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ABSTRACT 

IMPROVED CONSTRAINED GLOBAL OPTIMIZATION FOR ESTIMATING 
MOLECULAR STRUCTURE FROM ATOMIC DISTANCES 

Terri Marie Grant 
Old Dominion University, 2008 
Director: Dr. Glenn A. Williams 

Determination of molecular structure is commonly posed as a nonlinear 

optimization problem. The objective functions rely on a vast amount of structural data. 

As a result, the objective functions are most often nonconvex, nonsmooth, and possess 

many local minima. Furthermore, introduction of additional structural data into the 

objective function creates barriers in finding the global minimum, causes additional 

computational issues associated with evaluating the function, and makes physical 

constraint enforcement intractable. To combat the computational problems associated 

with standard nonlinear optimization formulations, Williams et al. (2001) proposed an 

atom-based optimization, referred to as GNOMAD, which complements a simple 

interatomic distance potential with van der Waals (VDW) constraints to provide better 

quality protein structures. However, the improvement in more detailed structural features 

such as shape and chirality requires the integration of additional constraint types. 

This dissertation builds on the GNOMAD algorithm in using structural data to 

estimate the three-dimensional structure of a protein. We develop several methods to 

make GNOMAD capable of effectively and efficiently handling non-distance information 

including torsional angles and molecular surface data. In specific, we propose a method 

for using distances to effectively satisfy known torsional information and show that use 

of this method results in a significant improvement in the quality of o-helices and /?-

strands within the protein. We also show that molecular surface data in combination with 

our improved secondary structure estimation method and long-range distance data offer 

increased accuracy in spatial proximity of c^helices and /3-strands within the protein, and 

thus provide better estimates of tertiary protein structure. Lastly, we show that the 

enhanced GNOMAD molecular structure estimation framework is effective in predicting 

protein structures in the context of comparative modeling. 
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CHAPTER I 

INTRODUCTION 

Could you imagine a world where children are free from the attack of deadly 

disease such as sickle cell anemia, leukemia, and cystic fibrosis, where people in the 

prime of their lives are free from viruses that attack the immune system, and where the 

elderly can cope with diseases that deteriorate their memory such as Alzheimer's, and 

dementia? What advances would have to take place in order to make this world a near 

reality? One answer would be simply to design new drugs for better treatment of disease. 

However, there is nothing simple about the work that must be done behind the scenes in 

order to design better drugs. 

Drug design finds its basis in understanding the functions of proteins. Proteins, 

although very small in size, are the basic structures of life. They are crucial in ensuring 

that every part of the body works collectively together to maintain proper functioning of 

the body as a whole. Because proteins come in many different sizes, shapes, and 

sequences they can perform a variety of important tasks in the body. For example, 

hemoglobin transports oxygen throughout our body, antibodies defend our body against 

bacteria and viruses, and ion channel proteins control brain signaling by allowing small 

molecules into and out of nerve cells (Schlick 2002) 

In just surveying these specific biological functions, what do you think would 

happen if the proteins were not correctly shaped? In short, there would be a breakdown in 

processes of the body. As a result, these deadly diseases that we hope will never plague 

us or anyone in our circle could become a reality in our lives. For example, abnormal 

hemoglobin proteins cause sickle cell disease. What is more intriguing about this disease 

is that the incorrect position of only one amino acid in a specific protein affects the 

transportation of oxygen throughout the body. There are many diseases that are caused 

from incorrectly folded proteins, including cystic fibrosis, Parkinson's, and Alzheimer's 

(Irvine et al. 2008). In considering these examples, we clearly understand how important 

The format of this dissertation follows The Journal of Global Optimization. 
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shape is to the study of proteins (Irvine et al. 2008). 

1.1. Proteins and Computational Modeling Efforts 

In the context of molecular modeling, the shape of a protein is the detailed three-

dimensional representation of the protein. Experimental methods are the primary methods 

for determining the three-dimensional structure of protein and are responsible for the 

determination of many structures found in current databanks. X-ray crystallography and 

nuclear magnetic resonance (NMR) spectroscopy are the most common experimental 

methods in use today (Andrec et al. 2007). In using X-ray crystallography, x-rays are 

aimed at the solid crystal of the protein, the crystal then scatters the rays on to a detector 

that captures in three-dimensions how the crystal scatters, and the intensity of each 

diffracted ray is used in a computer program to calculate the position of each atom in the 

protein (Knight et al. 2008; Ilari and Savino 2008). These methods are limited by the 

amount of time required to crystallize the protein and the difficulty determining the 

structure of larger proteins such a multidomain complexes and membrane proteins (Wall 

etal. 1999). 

Alternatively, NMR methods are based on solubility behavior of the protein. In 

the case of soluble proteins, the proteins are submerged into aqueous solution and an 

analysis of the relationship between the magnetic field and atoms commonly found in 

proteins such as carbon and nitrogen is used to determine the protein structure (Wuthrich 

1990; Wuthrich 2003). However, these methods are limited by the insolubility condition 

of some proteins. In more recent years, however, NMR researchers have focused on 

developing solid-state methods for determination of three-dimensional structures for 

insoluble proteins (Briinger et al. 1998; Mehta et al. 2008). 

To expedite the process of determining the three-dimensional structure, the data 

extracted from these experimental techniques are employed to estimate the three-

dimensional structure through use of a computer program. These programs are most often 

based on a nonlinear optimization formulation. The optimization formulation typically 

consists of an objective function that serves as a basis for developing the search space, 

constraints that model biological conditions, and optimization parameters that are used to 

design certain features in the model. The goal of the optimization is to find the 

coordinates for a set of atoms that best satisfies a given set of structural data describing 
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the protein (Chen et al. 1996; More' et al. 1999; Sheraga et al. 2004). 

The basic idea behind these computational approaches, as illustrated in Figure 1, 

is to generate data from all available sources (i.e. experimental, statistical, etc.) and then 

use that information to estimate a reasonable three-dimensional structure of the protein 

(Chen 2000; Schwieters et al. 2003; Kinjo and Nishikawa 2005; Wu and Wu 2007). One 

of the current approaches for developing a computer program is to choose a simple 

objective function based on distances or angles and define physical constraints for any 

additional data. 

In this research, we consider an existing constrained global optimization method, 

called GNOMAD, that complements a simple distance-based objective function with a 

van der Waals (VDW) nonbonded interaction constraint and a local domain specific 

perturbation method to provide better estimates of three-dimensional molecular structures 

(Williams et al. 2001). The choice of a simple objective function reduces the complexity 

of dealing with large number of interdependent variables and the atom-based approach 

makes it possible to compute nonlinear iterations in systems of dimension 3 as opposed to 

a single system of dimension In, where 3n is the number of atoms in the molecule. The 

constraint enforcement procedure ensures that structures satisfy Van der Waals forces, 

and the domain-specific perturbation methods aid in helping the optimization to move out 

of local minima (Williams et al. 2001). One of the main difficulties associated with a 

distance-based optimization approach is the large number of low-error local minima that 

arise, particularly as the amount of distances decreases. Addition of torsional angle and 

non-distance structural data further complicate the optimization procedure. 

1.2. Scope of Dissertation 

In this dissertation, we study methods that will improve the quality of estimating 

the three-dimensional structure of single-domain globular proteins. These proteins are 

usually spherical or elliptical in nature and are generally comprised of helices and sheets. 

One central assumption for the folding of these types of proteins is that the protein folds 

in levels for which the formation of the secondary structure precedes the formation of the 

tertiary structure (Roder 2004). 

In light of this observation, our goal is to provide better quality structures by 

including structural data that will ensure that the secondary structures are formed 
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Figure 1. Flowchart illustrating the basic principal of computational methods for protein structure 

estimation. 

correctly and that will aid in forming the tertiary structure. In specific, we investigate the 

integration of structural data that accurately represent the geometric detail of local 

secondary structure and that captures some of the effects of the principal forces of folding 

in globular proteins. These forces include the hydrophobic forces between amino acids 

and their environment and the local forces that drive the internal architectures in globular 

proteins such as hydrogen bonding and van der Waals forces (Hue and Dill 1990). We, 

therefore, propose methods for handling torsional and molecular surface information 

using the GNOMAD structural estimation framework. 

The main objectives of this research is: i) to propose a distance-based method for 

effectively using torsional angle information and show its value in improving the 

formation of secondary structures, ii) to demonstrate how readily available surface data 

such as molecular surfaces can be effectively used to constrain atoms and to improve the 

estimation of the protein structure, and iii) to investigate the performance of the 

GNOMAD algorithm when a combination of structural data taken from multiples data 

sources, including experimental, theoretical, and statistical methods, are employed to 

estimate the three-dimensional structure of a protein. 

Modeling 

Biological 

Function 

Nonlinear 

Optimization 
-*(3D Structure) 
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1.2.1. Torsional Angles 

Torsional angles can provide valuable and "free" information for improving the 

formation of local substructures within the protein. It is the second most common type of 

structural data used in many formulations and is gathered from many sources including 

experimental techniques, comparative and empirical modeling, and secondary structure 

prediction methods. Torsional angle information can be incorporated directly into the 

nonlinear objective function or penalty function approaches can be employed to constrain 

angles within a given range. Torsional angle functions are highly nonlinear as functions 

of coordinates and therefore significantly complicate the optimization procedure. Penalty 

function methods also complicate the optimization procedure by adding more barriers to 

convergence and local minima. It is also difficult to ensure angle constraint satisfaction 

when using an atom-based optimization approach such as GNOMAD. The inability of 

GNOMAD to effectively use this readily available torsional information limits the 

accuracy in the formation of reoccurring substructures that are found in a large number of 

globular proteins, such as o>helices and /3-sheets. 

In the first part of this dissertation, our goal is to enhance GNOMAD to make it 

capable of using torsional information more effectively. The underlying idea is to define 

a core set of distances that will allow us to constrain atoms to positions that coincide with 

the known values of backbone torsional angles. In order to identify these distances, we 

develop a new atomic representation of a polypeptide model. This new atomic 

representation will allow us to use psuedo-atoms to circumvent the difficulty of satisfying 

torsional information with distances, to form known torsional angles correctly throughout 

the optimization process, and to investigate the effectiveness of using distances to 

significantly improve the formation of secondary structure within the protein. 

1.2.2. Surface Constraint 

In current research, the external forces that drive the folding of globular proteins 

are assumed to be the hydrophobic/hydrophilic interaction between amino acids and their 

environment. The second part of this dissertation is to examine methods for making 

GMOMAD capable of handling information that is representative of the interaction 

between atoms and their environment (Wade et al. 1996; Cao et al. 2002). In this work, 
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we investigate a computational method for effectively incorporating molecular surface 

data into GNOMAD. 

In designing the surface constraint for the GNOMAD framework, we must first 

construct a molecular surface within which to constrain atoms. In general, analysis of the 

molecular surface is a computational problem that is attacked separately from the protein 

structure estimation problem and provides much insight in many areas of drug design 

including, identifying clefts and possible drug binding sites in protein surfaces, and 

screening databases of small molecules for the purpose of identifying molecules of 

possible pharmaceutical use (Connolly 1983). In the context of protein structure 

estimation, however, the molecular surface computation provides a way of modeling the 

interactions between the protein and its environment (Gallicchio and Levy 2000; Felts et 

al. 2002; Kar et al. 2006). 

In reference to our protein structure estimation algorithm, we intend to use the 

molecular surface in combination with our improved secondary structure satisfaction 

method and short-range contact distances1 to provide better estimates of protein structure. 

Accordingly, we combine torsional, surface, and contact information to show that our 

surface constraint method can provide more accurate estimation of molecular structure. 

1.2.3. Comparative Modeling Using GNOMAD 

Current modeling efforts focus on developing a molecular structure estimator that 

is effective in using a combination of structural data taken from multiple sources and that 

does not give the same amount of influence to less precisely measured data (Altaian 

1985). These approaches include comparative modeling (Sali and Blundell 1993; 

Furnham et al. 2008), empirical or knowledge-based methods (Wall et al. 1999), or 

Bayesian methods (Altaian 1985; Chen 2000; Dugan et al. 2004). 

Many molecular structure estimators are developed based on an unconstrained 

optimization formulation. Accordingly, some of the computational issues that arise in 

using these estimators could possibly be attributed to this formulation. In specific, the 

introduction of additional penalty terms in the objective function creates barriers in 

finding the global minimum and causes additional computational issues associated with 

The phrase "short-range contact distance" refers to a distance between atoms that are found in residues 
that are far apart in the primary sequence of amino acids and that are less than 6 A. 
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evaluating the function (Friesner and Gunn 1996; Williams et al. 2001). Alternatively, 

the weighted nonlinear least squares formulation employed in GNOMAD allows us to 

combine experimental and statistical data, gives highly precise data more influence than 

less accurate data in estimating the three-dimensional structure, and possibly avoids some 

of the pitfalls of unconstrained optimization formulations. 

The last objective of this dissertation is to broaden the scope of our work on 

predicting three-dimensional structure to include comparative modeling. The motivation 

for this work is to investigate the effectiveness of GNOMAD in estimating the structure 

of a protein through use of inexact structural information taken from a subset of known 

protein structures (Sali and Blundell 1993). Starting with a sequence alignment of the 

target protein and its closely related family members2, structural data is generated using 

standard statistical methods. Then, the GNOMAD structural estimation framework is 

used to predict the three-dimensional structure of the target protein. 

We test the algorithm's ability in using distances and torsional angles derived 

from the comparative modeling procedure to estimate the protein structure, and compare 

the generated protein structure with the known crystal structure. The set of distances 

generated from the comparative modeling procedure includes local bond length and bond 

angle distances as well as short-range contact distances. 

1.3. Organization of Dissertation 

The reminder of this dissertation is organized as follows. In Chapter II, we give a 

survey of standard optimization formulations employed for protein structure prediction, 

we review the most common nonlinear optimization algorithm adapted in protein 

modeling and the computational problems existing in these algorithms, and we present an 

overview of the GNOMAD structural estimation framework. In Chapter III, we describe 

our practical method for effectively using distances to satisfy torsional information. In 

Chapter IV, we describe our method for using the molecular surface of the protein to 

constrain the position of atoms. In Chapter V, we investigate the improved GNOMAD 

algorithm in using more realistic data taken from comparative modeling methods. In 

Chapter VI, a discussion of conclusions and future directions will complete this thesis. 

2 A "family member" of a protein is a known protein structure that has high sequence or structural 
similarities with the target protein. 
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CHAPTER II 

NONLINEAR OPTIMIZATION 

II.l. Standard Optimization Formulation 

The objective functions used for estimating three-dimensional protein structure 

generally rely on energies and forces between atoms that make up the protein. Potential 

energy, least squares, and knowledge-based formulations are among the most common 

optimization formulations adapted for protein structure estimation. Although each 

formulation differs in its underlying assumptions, the objective functions are derived 

using structural information such as bond lengths, non-bonded distances, bond angles, 

and torsional angles. 

Potential energy minimization is generally employed in many protein structure 

estimation algorithms. The foundation of this approach is based on the observation that a 

protein becomes biologically active when it has reached its final folded state, which is 

considered to be the lowest energy state (Hansmann 2003; Sheraga et al. 2004). In light 

of this work, the basic assumption of this formulation is that the interaction between the 

atoms and the environment dictate the behavior of proteins to conform into its optimal 

configuration (Neumaier 1997; Dobson et al. 1998; Floudas et al. 1999). In order to 

curtail the number of terms in the potential energy function only the dominant forces are 

modeled including, hydrophobic effects, hydrogen bonding, and electrostatic interactions 

(Dill 1990; Dobson et al. 1998). 

The second most widely used optimization formulation is the least squares 

approach. The idea of this approach is to minimize the relative errors between calculated 

and given data. Hence, the objective function represents the measure of how well a 

particular piece of data is satisfied by the model. The goal is to move atoms so that the 

model structure closely matches the given input data. This formulation originated from 

work done on reformulating the molecular distance geometry problem as a global least 

squares problem (Hendrickson 1991; Wu and Wu 2007). Williams et al. (2001) also 

employed a nonlinear least squares formulation to use bonded and nonbonded distances 

in estimating the three-dimensional structure of proteins. 
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Another approach for generating interatomic potentials is to make use of the 

relationships between atoms in the thousands of known protein structures. These 

knowledge-based potentials and probability density functions are employed as ideal 

objective functions. The derivation of these objective functions is based on the idea that 

small change in the sequence of amino acids results in a small change in the three 

dimensional structure. Using statistical analysis of collected structural data associated 

with conserved or low-variance regions of protein, an objective function is derived that 

gives the probability of occurrence of any combination of structural features (Sali and 

Blundell 1993; Furnham et al. 2008). 

Common to either formulation, is the statement of the problem. Formally, the 

optimization problem is to find the configuration that best satisfies the set of structural 

data. The optimization problem is written as, 

minF(x) (2.1) 
X 

where x - {x,. e R3,i = \,...,n) represents the molecular configuration, n is the number of 

atoms in the configuration, and F(x) is the objective function which generally consist of 

distances, angles, or combination of these parameters. The distance-based functions are 

generally representative of bond stretching, non-bonded interactions, or L2 -error and, the 

angle-based functions are generally representative of angular bending and angular 

rotation. In Figure 2, we show examples of structural data that are used as parameters in 

the optimization formulation. 

A large amount of research has been devoted to deriving energy, knowledge-

based, and probability density function for improving the objective function. The basic 

assumption here is that the structure of a protein is well determined by a sufficient 

number of terms modeling structural features and energies (Pearlman et al. 1995; Floudas 

et al. 1999; Kinjo and Nishikawa 2005). One of the most widely used terms is one that 

uses a set of interatomic distances pertaining to a representative set of atoms in the 

protein. The general form given by the Equation 2.2 

/=SW (2-2) 
i.jeP 

where h is the interatomic function and rtj = jt(. - x J represent the known distance 
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Torsional Angle 

Bond Angle 
Length 

Non-bonded Interaction 

Figure 2. Example of bond length, bond angle, torsional angle and non-bonded interaction. 

between atom i and atomy, and P is the set of distances. 

These distance-based functions are generally representative of bond stretching, 

non-bonded interactions, or L2 - error. Several forms for the h function often employed 

in optimization formulation are given in Table 1. Included in this table are descriptions of 

the h(x) functions that define the distance based objective function, parameters for each 

function, and previous authors who used these objective functions. 

Distance information is often supplemented with other types of information in the 

optimization formulation. Most often, angle-dependent objective functions are used 

individually or in combination with interatomic potentials to capture the important 

features that are not captured by distances. The most widely used angle potentials are 

given in Table 2. Included in this table are descriptions of the energy function, parameters 

for each function, and previous authors who employed these types of functions. 

II.2. Local Optimization 

The general form of the objective functions used for estimating the molecular 

structure is a nonlinear function of input data. Hence, there are a variety of nonlinear 

optimization methods that have been employed to determine a good estimate of the 

structure. The basic idea of these nonlinear optimization methods is to perform a local 

search in the configuration space for the minimum through iteratively or recursively 
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Table 1. Inter-atomic distance functions. 

Survey of Interatomic Distances Used in Optimization Formulation 

Name 

Bond stretching 

or L2 -error 

function 

Stress function 

Lower bond 
function 

Upper bound 
function 

Electrostatic 
potential 

Van der Waals 
potential 

Function 

h(x) = sij(x-djj)
2 

h(x) = (x2-dfjJ 

h(x) = m i n 2 | ^ ) , o } 

/^) = mm2{(Y)o} 

SyX 

h(x) = stj 

12 

yx) 

Constant of 
Proportionality 

Sy is the bending 

constaint or variance 

dy is the calculated 

distances 

dy is the bond lengths or 

bond angles distances 

/.. is lower bond on 

distances 

Uy is upper bond on 

distances 

qi - charge of atom i 

qj- charge of atomy 

Sy - dielectric constant 

Sy - dielectric constant 

Works 

Brooks et al. (1983) 
Williams et al. (2001) 

Hendrickson(1991) 
More' and Wu 
(1997) 
Crippen and Havel 
(1988) 

Crippen and Havel 
(1988) 

Barbosaefo/.(2003) 

Barbosa et a/.(2003) 

generating a sequence of iterations from an initial configuration. Each of the iterations 

consists of an update in the atomic positions of the current configuration by taking into 

account feasibility, the direction, and the curvature of the function. The resulting 

configuration is in the neighborhood of the current configuration and replaces the current 

configuration, if it has lower function value. The algorithm terminates when a 

configuration is obtained whose function is no worse than any of its neighbors (van 

Laarhoven and Aarts 1987). 

Local minima are defined by the presence of a very small gradient and can occur 

when the function value is high and the configuration has moved far from the initial 

configuration (Williams et al. 2001). Nonlinear optimization methods perform best if the 

starting point is within a certain neighborhood of the minimum. Further, the algorithm 

can stall if the stopping criteria fail to satisfy certain conditions. Hence, these local 
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Table 2. Angle potential functions. 

Angle-based Potentials Used in Optimization Formulation 

Name 

Bond 
angle 
potential 

Torsional 

Potential 

Eba = Yi -f-\0ijk-Oijk) 
ijk—bonded ^ 

E,a = Z cm il + cos(n em - Ow)] 
ijkl-angle 

Constants 

Ci]k - bending 

constant 

9yk - bond angle 

6ijk - reference 

bond angle 

Cijki' torsional 

constant 

0yk - torsional 

angle 

9ijk - reference 

torsional angle 

Works 

Brooks et al. (2003) 

Barbosa et al. (2003) 

optimization methods alone will not yield acceptable estimates of molecular structure. 

However, these standard local optimization methods are used as the core of many global 

optimization methods adapted for protein structure estimation to improve upon the 

estimates of the global minimum (Torn and Zilinskas 1989). 

The purpose of local optimization methods is to find the direction in which a 

function decreases most rapidly and to determine an acceptable step length to move in 

that direction. Mathematically, updating the atomic position is represented by the 

following supposition. Let x = {x; e R^ ,i = 1,...«| represent the molecular configuration 

with each JC; specifying the spatial position of atom /. A general update in the atomic 

position is given by 

Xnew = Xold + AG* (2 3) 

where the direction from the current point for which the objective function decreases 

initially is given by Ax and a step length in that direction is given by X. The underlying 

idea is to take steps in a direction that lead "downhill" for the objective function / , i.e. a 

descent direction (Dennis and Schnabel 1996). Determination of the step direction and 

step length is generally approached using the second order truncated taylor expansion 
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(TTE) of the objective function or by operating on local quadratic approximations to the 

objective function (Miller 2000). The advantage of using local quadratic approximations 

is faster convergence to local minimum than that obtained through using the original 

function (Williams et al. 2001). 

II.2.1. Local Optimization Algorithms 

Local optimization can be divided into several categories of update methods: (1) 

gradient-based updates, which use only first derivative information; (2) Newton's 

Method updates which use first and second derivative information; and (3) Quasi-

Newton updates which use first derivative information and approximations to the second 

derivatives. 

Steepest descent (SD) is one of the most commonly used gradient-based methods 

in molecular structure algorithms because of the ease in implementing the algorithm and 

the small amount of memory space required at each of the iterations for computing the 

derivates. In this method, the step direction is taken to be the negative gradient of the 

function because the negative gradient is a measure of steepest descent direction. 

However, this implementation results in poor convergence and is not guaranteed to 

converge in a finite number of steps. As a result, a slightly different step direction is 

taken to improve convergence in the local optimization. Instead of taken directions that 

are orthogonal to the previous direction, the conjugate gradient (CG) method makes use 

of previous history of minimization steps as well as the current gradient to take directions 

that are conjugate to the previous direction. Moreover, this method requires fewer 

evaluations of the objective function and gradient than SD minimization, and thus 

converges to the minimum in 0(n) steps for quadratic function where n is the degrees of 

freedom (Brooks et al. 1983; Williams et al. 2001). SD and CG methods perform best 

when a quadratic approximation of the objective function is a relatively good one. In the 

context of molecular structure estimation, however, the quadratic approximations of the 

objective function can be bad and thus cause both methods to be ineffective. 

This motivates consideration of Newton's method (NM) as a more practical 

choice for finding the local minimum. Newton's method has quadratic convergence when 

the initial guess is close to the solution and the curvature of the function is positive 

(Dennis and Schnabel 1996). The update of the atomic position is given by 
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^ = -{H{xM)YVf(xol<1) ( 2 4 ) 

where H is the Hessian Matrix off and V/ is the gradient of f with respect to x. Newton 

methods move to the local minimum in systematic way, but computing the inverse of the 

Hessian at each step usually requires an excessive amount of computational effort in 

comparison to other methods. A general way to avoid, the computational complexity is to 

solve Equation 2.4 using the following system of equations: 

[H(xM)^x = -Vf(xold) ( 2 5 ) 

NM is known to have good local convergence to a minimum. The success of the NM 

depends on several factors: (1) the positive-defmiteness of the Hessian matrix; (2) a 

descent direction; and (3) the initial guess must be in the correct neighborhood (Miller 

2000; Dennis and Schnabel 1996). The Hessian provides important information about the 

curvature of a objective function, which accounts for most of the success of Newton's 

method (Ratchek 1988). However, if the quadratic approximation is poor, the positive 

definiteness of the Hessian is not always maintained, it can be ill conditioned. Further, 

the Hessian is sometimes unavailable or too costly to evaluate due in large to the degree 

of nonlinearity in the function. Furthermore, an initial guess that is not in a sufficient 

neighborhood of the minimum results in poor convergence (Williams et al. 2001). 

In order to lessen these problems of positive definiteness and costly derivatives, 

Quasi-Newton methods are employed. In addition, global convergence is improved by 

combining existing local optimization with a line search algorithm. Quasi-Newton (QN) 

methods are developed to handle different kinds of curvatures (Miller 2000). Further, 

these methods avoid some of the convergence issues associated with Newton's method 

and reduce the amount of storage at each of the iteration. In these methods, the Hessian is 

computed by using secant approximations or by solving a nonlinear least squares 

problem. These methods are developed to search along the gradient line starting with a 

positive definite Hessian matrix and then using the information to build a quadratic fit to 

the objective function (Land et al. 1960). The update is generally given by Equation 2.5 

where the Hessian matrix, H, is replaced by an approximation to the Hessian, H. The 

main advantages of these methods are the efficiency in computing the step direction, 

numerical stability in the algorithm, and convergence to the local minimum. 
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There are many variations of the QN method that are successful in meeting this 

criterion, including Gauss-Newton (GN) and Broyden-Fletcher-Goldfarb-Shanno 

(BFGS). The Gauss-Newton (GN) methods are ideal for the least square residual 

approaches because the gradient and Hessian of the function has a simplified form that 

makes finding the local minimum more efficient. The basic idea of these methods is to 

linearize the objective function through use of second order TTE. The linear 

approximation is written as least squares problem and hence, the choice of the step 

direction is the solution to the linear least squares equation. 

By doing this, the second derivative term contains a linear term and a nonlinear 

term. Further, the resulting Hessian matrices are symmetric, positive definite matrices 

(Dennis and Schnabel 1996). Depending of the degree of nonlinearity in the second term, 

the approximation of the Hessian is obtained by dropping this term. Guaranteeing local 

convergence for such a problem requires second order information about the function. 

Moreover, the convergence is on order of 0(n) for problems that are not nonlinear and 

have reasonably small residuals. Hence, one of the disadvantages of this update is the 

dependency on the residual size. That is, convergence is slow for sufficiently nonlinear or 

reasonably large residuals. Another disadvantage of this method is that when an ill-

conditioned Jacobian matrix arises, it causes the search space to become very large 

(Erikson 1996). 

Alternatively, the BFGS is the most successful secant approximation update 

methods for the Hessian matrix. In this method, the second derivative matrix is defined in 

terms of first derivative information and thus, causes second derivative to be less costly 

to construct (Dennis and Schnabel 1996). One of the main differences of this 

optimization method in comparison to other local optimization methods is that the 

Hessian matrix is also updated at each of the iterations. These updates produce symmetric 

positive definite Hessian matrix and thus ensure that the direction is also a descent 

direction. Moreover, these Hessian updates make it possible to avoid the direct inversion. 

Williams et al. (2001) showed that BFGS method in the context of the molecular 

structure estimation problem is more accurate and robust than the other variations of QN 

methods. 
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II.2.2. Line Search for Improved Global Convergence 

In most of the local optimization methods discussed previously, convergence 

relies on how good the quadratic approximation is to the objective function. If the 

approximation is good, the optimization usually has good convergence properties because 

the algorithm tends toward a quadratic as it converges to the minimum of the function. 

For many nonlinear problem encountered in molecular structure estimation, however, the 

initial guess is generally not close to the optimal guess and the quadratic approximation is 

not good enough (Williams et al. 2001). Hence, the update produced by these methods is 

unsatisfactory; that is, there is no decrease in the function value from the old position to 

the updated position. Global convergence methods for local optimization, methods that 

converge from remote starting points, are needed (Williams et al. 2001). 

The underlying concept behind using backtracking line search in the context of 

this local optimization problem is to combine a globally convergent strategy with an 

efficient local strategy to obtain better convergence to the local minimum (Dennis and 

Schnabel 1996). This is done by first taking a full SD, CG, or QN step. Mathematically, 

backtracking in a certain direction is performed by starting with X = 1. If this step length 

fails to satisfy the criterion used, reduce X along a line in the direction Ax from the 

configuration space until an acceptable update is found. The step length, X, must satisfy 

the Wolfe conditions for global convergence (Dennis and Schnabel 1996). These 

conditions ensure that the step length is not too small and gives sufficient decrease in the 

objective function. 

The step length X is estimated by interpolation the function f(X) = f(xk + XAx) 

at three points that bracket the minimum. These are defined by using information given 

about the function, such as the value of the function at X = 0, its derivative evaluated at 

X = 0, and the value of the function at X = 1. The minimum of this interpolated function 

is chosen to be the ideal step length. If the next step length does not produce sufficient 

decrease in the function, the step length is reduced and the process begins again. This 

process is continued until a step length is chosen that results in a decrease in the function 

value and satisfaction of the Wolfe conditions. After the first iteration, more information 

is available about the function so it is advantageous to use a cubic model. Moreover, the 

cubic model can be accurately used to model the negative curvature of the function when 
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the quadratic method fails for two positive step lengths and the interpolant has a unique 

local minimizer under these circumstances (Dennis and Schnabel 1996). 

II.2.3. Molecular Distance Geometry 

Crippen and Havel (1988) showed that given a full set of distances, the set of 

atomic coordinates can be determined by creating a distance matrix with rank less than or 

equal to three, and using its eigenvectors to find spatial position of all the atoms in the 

molecule. In principal this approach is ideal; however, in practice, using distance 

geometry techniques for unknown sequences has proven to be a nontrivial task because a 

full set of distance data is not available from experimental techniques. Much research has 

gone into developing methods for computing these missing distances. 

Hendrickson (1991) first proposed the molecular distance geometry problem as a 

global least-squares problem. Using a graph theoretic approach to find the optimal 

configuration for a bounded set of distance data, he showed that a large optimization 

problem can be reduced to a sequence of smaller ones and thus, lead to a substantial 

reduction in overall computational effort and a good quality structure. In his method, the 

molecule is represented by a graph with vertices that correspond to the atoms and an edge 

connecting two vertices if the distance between the corresponding atoms is known. The 

graph is then broken into subgraphs to reduce dimensionality and make the problem more 

tractable. For each subgraph, a local optimization is performed in which the subgraph is 

deformed so that the atomic positions satisfy a given objective function. The solutions are 

recombined to determine the optimal configuration. 

Many other research groups have approached protein structure estimation through 

this same top level of Hendrickson's global least squares; however, the mathematical 

basis has found its home in solving algebraic equations or standard nonlinear 

optimization methods (More' and Wu 1997; Dong and Wu 2003; Wu and Wu 2007). 

These methods have provided valuable insight into how to obtain good estimations of 

some proteins. But, the solution can still be thought of as one solution out of many 

possibilities. That is, the solution does not definitively solve the distance geometry 

problem because a wide range of closely related configurations (e.g. reflection, rotation, 

translation, etc.) could be considered as possible solutions. Hence, the resulting 
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configuration can be considered local minima or starting point for many other 

optimization algorithms. 

II.3. Overview of Global Optimization 

Many objective functions adapted in protein structure estimation are generally 

nonsmooth and/ or nonconvex. Hence, minimizing the objective function is generally a 

hard task because of the presence of local minima. The complexity of solving the global 

optimization problem is dependent on the size of the region of attraction of the global 

minimum in relation to the feasible region, the affordable number of function evaluations, 

the embedded or isolated global minimizers, and the number of local minimizers (Torn 

1989; Dennis and Schnabel 1996). 

For nonconvex objective functions, nonconvex constraints, or a combination of 

both, we cannot be certain that the optimal solution is actually in the set of possible 

solutions or that the solution can be determined in a finite number of steps {i.e. 

solvability), or that the problem can be solved for higher dimensions. Hence, choosing 

points, solvability and stopping conditions are very important elements in global 

optimization. Standard methods for dealing with the unsolvability of a global 

optimization problem are twofold. One. of the basic methods is to turn the problem into a 

solvable one or at least make it possible to tell for sure that a solution has been found by 

posing a priori conditions on the objective function and the feasible region. 

Determining that a nonconvex problem is infeasible, that the objective function is 

bounded, or that a local minimum is the "global minimum" across all feasible regions 

can take an exponential amount of time; as a result, the solvability requirement is 

generally relaxed and an estimate of the global minimum is an acceptable solution (Torn 

and Zilinskas 1989). Stopping conditions are used to measure the quality of the solution 

after a given number of function evaluations are made. The stopping criterion is derived 

from additional information and assumptions about the sampling of the region are based 

on heuristics about the physical application. 

Standard global optimization methods adapted for molecular structure estimation 

fall into two main categories: heuristic and exact methods. For heuristic methods, the 

general approach taken is to pick points that cover the feasible region such as uniform 

sampling and random sampling, successively solve a series of local optimization 



19 

problems and, pick the absolutely best optimum from that feasible region based on 

stopping conditions and solvability conditions. Probabilistic methods, smoothing and 

continuation methods, and problem-specific heuristic methods are common search 

methods used in molecular structure estimation. In the first group, simulated annealing 

and genetic algorithms are among the most commonly used in molecular simulations. 

These methods are designed to randomly perturb the state variables when trapped in local 

minima (van Laarhoven and Aarts 1987; Hiroyasu et al. 1998; Barbosa et al. 2003). 

Smoothing and continuation methods have been employed in finding the global minimum 

based on smoothing out as many of the low-error local minimum through transforming 

the objective function into smooth and, sometimes, convex function (Wu 1997; More' et 

al. 1997). 

II.3.1. Random Sampling and Stochastic Methods 

Random sampling and perturbation methods are methods that search in the 

neighborhood of the optimal solution to date and jump to a new solution whenever the 

algorithm indicates that another configuration has been found that improves upon the 

optimal solution to date. Simulated annealing (SA) and genetic algorithm (GA) are the 

most commonly used probabilistic methods in molecular structure estimation. These 

perturbation methods are based on simulating evolutionary processes found in nature 

(van Laarhoven Aarts 1987; Hiroyasu et al. 1998; Barbosa et al. 2003). SA avoids the 

problem of becoming stuck in local minimum by defining a temperature-dependent 

jumping function based on statistical theories of cooling a physical system. A solid in a 

heat bath is heated up to maximum temperature. Thermal equilibrium is reached, i.e. the 

molecules have reached a low energy state upon gradually cooling of the system as the 

temperature reduces slowly toward zero. However, if the solid is allowed to cool quickly 

or instantaneously, defects can be frozen into the solid (van Laarhoven and Aarts 1987). 

Hence, an annealing schedule, which slowly cools the system, is essential to drive the 

system to thermal equilibrium. 

Acceptance of the modified configuration depends on whether thermal 

equilibrium has been reached. Thermal equilibrium is characterized, mathematically, 

by the probability of being in state with energy E given by the Boltzmann distribution, 
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m=w^-^ <2-6) 
where T the temperature, KB is defined as the Boltzmann constant, and Z(T) is the 

partition function, depending on the temperature T. This formula states that at 

temperature T, thermal equilibrium has its energy probabilistically distributed among all 

different energy states E. 

Simulated annealing is a global optimization method that was primary developed 

to search the space by randomly updating a sequence of initial configuration. However, 

Li and Scheraga (1997) showed that random perturbations, in particular for SA, perform 

best when allowing a full local optimization following each random step. Hence, the 

basic procedure is for SA is to start with an initial configuration obtained from solving a 

local optimization. The configuration is perturbed by a small amount depending on the 

attributed error of the current configuration and a random numbers between [-1,1]. The 

local optimization is then rerun using the perturbed configuration. This modified 

configuration is checked and accepted based on the probability of acceptance. Let 

AC .̂ = C(k)-C(j). If ACkj < 0, then PaCcept = 1> that is, a lower minimum has been 

found. However, if ACkj > 0, the decision to move or stay at the old position is made 

1 ACfe-
with probability of Paccept = exp( —). If the modification is accepted, the new 

configuration replaces the old configuration; otherwise, the old configuration is kept. The 

algorithm continues in this process until the Boltzmann distribution converges to the 

uniform distribution or until some termination criteria has been reached. The temperature 

is then decreased and the process discussed above starts again with the new temperature. 

The process continues until a lower temperature bound is reached. 

When the temperature is high, the algorithm is allowed to randomly search as 

much of the configuration as possible. Solutions that do not improve to date have as 

much of chance of being selected as those that do improve to date. Accordingly, the 

algorithms can sample more of the local space because uphill as well as downhill jumps 

are allowed throughout the optimization process. As the search proceeds, the temperature 

decreases in steps by using an annealing schedule with the system being allowed to 
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approach equilibrium. As a result, downhill jumps occur less frequently. Eventually the 

jumping mechanism freezes and SA completes its search like a simple hill climber. 

Simulated annealing can be described as placing a probe in an area and allowing it 

to move randomly out of local minima. However, one of the main disadvantages of SA is 

that the randomization process allows the probe to move anywhere in the configuration 

space. Therefore, it is possible that perturbations can occur at times when the 

optimization is moving toward the global minimum (Williams et al. 2001). Further, 

various ad hoc enhancements have been added to make it much faster such as combining 

SA with other optimization techniques to find better possibilities of configurations 

because simulated annealing can become exceedingly slow (Neumaier 1997; Pokala and 

Handel 2001). These improved methods include combination with other optimization 

methods. 

Alternatively, genetic algorithm (GA) is another probabilistic global optimization 

algorithm commonly used in molecular structure estimation because of its effectiveness 

in searching a large and complex configuration space. Moving out a local minimum 

toward the global minimum state requires using perturbation and acceptance strategies 

based on three genetic operations: selection, crossover, and mutation. Selection is an 

operation that imitates the survival of the fittest in nature. This operation selects 

configurations from a population of initial configurations that will be used to produce a 

better configuration based on their function values. Crossover is an operation that 

imitates the reproduction of living creatures. The crossover operation combines the 

atomic positions of the two chosen configurations to produce a better solution. In order to 

keep from mating configurations that are not ideal, new information about the atomic 

positions is commonly introduced. This occurs through randomly mutating atomic 

positions of the offspring. 

Genetic algorithms start from a random initial population and select 

configurations with the best function values. The crossover operation produces offspring 

of the selected configuration; further alterations are achieved through mutation. 

Acceptance of modification is based on selection operator. The fitness of each offspring 

is evaluated, and a subset of offspring is used to replace the parent population. A random 

process that favors better fitness values selects solutions. The solutions are then mutated 



22 

to process better offspring. The process is repeated for a given number of generations or 

until some stopping criteria is met. 

Algorithms that allow stochastic and random perturbations tend to be very 

effective in searching a wide range of the possible configuration space. Although SA and 

GA are effective methods for searching a large portion of the configuration space, both 

require knowledge about the system being modeled to effectively search the space. 

These methods are limited because the number of independent variables in typical 

molecular systems can cause the number of minima to become very large and thus, cause 

inefficiency in the algorithm (Goodfellow 1992). 

Instead of developing stochastic methods to search as much of the configuration 

space as possible, other global optimization methods including smoothing and 

continuation have been developed which transform the function into a smoother function. 

Further, local optimization procedures are used to find the global minimum of the 

transformed function which will be used as a near-optimal solution or to trace the 

solution of the transformed function back the global minimum of the original function. 

II.3.2. Smoothing and Continuation 

Instead of accepting the function as a non-smooth function and applying random 

perturbation methods to effectively search the space, alternative methods for reducing the 

complexity of the global optimization problem are based on transforming the objective 

function into a smooth function to ease the task of finding the global minimum. 

Smoothing and continuation methods are standard methods used to find the global 

minimum through transforming the objective function into a function with fewer local 

minima by using an integral transform or differential operator. These operators are used 

to define a family of functions that is parameterized over a smoother parameter. By 

varying the smoothing parameters, one can create a series of functions that gradually 

smoothes the original function. The number of minima is reduced gradually as the 

objective function becomes smoother. Ideally, the smooth problem will have only one 

minimizer once the degree of smoothing is sufficiently large and ideally, that minimum 

will be the absolute minimum (Neumaier 1997; More and Wu 1997) 

Several well-known variations of the smoothing technique include using Gaussian 

transform integral equation, diffusion equation methods, and convex global 
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underestimator. Currently, integral transform is one of the most commonly used 

variations of smoothing (Wu 1997; More' and Wu 1997; Neumaier 1997; Pokala and 

Handle 2001). The transformation of the objective function is given by the following 

integral transform 

/•OQ 

Ft(X)=\ K(X,X0,t)F(X)dX (2.7) 
J-oo 

where the kernel of the integral equation is defined by the Gaussian transform is given by 

i 

K(X,X0,t) = [ - f exp[-t(X-X0)
2] (2.8) 

where t is the smoothing parameter. 

As t approaches zero the Gaussian becomes flat and the result of the integral 

becomes dependent on the original variable, making the transformed function completely 

constant and smooth. As t increases, the Gaussian becomes very narrow and the smooth 

function is identical to the original function. More' and Wu (1997) used the Gaussian 

smoothing method to estimate the structure of small molecules. Further, using this 

method gives a good estimate of configuration with less function evaluations. However, 

one of the main problems associated with this variation of smoothing is that it can yield 

the wrong global minimum due in large to change in the ordering of the minima as the 

smoothing parameter varies. Moreover, another problem associated with this smoothing 

variation is that it is computationally expensive to evaluate integrals. 

An alternative form of smoothing is to represent the integral transform as a 

diffusion differential operator. This method modifies the objective function, by including 

a time variable, t. The transformed function, E(x,t), can be obtained through solution of 

the diffusion equation given by 

Exx(
x>t) = Et(x>t) (2.9) 

with the boundary condition, E(x,0) = E(x) which recovers original function. For large 

of values of t, the surface should provide one minimum. As t is gradually decreased, a 

sequence of local minima can be traced back to a local minimum of the original function 

at t = 0. The methods are useful mainly when the potential is a sum of univariate 

functions of distances between atoms (Neumaier 1997). These simplified models are 
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useful in finding the global minimum of the problem because they give rise to the low-

error structures. 

Although this method is globally convergent, it may not find the solution if there 

is a lot of noise in the function. Moreover, the solution only converges to the global 

minimum if the initial guess is close. Because the smoothing technique is not always 

reliable, a closely related method is to apply the smoothing procedure to the functions 

successively, and at each step take the solution for the previous function as the starting 

point for minimization of the current function. These methods are referred to as 

continuation methods. Continuation methods are different from smoothing in that the 

functions are not arbitrarily deformed functions; they are approximations of the original 

function in the sense that they are course estimates (Wu 1997). The kernel is given by 

the following expression 

K(X,X0,t)=—r-exp 

Once the solution to the transformed problem is obtained, an optimization procedure is 

applied to the functions successively, to trace their solutions back to the original function. 

One of the main advantages of this technique is that it could give insight into the 

problem of how molecules change from arbitrary configurations into the three-

dimensional structures that dictates the biological functionality of the protein (Wu 1997). 

The backtracking procedure is done in several ways: use a general random search 

procedure to trace the changes of the global solution when the transformed function is 

gradually changed to the original function, apply only local optimization procedures to 

each transformed function to trace a set of solution curves and choose the best among all 

solutions obtained, or solve the initial value problems for a set of solution curves and 

chose the best solution. This method still contains some of the problems of the smoothing 

method such as dependence on an initial good guess. Further, the method is designed to 

trace the stationary points of the function, but the desired stationary point may not be the 

global minimizer of the function. 

II.3.3. Convex Global Underestimator 

The most recent smoothing technique for transforming the objective function is 

the convex global underestimation (CGU) method. This method is designed to find all 

{X-X,) 
(2.10) 
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known local minima with a convex function, which underestimates all of them, but 

differs from them by the minimum possible amount in the discrete L} norm. This function 

is used to localize the search in the region of the global minimum. The set of local 

minima fitted to a convex function are collected from a large number of molecular 

configurations that are each attained from a random point. The minimum of the CGU 

function is accepted as a possible global minimum and used to find additional local 

minima on a reduced space. These additional local minima are added to the original set of 

local minima and used to create another underestimation on a reduce space and then, 

another possible global minimum is located. The process is continued until there is no 

local minimum in a given set that can be chosen as an improved local minimum; the 

space cannot be reduced any further. The value at the last iteration is used as the global 

minimum of the objective function (Dill et al. 1997). 

One of the main advantages to this method is that it does not require as much 

computation as other methods; i.e., evaluation of the function and its derivatives are 

reduced. Moreover, the method works well for problems of moderate size protein; i.e., 

proteins with less than thirty amino acids. However, this method depends heavily on 

computing local minima quickly and on solving the resulting linear program efficiently to 

approximate function over the current hyperrectangle domain. Implementation of this 

method works much better with massively parallel machines because it effectively 

reduces the time required in computing the large number of local minima (Phillips et al. 

1995). 

Although the main purpose of many of these global optimization methods is to 

make it easier to obtain low error configurations, transforming objective function has the 

adverse effect of creating many low-error configurations that do not satisfy physical 

conditions. Many of the standard global unconstrained optimization methods discussed in 

this section have been altered by adding constraints on the atomic positions to not only 

produce low error configuration but to distinguish between them to determine the optimal 

low error configuration. Hence, the current challenge is to create an efficient global 

optimization algorithm that distinguishes between the low-error configurations while 

satisfying physical constraints (Williams et al. 2001). This requires developing more 
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effective perturbation methods and acceptance strategies for moving out of a state of 

local minimum. 

II.3.4. Branch and Bound Method 

Branch and bound methods are currently the most commonly used deterministic 

methods for estimating the three-dimensional structure of a protein (Floudas 1999; Zhou 

et al. 1999). The underlying idea is based on the assumption that the objective function 

and feasible regions can been transformed into a solvable problem based on a priori 

condition about the function and the constraints and certain biological assumptions about 

the optimization parameters (Torn 1989; Neumaier 1997; Floudas et al. 1999). By 

adapting these methods, a global optimization is theoretically guaranteed to yield a 

solution to the protein structure estimation problem with a given accuracy or to show 

whether a feasible solution can be determined on the specified region (Torn and Zilinskas 

1989). The underlying assumption is that the global minimum of a complete structure is a 

combination of a relatively small number of local minima of configurations on the 

restricted region. Hence, deterministic methods can than be applied to problem to find the 

global minimum. The basic idea of these techniques is similar to basic idea of the 

bisection root finding method. That is, the method reduces the space by continually 

halving the region until a good lower and upper bound is determined for the global 

minimum. 

The basic idea is to formulate the molecular structure estimation problem as box 

constrained nonlinear twice-differentiable optimization problem (Klepeis and Floudas 

1999). On this box region, the assumption is that the global minimum of a complete 

structure is a combination of relatively small local minima. Hence, the aBB method 

brackets the minimum between converging lower and upper bounds. Upper bounds on 

the global minimum are obtained by local minimizations of the original energy function. 

Lower bounds belong to the set of solutions of the convex lower bound functions that are 

constructed from augmenting f(x) with the addition of separable quadratic terms. The 

general form of the branching function is given below. 

L(x) = f(x) + fjai(xf -xM -*,) C2-11) 
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where xf and x" correspond to the lower and upper bounds on xi. The variables are 

chosen to correspond to the dominant variable in the original objective function. The 

lower and upper bound are refined by successively partitioning the initial rectangular 

region into smaller ones. As result, a nondecreasing sequence of lower and upper bounds 

is generated. At each of the iterations, the lower bound of the objective function is the 

minimum of all the minima in every sub rectangle composing the initial rectangle. Only 

the subregions that contain the lowest minimum are halved at each iteration. If a single 

minimum in any of the subrectangles is greater than the current upper bound, the region 

containing the minimum is ignored because the global minimum cannot be found inside 

(Floudase^a/. 1999). 

The main advantage of this method has in comparison to other standard 

optimization methods is that in principal it is guaranteed to find the global minimum of 

the objective function. The criteria being use are sufficient conditions for global 

optimality for finding a global minimum of a convex function on a convex domain 

(Neumaier 1997). The key is that the branching function transforms the objective 

function into a convex function through defining the values of the control parameters, 

a{ 's. The measure of the degree of convexity of a function is determined by looking at 

the most negative value in the Hessian of the branching function. The underlying idea is 

to transform the Hessian of the original function to a positive semi-definite Hessian by 

shifting the diagonal elements of the Hessian by the values of ai 's. The effect of the term 

is to overpower the nonconvexities of the original function, which ensures that L(x) is a 

convex. The choice of the control parameters is chosen based on how convex the 

objective function is. 

Further, the lower bound function possesses important properties, which 

guarantee global convergence. L matches the objective function at each corner and it is 

convex in the current box constraints (Floudas et al. 1999). The properties of the function 

as discussed with an efficient partitioning scheme make it possible to construct a global 

optimization algorithm guaranteed to always possess convergence to global minimum 

through the solution of a series of convex nonlinear optimization problems. Although the 

method can actually prove optimality of the best local minimizer, the method requires an 
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exponential amount of work (Zhou and Abagyan 1999). In addition, this method assumes 

the global minimum of a complete structure is a combination of a relatively small number 

of local minima of configurations. However, the global minimum of a complete structure 

may contain fragments far form their local minimum. Lastly, the efficiency of the method 

depends critically on the effectiveness of the branching and bounding algorithm used 

(Land etal. 1960). 

II.4. Constrained Global Optimization 

Constrained global optimization seeks to find the values for the optimization 

parameters that satisfy constraints while optimizing the objective function. A constraint is 

a limitation on an optimization parameter and is determined by the physical nature of the 

problem. For example, if the optimization parameters were atomic locations in a 

molecule, placing minimum separation distances between atoms would make sense 

because we know from biology that atoms tend to attract or repulse each other based on 

their polar nature. 

In molecular structure estimation, physical constraints are used to move atoms 

into regions that do not violate known physical conditions. The most common method for 

incorporating additional information into the model is to introduce physical constraints 

into the objective function. The atoms are allowed to move around freely in the 

configuration space. When the atoms are placed in regions that violate physical 

constraints, a penalty or very large value is assigned to the objective function. In the 

limit that the penalty is large compared to the rest of the function, the constraints will 

eventually be satisfied if possible though minimizing the objective function (Sali and 

Blundell 1993). 

The main advantages of this method are that the unconstrained optimization 

formulation is maintained and the number of variables does not increase with the 

transformation (Pike 2001). However, some of the drawbacks of defining constraints in 

this manner are that the derivatives may be difficult to compute as well as store, more 

barriers are created making it harder to move out of a state of local minimum, and thus 

results in inefficiency in the algorithm (Ratchek and Rokne 1988; Williams et al. 2001). 

An alternative approach that avoids some problems associated with penalty 

function is to turn physical constraints on when they are needed and off when they are not 
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needed during the course of the optimization process. However, this results in alternating 

between low error structures that do not satisfy constraints and high error structure that 

do satisfy constraints, without being able to find the optimal low-error configuration 

(Williams et al. 2001). Further, one successful method for introducing physical 

constraints into a global optimization formulation has been to build a model consisting of 

a simple objective function with physical constraints on the atomic locations (Monge et 

al. 1994). 

One of the goals of this work is to improve a constrained global optimization 

method for atomic distances introduced by Williams et al. (2001), referred to as 

GNOMAD. Because of its ease in enforcing physical constraints, GNOMAD is 

guaranteed to produce configurations that satisfy physical constraints such as van der 

Waals and chirality. In the next section, we describe a brief overview of the GNOMAD 

technique and identify modifications that will improve the quality of the estimates of 

three-dimensional structure. 

II.5. Overview of GNOMAD 

The GNOMAD computer program is a multi-purpose molecular structure 

estimation program that implements a novel constrained nonlinear optimization algorithm 

to find optimal atomic configurations that satisfy given input data and maintain known 

physical constraints (Williams et al. 2001). GNOMAD was originally developed as an 

efficient and accurate algorithm to provide better quality protein structures using distance 

information complemented with a van der Waals distance constraint that requires that the 

distance between atoms be at least 4 angstroms (A) and at most 6 A (Finkelstein 2007). 

The GNOMAD program has several advantages. First, the atom-based approach 

ensures that the optimization is always performed in three-dimensional space, which 

ensures that the algorithm yield structures that satisfy van der Waals (VDW) conditions 

Second, the combination of the VDW constraint with the nonrandom perturbation method 

provides a synergistic effect moving atoms to their locally optimal value and keeping 

them from getting stuck in local minima. Lastly, the build-up procedure make it possible 

for the update process to always begin with an optimized subset of atoms (Williams et al. 

2001). 
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The remainder of this subsection describes the GNOMAD computer program. 

Section II.5.1 briefly summarizes the general structure of GNOMAD proposed by 

Williams et al. (2001). Section II.5.2 presents the main chain atomic representation that is 

used in GNOMAD. Section 11.53 gives an overview of the previous physical constraints 

that have been implemented in GNOMAD to improve the quality of protein structures. 

Section III.5.4 gives an overview of the GNOMAD algorithm and discusses some of the 

algorithms limitations and some suggestions for improvement. 

11.5.1. General Structure of GNOMAD 

GNOMAD uses a multi-level optimization process to build up a protein structure. 

The protein is built by adding one atom, or a group of atoms, in sequence. The process 

for updating positions of atoms within a group consists of a series of single-atom updates, 

instead of a simultaneous update of all atoms in the subgroup. At the lowest level of our 

algorithm, after all the atoms have been arranged so that the objective function is 

minimized, there is a check for violation of physical constraints. 

The general approach to enforcing physical constraints is to define regions where 

movement into the region will cause violation of biological conditions. Satisfying 

physical constraints often times results in moving into local minima. To correct this 

problem, a domain specific nonrandom perturbation method is also enforced during the 

optimization process. This method involves placing a perturbation sphere around the 

atom being moved. The radius of the perturbation sphere shrinks and expands 

proportionally to the function error associated with the atom. The physical constraints are 

effective in eliminating some of the low-error configurations that result from using a 

small amount of input data. In addition, the physical constraint together with the local 

perturbation method work to find the low-error configuration from a set of high error 

configuration in the cases where is a large amount of distance data (Williams et al. 2001). 

11.5.2. Atom-based Optimization 

At the highest level of GNOMAD, we want to find the optimal configurations of 

subsets of all the atoms in the molecule. This subset of atoms is referred to as a group. In 

estimating the main chain backbone structure, the algorithm starts by optimizing the first 

two atoms in the first amino acid. The subsequent optimization groupings (from 3 atoms 

up to n atoms) are formed by adding the next atom from the residue in the sequence. The 
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algorithm uses the optimized set of atoms together with a new atom that is positioned in 

the vicinity of the optimized set of atoms. 

Within each of the optimization groups, we perform a series of cycles. The total 

number of cycles is determined by a user-specified limit or termination criteria. Each 

cycle consists of a series of atom moves, one for each atom in the current group. The 

atoms are moved based on decreasing order of attributed error and, the order is 

determined at the beginning of cycle. Within the move atom level, there is a series of 

iterations. At each iteration, as illustrated in Figure 3, the BFGS/cubic backtracking 

search local optimization procedure determines the movements of the atoms. The 

iterations continue until some stopping criteria are met. 

For each atom a in the molecule, the iterations are based on a local objective 

function, fa, given by 

/.^EP-^ (2-12) 

where d*: is i the calculated distances, d* is i* the experimetal distances, and ma is the 

total number of input distances associated with atom a. The 3-dimensional update 

equation is then given by 

*L=*l+«^a (2-13) 

where a is the step length, xa now refers to the state vector consisting of the x, y, and z 

coordinates of atom a. Equation (2.13) is the reduced dimension form of equation (2.3). 

The linear system of equations in the QN update, Equation (2.5), is reduced from 

dimensional 3n to 3 and is given by 

K&)k=-V/fla) (2.14) 

where H a is an approximation to the Hessian matrix of fa and V/a is the gradient of fa 

with respect to x". Ha is a 3 x 3 matrix and Vfa is a 3 x 1 vector. 

II.5.3. Physical Constraint Enforcement 

Implementation of GNOMAD algorithm rests on the central assumption that the 

most effective method for improving the resolution of the structure is to develop 

constraints based on physical information and use them in combination with nonrandom 
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-- line search fails, 

-- convergence, or 

- max # of iterations reached 
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t>" perturbation constraints 

\ along final search line 

Figure 3. Diagram of atom move procedure. At each iteration, the BFGS/cubic backtracking linear search 

local optimization procedure determines the movements of the atoms. 

perturbation method to drive the optimization to a near global minimum. From this it 

follows that accuracy of the three-dimensional structure should be reflected in how 

effective the physical constraints are in enforcing restrictions on the movement of atoms. 

These physical constraints are enforced in the final iteration of the local optimization 

algorithm to allow the atoms to sample a large portion of the space during the search and 

to keep the method from becoming too restrictive on the atomic position. 

The advantage of enforcing the constraints in this way is that the best direction as 

determined by the local optimization is used in determining the location of the violation 

regions in the configuration space. Accordingly, the basic task of enforcing physical 

constraints is to determine how far in the optimal direction to move in order to ensure that 

atoms are not moved into any violation regions. This requires that the step length be 

updated in such a way that both the physical constraints are satisfied and the function has 

been minimized with respect to the physical constraints. 

The general constraint enforcement procedure begins by placing minimum 

separation spheres around the specified points after the local minimization procedure has 

been terminated. We then determine the possible location of the atom by looking for line 

segments resulting from the intersection of the search line with the spheres. These line 

segments are merged and a violation check is performed to determine whether the atom is 

in the merged region. If the atom is in the region, the step length is updated to move the 

Adjust step length using 
backtracking line search 

Determine step direction and 
length using BFGS method 
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has atom out of the violation region while maintaining the step direction, as shown in 

Figure 4. 

The general form of the line is given as follows: 

L:(x,y,z) = (x0,y0,z0) + A(p0,pl,p2) (2.15) 

where (x0,y0,z0) is the previous atomic coordinate of atom, X is the current step length, 

and (p0,pi,p2) is the step direction. We find the line segments resulting from the 

intersection of the line with all the violation spheres. These spheres are given as follows: 

S:(x-xc)
2+(y-yc)

2+(z-zc)
2-r2=0 (2.16) 

where the radius is denoted by r and the center, (xc,yc,zc), is represented by user 

defined points . 

If the atom is placed in a violating line segment, the atom is moved out of the 

violating region by looking for possible updates in the step length that will place atoms in 

good regions. The possible updates in step lengths are determined by substituting 

Equation 2.15 into Equation 2.16. This results in creating a quadratic equation with step 

length, X, as the independent variable. The resulting quadratic equation is given by 

aX2+bA + c = 0 (2.17) 

where a •= p\ + p\ + p\, b = [p0x + pxy + p1z\, and c = [3c2 +y2 +z2 -r2\. In addition, 

(3c, y, z) is defined as the difference between the atomic positions and the centers of the 

sphere. From this equation, a collection of all the line segments, [At, Aj J for i ^ j , are 

computed and considered as possible updates for the original step length. We merge all 

line segments, including those found from other physical constraint enforcement, together 

to take care of any overlap regions. We search through these updates to determine 

whether the original step length, X, falls in any of the intervals. If this violation occurs, 

we move the atom by picking either the lower or upper bound step length of the violating 

segment, whichever produces a lower function error value. 

II.5.3.1. Van Der Waals (VDW) Constraint 

One of the most commonly modeled biological conditions in protein structure 

The center varies depending on the type of physical constraint and is given in the explanation of each 
physical constraint. 
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Constraint Checking 

For final iteration only 

Move to Position A or Position 
B, depending on which has a 
lower objective function value 

Position B 

Position at start 
of final iteration 

Position A 

Figure 4. Diagram of physical constraint enforcement. Violation of physical constraints takes place at the 

end of the final iteration. 

estimation is the van der Waals forces. Van der Waals forces are attractive forces that 

occur between atoms separated by distances of 4 - 6 A (Finkelstein 2007). In standard 

optimization formulation, nonbonded interactions are generally modeled by adding a 

supplementary term based on van der Waals and electrostatic theory to the objective 

function (Neumaier 1997; Floudas et al. 1999; Pokala and Handel 2001). These more 

complex interatomic potentials can result in a more reliable model for searching of the 

configuration space (Wall et al. 1999). However, enforcing physical constraints on 

parameters or atomic positions while simultaneously updating the positions of a large 

number of atoms makes it very difficult to find an optimal configuration (Williams et al. 

2001). 

Alternatively, atom-based approaches have been developed in current research 

that places restrictions on atomic positions during the optimization process (Williams et 

al. 2001). Since the atoms are moved one at a time, enforcing VDW constraints is made 

easier. The VDW constraint follows the general constraint enforcement method described 

previously. An atom is treated as a point in space and spheres are place around all the 

other atoms for which VDW constraints are being enforced. The radius is a user-specific 

value based on physical knowledge of nonbonded distances between atoms in a molecule. 

As a result, VDW constraints are guaranteed to be satisfied. Further, they serve as added 

information to reduce the number of low error local minimum (Williams et al. 2001). 
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H.5.3.2. Chirality Constraint 

Another physical condition that is commonly modeled is chirality. Chirality is a 

molecular feature, which describes the left- and right-handedness orientation of 

substructures within the molecule, and is readily available information used in describing 

atomic positioning. Modeling this particular feature is important in drug design because 

the orientation of a molecule yields different behavior for the drugs designed from it. For 

example, Thalidomide is a chiral molecule used to design a sedative drug for pregnant 

women. Due to its chiral nature, however, the drug also has been found to cause fetal 

abnormalities when taken during a specific time of the pregnancy. 

A configuration is "chiral" when it can exist in nature in at least two structural 

forms in which the spatial arrangements of its atoms are non-superimposable mirror 

images of each other (LeGuennec 1999). These mirror images are referred to as the left-

handed and right-handed configuration of the molecules as shown in Figure 5. Most of 

the amino acids that make up the molecule are chiral. The left-handed and right-handed 

configuration of these amino acids can be determined by looking at the chirality center of 

an amino acid. An atom that has four groups bonded to it in such a manner that it has a 

non-superimposable mirror image characterizes a chirality center. 

Several molecular quantities change signs under reflection and thus, are used to 

model chirality: dihedral angles, improper torsional angles, and volume4 (More' et al. 

1999). Hence, the measure of left-handedness or right-handedness of amino acid is given 

by positive or negative value on these quantities, respectively. In standard molecular 

structure algorithms, the most common avenue for incorporation of this information is to 

add a term to the objective function describing the oriented volume of the four backbone 

atoms surrounding the Ca (More' et al. 1999). 

The GNOMAD algorithm takes a different approach to enforcing chirality. A 

figure is chiral if it cannot be mapped to its mirror image by rotations and translations 

alone. The underlying idea for our chirality constraint is to restrict each atom from taking 

on incorrect positions that maintain symmetry of distances between atoms in the group; 

this is the mirror image position. Therefore, the plane of symmetry formed by this 

4 The oriented volume is the value of the determinant of a matrix formed from a set of four atoms in the 
molecule. 



36 

Right-handed 

^ . .. 

y 

O 

Cc^ ^ 

Left-handed 

>» „ ST-. . . . 

y 

o 
^aML ^ -̂  

Figure 5. Example of the chiral forms of an amino acid. The C atom can take on two positions and still 

satisfy distances between the four atoms. 

group of atoms aids in satisfying chirality conditions. Maintaining correct chirality is 

achieved by restricting the movement of N, Ca, C, and Cp atoms to the correct side of the 

plane of symmetry. 

For example, enforcing the chirality constraint when a C atom is being moved 

involves determining the proper side of the plane to place the C atom, as shown in Figure 

6. By looking down the bond vector formed by Ca and Cp atom, we see that the C atom 

can be placed in two distinct locations that will maintain satisfication 

of the distances between all atoms in the chirality group and the plane of 

symmetry coincides with the bond vector formed by N and Ca. Assuming we know what 

side of the plane the atom should be placed relative to the other chiral atoms, we can 

destroy any attempt for the optimization to constrain the atoms to the mirror 

configuration. This is done by placing a sphere around the point representing the mirror 

image of atom and then, restricting the atom from moving into the chirality-violation 

sphere (Figure 5). As a result, the distances will constrain the atom to the correct side of 

the plane of symmetry. The method for determining which side of the plane the atom is 

restricted can be approached in several different ways. 

Since many of the amino acids found in nature naturally occur in the left-handed 

configuration, we can restrict the atom to the side of the plane that will satisfy this 

criterion (Cronin and Pizzarello 1997). If we are given information about torsional angles 
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Figure 6. Example of enforcing chirality constraint. A chirality violation region is constructed by placing a 

sphere around the C atom (the mirror image of the C atom) and the C atom is restricted from movement 

into this violation region. 

and oriented volume, the atom can be positioned so that the sign of these rotational angles 

is consistent with the sign of torsional angles and oriented volume. 

IL5.3.3. Side-Chain and Space Filling Properties 

The physical constraints employed in GNOMAD require the presence of N, C^ C 

and Cp atoms. This minimal set of four atom types provides a basis from which to 

construct an optimal atomic representation. By including these four atom types, we can 

maintain the constraint satisfaction properties of the GNOMAD algorithm. One of the 

main difficulties in eliminating atoms from a protein structure model is the adverse affect 

that it might have on the space-filling properties of the algorithm. By removing atoms 

from the model, the remaining atoms are then allowed to assume positions that would 

otherwise be taken by the missing atoms. The result would be a collapse of the overall 

structure. This type of structure collapse is often seen in molecular structure modeling, 

particularly in the case of sparse input data that leads to many local minima. 

The problem of structure collapse was significantly alleviated by the van der 

Waals (VDW) constraint enforcement method in the GNOMAD algorithm (Williams et 

ah 2001). This method is able to avoid the many van der Waals illegal local minima and 

find a low-error solution that places atoms in better space-filling positions. The result is 
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improved root mean squared deviation (RMSD) for roughly the same optimization error. 

RMSD is a measure of how closely the model structure matches the true structure. 

The VDW constraint enforcement method can be used to force separations 

between any atoms, whether the separation distances arise from van der Waals theory or 

from empirical estimates. Therefore, the VDW constraint enforcement method is used in 

this work to address the problem of structure collapse when using a reduced atomic 

representation and ensures adequate space-filling properties of the GNOMAD algorithm. 

This approach will be referred to as VDW constraint satisfaction although in this case it 

refers more generally to the satisfaction of minimum separation distances between pairs 

of atoms in the reduced model (not necessarily due to van der Waals forces). 

Since the chirality enforcement method requires that most of the main-chain 

atoms be present (all but the O atom), the primary area where atoms can be removed is in 

the side-chains of the protein. But it is the side-chains that account for much of the space 

filling of the three-dimensional structure. Therefore, if side-chain atoms are removed 

from the model to increase the computational efficiency, then some allowance must be 

made to ensure that the overall volume of the molecule is roughly maintained. Overall 

volume of the molecule can be maintained with fewer side-chain atoms by setting 

minimum separation distances between the side-chain atoms of one residue and the 

sidechain atoms of other amino acids within the protein. The minimum separation 

distances could then be maintained using the VDW constraint enforcement method in 

GNOMAD. This approach would require a set of minimum separation distances that 

would be dependent upon residue type. 

After testing several different reduced atomic representations, it was found that; 

(1) side-chains can by accurately represented by Cp atoms only, given the proper choice 

of minimum separation distances between C^ atoms, and (2) eliminating the O atoms in 

the main-chain representation does not result in a significant loss of accuracy. This 

minimal set of atoms — N, Ca, C, and C^ — forms the basis of the reduced atomic 

representation that can be used in conjunction with the constraint enforcement method 

(CEM) as shown in Figure 7. The next step is to construct a set of "optimal" VDW 

parameters (minimum separation distances) between all of these types of atoms. 
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Figure 7. Main chain atomic representation consisting of the backbone atoms N, CQ, C, and C^ where Cg 

atom represents the sidechain. Spheres are place around Cg atom to accommodate for deletion other atoms 

in the sidechain. 

One approach is to determine minimum separation distances between all possible 

combinations of atom types in the model. This would involve a large number of 

parameters because there are 22 different types of atoms — N, Ca, C, and 19 different 

C '̂s. Setting too many VDW constraints, however, will overly restrict the search space 

and interfere with global convergence. The VDW constraint enforcement scheme used in 

this work is based on using only a subset of all the possible minimum separation 

distances. The VDW constraint enforcement scheme used in this work consists of setting 

several different minimum separation distances, based solely on atom type. Table 3 gives 

a matrix of minimum separation distances between two atom types. First, a default 

minimum separation distance between any two atoms in the model is set. The default 

value used in this work is 1.0 A. In addition, minimum separation distances are assigned 

between any two main chain atoms where both atoms are of the same atom type. Finally, 

minimum separation distances are assigned between any two Q atoms based on the 

corresponding residue types. GNOMAD can then easily assign a specific separation 
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Table 3. Minimum separation distances between all possible combinations of atom types in the model. 

The initials of each amino acid are given for the corresponding C^ atom. 
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00 2.97 

00 2.92 2.20 

00 2.93 2.72 3.27 

00 2.98 3.21 3.29 3.01 

00 3.06 3.19 2.85 3.39 2.89 

00 3.19 3.31 3.23 2.96 3.15 3.54 

00 2.89 3.15 3.31 2.91 3.33 3.02 2.93 

00 3.03 3.49 3.03 2.99 3.50 3.40 3.43 

00 3.21 2.13 2.15 3.34 3.25 3.29 3.37 

00 3.07 3.20 2.98 3.12 3.04 3.20 3.43 

00 2.99 2.52 3.22 3.20 3.19 3.40 3.20 

00 2.72 3.02 3.61 3.02 3.44 3.61 3.62 

00 3.16 3.26 3.30 3.24 2.99 3.43 2.77 

00 2.85 3.44 3.05 3.06 3.33 3.45 3.31 

00 2.72 2.54 2.42 3.17 2.97 3.32 3.05 

00 3.02 2.58 2.98 3.24 3.38 3.07 2.89 

00 2.80 3.63 3.54 3.61 3.42 329 3.21 
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00 3.03 3.26 3.03 3.47 3.12 3.02 3.22 
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distance between each pair of atoms in the model, based on the type of atoms and the 

appropriate minimum separation distance value. For example, the minimum separation 

between any two N atoms in the main chain is 2.09 A. The minimum separation distance 

between any two Ca atoms is 2.71 A, and so on. The specific minimum separation 

distances represent optimal values as determined empirically through a statistical analysis 

of the distances between the N, Ca, C, and Cp atoms in all of the known protein structures 

found in the PDB Select list (Hobohm and Sander 1994). 

A final implementation detail of the reduced atomic representation is the order in 

which atoms are introduced into the optimization. GNOMAD builds a model by 

optimizing a group of atoms, starting with two atoms and introducing an additional atom 

at the completion of each sub-optimization. 

II.5.4. GNOMAD Algorithm 

Figure 8 shows the pseudo-code for the GNOMAD algorithm (Williams et al. 
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GNOMAD Molecular Structure Algorithm 

for natoms = 2 -> total # of atoms in molecule {GROUPS} 

determine starting positions for 1 -> natoms 

For cyc/e = 1 -> # of cycles {CYCLES} 

determine order of atoms to move, based on attributed error 

(move atoms in decreasing order of error) 

for a = 1 -> natoms (in order determine above) {ATOM MOVES} 

Perform nonlinear iterations to move atoms a {ITERATIONS} 

determine move direction using BFGS quasi-Newton minimization 

determine move length using quadratic/cubic backtracking line search 

perform MSD and Chirality constraint checks 

merge violating segments along search line into nonoverlapping segments 

If necessary, perturb final position of atom 

Figure 8. Outline for GNOMAD algorithm for atomic distances. 

2001). The methodology for GNOMAD gives insight into an alternative method for 

improving the resolution of three-dimensional structures by refining the model to include 

more physical constraints in the previously described manner. While GNOMAD 

produces favorable results for moderate size data sets, this algorithm needs improvement 

in two areas. This first one is related to the formation of major secondary structure, and 

the second to improving the capability of GNOMAD in handling non-distance 

information. 

The current approach is to use distances to model hydrogen bonding and angles to 

characterize the geometry of major secondary structure. In the context of GNOMAD, 

however, both methods compromise global convergence. Torsional angles are a reliable 

source to describe the geometry of secondary structure, but are prone to local minima 

entrapment. Distances derived from regions where hydrogen bonding takes places tend to 

be short-range contact distances, which tend to be more difficult to satisfy. 

Improvements in the modeling of secondary structure may be achieved by developing an 

algorithm that better characterizes the geometry of the major secondary structure 

elements, such as a-helix and (3-strand, and improves the formation of these local regions 

based on these geometric descriptions. 
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For the problem of handling non-distance information, we focus on enhancing the 

capabilities our global optimization algorithm to include surface, torsional angles, and 

contact data. Accordingly, the complementing of this information with an algorithm that 

is known to satisfy VDW constraints and chirality constraints will ideally produce a more 

accurate and reliable estimate of three-dimensional structure. 
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CHAPTER III 

A PRACTICAL DISTANCE-BASED METHOD FOR SATSIFYING 

TORSIONAL ANGLE INFORMATION 

III.l. Introduction 

GNOMAD is known to produce good quality structures when a large amount of 

distances are available and the VDW constraints are enforced (Williams et al. 2001). In 

some of these cases, however, the local regions are inaccurate and result in a large error 

metric {e.g. residual error). Usually, these large errors in local structure cause poor 

overall quality in structure. In order to improve formation of local regions, we look to 

find other types of readily available structural data describing these local regions. One 

group of information that is used to geometrically characterize local substructures is the 

sequence of backbone torsional angles (also referred to as rotational or dihedral angles). 

Although this information cannot be used to construct the whole three-dimensional 

structure, the backbone torsional angles are powerful in determining the main features of 

the final geometric shape of the folded protein (Neumaier 1997; Xue et al. 2007). 

The use of torsional angle information in molecular modeling is of grave 

importance because it provides a remedy for accurately forming local substructures 

within the protein. The task of using angles in a global optimization formulation seems to 

be a trivial problem. It is simple enough to just develop a objective function based on 

torsional angles and use the function as a term in the objective function to appropriately 

describe protein structure. In the context of atom-based approaches, however, a major 

obstacle in using this methodology is that these types of algorithms are contingent upon 

the process of moving atoms (one at a time) based on attributed function error (Williams 

et al. 2001). Constraining torsional angles while moving atoms based on attributed 

function error produces much exhaustive work; but does not result in moving any closer 

to finding the correct optimal configuration. 

Alternatively, we could use the approach of determining a representative set of 

distances from torsional angles and combine these distances with the short-range contact 
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distances. There has been much work done on using distances to accurately construct 

local substructure of the protein, including ladder-grouping method by Aszodi and Talyor 

(1994), helix-packing algorithm by Munenthaler and Braun (1995), and disjunctive 

constraints by Chen (2000). Whereas distances have been effectively used to form these 

local regions in their work, these methods are not effective in the context of GNOMAD. 

In our work, we set out to answer the question, "How can we ensure that distances 

can be used to satisfy torsional information?" In the spirit of improving our constrained 

global optimization approach for distances, we propose a method for using a minimum 

set of distances to satisfy torsional angles. This requires that we employ a more elaborate 

representation in specifying a core set of inter-atomic distances for constraining torsional 

angles. 

III.2. Backbone Torsional Angles 

A torsional angle is formed from four atoms A-B-C-D (we will refer to this group of 

atoms as torsional angle group) as shown in Figure 9. It is the angle between the planes 

formed from atoms A, B, and C and the plane formed from B, C, and D. An alternative 

and easier definition is to describe the torsional angle in terms of its rotational property. 

Looking down the bond vector BC, a torsional angle is the clockwise angle made by the 

vector AB and CD. 

In molecular structure estimation, we have at our disposal information that 

describes the molecular geometry, such as distances and angles, of three-dimensional 

structure. A very important factor in satisfying torsional angles is the knowledge of what 

distances are directly controlled by the torsional angle. In Figure 9, we see that changing 

the torsional angle ^ changes only the distance between the base atom A and the base 

atom D. All other inter-atomic distances between the base atoms - A, B, C, and D - are 

constrained by the chemical bond lengths and bond angles. 

In our work, we are interested in the three torsional angles along the main chain of 

a protein, which are also referred to as backbone torsional angles, denoted by the Greek 

letters §, \|/, and co as shown in Figure 10. The angles are define on the specific atom 

types defined in torsional angle group. The co torsional angle group is computed using 

backbone atoms Ca, C, N and Ca, from the next consecutive angle and controls the Ca-
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Figure 9. Definition of the torsional angle <f> using main chain atoms. 

Figure 10. The geometry of the general polypeptide chain. The chain was composed of the backbone atoms 

N, CM and C joined by bond angles, y i , for / = 1,2,3. 
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Ca distance. This torsional angle is at the peptide bond and can be described in two 

possible conformations: the trans form for which co=180° and the cis form for which 

co=0°. For non-proline amino acids, the trans conformation is usually observed. 

Alternative, the cis conformation is observed about 5.6% of the time in proline amino 

acids (Laiter et al. 1995). Even so, in modeling effort, the value of co is usually taken to 

be 180°. Hence, the flexibility of the protein can almost be described by the remaining 

backbone torsional angles, <|) and \|/. 

The § torsional angle is computed using the backbone atoms C, N, Ca, and the C 

from the next consecutive residue and controls the C- C distance. The \|/ torsional angle is 

computed using the backbone atoms N, Ca, C, and N from the next consecutive residue 

and controls the N-N distance. The relationship between these angles helps in 

determining which regions of the protein consist of major secondary structures, such as 

a-helices and (8-strands. These relationships can be seen in the protein's Ramachandran 

plot and has been generalized through a set of mathematical inequalities (Neumaier 

1997). The exact values of the § and v|/ can be determined or predicted from experimental 

and statistical methods (Metha et al. 2008; Xue et al. 2008). 

If we attempt to use inter-atomic distances related to only the main chain atoms in 

the torsional group in satisfying torsional angle, these distances could possibly result in 

the occurrence of the mirror configuration. In light of this observation, we develop a 

method that will eliminate the possibility for the occurrence of mirror images when using 

distances to satisfy torsional angles. Our working hypothesis is that a set of key distances 

can be used to constrain the atoms to a position that coincide with the known angles. 

III.3. Methodology 

In this section, we introduce a method for using inter-atomic distances to satisfy 

torsional angles. The specific goals of this work is: (1) to develop a new atomic 

representation for the protein; 2) to specify a minimum set of distances that is needed to 

satisfy a known torsional angle; and 3) to show that the specified set of distances can be 

used to determine good starting points for the local optimization. 

III.3.1. A New Atomic Representation 

The atomic representation used by Williams et al. (2001) was made up of an N-
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Co-C backbone and a single C^atom representing the side chains as shown in Figure 10. 

In order to successfully use distances to form the angle correctly throughout the 

optimization, we must solve the problem of determining a torsional angle uniquely from 

distances. The inter-atomic distances between the four atoms cannot satisfy torsional 

information; therefore, we have modified the polypeptide chain in Figure 10 to include 

pseudo-atoms (also referred to as dummy atoms) as part of the representative set of atoms 

in the model protein structure. These dummy atoms have no physical significance and 

simply act as reference points for insuring that the torsional angles form correctly. 

The concept of using nonlinear sequential atoms or pseudo-atoms to circumvent 

the difficulty associated with directly computing torsional angles has been used in other 

molecular modeling estimators. These approaches involve computing the torsional angles 

from consecutive three and four backbone Ca atoms, from consecutive O and C atoms, or 

from consecutive pseudo-atoms (Laiter et al. 1995). More recently, AMP AC semi-

empirical quantum mechanical program employs pseudo-atoms in computing the 

torsional angles when one atom is missing out of the torsional angle group (Dewar et al. 

2004). 

In specific to our work, we will attach three pseudo-atoms to each of the main 

chain atoms of the polypeptide segment. The coordinates of these pseudo-atoms are 

determined from the main chain atoms of the polypeptide chain. In order to explain our 

approach, we will consider only A-B-C of the segment in Figure 9. We will refer to these 

three atoms - A, B, and C - as base atoms. We convert the base atoms into a new 

coordinate system as shown in the first plot in Figure 11. The first base atom, A, is placed 

in the second quadrant at an angle of 71 away from the x-axis, the second base atom, B, is 

placed at the origin of the x-y plane, the third base atom, C, is fixed on the x-axis a 

distance of fixed distance, d, away from atom B, and, lastly, the side chain atom, Q , is 

attached to the B atom. We then create a plane for the pseudo-atoms, the /-plane. The 

position of the 1-plane is determined by bisecting the bond angle 71. Thus the /-plane is 

from the positive x-axis as shown in the second plot of Figure 11. 

Looking along the bond vector A-B, the pseudo-atoms — Di, D2, and D3 - are 

positioned in the /-plane so that an equilateral triangle is formed from the Di, D2, and D3 

(See Figure 11) The first dummy atom, Di, is attached to the B atom at a length of 
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y' /-pi: ane 

Figure 11. The placement of /-plane with respect to the bond angle 7 and the placement of three dummy 

atoms - Di, D2, and D3 - in the /-plane. 

O.5V3 A and fixed on the negative y' axis in the /-plane. The second dummy atom, D2, is 

attached to the B atom, at an angle of 30° degrees from the negative x' axis in the /- plane 

at a length of 0.25V3 A. Lastly, the third dummy atom, D3, is attached to the B atom at 

an angle of 30° from the positive x' axis at length of 0.25V3 A. Using this technique, 

three dummy atoms are attached the N, C^ and C atoms. The three dummy atoms that are 

attached to the N are referred as Ni, N2, and N3. Cai, Coa, and C^ are attached to the Ca 

atom. Similarly, Ci, C2, and C3 are attached to the C atom. Once all dummy atoms are 

allocated for the backbone conformation, we can use information about the new atomic 

representation, as shown in Figure 12, in improving our build-up algorithm. 

It is important to note that some care should be taken in placing the pseudo-atoms 

because their placement without proper consideration for maintaining exact distances 

constraints and position of the sidechain can cause unexpected difficulties in the 

optimization. The placement of the pseudo-atoms should not conflict with true distance 

constraints and should create ease in using distances to satisfy torsional information. The 

choice of adding three dummy atoms to each main chain atom was based on studying the 

performance of GNOMAD in using different atomic representation. In preliminary work, 

we chose to attach two dummy atoms to each main chain atom to care of the convergence 
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Figure 12. A segment of the new atomic representation. The chain is composed of backbone atoms and 

dummy atoms joined by virtual bonds. 

issues associated with the position of the Cp atom. But the distances of the addition of 

two pseudo-atoms could not satisfy the torsional angle of 180° and resulted in the Q 

atom oscillating between values that were close to 180°. In experimenting with an 

increase in the number of dummy atoms attached to each main chain atom, we found that 

an ideal set consisting of three dummy atoms will permit us to maintain our improvement 

in the positioning of Cp and, also, ensure that there are no violations of distance 

constraints. 

III.3.2. Eliminating Ambiguities in Forming Torsional Angles 

In considering our new atomic representation, we can approach the problem of 

using distances to satisfy a torsional angle from two perspectives: (1) using all the 

distances between the main chain atoms or (2) using the distances between the pseudo-

atoms connected to the main chain atoms. Although these perspectives are equivalent, the 

second perspective allows us to avoid the mirror image problems associated with distance 

information because the number of distances controlled by torsional angles is increased. 

In this work, we will focus on using inter-atomic distances between pseudo-atoms to 

satisfy torisional information. This requires that we enlarge this idea of rigidity to include 

the pseudo-atoms that are associated with the bond angle. 
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Figure 13. Using dummy atoms and bond angles to determine the torsional angle (j). When the torsional 

angle changes the dummy atom configuration rotate relative to each other. 

Consider Figure 13. The pseudo-atoms that are connected to the atom B are fixed 

v 
in the Lj plane, which is rigidly connected to the bond vector AB at an angle of/?, = —. 

Similarly, the psuedo-atoms connected to the atom C are fixed in the L2 plane, which is 

Y 
rigidly connected to the bond vector CD at an angle of (52 = —. The distance between 

the pseudo-atoms in L] and L2 are used to constrain the pseudo-atoms to positions that 

satisfy the torsional angle. Because atom A and D are rigidly connected to the Lj and L2 

plane, respectively, their atomic positions also satisfy the torsional angle. As the torsional 

angle <j) changes, the Lj and L2 planes rotate about the bond vector BC. In Figure 14, the 

Li and L2 planes are parallel to each other when ^= 180°. When (j>= 0°, the Li and L2 

planes intersect. As the torsional angle, <f>, changes, the planes will no longer be parallel 

to each other and each <f> value produces a unique orientation of the Lj and L2 plane with 

respect to the bond vector BC that is consistent with the correct torsional angle. 

The ability to describe a torsional angle in terms of the orientation of two 

consecutive planes allows us to avoid the problem of obtaining the mirror configuration 
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Figure 14. Definition of the torsional angle (j) in reference to Lt and L2. A) ^=180°andB) ^=0° 

because we have a set of key distances that are effective in constraining the atoms in the 

torsional group to a position that produced a correct torsional angle value. In light of our 

new atomic representation, we propose that the minimum set of structural information 

that can satisfy a torsional angle consist of a set of distances associated pseudo-atoms 

and/or associated bond angles. The bond angles are used to define a fixed position of the 

planes with respect to the bond vector BC. Then, the distances between the pseudo-atoms 

in two consecutive planes are used to constrain the pseudo-atoms to positions that are 

consistent with the known torsional angle. 

The numerical calculation for positioning the pseudo-atoms to coincide with 

known torsional information is done through minimizing a distance-based I^-error 

function. Because we are using the psuedo-atoms to position the plane with respect to the 

torsional angle, ̂ , the objective function is defined with respect to only the remaining 

psuedo-atoms and is represented by, 

f-YL 
k=\ i=l 

f
d"-d

k
y 

O", 

(3.1) 

where n is the number of atoms in the current residue, mk is the number of input distances 

associated with atom k, dk is the i'h input distance, dk
c is the calculated distance 

corresponding to the input distance, and, a; is the standard deviation of the /'* input 

distance associated with the klh atom. 
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Figure 15 is an outline for determining numerically unique torsional angles. Note 

that the problem of determining angles from distances, in general, is not a unique 

problem. However, our method allows us to determine numerically a near-perfect value 

of the torsional angle. Thus, for a known torsional angle, we can specify a set of key 

distances that is effective in producing a correct configuration that accurately reflects the 

known torsional angle. 

III.3.3. Improving the Initial Position Algorithm in GNOMAD 

The use of the additional pseudo-atoms in GNOMAD will exhibit the same 

expenses in computational time as that of working with large proteins because we are 

almost tripling the number of atoms in our proteins. In order to offset the possible gain in 

computational time, we use our method of satisfying torsional angles in choosing better 

starting points for the local minimization procedure used in GNOMAD. 

Recall that at the highest level, GNOMAD builds up the protein by first finding 

the optimal configuration for a subset of atoms, which is also referred to as a "group". 

Normally these groups are based on molecular sequence information. In previous work 

on GNOMAD, an atom is initially placed at a constant and preset distance and direction 

from the other atoms within the same optimization group (Williams et ah 2001). The 

global convergence strategy of the BFGS-cubic backtracking line search employed in 

GNOMAD allows us to find the optimal position for a group of atoms that satisfies the 

given set of distances. However, the initial positions of the atoms are only as accurate as 

the set of distances being used. While it may be possible to determine the optimal 

position of an atom when given a sufficient amount of time, we have no way of putting a 

cap on the time required to find this optimal position. 

Our approach to finding better starting positions for atoms is to use our new 

atomic representation and the minimum set of interatomic distances associated with each 

torsional angle group to aid in determining a good starting position for atoms when 

torsional angle are known. In general, we construct an initial configuration for a group of 

atoms by using the atomic position of the previously optimized set of atoms and picking 

good starting positions for the remaining atoms in the group. Once the starting points for 

the current group of atoms have been determined, the GNOMAD algorithm proceeds on a 

one-atom-at-a-time fashion as described in Chapter III. This allows us to continue 
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Algorithm for Numerical Uniqueness of Torsional Angles 

1. Convert all angles into distances. 

2. Store the set of distances between all dummy atoms and the associated bond angles for torsional 

angle group. 

3. Initialize the coordinates of each atom in the optimization grouping. 

4. Find the configuration that minimizes the objective function using a modified BFGS local 

optimization 

5. Use the resulting atomic coordinates to compute the torsional angle correctly. 

Figure 15. The outline of the algorithm for numerical uniqueness of a torsional angle. 

working in the three-dimensions and also maintain the effectiveness of our VDW 

constraint. The advantage to improving starting point algorithm is the reduction in the 

computational time spent searching for finding a near global minimum. 

Given that we have a previously optimized set of atoms, the choice of the number 

of atoms that will be added to create a new group is determined based on the torsional 

angle that is associated with last main chain atom of the previously optimized group of 

atoms. In Figure 16, for example, the last main chain atom of the previous optimization 

group is a C atom, and then we add four atoms: the N, Ni, N2, and N3 atoms. This will 

allow us to use distances to ensure that the initial torsional angle coo is in the 

neighborhood of the known value and thus, that we have good starting points for current 

optimization group. 

In order to understand our method for picking better initial configurations, assume 

that we have a group of n atoms. The algorithm assumes the minimum of the objective 

function for (n - 4^-atom group has been found. The algorithm then uses the optimized 

(n-A)-dXom. group together with four additional atoms to construct an initial n-atom 

structure, with which a global optimization procedure is started to minimize the objective 

function of the n-atom group. For this reason, we will focus on determining good starting 

position for the four remaining atoms in the n-atom group. 

We determine the initial position of the first update atom, which is always a main 

chain atom, by placing it relative to the last three atoms from the previous optimization 

group. To determine the coordinates of the first update atoms, assume that we have found 
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Figure 16. The starting points of a subsequent optimization grouping. These points are made up of the 

previously optimized of atoms (indicated by the solid black line) and additional set of atoms (indicated by 

the dashed black line) whose starting positions are chosen to constrain the torsional angle co to a value that 

is in the neighborhood of the known angle. 

the coordinates for the last three atoms of the previous optimization group. We will call 

these our base atoms. Let the coordinates for the three base atoms be denoted by 

x2—(u2,v2,w2) , and x3=(u3,v3,w3)
T. Given that we know the coordinates of these 

atoms, we want to determine the starting coordinates of the next atom, x4 . 

We can find the position for x4 by using the positions of JC, and x2, the bond 

angle between jq, x3, and x4, and the bond length between x3, and x4 (See Figure 17). 

Once we have determined the starting point for x4, we use the bond angle associated 

with x4 to determine the position of the /-plane. As shown in Figure 18, the /-plane is 

y 
fixed at an angle J32 = — from the bond vector from atoms x3 and x4 . Lastly, the 

starting position of the last remaining atoms is going to be somewhere in the /-plane. 

Because we are interested in finding an initial starting position of the last atoms so that 
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*4 

Figure 17. Determining the position of the first update atom. In this diagram Xi and x3 are main chain atoms 

and x2 is the last dummy atom of the previous optimization grouping. 

xi 

Figure 18. The initialized position of remaining updates atoms in a segment of the polypeptide. 

corresponding initial torsional angle is in the neighborhood of the correct value, the best 

starting position for each of remaining update atoms are determined by solving a local 

search problem in the torsional angle space. 

Mathematically speaking, we determine the best starting position of the remaining 

atoms by finding the initial torsional angle value that produces the lowest function value 

for the Z,2-function error in Equation 3.1. This requires that we utilize a slightly modified 

version of the algorithm in Figure 15. For the preliminary setup, we define an error 

function value threshold cutoff at a high value and partitioning the torsional angle 

interval {-7t,7t) uniformly. We then initialize (/> = -180° so that the /-plane is initially 
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positioned relative to the starting torsional angle as well as the bond angle as shown in 

Figure 18. 

To find the starting coordinates that yield the optimal torsional angle value, we 

rotate the torsional angle about the main bond vector. As we rotate the angle, the 

remaining update-atoms in the /-plane take on different starting position. For each degree 

increment taken on the unit circle, the torsional angle updates and we compute the new 

starting positions of each update atom. The update for the new starting position is given 

by 

x'i(0) = R>xi(0) + x4 (3.2) 

where JC!(0) is the optimal starting position of each of the remaining atom added to the 

group for i = 5, 6, and 7, R is the rotation matrix relative to the three previously 

determined atoms, xt(0) is the initial atomic position of ith update atom, and x4 is the 

starting position of the first atom added to the group. For each set of starting positions, 

we then calculate the set of input distances dk
c associated with remaining update atom, 

evaluate the function, and store the error value if it is lower then the threshold error-

cutoff. Lastly, we fix the starting coordinates of the update atoms to be equal to the 

coordinates corresponding to the torsional angle associated with the lowest function 

value. These initial starting positions are added to the previous optimization group to 

create an initial configuration, with which our global optimization procedure is started to 

minimize the function of the n-atom group. 

Figure 19 is an outline of the algorithm for finding starting points of a new 

optimization grouping. Once the optimal position for every atom in current optimization 

group is determined, we add another group of atoms onto the previously optimized group 

to create an initial configuration for next optimization group, determine the best starting 

position of the added atoms, and than perform an optimization to determine the optimal 

configuration. We continue this procedure until the whole protein structure is built up. 

One of the major arguments against this approach is that the use of distances to form the 

angle correctly is unnecessary for determining the good position for atoms. Recently, Wu 

(2007) introduce an updated and a rigid geometric build up algorithm that yield good 

estimates of protein structure using a sparse set of inter-atomic distances. The major 



57 

An algorithm for finding the initial atomic positions for BFGS local optimization 

1. Transform two previous main chain atoms and the first dummy atom into new coordinate system. 

2. Fix the first update (main chain atom) atom in the new coordinate system relative to the previous 

atoms. 

3. Define the plane containing the psuedo-atoms with respect to the bond angle. 

4. Set an error function value threshold cutoff and partitioning the torsional angle interval (—7T,7t) 

uniformly. Initialize the torsional angle to - 71 degrees. 

5. Fix nsteps = 360. Repeat: 

For each torsional angle test value; 

Determine the coordinates of the remaining update atoms. 

Evaluate the function error; 

If the function error is less then the minimum threshold, 

store the coordinates of the three atoms. 

End 

6. Re-initialize the coordinates of the starting point to the coordinates corresponding to the torsional 

angle value that generates the lowest function error value. 

Figure 19. The outline of the algorithm for finding a set of starting points for remaining atoms in the 

current optimization grouping. 

focus of their work is in improving the mechanics of their atom-based approach to 

effectively produce good quality protein structure when using sparse sets of inter-atomic 

distances. 

Our work is different in that we makeup for the missing distances by making use 

of available torsional information. Because GNOMAD is known to work well 

withdistances information, we convert the torsional angles into a set of distances that is 

able to mirror the variational behavior of known torsional angles. This allows us to use 

torsional information to determine better starting positions for our atom-based approach 

and it sets the foundation for being able to use distances to accurately form local structure 

within the proteins. 

III.4. Validation 

Optimization experiments were performed to evaluate the method of satisfying 

torsional information using our new atomic representation. The data used in the 
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experiments were derived from molecules with known three-dimensional structure that 

were taken from the Protein Data Bank (Berman et al. 2000). In this work, the goal of the 

experiment was to evaluate the effectiveness in using the modified GNOMAD algorithm 

and our new atomic representation in satisfying torsional information in secondary 

structure regions. Therefore, only the GNOMAD code is used in the validation 

experiments, in order to evaluate effectiveness of the new atom approach compared to 

using a main chain atom approach. 

To evaluate our algorithm, we run our program on secondary structure segments 

taken from the L7/L12 50S ribosomal protein from Escherichia coli (E. coli). This protein 

contains 68 amino acids , three helices and one beta sheet compromised of three strands 

(Williams et al. 2001). The data for the test structure is generated using the 1CTF 

structure downloaded from the PDB data bank (Berman et al. 2000). For the purpose of 

this work, an optimization experiment consists of an attempt to recreate major secondary 

structures, a-helices and p-strands, using a minimum set of distances. Since these 

secondary structures tend to be uniform substructure in proteins, we choose to run 

experiments on only one a-helix and one (3-strand taken from the 1CTF protein. The 

results will be relatively consistent no matter which helix or strand we pick from the 

1CTF protein or from another protein. 

Distances are chosen to include only those associated with the atoms that are 

found in a torsional angle group and that define each secondary structure under 

consideration. The first secondary structure, the helix, is defined by its series of distances 

between connected adjacent amino acids: (/,z + 3),(z + l,z' + 4),(z' + 2,z + 5),... The second 

structure, the strand, is part of a much larger substructure and thus is not defined by 

distances between atoms in adjacent amino acids (Dill 1990). For this reason, the 

minimum set of distances will be made of only distances between all atoms in connected 

adjacent amino acids. One advantage to this minimum set is that it will eliminate the 

dependence of satisfying angles on the availability of distances. 

The first set of distances include all the fixed "z to i+1", "z to i+2", and "z" to i+3" 

interatomic distances taken from the main chain atomic representation5, and the second 

5 The "main chain representation" is an atomic representation including the main chain atoms N, Co, C, and 

Cg where the Cg is representative of the sidechain of an amino acid. 
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set of distances include the same interatomic distances taken from the new atomic 

representation. We compute three configurations for each secondary structure: first with 

the main chain distances, then with the addition of a torsional angle constraint, and finally 

with only the new model distances. 

The torsional angle constraint method is designed using the general enforcement 

procedure discussed in Chapter III. The purpose of this constraint is to keep the 

optimization from converging to the opposite torsional angle value. Given that we know 

the correct angle, we can determine the position of the atom being moved that would 

result in the mirror image configuration and thus the opposite torsional angle. Based on 

this determination, we construct a torsional angle violation region, for which the atom is 

restricted from moving into. The region is spherical and can be expanded only to a radius 

that does not violate any of the true distance constraints. This method of constraining 

torsional angles becomes less effective as the angle approaches 180°, where the radius of 

the torsional angle sphere approaches zero. 

The results of the optimization experiments were collected and analyzed in terms 

of accuracy of GNOMAD in recreating the secondary structure and effectiveness of using 

distances to satisfy torsional angles. Accuracy is measured in terms of the RMSD and the 

distance residuals (Williams et al. 2001). In the absence of a "known" structure - the 

only error measure available is the distance residuals, which represent how well the 

optimization satisfies the input distance data. When a "known" structure is available, as is 

the case in this work, an RMSD can be computed to measure the accuracy of the 

estimated structure to the known structure. 

Effectiveness of our method in using distances to satisfy torsional information is 

assessed by two measures. The first is the percent of angles that are correct, which is 

given by: 

number of correct angles 
% correct = - (3.3) 

total number of angles 

This is a measure of the overall effectiveness of each method in satisfying torsional 

information. Even if there are a large percentage of correct torsional angles, it is difficult 

to gauge what the actual problem is in using distances to satisfy individual torsional 

angles. 



60 

As a test of satisfaction of individual angles in using distances from the associated 

torsional angle group, we consider the relative error of each torsional angle. The relative 

error measures how close an individual angle is to the correct value. Each torsional angle 

has an associated relative error and is computed by 

, . original angle - calculated angle .„ A. 

relative error = : =— (3.4) 
original angle 

The relative error also indicates what type of configuration results from using the 

minimum set of distances associated with torsional angle groups to satisfy individual 

torsional angles (e.g. correct, mirror image, etc.). This can be seen by defining the 

original angle by, 0O, and the calculated angle by, 0C. Suppose that the distances 

constrain the atoms to positions that coincide with the additive inverse of 0O, that is 

0c=-9o. Then, the relative error is r = 2. On the other hand, suppose that the distances 

constrain the atoms to positions that coincide with the correct original angle, 0O, that is 

0C - 0O. Then, the relative error is r = 0. 

Because the calculated angles are only precise to within a cutoff threshold, we 

define ranges for relative error that are associated with correct and incorrect 

configurations. A relative error in the range of 0 to 1 indicates that the distances constrain 

the torsional angle to the correct configuration associated with a torsional angle. A 

relative error in the range of 1 to 2 means that the distances constrain the torsional angle 

to the mirror image of the correct configuration, which yields the additive inverse of 

correct torsional angle. Lastly, a relative error > 2 indicate that distances do not satisfy 

the torsional angle, but result in another type of distance constraint violation. 

111.4.1. Results 

To demonstrate the accuracy and effectiveness of the various methods, the error, 

the RMSD, and the percentage of correct angles were recorded for each run. Results are 

presented in Table 4. The first column contains the secondary structure type. The second 

column contains the atomic models and methods implemented in GNOMAD for 

satisfying torsional angles and the remaining column list the measures of accuracy for 

each method for both secondary structures under consideration: maximal distance 

residual error, the root mean square deviation (RMSD), and the percentages of correct 
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Table 4. Accuracy results for using distances to satisfy torsional information. 

Accuracy and Effectiveness of GNOMAD 

Secondary 

Structure 

a-Helix 

/3-Strand 

Methods 

Main chain atomic representation 

Main chain w/ Torsional angle 
constraint 

New atomic representation 

Main chain atomic representation 

Main chain w/ Torsional angle 
constraint 

New atomic representation 

ERROR 

0.0195 

0.0237 

0.0033 

0.0089 

0.0110 

0.0046 

RMSD 

4.3983 

2.1487 

0.0812 

2.2955 

3.7475 

0.0171 

% correct 

angles 

51% 

87% 

100% 

53% 

67% 

100% 

angles found secondary structure region, respectively. 

To understand the effectiveness of using distances to satisfy individual types of 

torsional angles in the helix and strand region, we also included results for the relative 

error. Figures 20 and 21 include results for an arbitrary helix and strand found in 1CTF. 

protein in using each method. Each figure displays three plots: one for the main chain 

atom representation, one for the main chain atom representation with torsional angle 

constraint, and one for the new atom model representation. Each plot contains three point 

types, one for representing the " ^ " angle type, one for representing the "ys" angle type, 

and one representing the " <a " angle type. The points are plotted over the entire range of 

torsional angles for each secondary structure. Each point represents the residue number 

and the corresponding relative error of each angle in the secondary structure region. 

To illustrate the effect of satisfying torsional information with both the main chain 

and new model, Figures 22 and 23 show qualitative comparisons of both secondary 
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Figure 20. Results of relative error for using distances to satisfy torsional angles found in the helix region 

for the main chain, main chain with torsional angle constraint, and new atomic representation. 

structures resulting from each of the method using GNOMAD. Figures 22 shows a 

comparison of the helix structure resulting from each of the method implemented in 

GNOMAD with the corresponding helix structure from the 1CTF protein. Similarly, 

Figures 23 shows comparisons of the strand structure resulting from each of the method 

with the corresponding strand structure from the 1CTF protein. 
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Figure 21. Results of relative error for using distances to satisfy torsional angles found in the strand region 

for the main chain, main chain with torsional angle constraint, and new atomic representation. 

III.4.2. Discussion 

Results from using distances to satisfy torsional information - main chain model, 

main chain with torsional angle constraint, new representation model -revealed several 

important issues. First, using the main chain atomic representation and our minimum set 

of distances is not effective in satisfying torsional information in the framework of 

GNOMAD. In Table 4, we see that the possibility of constraining angles to their correct 

value in a helix or a strand region through using distances associated with torsional angle 
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Original Helix Main chain 
(max. error = 0.02 A RMSD = 4.40 A) 

Main chain w/ 
torsional angle constraint 

(max error = 0.023 A RMSD = 2.15 A) 

New Representation 
(max error = 0.003 A RMSD = 0.08 A) 

Figure 22. 1CTF a-helix and torsional method results. Comparison of a a<-helix taken from the crystal 

structure of 1CTF with the computed results based on using distances to satisfy torsional angle. 
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Original Strand Main chain 
(max. error = 0.01 A RMSD = 2.30 A) 

Main chain 
w/torsional angle constraint 

(max. error = 0.11 A RMSD = 3.75 A) 

New Representation 
(max. error = 0.01 A RMSD = 0.02 A) 

Figure 23. 1CTF /3-strand and torsional method results. Comparison of a /3-strand taken from the crystal 

structure of 1CTF with the computed results based on using distances to satisfy torsional angle. 
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group is about 50%. This type of behavior is an inherent problem with distance 

information and is to be expected because satisfying distance information with an 

optimization procedure can typically produce two spatial configurations, one that 

produces the correct torsional angle value and, the other that produces the additive 

inverse of the torsional angle value (Kinjo and Nishikawa 2006). 

In the context of GNOMAD, the occurrence of mirror image problem is related to 

satisfying individual torsional angles using the distances from the corresponding torsional 

angle group. The first plot in Figure 20 and Figure 21 supports this observation of mirror 

image occurrence. A relative error of 2 indicates that a crucial factor in the success of 

constraining torsional angles with the distances in corresponding torsional angle group is 

to focus on eliminating the occurrence of mirror image configurations associated with 

each torsional angle. About half of the angles found in the helix and strand region have a 

relative value of 2, which indicates that the distances are constraining atoms to positions 

that that coincide with the opposite of the correct torsional angle value. 

The torsional angle constraint made it possible to avoid the mirror image problem 

for 87% of the angles found in the helix region and for about 67% found in the strand 

region as shown in Table 4. In specific to the helix region, the torsional angle constraint 

eliminated the occurrence of mirror image configurations associated with all the <j> and 

y/ torsional angles as indicated by the second plot in Figure 20. However, this method 

was unsuccessful in alleviating the problem for some of the co angles found in same 

region. 

The difficulty in satisfying the co angles in the helix region is due to the fact that 

the atomic position associated with the correct co angle value and the atomic position of 

its mirror image are so close to each other in the Cartesian plane that the optimization has 

difficulty using distances and even the torsional constraint to determine which position 

yields the correct torsional value and thus, the optimization oscillates between the correct 

and mirror values until the stopping criteria is reached. Because the criterion for the most 

optimal configuration is the one with the lowest maximal distances residual, it is possible 

to pick the configuration that contain incorrect omega angles. 

For this arbitrary helix region, the 38% increase in the number of correct angles 
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translates into improved RMSD. Table 4 reveals a drastic improvement in the accuracy of 

the structure as indicated by its RMSD value of 2.15 A. However, an increase in the 

number of correct angles does not always imply improved accuracy in all major 

secondary structures. In the case of satisfying torsional information in the strand region, 

the addition of the torsional angle constraint was effective in increasing the number of 

correct torsional angles; however, the RMSD value worsens with this increase. 

In considering the second plot in Figure 21, we see that the problem of mirror 

images was not isolated to one specific angle. The y/ torsional angles, in addition to the 

co angles, are not being satisfied, which is demonstrated by the relative error of the \y 

and co angles found in the tail of the strand. The torsional angle constraint is not as 

effective in correcting torsional angles in the strand region as it was in the helix region. 

This observation is not surprising for several reasons. First, the strands are elongated 

substructures and thus, these substructures are not as tightly packed as helices. Hence, 

distances or even torsional constraints are not enough to fully determine this secondary 

structure. 

Another reason for the expected relative error results in the strand region is due to 

the fact that strands are part of a larger substructure in the protein, the /3-sheet and thus, 

the correct formation of the a strand have some dependence on the formation of other 

strands in the /3-sheet (Aszodi and Taylor 1994). Although the formation of one strand 

may have some dependency on another strand within the protein structure, we want to 

design a method that yields the best possible strand when only distances are used to 

satisfy torsional information. Hence, our goal is to design a method that will be able to 

accurately construct all backbone torsional angles when the information is provided, 

regardless of the major secondary structure type. 

In order to alleviate this mirror image problem completely, we revisited the idea 

of using distances only to constrain torsional angles with an improved atomic 

representation. The underlying idea is to increase number distances that are directly 

affected by the rotation of the torsional angle. In the main chain model, there was only 

one distance associated with the torsional angle group that is affected by rotation of the 

angle and this information is not enough to specify a unique angle. We need more 

distances that are affected by the rotation of torsional angles. 
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The mirror image problem can be fixed by simply including more distances from 

other main chain atoms in the protein that are not in the torsional angle group. While this 

would allow for enough information to correctly form the secondary structure accurately, 

it would not allow us to use only distances associated with the torsional angle group to 

satisfy individual torsional angles. Moreover, using arbitrary distances found in the 

secondary structure region introduces the dependence of satisfying torsional information 

on the availability of distances and in some cases, the distances may not be sufficient to 

satisfy torsional angle. 

We develop our new atomic representation, so that we would have a minimum set 

of distances that could always be used to satisfy torsional information when the data is 

available. Because our new model includes at least six more atoms in the torsional angle 

group, the number of distances in the torsional angle group that are directly controlled by 

the rotation of torsional angles increases from one to at least nine distances. This gives 

us a better chance of eliminating the mirror image problem associated with each torsional 

angle in the main chain model. By employing this new model and the minimum set of 

distances associated with each torsional angle group, 100% of the torsional angles are 

correct in both secondary structure regions. The third plots of Figure 20 and Figure 21 

indicate this, where the relative error for all torsional angles is close to zero. 

In the context of GNOMAD, good RMSD values do not always correspond to 

those configurations with low "distance-residual error". Notice in Table 4that the 

"maximum distance-residual error" from both secondary structures is less than 0.005 A. 

In light of the two atomic representations, the value could be indicative of two types of 

configurations. The first being one for which all distances are satisfied, but for which 

there are many torsional angle constraint violations and the second being one in which all 

distances and all torsional angle are satisfied. In most cases, an "error" result is around 

0.04 A. This value tells us that some of the data has not been satisfied; however, errors in 

this range could yield secondary structures with relatively good R M S D values. For the 

scope of this work, we work with the accuracy metrics: percent of correct angles, relative 

angle error, maximum distances residual, and RMSD. 

The qualitative results presented in Figures 22 and Figure 23 show what typically 

happens in GNOMAD when the various methods of satisfying torsional information with 
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distances are applied. For each of the test problems, it is apparent that better secondary 

structures are found as we improve the method for eliminating occurrence of mirror 

images. Figure 22 and Figure 23 demonstrate in some worst-case scenarios how the helix 

structure determined by using the main chain representation can be affected by distances 

constraining the atoms to the mirror image of the torsional angle configurations. The 

figures show a helix of the protein 1CTF that was determined, first by using distances 

taken from the main chain atomic representation and then with the addition of the 

torsional angle constraint. The first picture in both plots shows that using distances 

associated with the torsional angle groups taken from mainchian representation results in 

a secondary structure whose torsional angles disagree with many of the angles in the 

original secondary structure. 

Alternatively, the second picture in Figure 22 shows an overall improvement in 

the formation of the helix when using the torsional angle constraint and distances taken 

from the main chain representation and, thus, results in a structure that is consistent with 

the helix of the original structure. Also, the second picture in Figure 23 shows that using 

the torsional angle constraint and distances taken from the mainchian representation 

worsens the formation of the /3-strand. The use of a new atomic representation provides 

significant improvement over the deformed structures that result from using only the 

main chain atomic representation. We clearly see that employing a new atomic 

representation and using a minimum set of distances is successful in recreating the a-

helix and the /3-strand that almost completely agrees with the original structure. 

III.5. Conclusion 

GNOMAD is effective in satisfying VDW and chirality constraints, has good 

global convergence properties, and is computationally efficient (Williams et al. 2001). 

But, this algorithm is not designed to effectively use torsional information. The 

algorithms inability to effectively use this readily available information limits the 

accuracy in the formation of reoccurring substructures, such as ohelices and /3-sheets, 

which are found in a large number of proteins. In this section, we proposed a practical 

method for using distances to satisfy torsional information in secondary structure regions 

and show that effective use of torsional information in GNOMAD results in accurate 

formation of these major secondary structures. 
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In order to do this, we specifically study the secondary structure regions and 

develop methods for improving those regions when torsional information is available. 

The idea for the method is based on specifying a minimum set of distances that can be 

used to give a good estimate of each of torsional angle. The choice of these distances was 

made so that interatomic distances that were associated with the torsional angle group 

would be included. A crucial factor in using distances to satisfy torsional information 

was to include distances associated with specific atoms in the torsional angle group that 

are directly affected by the rotation of a torsional angle. If we could specify enough 

distances that are controlled by the change in a torsional angle, we could possibly solve 

the inverse problem, that is, determining a close estimate of the torsional angle using 

those distances. 

In general, the quantitative and qualitative results indicate that new atomic 

representation offers an effective approach for satisfying torsional information and 

increased accuracy in estimating major secondary structures. In all cases, the increased 

accuracy is due to eliminating the occurrence of mirror image problem inherent in using 

distance input in nonlinear optimization. Results show that the addition of the torsional 

angle constraint provides for some improvement over the main chain model alone in the 

helix region, and the use of the new model yields significantly better RJVISD results in 

both secondary structures. 

Several conclusions can be drawn on the results of this work. First, torsional 

information can provide valuable and "free" information for the estimation for ohelices 

and /3-sheets, but the incorporation of torsional information into nonlinear optimization 

algorithms is often ineffective. Second, a new atomic representation is found for the 

protein structure that expands the number atoms in a torsional angle group and thus, the 

number of distances controlled by an individual torsional angle. This representation, 

combined with an a minimum set of distances, allows for satisfaction of all torsional 

information, maintains good global convergence, and results in a significant improvement 

in the quality of local substructures within the protein. Third, tests with the new atomic 

representation performed on arbitrary secondary structure from the 1CTF protein yield 

significant improvements in terms of constraint satisfactions and RMSD. 
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Since the new atomic representation and the minimum set of distances are 

sufficient for satisfying torsional angle, it is possible to determine the major secondary 

structure in protein structure when all torsional information is given in those regions. Our 

results are novel because they illustrate a practical method for using distances to satisfy 

torsional information, and provide a mechanism for correcting local substructures within 

the framework of an atom-based optimization procedure. Given that we have a solid 

method for constructing some of the major components found in the proteins, we can 

now examine methods for making GMOMAD capable of handling other types of 

information, such as surface, solvent accessibility, etc. to help in bringing these major 

components together and aid in folding of the three-dimensional structure. 
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CHAPTER IV 

A COMPUTATIONALLY EFFICIENT METHOD FOR USING 

MOLECULAR SURFACE CONSTRAINTS 

IV.l. Introduction 

Obtaining a better quality three-dimensional protein structure requires integration 

of a variety of structural data. Distance and angle information are the primary types of 

data used in optimization procedures for computing protein structures. Due to the 

significant advancements made in collecting protein structure information, there are 

other types of structural data that can be used in structure computation such as, surface, 

shape, volume, etc. Surface and shape information are available from a variety of 

experimental and computational techniques including solvent accessibility, electron 

microscopy, sedimentation experiments, and homology modeling (Dugan and Altman 

2003). It is difficult, however, to use this data to develop a practical constraint for use 

during structure computation. 

There are several reasons for the integration of surface information into our 

molecular structure estimation. Primarily, the hydrophobic effect on the folding of 

proteins can be modeled in the context of molecular structure estimators (Wade 1996; 

Cao et al. 2002). Secondly, Dugan and Altman showed that there is a clear correlation 

between how well a model conforms to its shape and how close the model is to being the 

correct model (Dugan and Altman 2003). Lastly, analysis of interactions in specific 

regions of the molecular surface and the surrounding environment is useful in the context 

of drug design (Schmidt et al. 1998; Pedretti et al. 2002). 

The standard treatment of this type of data in optimization algorithms involves 

developing a potential energy function from the solvent accessible surface area and 

including this potential energy function as a term in the objective function (Lee and 

Richards 1971; Felts et al. 2002; Gallicchio and Levy 2003; Kar et al. 2006). These 

standard methods for integration of surface shape data are effective in numerous 

optimization algorithms. However, the penalty function methods are not as effective as 
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the GNOMAD approach, which is to separate constraints from the formulation of the 

objective function. 

In this chapter, we present an algorithm for extracting the molecular surface from 

an atomic representation. We then introduce a new method for directly using a molecular 

surface to constrain the position of atoms within the protein using the GNOMAD 

structural estimation framework. The chapter is organized as follows: in Section IV.2, we 

provide background theory for molecular surface construction. In Section IV.3, we 

describe the method for constructing molecular surfaces and discuss how the molecular 

surface is used as a constraint in protein estimation. Section IV.4 presents some 

experimental results of implementing surface constraint in GNOMAD algorithm. We 

conclude the chapter in Section IV.5. 

IV.2. Construction of Molecular Surfaces 

A molecular surface defines the boundary between the inside and outside of a 

particular molecule. Primarily, the molecular surface of proteins is used to study the 

hydrophobicity of atoms within the proteins. In addition, these surfaces yield valuable 

information that is important to many areas of drug design including, identifying clefts 

and possible drug binding sites in protein surfaces, studying protein-protein interfaces, 

and screening databases of small molecules for the purpose of identifying molecules of 

possible pharmaceutical use (Connolly 1983). In the context of protein structure 

estimation, the results of the molecular surface computation are used to model the 

interactions between the protein and its environment. 

The key components for constructing a molecular surface are (1) identification of 

a set of surface atoms and (2) construction of a smooth connected surface. In many of the 

molecular surface software, the identification of surface atoms is usually done by a 

computer program that simulates the rolling of a water size probe over the protein 

structure (Connolly 1983). For high precision surface calculation, a ray casting procedure 

is used to identify the surface atoms. In this procedure, the surface of the atomic 

representation is obtained by simulation of the light passing through the protein structure. 

From this atomic representation, nodes that satisfy a specified accessibility condition are 

chosen as surface nodes (Torshin 1999). 
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Once the set of surface atoms is determined, a smooth surface is constructed using 

a triangularization procedure. Several algorithms have been developed to yield smooth 

and connected molecular surfaces, including the Connolly method by LeGrand (1993), 

and Vorobjev (1997), the divide and conquer method by Eisenhaber et al. (1995) and 

Sanner (1996), the spherical harmonic methods by Duncan and Olson (1993) and Wade 

and Gabdouline (1996), etc. Many of the standard methods for constructing a molecular 

surface require a large amount of computations and the number of computations increases 

with the number of atoms in the molecule 

In our work, a molecular surface is constructed many times during the top level of 

our atom-based optimization. Therefore, enhancing GNOMAD with one of the standard 

molecular surface algorithms will increase the computational time spent in finding a 

structure that satisfies surface data. In order to limit the computational time spent in 

constructing the molecular surface during the optimization, we use a molecular dot 

surface to constrain atoms. 

IV.3. Methodology 

Developing a physical constraint that uses a molecular dot surface to constrain the 

position of atoms during structure computation is complicated by the fact that we are 

using a surface that is just a discrete set of surface nodes. There are four steps in 

implementing our surface constraint: 

1. Construct a dot molecular surface from the model configuration; 

2. Perform the molecular structure optimization and require that all main chain and 

sidechain atoms stay within a specific distance from the surface nodes; 

3. Perform a translational shift so that atoms do not drift too far outside of the 

surface; and 

4. Rotate the model by finding optimal alignment between the original surface and 

surface constructed around the model configuration. 

Although the surface constraint algorithm is made up of these four steps, the algorithm 

can be explained in two parts: (1) constructing the dot molecular surface and (2) 

satisfying surface data. Each part requires solving a separate computational problem. For 

this reason, we discuss the implementation of each part in the next subsections. 



75 

IV.3.1. Creating a Molecular Dot Surface from the Atomic Configuration 

To represent surface data we construct a molecular dot surface from the atomic 

configuration. In constructing the molecular dot surface, we use some of the concepts of 

the marching cubes algorithm. The basic principle for constructing the surface from the 

marching cubes algorithm is to assign a uniform cubic grid over three-dimensional space. 

The algorithm then instructs us to 'march' through each of the cubes, testing the corner 

points and replacing the cubes with an appropriate set of polygons. The sum total of all 

polygons generated will be a surface that approximates the data set described (Lorenson 

and Cline 1987). 

Similarly, our algorithm subdivides the three-dimensional space into a series of 

grid nodes. Then, the algorithm determines which of the grid points are within a specified 

distance of an atom in the molecule. All grid points not satisfying the distance constraint 

are marked as possible surface points. Next, the interior marked grid points are removed. 

It is easy to remove the interior nodes because we only have to check if there are any 

other marked nodes outside of a particular marked node. Then, the exterior marked grid 

points are deleted from the space using a marching cubes approach. If any node within 

the cube around a node i is not a marked node then that node i is marked as a surface 

node. This ensures that only the innermost of the marked exterior nodes define the overall 

dot surface. The remaining marked grid points will be the dot molecular surface of the 

protein, i.e. the boundary of the protein. 

Consider the two-dimensional equivalent. Figure 24 illustrates our idea of 

constructing molecular dot surfaces in R2. The first diagram shows a grid of uniform 

squares equivalent to the cubes from the three dimensional algorithm. A circular object 

has been inserted into the grid, which is the figure whose shape we are going to 

approximate using a subset of grid points. In the first step, the grid points near the donut 

are removed as shown in the second diagram in Figure 24. In the second step, the interior 

grid nodes are removed as shown in the third diagram in Figure 24. In the next phase, the 

outermost exterior points are determined and removed. The remaining grid points 

approximate the shape of the object as shown in the last two diagrams of Figure 24. 

The result of the R2 case easily translates to the R3 case. The algorithm for 

constructing a molecular dot surface from the atomic representation is given in Figure 25. 
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Remove grid node that are less than a 
prescribed distance from the molecule. 
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Remove interior grid nodes. 
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Remove exterior node using the Marching 
Cubes Algorithm. 

Dot surface of the molecule 

m 
m 

Figure 24. Illustration of constructing a surface in R 

Our molecular surface algorithm has been tested on many proteins and produces a close 

approximation of the original surface shapes. Furthermore, our method is quite simple to 

understand and easy to implement. 

There are two empirical parameters used in calculating the surface that 

significantly influence the shape of the molecular surface: (1) grid spacing and (2) 

distance threshold cutoff. In running preliminary tests, we found the optimal parameters 
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Algorithm for Constructing Molecular Dot Surface 

1. Construct a uniform grid of nodes. 

2. Insert the atomic coordinates. 

3. Remove all grid points that are less than a specified distance from all atoms in the molecule as 

possible surface nodes. 

4. From the remaining grid points, remove the interior grid points. 

5. Lastly, remove exterior grid points using a marching cubes approach. 

Figure 25. Outline for molecular dot surface algorithm for atomic distances. 

for calculating the surface were grid spacing of 3.5 A and the distance threshold value of 

about 2.00 A. These empirical parameters are set at specific values, but can be changed. 

The refinement of the grid increases the accuracy of the molecular surface. However, the 

distance threshold value must be restricted in how much it can be increased. As the 

distance threshold value increases, the resulting molecular surface will lose accuracy of 

curvature in intricate regions. The results will be discussed in detail in the section on 

preliminary parameter analysis. 

An example of the molecular dot surface constructed from our method is given in 

Figure 26. We use the atomic representation of the E. coli molecule given in the first 

picture to construct a corresponding molecular surface as shown in the second picture. 

IV.3.2. Satisfying Surface Data 

Once the dot molecular surface has been constructed, the next stage of the 

algorithm is to constrain the position of atoms within the protein. The development of the 

surface constraint is based on the general constraint enforcement procedure discussed in 

Section III. 5. The surface constraint enforcement procedure begins by placing minimum 

separation spheres around the molecular surface nodes after the local minimization 

procedure has terminated. The surface nodes define the center of the spheres. During the 

optimization, the atoms are restricted from moving into a surface violation region. If the 

atom is inside one or more surface violation regions, then the position of the atom is not 

currently satisfying surface data and is pushed outside of the sphere using a low function 

error criteria. 

It is important to note that care should be taken in choosing the atom types that 
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Figure 26. 3D example of constructing a dot surface from an atomic representation. 

will be constrained. In preliminary work, we found that enforcing a surface constraint on 

every atom is too restrictive and results in a collapse of the configuration during the 

optimization process. For this reason, we chose to constrain only the main chain and side 

chain atoms of new atomic representation. Since a Cp atom represents the sidechain in 

our model, we decided to modify the distance cutoff value of these atoms to compensate 

missing atoms of the sidechains. All atoms that are found inside of surface violation 

regions are pushed outside the region using the constraint enforcement technique 

previously described. The algorithm for constraining an arbitrary atom is given in Figure 

27. 

In light of constraining specific atom types, we also must address the problems of 

unconstrained atoms shifting outside of the molecular surface periodically throughout the 

computation. To ensure that atoms do not drift too far outside the surface, the model is 

shifted after each atom optimization so that the center of mass of the model lies on the 

center of mass of the original input surface. While this adjustment takes care of atoms 

going outside of the surface, it does not account for the atomic position satisfying the 

surface data. Therefore, a rotational alignment is performed to ensure that the 

unconstrained atoms agree with surface data during the computation. 
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Algorithm Enforcing Surface Constraint on an Atom 

1. Construct the violation sphere for all surface nodes with a user specified radius. 

2. For each surface node. Repeat: 

Compute the endpoints of the intersection of the search line and the violation sphere. 

Compute the distance between the atom and surface node. 

If the distance is less than the radius of violation sphere, store the endpoints as possible step 

length updates. 

3. Merge all possible step length updates for all surface nodes. 

4. If the atom is inside of any of the violation spheres, move that atom to a position that is outside 

of all the violation spheres by re-initializing the step length to the possible update that produces 

the lowest function error value. 

Figure 27. Outline for enforcing the surface constraint on an atom. 

A natural approach to aligning two surfaces is to minimize some error function of 

misfit such as the squared error, entropy, etc (Besl and McKay 1992). The most common 

approach is the L2 -error minimization formulation. In our work, however, the L2 -error 

function will produce an alignment that favors regions where there is a higher density of 

nodes. Another reason L2 -error function is not employed is because the number of nodes 

in each set is not equal and we have no defined one-to-one correspondence between the 

surface nodes in the first set with that of the second set. Therefore, we must choose an 

error function of misfit that avoids producing an alignment that is biased to the large error 

in a specific region and that also defines one-to-one spatial coherence between the points 

in of one set with those of the other set. 

We chose to minimize the variance because this will spread the error out evenly 

around the surface. The error minimization can be described as follows. Given a set of 

original surface nodes {x,} for i = \...n and experimental surface nodes{/?.} j = \...m, 

where n and m is the number of points in the original and experimental set, respectively, 

we find the angles rotational <p, 6, and ythat minimizes the variance function 

Var{dv) = [E{dy)}-E{dl) (4.1) 
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where E(d,) is the average distance between a node in the original surface and the 

closest node in the experimental set corresponding to that node. 

1 n n 

E(dv) = -ZT,dv (4.2) 
n i=\ j=\ 

and each distance, dt, is defined as 

(4.3) dij = 

R(W,V) = (4.4) 

where /?. is the closest node in the experimental set corresponding to the node x; in the 

original set, R($,0,y/)6is standard rotation matrix given by 

^cos^cos^ cos^sin#sin^-sin^cosy cos^sinf^cosy + s in^s in^ 

sin^cos# sin^sin^sin^ + cos^cos^ sin^sin#cosy-cos^siny 

-sin<9 cos#sin^ sin#cos^ j 

We can then find an optimal alignment between the given surfaces by minimizing the 

function in Equation 4.1 using standard alignment techniques based on principal 

component analysis (PCA), iterative closest point (ICP), hybrid alignment algorithm, and 

nonlinear optimization (Besl and McKay 1992; Dugan and Altman 2004). 

The advantages of these shape alignment methods are that the convergence is fast 

and monotonic and the algorithms are theoretically sound However, the main barrier is 

that the surface formed from the current configuration does not exactly match the shape 

or size of the original input surface and thus, these algorithms do not work properly for 

some molecular shapes (Besl and McKay 1992). As a result, the surface alignment 

algorithm will fall into local minima traps. 

In light of these problems, we employ an non-gradient method for aligning 

molecular surfaces that does not get hung up in local minima. An outline for our 

algorithm is given in Figure 28. In implementing this method, there is one parameter that 

can be use to increase the accuracy of the rotational alignment. The partition threshold 

number, nthreshold , is the number chosen to divide each angle interval uniformly to ensure 

the best reduction in bracket length per step. If the partition threshold number is fixed, the 

6 The angles (/) and y/ are rotational angles and are different from the torsional angles discussed in Chapter 

III. 
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Algorithm for Rotational Alignment 

1. Set an error function value threshold cutoff. 

2. Fix nsteps = nthreshold . Partition the § rotational angle interval (-it,n) uniformly. Initialize the 

torsional (j> to -n degrees. 

3. For each 0 test value, fix ncuts = nthreshgId . Repeat: 

Partition the 9 rotational angle interval (-7r,7t) uniformly. Initialize the torsional 0 to -it 

degrees. 

For each 9 test value, fix ncuts = nthreshold . Repeat: 

Partition the y/ rotational angle interval (-n,n) uniformly. Initialize the torsional y to 

degrees. 

Update the coordinates of the experimental surface nodes by transforming the surface 

nodes according to the current values of </>,9,andy/ 

Find the closest node in the experimental set corresponding to the node in the original 

set 

Evaluate the variance function; 

If the function value is less then the minimum threshold, 

Store the function value, the corresponding surface nodes, and the 

corresponding 0,9, and if/ . 

4. Choose the group of 0,9,&ndy/ values that correspond to the lowest variance function 

value. 

5. Update the molecular surface by re-initializing the coordinates of the surface nodes to those 

corresponding to the rotational angle value that generate the lowest function error value. 

Figure 28. Outline for finding the optimal alignment for an original and an experimental set of surface 

nodes. 

number of operation would 0(n3). To reduce the computational time spent in function 

evaluation per step, we use an adaptive bracketing method that allows us to reduce the 

length per step as we get close to a very small function value. 

Our method does not compare with the computational efficiency of the standard 

alignment method such as ICP and advanced ICP. But, the advantage is that it is easily 
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implemented, avoids local minima entrapment, and produces good alignment for 

eccentrically shaped protein surfaces. In the future, we can investigate how implementing 

a better shape-matching algorithm could possibly improve the success of the surface 

constraint. 

Figure 29 shows an example of aligning an original molecular surface and an 

experimental molecular surface. We use the atomic representation of the E. coli molecule 

to illustrate effectiveness of our approach. The first picture represents the surface nodes 

of the original protein (red), which is constructed using our molecular surface algorithm 

above. The second picture shows the experimental molecular surface (yellow) computed 

from a model configuration. In comparing these pictures, notice that the molecular 

surface shapes are not exactly the same and there is a possibility for one surface to have 

more nodes. Our method is still able to produce an optimal alignment for the two dot 

surfaces while ensuring that the positions of the unconstrained atoms also satisfy surface 

data. 

IV.4. Validation 

The goal of the experiments was to evaluate the effectiveness of a molecular dot 

surface in satisfying surface data. The information used in the experiment was derived 

from proteins with known three-dimensional structure that were taken from the Protein 

Data Bank (Berman et al. 2000). Therefore, only the GNOMAD code is used in the 

validation experiments, in order to evaluate effectiveness of the surface constraint 

compared to angle-constrained optimization. Because the surface constraint requires three 

empirical parameters in implementing the surface constraint, a section on preliminary 

results from parameter analysis has been included before the result section. For the 

purpose of this work, an optimization experiment consists of an attempt to recreate the 

known crystal structure using distance and surface information. We generate a set of 

input distances by first including all the fixed " i to i + l" and " i to i + 2" interatomic 

distances (assuming relatively constant bond lengths and bond angles), all torsional 

angles in the a-helix and P-strand regions (assuming these secondary structures are 

known), the omega torsional angles in the loop region, and short-range contact distances 

(SRD). The surface shape information consists of a set of surface nodes generated from 

the original structure. The choice of this input data set is to include information 
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Input Surface 
Model surface 

constructed from current 
atomic configuration 

Atoms rotated so that model surface is aligned 
with input surface 

Figure 29. 3D illustration of satisfying surface data using translational and rotational alignment. 

associated with the major secondary structures and to provide partial folding information 

about the protein. 

In the preliminary section, we study the relationship between the surface 

constraints and the quality of the structure as we vary the empirical parameters: grid 

spacing, distance threshold cutoff, and radius of the violation spheres. Then, we look for 

the optimal set of parameters that will yield improved structure over a wide range of 

available input data. In the second section, the main aim of the computational 

experiments is to show that our surface constraint provides a reliable and effective 
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approach in bringing major secondary structure together and in improving the folding of 

the protein. For this reason, a subset of proteins for which at least 40% of the all amino 

acids are found in helices and strands were chosen as test cases. 

The Structural Classification of Proteins (SCOP) (Murzin et al. 1995) database 

provides information regarding classes of proteins based upon the inclusion of structural 

elements such as a-helices and P-sheets. The classes a+P or ot/p are two SCOP classes 

that provide information regarding the inclusion of structural elements such as a-helices 

and P-sheets. The classes all-P and all-a are two classes based upon the inclusion of all 

P-sheets or all a-helices, respectively7. Six proteins were chosen for testing our surface 

constraint, all of which belong to either the a+p or a/p SCOP classes. The total number 

of amino acids and nonhydrogen atoms for the various test structures is given in Table 5. 

Accuracy is measured in terms of the RMSD and the distance residuals. In the 

absence of a "known" structure - the only error measure available is the distance 

residuals, which represent how well the optimization satisfies the input distance data. 

When a "known" structure is available, as is the case in this work, an RMSD can be 

measured to compare the accuracy of the estimated structure to the known structure. 

IV.4.1. Preliminary Analysis of Empirical Surface Parameters 

In this section, we investigate the dependence of the solution structure on the 

variations of three empirical parameters used in implementing the surface constraint. We 

find the optimal empirical parameters that aid in the improvement of the quality of an 

initial test protein, E. coli protein (ID code 1CTF). We will use these empirical 

parameters throughout results section for other test proteins. This is not to say that these 

values are optimal for every protein in a+p or a/p SCOP classes, but is merely a way of 

gauging the effectiveness of our surface constraint in improving the quality of structure 

for proteins that are comprised mostly of helices and strands. 

In developing the surface constraint, three empirical parameters are crucial to the 

effectiveness of using a dot molecular surface to improve protein structures: grid spacing, 

distance threshold cutoff, and radius of the violation spheres. The grid spacing and 

distance threshold cutoff parameters serve as a way of refining the original and update 

7 Note that the all-/? and all-a proteins were excluded from this investigation because enforcement of the 
surface constraint will result in structural collapse due to the distance threshold cutoff. 
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Table 5. Test structures mostly comprised of helices and strands. 

Structural Type PDBID # of Residues # of atoms 

lozz 

lctf 

lawO 

lfvs 

laps 

lbta 

lay7B 

43 

68 

71 

71 

97 

89 

89 

Mainchain 

170 

266 

282 

285 

384 

351 

351 

New 

572 

884 

936 

936 

1274 

1157 

1157 

surfaces. The grid spacing helps to tighten and loosen the surface. That is, the closer the 

grid nodes, the more accurate the curvature of the surface of the protein. The distance 

threshold cutoff allows us to improve the accuracy of the surface by determining the 

amount of grid nodes used in creating the surface. Too many grid nodes will increase the 

computational complexity. On the other hand, an insufficient amount of grid nodes will 

cause the surface to be too porous and thus result in many atoms moving outside of the 

surface during the optimization. 

The last empirical parameter, radius of the violation sphere, is the means by 

which we can move the atom relative to surface and aids in producing a structure that 

agrees with surface data. The choice of the radius of the violation sphere is very 

important because the radius can be used as a tool for choosing the best position of 

atoms. The choice of the parameter cannot be too large or too small. If we start with the 

radius large, then in regions where there is insufficient distance information the atoms 

will be compressed together, and in regions where there is sufficient information the 

surface constraint will cause a conflict in satisfying the data set. If we choose the radius 

too small then the surface constraint will not be effective in moving major components of 

the protein into agreement with the surface. In both of these cases, the optimization will 

be unable to yield a good quality structure that agrees with all input data. 

In this work, we use one specific value for the radius of all violation spheres, 

independent of the atom type. This will have the total effect of moving all major 
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components into agreement with surface and into agreement relative to each other based 

on other input data. In the section on future work, we discuss a method for choosing the 

radius to capture the hydrophobic interaction, in which the radius shrinks and expands 

proportional to the atom's solvent accessibility condition. This involves performing a 

statistical analysis on the distances between different atom types and water molecules. 

This information can then be paired with solvent accessibility information to help 

position atoms to satisfy solvent accessibility conditions and model hydrophobic 

interactions. 

Experiment 1 

In our first computational experiment we investigated the effects of changing the 

grid spacing, g, on the quality of the protein structure with a specific distance threshold 

cutoff, d, and radius of the violation sphere, v. We varied g over [2.50, 3.75] because any 

value below this point will be two confining for building a protein structure and result in 

a collapse in the protein structure before enforcing the surface constraint, and any value 

above this point will produce a surface that is ineffective in moving the major 

components of the protein. Results show that the surface constraint algorithm fails to 

improve the quality of the structure in almost every case except for g = 3.5 A. Based on 

these observations, grid spacing g = 3.5 A is the best choice for the surface constraint, 

when only partial folding information is employed. When varying the grid spacing, the 

best RMSD we can expect is around 5 A because the angles in the loop region are almost 

rigid and only vary a little from their original position. 

Experiment 2 

The primary aim of our second experiment was to gauge the utility of the distance 

threshold cutoff in improving the effectiveness of the surface constraint and in reducing 

the lower bound RMSD found at d = 3.5 A. The distance threshold cutoff parameter 

determines the number of grid nodes used in creating the molecular surface and is 

important in capturing the intricate curvature of the molecular surface. We investigate the 

results of how small change in d affects the performance of our surface constraint by 

varying d over [1.80, 2.20] for the problem with g =3.5 A and v = 1.5 A. 

Results show that varying the distance threshold cutoff does not decrease the 

lower bound RMSD. More noticeably, the more we move from d = 2.0 A the worse the 
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RMSD becomes. This result is to be expected because as d decreases below 2.0 A, the 

amount of surface nodes used in creating the dot surface decreases and accordingly, 

results in atoms being able to move outside of the surface during the optimization. On 

the other hand, an increase in d above 2.0 A results in more grid nodes farther away from 

the protein structure being included in computing the dot surface. Consequently, the 

molecular surface becomes imprecise and unclear and thus, the solution structure satisfies 

unreliable surface data. 

The best choice for the distance threshold cutoff value for grid spacing of g - 3.5 

A is about 2.0 A. The results show that that the grid spacing and distance threshold cutoff 

parameters are dependent upon each other. The general observation that can be made is 

that change in distance threshold cutoff is only needed when the grid spacing is changed. 

As the grid spacing decreases, it may be possible to determine another value for d that 

will yield a slightly improved corresponding RMSD. In general, we cannot expect major 

improvement in these cases because as the grid spacing decreases the molecular surface 

becomes too confining and thus, the change in d will be negligible. 

Experiment 3 

In the previous two experiments, we considered how the exactness of the 

molecular surface relates to improvement in the quality of the protein. We found that the 

most reliable molecular surface for our set of partial folding information is constructed 

from grid spacing, g = 3.5 A and d = 2.0 A. Choosing this surface ensures that the 

constraint will be effective enough to allow the structure to fold without the problem of 

structural collapse and at the same time the surface is compact enough to aid in bringing 

some the major components together while avoiding collision. 

In general, the molecular surface allows us to identify a domain for which we can 

expect that many structures will satisfy both distance and surface data. But in the case 

that surface proximity information is available, the additional grid spacing and distance 

threshold cutoff parameters is enough to aid in moving atoms that are near or far away 

from the surface. In this experiment, we study the behavior of the structure as the radius 

of the violations spheres, v, varies over [1.40, 1.65]. We choose this interval because 

choosing the radius to small will not be effective in moving buried atoms to the core of 

the protein and choosing the radius to large would result in pushing all atoms to the core, 
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causing a collapse in the structure. 

To get a general idea of how effective the parameter is, we first consider the case 

for which each violation sphere will have the same radius, v. For g = 3.5 A and d = 2.0 

A, the results indicate that moving outside of [1.45, 1.6] result in the RMSD worsening. 

The behavior is justified by noting that the position of every atom inside of violation 

sphere is determined based on the same radius, v, which could lead to over-expanding or 

over-compressing the atoms away from or into the core of the structure. In addition, we 

find that choosing a radius in the interval [1.45, 1.6] tend to yield structures that are 

similar to the structure corresponding to v = 1.5 A. 

Using v = 1.45 A results in reducing the RMDS by lA. This is not a large 

improvement, but the results are significant because it shows that proper choice of the 

radius of the violation spheres will result in improvement in the structure beyond the 

lower bound RMSD for g = 3.5 A. In addition, it gives us motivation that if we adopt a 

more stringent criterion for choosing the radius of the violation sphere, v, such as solvent 

accessibility, surface proximity, etc, the position of atoms in the loop regions would 

improve and thus, an overall improvement in the RMSD is possible. From this 

experiment, we conclude that if we are going to use the same v for each violation sphere 

the optimal choice is v = 1.5 A. 

Experiment 4 

For the initial test protein, the optimal values of grid spacing, distance threshold cutoff, 

and radius of the violation spheres, are 3.5, 2.0 and 1.5 A, respectively. In the last 

experiment, we investigate the effectiveness of the surface on the other test protein 

structures. For the purposes of the last experiment, we set the empirical parameters to 

thevalues found in using the lctf test structure. In addition, we considered the case for 

which the short-range contact distances between connected or unconnected topological 

neighboring P-strands are available. This will help us to avoid the problem of dangling 

strands at the beginning or end of the test structures. The choice of these contact distances 

also provided a minimum amount of folding information. The results are given in Table 

6. 

We found that the molecular surface is effective in improving only one of the 

protein structures using this set of empirical parameters. In many cases, the surface 
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Table 6. Preliminary results for surface constraint enforcement. 

PDBID 

lozz: 

lctf: 

lfvs: 

lawO: 

lbta: 

laps: 

lay7B: 

No of atoms. 

572 

884 

936 

936 

1157 

1274 

1157 

RMSD w/angle 

7.4323 

7.1105 

7.2874 

6.5310 

13.4859 

13.1267 

10.4978 

RMSD w/angle/surface 

5.9442 

7.5885 

7.3280 

10.8349 

14.4701 

12.1842 

12.6107 

constraint is unable to improve the position of major secondary structures. The inability 

of the surface constraint to improve the position of this component is the chief 

contributing factor to the worse RMSD. The preliminary results indicate that surface is 

not effective for this set of data at these chosen values of empirical parameters. In light 

of the observation that the test structures become more complex as the number of amino 

acids increase, these results are indicative of the observation that surface information 

paired with only a minimum set of contact information between strands cannot always 

provide a significant improvement in the quality of the protein. 

We could choose another set of parameters that would work for a larger percent of 

test protein. But the more subtle approach is to investigate the effectiveness of the surface 

constraint, for the current set parameters, as more contact distances are added. We expect 

that as we increase the amount of contact information, the surface will become more 

effective in improving the quality of the structure. 

IV.4.2. Results 

The purpose of this next set of experiments is to gauge the effectiveness of our 

surface constraint when more contact information is available. In specific, we want to 

verify that as the amount of short-range contact information increases, the surface 

constraint for the chosen value of the empirical parameters maintains or improves its 

effectiveness in folding the protein and does not result in being to confining for the 

movement of atoms. This experiment is significant because it provides validation for the 

observation that as protein structure changes and the corresponding contact information 



90 

increases, the chosen values of empirical parameters found in the previous experiments 

are optimal for any set of contact distances. 

We investigate the effect of increasing the amount of contact information between 

connected and topological neighboring p-strands and a-helices. Therefore, the distance 

set discussed above is augmented with four sets of short-range contact distance sets. The 

short-range contact distance sets are described as follows: 

1. The first set of contacts is the set of distances between two connected or 

unconnected topological neighboring P-strands. 

2. The second set of contacts is made up of the set of distances between two 

connected or unconnected topological p-strands or between connected or 

unconnected topological p-strands and a-helices. 

3. The third set of contacts is made up of the set of distances between two 

connected or unconnected topological p-strands, between connected or 

unconnected topological P-strands and a-helices, or between two connected 

or unconnected topological a-helices. 

4. The fourth set of contacts is the set of all contact distances between all amino 

acids in the test structure. 

The data sets are designed with exact information to evaluate the ability of the algorithm 

to use the surface constraint to produce improved structures (as compared to structures 

computed based on distances alone). We first compute structures based on the distance 

data sets alone and then compute structures based on these distances with the surface 

constraint. 

Figures 3 0 - 3 5 present accuracy results for six of the seven test proteins. 

Accuracy is reported in terms of RMSD and distance residual error. For each test 

structure, we conduct the tests with grid spacing of g = 3.5 A, distance cutoff threshold of 

d = 2.0 A, and radius of violation sphere, v = 1.5 A. Each figure displays two plots. The 

plot on the left in each figure shows results for the RMSD and the plot on the right show 

results for the distances residual error. Each plot contains two lines, one for the angle-

constrained optimization and one for angle/surface-constrained optimization. Angle-

constrained performance refers to the mean deviation from the original structure 

computed from the distance and angle subsets only. The angle/surface-constrained 
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Figure 30. Comparison results on the lozz protein of RMSD (left) and residual error (right) for constrained 

angles and angles/surface constrained GNOMAD. 
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Figure 31. Comparison results on the lctf protein of RMSD (left) and residual error (right) for constrained 

angles and angles/surface constrained G N O M A D . 
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Figure 32. Comparison results on the lawO protein of RMSD (left) and residual error (right) for constrained 

angles and angles/surface constrained GNOMAD. 
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Figure 33. Comparison results on the lfvs protein of RMSD (left) and residual error (right) for constrained 
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Figure 34. Comparison results on the lbta protein of RMSD (left) and residual error (right) for constrained 

angles and angles/surface constrained GNOMAD. 
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performance refers to the mean deviation from the original structure computed with 

additional surface data. 

To illustrate the effects of enforcing the surface constraint as we increase the 

amount of contact distances, Figures 3 6 - 3 8 show a qualitative comparison of structures 

resulting from angle constrained and angle/surface constrained GNOMAD runs, and the 

relative proximity to the crystal structure. These results are for lctf, lawO, and lbta 

protein with using the third set of contact distances. 

IV.4.3. Discussion 

The RMSD results in Figures 3 0 - 3 5 show that by increasing the amount of 

contact distances, the surface constraint method is more effective in improving the 

accuracy of the protein. For data set 1, the surface constraint only improved the RMSD of 

one proteins (See preliminary parameter analysis). With the addition of more contact 

distances between two connected or unconnected topological neighboring P-strands and 

a-helices (data set 2), however, the surface constraint is able to improve the RMSD in 

five out of the six test structures. For these test structures, the additional contact distances 

provided more folding information. However, many of the helices in these test structures 

are tilted out of correct alignment with their true position, and thus result in a higher 

RMSD from the true structure. The addition of the surface constraints allows for the 

correction of most of the tilted helices and also decreases the RMSD by 2 A. 

One exception to the effectiveness of the surface constraint, for this set of data, is 

the lawO test protein. Consider Figure 32. The test structure without the surface 

constraint enforcement is 5.77 A. The addition of the surface constraint results in a 

structure of 7.26 A. Even so, this structure is close to the correct structure but one helix is 

significantly titled out of alignment. Because the helix is closer to the end of the protein 

and the short-range contact distances does not provide enough information to bring the 

helix close to the other secondary structures, the surface constraint worsens the position 

of the helix, and consequently, the RMSD increases by 2.5 A. Increasing the contact 

distances while enforcing the surface constraint for this structure, results in a decrease in 

the RMSD of 2.59 A. Nevertheless, the result of lawO suggests the surface constraint is 

effective when enough contact distances are available. 
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Crystal Structure 
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Not Surface Constrained 
(max. distance constraint error = 1.07 A 

RMSD = 4.22 A) 

Surface Constrained 
(max. distance constraint error = 0.86 A 

RMSD = 1.14 A) 

Figure 36. lOZZ protein structure and surface constraint enforcement results. Qualitative effects surface 

constraint satisfaction for short-range contact distances between two major secondary structures. 



96 

Crystal Structure 

Not Surface Constrained 
(max. distance constraint error = 1.85 A 

RMSD = 6.20 A) 

Surface Constrained 
(max. distance constraint error = 0.97 A 

RMSD = 2.59 A) 

Figure 37. 1AW0 protein structure and surface constraint enforcement results. Qualitative effects surface 

constraint satisfaction for short-range contact distances between two major secondary structures. 
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Crystal Structure 

Not Surface Constrained Surface Constrained 
(max. distance constraint error = 1.61 A (max. distance constraint error = 1.10 A 

RMSD = 8.42 A) RMSD = 5.26 A) 

Figure 38. 1APS protein structure and surface constraint enforcement results. Qualitative effects surface 

constraint satisfaction for short-range contact distances between two major secondary structures. 



Crystal Structure 

Not Surface Constrained Surface Constrained 

(max. distance constraint error = 1.41 A (max- distance constraint error = 0.92 A 

RMSD = 5.75 A) RMSD = 3.54 A) 

Figure 39. 1BTA protein structure and surface constraint enforcement results. Qualitative effects surface 

constraint satisfaction for short-range contact distances between two major secondary structures. 
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In the data set 3, the surface is able to improve the structure for all six of the test 

proteins. A reason for this improvement is that the contact distances provide enough 

information to place most of the helices and strands in the correct spatial proximity with 

respect to each other although some of the helices may be titled out of correct alignment 

with their true position. Hence, the surface is able to make good use of this information 

in correcting the tilt of helices and results in an improvement in the folding of the protein 

structure. 

Not only is it important to ensure that the surface constraint works for cases where 

there is limited contact information, it is also significant to make sure the surface 

constraint does not hinder effectiveness of the algorithm when sufficient contact 

distances are available. We test this by including enough contact distances to ensure that 

the test structure would form without the assistance of the surface constraint. When the 

surface constraint is enforced, there is an improvement in a few of the cases. In the other 

cases, the surface constraint does not conflict with any of the distance data and the 

algorithm is still able to maintain its effectiveness in forming a good structure. 

The RMSD is a measure of accuracy and effectiveness of the surface constraint 

when the true structure is known, but in the case where the true structure is unknown, the 

residual error serves as a measure of accuracy. In addition, the distance residual error 

serves as a way of measuring the performance of the optimization. For this reason, the 

distance residual error is also considered in the plots on the right in Figures 3 0 - 3 5 . The 

results show that the surface constraint is able to maintain or improve the residual error 

for more test structures. Interestingly, for the lawO protein, the behavior of the RMSD 

and residual error curves are so close that if the true test structure were not known the 

residual error could be used as a measure of how close our structure is to being correct. 

Upon considering the other plots, it is noticeable that for the other test structures, 

the RMSD and residual are not as closely connected. However, the enforcement of the 

surface constraint results in a considerable decrease in residual error. For the lctf, lb ta 

and laps protein, as can be seen in Figures 31, 33, and 34, the surface constraint results in 

a downward shift of both the RMSD and residual error curves. For the lozz and lfvs, the 

unchanged behavior of residual error shows that surface constraint maintains the global 

convergence of the algorithm. 
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The qualitative results presented in Figures 36 - 38 show what typically happens 

when additional contact distances are used as input to GNOMAD with the surface 

constraint enforcement method. These contact distances are between a?-helices and 

connected or unconnected topological /3-strands. For each of the test problems, it is 

apparent that better structures are found when the surface constraints are added. The use 

of angles provides significant improvement in the formation of the local substructure 

found in the protein. The addition of the surface constraint provides the additional folding 

information to improve the position of these local substructures in reference to other local 

substructures found in the protein. 

IV.5. Conclusion 

In the previous chapter, we incorporated torsional information to improve the 

formation of major secondary structures. However, the torsional information in the loop 

region is not always available. For this reason, additional structural information is needed 

to give support to improve the folding of the protein. In this section, we propose a 

sensible method for using a molecular dot surface to improve the quality of protein 

structures. This method is the beginning of developing constraints, in the context of 

GNOMAD, from other types of structural information to aid in bringing secondary 

structures, ^-strands and a-helices, together and thus, aid in folding of the three-

dimensional structure. 

In order to do this, we assume that all torsional angles in the P-strands and a-

helices are known and we study the impact that the surface constraint can have on 

correcting the position of these structures within the protein. The choice of the data sets 

was made to provide some partial folding information associated with connected or 

unconnected topological secondary structures. A critical factor in the effectiveness of the 

surface constraint is the value of three empirical parameters: grid spacing, distance cutoff 

threshold, and radius of violation spheres. Choosing the optimal empirical parameters 

will ensure that the constraint will be effective enough to allow the structure to fold while 

avoiding the problem of structural collapse, and at the same time the surface is compact 

enough to aid in bringing some of the major components together while avoiding 

collision. 
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In general, the quantitative and qualitative results indicate that the surface 

constraint offers increased accuracy in estimating three-dimensional protein structure. 

Results also show that when the amount of contact distances are insufficient for properly 

folding the protein, the surface data provides addition information that aids in the folding 

of the protein without incurring significant distance residual error. In addition, the surface 

constraint enforcement method increases in effectiveness with the increase in contact 

information between two connected or unconnected topological substructures at user-

defined empirical parameters. Tests of this new surface constraint enforcement method 

performed on several different proteins in a/p or a+|3 show that this approach is very 

robust. The GNOMAD algorithm, with angle and surface constraint enforcement, yields 

significant improvements in terms of error and RMSD. 

This work extends the work in the previous chapter on improving secondary 

structure formation, provides an algorithm that satisfies a combination of angle, contact 

and surface data, and has good global convergence properties. This work will serve as a 

basis for further development of the algorithm to include constraints such as shape, 

solvent accessibility, and volume. 
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CHAPTER V 

COMPARATIVE MODELING USING GNOMAD 

V.l. Introduction 

Inexact information can be gathered from many sources and the quality of the 

data varies for different sources. For example, data taken from X-ray crystallography is 

generally very precise; however, data taken from NMR has a higher measure of 

inaccuracy (Chen 2000; Andrec et al. 2007). Even for statistical methods, such as 

comparative modeling, the quality of the structural data may have varying levels of 

reliability because of the level of structural similarity within other proteins. However, 

these methods are common sources for much of the information used in structural 

estimators (Altman 1985; Wu 1996; Chen 2000). 

For this reason, current modeling efforts focus on developing a molecular 

structure estimator that is effective in using a combination of structural data taken from 

multiples sources (Altman 1985). The purpose of the last part of this dissertation is to 

show the effectiveness of GNOMAD in estimating protein structures with more realistic 

structural data. Therefore, we broaden the scope of our work on predicting three-

dimensional structure using GNOMAD structural estimation framework to comparative 

modeling. Proceeding along this avenue is advantageous for two reasons. 

Primarily, the weighted nonlinear least squares formulation employed in the 

GNOMAD structural estimation framework allows us to successfully use combined 

experimental and statistical data by giving highly precise data more influence than less 

accurate data in estimating the three-dimensional structure. The second advantage is the 

use of pseudo-atoms allows for effective use of torsional information in conserved or 

low-variance regions and, consequently, ensures proper formation of uniform local 

substructures within the protein and the additional benefit of improved formation in 

nonuniform regions for protein structures that have closely related family members, (e.g. 

coil). In addition, short-range contact distances between psuedo-atoms replaces long-

range constant distances between main chain atoms as input in GNOMAD and thus, aids 
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in improving the formation of more intricate substructures, such as |8-sheets and |8-a-j3 

structures. 

In this chapter, we discuss our method for collecting and incorporating data taken 

from reference proteins to estimate the three-dimensional protein structure. Starting with 

a sequence alignment of the target protein and its closely related family member, low-

variance statistical data is generated using standard statistical methods (e.g. frequency 

distribution). The GNOMAD structural estimation framework is used to estimate the 

three-dimensional structure of the target protein. We test the algorithm using 

experimental torsional angles to estimate the protein structure and by comparing the 

generated protein structure with the known crystal structure. In both cases, we include 

additional short-range distance (SRD) information between atoms that are found in amino 

acids that are far apart in the amino acid sequence. To demonstrate the effectiveness of 

our algorithm in using statistical structural data, we estimate the three-dimensional 

structure of several proteins. 

This chapter is organized as follows: in Section V.2, we provide background on 

statistical methods for adapted for estimating for the three-dimensional protein structure. 

In Section V.3, we describe our statistical method for taking a sequence alignment and 

extracting the data we need for GNOMAD run such as, distances and angles (the angles 

will be used to produce the distances that will satisfy those angles). Section V.4 presents 

some experimental results of combining experimental and statistical data using 

GNOMAD structural estimation framework. We conclude the chapter in Section V.5. 

V.2. Statistical Modeling Efforts for Estimating Protein Structure 

Statistical methods are the most widely used methods for predicting the structure 

of a protein when experimental methods only contribute a small amount of information 

about the protein under consideration (Sali and Blundell 1993). The reasoning behind the 

development of these techniques is that structural data can be collected about the protein 

under consideration based on sequence and/or structural similarities of known three-

dimensional structures. Because these methods provide generalized information about the 

regions that are common to many proteins, structure estimation frameworks have been 

designed to make use of the whole or a subset of the body of known protein structures in 

order to estimate an unknown three-dimensional structure for a protein sequence. 
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Statistical modeling is separated into two categories: comparative and empirical 

modeling. In the comparative modeling (or homology modeling) approach, structural data 

is generated based on the characteristics of closely related family members of the protein 

under consideration. Predicting the structure of the protein using comparative modeling 

approach consists of four steps illustrated in Figure 40. The primary and most important 

step is to find known protein structures, also referred to as reference proteins, whose 

sequence has at least 70% sequence identity with the sequence of the target protein. 

Second, multiple alignment of these sequences with the target sequence is performed in 

order to estimate the correspondence between equivalent amino acids in each structure. 

Thirdly, the known structures are used to estimate the expected value of structural data. 

Lastly, a model is built from statistical data taken from conserved regions and assessment 

of the model is performed based on accuracy and error of sequence alignment. 

The most commonly used comparative modeling method is spatial restraint 

satisfaction (Furnham et al. 2008). In using this approach, structural data is collected via 

a statistical analysis on conserved regions or regions high is structural similarities, a 

model violation function is developed from this structural data, and the three-dimensional 

structure is determined by minimizing the violation function using well-known 

optimization methods such as conjugate gradient. But, one of the major limitations of 

comparative modeling is that the quality of the structural data is dependent on how 

closely related {i.e. sequence or structural similarities) the reference proteins are to the 

protein under consideration. That is, the accuracy of the data is directly proportional to 

the closeness of the target protein and its family members (Sali and Blundell 2003; 

Furnham et al. 2008). Therefore, improvements in comparative modeling methods tend to 

focus more on the improvement of sequence alignment and refinement of the model 

violation function phases. This is due to the observation that the accuracy of the structure 

could possibly be compromised by incorrect alignment or inaccurate representation of 

geometric features (Wall et al. 1999). 

In some cases, comparative models are not helpful because some proteins have no 

closely related family members. In these cases, empirical methods are employed to get a 

basic idea of the three-dimensional structure. The underlying principle of empirical 

modeling methods is similar to that of comparative modeling but differs in the fact that 
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Figure 40. Flowchart illustrating the basic principal of comparative modeling method by satisfaction of 

spatial restraint. 

the criteria of sequence similarities in family members is relaxed and structural 

similarities of any known protein in the databank becomes the main basis for statistical 

analysis and thus, the determination the three-dimensional structure. In empirical 

modeling, a statistical analysis is performed on all protein whose structures are known in 

a structural data bank. The data is, then, used to determine functions, referred to as 

knowledge-based functions, for representing the major features and forces that contribute 

to the fold of the proteins including hydrogen bonding, and van der Waals interactions. 

The advantage of using these statistical approaches is that they provide a rich 

amount of reliable local and global information about the protein structure that is not 

available through experimental methods including structural data in the coil regions and 

between side chains of amino acids. In addition, the structural similarity of known three-

dimensional structure provides the basis for building a model that can provide a good 

estimate of the unknown structure of a protein sequence. However, the limitation is that 

poor quality statistical data is also being included in estimating the structure and thus, the 
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optimization procedure could spend much time producing an unreliable protein structure. 

V.3. Methodology 

To generate statistical data using comparative modeling, an alignment of each 

residue in one structure with the equivalent residue in the reference structures is required. 

Once the target sequence and the reference sequence has been aligned, the coordinates of 

the atoms in the known structures are used to estimate the expected value of structural 

data, such as, inter-atomic distances and torsional angles. The target protein structure is 

estimated using the GNOMAD structure estimation framework via statistical data taken 

from the known structures. The various steps in the procedure consist of the following 

steps: 

1. Find known protein structures that have at least 70% sequence similarity with 

the target protein sequence and align the sequences of the target proteins and 

its closely related known structures. 

2. Convert the Protein Data Bank (PDB) file for known structures into a new 

format that coincide with our new atomic representation. 

3. Estimate inter-atomic distances, torsional angles, etc. by performing a 

statistical distribution on structural data of the same type taken from the 

reference protein. 

4. Use statistical data (e.g. bond lengths, bond angles, etc.) to estimate the 

protein structure. 

Each step is accomplished using separate programs and the structural data generated from 

these programs result in the necessary input files for estimating structures using 

GNOMAD. 

V.3.1. Sequence Alignment 

The basic idea for estimating structural data is to collect data of the same type 

from known reference structures. In comparative modeling, structural data in a specific 

region is determined by collecting structural data of the same type from the equivalent 

region in the reference proteins. For example, if we wanted to determine the distance 

between a pair of atoms we would calculate the distances of the same type in the 

equivalent region of the known protein structures and use this information to find the 

expected value of the distance between the pair of atoms. 
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In order to develop a one-to-one correspondence between the amino acids in 

primary sequences of the known structures, we use a sequence alignment. The sequence 

allows use to arrange the primary sequence to identify regions of similarity between 

sequences. Figure 41 is example of a segment of sequence alignment for the E. coli 

protein and its closely related family members. The sequence alignment is represented in 

rows. The first row consists of pdbid lctf for the target protein and its primary sequence 

alignment. The second row consists of symbols that indicate the degree to which an 

amino acid is conserved in the reference sequences. For this row, each symbol indicated 

conserved or partially conserved regions and each blank indicate that the regions are not 

conserved. 

In order to avoid combining our work using inexact structural information with 

the question of accuracy of sequence alignments, the target sequence and the reference 

sequences are aligned using the server for HMM-based Protein Structure Prediction, 

SAM-T99 (Karplus et al. 1999). The server gives many details about the similarity of the 

reference sequence. We use the server to find protein sequences that are high in sequence 

similarity and for which the three-dimensional structure has already been determined. 

Although more sophisticated sequence alignment methods can be employed, we are only 

seeking to use a method that accurately aligns reference sequences and thus, aids in 

identifying equivalent amino acids in a family of reference structures. 

V.3.2. Converting Format of PDB files 

Results in Chapter III showed that we could identify a core a set of local distances 

via our new atomic representation that to satisfy torsional information. For the 

GNOMAD algorithm, the advantage of using this method is that we did not have to 

introduce a nonlinear term into the objective function to satisfy torsional information. In 

context of comparative modeling, the use of distances to satisfy torsional information 

brings about another advantage in estimating protein structure. That is, more reliable 

distances can be used in the less reliable torsional information. Hence, this allows us to 

extend the range of higher variance torsional information and still pick up some rather 

reliable local distances that can satisfy the torsional information. 

In light of this advantage, the second step of the modeling procedure is to convert 
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1CTF DVILIOyy3aNKyAVIKAVRGM,SU3LKEAiaDLVESAP AALKEGVSKDDAEALKKALE 

1YL3_I DWLKSET^NKIQVIKVVREITGOSIJE^^ 

1YL3__J DVVLKSE^NKISf7IKVVREITGajGIJE<EAKDLVEKjy^ 

1GIY_J DV^KSFQQNraQVIKWREITGIiGLKEyymLV^ 

1GIY_I DVVLKSE^NKIQVIKVVElEITG3^Ii?EaKDLVEKAGSPDAVIKSGVSKEEAEEIKK^ 

1DD4_B DVVLKSFGQMOQVIKVVREITGLGIiC^^ 

1DD4_A DWLKSFGQNKIQVIKVvT^ITG^LKEytfTOL^ 

1DD3_B DVVLKSEX3QNKIQyiKVVREITG03I£EftKDLVEKftGSPDAVIKSGVSK^ 

1DD3_A DWLKSPQQNKIQVIKVVREITGa^IJCEa^^ 

1RQU_A DVILKARGANKyAVIKAVRGATCSLGLKEAKDLVESAP AALKEGVSKDDAEALKKALE 

lRQO_B DVILKAftGftMCWAVIKAVRGATGaLGliKEaKDLVESAP AAIlffiGVSKDDAEALKKALE 

1RQV_A DVILKARGANKVAVIKAVRGATGD3IICEafa)LVESAP AAIKEGVSKDDAEaLKKALE 

1RQVJB DVILKAAGANKVAVIKAVRG&TGLGLKEAKDLVESAP AALKEGVSKDDAEALKKALE 

1RQS_A DVILKAAGRM(VAVIKAVRGATGIi3IiCEAKDLVESAP AAIJCEGVSKDDAEALKKALE 

Figure 41. A segment of a sequence alignment for the E. coli protein and its closely related family 

members. 

all PDB files into files that also include coordinates for all pseudo-atoms. The PDB files 

for a known protein structures only contain information associated with real atoms, 

including atom number, atom type, residue type, residue number, x, y, and z coordinates 

of real atoms. For all closely related sequences whose structure are known, the files for 

the atomic coordinates are downloaded from the PDB Databank and converted into a 

format that contain both real atoms and their corresponding psuedoatoms. Each modified 

file is similar in format to the original file but differs in that there are more atoms because 

of the inclusion of pseudo-atoms. 

V.3.3. Generating Statistical Data 

In this subsection, we describe a standard method for generating low-variance 

distance information including bond lengths, torsional distances, and short-range contact 

distances given an alignment of a family of protein structures. This work does not offer 

insight into improving statistical methods for generating data, but does provide means for 

identifying reliable structural data, which can be used as input data in our algorithm. 

In generating structural data, we need to eliminate any known sources of possible 

outlier or unreliable information. A few known sources include sequence similarity and 

gaps in the sequences. For sequence similarity, we use a minimum value of 70%. But for 

gaps in the sequences, however, more work is required. Gaps are inserted between amino 

acids in the sequence so that identical or similar amino acids are aligned in successive 
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column. For the lctf sequence in Figure 41, two consecutive amino acids are separated by 

gaps; but in several reference sequences the two equivalent amino acids are separated by 

a sequence of amino acids. 

In light of this observation, we see that it is possible for two atoms to be close in 

spatial proximity in one reference structure and farther apart in spatial proximity for 

another reference structure and thus, the information in this region would not be useful 

because of the outlier distances. This problem can be alleviated by first identifying the 

possible amino acids that will cause distance outliers in the reference protein and 

identifying these as gap outliers. If the gaps are consistent with the target sequence gaps, 

use the information in this region for estimating structural data. Otherwise, do not use the 

information in estimating structural data. 

V.3.3.1. Estimating Distances 

A model distance, D, between atoms, Ax in residueRx and A2 in residue R2, is 

estimated and chosen using the following steps: 

1. Find the corresponding atoms and amino acids for each reference protein using 

the given sequence alignment. 

2. If these amino acids do not cause distance outliers due to gaps in sequence, 

compute the corresponding distances, D', between the corresponding atoms A[ in 

R[ and A'2 ir\R'2 for each reference protein. 

3. Compute the mean of all the distances computed in the previous step. 

4. If the associated range is smaller than a specified threshold, we use the distance 

as input into GNOMAD. 

In general, distances corresponding to bond lengths are usually of low-variance due to 

strong chemical bonds between consecutive main chain atoms. Alternatively, the 

reliability of the torsional and short-range contact distances is reflective of the structural 

similarities of the reference proteins, and thus, tend to have more variation. 

V.3.3.2. Estimating Bond and Torsional Angles 

Angle information is the second type of information used in GNOMAD algorithm 

(Chapter III). We generate both bond and angles and torsional angles. Given a sequence 

alignment, a model angle, 0, is estimated and chosen using the following steps: 

1. Find all the equivalent angles, 0', for each reference protein using the given 
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Figure 42. Illustration of <f> and ^ torsional angle distribution computed from known protein structure 

from PDBselect data bank PDB files. 

sequence alignment 

2. Compute the mean angle from all the equivalent angles found in the previous step 

that are not associated with gap outliers regions. 

3. Define the ideal torsional angle values to be the peak values of the torsional angle 

empirical distribution. 

4. If the difference between the mean and the peak value is within one standard 

deviation of the peak values, we use the angle to generate variational distances as 

input into GNOMAD. 

The bond angles are low variance information and are usually available for all regions of 

the protein structures. The omega torsional angle is generally close to 180° and is also 

low variance data. 

Alternatively, the preciseness of <f> and y torsional angles depends on the level of 

structural similarities between the reference proteins. Because of the high level of 

variation in these angles, we represent these values using an empirical distribution of <j> 

and iff torsional angle generated from the PDBselect database. Figure 42 shows a 

distribution for each type of angle within a give angle range; say between -200° and 200°. 
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Figure 43. Illustration of high structural similarity of the family members of 1CTF protein. 

The distribution is bimodal for both angles and thus we use these two peaks and their 

associated variance in identifying reliable angles. Given these parameters, we identify 

reliable angle data by enforcing the criteria that the mean value has to be within one 

standard deviation of the peak values. 

V.4. Validation 

Optimization experiments were performed to evaluate the ability of GNOMAD to 

use structural data taken from reference proteins in estimating the three-dimensional 

structure of a protein. To evaluate our algorithm, we study the L7/L12 50S ribosomal 

protein from E. coli (PDB entry 1CTF). Given the sequence alignment of 1CTF with its 

closely related structure (shown in Figure 41), we generate low-variance structural data 

for estimating the protein structure including bond lengths, bond angles, torsional angles, 

torsional distances and short-range contact distances. For the 1CTF protein, high 

sequence similarity translates into high structural similarity. Consider Figure 43, the 

equivalent segments of the 1CTF and known reference proteins are very close in 

structural similarity and thus, we can expect a large amount of low-variance structural 

data for the reference proteins. However, using a large amount of heterogeneous data 

could lead to over constraining the protein structure. We must find a proper balance in 

using each type of data to ensure the best quality structure possible. 
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Figure 44. Comparison of torsional angle variance, <7a, for results over a range of distance range tolerance. 

V.4.1. Results 

The purpose of this set of experiments is to determine the definition of reliable 

structural data from reference proteins. We look for the optimal set of tolerance 

parameters that will yield the best quality structure no mater how much or how little data 

is available. Figure 44 shows comparison of various torsional angle variances over an 

interval of distance range tolerance cutoff values, dc. Different levels of reliable distances 

and torsional information can have a significant effect on the success of the algorithm in 

estimating the protein structure. The proper choice of tolerance cutoff parameters would 

provide a proper balance in using heterogeneous data in GNOMAD. 

To illustrate the effects of using a mixture of reliable and unreliable data, Figure 

45 shows a qualitative comparison of structures resulting from a" values on the interval 

[15, 25] and their relative proximity to the crystal structure. The results in Figure 45 are 

based on low-variance distances that are less than 6 A and whose distance range cutoff 

value, dc = 0.5 for lctf. These plots illustrate the effect of increasing the a" values over 

the specified interval. 
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Figure 45. Illustrating the effect of decreasing the reliability of torsional information. 

Crystal structure and structure estimation of lctf protein fovdc =0.5 and a" =15, 

a" =20 , and aa =25 . 
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V.4.2. Discussion 

In considering the plot in Figure 45, results show that even with low-variance 

structural data, it is possible to obtain an unfavorable structure. For dc = 0.3, our 

algorithm is unable to produce good quality structure for all values of aa. This suggests 

that there are not enough distances to provide the necessary amount of folding 

information to correctly estimate the protein. In slightly increasing the distance range 

tolerance, we notice that the addition of more distance information increases the 

possibility of producing a better quality structures. For the casec/c = 0.5 and a" = 0, the 

RMSD is 4.89 A. This result suggests that low-variance distances, without the inclusion 

of torsional information, produces an overall improvement in the structure of the protein. 

However, more structural information is needed to further improve this structure. There 

are two possible ways for including additional structural data: (1) include low-variance 

torsional information or (2) relax the distance range tolerance as to include less reliable 

distances. 

In considering the first approach, we investigate the ability of GNOMAD to 

improve the structure as we vary the torisonal angle variance on the interval [10,25]. 

Immediately, we notice that at a" = 20, RMSD is 0.68 A. The result is interesting 

because at this variance value, the torisonal angle information is considered unreliable. 

Because our algorithm allows us to use a core set of distances to satisfy torisonal 

information and distance data tends to be more reliable then angle data, the additional 

torsional distances are able to effectively satisfy torsional angles. Even so, moving away 

from this value results in an increase in the RMSD. The reason for this behavior is 

twofold. 

On the lower end of the spectrum (i.e. a" < 20), the additional angle information 

is helpful in improving the fold of the proteins, but this amount of torsional information is 

not enough to correct the loop regions of the protein structure. On the higher end of the 

spectrum (i.e. a" > 20), more high-variance information results in structural collapse. 

Figure 45 illustrates the effect of using to little or too much information. In the both 

cases, the helices are tilted out of alignment with their correct position in the crystal 
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structure, and thus result in the spatial proximity of the helices being incorrect and an 

increase in RMSD. 

In the considering the second approach, we investigate the behavior of our 

algorithm as less reliable contact distance information is included as input. In the plot for 

Figure 45, notice that fordc -I, the RMSD remains consistently low. An immediate 

observation is that there is enough distance information available for ensuring that the 

structure is correctly formed for all values of a". This result is significant because at this 

value of dc, the distances are not as uniform but the addition of torsional information 

does not introduce the problems that we saw in lower values of dc. Because we are 

considering the tolerance on the range, the distances at this level could possible be 

unreliable. 

In our work, we were able to reduce the possibility of generating unreliable data 

by first requiring that only reference proteins with high structural similarity be used and 

by eliminating the possibility of obtaining outlier information from gap regions of the 

sequences. Hence, a distance range tolerance of dc = 1 expectedly results in a good 

quality structure. But in the case that we cannot eliminate the outlier problems associate 

with structural similarity or gaps in sequence, choosing this value could result in a 

structure that is reflective of unreliable data. In light of this observation, the better choice 

for distance range tolerance isdc =0.5 , because this tolerance suggests that there is 

higher a possibility for more uniform structural data. At this distance value, a torisional 

angle variance, a" = 20, produces the best use of both contact distances and torsional 

information. 

V.5. Conclusion 

For a family of proteins, the availability of the structural data is proportional to 

the level of structural similarity of these proteins. Often, much structural data can be 

gathered and used as input into our algorithm. There are two mainstream approaches in 

using this data to estimate good quality structures: (1) use all available statistical data and 

develop more effective computational methods for estimating the structure or (2) use only 

the most reliable statistical data as input into an existing molecular structure estimator. In 

this chapter, we consider the latter approach. 
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Starting with a sequence alignment of a family of proteins, statistical data is 

generated by using the mean as an estimate of the expected value of a piece of structural 

data and the associated variance as a measure of reliability on the estimated distances. To 

avoid using structural data that could have a negative impact of overconstraining the 

structure, we studied the effectiveness of GNOMAD in estimating structures as we vary 

the tolerance parameters: distance range tolerance and torsional angle variance. The 

extension of our problem to comparative modeling shows that the improvements made to 

GNOMAD are effective still when using a more realistic set of structural data. Choosing 

the optimal distance and angle tolerance allowed us to find a good balance in using 

structural information with varying levels of reliability and provided the necessary 

amount of folding information for obtaining a good estimate of the protein structure. 

For this work, however, we only considered the use of distances and angles as 

input into our algorithm for estimation of protein structure. As we include other types of 

structural data in GNOMAD, we will be able to consider a more detailed investigation for 

the problem of extending the GNOMAD structural estimation framework to comparative 

modeling. In the future, this work can serve as a basis for further development of a 

comparative modeling package that is based on a constrained global optimization 

formulation. 
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CHAPTER VI 

CONCLUSION AND FUTURE WORK 

In the previous chapters, we have proposed methods for making GNOMAD 

capable of handling torsional and surface information. In addition, we investigated the 

effectiveness of GNOMAD in using a more realistic set of structural data generated based 

on the principals of comparative modeling. At this point our algorithm only uses a small 

percentage to the structural data available for modeling proteins. In this final chapter, we 

discuss some future work on improving the GNOMAD molecular structure algorithm. 

This includes improving the VDW physical constraint enforcement procedure, effective 

use of contact information to improve the formation of beta-structures regions, and the 

integration of solvent accessibility information to enhance the use of a surface constraint. 

VI.l. Improvement of the VDW Constraint 

In future work, we look to improve the VDW constraint so that enforcement of 

this constraint does not hinder the success of using new structural data types. Currently, 

the VDW constraint takes into consideration only the minimal set of atoms - N, Co, C, 

and C,3 - based on the previous atomic representation (as discussed in Chapter II). 

Hence, the set of "optimal" VDW parameters (minimum separation distances) is 

constructed between only atoms of these types. In order to completely integrate the VDW 

constraint with the use of pseudo-atoms for torsional angle satisfaction, we must develop 

an effective set of VDW parameters that includes the pseudo-atoms. 

VI.2. Effective Use of Contact Information in Improving Beta-

structures 

In Chapter III, we specifically studied satisfaction of torsional information and its 

consequence in the formation of secondary structure regions. Given that we have an 

effective method for constructing some of the major secondary structures found in the 

proteins, we can now examine methods for making GMOMAD capable of handling 

structural data that provides nonlocal folding information and aid in bringing secondary 

structures into correct spatial proximity to form beta-structures. The formation of beta-
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structures is driven by nonlocal interactions among amino acids that can be far in 

sequence proximity, but close in spatial proximity (Hue and Dill 1993). 

Contact information, is used often as an additional source of structural data in 

molecular structure estimators for improving the fold of beta-structures because this 

information describes the nonbonded interaction between amino acids in unconnected 

secondary structures. The treatment of contact information, in this dissertation, was done 

in an ad hoc fashion in order to investigate the progression of our surface constraint with 

the integration of more distance information. In specific, we used short-range contact 

distances between all atoms and pseudo-atoms in connected and topological neighboring 

p-strands, and ot-helices were used as additional input. The addition of short-range 

contact distances between all atoms resulted in an improvement of the formation of beta-

structures and a reduction in the demands of using only the surface constraint to bring 

secondary structures together. 

In future work, we want to develop more effective methods for improving the 

formation of beta-structures. This could involve identifying a core set of short-range 

contact distances and developing a physical constraint, based on contact information, 

where atoms in one secondary structure are restricted from going into the space of the 

another secondary structure. The implementation of this type of constraint will help our 

algorithm to avoid collision between secondary structures, to improve the spatial 

proximity of secondary structures, and to aid in the formation of beta-structures. 

VI.3. Solvent Accessibility Constraint 

One of the main avenues for developing protein structure estimation is to use 

structural data describing the one-dimensional aspects of protein structures. This 

structural data includes solvent accessibility information, contact numbers, secondary 

structure predictions, and residue-wise contact order (Chen et al. 1996; Kinjo and 

Nishikawa 2005). One of the goals of future work is to make our algorithm capable of 

effectively using structural data that describes one-dimensional aspects of protein 

structure. One type of structural data that will helpful in using our algorithm to improve 

structure is solvent accessibility information (Goldman et al. 1998). 

Solvent accessibility information describes the degree to which amino acids are 

buried in the core or exposed on the surface of the molecule. The principal idea of solvent 
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accessibility information is that every amino acid has preferences for certain solvent 

accessibility states (Richardson and Barlow 1999). Therefore, this one-dimensional 

structural data can be used to model the hydrophobic effect of protein folding. 

Furthermore, the combination of solvent accessibility data and surface information would 

provide further details about the positioning of atoms relative to surface and could be 

beneficial in improving the accuracy of protein structures. 

A number of methods for using surface proximity information have been adapted 

in modeling proteins to improve the structures when combined with existing structural 

data (Lee and Richards 1971; Schmidt et al. 1998; Chen 2000). However, these methods 

are difficult to implement in the GNOMAD structural estimation framework. In future 

work, we want to develop a method that complements both surface shape and solvent 

accessibility information to aid the optimization of a set of atoms based on knowledge of 

the degree of burial of the amino acid. However, one important concern to date is 

whether a good quality estimate can be obtained from flawed surface proximity 

information. 

Much work has been developed to investigate the use of inexact predictions in 

molecular structure estimation algorithms including Chen et al. (2000) and Kinjo and 

Nishikawa (2005). The results of these methods showed that inexact prediction 

information produced a marked improvement in the structure of the protein and that the 

increase in accuracy of prediction methods will result in more accurate structures. 

VI.4. Conclusion 

In this dissertation, we have investigated using torsional and surface data in 

GNOMAD. We proposed two methods for integration of this data. First, we developed a 

new atomic representation that would allow us to use a core set of distances to satisfy 

torsional information and avoid minimizing a nonlinear objective function. Then, we 

proposed a method for directly using the molecular surface of protein to move atoms to 

position that satisfy surface data. The integration of this information has been 

instrumental in improving the performance of GNOMAD in estimating three-dimensional 

structures. Finally, we investigate the extension of the GNOMAD structural estimation 

framework to comparative modeling and found that GNOMAD is effective in a more 

realistic setting where structural data is generated based on the principal of comparative 
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modeling. 

The improvement to the GNOMAD algorithm discussed in this dissertation may 

be only for torsional and surface information. However, the improvement represents a 

significant advance in estimating protein structure using our improved constrained global 

optimization developed for atomic distances. This work can be extended to include other 

types of non-distance information and will be pursued in the future. 
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