.078 0.038 0.047 0.059 0.030 0.070 0.025 0.110 0.016 0.066 0.027

(x51, x42) 0.074 0.020 0.040 0.037 0.078 0.019 0.136 0.011 0.021 0.071 0.040 0.037 0.070 0.021 0.075 0.020 0.131 0.011 0.067 0.022
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Table 26: Dynamic transition matrix in Scenario 4 at t = 3 for Profile 1

(x12, x23) 0.028 0.065 0.026 0.070 0.042 0.044 0.071 0.026 0.040 0.046 0.064 0.029 0.108 0.017 0.069 0.027 0.117 0.016 0.073 0.025

(x23, x12) 0.056 0.026 0.055 0.027 0.089 0.017 0.151 0.010 0.038 0.039 0.061 0.024 0.103 0.014 0.061 0.024 0.104 0.014 0.065 0.023

(x12, x33) 0.044 0.041 0.022 0.082 0.041 0.043 0.070 0.025 0.021 0.085 0.040 0.045 0.068 0.026 0.081 0.022 0.137 0.013 0.072 0.025

(x33, x12) 0.039 0.007 0.003 0.075 0.037 0.007 0.063 0.004 0.001 0.185 0.015 0.017 0.026 0.010 0.017 0.002 0.030 0.001 0.027 0.009

(x12, x42) 0.045 0.042 0.027 0.071 0.059 0.032 0.072 0.026 0.026 0.074 0.057 0.033 0.070 0.027 0.098 0.019 0.118 0.016 0.053 0.036

(x42, x12) 0.095 0.016 0.056 0.027 0.085 0.018 0.152 0.010 0.023 0.065 0.034 0.043 0.062 0.024 0.059 0.025 0.105 0.014 0.069 0.021

(x12, x51) 0.048 0.045 0.028 0.076 0.045 0.048 0.060 0.036 0.027 0.079 0.044 0.049 0.057 0.038 0.075 0.029 0.098 0.022 0.061 0.036

(x51, x12) 0.092 0.015 0.054 0.026 0.087 0.016 0.158 0.009 0.022 0.064 0.035 0.040 0.064 0.022 0.060 0.023 0.109 0.013 0.068 0.021

(x23, x33) 0.042 0.038 0.035 0.046 0.066 0.024 0.112 0.014 0.033 0.048 0.063 0.025 0.107 0.015 0.076 0.021 0.130 0.012 0.068 0.024

(x33, x23) 0.019 0.015 0.003 0.112 0.028 0.010 0.048 0.006 0.002 0.013 0.025 0.012 0.043 0.007 0.189 0.002 0.316 0.001 0.029 0.010

(x23, x42) 0.041 0.038 0.041 0.038 0.091 0.017 0.111 0.014 0.039 0.040 0.087 0.018 0.106 0.015 0.088 0.018 0.107 0.014 0.048 0.032

(x42, x23) 0.046 0.037 0.043 0.040 0.065 0.027 0.117 0.015 0.039 0.045 0.059 0.030 0.105 0.016 0.063 0.027 0.113 0.015 0.075 0.023

(x23, x51) 0.047 0.042 0.046 0.043 0.074 0.027 0.096 0.021 0.043 0.045 0.070 0.028 0.092 0.021 0.071 0.028 0.093 0.021 0.058 0.034

(x51, x23) 0.045 0.036 0.042 0.039 0.067 0.024 0.122 0.013 0.038 0.044 0.060 0.027 0.109 0.015 0.065 0.025 0.118 0.014 0.074 0.022

(x33, x42) 0.026 0.009 0.002 0.098 0.035 0.007 0.042 0.005 0.001 0.173 0.020 0.011 0.024 0.009 0.228 0.001 0.277 0.001 0.018 0.012

(x42, x33) 0.071 0.023 0.035 0.047 0.063 0.026 0.114 0.014 0.020 0.082 0.036 0.045 0.065 0.025 0.073 0.022 0.131 0.012 0.072 0.023

(x33, x51) 0.031 0.010 0.003 0.115 0.029 0.011 0.038 0.008 0.002 0.202 0.017 0.019 0.022 0.014 0.191 0.002 0.250 0.001 0.023 0.013

(x51, x33) 0.069 0.023 0.034 0.046 0.065 0.024 0.119 0.013 0.020 0.080 0.037 0.042 0.068 0.023 0.076 0.021 0.137 0.011 0.072 0.022

(x42, x51) 0.079 0.026 0.046 0.043 0.070 0.029 0.097 0.021 0.026 0.076 0.040 0.050 0.055 0.036 0.068 0.029 0.094 0.021 0.062 0.032

(x51, x42) 0.070 0.023 0.041 0.039 0.092 0.017 0.120 0.013 0.023 0.068 0.053 0.030 0.068 0.023 0.089 0.018 0.116 0.014 0.052 0.031
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Table 27: Dynamic transition matrix in Scenario 4 at t = 4 for Profile 1

(x12, x23) 0.029 0.068 0.029 0.069 0.043 0.046 0.067 0.029 0.044 0.045 0.065 0.0300 0.103 0.019 0.066 0.030 0.104 0.019 0.070 0.028

(x23, x12) 0.058 0.027 0.062 0.025 0.092 0.017 0.144 0.011 0.042 0.037 0.063 0.025 0.099 0.016 0.059 0.027 0.093 0.017 0.062 0.025

(x12, x33) 0.044 0.043 0.023 0.083 0.042 0.045 0.065 0.029 0.022 0.084 0.041 0.046 0.065 0.029 0.080 0.023 0.126 0.015 0.068 0.028

(x33, x12) 0.016 0.003 0.000 0.095 0.015 0.003 0.024 0.002 0.000 0.232 0.006 0.007 0.010 0.004 0.221 0.000 0.347 0.000 0.010 0.004

(x12, x42) 0.041 0.040 0.026 0.063 0.091 0.018 0.061 0.027 0.026 0.063 0.090 0.018 0.060 0.027 0.141 0.012 0.095 0.017 0.027 0.060

(x42, x12) 0.097 0.016 0.062 0.026 0.087 0.018 0.145 0.011 0.025 0.062 0.036 0.045 0.059 0.027 0.056 0.028 0.093 0.017 0.067 0.024

(x12, x51) 0.048 0.047 0.031 0.074 0.046 0.050 0.054 0.042 0.030 0.075 0.045 0.050 0.054 0.042 0.071 0.032 0.085 0.027 0.057 0.040

(x51, x12) 0.095 0.016 0.060 0.025 0.090 0.017 0.153 0.010 0.025 0.061 0.037 0.041 0.063 0.024 0.058 0.026 0.098 0.015 0.066 0.023

(x23, x33) 0.040 0.043 0.035 0.050 0.064 0.030 0.100 0.017 0.036 0.048 0.067 0.026 0.105 0.017 0.077 0.023 0.121 0.014 0.065 0.027

(x33, x23) 0.007 0.007 0.000 0.151 0.011 0.005 0.017 0.003 0.000 0.157 0.010 0.005 0.016 0.003 0.231 0.000 0.363 0.000 0.011 0.004

(x23, x42) 0.034 0.037 0.036 0.034 0.127 0.010 0.085 0.015 0.038 0.033 0.132 0.009 0.089 0.014 0.123 0.010 0.083 0.015 0.024 0.053

(x42, x23) 0.045 0.042 0.045 0.042 0.063 0.030 0.105 0.018 0.043 0.044 0.060 0.031 0.101 0.019 0.061 0.031 0.102 0.019 0.073 0.026

(x23, x51) 0.044 0.048 0.047 0.045 0.071 0.030 0.084 0.025 0.049 0.043 0.074 0.029 0.087 0.024 0.069 0.031 0.082 0.026 0.055 0.039

(x51, x23) 0.044 0.041 0.044 0.041 0.065 0.028 0.110 0.016 0.042 0.043 0.063 0.029 0.106 0.017 0.063 0.028 0.107 0.017 0.072 0.025

(x33, x42) 0.008 0.003 0.000 0.107 0.018 0.001 0.012 0.002 0.000 0.173 0.011 0.002 0.007 0.003 0.384 0.000 0.258 0.000 0.003 0.007

(x42, x33) 0.068 0.026 0.035 0.051 0.061 0.029 0.102 0.018 0.022 0.082 0.038 0.047 0.063 0.028 0.073 0.024 0.123 0.015 0.071 0.025

(x33, x51) 0.011 0.004 0.000 0.152 0.011 0.005 0.013 0.004 0.000 0.246 0.007 0.007 0.008 0.006 0.234 0.000 0.278 0.000 0.008 0.006

(x51, x33) 0.067 0.026 0.034 0.050 0.063 0.027 0.107 0.016 0.021 0.080 0.039 0.043 0.067 0.026 0.076 0.022 0.129 0.013 0.070 0.024

(x42, x51) 0.075 0.029 0.048 0.045 0.067 0.032 0.085 0.026 0.029 0.073 0.042 0.052 0.053 0.041 0.065 0.033 0.083 0.026 0.059 0.037

(x51, x42) 0.060 0.023 0.038 0.036 0.133 0.010 0.096 0.014 0.024 0.058 0.082 0.017 0.060 0.023 0.129 0.011 0.094 0.015 0.027 0.051
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Figure 22: Legend corresponding to Figure 23
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CHAPTER 6

CONCLUSION

Modeling DCEs has applications in many areas. However, it is challenging be-

cause of the large number of covariates, issues with reliability, and the condition

that consumer behaviors is a forwards evolving activity/practice. By extending the

idea of stationary process, we present a dynamic model with evaluation under ran-

dom utility analysis. Generic preferences are presented and best-worst choices are

identified.

Such results could guide researchers/practitioners in areas of health systems re-

search, public policy, transportation research, and economics, and clinical decision.

Steps that are the most appropriate for primary objective goals are provided. Dif-

ferent choice pairs were prioritized/arranged under selected transition probabilities.

We initialize the process under an MDP algorithm for the proposed data generations

and model building over time. We show relevant utility changes/classification in the

applications/examples.

The attribute-level best-worst DCMs considered in this dissertation provide a

general insight for modeling complex dependencies of time evolving decisions. The

decisions for the large data set are guided by a functional form of the expected utility

under identifiability constraints. Profile specific trends are displayed and pattern be-

haviors are exhibited. We highlighted compelling situations that allow shrinkage to-

wards referenced choices and show efficacy in both low and high dimensional data ex-

amples to make inferences on the best-worst decisions of interest. Our simulated and

aggregated data examples show the flexibility and wide applications of our proposed

techniques. Our methodology is easily reproducible. The functional dependency and

time evolving structure may accommodate additional arrangements/setups.

A potential area of concern in the application of MDPs for attribute-level best-

worst DCEs is the “curse of dimensionality” as mentioned in Rust (2008). As the

number of attributes, attribute-levels, and profiles grow in the experiment, the es-

timation process becomes exponentially more difficult. DCEs with larger number
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of attributes and attribute-levels have more choice sets and pairs to model across

time. For discrete processes as is considered in the attribut-level best-worst DCEs,

the amount of information that needs to be stored becomes overwhelming. The abil-

ity to guide the system becomes difficult due to the increased number of states and

choice sets considered. These issues should be considered when using MDPs.

Extensions of this work may include interactions of choice pairs under different

correlation structures. The first order Markov dependency structure presented here

may be extended to higher order decision processes under stationary and dynamic

transition probabilities. Extensions to the continuous time scale case are being ex-

plored.
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APPENDIX A

SELECTED R CODE

######################################################

#MDC Data to s imu la t e the data

MDC Data<−function (n , k ,m, est , nc ,nCH, p r o f i l e s , a l t 2 sort )

{
#a l t 2 s o r t are the cho i c e s w i th in each p r o f i l e

new<−1
pairs<−k∗ (k−1)
g<−n∗m∗pairs
subj<−vector ( , g )
pro f<−vector ( , g )
Ch . opt<−vector ( , g )
Y<−vector ( , g )
Cov<−matrix (nrow=g , ncol=nc , byrow=TRUE)

pi<−vector ( ,nCH)

for ( k in 1 : nCH){
pi [ k ]<−sum( e s t∗X[ k , ] )

}
for ( i in 1 :m){
q<−Set . pairs [ p r o f i l e s [ i ] , ]

p<−exp( p i [q ] ) /sum(exp( p i [q ] ) )

Ch<−rmultinom (n , 1 , p)

for ( j in 1 : n){
new1<−new+pairs−1
Y[new : new1 ]<−Ch[ , j ]
Ch . opt [new : new1 ]<−q
subj [new : new1 ]<−j
p ro f [new : new1 ]<−p r o f i l e s [ i ]

c ho i c e s<−c ( a l t 2 sort [ i , 1 ] , a l t 2 sort [ i , 2 ] , a l t 2 sort [ i , 3 ] ,

a l t 2 sort [ i , 4 ] , a l t 2 sort [ i , 5 ] , a l t 2 sort [ i , 6 ] )

R1<−new ;R2<−new+1;R3<−new+2;R4<−new+3;R5<−new+4;R6<−new+5;

#rows f o r each o f the k ( k−1)=6 cho i c e s

c1<−cho i c e s [ 1 ] ; c2<−cho i c e s [ 2 ] ; c3<−cho i c e s [ 3 ] ; c4<−cho i c e s [ 4 ] ;

c5<−cho i c e s [ 5 ] ; c6<−cho i c e s [ 6 ]
Cov [R1 , ]<−X[ c1 , ]

Cov [R2 , ]<−X[ c2 , ]



117

Cov [R3 , ]<−X[ c3 , ]

Cov [R4 , ]<−X[ c4 , ]

Cov [R5 , ]<−X[ c5 , ]

Cov [R6 , ]<−X[ c6 , ]

new<−new+pairs

} }

return ( df3<−data . frame ( sub j e c t=subj , prof i le=prof ,mode=Ch. opt , y=Y,

A1=Cov [ , 1 ] ,A2=Cov [ , 2 ] ,A3=Cov [ , 3 ] , Al11=Cov [ , 4 ] , Al12=Cov [ , 5 ] ,

Al21=Cov [ , 6 ] , Al22=Cov [ , 7 ] , Al23=Cov [ , 8 ] , Al31=Cov [ , 9 ] ,

Al32=Cov [ , 1 0 ] , Al33=Cov [ , 1 1 ] , Al34=Cov [ , 1 2 ] ) )

}
#################################################################

T. Prob<−function (T, t , beta . e s t ,X, k , levels ,m, p r o f i l e s ){
k<−num. at t

tau<−k∗ (k−1)
num. cov<−k+sum( levels )

Trans . par<−matrix (nrow=num. cho i ce s , ncol=num. cov )

beta<−vector ( ,num. cov )

t1<−T−t

for ( i in 1 :num. cho i c e s ){
Trans . par [ i , ]<−beta . e s t

i f (X[ i ,1]==1){Trans . par [ i , 1 ]<−( 1 . 7ˆ t )∗abs (beta . e s t [ 1 ] ) } else

i f (X[ i ,1]==−1){Trans . par [ i , 1 ]<−−(1.7ˆ t )∗abs (beta . e s t [ 1 ] ) }
else {Trans . par [ i , 1 ]<−beta . e s t [ 1 ] }

i f (X[ i ,2]==1){Trans . par [ i , 2 ]<−( 1 . 7ˆ t )∗abs (beta . e s t [ 2 ] ) } else

i f (X[ i ,2]==−1){Trans . par [ i , 2 ]<−−(1.7ˆ t )∗abs (beta . e s t [ 2 ] ) }
else {Trans . par [ i , 2 ]<−beta . e s t [ 2 ] }

i f (X[ i ,3]==1){Trans . par [ i , 3 ]<−( 1 . 7ˆ t )∗abs (2)} else

i f (X[ i ,3]==−1){Trans . par [ i , 3 ]<−−(1.7ˆ t )∗abs (2)}
else {Trans . par [ i , 3 ]<−0 .5}

i f (X[ i ,4]==1){Trans . par [ i , 4 ]<−( 1 . 7ˆ t )∗abs (beta . e s t [ 4 ] ) } else

i f (X[ i ,4]==−1){Trans . par [ i , 4 ]<−−(1.7ˆ t )∗abs (beta . e s t [ 4 ] ) }
else {Trans . par [ i , 4 ]<−beta . e s t [ 4 ] }

i f (X[ i ,5]==1){Trans . par [ i , 5 ]<−( 1 . 7ˆ t )∗abs (beta . e s t [ 4 ] ) } else

i f (X[ i ,5]==−1){Trans . par [ i , 5 ]<−−(1.7ˆ t )∗abs (beta . e s t [ 4 ] ) }
else {Trans . par [ i , 5 ]<−beta . e s t [ 4 ] }

i f (X[ i ,6]==1){Trans . par [ i , 6 ]<−( 1 . 7ˆ t )∗abs (beta . e s t [ 6 ] ) } else

i f (X[ i ,6]==−1){Trans . par [ i , 6 ]<−−(1.7ˆ t )∗abs (beta . e s t [ 6 ] ) }
else {Trans . par [ i , 6 ]<−beta . e s t [ 6 ] }

i f (X[ i ,7]==1){Trans . par [ i , 7 ]<−( 1 . 7ˆ t )∗abs (beta . e s t [ 7 ] ) } else

i f (X[ i ,7]==−1){Trans . par [ i , 7 ]<−−(1.7ˆ t )∗abs (beta . e s t [ 7 ] ) }
else {Trans . par [ i , 7 ]<−beta . e s t [ 7 ] }

i f (X[ i ,8]==1){Trans . par [ i , 8 ]<−( 1 . 7ˆ t )∗abs (beta . e s t [6 ]+beta . e s t [ 7 ] ) }
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else i f (X[ i ,8]==−1){Trans . par [ i , 8 ]<−−(1.7ˆ t )∗abs (beta . e s t [6 ]+beta . e s t [ 7 ] ) }
else {Trans . par [ i , 8 ]<−−(beta . e s t [6 ]+beta . e s t [ 7 ] ) }

i f (X[ i ,9]==1){Trans . par [ i , 9 ]<−( 1 . 7ˆ t )∗abs (beta . e s t [ 9 ] ) } else

i f (X[ i ,9]==−1){Trans . par [ i , 9 ]<−−(1.7ˆ t )∗abs (beta . e s t [ 9 ] ) }
else {Trans . par [ i , 9 ]<−beta . e s t [ 9 ] }

i f (X[ i ,10]==1){Trans . par [ i , 1 0 ]<−( 1 . 7ˆ t )∗abs (beta . e s t [ 1 0 ] ) } else

i f (X[ i ,10]==−1){Trans . par [ i , 1 0 ]<−−(1.7ˆ t )∗abs (beta . e s t [ 9 ] ) }
else {Trans . par [ i , 1 0 ]<−beta . e s t [ 1 0 ] }

i f (X[ i ,11]==1){Trans . par [ i , 1 1 ]<−( 1 . 7ˆ t )∗abs (beta . e s t [ 1 1 ] ) } else

i f (X[ i ,11]==−1){Trans . par [ i , 1 1 ]<−−(1.7ˆ t )∗abs (beta . e s t [ 1 1 ] ) }
else {Trans . par [ i , 1 1 ]<−beta . e s t [ 1 1 ] }

i f (X[ i ,12]==1){Trans . par [ i , 1 2 ]<−( 1 . 7ˆ t )∗abs (beta . e s t [9 ]+

beta . e s t [10 ]+beta . e s t [ 1 1 ] ) }
else i f (X[ i ,12]==−1){Trans . par [ i , 1 2 ]<−−(1.7ˆ t )∗abs (beta . e s t [9 ]+

beta . e s t [10 ]+beta . e s t [ 1 1 ] ) }
else {Trans . par [ i , 1 2 ]<−−(beta . e s t [9 ]+beta . e s t [10 ]+beta . e s t [ 1 1 ] ) }
}

Trans . prob<−matrix (nrow=num. cho i ce s , ncol=num. cho i c e s )

for ( i in 1 :num. cho i c e s ){
for ( j in 1 :num. cho i c e s ){

Trans . prob [ i , j ]<−sum( Trans . par [ i , ] ∗X[ j , ] )

} }
Trans . prob<−exp( Trans . prob )

t . prob<−matrix (nrow=m∗tau , ncol=tau )

NEW<−1
for ( i in 1 :m){

set<−Choices [ i , ]

Parameters<−Trans . prob

for ( j in 1 : tau ){
for ( k in 1 : tau ){

t . prob [NEW, k ]<−Parameters [ set [ j ] , set [ k ] ] /sum( Parameters [ set [ j ] , set ] )

}
NEW<−NEW+1

} }
return ( t . prob )

}
########################################################################

#Creat ing a l l o f the cho ice pa i r s

num. at t <− 3

levels <− c ( 2 , 3 , 4 )

cho i c e . pairs <− data . frame ( bestAtt=numeric ( 0 ) , be s tLeve l=numeric ( 0 ) ,

worstAtt=numeric ( 0 ) , worstLeve l=numeric ( 0 ) )

#we crea t e a l l p o s s i b l e pa i r s

num. cho i c e s<−nrow( cho i c e . pairs )

nCol<−sum(num. att , levels )
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########################################################################

# Choice S p e c i f i c Explanatory Var iab l e s

X<−matrix (nrow=num. cho i ce s , ncol=nCol , byrow=TRUE)

for ( i in 1 :num. cho i c e s ){
new<−num. at t

for ( k in 1 :num. at t ){
i f ( cho i c e . pairs$bestAtt [ i ]==k){X[ i , k ]<−1} else

i f ( cho i c e . pairs$worstAtt [ i ]==k){X[ i , k ]<−−1}
else {X[ i , k ]<−0}

for ( j in 1 : levels [ k ] ) {
new<−new+1

h<−levels [ k ]
i f (X[ i , k]==1){ i f ( j==h)

{ i f ( cho i c e . pairs$bes tLeve l [ i ]==j ){X[ i , (new−(h−1) ) : (new−1)]<−−1;
X[ i ,new ]<−1}

else X[ i ,new ]<−0} else

{ i f ( cho i c e . pairs$bes tLeve l [ i ]==j ){X[ i ,new ]<−1}
else X[ i ,new ]<−0}}

else i f (X[ i , k]==−1){ i f ( j==h){ i f ( cho i c e . pairs$worstLeve l [ i ]==j )

{X[ i , (new−(h−1) ) : (new−1)]<−1 ; X[ i ,new ]<−−1}
else X[ i ,new ]<−0} else { i f ( cho i c e . pairs$worstLeve l [ i ]==j )

{X[ i ,new ]<−−1} else X[ i ,new ]<−0}}
else {X[ i ,new ]<−0}

} } }
Choice<−seq ( 1 :num. cho i c e s )

###################################################################

Xtrans<−matrix (nrow=num. cho i ce s , ncol=nCol , byrow=TRUE)

for ( i in 1 :num. cho i c e s ){
new<−num. at t

for ( j in 1 :num. at t ){
i f ( cho i c e . pairs$bestAtt [ i ]==j ) {Xtrans [ i , j ]<−1} else

i f ( cho i c e . pairs$worstAtt [ i ]==j ) {Xtrans [ i , j ]<−−1}
else {Xtrans [ i , j ]<−0}
for ( k in 1 : levels [ j ] ) {
new<−new+1

i f ( Xtrans [ i , j ]==1){ i f ( cho i c e . pairs$bes tLeve l [ i ]==k){Xtrans [ i ,new ]<−1}
else {Xtrans [ i ,new ]<−0}}
else i f ( Xtrans [ i , j ]==−1){ i f ( cho i c e . pairs$worstLeve l [ i ]==k)

{Xtrans [ i ,new ]<−−1}
else {Xtrans [ i ,new ]<−0}}

else {Xtrans [ i ,new ]<−0}
} } }

#######################################################

l ibrary (DoE. base ) #Design o f Experiments package
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OMEP<−oa . des ign ( nlevels=levels )

#used to determine OMEP, in t h i s case t he r e i s no sub s e t

#of p r o f i l e s t h a t work so a l l 24 are used

cho i c e . p r o f i l e s<−data . frame ( prof i le=numeric ( 0 ) ,

bestAtt=numeric ( 0 ) , be s tLeve l=numeric ( 0 ) ,

worstAtt=numeric ( 0 ) , worstLeve l=numeric ( 0 ) )

row . number <− 0

#Determines which p r o f i l e each cho ice i s in

nr<−dim(OMEP) [ 1 ]

nc<−dim(OMEP) [ 2 ]

#pa i r s corresponding to p r o f i l e s

for ( i in 1 : nr ){
for ( j in 1 : ( nc−1)){

for ( k in ( j +1): nc ){
row . number <− row . number + 1

prof i le<−i
bestAtt<−j
be s tLeve l<−OMEP[ i , j ]

worstAtt<−k
worstLeve l<−OMEP[ i , k ]

cho i c e . p r o f i l e s [row . number , ]<−c ( profi le , bestAtt , bestLeve l ,

worstAtt , worstLeve l )

row . number<−row . number+1

cho i c e . p r o f i l e s [row . number , ]<−c ( profi le , worstAtt , worstLevel ,

bestAtt , be s tLeve l )

} } }
nr2<−dim( cho i c e . p r o f i l e s ) [ 1 ]

nr3<−dim( cho i c e . pairs ) [ 1 ]

set<−vector ( , nr2 )
#matching the pa i r s in the p r o f i l e s to cho ice pa i r s

for ( i in 1 : nr2 ){
for ( j in 1 : nr3 ){

i f ( cho i c e . p r o f i l e s [ i ,2]== cho i c e . pairs [ j , 1 ]

&& cho i c e . p r o f i l e s [ i ,3]== cho i c e . pairs [ j , 2 ]

&& cho i c e . p r o f i l e s [ i ,4]== cho i c e . pairs [ j , 3 ]

&& cho i c e . p r o f i l e s [ i ,5]== cho i c e . pairs [ j , 4 ] ) { set [ i ]<−j }
} }
cbind ( cho i c e . p r o f i l e s , set )

pro f . pairs<−num. at t∗ (num. att −1)
Set . pairs<−matrix (nrow=nr , ncol=pro f . pairs , byrow=TRUE, set )

df2<−data . frame (Ch1=Set . pairs [ , 1 ] , Ch2=Set . pairs [ , 2 ] , Ch3=Set . pairs [ , 3 ] ,

Ch4=Set . pairs [ , 4 ] , Ch5=Set . pairs [ , 5 ] , Ch6=Set . pairs [ , 6 ] )

p r o f i l e s 1<−seq ( 1 : 2 4 )

beta . e s t<−c (−2 ,1 .5 ,0 ,−2 ,0 ,1 .99 ,−0.29 ,0 ,− .92 ,−0.18 ,0 .5 ,0)
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n<−300 #number o f s u b j e c t s

nc<−length (beta . e s t )

m<−length ( p r o f i l e s 1 )

datK3<−MDC Data (n ,num. att ,m, beta . e s t , nc ,num. cho i ce s , p r o f i l e s 1 , Set . pairs )

################################################################

#U t i l i t y Computations

V<−pi<−vector ( ,num. cho i c e s )

beta .mod<−c (−2.0711 ,1 .5248 ,0 ,−2.0308 ,0 ,2 .0970 ,−0.3567 ,

0 ,−0.8914 ,−0.1805 ,0 .4911 ,0)

for ( i in 1 :num. cho i c e s ){
V[ i ]<−sum(beta .mod∗X[ i , ] )

p i [ i ]<−exp(V[ i ] )

}
Prob<−pi/sum( p i )

l ibrary (QRM) #Needed f o r the Type I Extreme Value D i s t r i b u t i o n

Quant i l e s<−vector ( ,num. cho i c e s )

for ( i in 1 :num. cho i c e s ){
Quant i l e s [ i ]<−sum(V < V[ i ] )

}
Quant i l e s<−( Quant i l e s +0.5)/num. cho i c e s

Error<−qGumbel ( Quant i l e s )

U t i l i t y 1<−Ut i l i t y 2<−vector ( ,num. cho i c e s )

for ( i in 1 :num. cho i c e s ){
Ut i l i t y 1 [ i ]<−V[ i ]+Error [ i ]

U t i l i t y 2 [ i ]<−V[ i ]

}
######################################################

T<−5
d i scount =0.95

r<−m∗tau
Exp . Value1<−matrix (nrow=r , ncol=T)

k<−num. at t

tau<−k∗ (k−1) #number o f cho i c e s per p r o f i l e

Choices<−cho i c e . prob<−matrix (nrow=m, ncol=tau )

for ( i in 1 : tau ){
for ( j in 1 :m){

Choices [ j , ]<−Set . pairs [ p r o f i l e s [ j ] , ]
q<−Choices [ j , ]

cho i c e . prob [ j , ]<−pi [q ] /sum( p i [q ] )

} }
new<−1
for ( i in 1 :m){
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new2<−new+tau−1
for ( t in 2 :T){

for ( j in 1 : tau ){
new3<−new+j−1
Exp . Value1 [new : new2 , 1 ]<−Ut i l i t y 1 [ Choices [ i , ] ]

t rans<−T. Prob (T, , beta .mod , Xtrans , k , levels ,m, p r o f i l e s 1 )

Trans<−t rans [new : new2 , ]

Valuepre<−Exp . Value1 [new : new2 , t−1]∗ t rans [ j , ]
l ibrary (QRM) #Needed f o r the Type I Extreme Value D i s t r i b u t i o n

Uti l i tyCh<−Ut i l i t y 2 [ Choices [ i , j ] ]+

qGumbel ( Quant i l e s [ Choices [ i , j ] ] , 0 , 1 . 5 ˆ t )

Exp . Value1 [ new3 , t ]<−Uti l i tyCh + discount∗sum( Valuepre )

} }
new<−new2+1

}
Dec i s i ons1<−matrix (nrow=m, ncol=T−1)
new<−1
for ( i in 1 :m){

new2<−new+tau−1
for ( t in 2 :T){
MAX<−max(Exp . Value1 [new : new2 , t ] )

Dec i s i on s1 [ i , t−1]<−which(Exp . Value1 [new : new2 , t ] %in% MAX)

}
new<−new2+1

}
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