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ABSTRACT

MODELING AND EFFICIENT ESTIMATION OF 

INTRA-FAMILY CORRELATIONS

Roy Sabo 

Old Dominion University, 2007 

Director: Dr. N. Rao Chaganty

Familial da ta  occur when observations are taken on multiple members of the same 

family. Due to  relationships between these members, both genetic and by cohabita­

tion, their response variables will likely exhibit some form of dependence. Most of 

the existing literature models this dependence with an equicorrelated structure. This 

structure is appropriate when the dependencies between family members are similar, 

such as in genetic studies, bu t not in cases where we expect the dependencies to 

differ, such as behavioral comparisons across different age groups. In this disserta­

tion we first discuss an alternative structure based upon first-order autoregressive 

correlation. Specifically we create and compare various estimators based on existing 

and emerging m ethods of estimation. Asymptotic and small-sample properties are 

discussed, as is hypothesis testing.

The second part of this dissertation involves a slightly more complicated version 

of autoregressive familial correlation, where we now model heterogeneous intra-class 

variances. Again we create and compare various estimators and discuss both  their 

asymptotic and small-sample properties.

In the final part of this dissertation we discuss the nuclear family model, basing 

the familial dependence on an equicorrelated structure. Note th a t while this corre­

lation structure has been extensively studied in the case of heterogeneous variance, 

we model homogenous variance and use a new m ethod for estimating the param e­

ters. Noteworthy here is th a t we apply a linear transform ation to  simplify both  the 

correlation m atrix and the correlation param eter estimators. As before, we generate 

estimators and compare their asymptotic performance.
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1

CHAPTER I 

INTRODUCTION

I . l  L iterature R eview

Familial da ta  arise in situations where a researcher is interested in the relationships 

among and between the measured responses of parents and children in the same 

family. As responses within these families (or groups, more generally) are most likely 

dependent, the estimation of correlations between parents and children (par-sib), 

between siblings (sib-sib) and to  a lesser extent between parents (spouse-spouse) are 

of interest. The par-sib type correlation is known as inter-class correlation, while the 

sib-sib and spouse-spouse types are known as intra-class correlation.

One of the earliest treatm ents of intra-class correlation is found in the work 

of R. A. Fisher (1918 and 1925), who modeled intra-class correlation as the ratio 

of variance within a class to  the to tal variance (the sum of variances within and 

between classes), which are estim ated using conventional analysis of variance sums 

of squares. The idea is th a t large within-class variation indicates th a t observations in 

the same family are heterogeneous, and thus intra-class correlation is small. Testing 

in this ANOVA setting is equivalent to  testing for the significance of within-class 

correlation. This m ethod requires a balanced design, meaning th a t families have to 

be of the same size, and it was work by Fieller and Smith (1951) th a t expanded this 

m ethod to account for unequal family sizes, or sibships.

Most of the early inter-class correlation estimators were moment-based, with some 

of the notable estim ators being the pairwise, sib-mean, random-sib and ensemble es­

tim ators, as nicely summarized by Rosner, Donner and Hennekens (1977). Each are 

essentially extensions of the product-moment correlation coefficient, differing in ap­

proach as to  which parent-child pairings to include. The pairwise estim ator included 

all parent-child pairings, but also assumed th a t the child response variables were 

independent (note this assumption was only used to  derive the inter-class correlation 

estim ator). The sib-mean estim ator sought to avoid this assumption by pairing the 

parental residual in each family with a residual incorporating the mean of the child

This dissertation follows the style of Journal of the American Statistical Association.
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responses for th a t family, and the random-sib estim ator paired the parental resid­

ual with a randomly chosen child residual. Since both of these estim ators om itted 

information, the ensemble estim ator was developed as an attem pt to m aintain the 

benefits of both estimators while diminishing their shortcomings. For each m ethod 

intra-class correlation is estim ated using Fisher’s approach

The next class of estim ators were maximum likelihood estimators. Elston (1975) 

showed th a t the pairwise estim ator of inter-class correlation (essentially the product- 

moment correlation coefficient) was equivalent to the maximum likelihood estima­

tor in the case where all sibship sizes are equal. However it was a study by Ros- 

ner (1979) th a t determined the MLE in the case of unequal sibship sizes, and Don- 

ner and Koval (1980) extended the MLE m ethod to intra-class correlation. Note 

th a t these authors did not obtain closed form estimators for either correlation param ­

eter, and as such used the Newton-Raphson m ethod to find simultaneous solutions. 

Mak and Ng (1981) improved upon this methodology, but it was Srivastava (1984) 

who greatly elaborated and improved upon the methodology for both the inter- and 

intra-class cases by using a transform ation to simplify estimation and obtain closed- 

form estimates.

Covariates can also be measured on each individual with a goal of model building. 

Though the literature presented above pioneered the estimation of familial correlation 

parameters, it does not include models with covariates. Some early works incorpo­

rating covariates into the MLE approach were by Stanish and Taylor (1983), who 

found intra-class estim ators for the analysis of covariance (ANCOVA) model, and 

Munoz, Rosner and Carey (1986), who developed a regression model for the case of 

heterogeneous intra-class correlations between families. The study by Paul (1990) 

broadened this approach into a generalized model complete with covariates and max­

imum likelihood estim ators for family specific means, variances and intra-class corre­

lation parameters. Paul also showed th a t most previous models were simply special 

cases of this general model. By including covariates, a natural consequence would 

then be to utilize generalized linear models (GLM) for param eter estimation.

More recent work in the field of familial correlation has been predominantly con­
cerned w ith the genetic relationships between family members. Many of these works 

use ANOVA modeling to  analyze genetic behavior, such as Guo and Wang (2002) 

and McArdle and Prescott (2005). Another example of the ANOVA approach is
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3

done in Rabe-Hasketh et al. (2007), who used a mixed model approach to  estimate 

variance components in the case of twins. O ther recent studies are, for example, 

Magnus et al. (2001), who studied the genetic relationships between parental and 

child birth weights in the nuclear family case, and Pawitan et al. (2004), who studied 

both genetic and environmental determ inants of binary tra its  using mixed models 

and likelihood-based inference for extended families.

1.2 C orrelation  S tructures

/  1 P P P ^

P 1 a  ■ ■ a

Ee(&A) =  cj)Re(X) — <fi P a 1 a

\  P a a  • • ■ 1 /

Common to most of these treatm ents is the assumption th a t all inter-class and intra­

class correlations are equicorrelated. A simplified example incorporating homoge­

neous intra-class variance, is to  assume th a t each family consists of one parent and 

t  — 1 children, so th a t we design the t  x t  variance-covariance m atrix for this family 

as follows

(1 .2 .1)

where <p is a scale or variance param eter and A =  (p, a )  is the vector of correlation 

param eters, where p is the par-sib (inter-class) correlation and a  is the sib-sib (intra­

class) correlation. This correlation structure assumes tha t the correlation is constant 

for all parent-child and child-child combinations. According to Hand and Crow­

der (1996), the equi-correlated structure is appropriate when there is no reason 

to  believe th a t some pairs of observations should have stronger correlations than  

other pairs. Based on this observation, we expect the equi-correlated structure to  be 

suited for response variables of tra its th a t are largely genetic, for familial d a ta  with 

age-independent response variables, or where the ages of all children are somewhat 

homogeneous. For example, height measurements on parents and their adult children 

are bound to exhibit correlation as they all have similar genetic profiles, and th a t 

correlation should be constant across pairings since adult children have reached their 

m ature height. O ther examples exist for groups of genetically unrelated people, such 

as coworkers or classmates.
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However, one can easily imagine a scenario where this assumption is invalid. For 

instance, a family participating in a pediatric study would most likely include young 

children of differing ages, where small age differences could result in large physi­

cal differences. Taking again stature as an example, we would expect (on average) 

siblings to exhibit greater correlation in height if their ages are closer rather than 

farther apart, and we would expect the same relationship to  exist between parents 

and their children. However, the correlation should decrease as the age difference 

between family members increases (both within and between classes), especially if 

the siblings are not yet adults. Thus, for response variables th a t are age-dependent, 

the equicorrelated pattern  (1.2 .1) seems inappropriate.

A non-family example could be taking water sedimentation levels a t a series of 

locations where a freshwater stream  empties into a saltwater body. In this case, 

a measurement a t the m outh of the freshwater stream  is the source (parent), and 

each successive measurement further away from th a t source is a series of destinations 

(children). For destinations close to  the m outh we would expect a high degree of 

correlation in sedimentation levels as the sediment from the freshwater stream  would 

dominate the existing sediment environment of th a t destination. However, for desti­

nations far away from the m outh of the freshwater stream, we would expect the local 

sediment environment to  dominate. Here we would expect the dependence relation­

ship between the source and destinations to decrease as you move further into the 

saltwater body. This is also an instance where an equi-correlated structure seems 

inappropriate.

A model exhibiting an exponentially decaying correlation pattern  would be more 

appropriate here, where plai_ail is the correlation between the parent and the ith 

child (with ages oq and a*, respectively), and A 0,~a,: is the correlation between the 

ith  and jth  children (with ages a* and a ,-. respectively). A more general model in­

corporating age-differences is the Markov or generalized Markov structures. Though 

these candidate models allow a certain degree of flexibility, they are very compli­

cated and difficult to apply to  the present situation. Thus we use a simplified model 

th a t incorporates an exponentially decaying pattern, namely the first order autore­

gressive structure. The variance-covariance m atrix for this pattern  has the following

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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appearance

(  1 P P2 P3 p ‘- 1 \

P 1 a a 2 ■ a t_2

E(<̂ >, A) =  <t>R{ X) = <j> P2 a 1 a a 4-3

K Pl~l cW2 cd- 3 a l~4 • • 1 /

(1 .2 .2 )

Note here th a t p is the basis for inter-class correlation, which decreases with each 

subsequent parent-child pairing, and a similar pattern  holds for the child pairings, 

where a  is the basis for intra-class correlation. The structure described in (1.2.2) 

models a simple form of what we may expect to find within a given family if the 

response variable is age-dependent. By first examining this AR(1) structure, we will 

then be able to  extend the work to  more complicated structures. More on alternative 

age-dependent structures is discussed in Chapter V.

Much of the literature on familial correlation specifies heterogeneous variances 

between classes. This essentially means th a t the variance in a particular class is not 

necessarily equal to  the variance in another class, and so the two variances are treated 

as separate param eters. Noteworthy examples of this are found in Elston (1975), 

Rosner, Donner and Hennekens (1977), Rosner (1979) and Srivastava (1984). We 

again use the simple assumption th a t a family consists of one parent and t  — 1 children 

and we design the t x  t  variance-covariance m atrix for the equicorrelated structure 

as follows

E e($,A) D ($ )R e(A)L>($)

(  (f)p \ J  (f>p(f)sp \ J  <j)p(f)sp

\ f  s p <ps <t>sa

\ J  ̂ ptpsP (bsa  <j>s

\  \ / OpCKf) OiS(> (f)sa

where D(&) — diag(4>p2, (jij2■ • • • , is a t  x t  diagonal m atrix of scale param eters, 

(pp is the parent variance, (ps is the sibling variance, and A =  (p, a)  is defined as before. 

Note again the equi-correlated structure indicates a somewhat homogeneous class of 

siblings. We can also incorporate heterogeneous variance into the autoregressive

d /2

\J<pp(f)sp  ̂

cf)sa  

<f>sa

<l>s )

(1.2.3)
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correlation structure, as the following m atrix shows.

E (A ,$) =  D ( $ ) R ( \ ) D ( $ )

/  4*p y /  fp p tfrsP  y / t f i p f i s P

y /  4*s o
y/dpfisp2 <f)s a 4>s

\  y/jtyFsP* 1 faa* 2 <t>sa ‘t - 3

0 sa t-2  

0 sa t_3

4>s )

(1.2.4)

More generally, we can model the variance-covariance m atrix for a separate classes 

as done by Elston (1975), who used the following model

E ($ ,A ) =

S i S 12 

E 2i S 2

Slo

E 2a

\

Y 1 S a2 * * * 2~ia J

where $  is a  vector of variance param eters and A is a vector of correlation param ­

eters. Let Ej be an m* x m, m atrix whose diagonal elements are <pi and whose 

off-diagonal elements are <f>iPi,i = 1, • • • ,a . We also let Ey- be an m, x m j  m atrix

(correspond to m, members in class i and rrij members in class j )  whose elements are 
1/2  1/2all (j)i (j)j P i j , i , j  — 1, ■ • • , a, i 7  ̂ j .  Note th a t this structure can accommodate any 

number of classes of any size sibship. Also implicit in this model is an equicorrelated 

structure within and between each class. The most common forms of the familial 

variance-covariance m atrix have only two classes, such as (1.2.1) and (1.2.3). In these 

cases there is only one parent in the first class and any number of children in the 

second. However, if two parents are involved, we need three classes as we cannot 

assume (1) th a t the parents are uncorrelated, and (2 ) tha t the correlations between 

each parent and the children are equal. If we assume, for our purposes, th a t the three 

class variances are equal, then we model the variance-covariance m atrix as follows.

(1.2.5)

E (0 ,A )  =

S i

S 2i

E 31

E 12

e 2

E 32

E l3

E 23

E3

1 7 Pi Pi Pi

7 1 P2 P2 ■ ■■ P2

Pi P2 1 a a

Pi P2 a 1 a

Pi P2 a a  ■ ■■ 1

\

(1 .2 .6 )
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Here, S i — S 2 — 4> and S 3 — < (̂(1 ~~ oi)It—2 +  01 Jt—2)) and S 12 — <jyy, S 13 — cf>pielt _ 2  

and S 23 =  <f>p2 e't_2, where et_2 is a (t — 2) x 1 vector of ones. Note th a t (1.2.6) 

has the same correlation structure as used in Shoukri and W ard (1989), where the 

authors modeled heterogeneous variances, as opposed to the homogeneous intra-class 

variance modeled here. Implicit in this case is th a t we are assuming a family of size 

t, with two parents and t  — 2 children.

The variance-covariance structure (1.2.6) can be simplified using canonical re­

duction. Srivastava (1984) showed this for the one-parent case (1.2.3), and Khat- 

tree and Naik (1994) applied this procedure to  the one-parent case where children 

exhibit a circular dependence structure. By using canonical reduction we can sim­

plify the correlation m atrix and ease the computational burden required to  estimate 

the correlation parameters.

1.3 E stim ation  P roced ures

As the dependence structures modeled in (1.2 .1) and (1.2.3) have been well-studied, 

we will concentrate on (1.2.2) and (1.2.4), as well as (1.2.6), which to  our knowledge 

has not been thoroughly analyzed. So with these familial correlation structures in 

mind, we want to  study param eter estimation in a repeated measures setting. In the 

case of GLM, regression coefficients are usually of tantam ount importance; however 

we will concentrate on estimating the correlation parameters. The maximum likeli­

hood (MLE) m ethod has already been proposed by numerous authors in the case of 

(1.2.3) (see above), is optimal if da ta  are normally distributed, and serves as a natural 

starting  point. A m ethod independent of an assumed probability distribution is the 

m ethod of moments (MoM), and as various moment estimators have already been 

developed, we will incorporate this procedure as well. Quasi-Least Squares (QLS) 

is an alternative distribution-free procedure th a t attem pts to  alleviate certain short­

comings in the moment estimating procedure. Thus, we would like to  investigate the 

autoregressive familial correlation structure, as well as the equicorrelated structure 

in the nuclear family case, with an eye on gauging the performance of these three 

estimation procedures.

Let us assume th a t da ta  is collected on n  families, where, in the case of (1.2.2) 

or (1.2.4), Yi = (yn ,yi2, • • • , yu)' is the x  1 vector of responses for family i, yn  is
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the parental response and the remaining y^, j  =  2 , ■ ■ • , t.t belong to  each of the t t — 1 

children. If we are discussing (1.2.6), then ya  and y,2 are the parental responses and 

the remaining yt], j  = t, belong to  each of the U — 2 children. Further, we are

assuming th a t the V) are continuous on (—oo, oo). For our purposes, we assume the 

n  sibships are of equal size, or U =  t  for all* =  1, • • • , n. Each individual has a p  x 1 

vector of covariates — {'J'iji, ■ • ■ , x i jp)'  such tha t

X, =  ( X a  X i2 ••• X i t )  

is the t  x p  m atrix of covariates for the ith  family.

Based on standard GLM theory, we assume th a t E(Yi) — //, and ry = g(yii) = X tl3. 

where f3 is a p  x 1 vector of regressor coefficients and g ( )  is an invertible, mono­

tone and differentiable link function such th a t //, =  g~l (X,j3) . Also note th a t 

V(Yi) =  $)A(/L/j)2 , where A(jtq) is a t  x  t diagonal m atrix  of the form

diag(v(fiii), • • • , v (/ju)), v(fiij) being the variance function linking the variance of 

to its expected value E(A, $ ) is of the form (1.2.2), (1.2.4) or (1.2.6), <f> is a

vector of dispersion param eters, and A is a vector of correlation param eters. Note 

th a t if fit (through g) is correctly specified, then the GLM estimates are consistent 

and asymptotically normal. Further, if the variance function v(-) is correctly spec­

ified then the GLM estimates have the smallest variance among all unbiased linear 

estimators. Though technically g can be any monotone function, we use the identity 

link function, which is allowable since our da ta  are continuous on (—0 0 , 00 ). Thus 

we model E{Yj) — fii = Xi/3 and v(y,ij) — 1 for all * =  1, • • • , n  and j  = 1, • • • , t 

so th a t A(g,i) is the identity and V(Yi) = E(A, <L). We also let 0 — (/3, A, 4>) be the 

vector of all parameters.

For each estimating procedure, we use the same estim ator for (3,

U —1 
P = Y ,  $ )* < ) X 'E _1(A, $)Yi (1.3.1)

i= 1

where $  and A are estimators of the variance and correlation param eters, respectively. 

Thus, each m ethod differs only in how we estim ate the variance and correlation 

parameters.

For the maximum likelihood estimation m ethod (MLE) we assume th a t F) comes 

from a t-dimensional multivariate normal distribution with mean Xi(3 and variance- 

covariance m atrix  E(A, 4*). As we are assuming th a t the param eters are common to
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n  independent families, the likelihood function is then the product of n  such pdf’s.
n

L(Y U --- ,Y n\6) = H f ( yi\e) (1 .3 .2 )
i= 1

=  n (2 7 T )-»  |£(A,$)|-*exp
8= 1

(2ir) 2 |£(A, $ ) | 2 exp

where Zn — XX=i — X i0)(Y t — X t(iy  =  ]T)”=1 ^ jZ '. The log-likelihood is found by 
taking the natural log of (1.3.2).

£ = \n(L(Yl r -- ,Yn\0))
Tit 71 1

=  - -  ln(27r) -  -  In |£(A, <&)| -  - i r ( Y ~ \ \ ,  <h)Z„)

(1.3.3)

To find the M LE’s of 9 we need only take the derivative of (1.3.3) with respect to 

each param eter, set the resulting score equation equal to zero and solve for th a t 

param eter. The estim ator (3 has already been provided for the regression param eter, 

and for the variance param eters, recalling th a t =  tr (A ~ 1^ ) ,  we obtain the

following estimating equation for $

d£(A , $ ) ’n
2 tr

1
+ - t r

E - \ X  ,$ ) -

£  (A, $ ) d£(A, $ ) v - i£  (A, Q )z n =  0 (1.3.4)

where Z n is Z n evaluated with ft. In a similar fashion we obtain the following esti­

m ating equation for A

n
2 tV

£  (A, 4>)
d£(A, $ ) 

d \

1
+ - t r £ - 1(A ,^ )^ AÂ ) £ - 1(A ,i)Z „ - 0 . (1.3.5)

Typically, we iterate between /?, $  and A until convergence.

The m ethod of moments (MoM) begins with a trial value (30, which is 
typically found by solving (1.3.1) with an independent correlation structure 

(Hardin and Hilbe (2003)). This value is then used to  compute residuals

Zi = Y i ~  XiP0, i =  1 , • • • ,n.
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Note th a t each Zj is a t  x 1 vector of residuals Z i j , j  — l , . . . , t .  To obtain estimators 

for $  and A we find estimating equations for those param eters such th a t

where c and d are constants. Solving equations (1.3.6) and (1.3.7) for $  and A, 

respectively, yield moment estimators for those parameters. These estimates are then 

used to solve (1.3.1) for (3, which can in tu rn  be used to  recompute the residuals. 

This iterative process is continued until convergence of the parameters.

The Quasi-Least Squares method, as developed by Chaganty (1997), 

Shults and Chaganty (1998) and Chaganty and Shults (1999), is an extension of 

GLM th a t utilizes the quasi-score function (quasi-log-likelihood) to obtain consistent 

and efficient estimates not only of the regression param eters bu t for the correlation 

param eters as well. According to  W edderburn (1974), the quasi-log-likelihood func­

tion is proportional to a true likelihood function if the probability distribution of a 

random variable is known to belong to an exponential family, and otherwise retains 

key properties of a true likelihood function th a t gives QLS asymptotic properties 

similar to  MLE. By specifying only the mean and variance for a random  variable, 

param eter estimation is allowable even if use of the actual likelihood is prohibited. 

This eases com putation in the case when the likelihood function is too complicated 

or is unknown.

For QLS we s ta rt with the quasi-log-likelihood function

Initially we minimize (1.3.8) with respect to (3 and A. The Step 1 regression param-

respectively. To obtain Step 1 estimating equations for A, we differentiate (1.3.8) and 
set equal to  zero.

Z 'A (4 > )Z i-c  =  0 , 

Z'iA ( \ ) Z i — d = 0

(1.3.6)

(1.3.7)

n

S(9) =  ^ ( y ^ X i/3 ) 'S -1(A,4>)(yi - X i/3) =  t r [ E - 1(A ,$)Z n] (1.3.8)

Note th a t if the variance is homogeneous between classes, then we write
n

S(9 ) =  Y , ( Yi -  X iP y R T 'W iY i  -  Xi/3) = tr  [ R - \ \ ) Z n] .
i—1

eter estim ator (3 is (1.3.1) evaluated at 3> and A, the Step 1 estimates of $  and A,

dS{9) 
d \
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Here Z n =  $2"=i is the quadratic form evaluated at our Step 1 estim ate for 

f3. Iterating between (1.3.1) and (1.3.9) until convergence gives us our final Step 1 

estimates. It is well known (Chaganty and Shults (1999)) th a t the Step 1 estimates 

of the correlation term s are biased, which becomes clear if we take the expectation 

of (1.3.9) evaluated with the Step 1 estimates.

E  tr a x r 1^ , # )
d \

— tr

— ntr

d E ~ \ X ^ )
d \

d R ~ \ A)

E ( Z n)

d \
R( X) (1.3.10)

To eliminate this bias we equate (1.3.10) to  zero and solve for A for fixed A. The Step 

2 estim ate A is asymptotically unbiased and efficient (Shults and Chaganty (1998)). 

Further, we obtain a Step 2 estim ate for /? by substituting A into (1.3.1) to  get (3. If 

we assume homogeneous variance, then an estimate of </> is ^.S(6);  otherwise we use 

alternative estimators.

1.4 O verview  o f T h esis

This thesis is organized as follows. In Chapter II we focus on the autoregressive famil­

ial correlation structure with homogeneous variance described in (1.2.2). Specifically, 

we find basic properties of the correlation structure and estimators using the three 

estimating procedures discussed in Section 1.3. We then examine the asymptotic 

and small-sample performance of those estimators, as well as highlight some basic 

hypothesis tests for the correlation parameters. In Chapter III we focus on the au­

toregressive correlation structure with heterogeneous variance described in (1.2.4). 

Here we also discuss basic properties and find estimators using moment estimators for 

the variance param eters, as well as examine the asymptotic and small-sample prop­

erties. In Chapter IV we concentrate on the nuclear equicorrelated familial structure 

described in (1.2.6). Here we examine canonical reduction of the correlation m atrix, 

as well as find estimators and derive their asymptotic variance. Finally, we conclude 

in Chapter V, also illuminating topics for future research.
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CHAPTER II 

AR(1) STRUCTURE W ITH HOMOGENEOUS VARIANCE

II. 1 In trod uction

In this Chapter we concentrate on the autoregressive familial correlation structure 

with homogeneous variance. The variance-covariance matrix, as described in Chapter 

I, is restated here.

f  1 P P2 P3 p*-1 \

P 1 a a 2 • oP~2

£ (0 , A) =  <f>R(A) =  0 P2 a 1 a

V Pt_1 a 1' 2 a ‘- 3 a l~4 • ' 1 I

Here 9 — (p, A, 0 ), where P is a (k x 1) vector of regression param eters, cj:> is the 

variance term, and A is the vector of correlation param eters A =  (p, a ) , where p 

is the correlation between the parent and the first child and a  is the correlation 

between all first-order child pairings (i.e. first and second, second and third, etc.). 

Recall th a t in (2.1.1) the correlation between the parent and children is first-order 

autoregressive based on p , and the correlation between the children is first-order 

autoregressive based on a.

The rest of this Chapter is outlined as follows. In Section II.2 we find the deter­

m inant and inverse of (2.1.1), as well as the positive-definite range. In Section II.3 

we derive param eter estimators for each estimating procedure, and in Section II.4 we 

find asymptotic variances for those estimators and compare their asymptotic perfor­

mance. In Section II.5 we compare the small-sample performance of the estimators 

in cases of both normally and non-normally distributed data. Lastly, we discuss 

hypothesis testing in Section II.6 .
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II.2  P rop erties o f  C orrelation  M atrix

F i n d i n g  t h e  i n v e r s e  a n d  d e t e r m i n a n t  o f  ( 2 . 1 . 1 )  i s  s i m p l i f i e d  b y  p a r t i t i o n i n g  t h e  m a t r i x  

a s  f o l l o w s

(  1 p p2 - • Pi_1 ^

R (  A )  =
P 1 a • a 4 - 2 _ (  1 R ' 2

U - 1 a 4 - 2  a 4 - 3  •
■ 1 J

\  R 21 R 22
(2 .2 .1)

where R i2 =  R 21 is a 1 x (f — 1) vector of inter-class correlations and R 22 is the well 

known (t — 1) x (t — 1) first-order autoregressive m atrix of intra-class correlations. 

Thus, \R22\ =  (1 — a 2Y~2 and [h-i + ot2C2 -  atC\], where C\ is a (t -
1) x (t — 1) tri-diagonal m atrix with 0 ’s on the main diagonal and l ’s on the off 

diagonals, and C2 is a diagonal m atrix  with l ’s on the main diagonal except for the 

first and last elements, which are both 0. We make use of these facts and the general 

forms for the inverse and determ inant of a partitioned m atrix to  obtain the following 

results.

|i? (A )| =  | -R2 2 111 — R n R 2 2 R2i\  (2 .2 .2 )

(1 -  a 2)*-3

1 — p 2

X [(1 -  a 2) ( l  -  ? )  -  ( P  -  „ * )  -  « V  -  P2‘~2) +  M p 3 -  P2' - 1)]

a n d

w h e r e

R ~ \ A) = B n  B  
B 2\ b 22

12
( 2 . 2 . 3 )

B n  —  ( 1  —  R 12B-22 B 21

(1 — a 2)( l  — p2)
(1 — a 2) ( l  — p2) — (p2 — p2t) — a 2(pA — p2t~2) +  2 a(p3 — p24_1)

B\2  —  —B 11B 12B 22

B n
1 — a 2

(  n  \
/

(  °  ^

/
(  p2 \

r

P
2 p2 p + p 3

p 2
+  cn — a.

1
p t - 2 p4 -3 + p4_i

) \  0  J V  p1~2 )
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B 22

B'

= R R 2 2  R 2 1 B 1 1 R 1 2 R 2 2  

(it- 1 +  C?C2 — OiCij

{  2̂ „3

■22

1 — a 2

It- 1 +
B 11

1 — a2

P4
nt+ 1

\  Pl Pt+1
n2t — 2

(it- 1 +  ot2C2 — ckCi)

In order for correlation estimates to  be feasible they must be within a certain 

range th a t ensures m atrix (2.1.1) is positive definite. Recall th a t a symmetric m atrix 

(such as (2 .1 .1)) is positive definite if all its principal leading minors have positive 

determinants. Thus we can find positive definite ranges for p and a  by creating 

inequalities where each principle minor is greater than zero and solving for the pa­

ram eter values th a t satisfy the inequality. Of the first t  — 1 leading minors (of R 2 2 ), 

the determ inant of the ith  (i < t) is (1 — a 2)*, meaning th a t — 1 <  a  <  1. Lastly, 

we set (2.2.2) greater than  zero and solve for either a  or p. Simplifying the resulting 

expression we get

(1 -  a r ) ( l  -  p2) -  (p2 -  p2t) -  a  V  -  P*"2) +  M p ' „2t—1) >  0. (2.2.4)

Solving for p, let a — 1 — a 2, b — a 2, c — 2a  and reorganize (2.2.4) to get

„21 cp2t 1 +  bp2t 2 — bp4 + cp3 — (1 +  a)p2 +  a >  0 . (2.2.5)

By selecting t  >  2 and — 1 <  a  < 1 we find values of p such th a t the correlation 

m atrix is positive definite by finding the real roots of (2 .2 .5 ) th a t lie between —1 and

1. Solving for a , on the other hand, let a =  —(1 — p2 +  p4 — p2t~2), b = 2(p3 — p2t~l ) 

and c =  1 — 2p2 +  p2t and reorganize (2 .2 .4 ) to get

aa2 + b a  + c >  0 . (2 .2 .6)

Note th a t since (2 .2 .6 ) is a quadratic equation, we find the roots with the quadratic 

formula

a = —b ±  \/b2 — 4ac 
2 a

such th a t the upper admissible bound on a  is

- p2t- 1 + y j (p3 -  p2i—1)2 +  (! _  p2 + p4 _  /32t-2) ( 1 _  2fP +  p*t)
m m V 1 -  p2 + p4 -  p-,24-2
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0 .

0 .

0 .

•0 .

-0 .

•0.

•I

I .0 0 o.oo 0.25 0.50 0.75 I .0 0

Figure 2 .1 :  P.D. Range fo r  p  and a  when t  = 4

and the lower admissible bound on a  is

„3
m ax

„2t—1
-V

v V  -  p 2* - 1) 2 +  (1  -  P2 +  p4  _  p 2 t - 2 ) ( 1 _  2p2  +  p 2 t)

1 -  P2 +  p4 n2t—2

which are found by selecting f >  2 and — 1 <  p < 1. The admissible range is the 

same whether we solve for p or a,  though solving for a  is a much simpler task.

As an illustration, let t  = 4, meaning th a t for each family we have one parent 

and three siblings. The plot of the positive definite range is shown in Figure 2.1. For 

reference, we can also let t  approach oo, a t which point we get the positive definite 

range found in Figure 2.2. Notice th a t there is not much visual difference between the 

ranges shown in Figure 2.1 and Figure 2.2, though the two are not equal. Table 2.1 

gives the upper and lower bounds for p over select values of a  for both  t  — 4 and 

t —* oo. As the table shows, the positive definite ranges are slightly wider for t  =  4 

than  for t  oo, and it can be shown numerically th a t this is also the case for any 

t  < t  +  c, where c is an arbitrary  integer. Thus the positive definite range becomes 

slightly more restrictive as t  increases.
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l

0.

0,

0.

0.

•0.

■0 .

•0.

I
•I .0 0 ■0.56•0.75 •0.25 0.25 0.750 .0 0 0.50 1.00

a

Figure 2 .2 :  P.D. Range fo r  p and a  as t  —> oo

Table 2.1: P.D. Range for  p when t  =  4 and t  —> oo

a o lP t= 4 Pt—>oo n uP t= 4 Pi-oo
-0 .9 -0 .97345 -0 .94726 0.32163 0 .32047
-0 .5 -0 .87010 -0 .82827 0 .57324 0.56032
-0.1 -0 .76509 -0 .73173 0.70855 0.68160
0.3 -0 .64621 -0 .62616 0 .81839 0 .77970
0 .7 -0 .47928 -0 .47280 0 .92144 0 .88117
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II .3 P aram eter E stim ation

In this Section we find estimators of 9 for each estimating procedure. Note th a t 

closed form estimators are expressed where possible. For those estimators th a t do 

not simplify into a closed form, the expressions are left in trace or partitioned vector- 

m atrix  form, which are evaluated using (2.2.2), (2.2.3) and the derivatives listed in 

Appendix A.I.

For each estimating procedure we use the following estimators for [3 and (p

p  = ( x l R - ^ X . y 1 X ' i R - ' f a Y i  (2.3.1)

1 " 1 
^  =  - Y ^ ( Yi - X ^ ) R ~1(X)(Yi - X i P )  = - t r ( R - 1( \ ) Z n) (2.3.2)

2 = 1

where A =  (p, a) is the vector of correlation param eter estimators and Z n is evaluated 

a t (3. The m atrix Zn has the following partitioned form

-  ( T  T )\  ^21 -^22 /

where
n

Z n = E 4
2=1

Z l2 =  ( EILi t i l * 2 Ei=l zilziZ Ei=l zilzit )

Z21 =  Z 12
/  V '" a2Xii=1 zi2

\n2_/i=l zi2ziZ E"=l zi2zit ^

Z22
Ei=1 zi2zi3 EIL i 4

v-^n

■sr~\n 
\  Z î=l zi2zit ■ ■ EILi 4  j

II.3 .1  M axim um  Likelihood

For the maximum likelihood estimation m ethod (MLE) we assume th a t Yt comes 

from a t-dimensional multivariate normal distribution with mean X{[3 and variance- 

covariance m atrix E(0, A) =  <pR(A), as defined in (2.1.1). Using this variance- 

covariance matrix, the log-likelihood becomes
Tit Tit 71 1

£ =  _ _  ln (27r) -  — ln(^) -  -  In \R(X) \ -  — tr(R ~ 1(X)Zn). (2.3.3)
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To find M LE’s of 9 we need only take the derivative of (2.3.3) with respect to  each 
param eter, set the resulting function equal to  zero and solve for th a t param eter.

We obtain the following estimating equations for p and a,  respectively

n
-tr R - \ A)

dR(  A) 
dp

1
H— ~tr  

2(f)

&  - n d B 12̂  + B n ^ B 21Z 11 + B 12

n
-tr

dp  

R ~ \  A)

dp ' “  dp

22Z 21 4

dR(  A)

dp 
dRa1 
dp

0 (2.3.4)

B 1 2 Z 21

+ i? ll 0 B 2 2 Z 21 +  B 1 2 Z 2 2 B 22  ^— =  0

—n (f> tr  

+tr

B-2 2 "

da

d R n
da

dp  
u ^ d R (  A) 

daR  W - R~l {X)zn4 ^ t r
2 <f>

- B X2d- ^ B 2( Z xl +  2B 12^ B 22Z2i

= 0 (2.3.5)

da da
d R 22 p  j  '

£>22—̂  -£>22-^22da
=  0

where Z n is Z n evaluated with (3.

The MLE’s are found by first choosing initial values A0 =  (po, a 0) to  estim ate j3 
using (2.3.1). We then use (3 to  update the residual m atrix Z n and estim ate <f> using 

(2.3.2). These values are then used to  simultaneously solve equations (2.3.4) and 

(2.3.5) using Newton-Raphson to  obtain updated values of A. This process is then 

repeated until convergence, those values being the MLE’s: 6g =  (f y , A*, 4>e).

I I .3.2 M e th o d  o f M o m e n ts

For the m ethod of moments (MoM) we obtain A by using variations of the product- 

moment estimators proposed by Hardin and Hilbe (2003) for the autoregressive case. 

For p, we use

pm =  (2.3.6)
t  2 _ a = 1 2-i j = l  ^ i j

where %x and £(2 are the residuals for the parent and first child, respectively, in the 

i th  family. This residual pairing is included as it is the only pairing for which the 

expected value involves p raised to  the first power. For a  we use

(f=2) E"=l £5=2 ^ j + l  0
m ~  92 • {t.a.i)

t  2 - i i - 1 2 - ! j = 1 z i j
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Here we only include child pairings of the first order (i.e. first and second children, 

bu t not the first and third, etc.) as only these pairings have an expected value th a t 

involve a  raised to  the first power. Note th a t (2.3.6) and (2.3.7) are obtained from 

the following two unbiased estimating equations

Z l A ^ Z i  = Z'  

Z'iA ( a ) Z i = Z\

Zi = 0

2 (t -  2)

(2.3.8)

(2.3.9)

where C3 =
0 1 

1 0
and Ci is defined in (2.2.2). Solving equations (2.3.8) and

(2.3.9) for p and a,  respectively, yield (2.3.6) and (2.3.7). These estimates are then 

used to  solve (2.3.1) for /?m, which in tu rn  is used to  recompute the residuals. This 

iterative process is continued until convergence of the parameters. Upon convergence, 

we estim ate 0  with <prn (2.3.2) using i3rn and Am. Thus, the MoM estim ator is 9rn =

{Prrn Amj 0m) •

II.3 .3  Q uasi-L east Squares

For QLS we s ta rt w ith the  quasi-log-likelihood function
n

S(9) = J ] ( y i - X ,/? ) ,7?-1(A)(yi - X i/?) =  t r [ i ? - 1(A)Z„]. (2.3.10)
i=1

Using the quasi-log-likelihood function (2.3.10) we obtain Step 1 estimating equations 

for both  p and a  by differentiating (2.3.10) and setting equal to  zero.

dS(6)
dp

8S(6 ) 
da

_a
dp

( t r  R  1(X)Zn ^ =  tr
d R ~ \ A)

dp

^  p  d R l 2 p  V I P  d R ^ p  V  
r J l l  c  - 0 2 1 ^ 1 1  +  *-*12 “  -£ 0 2 - ^ 2 1dp dp

7;— B 2 2 Z 21 +  B 1 2 Z 2 2 B 2 2 "dp
d_

da
( t r  R  1( \ ) Z n ^ = t r

dp 
d R - x( A) 

da
= 0

O  B i 2 ^ B 2 i Z u + 2 B i 2 ^ B 22Z 2i o a  oa
f)R ~

-\-tr B 22 —— B 22Z 2 2 =  0 
da

(2.3.11)

(2.3.12)
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Here Zn =  Y17= 1 the residual m atrix evaluated with 0,  which is found using

(2.3.1). Solving (2.3.11) and (2.3.12) simultaneously for p and a  using Newton- 

Raphson we get the initial Step 1 estim ate A =  (p, a).  Iterating between (2.3.1) and 

both (2.3.11) and (2.3.12) until convergence gives the final Step 1 estimates. It is 

well known (Chaganty and Shults (1999)) th a t the Step 1 estimates of the correla­

tion term s are biased, which becomes clear if we take the expectation of estimating 

equations (2.3.11) and (2.3.12) evaluated with the Step 1 estimates.

E  tr

E  tr

d R - 0  A) 
dp '

d R - ' j  A) 
da.

=  tr

oc tr

tr

oc tr

d R ^ j  A) 
dp

d R - \ A) 
dp

d R - l { A) 
da

d R - \ A) 
da

E { Z n) 

R(  A) 

E ( Z n) 

R(  A)

^ 0

7^0

^ 0

7^0

(2.3.13)

(2.3.14)

To eliminate this bias, we equate these two expressions to zero and again simultane­

ously solve for p and a,  as shown in equations (2.3.15) and (2.3.16).

tr

44 B n  

tr

d R - \ A) 
dp

d R n

R(  A) =  0 (2.3.15)

12 -

dp 

d R ~ l { A) 
da

d R 22 
da

B 2\ +  B 22R 2\ +  B \ 2 \ R 2i B \ 2 +  R 22B 22
d R 21

dp

R(  A)

B 2\ +  ^ B 22R 2i

(2.3.16)

+  tr R d R 2 2 B  pt 7*22 -----7322 -0-22o a
=  0

These S’tep 2 estimates of the correlation param eters (pq and a q) are asymptotically 

unbiased and efficient (Shults and Chaganty (1998)). Further, we obtain a Step 2 

estim ate for 0  by substituting pq and a q into (2.3.1) to get 0q. We also estimate <f> with 

0 q, which is (2.3.2) evaluated with 0q and Xq. The QLS estimates are 9q = (0q, Xq, <pq).
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II.4  A sy m p to tic  V ariance and Perform ance

In this section we derive asymptotic variances for the estimation procedures described 

in Section II.3. The MLE procedure is straightforward, as we are assuming the 

residual vectors Zj =  Tj — are normally distributed. This allows us to  make 

use of the log-likelihood function to  find Fisher’s information m atrix (1(6)), where 

under the regularity conditions —E ( -^ jp )  = Cot>(||) =  1(6). Since the asymptotic 

distributions for both the MoM and QLS m ethods depend on higher order moments, 

we must assume th a t the residuals are normally distributed for these m ethods as 

well. Note th a t this assumption is not needed for param eter estimation, but only for 

derivation of the asymptotic variances, and is justified by use of the Central Limit 

Theorem. For the MoM and QLS procedures, we make use of the following theorem 

by Joe (1997, p. 301), which states th a t under the regularity conditions

M O - 8 )  ~  A M V N  (0, 1 - 1(6)Mn(6) ( I -1(6)Y) (2-4.1)

where In(6) =  XT=i E  p j p  > M n(6) =  \  ]C"=i Cov(hi(6)), and hi(6) is a vector 

of unbiased estim ating equations for 6. Note th a t this theorem is a  more general the­

orem for finding asymptotic variances than  is Fisher’s Information. If we apply this 

theorem to the M LE’s, then hi(6) =  f | ,  and In(6) =  - L  £]"=i E  ( M m )  =  

and M n(6) =  i ^ =1 C o u ( f )  =  1(6) = I n(6), so th a t I ~ 1(6)Mn(d) ( I -1(6))' =  

I ~ 1(6)I (6) I^1(6) =  / ~ ] (6). Thus, using the multivariate normal log-likelihood func­

tion in (2.4.1) gives us the inverse of Fisher’s Information m atrix, which is what we 

obtained earlier.

II.4 .1  M axim um  Likelihood

Asymptotic variances and covariances for the maximum likelihood estimators are 

found by taking the negative expectation of the second derivative of the likelihood 

function with respect to  6. The resulting functions form the Fisher Information 

m atrix. The diagonals of the inverse of this m atrix are the asymptotic variances for 

the param eter estimators.

According to the Cram er’s Theorem, we have

- 0 ) ~  A M V N  (0, (6)).  (2.4.2)
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It is straightforward to  show th a t the information m atrix Ie(9) is of the following 
form

m  =

(  I((3) 0 0 0 \

o !(p) I {p ,a )  I{p,4>)
0 I (p ,a )  1(a)  / ( a ,  <f>)

V 0 I(p,<f>) I  (a, (f>) I(4>) J
where (recall th a t B n  is defined in (2.2.3))

m  = - E { w ) ^ K R ~1( x ) x '
/r> 2/?\

I(P) =

i= 1
d 2_ t

'P2s 
2 n 3B n

dp dp

((p -  tp2t- x +  (t -  l)p 2t+1)
m - a 2) ( l - p > Y f  
+ a 2(2pz -  (4 -  l)p 2<_3 +  (4 -  2)p2t~1)

-a(3p2 -  p4 -  (24 -  1 )p2t~2 +  (24 -  3)p2*)]2

+
n t-1

2 (1 - 0 * )Ê  0) 2 n2j—2 n a t- 3

E « + i)2n2J
2(1  -  qJ)

+

2(1

n B n a 2 
(1 -  ck2)2

p — tp2t 1 +  (4 — l)p2t+1
(1 - p 2)2

p -  tp2*-1 +  (4 -  l)p 2t+1

(1 - p 2)2

n B n a  ( p -  tp2t~4 +  (4 -  1 )p2t+1

(p + ( t -  1 )p2*-3)

(1 — a )2 

n B n a  ( 3p2

,2'i2(1 - p :
p4 -  (2* -  l)p 2t“ 2 +  (24 -  3)p:

(1 -  a )2 V (1 -  P2)2
n B n a 3 3p2 -  p4 -  (24 -  l)p 2i~2 +  (24 -  3)p2t

(1 -  a 2)2 V (1 -  P2)2
2p3 -  p5 -  (4 -  l)p 2t- 3 +  (4 -  2)p2i_1

+

( 1 - P 2)2
nB u a 2 / 3p2 -  p4 -  (24 -  l)p 2t“ 2 +  (24 -  3)p2* \ 2 

2(1 -  a 2)2 V (1 -  P2)2 J
n B n a 4 ( 2 p3 -  p5 -  (4 -  l)p 2‘~3 +  (4 -  2)p2i~1" 2

2(1 -  a 2)2 ( 1 - P 2)2

(2.4.3)

(2.4.4)
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1(a)

m

I(p, a)

I M )

I(a,(f>)

23

v ' d 2£ \  n  
d a 2 )  ~  2 tr

R - 1{ X ) ^ ^ - R ~ 1{X)d R ^
da da

n
= —tr dR-22 D d R 22 D 

£> 2 2 —  £> 22da da

R ->{xf - m R - 1{x)? m
dp da

E  \d4>2)  2(f)2
(  d l  \  n

- E \ d ^ )  = 2 tr
dR\2 D dR-22 n  

n —e—  R 22 —5—  B 2i dp da
t, (  d£ \  n

~ E { a ^ )  = 2 } tr
________ n B n _______

2^(1  — a 2)( l  — p2)2 1 

+ a 2(2p3 -  p5 -  (t — 1 )p2t~3 + { t -  2)p2t~1)

- a(3p2 -  p4 -  (21 -  1 )p2t~2 + (21 -  3)p2t)}

it! - 1 (A)
dR(X)

dp
n d R \ 2  

0  dp
B-21

[ ( p - t p 2̂  + ( t - l ) p 2̂ )

t, (  d l  \  n
- E { m )  =  2 } tr

na( t  — 2 )

R ~ \ A) 

n B n

dR(  A)
B-

d R-22
2 2 “ dada

0(1  - a 2 +  0(1  -  a 2)2( l -  p 2 )  1 ^ + 2  ~  ^

2 t - 3

+  -, B n a  T a w - 1 (p>+2 -  P2t- j )
(1 — a 2)2(l  — p2) 2-J^*  \R  P ) 

'  i = i  

4 -4

+

+  -

n S n a ^
1 — a 2)2( l  — p2) 

n B n «

— p i + 1 ( ^ +4 -  p2t 2 j )
1=1

i—2

1 -  a 2)2( l  -  (? )  ^
3-
t - 3

n B n a 3 t- 3

1 — a 2)2( l — p2) ^ 

n 5 n a 3

2 E i j V - ( p , - a h )
1= 1

4 - 4

1 — a 2)2( l — p2)

n B n a 3 
1 -  a 2)2(l -  p2) ^

$ > V -1  (p ,'+ 3 - p 2t- 1" i )
1=1
4 - 5

E o v 1 ( ^ +s -  A 3- ' )

n S n a 5
4 - 2

1 -  a 2)2( l -  p2) ^— 2T 1 (^ +2 -  P2t j )
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v2 *"3
n B " a  E o v ~ V +2 - V " J)<f)(l -  a 2)2(l  — p2) ^

t - 4

J= 
t - 4

+  (rP+A -  p 2t- 2- j )
4 > ( l - a 2)2( l - p 2) f ^ {3) ^  P >

Note th a t the covariance term s involving f3 are zero, indicating th a t fa is uncorrelated 

with the estimators for the other parameters.

II.4 .2  M eth od  o f  M om ents

For the MoM method, based on (2.4.1), we have

-  9) ~  a m v n  (o, i - 1(d)Mm(e)(i -1(e))') (2.4.5)

where I m(9) =  £ " = i E dhm, i(0)
M m(0) = - Y ^ = l C Ov(hm,i(Q)) and the hrn,i(9)

are vectors of unbiased estimating equations defined as follows

hm,i{0) = (hoi(d), hu (0), h2i(6), g^O))' (2.4.6)

hoi{9) = X ' R ~ 1(X)Zi 

h u (9) = Z[A{P)Zi =  tr (A(p)ZiZ')  

h2i{0) = Z'A{a)Zi  = t r(A(a)Z iZ ')  

gi{0) =  Z ' R - 1(X)Zi -t<t> = t r{R~1(X)ZiZ ,i ) -  t y

where A(p)  and A(a)  are defined earlier. By taking the negative expectation of the 

partial derivatives of (2.4.6) with respect to 0 and averaging over n  we obtain Im(0), 

and by taking the covariance of (2.4.6) and averaging over n  we obtain M m(0). From 

here it is easy to  show th a t Im{0) has the following elements

lm(0)

/ /l l 0 0 0 \

0 I 22 0 0
0 0 I33 0

V 0 I a2 h s 4̂4 /

(2.4.7)
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where

'u  -
i=1 N '  i=1

(A )Xi

' »  = ■

'33 -  - I  E *  T O  = * ■ ( * -

2 0 B n  / ( t  -  l)p 2t+1 -  tp2t~l + p
» > T )

1 — a 2 \  (1 — p2)2
2(f>a2B n  f  (t — 2)p2t~l — (t — 1 )p2t~3 — p5 +  2p3

+

1 -  a 2 V (1 -  P2)2
2<t>aBn  f ( 2 t  -  3 )p2t -  (21 -  1 )p2t~2 -  p4 +  3p2 

1 — a 2

I F (
V da  J  

1 = 1  N y

2a(t -  2)

( 1 - P 2)2 

f  i?_1(A)
aR(A)X 

5 a  /

1 — a 2

2B n+
(1 -  a 2)2 ^

2 ctBu

1 — p2
' t—2 t—3

+

+

+

(1 — a 2)2( l  — p2

2 a 2B n
(1 — a 2)2( l  — p2 

2a2B n
(1 -  a 2)2( l  -  p  

Aa2B n
(1 — a 2)2( l  — p2 

4 a 3B n
(1 -  a 2)2( l  -  ^  

2a 3B n
(1 — a 2)2( l  — p2

2 a 4B n  
(1 — a 2)2( l  — p2)

5 > V " V +1 -  P2t+1~j ) +  3 ^ ( i ) a l - 1(/y +3 -  p2t- x-
w=i
' t - 3

j = 1
t- 4

]>~ 2 ( j ) a 3 1(pj+2- p 2t +  ^ P 7
<j= 1 
'  £—2

4=1
t—3

\ j ~  1

^J^C7)“ ,-1(P,+4 -  P2t-2+J)

/  i —3

4=1

] T ( jV  V +3 _
vj=i 
' £—4 t—5
^ ( j ) a J 1(pJ+3 - p 2t 1 +  V +5   2t—3—j\

\ i = i
t-4

i= l

^ ( jV
+4 _  2t—2—j\

W=1
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We can also show th a t M rn(9) has the following elements

where

M m(0)

M n  = -  J ]C 'on (ho ,(0 )) =  - ^ X ' i ? - 1(A)X,
Th TX

(  M n 0 0 0 )

0 M22 M23 0

0 M23 M33 0

 ̂ 0 0 0 M44 J

2 = 1 2=1

l
M 22 =  - J 2 C o v ( h u (e)) = 2<t>Hr[A{p)R(\)A(p)R(\)\

n  i= 1

2(f)2p2 (  2(p2 — p2t) 4-4 o-

j=i yf2

W 2pI
t  \  1 — pa

4 +

1 — p2

2 (pa -  (pa)*-1 )
+  * 2(1 +  P2)

1 "

M 23 =  -  ^  Cov(hu (8), h2i(0)) -  2cf>2tr  [A(p)R(X)A(a)R(X)}  
2 = 1

t-2

f2 1 — p2

2(p2 p (  p3 — p2t 1

j = i  /

+  2 S ( < “  1 - J ‘) a2 j-1
j=i >

4>2a p f 4 + 2{pa -  (pa)* J)

+

f \  1 — pa
</>2 / a  +  p \  f  p a -  (pa )*-1

(f -  2) V a  /  V 1 -  pa
1 "

Ms3 =  =  2</>2^  [^(a)i?(A )A (a)JR(A)]

1 _  p2 + 2 E ( i - l - j ) a « )

n 

24>2a
“ P “

i=l
,2„ 2 /  2 (p2 - p 2t)

t  +

402a  /  p3 — p2t 1

t ( i  — 2) I 1 -  P2

j=l /
t-2  >

+  2 ^ ( i - l - j ) a 2̂ 1
j=i y

26

(2.4.8)
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t-4
+ -

2 ( t  -  2 ) 2 

1 ”
M44 =  - ^ 2 Cov(gj(6)) =  2 4>H

2 { t  -  2) + [10(f -  3) + 2]a2 + J^(t -  3 -  j ) a 2 + 2 j
j = 1 y

i=l

Note that based on matrices (2.4.7) and (2.4.8), the covariance terms involving (3 are 
zero, indicating that (3m  is uncorrelated with estimators for the other parameters.

II.4 .3  Q uasi L east Squares

For the QLS method we note that, based on (2.4.1), we have

V ^ ( e q -  9 )  ~ A M V N  (0, I q 1 ( 9 ) M q ( 9 ) ( I ~ 1 ( 9 ) ) 1) (2.4.9)

where I q ( 9 )  = -  - ^ = 1  E
dhq,j(6)

86' , M q { 9 )  =  -  C o v ( h q: i ( 6 )) and the h q>i( 9 )  are
vectors of unbiased estimating equations defined as follows

hqM  = (hoiV),hu(0),h2i(e),9i(0))' 

h 0 i ( 9 )  =  X ' ( P ) R - 1 ( X ) Z i 

' d R - ^ X )

(2.4.10)

h u ( 9 )  =  t r
d p

9fT1(A)
d a

h 2 i ( 0 ) = t r  

9 i ( 9 )  =  t r  [ R - l { X ) Z i Z [ ]  -  t<j> 

where A is the solution to the following equations 

' d R - ^ X )

{ Z ^ - d R i X ) )  

( Z . Z ' - d R i  A))

t r

* > B u

t r

o  Bi

d p

d R x  2 

d p  

d R ~ \ A) 
d a

dR .22

R (  A) = 0  

E 21 +  B 2 2 R 2 I + B 12 R 2 1 B 12 +  R 2 2 B 22
d R 21

9p
=  0

i?(A) =  0

B 2 2 R 2 1 + t r
d R 22

9 a B 2 1 B 12 +  B 2 2 R 2 2 B 22 =  0

Note that A = (p, a )  are the “true” values of the correlation parameters. By taking 
the negative expectation of the partial derivatives for (2.4.10) with respect to 9
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and averaging over n  we obtain 1, ( 0), and by taking the covariance of (2 .4 .10) and 

averaging over n  we obtain M q(6). From here it is easy to  show th a t Iq(9) has the 
following elements

where

'i i

'22

'23

'32

( III 0 0 0

0 I 22 I 22 0

0 I 22 I 22 0

 ̂ 0 h 2 h 2 I 44 )

(2.4.11)

=  - 2  (f>

i—1

d R n

dh0i(9)
dp

d h u j e )

dp
. dR(p, a)

i= 1

R ~ \ A)

dp dp 

(I ^  ^ dhu(9 )
r>

5  d.R12~ „  9 i? i2 p
-£>2 1 - t ; — --D 21 +  -£>1 1 —^— -£>22

5p

3i?2l'

dR{  A) 
5p

r \  -*— Z Z  r \5p 5p

i=i
-<ptr R - 1( X ) ^ ^ - R - 1(X)d R ^

dp da

o i 9 f l 12 p  ^ 2 2  „— 2 0 — ----£>22 “W -£>21ap  o a  

5/i2i (6>)

2 = 1  N
5p

- 2 4 ^ b J * ± B *dp

I 22  —

da

dh2i(e)
da

= —<ptr

5 a  dp

da

=  — (/>fr
~ d R 22 ~ d R 22
-£>22 o -£>22

1-12 =

da  ^  da

i t  E ( m p . ) = * t r
2 = 1

4̂4 — - - T , En
2 = 1

da  

dgi(9)

fT ^ A )

i? - J(A)

aR(A)
5p

dR(X)
da

dp

4>tr B-
d R 22

2 2 ' 5 a

f.
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We can also show that Mq(0) has the following elements

where

M23

My2

■W33

44

Mg(9) =

( M n 0 0 0

0 M22 M 2 3 0

0 M32 M33 0

K 0 0 0 M44 )

(2.4.12)

Moo  —

- £ c » w « ) )  =  z j r x t x - ' m x ,  
11 ''

2 = 1

^ Y ^ C o v ( h u (6))

2 = 1

2= 1  

2,2<£ t r  

1

R - \ x y d R W  t->— !

<9p

n ^ C o y ( h H(0) , h 2i(0))
2 = 1

2  4>2 t r /?_1(A)i?(A)

M 23

^ J 2 Cov(h2i(9))
n 1 2 = 1

2  <fi2 t r  

1

n
Y ^ C o v ( g i ( 0 ) )  = 2t (f>2 .
2=1

Note that based on the forms (2.4.11) and (2.4.12), the covariance terms correspond­
ing to (5 are zero, indicating that f3q is uncorrelated with the estimators for the other 
parameters.

II .4 .4  C om parison o f A sym p to tic  Perform ance

Though all three estimating procedures yield consistent estimates of the correlation 
parameters, we want to compare their asymptotic performance. To do this we com­
pute asymptotic relative efficiencies (ARE) over the admissible range described in
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Figure 2 .3 : p ARE for MLE and MOM Methods

Section II.2 for all three estimation procedures. Implicit in this scenario is tha t 

observations are drawn from a multi-variate normal distribution.

To begin we set family size a t t  =  4, fix the number of families a t n = 1,000, 

set <f> = 3 and let both p and a  vary over the range shown in Figure 2.1. For each 

pair (p,a)  we calculate the asymptotic variances derived in Sections II.4.1, II.4.2 

and II.4.3 in order to  compute ARE. As the more efficient estim ator will have the 

smaller asymptotic variance, and since we are selecting a wide range of correlation 

values, these plots will show not only which estimating procedure is more efficient 

bu t also for which values of p and a  this is the case.

First we find the ARE for estimators of p. We show the ARE for the MLE and 

MOM m ethods in Figure 2.3. Here we see the ARE is highest when p is close to  zero, 

and the ARE drops sharply as p increases in magnitude. Note also th a t the ’crest’ 

in the ARE plot is weakly slanted in a positive linear fashion. For the MLE and 

QLS methods, the ARE plot is found in Figure 2.4. Here we note th a t the ARE is 

very high over a wide range of p and a,  indicating th a t the QLS estim ator variance 

is almost as small as th a t for the MLE, and only for extreme correlation values close 

to  the positive definite boundary does the efficiency of the QLS estim ator decrease 

w ith respect to  the MLE. Asymptotically, then, we see th a t QLS is comparable to 

MLE for most plausible correlation values, though the MLE is slightly better (which
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Figure 2-4-' p AR E for MLE and QLS Methods

must be the case). Lastly we compare the relative efficiences for the MOM and QLS 

methods, the plot of which is found in Figure 2.5. Here we see a similar pattern  

to  th a t found in comparing the MLE and MOM methods, th a t the ARE is highest 

when p is close to  zero and falls sharply as you move away from zero. This shows 

that, like MLE, QLS is asymptotically superior to  MOM.

We next compute ARE for the a  estimators. Starting with the MLE and MOM 

methods, we find the ARE plot in Figure 2.6. Here the ARE is highest when a  is 

closest to  zero, and the ARE drops quickly as a  increases in magnitude. This shows 

th a t MLE is superior to  MOM. For the MLE and QLS methods, the ARE plot is 

found in Figure 2.7. In this Figure we see the ARE is highest when a  is close to zero, 

and then slightly decreases as a  moves away from zero. As was the case for the p 

estimators, we see th a t the ARE is high over a wide portion of the admissible range, 

showing th a t the variance of the QLS estimator is almost as small as the variance 

of the MLE. Asymptotically, then, we see th a t QLS is comparable to  MLE for most 

correlation values. Lastly we compute the relative efficiences for the MOM and QLS 

methods, the plot of which is found in Figure 2.8. This plot shows a similar pattern  

to  th a t found in the M LE/M OM  case, th a t the ARE is highest when a  is close to 

zero and falls steadily as you move away from zero. Thus QLS is also superior to 

MOM.
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Figure 2 .5 : p AR E for MOM and QLS Methods
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Figure 2.6: a  ARE for MLE and MOM Methods
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Figure 2 .1 : a  ARE for MLE and QLS Methods
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Figure 2.9: A R E for MLE and, MOM Methods

We include ARE plots for the variance param eter as well. Figure 2.9 shows 

the ARE of <f> for the MLE and MOM procedures, Figure 2.10 shows the ARE for 

the MLE and QLS procedures, and Figure 2.11 shows the ARE for the MOM and 

QLS procedures. These Figures show th a t the QLS variance estim ator is good 

competitor with the MLE estimator, as the ARE is close to  one over most of the 

admissible range. The MOM variance estim ator is a good competitor to  both the 

MLE and QLS estimators over a much narrower region of p and a.

II.5 Sm all-Sam ple Perform ance

In the small-sample case, our goal is two-fold. We first gauge the small-sample 

efficiency for each m ethod under the assumption of normally distributed data, and 

second we gauge the efficiency when the data  are not normally distributed (i.e. when 

the data  come from a skewed or otherwise distinctly non-normal distribution). This 

later case will shed fight not only on efficiency but also on the robustness of each 

m ethod to departures from normality.

For both cases we fix sample size a t n  =  30, keep family size a t t  =  4 and set 4> = 3. 

We then simulate 1000 such samples for each of many combinations of p and a  (which 

vary over their admissible range), and for each sample we estimate the parameters.
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Figure 2 .1 1 : ARE for MOM and QLS Methods
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Figure 2 .1 2 : p RE for MLE and MoM Methods with Normal Data

We then calculate the average squared deviation of the estim ated param eter value 

from the ’’true” population values. The ratio of the estimated averages for any two 

estimating procedures is our estim ate of small-sample relative efficiency.

II.5 .1  Sm all-Sam ple N orm al C ase

We begin with the esimators for p. For MLE and MoM procedures, we get the results 

found in Figure 2.12. Note th a t the RE is greater than  1 in some places, indicating 

th a t for these values, the MoM estim ator has smaller estim ated variance than  the 

MLE estimator. For most values, however, MLE is still more efficient than  MoM. 

Figure 2.13 shows the relative efficiencies for the MLE and QLS methods. The RE 

is greater than  1 in some places, notably for large positive and large negative values 

of p and for small values of a. Here we see th a t QLS is a much better competitor to 

the MLE. Lastly we compare the QLS and MOM methods, the results of which are 

found in Figure 2.14. Like the MLE-MoM case, the RE is small for most values of p , 

with the variance for the MoM m ethod being smaller than  the variance for the QLS 

m ethod only for extremely large positive correlation values. Thus, for p estimators, 

we see th a t QLS is a much better competitor with MLE, and both MLE and QLS 

are still mostly superior to  MoM.
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Figure 2.13: p RE for MLE and QLS Methods with Normal Data
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Figure 2 .1 5 : a  RE for MLE and MoM Methods with Normal Data

We now move on to  estimators of a  in the small-sample normal case. For the 

MLE and MoM procedures, we get the results found in Figure 2.15. Here we notice 

th a t the RE is greater than  1 for small values of a  and is actually high for extreme 

values of p. For some values of p, the MoM estim ator is more than  twice as efficient 

than  the MLE, though this occurs close to  the positive definite boundary. We also 

note th a t the efficiency of MoM decreases as a  increases in magnitude. Figure 2.16 

shows the relative efficiencies for the MLE and QLS methods, which resembles the 

saddle shape found in Figure 2.15. Here the RE is greater than  1 over a wide range 

of p when a  is small and for large values of p. Only for moderately large values of 

a  is the MLE more efficient than  the QLS estimator. Thus we see th a t QLS is a 

much better competitor to the MLE in this situation. Lastly we compare the QLS 

and MOM methods, with the results found in Figure 2.17. This plot is similar to 

the MLE-MoM plot, noting th a t the QLS estim ator is more efficient than  the MoM 

estim ator for most correlation values. Thus, in the small-sample normal case for 

estimators of a,  we see th a t QLS is a much better competitor with MLE, and both 

MLE and QLS are better than  MoM, though not as much as in the asymptotic case.

Lastly we estimate the small-sample relative efficiencies for estimators of (j). Fig­

ure 2.18 contains the RE for the MLE and MoM estimators. Here we see the relative 

efficiency is close to  1 only for very small values of p and a , and th a t the RE quickly
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Figure 2 .1 6 : a  RE for MLE and QLS Methods with Normal Data
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Figure 2 .1 7: a  RE for QLS and MoM Methods with Normal Data
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Figure 2 .1 8 : <f> RE for MLE and MoM Methods with Normal Data

decreases as correlation increases in magnitude. This shows th a t the MLE variance 

estim ator is mostly superior to  the MoM estimator. In Figure 2.19 we have the RE 

for the MLE and QLS estimators. In this plot we see th a t the estim ated relative 

efficiencies are comparable for most values of p and a,  and for vlaues close to  the 

positive definite boundary, the QLS estim ator is more efficient than  the MLE. And 

finally, Figure 2.20 has the RE for the QLS and MoM estimators. This plot shows 

that, as was the case for MLE-MoM, the RE is close to 1 only for very small values 

of p and a , and the RE decreases quickly as p and a  increase in magnitude. Thus, 

in the small-sample normal case, we see th a t the QLS variance estim ator is a t least 

as good as the MLE and much better than  the MoM variance estimator. The MLE 

variance estim ator is also more efficient than  the MoM estimator.

Table 2.2 provides estimated infeasibility probabilities, or the probability tha t 

each estimating procedure yields correlation estimates outside the positive definite 

range. Using the same simulation procedure, we compute the estim ated probabilities 

as the number of times the procedure failed to  a provide an estim ate within the 

admissible range divided by the total number of simulations (1,000). Note th a t N / A  

indicates th a t those param eter values are outside the positive definite boundary. 

From this Table it is clear th a t the QLS procedure has an extremely low probability 

of producing inadmissible correlation estimates over the entire range of p and a.  The
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Figure 2.19: 4> RE for MLE and QLS Methods with Normal Data
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Table 2 .2 : Estimated Infeasibility Probabilities (Normal, Homogeneous Variance Case)

p M ethod -0.80
a

-0.70 0.3 0.70 0.80
-0.75 MLE

MoM
QLS

0.541
0.376
0.003

0.473
0.081
0 .0 0 1

N /A
N /A
N /A

N /A
N /A
N /A

N /A
N /A
N /A

-0.60 MLE
MoM
QLS

0.137
0.153
0.008

0.182
0.061
0 .0 0 1

N /A
N /A
N /A

N /A
N /A
N /A

N /A
N /A
N /A

0 .1 0 MLE
MoM
QLS

0.016
0.004
0 .0 0 2

0.018
0 .0 0 2

0.006

0.019
0 .0 0 0

0 .0 0 0

0.004
0 .0 0 1

0.003

0 .0 1 1

0 .0 0 0

0 .0 0 1

0.60 MLE
MoM
QLS

N /A
N /A
N /A

N /A
N /A
N /A

0.195
0.009
0.006

0.138
0.049
0 .0 0 0

0.090
0.171
0 .0 2 0

0.70 MLE
MoM
QLS

N /A
N /A
N /A

N /A
N /A
N /A

0.462
0.009
0.036

0.343
0.125
0 .0 0 1

0.351
0.307
0 .0 0 2

MLE and MOM procedures, though competitive for moderate param eter values, have 

high inadmissible probabilities for large values of p and a.

So in the small sample normal case, we see th a t the QLS procedure is much 

more competitive with the MLE procedure then they were in the asymptotic case for 

estimators of both p and a. Only for m oderate values does the MLE m ethod give 

the smallest variance in estimating p , while for a  the QLS m ethod gives the smallest 

variance when a  takes m oderate values, while the MLE m ethod gives the smallest 

variance if a  takes more extreme values. For estimators of (/>, QLS is a t least as good 

as MLE and is better than  MoM. Though MoM is inferior to  the other methods 

for all three param eters, it is a better competitor against the other m ethods for the 

correlation estimators.

II.5 .2  Sm all-Sam ple N on -N orm al Case

Here the goal is to  estim ate small-sample efficiencies when the Y.t Is are drawn from 

a non-normally distributed population. This will help us gauge the robustness of 

the estimating procedures to  departures from normality. Following the methodology 

used in Chaganty and Shi (2004), we simulate random observations from a beta 

distribution with a  = (3 =  | .  These param eter values result in a U-shaped pdf and
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Figure 2.21: p RE for MLE and MoM Methods with Non-Normal Data

thus yield non-normal random variates. Since correlation is both scale and location 

invariant, these simulations pose no problem for p and a. However, since variance is 

not scale invariant, we will not include <p in this portion of the analysis. We again 

f i x < - 4  and n — 30 and simulate 1,000 such samples for each choice of p and a.

We begin with the p estimators. Comparing first the MLE and MoM methods we 

get the RE plot in Figure 2.21. Here we see the MoM procedure is more efficient for 

extreme values of p and a , as well as for a large range of positive a.  Elsewhere the 

MLE is more efficient. We next compare the MLE and QLS m ethods in Figure 2.22. 

We see th a t the two procedures are fairly comparable for some values of p and a, 

with the QLS procedure performing much better for large p, and especially for large 

a  where we see a spike in the efficiencies. Here the estim ated variance of the MLE is 

around 4 times as large as the estim ated variance for the QLS estim ator. Lastly we 

compare the QLS and MoM procedures in Figure 2.23. Here we see th a t the QLS 

m ethod in general has smaller estimated variance than the MoM m ethod except for 

extreme values of p  and a.

We now move on to  estimators of a. Comparing first the MLE and MoM m ethods 

we get the RE plot in Figure 2.24. Here we see th a t the MLE procedure has smaller 

relative efficiency when a  is large positive and large negative. However, The MoM 

procedure is comparable when a  is close to  zero and is better for extremely large p.
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Figure 2 .2 2 : p RE  for MLE and QLS Methods with Non-Normal Data

Figure 2 .2 3 : p RE for QLS and MoM Methods with Non-Normal Data
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Figure 2.2^.: a  RE for MLE and MoM Methods with Non-Normal Data

We next compare the MLE and QLS methods in Figure 2.25. Here we see th a t the 

MLE procedure preforms better for extreme values of a,  while the QLS procedure 

performs better for small to  m oderate values of a  and especially for large p, where the 

QLS estim ator vastly outperforms the MLE. Lastly we compare the QLS and MoM 

procedures in Figure 2.26. Here the two methods are comparable when a  is close to 

zero, QLS is better for m oderate and large values of a, and the MoM procedures is 

better when both a  and p are large and positive.

Lastly we estim ate infeasibility probabilities for each estimation procedure. Ta­

ble 2.3 shows the estimates of these probabilities over a wide range of p and a. Here 

we see th a t the QLS procedure has low error probabilities for all values of p and a. 

The MLE procedure is competitive with QLS for small values, yet performs poorly 

for large values, while the MOM procedure is nowhere competitive.

So in the small-sample non-normal case we see tha t QLS is now outperforming 

the MLE procedure for most values of p and a , both with regards to  estimated 

efficiency and estimated infeasibility probability. The MoM procedure is also much 

more competitive with the MLE procedure, though not as much with QLS.
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Table 2 .3 : Estimated Infeasibility Probabilities (Non-Normal, Homogeneous Variance Case)

p M ethod -0.80
a

-0.70 0.3 0.70 0.80
-0.75 MLE

MoM
QLS

0.783
0.499
0.000

0.665
0.150
0.004

N /A
N /A
N /A

N /A
N /A
N /A

N /A
N /A
N /A

-0.60 MLE
MoM
QLS

0.303
0.253
0.000

0.263
0.082
0.000

N /A
N /A
N /A

N /A
N /A
N /A

N /A
N /A
N /A

0.10 MLE
MoM
QLS

0.137
0.611
0.002

0.129
0.462
0.002

0.046
0.402
0.000

0.000
0.738
0.000

0.000
0.578
0.000

0.60 MLE
MoM
QLS

N /A
N /A
N /A

N /A
N /A
N /A

0.114
0.442
0.001

0.811
1.000
0.000

0.525
1.000
0.001

0.70 MLE
MoM
QLS

N /A
N /A
N /A

N /A
N /A
N /A

0.679
0.022
0.041

0.897
1.000
0.001

0.943
1.000
0.001

II.6 H yp oth esis  T esting

In this Section we develop hypothesis testing procedures involving the correlation 

param eters for each estimating method. We develop hypothesis tests for general 

functions of the  correlation param eters, and then concentrate upon specific examples 

and compare their performance through simulation.

II.6 .1  L ikelihood R atio  Test

Under maximum likelihood estimation we are assuming the da ta  are normally dis­

tributed. Knowledge of the multivariate normal likelihood function allows us to 

utilize a likelihood ratio test for hypothesis tests regarding the correlation parame­

ters.

Generally, we test a null hypothesis th a t some function of the correlation pa­

rameters (h(A)) is equal to  some constant, or H a : h(A) =  c. To do this, we take 

the ratio of the likelihood evaluated with the maximum likelihood estimates under 

H a (the restricted M LE’s) against the likelihood evaluated with the so-called unre­

stricted maximum likelihood estimates. Let 0o = (B0. A„, (f)0) be the restricted and
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8  =  (/?, A, (p) the unrestricted MLE’s, respectively. Then the likelihood ratio test 

statistic is

\ ( 0 ) =  n ^ i  fiiVifio)
r a u  M m ®

(27r)-f ( l ) -^ \R(X0)\^exp  ( - 4 -  £ ”=1(^  -  X i W R r 1 (%,)(* -  X & j )  

'  (27r)-n̂ ( ^ \ R ( X ) \ ^ e x p  ( - 4 ^  (Y, -  X zp y R ^ ( X ) ( Y % -  X tf j )

Note th a t po =  -  X ^ ' i r 1^ ) ^  -  X & )  and £  = ~

X i p y R - ' f y i Y i  -  X iP), so th a t
n t  n

2 ( \ R ( \ 0 ) \ \ ~

m = ^ <  ' - m )
Recall under the central limit theorem th a t —21n(A(#)) has an asymptotic chi-square 

distribution with d = dur — dr degrees of freedom, where dur is the number of param ­

eters in the unrestricted model and dr is the number of param eters under H0. Thus, 

the test statistic becomes

—21n(A(0)) =  nt  ^ln(^0) — ln(0)^ +  n  ^ln |i?(A0) | — In |T2(A)Q . (2.6.1)

The most obvious special cases for the correlation param eters are H 0  : p = 0 and 

H 0  : a  =  0. For testing H 0 : p =  0, we note th a t R ( A0) =  R(0, a 0). The determinant 

of the correlation m atrix  is simply the determ inant of a t  — 1 by £ — 1 autoregressive 

matrix, or (1—a?2)*-2 . Recalling the determ inant of R ( A) under the full model (2.2.2), 

we get the following likelihood ratio test statistic for H 0 : p = 0

—21n(A(0)) =  n t  l̂n(<?i0) — ln(0)^ +  n (t — 2) In ( l  — a^) (2.6.2)

— n(t  — 3) ln (l — a 2) +  n ln ( l  — p2)

- n l n  ((1 -  a 2) ( l  -  ? )  -  {p2 -  ft“ ) -  S V  -  p2‘- 2) +  2a ( f  -  p2̂ ) )  •

Since the difference in the number of param eters between 0O =  (fi0, 0, S0, cp0)' and 

9 = (P,p,a,4>)' is 1, then 2.6.2 is asymptotically Xi-

2  2 i

For testing H 0  : a  = 0, it can be shown th a t \R(p, 0)j =  1 — Thus the

likelihood ratio test statistic for this null hypothesis is
'-'■21 \

1 -  ^ — p -  J  (2.6.3)

— n( t  — 3) ln (l — a 2) +  n ln ( l  — p2)

— n ln  ((1 — S2)( l  — p2) — (p2 -  p2t) -  3 2(p4 -  p2t~2) +  2a(p 3  -  p2t_1))
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which is asymptotically x\-

II.6 .2  W ald ’s Test

Both the M ethod of Moment and Quasi-Least Squares procedures employ quasi-log- 

likelihood functions, as opposed to  proper log-likelihood functions, so the likelihood 

ratio test is not available for these methods. However, we have derived the asymptotic 

variances for the MOM and QLS estimators, 9m and 9q respectively ((2.4.7) through

(2.4.12)).

W ald’s Test states th a t for testing the null hypothesis H 0 : h(9) =  0, where h(9) 

is a function of 9 (possibly vector valued) and 9 is an estim ator with asymptotic 

variance I ~ l (9), 1(9) being Fisher’s Information m atrix, the test statistic

- l
T =  n h ( 9 f  ^H(9)Tr 1 (9)H(9) h(9) (2.6.4)

has a chi-square distribution with d = rank(h(9 )) degrees of freedom. Here H(9) = 

is a vector (matrix) of partial derivatives of h(9) with respect to  9. Recalling 

th a t though we cannot calculate 1(9) for the MoM and QLS cases, we have derived 

their asymptotic variances I ~ 1 (9)Mn(9 )( Ip (9 ) )T , so tha t the so-called Wald-Type 

test statistic becomes

T  — nh(9)r  H(9)TI ~ l (9)Mn( 9 ) ( I - \ 9 ) ) TH(9) h(9) (2.6.5)

which again has an asymptotic chi-square distribution with d = rank(h(9))  degrees 

of freedom.

For instance, if we test H 0  : p =  0, then h(9) = p , H(9)  =  ( 0 1 0 0 )T, and 

our test statistic is

- l

T  = np 2 ( 0  1 0  0 ) I~ l (9)Mn(9 ) ( I - l (9 ) f

( ° \
1
0

\ 0  )

(2 .6 .6)

which is asymptotically Xv  Likewise, if we were to  test H 0 : a  =  0, then h(9) = a ,
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H { 6 ) = ( 0 0 1 0 )T , and our test statistic is

T  = na ( 0  0 1 0 ) i - 1 {d)Mn{ e ) { i ~ \ 6 ) f

( o \

0

1

\ 0  )

- i

(2.6.7)

which is also asymptotically Xi-

For the MOM estim ator recall th a t we defined the asymptotic variance matrices 

In(9) and M n(9) in (2.4.7) and (2.4.8), respectively. If we are testing H 0  : p = 0, then 

we substitute 9m, Im(9m) and M m(9m) into (2.6.6) to  get our estim ated W ald-Type 

test statistic.

^  _  n PlMnm,p= 0  —
W)

n Pra
M-22 2 tr

(2 .6 .8)

where Am =  (pm, a m) are the MOM estimates of the correlation parameters. Simi­

larly, for testing H a : a  =  0, we get

7m,a=0 n R2m<P2m na„
M-33 2 tr

(2.6.9)

Note th a t both  A(p) and A(a)  are previously defined ((2.3.8) and (2.3.9), respec­

tively).

For the QLS procedure, recall th a t we defined the asymptotic variance matrices 

I n(9) and M n(9) in (2.4.11) and (2.4.12), respectively. If we are testing H a : p — 0, 

then we substitute 9q, Iq(9q) and M q(9q) into (2.6.6) to  get our estimated Wald-Type 

test statistic.

Tq,p= o npa
(I22I33 — I23I32)2 

-^22^33 +  M33/23
(2 .6 .10)

where and M VJ are the i j t h  elements of (2.4.11) and (2.4.12), respectively, evalu­

ated at 9q. Similarly, if we are testing H(t : a  = 0, we get

rr\ C - 2■*-q,a= 0  — TlCXq (I2 2 I 33 — I 2 3 I 3 2 ) 2 (2 .6 .11)
M22/32 +  M33/ I2 _

For both of these hypotheses, the test statistics have an asymptotic chi-square dis­

tribution with one degree of freedom.
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II .6 .3  E stim ated  Significance Levels

To gauge the performance of the Likelihood Ratio Test for the Maximum Likelihood 

Estim ating procedure and the W ald-Type tests for the M ethod of Moment and Quasi- 

Least Squares procedures, we make use of simulations to estim ate significance levels. 

Depending on the hypothesis of interest, we either set p =  0 or a  = 0 and fix the 

other correlation param eter a t some admissible value. Note th a t when a  = 0, the 

admissible range for p is (—0.68,0.74), and when p = 0, the adm issible range for a  

is (—1,1). For each combination of p and a, we simulate n  =  30 observations of size 

t  = 4 with (f> = 3 from a multivariate normal distribution. For the likelihood ratio test 

we calculate both the restricted and unrestricted maximum likelihood estimators, 

which should be similar as the simulated data  reflect the conditions stated in the 

null hypothesis. For the W ald-Type test, we calculate the the m ethod of moment 

and quasi-least squares estimators using the da ta  and use these to calculate the 

asymptotic variances. Since we are simulating data  assuming the null hypothesis is 

true, we expect to  not reject the null hypothesis. However, due to randomness there 

is a chance th a t the simulated data  will yield estimates th a t will cause us to  reject H 0. 

Recall th a t for each test we reject H 0  if the test statistic is greater than  a  chi-square 

critical value x l  f°r a particular significance level. If we choose a significance level of 

0.05, then the critical value is 3.841. If we repeat these simulations a large number 

times (5,000) for a particular value of the non-zero correlation param eter, then the 

estim ated significance level of the test is the ratio of the number of times we reject 

the null hypothesis to  the to tal number of repeated simulations. If we then repeat 

this procedure over a wide range of values for the non-zero correlation param eter, we 

get an idea of how the test performs in many scenarios.

Based on the Law of Large Numbers, we expect the estim ated significance level 

to  be close the chosen level (0.05) if the estimating procedure is providing accurate 

estimates. The variance of the estimators increases with the absolute size of the 

correlation parameters, which means th a t we should on average reject the null hy­

pothesis more often for large values of the correlation param eters than  we would 

for small values. Thus, the estimated significance level should be small for small 

correlation values and larger for large correlation values.

We begin by analyzing H 0 : a  =  0. The results for the likelihood ratio test
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Figure 2 .2 7 : H a : a  = 0 -  Estimated Significance Level for LRT (MLE)

(LRT) are seen in Figure 2.27. From this we clearly see th a t the LRT yields an 

estim ated significance level close to  the actual significance level over a wide range of 

p. However, as p approaches its positive definite boundary the estim ated significance 

level increases dramatically, as expected. This shows th a t for testing H 0  : a  =  0, 

the likelihood ratio test works well for small to  moderate values of p, bu t not for 

large values. Figure 2.28 shows the estim ated significance level for MoM using the 

W ald-Type test. Here we see the same general pattern  shown for the LRT, with 

an estim ated significance level approximately equal to  0.05 over a wide range of p. 

Again, the level increases as the m agnitude of p increases, bu t not as much as in 

the LRT. Lastly, Figure 2.29 shows the estim ated significance level for QLS using 

the W ald-Type test. It is clear from this plot th a t the estimated significance level is 

close to  0.05 for a wide range of p, and then increases as the m agnitude of p increases 

for moderately large values. Note th a t plots for the MLE and QLS are very similar. 

Thus, for testing H a : a  = 0, all three tests (LRT, and Wald-Type test for both MoM 

and QLS) perform similarly.

Now we concentrate on the H a : p = 0. Figure 2.30 shows the results of the 
LRT, and we see th a t the estim ated significance level is vaguely U-shaped, centered 

at small values of a. However, noting the range of the estimates, we see th a t the 

estim ated significance levels are close to  0.05 for most a  values. This shows tha t
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Figure 2 .3 0 : H0 : p = 0 - Estimated Significance Level for LRT (MLE)

the LRT is a very strong test for this hypothesis. Figure 2.31 shows the results for 

MoM using the W ald-Type test. Here we see th a t the estim ated significance level is 

accurate for small values of a, but it then increases as the m agnitude of a  increases. 

Finally, Figure 2.32 gives the estimated significance levels for the QLS procedure 

using the W ald-Type test. Here we see th a t the estimated significance levels are 

high for small levels of a  (around 0 .10), but then decrease as the m agnitude of a  

increases. Thus, it is clear th a t for testing H 0 \ p — 0, the LRT is much better than 

the Wald-Type test.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



55

WTSJ
0 .3 0

0 .2 5

0.10

0 .8■1.0 • 0 .6 ■0.4 - 0 .2 0 .0 0 .4 0 .8 0 .8 1 .0

Figure 2 .3 1 : H 0 : p =  0 -  Estimated Significance Level for Wald-Type test (MoM)

MTSJ
0 .1 5

0 .1 4

0 .1 3

0 . 1 2

O . t l

0 . 1 0

0 .0 9

0 .0 8

0 .0 7

0 .0 6

0 .0 5

0 .0 2

0 .0 1

0 .0 0

•1 .0 • 0 .8 ■0.6 ■0.2 0 .0• 0 .4 0 .2 0 .4 0 .6 0 .8 1 .0

a lp h a

Figure 2 .3 2 : Ho : p =  0 -  Estimated Significance Level for Wald-Type test (QLS)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



56

CHAPTER III

A R (1) STRUCTURE W ITH HETEROGENEOUS VARIANCE

I I I . l  In trod uction

In this Chapter we again focus on the autoregressive familial correlation structure, 

where we now model heterogeneous intra-class variances. This variance-covariance 

m atrix is of the following form.

D ( < f > ) R ( \ ) D ( $ )

^  4*p y /  'Pp f i s p y / f i p ^ s P y f  t y p f i s P y j  ( f r p f i s P

y /  4>p 4' s P  4>S (f>s a <j>s Oi2

s j  <j)p(j)sP2 4>sOi (j>sOi 4>s o t ~2

\ y / f i p f i s P 1' 1 <M*~2 <?W~3 (f)s a t~4 <t>s

(3.1.1)

Recall th a t <j)p is the parental variance and 4>s is the child variance. Im portant to 

note here is th a t neither of the variance param eters (<I> =  ((pp, <ps)) factor out of 

the variance-covariance m atrix in scalar form. Thus param eter estimation will differ 

from th a t in Chapter II.

This chapter is organized as follows. In Section III.2 we discuss im portant prop­

erties of the correlation structure (3.1.1), specifically the inverse, determ inant and 

positive definite range of the correlation param eters. We briefly present the three 

estimation procedures in Section III.3 and apply them  to (3.1.1). In Section III.4 

we find asymptotic variances of the estimators and compare their asymptotic perfor­

mance. Section III.5 provides small-sample properties for each estimation procedure 

in both the normal and non-normal cases.
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III .2 P rop erties  o f  C orrelation M atrix

To find the determ inant of (3.1.1) we make use of the property th a t the determ inant 

of a m atrix product is the product of m atrix determinants, or

ie ( a ,* ) | =  \ D ( m w D m  = \ D m \ R ( m D m  = \ D m 2 \R(x)\.

Further, the determ inant of a diagonal m atrix with non-zero elements is the product 

of those elements (here, D ($ )  = [diag(cpp, <ps, ■ ■ - , >̂.s)]1/2). Thus,

i s (a , c&)| =

We have already shown in Chapter II th a t 

(1 -  a 2)4” 3
|fl(A)| =  1 (3.2.1)

x  [ ( 1  -  « = ) ( !  -  p 2 )  -  ( p 2 -  p 2 <)  -  a  V  -  P 2 ' - 2 )  +  2 « ( P 3 -  P 2 ' ” 1 ) ]

so th a t we get

|S(A ,*)I =  ^ ‘~1 ( (1 1~ r ^ ‘"a )  (3-2.2)

x [ ( 1  -  « 2)(1  -  / )  -  -  ? )  -  « V  -  ? - * )  +  2 a(p 3 -  / * - ') ]  .

To find the positive-definite range of the variance (T) and correlation (A) param ­

eters, we create an inequality by setting the determ inant of the variance-covariance 

m atrix (3.2.2) greater than  zero, or |E(A, $ ) | >  0. Since both <fip and <f>3 must be 

greater than zero, we are left with |i7(A)| >  0, as defined in (3.2.1). Thus the positive 

definite range is the same as th a t found in Section II. 2 for the homogeneous variance 

case.

Recall th a t the inverse of a product of symmetric matrices is equal to  the product 

of m atrix  inverses. Thus,

S-!(A , $ ) =  d - ^ i t ^ a jd -1 ^ )

where D _1($) =  [diag(l/<j)p, 1 /0 S, • • • , l / ^ ) ] 1̂ 2, and R- 1(A) is the same as Chap­

ter II. More formally, we find £ - 1(A, T) by partitioning the matrices D (T) and R (A) 

as follows. Let f n  =  (l/(pp ) 1^ 2 and T22 =  { l / ^ s Y ^ I t - i  represent the l x l  and
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(t -  1) x (t -  1) non-zero partitions of D  1($ ), respectively. Partitioning f i - 1(A) as 
in Chapter II, we get

r r u  0

o r 22 

r i i B u r u  r n B 1 2 r 22  

r  22^21 Tn P 22  B  2 2 ^  22

with

" fill B \ 2

1

o __
_i

f i21 b 22 o r 22

T n B n T n  =  T 2n B u  =  — B

T n B 1 2T 22

r 225 2 ir i i

r 22JB22r 22

4p
>11

(1 - a 2) ( l  - p 2)
(1 -  a 2) ( l  -  p2) -  (p2 -  p2‘) -  « 2(p4 -  p2t-2) +  2 a (p3 -  p2*"1) 

B n l t - i  =  —r = = B i 2
yj4p4s

B li

~  “ 2)

0 V

„t-I
V p

+ Of
J . - 2P

V 0 )

(

— a

V
p + p

pi-3 +  pt- 1

v p
, i — 2

( r n 5 12r22)/ 

~ r h - i B 2 2 I t - i  = - j-B 22

1

<&,(! -  a 2)
( / t - i  +  a 2C2 -  aC i)

x / i - i  +
f i ­ll

1 — a 2

(  p2 p3 

p3 p4 nt+1

V pi pi+l . . .  p2i—2 j

( l t - i  +  a 2C2 — nC i)

A list of partial and second derivatives of the variance-covariance m atrix appear 
in Appendix A.2.

III .3 P aram eter E stim ation

In this section we derive param eter estimators for the maximum likelihood (MLE), 

m ethod of moments (MoM) and quasi-least squares procedures. For each procedure
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we use the same estim ator for the regression param eter

P =
i= 1

(3.3.1)
i=1

where A =  (p , S) is the vector of correlation param eter estimators and $  =  (cf>p, <fis) 

is the vector of variance param eter estimators. To avoid certain problems explained 

in the next subsection, we use moment estimators for the two variance param eters 

as shown in Elston (1975). The estimators are found using the following unbiased 

estimating equations.

(3.3.2)
i = l

&  A{p) =
1 o 
0 0

Y  [ Z - A ^ Z i  -  (f -  1 )</>,] =  0 (3.3.3)
i = l

'  0 0 \
<£> A (a)  =

V 0 /*_! /

Solving (3.3.2) and (3.3.3) for 4>p and </>a, respectively, yields

n

~  „ (3.3.4)
n ■ 1 l—l

0 3  5)n(t — 1)5 > j = 1 j - 2

where £tJ =  yij — Xij/3 is the residual of the j t h  member of the i th  family. Note th a t <pp 

uses only the squared parent residual (zu), as it is the only residual with expectation 

<f>p, and cps uses the squared residuals of all (f — 1) children, as their expectation is </>.,. 

Also, Z n =  X)"=i (Zi — Xij3) (Yi — XiP)' is the residual matrix, which is partitioned as 

follows

=  ( ? T )\  X'21 ^22 /
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where

Zxx

<N £

WII

2=1

Z \i =  ( E " =

•̂ 21 =  ^ 2

(  E

E "=  1 z i l z i2 £ ”= 1 ZilZiZ ■ ■ ■ E ”=l Zi l Zit )

•^22 —

E n 2 v'fi-
i=l Zi2 E z= 1 zi2zi3

E n v̂ zz 2
i=l zi2zi3 X/j=l zi3

E n r^n
 ̂ i=l zi2zit 2—ii=l zi3zit

E n \
i=1 zi2zit

E n
i=l zi3zit

E n J2
1=1 zit )

III .3.1 M axim um  L ikelihood

Maximum likelihood estimation in the heterogeneous variance case is similar to th a t 

found in the homogeneous variance case, except now the variance param eters are 

more deeply embedded in the likelihood function. Nevertheless, we attem pt to  find 

estimators by maximizing the log-likelihood function with respect to each param eter. 

The log-likelihood function is now

n t  n  1 ”
I  =  - ¥ ln(27r ) - - l n | E ( A , $ ) | - - J ] ( ^ - X 2 / ? ) /E - 1(A ,$ )(y2 -X i/3 ).

i—1

Recall th a t E(A, <!>) =  D (Q )R(\)D (& ),  and the log-likelihood becomes 

i  =  —y  ln(27r) -  |ln(</>p) -  ^  ln (^ )  -  ^\R(\)\

-  X i f l ’D - ' W R - ' W D - ' W i Y i  -  Xtf).  (3.3.6)
2= 1

Note th a t we will sometimes express the last term  in (3.3.6) as — | t r  [E—1 (A, <3?)Zn].

Since $  is embedded quadratically into (3.3.6), we will not get a closed-form 

variance estim ator as we did in the homogeneous case. We could solve for the two 

variance param eters (T =  (<f>p, <f>a)) simultaneously by taking the derivative of (3.3.6) 

with respect to $  to  get the two estimating equations for the variance param eters as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



61

found in (3.3.7).

d l
d<t>P

n

(3.3.7)

ftp B \ \Z \ \  + 4>P 2 4>s 2 B 1 2 Z 21 — n — 0

d l
oc - t r  

2

n

E - 1( A , $ ) ^ ^ S - 1(A ,$ )Z n 

d 0 s

<-> <j)s H r(B 2 2 Z 2 2 ) +  (ftp2 4>s 2 B 1 2Z 21 — n(t  — 1) =  0 .

However, these estim ating equations do not yield closed form solutions and have 

problems with convergence if solved for numerically using Newton-Raphson or some 

other iterative technique. Thus, we use moment estimators (3.3.4) and (3.3.5) for 

the variance parameters.

The correlation param eters may be solved for simultaneously using the Newton- 

Raphson m ethod with estimating equations (3.3.8) and (3.3.9).

d l
dp

dl_
da

1
oc - t r E - 1(A, $ ) z

n
~2 tr

dp 
d£(A,4>) 

dp

tr
dp

— ntr R - l ( A)

<£>
dp iP2 4>s2

o d R i 2 d R 21
£>11— — 0 2 2  + -£>12-̂ —n>!2dp dp

dR{ X) 
dp

Z 2\

(3.3.8)

=  0

dR 21 _ d R 2l
\2-^22D22~?\----------- fit)  1 2 —   =  UK 1 BioZoo.B'

dp dp

oc - t r >7 1 (A, <I>) <I>} >i 1 (A, <I>)Z

n
~ 2 tr

^  (X, <f>)

O  tr

da  
dS ( A,4>) 

d a  
dR(A)

(3.3.9)

=  0

T*-1 ( ^ R ” 1 ( A ) ( A ) ! ) ” 1 ($ )Z

P;1b u ^ b 2 1 z u  + >

— ntr R (A)
dR(A)

d a

4>s Hr

d a
dR 22 -  '

£>22 “VC -£>22^22da

>p 2 <j>s 2 B 12 —pp— B 2 2 Z 21

n tr

d R 22

dc 
r

B 22

da
d R 22

da
=  0
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Thus, we find the MLE of 9 by iterating between estimation of f3, <f>, and A. More 

specifically, we s ta rt with initial values A0 and T0 of the correlation and variance 

param eters and use these to  estim ate (3. We then use (3 to  calculate Zn, and then 

estim ate $ . Using Z n and $ , we then estim ate A and use $  and A to re-estimate (3. 

Repeating in this m anner until convergence, we arrive a t the maximum likelihood 

estimate, 9e = (J3e, Xe, fIy).

III.3 .2  M eth od  o f M om ents

We begin the m ethod of moment procedure by using (3.3.1), (3.3.4) and (3.3.5 to 

estimate (3 and <f>, respectively. To find estimators for the elements of A we use the 

following two estimating equations

Y / Z'iA(p)Z i = 0 (3.3.10)
i=l
n

i=l

1 0 1 / f t  0

0 0 / 2 v ^  \ 0 0
Zi = 0

and

Y , Z ’iA (a )Z i = 0

a  (  0 0

(3.3.11)
2=1

E z <

where 65

i=1

0 1 

1 0

0 0
Zi = 0

t  -  1 V 0 It-1  )  2 (t — 2 ) 0 Cl

and C% is defined in Chapter II. Solving (3.3.10) and (3.3.11)

for p and a , respectively, gives the following moment estimators

'ftp.m z i l z i2
Pm —

L2>s,m 2_,i=1 *1.Ji=1 i l

( t  ~  ■*•) E x =1 E i =2 Zi J z i , j+l
n y'* c-2(t -  2) ELr EL:

(3.3.12)

(3.3.13)

Note th a t the num erators of these estimators are practically the same as those used 
in Chapter II.

Procedurally, then, we first assume th a t $  =  (1,1) and A =  (0,0) (i.e. response 

variables of all family members are independent) or use sample statistics and solve
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for (3 using (3.3.1). We then use (3 to  compute Z n, and then estim ate $  =  ((pp,<ps) 
with (3.3.4) and (3.3.5) and A =  (p, 3) with (3.3.12) and (3.3.13). We then use these 

to  re-estimate (3 and continue in this m anner until convergence. These estimators, 

Ofji = ((3m, Am, <3?to), are then the moment estimators for 9.

III .3.3 Q uasi-L east Squares

In this case we note th a t the quasi-log-likelihood function is defined as

n
s ( o )  =  J ^ ( y ; - x i/3) ,s - 1( A , $ ) ( y ; - x i/3) (3 .3 .14)

i = 1 
n

=  z p - \ \ ,  m i = t r  [ s - ^ a ,  m » ]  •
2= 1

Recall th a t X(4>, A) =  D ( $ ) R ( \ ) D ( $ ) .  For the Step 1 estimators of (3 and A we 

maximize (3.3.14) with respect to  those param eters, however we m ust account for <f>, 

the vector of variance param eters th a t do not factor out of the quasi-log-likelihood. 

Thus we propose including simple moment estim ators of the variance param eters in 

Step 1 so th a t estim ators of the other param eters may be obtained, recalling th a t in 

the homogeneous case there was no need to  estim ate variance param eters in the first 

step.

The QLS procedure outlined here contains two steps. In Step 1 we begin by 

selecting initial values 4>0 =  (4>Pt0 ,4>s,o) and A0 =  (p0, a 0), which we take as either 

sample statistics or (1 , 1) and (0,0), respectively. We then find (3, the Step 1 estimator 

of (3 using (3.3.1) evaluated at the initial values T 0 and A0. We then use (3 to 

update the residual m atrix Z n and estimate with (3.3.4) and (3.3.5). We now 

use $  =  (pa) and Z n to  estim ate the correlation parameters, which is done by
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maximizing the quasi-log-likelihood function with respect to  p and a. 

0S(9)
dp

d_
dp

tr
dp

=  0

<-» —tr
aE(A0,<f>) -

dp
S ~ : (A 0 , $ ) Z n

 ̂ 1 Bu.n  ^——B 2 1 ,0 ^ 1 1  +  4>s XB l 2 ,0-^22-622,0Up -011,0- dp

= 0

dR,2 i,o
dp

(3.3.15)

+ ^ 1/2C 1/2

OS(0)
da

d_
da

—tr

tr

„  dR.2 i,oE R d R \ 2 ,o p
-012,0 Qp -£>12 ,0 +  -Pi 1,0— -Q 0 2 2 ,0

da

Z 21 — 0 

=  0

S -i(A o, $ ) aS (^ ° ’$ ) S -i(A 0, $ ) Z n

7-i p  d R 22,o

da

B 2 1 ,0 Z h  +  4>s 1̂ r  

d R 2

= 0 (3.3.16)

p d R 22,Q „ 77
•D22,o —^---- -022,0^22da

+ W p ll 2 r s l l 2 B i 2 , o - ~ ^ B 2 2<0 Z 21 = 0

We m ust solve for p and a  simultaneously using Newton-Raphson. Now we use $  

and A to  re-estimate /?, and iterate in this m anner until convergence. Then A =  (p, a) 

is the Step 1 estim ate of A.

As shown in Shults and Chaganty (1998), the Step 1  estimates of the correlation 

param eters are biased, as can be seen by taking their expectation.

E

E

dS{ 6 )
dp

dS (0 )
da

— tr

oc tr

= tr

oc tr

a E - x(A0,$ )
dp

d Z - \ \ 0,$ )
dp

d'E~1 (X0, $ ) 
da

dE-\A0,i)
da

E {Z n) 

E(A,<f>) 

E (Z n) 

E(A,<f>)

7^0

t̂ O

7^0

7^0

(3.3.17)

To eliminate this bias we tu rn  (3.3.17) into a set of estimating equations ((3.3.18) 

and (3.3.19)) th a t we solve for p and a, respectively. Here we again set A0 =  (p0, a 0), 

either sample statistics or (0,0), and fix A =  (p ,a)  as the Step 1 estimators of the
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correlation param eters. Note th a t we do not need values for $  as they cancel out of 

the equations. We then get the following Step 2 estimating equations for A

tr

tr

O  B n  

tr

O  tr

E -^ A  ,$ ) -
dp

0 (3.3.18)

- U ^ d R ( X )  D_X/
0

8 R i 2

~ w
B 2i +  B 2 2 R 2 1M + B 12

E ^ A ,  <f>) ^  E " 1 (A, $)E(A 0, 4>)

72-1 Q r - ' m r m

R 21,0B l2 +  # 22-^22,0 

=  0

8 R 21
dp

=  0

(3.3.19)

=  0

^  B 1 2 ^ B 21 + 2 B 1 2 ^ B 2 2 R 2 i,o + tr  d a  da
~ 8 R 22  jj „  
•t>22 Q~ £>220-22,0 da

= 0 .

The two estimating equations (3.3.18) and (3.3.19) are solved simultaneously using 

Newton-Raphson. These values, Ag, are the Step 2 estimators for the correlation 

param eters p and a. We then use these estimators to update fi and $  as before. The 

QLS estim ator of 0 is 6 q — (/3q, Xq, $ q)'.

III.4  A sym p to tic  V ariance and Perform ance

In this section we derive the asymptotic variance covariance matrices for the MLE, 

MOM and QLS estimators described in Section III.3. In each case we make use of 

the Theorem by Joe (2.4.1) to  find the asymptotic variances for the estimators.

III.4 .1  M axim um  Likelihood

Typically for the MLE (6 f) we use Fisher’s Information m atrix to  find the asymptotic 

variance, knowing th a t

y/n(pt - 6 ) ~  A M V N { 0, I ~ \ 6 )) (3.4.1)

where 1(6) — —E  (d21/8686'). However, since we are using moment estimators for 

the variance param eters, we cannot use the Fisher Information. Thus, we make use
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of the Theorem described in (2.4.1) to  find a more general form of the asymptotic 

variance and show th a t

(3.4.2)

where I e(6 ) = ~^Y17=i(dhe,i(9)/d9), M t (9) =  f r a c l n Y S =1 Cov(htii(9)) and hlti(0) 

is a vector of the unbiased estimating equations th a t lead to  the maximum likelihood 

estimators for 6 . We define htj(Q) as

he,i {6 ) = (h0i (6>), hu (9), h2i (i9), gu (6 ), g2i (6 ))'

ho i

hi i

^ ) Z i

=  tr

h2i =  Z\

= tr

dp 

d~P

da  
9 E - 1(A, <3>)

d Z ~ \ A ,$) 
dp

(ZiZ'i — E(A, 4>))

da

Qu = Z iA ( <f>p)Zi — 4>p = Z i 

= tr  [A^pjZiZ '^ -  (f)P

a s - ^ A ,^ )
da  

E(A,4>))

S(A, <f>)

E(A,<f>)

1 0

0 0
Z,; -

(3.4.3)

g2i = Z-A(ds)Zi -  (t -  l)ds -  Z\

= tr  [A(ds)ZiZ'd\ - ( t -  l)ds-

0 0

o I t-1
Z i - ( t - 1)ds

By taking the negative expectation of the derivative of (3.4.3) with respect to  9 

and averaging over n  we obtain h{9). and by taking the covariance of (3.4.3) and 

averaging over n  we obtain M ?(()). From here it is easy to  show th a t I((6 ) has the 

following elements

(  I

m  =

I n 0 0 0 0
0 I22 I 23 I 23 I25

0 I23 I33 0 /35
0 0 0 Z44 0
0 0 0 0 I 55

\

(3.4.4)
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where

I n  =

'22

i p i2=1 N

i=1 v

-2 B n P p B 22

dh 0i (9) 
d/3

d hu {9) 
dp

dR'n

'  i=  1

=  — tr

I 2 3  — i E * {
i = l  V

■*— &A r\op op 

dhu {9)

0 D 9R,2i d  d R 2i
-̂£>12~55— £>12 '

I'M —

da

d R 2i
a -£>2 2 —̂ — d a  dp

dhu {6 )

-tr

dp dp

da dp

dR .22 R
- Z JD 1 2 — ----- -£>22

n ,

S >
2 = 1  V

k~ 'd R n R
^  ~ d f

=  —2 tr

21

'25 -  - - J 2 En
2 = 1

r1̂

d h u ( 0 )
= —2 tr

dp d(pp

d R W
dp d(j>s

d R■21

I33 —
1

n

-tr

n ,
E e (
i=1 V

dp 
d h2i (9) 

da
-tr R - u x f - m R - H x)? m

da da

o  d R ‘22 D  dR /22  
1 >22da da

'35 . I v e
n d<bs

= —2 tr
d a

-R  ( \ ) D  ($)- d<t>s

4>s l tr
\ d R-22 S.22

I44 —

I 55 —

■ 5 * (

■S‘(

da  

dgu(9) 
d<t>p

dg2i{9)
d<t>s

= 1

=  2 - 1 .
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We can also show th a t M e(9) has the following elements

M t {0)

/ M u 0 0 0 0

0 M 22 m 23 0 0

0 M 23 M 33 0 0

0 0 0 M 44 M 45

0 0 0 M 45 M 55 )

where

M u  =

M 22 =

i f ^ C o v i h o i i d ) )  =  ^ X ' S - X(A,$)W
r i  , ft1=1 i
1 n

C ov(hu( 6 )) = 2 tr

i=l

dpn i= 1 <9p

dp dp r\ r\dp dp

M,23 =  ~ ^ 2  Cov(hu {9), h2i {9)) =  2 tr

M-n —

i P  d R 22 d R 2l
4n>i2-^— o 22— — d a  dp
1 "
-  ^ 2  Cov(h 2i (d)) =  2tr

^ W S4 » R - ' ( X ) d R m
dp da

n i= 1 act 3 a

2t r D d R 22 D 3i ?22
-£>22 r, £>22

M 44 —

M 45 —

r 'l  Z.-6 r \a a  da

i  £  Cov(gii(6)) = 2tr [A((f>p)T,(X, 4>)AL(0P)£(A, $)] =  2 $
n i= 1

(3.4.5)

^  £  C W ( 5 u ( 0 ) ,  < & ( * ) )  =  2 t r  [ ^ ( ^ ) S ( A ,  $ ) 4 ( & ) £ ( A ,  $ ) ]  =  ^
n. —  I  — fpi—1

n
Ms5 =  ~ J 2  Cov(92 im  = 2tr [4(&)£(A, $)i4(^)£(A, $)]

»=i 

=  2^
t—2

J = 1

By taking the inverse of R(9) and pre- and post-multiplying upon M f (9) we obtain the 

asymptotic variance of the MLE estimators. Note tha t, based on matrices (3.4.4) 

and (3.4.5), the estim ator for /? is uncorrelated with the estimators for the other 

parameters.
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III.4 .2  M eth od  o f  M om ents

For the M ethod of Moments (MOM) estim ator (9m) we have

(em - e ) ~ A N  (o, i - \ e ) M m{0){i-\e))') (3.4.6)

where I m(d) = - d X)"=i(dhm>i(9) /  d9), M m(9) =  ^ Y Z = i Cov(hrn,i(G)) and hm,i(8 ) is 
a vector of the unbiased estimating equations th a t lead to  the MOM estimators for 

9. For any i =  1,..., n, hm,i{9) is defined as follows

h m , i ( 6 )  =  { h o i ( 9 ) , h l i ( 9 ) 1h 2i ( 9 ) , g l i ( 9 ) , g 2i ( 9 ) y  

h 0i =
h u  = Z ' t A ^ Z i  = t r  [ A ( p ) Z i Z A

P (  1 0 \  l _  I  C3 Q
0 0

(3.4.7)

=  Z\
\ f tfp  \  0  0  J  ‘ly/Ws  \

h,2i — Z[A(a)Zi  =  t r  [A(a)ZiZ-]

a _ f  0 0 \  1

* - 1 V 0 It-1 )

Zi

= z:
0 0

0 0
9u = Z - A ^ Z i  -  4>p = Z\

=  tr  [A((f>p)ZiZ '} -  (j)p 

92% =  Z[A{<j>s)Zi — (t — 1 )<f>s = Z\ 

= tr  [A(4>s)Z iZ'i\  - { t -  1 )<f)s.

2 (t -  2 ) \  o Ci 

1 0

Zi

Z{ rp[-

o o

o It-1
Zi -  ( t -  i)<f>s

By taking the negative expectation of the derivative of (3.4.7) with respect to  9 

and averaging over n  we obtain Im(9), and by taking the covariance of (3.4.7) and 

averaging over n  we obtain M m(9). From here it is easy to  show th a t Im{9) has the 

following elements

Im{9)

/ /l l 0 0 0 0 \

0 I 22 0 I 24 I25

0 0 h:i 0 0
0 0 0 I 44 0

V 0 0 0 0 I55 /

(3.4.8)
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where

/ n

I 22 ~

h i  —

'25

'33

dh0i(9
dp  

d h u {9

n

dp

dhu (9

h i

h s

n  ,

E b (
i —1 V

l ± E {i=l v

n ^  V d<t>P

1 /  dhu(Q

' » f c r  v
4 x>( a „

j=i x
dh3i(9

n  i= 1 '
1 "

- i V B71 * J

d h2i(9

i=1

) = l ' £ x ; s - \ \ ^ x ,
'  2 = 1

=  - d T

2 (j)p2

p4>1/ 2

2 4>s

=  1

= t - 1 .

We can also show th a t M m{9) has the following elements

M m(9)

/ M n 0 0 0 0 \

0 M 22 if/23 0 if/25

0 if/23 if/33 if/34 if/35

0 0 M34 if/44 if/45

V 0 if/25 if/35 if/45 if/55 /

where

(3.4.9)

■t n  1 n

=  - ^ C o n ( h Oj(0)) =  - ^ X ' E - 1(A,4>)Xi 
2 = 1  2 = 1

M22 =  l i t  c M hu(9)) =  2 tr [Al(p)E(A, $M (p)S(A , $)] =  ^ ( 1  -  p2)
»=i
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-^ 2 3  = -  5 3  Cov(hu (e), h2i{d)) =  2t r  [At(p)S(A, $ )4 (a )E (A , $)]
2 = 1

2ap4>y2 4>s(p2 -  p2t) 2 p $ 1*>t f  -  P2t~l ) 2(j)y2 (t)s{ap -  (ap )4)

+

( t - l ) ( l - p 2 ) ( i - 2 ) ( l - p 2 )

4>y2 M a  +  P)(<*P -  (qp)*-1)
a(t  — 2)(1  — ap)

(:t -  1)(1  -  ap)

M,25 =  -  5 3  C W M 0 ) ,  M <?)) -  2tr  [A(p)E(A, $ ) J4(0S)E(A, $)]
i = 1

=  2p(f>y2(f)s p 2 -  P2f
i  — p2

24>y2 <t>s{ap -  (ap)4) 
a ( l  — ap)

M 33 n
5 3  Cov(h 2l (e)) = 2 t r  [j4(a)E(A, $)A (a)E(A , $)]
2 = 1  

2 a 2 <f>2s 
(t -  l )2

t - 2

( t - l )  + 2 ] T ( t - l - j ) a 2j
3 =1

t - 3

+
(* -  2 )2

(t -  l ) ( i  -  2) 

( i - 2 ) ( l  +  a 2) + 4  5 3 ( i - 2 - i ) a 2̂

t - 2

X > - i
■ 3=1

J=1

M34 =  “  £  C °v(h 2 i(8 ), hx (Q)) =  2t r  [A(a)E(A, 4>)^(0P)S(A, $)]
2 = 1

2 4*p&s
1 — p 2

a (p 2 — p2t) p3 — p,2t - n
t - 1 t - 2

Ms5 =  ^  £  C M M ^ ) ,  M # ) )  =  2 tr [At(a)E(A, $)A l(^)E(A , $)]
2 = 1

2 a<t>2s 
( t -  1)

t - 2

(2 - l )  +  2 5 ] ( 2 - 1 - i ) a :23

3=1 ( t - 2 )

t-2
5 3 ( t - i - j > :23-

J —1

M 44 —

M 45

-  5 3  C o t^ M * ))  =  2 tr [A (^)E(A , $ ) 4 ( « y  E(A, $)] =  2 ^
»=1 

1 "
-  5 3  Cov(hSi(8 ), h4i (0)) = 2tr  [j4(0p)E(A, $)A (& )E(A , $)]

2 = 1

2(f>p4>. P2 -  P2t

M,55

1 -  p 2

-  5 3  Cov(h 4i (6 )) = 2tr  [A(4>S)E(X, $ )4 (& )E (A , $)]
n

2 <t>:

i=1 

2
t - 2

(2 -  1) +  2 5 3 ^ -  1 -
i=i

71

1
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By taking the inverse of Im{9) and pre- and post-multiplying upon M m(9) we obtain 

the asymptotic variance of the MOM estimators. Note th a t, based on matrices 

(3.4.8) and (3.4.9), the estim ator for (3 is uncorrelated with the estimators for the 

other parameters.

III.4 .3  Q uasi L east Squares

For the Quasi-Least Squares (QLS) estimator, 9q, we have

(eq - e ) ~  A M V N  (0 ,1 - \ 9 ) M q{9){I-l {9))') (3.4.10)

where I q{9) = - f r a c l n j ^ =1 (dhqii(9)/d9), M q(9) =  ( l/n )X T = i Cov(hq<i(9) and 

hqti(6 ) is a vector of the unbiased estimating equations th a t lead to  the QLS es­

tim ators for 9. For any i =  1,..., n, h q̂ {9) is defined as follows,

hq,i{9) = (h0i (9 ) ,h li(9 ) ,h 2i(9 ) ,g li (9 ) ,g 2i{9 ))' 

hoi = X 'E -^ A  ,$ )Z i

r a s - 1(A ,$)
h . -  ... hu  — Z^ ^ Zi tv

= tr

dp

d E ^ j X ,  $ ) 
dp

dp

(Zfz ; - Z (  A ,*))

d E - \ A, 4>)

S (A ,$)

tr

da

d E ^ j X , ® )
d a

da

(Z iZ ’i -  £(A,4>))

£ (A ,$ )

1 0 

0 0
9 u — Z'iA{(j>p)Z i — (j)p — Z\

=  tr  [A(<f>p)ZiZ-} -  (f)p 

g2i =  Z-A(<f>s)Zi -  (f -  l)<j>s = Z[ 

=  tr  [ A ^ Z i Z - } -  (f -  1  )<j)s

Ji 'Vp

o o 

0 It - 1

(3.4.11)

Zi -  ( t - 1)4>s
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where A is the simultaneous solution to

t r

t r

d p

d R u  
d p  

d R T l ( A) 
d a

11-

R ( X )  = 0  

B -21 + B 2 2 R 2 I + B 12 R 2 1 R 1 2  + R '22 B 2 2
d R21

d p

R{  A) =  0

^  B u ^ B 2 i  +  2B 12^ B 22 R 2 i  +  t r
d a d a B 2 2 ^ B 2 2 R 22

d a

By taking the negative expectation of the derivative of (3.4.11) with respect to  9 

and averaging over n  we obtain I g ( 9 ) ,  and by taking the covariance of (3.4.11) and 

averaging over n  we obtair 

following elements
M From here it is easy

/ I n 0 0 0 0 \

0 I 22 I23 I 24 I 25

0 I 32 I 33 I 34 I 33

0 0 0 I 44 0

V 0 0 0 0 I 55 /

(3.4.12)

where 

h i  =

I 22  —

n
Z— 1

\  1
S 0  )  =  - E ^ - 1( A , W

1

U  i=l ^ d p

9 R 2 i

= tr R - r x ) a- ^ R - \ x f m

'23 n

d p  d p  

d h u { 9 )

2 B u d- ^ B a

d p

d R - 2 1
d p

d p

i = 1 d a
— t r

d p

d p  d a

'24

~ d R 22 5 d R 2 \—-£>22—x—
d a  d p  

_1 g, ( dhu{9)

2 = 1  

-1 i

= —2 t r

=  - 2  rvlB

d(f>p

d R \2 ~ i ~ d R \2 pc r.11 q  B 2 i  —  4>p  B n  ^  B 2 2 R 2 1

R - 1 ( X ) ^ ^ - R - 1 (X)R(X)D^(^)
o<pp d p

-1 5 9 R 21 ~
-£>12^ ; — n>l2' t 2l

d p

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



74

*25 =  l = - 2 t r
2 = 1

50s

2 0 s B 1 2R 2 2 B:
dR,■21

2 2 "
1 - 1  i

0 <ps

d R

dp

*32

5p
<9M#)

5P
tr

B \ 2 - q  B 1 2R 21 — 4>s 1 B n R u B :
d R ■•21

2 2 " dp

*33

_  OD dR -22 3  5i?2l
— -̂*-*12 o  -022“ ^ d a  dp 

dh 2i(0 )

i P i2 = 1

n
/34 =  — Y , En

da

dh 2i (d)
d<t>pi= 1 '  “ 'rP

d R

-tr

= —2 tr

da

3  5i?22 g  5 0 22
0 2 2 —r.— -D225 a 5a

-0  (A)
5a 0 _1(A).0(A).D5($)

*35

P B 12
1-22

^  021 — 4 'p1B  12 0 022-0215 a

n

1-1 012022"

S M * )
90s

5022

-2tr 5 0 2( ^ ) i?- i ( A ) d ^ ) i?-i(A )jR(A)jC)l($ )

5a
B-21 B

d(f>. 

5022
22 —7̂---da

da

022022

n “ i \  d4>p J

*55
1 "

=  — E *5n 'i=i

dff2»(<9)
d<t>s

= t -  1 .

We can also show th a t M q(6 ) has the following elements

M ,(0 ) =

/ M u 0 0 0 0

0 M 22 M 23 M 24 M25

0 M 23 M 33 M 34 M 35

0 M 24 M34 M 44 M45

I 0 M 25 M 35 M45 •W55

(3.4.13)

where

AT,11
 ̂ n 1 n

- Y , C o v ( h 0i(d)) = - J 2 X £ - 1(\,p)X,
l—l 1=1

M22 n
J 2 c o v (h u (e))
i—1
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=  2 tr

=  2 B 12 q ^ 1 (B n  + B 1 2 R 2 1 ) + 2 B n — — (B 21 +  B 2 2 R 2 1 ) dp

+ 4 5 u - ^ — (i?2i +  B 2 2 R 2 i ) B \ 2  1 {Bn  +  B 1 2 R 2 1 )

^ B \ 2 ~  (5ni?i2 + B 1 2 R 2 2 )
dp

~  f)R  —
+4-Bl2 q J  { B \ \ R \2 + B 1 2 R 2 2 )

+4-Bn— — (-B21-R12 +  B 2 2 R 2 2 )  
dp

4-Bn—x—(B21-R12 + B 2 2 R 2 2 )  dp

B 22 7a— (4?ii +  B 1 2R 2 1 ) 
dp

B 21 (B 2 I +  B 2 2 R 2 i)

B 22  o  1 (-Bll +5l2-R2l) dp

B 2 1 ^ ( B 2 l + B 2 2 R 2 l) dp

+2 (S l l i?12 +  B i 2 R 2 2 )B-
dR'■21

2 2 ' dp

+ 4  g *2 (B 2 1 R 12 + B 2 2 R 2 2 )B 2 2 —q ^ - { B h R i 2 +  ^ 12-R2l)-B21

+2
dR 12

dp
(B 2 1 R 12 +  B 2 2 R 2 2 )B-21

M:23 - Y 'C o i ; ( / i i i (0 ) ,/i2i (0))
n i=i

2i r
dR(X) D_, M (A ) __xi? - 1( A ) ^ 4 i ? - 1(A)JR(A)JR -1( A ) - ^ i ? - 1(A)JR(A) 

di?21 / o , n 7-> •A n di?22 ,2 ^ 1 2  ^  ( B n  +  B 1 2 R 2 1 ) J  B n  ^  (i?2i +  B 2 2 R 2 1 ) 

2 f 5 n  A^2 ( ^ 2i +  -622-^21) )  -B12 (B21 +  B 2 2 R 2 1 )
dp

2 ^#12  (B \ iR i 2 +  B 1 2R 2 2 y j  B 22 {B21 + B 2 2 R 2 1 )

2 f-Bn ^  (-B21-R12 +  B 2 2 R 2 2 ) j  7?22 (-B21 +  B 2 2 R 2 1 )

2 (̂4?11 + -E?12-R2l)-Bl2̂  — — ( B 2 1 R 1 2  +  B 2 2 R 2 2 )-̂ 22"a/? 21

dp

2 ((BUi212 + B i 2 R 2 2 ) B 2 2 Sj  ,)^2 ( B j i  R \ 2  + B 2 2 R 2 2 ) B 2 2 -
d R 21

dp
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2 ({B ll  +  622621)612^ (B 2 1 R 12 +  622622)621

2 ~q ( (̂R 2 1 R 12 +  622622)622^ (621612  +  622622)621

M24

dp

=  - ^ C W M ^ O ^ i i ^ ) )
2 = 1

4(f>p

p  d R 2 1 p  . p  5i?21p p
-D12—5 -Dll +  -012—̂  -£>12-0:21op dp

611— — 622621 +  612621612622'
dp dp

M 2 5 —
1= 1  

- 4^ 611 621612621 +  6 1 2 —JT"1 612622621
dp dp

- 4 ^ 6 n — — 622622621  +  612622622622

M 3 3  —

dp

- T C o v ( h 2i (9))
r>. '

5p

1 = 1

=  2£r
_pT, 56(A) D_ p  

5 a
f i ' 1(A) ^ ^ 1(A )-R (A )r1( A ) ® 6 - 1(A)6 (A)

6 1 2 ^ ( 6 2 1  +  622621) + 2 6  5  9 i?22pD-12-D22  -£>21
5 a

~ dRoo ~  ~ ~ dRoo ~ —
+4612 ^  (621612 +  622622)622 ^  (621 +  622621)

+ 4612622^ 6 2 2 6 2 2 6 2 2 ^ 6 2 1  
5 a  5 a

+ 2  tr  

1

5622  „  _  _  5622  p  p

-£*22 = --- -£*22 £l22 £*22 = --- £*22 41-22
5 a  5 a

34
1=1

-2 dP 6 1 2 ^ 6 2 1  +  2 6 i 2 ^ 6 226 2i +  6 1 2 6 2 2 ^ 6 2 2 6 2 1

m 35 =

-*—  z  _l t “ - ^ I Z  r-Ya a  a a

- ^ C o i ; ( / i 2i (6»),5r2i(<9))

5 a

n i=i
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By taking the inverse of I q(6 ) and pre- and post-multiplying upon M q(9) we obtain the 

asymptotic variance of the QLS estimators. Note that, based on (3.4.12) and (3.4.13), 

the estim ator for /? is uncorrelated with the estimators for the other parameters. It 

is also im portant to  note th a t (3.4.3) and (3.4.11) differ only by the value of A. Thus, 

if A is close to  the population value of A, the asymptotic variances of the MLE and 

QLS estimators will also be close.

III.4 .4  C om parison o f  A sy m p to tic  Perform ance

In this section we compute the asymptotic relative efficiency (ARE) of the variance 

and correlation param eters for the MLE, MOM and QLS procedures. In each of 

the three cases we set t = 4 and n  =  1, 000 and compute the asymptotic variances 

of the estimators derived in III.4 a t specific values of $  and A. The ratio of the 

asymptotic variances for the same estimator, then , is the ARE. By varying p and a  

over their admissible range, we get an idea not only of the large-sample efficiency of 

one estimating procedure with regards to another bu t also how the efficiency changes 

with the param eter values. For our purposes, we have selected <j>p =  49 and 4>s =  16.

We s ta rt with estimators of p. The ARE plot for the MLE and MOM procedures 

is found in Figure 3.1. This plot shows th a t the asymptotic variances are comparable 

only for a small region when p is close to  zero. The ARE is low elsewhere. Figure 3.2 

shows ARE for the MLE and QLS procedures. Here we see th a t the variances are 

comparable over a wide range of admissible values. The ARE is low only when a  

is extremely large (both positive and negative). Finally, Figure 3.3 shows the ARE
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Figure 3 .1 : p ARE for MLE and MOM Methods
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Figure 3.2 : p ARE for MLE and QLS Methods
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Figure 3 .3 : p ARE for QLS and MOM Methods

between the QLS and MOM procedures. Here we see th a t the ARE is comparable 

only for a small area when p is close to zero. These results imply th a t the the 

MLE and QLS estimators of p are highly competitive asymptotically, whereas both 

methods are asymptotically superior to  the MOM correlation estimators.

We now focus on a  estimators. The ARE plot for the MLE and MOM procedures 

is found in Figure 3.4. This plot shows the asymptotic variances are comparable for 

small values of cc, and the efficiency of the MLE increases with respect to the MoM 

estim ator as a  increases in magnitude. Figure 3.5 shows the ARE for the MLE 

and QLS procedures. Here we see th a t ARE is comparable over a wide range of 

admissible values and is low only when p and a  are extremely large (both positive 

and negative). Finally, Figure 3.6 shows the ARE for the QLS and MOM procedures. 

Here we see th a t the ARE is comparable over an area corresponding to  small values of 

a, and the ARE decreases as a  increases in magnitude. These results imply th a t the 

QLS correlation estim ator of a  is highly competitive with the MLE asymptotically, 

whereas both methods are asymptotically superior to  the MOM correlation estimator 

of a.

Lastly we analyze the variance parameters. Recall th a t we used the same esti­

mators for <f> in all three methods, and thus we would expect th a t the ARE be close 

between each procedure. In fact, we see th a t this is indeed the case. Figures 3.7
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Figure 3-4: a  ARE for MLE and MOM Methods

Figure 3.5 : a  ARE for MLE and QLS Methods
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Figure 3.6: a  AR E for QLS and MOM Methods

and 3.8 give the ARE for all three comparisons: the MLE and MOM procedures, 

the MLE and QLS procedures, and the QLS and MoM procedures, for cj>p and <j>a, 

respectively. Based on these plots, we see th a t (asymptotically) all three procedures 

estim ate $  =  ((f>p, <f>3) with the same precision.

III.5  Sm all-Sam ple Perform ance

In this Section we estimate the small-sample variance of the correlation param eter 

estimators through use of simulated data. To do this we fix T, with <pv — 49, 

<f>s =  16, and select a pair of values for p and a  within their positive definite range. 

W ith these param eter values, we simulate n =  30 observations from a multivariate 

normal distribution w ith t  =  4 and calculate the  ML, MoM and QLS estimators. We 

then repeat this procedure 1,000 times for the same values of A. We estim ate the 

variance of the correlation param eter estim ator by summing the squared deviations of 

the estim ate from the ’’true” correlation param eter value and divide by the number 

of times the estimating procedure yielded feasible estimates. We then repeat this 

procedure for other values of p and a  so th a t we can see how the estim ated variance 

of the correlation param eter estimators changes as the correlation param eter values 

themselves change.
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Figure 3 .8 : <j>s ARE for MLE and MOM, MLE and QLS, and QLS and Mom Methods
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Figure 3 .9 : p RE for MLE and MOM Methods with Normal Data

We also estim ate the small-sample variances of the correlation param eters when 

simulating d a ta  from a non-normal distribution. This allows us to  gauge the ro­

bustness of each estimating procedure to departures from normality. Specifically, we 

simulate da ta  from a beta  distribution with both param eters equal to  1/ 6 , as this 

gives a u-shaped pdf, which is distinctly non-normal.

To compare the small-sample performance of the estimating procedures, we use 

the small-sample estim ated variances to  calculate relative efficiencies. These ratios 

allow us to  determine which estimating procedure has the smallest estim ated variance 

for the correlation param eter estimators, and for which values of p and a  th a t this 

is the case. Note th a t since the asymptotic relative efficiencies for the variance 

param eters (j)p and <ps everywhere equal to  one, we will not include the small-sample 

efficiencies for those param eters here. However, they were found to  be close to  one 

for most values of p and a  away from the positive definite boundary.

III.5 .1  Sm all-Sam ple N orm al Case

We first study the case of normally distributed simulated data, and begin with esti­

mators of p. Figure 3.9 gives the estim ated efficiencies between the MLE and MoM 

procedures. In this Figure we see th a t the efficiencies are below one everywhere,
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Figure 3 .1 1 : p RE for QLS and MOM Methods with Normal Data

meaning th a t the MLE has smaller estimated variance than  the MoM estim ator for 

all correlation param eter values. Note th a t for small values of p and a  the estimated 

variance of the MoM estim ator is comparable to  th a t of the MLE, and this is espe­

cially the case for large values of a. For large values of p the MLE has much smaller 

estim ated variance than  the MoM estimator. The efficiencies for the MLE and QLS 

procedures are found in Figure 3.10. Here we note tha t the estimated variance for 

the QLS estim ator is comparable to  th a t of the MLE for small and moderate values 

of p, and is smaller for large values of a. For large values of p. the MLE has smaller
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Figure 3 .1 2 : a  RE for MLE and MOM Methods with Normal Data

estim ated variance. Lastly, the efficiencies for the QLS and MoM procedures are 

found in Figure 3.11. In this Figure we see th a t for small p and a  the QLS estimator 

has smaller estim ated variance than  the MoM estimator. Only for extreme values 

of the correlation param eters does the MoM estim ator have smaller estim ated vari­

ance than  the QLS estimator. So among estimators of p, both the MLE and QLS 

procedures outperform the MoM procedure in the small-sample norm al-data case, 

and the QLS procedure is comparable to the MLE for most values of the correlation 

parameters.

We now move on to  estimators of a. Figure 3.12 shows the estim ated efficiencies 

for the MLE and MoM procedures. Here we see th a t for all bu t extreme values of a  

the MoM estim ator has smaller estim ated variance than the MLE. This is especially 

the case for extreme values of p and a. Figure 3.13 gives the estimated efficiencies 

for the MLE and QLS procedures. In this Figure we see th a t the estimated variance 

of the QLS estimator, like th a t for MoM, is smaller than  th a t for the MLE almost 

everywhere, especially for extreme values of p and a. Lastly, Figure 3.14 gives the 

estim ated efficiencies for the QLS and MoM procedures. Here we see th a t for small 

and moderate values of a, the estim ated variances for the QLS and MoM estimators 

are roughly the same. For large values of a, the QLS estim ator has smaller estimated 

variance, and for large values of p, the MoM estim ator has smaller estimated variance.
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Table 3 .1 : Estimated. Infeasibility Probabilities (Normal, Heterogeneous Variance Case)

p M ethod -0.80
a

-0.70 0.3 0.70 0.80
-0.75 MLE

MoM
QLS

0.175
0.000
0.000

0.590
0.000
0.026

N /A
N /A
N /A

N /A
N /A
N /A

N /A
N /A
N /A

-0.60 MLE
MoM
QLS

0 .0 0 1

0.000
0.000

0.065
0.000
0.000

N /A
N /A
N /A

N /A
N /A
N /A

N /A
N /A
N /A

0 .1 0 MLE
MoM
QLS

0.000
0 .0 0 2

0.000

0 .0 0 2

0 .0 0 1

0.000

0.030
0 .0 0 0

0.000

0 .0 0 1

0 .0 0 1

0.000

0.000
0 .0 0 1

0.000
0.60 MLE

MoM
QLS

N /A
N /A
N /A

N /A
N /A
N /A

0.436
0.000
0 .0 1 2

0.068
0.000
0 .0 0 0

0 .0 0 2

0 .0 0 1

0.000
0.70 MLE

MoM
QLS

N /A
N /A
N /A

N /A
N /A
N /A

0.518
0.000
0.031

0.307
0.000
0.007

0.042
0.000
0.000

For estimators of a, then, we see th a t both the QLS and MoM estimators perform 

better than  the MLE in the small-sample norm al-data case, with the QLS and MoM 

procedures performing equally well.

Along with the estimated variances and efficiencies, we also estim ate the proba­

bility of infeasibility for each procedure. Using the same simulation procedure (and 

simulations) th a t generated the estim ated variances, we estim ate the infeasibility 

probability as the number of times the estimating procedure gave correlation param ­

eter estimates th a t were outside the positive definite boundary, divided by the total 

number of simulations (1,000). The estimated infeasibility probabilites for select 

values or p and a  are given in Table 3.1. Most strikingly we see th a t both the MoM 

and QLS procedures have almost negligible estim ated infeasibility probabilities for 

all values of p and a  listed in the Table. Recall th a t in Table 2.2 in Chapter II, 

the MoM procedure had large estim ated probabilities for extreme values of p and 

a. This essentially means th a t these two procedures produce correlation param eter 

estimators within the positive definite boundary nearly all the time. Note th a t the 

estim ated probabilities are high for the MLE procedure for extreme values of the 
correlation parameters.
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Figure 3.15: p RE for MLE and MOM Methods with Non-Normal Data 

III .5.2 Sm all-Sam ple N on -N orm al C ase

Now we study the case where our da ta  are simulated from a non-normal distribution. 

Beginning with estimators of p, the plot of small-sample estim ated efficiencies for 

the MLE and MoM procedures is found in Figure 3.15. Here we see th a t for most 

values of p and a  the estimated efficiency is below one, indicating th a t the estimated 

variance for the MLE is smaller than  th a t for the MoM estimator. Notably, the 

estimated variance of the moment estim ator is close to th a t of the MLE for small 

values of a, and its efficiency with respect to the MLE decreases as a  increases in 

magnitude. Figure 3.16 gives the estimated relative efficiency for the MLE and QLS 

procedures. Here we see th a t only for extremely large values of a  is the variance 

of the QLS estim ator smaller than  th a t of the MLE. However, over a wide range of 

small to  moderately large values of a  the estim ated variance of the QLS estimator 

is comparable to  th a t of the MLE. Lastly, Figure 3.17 gives the estim ated relative 

efficiency for the QLS and MoM procedures. Here we see th a t for most values of p 

and a  the QLS procedure has smaller estim ated variance than the MoM procedure. 

For small values of p we see th a t this is especially the case. For small correlation 

values, the estim ated variances of both procedures are more or less equal. In the 

small-sample non-normal case with regards to estimators of p, we see th a t both the 

MLE and QLS procedures have smaller estimated variances than  the MoM procedure,
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Figure 3 . 1 6 : p  R E  fo r  M LE and Q LS Methods with N on-Norm al D ata

Figure 3 . 1 1 : p R E  fo r  QLS and M O M  Methods with N on-Norm al Data
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Figure 3 . 1 8 : a  R E  fo r  M LE and M O M  Methods with Non-Norm al Data

and the QLS and MLE estimators are comparable for most correlation values.

We now move on to  estimators of a. Figure 3.18 gives the estimated relative 

efficiency for the MLE and MoM procedures. Here we see th a t for all but very large 

a, the estim ated relative efficiency is larger than  one, indicating th a t the variance 

of the MoM estim ator is smaller than th a t for the MLE. This is especially the case 

for large values of p. Figure 3.19 gives the estim ated relative efficiency for the MLE 

and QLS procedures. Like the MLE and MoM case, we see here th a t the estimated 

efficiency is greater than  one for almost all correlation param eter values, indicating 

th a t the estimated variance of the QLS estim ator is smaller than  th a t of the MLE. 

Notice in some places the estimated efficiency is as high as 8 . Finally, the estimated 

relative efficiency for the QLS and MoM procedures is found in Figure 3.20. In 

this plot we see th a t for small values of a, the estimated efficiency is close to  one, 

indicating th a t the estimated variances for the param eter estimators are close in 

value. However, as a  increases in magnitude, the variance of the moment estimator 

increases with respect to  the QLS estimator. Only for very large values of p close 

to the positive definite boundary does the MoM estimator have smaller estimated 

variance. For estimators of a,  then, both the QLS and MoM estimators have smaller 

estim ated variance than  the MLE, while the estim ated variance for the QLS estim ator 

is smaller than  th a t for the MoM estimator.
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Table 3 .2 : E stim ated Infeasibility Probabilities (Non-Normal, Heterogeneous Variance Case)

p M ethod -0.80
a

-0.70 0.3 0.70 0.80
-0.75 MLE

MoM
QLS

0.052
0 .0 0 0

0 .0 0 0

0.016
0 .0 0 0

0 .0 0 2

N /A
N /A
N /A

N /A
N /A
N /A

N /A
N /A
N /A

-0.60 MLE
MoM
QLS

0.505
0 .0 0 1

0 .0 0 0

0.015
0 .0 0 0

0 .0 0 0

N /A
N /A
N /A

N /A
N /A
N /A

N /A
N /A
N /A

0 .1 0 MLE
MoM
QLS

0.169
0.155
0 .0 0 0

0.050
0.090
0 .0 0 0

0.004
0 .0 0 0

0 .0 0 0

0 .0 0 1

0.017
0 .0 0 0

0 .0 0 0

0 .1 1 2

0 .0 0 0

0.60 MLE
MoM
QLS

N /A
N /A
N /A

N /A
N /A
N /A

0.836
0 .0 0 0

0.014

0.337
0.442
0 .0 0 0

0 .1 2 2

0.832
0 .0 0 0

0.70 MLE
MoM
QLS

N /A
N /A
N /A

N /A
N /A
N /A

0.172
0 .0 0 1

0 .0 1 1

0.836
0.006
0 .0 0 0

0.338
0.718
0 .0 0 0

We have also estim ated infeasibility probabilities for the estimating procedures 

using the same simulated data  used to  estim ate the small sample variances in the non­

normal case. These estimates are found in Table 3.2. Note th a t the MLE procedure 

has high estim ated infeasibility probabilities for large values of p and a, while the 

QLS procedure has very small estim ated probabilities for all correlation values. The 

MoM procedure has very small estimated infeasibility probabilities for all but large 

positive values of p.
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CHAPTER IV

EQUICORRELATED STRUCTURE FOR A NUCLEAR FAMILY

IV . 1 In trod uction

In this Chapter we focus on the nuclear family, consisting of two parents and t  — 2 

children, where the dependencies exhibited between parents and children, as well as 

dependencies between children, are equicorrelated. Here we assume th a t the (t x 1) 

response vector Yt has mean vector X i(3 and variance-covariance m atrix  X(A, 4>) = 

4>R(\), where X t is the [t x p) m atrix of covariates for the ith  family, (5 is a (p x 1) 

vector of regression coefficients, <f> is the variance param eter, and A =  (7 , pi, p2, a)  is 

the vector of correlation param eters. The correlation m atrix R ( A) is of the following 

form.

R(  A) =

1 7 Pi Pi Pi

7 1 P2 P2 ■ P2

Pi P2 1 a a

Pi P2 a 1 a

\

(4.1.1)

\  Pi f t  oc a  ■ ■ ■ I j

For correlation structure (4.1.1), note th a t 7  is the correlation between parents, pi 

is the correlation between the first parent and the children, P2 is the correlation 

between the second parent and the children, and a  is the correlation between chil­

dren. Also recall from Chapter I th a t (4.1.1) is the same correlation structure used 

in Shoukri and Ward (1989) where the authors modeled heterogeneous variances. 

Note th a t we are using a  homogeneous intra-class variance structure. Though this 

correlation structure is not new, we do introduce its application to  the quasi-least 

squares estimating procedure.

For the one-parent case of the equicorrelated structure, Srivastava (1984) showed 

th a t a simple transform ation simplifies both the correlation m atrix and estimation 

of the correlation parameters. In a similar fashion, we extend th a t transform ation to
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the nuclear family case. Define T as the following transform ation m atrix

r-(iO
where I 2 is a (2 x 2) identity m atrix, and H  is a (t — 2) x (t — 2) Helmert m atrix of

(4.1.2)

/

H =

form.

l 1
t-2 t-2

1 -1
%/2 %/5
1 1

%/s Ve

1 i

i i
t- 2 t—2
0 0

^  0
%/S u

\  y/{t-2)(i-3)

Based on this Helmert m atrix, we have

_±_ \t-2
0 

0

-(*-3)

(4.1.3)

H H '  =

and

/ l \

0

V 0 /

1 0

where e is a (t — 2) x 1 vector of l ’s. If Z t =  (Y.t — Xif3) has variance-covariance m atrix 

£(A, <j>) =  4>R{A), then TZ.t has variance-covariance m atrix rS (A , 4>)Y' = 4>YR{X)T'. 

If we partition R (A) as follows

(

R(  A)

1 7 Pi Pi •• • Pi ^

7 1 P2 p2 ■ ■ P2

Pi P2 1 a  ■ a _  (  R n Rl2

Pi P2 a 1 •• a V R 21 R 22

Pi P2 a 1 •• l a  j

r i? (A )r ' =

then the transformed correlation m atrix becomes

^ I  0 \  /  i?n  R\2 
0 H  ) \ R 21 R 22 

R n  R u H '   ̂
H R 21 H R 22H'

0 H '
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where

R 1 2H ' =

H R 21

h r 22h '

( P ^ 'H ' \  _

V p2 e'H ' )  "

( R u H j

H  [(1 -  a ) I t - 2  +  aee'\ H '  

(1 -  a )H H ' + aH ee 'H '

0 0 

0 1 — a  0

0 0 1 - a

/  l+(t-3)g 
t-2

\ 0 0 0

0

0

0

a

Thus, the fully transformed variance-covariance m atrix becomes

/

rs(A,</>)r' =  ^

V

1 7 Pi 0 0

7 1 P2 0 0

Pi P2 l+(i~3)a
t-2 0 0

0 0 0 1 — a ■ 0

0 0 0 0 • 1 — a /

(4.1.4)

For simplicity, we refer to  TZ, as Z t and TR(X)T' as R (A) for the remainder of this 

Chapter. To avoid confusion, we will not refer to the untransformed varieties unless 

specified.

The rest of this Chapter is outlined as follows. In Section IV.2 we derive the 

determ inant and inverse of (4.1.4) and also find the positive definite range of the 

parameters. In Section IV.3 we derive param eter estimators using the maximum 

likelihood, m ethod of moment and quasi-least squares procedures, and in Section IV.4 

we find the asymptotic variances of those estimators and compare their asymptotic 

performance.
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IV . 2 P rop erties o f  C orrelation  M atrix

To find the determ inant of (4.1.4) it helps to  partition the correlation m atrix as 

follows

R(  A) R n  0 

0 R'22

where

 ̂ 1 7 Pi N
R n = 7 1 P2

 ̂ Pi P2 ° I
R 22 =  (1 — a ) I t--3

and c =  ■ Then we have

\R(X)\
R n  0 

0 R ‘22
l-Rn U t i ­

lising properties of the determ inant of a partitioned m atrix, we have

|-Rn| —

1 7 Pi
1

1 7
1

7 P2
7

Pi P2 C
(  Pi P2 )

\  - i  /
1 7 \ Pi

7 1 P2

= c ( l - 7 2) -  (pj + p l - 2 j p 1p2)

and by recalling th a t the determ inant of a diagonal m atrix is the product of those 

diagonal elements, we have

I-R22I =  |(1 — 3I =  (1 — a y  3 .

Putting  these together, then

\R W \  - 0 - -  a ) ^ 3 [c(! -  72) -  {pi + p l ~  2 7 P1P2)] • (4.2.1)

To find the inverse of (4.1.4) we again make use of the partitioned form to  get

-1

R - \ A)
R u  0 

0 R 22

B 11 -^12 

B 21 B 22

(4.2.2)
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where
- i

B n  = (R n  ~  Q.R2 2 Q') 1 =  R n  =

t  1 7  pi ^

7  1 p2

\  Pi P2 C J
{  2 \

c  -  pi P1P2-1C 7 P 2  Pi '

B\2

B 21

B 22

(c -  p?)(l -  72) -  (7 P1 -  P2 ) 2

= —B 11Q.R22 = 2 

=  B'l2 =  2
3-1

P1P2 - 7 c c -  pf 7Pi -  p2

\  1P2 -  Pi IPl -  P2 1 - 7 2 J

R22 +  R,22~ B ll~ R 122 — R'22 — ((  ̂— ° ) h - 3) 1 = a- I t - 3-

To find the positive definite range of the correlation param eters (A =  (7 , p i ,p 2 , a)) 

we set the determ inants of the leading minors of (4.1.4) greater than  zero and solve 

for param eter values th a t satisfy the inequality, the last of which is

(1 -  a f  3 [c(l -  7 2) -  (p\ + p22 -  27^ 1^2)] >  0 . (4.2.3)

We begin with 7 , noting th a t we only have to  use the last principle minor (i.e, the 

determinant (4.2.1)) as the first (t  — 1) do not include 7 . So we start with the 

following expression

c(l -  7 2) -  (p\ + p l -  27 p ip2) > 0 (4.2.4)

which is a quadratic expression in terms of 7 . Thus we find the positive definite range 

by solving for 7  using the quadratic formula. Doing so gives the following bounds 

for 7 .

P1P2 ~  VP1P2 ~  c(Pi +  pi) +  c2 <  <  P1P2 +  yjp \p l -  c{p\ +  pi) +  c2
c ^  c

In a similar fashion (4.2.4) is also quadratic in term s of both pi and p2. Solving 

for both param eters using the quadratic formula gives the following positive definite 

bounds.

-7P2 -  \ ] { c -  pl){ 1 - 7 2) <  Pi <  - I P 2 +  \ ] { c -  Pl){ 1 - 7 2)

—7Pi -  V (c -  pf)(l  -  72) <  P2 <  -7 P i  +  V (c -  P i)(! -  72)
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Solving for a , we note th a t the first (f — 3) principle minors yield (1 — a )® >  0, which 

simplifies to a  <  1. Finally, using, (4.2.4), we see tha t the expression is linear in 

term s of a  (via ‘c’), and we get the following positive definite bounds for a.

( t - 2) W  +  ^ - 2 7 « f t ) - ( l - 7 2) ,  .
 R F f l  <Q<1

To find exact bounds for any of these param eters, we select values of the other 

param eters and enter those into the positive definite range expressions. Figures 4.1 

through 4.4 show the positive definite ranges for pi and p2 for select values of 7  for 

t  =  5. Each Figure is a contour plot with each ellipse representing a particular value 

of a. The values of a  are (±0.6, ±0.4, ±0.2,0.0), with a  =  —0.6 corresponding to  

the smallest contour in each Figure and a  = 0.6 corresponding to  the largest.

Lastly, partial derivatives of (4.1.4) are listed in Appendix A. 3 

IV .3  P a r a m e te r  E s tim a tio n

In this section we derive estimators using the Maximum Likelihood, M ethod of Mo­

ment, and Quasi-Least Squares procedures. For each we use the following estimators
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of (3 and <f>, respectively,

(3

11

. i = 1

-1

i = 1

-  > [ ^ - 5 1 : ^
2 = 1

where A is the vector of correlation parameter estimators and

/ ^ i  ^12 \
Z n  =  Y ^ Z i Z ' i

i = 1 ■̂ 21 Z 22

where

Z n  =

(  z n  Z12 z  13 \  

z 12 ^22 ^23 

\  z 13 z 23 Z33 )

(

Z 22 —

Z44 Z45

5̂4 ^55

\

(4.3.1)

(4.3.2)

E n  2 \~~rn v^n
i= 1 4  E i=l *1*2 E i= l *1*3

En . v^n 2 v^n
i=l * 1 * 2  Ei=l * 2  Ei= l * 2 * 3  

\-^n v-'vri 2
\  E i = l  * 1 * 3  E i = l  z i 2 z i3  E » = l  z i3 )

/  v—\n  2 v—vn v^n
X/j=l î4 £ 2=1 zi4zi5 * * * zJj=l zi4.%it

E n  v—m 2 v^n
i=1 * 4* 5 E i=i 4  • • • E i= i ̂ 5^*

y  * 4  * 5  • ■ • y  y  E i = l  * 4 * t  E t = l  * 5 * t  ' ■ ' E i = l  Zi t  J
Note that Z X2 and Z 2X = Z '12 are defined analogously.
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IV .3 .1  M axim um  Likelihood

For the Maximum Likelihood (MLE) procedure the log-likelihood function is

I  =  — ln(27r) — ^  ln(<?i) — ^  In |-R(A)| — ^  Z'iR ~ 1(X)Zi (4.3.3)
2(f)

1
i—1

=  - y  ln(27r) -  y  ln(^) -  |  In |i?(A)| -  - ^ t r  [.R \ X ) Z n\

where Zi is the transformed family response-vector for the ith  family and R (A) is 

the transformed correlation structure described in (4.1.4). To find the maximum 

likelihood estimators we set the first derivative of (4.3.3) with respect to  6 equal to  

zero and solve for the given param eter.

For the correlation param eters, we get the following estim ating equations. 

dR(  A)dl_
dy

n
f r

n t r

R - \ x y
dy

B,

~ h > tr  
\

R - \ X ) ^ ^ - R - 1(X)Zn =  0 (4.3.4)

1
— ^ t r  

1>
B n

/

V

0 1 0 

1 0  0 

0 0 0

B n Z u

^  n{pip2 -  cy) ((c -  p\)(  1 -  y 2) -  {ypx -  p2)2)

- i ( c  -  pl){pip2 -  cy)zn -  l(pip2 ~ cy)(c ~ p\)z22 
<P <P

- M l P 2  -  P i ) (7 P i  -  P2X 33 -  ~  [(c -  pl){c -  P i)  +  (P1P2 -  C7 ) 2] Z n  
<P <P

-  y  [(c -  P2X7 P1 -  P2 ) +  (plp2 -  cy)(yp2 -  Pi)} 213 
<p

~ y  [(PlP2 ~  cy)(ypi -  P2) +  {yp2 -  P l ) ( c  -  P i)]  *23 =  0
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dpi
n
2 tr

R ~ \ A)
8R (  A)1 

dpi
—

/ 0 0 1 \

n t r £11 0 0 0

V 1 0 0 /

1
T4,tr

i r ' i . \ ) Z n

11 0 0 0 

v 1 ° ° y
44 n(7 p2 -  Pl) ((c -  p\){ 1 -  7 2) -  (7 /0i -  p2)2)

1
— rztr

4>

dpi 

/  0 0 1 ^
B B n Z n

1 1
~(c -  Pl)(jP 2 -  Pl)*!! -  7z(piP2 -  C7 )(7 Px -  p2)z 2 2

1
(7^2 -  P l)(l -  J 2) z33

d l  n
=  2 fr

44 n t r

- 7  [(c “  P2X7 P1 -  Pa) +  (P1P2 -  C7 )(7 P2 -  pi)] z i2 
9

- i  [(c -  p2)( l  -  72) +  (7 P2 -  Pl)2] 213 
9

-•7 [(P1P2 -  C7 ) ( l  -  7 2) +  (7P2 -  P l)(7 Pl -  P2)] 223 =  0
9

dR{X)'

dp2
-fr

dp2

B 11

(  0 0 0 N (  0 0 0 N
1

0 0 1 — -z.tr
A B n 0 0 1

v ° 1 ° )
9

1 ° 1 ° )

■Sii^n

^  n (7Pi -  P2) ((c -  p\){ 1 -  72) -  (7 P1 -  P2)2)
1 1

~~(PlP2 ~  c”l){lp2 ~  Pl)Zll -  ~(C -  Pi)(7pl -  p2)Z22 
9 <f>

- ? (7Pi — Pa)(l ~ 7 2>33 
9

[(P1P2 -  cl ) ( lP i  -  P2 ) +  (7 P2 -  Pi)(c -  Pi)] 212
9

- • 7  [(P1P2 -  C7 ) ( l  -  7 2) +  (7 P2 -  Pl)(7Pl -  P2] 213

- J  [(c -  P i)(l -  72) +  (7 P1 -  P2)2] 223 =  0

0 (4.3.5)

=  0

0 (4.3.6)

=  0
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dt_
da

n
= —tr R T 'i  A)

dR(  A) 
da 2(f)

-tr ^ R ~ \ X ) Z nR ~ \ A)- =  0 (4.3.7)

tr
n(t  — 3) 

( t -  2)

(*~3) 
£ ( * -  2)

( 0 0 0 ^
B n 0 0 0 -  n tr  [B22

1 ° 0 1 J

fr

(  0 0 0 N
B n 0 0 0 B n Z n

V° 0 1 J

+

n ( i - 3 ) ( l - 7 2)
+

(1 — a )2 

n(f — 3)
(t -  2) ((c -  p f)( l  -  7 2) -  (7 /Oj -  p2)2) 1 - a

(t  -  3) (('yp2 -  Pi)2zn  +  (7 P1 -  p2)2z22)

<t>(t -  2 ) ( ( c -  £ i ) ( l  -  7 2) -  ( i P i  ~  P2 ) 2 ) 2  

(t -  3) ((1 -  7 2)2^33 +  2(7 p2 -  pi)(^pi  -  p2)zi2)

^ - 2 ) ( ( c - p 2) ( l - 7 2) - ( 7 P i - P 2 )2)2 

2(t -  3) ( (7 p2 -  P i ) ( l  ~  72)^ i3 +  (7P1 -  ^2) (1 -  72)^23) 

cf>(t -  2) ((c -  p\){ l  -  7 2) -  (7pi -  p2)2)2

t r  [Z22] = 0

(1 -  a)' E 4
.3=4

=  0

Here, note th a t cj) is the MLE of (p. These four estimating equations ((4.3.4), (4.3.5), 

(4.3.6) and (4.3.7)) are used to  find the M LE’s for A. Of course, these estimators are 

not in closed-form and are solved simultaneously using the Newton-Raphson method. 

So the Helmert transform ation does not achieve the objective of obtaining closed- 

form solutions of the correlation param eters, though it does simplify the estimating 

equations considerably.

To find the M LE’s we s ta rt with trial values of the correlation param eters (A0), 

and use them  to  obtain an initial estim ate of (3 using (4.3.1). We then use this 

estim ate to update the residuals (Zn) and estim ate (P using (4.3.2). Then 6  and 

Z n are used to  estimate the correlation param eters using (4.3.4), (4.3.5), (4.3.6) 

and (4.3.7). The estimates of the correlation param eters (A), are then used to re- 

estim ate /?, and the process is continued until convergence. These estimates, then, 

are the MLE’s of 9, specifically 6t =  (Re, \e, 4>e)r-
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IV .3 .2  M eth od  o f  M om ents

For the M ethod of Moments (MOM) we find unbiased moment estimators for each 

of the correlation parameters. For 7 , we get the following estim ator

2 E"=i ^ 1 ^ 2
Oh* Y' 2 72

z i j

which is based on the estimating equation
n

^ Z ' i A W Z i  =  0
i = 1

^  ^4(7)
7 / J2Jo Q

2 \ 0  0

For pi we get the following estimator

/ (  0 1 0 N \

1 0 0 0

1 ° 0

V 0 Q J

Pl,r,
2 E"=l ^1^3

E n ^ 2  -~ 2

z = l Z_-r/=l i j

which is based on the estimating equation
n

Y , Z [ A { Pl)Zi =  0

^  A(/ox) Pi

For p2 we get the following estimator

P 2 , m  —

/ r—1OO \
I 2 Q \  1 0 0 0 0
0 0  J  2 h-1 0 0

\ 0 0 /

2 E ”=l %2%3

(4.3.8)

(4.3.9)

E « v^ 2 92
i = l  Z ^ j= l  '‘ ij

(4.3.10)

which is based on the estimating equation
n

Y , Z ' A ( p 2)Z t =  0
i= 1

^  A(p2)
£ 2  (  h  0 \  _  1

2 V 0 0 /  2

/ 1 0 0 0 ^ \

0 0 1 0

1 ° 1

V 0 0 /
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Finally, for a  we get the following estimator

n  =  1 +  ~  3 )(^ ~  2 ) ^  ^ j=3 14 “t i l l
0  -  3 )= (4 - 3 F E

which is based on the estimating equation

n

2 2 % A ( a ) Z i  =  0
3=1

a(t  -  3)2 -  (1 +  (f -  3)(t -  2)) /  / 2 0
44 A (a) =

2 \ 0  0 

0 0 \
+(^ ~~ 2)

V o / t_3 y

To find the MOM estimators, we select initial values for A (either, all zeros or sample 

statistics) and estimate (3 using (4.3.1). We then use (3 to  update the residuals (Zn) 

and then estim ate (j) using (4.3.2). We then use Z n to  estimate A, which we in tu rn  use 

to  re-estimate (3. We continue in this m anner until convergence. Those estimators 

are then the MOM estimators, specifically 9m — (f3m, Am, (pm)'■

IV .3 .3  Q uasi-Least Squares

For the Quasi-Least Squares M ethod (QLS) we begin with the following quasi-log- 

likelihood function
n

S(0) =  J ] ( ^ - X i)0),JR -1(A)(yi - X i/3) (4.3.12)
i—1

= tr  [,R- 1(A)Zn] .

We can find estimators for (3 and A by differentiating (4.3.12) with respect to each 

param eter, setting the resulting expression equal to  zero and solving for th a t param ­

eter.

Using (4.3.12), we obtain the following estimating equations for the correlation
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parameters.
d S { 0 )

d'y
=  t r R - 1( X ) ^ - R ~ 1(X)Zn (4.3.13)

I

(  0 1 0 N
t r B n 1 0 0 B n Z n

1° 0
=  0

= a772 + b 7 7 + c7 = 0,

where

c z n  ~  c p 2Z i 3 -  c p 1z 2:i  +  p i p 2z 33

b 7  =  c ( p l  -  c ) z n  -  2 c p ! p 2 z i 2  +  2 c p 1 z 13

+ C(Pl — c)z22 +  2 c p 2 Z 2 o, —  (p2 +  p 2 ) z 3 3

C7 =  P l P 2 { c  ~  P 2 ) Z U  +  p i p 2 ( c  — P i ) Z 22 +  P 1P 2 Z 33

+  [ 2 p \ p l  +  c 2  —  c { p \  +  p 2 ) ]  7 1 2  +  [ p l  —  p 2 { c  +  p 2 ) ]  Z 1 3  +  [ p 2  —  P i ( c  +  p 2 ) ]  Z 2 3 -

0 5 (0)
d p i

=  t r R ~ 1{ X ) ^ ^ - R - 1(X)Zn = 0 (4.3.14)

/  0 0 1 ^
t r B n 0 0 0 -Bn^nI10

— aPlp2 + b P l p i  + cpi — 0

where

api —

-'pi

7P2^22 +  Z13 -  p2 z l2 -  7^23

- ( 7 2 +  P2)222 ~  (1 -  7 2)^33 -  2,jp2z13 +  2cyzu  + 2p2z23 

7 P 2 ( c  -  P 2 ) ^ l l  +  C ~jp2 Z 22  +  7 P 2 ( 1  -  7 2 )-233

[7 2p2 +  (c -  Pa)(l -  72)] *13 +  P2 [pI -  c{ 1 -  7 2)] Z12 -  7  [p2 +  c (l -  72)] 2̂3-

0 5 (0)
d p 2

t r \ ) Z n

f  0 0 0 ^
t r B n 0 0 1 B n Z n

V° 1 ° )

=  0

=  0

(4.3.15)

apiP2 +  ^PiP2 +  Cp2 — 0
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where

Ujp2 —

bp2

7 Piz n  +  (p l — c )z22 ~  P1Z12 — 7 ±i3 +  Z23 

— (p2 +  C72)2 ll  +  (p \  — c )z22 — (1 — 72)z33 

2 p iz 13 +  2c'jzi2 -  2 j p 1z 23 

Cp2 =  C1 P\Z\\  +  7 P i(c  — p \ ) z 22 +  7 P i( l  — J 2) z 33

7 [pl ~  c( 1 -  72)] z 13 + pi [p2 -  c( 1 -  72)] z 12 + [7 2p2 + (c -  p\){ 1 -  72)] z23.

dS(9)
da

tr R - 1( X ) ^ ^ - R ~ 1(X)Zn

R  d R n  R 7  ± > 11— - — ± > n  Z nd a
=  tr

— Gao^ -f- baot +  ca — 0

+  tr D d lt‘22
&22—Z ±>22^22da

(4.3.16)

where

aa =  /i(7 ,P i,p 2 ,^ n )  -  j i—( t - 2 ) '33

jz= 4

ba - ‘2 f i h , P i , P 2 , Z n
2 ( l - 7 2)2 y  

( t - 2 )  ^ ~ 33
j =4

+ 2 ( 1  -  7 2 )  [ p i ( l  -  7 2 )  -  ( 7 p !  -  p 2 ) 2 ]  ^

j = 4

c <*  —  f l ( l i  P l ,  P 2 ,  Z n) — ( 1 - 7 2)2 *
( * - 2 ) ( * - 3 ) £ f "E -

j = 4

+2 ( 1 - 7 2)
[ p ? ( ! - 7 2) - ( 7 P i - P 2 ) 2] X ] '

<‘ - 3)
f l { l , P l , P 2 , Z n )  =  ( 7 P 2  — P l ) 2^ n  +  ( 7 P l  — p 2 ) 22 22 +  ( 1  — 7 2 ) 2 2 33

+ 2 ( 7 P i  -  P2X7 P2 -  Pi) + 2  +  2 ( 7 p 2 -  P i ) ( l  -  72)̂ 13 

+ 2 ( 7 P i  —  P2 ) ( 1  —  72)±23-

Solving these four estimating equations iteratively gives A, the Step 1 estim ator of 

the correlation vector. Note th a t we must iterate between estimating f3 (with (4.3.1)) 

and A until convergence to  obtain the Step 1 estimates of those parameters.

However, as we have seen in Chapters II and III, A is a biased estim ator of A. 

This is shown by taking the expectation of each estimating equation listed in (4.3.14)
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through (4.3.17).

"d s j e y
d'y

'o s j e y
dpi

d s ( e y

E

E

tr

tr

E

E

dp2

dS{6)
da

= tr

= tr

d i t_1(A) ] 
d 7  S(Zb)

oc tr
P H

dpi
oc tr p H

rd/2 -1  (A) 1 
Sp2 £ ( Z J

oc tr
a P2 fl(A)

a<» £ < z” )j
oc t r

a<* B(A)j

#  0 (4.3.17)

±  0 (4.3.18)

^  0 (4.3.19)

±  0 (4.3.20)

To find asymptotically unbiased estimators we make equations (4.3.17) through 

(4.3.20) our Step 2 estimating equations by setting them  equal to zero and solv­

ing for the respective correlation param eter. This gives us the following.

tr
d i T 1 (A)

R (  A)
(  0 1 0 ^

oc tr Bn 1 0 0 Bn Rii

1 ° 0 ° J
(4.3.21)

^  l q  =  ~
611612 +  612622 + cbi3b23 + p i (611623 +  612613) +  ^2(^12^23 +  613622)

^ 11^22 +  6f2^

tr

&  Ph<

d R - \ A)
dpi

R(  A)

1 f  ° 0

oc tr B n 0 0 0 b 11r u

V 1 0

=  0 (4.3.22)

611613  +  612 6 2 3  +  0 6 1 3 6 3 3  +  7 (1 )1 1 6 2 3  +  6 1 2 6 1 3 ) +  P 2  (6 1 2 6 3 3  +  6 1 3 6 2 3 )

^611633 +  6f3^

tr d R ~ \ A) 
dp2

R(  A)

(  0 0 0 ^
oc tr B n 0 0 1 B n R n

V ° 1

=  0 (4.3.23)

^  P2,q — ~
612 6 1 3  +  622 6 2 3  +  C 623633  +  7 ( 6 1 2 6 2 3  +  6 1 3 6 2 2 ) +  P l  (6 1 2 6 3 3  +  6 1 3 6 2 3 )

^622633 +  623^
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tr
d R ~ l {\)

da
R{ A)

1 0 0 0 ^
oc tr B n 0 0 0 B n R n

1 ° 0

( ! - « ) ( * - 2 )  
(1 -

=  0 (4.3.24)

a n —
(t -  3) -  (1 -  a ) 2 &13 +  2̂3 +  t-2 ^ ^7 î3&23 +  Pit>r.ib:n +

1 CO (1 -  a ) 2&33 +  1

where bl0 is the i j th  element of B n ,  i , j  — 1 ,2,3. Note th a t here we have achieved 

the goal of closed-form estimators. The resulting estimators are then \ q, the Step 2 

estimators of A.

Once we have our Step 2 estimates of the correlation parameters, we can substitute 

those values into (4.3.1) to  obtain (3q, which we use to update the residual m atrix 

Z n. This, along with A can then be used to  estim ate the variance param eter using 

(4.3.2). Thus the QLS estimators are 9q =  (Pq,Xq,</)qy.

IV .4  A sy m p to tic  V ariance and Perform ance

IV .4 .1  M axim um  L ikelihood

For the maximum likelihood estimators of Section IV.3.1, we find the asymptotic vari­

ance by finding the inverse of Fisher’s Information matrix, as we see in the following 

relation

y/n(9e -  9) ~  A M V N  (0 ,7- 1(0 ) ) . (4.4.1)

To find this we take the negative expectation of the second derivative of the likeli­

hood function with respect to  9. From here, it is straightforward to  show th a t the
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information m atrix h(9)  is of the following form.

where

m 0 0 0 0 0
0 H i ) H i ,  pi) H i ,  P2) 1 (1 , a) J(7> 0)
0 H i ,  Pl) H p i ) 9(pi, P2) J (p i ,a ) / (P l ,0 )
0 I{l ,P2) Hpi,p2) HP2 ) / (p 2,a ) Hp2,4>)
0 H i ,  a) I(P\,Oi) i (P2 , a) H ° ) I (a ,  (f>)
0 H i ,  <t>) H p i ,4>) H p2,H) I(a,<f>) m

m

n  7 )

i{pi)

= —E

=  —E

' d2f

M .
d2e

= j Z X X ~ ' ( A ) X i
i=1

d'y
n

~  2 tr d'y d'y

n  [(c -  P2)(c -  Pi) +  (P1P2 -  c i ) 2} 
[(c -  P i)( l -  72) -  (7Pi -  P2 ) 2 }2

- E
'd 2E n

— —tr
dpi 2

R - y x ) ? m R - y x f R m
dpi

n  [(c -  P2X 1 -  72) +  (7 P2 -  Pi)2]

dpi

[(c -  P1X 1 -  72) -  (7 P1 -  P2)2] 

/ (p 2) =  - E
'd 2l ' n

— —tr
dp2. 2

R - \ X)d- ^ R - y x ) m w
dp2

n  [(c -  P?)(c -  Pi) +  (7Pi -  P2)2]
dp2

[ ( c - P i ) ( 1 - 7 2) - ( 7 P i - P 2 ) 2] 

1(a) = - E
W n

— —tr
da 2

n
n

da

( t -  3 ) ( l - 7 2)

da
2

L ( *  —  2) [ ( c - p ? ) ( l - 7 2) - ( 7 P 1 - P 2 ) 2]J
+

n(t — 3) 
2(1 —  a)2

m

H i ,  pi)

= - E

= - E

d2i
d
d2e

d'ydpi

nt
24?

n
= - t r

dpi <97
n  [(c -  p |)(7P i -  P2) +  (P1P2 -  C7 X7 P2 -  pi)]

9(7, P2) =  ~ E

[(c -  P1X 1 -  72) -  (7Pi -  P2)2] 
d2t

d~fdp2
n
2 tr dp2 d'y

n  [(pip2 -  C7)(7pi -  p2) +  (7 P2 -  Pi)(c -  pf)] 

[(c -  P1X 1 -  72) -  (7Pi -  P2)2]2
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/(7, a) -E ' d2£ '
= —tr

d'yda 2 da
n (t ~  3)(7P2 — Pi)(7Pi — P2)

I(pi,p2)  =  - E

(t -  2) [(c -  p\){ 1 -  7 2) -  (7 P1 -  P2)2]
OH

dpidp2
n

= 2 tV dpi dp2
n  {{P1 P2  -  C7 ) ( l  -  72) +  (7P2 -  Pi)(7Pi -  P2 )}

I  {pi, a) -E

[(c -  P1X1 -  72) -  (7 P1 -  P2 ) 2 } 2  

d2£
dp\da

r . w « p r , w ® w
9pi

I(p2,cn) = - E

nft-3)(7p2- P i ) ( l - 7 2)
(i -  2) [(c -  p?)(l -  7 2) -  (7 P1 -  P2 ) 2]2

d2£ 1 n. ! 9i?(A)n + 
= f r9p29a

n ( t - 3)(7 Pi - p 2) ( l - 7 2)
9 a

(i -  2) [(c -  p?)(l -  72) -  (-ypi -  p2)2Y

7 ( 7 , 9 )  =  - E
d 2£

9 7 9 9

n

29
tr R ~ \ A)

972(A)
9 7

n ( P i P 2  ~  cry)
<t> [(c -  P?)(l -  72) -  (7Pi -  P2)2]

7 ( P l , 9 )  =  ~ E
d2£ n  + 

299pi99
^(7P2 -  Pi)

TT^A)
972(A)

9pi

0 [(c -  P1X1 -  72) -  (7Pi -  P2)2]

Jr(P2, <£) =
d2£

9p299. 29
- t r 72-J(A)

972(A)
dp2

nidPi -  P2)
9 [(c -  p?)(l -  72) -  (7 P1 -  p2)2]

7 ( a ,  9 )  =  - E
d2£

dadcf) 
n(t  — 3)

29

n
29

tr 72 (A)972(A)
da  

1 - 7 2

_(t -  2) [(c -  pf)(l -  72) -  (7P1 -  p2)2] a

IV .4 .2  M eth od  o f M om ents

For the MoM m ethod we again make use of the theorem described in Chapter II.4. 

Under regularity conditions, we have

(4.4.3)
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where Im(9) =  M m(9) = l Y . U C o v ( h m,{9)) and the hmM
are vectors of unbiased estimating equations. For any i, let hrn;i(d) be defined as 

follows

hm,i(9) =  (h(A{0),hli(e ) ,h2i{6),h3i{6),hi i{e),gi{d))' (4.4.4)

hoi(6

hn(9

h2i{9 

h3i{9 

ha (9

= X'iR - \ X ) Z i

= z;A(7)Zi =  tr iM ^ Z iZ i)  

= Z M p J Z i  = tr(M Pi)ZiZ<)  

= Z'iA (p2)Z i = tr (A i (p2)Z iZ ^  

= Z[A{a)Zi = tr(Ai(a)ZiZ-)

9i(9) = Z ,iR - \ X ) Z i -t<t> = tr{R ~1(X)ZiZ ') -  t<t>

where A (7 ), A(p{), A(p2) and A{a)  are defined earlier. By taking the negative 

expectation of the partial derivatives of (4.4.4) with respect to  9 and averaging over 

n  we obtain Im(9), and by taking the covariance of (4.4.4) and averaging over n  we

Im(9) =

is easy to show th a t lm{9 ) has

/ /11 0 0 0 0 0 \

0 I 22 0 0 0 0

0 0 hd, 0 0 0

0 0 0 h i 0 0

0 0 0 0 he 0

\ 0 6̂2 h z h i hr, he /

(4.4.5)

where

II

n

—  Y ' E
n  ■'i=1

h2  —

n

- i  Y >
i —\

IICO

AeW
l

--I 
1

 £

1

II>-7

n

—  Y ' E
i—1

h e  —
n

- l T . E
i = i

dh0i(9
d/3

d h u (9
d7

dh2i(9
dpi 

dh3i(9 
dp2

~dhu {9
da

= ; E x :r ~ 'w x <
i=1

= 3)2
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I$2 =
1

— E ®
1—1

^63 =
1 ”

— Y . e
2=1

h i  =
n

- I ' V e
n 2=1

hb =
1 ” 

- - Y e

h e  =
1 "

- i y >
2=1

dgi(B)
d"f 

dgi(0)
dpi

d9i{0)
dp2

dgi{0)

2^(pip2 -  cri)
[(c -  Pi)il  ~  72) -  (7 ft ~  P2 )2]

^4>{lP2 -  Pi)

da

dgj{0)
d(f>

[ ( c - p D i 1 - 7 2) -  (lPi - f t ) 2]

2cf)(7Pi -  P2 )_______
[ ( c - P iX 1 - 7 2) -  (7 ft ~  f t ) 2]

4>{t- 3 ) ( l - 72) ______________________________________ <P(t -  3)
(:t -  2) [(c -  p2i)( 1 -  72) -  (7 P1 -  P2 )2} (1 -  a )

=  t.

We can also show th a t M m(0) has the following elements

{  i/r.. n n n n n \

M m{0)

\

M n 0 0 0 0 0

0 M 22 M 23 M 2 4 M 2 5 0

0 M-2:i m 33 M34 M 35 0

0 M 2 4 M 34 M 44 M45 0

0 M 25 M 35 M 45 M 55 0

0 0 0 0 0 M qq /
where

- n  ± 71

M u  = - J 2 C °v[hOi(0 )} = - y£ x l R - 1( \ ) x i
2 = 1  2 = 1  

1 "
M 22 =  - ^ 2 , C o v [ h li(0)\ = <j>2( 1 +  7 2)2 -  4<?i27 2

^  • 12 = 1

M 23  = - ^ C o v [ h i i ( 0 ) , h 2 i{0)} =  <̂2(/o2 — 7/°i)(l — 72)
^  • i2 = 1

M 24 = - ^ 2  Cov [hu(e), h3i (0)] =  4?(pi -  7p2)( l  -  72)
^  • 12 = 1

M 25 =  -  Cov [hu(0), hAi(0)\ = d2(t -  2) [7(^1 +  p\) -  2pij92]
^  - 12 = 1

~4>27(1 -  72) [<*(* -  3)2 -  (1 +  (t -  3)(f -  2))]

M 33 =  ^» (^ )] =
i=l

7/0i (7 ft -  2 ft) +
1 +  (t — 3)o; 

( * - 2 )  .

(4.4.6)

M34 =  -  Con [h2i (0), h3i (0)] =  ^ 7
j=i

9 o 1 +  (t — 3)a 
I P 1 P 2  ~  P i  -  P 2  + ( f - 2 )
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4^35 Cov ih 2i(0 ), hn{ 6 )] = 0 2t(7 P i -  P2) [a{t -  3)2 -  (1 +  (t -  3)(t  -  2))] 

1 +  (t — 3)ci
i—1 
l1

p I  +  p I -  2

M44 —

+<f) p i ( t  —  2 )  

^ j T C o v [ h 3i(9)\ = 4>-

( t -  2)

45

»=i
7P2(7P2 -  2pi) +

1 4- (f — 3)o; 

( * - 2)  .

^ 2  Cov [h3i (9), h4i (9)\ = 4>2 l { lp 2  -  Pi) [«(* -  3)2 -  (1 + (t -  3)(t -  2))]

1 +  (t — 3 )a N
2 = 1

4.2+<f> P2(t — 2) P? +  p 2 - 2 ( t -  2)

M s55 =  -  ] T C W  M # ) ]  =  </>2(l +  72) [a(t -  3)2 -  (1 +  (t -  3)(t -  2))];Tt

M f66

i— 1

+ 2 <f>2{t -  2) [a(t -  3)2 -  (1 +  (t -  3){t -  2))] +  202(1 +  (t -  3)a ) 2 

+2<fi2(t — 2)2(t — 3)(1 — a ) 2

I  "
n

= - '5 2 C o v [ g i(0)] = 2<f>2t
i=1

IV .4 .3  Q uasi-Least Squares

For the QLS m ethod we have

M 9 g -  9) ~  A M V N  (0 ,1 ; 1(9)Mq(9)(I~1(9)y)

where Iq(9) = -A  £!*=1E  ^ 9 ^  > M q(6 ) =  A £ ”=1 Cov(hq4 (9)) and the hqii(9) are 

vectors of unbiased estimating equations for the QLS method. For any i, let hqj(9) 

be defined as follows.

(4.4.7)

hqii{9) = (h0i (9 ) , h li(9 ) ,h 2i(9 ) ,h 3i (9 ) ,h i i (9 ) ,g i (9 )y  

h0i {9) = X ’i ( p ) R - 1 (X)Zi 

' d R - ^ X )

(4.4.8)

hu(9) = tr  

h,2i(9 ) =  tr  

h3i {9) =  tr

<9q

d R - '(X )
dpi

d R - ' jX )
dp2

{ZiZ ’ -ct>R{X)) 

{ Z &  -  (f>R(X)) 

(.ZiZ ' -  cf>R(A))
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d R r ' i  A)
da

ha(0) =  tr  

9i{Q) — tr  [R~1(X)ZiZ ,i\ -tcf> 

where A is the solution to the following equations

tr d R - ' j  A)
B(A) = tr

^  ^12(^11+ ^ 22) + 7  (&12

+P 2 (bnb23 +  &13̂ 22̂  +  C&13&23 =  0

(  0 1 0
Bn 1 0 0

_ 1° 0 0

n&22̂ +  P 1 (611

?13&23 = 0

B i iR n =  0

&12&13 j

( 0 0 1 ^
tr

r ^ - 'C A )  1

d ^  m
=  tr B n 0 0 0 B n R i i

I 1 0 ° )

=  0

£>ll£>13 + 1̂2̂ 23 + 7 ^ 12̂ 13 + £>ll£>23̂  + P i  ( b , s  + £>ll£>33̂

+P2 ( £>12&33 + &13&23J + C613633

tr

0
d i r 1 (A) 

dp 2 m — tr B 11
(  0 0 0

0 0 1

v ° 1 0

^22 ) +  P i

B i iR n = 0

/
(&12&33 +  ^13^23^

+P2 (jl'zi +  ^22^33  ̂ +  ^23^33

( 0 0 0 ^
tr

[d ir1 (A) 1 
-  d ~  R {A) oc tr B n 0 0 0 B 1 1R 11

v ° 0
1 J

(1 ~  <a)(t ~  2) 
(1 ~  5 )2

^13 +  ^23 +  C^33 +  2  ^7^13^23 +  P i ^13^33 +  P2^23^33^ — “— Q  — S f)2— ~ ~  ^(1 -  5 )2

Note that A = (7, p\, P2 , a)  are the population values of the correlation parameters. 
By taking the expectation of the partial derivatives for (4 .4.8) with respect to 9 

and averaging over n  we obtain Iq(6), and by taking the covariance of (4.4.8) and 
averaging over n  we obtain M q(9). From here it is easy to show that Iq(9) has the
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following elements

m

/ I n 0 0 0 0 0 \

0 1  22 I 23 I 24 125 0

0 1  23 h 3 I 34 I 33 0

0 I 24 134 I 44 I 43 0

0 h e -I35 I 43 I 33 0

V 0 hyi h 'i I 64 If,3 h e /
where

'11

'22

= - ^ 2 x ' R - 1X i 
n  f —'i=1

=  —(f)tr
i=1

R ~ \ A) ^ ? ( A) D- 1 , 7 ^ ( A)-iT ^ A )-

2<ft [(c -  pj)(c -  p?) +  (pip2 ~  C 7 ) 2 ]  

[(c -  P i)(l -  72) -  (7Pi -  P2)2]2

'23 n  / -7i=1

'dhu(0)
dfh

— ~4>tr R ~ \ A) < ^ ( A) 0 -1
07

^ ( A ) -
dpi

24> [ { c - P 2){ lP l ~  P2) +  (P1P2 -  C j) ( lP 2 -  Pi)]

'24 n 4—'

[(c -  P1X1 -  7 2) -  (7 Pi -  P2)2]2 

dhu (0)

i=l dp2 d j dp2

2<t> [(P1P2 -  c7 )(7 Pi -  P2) +  (7P2 -  Pi)(c -  p\)]

[(c -  P1X1 -  7 2) -  (7 Pi -  P2)2]"

'25

n

=  — E ®
2 = 1

dhu {6)
da d j da

2 ^ jH j(7 P 2 ~ P i) (7 P i-P 2 )

C -  P i) ( l  -  7 2) -  (7 Pi -  P2)2]2

I 33 - ~ y i E \ ^ l ]  = - 4 , t r
n  dpi

2(t> [(c -  P2XI -  7 2) +  (7P2 ~  P i)2] 

E(c — pf)(l -  7 2) -  (7 Pi -  P2)2]2

0Pl dpi

'34
1 "

=  - - X En 
2̂ = 1

s m *)
dp2 dpi dp2

2<t> [(P1P2 -  C7 ) (1 -  7 2) +  (7P2 -  P i) (7 P i  -  p2)] 
[(c ~  P i) ( l  “  7 2) -  (7 Pi -  P2)2]2
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*35

n

=  “ E ^n
2=1

*44

*45

*55

*62

dh2i{9)
da r ' ( 5 ) ? S ) r ‘(A)M Wdpi da

2^ ( H j ( ^ 2 - P i ) ( l - 7 2)

[(c -  pf)( i  -  7 2) -  ( m  -  P2)2]2

Y , En
dh3i(d)

dp-i
-<f) tr

dp2 dp2

2(f> [inPi -  P2 ) [(7 P2 -  pi) +  (7 P1 -  P2)] +  (1 -  72) [(P1P2 -  cry) +  ( c -  pf)]]

- E en  “ *
2=1

dhSi{9)
da

[(c -  P i)(l -  7 2) -  (7Pi -  P2)2] 

: —<j)tr
dp2 da

2<^z! ( 7 P i - P 2 ) ( 1 - 7 2)

[(c -  P i)(l -  7 2) ~  (7Pi -  P2)2]

■ ~ E en
2 = 1

dh4i(0)
da  

(t~ 3)

=  —<f)tr
da  

4>{t -  3)

[ ( ? - p ? ) ( l - 7 2) - ( 7 P i - P 2 )2]2 ( l - « 2)2

5 a

2 ^ ( 1  - 7 2)2

=  - 1 E £n  ■2— *
2= 1

dgi(0)'
^7

<f>tr R ~ \ A)
5R(A)

5 7

2 0 (pip2 -  C7 )

ls3 —

*64

[(c - p m  1 — 7 2) - - (7Pi - P2)2]
1
n

n

E «
2=1 5pi

— <f>tr i T 1

2<̂ >(7P2 - Pi)
[(c " P ? ) ( l - 7 2) - - (7Pi - P2)2]

1
n

n

E e
2=1

'd g y e y
dp2

— (f>tr 2 T 1

20(7P i - P2)

5i?(A)
5pl

5i?(A)
<9p2

[(c -  P1X1 -  72) -  (7P1 -  P2)2]

*65
1 "

= J E En  '
dgi(9)

da
= (f>tr R - \ A)

+

dR(  A) 
5 a

( * - 3 ) ( l - 7 2 )( * ~ 3 )

( 1 - a )  ' ( f  — 2 )  [ (c  — p 2 ) ( l  — 7 2) — (7 P1 — P2) 2]

6̂6 — “
1 "

n i—i

'dgi{0)~
d<f>

= t.
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We can also show th a t M q(0) has the following elements

M q{6) =

/ M n 0 0 0 0 0 \

0 M 2 2 M 2 3 M2 4 m 25 0

0 M2 3 M33 M 34 M 35 0

0 M 2 4 M 34 M 44 M45 0

0 M2 5 M 35 M45 M 55 0

V 0 0 0 0 0 Mgg

(4.4.10)

where

M n \  j r  Cov [h0t(9)} = ^ X [ R - \ X ) X i
11 ■ i  '* '  ■ i4=1 4—1

M22 =  - ^ 2  Cov [hu{e)} =  2<j)2tr
i = 1

d R - ^ X )  R {x )d R ~ \X )
d j d'y

R{ A)

M ‘23

( 0 1 0  ^

Oi—HO

= 2<fr2tr Bn 1 0 0 -B11-R11-B11 1  0  0 BnRn
1 ° 0  ̂ 0  0  0  }

4 = 1

2i(0)] =  24? tr aR Z x )m
dR-\A)

dpi
( 0 1 0  ^  ̂ 0  0  1  ^

-  2 4>2tr Bn 1 0 0 BnRi\Bu 0  0  0 BnRn
v ° 0 ° J { 1  o 0 )

1  "
=  -  X ]  C,£W ^3 i(^)] =  2(j)2tr

^ • i4 = 1

BR: 2 m
dR~x (A) 

0p2
( 0 1 0  N  ̂ 0  0  0  ^ '

=  2  (f>2tr Bn 1 0 0 BnRnB11 0  0  1 BnRn
0

1 ° 1

- m

M 25
1
n

■ ^  Cov [hu (9),h4i(6)} = 2<ftr
' i=i

2<p2(t -  3)

d R - ' j X)
d j

( t -  2 )
-£r

( 0 1 0 N f 0 0 0 N
Bn 1 0 0 BuRuBu 0 0 0 BnRn

1° 0 1° 0 1 )
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M }33 -  ^ 2  Cov [^2i(0)] =  2(f)2tr
i=l dpi dpi

Mi34

(  0 0 (  0 0

=  2 cf)2tr B n 0 0 0 B n R n B 11 0 0 0 -Bn-Rn

I 1 0 I 1 0 ° J

= \  J 2 c ov[h2i(0)
i=l

,h n(6)] =  2 (f>2tr
d R ~ 1(X)

dpi
R( A)

S i? -1 (A) 

dp2

( 0 0 l \ (  0 0 0 ^

=  2 cf)2tr B n 0 0 0 B n R -n B 11 0 0 1 B n R nI10 V°1 °J
1 ,  ^

M35 =  -  Cov [/i2x(0), h4i(0)] = 2<j>2tr
n i=l

=  ^ 2 i tr
( t - 2 )

1 ”
M44 =  — ^  Cov [/i34(0 }] — 2<ptr

9 R - ' ( \ )  9 R - ' (  A)

( 0 0 (  0 0 0 ^

B n 0 0 0 i?n i?n i? ii 0 0 0 B n R n

I 1 0 ° J 1 ° 0 1 )

i=l Sp2 <9p2

( 0 0 0 ^ ( 0 0 0 ^
2 (f)2tr B n 0 0 1 B n R n B n 0 0 1 B n R n

1° 1 ° ) 1° 1

M45 — -  ^ 2  Cov ih3i(0), Ki{6)] = 2<f>2tr  
n i= 1

2<f?(t -  3)

^ ( A )  S iT ^ A )
^ T “i2(A)^ “ jR(A)

-tr
(  0 0 0 N (  0 0 0 ^

B n 0 0 1 B n R n B n 0 0 0 B n R n

1 ° 1 ° J v ° 0 1

M 55 —

( t - 2 )

n

^  Cov [/i4i(0)] =  2<f>2tr
i=1 da

+

M qq —

( t - 2 )

2(f)2(1 -  a )2(t -  3)
(1 -  5)4

Cov [&(#)] =  2(f>21.

1

( 0 0 0 N ( 0 0 0 ^

B n 0 0 0 B n R n B n 0 0 0 B n R n

V ° 0 1 ) 1 ° 0 1 )

n i=1
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Table 4 .1 :  7 A R E  of M LE vs. M oM  (M LE vs. QLS)

7 0 .0 0 .2 0.4
Pl Pi /  a 0 .0 0 .2 0.4 0 .0 0 .2 0.4 0 .0 0 .2 0.4
0 .0 0 .0 1 .0 0 0 1 .0 0 0 1 .0 0 0 0.988 0.989 0.990 0.955 0.957 0.960

(1 .0 0 0 ) ( 1 .0 0 0 ) ( 1 .0 0 0 ) (0.988) (0.989) (0.990) (0.955) (0.957) (0.960)
0 .2 1 .0 0 0 1 .0 0 0 1 .0 0 0 0.987 0.987 0.988 0.948 0.950 0.954

(1 .0 0 0 ) ( 1 .0 0 0 ) (1 .0 0 0 ) (0.988) (0.988) (0.989) (0.953) (0.954) (0.957)
0.4 1 .0 0 0 1 .0 0 0 1 .0 0 0 0.980 0.981 0.983 0.920 0.923 0.930

( 1 .0 0 0 ) ( 1 .0 0 0 ) (1 .0 0 0 ) (0.986) (0.985) (0.986) (0.948) (0.943) (0.947)
0 .2 0 .0 1 .0 0 0 1 .0 0 0 1 .0 0 0 0.987 0.987 0.988 0.948 0.950 0.954

(1 .0 0 0 ) ( 1 .0 0 0 ) (1 .0 0 0 ) (0.988) (0.988) (0.989) (0.953) (0.954) (0.957)
0 .2 0.998 0.998 0.998 0.994 0.994 0.995 0.964 0.965 0.968

( 1 .0 0 0 ) ( 1 .0 0 0 ) (1 .0 0 0 ) (0.990) (0.991) (0.992) (0.957) (0.960) (0.963)
0.4 0.990 0.990 0.991 0.998 0.998 0.998 0.966 0.968 0.971

(0.999) (0.998) (0.998) (0.992) (0.993) (0.995) (0.956) (0.960) (0.964)
0.4 0 .0 1 .0 0 0 1 .0 0 0 1 .0 0 0 0.980 0.981 0.983 0.920 0.923 0.930

(1 .0 0 0 ) ( 1 .0 0 0 ) (1 .0 0 0 ) (0.986) (0.985) (0.986) (0.948) (0.943) (0.947)
0 .2 0.990 0.990 0.991 0.998 0.998 0.998 0.966 0.968 0.971

(0.999) (0.998) (0.998) (0.992) (0.993) (0.995) (0.956) (0.960) (0.964)
0.4 0.949 0.951 0.958 0.998 0.998 0.998 0.988 0.988 0.989

(1 .0 0 0 ) (0.990) (0.988) (0.993) (0.998) (0.999) (0.959) (0.969) (0.975)

IV .4 .4  C om parison o f  A sy m p to tic  Perform ance

We now compare the asymptotic performance of each estimating procedure discussed 

in Section IV.3 by computing asymptotic relative efficiencies (ARE). This is done by 

calculating the asymptotic variances derived in Section IV.4 for particular values of 

the correlation parameters. For our purposes, we assume th a t t  =  5 (i.e. a family 

consists of two parents and three children), n  =  5,000 and <f> =  3. As there are four 

correlation parameters, it is impractical for us to  display ARE as done in Chapters II 

and III. Thus we make use of tables, choosing values of 0.0, 0.2 and 0.4 for each 

correlation parameter.

We begin with estimators of 7 , the A RE’s for which are found in Table 4.1. Here 

we see th a t the ARE is close to  one for both the MLE v. MoM and MLE v. QLS 

comparisons, implying th a t the asymptotic variances for estimators of 7  for all three 

estimating procedures are very similar. Specifically, note th a t the ARE is exactly 

one or extremely close when 7  =  0.0. Only for 7  =  0.4 do any of the ARE’s drop 

below 0.95, and nowhere are they below 0.9. Thus, for estimators of 7 , we see that
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Table 4 -2 :  Pl A R E  of  M LE  vs. M oM  (MLE vs. QLS)

7 0 .0 0 .2 0.4
Pl P2  /  a 0 .0 0 .2 0.4 0 .0 0 .2 0.4 0 .0 0 .2 0.4
0 .0 0 .0 1 .0 0 0 1 .0 0 0 1 .0 0 0 1 .0 0 0 1 .0 0 0 1 .0 0 0 1 .0 0 0 1 .0 0 0 1 .0 0 0

( 1 .0 0 0 ) ( 1 .0 0 0 ) ( 1 .0 0 0 ) (1 .0 0 0 ) ( 1 .0 0 0 ) (1 .0 0 0 ) ( 1 .0 0 0 ) (1 .0 0 0 ) ( 1 .0 0 0 )
0 .2 1 .0 0 0 1 .0 0 0 1 .0 0 0 0.996 0.997 0.998 0.982 0.988 0.991

(1 .0 0 0 ) ( 1 .0 0 0 ) (1 .0 0 0 ) (0.998) (0.999) (0.999) (0.992) (0.994) (0.995)
0.4 1 .0 0 0 1 .0 0 0 1 .0 0 0 0.980 0.986 0.990 0.914 0.940 0.956

( 1 .0 0 0 ) ( 1 .0 0 0 ) ( 1 .0 0 0 ) (0.991) (0.993) (0.995) (0.961) (0.969) (0.976)
0 .2 0 .0 0.924 0.936 0.942 0.920 0.933 0.939 0.907 0.923 0.931

(0.983) (0.987) (0.989) (0.982) (0.986) (0.988) (0.978) (0.983) (0.985)
0 .2 0.923 0.935 0.941 0.950 0.956 0.958 0.967 0.970 0.970

(0.984) (0.987) (0.988) (0.987) (0.992) (0.993) (0.987) (0.993) (0.996)
0.4 0.920 0.931 0.936 0.973 0.976 0.976 0.995 0.997 0.995

(0.987) (0.986) (0.986) (0.988) (0.994) (0.996) (0.976) (0.991) (0.997)
0.4 0 .0 0.690 0.751 0.774 0.678 0.740 0.765 0.633 0.704 0.736

(0.914) (0.945) (0.955) (0.911) (0.941) (0.951) (0.895) (0.925) (0.938)
0 .2 0 .6 6 8 0.747 0.770 0.726 0.780 0.799 0.741 0.794 0.811

(0.922) (0.946) (0.953) (0.921) (0.952) (0.962) (0.918) (0.953) (0.964)
0.4 0.681 0.733 0.753 0.771 0.817 0.827 0.835 0.873 0.876

(0.976) (0.951) (0.947) (0.942) (0.964) (0.969) (0.924) (0.967) (0.979)

all three procedures perform similarly.

The ARE for estimators of p\ are found in Table 4.2. Here we see th a t the ARE 

for both comparisons are high for values of pi (0.0  and 0 .2 ), as in this region most 

ARE values are close to  1.0 and none are less than  0.9. However, for pi = 0.4 we 

see th a t the ARE for the MLE and MoM procedures is everywhere below 0.9 and in 

some cases below 0.65, implying th a t the MLE has smaller variance than  the MoM 

estimator. The ARE for the MLE and QLS procedures are still high in this region 

and nowhere lower than  0.895. Though the asymptotic variances for the MoM and 

QLS pi estimators are comparable to  th a t of the MLE for small to  m oderate values 

of p i , only the QLS estim ator has comparable asymptotic variance with the MLE for 

large values of pi.

The ARE for estimators of p2 are found in Table 4.3. Here we see th a t for p2 equal 

to  0.0 and 0.2, the ARE values for both comparisons are everywhere greater than  0.9, 

and for small 7  and pi we see th a t the ARE is close to one. However, for p2 — 0.4, we 

see the the ARE for the MLE and MoM procedures is everywhere less than  0.9 and in 

some cases lower than  0.65. The ARE for the MLE and QLS procedures, however, is
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Table 4 -3 :  p2 A R E  of  M LE  vs. M oM  (MLE vs. QLS)

7 0 .0 0 .2 0.4
Pl P2 /  a 0 .0 0 .2 0.4 0 .0 0 .2 0.4 0 .0 0 .2 0.4
0 .0 0 .0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

(1 .0 0 0 ) (1 .0 0 0 ) (1 .0 0 0 ) (1 .0 0 0 ) (1 .0 0 0 ) (1 .0 0 0 ) (1 .0 0 0 ) (1 .0 0 0 ) (1 .0 0 0 )
0 .2 0.924 0.936 0.942 0.920 0.933 0.939 0.907 0.923 0.931

(0.983) (0.987) (0.989) (0.982) (0.986) (0.988) (0.978) (0.983) (0.985)
0.4 0.690 0.751 0.774 0.678 0.740 0.765 0.633 0.704 0.736

(0.914) (0.945) (0.955) (0.911) (0.941) (0.951) (0.895) (0.925) (0.938)
0 .2 0 .0 1.000 1.000 1.000 0.996 0.997 0.998 0.982 0.988 0.991

( 1 .0 0 0 ) ( 1 .0 0 0 ) ( 1 .0 0 0 ) (0.998) (0.999) (0.999) (0.992) (0.994) (0.995)
0 .2 0.923 0.935 0.941 0.950 0.956 0.958 0.967 0.970 0.970

(0.984) (0.987) (0.988) (0.987) (0.992) (0.993) (0.987) (0.993) (0.996)
0.4 0 .6 8 8 0.747 0.770 0.726 0.780 0.799 0.741 0.794 0.811

(0.922) (0.946) (0.953) (0.921) (0.952) (0.962) (0.918) (0.953) (0.964)
0.4 0 .0 1.000 1.000 1.000 0.980 0.986 0.990 0.914 0.940 0.956

(1 .0 0 0 ) ( 1 .0 0 0 ) ( 1 .0 0 0 ) (0.991) (0.993) (0.995) (0.961) (0.969) (0.976)
0 .2 0.920 0.931 0.936 0.973 0.976 0.975 0.995 0.997 0.995

(0.987) (0.986) (0.986) (0.988) (0.994) (0.996) (0.976) (0.991) (0.997)
0.4 0.681 0.733 0.753 0.771 0.817 0.827 0.835 0.873 0.876

(0.976) (0.951) (0.947) (0.942) (0.964) (0.969) (0.924) (0.967) (0.979)

nowhere less than  0.9. We also see tha t, based on the comparisons between the MLE 

and MoM procedures, the asymptotic variance of the QLS estim ator is everywhere 

a t least as small as the MoM estimator. For estimators of p2, then, we see th a t 

the QLS estim ator is a  good competitor with the MLE, while for large values of p2, 

both the MLE and QLS estimators have smaller asymptotic variances than  the MoM 

estimator.

Lastly, the ARE for estimators of a  are found Table 4.4. Here we see th a t for all 

values of the correlation param eters the ARE is less than  or equal to  0.4 for MLE and 

MoM comparison, implying th a t the variance of the MoM estim ator is much larger 

than  th a t of the MLE. Alternatively, we see th a t the efficiencies for the MLE and 

QLS procedures are high for all values of the correlation parameters, with no value 

less than  0.94, and many close to 1.0. For estimating a, then, we see th a t both the 

MLE and QLS procedures are far superior to  MoM, and QLS is highly comparable 

to  MLE.
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Table 4.4: a ARE of MLE vs. MoM (MLE vs. QLS)

7 0 .0 0 .2 0.4
Pl P2 /  a 0 .0 0 .2 0.4 0 .0 0 .2 0.4 0 .0 0 .2 0.4
0 .0 0 .0 0.248 0.315 0.337 0.245 0.311 0.333 0.237 0.301 0.323

( 1 .0 0 0 ) (0.984) (0.942) ( 1 .0 0 0 ) (0.985) (0.943) ( 1 .0 0 0 ) (0.986) (0.946)
0 .2 0.249 0.320 0.344 0.246 0.316 0.340 0.238 0.306 0.330

(0.998) (0.987) (0.946) (0.998) (0.987) (0.947) (0.998) (0.988) (0.950)
0.4 0.237 0.329 0.364 0.234 0.324 0.359 0.225 0.312 0.346

(0.962) (0.986) (0.955) (0.962) (0.985) (0.955) (0.961) (0.983) (0.956)
0 .2 0 .0 0.249 0.320 0.344 0.246 0.316 0.340 0.238 0.306 0.330

(0.998) (0.987) (0.946) (0.998) (0.987) (0.977) (0.998) (0.988) (0..950)
0 .2 0.251 0.326 0.352 0.248 0.322 0.348 0.240 0.311 0.336

(0.998) (0.991) (0.950) (0.998) (0.992) (0.952) (0.998) (0.992) (0.955)
0.4 0.240 0.336 0.373 0.237 0.331 0.368 0.229 0.319 0.354

(0.968) (0.992) (0.961) (0.965) (0.992) (0.962) (0.963) (0.991) (0.964)
0.4 0 .0 0.237 0.329 0.364 0.234 0.324 0.359 0.225 0.312 0.346

(0.962) (0.986) (0.955) (0.962) (0.985) (0.955) (0.961) (0.983) (0.956)
0 .2 0.240 0.336 0.373 0.237 0.331 0.368 0.229 0.319 0.354

(0.968) (0.992) (0.961) (0.965) (0.992) (0.962) (0.963) (0.991) (0.964)
0.4 0.225 0.349 0.400 0.224 0.344 0.394 0 .2 2 0 0.331 0.378

(0.969) ( 1 .0 0 0 ) (0.974) (0.941) (0.999) (0.977) (0.941) (0.999) (0.979)
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CHAPTER V  

CONCLUSION

V .l  Sum m ary

In Chapter II we analyzed the Autoregressive Familial correlation structure with 

regards to the maximum likelihood, m ethod of moment and quasi-least squares pro­

cedures, finding unbiased estimators and their asymptotic variances. Asymptotically, 

we found th a t quasi-least squares correlation estimators are good competitors with 

the maximum likelihood estimators, and both are superior to  the moment estima­

tors. In the small sample case, we estim ated small-sample efficiencies and found th a t 

the quasi-least squares estimators are much more competitive against the maximum 

likelihood estimators, especially in the presence of non-normally distributed data. 

We also proposed a  likelihood ratio test for the maximum likelihood estimators and 

W ald’s Tests for the moment and quasi-least squares estimators.

In Chapter III we analyzed the Autoregressive Familial correlation structure in the 

case of heterogeneous intra-class variances. The main procedural difference between 

the estimation m ethods in this Chapter and those in Chapter II is th a t here we used 

moment estimators for the variance param eters in each procedure. Estim ation of the 

correlation param eters, however, was similar. Asymptotically, we again saw th a t the 

QLS estim ator has comparably small variance with the MLE, and both the MLE 

and QLS correlation param eter estimators are more efficient than the MoM. In the 

small-sample case, we simulated data  from a normal distribution, and found th a t 

for estimating p the QLS procedure is comparable with the MLE procedure with 

regards to estim ated small-sample variance, and both the QLS and MoM procedures 

outperform the MLE procedure for estimators of a. We saw similar results in the 

small-sample case with data  simulated from a non-normal distribution.

Finally, in Chapter IV we analyzed the Equicorrelated Nuclear Familial structure. 

Making use of a canonical transform ation we simplified the correlation structure into 

a more manageable form, which simplified the process of finding estimators and 

asymptotic variances. Asymptotically, we found th a t the QLS estimators for each 

correlation param eter has comparably small variance with the MLE for all values
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of the correlation param eters, while both the MLE and QLS estimators have much 

smaller asymptotic variances than  the MoM estim ator for large correlation values.

V .2  Future R esearch

The first extension of the work provided in this thesis would be to analyze the 

unbalanced case, or to  account for da ta  sets with families of various sizes. Allowing 

ti, i = 1 , . . . ,  n  to  vary between families, provided the family dependence structures 

are the same, should not be too arduous.

One natural progression from the autoregessive familial correlation structure is 

instead to  incorporate age differences into the modeling. This correlation structure 

for a family of size j  could look as follows.

/  1 p |a i —a 2| pl<U -“ 3l p\ai-a,i\ p ja i a j| \

+ 2 - a i | 1 q ,|o2—a3| Q,l«2-a4 | . Q̂ \a2~aj\

pl«3~ a i | a |a3—a2| 1 Q,la3- a 4| a \a,3-a j\

^ p laJ —Qll a \a.j-a2\ (y\aj~ as\ a4| 1 /

where at is the age of the ith  family member. Accounting for actual differences 

between family members in this m anner would be more accurate than  simply reducing 

correlation by a power. However, using age differences to reduce correlation could also 

dilute existing dependencies too much. Another, yet more complicated alternative is 

the generalized Markov model, which is given by

/  1 ne2 me2+e3 ne2+e3+e4 r,e2+e3~l hej \

V

1

r/f'2
e2+e3

e2+e3

£°3

1

V,«2+e3+e4
£0 3 + 0 4

£ 0 3

rr
£ 03+ 04-1---------h  Oj

£04+05-I \~0j

^ yye2+€3-j---- \~ej £O3+ 04H---- \~0j  £O5+ 0eH \~Oj £O6+ 07H---- \~0j . . , ^ ^

where r) is a par-sib correlation param eter, £ is a sib-sib correlation param eter, the
e,; s are functions of the param eter A and the Oi s are functions of the param eter 7
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defined as

et( A) =  <
[ N W -il i f \  ± 0 ,

k log(oi) -- log(a<_i) i fX  =  0,

<*(7 ) =  (
f [«7-«7-il

7 i f l  + 0 ,

log(Oj) -- log(ai_!) i f j  = 0 ,

where 2 <  i < j .  This structure allows us to  adjust the dampening param eter (via A 

or 7 ) to  more accurately model the existing correlation. Naturally, with the increase 

in param eters this structure will also be increasingly intractable algebraically.

W ith regards to  the nuclear family model discussed in Chapter IV, we would first 

like to  analyze the small-sample case, as was done in Chapters II and III. This would 

give a much better picture of the performance of the three estim ating procedures. 

Another natural extension for the nuclear model is to  add further family members 

(grandparents, step-parents, adopted children, etc.). Modeling the dependence for 

this family might best be served w ith an unstructured model given by

1 Pl,2 Pl,3 Pl,4

Pl,2 1 a 2,3 «2,4

Pl,3 Q!2,3 1 73,4

V : ; : : 7
where each param eter corresponds to a specific family member and the subscripts 

correspond to  which two members the param eter applies. Note however, th a t we 

cannot apply the same canonical reduction th a t was applied in Chapter IV. More 

generally, however, we could model k arbitrary classes of family members (as in 

Elston (1975)) with

(  E n  E 12 • • • E 1Jfc N

E 21 E 22 • • • S 2fe

 ̂ Sfei Sfc2 ■ • •

where E jj  is the (tj x t j ) intra-class variance-covariance structure for the j t h  class, 

and Ey is the (t, x tj) inter-class variance-covariance structure between the ith  and 

j th  classes. If we assume th a t the param eters within each class follow equicorrelated 

structures, then we could theoretically find a canonical reduction to simplify the 

structure into a more manageable form.
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A PPE N D IX  

LISTS OF PARTIAL DERIVATIVES

A .l  List o f  partia l derivatives from  C hapter 2

dR(X)
dp

0 1 2 p 3 P
1 0 0 0

2 p 0 0 0

\ { t -  1 )pt~2 0 0 0

(i - 1 y - 2 \
0 

0

0 )

dR{ X) 
da

(  0 

0 

0 

0

0

0

1

2a

0

1

0

1

0

2a

1

0

\ 0  ( t -  2 )a i~3 (t -  3 y - 4 (t -  4)a ’t - 5

o \

(t -  2 ) a t" 3 

(t -  3) a *"4 

(t -  4 )a t_5

0

/ 0 0 2 6p 1CnT1

0 0 0 0 0

d2R{ A) 2 0 0 0 0

dp2 6 p 0 0 0 0

- i ) ( t - 2y - 3 0 0 0 •• 0 )

d2i?(A)
d a 2

0

0

0

2

0

0

0

0

\  0 (£ -  2)(t -  3)a t~4 (t -  3){t -  4)a t - 5

\

(£ — 2)(t — 3 )a*~4 

(f — 3)(£ — 4 )a *-5 

( t - 4 ) ( i - 5 ) a *_6

/
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9R(  A)
<9p<9a

A .2 List o f  partia l derivatives from  C hapter 3

dS(A,$)
d<t>p

1
%$

1 4>? p 0?p;i

to -Sf *etd
i 202

0?p1 0 0
2 <j>p

Â P4- 1 N  1—

d2£(A,$)
d<t>i

(  0 p p2

p 0 0

p2 0 0

V p3 0 0

I3 \

0 /

0S(A,$)
d(f>s

<Pp p

4>?p2
2 Pl

4>yp
2 4  

1

a

<t>?p2
2 <j>j 

a

20?

a 2

a

t>p pl 1 ^
20? 
,i—2a

a t—3

0?P4 at-2 a O'i —4

<92£(A, <E>)

/ 0 p p2 p* -1 \

1 p 0 0  ■ • 0

3 p2 0 0 0
W s

\  P 0 0 o y
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a s (A ,$ )
dp

0 1 2 p 3 P-

1 0 0 0

2 p 0 0 0

\ ( t - 1 y - 2 o o o

(t -  i y - 2 \  

o 

o

d 2E(A ,$)
dp2

dS ( A ,$) 
da — ds

d 2E( A ,$) 
d a 2

(  0 0 2 6p ( t - 2)pt~3 \
0 0 0 0 0

>pds 2 0 0 0 0

V (*-!)(*-- 2 y - 3 o 0 0 0

f  0 0 0 0 0 ^

0 0 i 2a ■ • ( t - 2) a *-3

0 1 0 1 (t - 3) a 4" 4
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