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ABSTRACT

A TECHNIQUE FOR SOLVING THE SINGULAR  
INTEGRAL EQUATIONS OF POTENTIAL THEORY

Brian George Burns 
Old Dominion University, 2007 

Director: Dr. John Tweed

The singular integral equations of Potential Theory are investigated using ideas from 

both classical and contemporary mathematics. The goal of this semi-analytic ap­

proach is to produce numerical schemes that are both general and computationally 
simple. Previous works based on classical methods have yielded solutions only for 
very special cases while contemporary methods such as finite differences, finite el­
ements and boundary element techniques are computationally extensive. Since the 

two-dimensional integral equations of interest exhibit structural invariance under a 
wide class of conformal mappings initial emphasis is placed on circular domains. By 
Fourier expansion with respect to the angular variable, such two-dimensional integral 

equations yield simultaneous systems of one-dimensional integral equations that, in 

many cases, uncouple. Integral transform techniques and classical function theory 
are used to identify the eigenfunctions associated with the dominant parts of the one­
dimensional singular equations. Hilbert spaces spanned by these eigenfunctions are 
then constructed and an operator theory developed for the general class of integral 
equations. Numerical algorithms are derived for both Galerkin and collocation solu­
tion techniques with convergence proved in the Galerkin case and collocation method 

verified experimentally. A generalization of the Hilbert space theory is then applied 

to the two-dimensional case with eigenfunctions created by combining the angular 
Fourier terms with the radial eigenfunctions of the dominant one-dimensional parts. 
Numerical algorithms based Galerkin and collocation methods are again derived and 

used to solve the two-dimensional equations. The techniques developed are used to 
solve a number of both previously known and new problems in Electrostatics and 
Fracture Mechanics. Simple layer potential representations yield weakly singular in­
tegral equations for the induced charge on disc shaped conductors tha t are placed in 
an electrostatic field. Similarly, double layer potentials yield hyper-singular integral 
equations for the crack opening displacement of penny shaped cracks in an elastic
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solid under various loading conditions. Conformal mapping techniques for solving 
problems on non-circular domains are also briefly discussed as are extensions to fields 

that are governed by the Helmholtz Equation.
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1

CHAPTER I 

INTRODUCTION

The objective of the research upon which this thesis is based is to solve the 
two types of Boundary Integral Equations shown in (I .1) and ( I .2). ( /.I )  is weakly 
singular in nature, as a result of its dominant kernel while (1.2) is hyper-singular 

as a result of applying the Laplacian operator giving a Hadamard type singularity.

i  /  f Q { w h \ + R ( r , P ) } f ( P ) d A ( p ) = g ( r ) , r e n c R 2 (1.1)

( - A 2 + k ) ^ -  J  +  # ( r ,p )}  /  (p) dA(p)  = g (r) , f  G ft C E 2 (1.2 )

where k is a constant possibly zero.

Both of these equations arise from boundary value problems that model a broad 
range of physical problems, particularly those in or relating to potential theory. The 
ultimate objective is to be able to solve equations ( / .l)  and (7.2 ) for all reasonable 

domains Q, C M2. The work outlined in this thesis is however almost entirely focused 
on domains that are circular in nature, although Chapter XI outlines future work 

involving conformal mappings that is geared towards dealing with the more general 
case. The Integral Equations, shown in (1.3) and (7.4), are those we will focus upon.

j ,, / ,  {  +  R  {P' ^ ^  f  (P’ ^  W° M  = 9 ( r ’ 9) (L3)

( “ A2 + K) /  /-. { + R ( P , 0 ; r , e ) } f ( p , 0 ) w ' ( p ) d M p  =  g(r , f ) )

(1.4)

0  < r < 1 , —7T < 6 < i t , where wa (p) are weight functions, k  a constant possibly zero, 

R (p, i?; r, 0) a suitably continuous kernel and g (r, 0) a suitably smooth function.

By Fourier expansion with respect to the angular variable each of these equations

°This dissertation follows the style of The Siam Journal on Optimization

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



2

yields a simultaneous system of one dimensional integral equations. In many cases 
these systems uncouple to produce a weakly singular equation of the type (7.5) or a 
hyper-singular equation of the type (7.6 ) where the Hadamard singularity Bmlm (p, r ) 

must be considered in the proper way.

[  {lm(p,r) + k ( p , r ) } wo ( p) f {p) dp  = g ( r ) , 0 < r < l  (1.5)
Jo

[  {BmZm (p,r) + Klm (p,r) + k { p , r ) } wl ( p ) f ( p ) dp  = g(r)  ,0 < r < 1 (1.6)
Jo

where m  =  0 , 1 , 2 , n, a constant possibly zero, k (p, r ) a suitably continuous kernel, 
g (r) a suitably smooth function and Bm a second order differential operator.

In each case the dominant term is derived from the weakly singular kernel

fo rm  =  0 ,1 ,2 ,3 ,... (1.7)27T̂ Q m - l
rp2 +  r 21

2  pr

which is defined in terms of the ring function {Qm_i (x)} or the Legendre function 

of the second kind (e.g. [1], section 32).

Eigenfunctions associated with the dominant parts of (7.5) and (7.6) form com­

plete orthogonal sets that facilitate the solution of these equations and their two- 
dimensional counterparts (7.3) and (7.4).

The different stages involved in the processes of modeling and solving the types 
of physical problems tha t we are concerned with are outlined in Figure 1.
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P hysical
P roblem

Stage 1

B oundary
V alue
P roblem

Stage 2

2 -D  B oundary  
In tegral E quations

Stage 3 Stage 4a

1-D Integral 
E quations

N um erical
ProblemStage 4b

Stage 5

D esired
Solu tions

FIG. 1. Outline of methodology.

Stages 1 and 2  of Figure 1 are already well established but solutions to the weakly 
singular and especially the hyper-singular integral equations have been historically 

hard to find. Some particular solutions have been found for specific problems (such 
as those given in the Sneddon books [2, 3]) but they are generally very specific 

and complicated. More recently a variety of alternate methods have been employed 
including finite differences, finite elements and boundary element techniques all of 
which are computationally extensive. The approach taken here is semi-analytic and 
although closer in spirit to the works referenced in Sneddon [2, 3] it does produce 
numerical solution techniques.

Preliminary results outlined in Chapter II establish the notation to be used and 

introduce concepts and ideas tha t are needed for a proper understanding of subse­
quent materials.

Chapter III introduces the Hilbert spaces spanned by the eigenfunctions of the 
dominant integral equations associated with (1.5) and (1.6). The eigen-structure of 
the corresponding operators is examined in detail and the tools needed to solve (1.5) 
and (1.6) as operator equations in Hilbert space are developed.
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4

In Chapters IV and V the one dimensional weakly singular (Chapter IV) and 
hyper-singular (Chapter V) integral equations are solved as operator equations in 

Hilbert Space. As well as finding solutions that exist (given set conditions) numer­
ical algorithms are developed for both Galerkin and collocation methods. These 
algorithms are tested in Fortran with artificially constructed problems. In terms of 
Figure 1, this is considered to cover stages 4b to 5.

Attention is then focused on the two-dimensional integral equations via both 

Stages 3 to 4b and directly via Stage 4a of Figure 1. We are able to use the the­
ory from the one dimensional problems to generalize and produce eigenvalues and 

eigenvectors for the two-dimensional dominant operators and again construct Hilbert 
spaces spanned by the eigenfunctions. Chapter VI builds on Chapter III and devel­

ops the Hilbert space theory required to solve the two-dimensional integral equations 
as operator equations in Hilbert space. Chapter VII builds on Chapter IV while 

Chapter VIII builds on Chapter V, solving the two-dimensional integral equations 
and hence dealing with Stages 3, 4 and 5 of Figure 1.

In Chapters IX and X we look at specific applications illustrating the procedures 

in every stage of Figure 1. Firstly in Chapter IX we look at certain Electrostatic 
problems using Potential Theory. Using tools developed in Chapter II, we can model 

the effects of placing charged discs in electrostatic fields as Boundary Value Problems 
(Stage 1 of Figure 1) and hence as two-dimensional weakly singular integral equations 
(Stage 2 of Figure 1). By looking at a variety of problems we can obtain solutions via 

both Stages 3 and 4b or directly via Stage 4a (of Figure 1) to get the final solution 
in Stage 5. We first look at simple problems with a known final solution to confirm 
that the solutions obtained via our method are accurate. More complicated problems 
with less readily known or unknown solutions are then considered to illustrate the 

capabilities of the method.

Some Crack Problems in Elasticity are examined in Chapter X. Using the tools 
developed in Chapter II we can model the stress effects of external forces on cracks 
as Boundary Value Problems (Stage 1 of Figure 1) and hence this time as two- 

dimensional hyper-singular integral equations (Stage 2 of Figure 1). We again look at 
a variety of problems both known and unknown, solved in various ways, to illustrate 
the capabilities of the methods.
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In Chapter XI we summarize what has been achieved and examine possible ad­
vances and further applications for the future. Both direct continuation of the work 
and different directions are discussed. Two main themes are highlighted. The first 
being the use of conformal mappings to expand the scope of the Boundary Value 

Problems that can be solved. The second being an expansion on the type of Bound­

ary Value Problems and hence Boundary Integral Equations considered.
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CHAPTER II 

PRELIMINARY RESULTS

II.1 W EBER -SC H A FH EITLIN  INTEG RALS

The Weber-Schafheitlin Integral

/»oo
/  t~xJfi (at) Jv (bt) dt, a > 0, b > 0 (H.l)

J o

is convergent if Re(/x+i/+l) > Re (A) > —1 and a b, or if R e(//+ i/+ l) > Re (A) > 0 

and a — b.

It is discussed in great detail by Watson [4] who investigates many cases. The

case of interest to us is that of Sonine and Schafheitlin which, as shown by Sneddon
[2 ], may be expressed in the following convenient form;

The integral
poo

/  ta+^ J a_p (at) J7_i (bt) dt (II.2)
J o

takes the value

b ^ r t a )  (  b2\
{ 1  2Fi « ,/3 ;7 ; ^  i f 0 < & < «  (II.3)

27— /V + /T  (7 ) T (1  - 0 )  V a2

and the value

2 F 1 ( a ,  a  -  7  +  l ; a  -  (3 + 1; ^  1 (II.4)27-«-^62a-7+ir (7 _  a )p (a  _  p  + !)  ̂ ^  ^ > b2

if 0  < a < b.

The case a = b is not covered by this result and needs to be derived independently 
if wanted.

Several special cases of the Sonine-Schafheitlin result will prove to be useful in 
our subsequent analysis. Before exhibiting these however, we will find it convenient 
to introduce the functions t™ (p) and u™ (p) which are defined for 0  < p < 1 and 
m ,n  =  0 ,l ,2 ,. . .  . These functions are expressed in terms of the Associated Legendre
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Polynomials Pn (*) and will form orthonormal bases for the Hilbert spaces in which 
our analysis will be carried out.

D efinition II. 1

C  (p) =  ■̂n ^ 2n+m ( y r ^ 7 ) , o < p < i  (11.5 )

p£+m+1 ( i R )
«» (/>) =  CC 7 = = ^  S O  < P < 1 (II.6 )

V l  - P 2

where____________________________________________
rpm / (4n +  2m +  1) (2n)!
r ” =  V  (2 n ” 2 m)!------ (IL7)

Trm _  /(4n  +  2m +  3) (2n +  1)!
^ “ V ------(2 n +  2 m +  1)!------ (IL8)

and m ,n  = 0 , 1 , 2 ,... .

T h eo rem  II.2  / 0°° t 1_fcJ m+2n+*: (f) J m (pt) dt =

T ( m  + n + l ) H ( l -  p2)pm (1 -  p2)k~l . 2\ /TT n\
-----------2t- , r ( m + 1 ) r ( n  +  t)----------- aF1 ( - n ,m  + n +  * ; m + l ; ? ) (II.9)

ru/iere A: > 0; p > 0; m, n =  0,1,2... and H  (x) is the Heaviside function.

Proof. Let a  = m  + n + 1 ,0 — 1 — k — n , j  = m  + l ,a  = 1 and b = p in ( I I .3) and 
(I IA) .  Then, ifO < p < 1 , ( HA)  yields 

/ 0°° t 1_fc J m+2n+fc (t) Jm (pt) dt

r  (m +  n +  1) pm _ / , . 2\
=  ofc-rpV— , 1 x P / ~  2* 1  (m +  n +  1 ,1  -  k -  n; m  + 1 ; p )2k (m +  1 ) r  (n +  k)

r  (m +  n  +  1 ) pm (1  — p2)k 1 , 2\
=  2» - T ( m + l ) r ( , ,  +  *) 2Fl (-»."> + » +  *;"> + 1;„ )

where we have made use o f the linear hypergeometric Transformation (15.3.3 of [5]) 

2-Fi (a, 6 ; c; z) =  (1  — z)c~a~b 2-Pi (c — a, c — b; c; z) (11.1 0 )
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Additionally, =  r (-n )  =  ® an<̂  hence f r°m  {HA)  we can see
zero when p > 1 . ■

Corollary II.3

roo H  (\ 

_

 02)
/  t? Jm+2n+l (*) (pO dt = Amn tn (p)

Vo 2 v  1 -  p2

where
(—l)m (m 4- n)!n!2 2n~*“m + 2

■̂■TflTL <- —
7r (2m +  2n)! (2n)! (4n +  2m +  1)

Proof. Putting k = \  in {II .9) yields 

/o°° * 2 Jm+2„+i (t) Jm {pt) dt

yf2{m + n)\H {\ — p2)pm (  1 2\
=  -----, ~ iF x - n ,m  +  n + - ; m  + l ; p 2

m!r (n +  | )  v/ l ^ V  V 2 H)
( - l ) m y/2 (m +  n)\22nn\2mm\ (2n)! H{ 1 -  p2)pm /

=  m!0 r (2 n)! (2 m + 2 n)lpm----------7 r r 7 r F- « "  ( V

( - 1 )”  (m +  n)!n!2 2" + ^ §  g  (1  -  ^ )  nm ,
%/n (2 n +  2 m)! v ' W *  2“"”  ' V '  >

_  ( - l ) m (m +  n)!n!2 2n+m+s / / ( 1  - /J2) ^  . ,
y /7r (2m +  2n)! (2n)! (4n +  2m  +  1) y / \  — p2

where we have utilized the result (15.4-13 of [5]); 
for  0  < x  < 1

2jFi (&,a ;a  +  b +  =  2 “+ H r  ( a  +  6 +  ^  x ^ ~ a~b) ( V

and the relationship ([1], Sect. 60, 23)

p ~ m  (x ) =  ( —l ) m  (n  ~  m )~ p m  / \ H
71 1 ; 1 j (n +  m)! n W

Corollary II.4 For p > 0,

/*oo
/  H  Jm+2n+§ (*) Vm {pt) dt = B mnH  (l  -  p2) y / l  ~  p2 U™ {p

Jo 2
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where
=  ( ~ i r ( m  +  »)!n!2^ i  ( n  w )

y /n  (2m +  2n + 1)! (2n  +  1)! (4n +  2m +  3)

Proof. Putting k =  |  in ( I I .9) yields

r  t ~ * J m + 2 n + | W  ( ^ )  dt

(m  +  n)!77(l — p2)pmy /1 -  p2 /  3 .
-  v '  v '  v 2-Fi ( —n ,m  +  n + - ;  m +!;/>"

\ / 2 m! (n +  | )  T (n +  | )  2 " ’ " ‘ ^ ' ^ 2

(—l)m (fn +  n)!n!2 2n+m+a 2) /j— -
V^(2n +  2m +  l)  ̂ ? 'Wm+i ^V 1

=  ( - i r ( m  +  n )!n !2 ^ i
- /̂V (2m +  2n +  1)! (2n +  1)! (4n + 2m  +  3)

where we have made use of the result (15-4.21 of [5])] 

for  0  < x  < 1

/  i \  /  1 \  x ^ ~ a~b) (a/1 -  x )
2Fx ( t ,  a; a +  b -  x j  = 2a+b̂ F  \a  + b -  -  J  ----------------------   (11.17)

together with (77.14) ■

T h eo rem  II.5  / 0°° tk~1Jm+2 n+k (t) Jm (pt) dt =

F (m + n + k) pm
2 1 fcr  (m + 1 ) r  (n +  1 ) 

0  < k, 0  < p < l , m , n  = 0 , 1 , 2 ,... .

2 F1 (~n,  m  +  n +  k\ m  + 1 ; p2) (11.18)

Proof. Set a  = m  + n + k,{3 = —n, 7  =  m +  l , a  =  l  and b = p in (77.4), then for
0  < p < 1

/»oo
/  £fc_1 j m+2n+fc (t) Jm Got) dt

Jo
r  (m  4- n 4- 1) pm

21 *T (m +  1) T (n + k) 
F (m  + n + k ) pm

2Fx (m +  n  4  k, —n; m  4- 1; p2) 

2F\ (—n , m  4  n + k ; m +  1; p2)
2 1- fcr ( m  +  i ) r ( n  +  i)

where we have again made use of the hypergeometric transformation (77.10)
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C oro lla ry  I I . 6  For 0 < p < 1,

pOC
/  t~ * 4 i+ 2 n + l  (*) (fit) dt = Cmnt™ (p) ,

^0 2

where
_  ( - l ) m In (2m +  2n) \ ( 2 n)!

22n+m+2 (m +  n)!n! y (4n 4- 2m +  1)

P roo f. Put k = -  in (77. 18), then for  0 < p < 1
Lt

poo

(*) Jm (Pt) dt

T(rn + n + \ ) p m (  1 „ \
=   /x , -------  2 ^ 1  - n , m  +  n +  - ; m  +  l ;^

v 2  mini V ^ J

= ( l ) m . f *  2̂n '̂ P rn ( j \  -
 ̂ > Y 2 22"+m (m +  n)!n! 2n+m VV P )

using (77.13) and (77.14)

I " 1)™ / 7r(2rn +  2 n )!(2 n )! m̂
22n+m +i +  n j ,n j y  (4 n  +  2 m  +  1) n

C oro lla ry  II . 7 74)r  0 < p <  1 ,

poo

I t* </m_|_2n_|_3 ( )̂ «7m (P0 — Dmnun (p)
J O

where
 ______ ( ~ l ) m______  l n ( 2n  + 1 )! (2 n +  2 m +  1 )!

mn 2 2n+m+1n! (m +  n)! V 4n +  2 m +  3

10

(11.19)

(11.20)

(11.2 1 )

(11.22)
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3
Proof. Put k  =  -  into (II.  18) then

poo

J  ^  *^m+2n+1 (•t ) Jm (pt) dt

y / 2( m + n + \ )r (m + n + \ )  pm (  3 , ,
-  ------------------ --— V 2/ 2F i [ - n , m  + n + - ; m  + l -p2| |  *  L \  5m!n! \  2

\/27r (m +  n +  | )  (2 m +  2n)\pm (—l) m 2 mm!Vztt ^m +  n +  -2) {zm  + zny.p- {- i )  z~mi (
2 2n+2mm!n! (m +  n)! (2 m +  2 n +  l ) ! \ / l  — /92/om 2n+2m+i y
using (II.  17) and (II.  14)

( - 1 )"* / 7r ( 2 n +  l) ! ( 2 n +  2 m +  l)! m
 (P)

2 2n+m+in! (m +  n)! V 4n +  2 m +  3 
using (II:6 ) , (I I . 8 ) ■

II.2 LAYER PO TE N T IA L  SO LUTIO NS TO LA PLA C IA N  B O U N D ­
A R Y  VALUE PRO BLEM S

Integral equations provide us with a useful formulation of the boundary value prob­

lems of potential theory. Such equations are often derived from the representation 
of harmonic functions by single or double surface layer potentials. The surface in 
question is usually the boundary of the domain in which the problem is to be solved 
and the resulting integral equations are then called boundary integral equations. For 

this reason we provide a brief summary of the necessary properties of single and 
double layer potentials.

We recall that a function /  (r) satisfies a Holder condition in a domain f i  C Rn if 

1/ (fi) -  /  (r2) | < D \ f i —r2\u for 0  < ^ <  1 , £> > 0  (11.23)

for any two distinct points r\, r 2 G ft.

It should be noted that Holder continuity is stronger than continuity but not as 
strong as differentiability.

We will assume that the surfaces over which the layers are to be defined are Lya­
punov. Recall tha t a surface is Lyapunov if it is smooth, possesses a normal line and 
tangent plane at each (non-boundary) point on it and tha t these vary continuously 
as we move from point to point on the surface. This implies the existence of local
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coordinates (x , y,  z )  at any point p  on the surface, the z  — a x i s  being along the normal 
and the x  and y axes lying in the tangent plane. In a neighborhood of p the surface 

has equation z — z ( x , y ) and the partial derivatives zx(x,y),  zy(x,y)  exist and are 
Holder continuous.

In the remainder of the section S  will denote an orientated, open, bounded Lya­
punov surface. P,  Q will be position vectors of points P , Q g 1 3 and p, q the position 
vectors of points p,q e  S.  The positive (outward) unit normal at a point p € S  will 
be donated by np.

Let Q C R3 be a neighborhood containing S  in its interior. Then if /  is 

defined and continuous in Q \ S  we define f *1 (p) to be the limit as P  approaches p 
along the normal from the positive or negative sides of S  respectively.

At a point P  ^ S,  denotes differentiation in the direction of the unit vector 
np at p € S.  denotes the limit of as P  approaches p from the positive or 
negative sides of S  respectively.

The surface layer potential properties summarized below are well known, details 
being found in many references including [6 , 7, 8 , 9].

11.2.1 T he Three-D im ensional G reen’s Functions

The potential at a point P  due to a unit source at a point Q is given by the Green’s 
function G ^P,  Q'j. It is well known that, in R3, the Green’s function satisfies Pois- 
son’s equation

(11.24)

(11.25)

the points P  and Q.

11.2.2 T he Single Layer Potential O perator

The single layer potential operator
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[Sip] (P )  =  J t p(q)G(P , q)dS (q) (11.26)

s

gives us the potential at the point P  due to a layer of simple sources that are dis­

tributed with density p(q) on the surface S.

If ip(q) is Holder continuous on 5, then;

1. [£</?] satisfies Laplace’s equation, = 0, for all P  € M3 \5 I and ap-
- i

proaches zero like P  as P  —► oo

2. [«Sy?] is continuous for all P  G M3

3. In the neighborhood of each (non-boundary) point p  € S  the tangential deriv­

atives of [«S<p] (p) exist and are continuous

4. The normal derivative ^  [<S<£>] (p) , is defined in the neighborhood of each (non­
boundary) point p G S.  At the point p it suffers a jump discontinuity given 

by

9  [«$¥>] i.P) =  iP) +  [S„p¥>] ip) (11.27)d n p  2

where

S np: L 2 ( S ) - ^ L 2 (S) (11.28)

is a compact operator given by the improper integral;

[5 np¥>] ip) = J<p(q)J^-G(p, q)dS (q) (11.29)
S  P

It should be noted tha t (11.27) can be written in the discontinuity form

9 iP) ~  [«Sy>] iP) = ~<P iP) (11.30)dn+ dnp

and

11 =  [SnM
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11.2.3 The Double Layer Potential Operator

The double layer potential operator

[ha] ( p )  =  J a (q)J^-G (P ,q)dS(q)  (11.32)
s  q

gives us the potential at the point P  due to a layer of dipoles that are distributed 
over the surface S  with density a (q).

If a  (q) is Holder continuously differentiable on S, then;

1. [ha] (^Pj satisfies Laplace’s equation, A 3 1/  =  0, for all P  6  R3\S  and ap­

proaches zero like as P oo

2. [ha] (p) exists in the neighborhood of each (non-boundary) point p G S  where 
it exhibits the discontinuity behavior

[h+a] (p) -  [h“ a] (p) -  a  (p) (11.33)

and

In addition

\  { [*>+^] (P) +  [h a] (p)} =  -  [ha] (p) (11.34)

h : L2 (5) L2 (S) 

is compact and is in fact the adjoint of the operator S np defined in (77.29).

3. In the neighborhood of each (non-boundary) point p € 5  the normal derivatives 
of [ha] (p) exists and are continuous

9 [ H  (P) = [ H  (P) = - S -  [ H  (?) (11.35)dn+ dn~ dnp

4. In the neighborhood of each (non-boundary) point p £ S  the tangential deriv­

atives of [ha] (p) exist and exhibit the discontinuity behavior

^  [ha] (p) =  [ha] (p) ±  i a  (p) (11.36)
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II.2.4 T he D irichlet Problem

Let S  be a region in the xy — plane. The Dirichlet problem is concerned with finding 
the solution V  of Laplace’s equation

A 31/ =  0, for P  e R 3\ S (11.37)

subject to the boundary conditions;

1.

V ( p ) 0  as P oo

2 .

v  ip) =  9 (p) , P G 5

where g (p) is a prescribed potential function.

(11.38)

(11.39)

In view of our discussion on the single layer potential it is clear that the desired 
solution is given by

V  ( p )  =  [Sip] ( p )  (11.40)

provided the density ip (q) satisfies the weakly-singular integral equation;

Of Particular interest is the case where S  is the unit disc in the (r, 9) plane as 

this yields the Boussinesq Equation which motivates much of the work to follow.

1 r  / ■ v M p d p i *  = 8 ( p , f l ) , 0 < r < i , - „ < » < „  (11.42)
47T J_v J o ^ r 2 +  p2 — 2 rpcos ($ — 9)

It should be observed that the technique used to derive ( I I .41) holds also for the 
situation  in which S  is th e union o f non-intersecting surface elem ents Si, i =  1 ,2 ,

In this case, if and g, are the corresponding surface densities and potentials, we 
find tha t the solution takes the form

*’ ( ^ ) = i > * ,j ( f i)  (11.43)
t = l
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where ipt are given by the system of n  simultaneous integral equations

=  9i(P) » P G Sit i = l , 2 , . . . ,n  (11.44)
l  f  <pj(q)dS(q)

Y — f4tt 7,s R(p,q)

each of which has one weakly singular kernel and (n — 1 ) continuous kernels.

Symmetries of geometry and loading often enable us to reduce a system to a 

single equation. An example is the case for a pair of discs 0  < r  < 1 , — n < 9 < ir, 
z = ± h  which are charged to equal and opposite potentials ± /  (r, 0) and thereby 

acquire charge densities ±ip (r , 6) given by the integral equation

— [  f  f  / ̂ p = -----------, ^ p&p&fQ = glob'd) (11.45)
47T J J q y y/ r^+p2—2rpcos(iJ—9) \ J r2+p2—2rpcos(i?—0)+4/i2 J

for 0 <  r < 1, —7r < 9 < n

II.2.5 T he N eum ann Problem

Let S' be a region in the xy-plane. In the Neumann problem a solution V  ^ p j  of 
(I I .37) is again sought but this time with boundary conditions of the form;

1.

V ( p )  -» 0 as P  -» oo (11.46)

= g ( p ) , p e S  (11.47)

2 .

d V  ( p )

dn

In this case it is clear tha t the solution is given by the double layer potential

V  ( p )  =  [Oa] ( p )  (11.48)

provided a (q) satisfies the integral equation;

^  Js °(i t i^G(p,q)dS(q) = g(p) , p£s  (11.49)

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



17

N ow  since G  is a  function o f \p — <f| only, yielding

d 2_

or equivalently

Js°(q)G(p,q)dS(q) = g(p),p£ S (11.50)

imdS ® = 9 ® 6 s <IL51)
where A2 is the surface Laplacian.

Note tha t (11.51) is a hyper-singular integral equation. The operator on its left 

hand side is unbounded but, as will be shown later, it has in many circumstances a 
compact inverse.

In the case where S  is the unit disc in the (r, 9) plane, (77.51) reduces to the 
equation;

-5-A2 f =  0  M ) , 0 <  r  <  1, -71- <  0 <  7T
4^ J s  v  r +  P  ~  cos ( f t  — 6 ) (11.52)

As with the Dirichlet problem an extension can be made to the case where S  is 
a union of non-intersecting surfaces, where (11.52) can be used as the prototype for 
developments in later chapters.
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CHAPTER III 

HILBERT SPACES I

111.1 IN T R O D U C T IO N

The integral equations that are to be investigated in later sections can be considered 
as operator equations in Hilbert Space. W ith the goal of solving these operator equa­
tions we construct weighted Hilbert Spaces L% (0 ,1); a = 0,1 and identify suitable 
orthonormal bases for them. By construction, these basis functions will also form a 

complete set of eigenfunctions for the two classes of operators which represent the 
dominant parts in the integral equations of interest. We will then examine these 
operators and in particular their eigen-structure.

111.2 TH E HILBERT SPACES (0,1)

The (0,1) spaces consist of all real or complex valued functions tha t are square 
integrable on the interval (0,1) with suitable weight function. An exact definition is 
as follows.

D efinition I I I .l  For a  — 0,1

L a2 (0,1) =  |  (0,1) -  C and j f '  | /  (p) |2 wa (p) dp < o o j (III.l)

where

wa (p) =  p ( l - p 2)a~* (HI-2)

with inner product

( f , g ) a =  f  f(p)]Kp)™a (p)dp ( I I I3)
Jo

and norm  i

ll/IL  =  { / l / W |2 ” ° W<i'’F  (m .4)

In order to construct orthonormal bases for the Hilbert spaces (0,1) we will
begin by recalling that the polynomial functions ip ) , u™ (p) (m, n =  0 , 1, 2 , . . . ) ,  in­
troduced in Def. II. 1, are related to the well known associated Legendre polynomials 
P™ (x) as follows;
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For m, n = 0,1, 2,...

C M  = r n" f £ +„ ( v /r v ) , o < p < i  (III.5)

F Z +m»  ( v f 7 )  , ,
< M  =  I C  7 = ^ ------M < / > < 1  (IH.6)

where
T m /(4n +  2m +  l)(2n)!
T" V  (2n +  2m)!------ <IH'7)

/ (4n +  2m +  3) (2n +  1)! ,ttt

U" = ] j ------(2n +  2 m + i ) \ ------ (IIL8)

are normalization constants.

The functions t™ (p) and u™ (p) are polynomials of degree (2n +  m) in p and con­
tain only even powers of p if m  is even and only odd powers if m  is odd. In addition,

by making a trivial change of variables in the following well known orthogonality 

relation for the associated Legendre polynomials (e.g. [5], 8.14.11 and 8.14.13);

£  c *  M  i=r (x) < & = 2 ^ f r  <r a -9>

it is readily shown that

(in. 10)
Jo

and

/Jo
w l (p)u™(p)u™(p)dp = 5np (III.ll)

>0

and hence that, for a fixed value of m, the sequences {t™ (p)}^L0 and (u™ (p)}^L0 
are orthonormal in (0,1) and L \ (0 ,1), respectively.

We will show that in fact these sequences are also complete and hence form 
orthonormal bases functions for the respective spaces.

T h eo rem  I I I .2 For any m  = 0 ,1 ,2 ,... the sequence {t™ (p)}^L0 f orms a complete 
orthonormal basis for  L” (0,1).
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Proof. We have already established that the sequence is orthonormal so we need 
only show completeness.

For a fixed m , let f  (p) £ (0,1) be orthogonal to every element o f the sequence

{ c(/> )C = o - Then

Jo f  (P) An+m ( \A  - P 2)  w° (p) dp = 0,n = 0, 1,2,...

Now, by letting x  =  \J \  — p1 we get

f  (V l - * 2)  P^+m (x ) dx =  ° .n  =  0 ,1 ,2 ,...

and, since P™+m x ) =  (—1)” P™+m (x ) and f  (>/l — x2) is even, we have

J  /  ( \ / l  -  a:2)  P™+m (x) dx = 0 ,n  = 0 ,1,2,...

TTie sequence {P™+m (x)}~ is complete in L 2 (—1,1) (e.g. [10], pl23, #10) so

f  = 0 ,  — 1 < x < 1

that is
/  (p) =  0, 0 <  p <  1

Hence {t™ (p)}^L0 ts complete in ^ ( 0 , 1) ■

T h eo rem  III .3  For any m  = 0,1, 2,... the sequence {u™ (p)}^L0 forms a complete 
orthonormal basis fo r L \ (0,1).

P roof. Similar to the previous theorem we have already shown that the sequence is 
orthonormal so we only need show completeness.

For a fixed m , let f  (p) £ L \ (0,1) be orthogonal to every element o f the sequence 

{ <( p ) ) n =o- Then

f  f  (p) PZ+m+1 ( V 1 -  P2) pdp = 0 ,n  =  0 ,1 ,2 ,... (111.12)
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L etting x  =  y / l  — p* we get

J  ̂ x f  ( y / l -  x2)  P 2n + m + 1 0*0 dx = 0,n = 0 , 1,2,...

and, since P™+m (—x) =  (—1)" P™+m (x) and x f  ( \ / l  — x2) is odd, we have

J   ̂x f  ( V l  - x 2)  P f X m  ( x )  dx =  0 , n = 0 , 1 ,2 , . . .

The sequence {PfXm (x)} ^ =1 complete (e.g. [10], pl23, #10) so

x f  ^ \ / l  — x 2^ = 0 , - 1  < x < 1

that is

f ( p )  = 0 , 0 < p < l  

Hence { ^ } ^ 0 is complete in L \{0,1) ■

Now that we have these complete orthonormal bases functions both types of 
spaces are separable and hence isomorphic to the separable Hilbert space I2. Each 

element in our L2 (0,1) spaces can be identified with the I2 sequence consisting of 
the coefficients in any basis function expansion. First let us define I2.

D efinition III.4

I2 =  < x : x  =  { rn}“=o where x n € C and |xn|2 < oo > (III. 13)I 71=0 J
with inner product

OO

(x,y) =  J^x „ jfo  (III.14)

and norm
71=0

v 1
O O  1 2

=  { Y  w 2 1 <1IUS>\ X , ,

V 71= 0

We now construct the isomorphisms between the L2 (0,1) spaces and I2 to enable 
us to take advantage of the well known I2 structure.
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Theorem III.5 L \ (0,1) is a separable infin ite dim ensional H ilbert space isom orphic  

to I2.

P roo f. Let f  be the function defined as follows f  (r) =  X)̂ °=o (r ) > then

= [  I f  (p)\2 *>° {p) dp
Jo

j .  1  OO

=  /  f ^ n ( p ) W° ( p ) dP
n = 0 

oo - i

=  /  I*" w° dp’ by orthogonality
n = 0

OO

=  £ i/ . i2 =  i i{ / » } ” „ i i2
n=0

SO  f e L ° 2 (0, l) {/„}“ „ e l 2

Now define the operator A  : L2 (0,1) — > I2 by

then if

f { r )  =  J 2  f nt™ ^ (r) =  9nt™ (r)
n=0 n=0

oo

we have

(III. 16)

(Af ,  Ag) = ({/„}“  o , {0nKLo> =  (X’V)

and it follows that A  is a Hilbert space isomorphism between L 2 (0,1) and I2 
confirming the isomorphic relationship ■

T h eo rem  III .6  L \ (0,1) is a separable infinite dimensional Hilbert space isomorphic 

to I2.
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P ro o f. Let f  be the function defined as follows f  (r) =  7 ~ ^ n f nu™ (r) , then

lo =  f  \ f  iP)\2 wl  (p)dP Jo
-1 oo 2

=  /  J Z f n K i P ) WX{p)dp
d °  n = 0 
oo -1

=  y 2 \ f ”\2 \ K  ( p) f  wl (p) dPi by orthogonality
n = 0 ^ 0

OO

=  E  W 2 =  IK/-KC o l l 2
71=0

S0/eZ4 (o ,i)^ { /n}~ 0e /2
iVoro define the operator B  : (0,1) — ► by

then, if

/  (r) = 5 3  / " C  (r ) (r ) =  5 Z ( r )
71= 0 n = 0

oo
® =  { f n ) n = 0 . y  =  { y n } ~

we have

(III. 17)

(Bf ,  Bg) = ({/„}“  o , {$„}“  0) =  (x > V)

and it follows that B  is a Hilbert space isomorphism between L \ (0,1) and I2 
confirming the isomorphic relationship ■

Now that we have defined the structure of our Hilbert spaces we turn  our attention 

to operators defined on them.

III.3 O PER A TO R S O N  TH E L£ (0,1) HILBERT SPACES

We will now define and examine what will be the key operators for the integral 
equations of interest. We will first look at two weakly singular operators; and

i4 -
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III.3.1 The L“ Operators

The L“ operators will both be defined in terms of the weakly-singular kernels lm (p, r ) 
for m =  0 ,1 ,2 ,3 ,... with relevant weight functions. The definition for lm (p, r ) now 
follows.

D efin ition  I I I .7 For m  = 0 ,1 ,2 ,3 ,...

1 p2 r 2
P (III. 18)l m  (P, r ) ~ 2 pr

where Qm_i (x ) is a ring function or a Legendre function of the second kind (e.g. 
[1], section 32).

It will often be convenient to represent this kernel in other ways, as allowed by 
the following theorem.

Theorem  III.8 For m  — 0 ,1 ,2 ,3 ,...

1 /-n iin (p ,r)  t 2mP t
lm (p, r) =  — —  /  . ■ =  (III. 19)T,pmrm J 0 ^ 2  _  *2) (r 2 _  *2)

=  Jm(pt )Jm(r t )dt  (111.20)

Proof. Using the following result from ([1], p44$)

f  cosme = =d0 = Qm_i { cosh#) (III.21)Jo a/2 (cosh # — cos 6) 2

and the real part of Copson’s Integral ([11]) with 3 =  0;

r2n e im ed 9  4eJrm) /•m in(r,p)/* e dd _  4e f n

Jo y j r 2 +  p2 — 2rp cos (#  — 0) rmpm /gy /r2 + p2 — 2rp cos (# — 0) rmpm J0 a /( r2 — t2) (p2 — i2)

we con obtain with simple algebra and change of variables

_ 4 _  t**d t _  J _ n  / V + £ ^  m i

rmpm J o  y /(r2 -  t2) {p2 -  t2) >/rP 2 V 2rp J

/rom which ( I I I .  19) follows.
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It is clear ( I I I . 20) follows immediately from the following result ([12], 560.04);

j e tz Jm (r t) Jm (pt) dt = — —  Q 
o 71\ f rP

1 1 + z2 + ( r -  p f
2 rp

(III.23)

by setting z = 0 ■

We will now define the [ / (p)] (r) operators using these kernels and the weight 

functions wa (p) as before.

D efin ition  III .9  For a  = 0,1 and m  = 0 ,1 ,2 ,3 ,... let

for any given f  € L% (0,1).

We will now go about showing that for each m =  0 ,1 ,2 ,3 ,... and for both weight 
functions the kernels lm (p, r) are square integrable on (0,1) and hence that the 

operators are Hilbert-Schmidt and therefore compact. We will first consider 
on £ 2 (0 , 1 ) and show that for each m  the basis functions t™ form a complete 

set of eigenfunctions with corresponding eigenvalues The eigenvalues not only 
converge to zero but are square summable finite which is enough to establish that 
is a Hilbert-Schmidt type operator (see [13], pages 59-60), meaning it is both square 

integrable and compact. The compactness of will follow since 1111 x < M l o .
a consequence of the following facts; re1 (0) =  w° (0) and jtc1 (p)| < |ic° (p)| for

(III.24)

0 < p < 1.

The following theorem establishes the eigenvalues and eigenfunctions of L^.

T h eo rem  III . 10 F o rm ,n  =  0 ,1 ,2 ,3 , ...,0 <  r  <  1

[C  M ] (r) =  c  M (111.25)

where
4 r  (n +  1) r  (n + m  +  1) 24n+2m+2n! (n +  m)!

mn ~  r ( n  + l ) T ( n  + m  + l )  ~  vr (2n)! (2 n + 2m)!'m n (111.26)
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P roo f.

Lm[C(/>)] =  [  W° ( p ) tn ( p ) lm(p,r)dp,
J o

=  \  /  w° ^  /  Jm ^  Jm ^  dtdp’ 
by ( I I I .20)

-1 /*oo /»oo

= 2 J o  J m  ^  J o  W °  ^  ~~ ^  J m  ^
poo poo poo ^

= w ~A—  /  Jm(rt)  /  pJm(pt)  /  s5 Jm+2n+i (s) Jm (ps)dsdpdt,
AAynn J 0 »/0 */0
by ( I I . 11)

1 /*°° 1
=  — —  / Jm (rt)t~ * Jm+2n+i (t)dt,  by Hankel Inversion formula

2Ann jo 2

^ C W ,  by ( I I .  19)

7r (2n)! (2n +  2m)!
24n+2m+2n | (n  +  m )1 C M ,  by (77.12) and (77.20)

We will look at the properties of the Amn’s, in particular as  n ,m  tend to infinity, 

ultimately showing that YlT=o is fact bounded.
A»nn

Firstly, an asymptotic result illustrating the behavior of Amn as n gets large which 

shows that -r̂  > 0 as n —> oo at a similar rate toA mn n

Theorem  I I I . l l  For m  = 0 ,1 ,2 , ... and large n

Amn fa 4y / n ( n  +  m)  (111.27)

Proof.

T (n +  1) r  (n +  m  +  1)
A = 4' 'm rj ~

r ( n  +  ^ j r ( n  +  m + ^

-  4^ { 1 + ^ + 0 ( ^ ) } ' /i^ { 1 + 8(„ + m)+ 0 ( ( ^ f ) }

=  4 V^ T ^ { i  +  A  +  ^ - 1 _ 5  +  o ( A ) }
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where we have made use of the following result ([5], 6.1.47) 

T (z + a)
r  (z + /3)

1 + —  {a — /3) (a + /3 — 1) + O , |arg(z)| < 7T (III.28)

Now we will establish tha t for a given n, {Amn}“ =0 is a strictly increasing sequence 
in m  and similarly for a given m, (Am„}“=0 is a strictly increasing sequence in n.

T h eo rem  111.12 For m  = 0 ,1 ,2 ,3 ,... n =  0 ,1 ,2 ,3 ,...

1. m  0

2. n ^ O

Amn ^  A(m _ i ) „  .. .  A,On (III.29)

(111.30)

P roo f.

1.

Arnn
4 r  (n +  1) T (n +  m  +  1)

r  (n +  I) r  (n +  m +  \)
(2n +  2m) ^ Y (n +  1) Y (n +  (m — 1) +  1)

2n +  2m  — 1)  T (n  +  | )  T (n +  (m — 1) +  | )  
(2n +  2m)

2n 4- 2m — 1 A(m—l)n  A(m _ l ) n

£

Amn.
(2n) (2n +  2m) A T ((n — 1) +  1) T ((n — 1) +  m  +  1) 

(2n — 1) (2n +  2m — 1) /  r  ((n  -  1) +  | )  T ((n  -  1) +  m  +  \) 
(2n) (2n +  2m)

(2n — 1) (2n +  2m — 1) A m (n -l) A* i ( n - l )

We wish to find a bound on Yl^=o ôr a given m i which should exist since j)—
*mn mn

behaves similar to for large n. Since is strictly decreasing in m, if we establishn Amn
a bound for m =  0 it will hold for all other values of m. Now to establish a bound
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Theorem III. 13

A o o  =  - , A 0 „ > —  ( n > l )  (111.31)
7T 7T

P roo f. The value of A o o  is easily computed to be

_ r( i )r ( i )  _ 4
''OO — 4;r ( | ) r ( | )  *

The result holds for n =  1 since

, r (2) r (2) 16 „ 8 ,
/ '01 — ^ ----7~o\----- / o \ — ----- >  — ‘ J-

r ( t ) r ( l )  * ”•

For n > 2  we have,

x 4 r (™ +  ! ) r ( n  +  1)
- ' O n  —  4 r (n +  | ) r ( n + | )

4n2 T (n) T (n) 
n -  |  r  (n +  i )  r  (n -  i)

2 n „ ( 2
-An I —

>
7T

2 n — 1 V 7T 
8  n

where we used the following result from ([1 4 ] page 2); 
For n = 2 ,3 ,4 ,...

r ("  +  * ) ! > - * )  =  f t  L  _
f(n — 1)!] sin 7T2;m=i y m 2 J

Now we seek a bound for 0 t j -  and hence 3-5— for any m.
A0n mn

T h eo rem  111.14 For m =  1,2,...

OO  -• O O -  o r

E l  1 7T
11 y

n = 0  m n  „ = o  0 n
24

(111.33)
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P roo f. Now by ( I I I .  29) Xmn > Aon, m  > 1, so

V ' - L  v ' i . - J .  v - J _  
2 ^  \2 < Z-» \2 -  \2_ +  2 -/ \2n=0 rnn =0 On A00 n=i A0n

< a r + E © 2^ ™n—1
7T2
16 1 + i E ;n—l
7r2 
16

1 +  — 1 
24

■

We can also establish a lower bound on Amn

T h eo rem  111.15 For m,  n  =  0 ,1 ,2 ,3 ,...

1 <

P roo f. Firstly, 

for m  — n =  0

2 (2 n +  2 m +  1 ) A,,

1 7T 1
Aqo 4 2

(III.34)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



30

Now, for m  ^  0,

r  (n +  I) r  (n +  m +  £)
Xmn 4 r  (n +  1 ) T (n + m  +  1 )

n + l \  r ( ( n + l )  +  | ) r ( n  +  m + | )

>

n +  |  /  4 r  ((n +  1 ) +  1 ) T (n + m  +  1 )

r ( ( n  +  l) +  | ) r ( n  +  m +  | )
4 r  ((n +  1) +  1) T (n +  m  +  1)
r ( ( n  +  m) +  i ) r ( n  +  m +  | )

> ap~77 ,— 1 -----— t ,  by repetition4 r  ((n +  m) +  1) r  (n + m  + 1)
1 r ( ( n  +  m +  1 ) +  i ) T  ((n +  m  + 1 ) — | )

4 (n +  m +  | )  T ((n +  m) +  1) T (n +  m  +  1)
1 7T n+m /  1

2 (2n +  2m +  1) 2 ,=i \  4j 2

> n n  f i  *
— 4 (2n +  2m +  1) j=i \  4 j2

7T 2 7T
sin

4 (2n +  2m +  1) 7r 2

2  (2 n +  2 m +  1 )

Where the following results from [If] were utilized (II1.32) and ([14] Pa9e 4) with
2 = 4 -  
*  2  ’

°° /  2 2 \  sin (7T2) 1 . .
n  1  a =   —  = W i ■ \ -p /-i----- \ ■ (111.35)m=l \  m2)  7TZ r ( l  +  2 ) r ( l - « )

We now have upper and lower bounds on the eigenvalues as follows for m, n =  
0 , 1 , 2 , n  ^  0  as shown below.

1 1 7T
< (111.36)

2  (2n +  2 m +  1 ) Xmn 8 n

More importantly we have a finite bound on t4— so that it follows by ([15],*mn
prob. 132) that is Hilbert-Schmidt and hence a compact self adjoint operator 
with a square integrable kernel.

We have then that for m =  0 ,1 ,2 ,...

M . =  u : i :  w° (p) w° (r) |Zq (p, r ) | 2 d p d r | < oo (111.37)
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and since | |IL<̂ | |x < | |IL£J |0 and lm (p,r) is real and symmetric, is also Hilbert- 
Schmidt and therefore also a compact self adjoint operator.

It is now clear ([16], p63, Thm.14) that our kernel lm (p, r ) admits the following 
bilinear expansion

o°
i. ( m ) = E t - i: w c w  (ni.38)

„ Amn 
71= 0

with convergence in the mean sense for 0  <  r, p < 1

We can now use this expansion to first express the norm of in terms of its 
eigenvalues and hence obtain a finite bound for the norms of both operators.

(111.39)

2

dpdr, by ( I I I . 38)

T h eo rem  111.16 For m  =  0 ,1 ,2 ,3 ,...

w 1

P roof.

n = 0 m n

r °  | | 2
-'ml lo [  [  w° (p)w° (r)\lm (p,r)\2 dpdr 

Jo Jo
n l oo 1

w° (p) w° (r) 1— C  (P) C  (r )
o mn

OO  J

^  —2—, by orthogonality of t™ ■
ri=0 ^rnn

We can now use our bound on ( I I I . 33), to put a bound on the norms^mn
of our operators.

For m  =  0 ,1 ,2 ,3 ,...

i K i r < i K i r < ^ 77
24 (111.40)

We do not have a convenient eigen-structure for the operators but we will 
now look at some relationships between the t™ and u™ functions that we can utilize 
to express L ^ /  in a meaningful way using the results for L^.
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Let us first define some constants that will make later results more readable. 

D efin ition  II I . 17 For m, n =  0 ,1 ,2 ,...

m _  /  (2n  +  2) (2n +  2m +  2) (171411n V (4n +  2 m +  3) (4n +  2 m +  5) 1 ’

a m  =  /  (2n +  l ) ( 2 n  +  2m +  l)
y  (4n +  2m +  1) (4n +  2m +  3) K }

( a m ) 2 ( B m ) 27-  = + SIlilJ— (ni.4 3 )
/'m (n+l) " m n

f^ m o m

Vn =  (111.44)

Let us establish some basic properties of these constants tha t we will utilize later. 
Firstly, it is clear that for all m, n = 0 ,1 ,2 ,..., n /  0

0 < < <C < < +1 < 1 (111.45)

and

0 < Bn-l < P n <  Pn+1 < 1 (HI.46)

We can utilize these properties to show that 7 ™ and rj™ both converge to zero as 
m, n —» 0 0 .

T h eo rem  111.18 For m ,n  =  0 ,1 ,2 ,...

7 ”  < t  +  t L  (111.47)
/ 'ran

and
n m  <T

1)C  < T - 1—  (IIL48)

hence

7™, rfn * 0 os m, n  ► 0 0  (111.49)

P roo f. ( I l l .47) and (7/7.48) follow directly from the definitions, (111.45) and 

(II1.46), while ( I I I . 49) follows since   ► 0 as m ,n  —» 0 0  ■
Amn
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Now a theorem which will allows us to convert from u™’s to t™’s and vice versa. 

T h eo rem  III. 19 For m ,n  — 0 ,1 ,2 ,...

C  M  =  (p) +  W  (iu.50)

and
(1 -  p2) u™ (p)

=  « :C + i (?) +  (?) (HI.51)

=  (?) +  [(« D 2 +  ( - O 2] C  (?) +  (?) (HI.52)

P roo f. Using the following result from ([17], P161, #12)

(2n  +  1) xP™ (x) = ( n - m  + 1) Pnm+i (*) +  (n +  m) P™_x (x) (111.53)

{111. 50) and {III .  51) are easily obtained by simple algebra and the definitions oft™ 
and u™ while (7I I .52) follows from the combination of {II1.50) and { I I I . 51) ■

Some results for the inner product of t™’s in L\  (0,1) now follow.

T h eo rem  111.20 For m , i , j  — 0 ,1 ,2 ,...

« > t ? )  1 =  [ \ ? { r ) t ? { r ) w 1 {r)dr = a?_16{i+1)j + l?J'6ij (111.54)
Jo

= a?6iU- 1) +  (HI.55)

P roo f. (u™,t™)1

=  J  u?  (r ) t?  {r ) wl {p) dr

=  <  f 1 Ci (0 C (0 (0 d r  + 0 ?  f  C (r) C (r) w° (r) dr7o */o
(7/7.51)

=  by orthogonality ■

T h eo rem  111.21 For m , i , j  =  0 ,1 ,2 ,...
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-  / 'Jo
t r  (r ) t f  (r) w1 (r) dr

+  [ ( ^ D 2 +  « i ) 2] *<* +  W (m -56)

a T P T h j - i )  +  f (^ D 2 +  « i ) 2l (HI.57)

P roo f. <c,*r>i

=  +  by( I I I .50)

= aTPTSiU-1) +  [(Am)2 +  « - i ) 2] ^  by { I I I M )

= PT-^T-A i+ D i +  f a r ) 2 +  K m- i ) 2l ^  +  a? P ? A - i) i  ■

The operators are not quite as nicely behaved in L\ (0,1) as the are in 

£§(0,1), in that we do not have convenient eigenvectors. The following theorems will 

however be important in letting us numerically evaluate L ^ /  without numerically 
integrating this weakly-singular operator. Firstly, we can express in terms of
the functions and hence as a tri-diagonal operator by converting to the it™’s.

T h eo rem  111.22 For m ,n  =  0 ,1 ,2 ,...

n mUn< = (r) +  ~ C  (r) (111.58)
/V n ( n + 1) A m n

= Vn-1< -1  (r) + 7n <  (r) + Vn<+1 (r) (IIL59)
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P roo f. L in "

=  f Un ( p ) lm ( r , p ) w 1 ( p ) d p
Jo

= [  lm (r, p) U™ (p) (1 -  p2) w° (p) dp
Jo

= <  l  lm (r, p) C +1 (p) w° (p) dP + Pn /  lm (r, p) C  (p) w° {p) dp, by { I I I .51) 
JO Jo

Am(n+1)
a m

-C+i M  + f - C  W/\ri

by { I I I .50)

am
—  f e , * ,  (r) + «  W ) +  f * -  ( «  (r) +  (r)) ,

Amn

am3ru n rn
A. < - i  (r)

« r  +  ( c
Ayi A.m(n+1)

=  C a ' , W  +  « H  +  « « H

Since is Hilbert-Schmidt it will be bounded; the next couple of results deal 
with the norms associated with the operator, which are of course bounded.

T h eo rem  111.23 For m ,n  = 0 ,1 ,2 ,...

\K><\\\ = «( n- l )  ( C l ) '  +  <7n )2 +  ( C ) 2 (H I.60)

P roof.

I|LK i l l =  I |C - 1 < - 1  M  +  7 > “  (r) +  C C i  (r

= /  i ^ i C i W + T w r w + o c i W i V w *
Jo

= H { n - \ ) { rX ^ f  + W ?  + K ?  U

T h eo rem  111.24 For a given m  =  0 ,1 ,2 ,..., let

oo

/ ( p )  =  £ / » < * ( p )
n=0

then
OO

I lL t / |  Il =  £  I C l C l  +  7 ™  I n  +  •)” / „ - . «  ( »  -  l ) f  (1 1 1 .6 1 )
n—0
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P ro o f. For

U J  III =
n=0 
oo

£ / „  {h (»  - 1) C 1C 1 M  +  « •  M  +  C < V i  M }
71=0

/Jo
£  { C - i / » + l  +  I n f n  +  r i n f n - i H  (n -  1)} <  (r)
n=0

w 1(r) dr

71=0

The next theorems give some important inner product results for in

L\ (0,1).

T h eo rem  111.25 For m, n ,i  =  0 ,1 ,2 ,...

( L m u n  > < l ) i  =  7 i % n  +  l f y n + l )  +  C f y n - l )

P roo f. (L1mu™,u™)l

/  ( p ) ^ ; ]  (P) u T ( p ) d P

J‘ W W + £ ' ” w )  u” W ̂  *» (/7/-58)

(111.62)

=  /Jo

=  /■
= ( ^ F 1̂  +  5i» +  bv (/ / 7 -54)\ Am (n+l) Amn y Am(n+1) '  '  "'mn v f

=  7^<^in +  C < W l )  +  C - l ^ ( n - l )  ■

T h eo rem  111.26 For m , n , i  = 0 ,1 ,2 ,...

( L > n - i D l

=  W 7 n  +  *<» +  +  /C + l C  +  C l C - l )  < W l )

K i f t + 2 )  (111.63)

P roof.

( L jX N C ) ,  = T(n+1)

a m

( C + i .C ) ,+  C>, by ( I I I . m )
/'mn
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lmn
by ( I I I . 56)

The operator will primarily form part of our dominant hyper-singular opera­

tor. In the next section we look at that hyper-singular operator and the differential 
operator used to produce it.

III.3 .2  T h e  D ifferen tia l (Bm) a n d  th e  H y p er-S in g u lar (BmL ^) O p e ra to rs

We will primarily be interested in the eigen-structure of the hyper-singular operator 
BmL ^ but first we define Bm and establish a couple of required properties.

T h eo rem  111.27 I f  Bm is the following differential operator

dr2 r drr dr r2
I d  m 2

7~ H— ^ (111.64)

then;

B rnJ-m ( ^ )  — J m  ( ^ ) (111.65)

and
BmJm (r t) =  t2Jm (r t) (111.66)

P roo f. Since Bessel’s Equation of order m

(111.67)

has the solution Jm (r) and can be written

(1 -  Bm) y =  0 (III.68)
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( I I I .65) follows immediately.

%Jm (^ )
/  d? I d  m2\  , .
y dr2 r  dr r 2̂ /

d2 1 d m
<2 U x 2 +  a:da: a:2  ̂ Jm (a?)

t2Jm (x ) , by ( I I I . 65) 

f2J m (rf) ■

N ow we establish  th at th e <  functions are eigenfunctions for Im L ^ ;

T h eo rem  111.28 For 0 < r < 1 m  = 0 ,1 ,2 ,..., the hyper-singular operator ©mL^ 
has the property

/imB©mLi, [ <  (p)} (r) = <  (r) /o r n =  0 ,1 ,2 ,... (111.69)

where

_  T (n +  1) r  (n +  m  +  1) _  24n+2m+2n! (n +  m)\
M =  r  (n +  I) r  (n +  m +  | )  =  tt (2n +  1)! (2n +  2m +  1)! ( }
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Proof. ID)mL^ [u™ (p)} (r )

= Bm [  u™ (p)lm (p , r )w1 (p)dp 
Jo

=  J  w 1 ( p ) u ^ ( p ) J  Jm (pt) Jm (rt) dtdp

 ̂ r°° r 1
=  2®my Jm i r t ) J  pJm (pt) U™ (p) \ / l  -  p2dpdt

poo P O O  P O O

/  Jm (rt) /  pJm (pt) /  s“ 2 Jm+2n+% (s) Jm (ps) ds H  (1 -  p2) dpdt 
Jo Jo Jo•̂Bmn

by (II .  15)
P O O  P O O  P O O

=  2b !  I Jm (r t ) I pJm(pt) j  s  ̂J m +2n+% ( s ) s J m  (ps ) ds H  ( l  — P } dpdt 
Jo Jo Jo

1 f°° r - 2
=  — — B m  I  J m ( r t ) \ t  2 J m + 2 „ + 3 ( t )  d t , by Hankel inversion formula

J t i m n  J o  L 2 J
1 f°°

= /  ^ ( r t j t a ^ + a n + i  ( 0 * .  h  ( I I I . 66)
^ n m n  JO

f^mn 

where

Dm; f  M  by ( I I .21)

1 -tC  (rt

_  2 5 mn _  r ( n + l ) r ( n  +  m +  l) ^ /TTnn̂ /TTn̂
Pmn n  r /  i 3 \ r /  ±  , 3\’ y (■*■*•20), (11.22)

JJm n  r  (n +  f ) r  (n +  m  +  § j

Now let’s look at some properties of the eigenvalues pmn. Firstly, since F (x) is 
monotone increasing for x > 2 and T (1) =  1, it is readily seen tha t for m  and n not 
both zero that

= r(n + l)r(n + m + l) 
r(n + | ) r ( n  + m + | )

A simple gamma function manipulation allows the /xmn’s to be expressed in terms 
of the Amn’s as follows

/■—n = (2 n + 2 m '+ ‘l )  (2n + 1) °̂r m ’n = ° ’ ’ > 2i 3. ■■■ (HI.72)

which enables the properties of p,mn to be obtained from those of Amn.

The asymptotic result ( I I I . 27) shows that, for large n
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Vmn »  / (111.73)
y/{2n  +  2m +  1) (2n +  1)

and hence, —-----> oo similar to n.

We can also readily see from ( I I I . 29) , ( I I I . 30) that /xmn is strictly decreasing in
both m  and n.

A bound can now be established on X ^ o  which will later be used to show 
that the inverse of BmL ^ is Hilbert-Schmidt.

Theorem  111.29 For m, n  =  0 ,1 ,2 , ...

oo 2

(IIL74)
n—0

Proof.

oo °° /  \  \  2

=  S  ( (2n +  2m +  1) (2n +  1 ))  by ̂I I L 7 2 ^
n = 0

< f V , ,  2(2"  +  2” . l 1) , , V  Jj/Tftm. (m .1 5 )“  \  (2n +  2m + 1 )  (2n +  1) /
71=0

OO

= 4+E 4

^ ( 2« +  1)

4 f i  +  f ; — ^— 2 )  = 4  V (2n +  1) y
7T2 \  7T2

8

We have now established that the operator ©mL ^ has unbounded eigenvalues so 
will not be Hilbert-Schmidt or compact. To invert this operator we shall need to put 
tighter restrictions on its domain than simply being L\  (0,1). The next section will 

define a new space which will provide these tighter restrictions.

III.4 TH E L%m (0,1) HILBERT SPACES

We now define another two classes of Hilbert spaces L£m (0,1) for a  =  0,1. These 
spaces are going to be subsets of L £ (0,1) for corresponding a  values but not sub­
spaces since they are not complete under the L% norm. The new spaces axe however
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com plete under their own norms, associated  w ith  new  inner products based on the

old ones. For solutions to our weakly-singular problem to exist, the right hand side 

functions will be required to belong to the L® m (0,1) space, while the L \ m (§, 1) 

space will form the solution space for our hyper-singular problem. The existence of 

the L\  (0,1) space is far more important as its completeness is required to guaran­
tee convergence of solution. Although they are defined for different purposes these 
spaces have exactly the same structure and are therefore considered at the same time. 

They both define the domain for an unbounded operator to map one-to-one into a 
Hilbert space.

To reduce repetition  w e introduce th e following tem porary notation.

D efin ition  111.30 For m , n  = 0 ,1 ,2 ,3 ,..., define w“ n and rfnn{p) for a  =  0,1 as 
follows

and
„o

“C  =  K n  (HI.75)

"mn =  —  (HI-76)

t W = C W  (111.77)

r L M  =  <■(/>) (111.78)

An important property of the n for a  — 0,1 is that, for a given m  and a, 
{^mn}n=o is a strictly increasing sequence with > 1 (except wl0 =  | ) .  Now to 
define the spaces.

D efin ition  111.31 For m  = 0 ,1 ,2 ,3 ,... a = 0,1 let us define the inner product 
space, L%m (0,1) by

LZ,m (0,1) =  |  /  6 L% (0,1) : j ;  (w“ „)2 l ( / , C J o l 2 <  o o |  (111.79)

with inner product

OO

( / . « > „ , , »  =  £  ( " m „ ) 2 ( A  (1 1 1 .8 0 )
i = 0
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and Norm

\ / </>

The sequence of functions s“ „ for n =  0 ,1 ,2 ,... is then defined by;

ra (r)mn v  /

and can be easily shown to form orthonormal bases for m (0,1). 

An Alternate notation to be used later is;

C  (r)

C M

CM
=  (r)

=  Mm»«n (0 =  Smn (0

(111.81)

(111.82)

(111.83)

(111.84)

We can relate the inner product of L £m (0,1) to that of Lj (0,1) by using the 

easily established result;

For m ,n  =  0 ,1 ,2 ,...
(111.85)

Let us now define the operators that will be the inverses’ of the and ©mL ^ 
operators. The operator will have domain m (0,1) while the operator will 

map into the L \ (0,1) space.

D efin ition  111.32 For a given m  =  0 ,1 ,2 ,...,

OO

9 (r ) =  9nS°™ ^  G L°,m (0,1)

and

n=0

n=0

we define the operators
S°m : L° m (0,1) -> L° (0,1) 

: L \ (0,1) -> L\ (0,1)

(111.86)

(111.87)
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by
OO

Sm [9 M] {p) = ^ 2  9nr°mn (p) (111.88)
72=0

OO

s i  I f  M l (r) =  E  /»»™ M  (HI-89)
72=0

We wish to show the completeness of the L% (0,1) spaces, to do this we first in­

troduce a lemma relating Cauchy sequences in these spaces with those in the L% (0,1) 
spaces.

L em m a I I I .33 I f  { / ^ }  is a Cauchy sequence in L%m (0,1) for a given m  = 
0 ,1, 2, then

1. { /« }  is also a Cauchy sequence in L% (0,1)

f |S °  f w ) a  = 0 1 
=  ) r / x-, 7 > is a Cauchy sequence in  L? (0,1)

1 1 \  { b J 4 / m } ,«  =  i  J

Proof.

1. For i = 0 ,1 ,2 ,...

oo oo M )

/<*’ = E w = E m
72= 0 72= 0

Now since { / ^  j  is a Cauchy sequence in Lr[m (0,1) for any given integerp > 1 
and e >  0, there eocists an M  > 0 such that

i >  M = >  | | / (i+p) - / (i)| |2 < eII*' • ' I  I a,m

or that
OO

! > m = > e  i f»i+r) -  / ® r  < *
72=0

Now

oo i OO

| | / <<+p) -  f {{)\ t  =  E t v ?  l / " + ' ) - ® \ '  -  E  l - ^ ” ’ - ̂ ’ l2 ' e
n=0 y ^ m n ) n=0

Hence { / ^ }  is a Cauchy sequence in L% (0,1) ■
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2. For i = 0 ,1 ,2 ,...
OO

M  =  E ^ ' V™ M
n= 0

Now for any integer p > 1

OO
l|9(i+p) - 9«>||“ =  !/(<+,) _  f k ) |2 =  i^n+rt _ /( i) | | ^  < £

n=0

Hence {<7^} Cauchy in Uf (0,1) ■

We now establish the completeness of the 0,1) space and note the useful
property tha t if a Cauchy sequence { / ^ }  € L ^m (0,1) has a limit /  € L fm (0,1) 
then it is not only Cauchy in L?[ (0,1) but has the same limit /  G L% (0,1).

T h eo rem  111.34 Every Cauchy sequence { / ^ }  in L^m (0,1) (for a given m  — 

0 ,1 ,2 ,... ) converges to a unique limit in Llf m (0,1) and hence the space is complete

P roof. By above Lemma for, =  X^°=o / « ’>smn> the sequence {g , given by

OO

«  =  f{ i )  oc
o /  j  J n m n

n=0

is Cauchy m LJ (0,1) and has a unique limit

OO

71=0

Now, there exists an M  > 0 such that

OO

i > M  = >  | | j  -  =  E  k  -  / » ’f  <  e
n~0

Let us consider f  =  Yl^Lo 9nsmn then

OO

ll/lla.m = '52\9n\2 = llslla < 00
71=0

and hence f  € (0> 1) •
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This shows that L%m (0,1) is complete.
Now note that

oo 1

11/- / " ’ 111 =
n=0 v^m n )  
oo

<  J 2 \ 9 n  -  f n ] \ 2 <  t

71=0

So f  is the limit of the Cauchy sequence { }  in both spaces ■

Now a similar result regarding weakly-convergent sequences.

Lem m a 111.35 For a given m  = 0,1 , 2,... , let { / ^ }  be a sequence in L£m (0,1) 

weakly convergent to f  € L®™ (0> 1) then { / ^  } is also a weakly convergent sequence 
in L% (0,1) converging to the same limit f  € L% (0,1)

P roo f. Let
OO

h = E ' i”r™«€ i 5 (o .i)
n=0

then
OO

S = E
71=0

and by definition
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so that

OO

( f { i )  -  / >  h ) a  =  ^ 2  ( f { l )  ~  f '  r ^ ) a  ( h > r m n ) «  b V  P O T S e V d l ’s  F o r m u l a

71—0
OO

< £ -  f , < n ) J h , C X
71=0

OO

(cua )2 ( f (i) -  f , r a ) —  /  j  \ m n ) \ J  J > m n f a a
71= 0 m n

=  ' £ « n f ( f (, )- f < C n ) „ ( 9 , C n}a
n = 0

meaning

lim </“> - / ,  />)„ -  0, Vfcez? (0,1)1—+oo **

and hence result ■

T h eo rem  111.36 For any given m  = 0 ,1 ,2 ,... f/ie operator

L°m : L« (0,1) L° m (0.1) (111.90)

is a Hilbert space isomorphism with inverse

S ^ : L ° m ( 0 , l ) ^ L ° ( 0 , l )  (111.91)

P roo f. The sequence is a basis for L \ (0,1) and the sequence (r™}^L0 =

{x”- } ls a basis f or ^ 2 ,m (0) 1) since

O n  =  C

it follows that is a Hilbert space isomorphism.

We also have

= C
which implies that is not only a Hilbert space isomorphism but the inverse of 

! £ ■
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Theorem  111.37 For any given rn =  0,1, 2 , ... the operator

: £ 2,771 (0,1) ~ ► L\ (0 , 1 ) (111.92)

is a Hilbert space isomorphism with inverse

si, (0,1)^ i t ,  (0,1) (111.93)

P roo f. The sequence {u™}™=0 is a basis for L \ (0,1) and the sequence {s™ } ^ 0 =  

\ > is a basis for L \ (0,1) sinceI ™n ) n=0

BmL = u™

it follows that BmL^ is a Hilbert space isomorphism.
We also have that

S mUn — n

which implies that is not only a Hilbert space isomorphism but the inverse of
eulI  ■

We can now see that the isomorphism has unbounded eigenvalues (Amn) and 
will hence be unbounded and not compact, while the isomorphism S^ has bounded 
eigenvalues (pmn) ■ Since has strictly decreasing eigenvalues tha t are all less than

1 and converge to zero similarly to ^ we are able to define it as an integral operator
with the following well defined kernel.

T h eo rem  111.38 For any given m  = 0,1, 2,...

§m 9= [  w 1 (p)g(p)S(r ,p)dp  (111.94)
Jo

where
OO

S{r, p) = Y ,  Vm n< (r) <* (p) (111.95)
n=0
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Proof.

[  (p )g(p)S( r jP)dp Jo
= So wl ^  ^  U™ dp

OO OO „ i

= '52 '529 iV m n<  ( 0  /  W1 (p) U? {p)u™ (p) dp
n= 0 i=0 -' °

OO

=  X I  QnVmnUn M  =  ■
71= 0

We can now use this integral operator definition to put a bound on the operator 
norm.

T h eo rem  111.39 For m  =  0 ,1 ,2 ,...

Proof. ||S^tl?

n=0

=  f wl (r ) f w1(p)
Jo Jo E c - . <  M » ” W

71=0

dpdr

= X ]  ^mn by orthogonality

<

71=0 

7T2
by ( I I I . 74)

(III.96)

Here we have established that is Hilbert-Schmidt and hence a self adjoint 
Compact Operator. We now have all the basic tools to proceed to solving the integral 
equations themselves.
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CHAPTER IV 

A WEAKLY-SINGULAR INTEGRAL EQUATION

IV. 1 IN T R O D U C T IO N

In this chapter we will focus on solving the following one-dimensional weakly-singular 
integral equation

f {lm{p,r) + k { p , r ) } w ° ( p ) f ( p ) d p  = g { r ) , 0 < r < l  (IV.l)
Jo

where m  — 0 , 1 , 2 ,... ; and k (p, r ) € L® (0 , 1) x  (0 , 1 ) is a continuous kernel.

By introducing the L® (0,1) integral operator K° with continuous kernel k (p , r )

[K0/  (/>)] (r) =  [  k (p, r) f  (p) w° (p) dp (IV.2)
Jo

and making use of the weakly-smgular integral operator L ^ , discussed in Chapter

III, we can represent the integral equation by the operator equation

[(h°m +  K°) /  (p)] (r) = g ( r ) e  L \ m (0,1) (IV.3)

for m  =  0 , 1 , 2 ,..., with solutions to /  being sought in (0 , 1 ).

As a first step to developing a solution we begin by examining the case where the 
K° operator is absent (i.e. the dominant equation).

IV.2 TH E D O M IN A N T  W EA K LY -SING ULA R  EQ UATIO N

The dominant weakly-singular integral equation takes the form

K f ( p ) \  ( iv-4)

where m  =  0 , 1 , 2 ,...

We have already looked at the eigen-structure of the integral operator 
and have established it is a compact self adjoint operator with eigenvalues 
and eigenfunctions t™ (p). We showed in Chapter III tha t the operator :

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



50

L\  (0, l) —> L\  m (0,1) can be considered a Hilbert space isomorphism with inverse
: L%m (0,1) —> T° (0,1). The following theorem restates this in a form more

meaningful to this chapter.

Theorem  TV.l For a given m  = 0 ,1 ,2 , ..., let

OO

9 (r ) =  M  € L \ m (0 , 1)
n=0

then the integral equation

^ [ / W ] ( r ) - s ( r )€ Z ,» „ (0 ,l )  (IV.5)

has a unique solution f  G L®(0,1) given by

OO

/ W  =  S l l s ( r ) I W  =  E r f W  (IV.6)
n=0

Proof. By Thm. III. 36 we can apply the isomorphic inverse (13° J  of to get the 
following unique solution for f

K / W ] W  =  j W « s X /  =  s ^
OO

** f ( p )  = \9 (r )] (p) = 9ntn (p) ■
n = 0

IV.3 TH E G ENERAL EQ UATIO N

We will now investigate the circumstances under which we are able to invert the 

operator (L^ +  K°) and hence find a solution to (IV. 3). The following theorem will 
give us a sufficient condition.

Theorem  IV .2 For a given m  = 0 ,1 ,2 , ... the integral equation

[ ( I !  +  K°) /  (p)] (r) =  g (r) £ L° m (0,1) (IV.7)

has the unique solution
f =  (I + SlK0)-'® ^  (IV.8)

provided 3°tIK0 is compact and the null-space of (I 4- §^K°) is trivial.
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Proof. B y  Thm. IV . 1, (IV .7) is equivalent to

(I +  S°mK°) f  = S°mg G L \ (0,1) (IV.9)

By the Fredholm theorems [16], this equation will have the unique solution

/  — (I +  S^K°) 1 S ^g  

provided §^K° is compact and the null-space of (I 4 - S^K 0) is trivial. ■

We now have conditions th at enable us to  tell when our integral equation (IV. 1) 
has a unique L \ (0,1) solution. Next we look for conditions on the kernel of K° that 
will guarantee compactness of the operator §^K° and hence the existence of the 

unique solution exhibited in Thm. IV.2.

We begin by looking at some matrix representations for L° (0,1) kernels, intro­
ducing some notation as we go.

D efin ition  IV .3  For a L® (0,1) integral operator K° with continuous kernel k(p,  r) 
we can define the matrices K rnn =  (K™n) and K rn — K rnm as follows

K ™  =  (K °C , ^ > 0 (IV. 10)

=  [  f  k (p,r ) C  (p) (r ) w° (p) w° (r ) dPdr (IV-n )J o  Jo

We will show that the kernel of such an operator can be expanded in terms of the 

basis functions m =  0 , 1 , 2 ,....

T h eo rem  IV .4  For m , n  = 0 ,1 ,2 ,3 ,... and K° an L% (0,1) integral operator with 

continuous kernel k (p,r), then

O O  OO

(p) tn (r) (IV. 12)
1=0 j = 0

and
O O  OO

I r t - E E I ^ r f  (IV-13>
1 = 0  j = 0
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P roo f. Since k (p, r ) is a bounded L\ (0,1) kernel and the t™ (r) functions are real;

lOO p
k (p,r ) = /  k{x,r) t™ {x)uP {pc)dx

i=o {
OO

= E ^ M p K 'T K r t
i= 0

oo

E c ( r t E < K°(r . (”>ot” M
i= 0  j = 0

oo oo

E I > r (r  m  w

Hence,

i=0 j =0

|K ° | | ;  = f f w° (r)w° (p)\k{p,r)\2dpdr 
Jo Jo

oo oo
m n I= E E  I*.”

i= 0  j = 0

The above kernel expansion can now be used to find an expansion of K0/  for any 
function /  € (0 , 1 ).

T h eo rem  IV .5  I f  K° is an L 2 (0 , 1 ) integral operator with continuous kernel k (p, r) 
and OO

f ( p )  = ' E ' f k t ? ( p ) e L ° 2 ( 0 , 1 )
k=0

then

P roof.

? / = E E g r / ' ? w  (IV14>
i= 0  j = 0

° /  =  I  k (r, p) f  (p) w° (p) dp 
Jo
OO OO OO pi

E E E /**r *" w / «r (rt c (rt »° (rt
,_n o—n z—n JOi= 0  j = 0 k=0  

oo oo

E E w w
2=0 j  — 0
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To correctly apply to K0/  we need to ensure that K° f  belongs to the L \ m (0, l) 
space. The following theorem establishes a condition that guarantees this will be true 
and the theorem thereafter shows tha t the same condition guarantees compactness 

ofS°„K».

T h eo rem  IV . 6  I fK? is an L® (0,1) integral operator with continuous kernel k (p, r) 
such that

OO  OO

£ £ ^ l * r i 2<°° <IV-15)
t=0 j  =0

and

then

P roof.

U p) =  £ a < J  M e i $ ( o , i )
*:=0

S M  =  [K0/  W ] M  e L°,m (o, 1)

[K ° /W ]( r )  =
j—0 j = 0 
oo

=  E & * " ( r )
3=0

where

i= 0

By the Cauchy-Schwartz inequality we then have

O O  OO

I s / < £  l*Tl2 ■ £  I/.
i=0 *=0

(IV. 16)

So that

N s C  =  £ ^ l a l 2
3=0

O O  OO

< £ £ * t l * ”
i—0 j = 0

and result follows

< oo
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The easiest way to show compactness of S^K° is to show it is an L \ (0,1) integral 
operator with the continuous kernel

S l k  („, r) =  E  £  K j K v t T  (P) t?  (r )
i= 0 j =0

(IV.17)

i.e. that it is Hilbert-Schmidt.

The following theorem establishes the conditions for this to be true.

T h eo rem  IV .7  I/K ° is an L° (0,1) integral operator with continuous kernel k (p, r) 
such that

£ £ ^ l * ? l 2 < ° °
i=0 j —0

then is Hilbert-Schmidt and hence compact and additionally

(IV.18)

l l « - £ £ ^ l * 7
2 = 0 j = 0

P roof. By Thm. IV .6, for each i = 0 ,1 ,2 ,... ,

and hence by Thm. III. 37, S^K 0̂  is both defined and belongs to L® (0,1).
The matrix o f is given by

<s^K °tr.*r>o =  ( s °
9=0

, t ? )  by (IV.  14) 
' o

= ( £ ^ s c . fr )
\9= 0  / o

So that by Thm. IV. 4

I|s0Jk°IIo  =  £ £ ^ - | k ? I 2 < “
i= 0 j = 0
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which implies S^K° is an L \  (0,1) operator, Hilbert-Schmidt and compact ■

The previous theorem provides a sufficient condition for the compactness of S^K 0 

but not one that is easily verified. We therefore look for simpler conditions on the 

kernel, k (p ,r ), that will also prove to be sufficient.

D efin ition  IV . 8  For the L \ (0,1) integral operator K° with the continuous kernel, 
k (p , r) and a given m  =  0 , 1, 2 , . . .  define the integral operator

[v m / (P)] (r ) = f Vm (p , r) /  (p) w° (p) dp (IV. 19)
Jo

with kernel
Vm ( p , r ) = r ™ ± ( J ;k ( p , r ) ^  (IV.20)

D efin ition  IV .9  For a given m  = 0 ,1 ,2 ,... the continuous kernel, k ( p , r ) of the 

integral operator K°, is called a Vrn — bounded kernel if the following conditions are 
satisfied:

1. k ( p , r ) is self adjoint,
k (p, r )  = k(r,p)  (IV.21)

2. k (p, r )  is an L l ( 0 , 1 ) square integrable kernel, i.e.

||K ° ||0 < ° o  (IV.22)

3- Vyn (p , r ) is also an L \ (0 , 1 ) square integrable kernel, that is

I K I I 0 < ° °  (IV .23)

Before we establish the properties of Vm and Vm — bounded kernels we investi­
gate the behavior of the functions under the action of the differential operator
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Lemma IV. 10

pmTp (^ ^  =  V 2n(2n  +  2m + l ) < + 1 (p) (IV.24)

P roo f. By making use of the well known identity ([5], 8.6.6, p334)

Pn(x)  = ( - l ) m (1 -  *2) "  ~ P n  ( x ) , m >  0  (IV. 25)

and the definition t™ of we get

d ,  , P£Xl(\/W 5)

^ .-ll+ lm + ll+ l ( V 1 ~  P2)

rpm
= TT^fT” " - . 1 M . h  i m * )

u n - 1

=  \/2 n  (2n +  2m +  l ) ^ 1 (p ), by ( I I I . 7, I I I . 8) ■

From the above lemma, we can see that can be expressed in terms of the 

functions a property which is exploited in the following Lemma along with the 

ability to express these functions in terms of the t™+1 functions using (111.51).

L em m a IV . 11 For a fixed non-negative integer m, let k(r ,p)  be a Vm — bounded 
kernel then

O O  o o

E E  2* (2i + 2m 4-1) \Kf l \2 < 4 \\V°m\\2Q < oo (IV.26)
i=l j=o

Proof.

pm

oo ooOO  O O  J  ,  1 x

E E ^ ^ I ^ r M W w
i=0 ?=0J=l 
oo oo

= E E  K% y/2i (2i +  2 m +  1X + 1 (r) tm (p) , by (IV.24)
i= l j=0

we can then see and that
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K ”}y/2i (2i + 2m  +  1)

=  [ w°(r) f wl {p)Vm {p ,r)u 1̂ 1l {p)t™ (r)drdp
Jo Jo

= f  w° (r) f 1 w° (p) Vm (p, r) [ a - C +1 (p) + ^ 7 - 1  (p)] (r ) drdP’
J o  J O

WTiere /or, * =  1 , 2 ,3,

0 < a r

and

o < /? r  =

IVe therefore have that

1 (2 i) (2 * +  2 m +  2 )
(4* +  2m + 1) (4* -4-  2m + 3)

' (2 * -  1) (2 * +  2 m +  1 )
(4* +  2m — 1) (4* +  2m +  1)

A £ r 2 *(2 * +  2 m +  i) =  < ( K n ) ! r +1)m+ / ? r ( K n ) r

< i

< i

\ (m+l)TO

< 2 (Vm)

’ r i \ ' ,UJ
2(m+l)m

ij + 2 ( V m ) t

and hence

(IV.27)

(IV. 28)

^ ^ 2 *(2* +  2 m +  l)|K™
2=1 j —0

OO oo

s  2 E E | ( V m ) f +1>”
i= 1 j=0

< “ IKI IS

+
OO oo

2 E E M )
m+l)m

- 1)1
*=1 1=0

OO

as required ■

T h eo rem  IV .12 For a fixed non-negative integer m , K° an L® (0,1) integral oper­
ator with the Vm — bounded kernel k (r, p) then §^K° is Hilbert-Schmidt.
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Proof. Since k (p, r)  is a H erm itian  kernel, K f f  =  K ff  and therefore

OO OO oo oo oo

i k k i i s  =  E E A- i ^ r = A- E i ^ r + E E A- i ^ r
i=0 j =0 j —0 i —l  j=0

oo oo

< A^0 ||K||  ̂+  J ] E 4 ^  +  2m +  1) l ^ r  by ( I I I * 4)
i = l  j =o

< ^ o l |K |i ;  +  4 | |V i | | “ < o o

which implies that S^K° is an (0 , 1 ) operator and the result follows ■

A potentially more verifiable way of establishing that §^K° is compact is given 
in the next theorem.

Theorem  IV .13 I f  k (p , r) is an Hermitian continuous kernel and is such that 
1 d
- k  (p, r) and — k (p, r) are L® (0,1) kernels then S^K 0 is Hilbert-Schmidt.

Proof. Since k k ( p 7r) and J^k(p,r)  are Lg (0,1) kernels then so are k(p , r )  and 

Vm (P, t )  — rmj^ (p , r ) ] . The result follows by Thm. IV. 12 ■

IV .4 N U M ER IC A L SOLUTIO NS

IV.4.1 Quadrature

We will now identify the quadrature scheme we will use throughout for integrating 
over the region [0 , 1], the quadrature points are also the points that will be used as 

collocation points for the collocation method. We start by defining these quadrature 
points and their associated weight functions.

Definition IV. 14

M  : Number of Quadrature points used 
xp : The Gaussian abscissae

Pim  (xp) =  0,p =  1,2,3,...

wp: The Gaussian weights

2
wp =  T ---------------- 9 ----------------

( l - a $ )  P'2M{xp
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q : The redefined indices;

q = p -  M  for p = M  +  1, M  + 2, M  +  3 , 2 M  (IV.31)

rq : The points used

rq — \ j ^ -~  x q,q = 1 , 2 , M  (IV.32)

Lem ma IV. 15
-1 M

/  w° (r) /  (r) dr ~  V ]  wqf  (rq) (IV.33)
Jo  q=l

P roo f. By making the change of variable

r =  V l - x 2 (IV.34)

and using the evenness o f g ( \ / 1 — a:2) we can apply Gauss’ Formula ([5], 25.4-29) 
giving;

f i 2M
/ w° (r) g( r )dr  = -  Y ]  w,g (rf) (IV.35)

7o ^ i= i

iVow since Wj =  wq and p.t = p3 whenever \xi\ =  |xj| f/iis formula would be

using the same points twice, using only the non-negative x, values, by using just the
r, points as in (IV.31), we obtain the given result I

IV .4.2 T he Galerkin M ethod

For the Galerkin method the solution of (IV.9) and hence ( I V . I ) , is approximated 
by the finite sum

N

f m  (p) = ' £ , / , t 7 ( r i  (IV-36)
j = 0

where the coefficients f j  are obtained by requiring that

((I +  S^K”) /<''■) -  SJU t“ >0 =  0 (IV.37)

for i = 0,1, 2 , N .

This leads us to the (N  + 1) x (N  +  1) linear algebraic system
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N

f j  {^ji +  \ni-K]?} =  ^ =  0, 1, 2, ..., N
3=0

where

9i =  [  w° (r) g (r) t™ (r) dr
Jo
M

-  ^ 2 wg9{rq) tT  (rq)
q= 1

and

K ?i = f  C  w*(r )w»(p)k(p , r ) t™(p) t?( r )dpdr  (IV.41)
Jo Jo
M M

~  wPwi k (rp> ri) lT  (rp) (r?) (IV.42)
p =  1 q=l

According to Kress ([18], Thm. 13.21) the Galerkin method will converge if S^IK0 

is compact and the null-space of I +  S^K° is trivial, convergence will be in the sense 
that;

j i m j l / - / ™ ! ! . " 0  (IV.43)

We can then be sure that solving (IV.38) by continuous techniques will give a solution 
to a required accuracy should N  and M  be chosen large enough and the accuracy of 
the linear system solver used is sufficient.

IV .4.3 T he C ollocation M ethod

As an alternative to the Galerkin method we can use the method of collocation. For 
collocation points we will use the quadrature points rq (q = 0 ,1 ,2 ,..., N)  given by 
(IV. 32).

To solve (IV. 1) we will again approximate the solution by the finite expansion,

/ (A,>w  =  E / . o
7 1 = 0

(IV.38)

(IV.39)

(IV.40)
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w hich leads to  th e equation

N

X ]  /"  {r n (r ) +  =  9 ( 0 . 0  < r  < 1 (IV.44)
71=0

where

Mp i M
K ( r ) =  w ° ( p ) t ™ ( p ) k ( p , r ) d p ~ ' * r w qt™{rq) k ( r q,r) (IV.45)

Jo 9=i

The coefficients f n are then determined by insisting that this equation be satisfied 
at the collocation points rq. We thus obtain the (N + 1) x (N  +  1) linear algebraic 

system
N

E  /»  <r”  (r«) +  w >  =  » (r , ) , 9 =  1 , 2 , AT + 1 (IV.46)
n=0

which can be solved for the required (f n)n=o by standard techniques.

The convergence of the collocation method is verified experimentally by solving 
known problems and/or comparing with the Galerkin method.

IV .4.4 Num erical Tests

All programming was done in Fortran. When constructing subroutines and functions, 
various tests were carried out to verify and build confidence in the codes. Details 
of these are not included here. Instead we offer a sample test problem, with known 
solution, that was used to test the codes and to compare the Galerkin and Collocation 

techniques.

For the test problem we considered the equation

[  {lm(p,r)  +  k(p , r ) }w°  (p) f  (p)dp = g ( r ) , 0 < r  < 1, m € Z (IV.47) 
J o

with continuous kernel

k ip, r) =  (f* (r) t? (p) + t?  (r) (p) (IV.48)
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and right hand side function

tm (r)
9 =   h 5lpt™ ^  +  52pt™ ,p  e  Z+ (IV.49)Amp

with the following easily verified unique solution

OO
/( p )  =  X )  « * ( * > )  (IV.50)

7 1 = 0

This test is a very simple one as any m  value can be used, and may therefore be 

used to verify our computer procedures. The parameter p can be also be varied and 
the correct solution is readily verified by checking that the coefficients are all zero 
except for f p = 1. For select values of m  we can also use the explicit forms for the 

functions when imputing the kernels as an extra check that the function and or 
subroutines calling them work accurately. The details for m  =  0, p = 0 are outlined 
below:

k (r > p) = A (r) A (p) + (0  *i (p) (IV.51)

=  y/b ^1 -  y 2̂  3 ( l  -  5p2 +  y p 4^ +  %/5 ^1 -  ^p 2̂  3 ^1 -  5r2 +  y r 4^ (IV.52)

9(r)  =  i M  =  ^ _ :  (,V.53)
Aqq ^00 4

So that (IV A 7 ) becomes

E  /"  ( ^  +  5^ A  (r ) +  s ^ 2  ( r))  = ̂  (IV.54)
„=o '  0n ' A°°

and hence /o =  1 , and /„  =  0  otherwise; in other words

f(p) = t°0 (r) = 1 (IV.55)

Both collocation and Galerkin methods quickly produced accurate results for 
various different values of all parameters.
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CHAPTER V  

A HYPER-SINGULAR INTEGRAL EQUATION

V .l  IN T R O D U C T IO N

In this chapter we focus on solving the one-dimensional hyper-singular integral equa­
tion

f  {(Bm +  K)lm (p,r) +  k ( p , r ) } w l (p) f  (p)dp =  g (r) ,0 < r  < 1  (V.l)
Jo

where m  = 0 , 1 , 2 , k is a constant possibly zero and k (p, r ) € L\  (0,1) x L\  (0,1) 
is a continuous kernel.

By introducing the L\  (0,1) integral operator K 1 with continuous kernel k  (p, r)

[K1/  (p)] (r) =  [  k  (p, r) /  (p) u;1 (p) dp (V.2)
Jo

and making use of both the weakly singular operator, and the hyper-singular 

operator, BmLm> discussed in Chapter III, we can represent the integral equation by 
the operator equation

[ ( w i  +  +  K ‘) /  M ] (r) =  g (r) e  L\  (0,1) (V.3)

for m  = 0 ,1 ,2 ,..., with solutions to /  being sought in L\ m (0,1).

We will first look at solving the dominant hyper-singular equation;

» m [ l i / M ] M = s ( r )  (V.4)

V .2 TH E D O M IN A N T  H Y PEB^SIN G U LA R  EQ UATIO N

We will look for solutions in L\  m (0,1) of the form

OO

/W = E/"S”M (y-5)
n~0

The eigen-structure of both BmL ^  and was examined in Chapter III, L)n was
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shown to  be a com pact L\ (0, l ) ,  tri-diagonal operator w hile an unbounded

operator on L\ (0,1) with eigenvalues /im̂  and eigenfunctions u"1. When considered 

on was shown to be a Hilbert space isomorphism onto L\ (0,1)

with inverse as in Thm. 111.96. The dominant integral equation can then be 
solved as follows.

Theorem  V .l  For a given m  = 0,1 ,2 , ... and

oo

9 ( r ) =  (r)
n—0

the integral equation

BmL 1m [ f ( p ) ] ( r ) = g ( r ) e L 12 (0, l )  (V.6 )

has the unique solution f  £ L \ m (0 ,1 ) given by

OO

f  (p) = \9 (r )] (p) = 9nSn (?) (V J )
n—0

Proof. By Thm. III.37 we can apply the isomorphic inverse S^, of DmL^

= 9  W «• = S i s
oo

** f ( p )  =  Sln9 =  9nSn (p) ■
72=0

V .3 TH E G ENERAL H Y PE R -SIN G U L A R  EQ UATIO N

Now we can go back and look at the general equation. First a result which shows 
that compactness on L \ (0,1) implies compactness on L\ m (0,1).

Lem ma V .2 I f  K1 is an L \ (0,1) integral operator then K1 is compact when consid­
ered on L \ (0,1) such that

K 1 : l\,m  (0 , 1 ) —> L \ (0 , 1 )

Proof. By Lem. III.35 every weakly convergent sequence in L \ m (0 ,1) is also a 
weakly convergent sequence in L \{ 0,1) with both sequences converging to the same
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unique limit. Since K 1 is Hilbert-Schmidt it is compact on L \ (0,1) and hence maps 

weakly convergent sequences in L \ (0,1) (and hence those in L \ m (0,1)) into strongly 
convergent ones in L \ (0,1), so the result follows ■

T h eo rem  V .3 I f K 1 is an L \ (0,1) integral operator with continuous kernel and the 
null-space o f l  + §)„ +  1C1) is trivial, then +  /cL^ +  K 1] - 1  exists and is
given by

[BJLi, + KLi, + K1] ' 1 =  (l + §i,(riL i, + K1) ) - 1Si, (V.8)

therefore the operator equation

[(BmL ^ +  +  K 1) f  (p)] (r) = g ( r ) e  L \ (0,1) (V.9)

has a unique solution given by

/  = (I +  Si, « ,  +  K1) ) - 1 Sl g  e  L { m (0,1) (V.10)

P roo f. By Thm. V.l, (VC9) is equivalent to

[(I +  Si, [ < ,  + K1] ) /  W] (r) =  S'mg (r) s  (0,1) (V .ll)

Si,,Li, and K 1 are compact on L \ (0,1) and therefore also on L \ m (0,1) (by Lem.
V.2) so that (kL^ +  K 1) is also compact.

Hence, if  the null-space of I +  (kL^ +  K 1) is trivial, then 
(I +  (kL^ +  K 1)) 1 exists by the Fredholm theorems [16] ■

We choose for convenience to consider our operator matrix in the L\ (0,1) space.

D efin ition  V .4  For m ,n  =  0 ,1 ,2 ,3 ,... and for the L \ (0,1) integral operator K.1 

with kernel k (p, r) we can define the matrices K mn = (K[]n) and K m =  K mm as 
follows

K ™  = ( K 1u T , u f ) Q (V.12)

=  f  [  K  (p,r)u™ ( p ) ^  ( r )wl (p)wx (r)dpdr  (V.13)
J o  J o

Using this notation we now obtain the following expansion for an L\  (0,1) kernel.
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Theorem V.5 For IK1 an L \ (0,1) integral operator with kernel k (p, r), then

OO OO

t ( p , ' )  =  E E  K n<  M  <  M  (V.14)
i—0 j=0

and
OO OO

l r t  =  E E I * r l 2 (v -15)
i—10 j  =0

P ro o f. Since k (p, r) is an L \ (0,1) kernel it is bounded and since the u™ (r) func­
tions are also real, we have that

OO

k (p,r ) = ' 5 2 ( K ( P , r ) ,u™(p))1u™(p)
i=0 
oo

=  £  [KV] M«r M
2 = 0  
OO oo

= EE(k‘“”“?h >i-?(r)-rw
2=0 j  — 0 
oo oo

= E E ^rw ^M
i=0 j= 0

Hence

llK l Hi =  /  f  w 1(r )w1(p)\k(r,p)\2dpdr
Jo Jo
oo oo

= E E l * r l 2 -
i=0 j= 0

T h eo rem  V . 6  For K 1 an L\ (0,1) integral operator with continuous kernel k (p , r ) 

and
OO

k—0

then OO oo
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Proof.

K 1/  =  [  k (r, p) f  (p) w1 (p) dp
J 0

0 0  OO  O O  p i

= £ £ £  K ™ f ku](r)  u?{p)u™{p)wl (p)dp
i= o  7 = 0  f c = 0J= 
oo oo

= £ £ « r / i » ” M  ■
i—0 j =0

We finish the section with some results in L\  m (0,1) concerning the operator, 
that will be required for our numerical schemes.

T h eo rem  V .7  For m , n , i  — 0,1,2,...

< i i c  »d , „  =  (v .w )
’ M m i  M m i

P roo f. {LJ.,,

=  - i -  ( l i i . C ) ,  =  ( l i o r ) ,
r'm i r^mi
p ncn

P
(iTSm + vT-An+Di + riTSin-Di) by (7/7.59)

mi

=  <^7™ +  ^ n + D i ^ ^ C x  +  by (777.25) ■
ftmi /̂ mi

L em m a V . 8  For m ,n  =  0,1,2,...

f t C W ] W  = « - i W  +  K W  (V.17)

Proof.

°° pi
[ s l iC M ]  M  =  £ < W /  » ‘ W C W < W «

p=0

oo „i
=  £  <  (r) /  re0 (p) C  (p) « t £ i  (p) +  W  (p)) dP bV (/ /L 5 1 ) 

H  ■/o

D = 0
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Theorem V.9 For rri, n =  0,1, 2,...

[§ mL mSn (0 1  M

=  Vmn {inSn (0  +  C - l C - 1  M  +  C C l  to )  (V. 18)

Proof. S i  Lis"sm 
■rm,“ m n

( Qprn o m  \

T—~— §tC + i W + -p -S ^ C  M  by (111.58)
/V n (n + 1 )  / 'm n  /

= (<C<C M  +  M ) +  ( C , c ,  M  + /O C  (r))
/ v n (n * f l)  ^ m n

»» (V.17)

=  ft™ ( T ^ 2-  +  >”  M  +  ('') +  f t . - f ^ C i  M
\  / 'm ( n + 1) ^ m n  /  ^ m n  /^ m (n + l )

=  V m n l n S n  t o  +  F m n V n - l S n - l  t o  +  W X + 1  ( r ) ■

Theorem  V .10 For m,n, i  =  0,1,2,. . .

( S i L i s ^ s r ) ^

=  f i n i U m n ?  +  S ( n - l ) i V m ( i + l ) V ?  +  < W ) i M m ( i - l ) C - l  ( V ' 1 9 )

Proof. ( S iL is - ,s - ^/ l,m

=  7 =  <7” C  W  ,<■>. +  ^  « V ”- i  M  ,<■), +  ( 0 ”+. M  .ft” ) ,
r^m i r'm .i r^m i
by (V.18)

  7 rt H’m n ^ m n  x  , ‘fl n—l f Jjm (n —l) fJ,m n x  ‘Hn Aim ( n + l ) ^ m n  r
( i ^(n—l)i ~r ^(n+l)z

f-^mi f^mi f^mi
~  7 n  f ^ m n ^ n i  +  V a - l t ^ m n ^ ( n - l ) i  +  t]n  lJ'm n& (n + l ) i  ®

V .4 N U M ER IC A L SOLUTIO NS

V .4.1 Quadrature

The quadrature points will again be those defined in Def. IV. 14 the points will 
again also be used as collocation points for the collocation method. The quadrature 
method will be the same as in Lem. IV. 14, adapted as follows for the different weight
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function
j. i M
/  w1 (r ) g (r) dr ~  V  w0g (rq) [l -  rj] (V.20)

•'o 9=i

V .4.2 T he Galerkin M ethod

For the Galerkin method we will approximate the solution to (V .ll) and hence (V.l) 
by the finite sum

f N) (r) = ± f 3sT (P) (V.2 1 )
3= 0

where the coefficients f j  are obtained by requiring that

<(I +  Si, +  K 1)) /<"> -  S U  »” >!,„ =  0 (V.22)

for i =  0,1,2, ...,N

This leads us to the (N  +  1) x (N  + 1) linear algebraic system

N  [ S j i  [1 +  K l l m i  ( 7 " 1)] +  % + l ) K / X m ( i+ i ) ^

Y , f j \  } — 9i f°r * =  0,1 ,2 , N  (V.23)
J=° I +  Pmj K j

where

gi = [  w1 (r) g(r)  u™ (r) dr (V.24)
Jo
M

-  ^ , w q 9  ( r ? )  u ?  ( r g )  f 1  -  r g ]  ( V - 2 5 )
0 = 1

and

K™ =3l [  f  w 1 (r) w l (p) [k (p, r)] u" 1 (p) u™ (r) dpdr (V.26)
Jo Jo
M  M

-  wPwi k (r «>rp ) f o ) uT (r?) t1 _ r p] t1 - r ?] (v -27)
p=l q=l
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V.4.3 Collocation

We will again use the quadrature points rq (q = 0 , 1 , 2 , N  +  1) given by (IV.32) as 

collocation points. We will approximate the solution to (V.l) by the finite sum

/ m M  =  E M ” M  (V.28)
3=0

which leads to the equation

E  f " { <  M  +  +  - F - C  w )  +  C  (0 1 =  S ( r ) , 0  < r  < 1
n_ 0  V. \ ^ m ( n + l )  m n  )  J

(V.29)
or

N

E /»  K  (0  +  W - i 'C - l  W  +  7” <  M  + C < V l  M ) + C ( r ) ) = S  (r)
n = 0

for 0  < r  < 1 where

X M

W 1 (P) Sn (p)  k  (P,  r ) d P ~ Y l  W 1k  r) ( r <?) t1 “  r q] (V’30)
9=1

The coefficients f n are then determined by insisting that this equation be satisfied 
at the collocation points rq. We thus obtain the (JV + 1) x (N  +  1) linear algebraic 
system

E  \ <  <r«> +  ^  ( T ^ — (r,) +  w )  +  K  (r,) j  =  g (r,)
ra=0 f  \ /'m ( n + l )  Amn /  J

(V .31)
where q = 1 , 2 , iV +  1.

V .4.4  Num erical tests

A couple of sample test problem are shown below. The problems are similar in style 
to the one illustrated for the weakly singular problem in Chapter IV.

For the first test problem we considered the equation (the Hadamard singularity

C  (r) =  /  
Jo
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is assumed to exist only in the appropriate context)

[  {(Bm + k) lm (p,r) + k (p,r)} w 1 (p) f  (p) dp = g (r) ,0 < r < 1, m 6  Z (V.32) 
Jo

where
k (r, p) = u™ (r) <  (p) +  «"* (r) u? (p) (V.33)

and for
um (r)

9 (r) =   +  5iPu™ (r) +  $2p<* (r) ,p  € Z+ (V.34)
/ 'mp

For k =  0 the solution  is readily verified as

OO
/(P )  =  E < W C ( P )  (V.35)

71=0

Both methods gave fast and accurate results.

As a test for the weakly-singular part we can use the equation

f  lm ( p , r )w1 (p) f ( p ) d p  =  g (r) ,0  <  r  < l ,m  e  Z (V.36)
Jo

where

p w

with solution

Both methods give accurate and fast solutions.

To test the full equation we used the following problem comparing the results 
from the two methods;

[  {(©m +  l ) / m {p,r) +  k ( p , r ) } w l ( p ) f ( p ) d p  = g(r)  ,0 < r < l , m  € Z (V.40) 
Jo
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pmp { H { p -  1) (r) + (r) +  « +1 (r))

P?
mp \  p ' xm p

c  w  +
a '
i(p+i)t?+ 1 (r)

(V.37)

(V.38)

/  (p ) =  C  (P) (V.39)
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where

k  (r, p) =  u ?  (r) <  (p) +  <  (r) < *  (p) (V .41)

and for

9  (r) =  “ x +  Sl*>u ™ (r ) +  (r ) ,  P €  Z + (V .42)Amp

Table (1 ) show's the output coefficients from both collocation and Galerkin meth­
ods, illustrating that both give the same output.
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TABLE 1

Comparison of Galerkin and collocation results fo r one-dimensional hyper­

singular test problem. Results shown for p=5, m=3. with the number of 
terms and number of collocation points both 20, with 30 quadrature points.

fn Collocation Galerkin

0 0 .0 0 0 0 0 0 0 0 0 .0 0 0 0 0 0 0 0

1 0 .0 0 0 0 0 0 0 0 0 .0 0 0 0 0 0 0 0

2 0 .0 0 0 0 0 0 0 2 0 .0 0 0 0 0 0 0 2

3 0.00000444 0.00000444
4 0.00175410 0.00175410

5 1.00277028 1.00277028
6 0.00111636 0.00111636

7 0.00000097 0.00000097

8 0 .0 0 0 0 0 0 0 0 0 .0 0 0 0 0 0 0 0

9 0 .0 0 0 0 0 0 0 0 0 .0 0 0 0 0 0 0 0

10 0 .0 0 0 0 0 0 0 0 0 .0 0 0 0 0 0 0 0

11 0 .0 0 0 0 0 0 0 0 0 .0 0 0 0 0 0 0 0

12 0 .0 0 0 0 0 0 0 0 0 .0 0 0 0 0 0 0 0

13 0 .0 0 0 0 0 0 0 0 0 .0 0 0 0 0 0 0 0

14 0 .0 0 0 0 0 0 0 0 0 .0 0 0 0 0 0 0 0

15 0 .0 0 0 0 0 0 0 0 0 .0 0 0 0 0 0 0 0

16 0 .0 0 0 0 0 0 0 0 0 .0 0 0 0 0 0 0 0

17 0 .0 0 0 0 0 0 0 0 0 .0 0 0 0 0 0 0 0

18 0 .0 0 0 0 0 0 0 0 0 .0 0 0 0 0 0 0 0

19 0 .0 0 0 0 0 0 0 0 0 .0 0 0 0 0 0 0 0
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CHAPTER VI 

HILBERT SPACES II

V I. 1 IN T R O D U C T IO N

In this chapter we will construct and examine two weighted L2 spaces of functions 
defined on the unit disc. The purpose of these spaces, which are extensions of those 
developed in Chapter III, is to enable the representation of certain classes of two- 
dimensional integral equations as operator equations within these Hilbert space. 

These integral equations, which will be solved in the next two chapters, can un­

der certain conditions be reduced to the solving of our one-dimensional equations 
discussed previously. The new spaces are however needed if we wish to investigate 

non-reducible problems.

V I.2 T H E  L2 {Cl) H IL B E R T  SPA CES

W ith Cl the unit disc, and for a  — 0,1 we define the {Cl) Hilbert spaces to be the 

direct product of the L f  (0 , 1 ) space and the T2 (—7r, 7r) space, which is well known to 
have a trigonometric basis. A product basis for the new spaces will be constructed 
in the usual way.

D efin ition  V I. 1 For a  =  0,1 the L% (fl) spaces are the set o f all functions 

LZ{Cl) = { f { p , 0 ) : . f : { C l ) - > C a n d  f  j f * \ f  (p,ti)\2 wa (p) dpdd < o o j  (VI. 1) 

with inner product

(i f ,  9))a = r f  f  (P, 0 ) (p) dpdti (VI.2 )
J-ir Jo

and norm , 1

in/Mi iL=y*jQ~\f(p,d)\2w°(p)dpcMy (vi.3)
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D efin ition  VT.2 For rn = 0, ±1, ±2, ± 3 ,..., n — 0,1, 2,3,... and a  =  0,1 we define 

the functions

C n  (p,#) =  -7 =  exP (*™0) {  ^ (VI.4)
V27T I U„. ' (p) , 0 = 1

D efin ition  V L3 For m, n = 0,1,2,3,. . .  and a  — 0,1 we define the functions

C n  (P, #) = 1 cos (™#) (  ^  ' a  ~  ° } (VI.5)
y/ir{l  +  6 mo) I C M  , a  =  1 J

and for m  ^  0

C ( / ’. tf) =  i s inM {  V m  ’a  (VI-6)
V* 1 «n (/») . «  = n

The following theorems establish that the spaces L% (Cl) are separable by showing 

they have countable sets of basis functions.

T h eo rem  V I.4  F o r m  —■ 0, ±1, ±2, ± 3 ,... n,p — 0,1,2,3,.. . and a  =  0,1 the se­
quences

{ C n  (/>><?)}

and

( C  „ (P , 0 ) , C , ( P > 0 )}

form orthonormal bases for L% (Q,).

P roo f. Since

and

{ : cos (mt?), — sin (mtf)
\A (1 + m̂o) V* j  m=Q

are orthonormal bases’s for L,2 (—n,n)  and for any given m  — 0,1,2,3, .. .,  the se­
quences

(c (p)>r=o
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and

form orthonormal bases for L® (0,1) and for L \ (0,1) respectively.
The results follows automatically by the definitions of e^n (p, $ ), c^n (p, 19) and

samnM *

Since L% (£1) is a separable Hilbert space we can show it is isomorphic to both 12 
and I2 x I2 which are of course isomorphic to one another. For our purposes we will 

consider a double sum to be a single sum split in two i.e. an I2 sum.

T h eo rem  V L5 (0) is a separable infinite dimensional Hilbert space isomorphic 
to I2.

P roo f. Let f  be the function defined as follows

OO OO

f ( P , d ) =  £
771= — OO 7 1 = 0

then

=  [  f  \ f ( {p , $ ) )? wa {p)dpdd
J-TT JO

=  /7J-ir JO

oo oo

y !  5 3  f mnemn (Pi fi)
771= — OO 7 1 = 0

wa (p) dpd-d

OO OO

771= — OO 7 1 = 0

,o°
> 771= —0 0 ,7 1 = 0

/  e  LJ (n) e  (2

Define the operator A a : L2 (0,1) — > I2 by

771= —O O ,7 l= 0 (VI.7)

f/iera if

OO OO OO OO

/ M )  =  5 3  5 3  (r, 0) ,9  (r, 6) = Y ,9 m neamnM

X —
771= — OO 7 1 = 0  

I OO
771= — OO 7 1 = 0
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we have

(Aaf , A ag) = ({fmn}Z=-oo,n=0’{9mn}Z=-oo,n=o) = (X’V)

and it follows that A a is a Hilbert space isomorphism between (0,1) and I2 as 
required ■

V L3 O P E R A T O R S  O N  Lf (A)

We are first going to define some operators which we will use to represent our integral 

equations. We will establish some results for these operators a number of which have 
already been seen in a different context.

D efin ition  V I . 6  Let us define the kernel L m (p, r; z ) for m  = 0, ±1, ±2 ,..., as fol­
lows

Lm (P, r\z)  = 2n^frp Q H -i

z 2 +  r2 +  p2 
2 rp

(VL8 )

and the associated operators for a  — 0 , 1 , as follows

Lm;/> [<* {p)] (r) =  f a (P) Lm (p, r ;  2h )  W<* (p) dp
Jo

observe that
lm {P, r) = Lm (p, r; 0), L“ =  L“

(VI 9)

(VI. 10)

For 2 ^ 0  the kernel Lm (p, r; z) will be continuous and square integrable with 

both weight functions, while for z = 0  it will reduce to the weakly-singular kernel 
lm (p,r ) that was studied in depth in Chapter III. Using the result from Hobson, 
( I I I . 21), algebraic manipulation and change of variables we can see th a t

j_ r
4tt

n6d0
— eim0Lm (p, r; z)

47T J_n z2 + r2 +  p2 — 2 rp cos (6 —  i?) 

and using ( I I I . 23) we can write Lm (p, r; z) as folloAvs;

(VI.11)

e zJm (r t )Jm (pt)dt (VI.12)
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The next class of operators we will consider is what we will call Boussinesq and ex­

tended Boussinesq type operators. The Boussinesq type operators are closely related 
to Boussinesq’s integral;

tL  -- d,Mp (VI. 13)
4?r J o 7-tt p2 +  r2 — 2rpcos (9 — A)

and are weakly singular in nature with kernel

r,f)) = ~  1 = = = = =  (VI.14)
™ yjO + r 2 -  2rp cos (9 — i?)

The extended Boussinesq operators are continuous with kernel

B „ (p ,0 ;r ,a )  =  i -  1 — - h ^ 0  (VI. 15)
V /9 +  r  cos (9 — d) +  Ah2

clearly B  (p , r, 0) =  Bo (p, r, 9).

The operators are defined as follows with the relevant weight function.

D efinition V I.7 For a  =  0,1 let (Boussinesq type operators) and B£ (Extended 
Boussinesq type operators) be defined on L%(Cl), with kernels B  (p,d;r,9) and 

Bh (P, r, 9) respectively, for  0 < r  < 1, — n < 9 < tt and h > 0, by

W [ a ( p , d ) ] { r , 9 ,h ) =  f  [  B  (p, i9 ;  r, 9) a  ( p ,  d) w a  (p) dddp (VI. 16)
JO  J - 7T

and

r*l /*7T

a (p,d)} (r,9,h) = f  I  B h {p,d\r,9) a (p,d) wa (p) dddp (VI. 17)
J O  J-n

The dominant parts of the integral equations to be considered will involve the 
weakly-singular operator B° or the hyper-singular operator — A 2B1. The B£ operators 
have non-singular continuous kernels and will appear as the non-singular parts of the 
operator equations occurring in the applications discussed in Chapters VIII and IX. 
For notational simplicity we will often consider the Boussinesq type operators as

ca =  Ba , for a  =  0,1 (VI. 18)
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The following result allows us to expand our two-dimensional kernels in Fourier series 

and thereby recover their one-dimensional counterparts.

Theorem  VT.8 For a  =  0,1 and m  = 0,1,2,. . .

[fm (p) exp (imd)} ( r ,9) = exp (imO) L“ .h \ fm (p)] (r) (VI. 19)

Proof. [fm (p) exp (imd)] (r, 0)

=  f  U  M t o  f  [ '  ^Jo 4tt J_n y/p2 + r2 — 2 rp cos (0  — $) +  4h2

=  exp (im0 ) J  f m {p)wa (p) Lm (r,p\h)dp, by ( V I . 11)

= exp (tm0) L“ ;/l [/m (p)] (r) ■

In dealing with the hyper-singular case we will use the following result to develop 
Fourier expansions for those terms involving the Laplacian operator.

T h eo rem  V I. 9

- A 2 (exp (imd) f m (r)) = exp (imd) ®m/ m (r) (VI.20)

P roof.

/  d2 I d  1 d2 \
- A 2 (exp ( i m d ) f m (r)) = -  J  exp (imd) f m (r)

(■ n\ ( <Pfm , 1 dfm m 2 \

=  exp (imd) ©m/ m (r) ■

We now have all the results needed to show that B° has eigenvalues Xmln and 
eigenfunctions e°mn or c°mn and sQmn.

T h eo rem  V I. 10 For 0 < r  < 1, — i t  < 6 < ir, m  = 0, ±1, ±2, ±3 ,..., n = 

0 ,1 ,2 ,3 , ...
A|m,nB° [e°mn (p, d)} (r, 9) = e°mn (r, 9) (VI.21)
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Proof.

exp (im d )
A|m|„B° [e°mn (p, i?)] (r, 9) =  AH „B0 *Lm| (p) M )

[4m| (P)] ( r ) , (V7.19)

A, , / |m| M
exp (imO) ------ , &?/ ( / / / . 1 0 )

v 27T -̂ |m|n
e L M ) ■

The sine and cosine equivalents are as follows.

T h eo rem  V I. 11 For 0 < r  < 1 , — n < 9 < n, m ,n  — 0 ,1 ,2 ,3 ,...

1.
A J °  [ 4 „  ( p , « ) ]  ( r . « )  =  < £ , „  ( r ,  0 )  ( V I . 2 2 )

S.

A J "  [ i ,  (P, «)] (r.») = «L (r,«) (VI.23)

P roo f. Take real and imaginary parts o f (VI . 2 1 ) ■

In the case of the hyper-singular operator —A 2B1 we have similar results shown 

below.

T h eo rem  V I. 12 For 0 <  r  < 1, — n < 9 < 7r, m  — 0, ±1, ±2, ±3 ,..., n  =  
0 , 1 , 2 , 3 , . . .

T\m\n ( - A2B1) [ei,n (p, #)] (r, 6) = elmn (r, 9) (VI.24)

P roo f. P\m\n ( - AaB1) [e^n (p, #)] (r, 9)

f^\m\n

yjTi:
T \ m \

( - A 2) exp (imQ) [ u ^  (p)] (r) dp, by (VI.  19) 

exp (imd) l mLj, [u^ 1 (p)] ( r ) , by (VI .20)

/^Imln / ■ u n (*")- exp (zra0 ) ---------
V  2 7 T  M |m |n

exp (ira#) (r) by (7/7.28)
y/2n
eL  (r >0)
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T he sine and cosine equivalents are then as follows.

T h eo rem  V L13 For 0 <  r  < 1, — t x  < 0 < i r ,  m, n =  0 ,1 ,2 ,3 ,...

1.

Mmn ( - A2B1) [c L  (p , 1?)] (r, 0) =  clmn (r, 0) (VI.25)

2.

Vmn ( - A 2B1) [s^n (P, I?)] (r, 0) = s l n (r, 0) (VI.26)

P roo f. Take real and imaginary parts o f (VI .24) ■

The Boussinesq type operator B° is a weakly-singular operator which we can
show is compact but not Hilbert-Schmidt. In other words the operator is compact
and hence bounded but the kernel is not square-integrable with regards to the norm. 
This means that we will not have a mean convergent bilinear expansion for the 

kernel but since we already have the eigenvalues this does not represent a significant 
problem.

T h eo rem  V I. 14 The operator B° is Compact and Self Adjoint on L® (0).

P roo f. Since by (VI .21) for m  =  0, ±1, ±2, ±3 ,..., and n  =  0 ,1 ,2 ,3 ,...

mn

we can, by renumbering the eigenfunctions, represent B° as an infinite diagonal ma­
trix, with diagonal entries convergent to zero, since 7  ̂ > 0  as both m, n —> 0 0 , theAmn
result will follow from ([15], prob. 132) ■

The B1 weakly-singular operator is also compact, we will prove this by showing 
that it has a tri-diagonal matrix representation whose entries converge to zero. We 
will now consider the eigen-structure of the B1 operator. The structure is a gener­
alization of that considered in Chapter III for the operator and likewise will be 
tri-diagonal.

First some relationships between the elmn (r, 0) and e]nn (r , 0) functions which will 
be an extension of those between the t™ and u™ functions in Chapter III.
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Theorem VI.15 For  m  — 0, ±1, ±2 , n =  0,1, 2,...

‘ I n  ( r ,  ») =  W ‘ lnn *) +  < £ . ' , 4 * . - , )  (r, 0) (VI.27)

and

(! ~ r 2)e lmn (r,6)

Mn+i)(r,O) + ^ le l n (r,0) (VI.28)

K m |) 2 +  f e m|)  U » M )

+«LH 1 (VI.29)

n+1 m(n+l)

a(n—1)

P ro o f. Follows from Thm. III. 19 and the definitions of eamn for a  =  0,1 ■ 

T h eo rem  V I. 16

( ( eL  (F 0 ) , e°pj (r, 0 ) ) ) l = 6mp ( a ]™[5{i+1)j + (VI.30)

P roo f. ((e lmi (r, 9) , e°pj (r, 6) » x

=  Pi™1 ( ( eL  M )  >eJi (r ,9)))1 +  a l™[ ( ( elmi (r, 9 ) , (r,0 ) » 1 (F /.27)

=  5mP by orthonormality ■

The next result illustrates the tri-diagonal nature of B1.

T h eo rem  V I. 17 For 0 <  r  < 1, — n < 9 < 7r, m  =  0, ±1, ±2, ±3 ,..., n = 
0 ,1 ,2 ,3 ,...

1 1  [Cmn (P> *?)] (r >

, J m l
=  M )  +  M )  (VI.31)

/'|m|(n+l) /'|m|n

=  d m|em(n+i) (r >0) +  7I r 'e L  (r, #) +  f  iem(n_i) (r, #) (VI.32)
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P r o o f .  B 1 [e^n (p,  0)] (r, 0)

=  vb exp L™ Km| (p)] (r) d p > b y  ( V L 1 9 )

(  i i /?lml \
=  exP jT - 5 ---- ft+ i (r ) +  (r ) I by ( I I I . 58)

c**„M flH
M )  +  M )

/' ' l r o | ( n + l )  / ' | m | n

2
( . f )  (A -y

^ |m | (n  +  l)* | m | < „  +  l )  m ( "  +  l )

(VI.27)

= y^elnin+i) (r, 0) +  7lm|e L  (F 0) +  (r, 9) ■

The above results can be combined to give the following inner product result for 
B1 which gives us the tri-diagonal matrix representation for the weakly singular part 

of our system.

T h eo rem  V I. 18 For m ,p  = 0, ±1, ± 2 ,... and n ,i  = 0 ,1 ,2 ,... then

el i ) ) l = Smp ( t [ +  ^ f y n - l ) )  (VI.33)

P ro o f. « B 1eJnn,eP ) ) 1

=  ----  « em(n+l).e^ » 1 +  VIL- « emn>eP)>1 by (V 1.31)
/ '|m|(n4-l) Îrntn

= (smp (aL“'<S™ + AIA.-Hi)) + (k ,  ( * W  +A|m|(„+i) V V / /  A|m|n v v / /
by ( I I I . 58)

=  bmp ( j lr lbin + r)l™[8i{n+1) +  by (777.54) ■

T h eo rem  V I. 19 B1 is a Compact and Self-adjoint operator on L \ (Q ).

P roo f. From (VI.33) we can see that B1 can be represented as a tri-diagonal matrix 

with 7 ™, yin-i and rfO+i on the diagonals and since by (111.49), 7 ™, rj]) —» 0 as 
m ,n  —> 0 0 , it follows by ([13] page 57-58) that B1 is compact ■
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Some additional results involving the B 1 operator in the L \ (ft) Hilbert space 
finish off the section.

T h eo rem  V I.20  ((e°mi (r, 9), e°pj (r, 6) ) )1

s„r + | > r ) 2 + ( 4 ” 1, ) 2

P roo f. ((e°mi (r, 9 ) , e°pj (r, 9)) )1

exp (im9) exp (ipO)
-.d9

- " V y / f X T  ̂ m o )  ( 1  +  S p o )

+ + {aT \)
by orthonormality and ( I I I . 56) ■

J  4 " * '  ( r )  ^  (r ) w l  ( r ) d-r
c , Iml /alml c 
<hj +  o tj  (3 j 4 ( i - i ) j

T h eo rem  V I.21

1e1 e°.m m  pi/;» !  =  <W +  r]l™l8i{n+1) +  r?[m|5i(n_1))

Proof. < ( l 1e^n,e °I » 1

=  « em(n+i),ep i» 1 +  ((e°mn,e°pi) ) 1 by ( V I M )

Jm\

|m| 
n___

lm|n

o|m|

'  |m|n

(VI.35)

^ ( n + l  )i +

r . Iml o lm l r 
O n i  +  OLi V ( n ~  1)

by ( I I I . 56)

^ rnp *

J ml Ql™l
i —2 ^ t —1 i —1l r I î+l i £

A i ~ ^ ( n + 2 ) i  i . . .  ^ ( n — l ) i

+

+ Mm|(“im|)2 , Mm|((/3im|)2+ H - i)2)
\ ......... 4 r  r

|m |t
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Theorem VI.22 If

OO OO
/(/>.'») = E E /».»<£„ (/>,>>)€£;(«)

m ——oo n=0

/o r 0 < r  < 1, —7r < 0 < 7r, m =  0, ±1, ±2, ± 3 , n  =  0 ,1 ,2 ,3 , then

OO oo

| | |B 7 | | l l  = E E + / m(n+.) C I 2 (VI.36)
771— — OO 7 1 = 0

Proof. | HI1/! 11?

OO o o

^ 2  J 2  f ™  [ C e m (n -1) ( r > # )  +  7 ™ 4 m  K  0 ) +  C - l e m (n -l) (r , # )]
m = —oo 7i=0

/ ' /J —7T «/0

OO o o

S  £  { /m (" + l) C + l  +  f m n l n  +  fm (n + l)V n }  ^rnn (T> #)
m = — o o  7 i = 0

to1 (r) drd#

OO OO

|m|
71

1 =  — OO 7 1 = 0

The — A 2I 1 hyper-singular operator has unbounded eigenvalues so will not be 
compact. We will again define a new space that will act as the solution space for our 

two-dimensional hyper-singular integral equations and as the space for the right hand 
side equations of our weakly-singular problem as in Chapter III. The new spaces will 
again allow as to consider our operators as Hilbert space isomorphisms.

V I.4 TH E (Q) HILBERT SPACE

We will follow the procedures almost exactly as in Chapter III. Neither compact 
operator will be Hilbert-Schmidt so we will not have mean bilinear expansions. We 

will construct the two-dimensional analogues of the L /m (0,1) spaces which are this 
time not dependent on a given m  (basically all m ’s are grouped together to form the

R e p r o d u ce d  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



8 6

space). W e adopt the subscript cu instead o f the m  to discrim inate from ( f t )  and  

to represent the fact we will again use the w" n definitions ( I I I .75) and ( I I I . 76) as 
scaling factors, shown below with a modification for negative values of m.

{ M m \ n  O' =  0 1
_ j_  a = 1 } <VI'37)

D efin ition  V I.23 For a  =  0,1 let us define the inner product space of functions,
as follows

{ OO OO ^

1 -  E  E ( w™ )2 « / 'C . » „ < o o }  (VI.38)
m =—oo n=0 )

with inner product

OO OO

« / , S»„ , „  =  E  E  (VI.39)m =—oo n=0

and norm

i i i / i i u  =  \ A < / 5 / ) U  ( v i . 4 o )

The sequence of functions for n = 0 ,1 ,2 ,... defined as follows can be easily 
shown to form an orthonormal basis for L% (fl)

E°„(r,<>) = ~ e ^ ( r , l > )  (VI.41)curan

The inner products of L% (fi) and (ft) are related to each other as follows;

« / .  = u C , « / . o > „  <VI-42)

The same applies to the sine and cosine analogues, for m, n  =  0,1,2, ..

=  (VI.43)
ran

and for m  ^  0

S ^ M )  =  ; 4 - C . M )  (V I.44)
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W e will now define the inverses o f our weakly and hyper-singular operators. 

D efin ition  V I. 24 For

OO OO

■ s M )  =  E  E  M )  6
m =—oo n=0

and
OO OO

/ (*>.*)= E  E / ”“ < » ( f t ,,) 6 i h n )
m = —oo n=0

we define the operators

F ° :L °  (0,1) — (0,1) (VI.45)

and

by

and

F 1 : L\ (0,1) —> L \ u (0,1) (VI.46)

OO o o

F° [g (r, 0)} (p) =  9mne°mn (p, t?) (VI.47)
7 7 1 =  — OO 7 1 = 0

o o  o o

7 7 1 =  —  OO  7 1 = 0

We wish to show the completeness of the L% u (0) spaces, to do this we first 

introduce a lemma relating Cauchy sequences in these spaces and in the L£ (ft) 
spaces.

L em m a V I.25  I f  { / ^ }  is a Cauchy sequence in (fl) then 

I- { /« }  is a/so a Cauchy sequence in L 2 (f2)

{
F°/(*) a  =  0  1

- a 2b v «  = i )  is a Cauchy sequence in L% ( f l ) .

P roof.

1. For i =  0 ,1 ,2 ,.

O O  O O  k a j  c a j  j

fW =  V  fW — V  V  Jmn ra
J /  j  /  j  J m n ^ m n  /  j  /  ^ _ r ,  m n

m = — o o  n = 0  m = — o o  7 i = 0  m n

oo Ai)
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N ow  since { f C  } is a C auchy sequence in  Lfu (^) f o r anV 9 v̂erl in teger p  >  

1, e >  0 there exists an M  >  0 such that

or that
OO OO

« > m = >  y , e i / s ' * - / » » r < £
m ~ —oo 71=0

then

OO OO -  OO OO

l l l / t+p- / 1 l la =  E  E ^ l / - P)- / ^  E  E l / ^ p )- / ^ l 2 < c
m =  — OO 7 1 = 0  m n  771= —OO 7 1 = 0

hence { / ^ }  *5 a Cauchy sequence in L% (tt) ■

2. For * =  0 ,1 ,2 ,...
OO OO

Q« =  Y '  /•« e«
£7 /  j  /  j  J m n  m n

m =—oo n=0

For any integer p >  1

OO OO

m 9( i+ r t - g(i)|l|2 =  y  E l7 ™ n p> -  t S J 2 =  l l l /<i+,’) - / “ ’llll.u < e
771= — OO 7 1 = 0

Hence { g ^  } is Cauchy in L% (fl) ■

T h eo rem  V I.26 Every Cauchy sequence { / ^ }  in (ft) converges to a unique 
limit in L%u (Q) and hence the space is complete.

r m  f F ° / W , a  =  0 )Proof. B y  c to n c  , , m m a  { ,« }  = |  a = 1 ^ a  C o n ch y  s c o n c e s

in L% (Q) so there exists a unique limit

OO OO

9 =  E  E 9mneam ne L Z ( n )
771= — OO 7 1 = 0

There will then exists an M  > 0, e > 0 such that

OO OO

i>  M = ^ \ \ \ g - g W \ \ \ l =  J 2  E k - a 2 -
771= — OO 7 1 = 0
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L et us consider
OO OO

/ - E E  QmnEff
771—0  7 1 = 0

then oo oo

S  ^ \ 9mn\2 =  | | |p | | |«  <  00
m=—oo n=0

and therefore f  G L 2w (Ci). Now supposing i > M  then

OO OO

O'- / “’IIU = E  E
T O =  — OO 7 1 = 0  

OO OO

fjmn /jw 2
1 ex , ,a

= E  E  - <e
771= —OO 7 1 = 0

hence the result. 
Note also that

l l / - /wllll = E
771= —OO 7 1 = 0  77171

OO 0 0

-  £  <  e
m = —oo n=0

and so f  is the limit o f the Cauchy sequence { / ^ }  in both the L% (Q) and L 2ui (Q) 
spaces ■

A similar result regarding weakly-convergent sequences now follows.

L em m a V L 27 Let { / ^ }  be a sequence in L2u (fi) weakly convergent to f  6  

L2 ,u (fy  then {/W } is also a weakly convergent sequence in L2 (fl) converging to 
the same limit f  £ L2 (0 ) .

P roo f. Let

then

OO OO

h — 'y ' y  ' hmnemn € L2 (SI)
771= —OO 7 1 = 0

OO OO

771= —OO 7 1 = 0
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then by defin ition

0

so that

O O  OO  •

< /W - f , h ) a = ((^ W _  e^»))a  by Parseval’s Formula
m = —oo n=0 

oo oo

< E  E ^ < < / <<)- / . 0 > « < ( ' ‘. 0 ) .
m = —oo n=0 

oo oo

= E E <"»»>’«/(i>
m=—oo n=0 mn

oo oo

= E E M»)3<</w-/.c.»a«9,o><
771= — OO 7 1 = 0

=  ( ( f {i) -  f , g ) ) aijJ->0 a s i ^ o o

meaning
l i m  < < / « - / ,  f c ) ) Q - > 0 ,  V / i € L ? ( t t )

and hence result ■

T h eo rem  V I.28 The operator

B °:L °  (fi)

is a Hilbert space isomorphism with inverse

F ° :L ° W (fi)

P roo f. The sequence {e^nn} ^ =_00 n=0 is a basis /o r L° (fi) and the sequence

{E<Ln)n= 0 (l basis f 0r L l,m (®) Ŝ Ce

B°eL =

it follows that B° is a Hilbert space isomorphism.
We also have

F° E° =  e°mn mn

which implies that F° is not only a Hilbert space isomorphism but the inverse o f B° ■
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Theorem VI.29 The operator

- A 2 ® 1 : L\„  (ft) -  L\ (ft)

is a Hilbert space isomorphism with inverse

F 1 : L\ (ft) -  L {u (ft)

P roof. The sequence {e^in } ~ = _ 00 n=0 is a basis for L \ (ft) and the sequence 

{E LJ7=o ls a hasis f or L{u (0 , 1 ) since

- A 2B lE}nn =  e ^ n

it follows that —A 2B1 is a Hilbert space isomorphism.
We also have that

F V  =  E 1mn mn

which implies that F 1 is not only a Hilbert space isomorphism but the inverse of 
- A 2B 1 ■

The F“ operators have the obvious analogous relationships with the c^n, s^ n, 

C mn  a n d  S mn  functions.

We can now see that the isomorphism F° has unbounded eigenvalues (Amra) and 
will hence be unbounded and not compact, while the isomorphism F 1 has bounded 

eigenvalues (pmn) . Since F 1 has strictly decreasing eigenvalues that are all less than 
1 and converge to zero similarly to A, it will be compact but not Hilbert-Schmidt 

as the double sum will not be convergent. To establish tha t it is in fact compact 
we can readily see it can be written as a diagonal operator with strictly decreasing 

diagonal entries convergent to zero with compactness following again using the result 
by Halmos ( [15], prob. 132).
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CHAPTER VII 

A 2-D WEAKLY-SINGULAR INTEGRAL EQUATION

VII. 1 IN T R O D U C T IO N

In this chapter we will investigate weakly-singular integral equations of the type

[  [  {B(p,'&;r,9) + R( p , t i - , r , 9) } f (p , $) w° ( p )dMp = g(r,9)  (VII.l) 
J O  J —7T

where R  (p, 0; r,9) G L® (0) X  L{\ (Q) is a continuous kernel, 0 < r < 1, — n < 9 < ir 
and B  (p, r, 9) is the Boussinesq kernel discussed in Chapter VI;

B  (p, r, 9) =  - 1—  1 (VII.2)
47T p2 +  r2 — 2rpcos (9 — $)

To write in operator notation we will define the following integral operator M° 

with continuous (fl) kernel R  (p, r, 9);

R ° { f ( p M ( r , 6 ) =  f f f  (p,fi) R{p,'9-,r,9)w° (p)dMp  (VII.3)
JO J —7T

We will solve these equations with procedures comparable to those in Chapter 
IV where we will again represent the integral equations as operator equations in the 
Hilbert spaces discussed in Chapter VI. We will examine the sub-cases where, for 
specific continuous h \  (Q) kernels, we can exploit their radial nature by reducing 
the problem to that of solving the one-dimensional integral equations discussed in 

Chapter IV. We will also look at solving more general problems for kernels with an 
unknown or non-radially symmetric expansion.

The operator equation equivalent to (VI I .  1) is

[(B° +  M°) /  (p, 0)] (r, 9) = g (r, 9) G L°2>UJ (fl) (VII.4)
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A s before, we will first consider the dom inant weakly-singular part first

[B7  ip, 0)] (r, 9) = g (r, 9) G L \ u (0) (VII.5)

V II.2 TH E D O M IN A N T  W EAK LY SIN G U L A R  EQ UATIO N

We have already looked at the properties of the integral operator B° and have estab­

lished it is a compact self adjoint operator with eigenvalues Am̂  and eigenfunctions
e°mn. The next theorem uses the fact that the

1 ° : L \ (fl) -» L° w (Q)

operator is a Hilbert space isomorphism with inverse

to get a unique solution to ( V I I . 5).

Theorem  VII. 1 The equation

OO OO

[ B ° / ( M ) ] M ) = s ( r ,# )=  £  (VII.6)
m=—oo n=0

has a unique solution f  G (fl) given by

OO OO

! ( ? , # ) =  F»a (r ,« )= J 2  M )  (VII.7)
771= — OO 7 1 = 0

Proof. By applying Thm. VI. 28 we get that

M°f = g ^ ¥ ° B ° f  = ¥ ° g ^  f  = ¥°g
OO OO

** f ( p , # ) =  ^ 2  ^29mne°mn(p,^) rn
m = —oo n=0

V II.3 TH E G ENERAL EQ UATIO N

The set (fl) represents all possible functions g(r)  such that (VII .6)  has a so­
lution. To get a solution to the general problem we also need conditions on the
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continuous L\  (fl) integral operator R° as illustrated in the following theorem.

T h eo rem  V II. 2 The weakly-singular integral equation

[(B° +  R") f  W ] (r) =  9  M  6  L°„ (fi) (vn.8)

has the unique solution

f  = (I +  F°M°) 1 F°g 

provided F°R° is compact and the null-space of (I 4- F°R°) is trivial. 

P roo f. By Thm. VII. 1, (VI1. 8 ) is equivalent to

(VII.9)

(I +  F°R°) /  =  ¥°g e  L° (ty (VII. 10)

By the Fredholm Theorems [16], I +  F°R° has a unique inverse if  F°R° is compact 

and the null-space of (I +  F°R°) is trivial ■

We now define a four-dimensional array that can be used to expand a continuous 

Z/° (S2 ) kernel in terms of the basis functions.

D efin ition  VTI.3 For bounded integral operators R° on L \ (fl) with kernel 
R (p, d; r , 6) we can define the array R™n as follows

The generalized kernel expansion is then as in the following theorem.

T h eo rem  V II .4 For m  = 0, ±1, ±2, ± 3 ,..., n = 0 ,1 ,2 ,3 ,... and R° a bounded oper­
ator with kernel R  (p, d\ r, 6) , then

>mn
'mn 7 ij

f  f  f  f  R ( p i ^ r ’e) emn(p,#)e0i j (r , e )w° (P)w° (r ) d#dddPdr (VII. 12)
JO Jo J —n J — 7T

0*0 00 00 00
R  (p,d- r, 0) = E  E  E  R T e °mn (P, 0 ) 4  (r, e) (VII.13)

i =  — OO j = 0  m .=  — OO 7 1 = 0

and 00 OO OO OO

l r t =  E  E  E  E l ^ l 2 (VII. 14)
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P roo f. Since K e ^  = ( { R ,  e°mn # # ^

OO OO

R(p,0-,r,6) = ^  X ) ( ( / 2*em n ))0 eS»n(P.,?)
m = —oo n=0

oo oo oo oo

=  5 Z  Y 1  Y 1  « R e mn» 4 )> 0  e °mn (P, 9 K  (r > 9 )
m= — oo n=0 ? = —oo j= 0

oo oo oo oo

E E E
m =—oo n=0 i= —oo j=0

hence,

HI?

/ 7T /»7T /»! /»!
/  w° (r ) u>° (p) |i? (p, r, 0 ) |2 re0 (p) te0 (r) dpdrdddO

7T </ — 7T «/0 J 0oo oo oo OO
=  y :  y ^ y :  Y l \ R %n\ > hy orthogonality U

m = —oo n=0 i= —oo j=0

T h eo rem  V II. 5 I f  M° is an L® (51) integral operator with continuous kernel 
R  (p , i9; r, 6) and

OO oo

k=—oo 1=0

then oo oo oo OO

[r 7 M ) ] M ) =  E E E  <VIL15)
i= —oo j=0 m =—oo n=0

P roo f. [M0/  (p, i?)] (r, 0)

=  /  [  R(p, f i \ r ,9)  f  (p,d)w° (p)dpdd
J - 7T */0

OO OO OO OO OO OO

=  S  X !  H  ^ 2 f k l R T e ° i j ^ 9 ) /  /  e rnn ( 0 ^ ) 4  (0 )
i= —0 0  7=0 m= —0 0  n=0 fc=—oo /=0 —7r ®

by (V7/.13)
00 00 00 00

= E E E E ^ U W ) 1
i=—0 0  j=0  m= — 0 0  n=0

To correctly apply the inverse F° to M°g, for g £ L® (51), we need to guarantee 
that R °<7 € (O). The following theorem provides a condition that will allow us
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to be sure of that.

T h eo rem  VTI. 6  I f  R° is an L?2 (f2) integral operator with continuous kernel 
R  (p, r, 6) such that

OO OO OO OO

E E E  E A5u lflr f  <  °° (v n .is )
m ——oo n= 0 i= —oo j =0

and
OO OC

f ( P > # ) =  E  E h i e ° k l ( p , d ) e L ° 2 ( n )
k~ —oo 1—0

then
g (r ) =  [R » / (p, # )] (r, 9) e  (Si) (VII.17)

P roof.

OO OO OO OO
[E 7 ( p , 0 ) ] M )  =  E E E  T . R Tfmne%{r,e)  by (VII .  15)

i= —oo j=0 m =—oo n=0
oo oo

=  E  E ^ f ^ )
i=  — oo j=0

where OO OO
^  =  E  E  R T f m n  (VII. 18)

m=—oo n=0

i/iera 61/ the Cauchy-Schwartz inequality

O O O O  O O O O

E  E d  ■ E  E l * -
m ——co n=0 m= — 0 0  n=0

50

~  E  E A iib i ^ i 2
i — —0 0  j  =0

0 0  0 0  0 0  0 0

2  E E E  E Af « d  - i i i / i i i o<°°
m = —0 0  n=0 i——oo j = 0

and result follows I
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We will in certain cases, as will be shown in later chapters, have a continuous 
operator whose kernel has a certain angular symmetry. The next theorem shows that 

when this is the case then our two-dimensional operator equations can be readily 
solved as a collection of one-dimensional operator equations.

T h eo rem  VTI.7 If R  (p, d: r, 6) can be expressed as

1 °°
R(p,&',r,0) = —  K m (p, r )exp( im(6  -  0 )) (VII. 19)

7 7 1 =  —  OO

then for

/(M)- E E
7 7 1 = —  O O  m  =  — n o  *

the equation

exp (imO)

m= — oo

0 +  R°) /  (p, i?)] ( r , 0 ) = g ( r , O ) e I % „  (ft)

(VII.20)

(VII.21)

is equivalent to

{ (L l  +  K l ) / m ( p ) } ( r ) = ?m ( r ) e L “ m (0 ,l) for mn. =  0, ±1, ±2, ± 3 ,... (VII.22) 

P roo f. [(B° +  R°) /  (p, d)] (r, d)

=  [  [  {B(p,d;r ,0)  + R(p ,d;r ,0)}  f  (p,d)w° (p) dddp
J O  J - 7T

/»1 /»7T

= E W/ /

 ----  «/0 7 - 7T

m=—oo 
oo

p=—oo 
oo exp (im0) f 1y

y/2n
7 7 1 =  — O O  v

by orthogonality and ( VI . 19)

/  [*m (p, r) +  / fm (p, r)] / m (p) w° (p) dp 
Jo

7 7 1 =  — OO
A/27T
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ao that

[(B° +  R°) /  ip , .))] ( r ,«) =  g (r, 0) € (n)

«  £  = ^ { « .  +  * U / - M } ( r )  =  £
m——oo * m =—oo *

O  { (L ^ +  K ^ ,) /m (p)} (r) = p TO(r) for m  = 0, ±1, ±2, ± 3 ,... ■

When we have a continuous kernel that satisfies the properties of the above the­
orem our problem can be solved by using the numerical techniques and theory of 

Chapter IV. We now proceed to considering numerical solutions for the more general 
case.

V II.4 N U M ER IC AL SOLUTIO NS

V II.4.1 Quadrature

We will now identify the quadrature scheme we will use throughout for integrating 
over the region [—7r, 7r] or in fact any region of length 2tt with only a shift in quadra­
ture points required. The quadrature points are also the points that will be used as 

collocation points for the collocation method. We start by defining these quadrature 

points and their associated weight functions which come from the extended Simp­
son’s rule as in ([5], 25.4.6). The radial integration will be performed as in Lem.

IV. 15 with notation as in Def. IV. 14.

Definition V II.8
N  : Will use 2N  +  1 
h : Step size

dp : Quadrature points

0p = h x p , for p = 0,1, 2 ,3,..., 2N  (VII.23)

Quadrature points for angular integration

h n
h = N
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wp: The Simpson’s rule weights

'  1 if  p =  0 ,2N  
2 if  p is odd 

4 otherwise

wp =  — •  ̂ 2 i f  p is odd  ̂ (VII.24)

Our double quadrature scheme will hence be

r7r r i  2N+1 M

f  f  w° (r ) f  (r, 9) dr ~  j r  Wp™-?/ (r„  6>p) (VII.25)
*/ - 7r ■/ ° p=l q=l

V II.4.2 T he Galerkin M ethod

For the Galerkin method we will solve (V I1 .10) to get the solution to ( VI I . 8 ). We 

will approximate the solution /  € L® (fi) with the finite expansion;

M  N
f <M,m (ft t ) =  £  £  / ( ,e» (VII 26)

i= — M  j = 0

where the coefficients / j / s  are obtained by requiring that

« ( I  +  F°K°) f (M’N) -  F°g, e°kl) ) 0 = 0 for k = 0, ±1, ± 2 , M , I = 0 , 1 , 2 , N  

we then get the following (2M  + N  + 2) x (2M  + N  + 2) system of equations

M  N

E  /"*" i 5*” 5*" +  A« i2« n} =  W *  for k = ° > ^  ± 2 > -> ± M > 1 = °> 2> ^
771= — M  71—0

(VII.27)

where (VI I .25 ) gives us

9ki =  [  [  w° (r)g(r,9)e°kl (r,6)drd6 (VII.28)
J-7T JO 
2JV+1 M

-  ^  ^  WpWgg (rg, Op) e°kl (rq, 6p) (VII.29)
p= 1 q=l

and
r>mn
Mkl
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1 1
=  /  J  J  J  w°( r ) wO{p)R { p , ^ r i0) em n { P ^ ) Xkieokl{r,0)dPdrdMe  (VII.30) 

n * 0 0

2JV+1 M  2N + 1 M

-  X ]  5 Z  S  WiWjWpWqR (rq,0p, n ,  9j) e°mn (r„  0P) e°, (ri; 0j) (VII.31)
i= l j = 1 p = l q= 1

V II.4.3 T he C ollocation M ethod

To solve ( V I I . 8 ) we will approximate the solution f  (p, f l )  6  L% (O.) by the finite 
expansion

M  N

/<"•"> („ ,* > =  e  E / » 4  (/>.<’)
i = - M  j = 0

(VII.32)

then, letting

R m n ( r , 0 )  =  f [ w° (p)e°m n ( p , d )  R ( p , d ; r , 0 ) d p d d  (VII.33)
J-7T JO

(VII.34)
2JV+1 M

-  5Z S  ^  ̂  ^  (r «> 0P; r >
p =l 9=1

we get the (2M  + N  + 2) x (2M +  N  +  2) linear system

A/ AT

^  1 ^  ]  f m n  { R m n  ( r  qi @p) +  R m n  (r q,  0 p ) }  =  9  ( r 9> ^p)  > (VII.35)
m = —M  n = 0

for p =  0, ±1, ± 2 ,..., ±M , 9  =  0 ,1 ,2 ,..., V  where r g and 0p are as in Defns. IV.14 
and VII.8 .

V II.4 .4  N u m erica l T ests

We are going to illustrate a problem that was created to test the method and the 

code. We are going to look at an even problem so our solution will be of the form

M  N

/<"■"> (p . i)) =  E E / « 4
t= 0  j = 0

(VII.36)
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If wc consider the following functions

M  N

9 ( r , 6 )  =  ^ 2 ^ 9 i j C % ( r , 9 )
i=0 j=0

=  Com (r,0) + c°o l(r,9) + Con (r,9)

=  +  ~ j= t \  (r) +  (r)cos0
\/27r^oo y/27r y/n An

(V II.37)

(V II.38) 

(V II.39)

4 V 2 2n lr V  _  6r ) cos0(VIL4°)

and R (p, 1?; r, 6)

M  N  M  N

= E E E E ^ o ^ K M )  (VIL41>
t=0 j=0 p=0 g=0

=  <& (/>.#) C?1 (>•,») +  <& (ft «)*»„ (r,«) -  4  (p ,■tf)c»0 (r,«) (VII.42)

(VII.43)=  — (r) H (r) cos 0 -----1\ (p) ij  (r ) cos i9 cos 6
2tt 7t-\/2 tt
/ r  /o

=  (2 — 3r2) — cos 9 + ~  (l5/03 — 12p) r  cos $ cos 0 (V II.44)
27r

1 21 
2 n \  24

so tha t clearly
i

Aoo
19ij <

if i  =  j  =  0  

if i  =  0 , =  j  =  1  

if * =  j  =  1 

0  otherwise

i
^11

(V II.45)

and

* % = <

, if i  = p  =  q  =  0, J =  1 

or i  =  j  =  q =  0 ,p  =  1 

- 1  , ifz =  j  =  p =  l , q r  =  0  

0  , otherwise

it should also then be clear that

(V II.46)

f m n  -  0 , for m , n >  1 (V II.47)

so tha t we can choose M  — N  = 1 without affecting the solution.
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If we define the following m atrices

and the vectors

A  — diag{a[(i_i)(Ar+i)+j-i] — t —}
ij

B  = (6[p(iv+i)+,+i][*(iv+i)+j+i]) =  Bij

f  ( /m (A T -l-l)- l-n + l)  f m n

9  ( / m ( J V + l ) + n + l )  9 m n

then our Galerkin problem becomes the following linear system

{A + B } f  = g

or

f 1
Aoo 0 0 0 '  0 0 0 0

>
^  / o o \ / 1

ho \

i
0 1

•hi 0

1
-ho

0
+

1 0 0 0
>

/ o i _ 1

0 0 0 1 0 0 - 1 / i o 0

< 0 0 0 1
An - _ 0 0 0 0

J V / l l / V
1

•hi /

equivalently
f

1 0 0 0 ^  / o o  ^ /  1 \

A o i 1 0 0 / o i ^ 0 1
> =

A i o 0 1 — ̂ 1 0 / i o 0

0 0 0 1
J V / n  ) I  1 /

which has the solution
(  / o o  ^  

/ o i  

/io

V / n  J

( 1  \
0  

0

V 1 /
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giving

f (M'N)M  = c°00(p,#) + c°n (p,#) (VII.56)

=  ^  +  ^ (/?)COS"  (V IL 5 ? )  

=  +  i / J  ( t ' '3 -  ^  c o s ’,  <VIL58)

This problem can be solved numerically for any values of M  and N  using both 

collocation and Galerkin methods with both methods giving accurate solutions every 
time.
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CHAPTER VIII 

A 2-D HYPER-SINGULAR INTEGRAL EQUATION

VIII. 1 IN T R O D U C T IO N

In this chapter we will investigate hyper-singular integral equations of the type (the 

Hadamard singularity is assumed to exist only in the proper context)

[ f {(“ A 2 + K)B(p, t i ;r ,0)  + R ( p , d ; r , 6 ) } f ( p , $ ) w 1 (p)dtfdp = g{r,e)
J 0  J - n

(VIII.l)
where R  (p, d; r, 9) € L\ (fl) x L\  (fl) is a continuous kernel, 0 < r <  1, — n < 9 < 7r, 

k is a constant possibly zero and B  (p, r, 9) is the Boussinesq kernel discussed in 
Chapter VI;

B  (p, d- r,9) = ^ -----------  1 (VIII.2)
4tt yjp2 +  r 2 — 2 rp cos (9 — ■&)

To write these in operator notation we will define the following integral operator 
R 1 with continuous L\ (fi) kernel R  (p, r, 9);

R 1{ f ( p M ( r , 0 ) =  [ '  r  f ( p ^ ) R ( p , ^ r , 9 ) w 1 (p)dMp  (VIII.3)
JO J - n

We will solve these equations with procedures comparable to those in Chapter 

V where we will again represent the integral equations as operator equations in the 
Hilbert spaces discussed in Chapter VI. We will examine the sub-cases where, for 
specific continuous L\  (f2) kernels, we can exploit their radial nature by reducing 
them to the solving of the one-dimensional integral equations discussed in Chapter
V. We will also look at solving more general problems for kernels with an unknown 

or non-radially symmetric expansion.

In operator notation our general hyper-singular equation will be

[ ( - A , ® 1 +  kB 1 +  R1) /  (p, 0)] (r, 9) = g (r, 9) (VIII.4)
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A gain, we w ill first consider th e dom inant hyper-singular part

[ - A,®1/  (p, 0)] (r, 9) = g (r, 9) (VIII.5)

V III.2 TH E D O M IN A N T  H Y PE R -SIN G U L A R  EQ UATIO N

We have already looked at the properties of the Integral Operator — A2B1 and have

established it is an unbounded self adjoint operator with eigenvalues eigenfunc­
tions elmn and compact inverse F 1.

Theorem  V III. 1 The equation

OO OO

[ - A2l V  (p, d ) ]  (r, O ) = g { r , 0 ) =  £  £  gmne'mn (r, 9) E  L \ (12) (VIII.6 )
m = —00 n = 0

has a unique solution f  E  L\ ^ (Cl) given by

OO OO

f ( p , 9 ) = F 1{g(r,0)}(p, '9) = £  £ < 7™ ^  M )  (VIII.7)
771= — OO 7 1 = 0

Proof. By utilizing Thm. VI. 28,

- A 2l 7  =  g F 1 ( - A , ! 1) /  =  Wlg ^  f  =
00 00

^  f ( p , # ) =  ^2 9 m n E ^n {r,0) ■
771= —OO 7 1 = 0

V H I.3 TH E G EN ER A L EQ UATIO N

We can now go back and look at the general equation. First a result which shows 
that compactness on L\ (Cl) implies compactness on L \ u (Cl).

Lemma V III.2 I f  M1 is an L\  (ft) integral operator then K1 is compact when con­
sidered on L l^  (^) such that.

R ' - . L l u  (Cl) —> L\  (Cl)

Proof. By Lem. VI.27 every weakly convergent sequence in L \ w (12) is also a weakly 
convergent sequence in L \ (Cl) with both sequences converging to the same unique
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limit. Since M1 is Hilbert-Schmidt it is compact on L\ (fl) and hence maps weakly 

convergent sequences in L\ (fi) (and hence those in L \ m (fl)) into strongly convergent 
ones in L \ (Q) so the result follows ■

T h eo rem  V 1II.3 The hyper-singular equation

[ { ( - A2 +  k) S 1 +  K1} f  M ] (r) =  g (r) e  L \ (SI) (VIII.8 )

has the unique solution

f  =  (I -  F 1 (kM1 + R 1) ) ” 1 F 1̂  e  L \^  (n)

provided the null-space of I + F 1 (kM1 +  R 1) is trivial.

P roo f. By Thm. VIII. 1, (V I I I . 8 ) is equivalent to

{I +  F 1 (kB1 +  R1) } /  =  F ^  G L\„  (Q)

(VIII.9)

(VIII. 10)

Since B1, F 1 and R 1 are compact, F 1 (/cB1 + R 1) is also compact and so 
(l +  F 1 (/cB1 +  R 1)) 1 exists by Fredholm theorems [16], provided the null-space of 
I +  F 1 (kB1 +  R 1) is trivial and the result follows ■

D efin ition  V III .4  For the L \ (Q) integral operator R 1 with kernel R  (p, r, 6) we 

can define the array R[]n as follows

(VIII.11)

=  i / / /  J  R (p>&' r’0) e™(p>0)ei j ( r>9)wl (p)™1 (r)dddddpdr
(VIII.12)

T h eo rem  V III .5 For m  — 0, ± 1 , ±2, ±3 ,..., n = 0 ,1 ,2 ,3 ,... and R 1 an L\{Tl) op­
erator with kernel R  (p , r, 0) , then

O O  OO OO OO

R( p ,O-r ,0 ) =  E  E  ' E R T elm n ( P ^ K ( r , d )
i= —oo j —0 m=—oo n= 0

and additionally
OO OC OO OO

"i:- e  e e e k t i 2
m= — oo n= 0 i= —oo j = 0

(VIII. 13)

(VIII. 14)
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P ro o f. Since mn =  { { / i ’ e ^ n ) ) i

OO  o o

R(p,0;r ,0)  = 5 3 ( ( jR’e™ n))1e™ ^> ''9)
m=—oo n= 0

OO OO OO 00
= E E E E (  (Remn, 4  » 1 ejj (r ,0)e1mn(p,9)

m = —oo n=0 t= —oo j = 0
oo oo oo oo

E E E  E flr4,„ (A'* > 4  (’•.«)
i= —oo j=0 m= — oo n—0

hence,

^lli

/ 7T /»7T /»1 /*1

/  /  /  |-R(/9, i?;r, 0 ) |2 it;1 (p)ic1 {r)dpdrd'dd6
•7T « / —7T « /0  « /0oo oo OO OO

=  53 53 53 E l ^ T l  ’ by orthogonality»
m = —oo n=0 i= —oo j=0

T h eo rem  V II I . 6  I f  R 1 is an L \ (£1) integral operator with continuous kernel 
R ( p , d ; r, 0) and

OO OO

f { p i # ) =  5 3  ^ 2 h i eh ( p ^ )
k=—oo i=0

then
o o  OO OO OO

[ R ' / f o * ) ]  ( r , « )  = E E E E ( V I I I .  1 5 )
7 =  — O O  J = 0  7 7 l =  — o o  n = 0

P roo f. [R1/  (p, i?)] (r, 0)

=  f  f  R ( p , # \ r.#) /  (/>. #) w1 (z5) dpdtf
J—7T </0

OO OO OO OO OO OO -7T

= E E  E E E E h i R T e i j ( r > e )  / (p.̂ )eL(p>w1 (/»)
i——oo j = 0 m = —o o  n=0 k——oo 1=0 ~'K ®

by {VIII.13)
oo oo oo oo

= E E E E ^ U M 1
i= —oo j —0 m=—oo n=0

We will in certain cases, as will be shown in later chapters, have a continuous 
operator whose kernel has a certain angular symmetry. The next theorem shows that
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when this is the case then our two-dimensional operator equations can be readily 

solved as a collection of one-dimensional operator equations.

T h eo rem  V III .7  I f  R  (p, 0; r, 9) can be expressed as

1 °°
R  (p, r, 9) = —  E  K m (p ,r)exp(im (9  -  0)) (VIII. 16)

m =—oo

then

[ ( - A2Bj +  kB1 +  R 1) /  (p, 0)] (r, 0) = g (r, 6) G h \  (fi) (VIII.17)

is equivalent to

{(BmL ^  +  AcL̂  +  lK ^ )/m (p)}(r) =  gm (r) G 14(0,1) /o r m =  0 ,± 1 , ±2, ±3,
(VIII. 18)

where

f M -  E  / . W ^ , 9 W ) =  E  (v ii i . 1 9 )
m =—co v m =—oo v

and solutions to f m (p) are sought in L\ m (0,1).

P roo f. [(A2B1 +  kB1 +  R 1) /  (p, 0)] (r, d)

= f f { - A2jB (p, 0; r, 9) + k B  (p, 0; r,9) + R  (p, 0; r, 9)} f  (p, 0) n;1 (p) dddp 
JO J - 7T

=  E / m{ /  f - A 2g  (p, 0; r, 0) -- - - ^ — ddfrn (p) w 1 (p) dp
m = -o o  30 v27T

+ [  [  kB  (p, 0; r, 9) — d0/ m (p) w1 (p) dp
t/ 0 «/ —7T V 27T

00 /*1 /'TT _____

+  e  (/>. 0  /  y  w  ” ■w  ^p= —00 u ^

=  E  eXP! r " } /  r ) +  (0’ r ) +  03’ r )l / ”» (z3) ^  (z3)m=_oc V27T do
by orthogonality, (VI.  19) and (V I .20)

=  E  2 ^ 2 ^ { ( D mLi. +  KLi. +  K i . ) /m W } M

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



109

so that

[ ( - A 2B1 +  kB1 +  R 1) f  (p, 0)] (r, e) =  g (r, 9) € L\ (Cl)

±  e x ^ )  {(BmLi> +  ^  +  ^  ^  w }  (r) _  £  ^  (r) e x ^ )

m= —0 0  v m= —0 0  *

{(® mL^ +  KL^ +  K ^ ) /m(p)}(r) = gm (r) for m = 0, ±1, ±2, ± 3 ,... ■

We finish the section with some results in L\  (f2) concerning the B1 operator, 
that will be required for our numerical schemes.

Theorem  V III.8  For m  =  0, ±1, ± 2 ,... and n = 0 ,1 ,2 ,...

= f/.H„ (4-i£i<„-i> + l t ' E lmn + (VIII.20)
Proof.

F'B'SL = (•w „F, (.)We^„_1| + 7!r‘le|„„ + i l1eil(„_1)) h  ( V I . 32)

-  + vlr'i',1,,,, + „+ll) by IVIAfSj ■

Theorem  V III.9 For m ,i  =  0, ±1, ± 2 ,... and n , j  = 0 ,1 ,2 ,...

= Smi (4' « , . ' / i ”1 + (VIII.21)

Proof. <(F‘B 'E i„ ,4 ) ) lu

= ^  ( ( * < ( » - . ) ■  4 ) ) ,
h i \ j  h i \ j  7 71

+  e i . »  ( v / / / .20 )
Mlilj

(
|m| |m| |m|

T” /^|m|n/^|m|n j  Vn— l/^|m|(n— lj/^lmln r 7̂n A^mKn+q/^lmln r

H H e(n + l)j

=  fimi (j*nj/J'\m\n'Yn  ̂ "h ^ (n - l ) jP fm K n + l)1?!*-! ^ (n+ l) j l l \m \{n-l)rl\i ^  ®
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V III.4 N U M ER IC AL SOLUTIO NS

V III.4.1 Quadrature

We will use the same quadrature scheme for integrating over the region [—7r, 7r] as 
before. The radial integration will be performed as in (V.20) with notation as in Def. 

IV. 14.

Our double quadrature scheme will hence be

/7T 2JV+1 M

/  w° (r) /  (r, 0) dr J ]  ^  wpwqf  (rq, 0P) [l -  rj] (VIII.22)
*  p = 1 q= i

V III.4.2 The Galerkin M ethod

For the Galerkin method we will solve ( V I I I .  10) to get the solution to (V I I I .8 )

We will approximate the solution f  & (fl) by the finite expansion,

M  N

/<M'K )(p ,0 )=  Y .  ' Y f ‘>Eh(P ’0'> (VIII.23)
i = - M  j = 0

where the coefficients / tJ’s are obtained by requiring that

« ( I  +  F1 (kB1 +  M1)) f ^  -  ¥ 1g, E lkl) ) l uj = 0 (VIII.24)

for k — 0, ±1, ±2, ±3 ,..., M , I — 0 ,1 ,2 ,3 , , iV

We will then get the following (2M + N  +  2) x (2M + N  + 2) linear system of

equations

E  E
m = —M  n = 0

+  +  9 \m .\  n ^ f c T }  =  9 k l  (VIII.25)

for k = 0, ±1, ±2, ±3 ,..., M, I = 0 ,1 ,2 ,3 ,..., N, where (VIII.22)  gives us
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9ki =  f f w 1 (r) g (r, 9) e\t (r, 0)drdO (VIII.26)
J-TT JO 
2N+1 M

Y  Y  ™PW 19  ( r 9 ’ e h  ( r ?> Qp )  [! -  r q]  (VIII.27)
21V+1 M

P=1 9=1

and

7T 7T 1 1

R™ = 1 1 1 1  ̂  ^  ^  R r’ ̂  C”in P̂) ̂  Afc'6̂  e d̂pdrdMe
—7T —7r 0 0

(VIII.28)
2N+1 M  2N+1 M

-  E E E E  WiWjWpWgR (rq, 0P; r i; 0,) e^n (r„  0p) e£, (ri; 0,) [l -  r 2] [l -  r 2]
i= l  j = l  p= 1 9=1

(VIII.29)

V III.4.3 T he C ollocation M ethod

To solve ( V I I I .8).we will approximate the solution f  (p, i9) £ L \ u (^) by the finite 
expansion

M V
/<"•"> (ft ) =  Y ,  E  f ‘>E » (VIII.30)

i= —M  j ~ 0

letting

Rmn(r,e) = T f w 1(p )E 1mn(p ,d )R (p ,d -r ,e )d p d d  (VIII.31)
J —7T VO
2N+1 M

~  Y Y  ™PW<IE mn 0p) R  (ri ’ 9P> r > #) t1 -  r q] (VIII.32)
' p = i  g = l

leads to the (2M  + N  + 2) x (2M +  JV +  2) linear system

M  N

E  E  /m n  [e rrm (Pqi d p )  +  p,\m \n R m n  (Tq , 0 p ) +
m = —M  n —0

/  J m l y o | m |
— — —  p °  f r  0  t  -I- n\  e m ( n - l )  V q i ^ p )  '

/hm|(n—1) / '|m|n
K^\m\n T - ^ ^ - D  (r„ #,) +  f 5- * ,  (r„ *,) ] =  j ( r „  »r) (VIII.33)
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or

M N
E £  fmn{emn i Xq i^ -p )  + ̂ \m\n^rnn ( r q-,Qp)

m——M n=0

+  « / V l "  ( V ln ]el n ( n - 1 )  ( r > ° )  +  t I T ^ L  f a  # )  +  ^ l ^ n - l )  f a  0 ) )  }  =  5  f a ,  Op)

(VIII.34)

for q = 1,2,..., N  + l ,p  =  0, ±1, ±2, ± 3 ,..., M  where rq and 6p are as in Defns. IV.14 

and VII.8.

V III.4.4 Num erical Tests

We are going to illustrate a problem that was created to test the method and the 

code. We are going to look at an odd problem so our solution will be of the form

M  N
f (M,N) (Pt 0 ) =  £  £  f . j S i. {Pj 0)  (V III.35)

1=1 j = 0

As a test for the weakly-singular part we can use the equation (k =  1);

{ B 1 [ /  (p, 0 ) ] } ( r , O ) = g ( r , 6 ) , O < r < l , - n < 6 < n  (V III.36)

where for any given m  and p values

M  N

s M )  = £ £ > i 4 M )  (VIII.37)
i= l j —0

= P mv « - i4 (p -i)  M )  + l ? ‘ l „  (<•. 0) +  V?^Mr+,) (r, «))(VIII,38)

= ^ p ~ | ^ ( C 1«” iW +7"«r(i')+>7>r+iW ) (VIII.39)
/ 3m a m \

=  AW T~s°mp f t  *) +  K  0) (VIIL4°)
\ A m p  -* m (p + 1) /

with solution

f (p)  =  s 1m t(p) (vm.42)
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If we define the following m atrix

D =

and the vectors

%-i)(jv+i)+j+i] =  7 j
d [ ( i - i ) (N + i)+ j+ m i- i ) (N + i)+ j]  =  r f j H  ( j  -  1 )

d[(i-i)(jv+i)+j][(i-i)(jv+i)+,-+i] =  V)H (j -  1) 

dij =  0, otherwise

(V III.43)

f  (/m (JV +l)+n+l) f m n

9  (/m (iV + l)+ n + l) Qmn

then our Galerkin system can be written as

D f  = g

where for m  < 3,p < 2, we can set M  =  2, IV =  1 giving the system

(  T o  V o  0  0  \

t ! o o
o 0 7^ rfi

V  0  0  r ) l  t ?  J

(  ho \
h i  
ho

V  h i J

(  9 m p  P m l  ( S p lV a  +  < W o ) ]  ^

9 m p  [ ^ m l  (&P2Vo  +  S p l J o  +  fipOVo)]

9 m p  [^ rn 2  ( S p l V o  "b  ^ p O T o )]

V 9 m p  [<*rn2 (<W + tfplTl + <W/o)] 7
which for m  =  2,p — 1 is

( l l  Vo 0 0 ^ ( h o \ (  ° ^
7?J 7i 0 0 f n 0

o o To vl ho ^21^0
< 0  0 rjl Ti ) V h i  J \  92iii  /

(V III.44)

(V III.45)

(V III.46)

(VIII.47)

(VIII.48)

Both methods give accurate and fast solutions for all values of m ,p ,M  and N  
(M  > m, N  > n) used.

Now we consider k = 0, the problem with no weakly-singular part. If we define
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the following functions

9 (r, 0) =
M  N

Y ^ J 2 9 i j s ] j ( r ,9 )
i= 1 j = 0

— s\i M )  + —  S20 (r,6)
Pn 920

^ r ^ - u \ (r) sin 9 +  (r) sin 29

(7r 3 -  4r) sin 9 +  ^ ] f ^ r 2 sin 29
675 pn 
256

(V I I I .4 9 )

(VIII.50) 

(VIII.51) 

(VIII.52)

and

M  N  M  N

R(p,$;r;9)  =
i= 1 j=0 p= 1 <?=0

=  «10 (p, rf) s io (r > 0) +  sn  (p, $) S21 (r > 0)

“ s20 (f>.^)«21 (r > 0)

=  —uj (/?) u\ (r) sin t? sin 9 -\— u* (p) u2 (r) sin i? sin 20
7T ' 7T

 Uq (/?) u2 (r) sin 2i9 sin 20
7T

(VIII.53)

(VIII.54)

(VIII.55)

2?r
15 1575 / I I

p rs in ,0 s in 0   — \ j  ingr> (7p3 — 4p) (3r4 — 2r2) sin i? sin 20
8n V 1050

1575 / 77
8tt V 6300

p2 (3r4 — 2r2) sin 2tfsin20 (VIII.56)

so that clearly

and

—  if i , j  =  1#*u
9 ij=  i  i t  t i i  = 2 ,j  = 0

0 otherwise

if i =  p =  i j  =  q  =  0

(VIII.57)

%s =

1
or i , j ,q  = l ,p  = 2 

- 1  if i ,p  = 2 ,j  =  0,q =  1 
0 otherwise i

(VIII.58)

It should also then be clear that

fmn — o, for m  > 2, n > 1 (VIII.59)
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so that we can choose M  — 2, N  — 1 without affecting the solution.

If we define the following matrices

A  =  diag fa[(i_i)(jv+i)+j+i] =  )
\  Mtj /

B  =  (ty(p-l)JV+9+l][(t-l)AT+j+l]) =  R i j

(VIII.60)

(VIII.61)

then our Galerkin problem (with k =  0), becomes the following linear system

{A + B } f  = g (VIII.62)

or

* 1
MlO 0 0 0 "  1 0 0 0 ' ( h o ) / 0 \
0 1Mil 0 0 + 0 0 0 0

> hi = 1
Mil

0 0 1 0 0 1 -1 0 / 2 0
1

M20 M20

0 0 0 1
M11 . _  0 0 0 0

4 V / 2 1 ) \ 0 /

equivalently

1 +  P 10 0 0  o' '
( h o \ / 0 \

0 1 0 0 / l l 1
> =

0 P20 1 — P20 0 /2 0 1

0 0 n) 1 . 4 < / 2 1 ) U  y

which has the solution
(  ho  ^

h i  
ho

v /21  y

f o \
1 

1

v o  y

giving

=  Sot (p. 0) +  s10 (p> 0)

=

=  ( ' _ I'’2)  ~ v ^ /,sin'’

(VIII.63)

(VIII.64)

(VIII.65)

(VIII.66)

(VIII.67)

(VIII.68)
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T his problem  can be solved num erically for any values o f M  and N  using both  

collocation and Galerkin methods with both methods giving accurate solutions every 
time.

To test the full equation we will repeat the previous problem with k — 1 giving 

the Galerkin system
{A + D + B } f  = g (VIII.69)

or

nl 0

0

0 1 i  +  ^ 0 - 1

0 0 vl

0

0

rfo
J _  +  v 2 
2̂1

(  h o \  
f n  
ho

V  / 2 1  )

( 0 \
1

AUl 
1 

M21

V  0  /
(VIII.70)

equivalently

* 1 +  /ho I1 +  To) /ho7?) 0 0 ^ ( h o ) / 0 >

fJ-nVl 1 +  AhiTi 0 0 / l l 1

0 A4 20 1 -  /ho (To - 1 ) ho 1

V 0 0 /hi^o 1 +  /hi»?i7i K h i  ) V 0
(VIII.71)

which has the solution

(  ho )  ̂ 1 +  /ho (1 +  To) /ho7?!} 0 0 \
1

(  0
\

f n /h i7?!} 1 +  AhiTi 0 0 1

/2 0 0 /ho 1 -  /ho (To -  !)
. .  „ 2  1

V2 0 V0

1 . .  „ 2 . , 2

1
A/hi^S

(VIII.72)

We solve for both methods with varying M  and N  values with an example solution 

set shown in Table (2).
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TABLE 2
Comparison of results for two-dimensional hyper-singular test problem. Re­

sults are shown for the number of terms and the number of collocation 

points 6 for both variables, with 30 quadrature points for each variable.

m n f m n  Galerkin f m n  Collocation m n f m n  Galerkin f m n  Collocation

1 0 0.539760 0.539760 4 0 0.000000 0.000000

1 1 1.035361 1.035361 4 1 0.000000 0.000000

1 2 0.007294 0.007294 4 2 0.000000 0.000000

1 3 0.000029 0.000029 4 3 0.000000 0.000000
1 4 0.000000 0.000000 4 4 0.000000 0.000000
1 5 0.000000 0.000000 4 5 0.000000 0.000000
2 0 1.046612 1.046612 5 0 0.000000 0.000000
2 1 0.005751 0.005751 5 1 0.000000 0.000000
2 2 0.000029 0.000029 5 2 0.000000 0.000000
2 3 0.000000 0.000000 5 3 0.000000 0.000000

2 4 0.000000 0.000000 5 4 0.000000 0.000000

2 5 0.000000 0.000000 5 5 0.000000 0.000000
3 0 0.000000 0.000000 6 0 0.000000 0.000000

3 1 0.000000 0.000000 6 1 0.000000 0.000000
3 2 0.000000 0.000000 6 2 0.000000 0.000000

3 3 0.000000 0.000000 6 3 0.000000 0.000000

3 4 0.000000 0.000000 6 4 0.000000 0.000000

3 5 0.000000 0.000000 6 5 0.000000 0.000000
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CHAPTER IX

APPLICATIONS I: PROBLEMS IN POTENTIAL THEORY 

IX. 1 IN T R O D U C T IO N

In this chapter we illustrate some applications in Potential Theory and in particular 

Electrostatics. The problems we will consider will involve charged discs in an infinite 
medium. The first and simplest problem we will consider involves a single charged 
disc in an electrostatic field. It is easily identified with the Dirichlet problem of 
Chapter II and is solved by a single layer potential. The layer potential solution 
requires the charge density to satisfy a two-dimensional weakly-singular boundary 
integral equation which fits the criteria of Thm. VII. 7 and can therefore be solved as 
a collection of one-dimensional problems as in Chapter IV. These particular problems 

have no separate non-singular kernel and were largely motivational in finding the 

eigenfunctions, eigenvalues and defining the Hilbert spaces we use to solve the other 
problems.

Other problems we will consider involve two (or more) charged discs. These 
problems produce simultaneous integral equations with a weakly-singular kernel and 
a continuous non-singular kernel or kernels. We will generally investigate problems 
with angular symmetries that reduce to a single equation. Our first multiple disc case 

exhibits such symmetries, a pair of charged parallel discs and in particular the parallel 
plate condenser problem. These problems when solved by layer potentials produce 
two dimensional weakly-singular boundary integral equations with continuous kernels 

that fit the criteria of Thm. VII. 7 allowing us to again solve as a collection of one­
dimensional weakly singular integral equations. When the discs are non-coaxial we 

have to solve the full two dimensional weakly-singular problem as in Chapter VII. 
We tackle various examples some to illustrate how the method works and others to 

demonstrate it’s use in more sophisticated problems. We will generally look for the 
Capacitance or Capacitance like properties of these pairs of discs.
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IX.2 SINGLE DISC PROBLEMS

IX .2.1 General Problem

Consider a thin Laminar conductor

Q = {(r>0) : 0 <  r  <  1, — tt < 9 < n} (IX.l)

that is charged to a potential of V  volts, placed in a field

E0 (r) =  -  W °  (r) (IX.2)

where E q is in volts/meter and U° (r) is a potential function that may depend on 
position.

If the charged density on the positive side is a + (r) coulombs/ meter2 and the 

charge density on the negative side is a~ (r) then the total charge density is

a (r) =  a + (r) +  o~ (r) (IX.3)

The potential at a point r € M3 is then given by

=  U0 (r) + ± § la (E )}(s)  (IX.5)

If f  approaches fi, we find tha t a (r) is given by the following Boussinesq Equation

= (IX.6)

We can also know that

dU° (r)
a + (r) — a (r) — —2—  ------=  2E z (r) , for f  G Q

uz

from which we can find both a + and o~ once a is known.
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Since the Laminar conductor is the circular disc as in ( I X .  1), we get the following 

Boussinesq type equation

—  [  [  _ _ , .w° (p) dpdfi = g(r 9), for (r, 9) E SI (IX.7)
4tr Jo -y/r2 +  p2 -  2rpcos(tf -  9) V ’ ^  ’ V ’ '  K '

where

g(r,9) = V - U ° ( r , 0 )  (IX.8)

and

f ( p , tf) =  -^~tr (p, ti) y / l  -  p2 (IX.9)
CO

The equivalent operator equation in Hilbert space is

B° \f(p, #)] (r, 6) =  g(r, 9) e  (SI) (IX.10)

which reduces to the one-dimensional weakly-singular operator equation

Kn[fm(p)} (r) = 9 m ( r )  6 L° (SI) , for m = 0 ,1 ,2,... (IX. 11)

where

and

/ - M = r / < M ) = ^ «  (ix.12)
J - 7T V27T

9m (r ) — j g (r ,0 ) e*V ™ e d,6 (IX.13)
J — 7T V  " 7 T

are the Fourier series coefficients of /  and g.

IX .2.2 Case 1: Circular D isc Charged to  a Constant Potential

In the case where the circular disc fi, is charged to a constant potential V  volts and 

there is no external field present we see that

OO

g (r^ )  = V =  fimoV exp (imd) (IX.14)
7 7 1 =  —  OO

and

i   00
f ( p , #) = f  (p) = — o (p) V 1 ~  P2 = ^ 2  (P) exP (IX. 15)£o
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where f ( p )  is given by the following equation

lS  [ /M l M  =  v  ( ix .16)
Clearly (IX.10)  has the solution

f(p) = AooV =  —  (IX.17)
7T

giving Weber’s well known result for the charge density

°  W  =  (K .18)
7TV 1 -  p

Some solutions are shown in Figure 2 for differing values of V . The key points to 
note are the proportionality relationship with V  and the singularity on the edge of 

the discs.
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J k

(a) V=1 Volt. (b) V =2 Volts.

(c) V = -l Volt. (d) V=-2 Volts.

FIG. 2. Som e p lo ts  o f  the scaled charge d en sity  (a /e 0)  on a lam ina disc held to  

different F  potentials.
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IX .2.3 Case 2: Earthed Circular D isc in a Parallel Field
—♦ —»

Here we insert the circular disc Q, into the field Eq =  Eoi and hold it to a zero 

potential so that E q  = — V£/° where

U °\r ,0 ,z)  = - E 0r cos0 (IX. 19)

it follows that

°°̂  12
g(r, 6) = E 0r cos 6 = V '  - 8 mlE 0\ - t l0 (r) cos (mO) (IX.20)

m= 0  V

and since we can expand /  as the even function

1   00

f(p ,  tf) =  — 1a (P, fi) V 1 -  P2 = h  (p) cos (mti) = V  Smifm (p) cos (mi?) (IX.21)
€ ° ^ 0

where f i  (p) is given by the one-dimensional weakly-singular operator equation

00 /T
L? IMP)} (r) = E 0r = J 2  ~ ^ o E o \  ( r ) , for 0 < r  < 1 (IX.22)

n—0 V

the solution is then given by

M p ) =  £  - 5 n0Aiu E o ^ t l  (p) =  (P) =  ~ [P
n= 0

yielding the charge density

a ^  = — 8/ T ~ 2  ^  COS ® =  8/T ~ ~ ^ /9 COS ^ (IX.23)7 r y l  — p ^ V 3  'Ky/ l  — f r

Some graphs of solutions obtained for different Eo values are shown (Figure 3) 
illustrating that a positive field attracts the electrons to the negative x  side while a 
negative field repels them to the positive side. The edges of the disc illustrate the 
(1 — p2) 2 singularity at p =  1 except when 1!) — ± |  where the zero of the cosine 
dominates.
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A A

(a) E0=1 Volts per Meter. (b) E0=-1 Volts per Meter.

FIG. 3. The scaled charge density (cr/e0) on an insulated laminar disc in a 

parallel field of magnitude 1 oriented in the direction of the x-axis.
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IX.2.4 Case 3: Earthed Circular Disc in the Field Generated by a Point 

Charge

In this case our circular disc I), is held to a zero potential but is placed in the field

generated by a point charge of strength q coulombs placed at a position P  (a, 0, b)
near but not on a grounded circular disc fl. The potential due to the point charge is 
given by

u° (r, 0, z) = --------  q ____  =  =  (a, 0; r, 0) (IX.24)
47T£o y  r2 +  a2 — 2 ra cos 6 +  (z — b)2 £° 2

so that g takes the form

g(r,0) = - ~ B „  (a, 0; r, 9), for 0 < r < 1, - n  < 0 < tt (IX.25)
£0 2

By virtue of iV I.W )  and Fourier’s Theorem we can expand Z?| (p, 0] r, 9) as

1 ,°°,
Bb (p, 0 m, r,9) — —  ^  Lm (p,r;b)exp(im[0 -  0}) (IX.26)

2n
m ——oc

and write

f ( p ,  0 )  =  a (p, 0 )  y / l  -  p 2 =  ^ 2  f m { p ) e x p ( i m 0 )  (IX.27)
m = —oo

which yields the one dimensional weakly-singular operator equations

[f±m(p)] (r) =  { a ,  r; b ) , for 0 < r < 1, m  =  0 ,1 ,2 ,... (IX.28)

The charge density is then given by

(/>> 0) =  exp (i m (IX.29)
m = — OO V 1 -  P 

and is found by numerically solving ( IX .28).

When evaluating the Lm (p , r; b) we do so by evaluating it as a ring function as 
in (V I .8), we need to be careful and avoid the numerical difficulties when r  or a are
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equal to  zero. U sing ( V I .  12) and the fact that

Jm (0) ^mO ( IX .3 0 )

we get that

and

9 T / n u\   9 *̂ m0
2 7r 4 t t v ^ T F

9 r fn . jo   9 m̂O
o m ' ’ ) ~  1 / o iT27T 47T v 'a2 +  64

(IX.31)

(IX.32)

which we use instead of the ring function representation when r  and/or a are zero.

We first examine a special case with a known solution. For P  (a, 0, b) =  P  (0,0, b) 

the charge densities on the positive and negatives sides are shown by Lebedev et al. 

[19], to be

(P) =
qb

27T3 (b2 +  p2) 2

lb2 + p 2 _1 h  - p 2
b2 +  p2

7r
(IX.33)

so that

°  (P) = a (p) + °  (p) =
_2b_

7r3(62+p2) 5
<>2+/=>2
i-P2 +  tan - l i-p2

62 + p 2 (IX.34)

Since a = 0, /o (p) is given by the following one-dimensional weakly-singular 
operator equation

Lg[/o(p)] (r) =  —
1

47r y/r2 + b4
, for 0 <  r  <  1

and hence

0 “

1
VV2 4- b4_

(r)

(IX.35)

(IX.36)

W e now look at som e num erical solutions first of all to  confirm  the result in  

( IX .34). The computational results are accurate to machine error with those given 
by IX.34 so we just illustrate some plots for the computed solution to the charge 
density function in Figs. 4 and 5. When close to the disc the point charge produces 
a large localized affect on the center which is eliminated by distance. The singularities
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at the edge are still obvious but less so as the point charge gets really close to the 

disc where the local disturbance dominates the charge distribution.

, . 5 =0.05
b=0.2

b=0.1

0 -40

0.25 0.75

0

- 0.2

-0.4

- 0.6

- 0.8

b=2

- 1

1.2
b=1

1.4

1.6

0 0.25 0.5 0.75

r
(a) Plot for b=0.05, 0.1 and 0.2. (b) Plot for b=0.5, 1.0, 2.0 and 4.0.

FIG. 4. The charge density on an insulated laminar disc plotted against the 
radius of the disc, when a point charge of charge 5 coulombs is placed directly above 
at varying heights, b, above the disc.
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(a) b=0.5. (b) b=1.0.

FIG. 5. The charge density on an insulated laminar disc when a point charge of 
charge 10 coulombs is placed directly above at varying heights, b, above the disc.

In the non-coaxisymemmetric case, when b = 0 we have some numerical instability 
problems when |a| is close to 1 but results for |a| > 1.5 seem to be fine. Figure 6 
shows some solutions for the point charge in the plane of the laminar conductor. 
The localized affect as in Figure 6(a) is clearly reduced as the point charge is moved 
further away as in Figure 6(b).
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(a) a=1.6. (b) a=3.0.

FIG. 6. The charge density on an insulated laminar disc when a point charge 5 
coulombs is placed in the same plane.

When a, b are both non-zero we get a combination of the effects as illustrated in 
Fig 7.
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-0.338
-0.387
-0.437
-0.487
-0.537
-0.587
-0.637
-0.687
-0.736
-0.786
-0.836
- 0.886
-0.936
-0.986
-1.035

(a) a=0.25, b^0.75.

0.398 
0 616 
0 835 
1.053 
1.272 
1.490 
1.708 
1.927 
2.145 
2.364 
2.582 
2.800 
3.019 
3.237 
3.456

1*4

-0.349
0.427
0.504

-0.582
-0.660
0.737
0.815

-0.893
0.970

-1.048
1.126

-1.281
-1.359
-1.436

(b) a=0.50, b=0.50.

0.179
0.256
0.333
0.409
0.486
0.563
0.639
0.716
0.793
0.870
0.946
1.023
1.100
1.176
1.253

(c) a=1.0, b=0.50. (d) a=2.00, b=1.00.

FIG. 7. The charge d en sity  on an insu lated lam inar disc when a p o in t charge o f  

charge 5 coulombs is placed at varying positions.
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IX.3 M ULTIPLE D ISC  PRO BLEM S

IX.3.1 T he Parallel P late  Condenser 

Coaxial D iscs

Instead of one unit disk we have a pair of circular laminar disks centered on the 
z — axis at z = ±h. Our solutions will be in the form V = V\ + V2 where V\ and V2 

are potentials relating to the individual discs. We will look at the capacitance and 
capacitance like properties of the two disks which will have different potentials

V (r ,9 ,+ h )  = g+ (r, 9) (IX.37)

V ( r , 9 , - h ) =  g~{r,B) (IX.38)

Let us define the following domains

=  [(r , 0) : 0 <  r  <  1, - t t  < 6 < tt] (IX.39)

n*  = [(r, 6, z) : (r, 6) G n 0, z  = ±h] (IX.40)

n =  n + u n~ ( i x . 4 i )

The potential V  (r, 9, z) will be given by the following combination of single layer 

potential functions

n r M  =

a + (p, 1?) pdpdfi

r2 + p2 — 2rpcos (9 — d) +  (z — h)2

+ 1 f  r  (IX42)

^  0 y r 2 + p2 — 2rpcos (9 — d) +  (z + h)2

provided the charge density functions a + (p, d) and a~ (p, d) satisfy the following 
weakly-singular operator dual equations

{b° ( < t V 1 - P 2)  + K  ( ^ V l  - P 2) } ]  (r >9) = g+ (r ,9 ) ,  for (r,9) € n 0 (IX.43)
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and

[|® ° ( a V l  -  P2)  +® ° ( * V l  -  P2) } ]  ( r ,e )= g ~ ( r ,0 ) ,  for (r,0) € (IX.44)

T h e  G en era l C ase For the general case we expand the functions in ( IX .43) and 
(IXAA) as follows

OO
/ ± (p, $) = a* (p, t?) y / l  ~  P2 = ^ 2  fm (p) exP

m = —oo

and
00

9± (r > ° ) =  J 2  9m (r ) exP (im °) (IX.45)
m =—oo

we then exploit (VI. 19) to reduce to the following system of one dimensional weakly- 
singular operator dual equations

[ ( C /r n  +  C l / m )  W ] M  =  a t  ( r ) , for 0 < r  <  1, m =  0, ±1, ± 2 ,... (IX.46)

and

[ ( I + C /™ ) (p)] (0  =  9m (r) , for 0 < r  <  1, m  =  0, ±1, ± 2 ,... (IX.47)

An arbitrary function /  (z ) can be decomposed as follows

f ( z ) =  \ l f ( z ) + f ( - z ) ]  + ~ [ f ( z ) - f ( - z ) }

= h  (z) + h  (z) (IX.48)

where / i  (z) is even and f i  (z) is odd, we can therefore have no loss in generality if
we consider only the special cases where

9~ (r) = ± g + (r ) (IX.49)

in this case we will also get that

<t~ (r) = ± a + (r ) (IX.50)
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The problem then reduces to a single Integral Equation.

E qually  C h arg ed  D iscs g +=  g _=  g By symmetry the charge potentials on each 
disc will also be equal, a + = a~ = a, so that ( I X A3) and ( I X  A4.) reduce to the 

single equation

[{®° +  B°} a  (p, $)] {r,0) — g(r, 9), for (r,9) e Q0 (IX.51)

Expanding as follows

OO

f (p ,9 )  = a (p ,9 )  \ j l -  p2 = ^  /m (p) exp (imt?) (IX.52)
m——oo

and ': '* oo
9 (r > 0) = 9m ^  exp (imQ) (IX. 53)

m= —oo

(V7.19) then gives us the following system of one dimensional weakly-singular oper­
ator equations

[(Lm +  Lm;fc) f±m (/>)] (0  =  9±m (r) . for 0 < r  < 1, TTl = 0, 1,2, ... (IX.54)

O p p o site ly  C h arg ed  D iscs g +=  — g - =  g Here by symmetry the charge poten­
tials will also be opposite a + =  —o~ = a  so that ( I X A3) and (IXAA)  reduce to the 
single equation

[{B° -M°h} a  (p , 0)] (r, 6) = g (r, 6) ,  for (r, 9) € Q0 (IX.55)

expanding as in (IX.52) and ( IX .53), we can exploit (W .19) to reduce to the fol­
lowing system of one dimensional weakly-singular operator equations

[(Lm -  Lm;/J /±m (/>)] M  =  9±m (r) , for 0 < r < 1, m  =  0 ,1 ,2 ,... (IX.56)

N u m erica l R esu lts  We will check the simple case where the parallel discs are 

charged to an equal or opposite constant potentials. We can compare these results 
with those in Sneddon ([2], p238) by looking at the Capacitance. First let us consider
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the case where the potentia l is equal in m agnitude and constant on both  discs;

g+ (r,e) = Vo, for M )  e  Qo (IX.57)

g~{r ,e ) = ±Vo, for (r, 9) G fl0 (IX.58)

the total charge on the upper disc is then given by

o (p, d) pdpdti =  27r/oo (IX.59)

where since g is even

oo oo
f ( p , f i ) =  X I  X  SmOSnofmnt1™1 (/>) COS (mi?) (IX.60)

m——oo n=0

The Capacitance (C ) is then given by

If we compare these with the results given by Sneddon ([2], p238) which lists 

nCSneddon where the capacitance Csneddon is in different units, with the conversion as 
follows;

nCsned(Um =  j  = ^  (IX.62)

A comparison of results for Vo =  1 and differing distances between the discs 
(k = 2h) is given in Table. 3 showing that the results are equivalent to at least three 
decimal places with our results possibly more accurate.
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T A B L E  3

Comparison of Capacitance (CSneddon) results for a pair of paral­
lel plates charged to equal or opposite potentials. Source ([2],p238).

K Nomura -Cooke Galerkin Collocation

Equal Opposite Equal Opposite Equal Opposite

0.4 0.6027 3.1029 0.602499 3.102305 0.602499 3.102305

0.6 0.6364 2.3956 0.636407 2.395441 0.636407 2.395441

0.8 0.6656 2.0372 0.665610 2.037267 0.665610 2.037267

1.0 0.6912 1.8208 0.691207 1.820785 0.691207 1.820785

1.2 0.7138 1.676 0.713812 1.676043 0.713812 1.676043

1.5 0.7437 1.5227 0.743020 1.531444 0.743020 1.531444

2.0 0.7817 1.3867 0.781752 1.388027 0.781752 1.388027

2.5 0.8113 1.3034 0.811260 1.303422 0.811259 1.303423

3.0 0.8342 1.2421 0.834216 1.248107 0.834216 1.248107

5.0 0.8896 1.1417 0.889579 1.141723 0.889579 1.141723

10.0 0.9405 1.0675 0.940518 1.067514 0.940518 1.067514

20.0 0.9683 1.0319 0.969201 1.032821 0.969201 1.032821

Fox-Blake Galerkin Collocation

Equal Equal Equal

0.1 9.233 9.233081 9.233081

We now test the limits of the method by examining some limiting cases. In the 
equal potential case as the distance, k , goes towards zero it should start acting as if 
the total charge is split between the two discs and Csneddon should approach |  as is 

illustrated in Table. 4.
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T A B L E  4

The Capacitance (CSneddon) as the distance between two equally charged par­
allel discs tends towards zero can be seen to approach 0.5. Results from col­
location method. Note numerical singularities appear for smaller kappa values.

K Collocation

Equal

0.2 0.5613624

0.1 0.5358826

0.05 0.5205986
0.02 0.5096676

0.01 0.5053793

0.0005 0.5029637
0.0001 0.5007223

In the oppositely charged case as the distance, k , between the plates tends to

infinity it should start acting like a single disc with all its charge, so Csneddon should
approach 1 as is illustrated in Table. 5.

N on Coaxial D iscs

This time the discs will be parallel to the (r, 0) plane and centered at (a, 0, h) and 
(—a, 0, —h) where a > 1 if h =  0, so the discs do not touch or overlap. Our solutions 

will again be in the form V  = V\ + V2 where V\ and V2 are potentials relating to the 
individual discs. We will also look at the capacitance and capacitance like properties 

of the two disks.

Let us define the following domains

Qo — [(r, 0) : 0 <  r < 1, — n < 8 < 7r] (IX.63)

=  [(x, y, z) : 0 <  (x ±  a f  + y2 < l] (IX.64)

D ± = [(x, y , z ) : z  = ±h,  (x, y) G f)±] (IX.65)
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TABLE 5
The Capacitance (CSneddon) as the distance between two oppo­

sitely charged parallel discs tends towards infinity can be seen to ap­

proach 1. Results here are obtained from using the collocation method.

K Collocation

Opposite

100 1.0064070

250 1.0025530

750 1.0008500
1000 1.0006370

10000 1.0000640
50000 1.0000130

100000 1.0000060

1000000 1.0000010

10000000 1.0000000
100000000 1.0000000

Let ( x , y )  be the charge densities on the disks D ± and let g^ (x,  y)  be the
corresponding potentials. The potential V  (x,  y,  z )  will be given by the following
combination of single layer potential functions

V ( x y z )  =  — [  [  <T+ ( 8 , t ) d s d t
47Te0 J  J  n  \2 / , \2 , / 777

n+ y ( x ~ s) + { y - t ) + ( z - h )
f  " - M d s d t---------- (IX 66)

7 rc°  n -  y/(x ~ s)2 + (y~ + (z +  hf

provided the charge densities satisfy the dual equations 

1 f  f  a + (s, t) dsdt

47r n /  ^ /(x -  s )2 + ( v -

f [ (s,t\dadt_ = = g -  ( x , y ) , (x , y )  e 0 + (IX.67)

47reoV  y / { x - 8 ) 2 +  ( y - t ) 2 +  4h*
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and

1 f  T a + (s, t )dsdt

4"7reo J  J  (x — s ) 2 +  (y — t ) 2 +  Ah2n+

+ 7 — f  !  . °  i-s 't ',,isdt = f [ i , n ) , [ i , ; ) e r  ( I X . 6 8 )

4n£oJJ  l/(*  ~  *)2 + (V ~  t f
47rei

or equivalently

a + (s , t ) dsdt

and

—  [  f . ___________
J  \ / ( x -  s f  + (y-  t f

- 4 -  f  I  - a ( 5' *) rfadi _  =  ,j > ( C] y) (Xj y] £ sj+ (IX.69)
4 ^ J J  J i x  +  s f + ( y  +  t f  +  4h?

1 f  f  cr+ (—s, — t) dsdt 

47rC° o  \ /  (z  +  s )2 +  (y + 1)2 +  4/i2

+ j —  f  f  , ° --------------------=  g~ (x , y ) , (:r, y) € fT  (IX.70)
47re° V  y j ( x - s f  +  ( y - t f

Since an arbitrary function f  (x,y)  of two variables can be decomposed as follows

f ( x , y )  = ^ [ f ( x , y )  + f ( - x , - y ) ]  + ^ [ f ( x , y ) - f ( - x , - y ) ]

= f i ( x , y )  + h ( x , y )  (IX.71)

where f i  (x, y) is even in both x  and y while fa (x, y) is odd in both, we can therefore
have no loss in generality if we take only the special cases where

9~ (- x , - y )  =  ± g+ (x, y) (IX.72)

and we will also get that

a~ ( - x ,  - y )  = ± a + (x, y) (IX.73)
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so we can reduce ( I X . 69) and ( I X . 70) to the single equation

/  {  v W + < . - > »  *  '/ ( ,+ ,)> + U )-+ -»  }  " + K 4 )  =  9+ y} ' {x ' v)  e  n +

(IX.74)

If we introduce the polar coordinates

s — a — p cos'd, t = p sint? 
x  — a = r cos 0 , y =  r sin 0

(IX.75)

and write

v + (s,t) = a ( p , 0 ) ,  g+ (x, y) = g (r, 9) (IX.76)

we find that if
g-  (r, - 9 )  =  ± g+ (r , 0) =  9  (r, 9) (IX.77)

we will also get that
a~ (r, —9) = ± a + (r, 9) =  a (p, i?) (IX.78)

so that we will then get the following two dimensional operator equation

[{B° ±  K J  f  (p, 0)] (r, 9) = g (r, 9),  for (r, 9) € Q0 (IX.79)

where

f (p ,0)  = v (p , 0)  v ' l - p 2 (IX.80)

and the non-singular operator K°h a is defined as follows

f  (p, 0) K Ka (p, 0- r, 9) w° (p) dpd0 (IX.81)
.

with kernel

Kh a (Pj 0', r i 0 ) =  —,
+  p2 +  2r p  cos (0 — 0) +  4ap  cos 0  +  Aar cos 0 +  4a2 -I- 4h 2

N u m erica l R esu lts  We will consider the simple case where the discs are charged
to an equal or opposite constant charge and hence we deal with just even cosine 

expansions. Tables. 6  and 7 show the Capacitance (Csneddon) given by both the
Collocation and Galerkin methods for the equally charged discs . We show the
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collocation method results for oppositely charged discs in Table. 8 . The results for 

a =  0 can be compared with those in Table. 3 to confirm that the accuracy of the 
two-dimensional methods.

TABLE 6

Capacitance ( C s n e d d o n )  for offset discs equally charged to a constant po­
tential, centered at (a,0,h) and (-a,0,-h). Results from collocation method.

M =  3 9,r quad points =  20

N =  5 0coll,rcoll points =  3,5

h a 0 0 .2 0.4 0 .6 0 .8

0 .2 0.6025 0.6282 0.6732 0.7152 0.7508
0.4 0.6656 0.6769 0.7034 0.7340 0.7629

0 .6 0.7138 0.7200 0.7362 0.7572 0.7791
0 .8 0.7517 0.7555 0.7658 0.7803 0.7964

1 0.7818 0.7842 0.7912 0.8013 0.8132

2 0.8672 0.8677 0.8693 0.8717 0.8748

3 0.9056 0.9058 0.9063 0.9072 0.9084
5 0.9405 0.9406 0.9407 0.9409 0.9412

10 0.9692 0.9692 0.9692 0.9693 0.9693

h a 1 2 3 5 1 0

0 0.7773 0.8659 0.9051 0.9404 0.9692
0 .2 0.7803 0.8664 0.9053 0.9404 0.9692

0.4 0.7883 0.8681 0.9059 0.9406 0.9692

0 .6 0.7996 0.8706 0.9068 0.9408 0.9692

0 .8 0.8125 0.8740 0.9080 0.9411 0.9693

1 0.8257 0.8779 0.9095 0.9415 0.9693

2 0.8786 0.9004 0.9196 0.9444 0.9698

3 0.9098 0.9197 0.9307 0.9484 0.9704
5 0.9416 0.9445 0.9485 0.9570 0.9723

10 0.9694 0.9698 0.9705 0.9724 0.9780
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TABLE 7

Capacitance (CSneddon) for offset discs equally charged to a constant po­
tential, centered at (a,0,h) and (-a,0,-h). Results from Galerkin method.

M,N =  3 0,r quad points =  20

h a 0 0 .2 0.4 0 .6 0 .8

0 .2 0.6025 0.6281 0.6731 0.7152 0.7509
0.4 0.6656 0.6769 0.7034 0.7340 0.7630

0 .6 0.7138 0.7200 0.7362 0.7572 0.7791

0 .8 0.7517 0.7555 0.7658 0.7803 0.7965
1 0.7818 0.7842 0.7912 0.8013 0.8133

2 0.8672 0.8677 0.8693 0.8717 0.8748

3 0.9056 0.9058 0.9063 0.9072 0.9084

5 0.9405 0.9406 0.9407 0.9409 0.9412

10 0.9692 0.9692 0.9692 0.9693 0.9693

h a 1 2 3 5 10

0 0.7775 0.8659 0.9051 0.9404 0.9692

0 .2 0.7804 0.8665 0.9053 0.9404 0.9692

0.4 0.7884 0.8681 0.9059 0.9406 0.9692

0 .6 0.7997 0.8707 0.9068 0.9408 0.9692

0 .8 0.8126 0.8740 0.9080 0.9411 0.9693

1 0.8257 0.8780 0.9095 0.9415 0.9693

2 0.8786 0.9004 0.9196 0.9444 0.9698

3 0.9098 0.9197 0.9307 0.9484 0.9704

5 0.9416 0.9445 0.9485 0.9570 0.9723

1 0 0.9694 0.9698 0.9705 0.9724 0.9780
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TABLE 8

Capacitance results, Csneddon, for offset discs oppositely charged to a con­
stant potential, centered at (a,0,h) and (-a,0,-h). Results from collocation method.

M =  3 9,r quad points =  20
N =  5 0coll,rcoll points =  3,5

h a 0 0 .2 0.4 0 .6 0 .8

0 .2 3.1023 2.5605 1.9940 1.6849 1.5082

0.4 2.0373 1.9390 1.7488 1.5812 1.4587

0 .6 1.6760 1.6433 1.5656 1.4780 1.4002
0 .8 1.4954 1.4809 1.4431 1.3946 1.3457

1 1.3880 1.3804 1.3596 1.3309 1.2993

2 1.1808 1.1798 1.1771 1.1727 1.1670

3 1.1164 1.1161 1.1153 1.1140 1 .1 1 2 2

5 1.0675 1.0675 1.0673 1.0670 1.0666

10 1.0328 1.0328 1.0328 1.0328 1.0327

h a 1 2 3 5 1 0

0 1.4082 1.1839 1.1173 1.0677 1.0328

0 .2 1.3982 1.1828 1.1170 1.0676 1.0328

0.4 1.3718 1.1798 1.1161 1.0675 1.0328

0 .6 1.3374 1.1749 1.1147 1.0672 1.0328
0 .8 1.3017 1.1688 1.1129 1.0668 1.0327

1 1.2687 1.1618 1.1106 1.0663 1.0327

2 1.1605 1.1245 1.0959 1.0626 1.0322

3 1 .1 1 0 0 1.0957 1.0805 1.0575 1.0314

5 1.0661 1.0625 1.0575 1.0470 1.0293

1 0 1.0327 1.0322 1.0314 1.0293 1.0230
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CHAPTER X 

APPLICATIONS II: 3-D CRACK PROBLEMS

X .l  IN T R O D U C T IO N

In order to illustrate the use of the hyper-singular integral equations discussed in 

Chapters V and VIII we will investigate a number of problems arising in the theory 
of linear elastic fracture mechanics. We will begin by determining the stress intensity 

factors for a penny-shaped crack under a variety of loading conditions and then go on 

to consider problems involving more than one such crack. Before doing so however, 
it will be necessary to introduce some additional notation and terminology in order 
to set up the problems appropriately.

It is well known that, in the absence of body forces, the equilibrium displace­
ment, u = (ui,U2 ,us), of a three dimensional linear elastic solid is given by Navier’s 
Equations

(1  — 2v) uijj  +  Ujji =  0 , for i =  1,2,3 (X.l)

and that the corresponding stresses are given by the constitutive equations

E u
&ij = ^  ^  ^  Û i ~  L 2,3 (X.2)

where E  is Young’s modulus, // is the shear modulus and v is Poisson’s ratio [20].

Papkovich and Neuber ([21] and [22]) have shown that the general solution of the
equilibrium equation, (X .l) may be expressed in the form

2 = - 4  (1 -  v) fa + (xjtfjj + <f>) f. (X.3)

where 0  is a harmonic scalar and if) = {'lP1,'lP2,'lPa) is an harmonic vector.

It follows that many problems in the theory of elasticity can be reduced to bound­
ary value problems in potential theory and are therefore amenable to treatment by 
integral equations of the type discussed in previous chapters. For the purpose of 
illustration we will restrict our interest to the following special case of the Papkovich- 
Neuber Solution as described by Barber ([20], p205 solution F).
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In Cartesian C oordinates th is solution  takes th e form shown in Table 9 while 

Table 10 shows the solution in Cylindrical Polar Coordinates.

TABLE 9

A special case of the Papkovich-Neuber solution in Cartesian Coordinates.

2 ^ x - ^ f e  +  (l 2 *0 * OXX -  Zdx/Qz | 1 21/gg x z  —  Z d x d z 2

2 / ^ - * f e  +  (l 2" ) & & x y  —  ‘' S x d v d z  ' (1  " i/) d x d v a — z  ^UVZ Z d v d z 2

2p.uz = - 2 ( 1 - v ) ^ ayy ~  " a J d z  1 aS  1 2tya J a -  z ^  ^V ZZ ~  z d z 3 g z 2

TABLE 10

A special' case of the Papkovich-Neuber solution in Cylindrical Coordinates.

-  z § ^  +  (1 -  2 V) §£ o  — z a3lf>rz Z drdz2
Gf. — z d3if r d6dz2

2 p u z =  — 2 ( 1  -  J') § f a  — z ^ £  — ^° zz Z dz3 dz2

a — z d3{p +  2v  ( ^  +Vrr — z Qr2 dz -r d r 2 T  gz 2 J
z d3tp z d2<fi , (1 — 2j/) f  d2tp 1 Si/A 

r0 r QrQQQz r2 Qj-Qz r Y drdO r d$ J

a ee -  (1 2 v )  drt  Z 8r*ez z dS

X .2 SINGLE C RACK  PRO BLEM S  

X .2.1 A  General Problem

Let Cl be a bounded region of the xy-plane with smooth boundary dCl. Then, we 
consider the problem of determining the stresses and displacements in the vicinity of a 

crack tha t occupies the domain Cl and is opened by a symmetric pressure distribution

ozz = - P  (a, y ) , for (x, y) G Cl (X.4)

In order to address this problem we need to find a solution of the equations of 
three dimensional linear elasticity in the domain { (x ,y , z)  £ M3 : \z\ > 0 }, subject to 
the boundary conditions;

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



145

Oij —> 0  as \J x 2 +  y2 +  z2 —> oo (X.5)

ui ( x , y , 0+) -  Ui (x,y,0~)  =  0 for i =  1,2,3, (x, y) G Qc

dij (x,y,Q+) -  Oij (x,y,0~)  =  0  for i, j  =  1 , 2 ,3, (x, y) e  f lc ( X . 6 )

and

<*zx {x, y, 0*) =  azy (x, y, 0*) =  0 for (x, y) G Q.

°zz{x , y ,  0±) =  - P { x , y )  for (x,y)  € Q (X.7)

By virtue of Table 9 we see tha t these conditions are satisfied trivially if (x, y, z)
is given by the following harmonic boundary value problem;

Solve the partial differential equation

S  +  0  +  §  =  Mor  M > M * , y , * ) e R s ( X - 8 )

with boundary conditions

<P(x, y, z) —► 0 as \J x 2 +  y2 +  z2 —> oo (X.9)

<p{x,y,Q+) - v ( x , y , 0 ~ )  = 0 , for (x, y) e  Oc

¥z (®> y,0+) -  <pz (x> V,0_) = ° ifor (*> y) e QC (x.io)
<Pzz (x > V i 0 + ) -  <Pzz (*> y> ° “ ) =  ° » for (*> y )  e

<Pzz 2/> 0 ±) =  P { x , y ) , for (x,y)  G fl (X.11)

If we now express ipz (x, y, z ) in terms of the double layer potential

(pz =d[w{s, t )]  (x , y , z)  (X.12)

we find that

<Pz ( * > 0+) -  <pz (x> °“) = w (*> y) >for (*> y) e n (x.1 3 )
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and that the harmonic boundary problem is solved if w(x , y )  is given by the hyper­
singular integral equation

A 2 f  f  w( s , t )dsd t  „  . . „ . . _
—  /  /  =  P  (x , y ) , for ( x , y ) e f i  (X.14)

Observe tha t the crack opening displacement is then given by

Au2 =  uz (x ,y ,0 +) -  uz (x,y,0~)  =  - - — - w ( x , y )  for ( x , y ) e S l  (X.15)
A4

Now let n  be the unit outward normal at any point P  € dfl. Then, if we move 

a distance d in the direction of n  it is found ([24], pl49) that the normal stress is 
given asymptotically by

~  W + 0  { d )  ( x ' 1 6 )

Similarly, if we move a distance d in the direction of —n  it is found that the crack 
opening displacement is given asymptotically by

A m, 2 (1 — lJ) V2dk1 {P) + 0 ( d ^  (X.17)

The quantity Aq appearing in these expressions is called the opening mode stress 
intensity factor and is of interest to workers in fracture mechanics because it may 

be used to predict the onset of crack propagation. Clearly the opening mode stress 
intensity factor can be obtained directly from the solution of (X.14) via the limit

ki =  —- lim — (X. 18)  
2 d-.0y/2d K J

which can often be evaluated in closed form.

A P en n y  S h ap ed  C rack  P ro b lem

We begin by considering a circular or penny shaped disc of radius a > 0 which 

occupies the region

=  {(r, 6) : 0 < r < a, —7T < 0 < 7r} (X.19)
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of the z — plane and is opened by the symmetric pressure loading

ozz = ~ P  (r, 0) , for (r, 0) e  fl

which leads us to the layer potential solution

<Pz = I)[w(p,d)}(r,9,z)

—  Ao
} i_ r  r  w(p,& 
47r J  -j- J0 j , 2 ,2 _  o ' '

(p, 0) pdpd'd

y jr 2 +  p2 — 2 rp cos (6 — d) + z2 

where w  (p, d) satisfies the hyper-singular integral equation

-  A 2 f f a w  (/>, d) B  (p, 0; f ,  0) p d ^  = ~ P  (r, 0 ) ,
J - 7T JO

for 0 < r  < a, —7r < 9 < or equivalently, the operator equation 

- A 2B 1{f(p,d)} (r,0) = —p(r, 0) e L \ (fl0) 

which is obtained by making the simple change of variables; r = ra, p =  pa,

/< * * )  =  ^ p S L  = - ^ M = ,
« l / l  -  ©

p(r,0) = P(ra,0)  = P ( r , 0 ) ,

and

_  I A  ±  _  2
2 dr2 ^  r dr r2 d92

1 _ 0  1_&_ 
dr2 r dr ^  r2 dO2

— a2A 2

The crack opening displacement is then related to w and /  by 

Auz =  - ^ w ( r , 0 )  =  - ^ /  Va2 -  r 2

and the stress intensity factor takes the form

-1  / ( : . » )ki — lim2 A _r —>a y/2 (a -  r)

147

(X.20)

(X.21)

(X.22)

(X.23)

(X.24)

(X.25)

(X.26)

(X.27)

(X .2 8 )
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X.2.2 Case 1: Constant Pressure

(X.29)

(X.30)

(X.31)

X .2.3 Case 2: B ending Load

Next we consider the case in which the crack is opened by a bending load M  about
the axis, z =  0, x  = b > a. To find the effective pressure we observe that, in the
absence of a crack, the stress on the z — plane is given by

°zz (r , 0, Ô 1) =  M  (b — rcosdj , (X .32)

a rz (r , 0 , 0±) =  a 0 z  (r, 0 ,0±) =  0 (X .33)

by the principle of superposition it now follows that the effective pressure on the 
Penny shaped crack takes the form

P(r ,6 )  = - M { b - r  cos (?) =  (r, 9) +  M ^ c {0 (r, 9 ) , (X .34)

as before, the crack opening displacement is given by

A u z = — -— - w ( r , 9 ) (X .35)

In the case of a constant pressure loading

P M  = p = p J r ± { i » )

the solution, (X.27), yields the crack opening displacement

2n,.< (* .r.?nTp = f1
A“‘ =  1f P V ( ; • « )  ^ 7T

and hence the stress intensity factor

/a Auz 2P  a + r 2P r
fci =  hm —: r — = =  —  lim \  =  — Wa

r^a 2 (1 - 1/) yj2 (a -  r) 7r r-^a \  2 7T

which is readily verified computationally.
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where the w satisfies the hyper-singular integral equation

/ 7r p a

/  w (p, d) B  (p, d\ f ,  6) pd'pdd =  — P  (r, 6 ) , for 0 < r < a, —n < 0 < -n
7T J o

(X.36)
or equivalently /  satisfies the operator equation

- A 2B1 [f(p, tf)] (r, 6) =  -p(r ,  6) e L\  (Q0) (X.37)

which is obtained by making the simple change of variables; r =  ra, p 
b =  ba where

f { p ^ )  =
w (pa, d) w (j0 , d)

M a 2y / l  -  p2 M ay/a2 -  p2 ’

p (r’9') =  =  = b - r c o s 6  = -  -  -cosfl
a m  aM‘ a a

and

d2 1 a  I S 2 2 
A2 =  —  +  +  ——  =  a,2dr2 r  dr ' r2 dd2

a 2 i a  1 a 2
T TT7 +dr2 f  dr f 2 dd2

= a2 A 2

pa and 

(X.38)

(X.39)

(X.40)

The stress intensity factor for this problem is then

(X.41)

or

where we have introduced the scaling factor

(X.42)

ko = —Ma t
1r

(X.43)

For 0 < 0 < 2n the exact solution for this quantity is given by

h  b 2—   cos d
ko a 3

(X.44)
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which has its m axim um  value w hen •& =  n  and in th at case

(X.45)

Figure 8  illustrates the nature of the stress intensity at different points on the edge 

of the crack for differing crack radii and positions of bending loads.

6/ a=2 
b/a=1.5 
b/a=1.25 
b/a=l.1 
b/a=1.01

2.5

Max always at pi

0.5

ih e ta

FIG. 8 . A penny shaped crack of radius a, centered at (0,0,0) and opened by a 
bending force about the line x  — b' > a. Plots show how the scaled stress intensity 
fa c to r  varies w ith  0 fo r  several values o f  b =  b '/a .
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X .2.4  Case 3: Equal and O pposite Point Forces 

Case 3a: T he A xisym m etric Loading Case

We now consider the problem in which a penny shaped crack is opened by equal and 
opposite point forces ± P k  at the positions ^0,0, . First we need to determine
the effective pressure. From Kelvin’s Solution ([20], page 219) for a point force of 

magnitude P  acting in the positive z direction at the origin;

<*zz {r, z) = -

Orz {r, z) = -

iTdz(r , z ) =  0

87T (1 — v )  
p

87T (1 — v )

o 2  323"1

. . r 3rz2

(X.46)

where R  =  v r 2 +  z2

Using this solution, the principle of superposition and the notation 

Rz = J r 2 + (̂ z — h j  , we find tha t the two point loading yields the stresses

<*zz (r,z) = - p

8 7 t ( 1 — u )
(1 -  2u)

(2—A) ^  3(2;—A)
R 3 -  (1  -  2 v)

(2+A) 3(2+^)
R 3 . Rl (X.47)

ffr z ( r , z )  =  8 ^ ;

so that

and

(r, 0 ) =  ^

OQz (r, z) = 0

oez {r, 0 ) =  o rz ( r ,0 ) =  0

1 3h2 -  Rl
Rl  l - v  Rl

hence the effective pressure loading can be written in the form

P( r )  = Pi (r)  + j ^ P 2 (r)

(X.48)

(X.49)

(X.50)

(X.51)

(X.52)
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where

» «  ■ S i  « * »

.  g i i - 1

The crack opening displacement is then given by

A uz —  w (r) = ----- [(1 — v ) wi (r) +  W2 (r)] (X.55)
P A4

where the wk satisfy the integral equations

- A 2 /  f wk (p)B(p,0- , f ,0)pdpd‘& = - P k (r),  (X.56)
J —7T JO

for 0  < r < a, —7r < 0 < it, k =  1 , 2  or equivalently; as operator equations in /

-  A , ® 1 [f(p)} (r, 0) =  - p k(r) e  L\  (fi0) (X.57)

obtained by making the change of variables; r =  ra, p =  pa and h = ha where

47rau;fc (pa) 47ra2wfc (p)

h M  = T 7 T ^ 7  = T V ^ 7 ’ ( x '58)

4-7rn̂  47Tfl̂
pk(r) = ^ P k (ra) = — Pk (r) (X.59)

and

A -  —  — —  -  2
2 dr2 r  dr  r 2 502

1 ^ !
5 r2 r  5 r r 2 50'

=  a2A2 (X.60)

Since (X.56) exhibits axial symmetry it is easily converted to a one dimensional 
integral equation as discussed in Thm. (V I11.7). This leads to the one dimensional 
operator equations

©oLj [/* (p)] (r) =  pk (r) e  L l 0 (0 ,1), for 0 < r  <  1, k  =  1,2 (X.61)
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w h e re

P k  ( r )  =  <

2  h

(r2 +  h2)*

h3 — hr2 

„ (r2 +  /i2 ) 5
=  2

(X.62)

In this case the scaled stress intensity factor may be expressed by

jfci JfcS1} 1 k\(2)

ko ko 1 — v ko

where
k[k  ̂ — —̂  lim / fc( l ) , f o r f c =  1 ,2

wk (r) _  - P
2  r->a- ^ / 2  (a — r) 87ra§ 

and the scaling factor chosen,
_  PKO — 37T̂ a2

is the stress intensity factor for a plane circular crack with symmetrical and opposing 

point forces at the center [23].

(X.63)

(X.64)

(X.65)

It now follows that

fci
k0

7T

8
h  (i) +  j — f2 (i) (X.6 6 )

which can be computed and compared with the exact solution as found in [23]

1 1
+

h2
k0 1 + h? ' 1 -  v  (1  +  h2f

(X.67)

A plot of the results obtained for certain u values is shown next (Figure 9) and 
compares favorably with the known result.
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E  0 .9

U-
0.6

S  0.5

S ° 4
g 0 . 3
CO

0.2

•* * * ■* » i

Ratio h=hya of d istance above and below crack of radius a

FIG. 9. A penny shaped crack of radius a, centered at (0,0,0) and opened by 

point forces ± P k  centered above and below the cracks at (0,0, ± h r) . Plots show how 
the scaled stress intensity factor varies with h = h' ja  for several values of u.

Case 3b: The N on-A xisym m etric Loading Case

This time we are going to have the point forces centered at (6 ,0, ±/i). If we let R  be 

as follows
R  = \J (x — b) 2 +  y2 + h2 

then by virtue of Kelvin’s solution ([20], page 219) it is readily seen that

P  (r, 6) = Pi (r, 0) +  ^ ; P 2 (r, 9) (X.6 8 )
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w h ere

Pi(r ,9)  = 

P2(r,d) =

Ph  
2 tt.R?’
Ph  (2h2 -  Rl)  

47ri?f

and

Ri  {^i 9) =  V r 2 — 2fb cos 0 + b2 4- h2

(X.69)

(X.70)

The crack opening displacement is then given by

1A 1 _  V /A uz =  w (r)
p p

where the wk are solutions of the integral equations

[(1  -  u) Wx (r) + w 2 (r)} (X.71)

-  A 2 [  [  wk (p) B  (p, i9; r, d) pd'pdd = - P k ( r ) , (X.72)
J-1T  JO

for 0 < r < a ,—7r < 0 < 7r,k = 1,2 or equivalently; f k are solutions of the operator 
equations

—A 2B: [fk(p, 9)] (r, 9) = —pk(r, 0) G L\  (Q0) (X.73)

obtained by making the change of variables; r =  ra, p =  pa, b =  /3a and h = 'ya 
where

A  "  T v r ^  ■  ( x -74)

4-7Tf7̂  4-7T/7̂
*) =  — Pk (ra, 6) =  — P  (f, 9) ,

a a 2 1 5  i  52
7777 + 7 777 + 7 5 =  a2A2,

(X.75)

d r 2 r d f  f 2 d 9 2 ™ ’ (X.76)

R 2 = f 2 — 2r6cos 0 +  62 +  h2 =  a2 [r2 — 2r/3 cos 0 +  /?2 +  7 2] =  a2i?i (r, 0) (X.77) 

and noting that

A  -  —  -  ~ 2

2 d r2 r dr  r 2 d92

P( r , e )  = %

p  

47r a 2

2 1 2h2 - R 2
R* +  1 -  v R?

pi (r , o) +  y ~~vP2 ^  9^

P
47ra2

27 1 7 (27 2 ~ R l V
R\  \ - v  R 5

(X.78)

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



156

W e m ust solve ( X . 73 )  as a  full two dim ensional equation. T he scaled stress

intensity factor for this problem has no known closed form solution but will be of the

form
A-i k ^  1

1 l I 1 fX 7 Q)
k0 k 0 ^ ( l - v ) k 0 ( J

where for
k[k) = - 1  lim ^  f k (1,0 ) , for k  = 1,2 (X.80)

1 2 ^ a -  y/2 (a -  r) 87ra§

the scaling factor needed is given by (X 65).

It is now apparent that

k i  _  7T

k0 8
(X.81)

and it is clear, from physical considerations, that the maximum stress intensity factor 
will occur when 6 = 0.

We now exhibit the stress intensity factor with a few graphs illustrating some 
results. Firstly a plot showing the stress intensity factor for a set ratio 7 = ^  =  1, 

and various f3 =  £ and v values (Figure 10). We can see clearly tha t in Figure 10 the 

stress decreases as both v decreases and (5 increases, increasing means the forces 

are moved further away from the crack reducing the effect.
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□  nu=0.4,b®ta=1.2 
j nu=0.3,b«ta=1.2 

nu=0.2.betaa1.2 
nu=0.1,beta=1.2

nu=0.4,beta=1.4 
nu=0.3,beta=1.4 
nu=0.2,beta=1.4 □  
nu=0.1,beta=1.4 □

0.8
:j nu=0.4,beta=1.6 

nu=0.3.beta=1.6 
nu=0.2,beta=1.6 

u  nu=0.1,b«ta=1.6
0.6

nus 0.4,beta=1.8 □
- nu=0.3,beta=1.8 □  
-nu=0.2,b®ta=1.8 □
- nu=0.1,b®ta=1.8 □

0.4
nu=0.4,b®ta=2
nu=0.3,beta=2
nu=0.2,beta=2
nu=0.1,betaa2

Theta

FIG. 10. A penny shaped crack of radius a, centered at (0,0,0) and opened by 
point forces ± P k  at (b, 0, ±.h'). Plots show how the scaled stress intensity factor 
varies with 0 for different values of /3 = b/a for several values of v with 7  =  h /a  =  1.

The next two plots (Figures 11 and 12) have set values of both f3 = 2 and v = 0.4 

and show the effect of varying 7 . In Figure 11 it can be clearly seen that the stress 
increases as 7  increases for very small 7  values. This phenomenon is due to the fact 
that when the height is very small the point forces partially cancel and do not exert 
their full force on the crack edges. Figure 12 shows that when 7  gets bigger (in this 
case bigger than 1 ) the stress intensity drops as the height gets higher and hence 

further away from the cracks.
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0.3 nus 0.4, gamma=1.0, b«ta=2

nu=0.4, gam m a=0.8, b«taa 2

0
Crtu.

1c

0.2

■ nu=0.4, gamma=0.6, b«ta=2
ac
Mu
£
(fl n u -0 .4 , gam ma="0.4, b*ta~2 

■ nu=0.4, gamma-0.2, betas 2
0.05

0 2 33 2 1 1
Theta

FIG. 11. A penny shaped crack of radius a, centered at (0,0,0) and opened by 
point forces ± P k  at (b,0,±h').  Plots show how the scaled stress intensity factor 

varies with 9 for different small values of'y — h/a for v  =  0.4 and (3 =  b/a =  2.
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0 . 3  i- 1111=0.4, gamma=1.0, beta=2

\  ■  nu=0.4, gamma=2, beta

0 . 2 5

0.2 1111=0.4, gamma=3,B 
beta=2

0 . 1 5

■ nu=0.4, gamma=4, beta=2

0.1

nu=0.4, gamma=5, beta=2
0 . 0 5

33 2 0 2
___________  Theta__________________________________

FIG. 1 2 . A penny shaped crack of radius a, centered at (0,0,0) and opened by 
point forces ± P k  at (b, 0, Ph').  Plots show how the scaled stress intensity factor 
varies with 0 for different .medium, to large values of 7  =  h /a  for v = 0.4 and 

(3 =  b/a =  2 .

All these plots indicate the same profile of graph with differing magnitudes. The 

maximum stress is the most important consideration when considering crack prop­
agation and Figures 13 and 14 illustrate the maximum stress intensity factor for 
various 7  and (3 values, first as a three dimensional plot and then as a contour plot. 
Loads directly above the crack and near to the edge clearly produce significantly 
more stress than those further away from the crack. Close to the center of the crack 
would appear to be a point where the stresses are partially balanced.
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FIG. 13. A penny shaped crack of radius a, centered at (0,0,0) and opened by 

point forces ± P k  at (6 ,0, Ph'). Plot shows how the scaled maximum stress intensity 
factor varies with 7  — h ja  and 8 — b/a for u — 0.4.
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Small

Max Stress
Intensity
Factor

beta=b/B
\ Large

FIG. 14. A penny shaped crack of radius a, centered at (0,0,0) and opened by 

point forces ± P k  at (b, 0 , ± /i'). Contour plot shows how the scaled maximum stress 
intensity factor varies with 7  =  h /a  and /3 = b/a for u  — 0.4.

X .3 M ULTIPLE C R ACK  PRO BLEM S  

X .3.1 General Problem

This time we will examine a pair of coplanar penny shaped cracks of radius a centered 
on (±c, 0 ,0 ), c > a, given by LP =  {(x ,y ) : (x c) 2 +  y2 < a2}. These cracks will 
be opened by the loading pressure

<Tzz (x, y, 0) =  - P  (x, y ) , for (x, y) G Q (X.82)

where

{ P + (x,y)  , for (x,y)  e  1
i (X.83)

P~ (x,y)  , for (x,y) e  J
and Q, = fl+ U
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T he crack opening displacem ent will then  be given by

Auz = uz (x , y , 0+) -  uz (x,y,0~)

=  h  -j - t w (x,  y ) , for (x,  y) G 0  (X.84)y  v )

where th e potentia l function is such th at

w+ (x,y)  , for (x,y)  G f l+ 

w ( x , y ) = {   ̂ (X.85)

w~ {x, y) , for (x, y) €

and is given by the pair of hyper-singular equations

A 2 f  f  w+ (s, t )dsdt  _|_ f  f  w~ (s, t )dsdt  — p + ( )

4tt J  Jq+ _  s )2 +  (y -  t )2 4?r J  ^n~ \J (x  — s )2 +  (y — t)2
(X.8 6 )

for (x , y) € 0 + and

A 2 f f  w+ (s, t )dsdt  2 f  f  w~(s , t )dsdt  _  p - ^  ^

4?r n+ \ / ( x  -  s ) 2 +  (y -  t f  4?r J  \ J { x -  s f  + ( y -  t f
(X.87)

for (x, y) G

We will solve these type of problems by splitting (when necessary) the pressure 

function into even and odd components and then exploiting the symmetries these 
individual parts exhibit. We will choose for generality symmetry about the origin so 

that we can assume that;

P~ ( - x ,  - y )  =  ± P + (x,  y ) , for (x, y) G fl+ (X.8 8 )

and it can then  be shown th at the potentia l function exhibits sim ilar sym m etries

w~ (—x , —y) =  ± w + (x , y ) ,  for (x ,y ) G S2+ (X.89)

so that on making the correct change of variables we can reduce (X.8 6 ) and (X.87)
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to the one equation

A2 
4k ±

\ J { x -  s f  +  (y -  t f  \J(x  + s f  + {y + t f  

for (x , y ) € Q+

w+ (s , t ) dsdt = P + (x, y ) ,

(X.90)

Introducing polar coordinates (with c = ac, f  = ar, p = ap)

x  — 6 = f  cos 9 ,y  =  r sin 9 
s — c = p cos i? , t =  p sin 9

and letting
w+ (p, d) = a P y / l  -  p2f  (p, 9) 

P+ 0) =  - p . p (r, 9)

(X.91)

(X.92)

where

d2 I d  I d 2
=  a

dr2 r dr r 2 d92 

we then obtain the integral equation

-A2

dr 1 d  1 d2
dr2 r dr r2 d92

= a2 A 2 (X.93)

for 0 <  r  < 1, —tv < 9 < tv, where 

Kc (Pi^'P,0) = A 2
=Fl

^TVy/r2 +  p2 +  2rp cos (9 — d) +  4c (p cos $ +  r  cos 0) +  4c2

(X.95)
or in operator form

{-A2B1 + K± c} [/ ( p ,  i?)] (r, 9) =  p  (r, 9 ) , for 0 < r < I , — t v  < 9 < t v  (X.96)

where

K i,c [ / (p, d)} (r, 9) =  r  f  w 1 (p) f  (p, 9) K f  (p, d- r, 9) dpdd. (X.97)
J - 7T J O
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The crack opening displacement is then given by

A n, =  = - ^ /  V ^ = 7 ^  (X.98)

and the stress intensity factor by

* . - - i n  = (x .9 9 )
Zt^u  (a — r) 4

The stress intensity factor will be scaled with respect to that for a single disc

2 P
ko — — y/a (X.100)

7T

which then gives

£  =  - = /< ! ,* )  (X.101)

X .3.2 Case 1: C onstant Pressure

In the case of a constant pressure loading

P  (r, 9) = P  (X.102)

which is of even type, we need only solve the operator equation

{—A2B1 +  K+_C} If  (p, 1?)] (r, 0) =  1, for 0 < r < 1, —7r < 6 < tt (X.103)

where
w (p, 6) =  —P\Ja? — p2 f  ( J ,  (X.104)

The crack opening displacement and the stress intensity factor are then given by

A uz = ~ ^ W  (r, e) = ( ^ , e j  v ^ T 7 2  (x.105)

and
h - f / M  (X.1 0 6 )

Figure 15 illustrates the stress intensity for various c values. It can be clearly
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seen that as the cracks become further apart (c increases) the stress will become 
increasingly similar to the single disk problem and hence as c —> oo, jĵ  —> 1. When c 
is small we see that the stress intensity becomes larger particularly at points nearer 

the other crack (0 > |  or 0 < — | ) .  The maximum stress intensity is clearly shown 

to be at 0  =  ± 7r as would be expected since the crack propagation would most likely 
be initiated here.

1.35

c = 1.05 □

1.25

c = 1.14

1.05

□ c ■ 2.4

THETA

FIG. 15. Coplanar penny shaped cracks of radius a, centered at (±c ',0 ,0) and 

opened by a constant pressure load. Plots show how the scaled stress intensity factor 
varies with 6 for several values of c =  d / a.
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X.3.3 Case 2: Bending Load

Here we consider the case where the cracks are opened by a bending force about the
line y = b > a. In the absence of the cracks the tractions on the xy-plane are given

by
azz (x , y, 0) =  M  (b -  y j  , axz (x , y, 0) =  ayz (x, y, 0) =  0 (X.107)

therefore by the principle of superposition the crack load will be

<*zz (%, y, 0) =  - M  ( b - y ' j  , a xz (x , y, 0) =  ayz (x, y, 0) =  0 (X.108)

in this case our pressure function is given by

P ( x , y )  = M ( b - y )  (X.109)

which is neither even or odd so we can split it up and consider

Pa (x,y)  =  —M y  =  —M r  sin6 (X.110)

which is odd and

Pe (x,y) = Mb  (X .lll)

which is even.

The corresponding layer densities wa (p, •&) and we (p, $) are then related to the 

solutions of the integral equations

{—A 2B1 +  [f0 (p,$)\ (r,6) = rs in 0 , for 0 <  r < 1, —7r < 0 < n  (X.112)

and

{—A 2B: + K ^ C} [fe (p, i9)] {r,0) =  1, for 0 < r < 1, —7r < 0 < it (X.113)

via  th e relationships

w0 (p,i?) =  M a \J  a2 -  (? f0 (X.114)

and
we (p,$) = —Mba^Ja2 -  p2f e (X.115)
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The crack opening displacement is then given by

A uz 1 - 1/ K  (r, $) +  w0 (r, i?)]

(X.116)

This time we scale the stress intensity factor with the stress intensity factor for 

a single crack centered on the origin subject to a bending load about the line y = b' 
which can be obtained from X.44 and X.43,

(X.117)

therefore, since

fci =  k° +  kI = — -  lim
[we (r, i?) +  wQ (r, i?)] M ai

(bfe ( l , 9 ) - f 0 (l,9))  (X.118)
y/2 (a -  r) 2

we find that
ki = 3tt [bfe {l,0) -  f 0 {1,9)] 
ko 4 (3b — 2 sin 9) (X.119)

Figure 16 illustrates that the non-symmetrical nature of the stress intensity factor 
which is due to the bending line and the presence of the other disc having competing 

effects on the nature of the stress. The bending causes the stress to be highest at 

x  =  — lowest at |  and symmetrical about the line y — 0. The presence of the 
other disc increases the stress most at points close to it (at x  = n) and least at 

points further away (at x = 0) while being symmetrical about the line x  = c . The 
maximum increase does not occur at the closest point but some point near to i t ’s 
vicinity.

In Figure 17 we change the value of c and it can clearly be seen as the discs 

become further apart that the effect of the other crack on the stresses tends towards 
zero and the scaled stress intensity factor approaches one.
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FIG. 16. Coplanar penny shaped cracks of radius a, centered at (±c', 0,0) and 
opened by a bending force about the line y = b'. Plots show how the scaled stress 
intensity factor varies with 6 for c = d  ja  =  1.4 and several values o fb  = b'/a.

Since the maximum is not this time obvious we will re-scale with the stress in­
tensity factor for a bending load on a single crack (X.43),

2 M  3
ko =  a 2

7r

so that
^  =  - ^ [ 6 / e ( M ) - / 0 (M )] (X.120)
k0 4
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FIG. 17. Coplanar penny shaped cracks of radius a, centered at (±<7,0,0) and 

opened by a bending force about the line y — b'. Plots show how the scaled stress 
intensity factor varies with 6 for b = b'/a =  2.4 and several values of c = P/a.

Figure 18 indicates tha t although the maximum stress intensity factor may this 
time not be at exactly <9 =  — |  it will be close enough for us to assume that it is the 
maximum.

We will now go back to our original scaling and look at

3tt [6/e (1, —I)  — fo  ( l , —I)] 
4 (36 +  2)

(X.121)

firstly for different b values as we vary c as in Figure 19 and then for varying b and 
c values as a contour plot in Figure 20.
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FIG. 18. Coplanar penny shaped cmcks of radius a, centered at (±<^,0, 0) and 

opened by a bending force about the line y = V . Plots show how the alternatively 
scaled stress intensity factor varies with 0 for several values of c = d /a  and b = b'/a.

We can see clearly that as the distance between the cracks increases the scaled 

maximum stress tends towards one indicating the cracks stop affecting each other. 
Figure 19 shows that the stress increases as the bending line is moved further from 

the crack, while Figure 20 indicates this effect slows down as b gets big, visible since 
the contour lines are becoming straight vertical lines.
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1.02 b = 10

□  b = 2
.015

.005

b = 1.2 □

c = c '/a

FIG. 19. Coplanar penny shaped cracks of radius a, centered at ( ic ',0 ,0 )  and 
opened by a bending force about the line y = b'. Plots show how the scaled maximum  
stress intensity factor varies with c = d /a  for several values of b = Ufa.

X .3.4 C ase 3: E qual a n d  O p p o site  P o in t Forces

C ase 3a: P o in t L oads on  th e  z-axis In this case we consider two equal and 
opposite point forces symmetrically placed with respect to the crack surfaces and 
the cracks themselves. Let the point forces ± P k  and be placed at ^0,0, ± h j , then 

Kelvin’s solution shows that in the absence of cracks,

azz (r, 0 ,0) =

<*TZ (r, 0 ,0) =

Ph
47T

1 |̂ 3 h2 - R 2

R 5

a 0z (r, 0,0) =  0
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Sbest Inteniiif 
(Theta = pi/2)

2 3
c = cVa

FIG. 20. Coplanar penny shaped cracks of radius a, centered at (±c', 0,0) and 

opened by a bending force about the line y — b'. Contour plot show how the scaled 
maximum stress intensity factor varies with c =  d  ja  and b =  b'/a.

where
R  = \J  x 2 +  y2 +  fi1 =  \J' r2 + 2rc cos 0 +  c2 +  h2

and
x  =  rc o s6 + c = a ( r cos6 +  c) , y =  r sin9 = a r sin6

therefore by the principle of superposition, our problem is equivalent to the pressur­
ized penny shaped problem with load
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oz z { f ,9 ,0±) =

in which P1 and P2 are both even.

Ph 1 Ph 3h — R 2 

~ R 52nR3 l  — i/ 

- P i ( f , e ) - Y ^ p 2 (r,e)

The crack opening displacement is then given by

wi (r, i9) +    w2 (r, fl)

where the (r, i9), for k — 1,2, can be obtained from the relationship

47TO
/*(/>,») =

the fk  (p, •&) being solutions of

-.Wk (ap, i?), for k = 1,2

{ - A 2B1 +'K+}' [fk (p,#)] {r,0) = p k (r,0) , for 0 < r  <  1, - n  < 9 < tt, k

where r = ar, p — ap, h — ah, c — ac and

„ 47ra2
Pk (r, 9) =  —p ~ P k  (™, 9) =  <

2h
r?3 ,k  1

h (3h2 -  R \ )
,k = 2

with R\ = y/r2 +  2cr cos 9 + c2 + h2

The stress intensity factor for this problem will be in the form

ki = ki } +  Y ~ k^ }

where

1 2  f —*a~ (a -  r) 8na? K

(X.122)

(X.123)

(X.124)

(X.125)

=  1,2  

(X.126)

(X.127)

(X.128)
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If we again scale with (*X\65)

P
k 0  2  3

nza 2

we will obtain

or
k \  7T

&o 8 / i  (1,0) +  j  _  v h  (!; ^) (X.130)

The stress intensity factor will depend on the four parameters; u, c, h and 9. In 
the figures that follow we will set u (u — 0.4) and the vary the other parameters. 
Firstly, in Figure 21 we look at plotted against 9, we set h = 0.5 and look at a 

few different values of c. In Figures 22 and 23 we set c =  1.5 and this time look at 
different values of h. In Figure 24 we look at the maximum stress intensity factor 

(set 9 = n) plotted against h for some different values of c, while in Figure 25 we 
see a contour plot where h is plotted against c with maximum stress intensity the 
contour variable.

The c value represents not just the distance between the cracks but the distance 
the cracks are from the axis upon which the point forces lie. Figure 21 illustrates 

that as c gets larger the stress intensity drops towards zero particularly on the side 
of the crack furthest from both the. other crack and the point forces. Large values of 

the stress intensity factor occur almost entirely in the area around the maximum.
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FIG. 21. Coplanar penny shaped cracks of radius a, centered at ( i c ' ,0 ,0) and 
opened by point forces dbPk at (0,0, ± /i'). Plots show how the scaled stress intensity 
factor varies with 9 for several values of c — c'/a and h — h '/a  = 0.5 when u = 0.4.

In Figure 22 we show that for small values of h, increasing h increases the stress 

intensity, while Figure 23 illustrates than when h gets large enough the stress intensity 
starts decreasing again. This phenomenon is the same as was discussed in reference 

to Figures 11 and 12.
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FIG. 22. Coplanar penny shaped cracks of radius a, centered at (±c/, 0,0) and 
opened by point forces ± P k  at (0,0, ±h'). Plots show how the scaled stress intensity 

factor varies with 9 for several small values o f h — h'/a  and c — d /a  — 1.5 when
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FIG. 23. Coplanar penny shaped cracks of radius a, centered at (±c', 0, 0) and 
opened by point forces ± P k  at (0,0, ±/i'). Plots show how the scaled stress intensity 

factor varies with 0 for several medium to large values o fh  = h '/a  and c — d /a  — 1.5 
when v =  0.4.

In Figure 24 we illustrate for different c values how the maximum stress changes 

as h increases. When h is zero we get the stress to be zero but as h increases the 

stress grows, the growth being both more rapid and greater when c is smaller, then 
rapidly dying away towards zero. Figure 25 shows a contour plot which illustrates 
the effect of varying both c and h.
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□ c = 1.01

c = 1.05

S caled  H eight of Po in t F o rces h =h'/a

FIG. 24. Coplanar penny shaped cracks of radius a, centered at (=tc', 0,0) and 
opened by point forces ± P k  at (0,0, ± h ') . Plots show how the scaled maximum stress 
intensity factor varies with h =  h '/a  for several values of c = d /a  when v  =  0.4.
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Max Sbess

Scaled Center of Crack c =c7a

FIG. 25. Coplanar penny shaped cracks of radius a, centered at ( ic ',0 ,0 )  and 

opened by point forces ± P k  at (0,0, ±h'). Contour plot shows how the scaled maxi­
mum stress intensity factor varies with h = h!/a and c — d /a  when v  =  0.4.

C ase 3b: L oading  A bove a n d  B elow  th e  C en te r  o f E ach  D isc In this case 

we will have two equal and opposite point forces above and below the center of each 
crack surface. Let the point forces ± P k  be placed at (̂ —d ,0 , ±h^J and (d , 0, ,

then in the absence of cracks, Kelvin’s solution shows that

a „  ( r ,  0 , 0 )  =  & ! _|_ _2 _| L_ /  [3*a-fl?] +  I ^ i l  Vf ^  Sf ^  l-*- \  flf ^  j (X.131)

&0 Z (r, 0 ,0) =  arz (r, 9 ,0) =  0

where
R i =  )/(ax  — c)2 +  y2 + h2 =  r2 +  h2,h2 =  y f (X.132)
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and

R 2 =  \J{x  4- c)2 +  y2 +  h2 =  \J r 2 + Arc cos 0 +  4c2 4- h2 

x = r cos 0 +  c =  a (r cos 0 +  c ) , y =  r  sin 0 = ar sin 0

(X .1 3 3 )

by the principle of superposition, our problem is equivalent to the pressurized penny 

shaped problem with load

° z z  ( r , 0 , 0 * )

=  - p i ( r , O ) - — P2 (r,0)

Ph (  1
+

Ph
2?T \ R \  R lJ  \ ~ v  I Rl

in which Pi and P2 are both even.

The crack opening displacement is then given by

3 h - R \ 3 h - R 2
1 . - +  -L . -*

(X.134)

(X.135)

W\ (r, 7?) +  - — - w 2 (r, i9) (X.136)

where the «;*.(/, 1?), for k = 1,2, are obtained from the equations

{ - A 2B1 +  K+} [fk (p,tf)} (r,0) = p k (r,0) , for 0 < r  < 1 , - tt < 0 < n ,k  =  1,2
(X.137)

in which r = ar, p = ap, h = ah , c = ac

wk (ap, 7?) =  -— \ / l  -  P2fk {p, 0) ,  for k = 1,2 
47ra

(X.138)

and

, A: =  1

Pk (r,6) =  Pk {ra,0) =
2/1 («\ + k )

(X.139)

where =  \Jr2 + h2, R 2 = \Jr2 +  4cr cos 0 + 4c2 4- h2

This time we scale with respect to the stress intensity factor for a plane circular
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crack acted on by equal and opposite axisymmetric point forces (see (X.67))

W )  ( x ' 1 4 0 )

then since

where

we have

kx = k<x) +  (X.141)

k ?  =  lim -7 (r̂ } = ^ f k (l ,0)  (X.142)
1 2 r—>a~ yj2 {a -  f)  87rai  ̂ '

|  =  [(1 -  * ) / .  ( M )  +  h  (M )] [(1 J / (^ ) +  /,2| (X.143)

We finish the chapter by presenting some figures that illustrate a number of results 

for the case in which v  is again fixed at 0.4. Firstly we fix h and look at the stress 

intensity factor for various distances between the cracks as in Figure 26. We can 
clearly see that as c increases the effect of the second crack on the stresses decreases 
towards zero and when the cracks are close the stress increases drastically at the 
points closest to the other crack.

In Figure 27 we fix c and vary the heights of the point loads. We can see that 

as h increases the effect of the second crack increases as the loads focus on the 
area between the two cracks. The reader should remember tha t we are scaling with 
the result from a single crack so that although the actual stress will decrease as 
we increase h enough, it will decrease much slower when there are two cracks close 
together so that the scaled intensity will continue to increase as we increase h. This 
phenomenon is again illustrated when we examine the maximum stress intensity in 
Figures 28 and 29 as is the decrease in the effects of the second crack as they move 
apart.
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FIG. 26. Coplanar penny shaped cracks of radius a, centered at (itc', 0,0) and 

opened by point forces ± P k  centered above and below the cracks at (±c', 0, ±h'). Plots 
show how the scaled stress intensity factor varies with 9 for h = h '/a  =  0.5; v = 0.4 

and several values of c =  d /a .

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



183

O 1.45

«  1.35

1.25

1.05

TKETA

FIG. 27. Coplanar penny shaped cracks of radius a, centered at (± c ',0 ,0) and 
opened by point forces ± P k  centered above and below the cracks at (±c', 0, ±h'). Plots 

show how the scaled stress intensity factor varies with 0 for c = d /a  — 1.2, v  =  0.4 

and several values of h = h'/a.
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UL

h = 1.6

c = c'/a

FIG. 28. Coplanar penny shaped cracks of radius a, centered at (±cy, 0,0) and 
opened by point forces ± P k  centered above and below the cracks at (± d  ,0 ,± h ') . 
Plots show how the scaled maximum stress intensity factor (for u =  0.4) varies with 
h = h '/a  for several values of c = d /a .
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FIG. 29. Coplanar penny shaped cracks of radius a, centered at (± c ;, 0 ,0 )  and 

opened by point forces ± P k  centered above and below the cracks at (itc', 0, ±/i'). 
Contour plot show how the scaled maximum stress intensity factor (for u = 0.4)  

varies with both h =  h '/a  and c =  d / a.
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CHAPTER XI 

SUMMARY AND FUTURE WORK

In this chapter we do a brief summary of those achievements documented earlier in 

the thesis. That is followed by a discussion on some possible future developments 
and related applications of the work.

XI. 1 SU M M AR Y

The work documented herein draws upon a variety of ideas from both classical and 
contemporary mathematics and is motivated by the desire to understand and solve 
the singular integral equations of potential theory. While the intent was to produce 
tools and techniques for the solution of physical problems, we believe that much of 
the analysis presented is worthy of investigation in its own right. It is hoped that 

the Hilbert spaces and operators introduced will be of interest to others and that the 
numerical procedures developed will prove useful to many.

For both classes of boundary integral equations considered, numerical schemes 
were developed using both collocation and Galerkin methods. The Convergence of 
the Galerkin methods was proven analytically while the convergence of the colloca­

tion methods was verified experimentally. Since the Galerkin methods are compu­
tationally expensive particularly when double or quadruple numerical integration is 
involved, it was correctly anticipated that collocation would be the faster method. 
No analytical analysis of convergence rates was undertaken but experimentally it 

would appear that collocation methods converge as quickly if not quicker than the 
Galerkin for the chosen collocation points. Convergence rates are an aspect to be 

considered for future analysis and were not considered vital for this thesis.

Once we had established the numerical methods for each type of problem we 
were then able to apply the techniques to solve problems in both Potential Theory 
and Fracture Mechanics. Our problems were restricted to those involving single or 
multiple circular domains. First of all we examined charged circular discs placed in 
various electrical fields, problems tha t could be solved via weakly singular integral 
equations. The methods were first applied to simple problems with a previously
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known solution. Comparison with known solutions allowed us to illustrate the ef­
fectiveness, efficiency and accuracy of the technique. We then tackled some more

ods. Some problems involving penny shaped cracks in an elastic medium subject to 

various external loads, were examined next. These type of problems can be solved

our methods efficiently. We were able to show how the special functions, Hilbert

There is plenty of scope for future development of this present work and for ex­

panding the range of future applications. Some of these ideas for future development 
will be discussed in the next section.

XI.2 E X T E N SIO N  OF LA PLA CIA N  B A SE D  B O U N D A R Y  VALUE  
PRO BLEM S

The most obvious restriction we have placed on all the problems we have examined is 

that we have only looked at circular domains. Some preliminary work on conformal 

mappings has indicated that Boussinesq’ Equation on a circular domain can be con­
formally mapped onto other domains. Using conformal mappings we could then look 

at a much broader range of problems with the ultimate goal being to use numerical 
conformal mappings to map problems on any type of domain into the unit circle (or 
some other domain with previously discovered solution algorithm), solve the Integral 
Equations using our techniques and then map back into the original domain to get 
the final solution. This is a broad area with much potential and in what follows we 
illustrate the effect general mappings have on the Boussinesq Equation and provide 
a basic illustrative example to show how to apply the theory to a real problem.

XI.2.1 Conformal Mapping of Boussinesq’s Equation

If we consider the following arbitrary Boussinesq Equation

difficult, previously unsolved problems to illustrate further capabilities for our meth-

via our class of hyper-singular integral equations. We showed how problems can be 

solved for multiple circular domains and how symmetries can be exploited to apply

space theory and the algorithms we had developed could be applied in a practical 

sense.

4> (£, V) d£dr] =  g( x , y ) , ( x , y )  € D (XI.1)
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and take the conformal mapping

with inverse

p : D ^ n (XI.2)

such that

w = p (z) = u (x , y ) + iv ( x , y ) , z = q (w) — x  (u , v ) 4- iy (u, v )

T =  p( ( )  = + = q(r)  =S ( s , t ) + i r } ( s 7t) (XI.3)

then

and

d(£,y)
d(s , t )

d(
dr Q  ( T )

\ J ( x -  £)2 + (y- nf  ^  ^

w — r
q (w) -  q (t ) \ J \U -  s f  + ( v ~  t f

(XI.4)

(XI.5)

The Integral Equation (XI .  1) thus becomes

JL ^/(«  -  s)2 + ( v -  t f  

Since we can expand q (w) in a Taylor Series about r  as follows

dsdt = g[x (u , v ) , y (u , u )], (u , v) € tt

(XI.6)

q (w) =  q ( t )  +  </ (r) (a; — r)  +  e (w — r)  

where e —> 0 as |tw — r | —>0, we can hence write that

(XI.7)

W  — T
q (r )  =

Q ( t )

q(w)  — q ( t ) q (r )  +  e

= 1 +  |u; — r

(XI.8)

( X I . 9 )

for some K  ( w , t ) non-singular at w = r.
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The integral equation ( X I . 6) can then be written in the form

It. \ J ( u -  s f  + ( v -  t f
+  K  (u , v\ s , t )  ̂ 4> (s, t) dsdt = G (u, v ) , (u , v) € Q

(XI. 10)
where

=  q  ( t )  a[$(s, t )  ,T](s,t)} 

G(u, v)  =  g[x(u, v)  , y(u,v)]

(XI.11) 

(XI. 12)

The behavior of K  will predominantly depend on q (r) which for sufficiently 
smooth mappings should be non-singular giving us the desired type of integral equa­
tion.

The Bilinear M apping

If we look at the special case where p (z) is the bilinear mapping

p (z ) =  j  ,ad — be ^  0cz +  d

then
W  — T 4 (r )

2 |ad — bc\ |cw — d\
q ( w ) - q  (t ) 

and we get the following integral equation

| c r — d\

I I n \J (u  — s)2 + (v — t)'
(s , t ) dsdt =  G (u , v) ,  (u , « ) s Q

where

®(s, t )  =  i— [£ (s > *) > *7 (s > *)]

G(u, v)  =

|cs — d T  icf | 
ff [a; (u,v) , y(u,v)}  

\cu — d +  icv I

(XI. 13)

(XI. 14)

(XI. 15)

(XI. 16) 

(XI. 17)

It is now clear that the weakly singular equation of interest is structurally in­
variant under a wide class of conformal mappings opening up the possibility that
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equations with general domains can be mapped to equations with circular domains. 

Moreover, since
V V  [p (*)] =  p (z) 2 V 20 H  (XI.18)

it is clear tha t the hyper-singular equation exhibits a similar structural invariance.

We now provide a basic illustrative example to show how this theory can be 
applied in a practical sense.

E xam ple: B oussinesq’s E q u a tio n  on  th e  E x te rio r  o f th e  U n it D isk If we

consider the Dirichlet Problem from Chapter II on the outside of the unit disc

S =  {(r,0,O) ; 1 < r  < oo, — tt < 0 < tt} (XI. 19)

with boundary condition (II.  39) given by

V  (r, 0,0) = g  (r, 9) , for (r, 9,0) £ S  (XI.20)

then V  will be given by the single layer potential

oo 7r

■ V (r A  * ) -  I f  * ( p . < W  , (XI.2 1 )
J J y / r2 + fr — 2rpcos (9 — v)  +  z l
1 -7 T

provided the density function a (p , D) satisfies the boundary integral equation

00 7r

J r  g M , ! o i M 0 ) e S  (XI.22)
J J J r 1 + p1 — 2rp cos (9 — v)
1 —7r

If we consider the Boussinesq like operator

OO 7T

*  1/ (P. *)] (>•,») =  /  /  /  dpM  (XI.23)
J J \ / r l +  cr — 2rpcos [9 — v)1 —7T

where 1 < r  < 9, —ir <  9 < n and the weight function zu (p) is given as follows
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we can show using the simple self-inverting conformal mapping z =  ^  (which maps 
the unit circle inside to out) tha t it has eigenvectors

=  (XI.25)

corresponding to the eigenvalues as stated in the following theorem.

T h eo rem  X I. 1

K»» (P> 0)] (r, 0) =  £°mn (p, &), m = 0, ±1, ± 2 , n = 0 ,1 ,2 ,... (XI.26)

P ro o f. Consider the map r =  - applied to

OO TT _ L g O  ( j _  J  )  1

f  [ « ! . ( « ,a m  (p ,-) -  h z r k  ^
7 J y j p 2 +  Po -  2PPo cos Wo -

zdpndti 0 
„ . +  Po -  2PPo cos (0o -  0)

1 — 7T

°r~f roe°m n (r0, e 0) - ^  . .

7  7  ■■ \ /  r- -  rf. -  2 rrocos{0 -  0<,) V r o /
1  7T 0

1 " e^ ( r0;P0) ^ ^
V  1~ r o

y /r2 + r0 -  2 rr0 cos (0 -  0O)r  J  J  / o o  ̂ ' ! ^ F ^ d r od0o
0  — 7T

h  (VI . 21)
^|m|n 

1 1

1
' | m | n

£mn(P,0) ■

We can therefore solve (XI .  22) by expanding as follows

OO OO
a ( p , d ) p ^ / p 2 - l  = f ( p , # )  = E  E / - emn(P,0) (XI.27)

m =  — 00 n = 0

and OO OO

0 M )  =  J 2  S  9 m n e l (r, 6) (XI.28)
m= — 0 0  n=0
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to obtain the solution

OO 00

Qmn o
ran (X I .2 9 )

We have hence illustrated in this simple example how the use of conformal map­
pings could lead to solving a much greater range of problems.

XI.3 E X TE N SIO N S TO TH E HELMHOLTZ EQ UATIO N A N D  
ACO USTICS

Throughout this dissertation we have looked at the Integral Equations resulting from 
Laplace’s Equation on a circular domain. The natural extension is to consider the 
Helmholtz Equation

and reduces to Laplace’s Equation when k =  0.

W ithout going into any details when we replace Laplace’s Equation in our work

where K  (r, p) is a non-singular kernel.

It is our belief tha t with some work similar results can be produced that could

(V 2 +  k2) $  =  0 (XI.30)

which admits the free space Green’s function

e i k \ r - p \

(XI.31)

with the Helmholtz Equation, we can ultimately produce the weakly singular equa­
tions

+  K  ( r , p) /  (p) dp = g (r) , for f  E Cl

and the hyper-singular integral equations

+  K  (r, p) /  (p) dp = g (r) , for r G Q (XI.33)
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be of great significance in the field of Acoustics. Since,

e ik\r-p\  ^
,  +  k ( r ,p) (XI.34)
47r \r — p\ 47r |r — p\

where
1 _  eik\r-p\

= (XI.35)

is non-singular the previously discussed methods can be applied to solve these equa­

tions. The techniques developed may therefore prove to be useful in fields such as 
Acoustics and Electromagnetics.
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