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ABSTRACT

A TECHNIQUE FOR SOLVING THE SINGULAR
INTEGRAL EQUATIONS OF POTENTIAL THEORY

Brian George Burns
Old Dominion University, 2007
Director: Dr. John Tweed

The singular integral equations of Potential Theory are investigated using ideas from
both classical and contemporary mathematics. The goal of this semi-analytic ap-
proach is to produce numerical schemes that are both general and computationally
simple. Previous works based on classical methods have yielded solutions only for
very special cases while contemporary methods such as finite differences, finite el-
ements and boundary element techniques are computationally extensive. Since the
two-dimensional integral equations of interest exhibit structural invariance under a
wide class of conformal mappings initial emphasis is placed on circular domains. By
Fourier expansion with respect to the angular variable, such two-dimensional integral
equations yield simultaneous systems of one-dimensional integral equations that, in
many cases, uncouple. Integral transform techniques and classical function theory
are used to identify the eigenfunctions associated with the dominant parts of the one-
dimensional singular equations. Hilbert spaces spanned by these eigenfunctions are
then constructed and an operator theory developed for the general class of integral
equations. Numerical algorithms are derived for both Galerkin and collocation solu-
tion techniques with convergence proved in the Galerkin case and collocation method
verified experimentally. A generalization of the Hilbert space theory is then applied
to the two-dimensional case with eigenfunctions created by combining the angular
Fourier terms with the radial eigenfunctions of the dominant one-dimensional parts.
Numerical algorithms based Galerkin and collocation methods are again derived and
used to solve the two-dimensional equations. The techniques developed are used to
solve a number of both previously known and new problems in Electrostatics and
Fracture Mechanics. Simple layer potential representations yield weakly singular in-
tegral equations for the induced charge on disc shaped conductors that are placed in
an electrostatic field. Similarly, double layer potentials yield hyper-singular integral

equations for the crack opening displacement of penny shaped cracks in an elastic
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solid under various loading conditions. Conformal mapping techniques for solving
problems on non-circular domains are also briefly discussed as are extensions to fields

that are governed by the Helmholtz Equation.
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CHAPTER I

INTRODUCTION

The objective of the research upon which this thesis is based is to solve the
two types of Boundary Integral Equations shown in (.1} and (7.2). {/.1) is weakly
singular in nature, as a result of its dominant kernel ﬁ, while (1.2) is hyper-singular

as a result of applying the Laplacian operator giving a Hadamard type singularity.

o [ [{#

A2+m)47r/f P A REA) F(BAAG) =), FeQCR  (12)

HREH D AAP =9 ,FeQcR? (L)

=

where x is a constant possibly zero.

Both of these equations arise from boundary value problems that model a broad
range of physical problems, particularly those in or relating to potential theory. The
ultimate objective is to be able to solve equations (7.1) and (1.2) for all reasonable
domains £ C R?. The work outlined in this thesis is however almost entirely focused
on domains that are circular in nature, although Chapter XI outlines future work
involving conformal mappings that is geared towards dealing with the more general

case. The Integral Equations, shown in (/.3) and (7.4), are those we will focus upon.

/0 [1 {47r\/.02+?'2—12rpcos(9—-19) +R (pr 19; 7 9)} f (P, 19) wO (P) d’t?dp =g (?", 9) (13)

1 w
— 1 . 1 —
oot [ [ty T ROARO | 1 (0,00 (9)d0dp = 91,0
(1.4)
0 <r<l,—7 < # <7, where w* (p) are weight functions, « a constant possibly zero,

R (p,9;7,6) a suitably continuous kernel and g (r,#) a suitably smooth function.

By Fourier expansion with respect to the angular variable each of these equations

OThis dissertation follows the style of The Siam Journal on Optimization
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yields a simultaneous system of one dimensional integral equations. In many cases
these systems uncouple to produce a weakly singular equation of the type (7.5) or a
hyper-singular equation of the type (/.6) where the Hadamard singularity D,.{,, (p,7)
must be considered in the proper way.

/ﬂ {n (pv7) + k(0 )} u® (0) f () dp = g (r) ,0 <7 < 1 (L5)

| Bt (0.1) + 1 (0,1 + B 0} () () = 9 1) 0 <7 <1 (L)

wherem = 0,1, 2, ..., K, a constant possibly zero, & (p, r) a suitably continuous kernel,

g(r) a suitably smooth function and D,, a sccond order differential operator.

In each case the dominant term is derived from the weakly singular kernel

1 Q p®+r?
NI m=} 2pr

In (0,7) ] , form=0,1,2,3, ... (1.7)

which is defined in terms of the ring function {@Q,,_ 1 (z)} or the Legendre function
of the second kind (e.g. [1], section 32).

Eigenfunctions associated with the dominant parts of (1.5) and (7.6) form com-
plete orthogonal sets that facilitate the solution of these equations and their two-

dimensional counterparts (1.3) and (7.4).

The different stages involved in the processes of modeling and solving the types
of physical problems that we are concerned with are outlined in Figure 1.
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Physical
Problem

l Stage 1

Boundary
Value
Problem

l Stage 2

2-D Boundary
Integral Equations

Stage 3 / Stage 4a

1-D Integral

Equations
Numerical
Stage 4b Problem
/ Stage 5

Desired
Solutions

FIG. 1. Outline of methodology.

Stages 1 and 2 of Figure 1 are already well established but solutions to the weakly
singular and especially the hyper-singular integral equations have been historically
hard to find. Some particular solutions have been found for specific problems (such
as those given in the Sneddon books [2, 3]) but they are generally very specific
and complicated. More recently a variety of alternate methods have been employed
including finite differences, finite elements and boundary element techniques all of
which are computationally extensive. The approach taken here is semi-analytic and
although closer in spirit to the works referenced in Sneddon (2, 3] it does produce

numerical solution techniques.

Preliminary results outlined in Chapter II establish the notation to be used and
introduce concepts and ideas that are needed for a proper understanding of subse-

quent materials.

Chapter III introduces the Hilbert spaces spanned by the eigenfunctions of the
dominant integral equations associated with (7.5) and (.6) . The eigen-structure of
the corresponding operators is examined in detail and the tools needed to solve (I.5)

and (7.6) as operator equations in Hilbert space are developed.
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In Chapters IV and V the one dimensional weakly singular (Chapter IV) and
hyper-singular (Chapter V) integral equations are solved as operator equations in
Hilbert Space. As well as finding solutions that exist (given set conditions) numer-
ical algorithms are developed for both Galerkin and collocation methods. These
algorithms are tested in Fortran with artificially constructed problems. In terms of
Figure 1, this is considered to cover stages 4b to 5.

Attention is then focused on the two-dimensional integral equations via both
Stages 3 to 4b and directly via Stage 4a of Figure 1. We are able to use the the-
ory from the one dimensional problems to generalize and produce eigenvalues and
eigenvectors for the two-dimensional dominant operators and again construct Hilbert
spaces spanned by the eigenfunctions. Chapter VI builds on Chapter III and devel-
ops the Hilbert space theory required to solve the two-dimensional integral equations
as operator equations in Hilbert space. Chapter VII builds on Chapter IV while
Chapter VIII builds on Chapter V, solving the two-dimensional integral equations
and hence dealing with Stages 3, 4 and 5 of Figure 1.

In Chapters IX and X we look at specific applications illustrating the procedures
in every stage of Figure 1. Firstly in Chapter IX we look at certain Electrostatic
problems using Potential Theory. Using tools developed in Chapter II, we can model
the effects of placing charged discs in electrostatic fields as Boundary Value Problems
(Stage 1 of Figure 1) and hence as two-dimensional weakly singular integral equations
(Stage 2 of Figure 1). By looking at a variety of problems we can obtain solutions via
both Stages 3 and 4b or directly via Stage 4a {of Figure 1) to get the final solution
in Stage 5. We first look at simple problems with a known final solution to confirm
that the solutions obtained via our method are accurate. More complicated problems
with less readily known or unknown solutions are then considered to illustrate the

capabilities of the method.

Some Crack Problems in Elasticity are examined in Chapter X. Using the tools
developed in Chapter II we can model the stress effects of external forces on cracks
as Boundary Value Problems (Stage 1 of Figure 1) and hence this time as two-
dimensional hyper-singular integral equations (Stage 2 of Figure 1). We again look at
a variety of problems both known and unknown, solved in various ways, to illustrate

the capabilities of the methods.
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In Chapter XI we summarize what has been achieved and examine possible ad-
vances and further applications for the future. Both direct continuation of the work
and different directions are discussed. Two main themes are highlighted. The first
being the use of conformal mappings to expand the scope of the Boundary Value
Problems that can be solved. The second being an expansion on the type of Bound-

ary Value Problems and hence Boundary Integral Equations considered.
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CHAPTER II
PRELIMINARY RESULTS

II.1 WEBER-SCHAFHEITLIN INTEGRALS

The Weber-Schafheitlin Integral
/ t2J, (at) J, (bt)dt, a>0,b>0 (IL.1)
t]

is convergent if Re(+v+1) > Re(A) > —1 and a # b, or if Re(u+v+1) > Re (A} > 0
and a = b.

It is discussed in great detail by Watson [4] who investigates many cases. The
case of interest to us is that of Sonine and Schafheitlin which, as shown by Sneddon

[2], may be expressed in the following convenient form;

The integral -
/ 1 I _g (at) J,_; (bt) dt (I1.2)
V]

takes the value

2

y—1
" T{a) @, B;7; 2—2> fd<b<a (IL.3)

e i

and the value

a® "I (a)
2y Bp2a— v+l (y — ) (e — 3 + 1)

2
oF) (a,a—fﬁ—l;a—ﬁ—l—l; %) (IL4)

if0<a<b.

The case a = b is not covered by this result and needs to be derived independently

if wanted.

Several special cases of the Sonine-Schafheitlin result will prove to be useful in
our subsequent analysis. Before exhibiting these however, we will find it convenient
to introduce the functions t7 {p)} and u™ (p) which are defined for 0 < p < 1 and

m,n =0,1,2,.... These functions are expressed in terms of the Associated Legendre
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Polynomials P (z) and will form orthonormal bases for the Hilbert spaces in which

our analysis will be carried out.

Definition II1.1

07 (p) = Ty Phpam (VI— #7) ,0< p <1 (IL5)
B vme1 (V 1~ pz)
() = U —0<p<1 (IL6)
I—p
where
(4n + 2m + 1) (2n)!
o= \/ {2n + 2m)! (1L.7)

[ = \/ dn + 2m + 3) (2n + 1)! (18)

" (2n+2m +1)!
endm,n=0,1,2, ... .

Theorem I1.2 f0°° F T yznss () I (pt) dt =

F(m+n+1)H{l—p)pm (1- )"
21T (m+1)T(n+ k)

2 (—n,m—|—n+k;m+ lgpz) (IL.9)

where k > 0;p > 0;m,n=20,1,2... and H (z) is the Heaviside function.

Proof. Leta=m+n+1,8=1—-k—n,y=m+1l,a=1andb=p in{I1.3) and
(I1.4). Then, if 0 < p < 1, (I11.3} yields
fgoo tl_k']m+2n+k (t) Jm (pt) dt

~ I'm4+n+1)p"
210 (m+ )T {n+k)

2Fi{m+n+1,1-k—nm+1;p°)

_T(m+n+1)pm(1-pA""
- 2= (m + 1) T (n + k)

9 F1 (—n,m+n+k;m+1;pz)

where we have made use of the linear hypergeometric Transformation (15.3.3 of [5])

oFy (a,b;62) = {1 — 2)°°7° oF (c—a,c — b;c; 2) (I1.10)
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Additionally, ﬁ = F(ln) = 0 and hence from (I1.4) we can see the integral is

zero when p> 1.1

Corollary I1.3

/mt%J 1 (8) I (pt) dt = A H(l =) m (p) (IL.11)
A m+2n+3 T ﬂ n
where 9 1
1\ Ini192nt+m+g
A — (=1)™ (m + n)ni2 (112)

vV (2m + 2n)! (2n)! (4n + 2m + 1)

Proof. Putting k =} in (I1.9) yields
Jo 5 T a1 (8) I (pt) dt

V2 (m+n)H(Q — p?)p™ P (
mIE(n+ 1) /1—p2
(=1)" V2 (m + n)1222n127m! (2n) H(1 — p*)p™ pm s

miy/7 (2n)! (2m + 2n)lp™ I ( ks )

(=)™ (m + n)lp12?™ms H(1 - p%) (VIi—#)
ﬁ(2n + 2m)' 1 — p2 2n+m

(=1)™ (m + r)Ini220tm+s (1 %)
Vr2m+ 201 2n) (dn +2m+1) /1-p% "

1 2
—n,m+n+§;m+l;p

(p)

where we have utilized the result (15.4.13 of [5]);
forO<z <1
a—b—%

o F) (b,a;a +b+ %; 9:) = 2e+b=3T (a +b+ %) phde-t) pa—e? (1) (1113)

and the relationship ([1], Sect. 60, 23)

{n —m)!

P (x) = (—1)™ m

Pr(z) ® (11.14)
Corollary IL.4 For p > 0,

/ 2 ponig (8) I (pt) dt = BuunH (1= p*) V1= 027 (p) (IL.15)
0
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where .
B (—1)™ (m + n)Inl22ntmts

~ J/r(@m+2n+ 1) (20 + 1)l (@n + 2m + 3) (I1.16)

Proof. Putting k =2 in (11.9) yields
fnw £ m+2n+3 () I (pt) dt

(m +n)H(1 - p*)p™/1— P (
V2ml(n+ )T (n+ 1) =

(=1)™ (m + n)nI22+m+3 ——
VT (2n+2m + 1) H(1 =) V1= PP ( 1—’02)

(—]_)m (7n + n)!n!22"+m+% 2
) H({l- 1 — p2y™
V7 (2m + 2n 4+ 1)1 (2n + 1) (4n + 2m + 3) ( p)\/—Pun (p)

3 2
—n,m+n+§;m+1;p

where we have made use of the result (15.4.21 of [5]);
for0<z <1

L\ g s 1y 6P (visa)
il bae+b——52)=2"""3Tla+b— 2 IL.17
O R G Vi-s (D

together with (I1.14) A

Theorem I1.5 f0°° 57 T nvonak (8) T (pt) dt =

F'(m+n+k)p™

— k; 1; p? I1.1
N (m + 1)T (n + 1) 2P (-nmtn+kmt 1 o) (IL18)

0<kO0<p<lmmn=012,...

Proof. Seta=m+n+k,B=-ny=m+1l,a=1andb=pin([14), then for
d<p<l

/ t* 7 T anak (£) Jom (pt) dt
¢

. Cim+n+1)p™ s o,
T PR D (m+ DT (n+ k) 2Fy (Mt n otk —nym 15 07)
Fim+n+k)p™ \

P (m ¥ DT (ny ) 2 Cmmtntkim i0°)

where we have again made use of the hypergeometric transformation (11.10) A
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Corollary I1.6 For0 < p<1,

/(; ~ 5 aonst (8) Jon (1) dt = Crant? (9, (11.19)
where
1y t(2n)!
Crin = 22n+m+(§ (l,l + n)ln! \/7r Ei:?:: 22::):?)‘ (T1.20)
1

Proof. Putk = = in (I1.18), then for0 < p< 1

2

| i (6 I (ot
Q

[(m+n+3)™ 1
= ( 1)f 2F1(—-n,m+n+§;m+1;p2)

V2m!n!
= ) )Py (VI )

2 22+m (m 4 p)lp!” 2t
using (I1.13) and (I1.14)
B (—1)™ n@m 2@,
il (m )t (Gnrem+1) "

Corollary IL.7 For0 < p <1,
[ ihnnnag () I (01) dt = Dy (9 (Ir.21)
0

where

(-)™ \/w (2n + 1)1 (2n + 2m + 1)!

D, =
T 2ntmtpt (m 4 ) 4n +2m + 3

(I1.22)
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Proof. Putk = ; into (11.18) then

| sy @ oty

2 nr Ly pm
= \/_(m+n+2) (m+n+2)p gFl(—n,m+n+g;m+1;p2)

m!n!

2 12 2n)1p™ (—1)" 2™m)

- Vrlmtntg) Omt IR DT gt s (VI )
2nH2mmint (m + n)! (2m + 2n + D)1/1 — p2pm nramy

using (I1.17} and (11.14)

(-n)™ \/w(?n-}-l)!(?n—l—?m—l—l)! .
2ertmtlpl (m + n)! dn+2m+3 Un
using (I1.6),(11.8) W

()

I.2 LAYER POTENTIAL SOLUTIONS TO LAPLACIAN BOUND-
ARY VALUE PROBLEMS

Integral equations provide us with a useful formulation of the boundary value prob-
lems of potential theory. Such equations are often derived from the representation
of harmonic functions by single or double surface layer potentials. The surface in
question is usually the boundary of the domain in which the problem is to be solved
and the resulting integral equations are then called boundary integral equations. For
this reason we provide a brief summary of the necessary properties of single and

double layer potentials.

We recall that a function f (7} satisfies a Holder condition in a domain Q C R" if
If (7)) — f)l<D|fi—7] for0<v<1,D>0 (11.23)
for any two distinct points 71,75 € 1.

It should be noted that Hélder continuity is stronger than continuity but not as
strong as differentiability.

We will assume that the surfaces over which the layers are to be defined are Lya-
punov. Recall that a surface is Lyapunov if it is smooth, possesses a normal line and
tangent plane at each (non-boundary) point on it and that these vary continuously

as we move from point to point on the surface. This implies the existence of local
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coordinates {z,y, z) at any point p on the surface, the z — axis being along the normal
and the x and y axes lying in the tangent plane. In a neighborhood of p the surface
has equation z = z(z,y) and the partial derivatives z,(z,¥), 2,(x,y) exist and are

Holder continuous.

In the remainder of the section S will denote an orientated, open, bounded Lya-
punov surface. ﬁ, Q will be position vectors of points P,Q € R? and 7, § the position
vectors of points p,q € S. The positive (outward) unit normal at a point p € 5 will
be donated by 7.

Let € C R? be a neighborhood containing S in its interior. Then if f (}5) is
defined and continuous in Q\S we define f= (7) to be the limit as P approaches 7
along the normal from the positive or negative sides of S respectively.

At a point P ¢ S, a%, denotes differentiation in the direction of the unit vector
i, at p € S. 3% denotes the limit of 67% as P approaches  from the positive or
P
negative sides of S respectively.

The surface layer potential properties summarized below are well known, details

being found in many references including [6, 7, 8, 9].

II.2.1 The Three-Dimensional Green’s Functions

The potential at a point P due to a unit source at a point § is given by the Green’s
function G (13, Q) It is well known that, in R3, the Green’s function satisfies Pois-

son’s equation

AzG = —5(P-@§) (11.24)
and takes the form .
. (P, Q) -7 (11.25)

where R=R (}3 Cj) . ‘}3 — Q‘I is the distance between the points P and C:j

11.2.2 The Single Layer Potential Operator

The single layer potential operator
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Se) (P) = / H(HG(P,)dS @) (11.26)

s

gives us the potential at the point P due to a layer of simple sources that are dis-

tributed with density ¢(g) on the surface S.
If ¢(q) is Holder continuous on S, theu;
L. [S¢) (ﬁ) satisfies Laplace’s equation, A3V = 0, for all P € R3\$ and ap-

P

-0

-1
proaches zero like ‘P ’ as

2. [Sy] (]3) is continuous for all P € R3

3. In the neighborhood of each (non-boundary) point 7 € S the tangential deriv-
atives of (S| (p) exist and are continuous

4. The normal derivative 3% [S¢] (P), is defined in the neighborhood of each {(non-
boundary) point ' € S. At the point § it suffers a jump discontinuity given
by

% [S¢l (p) = *%9" (B) + [Snp0] ) (1L.27)

where
Sn, : Lz (8) — L3 {S) (I1.28)

is a compact operator given by the improper integral;

[Sa,] (B) = f v(q) %G(ﬁ, QdS (@) (11.29)

)

It should be noted that (77.27) can be written in the discontinuity form

21861 () 5 (6] () =~ () (11.30)
and Ll )
2 {an; [S¢] (7) + Bz [Sel {137} = [Sn¢] (7) (IL.31)
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11.2.3 The Double Layer Potential Operator

The double layer potential operator

joa] (P) = ] a(ci)—G( DS (@) (I1.32)

S

gives us the potential at the point Pduetoa layer of dipoles that are distributed
over the surface S with density o(g).

If 0(§) is Holder continuously differentiable on S, then;

1. [oo] (13) satisfies Laplace’s equation, AzV = 0, for all P € R*\S and ap-

— -2 —
proaches zero like |P| as lP’ — 00

2. [00] (p) exists in the neighborhood of each (non-boundary} point g’ € S where

it exhibits the discontinuity behavior

[pte] (B) — [070] (P) =0 (B (I1.33)

—{[o+a] @ + [o70] @)} = - [00] (D) (I1.34)

In addition
0: L3 (S) > La(S)

is compact and is in fact the adjoint of the operator S, defined in (77.29).

3. In the neighborhood of each (non-boundary) point 7 € S the normal derivatives

of [0o] (p) exists and are continuous

an+ o] (p) = [00] (7)) = 5— [00] (?) (I1.35)

p

4. In the neighborhood of each {non-boundary) point p' € S the tangential deriv-
atives of [00] (p) exist and exhibit the discontinuity behavior

% [po] () = % [00] () £ %a (P (IL.36)
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I11.2.4 The Dirichlet Problem

Let S be a region in the zy — plane. The Dirichlet probletn is concerned with finding
the solution V' (13) of Laplace’s equation

AsV =0, for P € R%\S (11.37)

subject to the boundary conditions;

1.
v (15') > 0as |13| S (11.38)

V(p)=9(), peS (11.39)

where g (p) is a prescribed potential function.

In view of our discussion on the single layer potential it is clear that the desired
solution is given by

v (13) = [S¢] (13) (11.40)
provided the density ¢ (§) satisfies the weakly-singular integral equation;
1 [ (q)dS(q) .
o [E2D o), 7 (1L41)

Of Particular interest is the case where S is the unit disc in the {r,#) plane as

this yields the Boussinesq Equation which motivates much of the work to follow.

T 1
l/ f % (p,9) pdpd? —g(p,9),0<r<1l—-m<f<m (IL42)
am J_. Jo \/r2+p2—2rpcos(19—-8)

It should be observed that the technique used to derive (17.41} holds also for the
situation in which §' is the union of non-intersecting surface elements S;,¢ = 1,2, ..., n.
In this case, if ¢; and g; are the corresponding surface densities and potentials, we
find that the solution takes the form

o (}3) = i [Se)] (P’) (IL.43)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



16

where @; are given by the system of n simultaneous integral equations

©; (@) dS (g . .
szf ’R:)p @) =g{p),FeS,i=12 .n (11.44)

each of which has one weakly singular kernel and (n — 1) continuous kernels.

Symmetries of geometry and loading often enable us to reduce a system to a
single equation. An example is the case for a pair of discs 0 < r <1, -w < 8 < 7,
z = +h which are charged to equal and opposite potentials £ f (r,8) and thereby
acquire charge densities +¢ (r, 6} given by the integral equation

1 T 1
- e({p?) _ w(p9) -
T [ﬂ/; (\/r7+/>2—2rpcos(19—0) \/‘r2+p2-2rpcus(19—-9)+4h2) pdpdﬁ g(p, 19) (1145)
for0<r<,—r<f<7m

. 11.2.5 The Neumann Problem

Let S be a region in the xy-plane. In the Neumann problem a solution V' (13) of
(11.37) is again sought but this time with boundary conditions of the form;

1.
V(ﬁ) — 0 as \13| — 00 (I1.46)
2.
ov (P)
o 9 (P), €S (IL47)

In this case it is clear that the solution is given by the double layer potential

v () = o] (P) (IL.48)

provided o (§) satisfies the integral equation;

o oD 5CEDAS@ =9 FeS (11.49)
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Now since G is a function of |7 — ¢ only, gn—i = —gn—c yielding
62 — —
—25 | 0@)GPQdS (@) =g(P),FeS (I1.50)
an2 Js
or equivalently
1 7 (@) .
b [ 2D is@ = 0,5 @ws)

where A, is the surface Laplacian.

Note that (71.51) is a hyper-singular integral equation. The operator on its left
hand side is unbotunded but, as will be shown later, it has in many circumstances a

compact inverse.

In the case where S is the unit disc in the (r,#) plane, (/1.51) reduces to the

equation;

1 / o (p,9)
—A,
An " Js \/r2 + p? — 2rpcos (¥ — 0)

pdpdd =g (r,8),0<r <], —mT<8<7

(IL.52)

As with the Dirichlet problem an extension can be made to the case where S is
a union of non-intersecting surfaces, where (77.52) can be used as the prototype for
developments in later chapters.
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CHAPTER III

HILBERT SPACES I

II1.1 INTRODUCTION

The integral equations that are to be investigated in later sections can be considered
as operator equations in Hilbert Space. With the goal of solving these operator equa-
tions we construct weighted Hilbert Spaces L3 (0,1); « = 0,1 and identify suitable
orthonormal bases for them. By construction, these basis functions will also form a
complete set of eigenfunctions for the two classes of operators which represent the
dominant parts in the integral equations of interest. We will then examine these

operators and in particular their eigen-structure.

III.2 THE HILBERT SPACES g (0,1)

The L3 (0,1) spaces consist of all real or complex valued functions that are square
integrable on the interval (0, 1) with suitable weight function. An exact definition is

as follows.

Definition ITL.1 Fora=10,1

1
L3(0,1)={f(p):f:(O,l)ﬁCand / |f<p>|2wa(p>dp<oo} (11L1)

where
w9 = p (1= ) ut2)
with inner product
(1.9 = [ 16 5@ (01 do (3
and norm L
Il = { [ 1 0P v ()} (1L4)

In order to construct orthonormal bases for the Hilbert spaces Lj (0,1) we will
begin by recalling that the polynomial functions ¢ (p} , u* (p) (m,n =0,1,2,...), in-
troduced in Def. IL1, are related to the well known associated Legendre polynomials

P (z) as follows;
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For m,n=0,1,2,...

7 () = T P (V1= 7) 0 p < 1 (I1L.5)

szﬁ+m+1 ( 1-— 92)

w" (p) = U™ 0<p<i (11L6)
1 — p?
where
(4n + 2m + 1) (2n)!
" = .
" \/ (2n + 2m)! (IL.7)

um = \/(4n+2m+3) (2n + 1)! (I11.8)

(2n 4+ 2m + 1)}

are normalization constants.

The functions ¢7* () and ] (p} are polynomials of degree (2n + m) in p and con-
tain only even powers of p if m is even and only odd powers if m is odd. In addition,
by making a trivial change of variables in the following well known orthogonality
relation for the associated Legendre polynomials (e.g. [5], 8.14.11 and 8.14.13);

/_ PT (@) By (o) do = EZ - Z;: 2721‘5:? 1 (I1L.9)

it is readily shown that

[ w0 @@=, (I1L.10)

and )
/; w' (p) u (p) uy (p)dp = by (ITL.11)

and hence that, for a fixed value of m, the sequences {7 (p}}.., and {v™ (p)}or,
are orthonormal in L3 (0,1) and L1 (0, 1), respectively.

We will show that in fact these sequences are also complete and hence form

orthonormal bases functions for the respective spaces.

Theorem IIL.2 For any m = 0,1,2,... the sequence {t7 (p)}or, forms a complete

orthonormal basis for L} (0,1).
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Proof. We have already established that the sequence is orthonormal so we need
only show completeness.

For a fized m, let f (p) € L8{0,1) be orthogonal to every element of the sequence
{t7 (P)}nzo - Then

1
[ 10 P (VI= ) 0 () dp = 0m=0,1,2,..
0
Now, by letting x = /1 — p* we get
1
/ f (J1 - x2) Pr(z)de=0,n=0,1,2,..
0
and, since P (—z) = (=1)" P7,, (z) and f (V1 — 2?) is even, we have

fl f(v1—:r2) P (z)dze=0,n=0,1,2,...

-1

The sequence { P, . (:c)}:ozo is complete in Ly (—1,1) {e.q. [10], p123, #10) so
f(\/l—x2)=0, _l1<z<1

that is
flp)=0,0<p<1

Hence {t (p)},=, is complete in L3(0,1) A

Theorem IIL3 For any m = 0,1,2,... the sequence {u7 (p)}or, forms a complete
orthonormal basis for L3 (0,1).

Proof. Similar to the previous theorem we have already shown that the sequence is

orthonormal so we only need show completeness.
For a fized m, let f (p) € L} (0,1) be orthogonal to every element of the sequence
{u (9)}g. Then

1
fo FO)Pr s (\/1 - p2) pdp=0,m=0,1,2, ... (1IL.12)
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Letting x = /1 — p? we get
1
/ zf (\/1 - :c2) e, (x)dr=0,n=0,1,2,..
0

and, since P (—z) = (—1)"P™_ (2) end zf (/1 — 2?) is odd, we have

n+m

1
/ zf (\/1 —xz) Pl (2)de=0,n=0,1,2, ..
1

The sequence { P, (z)} ., is complete (e.g. [10], p123, #10) so

m=1
xf(m) =0,-1<z<1

that is
flp)=0,0<p<1

Hence {ul}o-  is complete tn L3(0,1) W

Now that we have these complete orthonormal bases functions both types of
spaces are separable and hence isomorphic to the separable Hilbert space 12. Each
element in our L§ (0,1) spaces can be identified with the I2 sequence consisting of

the coefficients in any basis function expansion. First let us define 2.

Definition II1.4

1= {9: tx={za}or, wherez, € Cand Y |z.|* < oo} (I11.13)

n=0

with inner product

@y =) Tu¥n (I11.14)
n=0

and norm

lell = {iixnﬁ} (IL15)

We now construct the isomorphisms between the L$ (0,1) spaces and /2 to enable

us to take advantage of the well known 2 structure.
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Theorem IIL5 L9 (0,1) is a separable infinite dimensional Hilbert space isomorphic

to 2.

Proof. Let f be the function defined as follows f(r} =37 fut? (r), then

1115

H

fo 1F () (o) dp

/

o0 1
= SR f 1t (p)2® (p) dp, By orthogonality
n=0 0

2
w’ (p)dp

Il

Dt (o)

DoIEE = kel

n=0

so fe LY (0,1) e {f.}2,€l?

n=0

Now define the operator A: L3(0,1) — 12 by

Af ={falnso (111.16)
then if
)= futn(r),g(r) = gatn(r)
n—=0 n=0
r= {fn}:o.—_oay = {gn}:;u ’
we have

(Af, Ag) = {falnzo {9ntee) = (2, 9)

and it follows that A is a Hilbert space isomorphism between L3 (0,1) and 2

confirming the isomorphic relationship B

Theorem IIL6 L] (0,1) is a separable infinite dimensional Hilbert space isomorphic
to 12
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Proof. Let f be the function defined as follows f(r) = 3 500 o faum (1), then
I - /llf(p)lz’wl(p)d,o
anu ()

= Z]fn| / [ ( (p) dp, by orthogonality

Y(p)dp

Il

Z [fal? = 1 brol)?

n=0

so feLi(0, 1) {fil,€l?
Now define the operator B : L (0,1) — I? by

Bf ={fa}nio (TL.17)
then, if -
=D St ()9 =) gatn ()
n=0 n=0
T = {fn}:lo Y= {Qn}iio
we have

(Bfa Bg) ({fn n=0" {gn}:o=0> = (x,y)

and it follows that B is o Hilbert space isomorphism between L} (0,1) and [*
confirming the isomorphic relationship B

Now that we have defined the structure of our Hilbert spaces we turn our attention

to operators defined on them.

II1.3 OPERATORS ON THE 7% (0,1) HILBERT SPACES

We will now define and examine what will be the key operators for the integral

equations of interest. We will first look at two weakly singular operators; LS, and
LL.
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II5.3.1 The LY, Operators

The L2, operators will both be defined in terms of the weakly-singular kernels .., (p,r)
for m = 0,1,2,3,... with relevant weight functions. The definition for I, (p,7) now

follows.

Definition IIL.7 For m=0,1,2,3, ...

1
21 /pr

where Qm_% () is a ring function or a Legendre function of the second kind (e.g.
[1], section 32).

p2+r2]

Q-1 [ Sor (II1.18)

Zm (pv T) =

It will often be convenient to represent this kernel in other ways, as allowed by

the following theorem.

Theorem IIL.8 Form=0,1,2,3,...

1 min(p,r) 2t
lm (P, T‘) - ’H'pm?""l' A \/(P2 — tz) (7‘2 — tz) (III.lg)
_ % / T (08) I (rt) dlt (I11.20)
0

Proof. Using the following result from ({1], p443)

" cos i
4 = osh 9 111.21
/0 /2 (cosh ¥ — cos 6) Qm—% (cosh ) ( )

ond the real part of Copson’s Integral ({11]} with ¢ = 0;

2n eimﬂ e 4 eimﬂ /min(r,p) t2m dt
0 VA

o /124 p%—2rpcos(d —0) ~ pmpm r2 —2) (p2 — 12)

we can obtain with simple algebra and change of variables

4 e t*mdt 2 ™+ p?
™ f T Qm- ( 5 ) (111.22)
TR Jo V2 —12) (- t8) VTP P

from which (111.19) follows.

[ME
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It is clear (111.20) follows immediately from the following result ([12], 560.04);

R 1 24 (r— p)2
/U i (70) I (p1) e = = Qn (1 n T) (IT1.23)

by setting z =01

We will now define the LS, [f (p)] (v} operators using these kernels and the weight

functions w® (p) as before.

Definition IIL9 Fora=0,1 and m =0,1,2,3,... let

L2, [f ()] (+) = /U b (py7) (0} w™ (p) dp (IT.24)

for any given f € Lg(0,1).

We will now go about showing that for each m = 0,1,2,3, ... and for both weight
functions the kernels I, (p,7) are square integrable on (0,1) and hence that the
L% operators are Hilbert-Schmidt and therefore compact. We will first consider
L% on L$(0,1) and show that for each m the basis functions 7 form a complete
set of eigenfunctions with corresponding eigenvalues )\;f]. The eigenvalues not only
converge to zero but are square summable finite which is enough to establish that L2,
is a Hilbert-Schmidt type operator (see [13], pages 59-60), meaning it is both square
integrable and compact. The compactness of L}, will follow since |[LL ||, < |[LZ,,,
a consequence of the following facts; w! (0) = w?(0) and |w! (p)| < [w®(p)| for
O<p<l

The following theorem establishes the eigenvalues and eigenfunctions of LY.
Theorem I11.10 Form,n=10,1,2,3,...,0<r <1
Al [t (p)] () = 177 {7) (I11.25)

where
A {(n+ 1T (n+m-+1) 2242 (n 4 m)!

Amn Fr+HT(r+m+3) 72)(2n+2m)!

(I11.26)
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Proof.

Lo [ ()]

ti

/ﬂ w’ (p) 1 () m (p,7) dp,
= 5[ W @EE [ Inle antaa,

by (I11.20)
1
- 5/ Im (”)f “(p) H(1 = 0°) £ (p) Jm (pt) dpdt
0
_ 1 I (1) / P ( pt)f s1J meb2nt {8} Jom (pS) dsdpdt,
- 2Amn Jo o
by (17.11)
- 2Amn f I (71) t72J m+2n+l (t}dt, by Hankel Inversion formula
C m
- 2Amn ( ) by (11.19)

- 24n(327212(2?(:im))1 (r), by (I1.12) and (I1.20) W

We will look at the properties of the A,,.;,’s, in particular as », m tend to infinity,
ultimately showing that 3> ) 57— is in fact bounded.

Firstly, an asymptotic result illustrating the behavior of A, as n gets large which

shows that t — 0 as n — oo at a similar rate to L.

Theorem I11.11 Form =0,1,2,... and large n

Amn = 44/ n(n+m) (I11.27)
Proof.

T'{n+1l) T(n+m+1)

(e 1) (weme 1)

- {100 () (i sty +0 (tap)
- w0 (3)

’\mn = 4
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where we have made use of the following result (5], 6.1.47)

7{*%21;3 = 7P 1+2—lz(oz—ﬂ) (a+8— 1)+0(§)] ,larg (z)] <7 (I11.28)

Now we will establish that for a given n, { A, }oo_, is a strictly increasing sequence

in m and similarly for a given m, {A.,.},_ is a strictly increasing sequence in n.

Theorem I11.12 Form=10,1,2.3,..n=0,1,2.3

Lt et Et Pt B et R

L. m#0
Amn > A(m_1)n > ... > Aon (11129)
2.n#0
Amn > Amin—1) > . > Ao (111.30)
Proof.
1.
AT (n+1)C'(n+m+1)
/\mn - 1 1
I'(n+3)T(n+m+3)
( (2n + 2m) >4I‘(n+1) Pn+(m—1)+1)
Mm+2m -1/ T{n+3)T(n+(m—1)+3)
(2n + 2m)
= a. 10 1 -1)n Am—— n
(2n+2m—-1 Am=tn > Am-1)
2,

A _( (2n) (2n + 2m) )4F((n—l)+1)F((n—l)+m+1)
™ \@2e-1)(2n+2m-1)) T((n-)+HT({(n-1)+m+3)

B {2n) (2n + 2m)
B ((Z'n— DN{2n+2m—-1)

) ’\m(n—l) > Am(n—l) n

We wish to find a bound on }~>° 321— for a given m, which should exist since I"‘l_

mn

behaves similar to ;5 for large n. Since ;- is strictly decreasing in m, if we establish

a bound for m = 0 it will hold for all other values of m. Now to establish a bound

1
for oo
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Theorem I11.13

Ao = é,/\(}n > 8_71 (n > 1) (11131)
¥ T

Proof. The value of Mo is easily computed to be

N 1 r(yHr() 4
00 = ==
rEr( -
The result holds for n =1 since
r2)r(2) 16 8
oy =4d—F5——~~=—>—-"-1
rEIrE) = oo

For n > 2 we have,

where we used the following result from ([14] page 2);

Forn =234, ..
— n-1 2
Pipta)ln=2)  _m gy 2 (I11.32)
[(n — 1)]]2 8in Tz m=1 m2
|
Now we seek a bound for 3 7 X%: and hence 3~ ﬁ for any m.
Theorem III.14 Form=1,2, ...
1 =1 2 e
2 <2< |t
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Proof. Now by (I11.29) Amn > Aop, M 2 1, S0

< (%)2+g(gﬁ) by (I11.31)
2]

We can also establish a lower bound on ;i:

Theorem IIL.15 For m,n=10,1,2,3, ...

1 1

<
2@2n+2m+1) ~ Ay (11.34)

Proof. Firstly,

form=n=20

X
v
N | =

1 J—
Ago
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Now, for m # 0,

1 F'(n+HT(n+m+3)
Amn AT+ 1T (n+m+1)

3 (n+1) F(n+)+HT{n+m+1)

A'{(n+ 1)+ 1T (n+m+ 1)

F{n+1)+HT(n+m+1)
AT (n+1)+1)T'(n+m+1)
F((n+m) )F(n+m+ 3

r((n+m)+ N (n+m+1)

1 T(ln+m+1)+ )T ((n+m+1)—1)
4(n+m+3) T((n+m)+ 1T (n+m+1)

v

v

, by repetition

1 T ntm 1
2(2n+2m+1)2 ;=1 ( 432)

w o 1
> Hil1-—
T 4(02n+2m+1) =1 ( 4j2)

= L 3s1n il
o 4(2n+2m+ ) 2
1
- 2(2n+2m+1)
Where the following results from [14] were utilized (I111.32) and ({14] page 4} with
2=
o 22\ _ sin(mz) 1
A1 (1 B W)  mz T(1+2)[(1-2) " (111.35)

We now have upper and lower bounds on the eigenvalues as follows for m,n =
0,1,2,..., n # 0 as shown below.
1 1 s

< — .
22nt2m+ 1) Ann 80 (I1L.36)

More importantly we have a finite bound on 3> -7— so that it follows by ([15],
prob. 132) that L2, is Hilbert-Schmidt and hence a compact self adjoint operator
with a square integrable kernel.

We have then that form =0,1,2, ...

1LY, = {/f (p)w° () |lo (p,7)|? dpdr}%<oo (111.37)
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and since ||L},J|; < [[L[lo and i (p,7) is real and symmetric, L} is also Hilbert-

m

Schmidt and therefore also a compact self adjoint operator.

It is now clear ([16], p63, Thm.14) that our kernel i, (p,7) admits the following

bilinear expansion

=]

In(p,1) = Y 1t (9)€2.(1) (111.35)

n=~0

with convergence in the mean sense for 0 < r,p <1

We can now use this expansion to first express the norm of LY, in terms of its

eigenvalues and hence obtain a finite bound for the norms of both operators.

Theorem III.16 Form=0,1,2,3, ...

=1

L5 lfo =2 (I1L:39)

n={(} ~ MR

282 = / / ()0 (1) lm (p, ) dpdr
- ]f O[> @

n=0

= Z /\2 , by orthogonality of t' M

2
dpdr, by (I11.38)

We can now use our bound on } 7. 7~ (11.33), to put a bound on the norms

of our operators.

Form=0,1,2,3,.

E

2 2
ILLIP < LS < [1+ﬂ (I11.40)

We do not have a convenient eigen-structure for the L.} operators but we will
now look at some relationships between the t7* and «? functions that we can utilize

to express L f in a meaningful way using the results for Y,
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Let us first define some constants that will make later results more readable.

Definition II1.17 For m,n =0,1,2

R Bl B

m _ (2n+2) (2n + 2m + 2)
T \/(4n +2m + 3) (4n + 2m + 5) (IIL.41)

(2n+1)(2n42m +1)
"7 I11.42
” \/(4"+2m+1}(4n+2m+3) (I11.42)

(@) | (B ‘
" = Atern T 111.43
/\m("+1) Amn ( )
m

= (II1.44)

)‘m(n+1)

Let us establish some basic properties of these constants that we will utilize later.
Firstly, it is clear that for all m,n =10,1,2,...,n # 0

0<a™,<al<a™ <1 (I11.45)

D<Br, <Br<pitl <1 (I11.46)
We can utilize these properties to show that v and 7' both converge to zero as
m,n — oo.

Theorem IIL18 Form,n=0,1,2, ...

1

T < D + . (HL.47)
and
e < L (IT1.48)
Am(n+1)
hence
Yo, — 0 as m,n — 00 (II1.49)

Proof. (111.47} and (II11.48) follow directly from the definitions, {I11.45) and
(I11.46), while (I171.49) follows since

—0asm,n—>o ool

/\fnn
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tm!

Now a theorem which will allows us to convert from #]"’s to {'’s and vice versa.

Theorem III.19 Form,n=0,1,2,...

ty (p) = Brruy’ (p) + o1y’ () (LIL.50)

ot (o) + Bt (p) (I1L51)
= QBT () + [(@) + (BT Ul (o) + &y B0y (o) (IIL52)

Proof. Using the following result from ([17], P161, #12)
@2n+DzPl(z)=n-—m+ 1) P, @)+ {(n+m) P, (z) (IIL.53)

(I11.50} and (II1.51) are easily obtained by simple algebra and the definitions of t7
and u' while (I111.52) follows from the combination of (I11.50) and (I11.51) W

Some results for the inner product of #7’s in L} (0, 1) now follow.

Theorem IIL20 Form,7,5 =10,1,2,...

1

(u', ), = / uP (r) 7 (r)w' (r)dr = o 81y + 5705 (TIL54)
0

= o] di;1) + 570 (IIL.55)

Proof. (ul", t;’")l

- / W (1) €7 () w" (p) dr
Q 1

1
= o [ @ OF O @i [0 o e
0 o
by (IT1.51)
= &} 841); + 57 di;, by orthogonality M

Theorem II1.21 Form,¢,7=20,1,2,..
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CERION

1
= / tr ()t (r)w' (r)dr
0
= A0 1864y + {(5}” Y+ (a;';"_l)z] &ij + o' BT 0—ny;  (1IL.56)

= & B0+ [(5:”)2 + (031)2] 8ij + o 1 B 101y (I11.57)

Proof. (t7",t]"),

3

i—117%j

= o] B 8j-1) + [(ﬁi")Q + (a?h)z] 0i; + %187 16iiny; by (111.54)

= Braof b+ [(B7) + (@71)"] 8 + o] BT 6oy @

= Bt + ol (uly, £, by (T11.50)

The 1L, operators are not quite as nicely behaved in L3} (0,1) as the L are in
L3(0,1), in that we do not have convenient eigenvectors. The following theorems will
however be important in letting us numerically evaluate L. f without numerically
integrating this weakly-singular operator. Firstly, we can express L. % in terms of

the 7' functions and hence as a tri-diagonal operator by converting to the «]’s.

Theorem IIL.22 For m,n=0,1,2, ...

a™ m

Lyuy = E—ty (7)) + 2t {r) (I11.58)
’\m(n+l) /\mn

= ooyt (1) +ynuy (r) + oy, () (I11.59)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



35

1 ,m
Proof. L u,

= /n A (0) b (7, ) w0 () dp
= [ ntpur o) (- ) ud (o) dp

1 1
= af fg L (7, 0) 741 () w0 { ,o)dp+ﬁ"‘/0 m (1, p) 0 (0)w’ (p) dp, by (111.51)

oy ﬂm
= T ()4 LT )
a:; m m m_m ﬁ;n mom m m
= 3 o) (ﬁn+lun+l (r) + aul (7‘)) + ;| ( muy (r) + o qun (r)) ,
by (111.50)
1B B2, (of)* "

a™ g™
= —dfr,m (r)+ 1 ul (r) + 2w (r
Amn ! } [ )‘mn >‘m(n+1)] ( ) Arrl.(*n.-!—l) +1( )

= myun g (r) +ynun () + o, () B

Since L}, is Hilbert-Schmidt it will be bounded; the next couple of results deal

with the norms associated with the operator, which are of course bounded.

Theorem II1.23 Form,n=10,1,2,...

([ um|[F = H (n = 1) (1)) + (72 + () (111.60)
Proof.

LLa||F = ||y () + e () + gy ()]
- [ [T )+ 92 () i ()

= He-D)(e,) + 0 + @) =

Theorem II1.24 For a given m =0,1,2, ..., let

Fp) =2 faul (o)

then -
LA =3 0 fass + V7 fo+ 17 ft H (n = 1) (I11.61)
n=0}
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Proof. For

ILLAL = (|3 fLLer (o)

2

= Z Fo{H (n = iyl g (7) + 5 (r) +mptugyy (1)}
n=0

1

Il

w! (r) dr

1| oo
D A st VT A T faa H (0= 1)} (7)
n=~0

= Z |77r—1fn+1 +an fa 0 foor H (0 — l)l2

The next theorems give somc important inner product results for L. «™ in
Li(0,1).

Theorem IIL.26 Form,n,i=0,1,2,..
<]L1 Up » Uy >1 =% 6117. + 7?‘ 16;(n+1) + n; (5 i(n—1) (III62)

Proof. (L} ul,u™},

w' (p) [Ly,ulr] {p) ul" (p) dp

1

/

1

|t (25, (P)+A—:;tm(P)) ()dp, by (1158)
amQ m o‘n

= (A—mL ifi;%) +——-—LJ

(n £1) i(n+1)

% Sitny, by (II1.54)
= Yndim + 07 8inrn) + nn_l&-(n_n |

Theorem II1.26 For m,n,i=0,1,2, ...
(LLum, 7y,

m-n T

= (5m’}’m SR 1) din + (aﬁ'yﬁ + B + /53:—1’?:?—1) Sitna1)

+0‘n+17?n 6i(n+2) (11163)
Proof.
a™ m
le ty L e n bongs b )+ ——(t, ), by (I11.58
< ) >1 /\m(n+1] < +13 )1 A ( ) Y ( )

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



37

—C!gl AT (L 2 m m m

6':1."' ™ m T m 2 m QI
+; (ﬁn—lan—lé(‘i+l)n + [(ﬁn )2 + (an—l) ] 6‘in. + an ﬂn 6(1:—1}11)
mn
by (111.56)
m m m 2 m.m ™
_ (ir(ax,)'z ﬁn [(ﬁn )z+(€ln—1) ] ) (51'“ + ﬂnxﬂn l-8n+1
m(n+1) mn m(n+1)

Oi(nt2)

Ayn {n+1) Avnﬂ

am{(a™ Vo p(am)? w8 +ad 5T
N ( w[(8m) +emy?) + o [P+ nﬁn]) di(n+1)

= (Brvw +oamiy) 6 + (007 + BTamn + Briamnty) Signan)

+o 1T Gitni2) B

The L}, operator will primarily form part of our dominant hyper-singular opera-
tor. In the next section we look at that hyper-singular operator and the differential

operator used to produce it.

II1.3.2 The Differential (D,,) and the Hyper-Singular (D,L. ) Operators

We will primarily be interested in the eigen-structure of the hyper-singular operator
D,,L! but first we define D,,, and establish a couple of required properties.

Theorem IIL.27 If D, is the following differential operator

& 1d m?
S A . L IIL64
D dr? rdr 7l (I1L64)
then;
Doy (1) = I () (I11.65)
and
Do (rt) = 2,y (rt) (111.66)
Proof. Since Bessel’s Equation of order m
Py  ldy m2\
W+;$+(1_r_2)y_0 (IIL.67)
has the solution Jp, (v) and can be written
(1-Dy)y=0 (I11.68)
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(I11.65) follows immediately.

Dpdm (7t}

& 1d m?
(it rap ) )

2 2

dz?  zdx x°

= t*J, (), by (I11.65)
= 2, (rt) W

Now we establish that the ! functions are eigenfunctions for I, L. ;

Theorem IIL.28 For 0 < r < 1m = 0,1,2, ..., the hyper-singular operator DL},
has the property

DL, [ (0)] (r) = w2 () for n=10,1,2,... (11L.69)
where

[n+)l{n+m+1) 28n+2m 4201 (1 + m)!
b = L D _ | (IT1.70)
F(n+3T(n+m+2) 720+ 1! {2n+2m+1)!

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



39

Proof. D,LL [u™ ()] ()

= D [ o) () dp

- .. f W O ) [ I (p8) o rt) cedp

- ip, / Im (1) / pdm (pt) uy (p) /1 — pPdpdt
2 n

= 2Bm,./ Im ""t)f pd ﬂt)/ s72J mransd (5) S (ps) ds H (1 - p*) dpdt
by (I1. 15)
= %:Z Tt)/ pIm (Pt)/ m+2n+3 (8} 8dm (ps)ds H (l — )dpdt

= —D, / In (rt) £ mt2n4 3 (t)] dt, by Hankel inversion formule

- 2an/ Im rt)tz m+2n+3 (t)dt, by (111.66)

Dpnul (p)
= Zmn e 21
T by (11.21)
1 m
—_ u
hUn (p)

mn

2B T'(n+ )T (n+m+1)
Dmn B I’(n+%)f‘(n+m+%)’

— by (11.20),(I1.22) m

Now let’s look at some properties of the eigenvalues ... Firstly, since I' (z) is
monotone increasing for z > 2 and I' (1) = 1, it is readily seen that for m and n not

both zero that
_I'n+1F'(n+m+1)

o = P+ DT (n+m+3)

A simple gamma. function manipulation allows the g ,..’s to be expressed in terms

<1 (ITL.71)

of the A,...’s as follows

Armn
Grtom+ )@t &

which enables the properties of y,,,, to be obtained from those of A,,,,.

o, = m,n=0,1,2,3,... (ITL.72)

The asymptotic result (117.27) shows that, for large n
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JTI 2 (ITI1.73)

Vn+2m+ 1) (2n+1)

1

mn

and hence, — oo similar to n.

We can also readily see from (771.29}, (111.30) that g, is strictly decreasing in
both m and n.

A bound can now be established on Y o 2, which will later be used to show
that the inverse of D,,L}, is Hilbert-Schmidt.

Theorem IIL.29 For m,n =0,1,2, ...

o 7['2
Y i, < <o (I11.74)
n=0 2
Proof.
o0 ) 2
2 —
;“"‘" - ; 2n+2m+1 (2n+1)> by (111.72)

IA

i 2(2n+2m+1)
{2n+2m+1 (2n+1

[o.s]

2
)) by Thm. (I11.15)

n=0

Il
o

_|_

n=l 2n+1

_ 4 —4(“_2)—“_2-
_1(2n+1} 8 2

We have now established that the operator I,,,I.}, has unbounded eigenvalues so
will not be Hilbert-Schmidt or compact. To invert this operator we shall need to put
tighter restrictions on its domain than simply being L3 (0,1} . The next section will

define a new space which will provide these tighter restrictions.

IIL.4 THE L§, (0,1) HILBERT SPACES

We now define another two classes of Hilbert spaces L3, (0,1) for « = 0,1. These
spaces are going to be subsets of Lg (0,1) for corresponding o values but not sub-

spaces since they are not complete under the LS norm. The new spaces are however

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



41

complete under their own norms, associated with new inner products based on the
old ones. For solutions to our weakly-singular problem to exist, the right hand side
functions will be required to belong to the L3 (0,1) space, while the L}, (0,1)
space will form the solution space for our hyper-singular problem. The existence of
the Lé,m (0, 1) space s far more important as its completeness is required to guaran-
tee convergence of solution. Although they are defined for different purposes these
spaces have exactly the same structure and are therefore considered at the same time.
They both define the domain for an unbounded operator to map one-to-one into a
Hilbert space.

To reduce repetition we introduce the following temporary notation.

Definition IIL.30 For m,n = 0,1,2,3, ..., define w®, and r%,,(p) for a« = 0,1 as

follows
W = Amn (IIL.75)
1
wh = — (I11.76)
Fonn
and
2. (0) = 7 (o) (IL77)
"o () = uyy (p) (I11.78)

An important property of the w$, for « = 0,1 is that, for a given m and «a,
{ws, }oey is a strictly increasing sequence with w@,, > 1 (except wy, = 2). Now to

define the spaces.

Definition II1.31 For m = 0,1,2,3,... @ = 0,1 let us define the inner product
space, Ly, (0,1) by

LS,.(0,1) = {f € L3(0,1): Y (e A ool < oo} (I11.79)
n=0
with inner product
o9 am = @) o7 a (9 Tonta (I11.80)
n=y0
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and Norm

fllam = /F Ham (I1L.81)

The sequence of functions s, for n = 0,1, 2, ... is then defined by;

0, (r) = [ ) (111.82)

(e 4
wmn

and can be easily shown to form orthonormal bases for L5, (0,1).

An Alternate notation to be used later is;

() = tz:: ™) _ 0 (II1.83)
S (1) = Hmntiy (1) = 85, () (111.84)

We can relate the inner product of L3, (0,1) to that of Lg (0,1) by using the

easily established result;

Form,n=0,1,2,...
(s $mndam = Wmn {r Tmnta (II1.85)

Let us now define the operators S2, that will be the inverses’ of the L%, and DL},
operators. The S, operator will have domain L§ , (0,1) while the S}, operator will
map into the Ly (0,1) space.

Definition II1.32 For a given m =0,1,2, ...,

0= gust, () € 12, (0,1
0

and o
F0) = farha (p) € L3 (0,1)
n=0
we define the operators
Spy 0 L9 (0,1) — L3(0,1) (I11.86)
Sy, : L3(0,1) - L3, (0,1) (1IL.87)
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by
S8 19 (M (0) = g% (p) (I11.88)
SLIF D) =) fashn () (IT1.89)

We wish to show the completeness of the L5, (0, 1) spaces, to do this we first in-
troduce a lemma relating Cauchy sequences in these spaces with those in the L5 (0, 1)

spaces.

Lemma IIL33 If {f®} is o Cauchy sequence in L§,, (0,1) for a given m =
0,1,2,..., then

1. {f(i)} is also a Cauchy sequence in L§ (0,1)

. SO} Ja=0] . :
2 {g(z)} — { {I[{Dml[ifg)} a=1 } 1s a Cauchy sequence i L (0,1)

Proof.
1. Fori=0,1,2,..
O =S )= 5 L
U= fsmar) = Torn (T
n=0 " n=0 wg”m

Now since { f (‘)} is a Cauchy sequence in L5, (0,1) for any given integer p > 1
and € > 0, there exists an M > () such that
i>M=||f0" - f9 <€

2
a,m

or that -
: : (2
i>M=) |f&_ (8" <¢
n=0
Now

2
<€

||f(i+p) _ f(i)

2 g~ 1 (+p) _ ()
. ;W ATAN

mn

x>
PN fl - p

Hence {f®} is a Cauchy sequence in Lg (0,1) B
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2. Fori=0,1,2,..

gV ()= [P ()
n=0
Now for any integer p > 1
[|gt+e) — g(a:)”2 — i | fUtP) — f® 2 _ || £+2) — f(iJHQ <
n=0 "

Hence {g*} is Cauchy in Lg (0,1) B

We now establish the completeness of the L§, (0,1) space and note the useful
property that if a Cauchy sequence {f®} € Lg, (0,1) has a limit f € Lg,, (0,1)
then it is not only Cauchy in L§ (0,1) but has the same limit f € L§ (0,1).

Theorem I11.34 Every Cauchy sequence {f®} in L5, (0,1) (for a given m =
0,1,2,... ) converges to a unique limit in LS, (0,1) and hence the space is complete

Proof. By above Lemma for, f@ = Y20 f\7s%, ., the sequence {g©} , given by

g =" flre,
n=0
is Cauchy in L (0,1) and has a unigue limit

X
g= Zgﬂrin € Lg (011)

n=0

Now, there exists an M > 0 such that
‘ 2 e 412
Z>M=>||g—g(z)||0=2|gn—fg) < €
n=0
Let us consider f =300 [ ga5%,, then

171

0
rm = 2 1gal” = llgl[% < o0
n=0

and hence f € L5, (0,1).
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Let i > M then

oo

o= o= O <

n=0

[1f =9

This shows that Lg,, (0,1) is complete.
Now note that

1

_ O = - _ )
1 - 9L, ;(w;n)mn i
> 12
< Yo £ <

<

n=

So f is the limit of the Cauchy sequence { f'} in both spaces @

Now a similar result regarding weakly-convergent sequences.

Lemma II1.35 For a givenm = 0,1,2, ... , let {f®} be a sequence in L3, (0,1)
weakly convergent to f € LS (0,1) then { f (‘)} 18 also a weakly convergent sequence
in L5 (0,1) converging to the same limit f € L5 (0,1)

Proof. Let o
h=> har, € L (0,1)

n=0

then -
9= Z hnSmn € Ly (0,1}

n=0

and by definition
lim (f9 — f,g),., =0

i— 00
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s0 that

(FO = fh) = D (Y =), (hrin)a by Parseval’s Formula
=0

e o]

< Zw;yn.n (f(i) -1 Tﬁm)a (bl e

n=0

- ; (w;xml)2 <f(i) = firon a w};jn

= Z (“"'-rc:m.)2 <f(t) - fv r?rm>a (gu 'r:'nn)a
n=0

= (s —f,g)aa_m—>0 as ¢ — o0

meaning
lim (f® — f,h) —0, VheL§(0,1)

and hence result @

Theorem II1.36 For any gwen m = 0,1,2, ... the operator
Ly, : L3(0,1) — L9 . (0,1) (I11.90)
is o Hilbert space isomorphism with inverse

So, 1 L3,.(0,1) — L3(0,1) (111.91)

Proof. The sequence {t"}> ) is a basis for L3(0,1) and the sequence {r™}oe, =
R x»
{—tﬂ—} . 18 a basis for LY, (0,1} since

/\mn

Qum __ _m
H“mtn_-rn

it follows that L8, is a Hilbert space isomorphism.
We also have

0 m _ im
Sm'rn_tn

which implies that SO, ts not only a Hilbert space isomorphism but the inverse of
L) =
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Theorem II1.37 For any given m = 0,1,2, ... the operator
DLy, : L3, (0,1) — L3 (0,1) (IT1.92)
1s a Hilbert space isomorphism with inverse

St i LA(0,1) — LY, (0,1) (I11.93)
Proof. The sequence {uT}," is a basis for L} (0,1) and the sequence {sT}or ) =

{ﬁ?_}‘”—n is a basis for Lé,m (0,1) since

Fmn

1 m_ _ m
Dy, L,, 50 = u,

it follows that Dy, L} is a Hilbert space isomorphism.
We also have that

1, m_ _m
Smun_sn

which implies that S), is not only a Hilbert space isomorphism but the inverse of
D,,L. m

We can now see that the isomorphism S2, has unbounded eigenvalues (\,.,) and
will hence be unbounded and not compact, while the isomorphism S}, has bounded
eigenvalues (y,,,) - Since S}, has strictly decreasing eigenvalues that are all less than
1 and converge to zero similarly to % we are able to define it as an integral operator
with the following well defined kernel.

Theorem II1.38 For any givenm = 0,1,2, ...

1
Slg= f ' (9) ¢ () S(r, p)dp (I11.94)
0
where -
S(r,0) = D mntiy (7) Uiy (p) (111.95)
n=0
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Proof.
/ﬂ ! (p) g (p) S(r, p)dp

[0 (i g (m) (i ot (1) (p)) "
= ZZwm / l w' (p)ul (p)ul (p)dp

= S gt (1) =

n=0

8||

We can now use this integral operator definition to put a bound on the operator

norm.

Theorem ITL.39 Form=10,1,2, ..
|42 = Z#mn < — (111.96)

Proof. ||S! |

2
dpdr

u, (p)

o e

= Z u2 . by orthogonality
n=0

71‘2
< by (ILT4) m

Here we have established that S!, is Hilbert-Schmidt and hence a self adjoint
Compact Operator. We now have all the basic tools to proceed to solving the integral

equations themselves.
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CHAPTER IV

A WEAKLY-SINGULAR INTEGRAL EQUATION

IV.l1 INTRODUCTION

In this chapter we will focus on solving the following one-dimensional weakly-singular

integral equation

A{ﬁumﬂ+k@wnw%mf@ﬁm=gwxo<r<1 av.1)

where m = 0,1,2,... ; and k(p,7) € L3 (0,1) x LI (0,1) is a continuous kernel.

By introducing the L {0, 1) integral operator K® with continuous kernel & (p,7)

K] ) = [ kor) £o)e (oo (v.2)

and making use of the weakly-singular integral operator L2, discussed in Chapter

ITI, we can represent the integral equation by the operator equation
(L +K°) F ()] () = g(r) € L3, (0,1) (IV.3)
for m =0,1,2, ..., with solutions to f being sought in L3 (0,1).

As a first step to developing a solution we begin by examining the case where the

K operator is absent (i.e. the dominant equation).

IV.2 THE DOMINANT WEAKLY-SINGULAR EQUATION

The dominant weakly-singular integral equation takes the form:

[Lof ()} (r) = g(r) € L3, (0,1) (Iv.4)
where m =0,1,2, ...

We have already looked at the eigen-structure of the integral operator L2
and have established it is a compact self adjoint operator with eigenvalues Al

and cigenfunctions t™(p). We showed in Chapter III that the operator L2, :
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5(0,1) — Lg'm (0,1) can be considered a Ililbert space isomorphism with inverse
S, L9 ,.(0,1) — L3(0,1). The following theorem restates this in a form more

meaningful to this chapter.

Theorem IV.1 For a givenm=20,1,2,..., let

= Zgnrnm (r) € Lg,m (0,1)
n=0
then the integral equation

Lo [f (e)] (r) = g(r) € 13, (0,1) (IV.5)

has a unique solution f € LY(0,1) given by

Flo)=8%1g(r Zgnt"‘ (IV.6)

Proof. By Thm. II1.36 we can apply the isomorphic inverse (SC.) of LY to get the

following unique solution for f

[LY.F (0] (r) = g(r) e SLLLf =80y

& Flo)=Shlg™)](p Zgnt"‘

IV.3 THE GENERAL EQUATION

We will now investigate the circumstances under which we are able to invert the
operator (LY + K°) and hence find a solution to (IV.3). The following theorem will-

give us a sufficient condition.

Theorem IV.2 For o given m = 0,1, 2, ... the integral equation
[(Lh +K°) f(p)] (") =g (r) € L3, (0, 1) (Iv.7)

has the unigue solution

F=(I+82K) 829 (IV.8)

provided S3 K is compact and the null-space of (I + S?HKO) s trivial.
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Proof. By Thm. [V.1, (IV.7) is equivalent to
(I+SK% f=80g¢€ L3(0,1) (IV.9)

By the Fredholm theorems [16], this equation will have the unigque solution

m

f = (I+S5K")

provided S3K® s compact and the null-space of (I + S, K°) is trivial. ®

We now have conditions that enable us to tell when our integral equation {/V.1)
has a unique L3 (0, 1) solution. Next we look for conditions on the kernel of K° that
will guarantee compactness of the operator S%, K’ and hence the existence of the
unique solution exhibited in Thm. IV.2.

We begin by looking at some matrix representations for L3 (0,1) kernels, intro-

ducing some notation as we go.

Definition 1V.3 For a LS (0,1) integral operator K® with continuous kernel k (p,r)

we can define the matrices K™" = (K,T;‘“) and K™ = K™™ as follows

Kpno= (Ko, (IV.10)

A

/0 /; k(o) (o) £ (D () u® () dpdr (IV.11)

We will show that the kernel of such an operator can be expanded in terms of the
basis functions {¢7*}°,, m=0,1,2,....

Theorem IV.4 For m,n = 0,1,2,3, ... and K® aen L3(0,1) integral operator with

continuous kernel k (p,r), then

k(p,r) = ZZK”‘” 7 (p) 87 ( (IV.12)
=0 7=0
and - o
1Kl = >3 1&g’ (IV.13)
i=0 j=0
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Proof. Since k (p,r) is a bounded L3 (0,1) kernel and the t7 (r) functions are real;

1

/ (z,r} 7 (z) w° (z) dx

= _th" (o) [K°4] ()
" (p )Z(K"ti",t;‘) £ (r)

00

K"t (p) 15 (r)
j=0

C"l-

k(p,r) = Z

1=0

Ms

i=0

Il

Ms

,.
Il
o

2

Hence,

|25 w® () w® (o) |k (o, 7)|” dpdr

S~
S,

mn 2
||

I
M
V)8

-
Il
=)
~,
Il
=

The above kernel expansion can now be used to find an expansion of K° f for any
function f € L9 (0, 1).

Theorem IV.5 IfK° is an L3 (0,1) integral operator with continuous kernel k (p,r)

and -
Floy="2_ fitg (p) € L3(0,1)
k=0
then
Kf = Z Z K7™ fit? (r (IV.14)
i=0 j=0
Proof.

»1

]0 k(r,0) £ (0) % () dp

7,
hu.”
I

oo X oo

= Y3 ke / 7 (0) £ (o) (o) dp

i=0 j=0 k=0

ixmﬂ A (r) m

j=0

Ms

2

Il
(=]
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To correctly apply S2, to K° f we need to ensure that K° f belongs to the Lg,m (0,1)

space. The following theorem establishes a condition that guarantees this will be true

and the theorem thereafter shows that the same condition guarantees compactness

of SO K°.

Theorem IV.6 IfK° is an L3 (0,1) integral operator with continuous kernel k (p, 7)

such that o
Z Z)\n K "‘"| < 00
=0 7=0
and -
p) =3 fits (p) € L3(0,1)
k=0
then
g(r)=[K°f(p)] (r) € L3, (0,1)
Proof.
[KF ()] (r) = D D K fitr(r
i=0 j=0
= Y git?(r)
=0
where

o0

g9; = Z K™ 1

=0

By the Cauchy-Schwartz inequality we then have

| |91 |
So that

2
lgllom =

[A

and result follows B
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The easiest way to show compactness of S? K is to show it is an L3 (0, 1) integral

operator with the continuous kernel
Smk (0,7) = D>~ Ams KT (0) 8 () (Iv.17)

i.e. that it is Hilbert-Schmidt.
The following theorem establishes the conditions for this to be true.

Theorem IV.7 [fK° is an LS (0, 1) integral operator with continuous kernel k (p,7)
such that

ii,\fnj |K7|* < o0 (IV.18)

i=0 =0

then SY K? is Hilbert-Schmidt and hence compact and additionally

IS0l = 3> _A% K5

i=0 j=0

Proof. By Thm. IV.6, for eachi=0,1,2,...,
K%™ ¢ LY, (0,1)

2,m

and hence by Thm. II1.37, S° K™ is both defined and belongs to L3 (0,1).
The matriz of SL,K® is given by

(o=}
(UK ey, = <s$,, !ZK;;‘t;”] ,t;."> by (IV.14)
0

=0
o<
= <Z /\qu::t;“,t?>
q=0 0
Ami K7}

So that by Thm. IV.}

o0 (e o)
185K 5= DD % || < o0
=0 j=0
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which implies SO is an L3 (0, 1) operator, Hilbert-Schmidt and compact

The previous theorem provides a sufficient condition for the compactness of S? K°
but not one that is easily verified. We therefore look for simpler conditions on the

kernel, k {p,r), that will also prove to be sufficient.

Definition IV.8 For the LS (0,1) integral operator K with the continuous kernel,
k(p,7) and a given m = 0,1,2,... define the integral operator

1

VO£ ()] () = / Vin (0,7) £ () 0 (0) dp (1V.19)

with kernel _ 471
V(o) =7 p (r_mk (p, r)) (IV.20)

Definition IV.9 For a gwen m = 0,1,2,... the continuous kernel, k(p,r) of the
integral operator K°, is called a V,, — bounded kernel if the following conditions are
satisfied:

1. k(p,r) is self adjoint,
kp,r)=k{r,p) (IvV.21)

2. k(p,7) is an L$(0,1) square integrable kernel, i.e.

||K%|], < o0 (Iv.22)

3. Vin(p,7) is also an L3 (0,1) square integrable kernel, that is

[|Vo]], < o0 (IV.23)

Before we establish the properties of V,,, and V,, — bounded kernels we investi-

gate the behavior of the ¢* functions under the action of the differential operator

nd {1
Tdr rm )
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Lemma IV.10

d
pmd—p (Pt (p)) = v/2n (2n + 2m + L™} (p) (IV.24)

Proof. By making use of the well known identity (5], 8.6.6, p334)

4}

Pr(e) = (-1 (1-2) 7 =

P (z),m>0 (IV.25)

and the definition 7' of we get

P (VI
n 1— pz

m Pzr?:lln mA1)+1 (V 1- Pz)
T is

T
= ‘U%,T uptt(p), by (111.6)

= V2n(2n+2m+ Du™H (p), by (II1.7,111.8) =

o e () =

From the above lemma, we can see that V%, can be expressed in terms of the

™} functions a property which is exploited in the following Lemma along with the

ablhty to express these functions in terms of the t™*' functions using (/17.51).

Lemma IV.11 For o fized non-negative integer m, let k (r, p} be a Vi — bounded
kernel then

SN 2@ em+ 1) | KR <4 |[VE]D < (IV.26)
Proof.
nd
V(o) = 17— (ka(p,r))

: fif}’:rm;ﬁ, (—t“‘( )) (7

we can then see and that
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K2 (% + 2m + 1)

= / 0 (7-)/ i (0, 7) W (p) £ (r) drdp
= / w (r)f () Vim (o, 7) [a87" (p) + BT ()] £ () drdp,
by (I11.51)
ol (V) 0™ + BT (Vi) 40 (1v.27)

Where for, i =1,2,3, ...,

(22) (28 +2m + 2)

O<al”=
% (4 + 2m + 1) (4 + 2m + 3)

<1

and

m (26 — 1) (2¢ 4+ 2m + 1)
0<F _\/(4i+2m—1)(4i+2m+1) <1

We therefore have that

| K| 2 (20 + 2m + 1)

2
m m 1
o (V)™ 4+ B (V)|

< 2|(V) (m+*)’"| +2[ e (1v.28)

(i—1);

and hence

i§22(2z+2m+1}| |

= =0
00‘? ) , 1) 2 x> o0 ( +1) 9
< 2) 3|5 2 30 S |
i=1 j=0 i=1 j=Q
< 4||Va|[s < oo

as required @

Theorem IV.12 For a fizred non-negative integer m, K* an LY (0,1) integral oper-
ator with the V,, — bounded kernel k (r, p) then S2K° is Hilbert-Schmidt.
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Proof. Since k{p,r) is a Hermitian kernel, KI} = K7} and therefore

0o oo 00 00 X
[SSES = SO R KR = a2 SO K + 3 Sk kg
i=0 =0 §=0 i=1 j=0

IA

A IKIE + 303 42+ 2m + 1) |[KE[* by (I11.34)

i=1 j=0
< NIIKIE+4||Ve2 < o0

which implies that 82 K° is an L3(0,1) operator and the result follows A

A potentially more verifiable way of establishing that S? K® is compact is given

in the next theorem.

Theorem IV.13 If k(p,r) is an Hermitian continuous kernel and is such that
1
;k (p,7) and (,%k (p,7) are L3 (0,1) kernels then SLK® is Hilbert-Schmidt.

Proof. Since 1k(p,v) and Zk{p,r) are L3(0,1) kernels then so are k(p,r) and
Vin (.7} =72 [ Lk (p,7)]. The result follows by Thm. IV.12 M

IV.4 NUMERICAL SOLUTIONS

IV.4.1 Quadrature

We will now identify the quadrature scheme we will use throughout for integrating
over the region (0, 1], the quadrature points are also the points that will be used as
collocation points for the collocation method. We start by defining these quadrature

points and their associated weight functions.

Definition IV.14
M : Number of Quadrature points used

zp : The Gaussian abscissae
Pone (x,) =0,p=1,2,3,....2M (1V.29)

wy. The Gaussian weights

(IV.30)
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q : The redefined indices;
g=p— M forp=M+1,M+2,M+3,.,2M (IV.31)

T4 : The points used

re=4/1—al¢=12,..,M (IV.32)

Lemma IV.15 o
1
/0 w® (r) f(r)dr ~ Z wef (7q) (IV.33)
g=1
Proof. By making the change of variable
r=+v1-gz? (IV.34)
and using the evenness of g (V1 — 2?) we can apply Gauss’ Formula ([5], 25.4.29)
giving,
1 | 2™
0 P . .
/0 w’ (r)g(r)dr =3 ;wlg (r:) (IV.35)
Now since w; = w; and p; = p; whenever |x;| = |x;| this formula would be

using the same points twice, using only the non-negative x; values, by using just the

ry points as in (IV.31), we obtain the given result B

IV.4.2 The Galerkin Method

For the Galerkin method the solution of (/V.9} and hence ({V.1), is approximated
by the finite sum

™ (o) = iﬁfﬂ}" (0) (IV.36)
=
where the coefficients f; are obtéined by requiring that
(I+S$,K°) fY) —~ 8 9,87), =0 (IV.37)
fori=0,1,2,..,N.

This leads us to the (N + 1) X (N + 1} linear algebraic system

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



60

N
£ {05 + AiKD} = Amigini =0,1,2, ., N (IV.38)
where
1
¢ = /wo (FYgr)t™(r)dr (IV.39)
0
M
2 Y g (rg) 1 (ry) (IV.40)
g=1
and
Kn = /0 A w0 (r) w® (0) k (. 7) £ (o) £" () dpdr (IV.41)
~ Zprqu(rp,rq 7 T (rp) 87 (7g) (IV.42)
p=1 ¢=1

According to Kress {[18], Thm. 13.21) the Galerkin method will converge if S, K°
is compact and the null-space of I + S? K¢ is trivial, convergence will be in the sense
that; '

Jim ||~ F™ =0 (1V.43)

We can then be sure that solving (7V.38) by continuous techniques will give a solution
to a required accuracy should N and M be chosen large enough and the accuracy of

the linear system solver used is sufficient.

IV.4.3 The Collocation Method

As an alternative to the Galerkin method we can use the method of collocation. For
collocation points we will use the quadrature points r, (¢ = 0,1,2,..., N) given by
(IV.32).

To solve (IV.1) we will again approximate the solution by the finite expansion,

FM ) =" fatmp
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which leads to the equation

DT k() =9(),0<r <1 (IV.44)
where
k1) = [0 O @ o) dp 2 Y- ) ) (1V.45)

The coefficients f,, are then determined by insisting that this equation be satisfied
at the collocation points r,. We thus obtain the (N + 1) x (N + 1) linear algebraic
system

N
2l )tk ()} = 9(rg)y 4 =12, N +1 (IV.46)
=D
which can be solved for the required (f,))_, by standard techniques.

The convergence of the collocation method is verified experimentally by solving
known problems and/or comparing with the Galerkin method.

IV.4.4 Numerical Tests

All programming was done in Fortran. When constructing subroutines and functions,
various tests were carried out to verify and build confidence in the codes. Details
of these are not included here. Instead we offer a sample test problem, with known
solution, that was used to test the codes and to compare the Galerkin and Collocation
techniques.

For the test problem we considered the equation

fo{Em(p,'r)+k(p,'r)}w”(p)f(p)dng(f),0<r<1,m€Z v

with continuous kernel

k(p,r) =t (r) &3 (p) + 13 () 17" (p) (Iv.48)
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and right hand side function

_ by ()

g{r)=

+ S1t7 (1) + ST (r) ,p € Z* (IV.49)

Amp

with the following easily verified unique solution

F(p) = bty () (IV.50)

This test is a very simple one as any m value can be used, and may therefore be
used to verify our computer procedures. The parameter p can be also be varied and
the correct solution is readily verified by checking that the coeflicients are all zero
except for f, = 1. For select values of m we can also use the explicit forms for the
t™ functions when imputing the kernels as an extra check that the function and or
subroutines calling them work accurately. The details for m = 0, p = 0 are outlined

below:
k(r,p) =8 (r) 83 (0) + 5 (r) 8} (p) (IV.51)
=5 (1 - %ﬂ) 3 (1 —5p* + %1)4) +v5 (1 - gpz) 3 (1 —5rf + %7‘4) (IV.52)
to(r) 1 =
Y = = — =— V.53
9 =3 T =1 (1V.53)

So that (IV.47) becomes

> #0 9 (r '
> 1 (B 4 5t () + 6 ()) = B (1v.54)
— on 00
and hence fi = 1, and f, = 0 otherwise; in other words
floy=t(r)=1 (IV.55)

Both collocation and Galerkin methods quickly produced accurate results for

various different values of all parameters.
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CHAPTER V

A HYPER-SINGULAR INTEGRAL EQUATION

V.1 INTRODUCTION

In this chapter we focus on solving the one-dimensional hyper-singular integral equa-

tion
1
/é {(D + &) b {0, 7) + K (p, )} w' () f (p}dp =g (r),0<r <1 (V.1)

where m = 0,1,2, ..., s is a constant possibly zero and k (p,7) € L (0,1) x L} (0,1)

is a continuous kernel.

By introducing the Z3 (0,1) integral operator K* with continuous kernel & (g, )

1
KF () )= [ k(o) £ () (2)dp (V2

and making use of both the weakly singular operator, ! and the hyper-singular
operator, ID,.IL} , discussed in Chapter III, we can represent the integral equation by

the operator equation
(Bl + 6Ly, + K') £ (0)] () = g (r) € L3 (0,1) (V.3)

for m = 0,1,2, ..., with solutions to f being sought in L; ,, (0,1). -

We will first look at solving the dominant hyper-singular equation;
D [Linf (0)] () = g (r) (V.4)

V.2 THE DOMINANT HYPER-SINGULAR EQUATION

We will look for solutions in L3, (0,1) of the form

Flo)y=>" fas?(p) (V.5)
n=0

The eigen-structure of both D,,L.}. and L}, was examined in Chapter III, L}, was
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shown to be a compact L} (0,1), tri-diagonal operator while DLl an unbounded
operator on L} {0,1) with eigenvalues u.! and eigenfunctions ™. When considered
on Ly, (0,1), D,L;}, was shown to be a Hilbert space isomorphism onto Lj (0,1)
with inverse S}, as in Thm. 1I1.96. The dominant integral equation can then be

solved as follows.

Theorem V.1 For a givenm =0,1,2,... and

= gatiy (r)
n-=0

the integral equation

DL [f (2] (r) = g (r) € L3 (0,1) (V.6)

has the unique solution f € Ly, (0,1) given by

Proof. By Thm. II1.37 we can apply the isomorphic inverse S}, of D,LL

[Dﬂ.} 1 r) = ()%SID ]Llf=Sl
Aad g Zgn

V.3 THE GENERAL HYPER-SINGULAR EQUATION

Now we can go back and look at the general equation. First a result which shows

that compactness on L (0, 1) implies compactness on L3, (0, 1).

Lemma V.2 If K! is an L} (0,1) integral operator then K' is compact when consid-
ered on Ly, (0,1) such that

K': Ly, (0,1) — L3(0,1)

Proof. By Lem. III.35 every weakly convergent sequence in L; ., (0,1) is also a

weakly convergent sequence in Lj (0,1} with both sequences converging to the same
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unique limit. Since K! is Hilbert-Schmidt it is compact on L1(0,1) and hence maps
weakly convergent sequences in Ly (0,1) (and hence those in Lj . (0,1)) into strongly

convergent ones in L (0,1), so the result follows W

Theorem V.3 IfK! is an L} (0, 1) integral operator with continuous kernel and the
null-space of 1+ S (kLY + KY) is trivial, then [D,,LL, + kL. + K!|™" ezists and is
qiven by

[D.LL +&LE + K] ™' = (T+5S}, (sLL + KY)) 'S, (V.8)

therefore the operator equation
(Dl + KL + KY) £ ()} (1) = 9 (r) € L3 (0, 1) (V.9)
has a unique solution given by
F=(+S8, (kL] +KY)) 'Skge L}, (0,1) (V.10)
Proof. By Thm. V.],l (V.9) is equivalent to
[(I+ 8L, [L, +K') F(p)] (r) =SLg(r) € L3, (0,1) (v.11)

Spole, and K are compact on L (0,1) and therefore also on Ly, (0,1) (by Lem.
V.2) so that Sk, (kLL + Kl) is also compact.

Hence, if the null-space of T+S. («L. +K!) is trivial, then
(I +S,, (sLL + IKI))_1 exists by the Fredholm theorems [16] W

We choose for convenience to consider our operator matrix in the L} (0, 1) space.

Definition V.4 For m,n = 0,1,2,3,... and for the L}(0,1) integral operator K
with kernel k (p,r) we can define the matrices K™ = (K}}‘“) and K™ = K™ gs

follows

Kpm = (K7, (V.12)

T 2

= [ [ Konw@uou e ode v

Using this notation we now obtain the following expansion for an L] (0,1) kernel.
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Theorem V.5 For K! an L} (0,1} integral operator with kernel k{(p,r), then

and

S KT () () (V.14)
i=0 j=0
IR |2 ZZ K7 (V.15)

i=0 7=0

Proof. Since k (p,7) s an L} (0,1) kernel it is bounded and since the W (1) func-

tions are also real, we have that

k(p,7)

Hence

2
1],

> (K (p,r) ,ul (0)), ul (o)

£ /u wl (r)wl (P) |k(7',p)|2dpdr
S|k -

i=0 7=0

Theorem V.6 For K' an L; (0,1) integral operator with continuous kernel k (p, )

and

then

Flo) =" fiul (p)
k=0

€ L3(0,1)

K'f = ZZKm“fu"{r)

=0 j=0
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Proof.

Kf = /ﬂk(r, )£ (o)t (p) dp

= D DD Ky fuf (T)f ul (p) uy (p)w' (p)dp
i=0) j=0 &=0 0
= Y S KIful(r) m

We finish the section with some results in Lé’m (0, 1) concerning the L} operator,

that will be required for our numerical schemes.

Theorem V.7 For m,n,i=0,1,2, ...

g™ H m(i+l) m
<]L:n :> i >1 = ﬂz'}/:in + 5(n+1)1$n;-1 + 5(13—1)1%)'7}-;’ (Vlﬁ)

mi i

Proof. (L;,s7,57)1,,

1 m 17\ #m'ﬂ.
= <]L1 _ﬂ <H‘1 U, z)l

m n,; 1.
#m‘l ™i

— Hmn ('y;néni + T]?ilé(n+l)i + 7)?15(71— l)i) by (111.59)

™mi

= 6ni7?+6(n+l)i% m +5n 1)z

™mi mi

Hm(it1) o

™ by (111.25) A
Lemma V.8 Form,n=0,1,2, ..
[t ()] (r) = g8y (r) + Brsi (r) (V.17)

Proof.

[sher ()] () = Zs / (p) o (p) g (p) dp

p,o

= S f WP (0) 7 (0) (o7, (0) + BET () dp by (IIL.5)

p=0
)

= 25;1 (T‘) [Ot;nfsn(p+l) —+ 5;15711,]

p=0

= gy (N H (= 1)+ s (r) A
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Theorem V.9 Form,n - 0,1,2,...

[ShLamsy ()] (7)
= Fmn (,y:!-S;n (7) + n:;n—l‘s:ln—l (T) + n::’-svr:’-f-l (T)) (Vls)
Proof. S!L!s™

zpm(a",MHm+BSxmﬂbﬂum&
)‘Vn(n"'l) . \nln

iumnarr? m m :umnna;n m m m _m
= /\ ( n ( ) + f3n+1 S'*.rt+l ( )) + /\ (a‘n—lsn—l (T) + /Bn Sp (T‘))
m{r+1) mn

by (VA7)
_ (a::l)z (6:?)2 m a,_ lﬁn m . a:ln :l—l-l m
= Hmn ()"m(n+1) + Amn Sy (T} + Bpn ™ )‘mn Sn-1 ( ) + Himn Am (n1) Sn+1 ( )

= “mnvnms:'? (T') + umnn:?—-l's?—l (T) + #mnnxsm%l (7‘) u

Theorem V.10 Form,n,i=0,1,2,...
<Sl ]Ll s™

R m. n. 1 1. >1’m
= Opifln; Yy + J(N—l)i#m(ﬁl)nzn + ‘5(n+1)iﬂm(i—1)"7?11 (V.19)

Proof. (SLL!sm s™),

i,m

- %mmr%uwm‘jﬂ (7T () o), + 2 (s (), ),

i mi .
by (V.18)
™ n 7
_ ¥o #mﬁﬂmn(sm- n n"_lﬂm("-l)#mn(s(n_m + In Hmn+1)Hmn 6(n+l)i
Homi Pmi mi

= '}’ﬁmp’mnaﬁi + T)I—I:U“mn{s(n—l)i + n:i‘tmna(n-%l)i .

V.4 NUMERICAL SOLUTIONS

V..l Quadrafure

The quadrature points will again be those defined in Def. IV.14 the points will
again also be used as collocation points for the collocation method. The quadrature
method will be the same as in Lem. 1V.14, adapted as follows for the different weight
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function

'/'; wt (r) g{r)dr ~ Z Weg (7q) [1 - 1‘3] (V.20)

V.4.2 The Galerkin Method

For the Galerkin method we will approximate the solution to (V.11) and hence (V.1)
by the finite sum

£ (o) = Z s (V.21)
where the coefficients f; arc obtained by requiring that
((T+85, (sLy, + K')) f — 819,67, =0 (V.22)
fori=0,1,2,.... N

This leads us to the (N + 1) x (N + 1) linear algebraic system

Gji [+ Kptng (V7] + 5j(i4-1)'9#-m(s Ly
> 5 =gifori=0,1,2,..,N (V.23)
‘ +5 (i —1)K'bum(z l)nz 1 + :umg Km

where
0= [ W Ogt)ur () (v.21)
o~ f;wqg (rg) ul® (rg) [1— 1] (V.25)

and
Ky = / [ (1) w () [k (o, )] (o) " (r) dpdr (V.26)

i

Z Z Wpwek (rq, Ul () ul (r) (L= [1=72]  (V.27)
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V.4.3 Collocation

We will again use the quadrature points vy (¢ = 0,1,2, ..., N + 1) given by (7V.32) as

collocation points. We will approximate the solution to (V.1) by the finite sum

F™¥ ey =3 Jis} (o) (V-28)

which leads to the equafion

i%fn {U:L(?'.)+f€ﬂmn (/\“—? 1 ( o (1)) + k7 (r)} =g(r),0<r<l

min+1) m
(V.29)
or

S o (U )+ (1740 ) 00 () + 700 () + K00 = 0
n=0

for 0 < r < 1 where

1 M
k? (T‘) = L wl (p) Snm (P) k (p: T) dp >~ Z 'qu ('rq, T) S;n (’f'q) [1 — 7’2] (\’730) .
q=1

The coefficients f,, are then determined by insisting that this equation be satisfied
at the collocation points r,. We thus obtain the (N + 1) x {¥ + 1) linear algebraic
system

N m -
" . : _L r _n m (o e _
g.fn {Un (‘rq’) + Kq.l mn (’\m(n+1j n+1 ( q) . i, ( q)) + kn ( q}} g{frq)
| (V.31)

where g =1,2,... . N+ 1.

V.4.4 Numerical tests

A couple of sample test problem are shown below. The problems are similar in style

to the one illustrated for the weakly singular problem in Chapter IV.

For the first test problem we considered the equation (the Hadamard singularity
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is assumed to exist only in the appropriate context)

/(; {(D + &) b (0, 7) + K (0,7} 0! (p) f(0)dp=g(r),0<r<1lmeZ (V.32)

where
k(r,p) =" (r)ug (p) + uy {r) ul {p) (V.33)
and for
u;’" (T') m +
g{r) = ——— +8uuz’ (r) + 63" (1) ,p € Z (V.34)
mp

For « = 0 the solution is readily verified as

Flo) =) 6pmu (0) (V.35)

Both methods gave fast and accurate results.

As a test for the weakly-singular part we can use the equation

[lz,g<p;f~>wl(p)f(p)dp:g<r>,o<r<1,mez (V.36)
JO

where

gir) = Hmp (H (r—1) 77;:11“;?—1 (r) + ’Y;;nu;;n (r) + 77;““;11 (7‘)) (V.37)

By o )
= Yo | () + — 20 (7 V.38
H P (/\mp P ( ) /\m(p+1) p+l( ) ( )
with solution
F(p) =7 () (V.39)

Both methods give accurate and fast solutions.

To test the full equation we used the following problem comparing the results

from the two methods;

/{; (D +Dinlp,r)+k{p,n)}w' (p) f(p)do=g(r),0<r<1,mecZ (V.40)
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where
k(r,p) = ui* (r)uy (p) +u7" (r) o7 (p) (V.4l)
and for
upt (1)
g(r)= f\ + Sipuy’ (1) + dapui® (r) ,p € Z* (V.42)
mp

Table (1) shows the output coefficients from both collocation and Galerkin meth-
ods, illustrating that both give the same output.
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singular test problem. Results shown for p=5, m=8.

TABLE 1

Comparison of Galerkin and collocation results for one-dimensional hyper-

73

with the number of

terms and number of collocation points both 20, with 30 quadrature points.

=

Collocation

Galerkin

- 0.00000000

0.00000060

0.00000000

0.00000000

0.00000002

0.00000002

0.00000444

0.00000444

0.00175410

0.00175410

1.00277028

1.00277028

0.00111636

0.00111636

0.00000097

0.00000097

0.00000000

0.00000000

OO0 | =N | O [ = [

0.00000000

0.00000000

—
o

0.00600000

(0.00000000

J—
—y

(0.00000000

0.00000000

—
(o]

0.00000000

0.00000000

[
w

0.00000000

0.00000000

"
.

0.00000000

(0.00000000

(==
(=)

0.00000000

0.00000000

ot
(=]

0.00000000

0.00000000

—
-.J

04.00000000

0.00000000

—_
oo

0.00000000

0.00000000

—
o

0.00000000

0.00000000
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CHAPTER VI

HILBERT SPACES II

VL1 INTRODUCTION

In this chapter we will construct and examine two weighted L spaces of functions
defined on the unit disc. The purpose of these spaces, which are extensions of those
developed in Chapter III, is to enable the representation of certain classes of two-
dimensional integral cquations as operator equations within these Hilbert space.
These integral equations, which will be solved in the next two chapters, can un-
der certain conditions be reduced to the solving of our one-dimensional equations
discussed previously. The new spaces are however needed if we wish to investigate

non-reducible problems.

V1.2 THE L3 () HILBERT SPACES

With © the unit disc, and for o = 0,1 we define the L3 () Hilbert spaces to be the
direct product of the Lg (0, 1) space and the Ly (—, 7} space, which is well known to
have a trigonometric basis. A product basis for the new spaces will be constructed

in the usual way.

Definition VI.1 For a = 0,1 the L () spaces are the set of all functions

L5 (Q) = {f (0,9) S (@)~ € and Iy 1 (o )P (o) dpdd < oo} (VL1)

with inner product

(.= [ " f £ (0, 9) 9, P (p) dpdd (VL2)

and norm

115 (o Dl = { Iy U oS (p)dpdﬁ}% (VL3)
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Definition VL2 Form = 0,+1,+2,1£3,..., n =0,1,2,3,... and a = 0,1 we define
the functions

Iml o
e (p,0) = \/12_’” exp (im?) { Tm| (o) ’a N 0 } (VL.4)

Definition V1.3 Form,n =0,1,2,3,... and a = 0,1 we define the functions

1 tw{p) ,a=0
Cor ¥) = ~——————cos )
) = e (mm{ur o ,a=1} (VL5)
and for m # 0
a 1 ta(p) ,a=0
o (p,t?)-——ﬁ sin (mﬂ){ () =1 } (VL.6)

The following theorems establish that the spaces L§ (2} are separable by showing

they have ‘countable sets of basis functions.

Theorem V1.4 For m = 0,£1,+2,43,... n,p = 0,1,2,3,... and a = 0,1 the se- .
quences
{emn (0, 9)}

and
{con (9,9) , 5 (0, 9)}

form orthonormal bases for LY ().

Proof. Since

-1 o0
{ ——exp {tm?
{ v Zﬂ- p ( ] )}mz—oo

and

o0

1 |
{ m cos (md) , ﬁ sin {m?) }

are orthonormal bases’s for Ly (—m,m) and for any given m = 0,1,2,3, ..., the se-

m=0

quences
{tn (P) oo
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and
{ul () 1o

form orthonormal bases for L9 (0,1) and for L1 (0,1) respectively.
The results follows automatically by the definitions of €2, (p, ¥} ,c%, (p, V) and
S (P, 0) B

mn

Since L§ (£2) is a separable Hilbert space we can show it is isomorphic to both 2
and /% x I? which are of course isomorphic to one another. For our purposes we will

consider a double sum to be a single sum split in two i.e. an {% sum.

Theorem VL.5 L$ () is a separable infinite dimensional Hilbert space isomorphic

to 12.
Proof. Let f be the function defined as follows

oQ oo

ﬂ 19 Z menemn P,

m=-—co n=0

then |
. = [ [ 17 0P ) o
-/ / 1 mioifmne;n 00| v () a0
- g_jmglfm = [| bl |
o

FeLi(Q) & {fomdme conmo € 1

Define the operator A*: L (0,1) — {2 by

A f {fmn}m——oon 0 (VIT)

then if

<

FE = 303 fein (8 (0= 3 ngem r,6)

m=—00 n=0 m=—o0 n=0

z = {fonhme—oo n=0 and y = {gmn}:=—m,n=0
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we have

(A% f, AdQ) = <{fwm}::—oo,n:0 ’ {gmn]’?::—oo,n:0> = (z,y)

and it follows that A* is a Hilbert space isomorphism between L3 (0,1) and {* as
required M

VL3 OPERATORS ON g (Q)

We are first going to define some operators which we will use to represent our integral
cquations. We will establish some results for these operators a number of which have -
already been seen in a different context.

Definition VL.8 Let us define the kernel L., (p,7;2) for m = 0,£1, 42, ..., as fol-

lows ) s 2. 9
)= ATt
L, (p,r;2) = 2WﬁQ|m|—2 [ 2p } (V1.8)
and the associated operators Ly, for a = 0,1, as follows
1 .
Lol 1 0) = [ 7o) L (i 20) ™ () dp (V19)
observe that
n (9,7) = L (p,750) L = L (VL10)

For z # 0 the kernel L,, (p,7; 2} will be continuous and square integrable with
both weight functions, while for z = 0 it will reduce to the weakly-singular kernel
. (p,7) that was studied in depth in Chapter III. Using the result from Hobson,

(I11.21), algebraic manipulation and change of variables we can see that

1 T imgdg .
_/ © =e™ L., (p,71;2) (VI.11)
4 Jon \[22+ 12+ p? — 2rpcos (6 — )

and using (777.23) we can write L,, (p,7; 2) as follows;

Ly {p,r;2) = % /{; e ¥ Jn (rt) I (pt) dt (VE12)
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The next class of operators we will consider is what we will call Boussinesq and ex-
tended Boussinesq type operators. The Boussinesq type operators are closely related

to Boussinesq's integral,

/ / po (p,9) dddp (VL13)
VP2 + 12— 2rpcos (0 — 9)

and are weakly singular in nature with kernel

1 1
Bp,9;7,8) = — VIL.14
(b ) Am \/p% + 12 — 2rpcos (6 — 9) ( )
The extended Boussincsq operators are continuous with kernel
1. 1
By (p,9;r 0) h#0 (VI.15)

4n V2 +72 = 2rpcos (8 — 9) + 4h?’
Clearly B (pa 1'9) LE 0) = DBy (pa 191 L 0) :
The operators aré defined as follows with the relevant weight function.

Definition VI.7 For a = 0,1 let B* (Boussinesq type operators) end B} (Extended
Boussinesq type operators) be defined on L§ (Q), with kernels B(p,9;r,0) and
By (p,%;r,8) respectwely, forO0<r<1l,—n<8<7and h >0, by

B [0 (p, )] (r,8,h) = / / (p,%;7,8) 0 (p,9) w™ (p) dddp (VI.16)
and

o ) 1 px
B3 [0 (p,9)] (v, 0, h) = / | Buean0a(oo)us (pasdp  (vI1T)

The dominant parts of the integral equations to be considered will involve the
weakly-singular operator B® or the hyper-singular operator —A;B!. The Bf operators
have non-singular continuous kernels and will appear as the non-singular parts of the
operator equations occurring in the applications discussed in Chapters VIII and IX.

For notational simplicity we will often consider the Boussinesq type operators as

=B% fora=0,1 (VL18)
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The following result allows us to expand our two-dimensional kernels in Fourier series

and thereby recover their one-dimensional counterparts.

Theorem VI.8 Fora=0,1 and m=0,1,2,...
By [fm (p) exp (im¥)] (r,8) = exp (im8) L7, [ fn (p)] () (VL19)

Proof. B {f,. (p) exp (im®)] {r,8)

exp (im?d) d¥
- T = o d
/ fu (P} (p) / VP2 + 12— 2rpcos (8 — U) + 4h? 7

= exp (imf) fU Fo (9) 67 (9) L (, p3 B dp, by (VI11)
= exp (imB)LE,p [f ()] (1) W

In dealing with the hyper-singular case we will use the following result to develop

Fourier expansions for those terms involving the Laplacian operator.

Theorem V1.9

—Ay (exp (imA) f (1)) = exp (im¥) Dy frn () (VL.20)

Proof,
. # 19 10 .
~Ag (exp (im?3) f, (r)) = - (@ + 5 + ;EW) exp {im¥) fo, (r)

. &Efn 1df, m?
- et (421

= exp (im?) Dy fru () B

We now have all the results needed to show that B° has eigenvalues /\;L and

eigenfunctions €2, or ¢ and s

Theorem VL10 For 0 < r < 1, -7 < 6 < m, m = 0,+1,42. 43, .. n =
0,1,2,3, ..
A|mfﬂIBU [e?nn (pa 19)] (T! 9) = e?nn (T: 9) (VI21)
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Proof.

exp {im¥)
—var | P
Ajmln €XP (im0)

= T LY, [t (e)] (r), by (VI.19)

Ajmin ot )

m Alm|n

Nt B [0 (0,9)] (1,6) = AuB® [£7 ()

, by (111.10)

The sine and cosine equivalents are as follows.
Theorem VI.11 For0<r <1, 7<8<7m,mn=0,1,23,..

1.
A BC [c?nn (p, 19)] (r,8) = c?,m (r,8) {V1.22)

AnnB° [50, (0, 9] (r,6) = s3,,, (r,0) (VL.23)

Proof. Tuake real and imaginary parts of (VI.21) R

In the case of the hyper-singular operator —A;B! we have similar results shown
below.

Theorem VL12 For 0 < r <1, -« < 8 < 7@, m = 0,£1,42,43,..., n =
0,1,2,3,...

)u‘|'m|n (_AQBI) [e:rm (prﬁ)] (7‘, 9) = 6117m (7‘, 9) (V124)
Proof. Himln (_AzBl) [e}nn (P, 19)] (T, 9)

P"|m|n

= Jor (TB2) exp (ime) Ly, [w™ (0)] (r) dp, by (VI.19)
= 8 oxp (im) Bl [l ()] (), by (V.20)

- ’:}"21'; exp (im#) ui‘:::)

= \/;Trexp (im@) ul™ (r) by (111.28)

= ep,(r,f) W
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The sine and cosine equivalents are then as follows.

Theorem VI.13 For0<r<1l, 7<8<n,mn=0,1,23,..
1.
Hmn (ﬁA?Bl) [C:Lnn (,0; T9)] (7‘, 8) = cvlnn (T‘, 9) (VI25)
2.
Fomn (—22B') [s},, (0,9)] (,8) = s,,,, (. 6) (VL.26)

Proof. Take real and imaginary parts of (VI 24)n

The Boussinesq type operator B® is a weakly-singular operator which we can.
show is compact but not Hilbert-Schmidt. In other words the operator is compact
and hence bounded but the kernel is not square-integrable with regards to the norm.
This means that we will not have a mean convergent bilinear expansion for the
kernel but since we already have the eigenvalues this does not represent a significant

problem.
Theorem VI1.14 The operator B® is Compact and Self Adjoint on LS ().

Proof. Since by (VI.21) form =0,%1,4+2,4£3, ..., andn =0,1,2,3, ...

eO

Bﬂegm — _—mn
AFm|n

we can, by renumbering the eigenfunctions, represent B® as an infinite diagonal ma-
triz, with diagonal entries convergent to zero, since x— — 0 as both m,n — oo, the
result will follow from: ({15], prob. 132} M

The B* weakly-singular operator is also compact, we will prove this by showing
that it has a tri-diagonal matrix representation whose entries converge to zero. We
will now consider the eigen-structure of the B! operator. The structure is a gener-
alization of that considered in Chapter III for the L} operator and likewise will be

tri-diagonal.

First some relationships between the el (r,8) and €, (r,8) functions which will

be an extension of those between the ¢7' and ;' functions in Chapter IIL
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Theorem VI.15 Form =0,%1,£2,..., n=0,1,2,...
e?rm (73 9) ﬂlml (r, '9) + an 1em(n 1 ('r 9) (VI'27)

and
(1 -1 e, (r,6)

= alen i (1,0) + B, (1, 0) (VL.28)
= alrznlﬂlrrﬂlem(n+1) (T! '9) + [(agn|) (dImI) :| (T 9)

Proof. Follows from Thm. II1.19 and the definitions of €, fora =0,1 1

Theorem VI1.16
<<6711‘u7 (Ta 0) ,egj ('T, 6}>>1 = (5mp (a_.lj’z|16(i+1)j + ﬁ;m|§‘fj) (VI30)
Proof. {{el;(r, 0) ven; (1.0))),

= 5|m|<< i (r8) el ( r9>>1_|_almi (eh (1,0) by, (1,0))), (VI.2T)
= Smp (aj_ld(iH)j-i-ﬁL- l(sij) by orthonormality B

The next result illustrates the tri-diagonal nature of B'.

Theorem VI.17 For 0 < r < 1, -7« £ § < m,m = 0,x1,+2,+3,..., n =
0,1,2,3,...
B [eran (0, 9)] (7, 6)

€rn {7 0) (VL31)

= el ey (1, 0) + el (7,6) + mlT ey (,6) (VL.32)
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Proof. B[}, (p,9)] (r,0)
= = exp (imf) Ly, [u™ (0)] (r) dp, by (VI.19)

_ 1 ; Qn |mf Bn |m|
= 5= exp (imb) (/\ tay (1) + Iy Lt 1

bm|(n+1) fm|n

)) by (I11.58)

on By 1 9 (alnml) (}gl:\i)z ; Inmllﬂl‘ml 1 9
= Ny Sty (700 + P o (75 6) + =52 S Eman—y (750)

by (VI.27)

= r'?|71LM|e}n(n+1) ('7', 9) + /Y'm‘ 1 T 0) + nn lem(n 1) T' 0) u

The above results can be combined to give the following inner product result for
B! which gives us the tri-diagonal matrix representation for the weakly singular part -

of our system.

Theorem VL18 Form,p=0,+1,%2,... and n,i =0,1,2,... then
<<]B1 }rl.n.’ pz>> = 5mp (’)’Lmlain + nETL{L(n +1} + nimlfsi(n-l)) (VI33)

Proof. {((B'el,,, m>>

On . 0 1 :Bl:nl 0 1
- {{Emimr1y €pi) ), + F ({0 €h)), by (VI.31)
= FPS—. (6mp (alf”&ni + ﬁmléi(n+l))) + (6mp (QL"ﬂl(g(iH)n + 5]:1'51'7;))
by (f11.58)
= 6 (’ng|5m + ﬂi |5 i(r+1) + nl ' (n—l)) by (I[I54) |

m|n

Theorem VI.19 B! is a Compact and Self-adjoint operator on L} ().

Proof. From (V1.33) we can see that B! can be represented as a tri-diagonal matriz
with Y, np.y end 72 on the diagonals and since by (I11.49), v, 77 — 0 as
m,n — oo, it follows by ([13] page 57-58) that B! is compact B
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Some additional results involving the B! operator in the L} (2) Hilbert space

finish off the section.
Theorem VI.ZO <(e?m- (r,0) ,€5; o (r, 9))>
<5| Ll S + ' [(ﬂLm')2+( ) ]5‘J+a|mllg|m|5(z 1;3) (VL34)
Proof. ((éfni (r,0),€d; (. 6))),
= /w eXb (zmﬂ) éxp (zpﬂ) d /1 ™ (r) tljml (r)w' (r)dr
_ 0

T ﬁ\/(l + Jm()) (]. +ép0)

. 2
Omp (5|_1aJ 15(1+1)1 [(QL’"') + (a|m| ]6,3 +a| |5| |(5(1, 1);) .
by orthonormality end (111.56) A

li

Theorem VI.21
((Blel,, %)), = Gy (71""5,,, + 1Sy + " Siga ) (VL35)

Proof. <<IBI el m >1

Imi|
- )‘|m1(n+1) Tt (e (n+1)) m>> T <<e?nme;]n’>>l by (V1.31)
[m] 2
T e - e
[m| ml Im mi 2 . 2 .
o e [ e )

by (111.56)
( alml glml ol tm{ {m} glm| 3
Bz 1% . B‘+lfl B A
}‘Imi(z—l) Ontayi + Alenl(i 11y In-1i
( 6Iml +( .m|)) adml ﬁl‘mll 5
= Omp $ + Ao *|n|( 1 (ntl)i 3

Almls

[y ),

7
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l'"'ml"’* 5(n+2)i [ 1.f1’Y|:f| ﬁ'ml"?;_ ] (re+1)i
= bmp ]
+ [ﬁLml il ﬂlm}n},m” Oni + ﬁlm|n7|gm|§(n—1)i

Theorem VI1.22 If

F@ )= Y 3 funel, (p,9) € L§ ()

m=—=oo Vl=0

for0<r <1, —7<8<7,m=0,+1,+2,43,..., n=0,1,2,3, ..., then

IIIBlfl | |? = Z Z |fm(n+1)nn+1 + fmn')’n + fm(n+1)nn ‘ (VISG)

rm=—o00 n=0

2
Proof. |||B'fll|;
Z Z fmn [/’]nme'f]:n(n-l) (7‘, 9) + W:zne}nn (?‘, 0) + n:zn—le}n(n—l) (7‘7 0)]
—oc n=0
f / Z Z {fm n+1)77n+1 + fmn'yn + fm n+1)77;?} erlnn (T1 9)
- m=—o00 n=0

= Z Z ‘fm(nﬂ)nn-‘-l + Ve

m=—o0 n=0

1
2

w (r) drdf

i

The —AB' hyper-singular operator has unbounded eigenvalues so will not be
compact. We will again define a new space that will act as the solution space for our
two-dimensional hyper-singular integral equations and as the space for the right hand
side equations of our weakly-singular problem as in Chapter III. The new spaces will

again allow as to consider our operators as Hilbert space isomorphisms.

VL4 THE Lg,(Q) HILBERT SPACE

We will follow the procedures almost exactly as in Chapter III. Neither compact
operator will be Hilbert-Schmidt so we will not have mean bilinear expansions. We
will construct the two-dimensional analogues of the L3, (0,1} spaces which are this

time not dependent on a given m (basically all m’s are grouped together to form the
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space). We adopt the subscript w instead of the m to discriminate from L§ () and
to represent the fact we will again use the w? definitions (/71.75) and (I11.76) as

scaling factors, shown below with a modification for negative values of m.

N Amln @ =10
W, = ) B (VI.37)
: a=1

Him|n

Definition VI.23 For a = 0,1 let us define the inner product space of functions,
L}, () as follows

Lé.w(0>={f= 373 Wl ema: <oo} (VL.38)

with inner product

Z > (@ (€8 (9, €2 (VI1.39)
and norm
e = /A P (V1.40)

The sequence of functions E . for n = 0,1,2,... defined as follows can be easily
shown to form an orthonormal basis for L3, (€2)

By (1,8} =

wi % (1,6) (VL41)

The inner products of L3 (22) and L3, (2} are related to each other as follows;

<<f1 E::m))a - mn (<f: ) (VI42)

The same applies to the sine and cosine analogues, for m,n =0,1,2, ..

Cone (1,8) =

con (1,8) (VI43)

mn

and for m # 0

1
‘Src:m (T! 9) = w

mn

8o (1, 8) (V1.44)
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We will now define the inverses of our weakly and hyper-singular operators.

Definition . VI.24 For |

g0 = 33 Bl (r6) € LY, ()

m=—o0 n=0

and

f(Pu 7-9) = Z menein,n (,0, 19) € Lil’ (‘Q)

m=—oa n=>0_

we define the operators

FO: LY, (0,1) — L3(0,1) (V1.45)
and
F':L3(0,1) — L}, (0,1) (V1.46)
by o
Flgtrolp= 3 3 gt 0.9 (VL47)
and

F'(f (0,9 Z men (VL48)

m=—cc n=0

We wish to show the completeness of the Lj, () spaces, to do this we first.
introduce a lemma relating Cauchy sequences in these spaces and in the L§ (Q) .

spaces.
Lemma VI1.25 [f { f® } is a Cauchy sequence in L5, () then

1. {f®} is also a Cauchy sequence in LS ()

) E‘Of(‘) I , = 0 . .
2. {g(t)} = { CABUO a1 is @ Cauchy sequence in Lg (2} .

Proof.
1. Fori=20,1,2, ..
®  g(i)

o= 30 S aE.- ¥ 3y

m=—oc0 n=0 m=—o0 n=| 0
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Now since { f (i)} is @ Cauchy sequence in L3, () for any given integer p >
1,€ > 0 there exists an M > 0 such that

P> M= ||| £ — 0|2 <e
or that
i> M= ZZH};,’?’) ?<¢
then e
177 £ = ng_: i < 3 Sl g0l <

hence {f“)} is a Cauchy sequence in L (Q)

2. Fori=0,1,2, ...

P 3 Y e

m=-o00 n=0

For any integer p > 1

|[|g%+7 -

= Y I R = 1 - O, <

m=-co n=0
Hence ‘{g(")}‘is Cauchy in L§ () W

Theorem VI1.26 Fvery Cauchy sequence { f(‘)} in Lg, () converges to a unique
limit in L3, (?) and hence the space is complete.

FfH  a=0

Proof. By above Lemma {¢®} = .
Y {g } {_AQIBlf('t) ,a=1

} is a Cauchy sequences

in L (Q) so there exists a unique limit

375 gl € LE(Q)

m=—o00 n=0

There will then exists an M > 0, € > 0 such that

i> = |llo-aOllE = 3 S lomn - 0L <

m=—00 n=0
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Let us consider

f = Z ngnEr?m

m=0 n=0
then
NAIZ,, = Z Z|gm| = [llgllI2 <
m=--cc n=0

and therefore f € Ly, {Q). Now supposing i > M then

(i) 2

. . (o) 0
|||f—f(l)lHa,w = Z ng’-" ;J?nn L"Jrann.

hence the result.
Note also that

A2
11902 = 30 % o lawn — £

m=—o0 n=0

Z Z |gmn mn < €

m=—oc n=0

IA

and so f is the limit of the Couchy sequence {f©} in both the L (Q) and LS, ()
spaces

A similar result regarding weakly-convergent sequences now follows.

Lemma VI.27 Let { f(‘)} be a sequence in Li,, (Q) weakly convergent to f €
8,{(Q) then {f} is also a weakly convergent sequence in Lg () converging to
the same limit f € L5 ().

Proof. Let o o
D7D hunn€ln € L5 ()
m=—o0 n=0
then

:Z > hmnBay € L5, (Q)

—oo n=0
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then by definition

lim <<f(‘) -~ £, g))nw

1—00

so that

[

(f9—f, Ry, = ((f(‘) fre2an), ({h, €2, by Parseval’s Formula

A

3
M ]
10

Wl ((F9 = fre2 N (h e

3
I
1
8
=
I
o

Ms
Ms

(i) ({9~

awa

Il
=]

-0 N

_ Z 3 @s D = £, (g, etaa

m=—o0 n=0

= (9= fg)),, =0 asi— o0

3

meaning
lim ((f® — f,R)) —0, VheL$(Q)

i—oa

and hence resuit il

Theorem VI.28 The operator

B : Ly (Q) — L3, ()
is ¢ Hilbert space isomorphism with inverse

B L3, () - 3()

Proof. fIhe sequence {ed - .o 1 a basis for LY(Q) and the sequence

{EY oy 15 @ basts for L, (Q) since
IBOGO — EU

it follows that B is a Hilbert space isomorphism.

We also have
FOED = ¢

mn

which implies that F° is not only a Hilbert space isomorphism but the inverse of B® B
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Theorem VI1.29 The operator
—-AyB L;’w () — L3 ()
is a Hilbert space isomomhism with inverse
F': Ly (Q) - L3, ()

Proof. The sequence {e} }r_...

{EL }oeo ts @ basis for L}, (0,1) since

_o 18 a basis for L;(Q) and the seguence

_AZIBIEvlnn = e}rm
it follows that —AsB! is o Hilbert space isomorphism.
We also have that

1.1 _ g1
]Femn"Emn

which implies that F' is not only a Hilbert space isomorphism but the inverse of
—AB'®

o

The F* operators have the obvious analogous relationships with the ¢2, ., s

1¢ 144 3
C% ., and S% functions.

We can now see that the isomorphism F° has unbounded eigenvalues (\,,) and
will hence be unbounded and not compact, while the isomorphism F? has bounded
eigenvalues () . Since F* has strictly decreasing eigenvalues that are all less than
1 and converge to zero similarly to i, it will be compact but not Hilbert-Schmidt
as the double sum will not be convergent. To establish that it is in fact compact
we can readily see it can be written as a diagonal operator with strictly decreasing
diagonal entries convergent to zero with compactness following again using the result
by Halmos { [15], prob. 132).
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CHAPTER VII

A 2-D WEAKLY-SINGULAR INTEGRAL EQUATION

VII.1 INTRODUCTION

In this chapter we will investigate weakly-singular integral equations of the type

| [ B60m04 60} 00 G)asdo=g(r8)  (VILY

-

where R (p,9;7,8) € LI(Q) x LY () is a continuous kernel, 0 < »r <1, - <@ < 7
and B (p,¥;7,8) is the Boussinesq kernel discussed in Chapter VI,

1 1

Bp,9,r8)=—
(6, ;1 6) An \/p? + 1% — 2rpcos (§ — V)

(VIL2)

To write in operator notation we will define the following integral operator R°
with continuous L3 () kernel R (p,?;7,8);

RO {1 (0,9} (r,0) = / / " £ (0,9) R(p, 9;7,0)w® (0) d9dp (VIL3)

We will solve these equations with procedures comparable to those in Chapter
IV where we will again represent the integral equations as operator equations in the
Hilbert spaces discussed in Chapter VI. We will examine the sub-cases where, for
specific continuous L3 (2) kernels, we can exploit their radial nature by reducing
the problem to that of Sol_ving the one-dimensional integral equations discussed in
Chapter IV. We will also lock at solving more general problems for kernels with an

unknown or non-radially symmetric expansion.

The operator equation equivalent to (VII.1) is

(B +R) £ (p,9)] (,68) = g (r,) € L3, () (VIL4)
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As before, we will first consider the dominant weakly-singular part first
[B°f (0,9)] (r,0) = g(r,0) € L3, () (VIL5)

VII.2 THE DOMINANT WEAKLY SINGULAR EQUATION

We have already looked at the properties of the integral operator B and have estab-
lished it is a compact self adjoint operator with eigenvalues Al and eigenfunctions

€? .- The next theorem uses the fact that the
B 19(0) - L3, (9)
operator is a Hilbert space isomorphism with inverse
FO: L3, () — L3 ()

to get a unique solution to (VII.5).

Theorem VIL.1 The equation

o<

[Bf (0,9)] (r,6) =g (r8) = > D gmnis (r,8) € L, (D) (VIL6)

m=—o0 n=0
has o unique solution f € LY (Q) given by
Fo) =F(r,0) = > > gmneh, (r,6) (VIL7)
m=—o0 n=0

Proof. By applying Thm. VI.28 we get that

B'f = g¢g&F'B'f=Fg& f=Fy

= f(p}ﬂ): Z gmﬂe?nn(prﬂ) u
. m=—o00 n=0

VIL3 THE GENERAL EQUATION

The set L3 , (€2) represents all possible functions g (r) such that (VI1.6) has a so-

lution. To get a solution to the -general problem we also need conditions on the
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continuous L (2) integral operator R® as illustrated in the following theoremn.

Theorem VIL.2 The weakly-singular integral equation
[(B°+R°) f(p)] (r) =g (r) € L3, (Q) (VIL8)
has the unique solution
f=(I+FR) 'F (VIL9)
provided F'R® is compact and the null-space of (I+ F°RP) is trivial.

Proof. By Thm. VII.I, (VH.S) i8 equivalent to
(I+F°R°) f=Fge L)(D) (VIL10)

By the Fredholm Theorems [1 6/, I +F°RC has a unique inverse if FOR® is compact
and the null-space of (]I + IFOIRU) is triviel @

We now define a four-dimensional array that can be used to expand a continuous

L9 () kernel in terms of the basis functions.
Definition VIL3 For bounded integral operators R° on L3(Q) with kernel
R (p,9;7,8) we can define the array R7}" as follows

RI™ = ((R%),., 1J>>0 (VIL11)

i 1 p= £
= / / / R(p,%;7,0) e, (p,9) €l (r,0)u’” (p) w° (r) d¥dfdpdr  (VIL12)
¢ JD J—mJ -7 :

The generalized kernel expansion is then as in the following theorem.

Theorem VIL4 Form =0,4+1,4+2. 43,...n=0,1,2,3,... and R? ¢ bounded oper-
ator with kernel R {p,¥,r,8), then

o 0Q oG oo

R(p, %m0y = > > > > RS, (p,0)el; (r,0) (VIL13)

i=—o0 j=0 m=—o0 n=0

and

IR"HO DD IPM (VIL14)

m=—oo n=0 i=—c0 j=0
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Proof. Since Re? , = <<R’e_>>u

R(p,%7,6) = i i«ﬂ,%»ﬂeﬁm (0, 9)
| ((Remn, ”))U o (p,ﬂ)e (r,8)
R7"e0,, (o, 0)el; (r,6)

hence,
2
IRl

_ '/_:/_:/0‘/01100 () w® (0) |R (0, 05, 6)° w” () w® () dpdrdidd8

i i i i |RZ;-'” ? , by orthogonality M

m=—o0 n=0i=—cc 3=0

Theorem VIL5 If B 4s an L3(Q) integral operator with continuous kernel
R(p,¥;7r,0) and

f(p,?f)) = Z kalekz p, v
k
then

R (0, 0] (r0) = 30 >0 D0 > R5" frney (720) (VIL15)

Proof. [R'f (p,9)](r,6)

= XYY Y S ek ) [ [ 0 (5,9 (0 dpas

by (VII.13)

00

= 2.0 2 D B me (o) W

=—x j=0 m=—c n=0

To correctly apply the inverse F? to R%g, for ¢ € LI (), we need to guarantee
that R% € Lg,w (2). The following theorem provides a condition that will allow us
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to be sure of that.

Theorem VIL6 If R® is an L) (§2) integral operator with continuous kernel
R(p,9;7,8) such that

o0 (o “IE e S o

D20 MR < (VIL16)
m=—oc n=0i=—o0 j=0
and o o
F®) =YD fueilpd) € L3 (Q
k=—oa (=0
then
9(r) = [R (5, )] (r,8) € L3, () (VIL17)
Proof.
Rf (0] (r,0) = D> 3" S R funed; (r,60) by (VII15)
i=—o0 j=0 m=—o0 n=0
= Z Zg‘be?y (7‘, 9)
i=—o00 j=0
where o o
9= P 9 R fmn (VIL18)

then by the Cauchy-Schwartz inequality

|_%| < Z Z|Rm Z Z|fmn|

m=—cea n=0 m=—o0c n=0
S0

[o < BN v 9]

glE, = 30 SR lesl

t=—00 j=0

[voe] oo e X

DI ID B B

m=—o0 n=0 {==0c0 j=0

IA

2
R - I < oo

and result follows M
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We will in certain cases, as will be shown in later chapters, have a continuous
operator whose kernel has a certain angular symmetry. The next theorem shows that
when this is the case then our two-dimensional operator equations can be readily

solved as a collection of one-dimensional operator equations.

Theorem VIL7 If R(p,¥;7,6) can be expressed as

R(p,9;r,8) = — v K, {(p,r)exp(im (8 —9)) (VIL.19)
then for
it xp (#md) = exp (im8
Fe0= 3 1m0 E g0 = 3 onlr) =l Vi
the equation
[(B® +R°) f(p,9)] (r,0) = g(r,0) € L3, () (VIL21)

18 equivalent to
{(Lo, + K fon ()} (1) = g (7) € L3, (0,1) form =0,+1,+2,+3,... (VIL22)

Proof. [(B°+R% f (p,9)] (r,8)

- f/ (B (p9;7,8) + R{p, 85,8} f (,9) u® (p) dddp

. Z ol [ [ Bo.0:0) 222050 o) ()

+ Z o) / / =plim) x2e) 49 f,, () w” () dp}
S % / {zm(p,r)+Km<p,r)]fm(p)w°<p)dp

by orthogonality and (VI.19)

= 2 %{@%K?n) fm(p)} ()

m=—oo
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so that
[(]B“ +R% f(p,9)] (r,8) = g(r,0) € L], (Q)
ex (zmﬂ) o e exp (imf)
© m;m Jor Lt K 10} ()= 3 am ) =
& {(L?, +K‘,’,,) fn ()} (7) = g (r) form =0,+1,42,+3,... &

When we have a continuous kernel that satisfies the properties of the above the-
orem our problem can be solved by using the numerical techniques and theory of
Chapter IV. We now proceed to considering numerical solutions for the more general
case.

VIL4 NUMERICAL SOLUTIONS

VIL.4.1 Quadrature

We will now identify the quadrature scheme we will use throughout for integrating

over the region [—#, 7] or in fact any region of length 27 with only a shift in quadra-

ture points required. The quadrature points are also the points that will be used as’
collocation points for the collocation method. We start by defining these quadrature

points and their associated weight functions which come from the extended Simp-

son’s rule as in ([5], 25.4.6). The radial integration will be performed as in Lem. -
IV.15 with notation as in Def. IV.14.

Definition VILS

N Will use 2N + 1 Quadrature points for angular integration
h : Step size

T
h=—
N
#p : Quadrature points

6, =hxp, forp=0,1,2,3,..,2N (VIL.23)
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Wy, The Simpson’s rule weights

ifp=0,2N
Wp=7-4 2 ifpisodd (VIL24)

4  otherwise

QOur double quadrature scheme will hence be
w pl INHL M
/ f w® (7) £ (r,0) dr =~ Y > dpw,f (r,,0) (VIL25)
—mJO p=1 ¢=1

VII.4.2 The Galerkin Method

For the Galerkin method we will solve (VI7.10) to get the solution to (VI/.8). We
will approximate the solution f € L3 (Q) with the finite expansion;

fFOLNY (o 9) = Z qu el (p,9 (VIL.26)

i=—M j=

where the coefficients fi;’s are obtained by requiring that
(((T+TF°R") fON) —FO, e8)), = O for k = 0,+1,+2,...,M,1=0,1,2,.., N

we then get the following (2M + N + 2) x (2M + N + 2) system of cquations

M N -
D7 fon Okmbin + MuBE"} = Magua for k= 0,+1,%2, .., M, 1=0,1,2,..,N

m=—M n=0
(VIL27)
where (V' 11.25) gives us
Gut = / / w’ (r,0) e, (r, ey, (r,0)drdf (VIL.28)
2N:1 M -
= Z Z @Pw‘?g (TQ’ 91’) e!U:I (Tq: gp) (VIIQQ)
p=1 ¢=1
and
R
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I
\
\

O\H

1
/w” (r)w® () R(p,®;7,0) €2, (p,9) Al (v, 8)dpdrd9ds (VIL30)
0

2N+1 M 2N41 M

~ Z Z Z Wyw; Wywe R (rq, 0p; 14, 8;) €2 {r4,0,) €3, (r:,6;) (VIL.31)

VI1.4.3 The Collocation Method

To solve (V11.8) we will approximate the solution f(p,9) € L3(Q) by the finite

expansion
M N
FEN o0y = D D fueli (09) (VIL32)
i=—M j=0
then, letting
Ropn (1,8) = / f €on (9, 0) R{p,¥;7,0) dpd?d (VIL33)
. 21\71'1 M
Y Y aiiwged,, (7g,0) R (rg, 0557, 0) (VIL34)
p=1 g=1

we get the (2M + N + 2) x (2M + N + 2} linear system
Z men{ T(p + B ( rqy } g(Tq, p} (VH.35)
m=—M n=0

for p = 0,%1,%+2,...,,+M, ¢ = 0,1,2,..., N where r, and 8, are as in Defns. IV.14
and VILS.

VII.4.4 Numerical Tests

We are going to illustrate a problem that was created to test the method and the

code. We are going to look at an even problem so our solution will be of the form

£ (p, ) = ZZfU 2, (0,9 (VIL36)

i=0 ;=0
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If we consider the following functions

g(r8) = > Z (VIL37)
i=0 j=
= Cp(r,8) + ey (r,8) + 011 4 '9) (VIL38)
11 1, '
= m)\m t (r) + \/_)\ —t; (r) cosf {VIL.39)

3 15
- \/; \/27((1——) = E(—é—r —69")0056\/1140)

and R (p,9;r,9)

M N M N
- Z Z Z Z R‘J CPQ (pJ 1‘9} Ctj (7’ 6) (VII41)

i=0 =0 p=0 g=0

BN (8 (p L (6~ & () D () (VILAD)

= % () + %\/ﬁté (r)cosf — %t{ (p) t§ () cos 9 cos 8§ (VIL.43)
Vi e VB[,

= (2-3r") - 2—Wrcosﬂ +5-\ 52 (156> — 12p) r cos ¥ cos 6 VIL.44)

so that clearly
ifi=3=0
ifi=0=j5=1

_ (VIL45)
ifi=j=1

1

Ao

1

Gij = 1
A1

0

otherwise

Jifi=p=¢g=0,7=1

RPY— ort=j=¢gq=0,p=1

tJ

(VIL46)

0 , otherwise

it should also then be clear that
fmn =0, form,n > 1 (VILA4T)

so that we can choose M = N = 1 without affecting the solution.
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If we define the following matrices

A = diag{a[(i_1)(N+1)+j—1] = )\_}

1

ij

= (bpv+1yrqrn)iv+1)1i1y) = RY

and the vectors

oy "-hl
| |

(fm(N+l)+n+l) = fmn

(fm(N+1)+n+l) = Omn

then our Galerkin problem becomes the following linear system

or
1
% 0 00
0 3 0 0]
0 0 ﬁ 0
1
0 0 0 3
equivalently
1
Ao1
/\1001
000

which has the solution
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(44D}~
000 0
100 0
100 -1
000 0

—'/\10

oo
Jfo1
fio
fll

i
j

foo t
fo } | 1
fio 0
)\

Joo 1

fo [ _ ] P

fio 0

fu 1

== R e B
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(VIL48)
(VIL.49)

(VIL50)
(VIL51)

(VIL52)

(VIL53)

(VIL.54)

(VIL55)
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giving
FOEN (p,9) = Cgo (e, )+C‘1’1 (p,9) (VIL56)
= —t; {p)cos ¥ VIL.57
\/— f 1(p) ( )
1 7 (15
= T *V 1on ( 5 P — 6,0) cos ¥ (VIL58)

This problem can be solved numerically for any values of M and N using both
collocation and Galerkin methods with both methods giving accurate solutions every

time.
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CHAPTER VIII

A 2-D HYPER-SINGULAR INTEGRAL EQUATION

VIII.1 INTRODUCTION

In this chapter we will investigate hyper-singular integral equations of the type (the

Hadamard singularity is assumed to exist only in the proper context)

1 prx
[ [ (0B, 0:0.0) + R(p, 955,00} £ 5, 0) () 0o = 9 1,0
v (VIIL1)
where R (p,9;r,8) € Ly (Q) x L} (Q) is a continuous kernel, 0 <r <1, —7r <@ <7,
K is a constant possibly zero and B (p,¥;,8) is the Boussinesq kernel discussed in
Chapter VI, . .
B(p,d;r,0) = - JA T Zrpeos (0 9) (VIIL.2)
To writc these in operator notation we will define the following integral operator
R* with continuous L} () kernel R (p,9;r,6);

R 00~ [ [ o0 RS0 (hdodp  (viILy

We will solve these eéluations with procedures comparable to those in Chapter
V where we will again represent the integral equations as operator equations in the
Hilbert spaces discussed in Chapter VI. We will examine the sub-cases where, for
specific continuous L3 (§?) kernels, we can exploit their radial nature by reducing
them to the solving of the one-dimensional integral equations discussed in Chapter
V. We will also look at solving more general problems for kernels with an unknown

or non-radially symmetric expansion.
In operator notation our general hyper-singular equation will be

[(—AgB! + xB! + RY) f (p,9)] (r,0) = g (r,6) (VIIL4)
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Again, we will first consider the dominant hypcr-singular part
[~A2B'f (p,9)] (r,6) = g (r,0) (VIIL5)

VIIL.2 THE DOMINANT HYPER-SINGULAR EQUATION

We have already looked at the properties of the Integral Operator —A;B! and have
established it is an unbounded self adjoint operator with eigenvalues .}, eigenfunc-

tions el and compact inverse .

Theorem VIIL1 The equation

[~2:B'f (0,8)] (1, 8) =g (r,0) = D D Gmnen (r,0) € L}(Q)  (VIILS)

m=—o0 n=0

has @ unique solution f € Ll’w () given by
[e =] oC

f{p,9) =F'{g(r,0) = > > gmET(r,6) (VIIL7)

m=-~c0 n=0

Proof. By utilizing Thm. VI.28,

~ABf = geF (—Alel) f =Fg& f=Flyg

o flo9)= Zzgmn o (r,0) M

m=—o0 n=0
VIII.3 THE GENERAL EQUATION

We can now go back and look at the general equation. First a result which shows
that compactness on L; (§2) implies compactness on Lj, (2).

Lemma VIIL2 IfR! is an L} () integral operator then R! is compact when con-
sidered on Lj , (Q) such that.

R': L}, () — Ly ()

Proof. By Lem. VI.27 every weakly convergent sequence in L%,w () is also a weakly

convergent sequence in L3 (1) with both sequences converging to the same unique
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limit. Since RY 4s Hilbert-Schmidt it is compact on L (Q) and hence maps weakly
convergent sequences in L} (Q) (and hence those in Lé,m (Q2) ) into strongly convergent

ones in L (Q) so the result follows &

Theorem.YIII.S The hyper-singular eguation
[{(~A2+ ) B +RY} £ (0)] () = g (r) € LA () (VIILS)
has the unique solution
f=(1-F (xB' +R")) ' Fge L}, (Q) (VIILY)

provided the null-space of I +F' (kB + R') is trivial.
Proof. By Thm. VIIL1, (VIII8) is equivalent to

{I+F («B'+R")} f=Fge Ly, (Q) (VIIL10)

Since B!, F' and R! are compact, F'(«kB' +R') is also compact and so
(I+F" (xB' +1R1))_]' ezists by Fredholm theorems [16], provided the null-space of
I+ F! («xB! + RY) is trivial and the result follows W

Definition VIIL.4 For the L1 () integral operator R' with kernel R(p,ﬂ r,8) we

can define the array R7;" as follows

| R = () (VIILIL)

/// R(p,f? 7,6) e (p,9) el (r,O)w' (p) w 1(7)d19d6‘dpdr
o (VIIL12)

Theorem VIIL5 For m = 0;+1,42,43,...n=0,1,2,3,... and R an L} () op-
erator with kernel R (p,;r,8), then

R(p, %m0y = > > > R7"el . (p,9)el; (r,0) (VIIL.13)
i=—o0 j=0 m=—o0 n=0
and additionally

IR} = R (VIIL14)

m=—c0 n=0 i=—co j=0
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Proof. Since Rel = <<R7€'}nn>>
1

R(p,9;7,6) = i;«&e&m}) hn (P19
. miwiii«am e (0 T D)
= 33 Y SR GI0
s L
hence,
IR |f3

_ [;/_: /1f1|R(p,0; r, 0" w (p)w* (r) dpdrdddé

R""‘ , by orthogonality B

m=--00 n=0 {=—o00 j=0

Theorem VIII. 6 If R1 is an L3 (Q) integral operator with continuous kernel
R (p,9;7,60) and

oo oC

H= Y fuey (p,9)

k=—o0 I=0

[R'f (0, 9)] (r,0) = Z >N

-oa =0 m=—o0 n

then

(o]

RE" franel; (r, ) (VIIL15)
—0
Proof. [R'f{p,9)](r,8)

> (p) dpdd

D) w
= Z Z Z Z Z katR:?n ,1, ”"9)/: / Bex, (p,9) w' P)dpd"?

by (VIII. 13)

o0 o0

S Y S R el (0)

i=—00 j=0 m=—o00 n=0

We will in certain cases, as will be shown in later chapters, have a continuous

operator whose kernel has a certain angular symmetry. The next theorem shows that
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when this is the case then our two-dimensional operator equations can be readily

solved as a collection of one-dimensional operator equations.

Theorem VIIL.7 If R (p,9;7,0) can be expressed as

R{p,9;r,8) Z K (p,r)exp (im (8 — 9)) (VIIL.16)
then
[(—2sB' + &B' + R} f (p,8)] (r,6) = g (r,6) € L} (D) (VIIL17)

is equivalent to

{(DnLl, + &LY, + KL fn ()} (7) = g (r) € L3 (0,1) form =0,£1,42,43, ..,

(VIIL18)
where
exp (zm¥) = exp (tm#)
m;m In(0) = =10 (r,0) = m;mgm ) TR (VLY

and solutions to fn (p) are sought in L, (0,1).

Proof. [(A;B'+ «B' +R') f (p,9)] (r,0)

/0 /_ﬂ {~D3B (p,5;7,6) + kB (p, 8;7,8) + R (0,957,0)} f (p, 9) ' (p) dddlp
= 3 gl / / -8 (0, 511,0) S2E D ) ' (5)

[ [ 580,00 S as (o) () ds

\/_
oQ
exp(imé exp (?;;19_). exp(imd) 1
+,,;m_2” Kon (p,7) / [ lepnd 491, (o) v (p) dp}

. w[} [Drndim (0, 7) + Kl (0, 7) + Ko (£,7)] frm (p) 0 (p) dp}

m=—0o

by orthogonality, (VI.19) and (VI.20)

= % (DLl L+ KY) fo ()} ()

m=-oc
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so that
[(—Az]Bl + xB! + Rl) flp, 19)] (r,0) = g(r,8) € L3 (Q)
=
=\ exp (im8) . . . e exp (1m#@)
m:X_:m —ﬁ*— {(DLy, + ALy, + KL) Frn (p)} (r) = m;w gm (1) ~in
=

{(I[D,,.]L:n + &LL + Ky} fm (0} (7)) = g {r) form=0,+1,+2,43, .. 1

We finish the section with sorue results in Lj , (©2) concerning the B' operator,

that will be required for our numerical schemes.

Theorem VIIL8 Form =0,%t1,£2,... andn=0,1,2,...

}FIBI El = Himln (UL lEm(n-l) + /}"m]El + 7’|m|E\}n n+1 ) (VIIIzO)
Proof.

]Fl]BlErl;m = #lmEnF (WI |11;1.(n 1)+,),|m| ! +n|n—-|lem(n-l)) by (V[SQ)

Bimjn (nn By +YEL L+ R EL (nﬂ)) by (VI48) m

Theorem VIILY Form,i=0,+1,42, ... andn,j = 0,1,2,

((F'BEp,p, Ey)),
= Opmi (5nj#|m|n“fi;n '+ 5(n—-1)j#;m|(n+1)7?1:|1 + 5(n+1)j#|m|(n_1)7?!nml) (VIIL.21)

Proof. ((F'B'Ey..E})),,

Himln m Hirnjn ™
= —'L_|"<</Y'ln |E71mn U‘>>l l | << L—!lEl(ﬂ—l)'J 11_]>>1

Hiii Pl
fu‘mn m
I b B ) €)Y, 5 by (VIII.20)
#Ma
[ml || i
= Omi wﬂﬂﬁénj+ Un—1ﬂlml(n—1)#|m|n5(n_l)j N Nn M|m|(n+1)#|m|n6(n+1)j
Pl Blil; Hiits

m |m m
= Omi ((5nj#|min%|m I+ 5(n—1)j#1mun+1)"?n—|1 + Snt13 i (n1) T I) L
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VIII.4 NUMERICAL SOLUTIONS

VIIL.4.1 Quadrature

We will use the same quadraturc scheme for integrating over the region {—n, 7] as
before. The-radial integration will be performed as in (V.20) with notation as in Def.
V.14

Our double quadrature scheme will hence be

kg 1 2N+1 M
f_ /0 W) F 0 dr~ S S Byugf (rg,0) [1 - 7] (VIIL22)

p=1 q—=1
VII1.4.2 The Galerkin Method

For the Galerkin method we will solve (V I11.10) to get the solution to (VIII.8)

We will approximate the solution f € L%,w (Q) by the finite expansion,

M N
FIN (0,8) = 3" N " fiEL (0,9) (VIIL.23)

i=—M j=0

where the coefficients f;;’s are obtained by requiring that
{((I+F" (sB' +R")) fMY —Flg,Ey)), =0 (VIIL.24)
for k=0,+£1,+£2,4£3,...,.M,1=0,1,2,3,...,N

We will then get the following (2M + N + 2) X (2M + N + 2) linear system of .

equations
M N
Z Z fmn{ékméln [1 + K‘plmin’)(l;ni] + 5km5(n—1)m#gm|(n+1)ﬂlﬁ|1
m=—M n=0
+ kaéfﬂ+1)lﬁp|m|(n—l)nl':n| + B BT} = 9 (VIIL.25)

for k=0,4+1,4+2,43,...,M,1=0,1,2,3, ..., N, where (VIII.22) gives us
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s 1
Gt = / - / w' (r) g (r,8) ey, (r, 8)drdd (VIIL.26)
- JO
oN+1 M
> DD g (r,0y) €y (e, ) [1 7] (VIIL27)
p—l g=1

and

T o7 1 1

mn _ / / / / w (r)w' (p) R (0,9 7,0) by (0,9) el r, O)dpdrdddt
-7 -7 0 0
(VIIL.28)
M 2N+1 M
o~ Z ZuﬁiwjtbpwqR (105 7:,0;) € (rg, 0p) €1, (15, 0,) [1 = 7 ] [1—77]

i=1 j=1 p=1 ¢=l1
(VIIL.29)

VIII.4.3 The Collocation Method

To solve (VI71.8).we will approximate the solution f (p,9) € Lj, () by the finite

expansion
FMN) (p ) = Z Z FiEL (VIIL30)
-M j=0
letting
R (r,8) = / f 2 (2,9) R {p,9;r,0)dpdd {VIIL.31)
' 2}\:+1 M
= Y dweEL, (g, 05) R (rg,6557,8) [1 = r2] (VIIL32)
fp=l =1

leads to the (2M + N + 2) x (2M + N + 2) linear system

M N
Z Z frnl€pn (Tq, 0p) + Bimin Fomn (T¢, 0p) +
=—M n=0
5Iml

|| :

Q- n

K’#’|m|n : e?n(n—l) (TQTGP) + e?nn (r(h 9}’) ] =g (T!Z’ GP) (VIIISS)
Almi(n-1) Almin
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or
M
E men{emn (Tfh ) + u’rm|an" Tq» ’P)
—M n=0
+ g (e (120) +9eln 1,0) 4 17 h oy (1))} = 9706

(VIIL34)

forg=1,2,...,N+1,p=0,%1,42,+3,..., M where r, and 8, are as in Defns. IV.14
and VILS.

VIII.4.4 Numerical Tests

We are going to illustrate a problem that was created to test the method and the

code. We are going to look at an odd problem so our solution will be of the form

M N
FHN (5,8) =3 "N fisth (0,9) (VIIL35)

i=1 j=0

As a test for the weakly-singular part we can use the equation {(x = 1);
{B'[f (o))} (@) =g(r,0),0<r<1,—7r<f<7 (VIIL.36)

where for any given m and p values

M N
g(r0) = > ) gysi;(r0) (VIIL37)
=1 3=0
= Hmp (T}P—lsm(p 1) (r 0) + ’Yp mp (T: 9) + n;ns.}n(p+1) (7”, 9))(“1138)
~ sin(mé ~
= aum,,—\(/-ﬂ—) (m sy (r) + Yl () + nuiyy () (VIIL39)
r/j?n (Im
= ,{me (X“smp (r,0) + S?n(p+1} (r, 9)) (VIIL.40)
mp m(p-!—
sin (mé) ( i o )
= —F tm + —r— VIII.41
)ump \/7—1_ Amp ( > )‘m(p+1) p+1 (7) ( )
with solution
£ () = Sk, (0) (VIIL42)
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If we define the following matrix

Al 1) (N1 +j+1] = ’Yj'
dl- (N +D G- DN+ = TH (5 — 1)

D= i (VIIL43)
d[(i—1)(N+1)+j][(i—1)(N+1)+_7‘+]] = VJ}H (j—1) .
d;; = 0, otherwise
and the vectors
F = (Favsiyins1) = fon (VIIL44)
g = (fm(N+1)+n+1) = Omn (VIII45)
then our Galerkin system can be written as
Df=4§ (VIIL46)
where for m < 3,p < 2, we can set M = 2, N = 1 giving the system
Yo mg 0 O fro Hanp [Om1 (85115 + 0p070)]
0 0 v u§ || fao Honpy (B2 (81715 + Gp075)] '
0 0 5 7 fa Homp [Om2 (8521 + 0171 + 80m)]
which form =2 p=1is
v m 0 0 fro 0
Lyl 00 0
LR I IR . (VIIL48)
0 0 v ng f20 2170
0 0 =75 7 fa Hn My

Both methods give accurate and fast solutions for all values of m,p, M and N
(M > m,N > n) used.

Now we consider £ = (), the problem with no weakly-singular part. If we define
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the following functions

M N
g(r,8) = Z Z gijs; (1, 8) (VIIL.49)
. i=1 j=0 '

1 1 1 1 ¢
= ot (r,0) + A 9) (VIIL50)

45 15
= Tﬁu{ {r}sinf + Sfug (r}sin 26 (VIIL51)

67 225 /7

= _252 3 (7r° — 4r) sinf + 6_45 3—gr sin 26 (VIIL.52)

and

M N M

R(p,9;r,9) = ZZZZRfj;q ) st (r,6) {VIIL53)

i=1 3=0 p-l q=0

= 310 (pJ 29) 8]0 ( 1 9) + 311 (P, 19) 3%1 (Ta 9)

—s3y (p,9) 53, (,6) (VIIL.54)
= %u}] {p) u} (r) sin ¥ sin § + %u{ (p)u? {r)sin ¥ sin 20 |
' -—lué (p) u? (r) sin 29 sin 20 (VIIL.55)
p
15 1575 [ 11 . 4 4 o e aan
= 5T sin ¥ sin & & V 1050 (7p 4p) (37‘ 2r )smi?sm 26
1575 [ 77
+—— 630 (3r - 2r )sin 29 sin 26 (VIIL.56)
so that clearly
: a4 =1
o 1 e o .
95 =\ 7 ifi=2,7=0 (VIIL.57)
0  otherwise
and
) fi=p=1j=qg=0
i g=1p=2
R = B = 4P (VIIL58)
1 ifip=2j=0,g=1
0  otherwise
It should also then be clear that
fan=0form>2n>1 (VIIL.59)
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so that we can choose M = 2, N = 1 without affecting the solution.

If we define the following matrices

. . .

A = dlag (a[(‘j_])(}v+1)+j+1] = #—) (VIII60)
i

B = (bp-1)N+a+tlii-DN+s41)) = RE (VIIL61)

then our Galerkin problem (with' % = 0}, becomes the following linear system

[A+B}f=3§ (VIIL62)
or
{ [ 1 7 3
o (1) 0 0 10 0 0 Fo ?
0 L 0 0 00 0 O -
) o + | | 1y (VIIL63)
0 0 L 0 01 -1 0 fao o~
1
{0 o o L 00 0 0jf\fu 0
equivalently
1':f',ﬂ10 0 -9 0 fio 0
1 0 0 1
0 | fu (VIIL64)
0 Hao 1— g O fao 1
0 0 71 Jar 0
which has the solution
fio 0
1
fu | _ (VIIL65)
S0 1
fa 0
giving
FAN (p,9) = 541 (p,9) + s1q (D) (VIIL66)
1 1 _
%t? (p) + ﬁt}] (p)sind (VIIL67)

5 3, /3
. (1 — 57 ) — %psm@? (VIIL68)
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This problem can be solved numerically for any values of M and N using both
collocation and Galerkin methods with both methods giving accurate solutions every

time.

To test the full equation we will repeat the previous problem with £ = 1 giving
the Galerkin system

{A+D+B}f=37 (VIIL.69)
or
1+ ;i; + % T 0 0 fio 0
gk el 0 0 fu | _ ﬁ
0 1. =+r-1 fo o
0 0 o ‘%21 + 73 fa 0
(VIIL.70)
equivalently
Lt pg(1+78) ot 0 0 fio 0
146 L+ pyvt 0 0 Ju _ 1
0 Hag 1= pgelvs— 1) Pao™hh | fao 1
0 -0 KT 1+ ppmn fa 0
: ' (VIIL71)
which has the solution
fio Lbpg (T+7) paoo 0 0 T o
fu _ ,“11?7(1) i+ ﬂu"ﬁ 0 0 1
fao 0 B 1— pigg (g — 1) Ho™Ty 1
far _ 0 0 Ha1 M 1+ py7iyi 0
(VIIL72)

We solve for both methods with varying M and N values with an example solution
set shown in Table (2).
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TABLE 2
Comparison of results for two-dimensional hyper-singular test problem. Re-
sults are shown for the number of terms and the number of collocation

points 6 for hoth wariables, with S0 guadrature points for each variable.

m | n | fmn Galerkin | f,, Collocation || m | n | fin Galerkin | f., Collocation
1|0 0.539760 0.539760 | 4|0 0.000000 0.000000
1[1 1.035361 1.035361 || 41 0.000000 0.000000
1|2 0.007294 0.007294 || 42 0.000000 0.000000
113 0.000029 0.000029 | 413 0.000000 0.000000
1|4 ~ 0.000000 0.000000 1 4|4 0.000000 0.000000
115 0.000000 0.000000 | 4! 5 0.000000 0.000000
2|0 1.046612 1.046612 || 5| 0 0.000000 0.000000
201 0.005751 0.006751 (| 5|1 0.000000 0.000000
2|2 0.000029 0.000029 || 5| 2 0.000000 0.000000
2|3 0.000000 0.000000 [ 5| 3 0.000000 (.000000
214 0.000000 0.000000 § 514 0.000000 0.000000
25 0.000000 0.000000 1| 55 0.000000 0.000000
310 - 0.000000 - 0.000000 || 610 0.000000 0.000000
311 0.000000 0.000000 | 6| 1 0.000000- 0.000000
3|2 0.000000 0.000000 || 6 | 2 0.000000 0.000000
313 0.000000. 0.000000 || 6| 3 0.000000 0.000000
34 0.000000 0.000000 || 6| 4 0.000000 0.000000
3|5 0.000000 0.000000 || 6 | 5 0.000000 0.000000
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CHAPTER IX

APPLICATIONS I: PROBLEMS IN POTENTIAL THEORY

1X.1 INTRODUCTION

In this chapter we illustrate some applications in Potential Theory and in particular
Electrostatics. The problems we will consider will involve charged discs in an infinite .
medium. The first and simplest problem we will consider involves a single charged
disc in an electrostatic field. It is easily identified with the Dirichlet problem of
Chapter II and is solved by a single layer potential. The layer potential solution
requires the charge density to satisfy a two-dimensional weakly-singular boundary
integral equation which fits the criteria of Thm. VIL7 and can therefore be solved as
a collection of one-dimensional problems as in Chapter IV. These particular problems
have no separate non-singular kernel and were largely motivational in finding the
eigenfunctions, cigenvalues and defining the Hilbert spaces we use to solve the other .

problems.

Other problems we will consider involve two (or more) charged discs. These
problems produce simultaneous integral equations with a weakly-singular kernel and
a continuous non-singular kernel or kernels. We will generally investigate problems
with angular symmetries that reduce to a single equation. Our first multiple disc case
exhibits such symmetries, a pair of charged parallel discs and in particular the parallel
plate condenser problem. These problems when solved by layer potentials produce
two dimensional weakly-singular boundary integral equations with continuous kernels-
that fit the criteria of Thm. VIL7 allowing us to again solve as a collection of one-
dimensional weakly singular integral equations. When the discs are non-coaxial we
have to solve the full two dimensional weakly-singular problem as in Chapter VII..
We tackle various exainples some to illustrate how the method works and others to
demonstrate it’s use in more sophisticated problems. We will generally look for the

Capacitance or Capacitance like properties of these pairs of discs.
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IX.2 SINGLE DISC PROBLEMS

I1X.2.1 General Problem

Consider a thin Laminar conductor.
Q={(r0):0<r<1,~m <8< 7} (IX.1) .

that is c_harged.tr.) a potential of V volts, placed in a field
Ey (7) = —VU° (7) (IX.2)

where Ejy is in volts/meter and U° (7) is a potential function that may depend on

posttion.

If the charged density on the positive side is o () coulombs/meter? and the
charge density on the negative side is ¢~ () then the total charge density is

(@) =0t (M) +o () (1X.3)

The potential at a point ¥ € R? is then given by

60 = U+ [ T (1X.4)
- R+ L5l ()3 (x.5)

If 7 approaches {2, we find that o (7) is given by the following Boussinesq Equation

[ o(PdS @)
1 U\F) _ 1 =
rrp /ﬂ e V U (), for 7 e Q (IX.6)
We can also know that
A7 70
o+(F')—o‘(r"'J=—2w=2Ez(f"),forF€Q

az

from which we can find both % and ¢~ once ¢ is known.
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Since the Lawinar conductor is the circular disc as in (7.X.1), we get the following

Boussinesq type equation

f(p: 19) 0 = ofr or (r
/ / T —2rpeos(d = g)w (p) dpdd = g(r,8), for (r,0) € @ (IX.7)
where
g(r,8) =V - U°(r,9) (IX.8)
and ’ .
fle,9) = ° (P, ) V1-p? (IX.9)

The equivalent operator equation in Hilbert space is
B’ [f(p,9)] (r,6) = g(r,6) € Ly, () (IX.10)

which reduces to the one-dimensional weakly-singular operator equation

LS, [fm(9)] () = gm(r) € L3,n (), for m = 0,1,2,...  (IX.11) .
where ,
/ fip exp ami 49 (IX.12)
and i - ‘
Im(r) = f g(r,0) 22 g (1X.13)

o Vom
are the Fourier series coefficients of f and g.
IX.2.2 Case 1: Circular Disc Charged to a Constant Potential

In the case where the circular disc 2, is charged to a constant potential V' volts and-

there is no external field present we see that

glr, )=V = Z SmoV exp (im6) (IX.14)

m=—00

and

flp,9) = Flo) = —a(p)V1—p*= Z Smofm (p) exp (im?) (IX.15)

m=-—-0C
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where f(p) is given by the following equation

Lolf@)l () =V (IX.16)
-Clearly (X.10) has the solution

F(6) = dooV = 2V (IX.17)

giving Weber’s well known result for the charge density

4€0V

wy/1— p?

o (p) =

(IX.18)

Some solutions are shown in Figure 2 for differing values of V. The key points to

note are the proportionality relationship with V' and the singularity on the edge of -
the discs.
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FIG. 2. Some plots of the scaled charge density (0/co) on a lamina disc held to

different F potentials.
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IX.2.3 Case 2;: Earthed Circular Disc in a Parallel Field

Here we insert the circular disc 2 into the field Eg = Eui and hold it to a zero
potential so that Ey = —VU/° where

U-D'(v.*, 0,2) = —Eyrcosf (IX.19)

it follows that
= 2
g(r,8) = Eyrcosf = Z —68,1Fo \/;t(l, (r) cos {m#8) (IX.20)
’ m=0

and since we can expand f as the even function
1 _ >
£(0.9) = -0 (0, ) V/T= 2 = fi(p) oo (m0) = 3 St fn (p) cos (md) ~ (IX21)
m=0
where fi (p) is given by the one-dimensional weakly-singular operator equation
0 - 2. :
ILI [f1 (p)] (T) = Eo'f’ = Z —(snoEo\/ttn (7‘) , for 0 <r< 1 (IX22)
n=0

the solution is then given by .

o0
L 20, = _S_Eg\ﬁx _ 8%
fl(p) - ; aﬂﬂ/\lnEO\/;tn (p) - T 3tn. (p) - - g

yielding the charge density

—8E 2 8E,
o (p,9) = Iy 3(1) {p)cos? = ~—-0—€02p cos (IX.23)

_7r\/1—p2 3 T/ 1—p

Some graphs of solutions obtained for different £y values are shown (Figure 3)
illustrating that a positive field attracts the electrons to the negative x side while a
negative field repels them to the positive side. The edges of the disc illustrate the
(1— pz)_% singularity at p = 1 except when ¥ = £7 where the zero of the cosine

dominates.
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—

—
e

Charge Density (Coulombs/sq meter)
=

. - —
Charge D%nsity (Coulo-_'lr_l_bslsq meter)

(a) E0=1 Volts per Meter. (b) E0=-1 Volts per Meter.

FIG. 3. The scaled charge density (o/eg) on an insulated laminar disc in a

parailel field of magnitude 1 oriented in the direction of the z-awis.
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IX.2.4 Case 3: Earthed Circular Disc in the Field Generated by a Point
Charge

In this case our circular disc , is held to a zero potential but is placed in the field
generated by a point charge of strength ¢ coulombs placed at a position P {a,0,b)
near but not on a grounded circular disc 2. The potential due to the point charge is
given by

a0 (r, 0, 2) = 4 =L Bey (a,0;r,68)  (IX.24)
47r£g\/r2 +a? —2racosf + (z —b)* 0 ?

so that g takes the form

g(r,8) = —EEB% (a,0:7,8) , for 0<r<l,—m<@<m (IX.25)
0

By virtue of (V' /.11) and Fourier’s Theorem we can expand B% (p,¥;7,8) as

By (p,9;7,0) = Z Lo (p,7;6) exp (im [¢ — 8]) (IX.26)
and write -
=0 VI-p2= D fumlp)exp(imd) (1X.27)

m=—00

which yields the one dimensional weakly-singular operator equations

LY [fim(0)] (r) = —%Lm (a,r;b),for 0 < r <1,m=0,1,2,... (IX.28)

The charge density is then given by

Z fm p) exp (imd) (IX.29)

m=-—=oc

and is found by numerically solving {7X.28).

When evaluating the L., (p,7;b) we do so by evaluating it as a ring function as

in (VI.8), we need to be careful and avoid the numerical difficulties when 7 or a are
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equal to zero. Using (V7.12) and the fact that

T (0) = 81mo (IX.30)
we get that
g o) = — Lm0 (IX.31)
2 41 /72 + bt
and 5
q . . _i mi
L (0,050) = = (1X.32)

which we use instead of the ring function representation when r and/or a are zero.

We first examine a special case with a known solution. For P (a,0,b) = P (0,0,b)

the charge densities on the p'osit'ive_'and negatives sides are shown by Lebedev et al.

[19], to be
b b2 + p? _ 1—p? Vs
ot (p) = — =B + tan~ +I IX.33
() | 27r3(b2+p2)§[ 1-p% b + p? 2 ( )
so that

o (p) =% (p) +07 (p) =~y [ B2 +tan™? (,/;—;%)] (1X.34)

Since a = 0, fo{p) is given by the following one-dimensional weakly-singular

operator equation

L2 [folo)] () = —%ﬁ, for 0 <r <1 (IX.35)
and hence .
o (p, ) = \/ff—% -8 | (IX.36)

We now look at some numerical solutions first of all to confirm the result in
(FX.34). The computational results are accurate to machine error with those given
by 1X.34 so we just illustrate some plots for the computed solution to the charge
density function in Figs. 4 and 5. When close to the disc the point charge produces

a large localized affect on the center which is eliminated by distance. The singularities
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at the edge are still obvious but less so as the point charge gets really close to the

disc where the local disturbance dominates the charge distribution.

o D=0.05 ' Of b=4
-
b=0.2 =~02F .
- o o -04F N
o -10 ST p=2 .
3 Q 06F
0 £ 2
E 20 g08F
g ® 1E
% E 1E - b=t
8 3 £
£ O .14
S 5
3 0-16F [=i A
0 .40 F
Y <.15F
2 2,k
B -50 N
£ o 22F
[T} E
a " 0 4F
. ) -
4 D9 -20F
2 &28F
0 -70 O 3F
III|IIlI|II-||’1.ll|| -32:lll1|lllllllllllllll
025 05 . 075 1 0 025 05 0.75 1
(a) Plot for b=0.05, 01 a.;ld 0.2. (b) Plot for b=0.5, 1.0, 2.0 and 4.0.

FIG. 4. The charge density on an insulated laminar disc plotted against the
radius of the disc, when a point charge of charge 5 coulombs is placed directly above

at varying heights, b, above the disc.
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(a) b=0.5. ‘ (b) b=1.0.

FIG. 5. The charge density on an insulated laminar disc when a point charge of

charge 10 coulombs is placed directly above at varying heights, b, above the disc.

In the non-coaxisymemmetric case, when b = () we have some numerical instability
problems when |a| is close to 1 but results for |a| > 1.5 seem to be fine. Figure 6
shows some solutions for the point charge in the plane of the laminar conductor.
The localized affect as in Figure 6(a) is clearly reduced as the point charge is moved

further away as in Figure 6(b).
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FIG. 6. The charge density on an insulated laminar disc when o point charge 5

coulombs is placed in the same plane.

When a, b are both non-zcro we get a combination of the effects as illustrated in
Fig 7.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



130

Zz F4
v i
2 X
X
g
o= ]
-0.338 5 3 -0.349
-0.387 £ g | 0427
-0.437 g 20 -0.504
-0487 @ 4 -0.582
-0537 £ 3 -0.660
il : o
- 3 e
o ¢ 3
0 £ g -0.970
-0.736 £ 22 P
-0.786 a : 1138
-0836 g > -17203
"0‘886 E 3 _.1 281
-0.936 o -1.359
-0.986 -1.436
-1.035
(a) a=0. (b) a=0.50, b=0.50.
7 ) z
I 2 Y
X X
© <
-0.208 = -0.179 g
0616 $ -0.256 E
-0.835 £ -0.333 -
-1.053 oF -0.409 H
1212 2 -0.486 £
-1.490 £ -0.563 3
-1.708 3 -0.639 k)
-1.927 S -0.716 g
-2.145 z -0.793 g
-2.364 E _0.870 8
.2582 a -0.946 )
00 : oo ;
= -1.100 6
e 6 1178

-1.253

{c} a=1.0, b=0.50.

{d) a=2.00, b=1.00.

FIG. 7. The charge density on an insulated laminor disc when a point charge of

charge 5 coulombs is placed at varying positions.
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IX.3 MULTIPLE DISC PROBLEMS

I1X.3.1 The Parallel Plate Condenser
Coaxial Discs

Instead of one unit disk we have a pair of circular laminar disks centered on the
z —azis at z = +h. Our solutiqns will be in the form V = V; 4+ V; where V; and V,
are potentials relating to the individual discs. We will look at the capacitance and

capacitance like properﬁes of. the two disks which will have different potentials

V(r,8,+h) = g*(r,6) (1X.37)
Vir,g,-h) = ¢ (r,8) (IX.38)

i

Let us define the following domains

Q=T1(r6:0<r<1,—7<§<al (IX.39)
Q* =[(r,8,2): (r,0) € Qp,z = A (IX.40)
Q=0tuQ- (IX.41)

The potential V (r, 8, z) will be given by the following combination of single layer
potential functions

V(r,8,2) = L/I/ﬂ ot
ar Jo Jn \/,’..2+p2—2rpCOS(9—T9}+(z_h)2

1 1 ™ - %) pdpd??
WL / f o~ (p,9) pdp (IX.42)
™ Jo ““\/r2+p2—2rpcos(9—19)+(z+h)2

provided the charge density functions o (p,9) and o~ (p, ) satisfy the following

weakly-singular operator dual equations

[{B“ (ﬁﬂ) +BY (a— \/W) H (r,8) = g* (r,0), for (r,8) € Y (IX.43)
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and

[{Bg (aﬂ/l z p2) + B (a'—\/l - pz) }] (r,0) = g~ (r,0), for (r,0) € o (IX.44)

The General Case For the general case we expand the functions in (/X .43} and
(1X.44) as follows '

P00 =t (0,0 VT— = 3 f*(p)exp(imd)

and
oQ

0= 3 gk () exp (imb) (1X.45)

we then exploit (V'1.19) to r"cd-uc'c'.to the following system of one dimensional weakly-
singular operator dual equations

(LS + L2 fm) ()] (rj = g'; (r),for 0 <r <1,m=0,£1,%£2,.. (IX.46)
and

LS + L) (D] (1) =g (r), for 0<r < 1m=0,+£1,42,..  (IX47)

An arbitrary function f (2) can be decomposed as follows

F) = S @+ )+ 51 - F(-2)

fi(2) + f2(2) - (1X48)

where f1 (z) is even and f» (z) is odd, we can therefore have no loss in generality if

we consider only the special cases where
g (r) = +g* () (IX.49)
in this case we will also get that

o~ (r) =xot (1) (IX.50)
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The problem then reduces to a single Integral Equation.

Equally Charged Discs g"=g =g By symmetry the charge potentials on each
disc will also be equal, 0™ = 6~ = o, so that (/X.43) and {7 X.44) reduce to the

single equation

[{B°+ B} o (p,9)] (r,0) = g (r,0), for (r,8) € Q (IX.51)

Expanding as follows

m=—00

o0 =0 (0 V1= =3 fulo)exp(imo) (IX.52)

and

Z gm () exp (im8) (IX.53)

(V1.19) then gives us the follo.wing system of one dimensional weakly-singular oper-

ator equations
[(LS, +L%1) fam ()] (7) = gam (), fr 0 < r <1,m =10,1,2, ... (IX.54)

Oppositely Charged Discs g'= —g =g Here by symmetry the charge poten-
tials will also be opposite 6™ = —o~ = ¢ so0 that (/X.43) and (7X.44) reduce to the

single equation
((B°—B,} o (p,9)] (r,8) = g(r,8), for (r,8) € Dy (IX.55)

expanding as in (1 X.52) and (1X.53)}, we can exploit (V1.19) to reduce to the fol-

lowing system of one dimensional weakly-singular operator equations
[(La = L) fem (0)] () = gaen () , for 0 < r <1,m =0,1,2, .. (IX.56)

Numerical Results We will check the simple case where the parailel discs are
charged to an equal or opposite constant potentials. We can compare these results
with those in Sneddon ([2], p238) by looking at the Capacitance. First let us consider
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the case where the potential is equal in magnitude and constant on both discs;

g (r,8) = Vo, for (r,8) €Yy (IX.57)
T(r,8) = W, for (r,0) € (IX.58)

the total charge on the upper disc is then given by

2n
Q= f f a (p,9) pdpdd = 27 foo (IX.59)

where since ¢ is even

p! 29) Z Z (smﬂanﬂfmn lmi (P) cos mrﬂ) (IX6O)

m=—oc n=0
The Capacitance (C) is then given by

C= %O = 7 foo (IX.61)

(]

If we compare these with the results given by Sneddon ([2], p238) which lists
TCsneddon Where the capacitance Cypeddon 15 in different units, with the conversion as

follows; c
WCsneddon = = 7Tf_(]0 (IX.62)

4 4
A comparison of results for V; = 1 and differing distances between the discs
(xk = 2h) is given in Table. 3 showing that the results are equivalent to at least three

decimal places with our results possibly more accurate.
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TABLE 3
Comparison of Capacitance (Cspeqaon) 7esults for a pair of paral-

lel plates charged to equal or opposite potentials. Source ({2],p238).

K Nomura -Cooke Galerkin Collocation

Equal = | Opposite | Equal Opposite | Equal Opposite

04 | 0.6027 3.1029 | 0.602499 | 3.102305 | 0.602499 | 3.102305
0.6 |0.6364 2.3956 | 0.636407 | 2.395441 | 0.636407 | 2.395441
0.8 | 06656 |2.0372 | 0.665610 | 2.037267 | 0.665610 | 2.037267
1.0 | 06912 1.8208 | 0.691207 | 1.820785 | 0.691207 | 1.820785
12 |0.7138 1.676 0.713812 | 1.676043 | 0.713812 | 1.676043
1.5 | 0.7437 | 15227 | 0.743020 | 1.531444 | 0.743020 | 1.531444
2.0 | 0.7817 | 1.3867 | 0.781752 | 1.388027 | 0.781752 | 1.388027
25 | 0.8113 1.3034 | 0.811260 | 1.303422 | 0.811250 | 1.303423
3.0 | 0.8342 1.2421 | 0.834216 | 1.248107 | 0.834216 | 1.248107
50 | 0.8896 1.1417 | 0.889579 | 1.141723 | 0.889579 | 1.141723
10.0 | 0.9405 1.0675 | 0.940518 | 1.067514 | 0.940518 | 1.067514
20.0 | 0.9683 1.0319 | 0.969201 | 1.032821 | 0.969201 | 1.032821

Fox-Blake | Galerkin Collocation
Equal L Equal Equal
0.1 9.233 : 9.233081 9.233081

We now test the limits of the method by examining some limiting cases. In the
equal potential case as the distance, «, goes towards zero it should start acting as if
the total charge is split between the two discs and Cgyeqqon should approach % as is
illustrated in Table. 4.
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TABLE 4
The Capacitance (Cspeagon) as the distance between two equally charged par-
allel discs tends towards zero can be seen to approach 0.5. HResults from col-

location method. Note numerical singularities appeor for smaller kappa values.

x| Collocation
Equal
0.2 0.5613624
0.1 0.5358826
0.05 | 0.5205986
0.02 | 0.5096676
- | 001 0.5053793
1 0.0005 | 0.5029637
0.0001 | 0.5007223

In the oppositely chiarged case as the distance, &, between the plates tends to
infinity it should start acting like a single disc with all its charge, 50 Cspeddon should
approach 1 as is illustrated in Table. 5.

Non Coaxial Discs

This time the discs will be parallel to the (r,8) plane and centered at (a,0,k) and -
(—a,0,—h) where a > 1 if A = 0, so the discs do not touch or overlap. Our solutions
will again be in the form V = V| + V, where V] and V5 are potentials relating to the
individual discs. We will also look at the capacitance and capacitance like properties
of the two disks.

Let us define the following domains

Qo=[(r,8):0<r<1,—7<8<7| (IX.63)
OF = [(z,9,2): 0< (z £ o)’ +y* <1] (IX.64)
DY = [(x, y,z) 1z =xh (2,y) € Qi] (IX.65)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



137

TABLE 5
The Capacitance (Csneadon) @s the distance between two oppo-
sitely charged parellel discs tends towards infinity can be seen to ap-

proach 1. Results here are oblained from wusing the collocation method.

% | Collocation

Opposite
100 | 1.0064070

250 | 1.0025530

750 1 1.0008500

1000 | 1.0006370
10000 | 1.0000640
50000 | 1.0000130
100000 | 1.0000060
1000000 | 1.0000010
10000000 |  1.0000000
100000000 | 1.0000000

Let o (z,y) be the charge densities on the disks D* and let ¢* (z,y) be the
corresponding potentials. The potential V {z,y, 2) will be given by the following
combination of single layer potential functions

ot (s, t)dsdt

Viz,y,2) = 471'60/;!\/(x—8)2+(y_t)2+(z_h)2
Tl L ey ™
I~

(=8 +y—-t) " +{z+h)

provided the charge densities satisfy the dual equations

ot (s,t) dsdt
471'50/[\/ )

x—S) +(y

4% / / \/ (o, dodt =g (z,y), (z,y) € @ (IX.67)

(@ —8)" + (y — t)° +4h?
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and

/ / ot (s,t) dsdt
e — 8+ (y —t)* + 4h?

o~ (s,t)dsdt — o (2 . ~ |
4ﬁeoff\/(m I g (z,y), (z,y) €N (IX.68)

or cquivalently

/ / (s t)dsdt
dreg t)2

1 // = —t)det =g" (z,9), (z,y) € 2+ (IX.69)
Tl \/(x + 3) (y+1)° +4h2

and

/ / —s, —t) dsdt
Ameq /x+s + (y+ )2 + 4R

t)
- / / LY g ey, @ e @xT0)
TED t)2 .

Since an arbitrary function f (z,%) of two variables can be decomposed as follows

Fay) = 3@y + o)+ 5 1f @)~ F -z,

where f; (2,y) is even in both 2 and y while f> (z,¥) is odd in both, we can therefore

have no loss in generality if we take only the special cases where

g (—z,—y) = 4" (z,9) (IX.72)
and we will also get that

6 {—z,~y) = tot (z,y) (IX.73)
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so we can reduce (/X.69) and (FX.70) to the single equation

1 1 + 1 + ) dsdt = + Q+
4?{60// { \/(:r:—a)2+(y—t)2 \/(:U+S)2+(y+t)2+4h2 g {37 ) gd g (x:l y) ? (.T) y) €
Q-+

(IX.74)
If we introduce the polar coordinates
s—a=pcos?, t=psind
. (IX.75)
z—a=rcosé, y=rsinf
and write
o (s,5) = o (p,9), g" (z,y) = g(r,0) (IX.76)
we find that if
g (?‘, _9) = :}:g+ (T, 0) =g (7‘, 9) (IX77)
we will also get that
o™ (r,—8)=xo* (r,0) = o (p,9) (IX.78)
so that we will then get the following two dimensional operator equation
[{]BU + K?z,a} f (o, 19)] (r,8) = g(r,8), for (r,8) € Qp (IX.79)
where
Fp,9) =0 (p,9) /1 - p? (IX.80)

and the non-singular operator K} , is defincd as follows

1 2
K. f (0, 9)] (r,0) = / / £ (0,9) K (0,0;7,0)u® (p)dpd®  (IX.81)
0 q

with kernel

1

Kp.(p,0;7r,8) =
ha (P ) V72 + p? + 2rpcos (9 — 8) + dapcos 9 + 4ar cos 8 + 4a? + 4h?

Numerical Results We will consider the simple case where the discs are charged
to an equal or opposite constant charge and hence we deal with just even cosine
expansions. Tables. 6 and 7 show the Capacitance (Csneadon) given by both the
Collocation and Galerkin methods for the equally charged discs . We show the
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collocation method results for oppositely charged discs in Table. 8. The results for
a = 0 can be compared with those in Table. 3 to confirm that the accuracy of the

two-dimensional methods.

TABLE 6
Capacitance (Cspeddon) for offset dises equally charged to a constant po-
tential, centered at (a,0,h) and (-a,0,-h).  Results from collocation method.

M = 3 &, quad points = 20
N = 5 #6coll,rcoll  points = 3,5
h| a 0 0.2 0.4 0.6 0.8

0.2 0.6025 _ 0.6282 | 0.6732 | 0.7152 | 0.7508
0.4 | 0.6656 0.6769 | 0.7034 | 0.7340 | 0.7629
0.6 0.7138 0.7200 | 0.7362 | 0.7572 | 0.7791
0.8 0.7517 0.7555 | 0.7658 | 0.7803 | 0.7964
1 0.7818 0.7842 | 0.7912 | 0.8013 | 0.8132
2 0.8672 0.8677 | 0.8693 | 0.8717 | 0.8748
3 0.9056 0.9058 | 0.9063 | 0.9072 | 0.9084
5 0.9405 0.9406 | 0.9407 | 0.9409 | 0.9412
10 0.9692 0.9692 | 0.9692 | 0.9693 | 0.9693
h a 1 2 3 3 10
0 07773 | 0.8659 | 0.9051 | 0.9404 | 0.9692
0.2 0.7803 0.8664 | 0.9053 | 0.9404 | 0.9692
0.4 0.7883 |  0.8681 | 0.9059 | 0.9406 | 0.9692
0.6 0.7996 0.8706 | 0.9068 | 0.9408 | 0.9692
08 0.8125 0.8740 | 0.9080 | 0.9411 | 0.9693
1 0.8257 0.8779 | 0.8095 | 0.9415 | 0.9693
2 0.8786 0.9004 | 0.9196 | 0.9444 | 0.9698
3 0.9098 0.9197 | 0.9307 | 0.9484 | 0.9704
9 0.9416 0.9445 | 0.9485 | 0.9570 | 0.9723
10 0.9694 0.9698 | 0.9705 | 0.9724 | 0.9780
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TABLE 7
Capacitance (Csnedaon) for offset discs equally charged to a constant po-
tential, centered at (a,0,h) and (-a,0,-h).  Results from Galerkin method.

MN = 3 4rquad points = 20
h|lal - 0 0.2 0.4 0.6 0.8
0.2 0.6025 |  0.6281 | 0.6731 | 0.7152 | 0.7509
0.4 0.6656 | 0.6769 | 0.7034 | 0.7340 | 0.7630

06 07138 0.7200 | 0.7362 | 0.7572 | 0.7791
0.8 0.7517 0.7555 | 0.7658 | 0.7803 | 0.7965
1 0.7818 0.7842 | 0.7912 | 0.8013 | 0.8133

2 0.8672 0.8677 | 0.8693 | 0.8717 | 0.8748

3 0.9056 0.9058 | 0.9063 | 0.9072 | 0.9084

b 0.9405 0.9406 | 0.9407 | 0.9409 | 0.9412
10 0.9692 0.9692 | 0.9692 | 0.9693 | 0.9693
hia 1 2 3 5 10

0 0.7775 0.8659 | 0.9051 | 0.9404 | 0.9692
0.2 0.7804 0.8665 | 0.9053 | 0.9404 | 0.9692
0.4 0.7884 0.8681 | 0.9059 | 0.9406 | 0.9692
0.6 0.7997 0.8707 | 0.9068 | 0.9408 | 0.9692
0.8 -0.8126 0.8740 | 0.9080 | 0.9411 | 0.9693
1 -0.8257 0.8780 | 0.9095 | 0.9415 | 0.9693
0.8786 (0.9004 | 0.9196 | 0.9444 | 0.9698
0.9098 0.9197 | 0.9307 | 0.9484 | 0.9704
0.9416 0.9445 | 0.9485 | 0.9570 | 0.9723
10 0.9694 0.9698 | 0.9705 | 0.9724 | 0.9780

[0 3 I SRR I )
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Capacitance results, Csneddon, for offset discs oppositely charged to a con-
stant potential, centered at (a,0,h) and (-a,0,-h). Results from collocation method.

M = 3 f,r quad points = 20
N = 5 fcollyreoll  points = 3,5
h| a 0 0.2 04 0.6 0.8
0.2 3.1023 2.5605 | 1.9940 | 1.6849 | 1.5082
04 2.0373 1.9390 | 1.7488 | 1.5812 | 1.4587
0.6 1.6760 1.6433 | 1.5656 | 1.4780 | 1.4002
0.8 1.4954 | - . 1.4809 | 1.4431 | 1.3946 | 1.3457
1 1.3880 1.3804 | 1.3596 | 1.3309 | 1.2993
2 1.1808 1.1798 | 1.1771 | 1.1727 | 1.1670
3 1.1164 1.1161 | 1.1153 | 1.1140 | 1.1122
5 1.0675 1.0675 | 1.0673 | 1.0670 | 1.0666
10 1.0328 1.0328 | 1.0328 | 1.0328 | 1.0327
hia 1 2 3 5 10
0 1.4082 1.1839 | 1.1173 | 1.0677 | 1.0328
0.2 1.3982 1.1828 | 1.1170 | 1.0676 | 1.0328
0.4 1.3718 1.1798 | 1.1161 | 1.0675 | 1.0328
0.6 1.3374 1.1749 | 1.1147 | 1.0672 | 1.0328
0.8 1.3017 1.1688 | 1.1129 | 1.0668 | 1.0327
1 1.2687 1.1618 | 1.1106 | 1.0663 | 1.0327
2 1.1605 1.1245 | 1.0959 | 1.0626 | 1.0322
3 1.1100 1.0957 | 1.0805 | 1.0575 | 1.0314
5 1.0661 1.0625 | 1.0575 | 1.0470 | 1.0293
10 1.0327 1.0322 | 1.0314 | 1.0293 | 1.0230
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CHAPTER X
APPLICATIONS II: 3-D CRACK PROBLEMS

X.1 INTRODUCTION

In order to illustrate the use of the hyper-singular integral equations discussed in
Chapters V and VIII we will investigate a number of problems arising in the theory
of linear elastic fracture mechanics. We will begin by determining the stress intensity
factors for a penny-shaped crack under a variety of loading conditions and then go on
to consider problems involving more than one such crack. Before doing so however,
it will be necessary to introduce some additional notation and terminology in order

to set up the problems appropriately.

It is well known that, in the absence of body forces, the equilibrium displace-
ment, u = (uy, us, u3), of a three dimensional linear elastic solid is given by Navier’s
Equations . "
(1—=2v)u;+u;; =0, fori =1,2,3 (X.1)

and that the corresponding stresses are given by the constitutive equations

Ev
(1+v)(1-2v)

0',']' =

uk,k&j + (Ui‘j + uj,i) ' for Z,] =1, 2, 3 (X2)

where E is Young’s modulus,  is the shear modulus and v is Poisson’s ratio [20].

Papkovich and Neuber {[21] and [22]) have shown that the general solution of the

equilibrium equation, (X.1)} may be expressed in the form
2uu; = —4(1 = v)9; + (29, +¢) (X.3)

where ¢ is a harmonic scalar and ¥ = (1,&1,1/)2,1!;3) is an harmonic vector.

It follows that many problems in the theory of elasticity can be reduced to bound-
ary value problems in potential theory and are therefore amenable to treatment by
integral equations of the type discussed in previous chapters. For the purpose of
illustration we will restrict our interest to the following special case of the Papkovich-
Neuber Solution as described by Barber ([20], p205 solution F}).
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In Cartesian Coordinates this solution takes the form shown in Table 9 while

Table 10 shows the solution in Cylindrical Polar Coordinates.

TABLE 9

A special case of the Papkovich-Neuber solution in Cartesian Coordinates.

By a

— P _ dp _ if e
2pu, = 256 + (1 — 20) 3 | 040 = 2555, ey + o azz +2v5, Ocz = 2 5.3

_ _ R _ a3 . _ . 8
2uu, = za—ﬂaz +(1-2) 3L | ogy = z—-—*’—azayaz + (1 2u) azay Oy: = 25 3

— Bp - _ 5 2
2pu, = az2 —2Q-v)5E |oy = _z;ﬁa + ? +2w5s 6:1:2 Uw = Zg5 — 5

TABLE 10

A special 'case of the Papkovich-Neuber solution in Cylindrical Coordinates.

_ _* 3 &
2, = 25 + (1 — ) 58 | 072 = 25,53
—z29% !ﬂl_ﬂ = z &
2pg = % 555 v 96z = I 56822
_ . B° P
2uu, = 255 — 2(1—1/)%33 Ouw = 255 — 5‘5—
& a2 P2y . O
UrF*’ﬁ*’ﬁ””(ﬁ*ﬁ
Oup = 2.0z Pe | (=) (8%  13¢
r8 T T 3ra08:  r2 0rdz | T or00 ~ r 80
52 &2 33 >
oo = —(1 = 20) 5% — 55 — 2505, — P58

X.2 SINGLE CRACK PROBLEMS

X.2.1 A General Problem

Let 2 be a bounded region of the xy-plane with smooth boundary 9€2. Then, we
consider the problem of determining the stresses and displacements in the vicinity of a

crack that occupies the domain €2 and is opened by a symmetric pressure distribution
0., =—P(z,y), for (z,y) € Q (X.4)

In order to address this problem we nced to find a solution of the equations of
three dimensional linecar elasticity in the domain {(z,y,2) € R*: {2| > 0}, subject to

the boundary conditions;
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0y =088 y/22+ 942 +22 > 0 (X.5)

U; (a:,y,0+) — (:c,y,O_) = 0fori=1,23, (z,y) € Q°
oy (2,9,0%) -0y (2,9,07) = 0fors,j=1,2,3, (z,y) € Q° (X.6)

and

e (2,9,0%) = oy (2,9,0%) = 0for (2,) €Q
I~ (a:,y,Oi) = . —P(z,y) for (z,y) € Q {(X.7)

By virtue of Table 9 we see that these conditions are satisfied trivially if ¢ (z,y, z)
is given by the following harmonic boundary value problem;

Solve the partial differential equation

o o Py ,
e - oy + B 0, for |z| > 0,(z,y,2) € R (X.8)

with boundary conditions

olz,y,2) > 0as Jazt+ 2 + 22 - oo (X.9)

¢(z,4,0") —¢(2,9,07) = 0 for (z,9) €Q°
e, (z,4,0") — ¢, (z,9,07) = 0, for (z,y) € Q (X.10).
P (2,9,0%) — ., (2,3,07) = 0, for (z,y) €Q°

0w (2,9,0%) = P(z,y), for (z,y) €9 (X.11)
If we now express ¢, (x,¥,2) in terms of the double layer potential

e, = dw(s,t) (z,,2) (X.12)

we find that

©, (a:, y,0+) -, (az,y,O_) =w(z,y), for (z,y) €N (X.13)
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and that the harmonic boundary problem is solved if w (x,y) is given by the hyper-

singular integral equation

Ay w (s, t) dsdt _p
i = P(z,y), for (z,y) € 0 (X.14)
47r/./Q \/(1‘—8)2+(y—t)2 y), 10 Y

Observe that the crack opening displacement is then given by

Au, = u, (2,,0") —u, (z,7,07) = 1 ; Y w (z,y) for (z,y) € 0 (X.15)

Now let n be the unit outward normal at any point P € 9§2. Then, if we move
a distance d in the direction of n it is found ([24], p149) that the normal stress is
given asymptotically by

Tz ™ \/ﬁ + O (d) (X16)

Similarly, if we move a distance d in the direction of —n it is found that the crack

opening displacement is given asymptotically by

Au, ~ 2(%1’—)\@;:1 (P)+0O (at) (X.17)

The quantity &, appearing in these expressions is called the opening mode stress
intensity factor and is of interest to workers in fracture mechanics because it may
be used to predict the onset of crack propagation. Clearly the opening mode stress
intensity factor can be obtained directly from the solution of (X.14) via the limit

_—lliml
2 d-0+/2d

which can often be evaluated in closed form.

koy = (X.18)

A Penny Shaped Crack Problem

We begin by considering a circular or penny shaped disc of radius ¢ > 0 which

occupies the region

Q={(#60):0<7<qg,—71<d< 7} (X.19)
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of the z — plane and is opened by the symmetric pressure loading
0., =—P(# 8}, for (+,8) € Q {X.20)

which leads us to the layer potential solution

Il

[ (P,"ﬂ)](rﬂ’z -
_ f f w (p, ¥} pdpdd (X.21)
o Ji 4 2 2hpeos (0 0) + 2

where w {p, ) satisfies the hyper-singular integral equation

Pz

—Ag/ / w(p, V) B(p,9,;7,0) pdpdd = —P (#,6}, (X.22)
for0<¢<a,—n7<8 S 7 or equivalently, the operator equation
DB [f(p,9)] (r,0) = —p(r,0) € L} (%) (X.23)

which is obtained by making the simple change of variables; ¥ = ra, p = pa,

wpa,d)  w(pJ)

f{p,9) = =, (X.24)
p(r,0) = P(ra,0) = P{¥ 6}, (X.25)
and
# 19 18 L[ 18 1 <
Ay = — = =a’ ot - s | = A, .
2= o2 T T R o [8?‘2 T TP 392] @5 (X.26)
The crack opening displacement is then related to w and f by

Au, = — Lo (7,0) = —1=¢f (’;9) g (X.27)

and the stress intensity factor takes the form

9 2 _ 2

ky = 3L lim fG.0) va? = —1f(1,0)Va (X.28)
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X.2.2 Case 1: Constant Pressure

In the case of a constant pressure loading

P@#68)=P= P\/%ﬁcéo (f,e) (X.29)
a

the solution, (X .27), yields the crack opening displacement

: 2 _ 42
Au, = 2Py /%ﬂq}o (2,9) B 1 APVe T (X.30)

# T
and hence the stress intensity factor

. Au 2P . a+r 2P
ki = lim

H z
= —— |1ImM —
w‘-m2(].—-l/)1/2(a—7’~) T r—a 2

which is readily verified computationally.

X.2.3 Case 2: Bending Load

Next we consider the case in which the crack is opened by a bending load M about
the axis, z = 0, z = b > a. To find the cffective pressure we observe that, in the

absence of a crack, the stress on the z — plane is given by

0. (7,6,0%) = M(é—fcos&), (X.32)
0. (7,8,0%) = a4, (,6,0°) =0 (X.33)

by the principle of superposition it now follows that the effective pressure on the

Penny shaped crack takes the form

, , /2 2
P(,0)=-M (b — #cos e) - ~M61/§c3,0 (#,0) + M %C}D (%,6), (X.34)
as before, the crack opening displacement is given by
l—-v
Au, = — w (¥, 8) (X.35)
1
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where the w satisfics the hyper-singular integral cquation

—AQ/ fw(,f’),ﬁ)B(ﬁ,ﬂ;?‘,H)pdﬁdﬂz—P(v‘,f)),forﬂﬁv‘ﬁa,—wgﬁgw
—mJd0
- (X.36)

or equivalently f satisfies the operator equation
—AgB' [f(p,9)] (r,8) = —p(r,8) € Ly () (X.37)

which is obtained by makmg the simple change of variables; ¥ = ra, p = pa and

b = ba where (pa,9) (4,9)
w (pa, wip,
,9) = - , X.38
R TN e A A
(7'6}—-—1-—P(m6)—-—1—-P(7' 8)=b—rco G—Q—fcoﬂ (X.39)
PST = O U aM = OTTeos a a >’ )
and
# 19 18 [ 10 18 9 £
M=gat o tmar = |ar trar TEaer) =0 X0
The stress intensity factor for this problem is then
' .1 w((#,6)) 1. 3
k) = — lim ———=2— = ——Ma2f(1,6 XAl
= = Jim g = —5Malf (,6) (X.A1)
or L
1 ™
—=—f(1,¢ X.42
where we have introduced the sk:ahng factor
2. 3
ko = ;Ma'z (X.43)
For 0 < ¢ < 27 the exact solution for this quantity is given by
kb2
a3 cos (X.44)
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which has its maximum value when ¥ = 7 and in that case

ky b 2
— =4~ X.45
(k(}) a i 3 ( )
Figure 8 illustrates the nature of the stress intensity at different points on the edge

of the crack for differing crack radii and positions of bending loads.

L . b/a=2
25 »  bBle=1b
ot bla=1.25
- i ) Bra=1.1
o [ bia=1.01
~ 2 [~
L - e
e [
g i
9 1.5 :
<
i 3 Max aiways at pi
@ 1
E [
@ 05k
0 L [ ] 1 i i i } | ) 1
0 2 6
theta

FiG. 8. A penny shaped crack of radius a, centered at (0,0,0) and opened by a
bending force about the line x = ¥ > a. Plots show how the scaled stress intensity

factor varies with 8 for several values of b=V /a.
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X.2.4 Case 3: Equal and Opposite Point Forces
Case 3a: The Axisymmetric Loading Case

We now consider the problem in which a penny shaped crack is opened by equal and
opposite point forces + Pk at the positions (0, 0, ifm). First we need to determine
the effective pressure. From Kelvin’s Solution ([20], page 219) for a point force of

magnitude P acting in the positive z direction at the origin;

. P z 322
Ty (T,Z) = —m |:(1—2V)ﬁ+ﬁ:|
) P 7 3fz?
o=(h2) = iy [(1 "Mt F]
ge, (¥,2) = 0 (X.46)

where R = V72 + 22

Using this solution, the principle of superposition and the notation

N 2
R, =4/ + (z — h) , we find that the two point loading yiclds the stresses

oo (F2) = Wiu)' {“ o) (=—%) n 3(2;;,)3 —(1—2) (=+h) 3(z+ﬁ)3] (X.47)

, _ . 37{z—h 2 ; 3¢(z+h 2
o 9) = ity [0~ 2y + G - - g - Y] )

oo (F,2) =0 (X.49)
so that
0. (7,0} = 0, (#,0) =0 (X.50)
and , ,
, Ph| 2 1 3h% - R2
[2. 9 (T,U)—-E R_g+ 1—o Rg ] (X51)
hence the effective pressure loading can be written in the form
1
P(#) =P () + T yPg () (X.52)
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where
, Ph 2
P, (’r) = I E (X.53)
, Ph3h* — R}

The crack opening displacement. is then given by

Au, = 1 ; V'w (F) = —i- [(1 — v)w; (F) + wq ()] (X.55)

where the w, satisfy the integral equations
, ™ &
Ao [ [ wn ) B (5, 051,0) apas = P ), (X.56)
- J0
for0<r <a,—m <@ <mk=1,2 or equivalently; as operator equations in f
DB [f(p)] (r,6) = ~pu(r) € L} () (X.57)

obtained by making the change of variables; ¥ = ra, p = pa and h = ha where

 Armawg (pa)  dmaPwg (p)

- - , X.58
O = i a7 x5
4ma? 4ma®
pi(r) = bk (ra) = —5 b () (X.59)
and
# 19 1o # 19 18 ,
p=F 10 10 R & 10 100 a4 X
2= o T ror e ¢ o Tior  Ra] T Y (X.60)

Since (X.56) exhibits axial symmetry it is easily converted to a one dimensional
integral equation as discussed in Thm. (VIII.7). This leads to the one dimensional

operator equations

Dol [fi ()] (r) = pe (r) € L34 (0,1), for 0<r <1,k =1,2 (X.61)
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whcre , 2h .
—3 k=1
_ (r? + h%)2
P (1) = ¢ > (X.62)
3 _ 3,2
h® — hr k=2
L (,,.2 + h2)§ J
In this case the scaled stress intensity factor may be expressed by
(VRN ()
by Ry L (X.63)
ko ka 1-v kg
where ’ ) p
KR = = fim B =P 1) fork=12 (X.64)
25-a" \/2(a—7) 8ma2
and the scaling factor chosen, P .
kO = 3 (X65)
w2a2

is the stress intensity factor for a plane circular crack with symmetrical and opposing

point forces at the center [23].

It now follows that

kq

T 1
k_-():_g f1(1)+

1—v»

e )] (X.66)

which can be computed and compared with the exact solution as found in {23]

ko 11 K
ko 1+A?  1—v(1+h?)?

(X.67)

A plot of the results obtained for certain v values is shown next (Figure 9) and

compares favorably with the known result.
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FIG. 9. A penny shaped crack of radius a, centered at (0,0,0} and opened by
point forces 2Pk centered above and below the cracks at (0,0,+#'). Plots show how

the scaled stress intensity factor varies with h = k' [a for several values of v.

Case 3b: The Non-Axisymmetric Loading Case

This time we are going to have the point forces centered at (5,0, +h). If we let R be

as follows

R=\/($-b)2—+—y2+h2

then by virtue of Kelvin’s solution {[20], page 219) it is readily seen that

By (#,6) (X.68)

1—v
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where
) Ph
P (70) = Ry (X.69)
Ph (2h2 — R%}
B = ————= X.70
and

Ry (F,8) = /72 — 2rbcos f + b2 + h?

The crack opening displacement is then given by

Au, = — w(F} = —=[(1 = v)w (#) + wa (¥)] (X.71)

=
=i

where the w;, are solutions of the integral equations

A, / / wi (5) B (p, 9;7,0) pdpdd = — Py (), (X.72)
—w JO

for 0 <7 <a,—7m <8 <mk=1,2 or equivalently; fi. are solutions of the operator
equations
—8oB [ (p,0)] (r,8) = —pi(r,0) € L} () (X.73)

obtained by making the change of variables; 7 = ra, p = pa, b = Sa¢ and h = va

where Arawy (pa,¥)  4dma’wy (p,9)
fr (P; 19) = P/ P2 = P\/m ) (X74)
pi(r, 8) = 4’;‘2 P (ra,6) = 4’;‘213(?:, 8), (X.75)
2 2 2 2

R* =7 —2fbcosf+ b* + A2 = a® [r? — 2rBeost + B2 ++°] = a®Ry (r,0) (X.77)
and noting that

. 2 1 2hr?— R? 2 1 242 — R2
P(,0) = & [—+ ]:ﬁ[}z—;ﬂ_y”fﬁm 1)]

= [Pl (r,0) + l—i;pz (r, 9)] (X.78)
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We nuwst solve {X.73} as a full two dimensional cquation. The scaled stress

intensity factor for this problem has no known closed form solution but will be of the

form a) @
e —_— X.
ku ku + (1 - V) kg ( 79)
where for . (+.6) P
KS = fim RN T e 1.0) for k= 1,2 X.80
! 2 far 2(a—7) 8ma? $e(1,6), for ( )
the scaling factor needed is given by (X.65).
It is now apparent that
kb ow] 1
k-8 h8)+ 11— f{(10) (X.81)

and it is clear, from physical considerations, that the maximum stress intensity factor

will occur when 8 = (.

We now exhibit the stress intensity factor with a few graphs illustrating some

results. Firstly a plot showing the stress intensity factor for a set ratio v = 2 =1,
and various § = § and v values (Figure 10). We can see clearly that in Figure 10 the
stress decreases as both v decreases and 3 increases. 3 increasing means the forces

are moved further away from the crack reducing the effect.
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K 14 O nu=0.4,beta=1.2
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£ [ nu=0.4,beta=1.4
~ [ nu=0.3,beta=1.4
w 'F nu=0.2betam1.4 =/
z- - nu=0.1,beta=1.4 O [
" C .
€ 08 o
g - 7t nu=0.4,beta=1.6
e [ nu=0.3.beta=1.6
806 nu=0.2,beta=1.6
g [ nu=0.4 beta=1.8 \ ! nu=0.1,beta=1.6
7] - nu=0.3,beta=1.8
04 Fnu=0.2,beta=1.8
[ nu=0.1,beta=1.8 OO nu=0.4,betan2
i 1nu=0,3,beta=2
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“<F i 1hu=0.1,beta=2

0
Theta

FIG. 10. A penny shaped crack of radius a, centered at (0,0,0) and opened by
point forces £Pk at (b,0,+h’). Plots show how the scaled stress intensity factor

varies with 8 for different values of 3 = b/a for several values of v withy = hfa = 1.

The next two plots (Figures 11 and 12) have set values of both § =2 and v = 0.4
and show the effect of varying . In Figure 11 it can be clearly seen that the stress
increases as 7 increases for very small v values. This phenomenon is due to the fact
that when the height is very small the point forces partially cancel and do not exert
their full force on the crack edges. Figure 12 shows that when <y gets bigger (in this
case bigger than 1} the stress intensity drops as the height gets higher and hence

further away from the cracks.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



158

03 - nu=0.4, gamma=1.0, beta=2

W

Ky 0.25 ® nu=0 .4, gamma=0.8, beta=2

o A

g 02 f

P L

i [ a nu=0.4, gamma=0.6, beta=2

&8 015F

= [

[ ] -

7] .

§ o1

L I | nu=0.4, gamma=0.4, betaw2
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FIG. 11. A penny shaped crack of radius a, centered at (0,0,0} and opened by
point forces £Pk at (b,0,%h'). Plots show how the scaled stress intensity factor
varies with @ for different small values of v = hja forv =04 and § = bja = 2.
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03 - nu=0.4,gamma=1.0, beta=2
i /ﬁ\\ = nu=0 4, gamma=2, beta
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FIG. 12. A penny shaped crack of radius a, centered at (0,0,0) and opened by
point forces T+ Pk at (b,0,+h"). Plots show how the scaled stress intensity factor
varies with 0 for different medium to large values of v = hjfa for v = 0.4 and
B=bla=2.

All these plots indicate the same profile of graph with differing magnitudes. The
maximum stress is the most important consideration when considering crack prop-
agation and Figures 13 and 14 illustrate the maximum stress intensity factor for -
various v and 3 values, first as a three dimensional plot and then as a contour plot.
Loads directly above the crack and near to the edge clearly produce significantly
more stress than those further away from the crack. Close to the center of the crack
would appear to be a point where the stresses are partially balanced.
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Max Stress Intensity factor

FIG. 13. A penny shaped crack of radius a, centered at (0,0,0) and opened by
point forces =Pk at (b,0,+h"). Plot shows how the scaled maximum stress intensity
factor varies with v = h/a and 8 = b/a for v =0.4.
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FIG. 14. A penny. shaped crack of radius a, centered at (0,0,0) and opened by
point forces £ Pk at (b,0,1h"). Contour plot shows how the scaled mazimum stress
intensity factor varies with y = hja and 8 = b/a for v =0.4.

X.8 MULTIPLE CRACK PROBLEMS

X.3.1 General Problem

This time we will examine a pair of coplanar penny shaped cracks of radius a centered
on (+4,0,0), é > a, given by Q* = {(2,¥) : (z F & + y* < a®}. These cracks will
be opened by the loading pressure

72 (2,4,0) = —P(2,y), for (z,y) € Q (X.82)
where
Pt (z,y) ,for (z,y) € Q"
Ple,y) = (x.83)
P~ (z,9) ,for (z,y) €9
and 0 =QTUQ".
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The crack opening displacement will then be given by

Auz = U (xay) 0+) — Uy (ﬂ:,y, 0_)

= ;L_(T_%_;/_)w {z,y), for (z,y) € Q (X.84)

where the potential function is such that

tz,y) ,for (z,y) € OF
w(z,y) = (X.85)
w” (x,y) ,for (z,y) €

and is given by the pair of hyper-singular equations

//m\/ *+(s,t) dsdt // \/x_; tijdit) = Pt (z,y),

for (z,y) € & and

//m \/ wt (s,1) dsdt // \/(x—(s t)dsdt-t)2 — P (2,),

for (z,y) € -

We will solve these type of problems by splitting (when necessary) the pressure
function into even and odd components and then exploiting the symmetries these
individual parts exhibit. We will choose for generality symmetry about the origin so

that we can assume that;
P {—:1:, —y) = +P*(z,y), for {z,y) € Q" (X.88)
and it can then be shown that the potential function cxhibits similar symmetries
w (—z,—y) = +w' (z,y), for (z,y) € QF (X.89)

so that on making the correct change of variables we can reduce {X.86) and (X.87)
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to the one equation

wt (s,t) dsdt = P (z,y),

% 1 n 1 }
]51;/{\/(x—s)2+(y—t)2 \/(:t:+s)2+(y+t)2

(X.90)
for (z,y) € QF
Introducing polar coordinates (with é = ac, ¥ = ar, p = ap)
x—?'zt‘cosﬂ ,yz’r's'inﬂ (X.91)
s—¢=pcosd ,t=psiny
and letting
P (#,6) = —P.p(r,0) '
where
# 18 18 L[ 18 16 ‘
Ay = — T~ ——:2—-.. —— e :2 A
et rar T T [81‘2 "Fer TR 392] @ (X.93)

we then obtain the integral equation

/_:/0 “ (p)f(p’o){:i%B (b 957,0) + K (Pvﬂiry9)}dpdv9=p(r,0) (X.94)

for 0 <r <1,—7 <8 <7, where

T1
4m/12 + p? + 2rpcos (8 — 9) + 4c (peos I + 7 cos ) + 42
(X.95)

K (p,9;m,0) = Ay

or in operator form
{—AB' + KL }[f (0, 9)](r,0) =p(r,6) ,for 0<r<1,—w<f<m (X.96)
where

KL, [ (5, 9)] (6) = [ " [ W (0) £ (0, 0) K= (0,957, 0) dpdd.  (X.97)
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The crack opening displaceinent is then given by

M #

Auz = _l;u.w (7"39) = _Mf (2)6) a? — 72 (X‘98)

and the stress intensity factor by

gt (o _

2!=—ra.“‘/2((1—75) 2

7(1,6) (X.99)

The stress intensity factor will be scaled with respect to that for a single disc

ko= 22 /a (X.100)
s
which then gives
kl T
—_ _Zf(l,e) (X.101)
0

X.3.2 Case 1: Constént Pres"sure

In the case of a constant bressure loading
P(#,0)=P (X.102)
which is of even type, we need only solve the operator equation
{-8:B' + K, } (D] (r,0) =1, for 0<r<l,—m<f<m (X.103)

where )
w(p,9) = —Py/a? — i f (g,e) (X.104)

The crack opening displacement and the stress intensity factor are then given by

_ _lwgpgy e Gwp e (T 2 _ g2
Ay, = —= w {7, 0} = et (a,ﬁ) a? — ¥ (X.105)
and L
k—; - %f(l,ﬂ) (X.106)

Figure 15 illustrates the stress intensity for various ¢ values. It can be clearly
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seen that as the cracks become further apart (¢ increases) the stress will become
increasingly similar to the single disk problem and hence as ¢ — oo, % — 1. When ¢
is small we see that the stress intensity becomes larger particularly at points nearer
the other crack (¢ > § or 8 < —%). The maximum stress intensity is clearly shown
to be at § = 7 as would be expected since the crack propagation would most likely

be initiated here.
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FIG. 15. Coplanar penny shaped cracks of radius a, centered at (+c',0,0) and

opened by a constant pressure load. Plois show how the scaled stress intensity factor

varies with 8 for several values of ¢ = ' /a.
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X.3.3 Case 2: Bending Load

Here we consider the case where the cracks are opened by a bending force about the

line y = b > a. In the absence of the cracks the tractions on the xy-plane are given
by
O (@,5,0) = M (b= y) ,0ue (2,4,0) = 0y (2,4,0) = 0 (X.107)

therefore by the principle of superposition the crack load will be
O (2,5,0) = —M (b - y) 02z (X,1,0) = 0y, (2,4,0) =0 (X.108)
in this case our pressure function is given by
Plz,y) =M (b — y) (X.109)
which is neither even or odd so we can split it up and consider
P,(z,y} = —My= —Mrsind (X.110)

which is odd and
P.(z,y) = Mb (X.111)

which is even.

The corresponding layer densities w, {p,9) and w, (p,9) are then related to the
solutions of the integral equations

{—AsB' + KL _}[f, (p, D] (r,0) =rsind, for 0<r<1,-m<f<m (X.112)
and
{—AB' + KL }[fe (0,9)] (r,0) =1, for 0<r <1,-m<f<m (X.113)

via the relationships

wo (p,0) = Ma\/;2 — 2 f, (2,9) (X.114)

and

2D

w, (4, 9) = —Mba a?—fﬁfe( ,9) (X.115)
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The crack opening displacement is then given by

Au, = —I_T” [we (F,9) + w, (7, 9)]
— (1—:;)Mam [fo (2,9) — bf. (2,9)] (X.116)

This time we scale the stress intensity factor with the stress intensity factor for
a single crack centered on the origin subject to a bending load about the line y = &
which can be obtained from X.44 and X.43,

oM 3 2
ko = —a (b 5 5 6) : (X.117)
therefore, since
1 3 , ., . .3
oy = kg b = Jim (e DT O] Mak 0y gy ¢ g)) (x.118)

2 fam 2 (a — 7‘) 2

we find that
ﬁ _ _3_7r‘[bfe (178) — fo (1;9)]
ke 4  (3b—2sing)

(X.119)

Figure 16 illustrates that the non-symmetrical nature of the stress intensity factor
which is due to the bending line and the presence of the other disc having competing
effects on the nature of the stress. The bending causes the stress to be highest at
x = —3, lowest at § and symmetrical about the line y = 0. The presence of the
other disc increases the stress most at points close to it {at x = n) and least at
points further away (at = 0) while being symmetrical about the line z = ¢". The
maximum increase does not occur at the closest point but some point near to it’s

vicinity.

In Figure 17 we change the value of ¢ and it can clearly be seen as the discs
become further apart that the effect of the other crack on the stresses tends towards

zero and the scaled stress intensity factor approaches one.
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FIG. 16. Coplanar penny shaped cracks of radius a, centered at (£c,0,0) and
opened by a bending force about the line y = V. Plots show how the scaled stress

intensity factor varies with 6 for ¢ = ' /a = 1.4 and several values of b =¥ /a.

Since the maximum is not this time obvious we will re-scale with the stress in-
tensity factor for a bending load on a single crack (X.43),
. 2M

ko = —a2
kis

so that
k1

7 =B L0 - £00) (X.120)
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FIG. 17. Coplanar penny shaped cracks of radius a, centered at (+c',0,0} and
opened by o bending force about the line y = ¥. Plots show how the scaled stress

intensity factor varies with 8 for b=1¥/a = 2.4 and several values of ¢ = ' /a.

Figure 18 indicates that although the maximum stress intensity factor may this
time not be at exactly § = —7 1t will be close enough for us to assume that it is the

maxiruni.

We will now go back to our original scaling and look at

(K1) pax 3T [bf (1,—%)} - fo (1, _721)]
k)~ 4 (3b+2) (X.121)

firstly for different & values as we vary ¢ as in Figure 19 and then for varying & and

¢ values as a contour plot in Figure 20.
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FIG. 18. Coplanar penny shaped cracks of radius a, centered at (£¢,0,0) and
opened by a bending force about the line y = V. Plots show how the alternatively

scaled stress intensity factor varies with 6 for several values of c = /a and b = ¥ /a.

We can see clearly that as the distance between the cracks increases the scaled
maximum stress tends towards one indicating the cracks stop affecting each other.
Figure 19 shows that the stress increases as the bending line is moved further from
the crack, while Figure 20 indicates this effect slows down as b gets big, visible since

the contour lincs arc becoming straight vertical lines.
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FIG. 19. Coplanar penny shaped cracks of radius a, centered at (+¢,0,0) and
opened by a bending force about the line y = . Plots show how the scaled mazimum

stress intensity factor varies with ¢ = ¢ /a for several values of b= ¥ /a.

X.3.4 Case 3: Equal and Opposite Point Forces

Case 3a: Point Loads .on the z-axis In this case we consider two equal and
opposite point forces symmetrically placed with respect to the crack surfaces and
the cracks themselves. Let the point forces Pk and be placed at (O, 0, :tfz), then

Kelvin’s solution shows that in the absence of cracks,

Phl2 1 (352 — r2|
dr | R 1—v Rd

O (7,6,0)

Ore (1,8,0) = 09, (r,8,0) =0
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b = b'fa

c=ca

FIG. 20. Coplanar penny shaped cracks of radius a, centered at (£,0,0) and
opened by a bending force about the line y = V. Contour plot show how the scaled

maximum stress intensity factor varies with c = /e and b=¥/a.

where

x?+y? 4 ht = \/1‘2+21‘c'cosl9+éz+fz2

and

z=7cosf+¢é=a(rcosfd+c¢),y=7rsinf = arsiné

therefore by the principle of superposition, our problem is equivalent to the pressur-

ized penny shaped problem with load
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P | Ph [3!1 - RQ}

e + _ _
Ter (T’G’.O ) 2rR3 1-v RS (X.122)
—V
in which P, and P, are both even.
The crack opening displacement is then given by
v fu — , 1 )

Au, = — 2w (f,9) = — 2% twy (7,9) + T (#,9) (X.124)

where the wy (#,9), for k = 1,2, can be obtained from the relationship

dma

wy (ap, ), for k=1,2 (X.125)

fi (o 9)"= Pl

the fi (p,?) being solutions of

{—AZIBI—FKi} (fi (0,)] (r,8) = pr (7,8) , for 0 <r<l,—w <8 <mk=12

(X.126)
where # = ar, p = ap, h = ah, é = ac and
B
472 !
pe (r,0) = “5-Pi (ra, 0) =
h(3h? — R?)
—p5 ,k 2
R
with Ry = V72 + 2crcosf + c2 + h?
The stress intensity factor for this problem will be in the form
ky = kY 4 Lkgm (X.127)
— Vv
where ) » P
B9 = - lim —= 9 _ = - i (1,6) (X.128)

2ia \/2(a—r) S8mai
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If we again scale with (X .65)

P
%o = 72a3
we will obtain
HY 7 1.0
b The (x.129)
or . .
1 ¥id
=2 __Z g .
kO 8 fl (136)+ 1—Vf2 (13 ) (X 130)

The stress intensity factor will depend on the four parameters; v, ¢, A and 4. In
the figures that follow we will set v (v = 0.4) and the vary the other parameters.
Firstly, in Figure 21 we look at % plotted against #, we set A = 0.5 and look at a
few different valucs of c. In Figures 22 and 23 we set ¢ = 1.5 and this time look at
different values of #. In Figure 24 we look at the maximum stress intensity factor
(set @ = m) plotted against h for some different values of ¢, while in Figure 25 we
see a contour plot where A is plotted against ¢ with maximum stress intensity the

contour variable.

The ¢ value represents not just the distance between the cracks but the distance
the cracks are from the axis upon which the point forces lie. Figure 21 illustrates
that as c gets larger the stress intensity drops towards zero particularly on the side
of the crack furthest from both the other crack and the point forces. Large values of
the stress intensity factor occur almost entirely in the area around the maximum.
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FIG. 21. Coplanar penny shaped cracks of radius a, centered at (£c',0,0) and
opened by point forces +Pk ot (0,0, +h"). Plots show how the scaled stress intensity

factor varies with 8 for several values of ¢ = ¢ /e and h = R’ fa = 0.5 when v = 0.4,

In Figure 22 we show that for small values of %, increasing h increases the stress
intensity, while Figure 23 illustrates than when k gets large enough the stress intensity
starts decreasing again. This phenomenon is the same as was discussed in reference

to Figures 11 and 12.
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FIG. 22. Coplanar penny shaped cracks of radius a, centered at (+c,0,0) and
opened by point forces +Pk at (0,0, %h'). Plots show how the scaled stress intensity

factor varies with 6 for several small values of h = W' fa and ¢ = ¢ fa = 1.5 when
v =04
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FIG. 23. Coplanar penny shaped cracks of radius a, centered at (£c',0,0} and
opened by point forces £ Pk at (0,0, +h'). Plots show how the scaled stress intensity

factor varies with 6 for several medium to large values of h = h /a andc = fa = 1.5

when v =

0.4.

In Figure 24 we illustrate for different ¢ values how the maximum stress changes

as h increases. When £ is zero we get the stress to be zero but as h increases the

stress grows, the growth being both more rapid and greater when c is smaller, then

rapidly dying away towards zero. Figure 25 shows a contour plot which illustrates

the effect of varying both ¢ and h.
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Max Stress k1 /k0

5 10
Scaled Height of Point Forces k =h'/a

FIG. 24. Coplanar penny shaped cracks of radius a, centered at (£c,0,0) and
opened by point forces =Pk at (0,0, +4"). Plots show how the scaled mazrimum stress
intensity factor varies with h = b’ fa for several values of ¢ = ¢ fa when v = 0.4.
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Scaled Height of Point Forces h
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_ TLarge ‘Scaled Center of Crack ¢ =¢'fa

FIG. 25. Coplanar penny shaped cracks of radius a, centered at (+c,0,0) and
opened by point forces £ Pk at (0,0,1h'). Contour plot shows how the scaled mazi-

mum stress intensity factor varies with h = h'/a and ¢ = ¢ /o when v = 0.4.

Case 3b: Loading Above and Below the Center of Each Disc In this case
we will have two equal and opposite point forces above and below the center of each
crack surface. Let the point forces =Pk be placed at (—c’,O,iflz) and (c’,O,ifL),

then in the absence of cracks, Kelvin’s solution shows that

a0 3h2_R? 3h2-Rp2
0. (r,0,0) = £4 [—Ré]s+§2,+ﬁ—u{L—Rir—ll+LRg—21}] (X.131)

09, (r,8,0) = 0., (r,00)=0

where

Ry = \/(m Pyt h2 =2+ k2, (X.132)
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R2:\/(m+c')2+y2+fz2= \/7‘2+47‘éc059+4éz+52 (X.133)

and

x=7rcosb+é=a(rcosd+c),y=7sinf = arsind

by the principle of superposition, our problem is equivalent to the pressurized penny
shaped problem with load .
0,2 (¥,0,0%)

i 1
= —Pl(rag)—l

—V

P, (7,9) (X.134)

— b

2m

P11\ pi [[h-R] [3h-H
(—RT% + E) 1=, RS + RS (X.135)

in which P, and P are both even.

The craék opening displacement is then given by

ws (F, 9) (X.136)

e w ] 1
Au, = —.lTwl(r,ﬂ) = —17 [wl (#,9) + .
where the wy.(7,9), for £ = 1,2, are obtained from the equations

{=AB' + K.} [fe (0,9)] (r,0) = py (r,0) , for 0 < r < 1,-m < § < m,k=1,2

(X.137)

inwhichf=ar,;’J=ap,fz=ah,c'=ac

P
wy (ap,?) = m\/ 1-p2fu(p,b),fork=1,2 (X.138)
and
2
pi (7,8) = 47;” P (re,0) = ‘ , (X.139)
h { [3";; Jgn [3";;’]} k=2

where Ry = V12 + h%, Ry = /72 4 dercos @ + 4¢2 + h2

This time we scale with respect to the stress intensity factor for a plane circular
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crack acted on by equal and opposite axisymmetric point forces (See (X .67))

P 1 1 h?
ko = — ( + ) (X.140)

C m2a3 \1+A?  1—v(1+h2)°
then since .
ke = kY + mk{” (X.141)
where . ( 9 P
A L A AL A T X.142
. 2 fa 2(a—7) 8maz fe(1,6) ( )
we have
B T =) A (10 + £ (1,6)] LT (X.143)
kb 8 LA BRI 0 +r0 + 17 '

We finish the chapter by presenting some figures that illustrate a number of results
for the case in which v is again fixed at 0.4. Firstly we fix A and look at the stress
intensity factor for various distances between the cracks as in Figure 26. We can
clearly sec that as ¢ increascs the effect of the second crack on the stresses decreases
towards zero and when the cracks are close the stress increases drastically at the -

points closest to the other crack.

In Figure 27 we fix ¢ and vary the heights of the point loads. We can see that
as h increases the cffect of the second crack increases as the loads focus on the
area between the two cracks. The reader should remember that we are scaling with
the result from a single crack so that although the actual stress will decrease as
we increase h enough, it will decrease much slower when there are two cracks close
together so that the scaled intensity will continue to increase as we increase h. This
phenomenon is again illustrated when we examine the maximum stress intensity in
Figures 28 and 29 as is the decrease in the effects of the second crack as they move

apart.
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FIG. 26. Coplanar penny shaped cracks of radius a, centered at (£c,0,0} and
opened by point forces £ Pk centered above and below the cracks ot (+¢',0,1h"). Plots
show how the scaled stress intensity factor varies with 8 for h = h [/a =05, v =04

and several values of ¢ = ¢ fa.
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FIG. 27. Coplanar penny shaped cracks of radius a, centered at (£c',0,0) and
opened by point forces Pk centered above and below the cracks at (', 0,+h"). Plots
show how the scaled stress intensity factor varies with 8 forc=dfa=12,v =04

and several values of h = h'/a.
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o h=041

Max Stress Intensity F actor

c=cYa

FIG. 28. Coplanar penny shaped cracks of radius a, centered at (£c,0,0} and
opened by point forces =Pk centered above and below the cracks at (£c,0,Lh).
Plots show how the scaled marimum stress intensity factor (for v = 0.4) varies with

h =} [a for several velues of c = ¢ [a.
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FIG. 29. Coplanar penny shaped cracks of redius a, centered at (+,0,0) and

opened by point forces £ Pk centered above and below the cracks at (Fc',0,1h').

Contour plot show how the scaled mazimum stress intensity factor (for v

0.4)

varies with both h = h'fa and c = ¢ /a.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




186

CHAPTER XI

SUMMARY AND FUTURE WORK

In this chapter we do a brief summary of those achievements documented earlier in
the thesis. That is followed by a discussion on some possible future developments

and related applications of the work.

XI.1 SUMMARY

The work documented herein draws upon a variety of ideas from both classical and
contemporary mathematics and is motivated by the desire to understand and solve
the singular integral equations of potential theory. While the intent was to produce
tools and techniques for the solution of physical problems, we believe that much of
the analysis presented is worthy of investigation in its own right. It is hoped that
the Hilbert spaces and operators introduced will be of interest to others and that the

numerical procedures devéloped will prove useful to many.

For both classes of boundary integral equations considered, numerical schemes
were developed using both collocatlon and Galerkin methods. The Convergence of
the Galerkin miethods was proven analytically while the convergence of the colloca-
tion methods was verified cxperimentally. Since the Galerkin methods are compu-
tationally expensive particularly when double or quadruple numerical integration is
involved, it was correctly a.nﬁcipa.ted that collocation would be the faster method.
No analytical analysis of cbnvergence rates was undertaken but experimentally it
would appear that collocation methods converge as quickly if not quicker than the
Galerkin for the chosen coliocation points. Convergence rates are an aspect to be

considered for future analysis and were not considered vital for this thesis.

Once we had established the numerical methods for each type of problem we
were then able to apply the techniques to solve problems in both Potential Theory
and Fracture Mechanics. Our problems were restricted to those involving single or
multiple circular domains. First of all we examined charged circular discs placed in
various elcetrical fields, problems that could be solved via weakly singular integral

equations. The methods were first applied to simple problems with a previously
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known solution. Comparison with known solutions allowed us to illustrate the ef-
fectiveness, efficiency and accuracy of the technique. We then tackled some more
difficult, previously unsolved problems to illustrate further capabilities for our meth-
ods. Some problems ihvolving penny shaped cracks in an elastic medium subject to
various external loads, were examined next. These type of problems can be solved
via our class of hyper-singular integral equations. We showed how problems can be
solved for multiple circular domains and how symmetries can be exploited to apply
our methods efficiently. We were able to show how the special functions, Hilbert
space theory and the algorithms we had developed could be applied in a practical

sense.

There is plenty of scope for future development of this present work and for ex-
panding the range of future applications. Some of these ideas for future development
will be discussed in the next section.

X1.2 EXTENSION OF LAPLACIAN BASED BOUNDARY VALUE
PROBLEMS

The most obvious restriction {ve have placed on all the problems we have examined is
that we have only looked at-circular domains. Some preliminary work on conformal
mappings has indicated that Boussinesq’ Equation on a circular domain can be con-
formally mapped onto other domains. Using conformal mappings we could then look
at a much broader range of problems with the ultimate goal being to use numerical
conformal mappings to map problems on any type of domain into the unit circle (or
some other domain with previously discovered solution algorithm}, solve the Integral
Equations using our techniques and then map back into the original domain to get
the final solution. This is a broad area with much potential and in what follows we
illustrate the effect general mappings have on the Boussinesq Equation and provide

a basic illustrative example to show how to apply the theory to a real problem.

XI1.2.1 Conformal Mapping of Boussinesq’s Equation

If we consider the following arbitrary Boussinesq Equation

[ [ LD ), €D (XL1)
D - &+ -
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and take the conformal mapping
p:D—Q (XL.2)

with inverse
g:Q2—> D

such that

w = pl(e)=ule,y) +iv(e,y),z = qw) = (u,v) +iy(u,v)
7 = p({)=s&n) +it(En),{ =q(1) =£E(s,t) +in{(s,t) (XL3)

then , o
, 2
6((i7t])) = ﬁ = |¢ @) (XL4)
and
1 1 w—T 1 )
Ja-otry-n? FoE 2 (XL5)

The Integral Equation (X 7.1) thus becomes

6 € (s,8),m (s,8)] | gz | |4 (DI
/] ol ey ) € 0
i \/(u—s)2+(v—t)2
(XL.6)
Since we can expand g (w) in a Taylor Series about 7 as follows
g(w)=q(1)+q (1) (w—7)+e(w—71) (XL7)
where ¢ — ¢ as |w — 7{ — 0, we can hence write that
w-—-T / q (1)
_— = |5 XI.8
ol ol = 7 (eL8)
= [1+4 |w—7| K {w,7)] (X1.9)

for some K (w, 7} non-singular at w = 7.
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The integral equation (X 7.6) can then be written in the form

// + K (u,v;8,t) p ®(s,t)dsdt = G (u,v), (u,v) € Q
V=9 +@-1?
(X1.10)
where
S(s,t) = |g (M)|clelst)nist) (XL11)
Gu,v} = glz(u,v),y(u,v) (XI.12)

The behavior of K will predominantly depend on ¢ () which for sufficiently
smooth mappings should be non-singular giving us the desired type of integral equa-
tiom.

The Bilinear Mapping

If we look at the spccial' case where p (z) is the bilinear mapping

a,«+b

p(2) = Py d,ad be # 0 (XI1.13)
then > Jad— bel| 4
w =T : ad — pe| |cw —
W=7 ] = X114
’qwa—qv)k()| o —d (XL14)

and we get the following integral equation

/f ! ® (s,t)dsdt = G (u,v),(u,v) € Q (X1.15)
\J(u— )+ (1)’

where
@ (s,1) %a [€ (s, 8),n(s,1)] (X1.16)
G (u, 'U) _ 9 [I (u1 ’U) ' Y (u? U)] (XI.17)

lcu — d + icv|

It is now clear that the weakly singular equation of interest is structurally in-

variant under a wide class of conformal mappings opening up the possibility that
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equations with general domains can be mapped to equations with circular domains.
Moreover, since

Vlp()] = |p (2)] Volul (XL18)

it is clear that the hyper-singular equation exhibits a similar structural invariance.

We now provide a basic illustrative example to show how this theory can be

applied in a practical sense.

Example: Boussinesq’s Equation on the Exterior of the Unit Disk If we

consider the Dirichlet Problem tfrom Chapter II on the outside of the unit disc
S={(r0,0):1<r<oco,~-w <8<} (XL.19)
with boundary condition (I 1.39) given by
Vir,8,0)=g(r8), for (r,8,00 5 (X1.20)

then V will be given by th;': sin’gle layer potential

2,9 pdpd?d
82 = / / VA& +p2 - 2rpcos (6 — ) + 22 (XL21)

provided the density function o (p,?) satisfies the boundary integral equation

f f V) pdpdd =g(r,0), for (r,0,0)€S (X1.22)
\/r2 +p —2rpcos (6 —9)

If we consider the Boussinesq like operator

where 1 < r < 8, —7 < § < 7 and the weight function w (p) is given as follows

w(p) = ——— (X1.24)
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we can show using the simple self-inverting conformal mapping z = i (which maps

the unit circle inside to out) that it has eigenvectors
& (,9) = —eb,, (1,19) (X1.25)
| P p
corresponding to the eigenvalues t as stated in the following theorem.
Theorem XI.1
AminF (g0, (0,9 ] (r,0) =% (p,9),m=0,£1,+2,...,n=0,1,2,...  (XL26)

Proof. Consider the map r = ﬁ applied to

L o] ) — // €mn 190) Bl dondd
mn \P0, V0 P \/p2+ 0 2ppOCOS (190_19) P

7‘069"“ (TO> 90) _-IQ_
= 7‘0 dT' —da
' - L/r%2 + 18 — 2rrg cos (6 — 65) ( 0) (—=dbo)

1
1 =

B 6-m.n 7’0,90) /
= r / / Lord drodfy
7

2+ rk — 2rrgcos (6 — 6y)

0 —
- T ey (r,9), by (VI.21)

A|m[n.
11, ( 1 )
= _’,!9
)\|m[np
1
= _gm-n (pa 19} L
/\|m,|n

We can therefore solve (X1.22) by expanding as follows

NpVpr—1=f(p,9) = Z me'ngmn (p,9) (X1.27)

m=—o0 n=0

g(r8) = 3 D Gmntna (6) (X1.28)

m=—00 n=0
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to obtain the solution

)= X Inn 0 (p, ) (XL.29)
m=—00 n=0

We have hence illustrated in this simple example how the use of conformal map-

pings could lead to solving a much greater range of problems.

X1.3 EXTENSIONS TO THE HELMHOLTZ EQUATION AND
ACOUSTICS

Throughout this dissertation we have looked at the Integral Equations resulting from
Laplace’s Equation on a circular domain. The natural extension is to consider the
Helmholtz Equation |

(VP4 k)@ =0 (X1.30)

which admits the free space Green’s function

| gkl -
) 31
and reduces to Laplace’s Equation when k = 0.

Without going into any details when we replace Laplace’s Equation in our work

with the Helmholtz Equation, we can ultimately produce the weakly singular equa-

tions
ak|r —7|
/ / |:41r 7 K P)] (P)dp =g (7}, for Fe Q (X1.32)
and the hyper-singular integral equations
2 9 1k|r Al . f o
7 P)| F(p)dp = 3 XI.
(V2 + &%) 47rf/[4,,|,,n_p| (rp)]f(p) p=g(r),for7e (X1.33)

where K (7, ) is a non-singular kernel.

It is our belief that with some work similar results can be produced that could
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be of great significance in the field of Acoustics. Since,

7 k(7B X1.34
Yy ey AL (X1:34)
where e =
kg = Lo (X1.35)
NP a7 |

15 non-singular the previously discussed methods can be applied to solve these equa-
tions. The techniques developed may therefore prove to be useful in fields such as

Acoustics and Electromagnetics.
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