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ABSTRACT

TOPICS IN ELECTROMAGNETIC, ACOUSTIC, AND 
POTENTIAL SCATTERING THEORY

Umaporn Nuntaplook 
Old Dominion University, 2013 

Director: Dr. John Adam

W ith recent renewed interest in the classical topics of both acoustic and electro
magnetic aspects for nano-technology, transformation optics, fiber optics, metama
terials with negative refractive indices, cloaking and invisibility, the topic of time- 
independent scattering theory in quantum mechanics is becoming a useful field to 
re-examine in the above contexts. One of the key areas of electromagnetic theory — 
scattering of plane electromagnetic waves — is based on the properties of the refrac
tive indices in the various media. It transpires tha t the refractive index of a medium 
and the potential in quantum scattering theory are intimately related. In many 
cases, understanding such scattering in radially symmetric media is sufficient to gain 
insight into scattering in more complex media. Meeting the challenge of variable 
refractive indices and possibly complicated boundary conditions therefore requires 
accurate and efficient numerical methods, and where possible, analytic solutions to 
the radial equations from the governing scalar and vector wave equations (in acous
tics and electromagnetic theory, respectively). Until relatively recently, researchers 
assumed a constant refractive index throughout the medium of interest. However, 
the most interesting and increasingly useful cases are those with non-constant re
fractive index profiles. In the majority of this dissertation the focus is on media 
with piecewise constant refractive indices in radially symmetric media. The method 
discussed is based on the solution of Maxwell’s equations for scattering of plane 
electromagnetic waves from a dielectric (or “transparent” ) sphere in terms of the 
related Helmholtz equation. The main body of the dissertation (Chapters 2 and 3) 
is concerned with scattering from (i) a uniform spherical inhomogeneity embedded 
in an external medium with different properties, and (ii) a piecewise-uniform central 
inhomogeneity in the external medium. The latter results contain a  natural gener
alization of the former (previously known) results. The link with time-independent 
quantum mechanical scattering, via morphology-dependent resonances (MDRs), is 
discussed in Chapter 2. This requires a  generalization of the classical problem for



scattering of a plane wave from a uniform spherieally-symmetric inhomogeneity (in 
which the velocity of propagation is a function only of the radial coordinate r, i.e., 
c =  c(r)) to a piecewise-uniform inhomogeneity. In Chapter 3 the Jost-function for
mulation of potential scattering theory is used to solve the radial differential equation 
for scattering which can be converted into an integral equation corresponding via the 
Jost boundary conditions. The first two iterations for the zero angular momentum 
case I =  0 are provided for both two-layer and three-layer models. It is found tha t 
the iterative technique is most useful for long wavelengths and sufficiently small 
ratios of interior and exterior wavenumbers. Exact solutions are also provided for 
these cases. In Chapter 4 the time-independent quantum mechanical ‘connection’ 
is exploited further by generalizing previous work on a  spherical well potential to 
the case where a delta ‘function’ potential is appended to  the exterior of the well 
(for 1 7  ̂ 0). This corresponds to an idealization of the former approach to the case 
of a  ‘coated sphere’. The poles of the associated ‘^-m atrix’ are im portant in this 
regard, since they correspond directly with the morphology-dependent resonances 
discussed in Chapter 2. These poles (for the I =  0 case, to  compare with Nussen- 
zveig’s analysis) are tracked in the complex wavenumber plane as the strength of the 
delta function potential changes. Finally, a set of 4 Appendices is provided to clarify 
some of the connections between (i) the scattering of acoustic/electromagnetic waves 
from a penetrable/dielectric sphere and (ii) time-independent potential scattering 
theory in quantum mechanics. This, it is hoped, will be the subject of future work.
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CHAPTER 1 

INTRODUCTION

The following quote from a paper by Adam and Laven [6] (although written from 
a ray-theoretic approach) explains in part why the scattering of electromagnetic plane 
waves from spheres is such an important and topical subject:

“This paper uses geometrical optics to analyze the scattering of light by inhomo- 
geneous spheres in which the refractive index is a  function of the radius only. The 
results may be of value in the field of rainbow refractometry and thermometry, which 
are optical techniques used to measure the refractive index (and hence the tempera
ture) of transparent particles (including fuel droplets), and the cross-sectional shape 
of dielectric cylinders. Such techniques can be used to determine very small spatial 
and time-varying changes in refractive index, and are valuable for analysis of the 
combustion of liquid hydrocarbons, the injection of sprays in high-pressure environ
ments, as well as the spraying drying techniques employed in the food, agricultural 
and pharmaceutical industries. Gradients of refractive index can be caused when 
droplets undergo simultaneous heating and evaporation in a combustion chamber, 
and will be primarily radial if internal convection can be neglected compared with 
thermal conduction. Similar refractometry studies have been carried out to deter
mine the refractive indices and radii of unclad optical fibers.”

Furthermore, the following quotation from Lock [18] illustrates how several com
plementary mathematical approaches in theoretical optics can bring a richer under
standing of any particular optical effect (in this case, the rainbow):

“The theory of the rainbow has been formulated a t many levels of sophistication. 
In the geometrical-optics theory of Descartes, a rainbow occurs when the angle of the 
light rays emerging from a water droplet after a number of internal reflections reaches 
an extremum. In Airy’s wave-optics theory, the distortion of the wave front of the 
incident light produced by the internal reflections describes the production of the 
supernumerary bows and predicts a shift of a  few tenths of a degree in the angular 
position of the rainbow from its geometrical-optics location. In Mie theory, the 
rainbow appears as a strong enhancement in the electric field scattered by the water 
droplet. Although the Mie electric field is the exact solution to the light-scattering
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problem, it takes the form of an infinite series of partial wave contributions tha t 
is slowly convergent and whose terms have a mathematically complicated form. In 
the complex angular momentum theory, the sum over partial waves is replaced by 
an integral, and the rainbow appears as a confluence of saddle-point contributions 
in the portion of the integral tha t describes light rays tha t have undergone a  single 
internal reflection within the water droplet.”

The use of classical electromagnetic theory to describe the scattering of plane 
electromagnetic waves by a sphere with a  constant refractive index is commonly 
known as the Mie solution. This is also referred to  as Mie scattering (or less accu
rately, Mie theory), named for Gustav Mie (1869 -  1957) who was interested in the 
scattering of such waves from colloidal metal solutions, and published his results in 
1908. The historical development of the topic is well discussed by Kerker [3]. The 
theory of electromagnetic (in particular, light) scattering from a radially inhomoge- 
neous sphere has been developed by many authors (again, see references in Kerker 
[3]). To this extent, the problem has been understood for many years. However, 
recent developments in optics and nanotechnology (see Leonhardt and Philbin [4], 
and references therein) have renewed interest in these classical solutions.

A central feature of the research presented here is the intriguing formal con
nection between the acoustic and electromagnetic scattering problems on one hand, 
and time-independent potential scattering theory on the other. Specifically, a po
tential ‘well’ can be associated with a finite domain D where the refractive index 
everywhere exceeds one, i.e. n (r) >  1, r  G D  . In most of this study, 3-layer piece- 
wise constant refractive indices are chosen to represent non-uniform media, and they 
have corresponding potential well/barrier combinations, some of whose scattering 
properties can be determined using methods of potential scattering theory. In so 
doing, previous results for uniform scattering inhomogeneities have been extended 
and generalized both analytically and numerically. The reasons for this analysis are 
as follows. Many approximately spherically symmetric scatterers in optical media 
(phytoplankton, animal cells, aerosols, optical fibers, plasmas, combustion mixtures, 
ice/rain mixtures, planetary atmospheres, and even in seismology though the waves 
are elastic in nature) have non-constant refractive indices, and these are generally 
not continuous functions. Furthermore, as shown in Adam and Laven [6], for the 
sub-class of differentiable refractive indices n ( r ) , r  =  | r | , different optical features 
arise if the gradient of n (r) is positive or negative in some sub-interval of the drop
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radius. Since analytic solutions for these cases are few and far between (see Adam 
[33] and references therein), a three-layer model consisting of two concentric spheres 
and the exterior domain can be used to mimic the broad features of these differen
tiable cases. In fact, in view of the above examples, they may be more realistic than 
these mathematically idealized cases!

In Chapter 2, the study of morphology-dependent resonances (MDRs) and elec
tromagnetic scattering by a uniform sphere, based on the important paper by John
son [7], is discussed and extended to accommodate a two-layer piecewise-uniform 
sphere (when embedded in the external medium this becomes a three-layer model). 
Appendix B analyses certain features of a differentiable refractive index profile (sub
m itted to Applied Mathematics Letters). Also in Chapter 2, a simple model with a 
well-barrier potential is developed for the case of the angular momentum ‘quantum 
number’ I =  0. The idea behind this is to have a ‘tem plate’ with four adjustable pa
rameters (the well depth, barrier height and well/barrier widths) to mimic the I ^  0 
cases, for which the so-called “centrifugal barrier” can temporarily trap  wave energy 
associated with MDRs. Chapter 3 adopts the same approach for what was originally 
studied as a problem in acoustics [12]. The vector problem in electromagnetic theory 
can be reduced to two (in general non-identical) scalar problems in this geometry 
(one for each polarization) and these can be treated in the same way as the acoustic 
problem, but as before, the theory is extended to accommodate piecewise-uniform 
media. Chapter 4 addresses the case of a ‘coated’ sphere. Such spheres are used, 
for example, in nanotechnology and in connection with ‘optical tweezer’ technology 
(see Chapter 4). Furthermore, a coated sphere may be a more appropriate model for 
certain biological cells than a homogeneous sphere. The seminal paper of Nussen- 
zveig [15] is extended by taking the spherical potential well used in th a t paper, and 
adding (formally) a delta-function potential to the surface of the well to represent 
a thin molecular coating on the surface of, for example, a  nanosphere. The MDRs 
discussed in Chapter 2 can be identified mathematically with the poles of the so- 
called S -matrix of a given potential (see Appendix C). The 5-matrix is derived for 
the I = 0 case for this new ‘well +  delta’ potential, and the poles are tracked in 
the complex wavenumber plane as the strength of the delta function decreases and 
increases away from zero.
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CHAPTER 2 

THE SCATTERING OF ELECTROMAGNETIC WAVES 

IN RADIALLY INHOMOGENEOUS SPHERES: 

MORPHOLOGY-DEPENDENT RESONANCES (M DRs)

2.1 IN T R O D U C T IO N

To study the scattering of electromagnetic waves in radially symmetric media it 
is necessary to examine the refractive index profile which is the key concept to de
scribe a scattering potential. In general, variable refractive indices and complicated 
boundary conditions require accurate and efficient methods to solve the system of 
equations, especially for multilayered problems. One method discussed in this study 
is based on the Maxwell’s equations and the Helmholtz equation for scattering of 
plane electromagnetic waves from a dielectric sphere using Mie Theory. The scatter
ing electromagnetic energy in a dielectric sphere shows a series of sharp peaks as a 
function of the size parameter from the cross section. The peaks represent the scat
tering resonances where the electromagnetic energy is temporally trapped inside the 
particle near the surface of the sphere in a dielectric potential well. These resonances 
are referred to as morphology-dependent resonances (MDRs). When the electromag
netic wave propagates around the inside surface of the sphere, it is trapped by almost 
total internal reflection and finally returns to its starting point in phase. There is 
an important connection here with potential scattering theory. The refractive index 
corresponds to a potential well V (r) in the time-independent Schrodinger-type equa
tion. The electromagnetic energy enters and leaves the well by tunneling through a 
centrifugal barrier that forms the outer boundary of the potential.

2.1.1 ELECTRO M AG NETIC E IG E N M O D ES OF SPH ER ES

“When a  beam of electromagnetic radiation is incident on a small dielectric parti
cle of high symmetry, such as a sphere or a circular cylinder, a  morphology-dependent
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resonance (MDR) is excited in one of the partial waves in the partial-wave expansion 
of the incident beam at certain combinations of the wavelength of the radiation and 
the particles radius and refractive index. According to van de Hulsts localization 
principle, the resonant partial wave corresponds to an incident light ray whose im
pact parameter with respect to the center of the particle is somewhat larger than 
the particles radius, and therefore the ray would classically pass the particle without 
striking it. The fact that MDRs are excited by rays tha t miss the particle is paradox
ical in ray optics, but it is easily understood in wave optics. A portion of the partial 
wave evanescently tunnels through the centrifugal barrier surrounding the particle 
and is transm itted to the particles interior. Once inside, the partial wave is trapped 
in the particles radial interior potential well and successively reflects back and forth 
within it. At resonance, approximately an integer number of half-wavelengths of the 
partial wave fit within the radial potential well, and the successive internal reflections 
are in phase with one another. As a result, a  large energy density builds up inside the 
particle just beneath its surface, and at each internal reflection a certain percentage 
of the interior field tunnels back out through the centrifugal barrier and is detected 
in the far zone as a resonant amplification of the scattered light” [1].

“Optical resonances of dielectric spheres, so-called Mie resonances or morphology- 
dependent resonances, have attracted considerable scientific interest in recent years. 
The strong resonant field enhancement within and near the surface of the sphere al
lows the observation of several nonlinear optical phenomena. Resonance spectroscopy 
has proved to be a highly accurate tool in aerosol research” [5].

“Mie theory provides the rigorous treatm ent of the interaction of a plane wave 
with a dielectric sphere. In Mie theory all involved fields are expanded in spherical 
multipole waves (eigenmodes); in resonance one eigenmode of the sphere is strongly 
excited. Each multipole wave is characterized by its state of polarization (TE or TM) 
and two integers, which enter in Mie theory as separation constants. These integers 
are the mode number I = 1, 2 , . . . ,  which is connected to the total angular momentum 
of the mode by \L\ =  [Z(Z -I- \))x/2h «  {I +  1/2)h, and the azimuthal mode number 
m  < I, which is a measure for the z component of the angular momentum, Lz — mh. 
Modes tha t have the same mode number I but differ in m  are degenerate; i.e., they 
occur at the same size parameter x  =  k^a — (27r/A0)a (a is the sphere’s radius, ko 
is the wave number, and Ao is the wavelength of the illuminating radiation). If a 
sphere is illuminated by a plane wave, only modes with m  =  1 are excited. Each
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multiple exhibits an infinite number of resonances as a function of the sphere’s size 
parameter” [5].

Though we do not need to discuss them in detail, Figures 1 and 2 are redrawn from 
[5] to illustrate the basic idea of Mie resonances, variously represented by geometric 
optics ( “rays”) and wave theory.

FIG. 1: An illustration of Mie resonances using geometrical optics (redrawn from

FIG. 2: An illustration of Mie resonances using geometrical optics. Path of a ray 
within its orbit. In the left part, the size of the cavity is such th a t consecutive 
congruences of the same kind are not in phase; this represents a nonresonant case. 
In the right part, the cavity size is such th a t consecutive congruences are in phase; 
this state represents a resonance (redrawn from Ref. [5]).

z

Ref. [5]).

resonant statenonresonant state
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2.2 SC A TTER IN G  TH EO RY FO R  T W O -LA Y ER  M ODEL

The most common technique to solve problems of light scattering from a radi
ally inhomogeneous particle is based on solving the second-order, linear differential 
equations for the radial Debye potential [13]. Several authors have developed the 
theory of light scattering by a radially inhomogeneous sphere. This section begins 
with the basic equations for electromagnetic scattering from spherically symmetric 
particles as shown in Figure 3. The radius of the particle is defined as a, the center 
is at the origin of the coordinate system, and the refractive index is defined as n(r ) 
which may be a function of the radial coordinate r, and can be a complex number. 
For the external region outside the sphere, r > a, the refractive index, n (r) =  1. The 
wave number is k = 2ir/\,  where A is the wavelength outside the sphere. Assume 
that the particle is nonmagnetic. Therefore, the electric field for this problem must 
satisfy the appropriate scattering conditions and also the following vector Helmholtz 
equation, which is good for the condition assumed here tha t the magnetic permeabil
ity is constant. The complex time-dependence of the electric field is assumed to be 
harmonic, i.e., oc e~luJl.

r=a

Region 1
n(r)=constant n > 1

Region 2 
n(r)=1

FIG. 3: A constant refractive index associated with a  spherical dielectric particle.
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Consider the following vector Helmholtz equation:

V x V x E  -  Jfc2n 2(r)E  =  0. (1)

It can be verified tha t the following vector wave functions are solutions of (1):

M (r , 0,0) =  V x [\I/(r, 0 ,0)r], (2a)

N (r, 0, 0) = V x V x [<E>(r, 0 ,0 )r], (2b)

where r, 0, and 0 are spherical coordinates, r  is the radius vector, and VP and $  are 
scalar functions tha t satisfy the differential equations [11]

V 2^  +  k 2n 2(r)V = 0, (3a)

-  + k2n 2(r)$  = 0. (3b)
n z(r) dr or

By applying the method of separation of variables to these equations in spherical 
coordinates, we generate the following equations:

n ( r ,  0 ,0) =  ■^Si(r)Pln(cos0) exp(w0), (4a)

$z, n ( r ,  9,0) =  -j^Tl(r)Pln(cosd) exp(m0), (4b)

where Pt "(cos 6) is the associated Legendre polynomial. The functions Si (r) and T}(r) 
are the radial Debye potentials, which satisfy the following second-order differential 
equations:

+  [A V W  -  _  0, . (5a)

d 2Ti(r) 2 dn(r) 2 2 1(1 + 1)
” W )  1 ( ’ -----~ ]T,(r) = °' (5b)

In regions where the refractive index is a constant value n, the two differential equa
tions (5a) and (5b) have the same form. Substituting the functions (4a) and (4b) into 
(2a) and (2b), respectively, provides the set of vector wave functions M i>n and N*>n 
that are solutions to (1). The M  fields are called transverse electric (TE) modes, and
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the N  fields are transverse magnetic (TM) modes. Therefore, S)(r) are associated 
with TE fields, and the 7](r) are associated with TM fields.

In the internal region for a constant refractive index n, 0 < r <  a:

Si{r) =  Ti{r) =  ipt(nkr ) (6)

where nkr ) is the Riccati-Bessel funtion (see definition below) and the boundary 
conditions are »Si(0) =  0 and T;(0) =  0, which guarantee th a t the electric fields and 
magnetic fields are finite at the origin.

In the region outside the particle, the general solutions to  (5a) and (5b) are linear 
combinations of the Riccati-Bessel functions. The electric field in this region consists 
of the incident wave and an outgoing scattered wave. The Riccati-Bessel functions 
are defined as:

ipi(x) =  x j t (x) ,  (7a)

Xi(x)  =  x y t (x),  (7b)

where j i ( x )  and yi (x)  are spherical Bessel function of the first and second kinds, 
respectively.

In the external region: r > a

Si(r) = Bi[xi(kr) + Mi{kr)] ,  (8a)

Tt(r) = Ai[xi(kr) + ai^i(kr)], (8b)

where n (r) =  1, ai, /?;, Ai, and Bi are constants.

We use the log-derivative formalism for the connection of the internal and external 
solution where the refractive index is discontinuous, such as at the surface of the 
sphere and at the boundaries between the layers of multi-layer sphere case (as in 
Section 2.4). The modified log-derivative functions of S;(r) and 7](r) are defined as

(9a)
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V,(r) =  1
T!(r)

LTiW
(9b)kn2{r)

where a prime denotes the derivative with respect to the argument of the function.
Both of these functions are continuous at all points.

We first consider the continuity at the surface r = a by matching the internal 
solution from (6) with the external solution from (8a) and (8b) to obtain

i)i{nka) =  Bt[xi(ka) +  Piipi(ka)], (10a)

i(>i(nka) — Ai[xi{ka) +  a i ^ k a ) } .  (10b)

Hence,

p Mnka) ,
1 X i (ka )  +  P i i ) i ( k aY

Al =  f - w  ( l l b )
Xi{ka) +  aiiptn(ka)

For Pi = 0 and ai =  0 a t r = a, we have

{12)
X i ( k a )

Now we substitute the external solutions defined by (8a) and (8b) into the modified
logarithmic derivatives given by (9a) and (9b) and evaluate them at the surface of
the sphere r =  a. The standard approach in the literature is to use the continuity of 
the functions Ui(r) and Vi(r) across the boundary to  solve for a; and /3;. The results 
are

and

if>i(nx)x!i(x) -  njj[{nx)xi{x) .
1 ipitnxtyKx) — m p K n x ) ^ : r) ’

_ tPl(nx)xi{x) -  n'lPtjnxWijx)
1 ^ [ ( n x ^ i i x )  — nipi{nx)'4){{x) ’

where x  =  ka is the size parameter.
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As shown in [7], the coefficients ai and 0i are related to  the at and bi coefficients 
of Mie theory by the formulas

bl =  (14a)

=  r r w  (14b)

The at and bi coefficients defined here are the same as the coefficients defined by
Bohren and Huffman [8] and are the complex conjugate of the coefficients defined by
van de Hulst [9] and by Kerker [3].

2.3 R E SO N A N C E  THEO RY

2.3.1 Q U A N T U M -M E C H A N IC A L  A N A L O G Y

r. a1

FIG. 4: Effective potential associated with a spherical dielectric particle.

To simplify the second-order differential equations (5a) and (5b), we write the 
Schrodinger equation in units such th a t h2/2jj, = 1, where h = 2ixh is Planck’s 
constant and p  is the reduced mass. The radial Schrodinger equation then has the 
form
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(15)

where V (r ) is the potential energy function and E  is the to tal energy. Equation (5a) 
and the Schrodinger equation will be identical if we define the potential to be

The total potential (or effective potential) is the sum of the potential function 
V (r) and the centrifugal potential, which is given by

We consider first, as an introduction to the methodology, the  special case of a spher
ical particle with a constant refractive index n. The potential in this case is given

repulsive. We are interested in the case of a dielectric particle with n  >  1 and with 
k > 0. For the specific example as presented in Ref. [7], consider the potential 
function V4o(r) for a particle of radius a, the refractive index n =  1.47, and wave 
number k = 33/a. For convenience, the unit of length and the particle radius are 
chosen to be equal. Therefore, a =  1  and k  =  33. As another example, we apply 
this technique to the case tha t n  =  4/3 and k =  33. The potential function V4 0 (r) 
for this case is shown in Figure 4. The well in the region rq < r < a for a  given k is 
surrounded by the.two classically ‘forbidden’ regions 0 < r < r\ and a < r < r 2. The 
points r\ and r2 are called the classical turning points. These points can be found 
by evaluating the local wave number pi(r), which is defined by pf(r) = E  — Vi(r). 
Therefore, this can be written in the form

In the quantum-mechanical problem, the particle can tunnel through the classically 
forbidden region a < r < into the classically allowed potential well. For specific

V{r) =  k2[\ — n 2{r)\ (16)

and
E = k 2. (17)

Vi(r) =  k2[ 1 -  n 2 (r)] +  ^ ^  ^ (18)

by

(19)

where the values of n 2  and k2 will define whether this potential is attractive or

„2^„\   ~b 1 )Pi {r) = k n ( r ) ------ —— (20)
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values of the energy level, the particles will become temporally trapped in the well, 
oscillating back and forth many times and finally tunneling back through the classical 
forbidden region to the outside world. These phenomena are called quasi-bound 
states or resonances. The resonance described here can be called a shape resonance 
because the resonance behavior arises from the shape of the potential, i.e., the well 
and the barrier. Moreover, if the shape resonance has the barrier formed by the 
centrifugal potential, it is called an orbiting resonance. This resonance corresponds 
to the usual interpretation of MDRs in terms of light rays propagating around the 
inside surface of the sphere.

2.3.2 M D R ’S IN T E R P R E T E D  A S SH A P E  R E SO N A N C ES

We have noted tha t the electromagnetic scattering problem has a  direct con
nection to the quantum-mechanical problem. Electromagnetic energy can tunnel 
through the classically forbidden region and become temporarily trapped in reso
nance states. In the following discussion, we assume th a t the refractive index is a 
real quantity (though this is not strictly necessary).

In Figure 4 the shape of the potential well depends on the energy k2. However, 
in the quantum-mechanical problem the potential is independent of the energy. This 
diagram shows the case when the energy k2 lies between the top, V (a+), and bottom, 
V(a~),  of the well. From (19) we see th a t when k increases, the bottom  of the 
potential well will drop. The energy level k2 will finally coincide with the top of the 
well. In quantum mechanics, only certain levels of energy will satisfy the boundary 
conditions and are allowed in a potential well. The problem of shape resonances is 
similar in this regard.

The boundary conditions at r  =  0 are given by S/(0) = 7/(0) =  0. These 
conditions are necessary to make sure th a t all scattering solutions axe finite at the 
origin. The solutions for the internal region 0 < r < a are given by (6). The 
solution for the external region r  > a is given by (8a) and (8b). These functions 
are a  linear combination of the Riccati-Bessel functions ipi(kr) and xi(kr).  In the 
classically forbidden region, a < r <  r2, these two functions have opposite behaviors. 
When the function 'ipi(kr) has exponential-like increase rapidly in this region, the 
function xi(kr)  has exponential-like decrease. At r = r2 these functions stop their 
exponential-like behavior and begin an oscillatory behavior in the outside region 
r > r2.
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To find a resonance, we need the condition that the wave function has an 
exponential-like decay in the barrier region, so it will tend to zero as the barrier 
is extended to r  —> oo. The quasi-bound state will become a real bound state. 
Therefore, only the (exponential-like) decreasing function Xi{^r ) is allowed in the 
barrier region. This implies tha t the coefficient th a t multiplies the (exponential-like) 
increasing function ipi(kr) in the wave function defined by (8 a) and (8 b) must be zero; 
i.e., Pi = 0 (ct; =  0) at the location of a  TE (TM) resonance, respectively. These 
conditions th a t are used to determine a shape resonance and to find the location of 
a MDR are the same.

By substituting $  =  0 and ai = 0 in to (13a) and (13b) gives the equations tha t 
can be used to  determine the locations of TE  and TM resonances, respectively:

These equations have infinitely many discrete values of the size parameter xo. 
However, only the finite number of values of xo th a t are in the range between the 
bottom and top of the potential well are considered to be resonant states. There 
are no solutions below the bottom of the well. The solutions above the top of the 
well are not classified as resonances because they are too wide to have the properties 
discussed above.

In Figure 4, the bottom and the top of the potential well (for the case considered 
by Johnson, namely n  =  1.47 and I =  40) are 27.5 and 40.5, respectively. This 
potential has three TE and three TM resonances between 27.5 and 40.5. The TE 
resonances are located at 31.0589, 34.6112, and 37.6531. The TM resonances are 
located at 31.5192, 34.9960, and 37.9080. For the case n  = 4/3 and I =  40, the 
bottom and the top of the potential well are 30.365 and 40.5, respectively. This 
potential has two TE and two TM resonances. The TE resonances are located at 

34.0668 and 37.8985, and the TM resonances are located at 34.4763 and 38.1450.
In Figures 5 and 6 , the wave functions for the three TE  and TM resonances for 

the case n = 1.47 and I = 40 are shown, respectively. They are the Debye potential 
functions S,4 o(r) and T4 o(r), obtained by solving (5a) and (5b). At the proper level, 
they are shown superimposed upon the potential function V ^ r ) .  The wave functions 
show bound state within the region of potential well. The lowest-level wave function

M n x )x'i{x ) =  ni/j[(nx)xi(x) (2 1 a)

^[{nx)xi{x) = mpi(nx)x'i(x). (2 1 b)
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has a single peak, the next level has two peaks (positive and negative), and the 
third level has three peaks. Electromagnetic energy is temporarily trapped in the 
potential well. It can enter and leave the potential well by tunneling through the 
outer centrifugal barrier. The deeper well has a larger barrier than the upper levels.

In Figures 7 and 8 , the wave functions for the three T E  and TM resonances for 
the case n  =  4/3 and I =  40 are shown, respectively. They are the Debye potential 
functions S4 0 O") and T 4o (t- ) ,  obtained by solving (5a) and (5b). At the same proper 
level in the case n =  1.47 and I — 40, they are shown superimposed upon the potential 
function V4 o(r). The wave functions have only two resonances inside the region of 
potential well for this case. The lowest-level wave function has a single peak, and 
the next level has two peaks (positive and negative).

Figure 9 shows the change pattern th a t the wave function transverses the TE, 
I = 40, located at x0  =  34.6112. The top picture shows the wave function for the 
case x  > 34.6112, which is above the resonance. The wave function 6 4 0 (r) shows an 
exponential-like increase in the tunneling region. The amplitude of the wave function 
outside the particle r > r2 is much larger than  the amplitude inside the particle. The 
center picture shows the case x = 34.6112, which is the case that the wave function 
has an exponential-like decrease in the tunneling region. The amplitude of the wave 
function inside the particle is much larger than the amplitude outside because the 
field strength increases rapidly in the layer just outside the surface, a < r < r2, 
and then continues to a maximum inside the particle near the surface (both inside 
and outside). This is sufficient to define a resonance. The bottom picture shows 
the case x  < 34.6112, which is below the resonance. The wave function has an 
increase exponential-like manner in the tunneling region. Thus, the amplitude inside 
a  particle is smaller than the amplitude outside. This case is very similar to the case 
x  > 34.6112 (top picture) except tha t the exponential-like growth in the tunneling 
region is in the negative direction (i.e. opposite to the top picture).
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x=31.0589

x=34.6112

:37.6531

FIG. 5: Radial wave functions for the three TE, n — 1.47, I — 40 resonances.
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x=34.9960

.X=37.9080

FIG. 6: Radial wave functions for the three TM, n  =  1.47, I =  40 resonances.
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x=34.0668

x=37.8985

FIG. 7: Radial wave functions for the three TE, n  =  4/3, I =  40 resonances.
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x=34.4763

x=38.1450

FIG. 8: Radial wave functions for the three TM, n  = 4/3, I = 40 resonances.
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x=x,

FIG. 9: Behavior of the TE wave function in the vicinity of a resonance: behavior for 
a  size parameter value slightly above resonance (top); on resonance (middle); below 
resonance (bottom).
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2.4 SC A TTER IN G  TH EO RY FO R  T H R EE -L A Y E R  M ODEL

r=R.

r=R

n(r)=1

FIG. 10: A piecewise constant refractive index associated with a multi-layer spherical 
dielectric particle.

We again consider the functions Si(r) and 7](r) are the radial Debye potentials, 
which satisfy the following second-order differential equations (5a) and (5b) (repro
duced here for convenience):

In the three-layer case, we consider a piecewise constant refractive index associated 
with a multi-layer spherical dielectric particle as shown in Figure 10. In regions where 
the indices of refraction have the constant value ni and n 2, the two differential equa
tions (5a) and (5b) have the same form in each region, and the linearly independent 
solutions are again Riccati-Bessel functions,

ipi(nkr) =  nkrji(nkr),  (22a)

Xi{n kr) = nkryi(nkr), (22b)
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where j i (nkr ) and yi(nkr) are spherical Bessel functions of the first and second kinds, 
respectively.

Since we need the conditions where the resonances of TE  and TM modes of the 
3-layer case can be found, the solutions of the differential equations (5a) and (5b) in 
the various regions are considered in Sections 2.4.1 and 2.4.2.

2.4.1 TE M O DE

For the TE mode of the three-layer model

Region 1 (0 < r  < R\)  : Su(r) =  ^ (n ifc r),

Region 2 (i?i <  r < R 2) : S2i(r) =  Ai[xi(n2kr) + aiijji{n2kr )], (23)

Region 3 (r >  R 2) : S^(r) = B t[xi(kr) -I- Mi{kr)}.

Matching solutions a t r = R\  and r =  R 2 by using the log-derivative formalism in (9a)
and (9b) for the continuity of the solution where the refractive index is discontinuous 
in each region, we obtain

where

Al = M m k R i )  , ,

^  X i f a k R J  + ai(n2k R 1y  ^

d  _  Mxi{n 2 kR2) +  ai'4>i(n2kR2)\
1 Xi{kR2) + M ^ R t) ’ 1 J

=  n2jjl(n1k R l)x'l(n2kRi) -  n ^ j n ^ R ^ X i j n ^ R x )  
0(1 n ^ ^ n i k R ^ i p K ^ k R i )  — n1'ip'l(n1kR1)'ipi(n2k R i ) ’

r -  Xi{kR2)[xi(n2kR2) + ai'ifji{n2kR2)) -  n2xi(kR2)[x'i{n2kR2) +  on'ip'l(n2kR2)\
1 ijj'l(kR2)[xi{n2kR2) + aiil>i(n2kR2)\ -  n2i)i{kR2)[x'l(n2kR2) +  at'ip/l(n2kR 2) ] '

(25b)

2.4.2 TM  M O DE

For the TM mode

Region 1 (0 <  r < R\)  : T\;(r) =  tpi(nikr),

Region 2 (Rx < r < R 2) : T2i(r) =  Ai[xi{n2kr) + ati^ifakr)],  (26)

Region 3 (r >  R2) : T3l(r) =  Bt[xi(kr) + Mi(kr)] .



Similar to TE mode, we use (9a) and (9b) for the continuity of the solution where 
the refractive index is discontinuous in each region at the boundaries r =  R\  and 
r  =  i?2 , we obtain

Xi(n2kRx)  +  a i { n 2k R i Y
'ipiinxkRi)

(27a)

5 Mxi{n2kR2) +  aiin{n2kR2)]
til =  -------- /, n \ , ,1 n-----Xi ikR i ) + M i { k R 2)

(27b)

where

n2'4}[{n1k R 1)xi{n2kRi)  -  ni'4)l(nikRi)x!i{n2k R 1) 
n2Tp[{nikRi)ipi(n2kR{)  — niipi(nikRi)'ip'i(n2k R 1) ’

(28a)

q _  n2x!i{kR2)[xi{n2k R 2) +  ai^i{n2k R 2)] -  x i (kR2)[x'i(n2kR2) +
1 n2'4)'l{kR2)[xi{n2k R 2) +  -  M k R 2 )[Xi(n2kR2) + osi7j/l(n2k R 2)\ '

(28b)

2.5 SC A TTER IN G  TH EO RY FO R  T H R EE-LA Y ER  M ODEL

2.5.1 Q U A N T U M -M E C H A N IC A L  A N A LO G Y

We begin with considering (15) in Section 2.3.1. The potential in the three-layer

The values of n \ , n*, and k2 define the characteristic of the potential, i.e. whether it 
is attractive or repulsive. In this paper, we focus on a dielectric particle with n\  > 1,

case is given by

(29)

which corresponds to the refractive index in Figure 10 as shown:

(30)
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n2 >  1, and k > 0. By using similar technique as shown in Ref. [7], we consider the 
potential function Vi(r) for a  particle of multi-layer sphere with radius R\  and R 2 
corresponding with the refractive index n\ and n2, and the size parameters x  =  kRi  
and y =  k R 2, respectively. The specific examples are presented in Section 2.5.2. For 
convenience, the unit of length and the particle radius are chosen to be equal.

We now separate the refractive index profile into two cases. The potential profiles 
corresponding to both cases of refractive index are also provided:

Case 1: Increasing refractive index profile (see Figure 11)

{ ni,  0 < r < Ri,
n2 (>  ri!), Ri < r < R 2, (31)

1, r > R 2.

Case 2: Decreasing refractive index profile (see Figure 12)

{ n i, 0  < r  <  Ri,
n2 (<  ni), Ri < r < R 2> (32)

1, r > R 2.

In the next section, we have the results for two specific examples. The first
example (see Figures 15 and 16) shows the potential function V ^ r )  and the wave
function S4 o(r) for a particle of radius Ri  =  0.7 and R 2 = 1, refractive index ni =  1.2
and n2 =  1.5 (increasing refractive index profile as shown in Figure 11), wavenumbers
k = xq/Ri  =  yo/R2. The potential function V4 0  (r) for this case is shown in Figure 
13. The other example (see Figures 17 and 18) shows the potential function V4 o(r) 
for a  particle of radius Ri  =  0.7 and R 2 — 1, refractive index ni =  1.52 and n2 =  1.25 
(decreasing refractive index profile as shown in Figure 12), wavenumbers k = X0 / R 1 =  
y0/ R 2. The potential function in this case is shown in Figure 14.

For specific values of the energy level, the particles will become temporally 
trapped in the well, oscillating back and forth many times and tunneling back through 
the classical forbidden region to the outside world eventually. This is where we found 
the shape resonances of the three-layer model.
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FIG. 11: Case 1: Refractive index profile for n i < n 2.

FIG. 12: Case 2: Refractive index profile for n\  > n2.



FIG. 13: Case 1: V(r)  potential for n\ < ri2 -

a2 r , b2 R. C.2 '2

FIG. 14: Case 2: V(r)  potential for ni > ri2 ■
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2.5.2 M D R ’S IN T E R P R E T E D  A S SH A PE  R E SO N A N C E S

In Figures 13 and 14, the potential well depends on the energy k2 and the re
fractive index in each region. The diagram shows the case when the energy k2 lies 
between the top and the bottom  of the well. From (29) we can see th a t the shape of 
the well depends on the values of refractive indices n\  and n 2 in each region. When 
n\ < n 2 (see Figure 11), we have a single well (see Figure 13); however, when n\  > n2 
(see Figure 12) we have double wells (see Figure 14).

Similar to the two-layer model, the boundary conditions at r  =  0 are given 
by SU(P) — Ti/(0) =  0 to guarantee that all scattering solutions are finite at the 
origin. The solutions in each region are given by (23). These functions are the linear 
combination of the Riccati-Bessel functions V'Kn2kr ) and Xi(n 2 kr) in Region 2 and 
ipi(kr) and Xi(kr) in Region 3.

For the case that n\ < n2, when n2 is much larger than rii, the well will be deeper 
and wider. The most striking feature of this case is the presence of the potential 
function V4 o(r) (for increasing refractive index) is the presence of a potential well in 
the region a\ < r < R 2. This is a classically allowed region. The well is surrounded 
by the two classically forbidden regions 0 < r < ai and R 2 < r < b\. The points a\ 
and b\ are called the classical turning points. In the equivalent quantum-mechanical 
problem a particle can tunnel through the classically forbidden region R 2 <  t < fci, 
into the classically allowed potential well.

For the case that n\ > n2, the most interesting feature of this case is the presence 
of the potential wells in the regions o2 < r  <  R\  and b2 < r < R 2. These are the 
classically allowed regions. They are surrounded by the three classically forbidden 
regions 0 < r < a\, R\ < r <  &2, and R2 < r < c2. The points a2, b2, and c2 are the 
classical turning points for this case.

In the forbidden regions r > b\ in Figure 13 and r  >  c2 in Figure 14, the two 
functions ipi(kr) and Xi{kr) have opposite behaviors. When the function ipi{kr) has 
exponential-like behavior increasing rapidly in this region, the function xi(kr)  has 
exponential-like decreasing behavior.

To find the resonance, we need the condition th a t the wave function has an 
exponential-like decay in the barrier region to ensure th a t it goes to  zero as the 
barrier radius r —> oo. Therefore, we need only the exponential-like decreasing 
function xi(kr)  in the barrier region. This implies th a t the coefficient th a t multiplies 
the exponential-like increasing function ^i(kr)  in the wave function as defined in
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Region 3 must be zero, i.e. cti =  0 and Pi =  0 (ay =  0 and Pi — 0) a t the location of 
a TE (TM) resonance, respectively.

By substituting ai = 0 and /3; =  0, a* =  0 and Pi = 0 into (25a), (25b), (28a) and 
(28b), we have the equations that can be used to determine the locations of TE  and 
TM resonances, respectively:

TE:

n2rpi(n1k R 1)x'i{n2 k R 1) = niip'^r i ikR^xifakRP),  (33a)

x!i{kR2)[xi{n2k R 2) +  ai^)i{n2 kR 2)\ = n2x i (kR2)[x'i{n2k R 2) +  aii)\{n2k R 2)}. (33b)

TM:

n 2ip'i(nikRi)xi(n2kRi)  =  ni-il)i{nikRx)x!i(n2kRi),  (34a)

n 2x'i(kR2)[xi(n2 kR 2) +  aiipi(n2kR 2)\ =  Xi{kR2 )[x'i(n2k R 2) + aiif>,l(n2k R 2)]. (34b)

These equations have infinitely many discrete values of the size parameters xq 
and 2/o- However, only the finite number of values of xo and 2 /0  that are in the range 
between the top and the bottom of the potential well are considered to  be resonant 
states. Similar to the two-layer model, there are no solutions below the bottom  of 
the well and above the top of the well.

Figure 15 shows the potential function i/4 o(r) and the wave function S ^ r )  for 
n\ — 1.2, n2 — 1.5, and I =  40. This potential supports three TE resonances 
for specific value x0. They are located at xq =  30.3828 with yo = 28.2439 (top), 
2/o =  32.2993 (middle), 2 /0 =  35.4808 (bottom).

Figure 16 shows the potential function V4 o(r) and the wave function S4 o(r) for 
n\ = 1.2, n2 = 1.5, and I =  40. The TE resonances for this example are located at 
xo =  40.5499 with 2/0 =  35.4808 (top), and 2 /0  =  38.3548 (bottom).

Figure 17 shows the potential function V4 o(r) and the wave function S4 o(r) for 
n i =  1.52, n2 =  1.25, and I = 40. The two locations for T E  resonances are located 

at xo =  29.5815 with 2 /0 =  38.2448 (top), and 2 /0 =  38.2448 (bottom).
Figure 18 shows the potential function V4 o(r) and the wave function 5 4 o(r) for 

n i =  1.52, n2 =  1.25, and I = 40. The two locations for T E  resonances are located 

at xo =  33.4975 with 2 /0 =  38.2446.



29

Figures 19 and 20 show the change pattern th a t the wave function experiences 
as the system transverses the TE for both cases of n\ < ri2  and n\ > n,2 with I = 40, 
respectively. In the first case, the TE resonance is located at xq =  30.3828 and 
yo = 32.2993. The top panel shows the case x = x0 and y — 32.0993 <  yQ which 
is below the resonance. The middle panel shows the wave function for case x = xq 
and y = yo, which is the resonance case. The bottom  panel shows the wave function 
for the case x = xo and y =  32.9993 > yo which is above the resonance. In the 
second case, the TE resonance is located a t x0 =  33.4975 and yo =  38.2446. The top 
panel shows the case x =  xo and y  =  37.2446 <  yo which is below the resonance. 
The middle panel shows the wave function for case x  =  xo and y — yo-, which is the 
resonance case. The bottom panel shows the wave function for the case x — xq and 
y =  38.9446 > yo which is above the resonance.
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FIG. 15: Radial wave functions for the three TE, n\  =  1.2, ri2 =  1.5, I =  40 
resonances with x  =  30.3828,?/ =  28.2439 (top); x  =? 30.3828,y  — 32.2993 (middle); 
x = 30.3828,y =  35.4808 (bottom) corresponding to the refractive index profile in 
Casel.
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FIG. 16: Radial wave functions for the three TE, n x =  1 2 n2 =  1 5 / =  4n 
resonances with * =  40.5499, y = 35.4808 (top); * =  40.5499,</= 38.3548 (bottom) 
corresponding to the refractive index profile in Casel.
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FIG. 17: Radial wave functions for the three TE, =  1.52, ri2  =  1.25, I =  40 
resonances with x  =  29.5815, y =  33.5655 (top); x  =  29.5815,y  =  38.2448 (bottom), 
corresponding to  the refractive index profile in Case2.
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x=33.4975
y=38.2446

FIG. 18: Radial wave functions for the three TE, n\  =  1.52, n2 =  1.25, I — 40 
resonances with x = 33.4975, y = 38.2446 (corresponding to the refractive index 
profile in Case2.
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FIG. 19: Behavior of the TE wave function in the vicinity of a resonance for the 
case ni < n 2 - behavior for a size parameter value slightly below resonance (top); on 
resonance (middle); above resonance (bottom).
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/ \ V

FIG. 20: Behavior of the TE wave function in the  vicinity of a resonance for the 
case n\  >  n2: behavior for a size parameter value slightly below resonance (top); on 
resonance (middle); above resonance (bottom).
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2.6 A  D IG R ESSIO N  O N R E SO N A N C E S U SIN G  TH E  I =  0 C A SE

Usually in the case of the square well, the time delay is never very large in 
potential scattering terms. Therefore, to delay the particle for a long time we need a 
barrier to protect the escape of the particle. We consider the case of the square well 
with a barrier as shown in Figure 21.

oo

FIG. 21: The one-dimensional potential function of (36), consisting of a  rectangular 
well of depth Vo and arbitrary width r , and a rectangular barrier of height Vj and 
width R — r\.

We generalize a paper in Ref. [10] by considering the one-dimensional potential of 
Figure 21 which consists of an attractive rectangular well and a repulsive rectangular 
barrier. The primary reason for this is to derive an I =  0 “template” th a t can be 
used to “mimic” the I > 0 potential wells (see Figure 4). By choosing rq, R, Vo and 
Vi appropriately we can obtain an approximate representation of Vi(r) in (19).

The stationary Schrodinger wave equation is given by

+ (E - y  {r))ip(r) =  0, (35)
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FIG. 22: The one-dimensional potential function of (36), consisting of a rectangular 
well of depth Vo and arbitrary width r, and a rectangular barrier of height V\ > E  
and width R  — r\. The energy level is below the top of the barrier.

where the potential function is defined as (see Figure 2 1 )

Region 1 (0 < r < 7~i) : V(r)  =  — Vo < 0,

Region 2 (ri <  r < R) : V’(r) =  V\  > 0, (36)

Region 3 (r > R) : V(r) = 0.

To find the solution of the Schrodinger wave equation tha t describes the motion of a 
‘particle’ in the potential and the stationary state of energy k2 = E,  we first consider 
the case tha t 0 < k2 < V\ for energies below the top of the barrier (see Figure 22). 
We note tha t in these units the wave number k =  E 1/2, and all time dependence is 
suppressed. Then the radial wave function tp(r) in each region is given as:

In Region 1, we have that

^ l  + (E  + V0)rP(r) = 0, (37)

where E  =  k2, so let k2 = E  + Vq = k2 + Vq, which yields

ip(kr) =  Asin(kr), (38)
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with the boundary condition ip{0 ) =  0 .
In Region 2, we have that

+  0,

where E  =  k2, so let k2 =  V\ — k2, which yields

ip{kr) =  S ( s i n h ( « ; r )  +  7 C O s h ( /c r ) ) ,

with two conditions of continuity of the logarithmic derivative of (36) a t r 
r = R.

In Region 3, we have tha t

^ £ W > -  0 .

We normalize the wavefunction to unity, with phase shift do, and we have

ip(kr) =  sin(fcr +  So).

By using all the boundary conditions, we obtain

£ tan(fcr!) — tan h ^ rx )
1 — |  tan(A:rx) tanh(wx) ’

c , . f k  7  4- tanh(«:R) 1<5o =  —k R  +  arctan < —  -----------——— >.
\  k 1  +  7  tanh(ac72) J

Rearranging So yields

kR  fEr tan(fcrx) +  tanh (k(R  -  rj))
Sq =  —kR  + arctan I KM II -4- __

k r \

f  kR  j g  tan(fcn) +  tanh(«(/Z -  n ) )  |
I  *R  [i +  tan(fcra) tanh(«(i? - r a))] J ’

sin(A:R +  50)
t> —

sinh(KR) +  7  cosh(/cR) ’
A B(sinh(«:ri) +  7 C0 sh(/tri))J\ =  -------

sin(kri)

Since limK_>0+ 7  =  0, (45) becomes <50  =  —k R  +  arctan(oo) =  —kR +

(39)

(40) 

7 7  and

(41)

(42)

(43)

(44)

(45)

(46)

(47)

We next consider the case that k 2  >  V\ for energies above the top of the barrier 
(see Figure 23). Then the radial wave function ip(r) in each region is given as:
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FIG. 23: The one-dimensional potential function of (36), consisting of a rectangular 
well of depth Vo and arbitrary width r, and a rectangular barrier of height V\ < E  
and width R  — ri. The energy level is above the top of the barrier.

In Region 1, we have tha t

(Pip(r) 
dr2

+  (E  +  Vo )ip(r) =  0,

where k2 = E  + Vo = k2 + Vq, which yields

ip(kr) =  j4sin(£;r),

with the boundary condition ip(0 ) — 0 .
In Region 2, we have that

dPip(r)
dr2

+ ( E - V 1)p(r) = 0,

where k2 =  E  — V\ =  A;2 — V\, which yields

kr ) =  B(isin(kr)  + z 7 cos(«r)),

(48)

(49)

(50)

(51)

with two conditions of continuity of the logarithmic derivative at r =  r\ and r = R. 
In Region 3, we have that

d?il)(r)
dr2

+  Ei])(r) = 0. (52)
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We normalize the wavefunction to unity, with phase shift do, and we have

ijj(kr) =  sin(£r +  50). (53)

By using all the boundary conditions, we obtain

_ _  jrtan(fcri) -  tan(/cri)
^  1  +  |  tan(fcri) tan(Krx) ’

r 7 n f k  7  +  tan(«i?) 1<50  =  - k R  +  arctan < - - ---- —— ——  >. (55)
( k 1 — 7  ta n (kR) J

Rearranging <50  yields

, o ,  * ( kR  f r ta n ( fc r1) + t a n  ( k ( R - n ) )  }
=  —k R  +  arctan < — --— W------- -=— ------——------— >, (56)

I k R  t1  _  ta-n (kr i) tan(«(i? -  ri))] j

B  =  s i l i ( k R  +  S 0 )

i sin (RR) +  7  cosh(/c/?) ’
4 Ri(sin(Kr1) +  7 COsh(«ri)) /ccA

A  =  . t T  x------------------• (53)
sm(A:ri)

By the parameterization method, we first consider the case that k2 > 0. 
Let x = kR, r\ =  aR,  where 0 < a  < 1. Therefore, k = y/k2 + Vq implies tha t

k R  =  ^ k 2R 2 + VqR 2 =  y / x 2 +  po, 

where po — VqR 2] k — y/V\ — k 2 (k2 < Vi) yields

kR  = y/ViR2 -  k2R 2 = y /Pl -  x 2,

where pi = V\ R 2. Also,

k(R  — r \ ) =  y /  pi — x 2 — ockR

— VPi -  X2 -  <x\/pi ~  x2
=  ( 1  -  a ) y / p i -  x 2.

Note that
kt\ =  anR  =  a y p% — x 2 ,



R  R  
Therefore, (45) becomes

f x [ t an( oVA)  +  x 2) +  tanh((l -  a) y/pi  -  x2)] 'j
<50  =  —x+ arc tan  < =— .== ■ —----— = -----------   -■  “ ^ZZT f ■

l y / P i - x 2 1 +  - y / t a n ( a v/p0  +  x2) tanh((l -  a ) y/pi  -  x2) J
(59)

Similarly, for the case tha t k2 < 0 or k2 =  — k2, (56) becomes

f  x  +  z 2 ) +  tan ((l -  a ) > / x 2 -  P i ) h
x +  arctan ^ ^

(60)
Note that

=  \ / k2Ft? -  VXR 2 = y f t f Pi>

kri = cxy/x2 -  pi,

and
k (R  — ry) =  k7?(1 — a) =  (1 — a ) y / x 2 — p\.

In addition, by using Grandy’s wavepacket approach [16], the wave function out
side the potential (see (53)) has a very im portant modification, namely the phase
shift 60(k), which plays the crucial roles in constructing a  time-dependent scattered
wavepacket:

i>{x,t)= I*  g(k)ei{-kx- “t+5̂ dh.  (61)
Jo

The positive spectral function g(k) is taken to  have a  peak at /c =  /c0, corresponding 
to a group velocity i>0- This peak is determined by requirement of stationary phase 
at k = ko, or

d
—  [kx -  u>t + 50{k)]k=ko = 0 , (62)

provides
dw d6o(k)
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or, at k = ko, with vg =  —̂ - , we obtain

* =  vg(k)[t -  ^ y ^ ] f c = f c o  =  vg(ko)(t -  T(ko)). (64)

We can write T  =  in terms of the well/barrier width, /? (or just the well, r i)  
as (at k = ko),

time for a  “free particle” to cross the distance R.

2.6.1 R E SO N A N C ES

In Figure 24, we have plotted the relevant physical parameters for scattering for 
the case E  > V\. By using the parameters from the parameterization method, we 
let a  =  0.5, Vo = 4, and V\ =  20.. The most significant feature of this figure is 
the resonance th a t occurs at k R  ~  1.8. At this energy, the results show that the 
following four characteristics are necessary to apply in order to define a resonance 
appropriately.

(i) The phase shift suddenly increases by approximately tt and passes through 
—7t/ 2. We can distinguish the features of the phase shift plot as resonances. For 
example, if the phase shift undergoes a  large increase, then the resonance interpre
tation will be very useful. But if the phase shift is gradually increasing and not by 
very much, then the resonance will vary broadly and merge into the background and 
this cannot be used in the resonance concept.

(ii) The scattering strength, measured by sin2J0, has a sharp maximum and 
reaches sin2 Jo =  1; If the scattering strength goes through its maximum value (i.e., 
sin2 So =  1), then J must pass through ir/2. However, such a maximum is not a 
resonance unless J is increasing with energy. Therefore, this condition is not sufficient 
for the existence of a resonance. For example, the peak a t k R  =  1 in Figure 24 does 
not correspond to a resonance because the time delay (oc ddo/dk) is negative and 
there is no resonant state. However, a very narrow peak a t kR  ~  1.8 in sin2 Jo is 
a sufficient condition for a resonance. This very narrow peak has the large value of 
\d8o/dk\, and it is known that \d8o/dk\ is large if d8o/dk > 0.

(iii) The amplitude of the wave in the interior region (the well) has a sharp 
maximum; it means tha t at the resonance, the amplitude of oscillation of the system 
is large.

(65)

So T  is just the “specific time delay” suffered by a wavepacket in units of the transit
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(iv) The specific time delay r^ddo /dk  has a  sharp maximum.
Figures 25 through 28 show more examples when the height of the barrier is 

changed. We have shown four more case with the parameters: a = 0.5, Vo =  4, and 
Vi =  15; a  =  0.5, Vo =  4, and Vi =  4; a  =  0.5, Vo =  1, and V\ = 20; and a  =  0.5, 
Vo =  1, and V\ =  15.

Figure 29 shows the comparison of 6q, |Aj, sin2 5q, and r ^d S ^ /d k  when the height 
of the barrier is decreased. The resonance becomes broader and tends to disappear. 
Moreover, we still have the same conclusion if we fix the value of V\ and increase the 
value of Vq.
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FIG. 24: Scattering from the one-dimensional potential of Figure 21 with Vo =  4 and 
Vi — 20. The resonance at k R  ~  1.8 is reflected in the behavior of the phase shift 
Jo, the scattering strength sin2 Jo, the interior wave amplitude |j4|, and the specific 
time delay d5o/dk.
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kR

kR

sin S.

kR

FIG. 25: Scattering from the one-dimensional potential of Figure 21 with Vo =  4 and 
V\ =  15. The resonance at k R  ~  1.8 is reflected in the behavior of the phase shift 
So, the scattering strength sin2 £o, the interior wave amplitude \A\, and the specific 
time delay dSo/dk.
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kR

sin 5.

kR

FIG. 26: Scattering from the one-dimensional potential of Figure 21 with Vo =  4 and 
14 =  4. The resonance at kR  ~  1.8 is reflected in the behavior of the phase shift So, 
the scattering strength sin2 So, the interior wave amplitude |j4|, and the specific time 
delay dSo/dk.
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FIG. 27: Scattering from the one-dimensional potential of Figure 21 with V0 =  1 and 
Vi = 20. The resonance at k R  ~  1.8 is reflected in the behavior of the phase shift 
Jo, the scattering strength sin2 Jo, the interior wave amplitude |.A|, and the specific 
time delay d5o/dk.
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FIG. 28: Scattering from the one-dimensional potential of Figure 21 with Vo =  1 and 
V\ = 15. The resonance a t kR  ~  1.8 is reflected in the behavior of the phase shift 
(5o, the scattering strength sin2 So, the interior wave amplitude |A|, and the specific 
time delay d6o/dk.
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FIG. 29: Scattering on a square well for £0, sin2 S0, |A|, and d8o/dk (in each row) 
with barrier of different heights. The value of Vi are 20, 15, and 4 for the top, center, 
and bottom, respectively. The value of Vq is 4 in all case.
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CHAPTER 3

SCALAR WAVE SCATTERING BY SPHERICALLY 

SYMMETRIC INHOMOGENEITIES

3.1 IN T R O D U C T IO N

“This paper is concerned with the scattering of a scalar plane wave by an in- 
homogeneous medium in which the velocity of propagation c is a function only of 
the spherical radial coordinate r, i.e., c =  c(r). This problem is of interest in vari
ous branches of physics: scattering by inhomogeneous spheres; scattering of acoustic 
waves in the ocean, electromagnetic waves in the atmosphere, and seismic waves in 
the Earth. Although quantum-mechanical problems involving scattering by spher- 
cally symmetric potentials have been extensively investigated, the analogous classi
cal problems involving scattering by spherically symmetric inhomogeneities have not 
been as thoroughly studied. It is the purpose of this paper to  show how a convenient 
quantum-mechanical method can be used to treat the classical problems and to apply 
this method to some simple solvable problems [12].”

So begins the paper by Frisk and DeSanto [12], referred to hereafter as in [12]. 
The problem they consider is essentially th a t of one uniform medium (a sphere of 
constant refractive index n  >  1) embedded in an infinite medium with constant 
refractive index n  =  1. This is the simplest case one can consider in an acoustic 
problem (or indeed a scalar electromagnetic or elastic one) with the corresponding 
time-independent potential scattering problem.

As noted in Chapter 2, it is of mathematical interest to be able to  solve this direct 
scattering problem for specified analytic profiles n(r), and this can indeed be carried 
out for certain special cases. However, since in practice (in optical and industrial 
applications at least) the inhomogeneous scattering media will be piecewise constant 
continuous, a variable approach to the problem may be to mimic the continuous cases 
for which, say n'{r) < 0 and n '( r ) > 0, respectively, by 3-layer models for which the
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n(r) and V (r) profiles are shown below (see Figures 30 through 33).
/

ni,  0 < r < Ri,
«(r) = n2 (<  m ), Ri < r < R 2,

1 <  n 2, R 2 <  r ,

so,

V(r)
kl

=  1 — n 2(r) =  <
1 — nf, 0 < r  < i?i,

1 — n2, i?i < r < R 2, 
0, R2 < r ,

therefore,

is given by

V(r) =

V(r) =  kl -  k2(r) = k l ( l  -  n \ r ) )

fc g ( l-n f )  -  -V i, 0 <  r  < i?!, 
A:2(1 - n 2) =  - l / 2( > - F 1), R ± < r < R 2, 

0, R 2 < r,

and

n{r)
ni, 0 < r < R 1, 

n2 (> n i), Ri < r  < R 2, 
1 < ni, R 2 <  r.

So

V(r)
k l ( l - n \ )  = - V u  0 < r < R u  

k2Q( l - n 22) = - V 2( < - V 1), Ri < r < R2, 
0, R 2 < r.

(66)

(67)

(68)

(69)

(70)

(71)

Based on the paper [12] in which the authors consider the case of scalar plane 
wave scattering by a spherically symmetric scatterer, the form of the inhomogeneous 
Helmholtz equation and the time-independent Schrodinger wave equation are similar. 
Therefore, as we have already seen, we can treat the classical and quantum prob
lems by analogous methods. In particular, for acoustic wave propagation in radially 
inhomogeneous media, the governing equation is

pV • (p-1V\&(f, t)) - - ) = 0, (72)c2(r) dt2

where T (r, t) is the acoustic pressure perturbation and p(r) is the density of the 
medium (see Martin [38]). If the density is constant (assumed here), (72) reduces to 
the standard spherically symmetric wave equation.
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FIG. 30: Refractive index profile for n\ > 1x2 -

FIG. 31: V(r)  potential for «i > n 2 -
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FIG. 32: Refractive index profile for n\  <  n2.

FIG. 33: V(r)  potential for ni < n 2.
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We consider a monochromatic time-harmonic dependence of \&(r , t ) such tha t

*( f , t )= i l> ( f )e - iut. (73)

Consequently, the spatial part of \I/(f, t) satisfies the inhomogeneous Helmholtz equa
tion

V 2’0(f) +  kQip(r) = V(r)ip(f). (74)

In this equation, ko =  oj/ co is the ‘free space’ wavenumber, where cq is the constant 
wave speed of the acoustic wave outside the scatterer. In electromagnetic terminol
ogy, Co corresponds to the outer region where the refractive index n  — 1. As noted
in Chapter 2, the ‘potential’

V (r ) =  k2Q -  k2(r) = fc2( l  -  n 2 ( r ) )

=  ^ - 4 , )  =  ^ - ^ ) .  (75)

Thus, k(r ) =  ui/c(r) is the wavenumber in the scattering medium, and ko = oo/co 
is the wavenumber in the surrounding medium. Equation (74) corresponds to the 
canonical form of the time-independent Schrodinger equation, where k% = 2 m E /h 2, 
V ( r ) =  2m U (r) /h2, h =  h/2-K, h being Planck’s constant, and m  is the mass of a 
particle of total energy E  moving in a potential U(r), i.e.

V 2ifj(r) +  [kl — V(r)]ip(f) =  0. (76)

In what follows ko will be written as k, and k(r) will be used for kn(r). Note 
tha t V(r) < 0 for n2(r) >  1, so the quantum mechanical formulation corresponds 
to scattering by a spherical potential well. Therefore, the wave function can be 
both interpreted as the spatial part of the acoustic pressure (classically) or as the 
Schrodinger wave function (quantum mechanically).

The basis for this chapter is the application of the Jost function formulation of 
quantum scattering theory (as presented by DeAlfaro and Regge [30]) to the scatter
ing of a scalar plane wave by a medium with spherically symmetric inhomogeneities.

After rederiving the formulation of [12], we generalize it to the above-mentioned 
three-layer models, utilizing the Jost function method described below. By the 
method of separation of variables, (76) can be written, in a spherical coordinate 
system

oo +1
v>(r) =  E E  AimRi(r)Ylm{e, <f>), (77)

i= 0  m = —l
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where Ri{r) — ui(r)/r  and Yim{9,(j)) is a  spherical harmonic, I and m  are angular 
momentum. Then it follows that uj(r) satisfies the “partial-wave” radial equation,

* a M + [*>_!2+2)_„ MfcM.o.  (78)

The Jost-function technique is very useful to solve the solution of the radial wave 
equation of the so-called ‘partial’ wave equation. The Jost function is defined as the 
Wronskian of two solutions of the radial equation, one satisfying boundary conditions 
a t r  =  0 (which is called regular solution) and the other satisfying boundary condi
tions at r  =  oo (the Jost solution). The total scattering cross sections are obtained 
from the phase shifts 6i, which can be calculated easily once the Jost function is 
found.

3.1.1 TH E  TOTAL SC A TTER IN G  CROSS SECTIO N A N D  P H A S E  
SH IFT

In scattering theory, the total cross-section is a  measure of the probability that 
an interaction occurs; the larger the cross section, the greater the probability tha t 
an interaction will happen when a particle is incident on a target. Both classical and 
quantum mechanical scattering phenomena are characterized by the scattering cross 
section, a.

We consider for particles of mass m  and energy E  > 0, scattering from a spher
ically symmetric potential V(r), r being the radial distance from the center of the 
scatterer. The potential is described by a wave function ^ ( r )  which consists of a lin
ear combination of the incident plane wave and an outwardly propagating spherical 
wave and satisfies the Schrodinger wave equation,

A?2
- 7 r - ^ 2̂  + V{r)ijj = E1>,

2m

with the boundary condition when r —> oo

p i k r

W-*oo = eikz + f (0 ) ----- ,
T

where the incoming plane wave is incident along the direction of the z-axis and 
scattered as an outgoing wave, A; is a  wavenumber, 6 is the scattering angle between 
r  and the z-axis, and /  is the complex scattering amplitude. The differential cross- 
section is given by
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From the expression for we uuLam me uutal scattering cross-section:

CTtot J  da = J  \f(0)\2dn,

with orthogonality relation, we obtain atot — 47t]T)(2Z +  1 )|/(0 )|2, where

is defined by the scattering phase shifts Si(k) which can be determined from the 
asymptotic form of ^ (r )  by solving the Schrodinger wave equation. For the special 
case Z =  0 we have that

equation with the Jost boundary conditions or from a Volterra integral equation in
corporating these boundary conditions. For the case of a  constant inhomogeneity 
for r < Ri  (three-dimensional square-well potential), the former approach is more 
straightforward, however, the latter approach may be more useful when the inho
mogeneity (potential) has a more complicated functional form for which the radial 
equation may not have an exact solution. The solution of the integral equation is 
then written as a perturbation expansion, and an iteration procedure yields the so
lutions to the desired accuracy. The perturbation expansion for a Volterra integral 
equation is very useful because it converges everywhere.

In Section 3.2, the Jost-function formulation of scattering theory is presented. 
In Section 3.3, the Jost function from the radial differential equation for scattering 
from a constant spherical inhomogeneity for arbitrary Z is derived, and evaluated 
for Z =  0. In Section 3.4, we derive the 1 = 0 Jost integral equation for scattering 
from an arbitrary inhomogeneity with a cutoff. The Jost function for Z =  0 from 
this integral equation is obtained using an iteration technique (only the first two 
iterations are considered) for scattering from a constant spherical inhomogeneity, 
and we compare it (and the cross sections) graphically with the exact results. In 
Section 3.5, the general Jost integral-equation formulation for arbitrary Z is presented

2

(79)

which will be discussed again as shown, in (127) [37].
The Jost function can be calculated either from the original radial differential
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for scattering from a piecewise uniform inhomogeneity and it is applied to scattering 
from a constant spherical inhomogeneity. In Section 3.6, the Jost integral equation for 
A =  |  and some approximate solutions in three-layer model are examined. In Section 
3.7, the general Jost integral-equation formulation for arbitrary A for scattering from 
an arbitrary inhomogeneity is defined.

3.2 JO S T -F U N C T IO N  F O R M U L A T IO N  O F  S C A T T E R IN G  
T H E O R Y

We now consider the radial equation (78) again:

< ^ u i ( r )  , r r.2  K l  + ! )  t / /  u  t  \  n  ---------- Y ( r ) ] m ( r )  =  0.

For the following analysis to hold, following DeAlfaro and Regge, we must impose 
certain requirements on V(r): it must be a real function vanishing a t r =  oo, and 
must be almost everywhere continuous; furthermore, we require tha t

I

L

\V{r)\dr =  M(c) < oo;

r |V (r) |d r =  IV(c') <  oo, (80)
10

where c and d  are arbitrary constants greater than zero. These conditions are readily 
satisfied for non-singular V (r) with compact support.

3.2.1 JO S T  B O U N D A R Y  C O N D IT IO N S  A T r = 0

For small r , | — 1(1 +  l ) / r 2| »  \k2 — V (r)|, and we begin our discussion of (78) by 
neglecting the term [k2 — V(r)]. Equation (78) then becomes

c P u i ( r ) 1(1 +  1)
r 2 m (r )= 0 ,  (81)dr2

which has a regular point at r  =  0 and the exact solution is

ui(r) =  ar l+1 + fir~l. (82)

Using (82) as a guide, we define two linearly independent solutions of (78) with the 
behavior

<f){r) =  r i+1[l +  o(l)], (83a)
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= r '[1 +  o(l)] (83b)

where o is the ‘small’ order symbol. We also define A =  I +  | ,  so th a t (78) becomes 
even in A:

(84)

We now consider the solutions of (84) as a function of the parameters A and k, which
in the general case may be complex variables. Thus <p(r) —> <pi(r) as A —> — A, and 
we therefore replace 4>(r) and <j)i{r) by 4>(\,k,r) and <f)(—\ , k , r ) ,  respectively. We 
write ux_i(r)  instead of ui(r) in order th a t the notation be consistent. We solve (84) 
exactly by converting it into an integral equation using the method of variation of 
parameters with the boundary conditions (83). We thus obtain

Equation (85) is a Volterra integral equation, and we write its solution as a pertur
bation expansion

The perturbation expansion for <p( A, k, r ) is bounded term-by-term and is unrestrict
edly convergent.

Since the Wronskian of the two linearly independent solutions of (84) is nonzero 
and constant, we can evaluate the Wronskian of <f>(A, k, r) and k, r) by replacing

0(A,fc,rj =  r A + 2 +  ^A 1 J  [ ( f /r )A -  ( r /£ )A] x ( r ^ [ k 2 -  V(£)]0(A,/c, £)d£. (85)

From (85), we can write the Jost boundary conditions at r =  0 as

r —>0
lim<£(A, k ,r)  =  0;

(86)

OO

(87)
n = 0

where
0o(A, k ,r )  =  r A + 2 (88)

and

^n+i(A, k,r )  =  ^A 1 [(f /r)A -  ( r / f ) A](r£)^ x [k2 -  V(0]&»(A, k,£)d£. (89)

(90)
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3.2.2 JO ST B O U N D A R Y  C O N D IT IO N S AT r =  oo

For large r, we can neglect the term

\ 2  _  1

4 * V ( r )r 2

in (84), which therefore becomes

(Pux i{r)
f- k ux_i(r)  = 0. (91)

dr2

Equation (91) has the exact solution

ux_i(r)  =  ae~ikT +  /3eifcr. (92)

Therefore, we construct a solution /(A , k, r ) (Jost solution) of (84) with the asymp
totic behavior

lim elkrf ( A, k, r) =  1. (93)
T —tO O

We use the method of variation of parameters in a  manner analogous to th a t of 
Section 3.2.1, so tha t (84) with the asymptotic conditions (93) becomes

/
°° 1

[sinA^r7 — r)] x [V(r') +  (A2 — - ) ( r /)-2]/(A, A:,r')dr'.(94)

We write the solution of (94) as a perturbation expansion

OO

f (X ,k , r )  = ^ 2 g n(X,k,r),  (95)
71=0

where

So -  e~ikr, (96)

and

/
o° 1

[sin k(r' -  r)] x [V(r’) + (A2 -  ^ ) ( r ')_2]sn(A, k, r')dr'. (97)

The perturbation expansion for /(A, k, r) is bounded for any A.
We state the following relation:

W [ f ( X , k , r ) , f ( X , - k , r ) ]  = 2ik, (98)
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where we have evaluated the Wronskian by substituting for /(A, ±k, r ) its asymptotic 
behavior, e±lkr.

3.2.3 TH E JO ST FU N C T IO N  A N D  T H E  5-M A T R IX

The Jost function /(A, k) is defined as the Wronskian of /(A, k, r) and 0(A, k , r )

= f { \  fc, r)4>'(\, k, r) -  /'(A , k, r)0(A, A:, r). (99)

The general solution of (84) is a linear combination of any two linearly independent 
solutions and, in fact, we have tha t

0 (A, k, r) = ~ [ f ( A, * ) / ( A, —k, r) -  /(A, -fc)/(A , k, r)], (100)

where (98) has been used.
The asymptotic form of (j>(A, k, r) is

0(A,A;,r) ~  _ [ / ( A ,f c ) e^  -  /(A , -A:)e“ifcr] ( 101)

where we have replaced /(A, ±fc, r) with e±lfer. If we parametrize the Jost functions 
in (101) as

f{X,k ) = r { \ , k ) e liS(x'k)- ^ (x- ^ ],

/(A, —k) =  r (  A,

where r(A, A:) is the complex amplitude, then (101) becomes

<p(A, A:, r) ~  ^r(A , A:) sin[A:r +  J(A, A;) -  ^tt(A -  ^)],

(102)

(103)

which agrees with the standard partial-wave analysis in quantum mechanics texts 
(Schiff [29], Mott and Massey [31]). The 5-m atrix is given by

_  „2i<5(A,fc) _  [  / ( A , f c )  1 i i r ( X - l )S ( \ , k ) (104)

Note tha t the 5-matrix is proportional to the ratio of the coefficients of the outgoing 
and incoming waves in (101).
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3.3 SC A T T ER IN G  FRO M  A  C O N ST A N T  SPH ERICAL
INH O M O G EN EITY : D IFFE R E N T IA L -E Q U A T IO N  A PP R O A C H

This is the problem originally discussed by [12]. While it may seem superfluous 
to rederive their analysis, there are three good reasons for doing so. First, we can 
verify their results before proceeding with the 3-layer model. Second, the analysis is 
readily extended to the 3-layer model once the exact and perturbation solutions have 
been defined, and third, it is easy to check consistency of the latter analytically and 
computationally by collapsing Region 2 onto Region 1 to recover the original model.

We apply the method outlined in Section 3.2 to  the problem of scattering from a 
constant spherical inhomogeneity (see Figure 34):

Region 1 : V(r)  =  — Vx, k(r ) — ki , r  < R 1}

Region 2 : V(r) =  0, k(r) = k , r  > R\.  (105)

The solutions in the two regions are:

Region 2 

V(r) = 0 
k(r) = kRegion 1 

V(r) = -V . 
k(r) = k.

r=R

FIG. 34: A constant spherical inhomogeneity.

Region 1 : u ^ \ ( k i ,r )  =  r[Ajx_ i{kxr) +  B yx_i(kir)},A 2 2 2
Region 2 : r) =  r [ C h t (kr ) +  D h?\(k r )] ,  (106)A n Art Art
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where j X- i { k i r ), yx_i(kir) ,  h ^ \ ( k r ) ,  and h f \ ( k r )  are spherical Bessel, Neumann, 
2  2 2 2

and Hankel functions of the first kind and second kind, respectively.
Choosing u ^ \ ( k \ r )  to be 0(A, k\, r)  and imposing the boundary conditions (86) 

A 2

at r — 0, we find tha t B  = 0 and

=  2A+57r_5/;;~A+2r(A +  l ) r j x_i(k ir) ,

<j>{\,ku r) =  2A+57r-iA;1 A+2T(A +  1) x [)A_i (A^r) 4- A w ^ i ^ r ) ] ,  (107)

where the prime denotes differentiation with respect to the argument of the function, 
r  is the gamma function, and we have used the following series representation for 
j x - i ( h r )  in [39]:

. , ,  , ^ M - 1 ) wtT\{k1r/2)x+2n~*
•^A - i ^  i r ^ O n i r f X  4 -  n  4 -  1 "in_Q 2n!r(A -f- 7i H” 1)

- I , " 2, - 3 , - - . .  (108)

Choosing v ^ \  (kr ) to be /(A, k, r ) and imposing the boundary conditions (93) at 
A  2

r  =  oo, we find tha t C = 0, D = ke~'l^ (-x+^ \  and

f (X ,k , r )  = ke l^ x+^ r h ^ \ { k r ) ]  (109a)
A 2

f ( \ , k , r )  =  /ce_l2̂ A+2^[^2\  (^r ) +  fcrh ̂  2 A (At )] , (109b)
2  2

where we have used the following asymptotic form for h ^ \ ( k r ) :
A  2

lim h ^ A k r )  = -L e-^ - |(A + § )] (110)
fcr—>oo A 2 /c r

Since the point r  =  Ri  is the common domain of <p{\, k\ ,r)  and /(A, k , r), we evaluate 
the Jost function at r  =  R\  and thus obtain

/(A, k) =  W[/(A, k, r ), 0(A, fcj, r ) ] , .=jRl

=  2A+̂ 7r_5 r(A +  l ) ^ A+̂ fee_i^ A+̂ f i 1

x -  k j ^ i i h R j t i ^ i k R ! ) } .  (I ll)

We also have that

/(A, —k) = 2A+̂ 7T"̂ r(A +  1 )kx

x [-kd 'x„ i ( k iR i )h {x \ ( k R J  +  k jx_ l (k1R 1)h f \_ (kR 1)}. (112)
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where we have used the following identities: 

(kret7t) =  h ^ \ ( —kr)
a- 4 v ~ '  a- .

n A-5ji

I

h ^ \ ( —kr) =  (—1)A+̂  (Arr)
A 2 A 2

=  e^ A+̂ h ^ i(£ ;r )

=  ( - 1 ) A * h P \ ( k r )  
A 2

=  (Act-);

=  _ e-(A-f )/£>; (Air), A -  \  = 0 ,1 ,2 , . . . .  (113)
A 2 Z

The 5-matrix is then given by

k j x_i ( h R j h f K  (kR1) -  k i j ' _ x f a R j h ®  x (kR1)
S ( \  fc\ —  l______________ _ _ J __________   2_____  (114)

k j x^_(k1R 1) h f \ ( k R 1) - k 1j '  1{k1R 1) h f  . ( k R , ) '
2 2 2 2

We can calculate the Jost function for A =  |  from (111):

= \ e ~ ikR'[{l -  j~ ) e~iklRl +  (1 +  ^ y klRxl  (115)

where the following relations have been used (see TABLE 1):

TABLE 1: Alternative expressions for jo{kiRi), f Q(kiRi), h ^ \ k R i ) ,  and h,Q2\ k R i ) .

Function Expression

j o ih R i )  = s m k iR i / ( k iR i )

j'0(kiRi) — cosk iR i f (k iR i )  — [sinkiRi/(k1R1)2] 

h{o \ k R i ) =  —e~ikRl/ ( i kR i )

h ^ ' ( k R i )  = e - ikRl[l + l / ( i k R 1)] /(kR1)
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3.4 JO S T  IN T E G R A L  E Q U A T IO N  F O R  A =  |  A N D  SO M E 
A P P R O X IM A T E  SO L U T IO N S

If we assume there is an R  such tha t V{r)  =  0 for r  > R  (certainly true in optics!) 
and let

=  k,r) ,

then (94) becomes the Jost integral equation for A =

5( i  k,r)  = 1 +  (2**)-1 J * [ l  -  e2ik̂ } V ( r ' ) g ( ±  k, r')dr'. (116)

We write the solution of (116) as a perturbation expansion

1 °° 1 
9 ( ^ , k , r )  =  ^ 2 g n{^ ,k , r ) ,  (117)

where

"2’ 
n= 0

9 o { ^ k , r )  = l  (118)

and

gn{ \ ,  k ,r)  = 1 +  (2**)-1 j \  1 -  r ,)dr/. (119)

From (86), we have

lim0 (^,fc,r) =  0,
r —>0 Z

( i 'd , k, r)
lim  :------- =  1. (120)
r-+o dr

/ ( I ,  k, r ) and / '(§ , k, r ) are finite and we can evaluate / ( | ,  k) at r =  0 using (120), 
thus obtaining the useful relation

/( |> * 0  =  =  9 ( ^ ,M ) .  (121)

We now redevelop the case of scattering from a constant spherical inhomogeneity, for 
which we have already calculated f ( ^ , k )  exactly in Section 3.3. We can use the exact 
solution of the Jost function to check for the accuracy of the iteration procedure. We 
write down the solution again in the following form:

f ( ^ , k )  =cos[(ki/k)kRi]coskRi  +  {k/k\)  sin[(ki/k)kRi] 

x sinfcRj + i { —cos[(ki/k)kRi]sinkRi

+ (k/ ki)sin[(ki/k)kRi] cos kRi}.  (122)
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The A =  |  Jost integral (116) for this case is

9 ( \ , k , r )  =  1 -  14(2i k ) - 1 J * \  1 -  e2ifc(r- r')]5( i  k,r')drf. (123)

The first iteration <?/(|, A;, 0) of (123) is

9 i ( \ , k , 0 ) = 9 o ( ^ , k , 0 ) + g1(^ ,k ,0 )

=  1 -  ~  ^ l 1 ~  0 0 8  2 ^ ^ ]  +  | [ ( y ) 2 ~  lP -R i -  ^sin2A;i?i].

(124)

The second iteration g n{ \ ,  k, 0) is given by 

9 n ( 7;, k, 0) =  g0(~, k, 0) +  g i ( k ,  0) +  + 5 2 ^ ,  k, 0)

=  1 -  \ [ { ^ ) 2 -  1][1 -  cos 2*/^] -  ^[(^-)2 -  !]2{kR1(k R 1 + s in 2 k R 1)
4  K o  K

+  |(c o s 2 kRi  -  1)} +  ^ { [ ( y ) 2 -  l][kRi -  ^ 8 ^ 2 * ^ ]

-  ~  1]2[£-Ri(l +  ^ cos2A:i?i) -  |sin2fci2i]}. (125)

Since wavelengths and wavenumbers vary inversely, there is an approximate the
ory for the scattering of plane wave by considering the ratios of wavelengths in the 
scattering region and in the surrounding region [28]. In this chapter, we also consider 
the ratios of the wavenumbers for short and long wavelengths.

In Figures 35 through 38, we have plotted f { \ , k ) ,  gi{\ ,  k, 0), and g u (^ ,k ,0 )  as 
a function of kRi  for the ratios of the wavenumbers in the scattering medium and 
in the surrounding medium, k i / k  =  0.5, 1.1, 1.5, and 2.0, respectively. The results 
show that the iteration technique becomes less accurate when the ratio of k i / k  is not 
around 1. For k i / k  =  1.1, the approximation is good for the entire range of kR\.  
For k i / k  = 0.5, the approximation is good until kR i  «  it . For k i / k  = 1.5, and 2.0, 
the approximation is good until kRi  sa Ztt/A.

For real A and k, we have

f ( X , - k )  =  r ( X , k ) ,  (126)

and therefore

ao/rrRj =  |1 -  e2i5̂ \ 2/ { k R i )2

=  | l - [ / ( ^ * ) / / * ( ^ * ) ] | s / ( * « i ) a. (127)
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FIG. 37: vs kR\  for scattering from a constant spherical inhomogeneity,
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FIG. 38: f ( ^ , k )  vs k R i  for scattering from a constant spherical inhomogeneity,
h / k  =  2.0.
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FIG. 39: (Jq/itR\ v s  kR\ for scattering from a constant spherical inhomogeneity, 
h / k  = 0.5.
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FIG. 40: oq/ 7rR\ v s  kR.\ for scattering from a constant spherical inhomogeneity, 
k\/k = 1.1.



69

k1/k=1.5

-  Exact Result 
1 st Iteration 

. 2nd Iteration
CM t
cc

ob
0.8

0.6

0.4

0.2

FIG. 41: ao/wRi  vs kR\  for scattering from a constant spherical inhomogeneity, 
k i / k  =  1.5.
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FIG. 42: cto/ ttR f  vs k R i  for scattering from a constant spherical inhomogeneity,
h / k  =  2.0.
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where <x0  is the I =  0 total cross section. Using (122), (124), (125), and (127), 
in Figures 39 through 42, the exact result, first iteration, and second iteration for 
cro/nRi for k i / k  = 0.5, 1.1, 1.5, and 2.0 are respectively presented. It appears tha t 
the iteration procedure is more accurate for the cross section than the Jost function 
itself. For long-wavelengths (kRi  <C 1), the iteration technique is good for any ratio 
of wavenumbers in the scattering and surrounding media. For shorter wavelengths, 
the ratio k \ / k  close to 1  (e.g., k \ / k  =  1 .1 ) gives a good approximation to the total 
cross section I — 0  for the entire range of k R i ; however, the smaller k \ / k  (e.g., 
k \ / k  = 0.5) gives a good approximation to cr0  until kR\  ~  7 7 t / 6  and the larger k i / k  
(e.g., k i / k  =  1.5,2.0) gives a good approximation to a0 until kRi  «  3n/4.

3.5 SC A TTER IN G  FROM  A  PIE C E W ISE  C O N STA N T B Y  
M ULTI-LAYER SPH ERICALLY SY M M ETR IC  
INH O M O G EN EITIES

We apply the method outlined in Section 3.2 to the problem of scattering from a 
piecewise constant in a multi-layer spherical inhomogeneities (see Figure 43): For a 
three-layer inhomogeneity we define the following potential

r=R,

r=R

Region 1 
V(r) = -V. 
k(r) = k

Region 3 
V(r) = 0 
k(r) = k

FIG. 43: A piecewise constant spherical inhomogeneity.
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Region 1 : V{r) — —Vx,k(r) =  k \ , r  < /?!,

Region 2 : V(r) = —V2, k(r) = k2, Ri < r < R2,

Region 3 : V(r)  =  0, k(r) =  k , r  > R2. (128)

The solutions in the three regions are:

Region 1 : u ^ ( k u r) = r[Ajx_i(kxr)  +  B y x_i(kxr)],

Region 2 : u f \ { k 2, r) = r[Cjx_ i ( k 2r) +  D yx_i(k2r)],

Region 3 : u ^ \ ( k ,  r ) =  r [ E h ^ \ ( k r )  + F h ^ \  (&r)]. (129)

where again j x_^{k\r) and j x_ i ( k 2r), yx_i(k ir )  and yx_ i ( k 2r), and hx \ ( k r )  and

h?lx(kr ) are spherical Bessel, Neumann, and Hankel functions of the first kind and 
A 2

second kind, respectively.
We proceed as in the two-layer model. Choosing {kx, r) to be ki, r ) and

A 2

imposing the boundary conditions (86) at r =  0 , we find th a t B  =  0  and

0i(A, h , r )  = 2 a+5 t t - 3 ^  A+2 T(A +  l ) r ) A_i(A;1 r),

(A,k i , r )  = 2x+5ir~h;x A+2T(A +  1 ) x  \jx_i(kxr)  +  kt rj'x_i (kir)]. (130)
2  2

Choosing (fc2, r) to be (f>2(A, k2l r ) and imposing the continuity a t the boundary 
A 2

r  =  i?i by matching the continuity of <j)\ with <j)2 and <j>\ with <f>'2, we have 

0 2 (A,/C2 ,r )  =  r[Cjx_ i (k 2r) +  Dyx_ i (k2r)},

<t>2{\, k2, r) = C[jx_ i (k 2r) -I- k2rj'x_ i (k2r)] +  D[yx_ i (k2r) + k2ryx_ i ( k 2r)}, (131) 
2 2 2 2

where

m (jX—i ik iR \ ) y >x_x(,k2Ri)  -  ^ j A_i(A:itfi)yA_i(&2 # i))
^  Z  2 * 2 2

^ _ i (fc2 J?i)r/A_i(A;2 i?1) -  j x^ i ( k 2Rx)y'x_ 1(k2R 1)
2 2  2  A 2

m{jx_i(kxRx)j\[_i(k2Ri) -  fafx_i (k iR i ) jX- i ( k 2Rx))Q  _  2_______^_2_________ 2 *_2_________ 2_______
j '  l {k2Rx)yx_x{k2R 1) -  j x_ i{k2Rx)y' x (k2Rx)* 2 2 2 2

(m =  2A+57r-5A:'A+5r(A +  l)). (132)

Choosing u ^ \ ( k , r )  to be f ( X , k , r ) and imposing the boundary conditions (93), 

we find tha t E  =  0, F  =  A;e- l t (A+̂ ,  and

f ( X , k , r ) =  fce~l 2 (A+2 V //22 i (Ax),
2

/  (A, A:, r) =  A:e_ * 2  (fcr) +  krb!^ \  (&r)], (133)
2 2



72

where we have used the following asymptotic form for r (hr):
A 2

lim = -U -*[fcr- i ( A+5) 1.
k r —* oo A 2  K T

Since the point r = / ? 2  is the common domain of 0 2 (A, A;2, r) and /(A, k, r), we 
evaluate the Jost function at r = R 2 and thus obtain

/(A, k) = W [ f ( A, k, r), 0 2 (A, h ,  0 U * 2

=  /(A, r)0'2 (A, A;2, r ) -  /'(A , A;, r)0 2 (A, A;2, r)

=  2A+57T-ir(A +  l)A:”A+5A:e-^(A+̂ J?2

2  K>2 ^

-  M2 ) !(A;Jt:2 )A;[a2 JA_i +  ^ -a 4 JA_i (fci-Ri)]}■* 2 2 fc2 2

/ [ j a -  1 ( ^ 2 ) 2 / a -  A ( ^ 2 )  -  J A - j ( f c 2 ^ l ) y l _ » ( * 2 - R l ) ] -  ( 1 3 4 )

We also have tha t

/(A, -Jfe) = 2A+57T-5r(A +  1 ) k iX+h e - i%ix+l2)R%e™{x- ^

x { - h {* \ ( k R 2)k2[aijx_ i (k iR i )  +  j r a 3j'x_k(kiRi)]
2 2 Av2  2

+  ^ 1)'1(A :ii2)A:[a2J A_ i(A :lJR 1) +  ^ a 4j ' _ i  ( A ^ ) ] }
A 2 2 fc2 2

/ [ j l _ i ( ^ 2 i ? i ) ^ - | ( ^ 2 - R i ) - i A_ | ( A : 2 i ? i ) y ^ _ i ( A : 2 i ? i ) ] ,  ( 1 3 5 )

where we have used the following identities: 

h f [ \ ( k re m) =  h ^ \ ( —kr)
A 2  A 2

=  ( - 1 ) ^ / 1 ^  (At )
A 2

=  ei,r(A_2 )/i(1) j (kr)
A 2

h ^ P i ( - k r )  =  ( —1)a+2/ i ^  j (At)
2 2

=  (At )
A 2

=  - e - O - i ) ^ 1)', (At ), A -  |  =  0 , 1 ,2 , -----  (136)
A 2 Z



73

The 5-m atrix is then given by

S(X,k) = - { k h ^ \  (kR2)[a2j x_ i (kyRi)  +  j - a d ' ^ i f a R i ) ]
2 2 k2 2

-  fc2h f  x (Ar/Za)[a i j A_ i  ( f c i /2 0  +  (A ^ ) ]}
21 2 2 /C2 2

/ { ^ ' 1 (A:fl2) [ a 2i A_ i(A :1/2 1) +  N ^ i ^ A i )]
A 2 2 # 2  2

-  A^h^i (A:i?2)[aiiA_i (fcii2i) +  ^ -a 3 j '_ i  (Aii?!)]}, (137)A 2 2 /C2  2

where

a i  =  j x_ i(k 2Ri)y’x_ i (k2R2) -  y'x_ i (k2Ri)j'x_i(k2R2), 

0 2  =  fx_i(k2Ri)yx-k(k2R 2 ) -  3x-i{k2R2)y'x_i(k2Ri),
2 2 2 2

a 3 =  yX- i { k 2R l )j'x_1{k2R 2 ) ~  j \ - i ( k 2Ri)y'x_i{k2R2),
2 2 2 2

a4 =  -  yA_i (fc2i?i)iA_|(A;2i?2).

We can calculate the Jost function for A =  |  from (134):

/ ( I ; fc) = ^ e-ito 2 {([ ( i z i M  +  ( ^ + M j efc2 («2 -fl1)

+  (̂k + ik2) +  (fc2 -  ^ ) ^ _ fc2(it2_ f l i ) ^ ifc]Hi 

A;2
(ik + k2) _  ( k - i k 2)

U A;2 Jki J
+  ^( f e  - t f c )  _  (A: +  tk2)^ _ kAR2_Ri)^ _ ikiRi^

where we have used the following relations (see TABLE 2):

3.6 JO ST  INTEG R A L EQ U A TIO N  FO R  A =  * A N D  SOM E  
A PPR O X IM A TE  SO LUTIO NS IN  TH E 3-LAYER M ODEL

We now apply the method in Section 3.4 to the case of scattering from a piecewise 
constant by multi-layer spherical inhomogeneity. We have already calculated f { \ , k )  
exactly in Section 3.5. We can use the exact solution of the Jost function to check 
for the accuracy of the iteration procedure. We write the solution (123) again in the
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TABLE 2: Alternative expressions for jo(kR),  j'Q(kR), h ^ \ k R ) ,  and h,Q2\ k R ) .

Function Expression

jo(kR) = s in kR / (k R )

j ’o(kR) =  cos kR/{  k R) — [sin k R / ( k R ) 2] 

h{o \ k R )  = - e~ikR/ ( i k R )

hgy (kR) = e~ikR[l +  l / ( ikR )] / (kR)

following form: The first iteration gi(^ ,k ,  0) of (123) is

9i{^, k, 0 ) =  k, 0 ) +  0 i(^ , k, 0 )

=  1 — t{[(" 7~)2 — 1][1 — C0S2A;/?!] +  [1 — ( ^ ) 2][cos2A:i?2 — cos2fc/2!]}4 k k

+  [1 — {-r)2][k{R-i ~ Ri) -  ) ( s in  2 k — sin 2/c/? ,J}- (139)
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The second iteration gji (^ ,k ,0 )  is

9i i ( 2 ’ ^,0) =  0) +  ^ i(—, k, 0) +  g 0)

=  1 +  t { [ ( ^ - ) 2  — l][cos2fcJRi — 1 ] +  [ 1  — ( ^ ) 2 ][cos2 £:i? 2  — cos 2 kRi]}4 k k

~  ! { [ ( ^ ) 2  -  i f i k R i l kF h  -h s in 2 fci?i] +  ^[cos2  kFh -  1 ])8 k  2

+  [ A 2 -  1 ] [ 1  -  f e ) 2]{k(R2 -  R i ^ k R i  -  k (R 2 -  R J  -  s in 2 fci?i]
K K

3

— [cos2 A:(i? 2  — Ri)  — 1] +  -[cos2fci? 2  — cos2 fci?i]

+  k (R 2 — Ri)[sin2kR2 +  sin2A:.ili] +  kR i  [sin 2kR2 -  sin2fci?i])

+  [1 -  ( T ) 2]2(fc( ^  -  R i )[2 K R 2 -  R x) -  sin2k(R2 -  R J  
k

+ sin2kR2 — sin2fc/?i] +  [cos2 A;(il2  — Ri) — 1])}

+ i { | ( [<T‘)2 -

+ [1 -  { ^ f ] \ k { R 2 -  Ri) -  - lsm-2kR2 -  sin2fc/J,]])
K jL

-  ^ ([(-p ) 2  -  l]2 (fc-fti[cos2 A;JR1 +  2 ] -  | s i n 2 * / 2 i)8 k 2

+  [(-p- ) 2  — 1 ] [ 1  — ( ^ ) 2 ](&/?i[cos 2A:i? 2 — cos2 fc/2 i] k k
+  k (R 2 — i?i) [cos 2kR2 +  cos 2k Ri]

3

— k (R 2 — ili)[cos2A:ili — 1] — - [ s in 2 A;/l2 — sin2A:ili])
Ci

-  [1 -  ( ^ - )2}2(k(R2 -  R 1)[[cos2k(R2 -  Ri) -  cos2kR2 +  cos2fc.il!]))}.
k

(140)

In Figures 44 through 51, we consider both increasing and decreasing refractive 
indices profiles. We have plotted / ( | ,  k), g j( | ,  k, 0), and <?//(| ,  k, 0) as a  function of 
kRi  for the ratios of the wavenumbers in the scattering medium between r < Ri  and 
R\ < r < R 2 and kR 2 for the ratios of the wavenumbers in the scattering medium 
between R\ < r  < R2 and r > R 2 for fcj/fc =  0.7, k2/ k  =  0.9; fci/fc =  0.9, k2/ k  = 0.7; 
k i / k  = l . l , k 2/ k  =  1.3; k \ j k  = 1.3, k 2/ k  =  1.1; k i / k  = 1.2, k2/ k  =  1.5; f c i / f c  =
1.5, k2/ k  =  1.2; fci/fc =  l .b ,k2/ k  =  2.0 and fci/fc =  2.0, k2/ k  =  1.5, respectively. The 
results show that the iteration procedure becomes less accurate when k i / k  and k2/ k  
increase.
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For real A and k. we have

f ( X , - k )  = f*(X,k),  (141)

and therefore

ce/irR\ =  |1 -

=  II -  [ / ( | , f e ) / / - ( | ,  *)]lV(fc«i)2, (142)

where cr0 is the I =  0 total cross section. Using (138), (139), (140), and (142), in 
Figures 52 through 59, we have plotted the exact result, first iteration, and second 
iteration for aa/irRj  for k i / k  — 0.7, k i / k  =  0.9; k \ / k  = 1.1, k i / k  =  1.3; k i / k  =
1.5, k i / k  =  1.2; and k \ / k  =  2.0, k i / k  — 1.5, respectively. For k \ jk  =  0.7, k i / k  =  0.9, 
the approximation is good only for kRi  <C 1. For k i / k  =  1.1, k i / k  =  1.3, the
approximation is good for the entire range. For k \ / k  =  1.5, k i /k  =  1.2 and k \ / k  =
2.0, k i / k  =  1.5, it gives a  good approximation when kRi < tt/3.

Based on these results, for long-wavelengths (kRi  1) the iteration procedure 
gives a better approximation for the Jost function than  for the total cross section, <t0. 
For shorter wavelengths, all ratios of the wavenumbers give a good approximation to 
<7o from kRi  «  7r; moreover, the approximation becomes more accurate in this range 
when the ratio of the wavenumbers is larger.
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FIG. 44: f { \ , k )  vs kR\  for scattering from a piecewise constant spherical inhomo
geneity, k i / k  = 0.7, k^jk  =  0.9.

k1/k=0.9,k2/k=0.7N- / ' x

Exact Result 
- 1 st Iteration 
2nd Iteration

FIG. 45: /(§,& ) vs k R i  for scattering from a piecewise constant spherical inhomo
geneity, k \ ! k  =  0.9, k z / k  =  0.7.
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FIG. 46: / ( |,f c )  vs kRi  for scattering from a piecewise constant spherical inhomo
geneity, k i / k  =  1.1, k2/ k  =  1.3.
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FIG. 47: f ( ^ , k )  vs k R i  for scattering from a piecewise constant spherical inhomo
geneity, k i / k  =  1 . 3 , k 2/ k  =  1.1.
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FIG. 48: f { \ , k )  vs kRi  for scattering from a piecewise constant spherical inhomo
geneity, k \ / k  =  1.2, k-ijk =  1.5.
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FIG. 49: f { \ , k )  vs k R i  for scattering from a piecewise constant spherical inhomo
geneity, k i / k  =  1.5, fo/fc =  1.2.
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FIG. 50: f ( \ , k )  vs kR\  for scattering from a piecewise constant spherical inhomo
geneity, k i / k  =  1.5, k2 / k  =  2.0.
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FIG. 51: f ( ^ , k )  vs k R i  for scattering from a piecewise constant spherical inhomo
geneity, k \ / k  =  2.0, k i / k  =  1.5.
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FIG. 52: cro/7ri?f vs kRi  for scattering from a piecewise constant spherical inhomo
geneity, k i / k  =  0.7, k^/k — 0.9.
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FIG. 53: ao/7r/?i vs kR.i for scattering from a piecewise constant spherical inhomo
geneity, k i / k  =  0.9, k 2 / k  =  0.7.
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FIG. 54: gq/txR\  v s  kR\  for scattering from a piecewise constant spherical inhomo
geneity, k \ / k  =  1.1, k i / k  =  1.3.
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FIG. 55: cr0/TrRl  vs k R i  for scattering from a piecewise constant spherical inhomo
geneity, k i / k  =  1 . 3 , k 2/ k  =  1.1.
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FIG. 56: oq/txR\ v s  kR\  for scattering from a piecewise constant spherical inhomo
geneity, k i / k  =  1 .2 , =  1-5-
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FIG. 57: o-q/t tRI vs k R \  for scattering from a piecewise constant spherical inhomo
geneity, k i / k  =  1.5, fo/fc =  1.2.
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FIG. 58: <7 o/7ri?f vs kRi  for scattering from a piecewise constant spherical inhomo
geneity, k i / k  = 1.5, k^/k  =  2.0.
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FIG. 59: cro /nR f  vs k R i  for scattering from a piecewise constant spherical inhomo
geneity, k i / k  =  2.0, k 2 / k  =  1.5.
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3.7  G ENERAL JO ST IN TE G R A L -E Q U A T IO N  FO R M U LA TIO N  
FO R A R B IT R A R Y  A FO R  SC A T T ER IN G  FR O M  A N  
A R B IT R A R Y  IN H O M O G E N E IT Y

3.7.1 2-LAYER M ODEL

From (85) and (94) for 0(A, k, r) and /(A , A, r), we can derive the general Jost 
integral-equation formulation for arbitrary A for scattering from an arbitrary inho
mogeneity. For any V  (r) satisfying requirements (80), we can solve (85) and (94)
using an iteration procedure that used in Section 3.4. After we know 0(A, k, r ) and
/(A , fc, r), we can calculate cj>'(A, k, r ) and /'(A , k , r )  and therefore /(A , k), which can 
be calculated at any point in common domain of <f)(\,k,r) and /(A , k, r). In the 
case of scattering from a constant spherical inhomogeneity, we have the following 
two integral equations:

<j)(A, k, r) = r A+A +  ^A - 1  [(£ /r)A -  (r/£ )A] x (r£)% [k2 +  \4 ]^(A, k, £)d£

+  f  t(£/r )A -  (r / 0 A] K ) ^ V ( A> k , O d& (143)
1 J R i

/(A, k, r ) =e~tkr +  AT1 J  [sin k(r' -  r)] x [ - Vi +  (A2  -  ^ ) / ( r ') 2 ]/(A, k, r')dr' 

r°° 1
+  k~l /  [sin k(r' — r)] x [(A2  — - ) / ( r ' ) 2] f (X1 k,r')dr'. (144)

J R i  4

The Jost function can be evaluated at any point r > R, since we have restricted 
/(A, k , r)  to the region r > R.

3.7.2 3-LAYER M ODEL

In the case of scattering from a piecewise constant spherical inhomogeneity, the 
two integral equations (143) and (144) become:

<(>{ A, k, r ) = r A + 5  +  I  A- 1  [(£/ r ) A -  (r /£ )A] x (r£) ̂  [A:2  +  Vi)<f>(\, k,£)d£

1 f R2 i
+  2  A _ 1  /  K f / r ) *  “  ( r / 0 A] x  ( r € ) 5 ft2 +  W (  A , k, Qd£

J  R i

+  f a _ 1 /  [(£/r )A -  ( r / 0 A](r 0 ^ V ( A. fc. 0 ^ ;  ( 1 45)
1 J r2
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/(A, k,r)  =e %kr + k [sin k(r'  -  r)j x [-Vi +  (A2  -  ^ ) / ( r ') 2 ]/(A, k, r')dr'

+  k~x [  [sinfc(r' — r)] x [— V2 +  (A2  — ^ ) / ( r 0 2]/(-V k,r')dr'
J r .i 4

fOO 1

+  AT1 /  [sin k{r' — r)] x [(A2  — k, r')dr'. (146)
Jr2 4

3.8 SU M M AR Y

In this chapter, we have seen th a t the Jost-function formulation of quantum 
scattering theory can be applied to classical problems concerned with the scattering of 
a plane scalar wave by a medium with a spherically symmetric inhomogeneity of finite 
extent. We have applied this technique to solve the radial differential equation for the 
scattering from a constant spherical inhomogeneity and a  piecewise-constant multi
layer spherical inhomogeneity. When the Jost function cannot be solved exactly, we 
can use the Jost integral formula to convert it into an integral equation corresponding 
to these boundary conditions. As shown in Sections 3.3 and 3.4, we can use an 
iteration procedure to solve the I = 0 Jost integral equation for a discontinuous 
area inhomogeneity as shown in 2 -layer and 3-layer models. Although the iterative 
technique is not the most effective method in all cases, it may be useful when we 
have a more complicated function. Based on the results th a t we have for a constant 
spherical inhomogeneity, the iteration technique is good for the problem with long 
wavelengths (kRi  <C 1) for any k\/k .  For shorter wavelengths, small k \ / k  (e.g., 
k \ / k  = 1 .1 ) gives a good approximation to cro for the entire range of kRi  considered 
(0 <  Ri  <  27t); however, large k \ j k  (e.g., k \ f k  =  1.5,2.0) gives a good approximation 
to cro in the range of 0 <  kR\  <  3 7 t / 4 . In case of a piecewise constant spherical 
inhomogeneity, the iteration procedure gives a better approximation for the problem 
with long wavelengths (kR\  <C 1 ) only for small ratios of k i / k  and k2/ k  (e.g., k \ / k  =
0.7,k2/ k  =  0.9;fci/A; =  1.1, k2/ k  = 1.3). For a larger k \ / k  and k2/ k  (e.g., k i / k  =
1.5, k2f k  =  1 .2 ), it gives a good approximation when kR\  < 2tx/2>. The approximation 
for the Jost function becomes less accurate for larger ratios of wavenumber k \ / k  and 
k2/ k  (e.g., k \ / k  = 2.0, k2/ k  =  1.5). When the ratios of wavenumbers k \ / k  are 
greater than k2/k ,  we have a better approximation. However, the approximation for 
the Jost function is still better than the total cross section for the large wavelengths. 
For shorter wavelengths, all ratios of the wavenumbers give a better approximation
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to <to for approximately kR\ > 2tt/3.
We note tha t our plots of the I =  0 cross section differ from those for the square- 

well potential presented in standard quantum mechanics texts (e.g., see Merzbacher 
[37]). The reason for this difference is the fact th a t in quantum scattering theory, 
we are concerned with the behavior of the cross section as a function of kR \  for a 
fixed value of V \ R (i.e., we have fixed the parameters of the potential), whereas in 
classical scattering theory we are concerned with the behavior of the cross section 
as a function of kRi  for a fixed value of the relative index of refraction k \ jk .  Also, 
in classical scattering theory, the phase shift and cross section are zero as kR\  —> 0, 
while in quantum scattering theory, the phase shift and therefore the cross section for 
kR\  —> 0 are dependent on the value of ViRj  and can, in fact, be nonzero, depending 
on the presence of bound states and the phase shift normalization a t infinite energy 
[12].
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CHAPTER 4 

THE 5-M ATRIX FOR THE CASE OF A COATED 

SPHERE.

4.1 IN T R O D U C T IO N

In recent years, there has been interest in the light scattering properties of mam
malian cells. Typically, for such calculations, a mammalian cell was imagined as a 
homogeneous sphere immersed in a waterlike medium such that the (relative) re
fractive index of the cell was slightly greater than unity. A more realistic model for 
some mammalian cells would be a sphere (nucleus) with a  given refractive index, 
surrounded by a coating (cytoplasm) with a slightly lower refractive index. The 
mammalian cells of interest are typically 10-15 p  in diameter with nuclei whose di
ameters are about two thirds of the total cell diameter. Another example of the 
use of coated spheres was mentioned in the introduction in connection with optical 
tweezer technology. Optical tweezers are scientific instruments that use a highly fo
cused laser beam to provide an attractive or repulsive force (typically on the order 
of pico-newtons depending on the refractive index) mismatch to physically hold and 
move microscopic dielectric objects. In the late 1980’s, optical tweezers were used to 
trap an individual tobacco mosaic virus and Escherichia coli bacterium. They have 
also been used to trap neutral atoms, and for cell sorting in biology, i.e., by creating 
a large optical intensity pattern over the sample area, cells can be sorted by their 
intrinsic optical characteristics. Optical tweezers have also been used to probe the 
cytoskeleton, measure the viscoelastic properties of biopolymers, and study cell motil
ity. Most recently, a biomolecular assay was developed in which clusters of ligand 
coated nano-particles were both optically trapped and optically detected. Coated 
spheres can also be used as enhanced probes for optical trapping (Bormuth et al. 
[25], Hu et al. [26]).

We start by examining the paper by Nussenzveig [15] and extending it to include 
a delta-function potential on the surface of the potential well discussed in [15]. We 
review some of the properties of the 5-m atrix and its poles (especially (152) before
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proceeding further. The 5-m atrix for the general case of I ^  0 is derived, and then 
specialized to I =  0 (the case discussed in [15]), of course with the addition of the 
delta function potential on the surface of the well.

4.2 TH E SC A TTER IN G  M A TR IX

Consider first as a review and for simplicity, a scalar plane wave incident upon 
an impenetrable sphere of radius a. The solution of the Helmholtz equation (outside 
the sphere is)

i>k{r, = \  £ ( 2 /  +  l) i l[h\2\ k r )  + 5/(5)fy(1)(kr)]Pi(cosd), (147)
1=0

where h\x\ k r )  and h\2\ k r )  are spherical Hankel functions of the first and second 
kind respectively, and

n / /o\ W) /-> i 27ra
=  P = ka = - :r  • (148)h] '(/3) a

The quantity 5/(5) is the element (for a  given I-value) of the scattering or 5-matrix. 
For ‘elastic’ (or non-absorptive) scattering, 5/(5) is a phase factor, and a very im
portant one - it completely determines the nature of scattering in a potential field. 
As |r| =  r  —» oo,

h ? \ k r )  ~  H ) i+1 ^ r ;  hl2)(k r ) ~  il+1^ r >  (149)

hence inside the summation we have the term

(15°)
Again, the reader should note tha t several possible contexts can be considered here. 
The modified partial wave number A =  1 + 1/2 is in general considered to be complex, 
with k  being a real quantity, but here we consider A: to be a  complex quantity also. 
Thus, so called ‘bound states’ (of interest in quantum mechanics) are characterized by 
a pure imaginary wavenumber k — iki, ki > 0 corresponding to energy E  = k2 < 0. 
In order for such a solution to be square-integrable in (a, oo), it is necessary tha t 
the second term vanish in (150) above. Formally, this will be the case if 5  =  ka is a 
pole of 5/(5). This is the essential significance of the poles of the 5-m atrix in what 

follows.
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For a spherical square well or barrier, corresponding to a  transparent sphere with 
constant refractive index n, the form of the scattering matrix elements for scalar 
waves is more complicated than (152). In fact, in terms of spherical Bessel functions 
(j i) and spherical Hankel functions (h[l\  h ^ ) ,  the 5-m atrix is

S,W)  =  ( 1 5 i)
f i j i W h f  \ 0 )  -  aj't (a)h\ \/3)

Equation (151) is an expression of the matching a t the finite boundary of the po
tential of the regular internal solution with the appropriate external solution of the 
Schrodinger equation. Using the notation of Nussenzveig [15], the expression (151) 
is equivalent to

s m  =
h ? \P )  
,(* )

In' h f \ j 3 )  -  n In' j i(a)
(152)

h\l>((3) Lin' fi|1)(/3) -  n ln 'j 'j(a ) . 

where In' represents the logarithmic derivative operator, ji is a spherical Bessel func
tion. The ‘size parameter’ /? =  ka plays the role of a dimensionless external wavenum- 
ber, and a  =  n(3 is the corresponding internal  wavenumber. Not surprisingly, 5(/3) 
may be equivalently expressed in terms of cylindrical Bessel and Hankel functions of 
half-integer order.

As noted by [15] that for I =  0 the 5-m atrix element takes the simpler form

=  ^ o c o t a  + 0
a  cot a  — ip

and is extended later in this chapter. To obtain the analytic continuation of Si(j3), it 
is sufficient to consider (151) as a function of the complex variable (3. It follows from 
the properties of the spherical Bessel functions tha t (151) is a meromorphic function 
of /?, which satisfies the well-known relations

= w )  w )  =  i. (1 5 4 )

According to (154), if P is a  pole of Si((3), so is — /?*, while —j3 and /?* are zeros. 
Therefore, it suffices to determine the poles on the imaginary axis and in the right 
half plane. The Ith “partial wave” in the series solution (C2, see Appendix C) and 
(147) is associated with an impact parameter b(l) = (I + l /2 ) /k ,  i.e., only ‘rays’ 
“hitting” the sphere (b < a) are significantly scattered, and the number of terms 
tha t must be retained in the series to  get an accurate result is slightly larger than 
/3. Unfortunately, for visible light scattered by water droplets in the atmosphere, j3
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is approximately several thousand and the partial wave series converges very slowly. 
This is certainly a non-trivial problem! In the next section, we examine the resolution 
of this difficultly for both the scalar and the vector wave problem.

Ref. [15] is concerned with S'-matrix poles associated with the case of non- 
relativistic scattering by a central potential of finite radius for angular momentum 
1 = 0. In this case, as is well known, the S'-matrix is a diagonal matrix, with elements

St(k) = e2i5lVc\  (1 5 5 )

where 5i (k) are the phase-shifts corresponding to the angular momentum I and wave 
number k  in the cases of interest.

Summarizing from [15 ], the properties of the poles of the S'-matrix are described 
in the following:

(i) The poles are located either on the positive imaginary axis or in the lower 
half-plane.

(ii) A pole on the positive imaginary axis, k = iKn (k tl > 0), corresponds to a 
bound state  with energy E  = k2.

(iii) Complex poles are usually interpreted either by means of so-called “quasi- 
stationary” or “virtual” states (or in terms of resonance scattering). The first inter
pretation involves the analytic continuation of Schrodinger’s wave function to “com
plex energies” . A pole at the point k = k' — in ( k  >  0) is associated with the ‘complex 
energy’:

E =  Er — l-T. ( 1 5 6 )

If k' > 0, the corresponding “wave function” is said to represent a “decaying state,” 
with decay constant T and “energy” E  (defined with an uncertainty given by F). In 
quantum mechanics, poles with k' <  0 are associated with “capture” processes. In 
both cases, it is assumed that E  > 0 (see Section 5 .2  in [1 5 ] ) . The complex poles 
in ( 1 5 7 )  for the resonance scattering associated with a “Breit-Wigner peak” in the 
scattering cross-section are interpreted in the next section (and see also Appendix 

C).
The poles and zeros of the S'-matrix are symmetrically situated with respect to 

the imaginary A:-axis, because by virtue of ( 1 5 4 ) ,  if the S'-matrix has a  pole a t the 
point k, then it also has a pole at the point —k and it has zeros at the points —k 
and k. For potentials satisfying the conditions stated at the beginning of this section, 
only a finite number of bound states can be supported and these give rise to the poles
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lying on the positive imaginary axis. However, an infinite number of poles can occur 
in the lower half /c-plane. If they do not lie on the negative imaginary A;-axis, they 
occur in pairs symmetric with respect to this axis, as discussed above. If they lie on 
the negative imaginary /c-axis, they are often referred to as virtual state poles; the 
wave functions corresponding to these states cannot be normalized. Poles lying in the 
lower half /c-plane and close to the real positive /c-axis give rise to resonance effects 
in the cross section equation. Poles lying in the lower half Ac-plane and far away from 
the real positive /c-axis contribute to the smooth “background” or “non-resonant” 
scattering. The distribution of poles in the complex k-plane has been discussed in 
detail for scattering by a square well potential in a  few cases [33].

4 . 3  T H E  B R E I T - W I G N E R  F O R M

Consider an isolated pole in the 5-m atrix which lies in the lower half Zc-plane close 
to the positive real /c-axis. This pole gives rise to resonance scattering at the nearby 
real energy. Suppose tha t the pole occurs a t the complex energy (recall (157))

where Er is the resonance position, and P is the resonance width, and both are real 
and positive numbers. For the unitarity relation, we see th a t corresponding to this 
pole there is a zero in the 5-m atrix (at a complex energy given by E  =  Er + iY f  2) 
in the upper half k-plane. For energies E  on the real axis in the neighborhood of 
this pole the 5-matrix can be written in a form which is both unitary and explicitly 
contains the pole and zero:

The quantity <5;°(/c) in this equation is called the “background” or “non-resonant” 
phase shift. Provided that the energy Er is not close to threshold, 5  =  0, nor to 
another resonance then the background phase shift is slowly varying with energy.

E  = Er -  -r

(1 5 7 )

Comparing (155) and (157) we obtain the following expression for the phase shift:

6,(k) = 5?(k) + 5[{k). (1 5 8 )

The quantity

6[ (k) =  arctan (159)
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is called the “resonant” phase shift which is seen to increase through n radians as 
the energy E  increases from well below to well above the resonance position Er.

It can be shown th a t if $}(&) is zero, the partial-wave cross section 0 7  is given by 
the Lorentzian shape

r2/4
(e  — e t )2 +  r 2/4

This is known as the Breit-Wigner resonance form [40].

(160)

4 . 4  T H E  S ' - M A T R I X  T H E O R Y  O F  A  S Q U A R E  W E L L  P L U S  D E L T A  

F U N C T I O N  P O T E N T I A L

The governing radial Schrodinger equation is

i M l  +  [ e  -  l!± H  _  V ( r ) l J i ( r )  =  0 . ( 1 6 1 )

We suppose that
V(r)  =  — ~j&(a — r) — —S(r — a), (162)

where the step function

0 (0  =  I  ^ > °  (163)l o ,  e < 0

and Vo, /v, are dimensionless. Since #(£) is dimensionless, and <i(£), from its limiting 
definition (i.e. as a delta distribution), has dimension of (length)-1, (161) has di
mension of Ri(r)/ (length)2. We proceed to work in terms of the dimensionless spatial 
independent variables x  =  kr, and xq =  ka. Equation (161) becomes

#R l ( r )  , r, /(/ +  1) V0 / i f X0 - X s H z ,  \ i  r> / n  , „ A S+  [! -  — -----^ 0 ( - y ~ )  -  — S(x -  xo)\Ri(r) =  0, (164)

where S(k(r — a)) = |A;|- 1 <5(r — a), so 8(r — a) =  kS(x  — x0), and we assume without
loss of generality th a t k > 0 .

The solutions to the equation

d?ui(r) r / ( / +  1 )
+ [i -  = °'  <165>

are Riccati-Bessel functions, Ci(x) =  xji (x ) and Di(x) =  —xyi(x) in terms of spher
ical Bessel function of the first and second kind. To match the solutions a t x  =  x0, 
we require that

(i) lim {Ri(x0 +  e) — Ri(x0 -  e)} =  0 , (166)
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together with

(ii) lim j  { ^ ^ 2 ^  + [ 1 -  ' K' ^ '  + ^ g(" " i: ~ ) + -^6{x - xq)}Rl(x ) \ = 0 .c—>o+ .

1(1 + 1) Vq X q  -  X s / i

X* X q

This implies that

dx
Ri(x)

xo+e
+

x q - c
% ° ) + ^

Lxo ^oj
Ri(x0) =  0 .

The result for S(x — x q )  follows because
p X Q + t

/ 6(x -  xo)Ri(x)dx =  R i (xq).
J  x q —e

For

r x O+e X n  —  X  f x °  f x  0+C
/  0(— t — )Ri(x)dx = /  i?/(x)dx +  I Odx =  0,

J XQ  — t  ™ J x o —C J  X q

since /?i(x) is continuous in any (xo — e, x) C (0, oo). Therefore,

dRi(x£) dRi(xo) _  /i
dx dx x 0

For 0 <  x < x q ,  (164) is

cPR^r)  , ri Z ( Z + 1 )  , V0 l n /   ̂ A
 d x 2   +  I1 ----------1 2  +  Z 2 \ R i ( r )  =  0 .~2 ' T2 JX Xq

For x > xq, we have

« + | 1 . M |i4 ( r )  =  0 .
dx2

(167)

(168)

(169)

(170)

(171)

(172)

(173)

We can rescale the first of these by requiring tha t x  = ay,  such tha t the differential 
operator becomes

d2
+

d2 1(1 + 1 )
. O Jdy2

i.e., from

yields the condition
a

r

d _  1  d 
dx a  d y ’

X q

{xI + V q Y ^  
where a  >  0. Therefore, for 0 < x < x q ,

dy Ri(y) =  0, (174)
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which possesses linear independent solutions Ci(y) and Di(y), where y =  a~ xx  and 
y > x for Vo > 0 .

For x < X q ,

R t{y) = AQ(y).  (175)

For x > xo,
Ri(x ) =  B[Q(x)  +  t&n 8t(k)Di(x)], (176)

where in (176) the standard formulation in terms of the phase shift 8i(k) has been
used. We now rewrite (175) as

Rt(x) = ACl(a~1x). (177)

By applying the continuity conditions (166) and (167) to (175) and (176) at x  =  xo 
gives

A Q ( m x  0) =  B[Q(x  0) +  tan^(fc)A (zo)], (178)

and

B[C'i(x0) +  tan^(A;)D|(xo)] — Am C K m x  o) =  A — Q(mxo),  (179)
X q

where m  =  a - 1  =  —a--^ —— and a - 1  >  1 if Vo >  0. Equating B / A  from (178) and 
(179) provides th a t

Ciimxo^l ixo)  -  mC{{mxo)Ci{xo) + -^Ci{mxo)Ci{xo)
1 mC'l (mx0)Dl(x0) -  Ci(mx0)Dl(x0) -  ^ Q (m x o ) D i ( x 0)'

4.4.1 I =  0 W IT H  D ELTA  F U N C T IO N  /i ^  0 A N D  S Q U A R E  W EL L

Using (180) with I =  0 and the following identities:

j„ M  =  ^ 7  (181a)

yo{x) =  _ “ 5W . (181b)

Then

Co(mxo) =  mxojo(mxo) = sin(mxo),

Do(x0) = - x 0yo(x0) = cos(xo),

Co(mxo) =  jo(mx0) + m x 0j'0(mxo) = cos (mx0), 

D'0(x0) = —{yo(zo) +  ^ol/oC^o)] =  -sm (xo).
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Therefore, (180) becomes

sin(mxo) cos(xo) — m  cos(mxo) sin(xo) +  ^  sin(raxo) sin(xo)
8o(k) ^cos(ma;o) cos(x0) +  sm(mx0) sin(x0) — ^  sin(mxo) cos(x0)

Now the S'-matrix
So(k) =  (183)

1  — 7 tan  oo
Therefore,

e-jz°rmCos(mxo) +  7sin(mxo) — sin(777Xo)l
So(k) =  ^ T T  r  \ , -----v ~ - r  • /  ■ (184)etx° |mcos(raxo) — 1 sm(mx0) — ^sm (m xo)J

Letting a; =  m x 0 , P =  xo, m  =  |  with P =  ka, we can write (184) into the form (in 
Nussenzveig’s notation)

OtO\ -2i0raCOtO‘ + iP ~  „or^
S M  =  e a c o t a  -  — j i  ( 1 8 5 )

=  + f  +  {1SS)
a  cot a  — t{p  — ifi)

=  e- ^ ( aCO ta +  i4 , ) . (187)
a  cot a — ip

where ft = fl — iji. Poles of the S-matrix are given by

a  cot a  =  i/3 =  7/? +  /i (188)

where a  =  \ / ^ 2 +  Vqcl, p — ka , and in Nussenzveig’s notation, A2 =  VoP2/ k 2  =  Vo a 2

(the “volume” of the well, or proportional to it), so A  =  \/Voa. Therefore,

a-2 =  p2 +  A2, (189)

a 2 cot2 a  =  (7/? -I- fi)2, (190)

from which we have

a 2 cot2  a  =  — p 2 +  2iPn +  fx2 =  A 2 — a 2 ±  2 iVa2 — A2/i +  /x2,

where P =  ± \ / a 2 — A 2. Then,

2 A2 [fj? ±  2ifj,y/a2 — A 2]
cot2 a  =  - 7  -  1  +  ^ ^ -----------i,o; a "1

4 2  +  [ /^ 2 ±  2i fiy/a2 — A 2] 
a 2  ’

esc2 a
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—%— = A 2 + [/j,2 ±  2ifj, '/a2 — A 2], 
sin a

a - 1  sin a  =  ±[A 2  +  fj,2 ±  2 i /xVa2 — A2]-1/2. (191)

where the ±  signs must be chosen such th a t a  cot a  = i/3 — /x is satisfied.
The problem is now reduced to  the determination of the roots of (191) as a 

function of the parameter A,  and hence to determine the poles of S'o(f3) in the 13- 
plane. Some of these poles, together with the corresponding values of A  are shown 
in the next section.

4.5 SU M M A R Y

Figures 60 through 64 show the poles of the S'-matrix corresponding to several 
values of fx. This is ongoing work, and clearly it will be necessary to  interpret the 
effects of the coating potential (or delta function potential) on the poles of S, and 
their implications for electromagnetic resonances. This, it is hoped, will be the 
subject of future work.

Re

-11

FIG. 60: The S-matrix poles in the complex (3 =  k a  plane for /z =  0. The numbers
beside the poles give the corresponding values of A .  The curves in full line are the
paths described by the poles.
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FIG. 61: The 5-m atrix pole in the complex (3 =  ka  plane for p =  0.1. The numbers 
beside the poles give the corresponding values of A. The curves in full line are the 
paths described by the poles.

Im*

0.0111

- ?

FIG. 62: The 5-m atrix pole in the complex (3 — k a  plane for p. =  —0.1. The numbers
beside the poles give the corresponding values of A . The curves in full line are the
paths described by the poles.
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-10

FIG. 63: The 5-m atrix pole in the complex j3 = ka plane for fj, =  1. The numbers 
beside the poles give the corresponding values of A. The curves in full line are the 
paths described by the poles.
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1002 20 50 a 100
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FIG. 64: The 5-m atrix pole in the complex /? =  k a  plane for // =  — 1. The numbers
beside the poles give the corresponding values of A . The curves in full line are the
paths described by the poles.
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CHAPTER 5

CONCLUSIONS

In this dissertation we have analyzed, for piecewise-uniform media, electromag
netic scattering resonances (MDRs), phase shifts, cross sections and the 5-m atrix 
and its poles using the analogy between the radial Schrodinger equation and the 
differential equations for the radial Debye potentials. These resonances are shown to 
be analogous to quantum-mechanical shape resonances and correspond to the poles 
of the 5-matrix. These resonances exist as quasi-bound states, temporarily trapped 
in a potential well of the type illustrated in Figure 4 for a constant refractive index 
associated with a spherical dielectric particle, and in Figures 13 and 14 for a piecewise 
constant refractive index associated with a multi-layer spherical dielectric particle.

These resonances are very significant for understanding the basic nature of light 
scattering from any object, although for obvious reasons the spherical symmetry 
imposed here renders the analysis mathematically tractable. It is a simple m atter 
to determine the effective upper and lower bounds for the resonance levels from 
the top and the bottom of the potential well. The lower energy levels must tunnel 
through a wider barrier, so the lower levels have a  longer lifetime. We have also noted 
tha t for the occurrence of a shape resonance (or bound state) in a potential well, the 
wave function must decrease exponentially in the classically forbidden regions outside 
the well. The application of this condition leads directly from (21a) for TE mode 
and (21b) for TM mode in the 2-layer model, and from (33a) and (33b) for TE 
mode ((34a) and (34b) for TM mode) in the 3-layer model. It is expected tha t 
this interpretation of resonances as the quasi-bound states of a potential well can 
be applied to more complicated systems than a  uniform dielectric sphere or even a 
multilayered spherically symmetric sphere.

Moreover, the resonances for the zero angular momentum (I =  0) case in the 
square well can be ‘morphed’ into approximations for the I 0 case (in principle) 
by adjusting the parameters of a  simple well-barrier model accordingly. For any 
particular choice of these parameters, the properties of any resonances are readily 
established.
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We have also indicated how the Jost-function formulation of quantum scatter
ing theory can be applied to classical problems involving the scattering of a  scalar 
plane wave by a medium with multilayered spherically symmetric inhomogeneities, 
as shown in Figure 43. This technique can be used to solve the radial differential 
equation for multilayered spherical inhomogeneities. Given the complicated form of 
the matching Jost boundary conditions, the technique of converting it into an in
tegral equation corresponding with these boundary conditions is a  very useful one. 
The results show th a t the 1 = 0  Jost integral equation for the cutoff inhomogeneities 
can be approximated analytically and numerically by using an iteration procedure in 
both 2-layer and 3-layer models. Typically (and perhaps not surprisingly) the itera
tion technique appears to work best for weak inhomogeneities, i.e., for the quantity 
k i/k  — 1 to be sufficiently small, where i = 1, 2 in the three-layer case. Also, consistent 
with the I =  0 case examined, it is known that from standard quantum mechanical 
arguments that the largest /-value th a t contributes significantly to the partial wave 
expansion for the scattering amplitude is on the order of k (the size of the inhomo
geneity), or here, kR i , i =  1,2. Thus the accuracy of the iterations is seen to be 
better (in the two-layer case at least) for longer wavelengths (max/c/ ? 2  < <  1)- W ith 
the more complex two-layer inhomogeneity more iterations will, it is expected, pro
duce more accurate results, though at considerable loss of analytic tractability. We 
can apply the Jost integral equations for arbitrary I for scattering from an arbitrary 
inhomogeneity as future work.

In the last chapter, we have discussed some of the analytical properties of the 
S'-matrix of a square well with an attractive delta function potential located a t the 
edge of the well. For the special case of / =  0, the poles of the S-matrix have been 
located and tracked in the complex /3-plane (where /3 =  ka) as the strength /j of the 
delta function is varied. This is ongoing work and is therefore currently incomplete. 
Extension to higher angular momentum values is possible, but rather complicated. 
Several Appendices provide more background for some of the topics discussed here. 
In particular, Appendix D provides details for determining the S-matrix (and its 
poles) for a large class of piecewise differentiable potentials (and hence piecewise 
differentiable refractive index profiles). This, it is hoped, will be the subject of 
future work.
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A PPEN D IX  A

THE JOST FUNCTIONS FOR A =  §.

A .l  T H E  JO S T  F U N C T IO N  F O R  A =  |  F O R  T H E  2-L A Y E R  M O D E L

We can find f { \ , k )  for scattering from a piecewise constant spherical inhono-
geneity by letting A =  |  in (84), which then becomes

+ [*2 -  f m h m  = o. (Ai)

The solutions in the three regions are:

Region 1 : fc1; r) =  AeiklT + Be~ikir,

Region 2 : / ( | ,  k, r) = Ceikr +  De~ikT. (A2)

Imposing the boundary conditions (86), we find tha t

A = ~ B  = ^ k -  <A3>

Next, we impose the boundary conditions (93), we find tha t C  = 0 and D — 1. Since 
the point r  =  R\ is the common domain of k\, r ) and / ( | ,  k,r),  we evaluate the 
Jost function at r =  i?i from and thus obtain

= \e ~ ikR'[(l -  ^ iklRl +  C1 + ^ eiklRl}> (A4)

which agrees with (115).

A .2 T H E  JO S T  F U N C T IO N  F O R  A =  |  F O R  T H E  3-L A Y E R  M O D E L

We can also find / ( | ,  k) for scattering from a piecewise constant spherical inhono-
geneity by letting A =  \  in (84), which then becomes

d?u0 (r)
d r 2

+  [A:2 — =  0. (A5)
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The solutions in the three regions are:

Region 1 : M ^ k ^ r )  = Aeikir + Be~ikir,

Region 2 : cf>2 d ,  k2, r) = Ceik2T +  De~ik2r, 
z

Region 3 : / ( ^ ,  k, r) = Eeikr A  Fe~ikr. (A6)

Imposing the boundary conditions (86) for 0i(§, Aq,r) and <fo(§, k2, r), we find that

A = ~ B  = h  <A7>

and
. , 1 , . sin k\r  .. .

k  • (A8)

By continuity a t the boundary r  =  i?1} we match 4>i(~,ki,r) with (j)2 (^ ,k 2 ,r)  and
<j>\{\yki,r) with 0'2(I, k2, r), and we have tha t

Sinfcli?1 =  Ceik2R1 +  De~ik2R\  
h

c o sh R i  = ik2 {Ceik2Rl -  D e - ik2Rl).

Solving those two equations gives C  and D  as

^  1 __ihaRus m k 1 R 1 , cos A;1Alltv — - e  [   1------   j,
2 k\ %K2

D = l eih2Ri^sinfcvRi _  co sh R i^
2 ki "2̂ 2

Therefore, in Region 2 we have tha t

* 4  * .,r )  =

+  1 _  COS* l/il ]e (A10)
^ rCj ZKq

Next, we impose the boundary conditions (93), we find th a t E  =  0 and F  =  1, and 
we have

f { \ , k , r )  = e~ikr. (A ll)

Since the point r — R 2 is the common domain of (j)2 { \ , k 2 , r ) and f ( ^ , k , r ) ,  we 
evaluate the Jost function at r  =  R 2 from

= w \ f ^ k , r ) , ( j ) 2 i ^ , k 2 ,r)\r=R2. (A12)
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Therefore,

/ ( - , * )  = - ( A ; +  fc2) e ^ (fc2~ fc)fl2~ fc2flll[S m  ki Rl- +  SosklRl]
2 2 ki ik2

+ i ( k -  k Jc~ m2+k)R'2~k2Rl][Sm k lR l  -  c o s k l R l l 
2 fej zfc2

which we can write in terms of complex exponentials also

/ ( I ; k ) +  (ik + k2) ^ MR7_Rt)

+  +  ( fc2  -  

(ifc +  fca) _  ( k - i k 2)
+  U /c2 fcj Je
+  (̂fc2 -  ik) _  (k + ik2) ^ _ k2(R2_Ri)^ _ ikiR^

and which agrees with (138).

(A13)

(A14)
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A P P E N D IX  B

E L E C T R O M A G N E T IC  A N D  P O T E N T IA L  SC A T T E R IN G  

FR O M  A  R A D IA L LY  IN H O M O G E N E O U S S P H E R E

B .l  IN T R O D U C T IO N

In a paper by Adam and Nuntaplook submitted to Applied Mathematics Letters, 
the refractive index profile n(r ) (which may be complex) is a function of the radial 
coordinate only, and the sphere has radius a. For r > a, n (r ) = 1. A time-harmonic 
dependence of the field quantities, exp(—iu t)  is assumed throughout. The governing 
equation for the electric field E{r. 9, <f>) is

V x V x E  -  k 2 n 2 (r)E  =  0. (Bl)

The wavenumber k is 27r/A, A being the wavelength. As shown in [7], the solution 
may be found by expanding the electric field in terms of vector spherical harmonics in 
terms of the so-called transverse electric (TE) and transverse magnetic (TM) modes, 
respectively:

piTTuj)
M,,m (r, 9, <t>) =  — 5 i(r)X ,m(^), (B2a)

g  im<j>

Nt,m = (r)
l ^ ( r ) Y  (fl) +  Z i M z  l<m(6)
r dr r (B2b)

The vector angular functions in (B2a) and (B2b) are defined in a spherical coordinate 
system as

Xi,m (9) = (0, i-Ki,m (0 ) , -Ti,m {9)), (B3a)

Y,,m (9) = (0, n ,m  (9), - i n , m (9)) ,  (B3b)

z i,m(9) = (l (I +  1) P™ (cos 9) , 0 ,0 ), (B3c)
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where Pzm (cos 9) is an associated Legendre polynomial of degree I and order m. The 
corresponding scalar angular functions are defined as

m
TTl,m (9) = (COS 9) ,sin u

n,m (9) =
dP f 1 (cos 9) 

d9

(B4a)

(B4b)

The functions Si (r) and 7] (r) are called the radial Debye potentials, and they respec
tively satisfy the equations

d2 St (r ) 
dr2

+ k n (r) 1(1 + 1) Si (r ) =  0,

d?Ti (r) 
dr2

2 dn(r) \  dTi (r)
dr + k2 n2 ( r ) —1(1 + 1) Ti (r) = 0.

(B5a)

(B5b)kn(r) dr

In addition to the appropriate matching conditions at r = a, these potentials must also 
satisfy the boundary conditions Si (0) = 0 and T/ (0) =  0. Equation (B5b) may be rewritten 
in terms of the dependent variable Ui (r ) , where T} (r) =  n (r) Ui (r) to become

d?Ui (r) 
dr2 + k n (r) — n(r) d2 1(1+ 1) Ui (r) = 0. (B6)

dr2 \ n (r )/

provided that n (0) ^  0, Ui (0) =  0. Both (B5a) and (B6) may be placed in the form of the 
canonical time-independent Schrodinger equation, namely

<PSi (r) 
dr2

<PUi (r) 
dr2

+

+

VS(r) 1(1 + 1)

k2 -  Vv (r) - 1(1 + 1)

Si (r) = 0,

Ui (r) =  0,

(B7a)

(B7b)

where the ^-dependent ‘scattering potentials’ Vs(r) and Vu(r) are defined in [0,a] as

F s (0  =  A:2 [ l - n 2 (r ) ] , (B8a)

Vv (r) =  k 2 1 — n2 (r) +
n  (r) cP

(B8b)
k 2 dr2 \n ( r )

for the TE and TM modes, respectively (the potentials are both identically zero for 
r > a). These potentials are identical for the case of a uniform refractive index.
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Vy(r) will be regarded as a small perturbation of the potential Vs(r), so we also 
define

e (r) =  Vu(r) -  Vs {r) =  n (r) ^  . (B9)

B .2 PH A SE  SHIFTS

It is a standard result for potentials vanishing sufficiently fast at infinity [29 - 31] 
th a t as r  —> oo

Si (r) ~  sin ~  + 5 f (k^j  , (BlOa)

Ui (r ) ~  sin ^  (k^j  . (BlOb)

Here df (k) and Sj7 (k) are the phase shifts induced by each potential respectively.
Multiplying (B7a) and (B7b) by Ui (r ) and Si (r) respectively, subtracting and inte
grating we obtain

Ul ^  dS( t ^  ~  Sl ^  =  “  JQ 6 W  Sl W  Ul W  dr]- (B11)

Utilizing the asymptotic expressions in (BIO), we have, in the limit as r  —> oo,
p o o  p a

k sin [<5̂  (k) -  5? (fc)] = ~  e (r )S i  (r) Ut (r) dr =  -  /  e (r) St (r) Ut (r) dr,
Jo Jo

(B12)
since n ( r ) is constant for r > ka (or r  > a). Thus far, this equation is ex
act. If we now consider e (r) to be sufficiently small th a t Ui(r) zz Si (r), then 
| ( A; )  — 5 f  (fc)| < <  1 and we have the relation

(k) «  5? ( k ) ± ^  J  e (r ) [5/ (r)]2 dr. (B13)

W hether 6 f  (k ) > 8 f  (k ) or not clearly depends on the concavity of n (r). A further 
approximation can be made if the scattering potential Vs(r) is constant (specifically, 
Vs = k 2 ( 1  — N 2) for n = N , r < a ) ,  for then the solution for (B7a) can be expressed 
in terms of a Riccati-Bessel function of the first kind, i.e.

f  7r AA k r \  ^ 2
Si (r) = (-g-J Jl+1'2 (Nkr) ■ (B14)
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Then we have that

(fc) ~  Sf { k ) ± ^ -  jn (r) ^  ( ^ ) )  } [J '+V2 (iVA:r)]2rd r =  tff { k ) ± ^ - T  ( a ) .

(B15)
In the ease of a small perturbation about Vs =  0, i.e. for which n =  N  = 1, the 
term S f (k) in (B15) is zero, and the resulting approximation for S f  (k) is related 
to the first Born approximation in quantum scattering theory [32]. In particular, if 
£ (r) = Dr~s, D  being some constant, a closed form solution for I  an be found as 
a —» oo [31], namely

p o o

(< » ) = /  p,
Jo

1+1 / 2  (N kr)]2 r 1 3dr =
N k

2

s —2 r ( s -  i)r(z * +  §)
[ r ( | s ) ] ^ r (z  +  i s +  i )

(B16)

provided s > 1 and 21 > s — 3. The question may be asked: what n  (r ) profiles give 
rise to e (r) =  Dr~s (where D > 0)? Writing p(r) = [n ( r )]"1 we are led to consider 
solutions of the equation

d?p(r)
dr2

Dp (r) =  0. (B17)

The general solution to this equation may be expressed in terms of modified Bessel 
functions, but we do not pursue this here.

B .3 A  LIOUVILLE T R A N SFO R M A TIO N

As defined in (B8a) and (B8b), the ‘potentials’ Vs(r) and Vu(r) are also k- 
dependent, which is not the case in potential scattering theory [30]. This has an 
important consequence: unlike the quantum mechanical case, here pure ‘bound state’ 
solutions, that is, real square-integrable solutions corresponding to k 2 < 0 (Imk > 0) 
do not exist. This can readily be proven [32 - 33] for the T E  mode (equation (B7a)) 
tha t

/Jo
dSi (r)

dr
. W  +  1) | q , \ |2 JPOO

' r? (r) |5 ; (r)|2 dr. (B18)
o

This cannot be satisfied for k2 < 0 for a real and positive refractive index n ( r ) . 
In [34] the corresponding result is established from (7b) for Ui ( r ) . Furthermore, a 
Liouville transformation may be used to define a new k-independent potential [32], 
Using the following simultaneous changes of independent and dependent variables in 
equation (5a)
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p : p ( r ) =  f  n(s)ds , (B19a)
Jo

ifji (p) = (n (r))1/2 ut ( r ) . (B19b)

Clearly, n (r) must be integrable and non-negative (in naturally-occurring circum
stances n > 1 and n(r) — 1 for r >  a); also p (0) =  0. It is easy to establish the 
following results:

(i) p(r) = po +  r — a, r > a, where pa =  I n(s)ds ;
Jo

(ii) p{r) ~  r, r  —> oo;
fp ds

( i i i ) r (p )  =  /  —t—r, where v  (p) =  n (r (p )) .
« (5)

Furthermore, by applying (Bl9a) and (B19b) to (B7a) we find that

d?_ _  1(1 +  1 )  , , 2 
dp2 R 2 (p) (r) =  V (p) ipi (p ), (B20)

where

J?(p) =  v (p )  r  (p) ~  n  (0) p, p -> 0, and V" (p) =  [u (p)]~1/2 ^  [u (p)]1/2 . (B21)

Clearly, v (p) should be at least twice differentiable. Now the new ‘potential’ V  (p) is 
independent of the wavenumber k. Note also th a t V  (p) =  0 for p > pa. It is of interest 
to determine the ‘shape’ of the potential V  (p) by inverting p (r) for various choices of 
physical n (r) profiles for r € [0, a] (with n(0) =  no, n(a) =  n a and n(r) =  1 for r  > a). 
In what follows only the non-zero potential shapes with be stated (corresponding to 
p G [0, pa] ■ Thus [32] for

- l
n(r)  =  na 1 - c 2 ; V( p )  =  4 >  0, (B22a)

n a

where c is a real constant, i.e. the potential is a spherical barrier. For the profile [6]

n(r) =  (̂ 4 +  B r ) - 1 , A  =  tiq1, B  =  —— — ; V  (p) =  > 0, (B22b)
ariQna 4

also a barrier. For the important Maxwell Fish-Eye profile [4],

n (r ) =  no ( l  +  B r2) 1 , B  =  n° V (p) =  (B22c)
77/q  7T<0
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In this case, the new potential is a spherical well or barrier as no >  n a or n 0 < n a> 
respectively. In the latter case, the singularity occurring in n (r ) is moot since 
it arises for r > a. In all the other cases investigated thus far [35], including 
n (r) =  no exp(—or); no cos ar  and no cosh ar, the potentials V  (p) are rather compli
cated functions, and there are no significant advantages to using the Liouville trans
formation in these cases. It is therefore of interest to examine what profiles n(r) 
give rise to constant potentials V  (p ) . In (B21), let y (p) =  [v (p) ] 1 //2  and V  (p) =  Vo, 
where Vo is a  constant of either sign. Then it follows that

2 - V 0y = 0, (B23)<Py
dp-

the general solution being expressible in terms of real or complex exponential func
tions as Vo > 0 (potential barrier) or Vo < 0 (potential well) respectively. In r-space, 
Vq < 0 corresponds to a  constant refractive index n  — N  =  (1 +  |Vo| fc-2)1̂ 2 >  1, so 
we proceed with this physically realistic case. Writing the general solution of (B23) 
as

y(p) =  Ceos (|Vb|1/2p + 77)  , (B24)

where C  and r; are constants, it follows th a t

r (p) =  I  =  ([c2 |Vo|1/2)  [tan (jVo|1/2 p +  77)  -  ta n 77 . (B25)

This can be inverted to yield
pT

p (r) =  J 7i(s)ds =  |Vo| - 1 ^ 2 ja rc ta n  [ c 2  IVqI1̂ 2r  +  ta n 77 — 7 7 . (B26)

Therefore

_C
1 +  [Br +  tan  77]

n(r) = p' (r ) =  ̂ ^ ( B27a)

where C  =  no sec2  77 and 77 can be determined from the requirement th a t n(a) =  na. 
This is a generalization of the Maxwell Fish-Eye profile in (B22c). The corresponding 
result for Vq > 0 is

n(r) =   rTr— -— r i 5 . (B27b)
C_

1 — [Br +  tanh 77]

Note tha t in this case a singularity exists for r  > 0 at r =  B ~ l (1 — tanh  77)
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A P P E N D IX  C 

T H E  E X T R A C T  FR O M  T H E  A R TIC LE B Y  A D A M  (2013)

C .l SC A TTER IN G  B Y  A  T R A N S P A R E N T  SPH ERE: SC A LA R  
WAVE D E SC R IPT IO N

The essential mathematical problem for scalar wave can be thought of either 
in terms of classical mathematical physics, e.g., the scattering of sound waves, or 
in quantum mechanical terms, e.g., the non-relativistic scattering of particles by a 
square potential well (or barrier) of radius a and depth (or height) Vo- In either 
case we can consider a scalar plane wave impinging in the direction 6 = 0 on a 
sphere of radius a. In what follows, a boldface letter refers to a vector quantity, 
thus here, r  = <  |r |, 6,<j>> (or< r, 6, <fi >) denotes a  position vector in space (using a 
spherical coordinate system). Suppose th a t we had started with the ‘classical wave 
equation’ with dependent variable -0(r, t) =  'tp(r)e~1UJt. For the scalar electromagnetic 
problem, the angular frequency u>, wavenumber k and (constant) refractive index n 
are related by ui = kc/n, c being the speed of light in vacuo. Then for a  penetrable
(=  “transparent”) sphere, the spatial part of the wave function ip(r) satisfies the
scalar Helmholtz equation

V 2ip + k2n2,4) =  0,r  < a, (C la)

V V  +  k2tP = 0, r  >  a. (Clb)

Again, k is the wavenumber and n > 1 is the (for now, constant) refractive index of 
the sphere. We can expand the wave function ip(r) as

oo oo

^ (r) =  0) =  A i ( k ) u i ( r ) r ~ 1P t ( c o s  0 )  (C2)
1=0 1=0

where r  =  |r|, as noted above and the coefficients Ai(k) will be ‘unfolded’ below (The 
coefficients Ai and Bi are related by a multiplicative normalization constant th a t need 
not concern us here.) The reason that the spherical harmonics Ylm(9, cp) reduce to the 
Legendre polynomials in the above expression is because the cylindrical symmetry
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imposed on the system by the incident radiation renders it axially symmetric (that 
is, independent of the azimuthal angle </>). The equation satisfied by ui(r) is

Since n > 1 within the sphere, this potential corresponds to tha t of a spherical 
potential well of depth Vo =  k2(n2 — 1). This leads very naturally to a  discussion of 
the effective potential, wherein the potential V(r)  is combined with the ‘centrifugal 
barrier’ term  1(1 +  1 ) / r 2.

A rather detailed study of the radial wave equations was carried out by Johnson, 
specifically for the Mie ‘solution’ of electromagnetic theory. A crucial part of his 
analysis was the use of the effective potential for the T E  mode of the Mie solution, 
but without any loss of generality we may still refer to  the scalar problem here. This 
potential is defined as

It should be noted here that A as defined here is not the wavelength of the incident 
radiation. For large enough values of I, [1(1 +  l)]1/2 «  I +  1/2. It is clear th a t Ui(r) 
has a discontinuity at r = a because of the ‘addition’ of a  potential well to the 
centrifugal barrier. Thus there arises a tall and th in  enhancement corresponding to 
a barrier surrounding a well, and this suggests the possible existence of resonances, 
particularly between the top of the former and bottom  of the latter, where there 
are three turning points (where the energy k2 is equal to Ui(r)). Such resonances 
are called “shape resonances” (or sometimes “morphology-dependent resonances”); 
they are quasi-bound states in the potential well th a t escape by tunneling through 
the centrifugal barrier. The widths of these resonances depend on. where they are 
located; the smaller the number of nodes of the radial wave function within the

(C3)

where the potential V(r)  is now ^-dependent, i.e.

r < a
r > a.

(C4)

C .2 M O R P H O L O G Y -D E P E N D E N T  R E S O N A N C E S : T H E  
E F F E C T IV E  P O T E N T IA L  Ut(r) (C O N S T A N T  n)

Ui(r) =
V(r) +  1(1 +  l ) / r 2 =  k2( 1 — n2) +  1(1 +  1 ) / r 2, r  <  a, 

1(1 + 1 ) / r 2 «  A2/ r 2, r  > a.r  > a.
(C5)
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well, the deeper tha t state lies in the well. This in turn determines the width (and 
lifetime) of the state, because the tunneling amplitude is “exponentially sensitive” to 
the barrier height and width. Since the latter decreases rapidly with the depth of the 
well, the smaller is the barrier transmissivity and the lowest-node resonances become 
very narrow for large values of /? =  ka. The lifetime of the resonance (determined by 
the rate of tunneling through the barrier) is inversely proportional to the width of 
the resonance, so these deep states have the longest lifetimes. (To avoid confusion of 
the node number n  with the refractive index, the latter has temporarily been written 
as N.)

Note that as k2 is reduced, the bottom  B  of the potential rises (and for some 
value of k the energy will coincide with the bottom  of the well); however, at the top 
of the well, Ui(a) =  A2/a 2 is independent of k2, but if k2 is increased it will eventually 
coincide with the top of the well (T). Consider a  value of k2 between the top and 
the bottom  of the well: within this range there will be three radial turning points, 
the middle one obviously occurring at r = a and the largest a t r  =  b for which 
Ui(a) =  A2/a 2. The smallest of the three ( r mjn) is found by solving the equation

k2 — ---- (n2 — 1 )k2, (C6)
^rn in

to obtain, in terms of the impact parameter 6(A) —- A jk

T'min =  T  =  •nk n

By applying Snell’s law for given b, it is readily shown th a t the distance of nearest 
approach of the equivalent ray to the center of the sphere is just r min; indeed, there 
are in general many nearly-total internal reflections (because of internal incidence 
beyond the critical angle for to tal internal reflection) within the sphere between 
r = b/n  and r  =  a. This is analogous to orbiting in a  ray picture; on returning 
to its original location after one circumnavigation just below the sphere surface, a 
ray must do so with constructive interference. The very low leakage of these states 
allows the resonance amplitude and energy to build up significantly during a large 
resonance lifetime which in turn  can lead to nonlinear optical effects. In acoustics 
these are called “whispering gallery modes” .

The energy at the bottom of the well (i.e. l im ^ a -  Ui(r)) corresponding to the 
turning point at r =  a is determined by the impact parameter inequalities a < b < na,
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or in terms of A =  kb,

Ui(a~) = (A )2  < k 2 < ( A)2 =  Ui{a+) 
na a (C8)

This is the energy range between the top and bottom  of the well (and in which the 
resonances occur). To cross the “forbidden region” a < r < b requires tunneling 
through the centrifugal barrier and near the resonance energies the usual oscilla
tory/exponential matching procedures can lead to  very large ratios of internal to 
external amplitudes; these resonances correspond to “quasi-bound” states of electro
magnetic radiation (that would be bound in the limit of zero leakage).

We now make a transition to discuss some of the related mathematical properties 
associated with resonances. In so doing, the reader should be alerted to a  some
what flexible notation used in connection with the scattering function (or 5-matrix 
element). This is variously denoted by Si(X,k) or Si(fi), where [3 =  ka, depending 
on the context. Mathematically, the resonances are complex eigenfrequencies asso
ciated with the poles A„ of the scattering function 5;(A, k) in the first quadrant of 
the complex A-plane; these are known as Regge poles (for real k). Corresponding to 
the energy interval [Ui(a~), Ui(a+)], the real parts of these poles lie in the interval 
(/3,n/3) (or equivalently, (ka ,nka )); this corresponds to  the tunneling region. The 
imaginary parts of the poles are directly related to resonance widths (and therefore 
lifetimes). As the node number n decreases, ReAn increases and ImAn decreases very 
rapidly (reflecting the exponential behavior of the barrier transmissivity). As j3 in
creases, the poles An trace out Regge trajectories, and ImAn tend exponentially to 
zero. When ReAn passes close to a “physical” value, A =  1 + 1/2, it is associated 
with a resonance in the Ith partial wave; the larger the value of /?, the sharper the 
resonance becomes for a given node number n.

C.3 POLES A N D  R E SO N A N C E S ON TH E &-PLANE A N D  E -PL A N E

For algebraic simplicity, we consider the (simple) poles of the S- m atrix for the one 
dimensional scalar problem. In this approach, the analysis is based on a  slightly dif
ferent formulation of the governing time-independent ‘Schrodinger’ equation, namely

For a square well of depth Vq > 0 (i.e. Vq =  —Vo, |x| <  a/2  and is zero elsewhere),

5 ^ ^  + 1*2 “ ''MM*) = »• (09)
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the incident ‘wave’ is represented by

u{x) =  Aelkx,x  < —a/2, (CIO)

and a transm itted wave

u{x) =  Aeik^ S ( E ) , x >  a/2. (C ll)

The transmission coefficient S (E ) is the one-dimensional scattering m atrix in this 
problem. It can be shown that

the denominator of the S-matrix in (153). The transmissivity of the well is defined 
as

This expression has maxima equal to one whenever sin Ka =  0, i.e. when Ka = rnr,
n  =  1 ,2 ,3 , Equivalently, E  = n2ir2/2a2 — Vo >  0. These maxima correspond
to resonances (perfect transmission) in this system. The well contains an integral 
number of half wavelengths when this condition is satisfied.

We examine S(E )  as an analytic function of the energy E  in what follows. For 
E  > 0, 0 <  T(E ) < 1. Therefore, poles of T (E )  (and S(E ))  can only occur when 
—Vq < E  < 0. In fact S(E )  has a pole whenever

Furthermore, from the identity 2 cot 20 =  (cot 9 — tan  9) the solutions of (C15) can 
be recast in terms of odd and even parity bound state  solutions, i.e.

(C12)

where k = y/2E  and k — y/2(E  +  Vq). Note the similarity of this expression with

(C13)

(C14)

i.e., when

(C15)

(C16b)

(Cl6a)
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(Again, notice the similarity of (Cl6a) and (Cl6b) with (153)). Suppose now th a t 
a resonance occurs at E  = Er =  fc2/2  > 0. In the vicinity of such value of the 
resonance energy, we may expand the expression (;: +  f ) tan k u  as

( k  k \  

+  k )

d
tan Ka =  —  

dE
k  k
— h — ) tan  na 
k  k

(E -  E r) +  0 ( E  -  Er)2. (C17)
Er

To first order in E  — Er, on simplifying, we find tha t

k  k
— h — I tan/ca =  a 
k  k

d n  /  k  k  

d E \ K  +  k
( E - E r )  = ^ ( E - E r). (C18)

We can rewrite equation (C12) as

S(E ) = s e o c a |l  — ^  t a n « a |  «  s e c /c a jl — i ^ ( E  — E r ) |  (C19a)

iT/2 \  (  iT/2
sec na

O K ;E  — Et T i r / 2  )  — Er T  iT j 21

To this order of approximation, then, the pole of S(E )  lies in the fourth quadrant 
of the complex E-plane. There is a branch cut along the real axis, E  > 0 since if 
E  =  \E\exd, and E 1/2 =  |E ^ ^ e 10/2, in the limit 0 —> 2nr_ , \ fE  =  —|E |1/,:2. As can 
be seen from the term etkx in (C ll) , therefore, E  < 0 corresponds to a decaying 
transm itted wave, and (C9) then defines the conditions for the bound states to  exist 
within the potential well. These conditions are exactly the equations (C16a) and 

(Cl6b) above.
Similarly, for the more general three-dimensional case we would expect that, 

near a resonance, Si(E) also has a pole in the fourth quadrant. This pole is in the 
analytic continuation of Si(E) from above to below the positive real axis, and lies 
on the second Riemann sheet of Si(E). The bound states of the well correspond to 
poles of St(E) on the negative real energy axis. The closer the resonances are to the 
real axis, the ‘stronger’ they become, th a t is, the more they behave like very long 
lived bound states.

Finally, a nice connection can be made to the phase shift from (C13). Retaining 
E  as the independent variable, we can write

S (E ) = eiSiE)\T(E)\1/2. (C20)

For notational convenience, we write (C12) as S(E )  =  [A(E)—iB(E)]~1, with obvious 
choices for A  and B. Then it follows that

t a n  S(E) =  ! | f j  =  i  )  t a n  M  -  Er), (C21)
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on using (C18). Hence
2

6(E) «  arctan[—(E  — Er )]. (C22)

Note also tha t
^  =  2 r (C231

dE  r» + 4 ( E - E rY '  1
(again, exhibiting the Breit-Wigner form) and this derivative has a maximum value
when E  =  Er, that is at a resonance, so 6(E) varies rapidly there.
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A P P E N D IX  D  

T H E  5-M A T R IX  IN  A  LA R G E C LA SS OF P IE C E W ISE  

D IF F E R E N T IA B L E  P O T E N T IA L S

D .l  ANALYTIC C O N T IN U A T IO N  OF T H E  5-M A T R IX  IN  I A N D  k

Based on the paper by [36], consider the radial Schrodinger equation with k € C  
(in units such tha t h2 = 2m  +  1),

( ~  + k2 - ^ - ^ - - V ( r m k , \ , r )  = 0. (D l)

Here V(r) is a potential tha t either vanishes outside a  sphere of a radius r 0, or is 
0 (r~ 2) for r > r 0. Thus the potential can be expressed as

V(r)  =  VQ(r)0(rQ -  r) +  ^ 0 ( r  -  r 0).

The general solution in r  > ro

4>(k, A, r) =  Bi(k, v)(kr)% Ju{kr) + B 2(k, v)(kr)5 J_v(kr), (D2)

where
f A =  ( +  | , i f V ( r )  =  0 , r > r „ ,  ^
[ (A2 +  A) 2 , if V(r)  =  Ar 2, r  >  r0.

Ju and are the Bessel functions which are linearly independent if u Z.
They are entire functions of v  in plane of v  ® kr  domain except for a possible branch
point at kr =  0. If 2  =  kr, the circuit relation about 2  =  0 is

Jv{zeim*) = eim™Jv{z), m e C .  (D4)

Asymptotically, from (D4) as r  -> 0 0

7TU 7 r  1XV 7 r
<f>(k, A, r) ~  Bi(k, v) sin (kr -  —  +  - )  +  B 2(k, u) sin (kr  +  —  + - ) .  (D5)

In terms of phase shifts 5(k, v), however,

7T V  7T
4>{k, A, r) ~  C(k, v) sin ( k r  — +  — +  5(k, u)). (D6)

Z  r t
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The wave amplitude (if v ^  X)

A { k ' =  i k ^ 5^  ~ x) =  i b * (M  sin  6^ u ) ' (D7)

Note: 5 is not unique. From (D6) and (D7), we obtain the S-matrix

=  (D8)

where the reaction m atrix K  is defined as

t s  xf ir  ̂ _  Bx(k, v) sin[|7r(A -  v)\ +  B 2(k, v) sin[|7r(A +  v)\
( ’ } Bi(k, u) cos[|7t(A — i/)] +  B2{k, u) cos[|7r(A +  i/)] (D 9 )

Equation (D8) becomes

S(k, U) = eM A - 0 . 1 +  e _ (D 1 0 )
1 +  e— "(B?)

where B 2 / B 1 is unknown function related to  the logarithmic derivative L(k, 1/) of the 
interior solution of (D2) at r  =  r$ as shown

m m <t>'{k,\rQ) 1 Ĵ'u(kro) + (ĵ )J'-u(kr0)L(k, U)\T0 = ro-j—— r =  -  +  (kr0) T v  (D 1 1 )<p(k,\,ro) 2 Jv(kro) +  J-̂ ykro)
we get

B 2 W + \ ~  r0L(k, v)}Jv(krQ) -  kr0Ju+1(kr0)
Bi [v 4- \  -  r0L(k, v)]J^u(kr0) +  kr0J-^+i)(kr0) '

Therefore, (DIO) becomes

[ v + \ -  r0L (k , v)]Hl1](kro) -  k r o H ^ k r o )  ’
<j(h r.\ _  riir(x—i/) \v + \ -  ro L{k, u)}H[2\ k r 0) -  kr0H {2l x{kr 0) 
o{K,u) — - e  - -------- — — ——7TT——  ---- ;— rr(1) ,,—

where

If the logarithmic derivative L(k, v) is a real analytic function of both arguments, 
the S-matrix is unitary.
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D .2 C O N T IN U O U S SO LUBLE PO TE N T IA L S

Recall the radial Schrodinger eqauation with k  6 C  again (in units such tha t 
h2 = 2m  +  1),

+  ^  ~  ~  V A’r )  =  °'

W ith the continuous potentials

v( r )  = /  - ^ [ 1  +  < -  (1 +  V  -  p ) &  -  *>(£)2]. r < r » (D14) 
I  -Vbc(l -  p ) (^ )2, r > r0

where Vo and r0 determine the strength and the range of the potential, e and p 
characterize its shape. The potential is continuous for all values of e and p.

The interior solution of the Schrodinger equation is

ro r0

where <p(a, c; z) is the confluent hypergeometric frmction defined by the series

^  1 ^ F ( a  + n)T(c)zn
<f>{a, c; z) = 1 +  \  - ■ . \ i j

^  r (a )r (c  + n)n\

and a, c, and z are given by

z = [y (l +  eP-p)]^> 

c =  1 +  (A2 — pV)^,

x  =  krQ.
1

a = 2
x 2 + 1/(1 +  e)

2 e

Recalling tha t the 5-m atrix expression from (D13), for this case we have

S(k  v) =  ^  +  * ~  r°L ~  k r p H ^ jk r o )
[y +  \  -  r0L (k , i/)]Hjp(kr0) -  krQH [̂ +1)(kro)'

where

u =  [A2 - e ( l - p ) V ] t  V  = r2V0 A =  * +  ^,

and the logarithmic derivative function obtained from the interior solution is

. 1 „  $ ' ( a ,  c ; z )
r0L(k, A) = c -  -  -  z  + 2 z —  r-.

2 <&(a, c\z)
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