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ABSTRACT

MODELING AND EFFICIENT ESTIMATION OF

INTRA-FAMILY CORRELATIONS

Roy Sabo
Old Dominion University, 2007
Director: Dr. N. Rao Chaganty

Familial data occur when obsetvations are taken on multiple members of the same
family. Due to relationships betwecn thesé members, both genetic and by cohabita-
tion, their response variables will likcly exhibit some form of dependence. Most of
the existing literaturce models this dependence with an equicorrclated structure. This
structure is appropriatc when the dependencies between family members are similar,
such as in genetic studics, but not in cascs where we cxpect the dependencics to
differ, such as behavioral comparisons across different age groups. In this disserta-
tion we first digcuss an alternative structure based upon first-order autoregressive
correlation. Specifically we create and compare various estimators based on existing
and emerging methods of cstimation. Asymptotic and small-sample properties are

discussed, as is hypothesis testing.

The second part of this dissertation iuvolves a slightly more complicated version
of autoregressive familial corrclation, where we now model heterogeneous intra-class
variances. Again we create and compare various estimators and discuss both their

asymptotic and small-sample propertics.

In the final part of this dissertation we discuss the nuclear family model, basing
the familial dependence on an equicorrelated structure. Note that while this corre-
lation structure has been extensively studied in the case of heterogeneous variance,
we modcl homogenous vafia.ncc and use a new méthod for estimating the parame-
ters. Noteworthy here is that we apply a linear transformation to simplify both the
correlation matrix and the correlation parameter estimators. As before, we gencrate

estimators and compare their agymptotic performance.
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CHAPTER I

INTRODUCTION

I.1 Literature Review

Familial data arisc in situations where a researcher is interested in the relationships
among and between the mcasured responses of parents and children in the same
family. As responses within these families (or groups, more generally) are most likely
dependent, the estimation of correlations between parents and children (par-sib),
between siblings (sib-sib) and to a lesser extent between parents (spouse-spouse) are
of interest. The par-sib type corrclation is knowﬁ as inter-class correlation, while the

sib-sih and spousc-spousc types are known as intra-class correlation.

One of the earliest treatments of intra-class corrclation is found in the work
of R. A. Fisher {1918 and 1925), who modcled intra-class corrclation as the ratio
of variance within a class to the total variance {the sum of variances within and
between classes), which are estimated using conventional analysis of variance sums
of squares. The idea is that large within-class variation indicates that observations in
the same family are heterogeneous, and thus intra-class correlation is small. Testing
in this ANOVA setting is equivalent to testing for the significance of within-class
correlation. This method requires a balanced design, meaning that families have to
be of the same size, and it was work by Fieller and Smith (1951} that expanded this

mcthod to account for unequal family sizes, or sibships.

Most of the early inter-class correlation cstimators were moment-based, with some
of the notable estimators being the pairwise, sib-mean, random-sib and cuscmble es-
timators, as nicely surnmarized by Rosner, Donner and Hennckens (1977). Each are
essentially cxtensions of the product-moment correlation coeflicient, differing in ap-
proach as to which parcnt-child pairings to include. The pairwise estimator included
all parent-child pairings, but also assumed that thc child responsc variables werce
independent (note this assumption was only used to derive the inter-class correlation
estimator). The sib-mean cstimator sought to avoid this assumption by pairing the

parental rcsidual in cach family with a residual incorporating the mean of the child

This dissertation follows the style of Journal of the American Statistical Association.
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responses for that family, and the random-sib cstimator paired the parental resid-
ual with a randomly chosen child residual. Since both of these estimators omitted
information, the ensemble estimator was developed as an attempt to maintain the
benefits of both estimators while diminishing their shortcomings. For each method

intra-class correlation is estimated using Fisher’s approach

The next class of cstimators were maximum likelihood estimators. Elston (1975)
showed that the pairwisc estimator of inter-class correlation (essentially the product-
moment correlation cocfficient) was cquivalent to the maximum likelihood cstima-
tor in the casc where all sibship sizes arc cqual. However it was a study by Ros-
ner (1979) that determined the MLE in the case of unequal sibship sizes, and Don-
ner and Koval (1980} extended the MLE method to intra-class correlation. Note
that these authors did not obtain closed form estimators for cither correlation param-
cter, and as such used the Newton-Raphson method to find simultaneous solutions.
Mak and Ng (1981) improved upon this methodology, but it was Srivastava (1984)
who greatly claborated and improved upon the methodology for hoth the inter- and
intra-class cases by using a transformation to simplify cstimnation and obtain closed-

form estimates.

Covariates can also be measured on each individual with a goal of model building.
Though the Litcrature presented above pioneered the estimation of familial corrclation
parametcers, it docs not include models with covariates. Some early works incorpo-
rating covariates into the MLE approach were by Stanish and Taylor (1983), who
found intra-class cstiruators for the analysis of covariance (ANCOVA) model, and
Munoz, Rosner and Carey (1986), who devcloped a regression model for the case of
heterogeneous intra~class correlations between families. The study by Paul (1990)
broadened this approach into a gencralized model complete with covariates and max-
imum likclihood estimators for family spccific means, variances and intra-class corre-
lation parameters. Paul also showed that most previous models were simply special
cases of this general model. By including covariates, a natural consequence would

then be to utilize generalized linear models (GLM) for parametcr cstimation.

More rccent work in the ficld of familial correlation has been predominantly con-
cerncd with the genetic r(:lationshipé between family members. Many of these works
use ANOVA modcling to analyze genctic behavior, such as Guo and Wang (2002)
and McArdle and Prescott (2005). Another cxample of the ANOVA approach is
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done in Rabe-Hasketh et al. (2007), who uscd a mixed model approach to estimate
variance components in the case of twins. Other recent studics are, for example,
Magnus et al. (2001), who studicd the genetic relationships between parental and
child birth weights in the nuclear family case, and Pawitan ef al. (2004), who studied
both genctic and environmental determinants of binary traits using mixed models

and likelihood-based inference for extended familics.

1.2 Correlation Structures

Common to most of these treatments is the assumption that all inter-class and intra-
class correlations are cquicorrelated. A simplified example incorporating homoge-
ncous intra-class variance, is o assume that cach family consists of one parent and

¢t — 1 children, so that we design the ¢ x ¢ variance-covariance matrix for this family

as follows
L pop p
7 «
Te(d,A) = dR(AN)=¢| p a 1 (1.2.1)
p aa - 1

where ¢ is a scale or variance parameter and A = (p, @} is the vector of cotrclation
parameters, where p is the par-sib (inter-class) correlation and e is the sib-sib (intra-
class) corrclation. This correlation structure assumes that the correlation is constant
for all parent-child and child-child combinations. According to [land and Crow-
der ({1996), the cqui-corrclated structure is appropriatc when there is no reason
to believe that some pairs of observations should have stronger correlations than
other pairs. Based on this observation, we expect the equi-corrclated structure to be
suited for response variables of traits that are largely genetic, for familial data with
age-independent response variables, or where the ages of afl children are somewhat
“homogencous. For example, height measurements on parents and their adult children
arc bound to exhibit correlation as they all have similar genetic profiles, and that
correlation should be coﬁst-ant across pairings sinée adult children have reached their
mature height. Other examples cxist for groups of genctically unrelated people, such

as coworkers or classmates.
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Howcver, onc can easily imagine a scenario where this assumption is invalid. For
instance, a family participating in a pediatric study would most likely include young
children of differing ages, where small age differences could resnlt in large physi-
cal differcnces. Taking again stature as an example, we would cxpect (on average)
siblings to exhibit greater correlation in height if their ages arc closer rather than
farther apart, and we would cxpect the same relationship to exist between parents
and their children. Ilowcever, the corrclation should decrease as the age differcnce
between family members increases (both within and between classes), cspecially if
the siblings are not yet adults. Thus, for responsc variables that are age-dependent,

the equicorrelated pattern (1.2.1) sceins inappropriate.

A non-family example could be taking water sedimentation levels at a scries of
locations where a freshwater strcamn empties into a saltwater body. In this case,
a measurement at the mouth of the freshwater strcam is the source (parent), and
each successive measnrement further away from that source is a series of destinations
(children). For destinations close to the mouth we would cxpect a high degree of
correlation in sedimentation levels as the sediment from the freshwater stream would
dominate the existing sediment environment of that destination. However, for desti-
nations far away from the mouth of the freshwater stream, we would cxpect the local
gediment environment to dominate. Here we would expect the dependence relation-
ship between the source and destinations to decrease as you move further into the
saltwater body. This is also an instance where an cqui-correlated structure seems

inappropriate.

A model exhibiting an exponentially decaying corrclation pattern would be more
appropriate here, where p/™~%i is the corrclation between the parent and the ith
child (with ages a; and a;, respectively), and %% is the correlation between the
ith and jth children (with ages a; and @, respectively). A more general model in-
corporating age-differences is the Markov or generalized Markov structures. Though
these candidate models allow a certain degree of flexibility, they are very compli-
cated and difficult to apply to the present situation. Thus we use a simplified model
that incorporates an exponentially decaying pattern, namely the first order autore-

gressive structure. The variance-covariance matrix for this pattern has the following
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@3]

appearance
1 p P2 93 pt—l
P a o at=?
(¢, A) = RN =¢| »© o 1 « o= | (1.2.2)
ol at? gl ot 1

Note here that p is the basis for inter-class corrclation, which decrcases with each
subsequent parent-child pairing, and a similar pattern holds for the child pairings,
where @ is the basis for intra-class correlation. The structure described in (1.2.2)
models a simple form of what we may cxpect to find within a given family if the
responsc variable is age-dependent. By first cxamining this AR(1) structure, we will
then be able to extend the work to more complicated structures. More on alternative

age-dependent structures is discussed in Chapter V.

Much of the literature on familial corrclation specifies heterogeneous vartances
between classes. This cssentially means that the variance in a particular class is not
necessarily equal to the variance in another class, and so the two variances are treated
as separate parameters. Noteworthy examples of this are found in Elston (1975),
Rosncr, Donner and Hennekens (1977), Rosner (1979) and Srivastava (1984). We
again usc the simple asswmption that a family consists of one parent and ¢ —1 children

and we design the ¢ x ¢ variance-covariance matrix for the cquicorrclated structure

as follows
Z(®,0) = D(®)RAN)D(D)
‘/’p : ‘:'J)pésp (i“)pﬁbsp T é-p@sp
¢p¢sp ¢s P o ¢SQ’
= Opthsp e Ps s e (1.2.3)
(lbpql)sp s P Tt s
where D(®) = dir;sg(d)}l,” 2; (_bi/ 2, cen -'i/ 2) is a £ x t diagonal matrix of scale paramcters,

‘¢, 1s the parent variance, ¢, is the sibling variance, and A = (p, «) is defined as before.
Note again the equi-corrclated structure indicates a somewhat homogeneous class of

siblings. We can also incorporatc heterogencous variance into the autorcgressive
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correlation structure, as the following matrix shows.

S\ @) = D(®)R(N)D(D)

4)1" ¢P¢Sp ¢p¢sp2 T (ﬁp(‘bspt_l
d)p(,bsp (}53 q}sa - ¢sa,t~2
= ¢P¢3p2 ¢sﬂ ¢s e g()sat—fi (124)
¢p¢apt—-l (f)s(lft—‘2 (}5562“'—3 . 9‘53

More generally, we can model the variance-covariance matrix for e separate classcs

as done by Elsson (1975), who used the following model

¥y B - Yy

Yo Bo - X,

(D, A) = (1.2.5)

al -l
z"al 2"02 e za

where @ is a vector of variance parameters and A is a vector of corrclation param-
eters. Let X; be an m; x m; matrix whose diagonal elements are ¢; and whose
off-diagonal elements arc ¢;p;,i = 1,--- ,a. We also let I;; be an m; x m; matrix
(correspond to m; members in class ¢ and m; members in class §) whose clements arc
all ¢}/ 2@;/2;),;1-,2'., J=1,--+,a,i # j. Note that this structure can accommodate any
number of classes of any size sibship. Also implicit in this model is an equicorrelated
structure within and between cach class. The most common forms of the familial
variance-covariance matrix have ouly two classes, such as (1.2.1) and (1.2.3). In these
cascs there is only one parent in the first class and any number of children in the
sccond. Howcver, if two parents are involved, we need three classes as we cannot
assume (1) that the parents are uncorrclated, and (2) that the correlations between
cach parent and the children arc equal. If we assume, for our purposes. that the three

class variances are equal, then we model the variance-covariance matrix as follows.

( 1 v ;om £1 \
. v 1 op2op2 o p2
Xy Yy Yays
prope 1« a
Z(gﬁ,A) = (lb 2oy 2 2og =¢ _ (126)
mop2 a 1 o
Yy gz Xy . ) X
\101 pp oo oa e 1 J
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Here, 3 = £ = ¢ and Y5 = #((1 — a)fs2 + ai_3), and Xjp = ¢y, ¥13 = dprel_,
and g3 = ¢pae;_,, where ¢;9 is a (¢ — 2) x 1 vector of ones. Note that (1.2.6)
has the same correlation structure as used in Shoukri and Ward (1989), where the
authors modcled heterogeneous variances, as opposed to the homogencous intra-class
variance modcled herc. Implicit in this case is that we are assuming a family of size

t, with two parcnts and ¢ — 2 children.

The variance-covariance structure (1.2.6) can be simplified using canonical re-
duction. Srivastava (1984) showced this for the one-parent case (1.2.3), and Khat-
tree and Naik (1994) applied this procedure to the onc-parent case where children
exhibit a circular dependence structure. By using canonical reduction we can sim-
plify the correlation matrix and casc the computational burden required to estimatce

the correlation paramcters.

1.3 Estimation Procedurcs

As the dependence structures modeled in (1.2.1) and (1.2.3) have been well-studied,
we will concentrate on (1.2.2) and (1.2.4), as well as (1.2.6), which to our knowledge
has not been thoroughly analyzed. So with these familial corrclation structures in
mind, we want to study parametcr cstimation iu a repeated measures setting. In the
case of GLM, regression cocfficients are usually of tantamount importance; however
we will concentrate on estimating the correlation parameters. The maximum likeli-
hood (MLE) method has already been proposed by numerous authors in the case of
(1.2.3) (see above), is optimal if data arc normally distributed, and scrves as a natural
starting point. A method independent of an assumed probability distribution is the
method of moments (MoM), and as various moment cstimators have already been
developed, we will incorporate this procedure as well. Quasi-Least Squares (QLS)
is an alternative distribution-free procedure that attempts to alleviate certain short-
comings in the moment estimating procedurce. Thus, we would like to investigate the
autoregressive familial correlation structure, as well as the equicorrelated structure
in the nuclear family casc, with an cye on gauging the performance of these three

estimation procedures.

Let us assumc that data is collected on n families, where, in the case of (1.2.2)

or (1.2.4), Y; = (i ¥i2s -+ , yar) 18 the £; X 1 vector of responses for famnily i, vy is
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the parental response and the remaining gy, 7 = 2,-- -, £; belong to each of the ¢; — 1
children. If we are discussing (1.2.6), then ¢y and y;, arc the parental responses and
the remaining y;;,7 = 3, ..., t; belong to each of the t; — 2 children. Further, we are

assuming that the Y; are continuous on (—o0, oc). For our purposes, we assume the

n sibships are of equal size, or ¢; =t for alli = 1,--- ,n. Each individual has apx 1
veetor of covariates Xi; = (@451, -+, 2y5) such that
X = (Xa' Xig o Xit)

is the £ X p matrix of covariates for the ith family.

Based on standard GLM theory, we assume that F(Y;) = u; and 1; = (i) = X;5,
where § is a p x 1 vector of regressor cocfficients and g(-) is an invertible, mono-
tone and differentiable link function such that u; = ¢7'(X;43) . Also note that
VI(Y:) = A(m) 5\, ®)A(ws)? , where A(p;) is a t x t diagonal matrix of the form
diag(v(pa), - - - ,v{#a)), v(ts;) being the variance function linking the variance of 5
to its expected value p;;, ¥(A, ®) is of the form (1.2.2), (1.2.4) or (1.2.6), ® is a
vector of dispersion parameters, and A is a vector of corrclation parameters. Note
that if y; (through g) is corrcetly specified, then the GLM estimates are consistent
and asymptotically normal. Further, if the variauce function v(-) is correctly spec-
ificd then the GLM estimates have the smallest variance among all unbiased linear
cstimators. Though technically ¢ can be any monotone function, we use the identity
link function, which is allowable since our data are continucus on (—oo,0c). Thus
we model E(Y;) = g, = Xif and v(py;) = L foralli =1,--- nand j =1, - ¢
so that A(y;) is the identity and V(Y;) = Z(A, ®). We also let & = (5, A, @) be the

vector of all parameters.

For cach estimating procedure, we use the same estimator for @,
i=3 (XiB‘l(A,(I))Xi) X515, By, (1.3.1)
i=1
where @ and ) arc cstimators of the variance and correlation paraeters, respectively.

Thus, cach method differs only in how wc estimate the variance and corrclation

parameters.

For the maximum likelihood estimation method (MLE) we assume that Y; comes
from a ¢-dimensional multivariate normal distribution with mean X;# and variance-

covariance matrix L(A, ®). As we are assuming that the parameters are common to
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n independent families, the likelihood function is then the product of # such pdf’s.
L(Ya, - Yol0) = [ [ F(il®) (1.3.2)
§=1

= H (27)7% [S(), @)% exp [—%0@ — X:B)S7H A, )Y - X.B)

i=1

= @)% S0 9)F exp [—%tr(z-‘(x,@)zﬂ)}

where Z, = 335, (Y — XaB)(Y: — XiB)' = 3 i, ZiZ]. The log-likelihood is found by
taking the natural log of (1.3.2).

¢ = In(L(Yy, - ,Y,|®)) (1.3.3)
nt 7 1 _1
= -5 In(2r) — 5 In|E(), ®)| — étr(E (A, @)Z,)

To find the MLE’s of # we need only take the derivative of (1.3.3) with respcct to
each parameter, sct the resulting scorce equation equal to zero and solve for that
parametcer. The estimator ff\ has already been provided for the regression parameter,
and for the variance paramcters, recalling that Ql%g'— = tr(A—l%’s—_‘), we obtain the

following estimating equation for @

L 0L\, @)
+%tr [2—1()\, @)%ﬁ‘mz“()\,@)ﬁn] =0 (1.3.4)

where 2n is Z,, evaluated with ;?3\ In a similar fashion we obtain the following esti-

mating equation for A

- nefro s

AT\, B)

1 ' -1 3 -1 &7 | E
+2tr \F: (A, ®) oN ¥ ()\,‘I’)Zn:! = 0. (1.3.0)

Typically, we itcrate between _[?, ® and X until convergence.

The method of moments (MoM) begins with a trial value 3;, which is
typically found by solving (1.3.1) with an independent correlation structurc
{Hardin and Hilbe (2003)). This value is then used to compute residuals

Zi=Y; — Xifo,i=1,"--,n.
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Note that each Z; is a ¢ x 1 vector of residuals z;;, j = 1,...,¢. To obtain estimators

for & and A we find cstimating cquations for those paramecters such that

ZIAD)Z —c = 0, (1.3.6)
ZIANZ;—d = 0 (1.3.7)

where ¢ and d are constants. Solving cquations (1.3.6) and (1.3.7) for ® and A,
respectively, yield moment cstimators for those parameters. These estimates are then
used to solve (1.3.1) for B, which can in turn be used to rccompute the residuals.

This iterative proccss is continucd until convergence of the parameters.

The Quasi-Least Squarcs mecthod, as devcloped by Chaganty — (1997),
Shults and Chaganty (1998) and Chaganty and Shults (1999), is an extension of
GLM that utilizes the quasi-score function {quasi-log-likclihood) to obtain consistent
and efficient estimates not only of the regression paramcters but for the correlation
paramcters as well. According to Wedderburn (1974), the quasi-log-likelihood func-
tion is proportional to a true likelihood funetion if the probability distribution of a
random variable is known to belong to an exponential family, and otherwisc retains
key propertics of a true likelihood function that gives QLS asymptotic propertics
similar to MLE. By specifying only thc mean and variance for a random variable,
parameter cstimation is allowable even if use of the actual likelihood is prohibited.
This eases computation in the case when the likelihood function is too complicated

or is unknown.

For QLS we start with the quasi-log-likelihood function
56) = D (Y- XBYSTHA B - Xif) = tr [ET (AN D)%) (138)
i=1
Note that if the variance 1s homogencous between classes, then we write

S) = i(n — XiBY R (M\)(Y: — X:8) = tr [RT'(N) 2] -

i=1
Initially we minimize (1.3.8) with respect to 8 and A. The Step I regression param-
eter estimator E is (1.3.1) evaluated at & and X, the Step I cstimates of @ and A,
respectively. To obtain Step 1 estimating equations for A, we differentiate (1.3.8) and
set equal to zero. ' |

2O~ 2 (e[ - 2007

) i =0 (1.39)
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Here Z, = pN Z:7! is the quadratic form evaluated at our Step I cstimate for
3. Iterating between (1.3.1) and (1.3.9} until convergence gives us our final Step 1
estimates. It is well known (Chaganty and Shults (1999)) that the Step 7 estimates
of the correlation terms are biased, which becomes clear if we take the expectation
of (1.3.9) evalnated with the Step I estimates.

L1\, @) = B T N ®) =
E (h‘ [TZH]) = ir [TE(AVA):!

(1.3.10)

To eliminate this bias we cquate {1.3.10) to zcro and solve for ) for fixed . The Step
2 ostimate A is asymptotically unbiased and efficient (Shults and Chaganty (1998)).
Further, we obtain a Step 2 estimate for 8 by substituting A into (1.3.1) to get 5. If
we assume homogeneous variance, then an cstimate of E’; is %S(ﬁ); otherwise we usc

alternative estimators.

I.4 Overview of Thesis

This thesis is organized as follows. In Chapter I we focus on the antorcegressive famil-
ial corrclation structure with homogeneous variance described in (1.2.2). Specifically,
we find basic propertics of the correlation structure and estimators using the three
estimating procedures discussed in Section 1.3, We then examine the asymptotic
and small-sample performance of thosc cstimators, as well as highlight some basic
hypothesis tests for the corrclation parameters. In Chapter III we focus on the au-
toregressive correlation structure with heterogencous variance described in (1.2.4).
Here we also discuss basic properties and find estimators using moment estimators for
the variance parameters, as wcll as examine the asymptotic and small-sample prop-
erties. In Chapter IV we concentrate on the nuclear equicorrelated familial structure
described in (1.2.6). Here we examine canonical reduction of the corrclation matrix,
as well as find estimators and detive their asymptotic variance. Finally, we conclude

in Chapter V, also illuminating topics for future research.
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CHAPTER 11

AR(1) STRUCTURE WITH HOMOGENEOUS VARIANCE

II.1 Introduction

In this Chapter we concentrate on the autoregressive familial corrclation structure
with homogenecus variance. The variance-covariance matrix, as described in Chapter

I, is restated here.

1 P pz p3 i—1
p 1 o o - of?
L@, N) =R\ =0¢| p « 1 a al™? (2.1.1)
pt—l a2 ot 3 gt~ ... 1

Here 0 = (3, A, ¢), where @ is a (k x 1) vector of regression paramcters, ¢ is the
variance term, and A is the vector of correlation paramcters A = (p, «), where p
is the correlation hetween the parent and the first child and o is the correlation
between all first-order child pairings (i.e. first and second, sccond and third, etc.).
Recall that in (2.1.1) the corrclation between the parent and children is first-order
autoregressive bhased on p, and the correlation between the children is first-order

autoregressive based on a.

The rest of this Chapter is outlined as follows. In Section I1.2 we find the deter-
minant and inversc of (2.1.1), as well as the positive-definite range. In Section I1.3
we derive parameter cstimators for each estimating procedure, and in Section IL.4 we
find asymptotic variances for those estimators and compare their asymptotic perfor-
mance. In Section IL5 we compare the small-sample performance of the estimators
in cases of both normally and non-normally distributed data. Lastly, we discuss

hypothesis testing in Section I1.6.
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I11.2 Properties of Correlation Matrix

Finding the inverse and determinant of (2.1.1) is simplificd by partitioning the matrix

as follows
1 | o P pt1
1 o - af? 1 R
Ry = | 7 T =( 2] 2
2 . N T N R'u R-z-z
F1 | at=2 g3 1

where Ryjs = Rj, is a 1 x (t — 1) vector of inter-class correlations and Ry is the well
known (£ — 1} x (t — 1) first-order antoregressive matrix of intra-class correlations.
Thus, |Ree| = (1 — o?)"? and Ry = 17 [li-1 + a*Ca — aCy), where C; is a (£ —
1) x {t — 1) tri-diagonal matrix with (’s on the main diagonal and 1’s on the off
diagonals, and Cs is a diagonal matrix with 1’s on the main diagonal except for the
first and last clements, which are both 0. We make usc of thesc facts and the general

forms for the inverse and determinant of a partitioned matrix to obtain the following

results.
|R(A)] = |Ral|l — Rialy) Rl (2.2.2)
(-
1—p?
x [(1—a®)(1 = p?) — (0* ~ ™) — &2(p* — p*7%) + 2a(p® — p* )]
and
By B
R_I(A) _ ( 11 12 (223)
By By
where

Bii = (1— RyRyRy)™!
(1—a®)(1-p%
A=t~ 7) (7 - )~ ot~ P T 2P~ )

By, = —BuRuRy
, 0 ! p2 7
p .
5 5 I pto
_ 11 2 :
= e . az . + — & :
1 pfd2 p£—3 +pt—1
P 0 pt—2
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By = By
By = Rjy + Ry RoyBiiRiaRyy
- —1~j1&-§ (fi-1 + &*Ch — aC))
pz 3 ot
oo llil;2 p.s p.“ pt+1 (It_l N a262 - acl)
pt pt+1 p2t 2

In order for correlation estimates to be feasible they must he within a certain
range that ensures matrix (2.1.1) is positive definite. Recall that a symmetric matrix
(such as (2.1.1)) is positive definite if all its principal lcading minors have positive
determinants. Thus we can find positive definitc ranges for p and @ by creating
inequalities where each principle minor is greater than zcro and solving for the pa-
rameter values that satisfy the inequality. Of the first £ — 1 leading minors (of Ryy),
the determinant of the ith (i < t) is (1 — @?)’, mcaning that —1 < a < 1. Lastly,
we set (2.2.2) greater than zero and solve for either o or p. Simplifying the resulting

expression we get
(1=a®)(1=p") ~ (0* = p™) = ®(p" — 0" ") + 20(p° — p*7!) > 0. (2.2.4)
Solving for p, let = 1 —a?, b = 2, ¢ = 2 and rcorganize (2.2.4) to get
2 —cp? b — b+ cp® — (1+a)p? +a > 0. (2.2.5)

By selecting ¢ > 2 and —1 < « < 1 we find values of p such that the corrclation
matrix is positive definite by finding the real roots of (2.2.5) that lic between —1 and
1. Solving for v, on the other hand, let a = —(1 — p? 4 p* — p?72), b= 2(p® — p* 1)
and ¢ = 1 — 20 + p* and rcorganize (2.2.4) to get

ac’® +bo +c¢ > 0. (2.2.6)

Note that since (2.2.6) is a quadratic equation, we find the roots with the quadratic

formula

—b+ V¥ — dac
=
2a
such that the upper admissible bound on « is

i | 2PV — P (U= P 4 p = (- 2% + )
’ 1— g2 + pt — p2t-2
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—t ¥ T
-1.00 Q.75 -0.5¢ -~0.7% 0.00 w25 .50 0.75 1.00

Figure 2.1: P.D. Range for p and o when t = ¢

and the lower adrnissible bound on « is

PP =" — (P = PP+ (1 — 2+ T ) (1 - 20 + %)
T2t o2

maz |—1,

which: are found by selecting t > 2 and —1 < p < 1. The admissible range is the

same whether we solve for p or o, though solving for « is a much simpler task.

As an illustration, let ¢ = 4, meaning that for each family we have one parent
and three siblings. The plot of the positive definite range is shown in Figure 2.1. For
reference, we can also let ¢ approach oc, at which point we get the positive definite
range found in Figure 2.2. Notice that there is not much visual difference between the
ranges shown in Figure 2.1 and Figure 2.2, though the two are not equal. Table 2.1
gives the upper and lower bounds for p over select values of o for both ¢ = 4 and
t — 00. As the table shows, the positive definite ranges are slightly wider for ¢ = 4
than for ¢ — oo, and it can be shown mumerically that this is also the casc for any
t <t + ¢, where c is an arbitrary integer. Thus the positive definitc range becomes

slightly more restrictive as € increascs.
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a

Figure 2.2: P.D. Range for p and & a5t — 00

Table 2.1: P.D. Range for p whent=4 andt — o

o | pi Prose | Pia | Ot
-0.9 [ -0.07345 | -0.94726 | 0.32163 | 0.32047
-0.5 | -0.87010 | -0.82827 | 0.57324 | 0.56032
0.1 | -0.76509 | -0.73173 | 0.70855 | 0.68160
0.3 | -0.64621 | -0.62616 | 0.81839 | 0.77970
0.7 | -0.47928 | -0.47280 | 0.92144 | 0.88117
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I1.3 Parameter Estimation

In this Scction we find estimators of € for each estimating procedure. Note that
closed form estimators are expressed where possible. For those estimators that do
not simplify into a closed form, the expressions are left in trace or partitioned vector-
matrix form, which are evaluated using (2.2.2), (2.2.3) and the derivatives listed in
Appendix A.1.

For each estimating procedure we use the following estimators for 3 and ¢

B = (xr()x) xR O, (23.1)

©)

- WZY XB)RONY: — X:B) = it, "Nz, (232)

where A = (p, @) 1s the vector of correlation parameter estimators and Z, is evaluated

at 5 The matrix Z, has the following partitioned form

o Z
Z, = 1 iz
Zo1 Za

where
n
2
Zn = E 25
— n n e
Zy = ( Zi:l Zi1%i2 Ei:l Zi1 28 Za=1 2i1 %t )
’
Ly = 2y,
n 2 7 n
i=1 2 2¢=1 Zi2%i3 Z,-=] 2%t
n n 2 n
7 D=1 ZR%i3 D Zm T 2oy Aislit
422 - i . ]
Tt 143 n 2
Zi:'[ zﬂzir, Zi‘___l Z,;gz“ L i=1 Z‘ét

II.3.1 Maximum Likelihocod

For the maximum likelihood estimation method (MLE) we assume that Y; comes
from a t-dimensional multivariate normal distribution with mecan X;3 and variance-
covariance matrix X(¢,A) = @R(N), as defined in (2.1.1). Using this variance-
covariance matrix, the log-likelihood becomes

¢ = ———ln(2:rr)—-Eln(qﬁ)-—-]n]]?(/\ﬂdi-tr (NZ).  (233)
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To find MLE’s of 8 we need ounly take the derivative of (2.3.3) with respect to each

parameter, set the resulting function equal to zero and solve for that parameter.

We obtain the following estimating equations for p and ¢, respectively

- [R“ )\)BREJ’\)} +2¢ { ’1(/\)6R£)’\) (,\}fn] =0 (234)

~ JOR OR AR,
& —n¢ Dy 2y Bii—— By Z1y + Bry=2 BioZ
ap Op ap
IRy ~ IR
+5Bn D 12 By Zo1 + B12Z:>2322( =0
0 9]
_ dR()\) OR(A) __ ~
- oy — /g = .0,
[R Ay ——= ]+2¢t [R (A) 5o R™()\)Z, 0 (2.3.5)
< —ng bt Bog——= aRm + Biypg——— Ry lezu + 2By OB By Zn
do Jda Jdov
-ty [ng 8(9 22 322222] =0

where Z, is Z,, evaluated with ﬁ .

The MLE’s arc found by first choosing initial values Ay = (pp, @) 10 estimate 3
using (2.3.1). We then use B to update the residual matrix 2n and estimate ¢ using
(2.3.2). These values are then used to simultaneously solve equations (2.3.4) and
(2.3.5) using Newton-Raphson to obtain updated values of A. This process is then
repeated until convergence, those vahics being the MLE’s: é} = (Be, :\}, EBg)

11.3.2 Method of Moments

For the method of moments (MoM) we obtain A by using variations of the product-
moment estimators proposed by Hardin and Hilbe (2003) for the autoregressive case.
Tor p, we use

N 1 ZnZ;
B =1 D iz FinZi (2.3.6)
21:1 Zj 1 ?.j
where z;; and Zz;s are the residuals for the parent and first child, respectively, in the
th family. This residual pairing is included as it is the only pairing for which the

expected value involves p raised to the first power. For o we use

t [P
P G ) 2) > i J— 2 <ij%i,3+1

.
iZi= z;:l if

(2.3.7)
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Here we only include child pairings of the first order (i.c. first and scecond children,
but not the first and third, etc.) as only these pairings have an expected value that
involve ¢ raised to the first power. Note that {2.3.6) and (2.3.7) are obtained from

the following two unbiascd estimating equations

’ _ ? B _1 C‘3 Q
ZiA(p)Zt - Zi [t-[t 2( Q Q)

o 1 0 0
"ANZ = Z |, - e— N A
ZA(o) Z; ’[t ¢ -9 (Q l)]Z 1] (2.3.9)

01
whete Cy = - and C) is defined in (2.2.2). Solving equations (2.3.8) and

Z:=0 (2.3.8)

(2.3.9) for p and q, respectively, yield (2.3.6) and (2.3.7). These estimates are then
used to solve (2.3.1) for ﬂA,,,, which in turn is used to recompute the residuals. This
iterative process is continued until convergence of the parameters. Upon convergence,
we estimate ¢ with ¢, (2.3.2) using 3, and Am. Thus, the MoM estimator is 6, =
(B> Ais ).

11.3.3 Quasi-Least Squares

For QLS we start with the quasi-log-likelihood function

e

S(6) = > (Y- XipYRT'N(Yi - XiB) =tr [RT'(N)Z,).  (2.3.10)

i=1
Using the quasi-log-likelihood function (2.3.10) we obtain Step I estimating equations
for both p and « by differentiating (2.3.10) and setting cqual to zero.

05(0) _ a Saons 1Y OR'(\) = ] .
5 = ap(tr[R (A)Z,.])_t[ 5, D=0 (231
B8R R .
< Bj 812821Z11+B]2 651312Z21
OR;2 aR
+Byu 81 322Z21+312Z223“2 821 0
d5(6} 90 ot IR~ l()\) 591
T = o [FOVA]) =ur [ =0 @312
R OR,
< Dig 822321211 + 2By 0223222‘21
+ir [B)gd:fzz BZZZ22] =0
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Here Z, =3, 232: is the residual matrix evaluated with 5, which is found using
(2.3.1). Solving (2.3.11) and (2.3.12) simultaneously for p and o using Newton-
Raphson we get the initial Step 1 estimate A = (p, @). Iterating between (2.3.1) and
both (2.3.11) and (2.3.12) until convergence gives the final Step I estimates. It is
well known (Chaganty and Shults (1999)) that the Step I estimates of the correla-
tion terms are biased, which becomes clear if we take the expectation of estimating
equations (2.3.11) and {2.3.12) evaluated with the Step f estimates.

E(tr FR(;;(A)EHD = *BR(;E(/\)E('ZH,L) £0 (2.3.13)
[OR-(})
x t o R(/\)]#D
E(t'r‘ [SR(;;(A)ZRD = tr %lg(gn)} #£0 (2.3.14)
x tr aR{;;(X)R(,\)J £0

To elimminate this bias, we equate these two expressions to zero and again simultane-

ously solve for p and «, as shown in equations (2.3.15) and (2.3.16).

[orR'(}) ]
w ORys T~ ~ ~ ~ 18R
= Bua—]2 {le + 322321] + By {RmBu + Rzszz] 21—
) L ) o
OR™(X)
~ ORop [~ - Y-S
& B = [321 + 2B22R21] +tr | Bog—= By Ron | =0
da da

These Step 2 estimates of the correlation paramcters (5, and @,) are asymptotically
unbiased and efficient (Shults and Chaganty (1998)). Further, we obtain a Step 2
estimate for 3 by substituting p, and & into (2.3.1) to get Eq. We also estimate ¢ with
(Eq, which is (2.3.2) evaluated with Eq and Xq. The QLS estimatces are E?:, = (Eq, :i:q, aq).
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IT.4 Asymptotic Variance and Performance

In this section we derive asymptotic variances for the estimation procedures described
in Section 1L.3. The MLE procedure is straightforward, as we are assuming the
residual vectors Z; = Y, - X,-E are normally distributed. This allows us to make
use of the log-likelihood function to find Fisher’s information matrix (7(8)), where
under the regularity conditions ~E(%) = C'ov(45) = I(#). Since the asymptotic
distributions for both the MoM and QLS methods depend on higher order moments,
we must assume that the residuals are normally distributed for these methods as
well." Note that this assumption is not needed for parameter estimation, but only for
derivation of the asymptotic variances, and is justified by use of the Central Limit
Theorem. For the MoM and QLS procedures, we make use of the following theorem
by Joe (1997, p. 301}, which states that under the regularity conditions

Vil — 8) ~ AMVN (0, I7H(0) M. (8)(I7(6))) (2.4.1)

where I,(§) = -1 5" | E [3’3é9)], M, (0) = 157" Cov(hi(8)), and h,(6} is a vector
of unbiased cstimating equations for #. Note that this theorem is a more general the-
orem for finding asymptotic variances than is Fisher’s Information. If we apply this
theorem to the MLE’s, then hi(0) = g—ﬁ, and I,(8) = 15" E (5‘3—:;;7) = 1(8),
and M,(f) = 137 Cov(Z) = I(8) = I.(8), so that I;H)M,(0)(I;'(8)) =
I~Y&)I(H)I71(8) = I71(). Thus, using the multivariate normal log-likelihood func-
tion in (2.4.1) gives us the inverse of Fisher’s Information matrix, which is what we

obtained earlier.

I1.4.1 Maximum Likelihood

Asymptotic variances and covariances for the maximuin likelihcod estimators are
found by taking the negative expectation of the second derivative of the likelihood
function with respect to 8. The resulting functions form the Fisher Information
matrix. The diagonals of the inverse of this matrix are the asymptotic variances for

the parameter estimators.

According to the Cramér’s Theorem, we have

vl — 8) ~ AMVN (0,171(8)) . (2.4.2)

Reproduced with pemmission of the copyright owner. Further reproduction prohibited without permission.



22

It is straightforward to show that the information matrix ,(#) is of the following

form
B o 0 0
0 I(p) I(p,0) I(p,9)

0 Ipa) I@) I(a¢)
0 Ipe) Iad) I1(9)

where {recall that Byq is defined in (2.2.3))

1,(6) = (2.4.3)

o 1<,
IB) = E(aﬁz)zgigxi}g HA)X;

1) = E(fg_gwpg(f€?>d(g%¥}

2n3B,, i, !
(A1 —a?)(1 - 2)2)2[ —tp* T 4 (t — 1)pPtH)
+02(20% — (£ — 1)p% 3 + (¢ — 2)p%) oo

~a(3p” — p* — (2t — 1)p™ 7 + (2t — 3)p™))?

n ks no? '
N2 252 : 2,27
+—2(1_a2) Z(J) 7 e 2.0 T

az) Z ()% —mw—nB” )2 (i(j)p%*)

nBuaz p—tp?l 4 (t P
(1~ a?)? (1-
p—tp¥ 1 (b — 1)p2t+1 ~
X ( (1 _ pg)g - (p + (t - 1)p2t 3)
_ nBua (p—tp" 7t + (8 - 1)
(1—a)? (1—p2)?
_ 'I’LBHO’ 3/)2 - {)4 - (Qf — 1)923_2 + (Qt — 3)p2t
(1—a)? (1~ p?)?
_ nBlla3 3{)2 — p4 — (Qt — 1)p2t—-2 -+ (Qt e 3}(925
(1—a%)? (1—p?)*
y 2,03 _ P5 _ (t _ l)pzt—:} + (t _ 2)p2t~—1
(1-p°)2
nBua®  [(3p* —p* — (2t — )p%=2 + (2t — 3)p*\*
21— o7 o
nBiat  (2p% — pd — (£ — 1)p* 3 + (t — 2)p* ] 2
31— o -

_+_
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o) = ~£(g%) = [ 0 2 ) 250

da?
n IR, OR.
= 5 [ 22 322 2 Bu}

¢
1) = (3@2) B 2nt
OR(A OR(X
fpe) = (6;08@) 2" [R_l(’\) aEJ r e )]
a 2]
= ;12322 ;%223 "
== — i —_ ﬁ ~1 BR(A)] naR]z
I(p,¢) = E(apa¢)—2¢tr [R N5, e
B
= Bl T D)
+a?(20° — P = (6 - 1)p? 0 + (£ - 2)p*Y)
—a(3p" — p" — (2t — 1)p”" 7 + (2 - 3)0%)]
= —Li -——ae— e E -1 OR()‘) 72 ORy
Ha,9) = —F (aaaé) = 2d)tr [R [ e = ] 2¢ {322 - }
o t_ 2 nB =2 . i 2 .
- é(i - 03 e a’f‘)’;(ll =)« 2_ (e (1 ~ o)
l =I
nBia?
+@(1 _ az; 2) Z ' - )
" nBja? n 324(])01] 1 (ﬂj+4 _ p2t—2—j)
61— a?P(1-p?)
— nBna f(ﬂ)aj L(pHtt - g
$(1 — )2 (1= p%) £
nBya L

- J=1( J+8 _ 26=1~j
B(1 — a2)2(1 — p?) & (e (p p }

- nBua’ 2 3 ol +3 2t—1—j
(1 — a?)2(1 — p?) =l(3) P - )

nBy o =4 o1 (4 i
(1 - a?)2(1 — Z(ﬂ)ﬂ (p 7)

anﬂ

p(1 ~ a?)¥( pz)ZJ)aJ L = )

L
| v

t

o,

nBja® NP s
+(_15(1 — a?)2(1 — p?) ;(J)Q (P —p )
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nBuaz

-3
+¢,(1 — a)2(1 - p?) Z(j)aj“l (pj+2 _ pzé_j)
??,BH(I‘ . \ o
¢’(1 — a?)2(1 - p?) & Z (77 — p2=2)

nBy (x’[ 1 f+d o2t 2—j
#I— a1 mz v )

_|_

Note that the covariance terms involving 3 are zero, indicating that @3 is uncorrelated

with the estimators for the other parameters.

11.4.2 Method of Moments

For the MoM method, based on {2.4.1), we have
V(B — 8) ~ AMVN (0, I;1(6) Mo (0)(I;1(6))') (2.4.5)

where [,(8) = —L S B ["”’30:(”] Min(68) = 2 57| Cou(hum(6)) and the fys(6)

are vectors of unbiased estimating equations defined as follows

hin,i(8) = (hoi(8), hri(8), hui(8), 9:(6)) (2.4.6)
hoi(f) = X{R™(X)Z;
hii(6) = Z/A(p) Z; = tr(A(p) Z:2Z])
hoi(8) = ZIA(Q)Z; = tr(A(«) Z; Z))
9:i(0) = ZIRT" (N Zi — t¢ = tr(RT (N Z:Z2)) — t

where A(p) and A(a) are defined earlier. By taking the negative expectation of the
partial derivatives of (2.4.6) with respect to # and averaging over n we obtain I,,(8),
and by taking the covariance of (2.4.6) and averaging over n we obtain M,(#). From

here it is easy to show that I,,(8) has the following elements

Iy 0 0 0
Ln(6) = G I, 0 O (2.4.7)
" 0 0 In 0 o

0 Iy laz laa
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I]l =

Ip =

I3 =

Iy =

Iy =

25

LS (Ze0) 15 s
= ZE (ahéig)) s
15e(%) -
() o e t2)

2¢B), ((t — l)p%“ — tht_l + p)

1 —a? (1 —p?)2
_2@")02811 (t — 2)p2t—~l - (t _ 1)p2t-3 _ P5 4 2p3
e ( - )
| 2By ((2t =3)p% — (2t - 1)p* 2 —p' + sz’)
1—a? (l - p?)?
1 8q:(6) _ _ OR{\)
- ; E (Hc')a ) = ¢ir (R I(A)——aa )
2a(t — 2)
1—a?
2B, Z‘"Q(j)a"‘l p’”’" p=1)
=y
ZaBu < i+t 2t+l-j = o j—1¢ F+3 —1~j
_(1—0!2 2) ZJ)OJ p7 )_!_3:’2:;(3)0] (p] = f J)
2a%Bn 3 1/ 42 2t—j =S 1f 44 2t-2—j
a0 Z( ol (g — ) +§(ﬁ)a" (P — p2d)
t-3
PPt P DT S
5 )+jz=:,(y)a (Wt~ J))

40c Bu
(1 —a?)2(1 - p*)

2r——2+j)>

40 By (J)ag—-l (78 — ).H—l—j))

(1?1 )

20;‘ Bn 1042
e (gmaﬂ @

=1

iz z‘g;?il_ ; (Z(J)w—l(w+3—pﬂ*—l—f)+i<j)af“<pf+5 - pz“s‘-’))
20 By A
PO (;(J)a U ))
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i=1

We can also show that M,,(#) has the following elements

My 0 0 0
0 My My 0
O My My 0
0 0 0 My

where
My = %Zow(hm(@)) = %Z}Q{R“I(/\)Xi
i=1 i=1
My = 3 Cou(hni(6)) = 26°tr [A(D)ROVA(R)R(V]
=1

_ 2 (t + 2(‘172__;;%) +2Z:(t -1 —j)o?j)

t?

2%, (4 2o — (p)*™)

. T )+¢2(1+p2)

My = % i Cov(hii(8), ho: (8)) = 26%tr [A(p) R(N) A(e) R(N)]

i=1

2¢%por 2% — p*) t~2 o
= t 2 — _ 7

O

2% [F-p2 3 N 2i-1
- 23 (t—1— )%
t(t-—?)( =2 ;( i

B @ (4 n 2(;0@1—_(22)*‘1})

s () ()

Mis = 3" Cou(hn(6)) = 26"tr [A(@)RO)A() B(N)]

t=1

2.2 2 _ 2 ¢-2 ‘
= 20 (t+2(p ’;)+22(t—1—j)a2f)

$2

4% [ pP — p¥-1 -2 N
- 2 t~1-— o
t(t—Z)( 11—z F 2 20
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2
_}_Z(t{#bf?)z (2(t 2) + [10(¢ — 3} + 2]« 24 Z t—3— j)aZHJ)

—_ 1 . _ 2,
My = - ;Cov(g,(ﬂ)) = 2¢°t.

Note that based on matrices (2.4.7) and (2.4.8), the covariance terms involving 3 are

zero, indicating that am is uncorrelated with estimators for the other parameters.

11.4.3 Quasi Least Squares

For the QLS method we notc that, based on (2.4.1}, we have

VB, — 8) ~ AMVN (0, I} (0) M, (8)(I72(9))) (2.4.9)

where I () = -2 3" | E [ahgg,(o)}, My(0) = 2 3, Cou(hy:(8)) and the hy;(0) are
vectors of unbiased estimating equations defined as follows

hgi(6) = (hoi(8), B1s(0), hai(6), 4:(6)) (2.4.10)
hoi(8) = X} (B)R™' (N Z;
_ o [2R0)
hli (9) ={r 05 (2121 — ¢R()\))}
OR(\)

hg,i(g) = ir

9:(0) = tr [RTN(NZ:Z]) — t¢

where X is the solution to the following equations

1
i 8RR~ (/\) | =
A
~ BRw[= = = ~ ~ 10R
2 [321 + BZ2R21] + By, [321312 + RQQBQQ] 2 =g
Op dp
BR-1(\)
tr I: 5 RN | =
-~ BR, ORpo (=~ = =~ _ =~
& Bry—— P 2R Bzzf?m + tr i (321312 + Bzz-Rzszz)] =0

Note that A = (p, a} are the “true” values of the correlation parameters. By taking

the negative expectation of the partial derivatives for (2.4.10) with respect to &
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and averaging over n we obtain I,(#), and by taking the covariance of (2.4.10) and
averaging over n we obtain M, (f). From here it is easy to show that I,() has the

following clements

In 0 0 0
0 Iy In O
I(6) = 2.4.11
%) 0 Iz fiz O ( )
0 I42 I43 144
where
Bho; (0 L~ oy
Iy = Zz( . ))=—§ZX,;R X
t=1
Dhay; 6)) . _1, 7y OR(B, @) 7 OR(N)
I — 5 " 1 —L ) LT NWA)
22 ; ( @T[R() EF —=R(A 5p]
= —2¢ {DRW Bay aaRm By + By dé%]g B 6(521
0
O e)) L5 OR(Y) Ly OR(Y)
s = ——S°F = —¢tr |[RI0) et RN Y
23 ; ( @57'[]%()05}2(/\) S
OR IR,
= —2¢ 125’22 8”321
1 8/12-;(9)) aR(/\) AR(N)
Iy = — =S E{ 220 = ¢
# n;: ( ap dir | R )= R )5 = ap
R OR
= —2¢ amBzz 0525’21
Oho;(6 AR(A A
o = -2y (%) - [ R () 2N s “}
=1
~ OR R
= —qﬁt?’ ng 822322 6;2}
1 = 8{];(9) 8R(A) 8R12
I = —= — L] = =
o nZjE( 5 ) w[ W= | =20
0g:(0 _ A OR.
143 = ——ZE( %a)) qﬁtr {R l{)\) (‘)EM ):| :ét |:BQ 822:|
i==1

e - 15 (20) L,
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We can also show that M, (8) has the following elements

where

Mll

JMQQ

MZS

Ing

Myy

Mn O 0 0

Mgy=| O M2 Me O (2.4.12)
: 0 My Mg 0 o

0 0 0 My

—Zcm;(hm(e))_ ZX’ “HA)X

i=1

- Z Cov{hw(8))
i=1

2% R—I(X)?];—gln—ld)g( )L oR (A)

1(X)R(/\)]

% Z CO’U(h]i(G) ) h2z(9))
i=1

dR(A)

OR() .- 1
57 B OVRME )=

2¢%tr {R‘-‘ (At
3 Coulha(0)

(A)R(A)}

2&{ (2 ”R*(A)Rum ()%%R*(X)R(A)]

1 T _ 2
- ;aw(gi(o» = 242,

Note that based on the forms (2.4.11) and (2.4.12), the covariance terms correspond-

ing to @ are zero, indicating that 78:1 is uncorrelated with the estimators for the other

parametcrs.

I1.4.4 Comparison of Asymptotic Performance

Though all three estimating procedures yield consistent estimates of the correlation

parameters, we want to compare their asymptotic performance. To do this we com-

pute asymptotic relative efficiencies (ARE) over the admissible range described in
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Figure 2.3: p ARE for MLE and MOM Methods

Section I1.2 for all three estimation procedures. Implicit in this scenario is that

observations are drawn from a multi-variate normal distribution.

To begin we set family size at t = 4, fix the number of families at » = 1, 000,
set ¢ = 3 and let both p and o vary over the range shown in Figure 2.1. For each
pair (p,a) we calculate the asymptotic variances derived in Sections 11.4.1, 11.4.2
and I1.4.3 in order to compute ARE. As the more efficient estimator will have the
smaller asymptotic variance, and since we are selecting a wide range of correlation
values, these plots will show not only which estimating procedure is more efficient

but also for which values of p and « this is the case.

First we find the ARE for estimators of p. We show the ARE for the MLE and
MOM methods in Figure 2.3. Here we sce the ARE is highest when p is close to zero,
and the ARE drops sharply as p increases in magnitude. Note also that the ’crest’
in the ARE plot is weakly slanted in a positive linear fashion. For the MLE and
QLS methods, the ARE plot is found in Figure 2.4. Here we note that the ARE is
very high over a wide range of p and ¢, indicating that the QLS estimator variance
ig almost as small as that for the MLE, and only for extreme correlation values close
to the pusitive definite boundary does the efficiency of the QLS estimator decrease
with respect to the MLE. Asymptotically, then, we see that QLS is comparable to
MLE for most plausible correlation values, though the MLE is slightly better (which
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Figure 2.4: p ARE for MLE and QLS Methods

must be the case). Lastly we compare the relative efficiences for the MOM and QLS
methods, the plot of which is found in Figure 2.5. Here we see a similar pattern
to that found in comparing the MLE and MOM methods, that the ARE is highest
when p is close to zero and falls sharply as yon move away from zero. This shows
that, like ML, QLS is asymptotically superior to MOM.

We next compute ARE for the o estimators. Starting with the MLE and MOM
methods, we find the ARE plot in Figure 2.6. Here the ARE is highest when « is
closest to zero, and the ARE drops quickly as « increases in magnitude. This shows
that MLE is superior to MOM. For the MLE and QLS methods, the ARE plot is
found in Figure 2.7. In this Figure we see the ARE is highest when « is close to zero,
and thern slightly decreases as o moves away from zero. As was the case for the p
estimators, we see that the ARE is high over a widc portion of the admissible range,
showing that the variance of the QLS estimator is almost as small as the variance
of the MLE. Asymptotically, then, we see that QLS is comparable to MLE for most
correlation values. Lastly we compute the relative efficiences for the MOM and QLS
methods, the plot of which is found in Figure 2.8, This plot shows a similar pattern
to that found in the MLE/MOM case, that the ARE is highest when « is close to
zero and falls steadily as you move away from zero. Thus QLS is also supcrior to
MOM.
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Figure 2.9: ¢ ARE for MLE and MOM Methods

We include ARE plots for the variance parameter as well. TFigure 2.9 shows
the ARE of ¢ for the MLE and MOM procedures, Figure 2.10 shows the ARE for
the MLE and QLS procedures, and Figure 2.11 shows the ARE for the MOM and
QLS procedures.  These Figures show that the QLS variance estimator is good
competitor with the MLE estimator, as the ARE is close to one over most of the
admissible range. The MOM variance estimator is a good competitor to both the

MLE and QLS estimators over a much narrower region of p and a.

IL.5 Small-Sample Performance

In the small-sample case, our goal is two-fold. We first gauge the small-sample
efficiency for each method under the assumption of normally distributed data, and
second we gauge the efficiency when the data arc not normally distributed (i.e. when
the data come from a skewed or otherwise distinctly non-normal distribution). This
later case will shed light not only on efficiency but also on the robustness of each

method to departures from normality.

For both cases we fix sample size at n = 30, keep family size at £ = 4 and set ¢ = 3.
We then simulate 1000 such samples for each of many combinations of p and & (which

vary over their admissible range), and for each sample we estimate the parameters.
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Figure 2.10: ¢ ARE for MLE and QLS Mecthods

Figure 2.11: ¢ ARE for MOM and QLS Methods
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Figure 2.12: p RE for MLE and MoM Methods with Nermal Data

We then calculate the average squared deviation of the estimated parameter value
from the "truc” population values. The ratio of the estimated averages for any two

estimating procedures is our estimate of small-sample relative efficiency.

I1.5.1 Small-Sample Normal Case

We begin with the esimators for p. For MLE and MoM procedures, we get the results
found in Figure 2.12. Note that the RE is greater than 1 in some places, indicating
that for thesc values, the MoM estimator has smaller estimated variance than the
MLE estimator. For most values, however, MLE is still more efficient than MoM.,
Figure 2.13 shows the relative efficiencies for the MLE and QLS methods. The RE
is greater than 1 in some places, notably for large positive and large negative values
of p and for small values of «. Here we see that QLS is a much better competitor to
the MLE. Lastly we compare the QLS and MOM methods, the results of which are
found in Figure 2.14. Like thc MLE-MoM case, the RI is small for most values of g,
with the variance for the MoM method being smaller than the variance for the QLS
method only for extremely large positive correlation values. Thus, for p estimators,
we see that QLS is a much better competitor with MLE, and both MLE and QLS

are still mostly superior to MoM.
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Figure 2.13: p RE for MLE and QLS Methods with Normal Data

Figure 2.14: p RE for QLS and MoM Mecthods with Normal Data
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Figure 2.15: « RE for MLE and MoM Methods with Normal Data

We now move on to estimators of « in the small-sample normal case. For the
MLE and MoM procedures, we get the results found in Figure 2.15. Here we notice
that the RE is greater than 1 for small values of @ and is actually high for extreme
values of p. For some values of p, the MoM estimator is more than twice as efficient
than the MLE, though this occurs close to the positive definite boundary. We also
note that the efficiency of MoM decreases as « increascs in magnitude. Figure 2.16
shows the relative efficiencies for the MLE and QLS methods, which resembles the
saddle shape found in Figure 2.15. Here the RE is greater than 1 over a wide range
of p when a is small and for large values of p. Only for moderately large values of
a is the MLE more efficient than the QLS estimator. Thus we sce that QLS is a
much better competitor to the MLE in this situation. Lastly we compare the QLS
and MOM methods, with the results found in Figure 2.17. This plot is similar to
the MLE-MoM plot, noting that the QLS estimator is more cfficient than the MoM
estimator for most correlation valucs. Thus, in the small-sample normal case for
estimators of a, we see that QLS is a much better competitor with MLE, and both
MLE and QLS are better than MoM, though not as much as in the asymptotic case.

Lastly we estimate the small-sample relative efficiencics for estimators of ¢. Fig-
ure 2.18 contains the RE for the MLE and MoM estimators. Here we see the relative

efficiency is close to 1 only for very small values of p and «, and that the RE quickly
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Figure 2.16: « RE for MLE and QLS Methods with Normal Data

Figure 2.17: « RE for QLS and MoM Methods with Normal Data
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Figure 2.18: ¢ RE for MLE and MoM Methods with Normal Data

decreases as corrclation increases in magnitude. This shows that the MLE variance
estimator is mostly superior to the MoM estimator. In Figure 2.19 we have the RE
for the MLE and QLS estimators. In this plot we see that the estimated relative
efficiencies are comparable for most values of p and a, and for vlaues close to the
positive definite boundary, the QLS estimator is more efficient than the MLE. And
finally, Figure 2.20 has the RE for the QLS and MoM estimators. This plot shows
that, as was the case for MLE-MoM, the RE is close to 1 only for very small values
of p and &, and the RE decreases quickly as p and « increase in magnitude. Thus,
in the small-sample normal case, we see that the QLS variance estimator is at least
as good as the MLE and much better than the MoM variance estimator. The MLE

variance estimator is also more efficicnt than the MoM estimator.

Table 2.2 provides cstimated infeasibility probabilities, or the probability that
each estimating procedure yields correlation estimates outside the positive definite
range. Using the same simulation procedure, we compute the estimated probabilities
as the number of times the procedure failed to a provide an estimate within the
admissible range divided by the total number of simulations (1,000). Note that N'/A
indicates that those parameter values are outside the positive definite boundary.
From this Table it is clear that the QLS procedure has an extremely low probability

of producing inadmissible correlation estimates over the entire range of p and . The
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Figure 2.19: ¢ RE for MLE and QLS Methods with Normal Data

Figure 2.20: ¢ RE for QLS and MoM Methods with Normal Data
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Table 2.2: Estimated Infeasibility Probabilitics (Normal, Homogeneous Variance Case)

¥
p | Method | -0.80 [ -0.70 | 0.3 | 0.70 | 0.80
0.75 | MLE | 0531 | 0.473 | N/A | N/A | N/A
MoM | 0.376 | 0.081 | N/A | N/A | N/A
QLS | 0.003 {0001 | N/A | N/A | N/A
060 | MLE | 0.137 | 0.182 | N/A | N/A | N/A
MoM | 0.153 | 0.061 | N/A | N/A | N/A
QLS | 0.008 | 0.001 | N/A | N/A | N/A
0.10 | MLE | 0.016 | 0.0i8 | 0.019 | 0.004 | 0.011
MoM | 0.004 | 0.002 | 0.000 | 0.001 | 0.000
QLS | 0.002 | 0.006 | 0.000 | 0.003 | 0.001
060 | MLE | N/A | NJA | 0.195 | 0.138 | 0.090
MoM | N/A | N/A | 0.009 | 0.049 | 0.171
QLS | N/A | N/A | 0.006 | 0.000 | 0.020
070 | MLE | NJA [ NJA [ 0.462 | 0.343 | 0.351
MoM | N/A | N/A | 0.009 | 0.125 | 0.307
QLS | N/A | N/A | 0.036 | 0.001 | 0.002

MLE and MOM procedures, though competitive for moderate parameter values, have

high inadmissible prbbabilitics for large values of p and a.

So in the small sample normal case, we see that the QLS procedure is much
more competitive with the MLE procedure then they were in the asymptotic case for
estimators of both p and «. Only for moderate values does the MLE method give
the smallest variance in estimating p, while for o the QLS method gives the smallest
variance when « takes moderate values, whilc the MLE method gives the smallest
variance if @ takes more cxtreme values. For estimators of ¢, QLS is at least as good
as MLE and is better than MoM. Though MoM is inferior to the other methods
for all three parameters, it is a better competitor against the other methods for the

correlation estimators.

I11.5.2 Small-Sample Non-Normal Case

Here the goal is to estimate small-sample efficiencies when the Y)’s are drawn from
a non-normally distributed population. This will help us gauge the robustness of
the estimating procedures to departurcs from normality. Following the methodology
used in Chaganty and Shi (2004), we simulate random observations from a beta

distribution with a = 8 = %. These paramcter values result in a U-shaped pdf and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



43

Figure 2.21: p RE for MLE and MoM Methods with Non-Normnal Data

thus yield non-normal random variates. Since correlation is both scale and location
invariant, these simulations pose no problem for p and «. However, since variance is
not scale invariant, we will not include ¢ in this portion of the analysis. We again

fix t = 4 and n = 30 and simulate 1, 000 such samples for cach choice of p and a.

We begin with the p estimators. Comparing first the MLE and MoM methods we
get the RE plot in Figurc 2.21. Here we see the MoM procedure is more efficient for
extreme values of p and a, as well as for a large range of positive a. Elsewhcre the
MLI is more eflicient. We next compare the MLE and QLS methods in Figure 2.22.
We see that the two procedures are fairly comparable for some values of p and o,
with the QLS procedure performing much better for large p, and especially for large
o where we see a spike in the efficiencies. Here the estimated variance of the MLE is
around 4 times as large as the estimated variance for the QLS estimator. Lastly we
compare the QLS and MoM procedures in Figure 2.23. Here we see that the QLS
method in general has smaller estimated variance than the MoM method except for

extreme values of p and «.

We now move on to estimators of a. Comparing first the MLE and MoM methods
we get the RE plot in Figure 2.24. Here we sce that the MLE procedure has smaller
relative efficiency when a is large positive and large negative. However, The MoM

procedure is comparable when « is close to zero and is better for extremely large p.
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Figure 2.22: p RE for MLE and QLS Methods with Non-Normal Data

Figure 2.23: p RE for QLS and MoM Methods with Non-Normal Data
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Figure 2.24: « RE for MLE and MoM Methods with Non-Normal Data

We next compare the MLE and QLS methods in Figure 2.25. Here we see that the
MLE procedure preforms better for extreme values of ¢, while the QLS procedure
performs better for small to moderate values of v and especially for large p, where the
QLS estimator vastly outperforms the MLE. Lastly we compare the QLS and MoM
procedures in Figure 2.26. Herc the two methods are comparable when o is close to
zero, QLS is better for moderate and large values of «, and the MoM procedures is

better when both « and p are large and positive.

Lastly we estimate infcasibility probabilities for each estimation procedure. Ta-
ble 2.3 shows the estimates of these probabilities over a wide range of p and «. Here
we see that the QLS procedure has low error probabilities for all values of p and .
The MLE procedure is competitive with QLS for small values, yet performs poorly
for large values, while the MOM procedure is nowhere competitive.

So in the small-sample non-normal case we see that QLS is now outperforming
the MLE procedure for most values of p and «, both with regards to estimated
efficiency and estimated infeasibility probability. The MoM procedure is also much

more competitive with the MLE procedure, though not as much with QLS.
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Figure 2.26: « RE for QLS and MoM Methods with Non-Normal Data
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Table 2.3: Estimated Infeusibility Probabilities (Non-Normal, Homogeneous Variance Case)

[03
p | Method | -0.80 | -0.70 | 0.3 | 0.70 | 0.80
2075 ] MLE | 0.783 | 0.665 | N/A | N/A | N/A
MoM | 0.499 | 0.150 | N/A | N/A | N/A
QLS | 0.000 | 0.004 | N/A | N/A | N/A
0.60 | MLE | 0.303 | 0.263 | N/A | N/A | N/A
MoM | 0.253 | 0.082 | N/A | N/A | N/A
QLS | 0.000 | 0.000 | N/A | N/A | N/A
0.10 | MLE | 0.137 | 0.129 | 0.046 | 0.000 | 0.000
MoM | 0.611 | 0.462 | 0.402 | 0.738 | 0.578
QLS { 0.002 | 0.002 | 0.000 | 0.000 | 0.000
0.60 | MLE | N/A | N/A | G.114 | 0811 | 0.525
MoM | N/A | N/A | 0.442 | 1.000 | 1.000
QLS | N/A | N/A | 0.001 | 0.000 | 0.001
0.70 | MLE | N/A | NJA | 0.679 [ 0.897 | 0.943
MoM | N/A | N/A | 0.022 | 1.000 | 1.000
QLS | N/A { N/A | 0.041 | 0.001 | 0.001

I11.6 Hypothesis Testing

In this Section we develop hypothesis testing procedures involving the correlation
parameters for each estimating method. We develop hypothesis tests for gencral
functions of the correlation parameters, and then concentrate upon specific examples

and compare their performance through simulation.

I1.6.1 Likelihood Ratio Test

Under maximum likelihood estimation we are assuming the data are normally dis-
tributed. Knowledge of the multivariate normal likelihood function allows us to
utilize a likelihood ratio test for hypothesis tests regarding the corrclation parame-

ters.

Generally, we test a null hypoethesis that some function of the correlation pa-
rameters (A(A)) is equal to some constant, or H, : h{A} = ¢. To do this, we take
the ratio of the likelihood evaluated with the maximum likelihood cstimates under
H, (the restricted MLE’s) against the likelihood evaluated with the so-called unre-

stricted maximum likelihood estimates. Let &, = (EO,XO, ao) be the restricted and
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g = (B, X, 5) the unrestricted MLE’s, respectively. Then the likelihood ratio test
statistic is
[T fi(uil6)

nt

(2m) % (Bo) ¥ IR Feap (~ 5 T (¥ = XiB) R () (Vi — Xifh))
(2@-%(@—%11%(/\)1-%@(—1 M(Y XBY R DY~ X))

Note that ¢, = 137 (Vi — XiBo)RIO)(Y: — Xifly) and ¢ = 3" (Vi —

n T 1=

X:BYRI N (Y: ~ Xiﬁ), so that

o-(3)" (2]
¢ [R(A)]

Recall under the central limit theorem that —21n{A{#)) has an asymptotic chi-square

AO) =

distribution with d = d,, —d, degrees of frecdom, where dyy is the number of param-
cters in the unrestricted model and d, is the number of parameters under H,. Thus,

the test statistic becomes

—2In(M6)) = nt (111(39) - 1n(&§)) +n (m {R(3)| ~ In gR(:i‘)|) . (26.1)

The most obvious special cases for the correlation parameters are H, : ,0 =0 and
H, : a = 0. For testing H, : p = 0, we note that R(:\l,) = R(0,&,). The determinant
of the correlation matrix is simply the determinant of a £ — 1 by ¢ — 1 autoregressive
matrix, or (1—&Z)* 2. Recalling the determinant of R(A) under the full model (2.2.2),
we get the following likelihood ratio test statistic for H,: p =0

—~2In(A(6)) = nt (m(a‘o) - zn(&é‘)) +n(t—2)(1-a2) (2.62)
— aft-3)In(l - &%) +nln(l — 5%
_ nln( 1 . QQ)(l ) (,32 qat) (:61 Mt 2) —1—20: -8 Azt 1)) i

Since the difference in the number of parameters between 90 = (ﬁu, 0, &, gbo)’ and

0= (3, 0, a, q?)’ is 1, then 2.6.2 is asymptotically x3.

For testing H, : & = 0, it can be shown that |R{p,0)| = 1 — p::ﬁ?. Thus the

likelihood ratio test statistic for this null hypothesis is

-~ —~ 2 o9t
~2In(M#)) = nt (111((;50) - m((p)) +nft —2)In (1 - %) (2.6.3)
— n(t—3)In(1 — 622) +nln(l — 52)
— aln (=81 - ) ~ @~ 7 - @@ - ) + 286" 7))
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which is asymptotically x2.

11.6.2 Wald’s Test

Both the Method of Moment and Quasi-Least Squares procedures employ quasi-log-
likelihood functions, as opposed to proper log-likelihood functions, so the likelihood
ratio test is not available for these methods. However, we have derived the asymptotic
variances for the MOM and QLS estimators, 8,, and 5'; respectively ((2.4.7} through
(2.4.12)).

Wald’s Test states that for testing the null hypothesis H, : h({8) = 0, where h(8)
is a function of @ (possibly vector valued) and & is an estimator with asymptotic

variance 17Y(6), I(#) being Fisher’s Information matrix, the test statistic
-~ -~ ~~ o~ _1 —~
T = nh(B)” [H(ﬁ)TI-l(e)H(a)} %0 (2.6.4)

has a chi-square distribution with d = rank(h(f)) degrees of freedom. Here H{f) =
Q%(E@ is a vector (matrix) of partial derivatives of A{(f) with respect to 8. Recalling
that though we cannot calculate I{6) for the MoM and QLS cases, we have derived
their asymptotic variances ;1 (8)M,(0}(1'(#))7, so that the so-called Wald-Type

test statistic becomes
NT NT 7—17° ) T ] A
T = nh@)" [HET I OO @) HB)] hE) (2.6.5)

which again has an asymptotic chi-square distribution with d = rank(h{8)) degrees
of freedom. -

For instance, if we test H, : p =0, then h{f) = p, H®) = (0 1 0 0 )7, and
our test statistic is

-1

T=np? {0 1 0 0)I;'@MGIT )T (2.6.6)

==l

which is asymptotically x3. Likewise, if we were to test H, : o = 0, then A{f) = o,
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HB =(0 0 1 0)T, and our test statistic is

-1

T=n&[(0 0 1 0)'OMOIE)T (2.6.7)

= O o

which is also asymptotically x3.

For the MOM estimator recall that we defined the asymptotic variance matrices
I.(6) and M, (6) in (2.4.7) and (2.4.8), respectively. If we are testing H, : p = 0, then
we substitute @;,,, Im(am) and Mm(é\m) into {2.6.6) to get our estimated Wald-Type
test statistic.

5 _ nﬁ?n(.lb\?n . nﬁ?’ﬂ

My 2tr [ABn) RO AGm) R ()]

(2.6.8)

where A, = (Prm; Om) are the MOM estimates of the correlation parameters. Simi-
larly, for testing H, : o = 0, we get

naz ¢ na?,

Tinaco = —2im . aaiis - (2.6.9)
My otr [A(&m)R(/\m)A(&m)R(/\m)]

Note that both A{p) and A(e) arc previcusly defined ((2.3.8) and (2.3.9), respec-
tively).

For the QLS procedure, recall that we defined the asymptotic variance matrices
I,(8) and M, (6) in (2.4.11) and (2.4.12), respectively. If we are testing H, : p = 0,
then we substitute E};, fq(é\q) and M, (é:l) into (2.6.6) to get our estimated Wald-Type

fest statistic.

N sy — TasTa)? .
Typmo = npl Tnalos = s ls2) (2.6.10)
Mo i3y + M3313,

where [;; and M;; are the ijth clements of (2.4.11) and (2.4.12), respectively, evalu-

ated at ?):,. Similarly, if we are testing H, : « = 0, we get

tﬁ]u:() = na’ @2133—12f32)2 . (2.6.11)
' g ]1’1-22}3?2-5—11433};22

For both of these hypothceses, the test statistics have an asymptotic chi-square dis-

tribution with one degree of freedom.
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11.6.3 Estimated Significance Levels

To gange the performance of the Likelihood Ratio Test for the Maximum Likelihood
Estimating procedure and the Wald-Type tests for the Method of Moment and Quasi-
Least Squares procedures, we make use of simulations to estimate significance levels.
Depending on the hypothesis of interest, we either set p = 0 or @ = 0 and fix the
other correlation parameter at some admissible value. Note that when a = 0, the
admissible range for p is (—0.68,0.74), and when p = 0, the admissible range for o
is (—1,1). For each combination of p and «, we simulate n = 30 observations of size
t = 4 with ¢ = 3 from a multivariate normal distribution. For the likclihood ratio test
we calculate both the restricted and unrestricted maximum likelihvod estimators,
which should be similar as the simulated data reflect the conditions stated in the
null hypothesis. For the Wald-Type test, we calculate the the method of moment
and quasi-least squares estimators using the data and use these to calculate the
asymptotic variances. Since we are simulating data assuming the null hypothesis is
true, we expect to not reject the null hypothesis. However, due to randomness there
is a chance that the simulated data will yield estimates that will cause us to reject H,.
Recall that for each test we reject H, if the test statistic is greater than a chi-square
critical value x? for a particular significance level. If we choose a significance level of
0.05, then the critical value is 3.841. If we repcat these simulations a large number
times {5,000) for a particular value of the non-zero correlation parameter, then the
estimated significance level of the test is the ratio of the number of times we reject
the null hypothesis to the total number of repeated simnulations. If we then repeat
this procedure over a wide range of valucs for the non-zero cotrelation parameter, we

get an idea of how the test performs in many scenarios.

Based on the Law of Large Numbers, we expect the estimated significance level
to be close the chosen level (0.05) if the estimating procedure is providing accurate
estimates. The variance of the estimators increases with the absolute size of the
correlation parameters, which means that we should on average reject the nuil hy-
pothesis more often for large values of the correlation parameters than we would
for small values. Thus, the estimated significance level should be small for small

correlation values and larger for large correlation values.

We begin by analyzing H, : « = (0. The results for the likelihood ratio test
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Figure 2.27: H, : a =0 - Estimated Significance Level for LRT (MLE)

(LRT) are seen in Figure 2.27. From this we clearly see that the LRT yields an
estimated significance level close to the actual significance level over a wide range of
p. However, as p approaches its positive definite boundary the estimated significance
level increases dramatically, as expected. This shows that for testing H, : o = 0,
the likelihood ratio test works well for small to moderate values of p, but not for
large values. Figure 2.28 shows the estimated significance level for MoM using the
Wald-Type test. Hcre we see the same general pattern shown for the LRT, with
an estimated significance level approximately equal to 0.05 over a wide range of p.
Again, the level incrcases as the magnitude of p increases, but not as much as in
the LRT. Lastly, Figure 2.29 shows the estimated significance level for QLS using
the Wald-Type test. It is clear from this plot that the estimated significance level is
close to 0.05 for a wide range of p, and then increases as the magnitude of p increases
for moderately large values. Note that plots for the MLE and QLS arc very similar.
Thus, for testing H, : « = 0, all three tests (LRT, and Wald-Type test for both MoM
and QLS) perform similarly.

Now we concentrate on the H, : p = 0. Figure 2.30 shows the results of the
LRT, and we see that the estimated significance level is vaguely U-shaped, centered
at small values of a. However, noting the range of the estimates, we see that the

estimated significance levels are close to 0.05 for most o values. This shows that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



53

el

Figure 2.28: I, : a =0 - Estimated Significance Level for Wald-Type test (MoM)
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Figure 2.29: ¥, : a =0 - Estimated Significance Level for Wald-Type test (QLS)
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Figure 2.30: H,: p=0 - Estimated Significance Level for LRT (MLE)

the LRT is a very strong test for this hypothesis. Figure 2.31 shows the results for
MeM using the Wald-Type test. Here we see that the estimated significance level is
accurate for small values of <, but it then increases as the magnitude of « increases.
Finally, Figure 2.32 gives the estimated significance levels for the QLS procedure
using the Wald-Type test. Here we seec that the cstimated significance levels are
high for small levels of .« (around 0.10), but then decrease as the magnitude of a
increases. Thus, it is clear that for testing H, : p = 0, the LRT is much better than
the Wald-Type test.
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Figure 2.31: H,: p=0 - Estimated Significance Level for Wald-Type test (MoM)
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Figure 2.32: H,: p =0 - Estimated Significance Level for Wald- Type test (QLS)
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CHAPTER 111

AR(1) STRUCTURE WITH HETEROGENEOUS VARIANCE

III.1 Introduction

In this Chapter we again focus on the autoregressive familial correlation structure,
where we now model heterogeneous intra-class variances. This variance-covariance

matrix is of the following form.

(@, \) = D(@)R(N)D(P)
by bpdsp Pl S Ppbsp? Gppspt!
GpPsp Os G5 ¢s0? .- Pt
= V Qsp@sp? Psa bs Lo e’ FoRe M
‘.bquspt'l Q’f’sat"z ¢5Clt~3 (.?e),;(.‘tt_4 ‘e Dy

(3.1.1)

Recall that ¢, is the parental variance and ¢, is the child variance. Important to
note here is that neither of the variance parameters (& = (¢, ¢s)) factor out of
the variance-covariance matrix in scalar form. Thus parameter estimation will differ
from that in Chapter II.

This chapter is organized as follows. In Section II1.2 we discuss important prop-
erties of the correlation structure (3.1.1), specifically the inverse, determinant and
positive definite range of the correlation parameters. We briefly present the three
estimation procedures in Section III.3 and apply them to (3.1.1). In Section III.4
we find asymptotic variances of the estimators and compare their asymptotic perfor-
mance. Scction IIL5 provides small-sample properties for each cstimation procedure

in both the normal and non-normal cases.
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I11.2 Properties of Correlation Matrix

To find the determinant of (3.1.1) we make use of the property that the determinant

of & matrix product is the product of matrix determinants, ot
[Z( @) = [D(®)RA)D(®)| = DR D(®)] = |D(®)P|RM)I.

Further, the determinant of a diagonal matrix with non-zero elements is the product
of those elements (here, D{®) = [diag(d,, s, - - , ds)]Y/?). Thus,

IZ @) = bl ROV

We have already shown in Chapter II that

Ry = G

x [(1— a®)(1 = %) — (0 ~ p%) — P(p* — p"2) + 20(p® — p* V)]

(3.2.1)

so that we get

1—p?
[(1 = o)1= p%) = (p* = #*) = &*(p* = p* ) + 20(p® — p*71)] .

BO2)| = 6 (M) (32)

X

To find the positive-definitc range of the variance () and correlation (A} param-
eters, we create an inequality by setting the detcrminant of the variance-covariance
matrix (3.2.2) greater than zero, or {E{A, ®)| > 0. Since both ¢, and ¢, must be
greater than zero, we are left with [R(A}| > 0, as defined in (3.2.1). Thus the positive
definite rangc is the same as that found in Section I1.2 for the homogeneous variance

case.

Recall that the inverse of a product of symmetric matrices is equal to the product

of matrix inverses. Thus,
LM @) = DTH®RT WD THE)

where D™Y(®) = {diag(1/p, 1/ b, - ,1/0:)]7, and R™(N) is the sawqe as Chap-
ter II. More formally, we find £71(), ) by partitioning the matrices D(®) and R(})
as follows. Let 'y = (1/¢,)*/? and Tay = (1/¢,)"2I;_1 represent the 1 x 1 and
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(t — 1) x (t — 1} non-zero partitions of D™}(®), respectively. Partitioning R~1()) as

', 0O
0 Ty

in Chapter II, we get

E*l()\,tl)) — 'n 0 By Bl?
0 Tl | Bay By

_ FyBuly TyBigls
FpBalit FaBoal'ss

with
1
FuBuPu = FﬁBu =—By
P
oY (1— o)1 - )
bp L1 = a?)(1 — 22) — (0% — p) = 2(g% — p%~2) + 2a(pd — p2-1)
1 1
1By, = —=—=Bpl; 1= —=58)
LT Vb T s
M ’ . , P ,_
P
5 2 P p+po°
= _.—11___‘_ +a? : —a :
Vsl — a?) : t—2 -3y -1
1 p P34 p
p 0 pt—2

PyBanl'yi = (TuBilz)
1 1
P Bplyy = —Ii 1 Bandy 1 = —By
@s @y

_ ﬁ(]t_1+a202~001)
] P2 B
X I¢_1+£% ,0:3 ,,:4 ptjrl (I + *Cy —aCh) |
| L

A list of partial and second derivatives of the variance-covariance matrix appear

in Appendix A.2.

I1I.3 Parameter Estimation

In this section we derive parameter estimators for the maximum likelihood (MLE),

mcthod of moments (MoM}) and quasi-least squarcs procedures. For each procedure
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we use the same estimator for the regression parameter

n 1 a
g= [Z Xz, @)X,} > XETN )Y (3.3.1)
i=1 i=]
where \ = (p, @) is the vector of correlation parameter esthmators and P = (ap, &5;)
is the vector of variance parameter estimators. To avoid certain problems explained
in the next subsection, we use moment estimators for the two variance parameters
as shown in Elston (1975). The estimators arc found using the following unbiased

estimating equations.

> _[ZAG)Z:— d) =0 (3.3.2)
& Alp) = ( ; g )
_Xn: (Z{A($)Z:i — (£ — 1)¢a] = 0 (3.3.3)

@A(a):(g IQ )
b4 t—1

Solving (3.3.2) and (3.3.3) for ¢, and ¢,, respectively, yields

- 1 e
Pp = ;szl (3.3.4)
=1
=N 1 L3 t
s = —— Z2 3.35
n(lc—l)‘_z:;j:2 ; (3.3.5)

where 2j; = 15 —a:z-jE is the residual of the jth member of the ith family. Note that &5,,
uses only the squared parent residual (z;), as it is the only residual with expectation
¢y, and gg,g uses the squared residuals of all (£~ 1) children, as their expectation is ¢,.
Also, Z, = >0 (Y — X;8)(Y; — X;8)' is the residnal matrix, which is partitioned as

follows
VA AT
7z, = 11 L1
Zor Zoo
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where

=1
—_— i n
Zo = ((Thimzme Shimze . Yoz )
7
ZZI = Z12

22;1 21'22 Z?:l 20243 Zr-l Zi2%it

Zg _ Z?:l Zi2%:3 Z?:l 21'23 e Zz— 24344t
2 - - . .

Z:;lzﬂzit Z,__lzwz:t ?=1th
I11.3.1 Maximum Likelihood

Maxirnurn likelihood estimation in the heterogeneous variance case is similar to that
found in the homogeneous variance case, except now the variance parameters are
more deeply embedded in the likelihood function. Nevertheless, we attempt to find
estimators by maximizing the log-likelihood function with respect to each parameter.

The log-likelihood function is now
¢ = —51 (271')-——]11[2 (X, @) ;--Z(Y—, YETH, B)Y; — X.8).

Recall that Z(A, @) = D(®)R(\)D(®), and the log-likelihood becomes

n(t

nit n
¢ = ~"men) - 2iniey) - "D m(s) - 2w
1 ¢ - PN
=3 > (Yi~ X8 D{@)R 1(A)D NO)Y; - XiB).  (3.3.6)
Note that we will sometimes express the last term in (3.3.6) as —tr [S7'(A, @) Z,].

Since @ is embedded quadratically into {3.3.6), we will not get a closed-form
variance estimator as we did in the homogencous case. We could solve for the two
variance parameters (® = (¢, ¢,)) simultaneously by taking the derivative of (3.3.6)

with respect to P to get the two estimating equations for the variance parameters as
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found in (3.3.7).

% o % [ s-1() @)azagpq’)z 1(,\,<1>)§n] (3.3.7)
_gtr {2"1(,\,@)9%;%)} =0
o & BTy + ¢y 7652 BioZayy —n =0
;;S e %tr [2—1(/\,@)%2-1(,\@)2‘]
mgtv‘ [2“1(,\,@%";;@] =0

- R
o ¢ r(Baln) + ép ¢ * BraZay — n(t — 1) = 0.

However, these estimating equations do not yield closed form solutions and have
problems with convergence if solved for numerically using Newton-Raphson or some
other iterative technique. Thus, we use moment estimators (3.3.4) and (3.3.5) for

the variance paramecters.

The correlation parameters may be solved for simultaneously using the Newton-
Raphson method with estimating equations {3.3.8) and (3.3.9).

of 1 0X(A, I) . -~
& o 2 [ (A, Q)—— 3p (x\,@)Z] (3.3.8)
_ OZ(A, ®)
—— 1 T TN =
2t7' [E (A, @) o ] 0
& [ ((P)R”I(A)OR(/\) 1(/\)D’1(®)2} — ntr [R (A )6‘2,5))‘)} =0
~ OR;ys . JR. IR
Axd @;1311 d BQLZ11+¢p1 5 |:B]1 8‘012322—{-312 821312} Zg]
R, IR
¢.; ' B12722Bas a:l n312721~=0
af 1 L )\ tD) o~ .
E L [ (A, @) 2" (A,<I>)Z] (3.3.9)
32(/\ )
_ = —1
2 fan 2
| p-treyp-1( 0 PBN) vy po1an B BR(\)
& tr [D (P)R™(A) e R (\D (@)Z} ntr [R )= e = ()
IRy IR
& 4‘5 'Bra—— 9 321711"{"@1: (bs 2312 622322421
(}5 lt?‘ BzzaRzzBHZzg -~ nér ngaRzz] =0
da da
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Thus, we find the MLE of # by iterating between estimation of 3, ®, and X. More
specifically, we start with initial values A, and ®, of the correlation and variance
parameters and use these to estimate 3. We then use 3 to caleulate Zn, and then
estimate ®. Using Zn and 5, we then estimate A and use ® and A to re-estimate 0.

Repeating in this manner until convergence, we arrive at the maximum likelihood
estimate, 6y = (B, Av, @).

1T1.3.2 Method of Moments

We begin the method of moment procedure by using (3.3.1), (3.3.4) and (3.3.5 to
estimate # and @, respectively. To find estimators for the clements of A we use the

following two estimating equations

> ZIA(p)Z: =0 (3.3.10)
i=1
ol e 10 1 {Cs 0
A - - Z; =
> [x/eﬁ_(o Q) Mi(ﬂ UH ’
and
S ZIA(0)Z: =0 (3:3.11)
=1

Z.i:U

- o 0 0 1 0 0
& Z! | —— = . =
; 5|it'_1(9. Iy ) 2(t_2)<ﬂ Cl)

01
where Cy = ( Lo ) and C} is defined in Chapter II. Solving (3.3.10) and (3.3.11)

for p and «a, respectively, gives the following moment estimators

~1
L3 ') ~
DPpon 21—=1 21242

Pra T (3.3.12)
Bdm )iz %
t— 1S YT 5

G = ( ) 2oimy 2 img Zid? JHL (3.3.13)

£
Note that the numerators of these estimators are practically the same as those used
in Chapter II.

Procedurally, then, we first assume that ® = (1,1) and A = (0,0) (i.e. response

variables of all family members are independent) or use sample statistics and solve
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for 3 using (3.3.1). We then use B to compute Z.., and then estimate ® = (Zb},, 33)
with (3.3.4) and (3.3.5) and A = (5, &) with (3.3.12) and (3.3.13). We then use these
to re-estimate 3 and continue in this manner until convergence. These estimators,

O = (B Amy Prm), ate then the moment estimators for 6.

II1.3.3 Quasi-Least Squares

In this case we note that the quasi-log-likelihood function is defined as

n

S(O) = > (Yi— X:iB)E (), B)(Y; — Xif) (3.3.14)
i=1

= > ZET (AR Z = tr [T\, ) Z,).
i=1

Recall that Z(®, A) = D(®)R(A)D(®). For the Step I estimators of 3 and A we
maximize (3.3.14) with respect to those parameters, however we must account for @,
the vector of variance parameters that do not factor out of the quasi-log-likelihood.
Thus we propose including simple moment estimators of the variance parameters in
Step 1 so that cstimators of the other paramecters may be obtained, recalling that in
the homogeneous case there was no need to estimate variance parameters in the first
step.

The QLS procedure outlined here contains two steps. In Step 1 we begin by
selecting initial values ®, = (Pyo0, b5} and Ay = (po, o), which we take as either
sample statistics or (1, 1) and (0, 0), respectively. We then find 5 , the Step I estimator
of 3 using (3.3.1) evaluated at the initial values ®, and A,. We then use 5 to
update the residual matrix Z, and estimate & with (3.3.4) and (3.3.5). We now

use d = (qA';p, 53) and 5,1 to estimate the corrclation parameters, which is done by
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maximizing the quasi-log-likelihood funetion with respect to p and «.

_ag% _(% tr (5700, 8)Z,)| = [‘f“” (@932—0@) ) ] B

: X
o —tr E‘l(/\o,tb)a (;;’@)2 13, ®)Z,| =0 (3.3.15)
~_ OR12, OR .
- prlBllo 8,102 Bo, 0211'1“@5 BmaZzszzo 3;1.
~_1/97T ORa1 0 ORya
+¢;i!2¢;1}2 l:Bl‘Z,o 8?01, Bz + Bio—— 8?02, Bzz,o] Zg =0
as@) 01, fel =5\ AE (X, @) = _
605 = 55 [tf (E (AO, (I))Zn)] - [ (TZ‘, = (}
o —tr {E‘l /\o,@)ﬂlt’—@) ‘1()\0,5)2”} =0 (3.3.16)

" 8R o 3R 0 —~
- ¢plBllo 22 BnoZus + ¢ 'tr Baso—ri Byp o Zono
Jo da
1y IRy,
+20; 124 2 By o= By Iy = 0

We must solve for p and o simultaneously using Newton-Raphson. Now we use &
and X to re-estimate 3, and iterate in this manner until convergence. Then \ = (7, &)
is the Step 1 estimate of A.

As shown in Shults and Chaganty {1998), the Step I estimates of the correlation

parameters are biased, as can be seen by taking their expectation.

8s(@)] T'az )\0,@) |
[ 8’9} = ¢ o E(Z )];éo (3.3.17)
< tr WE(A,@)} £0
S N B
E[a‘;g})J = tr WE(ZH)] £0
x tr WE@\,@)] £0

To eliminate this bias we turn (3.3.17) into a set of cstimating equations ((3.3.18)
and (3.3.19})) that we solve for p and «, respectively. Here we again set A, = (04, 0),
either sample statistics or (0,0), and fix X = (7, &) as the Step I estimators of the
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correlation parameters. Note that we do not need values for ® as they cancel out of

the equations. We then get the following Step 2 estimating cquations for A

[ 13, @)32(/\ @13 50, 5)}: 0 (3.3.18)
o tr [R TR, S ] i
dp
~ Ry [= = ~ - . ORy,
& B2 [321 + BQ2R21,0:| + Bia [R21,GBIQ + 322R22,o] 2L=0
dp dp
{ 1N, ® azg{ ‘I)) ,\,5)2()\0,&3)] =0 (3.3.19)
o [ ()\)OR(/\)R"l(/\)R(/\ }
~ OR Ry ~ 9Ry
& DBy 032321 + 2By, B B2zR21o+t7 [Bgz 9% 2 By Ron o:l =0.

The two estimating equations (3.3.18) and (3.3.19) are solved simultaneously using
Newton-Raphson. These values, /)Iq, are the Step 2 estimators for the correlation
parameters p and a. We then use these estimators to update # and & as before. The
QLS estimator of ¢ is ﬁq = (B Ags @Q)’.

II1.4 Asymptotic Variance and Performance

In this section we derive the asymptotic variance covariance matrices for the MLE,
MOM and QLS estimators described in Section II1.3. In each case we make use of
the Theorem by Joe (2.4.1) to find the asymptotic variances for the estimators.

I11.4.1 Maximum Likelihood

Typically for the MLE (@}) we use Fisher’s Information matrix to find the asymptotic

variance, knowing that
V(B — 6) ~ AMVN(0, I7}(8)) (3.4.1)

where 1(f) = —E (5?£/900¢"). However, since we are using moment estimators for

the variance parameters, we cannot use the Fisher Information. Thus, we make use
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of the Theorem described in (2.4.1) to find a more general form of the asymptotic

variance and show that
Vi (8- 8) ~ AMVN (0,17 (0)MA6)(I;(6))) (3.4.2)

where I(6) = —1 37" (8he:i(0)/06), My(6) = fracln . Cov(hei(6)) and hy;(6)
is a vector of the unbiased estimating equations that Iead to the maximum likelihood

cstimators for 8. We define hy;(0) as

hei(8) = (hoi(6), hua(6), has(6), 915(6), 92:(6)) (3.4.3)
hoi = XIS7HA ®)Z

51(), ®) BT (N, B)
by = Zim 227 |20y,
1 ; 9 tr [ 5o (A @)]
[N,
= {r |:”'—6p—“-“(Z121—>_4(/\(D))1|
057, @) LI\, D)
hz.l = Z,,—m-—éa—Z,:—t'r [O—QE(/\, (I))]
_ L [eEt e,
= @ [T(zﬁz; —E(A,<I>))]
, 10
G = ZiA(¢P)Zi - Gsp = Zi Z; — (bp
= tr[A(¢p)ZiZ]) - &,
7 Y, 14 0 -D- ‘
9u = ZiA($)Z: — (t - 1)¢ps = Z, ! 0 Z; ~ (t =~ 1)ds
Y t—~1

= tr [A(¢5)21Zﬂ - (t - 1)¢5‘

By taking the negative expectation of the derivative of (3.4.3) with respect to #
and averaging over n we obtain Ip(#), and by taking the covariance of (3.4.3) and
averaging over i we obtain AMg(f). From here it is easy to show that I,(8) has the

following elements

Iy 0 0 0 9O
0 Iy I Iy Ixs
0 Iy Iss 0 Iy (3.4.4)
0
0

I(6)
0 0 Iiu O
0 0 0 I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



where

Ill

I22

124

I33

ISS

IA4 =

155

-7 LIPS [

1
“;Z
i=1

ZE (dhm 9)) ! ZX STHN @)X,

5 E(B50) - )

=1

~2Bua§” Bay 2 0{;21 2B, 8521 B,fé{;‘
_i ZIE (ah(;;o)) i [R_I(/\)E}};()\) 1(A) E) )]
N Bma;?zz B, d;%;
h% > (612;5’0)) — ot [9_33?_) R D) af;;f)]
18(;2;2821 .

‘%ZE (%) = ot | 222 p Do) 222
—¢7* 1288—}2;1

i = : (%o@) = -tr [y 25y 25

—%iE(a}fziw)) = —otr [ag((:.) 1D 1(@)2 (‘I’)]

Dy
ORy,

Odhs

=1

9a P 22}
(%) =1
5 (%,

Dgss(6)
86, ) =t-L

Reproduced with pemmission of the copyright owner. Further reproduction prohibited without permission.

67



68

We can also show that AM,(8) has the following elements

My 0 0 0 0

0 Mg Mz 0 0
M#)=1 0 My Myz 0 0 (3.4.5)
0 0 0 My My
0 0 0 My Mss
where
My = —ZCOU ho(6)) = = ZXE (A, ®)X;
r—l
_ 1lg (VY 10 2B pagy 9RO)
Ma = 13 Conlin(e) =2t | ) 25 o ) 2
B8Ry _ OR BR OR
- 2B, 821312 @21 2By, 312322 0;1
1 ' o 1 DR OR(A)
My = n;Cov(hh(ﬁ),hzl(G))——%T‘ [R W=, B W
OR OR.
= 4B;» 622322 deI
R PP _1py O (A) IR(A)
My = 13 Conlhu(0) =20 [R NG B N
= 2tr ]:3226R22 .822 dRzzJ
dax

My — % 3 Conlgu(®)) = 265 [A(4) B0, B)Alg)B(, B)] = 26

2¢'p¢.s (102 — p2t)

My = r—lz Z Cov{gu(0), 9:(0)) = 2tr [A($)Z(\, P)A(5)Z(A, )] = 1—p?
i=1

My = %Zcm;(g%(e)) = 2tr [A($s)Z(), B)A(6,)S(\, B)]

1—2
= 207 {(t—1)+2) (t—1—j)a¥}.
=1
By taking the inverse of 1,(#) and pre- and post-multiplying upon M;(6) we obtain the
asymptotic variance of the MLE estimators. Note that, based on matrices (3.4.4)
and (3.4.5), the estimator for @ is uncorrelated with the estimators for the other

parameters.
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I11.4.2 Method of Moments

For the Method of Moments (MOM) estimator (§m) we have
Vit (6 = 6) ~ AN (0, 1,1 (0)Mn(0) (1 10)Y) (3.4.6)

where I,(0) = —2 37 (0h,,:(0)/08), Mn(0) = 1377 | Cov(hy,;(6)) and hy,(8) is
a vector of the unbiased estimating equations that lead to the MOM estimators for

g. For any ¢ = 1, ..., 1, hyi(0) is defined as follows

hini(0) = (hu(8), hli(e)a hg,;(f?), 91:'('9): .9213(9))( (3.4.7)
h(}i = X{E_l(/\, (I))Z,S
hu = ZIA(p)Z; = tr [A(p) 2, 2]

=Z(p1Q_1 Cz 0 7
Ve \D o) 2v8\ 0 0/

hai = Z[A(0)Z; = tr[Ala)Z:Z})

[ 0 0 1 0 0
- 7|2 S lo——_{(* * Mz
1_t“‘1(Q It—l) 2(t_2)(9 Cl)
= ZAGNE b =2 | - |z
ti = i Pl p — 4y Q Q 1) pol
= tr[A($p)ZiZ] — ¢
0 0
g2 = ZiA(@s)Z; — (t — 1)y = Z] { S|z (t—1)¢s
Y -1

I

tr[Algs)ZiZ] — (t — 1),

By taking the negative expectation of the derivative of (3.4.7) with respect to &
and averaging over n we obtain (6}, and by taking the covariance of (3.4.7} and
averaging over n we obtain M,,(6). From here it is easy to show that I,,() has the

following elements

In 0 0 0 ©
0 Ly 0 In I
L#y=} 0 0 I 0 0© (3.4.8)
0 0 0 Iy O
0 0 0 0 Ig
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where
L L (Fha()) I
I = n ;E ( a0 T
_ 2 - ; Ohu(0)\ _ 1/2
I = n 2 ( p ) =—¢,
1 e 8}1,17;(6)) Iz
Iy = —= E( -
i 226, ) T o
L L (00 _ pey”
s = n ;E( ¢ B 29
1l Ohai(#)
Iy = ——;213( ) = %
1 6)13,,;(9))
Iy = —— ( - =1
4 n aby

SXETP)X:
=1

We can also show that M,,(#) has the following elements

My O 1]
0 M- 22 M 23
Mm ({9) = O M23 11433
D U 1M34

D J‘lffg 5 M 35

where

0
0
M3y
My
Mys

0
Mos
Mas
My
Mss

1 . 1 . 151—1
My = EZOov(hm(ﬁ))=T—l§XiZ (A, )X,

imzl

70

(3.4.9)

My = %Z Cou(hy(9)) = 2tr [A(p)Z(N, RYA(P)Z(A, )] = ¢p(1 — p°)
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Moy = %Z(?ov(huw),hgi(ﬁ)) = 2tr [A(D)E(A, B)A() (A, D)
2000y 830> — p™) 2005 bs(p® — p*1) 205 ds(0 — (ap)?)
t-1{1-p% (t—2)(1~ ‘)‘) (t-1)(1 —ap)
d " ds(a + p)(ap ~ (ap)™)
a(t —2)(1 - ap)

+

. 1/2 _ 1]
= 2003/, (ﬂ - :;) 2¢p 2z(lafap()ap))

My = = Z Cov(ha; (8)) = 2tr [A(@)S(\, B) A{@)T(A, B)]

2,42 ad? L
= (?‘i‘f)z{ ])+22f-1—j)a23] RN 8 c"’ lZ(t 1 - g™ ‘J

+(t ibsg)z l(f - 2)(1+a%) + 4Z(t 9 _j}QZj]

My = —ZCov (hai(6), hsi(8)) = 27 [A(0)D(X, BYA(p) SN, B)]
_ 2'¢>p¢s [ (' —p*) » -p”‘]
T—p2| t-1 t—2

Mas = % Z Covlha(6), ha(8)) = 27 [A()S(N, B) A(o) 20, B)]

202 o o) A8t [ N 251
=) (t—1) +2Z(t~1 Pa o j;(tﬂ_ﬂa-

My = ;thw(hmw)) = 2tr [A(#)S(\, ) Al$,)EO, )] = 262

My = % S Covlhan(8), husl0)) = 267 [A(g) S\, D) A($) (A, )]

=1

_ o —p*
= @pés—p—z

M55 d ; Z COU(h4,(9)) = 2tr [A((DS)E(A% (I))A(‘;bs)z()\s (I))]

i=1

t—2
= 282 {(t—1)+2> (t—1— ¥
j=1
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By taking the inverse of /,.(8) and pre- and post-multiplying upon M,,(#) we obtain
the asymptotic variance of the MOM estimators. Note that, based on matrices
(3.4.8) and (3.4.9), the estimator for § is uncorrclated with the estimators for the

other parameters.

I11.4.3 Quasi Least Squares

For the Quasi-Least Squares (QLS) estiméttor, é},, we have
Jn (é‘q - 9) ~ AMVN (0, I (0) M, (6)(I2(8))) (3.4.10)

where I(6) = —fracin} ;.  (9he;(6)/06), My(#) = (1/n)> 1, Cov(he;(6) and
he:(0) is a vector of the unbiased estimating equations that lead to the QLS es-

timators for 8. For any ¢ = 1,...,n, hy;(8) is defined as follows,

hai(8) = (hai(9), hui(8), hai(8}), qui(6), 921;(9))' (3.4.11)
hoj. == X"Z“l(A,fb)Z,

00, 9) T, ®)
hli = ZiTZ,f—tT [TE(A,@)

—1/5
= {r [ga(:ﬂ(&z{ - E(A#I’))}
0500, [en(3,9)
hzq, = Zi 80 Zz - tT‘ aa 2(/\! (D)
o eiey, L, o
= {r [—"—éa'—(zzzi - Z(/\’q)))jl
’ 4 1 "0"'
gu = ZjA(¢p)Z; — Pp = Z; 0 0 Z; — ¢p
= tr [A(¢p)ZIZ:] - Cbp
0 0
92 = ZiA(¢s)Zi — (t — 1)y = Z; [ - } Zi — (t—=1)¢s
G Lia |

= tr[Algs)Z: 2] — (t — 1)g,
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where X is the simultaneous solution to

-1
tr [‘m A )R()\)] —0
8o
ARy, OR
& By —2 [321 + Bzszl] + By, [321312 + 322322} 2 =0
Op dp
[2r 1Y
tr PF R(}\)} =0
~ OR R ~ — OR
© Bio—2 By + 2B13-=2 ByyRy) + tr | Byy—t By Ry | -
da da fa

By taking thc negative expectation of the derivative of (3.4.11) with respect to 8
and averaging over n we obtain I,(f), and by taking the covariance of (3.4.11) and
averaging over n we obtain M,(#). From here it is casy to show that I,(#) has the

following elements

I, 0 0 0 0
0 I Iz Ing Iy
LOy=| 0 I I3 I3y Iss (3.4.12)
0 ¢ 0 I O
0 0 0 0 Iy

where

Ill - _ = Z_E (0’?03(9)) — % .Zn:X;E—I()\)(I))Xi
_ 1 M) _ . | parx OR(N) 8R(A)
.122 = HZE(—p ) tr |R71(\) B RN ]

OBy = ORyn .~ ORy = O8Rn

= —2Bp

Op ap J ap
Ohy(0
123 — _l }:( h( )) l(/\)aR(A) I(A)dR(A)
" da
~ ORyp OR
= —2Byy 832322 8,02[
0hn(9)) aD%(qv) . aR(,\) S L
Iy = —— E —2r | ———R(A ME(AD2(P
w = 22 op (P SO G R  RENDY @)
oR ~ R = ~ aﬁ
= —2¢," B a;Bm—qﬁ;ana—;zBﬂRm—¢‘ng12 6;1312321
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I3

Iy

Iss
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- Z (%) = o [31? ) s ) 220 s )R(A)D%(@)}
247 BB — 47 B0 B — 47 B R

—% i:E (M) = tr [R—l(i) ag((j() R a};i)‘)}

—2Bi, 8{?” Ba 8:;?::1

‘%gﬂ (%&QJ - 6%465, i) d(A)R‘l(X)R(A)D%(@)J
—Oﬁ;lglzégézszl ¢y lBlzamezan

7 R12§228§2 Boy — ¢ kir {Eﬂaf” Bag Ry

Sfe()-
ZE(agz’ 9)) =t—1.

A,

We can also show that My(f) has the following elements

where

My O 0 0 0
1] M22 MQ:‘; Moy AMQS
AMq(g) = 0 ]\/[23 M33 AMSgl ﬂrfga (3413)
0 My My My Mg
0 Moy Mss My Ms
My = ~ZCm, hoi(0)) = ZXE Y, p)X;
ﬂ/fgg = EZCOU(hu(Q))
i=1
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j=1
By taking the inverse of 1,(6) and pre- and post-multiplying upon M,(#)} we obtain the
asymptotic variance of the QLS estimators. Note that, based on (3.4.12} and (3.4.13),
the estimator for 3 is uncorrelated with the estimators for the other parameters. It
is also important to note that (3.4.3) and (3.4.11) differ only by the value of X. Thus,
if X is close to the poptlation value of A, the asymptotic variances of the MLE and

QLS estimators will also be close.

II1.4.4 Comparison of Asymptotic Performance

In this section we compute the asymptotic relative efficiency (ARE) of the variance
and correlation parameters for the MLE, MOM and QLS procedures. In each of
the thrce cases we set ¢ = 4 and n = 1,000 and compute the asymptotic variances
of the estimators derived in III.4 at specific values of ® and A. The ratio of the
asymptotic variances for the same estimnator, then , is the ARE. By varying p and o
over their admissible range, we get an idea not only of the large-sample efficiency of
one cstimating procedure with regards to another but also how the efficiency changes

with the parameter valucs. For our purposes, we have selected ¢, = 49 and ¢, = 16.

We start with estimators of p. The ARE plot for the MLE and MOM procedures
is found in Figure 3.1. This plot shows that the asymptotic variances are comparable
only for a small region when p is close to zero. The ARE is low elsewhere. Figure 3.2
shows ARE for the MLE and QLS procedures. Here we see that the variances are
comparable over a wide range of admissible values. The ARE is low only when o

is extremely large (both positive and negative). Finally, Figure 3.3 shows the ARE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



78

-e.75

Figure 3.1: p ARE for MLE and MOM Methods

L e

Figure 8.2: p ARE for MLE and QLS Methods
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Figure 8.3: p ARE for QLS and MOM Methods

between the QLS and MOM procedures. Here we see that the ARE is comparable
only for a small area when p is close to zero. These results imply that the the
MLE and QLS estimators of p are highly competitive asymptotically, whereas both

methods are asymptotically superior to the MOM corrclation estimators.

We now focus on « cstimators. The ARE plot for the MLE and MOM procedures
is found in Figure 3.4. This plot shows the asymptotic variances are comparable for
small values of «, and the efliciency of the MLE increases with respect to the MoM
estimator as « incrcases in magnitude. Iigure 3.5 shows the ARE for the MLE
and QLS procedures. Here we see that ARE is comparable over a wide range of
admissible values and is low only when p and « are extremely large (both positive
and negative). Finally, Figure 3.6 shows the ARE for the QLS and MOM procedures.
Here we see that the ARE is comparable over an area corresponding to small values of
o, and the ARE decreases as a increases in magnitude. These results imply that the
QLS correlation estimator of a is highly competitive with the MLLE asymptotically,
whereas both methods are asymptotically superior to the MOM correlation estimator

of a.

Lastly we analyze the variance parameters. Recall that we used the same esti-
mators for ® in all three methods, and thus we would expect that the ARE be close

between each procedure. In fact, we see that this is indeed the case. Figures 3.7
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Figure 3.4: o ARE for MLE and MOM Methods

Figure 8.5: o ARE for MLE und QLS Methods
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Figure 3.6: o ARE for QLS and MOM Methods

and 3.8 give the ART for all three comparisons: the MLE and MOM procedures,
the MLE and QLS procedures, and the QLS and MoM procedures, for ¢, and ¢,,
respectively. Based on these plots, we see that (asymptotically) all three procedures

estimate ¢ = (¢, ¢,) with the same precision.

ITL.5 Small-Sample Performance

In this Section we estimate the small-sample variance of the correlation parameter
estimators through use of simulated data. To do this we fix ®, with ¢, = 49,
¢, = 16, and seclect a pair of values for p and « within their positive definite range.
With these parameter values, we simulate n = 30 observations from a multivariate
normal distribution with ¢ = 4 and calculate the ML, MoM and QLS estimators. We
then repeat this procedure 1,000 times for the same values of A. We estimate the
variance of the correlation parameter estimator by summing the squared deviations of
the estimate from the "true” correlation parameter value and divide by the number
of times the estimating procedurc yielded feasible estimates. We then repeat this
procedure for other values of p and o so that we can see how the estimated variance
of the correlation parameter estimators changes as the correlation parameter values

themselves change.
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Figure 3.9: p RE for MLE and MOM Methods with Normal Data

We also estimate the smali-sample variances of the correlation parameters when
simulating data from a non-normal distribution. This allows us to gauge the ro-
bustness of each estimating procedure to departures from normality. Specifically, we
simulate data from a beta distribution with both parameters equal to 1/6, as this

gives a u-shaped pdf, which is distinctly non-normal.

To compare the small-sample performance of the estimating procedures, we use
the small-sample estimated variances to calculate relative efficiencies. These ratios
allow us to determine which estimating procedure has the smallest cstimated variance
for the correlation parameter estimators, and for which values of p and a that this
is the case. Note that since the asymptotic relative efficiencies for the variance
parameters ¢, and ¢, everywhere equal to one, we will not include the small-sample
efficiencies for those parameters here. However, they were found to be close to one

for most values of p and « away from the positive definite boundary.

II1.5.1 Small-Sample Normal Case

We first study the case of normally distributed simulated data, and begin with csti-
mators of p. Figure 3.9 gives the estimated efficiencies between the MLE and MoM

procedures. In this Figure we see that the efficiencies are below one everywhere,
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Figure 3.10: p RE for MLE and (LS Methods with Normal Data
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Fagure 3.11: p RE for QLS and MOM Methods with Normal Data

meaning that the MLE has smaller cstimated variance than the MoM estimator for
all correlation parameter values. Notc that for small values of p and « the estimated
variance of the MoM estimator is comparable to that of the MLE, and this is espe-
cially the case for large values of a. For large values of p the MLE has much smaller
estimated variance than the MoM estimator. The efficiencies for the MLE and QLS
procedures are found in Figure 3.10. Here we note that the estimated variance for
the QLS estimator is comparable to that of the MLE for small and moderate valucs

of p, and is smaller for large values of . Tor large values of p, the MLE has smaller
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Figure 3.12: o RE for MLE and MOM Methods with Normal Data

estimated variance. Lastly, the efficiencies for the QLS and MoM procedures are
found in Figurc 3.11. In this Figure we see that for small p and o the QLS estimator
has smaller estimated variance than the MoM estimator. Only for extreme values
of the corrclation parameters does the MoM estimator have smaller estimated vari-
ance than the QLS estimator. So among estimators of p, both the MLE and QLS
procedures outperform the MoM procedure in the small-sample normal-data case,
and the QLS procedure is comparable to the MLE for most values of the correlation

parameters.

We now move on to estimators of a. Figure 3.12 shows the estimated efficiencies
for the MLE and MoM procedures. Here we see that for all but extreme values of a
the MoM estimator has smaller estimated variance than the MLE. This is especially
the case for extreme values of p and «. Figure 3.13 gives the estimated efficicncies
for the MLE and QLS procedures. In this Figure we see that the estimated variance
of the QLS estimator, like that for MoM, is smaller than that for the MLE almost
cverywhere, especially for extreme values of p and «. Lastly, Figure 3.14 gives the
estimated efficiencies for the QLS and MoM procedures. Here we see that for small
and moderate values of o, the estimated variances for the QLS and MoM estimators
are roughly the same. For large values of a, the QLS estimator has smaller estimated

variance, and for large values of p, the MoM estimator has smaller estimated variance.
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Iligure 3.14: o RE for QLS and MOM Methods with Normal Data
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Table 8.1: Estimated Infeasibility Probabilitics (Novrmal, Heterogeneous Variance Case)

4
p | Method | -0.80 [ -070 | 0.3 | 070 | 0.80
075 | MLE | 0.175 | 0.590 | N/A | N/A | NJA
MoM | 0.000 | 0.000 | N/A | N/A | N/A
QLS | 0.000 | 0.026 | N/A | N/A | N/A
060 | MLE | 0.001 | 0.065 | NJA | N/A | N/A
MoM | 0.000 | 0.000 | N/A | N/A | N/A
QLS | 0.000 | 0.000 | N/A | N/A | N/A
0.10 | MLE | 0.000 | G.002 | 0.030 | 0.001 | 0.000
MoM | 0.002 | 0.001 | 0.000 | 0.001 | 0.001
QLS | 0.000 { 0.000 [ 0.000 | 0.000 | 0.000
060 | MLE | NJA | NJA | 0.436 | 0.065 | 0.002
MoM | N/A | N/A [ 0.000 | 0.000 | 0.001
QLS | N/A | N/A | 0.012 | 0.000 | 0.000
0.70 | MLE | N/A | N/A | 0518 | 0307 | 0.042
MoM | N/A | N/A | 0.000 | 0.000 | 0.000
QLS | N/A | N/A | 0.031 [ 0.007 | 0.000

For estimators of «, then, we see that both the QLS and MoM estimators perform
better than the MLE in the small-samplc normal-data case, with the QLS and MoM

procedures performing equally well.

Along with the estimated variances and efficiencics, we also estimate the proba-
bility of infeasibility for each procedure. Using the same simulation procedure {and
simulations) that generated the estimated variances, we estimate the infeasibility
probability as the number of timcs the estimating procedure gave correlation param-
eter estimates that were outside the positive definite boundary, divided by the total
number of simulations (1,000). The estimated infeasibility probabilites for select
values or p and o are given in Table 3.1. Most strikingly we sce that both the MoM
and QLS procedures have almost negligible estimated infeasibility probabilities for
all values of p and « listed in the Table. Recall that in Table 2.2 in Chapter II,
the MoM procedure had large estimated probabilities for extreme values of p and
o. This essentially means that these two procedures produce correlation parameter
estimators within the positive definite boundary ncarly all the time. Notc that the
estimated probabilities are high for the MLE procedure for extreme values of the

correlation parameters.
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Figure 3.15: p RE for MLE and MOM Methods with Non-Normal Data

ITIL.5.2 Small-Sample Non-Normal Case

Now we study the case where our data are simulated from a non-normal distribution.
Beginning with estimators of p, the plot of small-sample estimated efficiencies for
the MLE and MoM procedures is found in Figure 3.15. Here we see that for most
values of p and « the estimated efficiency is below one, indicating that the estimated
variance for the MLE is smaller than that for the MoM estimator. Notably, the
estimated variance of the moment estimator is close to that of the MLE for small
values of @, and its efficiency with respect to the MLE decreases as « increases in
magnitude. Figure 3.16 gives the estimated relative efficiency for the MLE and QLS
procedures. Hcre we see that only for extremely large values of « is the variance
of the QLS estimator smaller than that of the MLE. However, over a wide range of
small to moderately large values of o the estimated variance of the QLS estimator
is comparable to that of the MLE. Lastly, Figure 3.17 gives the estimated relative
efficiency for the QLS and MoM procedures. Here we see that for most values of p
and « the QLS procedure has smaller estimated variance than the MoM procedure.
For small values of p we see that this is especially the case. For small correlation
values, the estimated variances of both procedures are more or less cqual. In the
small-sample non-normal case with regards to estimators of p, we see that both the

MLE and QLS procedures have smaller estimated variances than the MoM procedure,
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Figure 3.17: p RE for QLS and MOM Methods with Non-Normel Data
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Figure 3.18: « RE for MLE and MOM Methods with Non-Normal Data

and the QLS and MLE estimators are comparable for most correlation valucs.

We now move on to estimators of a. Figure 3.18 gives the estimated relative
efficiency for the MLE and MoM procedures. Here we see that for all but very large
«, the estimated relative efficiency is larger than one, indicating that the variance
of the MoM estimator is smaller than that for the MLE. This is especially the case
for large values of p. Figure 3.19 gives the estimated relative efficiency for the MLE
and QLS procedures. Like the MLE and MoM case, we see here that the estimated
efficiency is greater than one for almost all correlation paramcter values, indicating
that the estimated variance of the QLS estimator is smaller than that of the MLE.
Notice in some places the estimated efficicucy is as high as 8. Finally, the estimated
relative efficiency for the QLS and MoM procedures is found in Figure 3.20. In
this plot we see that for small values of «, the estimated efficiency is close to one,
indicating that the estimated variances for thc parameter estimators are close in
value. However, as a increases in magnitude, the variance of the moment estimator
increases with respect to the QLS estimator. Only for very large values of p close
to the positive definite boundary does the MoM estimator have smaller estimated
variance. For estimators of &, then, both the QLS and MoM estimators have smaller
cstimated variance than the MLE, while the estimated variance for the QLS estimator
is smaller than that for the MoM estimator.
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Figure 3.20: o RE for QLS and MOM Methods with Non-Normal Data
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Table 3.2: Estimated Infeasibility Probabilities (Non-Normal, Heterogeneous Variance Case)

[0
P Method | -0.80 | -0.70 | 0.3 0.70 | 0.80
-0.75 MLE 0.052 | 0.016 | N/JA | N/A N/A
MeM { (G.000 | 0.000 | N/A | N/JA | N/A
QLS | 0.000 | 0.002 | N/A | N/A | N/A
060 | MLE | 0.505 | 0.015 | N/A | N/A | N/A
MoM | 0.001 | 0.000 [ N/A | N/A | N/A
QLS 0.000 | 0.000 | N/A | N/A | N/A
0.10 MLE 0.169 | 0.050 | 0.604 ; 0.001 | 0.000
MoM 0.155 1 0.090 | 0.000 | 0.017 | 0.112
QLS 0.000 | 0.000 | 0.000 | 0.000 | 0.000
0.60 MLE N/A | N/A | 0.836 | 0.337 | 0.122
MoM | N/A | N/A | 0.000 | 0.442 | 0.832
QLS N/A | N/A | 0.014 | 6.000 | 0.000
0.70 MLE N/A | N/A } 0.172 | 0.836 | 0.338
MoM | N/A | N/A | 0.001 | 0.006 | 0.718
QLS N/A | N/A | 0.011 | 0.000 | ¢.000

We have also estimated infeasibility probabilities for the estimating procedures
using the same simulated data used to estimate the small sample variances in the non-
normal casc. These estimates are found in Table 3.2. Note that the MLE procedure
has high estimated infcasibility probabilities for large values of p and «, while the
QLS procedure has very small estimated probabilities for all correlation values. The
MoM procedurc has very small estimated infeasibility probabilities for all but large

positive values of p.
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CHAPTER 1V
EQUICORRELATED STRUCTURE FOR A NUCLEAR FAMILY

IV.1 Introduction

In this Chapter we focus on the nuclear family, consisting of two parents and ¢t — 2
children, where the dependencies exhibited between parents and children, as well as
dependencies between children, are equicorrelated. Here we assume that the (¢ x 1)
response vector Y; has mean vector X; and variance-covariance matrix L(), ¢) =
$R(A), where X; is the (¢ x p) matrix of covariates for the ith family, 8isa (p x 1)
vector of regression coefficients, ¢ is the variance parameter, and A = (v, p1, p2, @) is
the vector of correlation parameters. The correlation matrix R(}) is of the following

form.
( 1 v ;o;m Pl\
Y L p2op2 -
1 o
rRN=1 7" (4.1.1)
pop a1 o
\nmaaom

For correlation structure (4.1.1), note that + is the correlation between parents, p;
is the correlation between the first parent and the children, pe is the correlation
between the second parent and the children, and « is the correlation between chil-
dren. Also recall from Chapter I that (4.1.1} is the same correlation structurc used
in Shoukri and Ward (1989) where the authors modeled heterogeneous variances.
Note that we are using a homogeneous intra-class variance structure. Though this
correlation structure is not new, we do introduce its application to the quasi-least

gquares estimating procedure.

For the one-parent case of the equicorrelated structure, Srivastava (1984) showed
that a simple transformation simplifies hoth the correlation matrix and estimation

of the correlation parameters. In a similar fashion, we extend that transformation to
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the nuclear family case, Define " as the following transformation matrix

{0 .
I‘_(g H) (4.1.2)

where I is a (2 x 2) identity matrix, and H s a (t — 2) x (t — 2) Helmert matrix of

the following form.

e 1 1 1 1
( -2 -2 =2 -2 t—2 \
1 -1
7 o 0 0 0
H = 7 % =z 0 0 (4.1.3)
1 1 o 1 —-(t-3)
\ Vie-2t-3) (-2)(-3) J-2)-8) Jit-20-3) /

Based on this Helmert matrix, we have

where e is a (t—2) x 1 vector of Us. If Z; = (Y; — X,8) has variance-covariance matrix
B(A, ¢) = ¢R(N), then I'Z; has variance-covariance matrix I'E(X, ¢)[V = gL R(MT".
If we partition R(A)} as follows

(1 7] o)

v Llp p2 -
1 a -+ « Ry R
R()n)z P2 _ 11 12
pLoppla 1 0 o« Ry Rgp

\p mle 1 - la

then the transformed correlation matrix becomes

I 0 Ry By I 0
0 H Ry By 0 H

Ry RpH
HR» HRpH'

TRV

Il
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where

e e
S

"H' 0
RpH = 7 e’ L= L
e’ H pz 0

HR21 = (R]_zf]’}’
HRpH = H[(1-a)l_o+aee|H
= (l—a)HH + aHed H'
i —3)a
sege o o
0 l—q 0
. 0 0 1 -
0 0 0 e - a

Thus, the fully transformed variance-covariance matrix becomes

[ 1 ¥ ! 0 0
v 1 £2 0 0
1+§t—3!a
NP — 0
IS, Y = =2 4.1.4
A 9r = ¢ 0 0 0 1-a 0 (4.1.4)
\ 0 0o o 0 - 1-a

For simplicity, we refer to I'Z; as Z; and FR(A)I” as R(\)} for the rcmainder of this
Chapter. To avoid confusion, we will not refer to the untransformed varictics unless

specified.

The rest of this Chapter is outlined as follows. In Section IV.2 we derive the
determinant and inverse of (4.1.4) and also find the positive definite range of the
parameters. In Section IV.3 we derive parameter estimators using the maximum
likelihood, method of moment and quasi-least squares procedures, and in Section IV .4
we find the asymptotic variances of thosc estimators and compare their asymptotic

performance.
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IV.2 Properties of Correlation Matrix

To find the determinant of (4.1.4) it helps to partition the correlation matrix as

follows
R\ = Ry 0
0 Ry
where
1 v m
Ry = vy 1 po
L P2 €
Ry = (L—a)lis
and ¢ = 1@ Then we have
Ry 0
|R(M)| = Ql Ry = | Ry || Raal-

Using properties of the determinant of a partitioned matrix, we have

I v m =
L v I f
[Bul = |7 1 pf= c=L{ P p2
7 1 7 1 P2
fLopr €
= ¢(1—7") = (61 + 05 — 2vp112)

and by recalling that the decterminant of a diagonal matrix is the product of those

diagonal elements, we have
|Roa| = [(1 = 0)fig] = (1 — )* 2.
Putting these together, then

RO = (1= )% [e(1 = 2%) — (03 + £3 — 270102} ] - (4.2.1)

To find the inverse of (4.1.4) we again make use of the partitioned form to get

-1
R\ = Rn 0 _ Bu By (422)
0 R By By -
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where
-1
) 1 v ,m}
N | -
BII = (Rll - 0“32219) = Rlll = Y 1 P2
/Al P2 C
. C—p5  pipa—C Y2 —
-_ ey — c C"_ 2 —_—
(== —(ror—pa2 | 277 S
w2—pm Ymi—p2 l1—7
By, = —BnlRy =0
By, = B{z =0

- _ N _ _ 1
Bpn = Ry +Rp0BulRy =Ry =((1-a)l ) = 1__—&1“3'

To find the positive definite range of the correlation parameters (A = (y, p1, p2, @))
we set the determinants of the leading minors of (4.1.4) greater than zero and solve

for parameter values that satisfy the inequality, the last of which is
(1—a) 7 [e(l —4*) — (62 + P& — 2vpr1p2) ] > 0. (4.2.3)

We begin with +y, noting that we only have to use the last principle minor (i.e, the
determinant (4.2.1)) as the first (¢ — 1) do not include 7. So we start with the

following expression

e(1 =) = (5 + p5 — 2yp1p2) > 0 (4.2.4)

which is a quadratic expression in terms of y. Thus we find the positive definite range
by solving for v using the quadratic formula. Doing so gives the following bounds

for ~.

p1p2 =/ ips — c(pi + pd) + ¢ << o2+ +/pips — el + p3) + 2
C [

In a similar fashion (4.2.4) is also quadratic in terms of both py and py. Solving
for both parameters using the quadratic formula gives the following positive definite

bounds.

~18s = /(e = )1 =12) < pr < =30 + 4/ (c = (1= ?)

—vo1 = o= A1 =2) < p2 <~ + /e — D)@ —7?)
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Figure 4.1: P.D. Range Contour Plots of « vs. {py, p2) with y = —0.3

Solving for a, we note that the first (¢ — 3) principle minors yicld (1 —a)* > 0, which
simplifies to o < 1. Finally, using, (4.2.4), we see that the expression is linear in

terms of @ (via ‘c’), and we get the following positive definite bounds for c.

(t =2)(p} + ps — 2ypips) — (1 =)
(t—3)1—7%

To find exact bounds for any of these parameters, we select values of the other

<a<l

parameters and enter those into the positive definite range expressions. Figures 4.1
through 4.4 show the positive definite ranges for p; and ps for select values of v for
t = 5. Each Figure is a contour plot with each ellipse representing a particular value
of a. The values of a are (£0.6,40.4,+0.2,0.0), with & = —0.6 corresponding to

the smallest contour in cach Figure and a = 0.6 corresponding to the largest.

Lastly, partial derivatives of (4.1.4) are listed in Appendix A.3

IV.3 Parameter Estimation

In this section we derive estimators using the Maximum Likelihood, Method of Mo-

ment, and Quasi-Least Squares procedures. For cach we use the following estimators
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Figure 4.2: P.D. Range Contour Plots of o vs. {p1,p2) with v = 0.0

Figure J.3: P.D. Range Contour Plots of « ws. (py, pa) with v = 0.2
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160

Figure 4.4: P.D. Range Contour Plots of & ws. (p1, p2) with v =06

of B and ¢, respectively,

B = [ZH:X{R‘l(X)X,;]_ zn:X,fR‘l(Xm (4.3.1)

3= Ly [R‘l(X)E ] L i ZIRY(N)Z, (4.3.2)
nt " ni £ ¢ ’

where ) is the vector of correlation parameter estimators and

‘ n T 7
7z, = Z Z.7 = n iz
i=1 Zn Zy

where
/ n 9 n ” n
Zn zi Z Dliel B Dlper FirFi2 Do FilZi3
_ _ n n 2 n
Zy = 212 2 Zay | = | Dy %z Dig % Qi 2%
0 . n o n 2
\ 213 %3 Za \ D1z Dliny Zds Qi 2
n 2 7" 23
(244 245 " Z4t\ Z,:] Zi4 21-:1 ZiqZis Ex;:l 2i4Zit
. n 7 2 n
254 255 st Ei:l Zi4245 Z.i=1 Zi5 Zizl 2i5%it
Z22 = . R . = R R .
n n n 2
\Zte: Z5 th,/ E,-zl Zi4Zit Zizl ZinZit Z§=1 Z;

Note that Zy9 and Zp; = Z}, arc defined analogously.
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IV.3.1 Maximum Likelihood

For the Maximum Likelihood (MLE) procedure the log-likelihood function is

nt nt n 'R
nt nt n 1 -
— —~Eh1(2ﬂ') — ? In(g{)) - E In |R()\)| —- %tr [R I(A)Zn]

where Z; is the transformed family response-vector for the ith family and R()) is
the transformed correlation structure described in (4.1.4). To find the maximum
likelihood estimators we set the first derivative of {4.3.3) with respect to & equal to

zero and solve for the given parameter.

For the correlation parameters, we get the following estimating equations.

S—,‘; = gtr ‘(A)aR(A)} %} [_1(/\)01;? "I(A)Z,}=O (4.3.4)
] 01 0\] | 010 A
< ntr{Byl 1 00 —=tr [By| 1 0 0 | BnuZu| =0
] 000 ¢ 000
& nlpez — ey) (e— AL =) — (vor — p2)%)

—E,( — paXprp2 — cy)yenn — i(mpz — cy)(e— p})za
—=(yp2 =~ p) (71 = p2)2s3 — [(c — e —p}) + (mpe — 7)) 210
[(f —p3)(ver — p2) + (Plﬂz —cy)(vp2 — Pl)} z13

~= [(r02 — V) (71 — p2) + (vp2 — 1) (e — p})] 225 = O

%)I'—-‘G)I*—"&)I'——'ﬁ
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g—f = Etr R )83()\)] [ I(A)aR(A) 1(/\)2] 0 (4.3.5)
b1 2
0 . 00 1
& ntr By | 0 00 —=tr |Biz| 0 0 0 BuZu
| \100 100
& nlyer —p1) ((c = pH) (1 —7°) = (vo1 — p2)?)
1 1
—;_(c — pH)(vp2 — p1)zn — g(mpz ~ey)(vpr — p2)2m
1
—=(pa ~ p1)(1 — %) 233
]
1
3 [(c— o3 (vp1 — p2) + (prp2 — 1) (vp2 — p1)] 212
1
3 [(c— p3)(1 — ) + (yp2 — p1)?] 213
1
== [l —en) (1 =) + (v — p2) (701 — 2)] 225 = O
ra
a¢ n, [ g BN _ L, Ty 0RO)
—_— = ¢ ot
5 27’ o) pz] 2l [R () 5o A)Z =0 (43.6)
000 . 00 0
& nir|Bufl 0 0 1 —=tr |Bul 0 0 1 | BuZn
010 ¢ 010
) 2

r'—\

HOR 2) - ('YP1 ,02)

—=(p1p2 — cv)(vp2 — pr)2n — ;(C — o)1 — po) a2

& nlyp — p2) ( -~ p

[y

—=(v01 — p2)(1 = 7*)2s
~={(p1p2 — ey)(ver — p2) + (v02 — p) e — )] 212

—= (o102 = e1)(1 = 7*) + (vp2 — p1) (701 — p2) 213

*&)JH*@)IH@)IH@H»—“S» —

—=[le= A =)+ (vor — p2)*] 222 = 0
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ot 1 . -1 -1/3\7 '
o = gt’r [R‘ ()\)d};g} - »Q%tr {R (/\)%/\—)R (A)Z,,] —0 (4.3.7)
n{t — 3) 000 “
& 9 tr|Bul| 6 0 0 — nir {By]
6 0 1 |
- 00 0 ) 1
,.., — r Bll 0 00O Bule + tr [ZQQ] =0
_ 1 _ )2
Pt ~2) 00 1 (1-a)
n(t —3)(1 — ) ot —3) 1 -,
T =)D - 1-a  (1-ap ;zﬂ

(- 3) ((ypz — p1)2z11 + (vp1 = p2)?200)
(t —2) ((c — P11 = 72) — (vor = p)?)”
(t = 3) (1 — 7*)z33 + 2(vp2 ~ p)(vp1 — P2)212)
ot —2) (¢ = o)1~ %) ~ (yp1 — p2)?)”
20 =3) (w2 = p)(L = V)23 + (ypr = p2)(L — 7)) _
8t —2) (e — p)(1 =73 — (vpr — p2)?)"
Here, note that ¢ is the MLE of ¢. These four estimating equations ({4.3.4), (4.3.5),
(4.3.6) and (4.3.7)) are used to find the MLE’s for A. Of course, these estimators are

not in closed-form and are solved simultaneously using the Newton-Raphson method.

So the Helmert transformation does not achieve the objective of obtaining closed-
form solutions of the correlation parameters, though it does simplify the estimating

equations considerably.

To find the MLE’s we start with trial values of the correlation parameters (}g),
and use them to obtain an initial estimate of § using (4.3.1). We then use this
estimate to update the residuals (:Z;) and estimate ¢ using (4.3.2}). Then & and
7. are used to cstimate the correlation parameters using (4.3.4), (4.3.5), (4.3.6)
and (4.3.7). The estimates of the correlation parameters (X), are then used to re-
estimate 3, and the process is continued until convergence. These estimates, then,
are the MLE’s of 6. specifically é}; = (Eg, :‘:g, ag)’.
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IV.3.2 Method of Moments

For the Method of Moments (MOM) we find unbiased moment estimators for each
of the correlation parameters. For -y, we get the following estimator
. _ 2Tl
Yot D B

which is based on the estimating equation

Y zAmz — o
=1

(4.3.8)

L]

& Al)

< 1o

v 2]
210
For p; we get the following estimator
~ 23 01 %)%
Pl — ; &= 3 - (439)
Y 2 i1 7

which is based on the estimating cquation

Y ZiAp)Z = 0

P |

DN
o
o o © =
1=

R
o o
N =

()

& Ap) =%(

o o o o
o

For p, we get the following estimator
~ 2 ZTL_I 2&2%\-&3
Pam = —nem o (4.3.10)
=1 2oj=1 24

which is based on the estimating equation

Z ZiAp2)Z; = 0
i=1

\'-h—-—-'/
|
rof =
o~ o ©
=
1o

12
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Finally, for o we get the following estimator

L Li-3e-2) 2At-)TE, Y iea 2 (4.3.11)
- (t —3)2 (t=323 ", Zj:l z -

which is based on the estimating equation
D> ZAXZ = 0
=1

o AW :o:(::—:s)Q—(1+(::—3)(1¢—2))(1;2 (_(;)

2

+(t-2)(§ zga)’

To find the MOM estimators, we select initial values for A (either, all zeros or sample
statistics) and estimate 3 using (4.3.1). We then use 3 to update the residuals (Zn)
and then estimate ¢ using (4.3.2). We then use Z., to cstimate A, which we in turn nse
to re-estimate 5. We continue in this manner until convergence. Those estimators
are then the MOM estimators, specifically 8,, = (Em, Ny 3,,,)’.

IV.3.3 Quasi-Least Squares

For the Quasi-Least Squares Mcthod (QLS) we begin with the following quasi-log-
likelihood function

S(6)

i

Zn:(ye' — Xif)Y R (N (Yi - XiB) (4.3.12)

tr [RT(NZ,] .

i

We can find estimators for 3 and A by differcntiating (4.3.12) with respect to each
parameter, setting the resulting expression equal to zero and solving for that param-

eter.

Using (4.3.12), we obtain the following estimnating equations for the correlation
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parameters.
25(8) OR(X) ~
— RTITWNERINZ,| = .3.
5 RN PR, =0 (4313)
010
= tri{Bpnj 1 00 |BuZni =0
000
= ayy +by+e, =0,
where
a, = 02211—602213—091223+9192233
by = clph— )2 — 2eprpazis + 2ep1 21

+e(p} — c)zan + 2cpazay — (pY + pi)ass
ey = pipale — p2)zis + prpa(c — pu) e + prLpozes
+ {20705 + ¢ — c(p] + p3)] 212 + (03 — palc+ PD)] 213 + [8} — ;ulc+ p3)] 223

as(e IR(A RN
a( b = RN == ( 'k “I(A}Zn} =0 (4.3.14)
41
0 01
= tr Bll 0 0 0 Bnle =0
1 60
= ampf + bp-nol + Cm =0
where
Gp, = 7YP2222+ 213 — P21z — Y223
b = (7" + padem — (1 — ¥*)ass — 2ypazas + 207202 + 2022

e = 7palc— p3)71 + eypezan + ypa(l — ¥¥) 233
[V2ph + (e — p2) (1 = 7*)] 213 + p2 [05 — (1 = )] z02 — v [0 + (1~ v*)] 22s.

as(0) OR(A)

il R PN s o, RYNZ,| =0 (4.3.15)
] G0 0
= tr|Bufj 0 0 1 | BuZu| =0
010

= aPng + bpspi’ tCpp = 0
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where
p, = YAt (P% - C)zgp — p1212 — Y213 + 223
bp, = _(Pf + v}z + (P% — )2z — (1 — "!2)233

2pmas + 2ey212 — 2yp1223
Cp = cyprzn +ypic — )z + ¥ (1 — %)z
v [p1 = 1 =)} 213+ o1 [0f — (1 — %)) zi2 + [¥P01 + (6 — p1)(1 — ¥7)] 2.

agf) _ [ 12BN aR(A) OR(N) poy gn} —0 (4.3.16)
aR O R,
= {r [311-0—11311211] +1ir {322(8 22822722] =0

= ag0’ +bya+co =0

where

2

Qq = f(ﬁy’plaszZ} Et Z;( 2)22"?3

=4
2(1 — 222 ¢
ba = “2f1(’7,pl:92,Zn)—“—(“‘i“_“%—)‘“szj
+2(1 =% [ (1= ") — (3p1 Zz”
ca = fily,p1,00 2Zn) — (t 3)Zz”

+2u2 (1= %) = (v — p2)’] szj
(t—13) gt
[P 22 = (02— ;) + (901 — p2)2em + (1~ 77) 233
+2(yp — p2)(vp2 = pr)2a2 + 2(ypz = p1)(1 =721
+2(vp1 = p2)(1 —7*) 205.
Solving these four estimating equations iteratively gives X, the Step I estimator of

the correlation vector. Notc that we must iterate between estimating § (with (4.3.1))

and A until convergence to obtain the Step I estimates of those parameters.

However, as we have seen in Chapters II and III, X is a biased estimator of .

This is shown by taking the expectation of each estimating equation listed in (4.3.14)
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through (4.3.17).

Eé;i/ﬁ - TQ—R%%@E(Z,L): o tr _63(;/@)3(»: 20 (43.17)
B :Ogg): = tr :%@E(zn): o tr :aR(;;(X)R(/\): £0  (43.18)
B :agéf): — ;638_7?5(2"): o tr -dRE;f)R(/\): 40 (4.3.19)
Eia‘zf): - & :%;@_E(zn): o tr :33(;;@)30): 40 (43.20)

To find asymptotically unbiased estimators we make equations (4.3.17) through
(4.3.20) our Step 2 cstimating equations by setting them equal to zero and solv-

ing for the respective correlation parameter. This gives us the following,.

~ 0
OR~1(\ ~ -
tr { a,,/( )R(/\)] o< ir | By 1 0 0 | BuRui =0 (4_3_21)
000
o §=— 31-[};12 +};12522 + 6,513323 +m (311323 +312313) + 92(512’523 _{_‘gl 3"522)
q i~ ~— iy
(bubzz + 5%2)
R 00l
1
100
& Py = buibis + bisbas + chisbag + ’Y(};l 1oy + 312513) + 2 (?;l sbas + 513323)
lg — ™ — —
(bu baa + b%) :
OR(X 000
! [ 6,0( )R()‘)} octr (Bu| 0 0 1 | BuRu| =0 (4.3.23)
’ 010/
o Pry=— l:gl 2313 + bysbas + chogbas + ’}‘(312523 + 513522) +m (312533 + 313323)]
?q -

(322333 + gﬁg,)
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BR(N)
tr I:TR()\)}
600
otr{Bu| 0 0 0 | BuRn —(Q%'f}%—;a)zo (4.3.24)
001

ol L . B T
(t—3)—(1—a)’ [5%3 + b3+ “:i_sg +2 (7513523 + pibrabas + ,02523533)]
(t-3) [(1 - &), +1]

= Q4=

where E-J- is the ¢5th element of 5“, ,J = 1,2,3. Note that here we have achieved
the goal of closed-forin estimators. The resulting estimators are then ’Xq, the Step 2

estimators of A.

Once we have our Step 2estimates of the correlation parameters, we can substitute
those values into (4.3.1) to obtain J,, which we use to update the residual matrix
fﬂ. This, along with X can then be used to estimate the variance parameter using
(4.3.2). Thus the QLS estimators are gq . (Eq;:\}., aq)’.

IV.4 Asymptotic Variance and Performance

IV.4.1 Maximum Likelihood

For the maximum likelihood estimators of Section IV.3.1, we find the asymptotic vari-
ance by finding the inverse of Fisher’s Information matrix, as we see in the following

relation
V(8 — 8) ~ AMVN (0, 174(8)) . (4.4.1)

To find this we take the negative expectation of the second derivative of the likeli-

hood function with respect to . From here, it is straightforward to show that the
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information matrix 7,(f) is of the following form.

1(6)

where

I{p1)

I{p2)

I{c)

1(9)

I(?apl)

I(’Y: [)2)

[ 1) 0 0 0 0 0
0 I(y) I{lv,m) I(v,p2) I(v,a) I{(v.4)
0 Ilv,p1)  I{e)  Ilp1,p2) Ilpr, ) I(p1,9)
0 I{y,p2) Ip1,p2) Ilp2) I{p2,0) I{p2,9)
0 Ily,e) Ilp,a) I(pe,) Ia) I{a,¢)

\ 0 In¢) Ilpn9) Ipsd) Ila,¢) I{9) )

- [T - LS
- [%g] = Lir [R‘ (A)GRW 1(/\)6R(A)}
_ nlle—p)e—pi)+ (prpz — rw) 1
[(c— !fj)(l - ’Yz) — (v — pz)z]
o [8%] m OR(N) a4y IRO)]
= —-F _6—m_ —‘§t7"- )\) 8 (A) (9p1 |
_ nlle— )1 -7+ (vp: — p1) 'f’]
{(c— p;)(l =93 = (yp1 — /)2)2]
s ol Eath e
_ nlle—p e —pd) + (v = m)(]
[{c - 82)(1_ ) — (yp1 — Pz)z]
_ f 13 OB poi OB
[ = [ 2B e 20
_ E[ (t—3)(1 -9 ]?+ n(t — 3)
n (-2 {le—pH)(1 - - (o1~ p2)?| 2(1 - a)?
%t nt
- 5%~
B 207 n, [ 1, IR . OR(N)
= [0'70 }‘5“ [R Mg, (/\)d—,},]
_ nlle—p)( 'm~p2)+(plpz~m)(’mz—m)]
(e = DA =7%) = (v = )Y’
B ] _ oy [ OB poay PR
N [f’)"r@pz} ~ 3 [R N, N5 ]

n[(p1p2 — cv){vp

— pa) + (yp2 — ;i )(c —

)

[(c—pD)(1 -

’“{2) - (’}'01 -

p2)??
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I(v,a) = —E [ a?,;a] = Zir [ I(A)aR(A) I(A)agi/\)}
_ n{t — 3)(yp2 — p1)(yp1 — p2)
=2} [(c—pA -7 —(yn - ,02)2]2
o - o[- B
_ nl{ppz — e)(1 = 7*) + (vpo — m)('ygl - pz)]
[(5 -1 =) — (vor — p2) 212
o = o[£ty
_ n(t = 3)(v, p2— pr)(1— 2)
(t=2)[(c—~ AL —2) — (vor — p2)?’
ipa) = =B [goi) = G ()25 L) 25 |
_ n(t-3)m—p)1-7)
(t—2) [gc — (L= = (vor — p2)?)°
_ g 2] _n, [y @R
v} = —F [07%} =% [R W5, }
— n{p1p2 — )
¢l(c— Pj)(l_ =77~ (o = p2)’)
o) = -] = S [
_ n{yps — Pl)
[{c~ p;) —7%) = (o1 — p2)¥]
I(p2¢) = —E [8,1;@ = -j%tr R )8‘};5;)
n(yp ~ p2)

$llc— o)1 =) — (vo1 — 2)°]

a,¢) = —F [3i2;¢] 2’; [R—‘(A)aRS)]
1— 42 ) ]

3)[ B
26 [(=2le—pI-7)~ (v —p)] 1-c]

IV.4.2 Method of Moments

For the MoM method we again make use of the theorem described in Chapter I1.4.

Under regularity conditions, we have

V(B — ) ~ AMVN (0, I71(0) M (6)(151(6))) (44.3)
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where I,(8) = 15" E [&3’#], M, (8) = 130 | Cov(h,,;{0)) and the Ay, :(6)
are vectors of unbiased estimating equations. For any i, let hp, (6} be defined as

follows

hun,i(8) = (hoi(8), h1i(8), s (), b (), hai(6), 0:(6)) (4.4.4)
hoi(6) = X;R™H(A)Z;
hii(6) = ZiA(Y)Z; = tr{Ad) Z:Z;))
hai(0) = ZiA(p1)Z; = tr(Ai(p1) 2, Z;)
hsi(8) = Z{A(p2)Zi = tr(Ai(p2) Z: Z;)
hai(0) = Z!A(a)Z; = tr(Ai(a) Z;2))
9:(6) = ZIR7 (N Zi — t¢ = tr(R™(N)Z:2;) — t¢

where A(y), A(p1), Al(p2) and A(a} are defined carlier. By taking the ncgative
expectation of the partial derivatives of (4.4.4) with respect to € and averaging over
7t we obtain [,,,(8), and by taking the covariance of (4.4.4) and averaging over n we

obtain M,,(0). From here it is easy to show that I,,(8) has the following elemcnts

\

(1, 0 0 0 o©
0 I, 0 0 0
0 Lo 0 0

Lo B e B e B

0
1.(8) = (4.4.5)
0 0 0 Iy O
0 0 0 0 Iss 0O
\ 0 Iez Iﬁ3 I&i 3‘-65 Ji"[iti)
where
I . [0Rha(®)] 1 oy
Ill == —;L-ZIE ‘-““8’6— :;ZIJ{ER (/\)Xa
' 1o~ [8hy(6)]
122 = ——ZE :—gb
o L 9y |
1 w— [ Oho:i (6)]
I = —— E — N =
33 'n; e @
1 - “3}1,3%‘(9)'
Iy = —= E|l—F|=—-9¢
n; C)pg
1 o= [0hsu(6)]
Iy = *EZE —‘ga(—z = —¢(t - 3)*
=1 = .
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iE [96:(0) ] _ 26(p1ps — )
—~ Loy | [le=pT—-7)~{(pm—p)?
z": £ %@ _ 26(v02 = ;1)
T dp | (e DA -2 = (o1 — p2)?]
i £ [240)] _ 26(v01 — p2)
L O | [e—p)1 77— (vo1 — p2)?]
z":E [09:(0) | _ ¢t —3)(1 —~%) _9t-3)
L e ] (-2Ue-mMA-7)-(v—p)] Q-0
ZE 39i(|9) -t
= L oo ]
We can also show that M,,(8) has the following elements
(Mq 0 0 0 0 0 )
0 ﬁ/fgg Jwgg M24 M25 0
0 My My My Mz 0
M, (6) = 23 Masy Mz Ms (4.4.6)
0 My My My My 0
0 ﬂ/fz;, zwgr, 1\/145 M55 0
\ 0 0 0 0 0 My

wher

c

JWI 1

My

M23

AM33

M. 34

=" Colpu(8)]

AN RO,
_nZX,.R (NX;

i=1

1 g 5 -
- Y Cov[hui(8)] = $*(1 + %) — 4¢*y?
i=1

% Z Cov [hys(0), has(8)] = ¢*(pz — vp1) (1 — %)

=3 Cov ni(®), h(8)] = —102)(1 — ")

% > Coulhsi(6), hal®)] = &°(6 = 2) [1(6} + p3) — 20102]

i=1

=y(1 ~ %) [a(t — 3)* — (L+ (¢ — 3)(t — 2))]

1 :
2> Covlhs®) = ¢ [ (o = 200) =
i=1

1
=D Coolhs®). ha(0)) = 47 | yua = = +
t=1

1+(t—3)a]

-2

(t—-2)
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Mgy = ;11' > Cou [hy(8), hai(8)) = 6*y(yp1 — pa) [t — 3)% — (1 + (¢ = 3)(t — 2))]
=1

+¢2 o1 (t ~ 2) [pf +p3—2 (W)]

Mis = % ; Cov [hi(0)] = & ["/:02(%02 —2pm) + 1—75@%}

Mis = =3 Covlh(8), hal6)] = #2(rn — o) [alt = 3)” = (1+ (6 — (2~ 2)]

+¢;p2(t ~2) [ﬂf +p5—2 (i(t%@g)]

Mg = — Z Cov [hui(8)] = $*(1 +4) [alt —3)* = (1 + (t — 3)(¢t — 2))]°

+2¢> ( —2) [a(t —3)" = (1+ (¢t — 3}t — 2))] +2¢*(1 + (¢ — 3)a)?
+2¢2( —2)%(t — 3)(1 — a)?

Mg = ~ Z Cov [:(0)] = 267t

1-1
IV.4.3 Quasi-Least Squares

For the QLS method we have

VB, — ) ~ AMVN (0, 7 (8)M(8)(I;-(8))) (4.4.7)
where I,(8) = 13" E [w‘g;,(g)} My(8) = £ 377, Cov(hy:(8)) and the hy,(f) are

vectors of unbiased estimating equations for the QLS method. Tor any %, let &, ;(6)

be defined as follows.

hq,i(g) = (h,m (9) h],‘ (9), hg,‘(g), hg.,' (6‘), h4,-(9),'gi(9))' (448)
hoi(0) = X(B)R™(\) %

has(6) — tr 812—7“(2 2/ — $R(\)
hy{6) = tr 31%;;(/\) (Z:Z] — ¢R(N))
) =t | 227 oo
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dRT(N)
da

91(9) ={r [Rul(/\)ZtZ:] - ttﬁ

ha(8) = tr (Z:Z) — 6R(\)

where X is the solution to the following equations

010
RYH(A ~ ~
ir [6 a"( ) (X) =1ir Bu 1 00 BllRll =0
0 00
< 312(311 +522) + (Efz +511522) +p (bubzs -+ b12b13)
+po (312523 + ?7'13322) + Chigbys = 0
o) 00 1
ir [ (/\)J =tr (Bu| 0 0 0 | BuRy| =0
7
1 0 0
> gngls + 312323 + ¥ (512313 + 511323) + 0 (ng +311533)

+p9 (512?;33 + ”513323) + 031 3333

RN 0oy
tr {’—,\,R(/\) ={r Eu 001 EnRu =90
8p2
010

= 312313 + ?;22323 + (512323 + 513322) +p (512333 +A513’523)

+p2 (533 + 522333) + chysbss

s 00
tr [MR(A)I octr |Bu{ 00 (A-o)(t-2)
00

gll-Rll - (1 T a)z

o =0

-0 O

1-o)t-2

& by By + by +2 (’mebzs + prbyabas + szzsbaa) e

Note that A = (v, p1, p2, @) are the population valucs of the correlation parameters.
By taking thc cxpectation of the partial derivatives for (4.4.8) with respect to €
and averaging over n we obtain I (), and by taking the covariance of (4.4.8) and
averaging over n we obtain M,(#). From here it is easy to show that [,(6) has the
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following elements

where

Il]

Iz

Iz

Ioy

Iys

(b 0 0 0 0 o0
0 122 123 124 125 U
Iy I3z Iy I O
Iy Iny Iy Iy O
Ly Iy Iy Iss O
I62 -[63 164 Iﬁf’)

Iq(g) =

o o o O

Z E {81’&[)1(6)} 7_1 iX;',R_lXi
1 i=1

"Z E{th(ﬁ)] ot { ) }62(;) R_](X)agg)]

_ _2gb[(c—p2)(c—pl)+ p1p2 — Y )2]

[(~ AL~ ~2) ~ (70— e

LI plom@®] [ 0B 3) o 5 OROY
A I . e

e ot o)
_2¢[(c— mpl 7o) + (7 = ) (77 = )
(€)1 -7 — (3 - )’ B
Ohys(0 | 1 OR(A OR(N
"Z o] = om0 T P 2
__2(!5 [(Plp2 — &Y) (V1 — P2) + (302 — p1)(€ — BD))]
[(€— (1 ~F) - Gn — 52)2]2
I p[0®) | ps BR(N) _; ~OR(N)
n;E [—-—-—aa ] =—¢tr |R 1(’\)_37 RN =5 }
263G — )R - )
(@~ 2L = 7%) ~ (Gpr — p2)?)

6pl 0[)1

=1

_20[(€— )1 — 7} + (752 — 7))

(-1 -7) - G~ )T
1g Dh(0) 8R(A) AR(N)
R R s s }
_2¢ (P72 — V)1 —F) + (52 — P (TP — )]

(61— 72) - G — o))
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1 [0hae(8)] AR() AR(N)
_E;E[ - ]—-—gf)tr[ ()8,01 BN aa]

_ 2636m - A0
[(@— B)(1 —72) — (31 — Po)?P?
) OR(\) AOR(N)

_—Z [t';pz }“ d)t[ ()Osz ()dﬂz}

_2¢ [(’Yﬂz — P2) (TP — p) + (Gp1 — o) + (1 — F°) [(Prp2 — &) + (€~ )]
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1 Z [dhdz(a)} — gtr |RG )agéx) ) ag((;\)}
¢(t g) (YA — p2)(1 — &’2)

(@-pha -7 - (o1 — p2)T* -
W_Z [am,(e)] gt [ (ja.gix)R ()ag((y)\)]

20(=5 (17’ )
ClE- A7) - G- 1-a%)?

n

g[8t

2¢(p1p2 — )
[(c— o)1 — %) = (v — p2)?)]

- >E [”—ﬁ;-é?] = ptr [R‘l(,\) 3?{5?)]

i=1

2¢(vp2 — p1)
[(C~ D1 =) — (vo1 — p2)?]

Ao [0 st
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(t - 3) (t—3)(1 —~%)
N 2} {{c — pH (1 — %) — (v — p)?]

_ __ZE [5‘9&(9 ]
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We can also show that M, (6) has the following elements

where

My

.MZQ

Mo

Moy

M. 25

(M, 0 0 0 0 o0 \
0 My My My My 0
0 My M My M 0
ﬂ,{{q(g) _ 23 33 34 35 (4410)
0 My My My My 0
0 My My Mys Mss 0
\ 0 0 0 0 0 Mg )
1 S iy
Zoou [hei(0)] = ZX NX;
r-'l 1
ORI\ nt
=1
010 010
2¢°tr {Bu| 1 0 0 | BuRuBu| 1 0 0 | ByRy
6 00 0 00
ot Z Cov [hyi(6), has ()] = 2¢2tr o R(A
n 991
00 1
20%r [Bu| 1 0 0 BuRan 000 BURLI
1 00
= Z Cov {hys(8), ki (8)] = 2%tr R(A)
0 00
20°%r |Bn{ 1 6 0 | BuRuBu| 0 0 1 | BuRy
01 ¢0
1 BR ) ) 2B
— Cov [hy;(0), hai(0)] = 26°tr R(A)
n; ov [h1i(6), hui(0)] = 2¢°tx 5y N5,
0 00
20%(t — 3) = 7 5
(t mp) ¢ Bll 100 |BulnBn| 0 0 0 [ BuRy
0 01
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Table 4.1: v ARE of MLE vs. MoM (MLE vs. QLS)

y 0.0 0.2 0.4

p1 pa/o| 00 0.2 04 0.0 0.2 0.4 0.0 0.2 0.4

00| 00 | 1.000 1000 1.000 | 0988 0989 0990 | 0955 0957 0.960
(1.000) (1.000) (1.000) | (0.988) (0.989) (0.990) | (0.955) (0.957) (0.960)
0.2 | 1.000 1.000 1000 | 0987 0.887 0988 | 0.948 0950  0.95¢
(1.000) (1.000) (1.000) | (0.988) (D.988) (0.989) | (0.953) (0.954) (0.957)
04 | 1000 1006 1000 | 098 0.981 0983 | 0.920 0923  0.930
(1.000) (1.000) (1.000) | (0.986) (0.985) (0.986) | (0.948) (0.943) (0.947)

02| 060 | 1.000 1.000 L000 | 0.987 0.987 0988 | 0948 00950 0954
(1.000) (1.000) (1.000) | (0.988) (0.988) (0.989) | (0.953) (0.954) (0.957)
02 | 0998 0998 0998 | 0.994 0994 0995 | 0.964 0.965  0.968
(1.000) (1.000) (1.000) | (©.990) (0.991) (0.992) | (0.957) (0.960) (0.963)
04 | 0990 0990 0991 | 0998 0998 0.998 | 0966 0968 0971
(0.999) (0.998) (0.998) | (0.992) (0.993) (0.995) | (0.956) (0.960) {0.964)

04 00O [ 1000 1.000 1000 | 0.980 0981 0983 | 0.920 0923  0.930
(1.000) (1.000) (1.000) | (0.986) (0.985) (0.986) | (0.948) (0.943) (0.947)
0.2 | 0990 0990 0991 | 0998 0998 0998 | 0966 0968 0971
(0.999) (0.998) (0.998) | (0.992) (0.993) (0.995) | {0.956) (0.960) (0.964)
04 | 0849 0951 0.958 | 0998 0998 0998 | 0988 0988  0.989
(1.000) (0.990) (0.988) | (0.993) (0.998) (0.999) | (0.959) (0.969) (0.975)

IV.4.4 Comparison of Asymptotic Performance

We now compare the asymptotic performance of each estimating procedure discussed
in Section IV.3 by computing asymptotic relative efficiencies (ARE). This is done by
calculating the asymptotic variances derived in Section IV.4 for particular values of
the correlation parameters. For our purposes, we assume that ¢ = 5 (i.e. a family
consists of two parents and three children), n = 5,000 and ¢ = 3. As there are four
correlation parameters, it is impractical for us to display ARE as done in Chapters II
and III. Thus we make use of tables, choosing values of 0.0, 0.2 and 0.4 for each

corrclation parameter.

We begin with estimators of +, the ARE’s for which are found in Table 4.1. Here
we see that the ARE is close to one for both the MLE v. MoM and MLE v. QLS
comparisons, implying that the asymptotic variances for estimators of + for all three
estimating procedures arc very similar. Specifically, note that the ARE is exactly
one or extremely close when v = 0.0. Only for v+ = 0.4 do any of the ARE’s drop

below 0.95, and nowhere are they below 0.9. Thus, for estimnators of v, we see that
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Table 4.2: py ARE of MLE vs. MoM (MLE vs. QLS)
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v 0.0 0.2 0.4

m | p2/a| 00 0.2 0.4 0.0 0.2 04 0.0 0.2 0.4
00 00 [ 1.000 1000 1.000 | 1.000  1.000 1.000 | 1000  1.000  1.00D
(1.000) (1.000) (1.000) | (1.000) (1.000) (1.000) | {1.006) (1.000) (2.000)

02 | L0006  1.000 1.000 [ 0996 0997 0998 | 0982 0988  0.991
(1.000)  (1.000) (1.000) | (0.998) (0.999) (0.999) | (0.992) (0.994) (0.995)

0.4 | 1000 1.000 1006 | 0.980 098  0.890 | 0914 0940  0.956
(1.000) (1.000) (1.000) | (0.991) (0.993) (0.995) | (0.961) (0.969) (0.976)

02| 00 | 0924 0936 00542 | 0.920 0933 0939 | 0907 0923  0.931
(0.983) (0.987) (0.989) | (0.982) (0.986) (0.98%) | (0.978) (0.983) (0.985)
02 | 0923 0935 0841 | 0950 0956 0958 | 0.967 0970  0.970
(0.984) (0.987) (0.988) | (0.987) (0.992) (0.993) | (0.987) (0.993) (0.996)

0.4 | 0920 0931 0936 | 0973 0976 0976 | 0.995  0.997  6.995
(0.987) (0.986) (0.986) | (0.988) (0.994) (0.996) | (0.976) (0.991) (0.997)

047 00 | 088 0751 0.774 | 0.678  0.740 0.765 | 0.633  0.704  0.736
(0.914) (0.945) (0.955) | (0.911) (0.941) {0D.951) | (0.895) (0.925) (0.938)

02 | 0668 0747 0770 | 0726 0780 0.799 | 0.741 0794  0.811
(0.922) (0.946) (0.953) | (0.921) (0.952) (0.962) | (0.918) (0.953) (0.964)
0.4 | 0681 0733 0753 | 0771 0817 0827 | 0.835 0873  0.876
(0.976) (0.951) (0.947) | (0.942) (0.964) (0.969) | (0.924) (0.967) (0.979)

all three procedures perform similarly.

The ARE for estimators of p; are found in Table 4.2. Here we see that the ARE
for both comparisons are high for valucs of p; (0.0 and 0.2), as in this region most
ARE values are close to 1.00 and none are less than 0.9. However, for p; = 0.4 we
see that the ARE for the MLE and MoM procedures is cverywhere below 0.9 and in
some cases below 0.65, implying that the MLE has smaller variance than the MoM
estimator. The ARE for the MLE and QLS procedures are still high in this region
and nowhere lower than 0.895. Though the asymptotic variances for the MoM and
QLS py cstimators are comparable to that of the MLE for small to moderate valies
of py, only the QLS estimator has comparable asymptotic variance with the MLE for

large values of p;.

The ARE for cstimators of ps are found in Table 4.3. Here we see that for p, equal
to 0.0 and 0.2, the ARE values for both comparisons are everywherc greater than 0.9,
and for small v and p; we see that the ARE is close to one. However, for p; = 0.4, we
see the the ARE for the MLE and MoM procedures is everywhere less than 0.9 and in
some cases lower than 0.65. The ARE for the MLE and QLS procedures, however, is
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Table 4.3: p» ARE of MLE vs. MoM (MLE vs. QLS)
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¥ 0.0 0.2 0.4
| o/ o 0.0 0.2 0.4 0.0 0.2 0.4 0.0 0.2 0.4
0.0 0.0 1.0G0 1.060 1.000 1.000 1.000 1.000 1.000 1.000 1.000
(1L.000) (1.000) (1.000) | (1.000) (1.000) (1.000) } (1.000) (1.000) {1.000)
0.2 0.924 0.936 0.942 0.920 .933 0.939 0.907 (0.923 0.931
(0.983) (0.987) (0.989) | (0.982) (0.986) (0.988) | (0.978) (0.983) (0.985)
0.4 (¢.690 0.751 0.774 0.678 0.740 0.765 0.633 0.704 0.736
(0.914) (0.945) (0.955) | (0.911) (0.841) (0.951) | (0.895) (0.925) (0.938)
0.2 0.0 1.000 1.000 1.060 (.996 0.997 0.998 (1.982 0.8988 0.991
(1.000) (1.000) (1.000) | (0.998) (0.999) (0.999) | (0.992) (0.994) (0.995)
0.2 0.923 0.935 0.941 0.950 0.956 0.958 0.967 0.970 0.970
(0.984) (0.987) (0.988) | (0.987) (0.992) (0.993) | (0.987) (0.993) (0.996)
0.4 0.688 0.747 0.770 0.726 0.780 0.799 0.741 0.794 0.811
(0.922) (0.946) (0.953) | (0.921) (0.952) (0.962) | (0.918) (0.953) (0.964)
0.4 0.0 1.000 1.000 1.000 0.980 0.986 ¢.990 0.914 0.940 0.956
(1.000) (1.000) (1.000) | (0.991) (0.993) (0.995) | (0.961) (0.969) (0.976)
0.2 0.920 0.931 0.936 0.973 0.976 0.975 0.995 0.897 0.995
(0.987) (0.986) (0.986) | (0.988) (0.994) (0.996) | (0.976) (0.991) (0.997)
0.4 0.681 0.733 0.753 0.771 0.817 0.827 0.835 0.873 0.876
(0.976) (0.951) (0.947) | (0.042) (0.964) (0.969) | (0.924) (0.967) (0.979)

nowhere less than 0.9. We also see that, based on the comparisons between the MLE
and MoM procedures, the asymptotic variance of the QLS estimator is everywhere
at least as small as the MoM cstimator. For estimators of pg, then, we see that
the QLS estimator is a good competitor with the MLE, while for large values of ps,
both the MLE and QLS ¢stimators have smaller asymptotic variances than the MoM

estimator.

Lastly, the ARE for estimators of o are found Table 4.4. Here we see that for all
values of the correlation parameters the ARE is less than or equal to 0.4 for MLE and
MoM comparison, implying that the variance of the MoM estimator is much larger
than that of the MLE. Alternatively, we see that the efficiencies for the MLE and
QLS procedures are high for all values of the correlation parameters, with no value
less than 0.94, and many close to 1.0. For estimating «, then, we sce that both the

“MLE and QLS procedures are far superior to MoM, and QLS is highly comparable
to MLE.
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Table {.4: o« ARE of MLE vs.

MoM (MLE vs. QLS)
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~ 0.0 0.2 0.4

o | p2/a| 00 0.2 0.4 0.0 0.2 04 0.0 0.2 0.4
00| 00 | 0248 0315 0337 | 0245 0311 0333 | 0.237 0301  0.323
(1.000) (0.984) (0.942) | (1.000) (0.985) (0.943) | (1.000) (0.986) (0.946)

0.2 | 0249 0320 0344 | 0246 0316  0.340 | 0238  0.306  0.330
(0.998) (0.987) (0.946) | (0.998) (0.987) (0.947) | (0.998) (0.988) (0.950)

04 | 0237 0329 0364 | 0234 0324 0359 | 0225 0312 0.346
(0.962) (0.986) (0.955) | (0.962) (0.985) (0.955) | (0.961) (0.983) (0.956)

02| 00 | 0249 0320 0344 | 0246 0316 0340 | 0.238  0.306  0.330
(0.998) (0.987) (0.946) | (0.998) (0.987) (0.977) | (0.998) (0.988) (0..950)

0.2 | 0251 0326 0352 | 0.248 0.322 0348 | 0240 0311  0.336
(0.998) (0.991) (0.950) | (0.998) (0.992) (0.952) | (0.998) (0.992) (0.953)

04 | 0240 033 0373 | 0237 0331 0368 | 0229 0.319  0.354
(0.968) (0.992) {0.961) | (0.965) (0.992) (0.962) | (0.963) (0.991) (0.964)

04| 00 | 0237 0329 03064 | 0.234 0324 0359 | 0.225  0.312  0.346
(0.962) (0.986) (0.955) | (0.962) (0.985) (0.955) | {0.961) (0.983) (0.956)

0.2 | 0240 0336 0373 | 0237 0331 0368 | 0229 0319  0.354
(0.968) (0.992) (0.961) | (0.965) (0.992) (0.962) | (0.963) (0.991) (0.964)

0.4 | 0225 0349 0400 | 0224 0344 0394 | 0.220 0331 0.378
(0.969) (1.000) (0.974) | (0.941) (0.999) (0.977) | (0.941) (0.999) (0.979)
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CHAPTER V

CONCLUSION

V.1 Summary

In Chapter II we analyzed the Autoregressive Familial correlation structure with
regards to the maximum likelihood, method of moment and quasi-least squares pro-
cedures, finding unbiased estimators and their asymptotic variances. Asymptotically,
we found that quasi-least squares correlation estimators are good competitors with
the maximum likelihood estimators, and both are superior to the moment estima-
tors. In the small sample case, we estimated small-sample cfficiencies and found that
the quasi-least squares estimators are much more competitive against the maximum
likelihood estimators, especially in the presence of non-normally distributed data.
We also proposed a. likelihood ratio test for the maximum likelihood estimators and

Wald’s Tests for the moment and quasi-least squares estimators.

In Chapter II we analyzed the Autoregressive Familial correlation structure in the
case of heterogeneous intra-class variances. The main procedural difference between
the estimation methods in this Chapter and those in Chapter IT is that here we used
moment estimators for the variance parameters in each procedure. Estimation of the
correlation parameters, however, was similar. Asymptotically, we again saw that the
QLS estimator has comparably small variance with the MLE, and both the MLE
and QLS correlation parameter estimators are more efficient than the MoM. In the
small-sample case, we simulated data from a normal distribution, and found that
for estimating p the QLS procedure is comparable with the MLE procedure with
regards to estimated small-sample variance, and both the QLS and MoM procedures
outperform the MLE procedure for estimators of a. We saw similar results in the

small-sample case with data simulated from a non-normal distribution.

Finally, in Chapter IV we analyzed the Equicorrelated Nuclear Familial structure.
Making use of a canonical transformation we simplificd the correlation structure into
a more manageable form, which simplified the process of finding estimators and
asymptotic variances. Asymptotically, we found that the QLS estimators for each

correlation parameter has comparably small variance with the MLE for all valucs
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of the correlation parameters, while both the MLE and QLS estimators have much

smaller asymptotic variances than the MoM estimator for large correlation values.

V.2 Future Research

The first extension of the work provided in this thesis would be to analyze the
unbalanced case, or to account for data sets with families of various sizes. Allowing
t;,i =1,...,n to vary between families, provided the family dependence structures

are the same, should not be too arduous.

One natural progression from the autoregessive familial correlation structure is
instead to incorporate age differences into the modeling. This correlation structure

for a family of size j could look as follows.

- a1—as @y —as @y —agq) oy —u;
p|02~ﬂ1[ 1 0f|a-2—a3| 0!|u‘,2 —as| .. a!ag-—aﬂ
piu:-x—u]l agas—azl 1 PACEE olea—a;!
plai=al  glej—ezl  glaj—as|  glaj—aal . 1

where @; is the age of the ith family member. Accounting for actual differences
between family members in this manner would be more accurate than simply reducing
correlation by & power. Howcver, using age differences to reduce correlation could also
dilute existing dependencies too much. Another, yet more complicated alternative is

the generalized Markov model, which is given by

1 nez ,,’62+€3 ﬂee—i—ea+e4 nc2+es+...+e}.

n* 1 £ £oston ve. goatostoto;

€3+e; [ O 0a+05440;

poETes §» 1 £ goatos j
7152+83+"’+Cj 503+04+---+05 505+Oﬁ+"‘+0j 606+a7+---+o,- - 1

where 77 is a par-sib correlation parameter, £ is a sib-sib correlation parameter, the

e;’s are functions of the parameter A and the o;'s are functions of the parameter «
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defined as
fa}-a)_,] .
gi(/\) _ Py if A 7é g,
log(a;) —log{a;—1)  ifA=0,
[a;'—a;'_l .
Oi (’}/) — ¥ z’f’}’ # O?

log(a;) — log(a;-1)  ify=0,
where 2 < 4 < j. This structure allows us to adjust the dampening parameter (via
or ) to more accurately model the existing correlation. Naturally, with the increase

in parameters this structure will also be increasingly intractable algebraically.

With regards to the nuclear family model discussed in Chapter IV, we would first
like to analyze the small-sample case, as was done in Chapters II and III. This would
give a much better picture of the performance of the three estimating procedures.
Another natural extension for the nuclear model is to add further family members
(grandparents, step-parents, adopted children, etc.). Modeling the dependence for

this family might best be served with an unstructured model given by

1 p2 ;3 Pra
P2 1 a3z azy

pr3 3 1 734

where each parameter corresponds to a specific family member and the subscripts
correspond to which two members the parameter applies. Note however, that we
cannot apply the same canonical reduction that was applied in Chapter IV. More
generally, however, we could model £ arbitrary classes of family members (as in
Elston (1975)) with

Yu g oo g
Yo Do -+ g
i T o E

where %;; is the (£; X £;) intra-class variance-covariance structure for the jth class,
and X;; is the (¢; x ¢;) inter-class variance-covariance structure between the ith and
jth classes. If we assume that the parameters within each class follow equicorrelated
structures, then we could theorctically find a canonical reduction to simplify the

structure into a more manageable form.
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LISTS OF PARTIAL DERIVATIVES

A.1 List of partial derivatives from Chapter 2
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A.2 List of partial derivatives from Chapter 3
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A.3 List of partial derivatives from Chapter 4
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