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ABSTRACT

ANALYSIS OF DISCRETE CHOICE PROBIT MODELS WITH
STRUCTURED CORRELATION MATRICES

Bhaskara Ravi
Old Dominion University, 2012
Director: Dr. N. Rao Chaganty

Discrete choice models are very popular in Economics and the conditional logit
model is the most widely used model to analyze consumer choice behavior, which
was introduced in a seminal paper by McFadden (1974). This model is based on
the assumption that the unobserved factors, which determine the consumer choices,
are independent and follow a Gumbel distribution, widely known as the Indepen-
dence of irrelevant Alternatives (IIA) assumption. Alternate models that relax ITA
assumption are the Generalized Extreme Value (GEV) models, which allow depen-
dency between unobserved factors. However, GEV models do not incorporate all
dependency patterns, other choice behaviors such as random taste variation and re-
peated responses over time. The discrete choice probit models are the most flexible
in the sense that they model any dependence pattern, random taste variations and
repeated responses. But, the probit models require evaluations of multivariate nor-
mal distribution function, which are difficult to compute. They were not pursued
because of this difficulty, except in a few cases with specific patterns in the covariance

structures.

In this dissertation, we study the discrete choice probit models for a couple of cor-
relation structures such as equicorrelation and product correlation. Using stochastic
representations, we derive and simplify analytical expressions for the computation of
choice probabilities for both of the structures. Further, we illustrate the procedure
of obtaining maximum likelthood estimates for the model parameters and analytical
expressions for the Fisher information matrix to compute their standard errors. Us-
ing simulations, we compare the performance of probit models with logit models in
both large sample case as well as small samples. We conclude that the probit models
are more asymptotically efficient than logit models as correlation increases. We have

provided a sample R-code in the appendix that was used for computations.



Finally, a more general form of choice models are presented using multivariate cop-
ulas. We presented a brief introduction of discrete choice copula models using the
Gaussian copula and the Extreme value copula. Copula representations are useful in
building multivariate distributions with several choices for marginals. The discrete
choice probit models are Gaussian Copula models with marginals that are standard
normal and the GEV models are Extreme Value Copula models with marginals that
are extreme value distributions. This work shows a way of constructing new models
using copulas by choosing different marginals within the copula representation. For
example, a Gaussian Copula choice model with Gumbel marginals or an Extreme
Value Copula choice model with normal marginals is possible. Such models are not
yet explored to model consumer choice behavior and this provides a road map for

future research.
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CHAPTER 1

DISCRETE CHOICE MODELS

1.1 INTRODUCTION

Almost everyday, consumers encounter several choices or alternatives such as
which phone to pick, which mode of transport to use, which car to buy, etc. Interest-
ingly, the decision to pick a pa.rticulér choice not only depends on the characteristics
of the consumer but also heavily relies on the characteristics of the choice scenario.
Inherently, consumers attach a utility factor to each alternative and they choose the
alternative that has the highest utility. Statistical models that study such consumer

choice behavior are known as discrete choice models.
1.1.1 CHOICE SET AND ITS PROPERTIES

In a discrete choice setup, consumers are presented with a set of alternatives
known as “Choice Set”, that has three important characteristics. First, the choice
alternatives are mutually exclusive. This characteristic leads to the fact that only one
alternative is picked up as a choice and all others are excluded. Second, the choice
set is exhaustive so that all possible alternatives are included. Third, the number
of alternatives are countably finite. The first two characteristics are less restrictive
in the sense that the alternatives can be modified to satisfy the two characteristics.
For example, a choice experiment of travel modes that consists of alternatives such
as bus, train, or car can have a possibility of a consumer choosing both the bus and
the train as a choice. The choice set can then be modified to accommodate “bus and
train” as another option so that the list becomes mutually exclusive and exhaustive.
The third characteristic is more restrictive in nature in that it defines the dependent
variable to be discrete. Further, these three characteristics lead to the property that

the total probability of selection is equal to one among all alternatives.

This dissertation follows the style of Journel of the American Statistical Association.



1.1.2 CHOICE PROBABILITIES

In discrete choice models, we are interested in modeling the consumer choice be-
havior that involves computing the probability of choice. The modeling process is
based on the utility maximization theory. A subject assigns a value to each alterna-
tive in his mind, known as “utility” that is not observed and chooses the one that
has the highest utility value. Further, it is assumed that this latent utility comprises
of a deterministic component, “mean”, and a random component, “error”, that is
unobserved. We further make distributional assumptions about the random compo-
nent, that lead to several discrete choice models. The model with an assumption
that the unobserved factors are independent and follow a Gumbel distribution is the
McFadden’s conditional logit model.

1.1.3 DATA SOURCES

Data for discrete choice models usually come from two sources. The first source is
household panels or consumer panels, wherein a set of respondents are selected for a
pre-determined period of time and their purchase history is recorded. The purchase
history consists of all purchases made by households across several categories and is
divided into different categories for analysis. For a particular category such as hair
care, each purchase transaction has information about the brand bought, date of
purchase, purchasing store, number of units bought, its price, any promotion offered,
ete. On a given day, if two households bought two different brands, then the brand
bought by first household was available as a choice to the second household and vice
versa. Looking at all transactions on the same day and in the same store, a choice
set can be constructed that represents major part of the market. The purchase
history also has information about price, promotion, etc., that governs choice and
this information forms the explanatory variables that determine the consumer choice.
The second source is data that comes from discrete choice experiments or conjoint
analysis. In market research, a survey is designed to evaluate potential market for
a new product or an existing product to understand consumer choice or preferences.
A virtual choice set, known as “choice card”, is created using design of experiment
principles. The choice set consists of a several alternatives characterized by product
attributes such as brand, price, promotion etc. A set of choice cards are shown

to each respondent and their response is observed one after another. This data is



analyzed using discrete choice modeling framework. The data from consumer panels
is more robust in the sense that it reveals the true behavior of consumers where as
the data coming from experiments tend to be less robust due to sampling errors,

survey administration bias, etc.
1.1.4 REAL DATA EXAMPLES

Example 1. Detergent brand choice.

In this example, the data is from a market research study and contains information
about the brand and price of the laundry detergent purchased by 2657 consumers
originally analyzed by Chintagunta and Prasad (1998). The dataset contains the
log prices of six detergent brands Tide, Wisk, EraPlus, Surf, Solo, All, as well as
the brand chosen by each household. We are interested to model the brand choice
with log-price.

Example 2. Data used to study travel mode choice.

The source of the data is Table 21.2 of Greene (2003). This data contains choices
made by 210 individuals traveling between Sydney and Melbourne in Australia. The
response has four modes of travel namely Air, Train, Bus or Car. The explanatory
variables that are specific to the alternative are waiting time, travel cost, travel time,
general cost, party size, and a individual specific variable like household income.
There are 840 observations by 210 individuals. We are interested in modeling the
travel mode choice using the explanatory variables such as time, cost, waiting time,

etc.
1.2 ORGANIZATION OF THIS DISSERTATION

Including the current chapter, this dissertation consists of six chapters. In Chap-
ter 2, we discuss the most widely used discrete choice model known as McFadden’s
conditional logit model. We introduce the notation needed for discrete choice models
and describe the formulation that lead to conditional logit model. The remaining
sections consist of identifying difference between a regular multinomial logit and
conditional logit model, that lead to variety of models to describe market dynam-
ics. Further, we illustrate the estimation of conditional logit model using maximum

likelihood method and analyze the laundry detergent example using this procedure.



Finally, we discuss the pitfalls of this model having the Independence of Irrelevant
Alternatives (IIA) assumption and conclude with the alternate models that deal with

this limitation.

In Chapter 3, we introduce the multinomial discrete choice probit model that fully
relaxes IIA assumption. The probit model requires difficult evaluation of multi-
variate normal distribution function to calculate choice probabilities. We present
a simplification of choice probabilities for equicorrelation structure using stochastic
representations. We derive the exact analytical expressions of the choice probabilities
and describe the estimation of probit model using ML approach. We also derive the
analytical expression of Fisher information to compute the standard errors of pa-
rameter estimates. Further, we demonstrate that the probit model is more efficient
than the logit model asymptotically as well as in small samples. Finally, we illustrate
the probit model using laundry detergent example and compare the results to logit

model.

Similar to Chapter 3, Chapter 4 describes the multinomial discrete choice probit
model with product correlation structure. We derive analytical expressions for com-
puting the choice probabilities with product correlation structure and describe the
procedure of model estimation using ML approach. Further, we compare the perfor-
mance of the probit model with product correlation structure to the paired combi-
natorial logit model, that is more appropriate when considering probit with product
correlation. We compare the performance of both models using asymptotic relative
efficiency. Finally, we illustrate the probit model with product correlation structure
using a real data example and compare the results to paired combinatorial logit

model.

Chapter 5 describes a unified approach to model the dependency between unobserved
factors using copulas. We present the derivations that show that the logit models are
special cases of the Extreme Value Discrete Choice Copula Models and the probit
models are special cases of the Gaussian Copula Discrete Choice models with normal
marginals. This insight lead to the possibility of developing new models to model
the consumer choice behavior.

In Chapter 6, we present a brief summary of results obtained in this dissertation.
Finally, the Appendix section contains important SAS and R programs we developed

for this dissertation.



CHAPTER 2

LOGIT MODELS

2.1 INTRODUCTION

A popular and widely used discrete choice model is the Conditional Logit model.
It is popular due to the fact that the choice probabilities in this model have closed
form expressions and they are easily interpretable. Under this model, the unobserved
utility factors are assumed to be independent and identically distributed as Gumbel,
which is an extreme-value distribution. This independence assumption leads to an
important property that the ratio of any two choice probabilities depends only on the
two alternatives selected and all others become irrelevant. This property is known as
“Independence of irrelevant alternatives (IIA).” While the ITA property is realistic
in some choice situations, it may not be appropriate in others, see Chipman (1960)
and Debreu (1960). Further, statistical tests developed by Hausman and McFad-
den (1984}, McFadden (1987) and Train et al. (1989) are very useful to validate the
ITA assumption. When ITA assumption is not tenable, one needs to pursue several
alternate models that relax the IIA assumption. These alternative models such as
nested logit, heteroscedastic extreme value (HEV) and mixed logit, allow different
forms of dependency between alternatives. However, the model that allows most

flexible dependence structure ig the Multinomial Discrete Choice Probit model.
2.2 CONDITIONAL LOGIT MODEL

Luce (1959) derived the logit formula from assumptions of the characteristics
of choice probabilities, namely IIA. As mentioned earlier, discrete choice models are
based on utility maximization theory and Marschak (1960) showed that logit model
is consistent with utility maximization. Later, Luce and Suppes (1965) showed
that the assumption of unobserved utility following an extreme value distribution
leads to logit formula. McFadden (1974) completed the proof by showing that the
logit formula for the choice probabilities necessarily implies that unobserved utility
has extreme value distribution. Hence, it is known as McFadden’s conditional logit
model.



Suppose we have n subjects and each subject faces ¢ choices, among which one is

chosen. Let y;; be the binary response given by,

1 if 2th respondent chooses jth alternative
= { 0  otherwise.
We are interested in computing p;;, the probability of ith subject choosing the jth
alternative, 2 = 1,...,m; 7 = 1,...,¢. A subject chocses the jth alternative if the
latent utility of jth alternative is larger than utilities of all other alternatives. Let
u;; denote the latent utility that the ith subject associates with jth alternative and
assume that u;; = py; + 2, where py; is the mean and z;; is the error component.
Further, we assume that j1; = xj; 3, where xj; = (Z41, ..., Typ) is a p-variate vector
of explanatory variables and 3 is the vector of unknown regression coefficients. Fur-
ther, z;’s are independent and identically distributed {iid) as Type I extreme value

(Gumbel) distribution with density
flzi;) = €7 exp(—e™™), —00 < z; <00 (1)
and distribution function

F(z;) = exp(—e™™). (2)
Conditional on the choices, the model for the probability of selecting jth choice by
tth respondent is,
)
Y Yk exp( A)

To prove Equation (3}, we proceed as follows:

(3)

Py = Pr(y;=1)

r(ui; > wi; YI#7)

o PT(Z‘g < {pag — par) + 2555 VI#£4)

= Pr(za < (pj — pa) + 2|zi; = 2 VI # j) f(2)dz

I
"

-
o0 [+

= f H exp(—e~FFHi—#) | e exp(—e~?) dz
=0 \u(s)=1

i

o0 c
[ exp (-—e_z Z e~ (ki _“"")) e * dz.
—00 1=1



Let v = e™%, then the choice probability p;; given by

0 {=1

1
P e—(Bis—nit)
eXis P

2y € P

Note that, the advantage of choosing Gumbel distribution for the error terms results

Dij

in a closed form expression of the choice probabilities and it is easily interpretable as
it has logit form. Conditional on pair of choices j and %, this model can be written

as

log [pi; /pix] = (x4 — xuc)'B. (4)

2.2.1 DIFFERENCE BETWEEN MULTINOMIAL LOGIT AND CON-
DITIONAL LOGIT

It is worth noting the difference between a multinomial logit and conditional logit
model. In a conditional logit model, the explanatory variables are the characteristics
of choice alternatives such as price, cost, time, etc. and they vary over alternatives,
sometimes also vary over subjects. In a regular multinomial logit model, the explana-
tory variables such as age, income, are characteristics of subject and remain constant
across choices. In fact, the multinomial logit model is a special case of conditional

logit model.

Consider a response variable with M nominal categories. The traditional base-line
category multinomial logit model has (M ~ 1} logits given by
og A0 _ o g o, (M=),
Pim (i)
where o; are constants and @, are vectors of regression coefficients. These (M — 1)

equations are sirnplified to compute the response probabilities p;(x) as

exp(e; +x'f;) =1, M—1 (5)

p(x) = _ 3
7 14 Ef:ll exp(ax + x'8%)



with oz = 0 and 3,, = 0, being the last category as base-line. A conditional logit
model has the probabilities of the form (3) and the multinomial logit model has
discrete-choice form after replacing an explanatory variable by M artificial variables;
the jth is the product of the explanatory variable with a dummy variable that equals
1 when the response choice is 7 (Agresti 1990). For example, let z; denote the value
of ith subject, assuming a single explanatory variable;s =1...,n. For7=1,..., M,
let &;, equal 1 when k = j and 0 otherwise. Let z;; = (6;1,...,0;a,6j1%5, . .., 6;p02;)
and 8 = (ou,..., 2, B1,. ., Bar)- Then, z{;8 = o;+ B;z;, the response probabilities
for the multinomial logit model (5) are
exp{a; + z;5;)

exp{on + z:81) + - - - + explap + z:87)

exp(zi;6) -
exp(z};3) + - - - -+ exp(ziy, 3)’
which are of the form {3). With this approach, the conditional logit model can

pi{z:)

contain characteristics of consumer as well as choices and thus multinomial logit

model is a special case of conditional logit model.

This difference actually leads to an interesting formulation of “mean” using regres-
sion parameters. Three different model formulations are considered for doing market
share analysis (Lee 1988) viz., simple effects, differential effects and cross-effects
in increasing order of model complexity. Leaving the alternative specific intercepts
ai, . - - 0ar, simple effects model assumes same regression coefficient for each covariate
across all alternatives. In other words, 8; = 8 V7 = 1,...,c. Note that a simple
effects model requires less number of parameters to be estimated and less complex in
nature. A differential effects model assumes regression coefficients to be specific to
the alternative for each covariate. A differential effects mode! requires estimation of
a large number of parameters than a simple effects model. A hypothesis test can be
performed to test equality of regression coefficients to simplify the model. A more
complex model can be obtained by building the cross-effects, which measures the
impact of one alternative’s covariate (for example, effect of a brand’s price change on
a competitor) on another alternative’s covariate. Such a model requires estimation

of a large number of parameters and thus requires a large sample size.
2.2.2 ESTIMATION PROCEDURE

The probabilities for the conditional logit model are in closed form and they can



be easily calculated. The estimates of unknown regression coefficients are obtained
using maximum likelihood approach. Further, McFadden (1974) demonstrated that
the log-likelihood function with these choice probabilities is globally concave in pa-
rameters 3 and thus a solution can be obtained by solving score equations with

regular optimization routines. The log-likelihood ¢(3) for n subjects is

TTTL# | = 3> wslostos)

i=1 j=1 i=1 j=1

£B) = log

The maximum likelihood estimate E of B is the solution of score equations
0¢(8)/08 = 0. The expression for the first order partial derivative of the log-
likelihood is

%(g_) = ZZ Vi 35 [xw —log (ZeXP(x;kﬂ))]

=1 j3=1

_ exp(x};/3)

- Z Zy ["” Z (Ek_ exp<xakm) ]

= Zzyijxdj - Z (Z y;j) Zpijxéj
i=1 j=1 i=1 \j=1 i=1

= ZZ(%} —~ Pij) %45 (7)
=1 j=1

The second order partial derivative of log-likelihood is

5%4(8 8 v
84652) = %!ZZ(@M“P@))%}

=1 j=1

[

Apy;
- -SSR

=1 _7_1

_ Z Zp‘ﬁ xi; D108 Pis 3103 Pu

i=l j=1

= - Z ZP:; X5 (ng Zpth’tk) . (8)

i=1 j=1

No closed form solution for the score equation (7) is available and a solution is
obtained using numerical optimization methods. We illustrate the conditional logit

model using the following real data example.
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Table 1. Sample data for the laundry detergent example

Log-price
Obs Choice Tide Wisk Eraplus Surf  Sclo All

Wisk 0.0606 0.0549 0.0587 0.0389 0.0556 0.0389
All 0.0584 0.0450 0.0645 0.0630 0.0645 0.0389
Wisk 0.0587 0.0467 0.0645 0.0645 0.0587 0.0389
EraPlus 0.0553 0.0488 0.0473 0.0566 0.0645 0.0405
Surf 0.0596 0.0498 0.0618 0.0420 0.0655 0.0413
Wisk 0.0702 0.0231 0.0702 00545 0.0623 0.0436
Tide 0.0480 0.0637 0.0559 0.0528 0.0637 0.0405
Solo 0.0516 0.0455 0.0606 0.0489 0.0492 0.0352
Solo 0.0655 0.0483 0.0567 0.0467 0.0545 0.0436
Wisk 0.0637 0.0263 0.0777 0.0693 0.0570 0.0410

D000~ DU W N

2.2.3 ANALYSIS OF LAUNDRY DETERGENT DATA

In this example, the data is from a market research study and contains information
about the brand bought, price of the laundry detergent purchased by 2657 consumers,
originally analyzed by Chintagunta and Prasad (1998). The dataset contains the
log prices of six detergent brands Tide, Wisk, EraPlus, Surf, Solo, and All, as well
as the brand chosen by each household. Table 1 display a sample data of first 10
observations from laundry detergent data. Frequency counts of response variable
“detergent choice” show the market share owned by each brand and they are given
in Table 3. From this, we can observe that Tide and Wisk occupy about 53% of the
market and they are the main competitors in the market. Price is one of the key
explanatory variables of detergent brand choice, simple descriptive statistics of price
are given in Table 2. This gives us basic understanding of the market and the brands
price strategy. Further, Figure 1 plots the histogram of log-price for each brand. We
can see that all brands are operating at one or two price points and all other price
points occurring less frequent. This observation is useful to simulate a continuous

covariate for discrete choice model.

We fit the conditional logit model with differential effects to identify the relation-
ship between detergent choice and the log-price. Table 4 provides point estimates,



Table 2. Descriptive Statistics of Price
Brand Mean SD Min. Max.

Tide 0.0595 0.0074 0.0059 0.1250
Wisk 0.0472 0.0091 0.0007 0.1538
EraPlus 0.0606 0.0067 0.0259 0.1547
Surf 0.0529 0.0098 0.0031 0.1280
Solo 0.0599 0.0078 0.0305 0.1405
All 0.0391 0.0031 0.0216 0.1005

Tahle 3. Market Shares of laundry detergents
Brand  Frequency Share (%)

Tide 701 26.4
Wisk 703 26.5
EraPlus 507 19.1
Surf 406 15.3
Solo 253 9.5
All 87 3.3

Total 2657 100.0

11
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Figure 1. Histogram of log-price

standard errors and p-values for the conditional logit model. The first six coefficients
correspond to the intercepts in relative to the last brand “All.” They represent the
relative preference to the last brand “All.” Looking at the price coefficients for all
brands, they are all negative intuitively correct signs. Wisk emerges to be a stable
brand with lowest sensitivity to price. The last brand “All” is the most sensitive
brand to price changes compared to all other brands in the market. Assuming the
average prices, we compute the predicted market shares based on model (3) and
compared to the actual shares, presented in Table 5. The results show that the
conditional logit model fits the data well.

As a next step, this model can be very useful to study how the market reacts to
price changes. As an example, suppose we decrease the price of EraPlus by 5% from

its average price 0.0606 to 0.0576. This price change not only causes an increase in
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Table 4. Conditional Logit ML estimates for the laundry detergents data

Parameter B EST. SE  p-value

Intercept Tide -3.3248 1.2128  0.0061
Wisk -7.5648 1.1574 <«0.0001
EraPlus -4.2412 1.2114  0.0005
Surf -7.0918 1.1733 <«0.0001
Solo -6.4532  1.2324 <0.0001
All 0.0000

log-price Tide -159.795  7.9440 <0.0001

Wisk -111.102  6.7383 <0.0001
EraPlus -146.993 8.0835 <«0.0001

Surf -122.847 7.0350 <0.0001
Solo -124.055  9.2168 <0.0001
All -392.411 30.9367 <0.0001

its own market share but a decrease in share of other brands. The increase in market
share is about 40.4%, drawn equally from other brands, as shown in Table 6. This
is not realistic to the market dynamics that brands tend to draw more shares from
their nearest competitors than the rest. This discrepancy is due to the assumption
that the unobserved factors are independent and follow Gumbel distribution and this

is shown mathematically in the next section.
2.2.4 ITA ASSUMPTION

From Equation (3), we can see that the choice probabilities in a conditional logit
model are in a closed form. This is due to the assumption that the unobserved factors
are independent and identically distributed as Gumbel. For any two alternatives j

and k, the ratio of choice probabilities are of the form
Pij  _ eXp(x;jﬁ)

Pik - GXP(X;kﬁ)
= exp((xy — i)' B). 9)



Table 5. Actual versus Predicted share

Brand Actual Share Predicted Share

Tide
Wisk
EraPlus
Surf
Solo

All

26.4
26.5
19.1
15.3
9.5
3.3

275
28.0
19.9
12.8
9.6
2.3

Table 6. Impact of price changes on shares

Brand Avg. Price Original Share New Share Change(%)
Tide 0.0595 27.5 24.7 -10.0
Wisk 0.0472 28.0 25.2 -10.0
EraPlus 0.0606 — 0.0576 19.9 27.9 40.4
Surf 0.0529 12.8 11.5 -10.0
Solo 0.0599 9.6 8.6 -10.0
All 0.03%0 2.3 2.0 -10.0

14
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Conditional on the choices 7 and k, a variable’s influence only depends on the differ-
ence between values for those alternatives and all other alternatives become irrele-
vant. Luce (1959} called this property as Independence from Irrelevant Alternatives
(ITA). It is unrealistic in some applications and hypothesis tests proposed by Haus-
man and McFadden (1984), McFadden (1987) and Train et al. (1989) are very useful
to test ITA assumption. When IIA assumption is no longer valid, several alternate
models that relax IIA assumption are applicable to choice situations.

2.2.5 TESTS OF IIA

Tests of IIA were first developed by McFadden (1978). Two types of tests are
used to test IIA assumption, choice set partitioning tests and model-based tests. The
choice set partitioning tests are based on whether the parameter estimates obtained
on a subset of alternatives are significantly different from those obtained from full
set. A test of the hypothesis that the parameters estimated on a subset are same as
the parameters estimated on the full set constitutes a test of [IA. This was developed
by Hausman and McFadden (1984). This test is based on likelihoods comparing the
restricted model to the full model. A second test proposed by McFadden (1987)
and Train et al. (1989) is based on model performance with inclusion of cross-
alternative variables. If the ratio of two alternatives depends on a third alternative,
the inclusion of attributes from a third alternative into the utility formulation of
initial two alternatives become significant, then ITA does not hold and this constitutes
a test of IIA. McFadden (1987) developed a procedure for performing this kind of a
test and Train et al. (1989) show how this can be performed within the logit model.
Model-based tests are those that test the validity of constraints imposed on a more
general model such as nested logit or probit that lead to ITA. The disadvantage of
this test is that it requires estimation of both models, often computationally difficult.
If ITA assumption is not valid, we need to study alternate models and a review of

those models is presented in the next section.
2.3 MODELS RELAXING IIA ASSUMPTION

In discrete choice models, HA assumption plays an important role in computation
of choice probabilities. In fact, the logit models with IIA assumption has proportional
substitution pattern across alternatives. In other words, the ratio of any two choice

probabilities are proportional to the two alternatives under consideration, as seen
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in (9). The class of models that exhibit a variety of substitution patterns including
proportional substitution pattern are Generalized Extreme Value (GEV)} models. In
this class of models, we assume the unobserved factors follow a generalized extreme
value distribution which allows correlation between alternatives. Thus, it relaxes
IIA assumption and when the correlations are zero, the GEV model becomes the

standard logit.
2.3.1 GEV MODELS

The most widely used GEV model is Nested logit model, in which alternatives
are partitioned into subsets called “nests”. For any two alternatives in the same
nest, the ratio of choice probabilities is independent of other alternatives, so the
ITA assumption holds within the nest. For any two alternatives from two different
nests, the ratio of choice probabilities depend on attributes of other alternatives
from those two nests, thus [IA does not hold between nests. This model is also
consistent with utility maximization theory as shown by Daly and Zachary (1978),
McFadden (1978), and Williams (1977).

2.3.2 NESTED LOGIT MODELS

Assume that the set of ¢ alternatives are partitioned into g non-overlapping nests
Ny, ..., Nyg. The nested logit model is obtained by assuming that the alternatives
within nests are correlated and the alternatives between nests are uncorrelated. Let
¢, be the number of alternatives in the nest Ny, k& = 1,..., g. To impose dependency
between alternatives in nest Ng, we assume that the unobserved factors for the ith
subject zy = (za,...,2c,) follow a multivariate extreme value distribution with
distribution function F(z;) = exp{—A(e™*,...,e %%)}, where A(z;) is known as
dependence function that governs the dependency between alternatives within nest
Np,k = 1,...,9. McFadden (1978) proposed a dependency function of the form
Alwy, ..., we) = (™, wi™)* that lead to nested logit model, where A; denotes

r=1

the degree of independence between alternatives in nest N, with 0 < Ay < 1,k =

1,...,9. Due to the independence assumption between nests, the unobserved factors
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z; = (zu1, - . -, Zig) follow an extreme value distribution with distribution function

g Ck Ak
F(z;) = JJexp {— Ze"""/""}
r=1

k=1

g Cx Ak
exp | — Z { e’zir/’\k} ) (10)
1

k=1 =

I

This distribution function is one type of GEV distribution with the marginals 2,
following univariate extreme value distribution, » = 1,...,¢cx. The statistic 1 — Az
denotes the measure of dependence and a value of A, = 1 indicates no correlation,
in which case it reduces to the standard logit model. The choice probability of ith
respondent choosing jth alternative in a nested logit model is

_ e (5T exp(u/ AT
S [0k explua/ M) ™

Using the expression (11), the ratio of choice probabilities for alternatives 7 and 7'

Pij (11)

are

Py _ e R exp(pa/ )
pr'.j’ e‘u‘&'j"!‘\k" [Z:‘:’l GXD(#{(/)%!)] Age—1
If 7 and j’ are from the same nests (k = k'), the term in parenthesis cancel out and

lead to ITA assumption within nest. If j and j’ are from different nests (k # k'), the

term in parenthesis do not cancel .out and ITA assumption does not hold between

(12)

nests. This property often rephrased as “Independence from irrelevant Nests (IIN)”
and it is not as restrictive as IIA property.

The value of X must be within a particular range for the model to be con-
sistent with utility-maximizing behavior. If ¢ < A < 1,Vk = 1,...,¢q, then the
model is consistent with utility maximization for all possible values of the explana-
tory variables (Train 2004). For A. greater than one, the model is consistent with
utility-maximizing behavior for some range of the explanatory variables but not for
all values. Kling and Herriges (1995) and Herriges and Kling (1996) provide
tests of consistency of nested logit with utility maximization when A; > 1; and
Train et al. (1987a) and Lee (1999) provide examples of models for which A > 1.
A negative value of X is inconsistent with utility maximization. It means that an

estimated k outside the (0, 1] bounds suggests a misspecification problem with the
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model and requires reexamination of the specification. The estimation of a nested
logit model is similar to that of a conditional logit model using maximum likelihood
estimation. Other estimation methods exist but they are not of relevance in our

discussion.

Other dependency functions can be constructed based on multivariate extreme
value copulas that must satisfy some conditions such as min-stable multivariate ex-
ponential (MSMVE). A detailed discussion of multivariate extreme value (MEV)
copulas, properties of MEV distributions and a method to construct MEV distribu-
tions with several dependency functions is presented in Chapter 5.

The nested logit models discussed above are known as two-level nested logit mod-
els. One can create three or higher level nested logit models by partitioning the set
of alternatives into nests and then into subnests. The choice probabilities of these
models are generalization of (11) and exhibit the similar variations of IIA assumption

within nests and between nests.

So far, we have considered the nests that are non-overlapping and relaxing such
an assumption would lead to several types of other GEV models. Vovsha (1997),
Bierlaire {1998), and Ben-Akiva and Bierlaire (1993) have proposed models that
are called as cross-nested logits (CNLs) which contain multiple overlapping nests.
Another model proposed by Chu (1989) is the Paired Combinatorial Logit (PCL),
in which each pair of alternatives constitutes a nest. Wen and Koppelman (2001)
have developed a generalized nested logit (GNL) model that includes the PCL and
other cross-nested models as special cases. A brief discussion of the PCL and GNL

models are given in the following sections.
2.3.3 PAIRED COMBINATORIAL LOGIT

As the name suggests, each pair of alternatives are treated as a nest in this
model and each alternative is a member of ¢ — 1 nests. Similar to nested logit
model, we assume a parameter A;;, that indicates the degree of independence between
alternatives 7 and k. This model becomes the standard logit model when A, equal
tol for all 1 € 7,k < ¢. The choice probability of ith respondent choosing jth
alternative is

E_f;&k etii/ Ak [eﬂijf)‘jk + eﬂek/ljk]’\ikﬁl

3 Shoi [P e

Pij FYPS (13)
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The numerator in (13) is evaluation over ¢ — 1 nests in which the jth alternative
paired with other alternatives, similar to the choice probabilities in a nested logit
model. If Aj, is between 0 and 1 for all pairs, this model is consistent with utility
maximization theory and it is easy to see the model becomes standard logit when
Ajr = 1. Koppelman and Wen (2000) found PCL to perform better than nested logit
or standard logit. We will return to this model form in Chapter 4 while developing

a probit model with product correlation structure.
2.3.4 GENERALIZED NESTED LOGIT (GNL)

A generalized nested logit model is an overlapping nested model with varying
levels overlapping of alternatives among nests. In other words, an alternative can
be part of several nests with more preference given to some nests than other nests.
This is characterized by an allocation parameter o;m,,1 < 7 < ¢;1 < m < g, which
is nonnegative and > 2 _ oym = 1. The parameter a;, represents the portion of
alternative allocated to mth nest. Similar to nested logit model, a parameter X, is
defined to measure the degree of independence within nest m. The choice probability

of ith respondent choosing the jth alternative is

g _ Am—1
3o (Cme Y (5 (cumert ) A ]

528t [0 (e )1 Am

This formula is similar to (11) except that the numerator is sum over all the nests that

Di; = (14)

contain jth alternative, with respective weights a;,,,, m = 1,..., g. If each alternative
belong to only one nest, then the model becomes nested logit. In addition, if the nest
independence parameter A,, is equal to one, then it reduces to standard logit model.
Wen and Koppelman (2001) derive various cross-nested models as special cases of
the GNL. Including these models, McFadden (1978) developed a process to generate
GEV models (see Train 2004), with which new formulations of GEV models can
be developed that best fit the specific circumstances of a particular choice situation,

discussed in Chapter 4 to generate GEV models.
2.3.5 HETEROSCEDASTIC LOGIT MODEL

Another way to relax ITA assumption is to allow the variance of unobserved factors
vary across alternatives. Such a model is known as “Heteroscedastic Extreme Value
(HEV)” model, first described by Steckel and Vanhonacker (1988), Bhat (1995), and
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Recker (1995) . In this model, we assume z; follow an extreme value distribution

with distribution function
Z,;j .
Flzij) =exp | —exp | o~ )}, (15)
7
where §; is the scale parameter for the jth alternative. With this formulation, the

choice probability of selecting jth alternative by ith respondent (Bhat, 1995) is

Pij = f [H exp(—e Wi Hikt BN/ )] exp(—e)e " dv. (16)
k#j

This expression does not have a closed form and often evaluated through simulations.

Further, Bhat (1995) showed that the heteroscedastic logit probabilities can be

calculated effectively with quadrature rather than simulation.
2.4 LIMITATIONS OF LOGIT

The goal of modeling consumer choice behavior is to identify models that are
able to incorporate the effects of taste variation, allow different substitution patterns
across alternatives and model repeated response over time. The first one, taste vari-
ation refers to the differences in response due to differences in respondent tastes and
their behaviors. This can come from systematic variation that relates to the observed
characteristics of respondent such as age, income, etc. and random taste variation
that cannot be linked to consumer characteristics. Second, substitution patterns
refers to the way the alternatives are correlated, such as proportional substitution.
Third, repeated response refer to the choices made over time or responses to several

choice cards by the same respondent.

The conditional logit model based on the assumption that unobserved factors are
independent and follow an extreme value distribution is restrictive with ITA assump-
tion, also known as proportional substitution. Even though GEV models alleviate
this restriction of proportional substitution by allowing different substitution pat-
terns, they are limited to incorporate random taste variation and correlated response
over time. Discrete choice probit models are the most flexible models that incorporate

random taste variation, any substitution pattern and include repeated choices.

Probit models are derived under the assumption that the unobserved factors

are jointly distributed as multivariate normal with a unknown correlation structure
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among alternatives. The only limitation of probit models is that the computation
of choice probabilities require difficult evaluation of multivariate normal distribution
function. But, we can derive the exact analytical expressions for choice probabilities
with correlation structures such as equicorrelation, product correlation etc. Chap-
ter 3 and Chapter 4 present a detailed discussion of derivation of choice probabilities
for equicorrelation structure, product correlation structure using stochastic represen-
tations and compare the performance of probit models with logit models. Chapter 5

presents a unified way of handling the correlated repeated choice data using copulas.
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CHAPTER 3

DISCRETE CHOICE PROBIT MODELS

3.1 INTRODUCTION

The multinomial discrete choice probit model is derived under the assumption of
multivariate normal unobserved utility components. Thurstone (1927) derived the
formula for a binary probit, and Hausman and Wise (1978) and Daganzo (1979)
extended the generality of the specification for representing various aspects of choice

behavior.

Similar to the assumptions of conditional logit model, let u;; = py; + 25 and py;
= Xx;; B, assuming the same beta coefficients for all alternatives, i.e., 3; = 8. Instead
of assuming the random components z;’s are iid Gumbel, let z; = (z;, ..., z;.) follow
a Multivariate Normal (MVN) Distribution with mean 0 and correlation structure
R. The density of z; is given by

¢(zi;; O, R) = ! exp( lz'R'lz) (17)
e\ 4y, Y,y (2?T)§|R[% 2 i i}
Under these assumptions, the model for the probability of selecting jth choice by ith

respondent is,

pi; = Prlpg+z;>patza; VI#7)
/I(,uarj + 2 > pa+ za; YI# 5) dc(2:;0,R) dz;, (18)

I

where I(.) is the indicator function for the condition in parenthesis to hold and the
integral is over all values of z;. This multidimensional integral does not have a closed
form and is often evaluated using numerical simulations. This is one of the main
restriction in application of probit models in choice situations despite their ability
of incorporating various of choice behaviors. Numerous simulators such as “accept-
reject”, “smoothed accept-reject”, and GHK have been proposed for evaluation of
probit choice probabilities (Hajivassiliou, McFadden and Ruud 1996). The GHK sim-

ulator is the most widely used probit simulator compared to other simulators. Along
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with simulators, algorithms developed by Genz (1992) based on Cholesky decomposi-
tion and a series of transformations compute multivariate normal probabilities to the
best possible level of accuracy. The computation of choice probabilities become less
difficult in the cases of correlation structures that represent specific substitution pat-
terns between alternatives. For example, Yai, Iwakura and Morichi (1997) estimate
a probit model of route choices where the covariance between any two routes depends
only on the length of shared route segments; this structure reduces the number of
covariance parameters to only one, which captures the relation of the covariance to
shared length. Boldue, Fortin, and Fournier (1996) estimate a model of physicians
choice of location where the covariance among locations is & function of their proxim-
ity to one another, using a “generalized autoregressive errors” as in Bolduc (1992).
Haaijer, Wedel, Vriens and Wansbeek (1998) impose a factor-analytic structure that
arises from random coefficients of explanatory variables; Elrod and Keane (1995)
impose a factor-analytic structure, that arises from error components.

In this work, we present simplification of probit models for simple structures such
as equicorrelation and product correlation using stochastic representations. Later,
we present simplification of a much general dependency structure using multivariate
copulas and obtain these as special cases. In the following sections, we derive the
exact analytical expressions for computation of choice probabilities under equicor-
relation structure and present the maximum likelihood method of estimating probit
model. We also derive the analytical expressions for the Fisher information matrix
to compute standard errors of parameter estimates.

3.1.1 SIMILARITIES TO THE MULTIVARIATE PROBIT MODEL

The Multinomial Discrete Choice Probit (MDCP) model is similar to the multi-
variate binary probit model with some differences in the ranges of marginals. The
response variable in a discrete choice model, even though univariate, can be regarded
as multivariate binary random variable and it can be shown that it is similar to a
multivariate binary probit model, with choice alternatives treated as repeated mea-

surements.

Suppose we bave m variate random variable Y = (Y7, ...,Y,,) where each Y is a
repeated response of a binary outcome. In a multivariate probit model, we assume

that there exists a latent random variable U = (U4, ..., U,;,) that follows multivariate
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normal with mean g and correlation R such that

V. — 1 ifU i < Hq
! 0  otherwise,

where j;’s are constants. Then the probability of Y = y can be obtained as

Prv=y) = [T [T onUinm) au (19)

im
where
lj=—oc0u;=p; iy =1
{ i = pj,u; = o0 otherwise.
Note that, there are 2™ possible values of the response variable Y to which the
probability adds to 1.

In a discrete choice probit model with m alternatives, the response is a m variate
binary response vector with the restriction that only one of them can be equal to 1
and rest are all zero. Therefore the number of possible values of the response variable
are m and the total probability adds to 1 of these n possibilities. Further, the choice
probabilities can be described in terms of latent variable known as “utility”, similar
to multivariate probit model. As mentioned before, the discrete choice model is
based on utility maximization theory, in which a respondent assigns a utility value to
each alternative, that’s not observed. The discrete choice probit model is obtained
by assuming the latent utility U follows a multivariate normal with mean g and

correlation R. such that

i

1 itU; >U; Yi#j
0 otherwise.

Then the probability of jth alternative picked up by a respondent, Pr(Y; = 1}, is
the joint probability Pr(U; > U; VI # j) and it can be evaluated as

Pr(Y;=1)= / - / Pm—1(w; 2, R*) dw, (20)
HY—pj Hom =5

where W = (U; — U;,..., U, — U;) is a m — 1 multivariate normal with mean

@' = (1 — K4y - . ., bm — #;) and correlation structure R* = CRC’ with
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The expressions (19) and (20) are similar except the ranges of integration are different
and are of different dimensions. The discrete choice probit model become more
complex when we introduce repeated measurements into the model formulation and
it requires to accommodate two types of dependencies, one between alternatives and

other between repeated measures.
3.1.2 PROBIT MODEL WITH EQUICORRELATION STRUCTURE

Let R = (1 — p}I + pJ, where p is the assumed correlation between any
two alternatives. Assuming such a structure eliminates the identification problem
(Train 2004) of choice models. However, for R to be positive definite, p should sat-
isfy —1/{c — 1) < p < 1. Under the assumption that unobserved factors z; follows a
multivariate normal with mean 0 and correlation structure R, the choice probability

of 7th subject choosing jth alternative is

Py = Pr(ug+z; > pa + za)
= Pr (Zej — 2 >y Hij)

= P?‘(Um)#a; Vl(%.?)_l"' )=

where
wy = (zij - ix!)
V2(1-p)
and i, (pa — i)
2(1—p)

Note that, E(w;) = 0; Var(wy) = 1; and Cov(wy, war) = 3. Hence,

P = Pr(wy > py i VU # 7)

T A

where W; = (wﬂ, coey Wi 1, Wija, - ..'w,;c)’, R* = %I + (1 - %)J and ¢c._,1(wi;0, R*) i8

the probability density function of multivariate normal distribution of dimensionality

| / ber(wi; 0, R*) dws, (21)

t5-+1

¢ — 1. Though the dimension of integral reduced from ¢ to ¢ — 1, we still need to

evaluate multivariate normal integrals to calculate the choice probabilities. However,
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a simple transformation known as “stochastic representation” will reduce this task

to computation of a univariate integral.
3.1.3 THE STOCHASTIC REPRESENTATIONS

Suppose X1,..., X, are jointly distributed as muitivariate normal with correla-
tion structure R. Then the random variables (/I — pV} + /pVo,..., /T —pV. +
V/PVa) follows multivariate normal with mean 0 and correlation structure R, where
Vo,Vi, ..., Ve are ¢+ 1 1.i.d N{0,1) random variables. (Tong 1990 Theorem 5.3.9).
The representation X; = /1 — pV; + \/pVs is known as “stochastic representation”

of multivariate normal random variables.

Therefore, for the new correlation structure R*, let wy = (vg + v;)/v/2, where
g, U1, - - - , Vie are ¢ + 1 independent standard normal random variables. Note that,
E(wy) = 0, Var(wy) = 1 and Cov{w, wy) = —% Hence, (21) simplifies to

pi; = Pr(wg > pj Vi #37)

1
= Pr{—(vo+uwv)>py;Vl#j
(ﬁ( 0 ) > 4 #;)

= [ [Priw> Vi — vl v £ 5] plw)do
= [T [-e(f )] s

TU(#A)=1

Y A PO G E N V- »
- /'-ooq’(v)a H -7 )] sy .

The expression (22) can be computed easily using built-in functions of popular soft-
ware like SAS and R. After obtaining the choice probabilities for the multinomial
discrete choice probit model, we obtain the regression parameter estimates using

maximum likelihood approach as outlined in the next section.
3.2 MAXIMUM LIKELIHOOD ESTIMATION

Similar to the logit model, we assume the means u;;, 7 = 1... c are linear functions
of x{;8 and our goal is to estimate the unknown parameter € = (83, p) using the
maximum likelihood estimation method. The log-likelihood £(8) for n subjects is

¢(6) = log [H p?}j} =3 "> uyloglpy)-

=1 j=1 t=1 j=1
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The maximum likelihood estimate of & = (3,7) of @ is the solution of likelihood
equations d2(0)/00 = 0. The expressions for the first order and second order partial

derivatives of the log-likelihood are:

20) _ (29 210)

086 88 Op
ae(6) oe(0) e(6)
{W 8B, W}

with the first order partial derivatives are given by

Bf(ﬂ) "~ 1 ap,:j
B ;Zy“f (z?gaﬁm)

i=1 j=1
a¢(8) — ( 1 3%)
and ——~- = Yt — .
The Hessian matrix is

( 8%(8) o%eB) . 8%He) 622(6}\

ag4 980351 afodBp  OBadp

B(8)  92(0) . M) 9%6)

0608 326y 8%(6) R0 &%)

3Bpdfo  OPpd8 862 9Bpdp

s*us)  B(E) . 3*u8)  9*(6)
3pdBp  Bpdf 3p0f8p ap* /

where the second order partial derivatives are given by

33w (;zzz:f;)}

=1 =1

1 8%, 1 Opy
£S5 -SEn (8

i=1 j=1 =1 j=1

e0)
s, aﬁm

PO “(1 32}%3) = (j_ag;»m-)2
o~ 2% 55 Zl % \ps o0 )
P

=] j"’l
823(9) . ( 1 3 Dij ) ( 1 6;0,3) ( 1 Bpgj)
O0BmOp B ; JZ Y Dij 3BmOp =1 j—1 Dij OBm Pig dp ’

G I (1 py 1 Opy; (i%)
aﬁm‘ aﬁm B Z Z ylj (pa;.' B.Bmaﬁm’ ) ; Zy“? (?@j aﬁm) pz'j aﬁm' :

i=1 §=1 g=1
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where m(# m') = 0,1,...,p is the number of covariates. All the first order and
second order parital derivatives involve evaluation of the following six terms

BL(F) 8L(6) 8%¢(8) 0*¢(9) LBy I (H)

8B’ Bp ' OBL ' Bp® ' 0BwOPm’ 0Bmdp’

and their analytical expressions are derived in the following section.

3.2.1 PARTIAL DERIVATIVES

Let 8 = (3, p), Ai{8,v) = P (v - M) and ¢;(@,v) = (v - M)

V-n) (1-)
Then the derivatives of A;(@,v), a(@,v) with respect to fm,m =0,...,p; p are
%A:(G,U) = —¢ (v— (x“(*lffz;ﬁ) (If:jl—__wgm)
~ a8 o),
smen - -+~ P ST
= —al8, U)*(“f*_j%—g/—z,
2 ao) = ¢ (v e —x o) ( o) ) (e 240)
= @) ( dl:zf p)) \/Ciﬂf 3
-é%az(e,v) = ¢ (v b — x”)ﬁ) ) (;cgzl*_r:j?g;f

= a(8,v) ( ) 501 - )3,2,
where dipn = (Titm — Tijm) and dj;8 = (x,l — x3;)'3. Hence,
Oy _ O * 1 r _ (xa —xy)B :
. =~ B8, [‘/_m@(v)gé(v W'_(l——p) )(ﬁ(v)dv]
[ s )Z ( [T 4@, (e, ))) Hlu)dv

i{#k)=1

- f v)z( H A0, v)ar(8,v) ——=— m) ¢(v)dv, (23)

W#k)=1

!
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k=1 \U(#k)=1

387);‘ — _[:&%EZ( H Ai(6,v)ar (8, U)Q(Id:kﬁ)sﬁ) d(v)du. (24)

Further, the second order partial derivative of £(8) w.r.t 8., is given as

8217;7;' 0 ol ; . o
oL 3ﬁm[ f v)z( [1 4.0, )\/(«—))qs()d}

{(#k)=1
ak (9 U)

/ B(v) £ Z /_‘—“—(1z T B [H A8, A (@, )J ¢{v)dv
zkm ak(8= 'U) ak(e U) ik!m
[ B) 2 Z a7 [ 24(8,0) ; (,#g Ao T

ax(8,v) d.,. B dikm
+HA1(0 ){Ah(a ) (v— \/l—p) \/(lk—p)

1=1
(@) ) _ i
+ (Ak(ﬂ,v)) 1= p) }:l ¢(v)dv.

N

Therefore,

8%p;; ap(0,v) d; a8, v)
0B f @(v)Z(HA’(e )Ak(e DT ZAZ 0,0) "

k=1
v — e ' ay,(6,v) _ »
* ( m) Gt 18, 0) d"‘"‘] Plv)dv.
(25)

Similarly,

Prs _ [ (1T acew) %O i [ s a0,9)
i = |50 2 (EA’(G' )) 4:(8,0) (1 - 1) ZAk 6,v) %™

o e
(26)

with m #m’ = 0,...,p. Next, the second order partial derivative of £(f) w.r.t p and
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B i8
2 = | e (L woomon ez ) o
- - [at T [won 3 e o
- - f: @éu) kz;d,,m [ Z((‘; ‘;) \/11TL > (;(}3 A0,
Sesa) e e (- )
b+ () 2(1d5kf)3f2}
- E A0, v)ii((%,?) T jp)sxz] $(v)dv.
Therefore,
B =L Bl 2ihat | L
+ (v ~ %) &4 + i"((z - \/ITJ (v)dv.

(27)

Similarly, the second order partial derivative of £(6) w.r.t p is

U#k)=1

— Qg ,‘U) zkﬁ
- “f_m ﬁ?(v);??ﬁ[HA‘(B’”)Ak(e,u)z(l )312} ¢(v)dv
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Simplifying further,

% - _ © 1 _ak(B,v) d;,.3 - -
. f_m ®(v) A(6,v)2(1 - p)wz IT Aco.v)

—1 k=1 \ l(#k')=1

(8, YL B d, 3 a,(8, v)
’;3(1—3% HAz(B v)3 20— 8 PEE {Ak(e v)

e B a(0,v) il
('” - \/1’%) 2(1 ;cp)w " (Ak(&”)) 201 ‘k")m}

HA:(B axl6,0) 3 dyf3 ]qﬁ(v)dv-

Ai(6,v) 4(1 ~ p)>/*

Therefore,
0%p;; /°° 1 < ax(@,v) d,.pB ay (@, v)

= - A 9 v * ¥
57 o T(0) 2 I_I (09) ] 30,011 - o ;Ay(e n) P

Jo] v
+ (v i) e+ S -2 VI
(28)
Here m represents the number of covariates.

3.3 ASYMPTOTIC EFFICIENCY COMPARISONS

In this section, we compare the discrete choice probit model with the conditional
logit model in large samples and also in small samples. For the large samples case,
we compare the asymptotic variance of parameter estimates for both logit and pro-
bit models. But, this is not straightforward due to the underlying distributional

assumptions of within each model.
3.3.1 NORMALIZATION OF SCALE

In the probit model, the error terms have unit variance by assuming an equicor-
relation structure. However, the variance of error terms in conditional logit model
are not of unit variance and hence both models are not directly comparable. As the

error terms are assumed to follow iid extreme value distribution in a logit model,

az

=0, To make the error terms in logit model have unit variance,

their variance is
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we scale down the utility u;; by a factor of %J as follows:

Uij , (B 1 Zij
= x.[= + ) 29
7o /V6 i (0’) 7/V6  wa/V6 (29)
In a logit model, 8 and o are not identified separately but the ratio 8/¢ is estimated.

With scale change in error terms, the new beta coefficients are simply J—@ECNL and

they are now comparable with the probit model.
3.3.2 ASYMPTOTIC RELATIVE EFFICIENCY

From the general theorems for CNL model shown by McFadden (1974), it follows
that the maximum likelihood estimator BCNL for the conditional logit model] has an
asymptotically normal distribution with mean 8 and covariance matrix IE}V 1., Where
Z is the Fisher information in n subjects given by
0%¢ (6)]
apos’ |

Tony = —E [ (30)
Similarly, the maximum likelihood estimator aMDC:p for the discrete choice probit
model with equicorrelation structure is asymptotically normal with mean & and co-
variance matrix Z;pop where

_ 5%¢(0)
Iyvpep = —E {8988’] . (31)

We computed the asymptotic variances of beta estimates by taking the diagonal ele-
ments of the inverses of (30) and (31). The asymptotic relative efficiencies (ARE) are
calculated taking the ratio of the variances for the CNL model over the corresponding

variances of the Probit model.

Var(ZEE) 1 Var(Bgws)
Va'r(aMDCP) w2/6 Var(aMDGP) l

The expression for second order partial derivatives of conditional logit model is given

ARE =

in (8). This does not involve y;; terms and the expectation of this term is itself.
For the multinomial discrete choice probit model, the second order partial deriva-
tive matrix consists of expressions (25) through (28) and the expectation of these
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expressions are as given below.

e[ 5] - S (5 -2 (%)
T n £ 2., . . n.c N\ 2
sG] - S (3) -2 (3
Plons) = L2 (ara) S (5) (52) ena

3.3.3 ARE COMPUTATIONS FOR DATA FROM MARKET SCE-
NARIO

For the choice models, data usually comes from two sources namely consumer
panels and discrete choice experiments. The models are compared using ARE in
both situations. Note that calculation of ARE does not involve estimation of any
parameters and it is simply based on a fixed set of covariates with starting parameter
values. For computation of AREs, usually the covariates are generated from normal
or uniform distributions, which does not work in discrete choice setup. The occur-
rence of covariates in a discrete choice setup is in such a way that it is competitive in
nature between alternatives. To create such a set of covariates, we examined several
real time data in literature and generated from multiple normal mixtures so that it

reflects true market scenario.

We took a large sample of n = 1000 observations with two covariates. The first
covariate is a continuous covariate generated from multiple normal mixtures and the
second covariate is a discrete covariate with three levels. We assumed the number
of choices ¢ = 4 and computed ARE for ten different values of p ranging from 0.0,
..., 0.9. Figure 2 shows histogram of continuous covariate generated from multiple

normal mixtures and also a comparison to the real time data.

The respective proportions of discrete covariate with 3 levels for each alternative
are given in Table 7. With this setup, the total number of covariates are 6 that include
3 intercepts, 1 continuous covariate and 2 dumimy variables for discrete covariate. The

mean function is

Hiz = ﬁOl Iﬂ.tl + 602!%32 + 503]ﬂt3 + ﬁ;.’ﬂ%j + 521-’17‘2133- + ‘Bzgiﬂgi;. (32)
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Figure 2. Simulation of continuous covariate that represents true market

The fixed regression coefficients are as follows:
Intercepts: Bon = -0.479, Bop = 1.051, Fos = 0.475,
Continuous covariate: El = (.781,

Discrete covariate: 321 = (.107, 522 = -(1.525.

We simulated the data with these specifications and for different values of p
ranging from 0 to 0.9. We obtained the asymptotic variances of both logit and probit
models as negative expected value of hessian matrix and computed the variance of
parameter estimates as inverse of the Fisher information matrices. Table 8 and
Table 9 presents the asymptotic variance and (ARE) for the data simulated from

true market scenario.



Table 7. Proportion of levels for discrete covariate

Table 8. Asymptotic variances and ARE* for the intercepts

Level

Alternative

1 2

1

2
3
4

0.15 0.18 0.67
0.25 023 0.52
0.07 042 0.1
039 045 0.16

P

nV (Bo1)

nV (Bo2)

nV (Bos)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.0086 (1.072)
0.0081 (1.142)
0.0075 (1.221)
0.0070 (1.311)
0.0065 (1.414)
0.0060 (1.532)
0.0055 (1.667)
0.0051 (1.822)
0.0046 (2.004)
0.0041 (1.254)

0.0053 (0.997)
0.0049 (1.079)
0.0045 (1.174)
0.0041 (1.285)
0.0037 (1.414)
0.0034 (1.563)
0.0031 (1.727)
0.0028 (1.878)
0.0028 (1.906)
0.0035 (1.500)

0.0111 (1.019)
0.0104 (1.084)
0.0098 (1.156)
0.0091 (1.239)
0.0085 (1.334)
0.0078 (1.444)
0.0072 (1.574)
0.0065 (1.731)
0.0058 (1.939)
0.0049 (2.300)

CNL

0.0092

0.0053

0.0113

*AREs are in parenthesis
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Table 9. Asymptotic variances and ARE* for the contimuous and discrete covariates

P nV(5) nV (Ba1) nV{(fBa2)

0.0 0.0024 (0.924) 0.0076 (0.994) 0.0068 (0.997)
0.1 0.0022 (0.969) 0.0071 (1.057) 0.0064 (1.061)
0.2 0.0021 (1.016) 0.0066 (1.150) 0.0060 (1.134)
0.3 0.0020 (1.067) 0.0060 (1.246) 0.0056 (1.217)
0.4 0.0019 (1.119) 0.0055 (1.358) 0.0052 (].312)
0.5 0.0019 (1.169) 0.0051 (1.489) 0.0048 (1.420)
0.6 0.0018 (1.210) 0.0046 (1.640) 0.0044 (1.543)
0.7 0.0018 (1.224) 0.0042 (1.816) 0.0041 (1.683)
0.8 0.0019 (1.168) 0.0037 (2.017) 0.0037 (1.833)
0.9 0.0024 (0.924) 0.0032 (2.322) 0.0035 (1.949)
OCNL 0.0022 0.0075 0.0068

*AREs are in parenthesis

3.3.4 ARE COMPUTATIONS FOR DATA FROM CHOICE EXPERI-
MENT

As mentioned in Section 1.1.3, data for choice models come from another source
namely designing a choice experiment. This occurs naturally in a market research
study in which respondents are shown a choice card consisting of alternatives and
asked to pick one. In this setup, an efficient choice design is generated with fixed
number of levels for each covariate under consideration. For example, when we would
like to evaluate the brand preference of laundry detergent, a choice set is generated
to test a fixed number of price levels for each brand. Figure 3 shows a choice set that
consists of 18 runs to identify the brand preference of 4 laundry detergent brands. We
assume the same setup for ARE computations except that the continuous covariate
is replaced with price points from choice design. The results are summarized in Table
10 and Table 11.

3.3.5 DISCUSSION

ARE computations do not involve any parameter estimation and do not require

use of optimization routines. The analytical expression for second order partial



P

”V(ﬁm)

nv(ﬁuz)

nV{(fos)

0.0
0.1
0.2
0.3
0.4
0.9
0.6
0.7
0.8
0.9

0.0109 (1.100)
0.0103 (1.164)
0.0097 (1.234)
0.0091 (1.311)
0.0086 (1.395)
0.0081 (1.484)
0.0076 (1.571)
0.0073 (1.640)
0.0073 (1.644)
0.0083 (1.440)

0.0061 (1.063)
0.0057 (1.176)
0.0052 (1.274)
0.0048 (1.389)
0.0043 (1.526)
0.0039 (1.690)
0.0035 (1.888)
0.0032 (2.131)
0.0030 (2.426)
0.0033 (2.788)

0.0075 (1.092)
0.0070 (1.176)
0.0064 (1.274)
0.0059 (1.389)
0.0054 (1.526)
0.0049 (1.690)
0.0044 (1.888)
0.0039 (2.131)
0.0034 (2.426)
0.0029 (2.788)

CNL

0.0120

0.0065

0.0082

*AREs are in parenthesis

Table 11. Asymptotic variances and ARE™* for the continuous and discrete

covariates in a choice experiment

p

nV(B1)

nV(ﬁm)

nV(ﬁQ:z)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.0065 (1.025)
0.0061 (1.102)
0.0056 (1.191)
0.0052 (1.295)
0.0047 (1.416)
0.0043 (1.559)
0.0039 (1.727)
0.0035 (1.922)
0.0031 (2.125)
0.0030 (2.207)

0.0078 (1.013)
0.0072 (1.100)
0.0066 (1.202)
0.0060 (1.326)
0.0054 (1.478)
0.0047 (1.668)
0.0041 (1.915)
0.0035 (2.249)
0.0029 (2.738)
0.0022 (3.616)

0.0062 (1.034)
0.0057 (1.117)
0.0053 (1.215)
0.0048 (1.332)
0.0043 (1.473)
0.0039 (1.649)
0.0034 (1.871)
0.0030 (2.160)
0.0025 (2.546)
0.0021 (3.008)

CNL

0.0067

0.0079

0.0064

*AREs are in parenthesis
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Table 10. Asymptotic variances and ARE* for the intercepts in a choice experiment
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Choice of Fabric Scftaner
Efficient Design

Jbs Sploosh Plunbbob Platter Moosey
1 $1i.99 $1.99 $1.98 $2.49
2 $2.49 $1.49 31.49 $1.99
3 §1.49 $2.49 $2.49 $1.49
4 $2.49 $1.99 $2.49 $1.99
& $1.49 $1.49 $1.49 $2.49
6 $1.49 $2.49 $1.99 $1.99
7 $2.49 $1.99 $1.99 $1.49
8 $2.49 $2.49 $1.49 $1.49
9 $1.99 F1.49 $2.49 $1.49

10 $1.45 $1.49 $1.99 $1.49
11 $1.99 $2.49 $1.489 $2.49
12 $1.49 $1.99 $1.49 $1.99
13 $1.99 $1.99 $1.49 $1.49
14 $1.49 $1.99 $2.49 $2.49
15 §2.49 $1.49 $2.49 $2.49
16 $1.99 3$2.49 $2.49 $1.99
i7 $1.99 $1.49 $1.99 $1.589
18 $2.49 $2.49 $1.99 $2.49

Figure 3. Prices from a Choice Experiment

derivatives are derived and then coded directly into SAS and R matrix language
software. We computed the expressions {30) and (31) for different values of p rang-
ing from O to 0.9 by interval of 0.1 and obtained the inverse of Fisher information
matrix for probit and logit models. The AREs are calculated for each parameter by
taking the ratio of diagonal elements of inverse Fisher information of the two models.
The results are displayed in Table 8 for intercepts and in Table 9 for the discrete,
continuous covariates in case of data coming from consumer panels. In the case of
data coming from designed experiments, the results are displayed in Table 10 for
intercepts and in Table 11 for the other covariates. ARE computations for various
formulation of mean term (Section 2.2.1) are not performed due to the fact that the

results will be similar, irrespective of mean formulation.

From Table 8 and Table 9, the ARE’s are about 1 when p = 0, comparing independent
probit model with independent logit. The ARE’s increase as the value of p increases
from 0.0 to 0.9 and the efficiency of probit model is about 2 times to that of logit
models for the highest value of p = 0.9. This table also shows an interesting point

relating the coefficients of logit model to the coefficients of probit model in case
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of nonzero correlation between alternatives. For example, the coefficients in logit
model are approximately v/1.6 times the coefficients of probit model, when p = 0.
The results in Table 8 and Table 9 provides a rough approximation of this relation
for p > 0. Similar conclusions can be drawn in the case of data coming from discrete

choice experinents.
3.4 COMPARISONS BASED ON SMALL SAMPLES

In real time applications, sample sizes are usually large for discrete choice models,
However, it is of theoretical interest to evaluate the small-sample performance of
choice models. To compare the small sample performance, we calculate the mean
squared error (MSE) from the true parameter values and compare models. First, we
generate the covariates x;; of sample of size n = 30 and fix the regression coefficients
B. Next, we generate the error terms z;; from extreme value distribution for CNL
model and from multivariate normal with mean O and correlation matrix R for
the Probit model. Then the response y;; is generated for both logit and probit
models using these inputs so that two datasets are created. For different values of p
ranging from 0 to 0.9, we simulated 1000 samples and for each sample we estimated
the regression parameters using maximum likelihood estimation. The expression for

MSE is given as,

1 -
MSE = =3"(B, - B)°
1
MSE;

MSEp’

where B is the number of simulations. The small sample efficiencies are calculated
by taking the ratio of the MSE of the CNL model over the MSE of the MDCP model.
Table 12 and Table 13 present the results for small sample efficiencies.

B
b=

and Small Sample Efficiency =

3.4.1 COMPUTATION DETAILS

Small sample efficiency calculations are based on MSE of two models and thus
require estimation of parameters. Estimation of parameters involves maximization
of log-likelihood function and it requires use of optimization routines. First, we
present some of the computational problems involved in obtaining the parameter
estimates. For optimization of both logit and probit models, we use a built-in opti-

mization routine in R, called “optim” and it is based on NelderMead, quasi-Newton



Table 12. Small sample variances and efficiency™® for intercepts

p

ﬂV(ﬁm)

nV {(Bo2)

ﬂv(ﬁos)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.2180 (1.559)
0.2147 (1.583)
0.1790 (1.899)
0.1790 (1.899)
0.1488 (2.284)
0.1438 (2.364)
0.1276 (2.664)
0.1337 (2.542)
0.1135 (2.994)
0.1215 (2.797)

0.2046 (2.025)
0.2012 (2.060)
0.1787 (2.320)
0.1670 (2.481)
0.1561 (2.656)
0.1588 (2.610)
0.1596 (2.597)
0.1892 (2.191)
0.2396 (1.730)
0.4093 (1.013)

0.2237 (1.529)
0.2097 (1.631)
0.2230 (1.534)
0.1985 (1.723)
0.1683 (2.032)
0.1612 (2.122)
0.1458 (2.347)
0.1481 (2.310)
0.1379 (2.480)
0.1386 (2.468)

*Efficiency is in parenthesis

Table 13. Small sample variances and efficiency* for continuous and discrete

covariates

P nV(B1) nV (Ba1) nV (Ba2)

0.0  0.0710 (1.455) 0.2219 (1.257) 0.2777 (1.033)
0.1 0.0723 {1.583) 0.2294 (1.216) 0.2459 (1.166)
0.2 0.0769 (1.554) 0.1897 (1.471) 0.2511 (1.142)
0.3 0.0852 (1.463) 0.1771 (1.575) 0.2206 (1.300)
0.4 0.1032 (1.320) 0.1757 (1.587) 0.2144 (1.338)
0.5 0.1119 (1.089) 0.1560 (1.787) 0.2418 (1.186)
0.6 0.1458 (1.004) 0.1522 (1.833) 0.2348 (1.221)
0.7 0.1481 (0.810) 0.1170 (2.383) 0.2097 (1.368)
0.8 0.1379 (0.657) 0.1068 (2.611) 0.2069 (1.386)
0.9 0.1386 (0.392) 0.0914 (3.052) 0.2643 (1.085)

*Efficiency in parenthesis

40
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and conjugate-gradient algorithms. In quasi-Newton methods, two algorithms BFGS
and L-BFGS-B are useful for the optimization problem in hand. The first algorithm
“BEF'GS” is useful in the case of estimation of parameters that have no constraints,
while the “L-BFGS-B” is Limited memory modified quasi-Newton method with box
constraints, most useful when the parameters are constrained. SAS has only limited
memory BFGS algorithm as part of PROC OPTMODEL that does not allow box
constraints. Please see SAS/OR(R) 9.2 User’s Guide: Mathematical Programming;
PROC OPTMODEL: NLPU solver for more details. The correlation parameter p
has constraint —~1/(¢— 1) < p < 1 and thus require to use constrained optimization.

We used R software for optimization.
3.4.2 DISCUSSION

Small sample efficiencies are displayed in Table 12, Table 13 for intercepts and
covariates respectively. The results are displayed for different values of p from 0.0 to
0.9 by interval 0.1. The results demonstrate the probit model clearly performs better
than logit model and this trend increases as p increases. Notice that there are few
abberations for larger values of p = 0.7, 0.8, 0.9 for intercepts, partly due to problems

in convergence. The convergence rate for both models is well above 95%.
3.5 REAL DATA EXAMPLE

Example 1. Laundry Data:

To illustrate the two models and compare the results, we revisit the laundry detergent
example and apply the two models. Here we consider two different formulation of
mean as discussed in Section 2.2.1. To recap, the data is from a market research
study and contains information about the brand and price of the laundry detergent
purchased by 2657 consumers originally analyzed by Chintagunta and Prasad (1998).
The dataset contains the log prices of six detergent brands Tide, Wisk, EraPlus,
Surf, Solo, and All as well as the brand chosen by each household. We fit both
conditional logit model and Multinomial discrete choice probit model to identify
the relationship between detergent choice and the price accounting for correlation
between alternatives. Table 14 provides point estimates, standard errors and p-values
for both the conditional logit and the multivariate discrete choice probit model. It
also presents the AIC criterion for comparison of likelihoods of the two models.
When comparing two models, the smaller AIC, the better model. Table 14 shows
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Table 14. ML estimates for the laundry detergents data

MDCP Equicorrelation CNL*
Parameter EST. SE  p-value EST. SE  p-value
Intercept Tide -1.6982  0.6723 0.0115 -2.6285 1.2128  0.0061
Wisk -3.4877  0.6333 < 0.0001 -5.98056 1.1574 <«0.0001
EraPlus -2.2939 0.6722 0.0006 -3.3530 1.2114 0.0005
Surf -3.4071  0.6403 <« 0.0001 -5.6066 1.1733 <0.0001
Solo -3.1664 0.6758 <« (0.0001 -5.1017 1.2324 <0.0001
All 0.0000 —_— —_— 0.0000  0.0000 _
log-price Tide -99.5420 4.8298 < 0.0001 -126.329 7.9440 <0.0001
Wisk -66.1671  4.0067 < 0.0001 -87.834 6.7383 <«0.0001
EraPlus -74.5006 4.9094 < 0.0001 -116.208 8.0835 <«0.0001
Surf -68.9659  3.9117 <« 0.0001 -97.119  7.0350 <0.0001
Solo -68.0277  5.2536 <« 0.0001 -98.074 9.2168 <«0.0001
All -202.8864 16.3689 <« 0.0001 -310.228 30.9367 <«0.0001
P 0.1952 0.0086 <0.0001
AlIC 6885.62 7020.79

*Normalization of scale to have unit variance.

that Probit model performs better than Logit model. The estimated correlation
coefficient p = 0.1952, which is highly significant. The log-price coefficient in probit
model has correct intuitive sign and accurately estimated with low standard error

compared to the logit model.

Example 2. Travel mode choice:

We illustrate the probit model with equicorrelation structure and the conditional logit
model applied to the following travel data example. The data source is Table 21.2 of
Greene (2003). This data contains choices made by 210 individuals traveling between
Sydney and Melbourne in Australia. The response has four modes of travel namely
Air, Train, Bus or Car. The explanatory variables that are specific to alternative are
waiting time, travel cost, travel time, general cost, party size and we also have an

individual specific variable like household income. There are 840 observations by 210
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individuals. We are interested to model the travel mode choice using the explanatory
variables such as time, cost, waiting time, etc. We fit both conditional logit model
and Multinomial discrete choice probit model with equicorrelation structure and
compare the results. Table 15 provides point estimates, standard errors and p-values
for both the conditional logit and the multivariate probit model. It also presents the

AIC criterion for comparison of likelihoods of the two models.

Table 15. ML estimates for the travel mode data

MDCP Equicorrelation CNL*
Parameter EST. SE  p-value EST. SE  p-value

Intercept Air 3.0152 0.5299 < 0.0001 4.0663 0.7857 <«0.0001
Train  2.6001 0.2948 < 0.0001 3.4059 04314 <«<0.0001
Bus 2.1068 0.2960 < 0.0001 2.9391 0.4351 <0.0001

Car 0.0000
Waiting time -0.0579 0.0061 < 0.0001 -0.0809 0.0091 <0.0001
Travel cost -0.0563 0.0125 <« 0.0001 -0.0663 0.0180 0.0002

Travel time -0.0086 0.0016 < 0.0001 -0.0104 0.0023 <0.0001
General cost 0.0443 0.0112 < 0.0001 0.0541 0.0162  0.0008
p 0.1101 0.0413 0.0077

AIC 390.813 405.851

*Normalization of scale to have unit variance.

From Table 15, both models show similar consumer behavior choosing trans-
portation mode. Intercepts show that the relative preference to Air travel is higher
compared to other transportation modes. The negative coefficients for waiting time,
travel cost and travel time indicate that consumers are choosing the transportation
mode that has less waiting time or travel time and cheaper. The estimated correla-
tion is about 0.11, though significant, consumers choose the travel mode alternatives
based on factors like time, cost but not switching between them. The AIC criterion
shows that probit model performs better than logit model, taking correlation into

account.
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CHAPTER 4

PROBIT MODEL WITH PRODUCT CORRELATION

Logit models relax IIA assumption by allowing correlation between unobserved
factors of choice alternatives. The most widely used GEV models are nested logit
models in which all alternatives are partitioned into different nests and relax IIA
assumption by assuming a correlation between alternatives within nests. Two varia-
tions of nested logit models are prominent, one that allows no overlapping of alterna-
tives between nests and other that allows overlapping of alternatives between nests,
known as Generalized Nested Logit (GNL) models. McFadden (1978) developed
a process to generate GEV models. Even though the choice probahilities for GEV
models can be derived using basic probability rules, this process makes it easier to
obtain expression for choice probabilities and development of new GEV models by
choosing a different generating function. This process is quite similar to the multi-
variate extreme value copula models based on properties of MSMVE distributions,
discussed in Chapter 5. The process to generate GEV models (McFadden 1978) is

outlined in the following section.
4.1 GENERATION OF GEV MODELS

Omitting the subscript 7 for the subject, consider a function G{E, ..., E,) with
Ey, ..., E. 2 0 that has the following properties.

1. G(Es,. .., E.) 2 0 for all positive values of E; Vi =1,...,¢c

2. G is homogeneous of degree one, that is G{aE,...,aF.) = aG(E,,..., E,) for

a constant «
3. G »cas B, » o0,V =1,...,c

4. The kth ovder partial derivative of G with respect to F; are nonnegative for

odd k and non-positive for even k.
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Any function G that satisfies these properties generates a GEV model and the choice
probabilities of this GEV model are of the form

. _ EBG(B,....E)
Pi G(Ey,..  E)

where G; is the first order partial derivative of G with respect to E;. If we choose
E; = exp(p;) then E; is positive for all values of p; As an example of this process,
we illustrate the derivation of paired combinatorial logit (PCL) model for a specified
choice of G that has many potential applications in travel behavior of route choice

with overlaps.
4.2 PAIRED COMBINATORIAL LOGIT MODEL

To obtain PCL, let G be of the following form,

c—1 c
Akt
G( 2ly e s %C) Z Z (E]f’\ki 1/)&:) )
k=1 1=k+1

By choosing E;; = exp(u;;), 5 = 1,...,¢, the first property of G > 0 is satisfied.
With 0 < Xy < 1, it is easy to see that G is homogeneous of order one and it goes to
infinity as £;; goes to infinity. Thus, the corresponding three properties are satisfied.
Note that the first order partial derivative of G with respect to Ej is

0G(Eq, ..., Fi) 1/2r; /2 Y270 )1
OE,; - Z (Eﬂ‘ +Ey ) E ’
* T#]

and it is nonnegative for 0 < A,; < 1, the second order partial derivative of G with

respect to K, is

*G(Eq,. .., Ey) /\mj—l( 1/ Armj 1 mg YA 101 (1 )1
A - A 4 gl '"J) A e o
9B, 0F;; By \am T By i i

and it is non-positive for 0 < A,; < 1 and so on. Thus all properties are satisfied for
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chosen G and the expression for choice probability p;; in PCL model is given by

- By Gi(Eq, ..., Ey)
he G(Eq, ..., Ey)

(Arj—1)
By Zr#} ( B + El/’\”) ’ E(l'u"’) -t
Ek 1 t k+1 (EUAH -+ El’u“‘)
S, B ( EYw E;;Arj) Arg=t
r#7 ar
e (P )
Er:‘,éj e(i‘ij!f‘\"j) (e#ir/‘/\rj + emJ'f).,j)Ari_l

c—1 c AN A VKL
1 ZZ_—_k—H (erix/ M - guat/ )

which is of the same form as (13). This expression can be rewritten as

Py = ij/(j,k] X D(i.k)1
k#j

where p;/(; k) i the conditional probability of choosing alternative j given the chosen
the pair of alternatives (j,k) and pg;) is the marginal probability of selecting the
pair (7,k). Given that a pair (4, k) is chosen and the choice of an alternative within
this pair follows a binary logit model, the expressions for the conditional probability
of choosing jth alternative in the pair (7, k) is
efiil Ak
BitGry = elis [ Ak o oHic/Ajx |

Similarly, the marginal probability of choosing the pair (4, k) among the ¢(c — 1}/2
possible pairs is given by
(em:&/‘\jk + emk/)\_,-k)’\-’ik

) T gs (e g

P(i k)

The PCL model has wider application in transportation research for its overlapping
nature of choice alternatives. For example, Chu (1989) introduced the PCL model
for travel demand analysis and a comparison of conditional logit, nested logit and
PCL models is discussed by Koppelman and Wen (2000). Li and Ouyang (2008)
presented a modified PCL model that has few computational advantages over original
PCL model.

Continuing the performance comparison of probit models over logit models, an

equivalent probit model that allows correlation structure similar to PCL is discrete
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choice probit model with product correlation structure, first considered by Dun-
nett (1989). The product correlation structure is obtained when p;, = A; Az, where
pjx is the correlation between alternatives j and k& under the restriction —1 < A; < 1.
The correlation coefficient pj; is equivalent to the dependency parameter A;; for the
nest containing alternatives 7 and &. Probit models with simplified structured covari-
ance matrices proposed by Yai, Iwakura and Morichi (1997), Bolduc (1992) to model
route choice behavior are some of the alternative models to PCL. In this chapter,
we consider probit model with product correlation structure which has more general
correlation structure and less parsimonious to PCL. We derive the exact analytical
expressions for choice probabilities, Fisher information matrix, ML estimation and

compare its performance with PCL model.

4.3 PROBIT MODEL WITH PRODUCT CORRELATION

Assume R = [pj], where pjr = A0 for =1 € A; < 1,5 = 1,...,¢. The
restrictions on A;,j = 1,. .., c make the correlation structure to be positive definite.
Under the assumption of unobserved factors z; follows a multivariate normal with
mean O and correlation structure R, the choice probability of ¢th subject choosing
4th alternative is

piy = Pr{ug>ugforall K(#4)=1,...,¢)
= Pri{p+z;>pe+zpforall k(#7)=1,...,¢)
= Pr(z; — 2z > par — g for all k(#j)=1,...,¢)

[ ety im
11—t Mo — b5

where W = (U — U,..., U, — U;) is a m — 1 multivariate normal with mean

pr = (1~ f4, .., fm — i5) and correlation structure R* = CRC’ with

10 ... -1 ... @
o01.. -1 .. 80
oo ... -1 ... 1

4.3.1 STOCHASTIC REPRESENTATIONS

Suppose X3, ..., X, are has multivariate normal with a product correlation struc-
ture R. Then the random variables (/1 — A2V +XM Vi, ..., /1 — AZV.+AW,) follows
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multivariate normal with mean O and correlation structure R, where V3, V4,...,V,
are iid N(0,1) random variables. (Dunnett 1989). The representation X; =
/1= AV, + MW is known as “stochastic representation” of multivariate normal
random variables. In the simplification of choice probabilities with product corre-
lation structure, we apply stochastic representation two times to simplify the ¢ — 1

variate integral to a bivariate integral.

Using stochastic representation, let zx = /(1 — Af}vie + Axvig, where
Vio, Vi1, - - -, Vic are independent standard normal variables. Then, E(zj) = 0,

Var(zi) = 1, and
Cov(zik, zir) = \/(1 -~ Ai)\/(l — A% )Cov (vik, vi)
+ \/—(I-_T’D A Cov(v, vig)
+ AL \/(]_——A’%,)COV(U{[J, 'Uik‘)

+ A2 Cov(vig, vio)
= Ak/\k’-
Hence,
by = Pr (32J Zik > Mg — l'J‘z.‘i

(\i‘ Ag)vzj \/ (1 - Az)ﬁak + -)\ - )\k 'U'a(] > Mig — P"i_?)

/ Pr D > (pax — pg) + (A — Ag)oly; for all k(£ 5)] $(v) dv
[ PriDu> Cutolo; for all ki# 5)] 6(0) o (33)

where Cig{v) = (pix — phi;) + (A — Aj v and Dy, = m% ~ /(1 = AZ}uy. Note
that, Dy, k(# j) = 1,...,c are normal with mean 0, variance (1 — A2) + (1— A?) and
Cov(Dix, D) = 1 — X2, so they are not independent. To simplify further, we again
use the following stochastic representation.
Let Dy = /(1 — Af.)wig + mwﬂc, k # j, where w;, wy, - . ., Wy are indepen-
dent standard normal radon variables. Then,

E(Dy) = 0;

Var(Dig) = (1-X7)+(1—29);
Cov(Di, D) = (1 — A3)Cov(wyg, wi)
= (1-23%).
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Therefore, the choice probability under above special correlation structure becomes,

I

Dij f Pr Dy > Cy(v)|v; for all k(# j)] ¢{v) dv

f Pr [,! 1= Xwig + /(1 — A2)wg > Cye(v)|v; for all k(# j)] $(v) dv
= ] / Pr |iw,k > Culy : |'U,'w; for all k(+#£ j)] d{w)p(v)dwdy

1l

V(=A%)
Ci(v) — \/(1‘*)‘?) ‘
_ / f _ o i M ow)bw)dwao
T k(#)=1 VL= X)
B o poo g i o (}L@j — P'*tfk) + ()\J - )\k)v + (1 -~ f\?)'w
N fm fm B(w) L3 V-3
d(w)p(v)dwdv. (34)

4.4 MAXIMUM LIKELIHOOD ESTIMATION

Similar to the probit model with equicorrelation structure, we assume that the
means Wi, J = 1...c are linear functions of x{;3 and our goal is to estimate the
unknown parameter 8 = (3, A) using the maximum likelihood estimation method.
The log-likelihood £(8) for n subjects is

= log [H pr"] = Z Zysj log(pi;),

=1 j=1 i=1 j=1

where p;; computed using expression (34). The maximum likelihood estimate of
= (B, A) of @ is the solution of likelihood equations 0¢(0)/08 = 0. The expressions
for the first order partial derivatives of the log-likelihood are

20) _ o0 20

30 398 OA
[af(e) 80(6) de(0) aw(e)]
860 BB, BN Bk |

The first order partial derivatives of £(8) with respect S, A;, Ar, (7 # j) are given

in the following section.
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4.4.1 EXPRESSIONS FOR SCORE EQUATIONS

Let 8 = (B, A) where 8 = (6,...,8,) and A = (Aq,...,A;). For simplicity, let
ti{v, w, 1,7}, ta(v, w,, 7} and t3(v, w, 7, 7) denote the following quantities.

t(v,w,1,7) = (i — pat) + (5 = Ao + \/mw} |

_ A
to(v,w,l,j) = - A
AHE;EI T \/1—)~’2 Sinyim|

ts(v,w,r,j) = (1= a2)37

(1 = pie)e = (1= A1)+ 005 = MJo + ), 1_A§w]

Further, let A;(8,v,w) = ®(t:1(v,w,!, 7)) and &;(8,v,w) = ¢(t;(v,w, !, §)) Then the
derivatives of A;(8,v,w), o (8, v, w) with respect to Bn, A;, A (r # 7) for all m =
opT(#7) =1,...,care

8 dﬁm
— A0, v, = —q8,v, w)—/—,
aﬁm 1( v ’LU) l( ) 1 — A?
;X—As(e vw) = a(8v,w)ta(v,w,1,5),
é'i_Ar(B:U:w) = ar(ﬂ,v,w) tg(‘U, ?,U,T,j),
52;&:(9 v,w) = af,v,w)b(v,w,l, J)ﬁ,
a?\ a!(e v T.U) = —G.;(B,U,TU) tl(?),w, l:]) tQ(U} 'U'J,I,j):
o
g;)\—ar(ﬂ,v,w) = —a.(6,v,w) (v, w,1,7) ts(v,w,7,7),

where dim = (Tim — Tijm)- Using the above results, we obtain the first order partial
derivatives of log-likelihood function with respect to 5., A;, and A, (r # j7) in the

following manner.
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<

Opii  _ L w

o - ° — dﬁm
T LI H) e

#{w) ¢(v) dw dv.

Therefore,
Opi; _ ° 1 CA ~ af,v,w)  dam
e (,CHI "(9’”"“”)) LZ: As(e,v}wn/—*—l_,xg}
d(w) ¢(v) dw dv.
Similarly,

2= [ _/:5(170—[ > (H Ak(e,v,w)) a:(e,u,w)tg(v,w,:,j)]

W#)=1 \ki#)=1
$(w) $(v) dw dv

- /] (HAkeuw)LZ fﬂ((gf,ﬁ) @w,l,j)]

(#3)=1
$(w) ¢(v) dw dv,

and

aps'j _ oo foo L ¢ ) |

(T#J)
¢(w) #(v) dw dv
= fw /m 5&5 (H Ak(ﬂ,v,w)) %Q(v,w,r,j)
—00 J —o0 P ACERS
d(w) ¢{v) dw dv.

4.4.2 EXPRESSIONS FOR HESSIAN MATRIX

The second order partial derivatives consist of evaluating the 7 expressions

32}3:‘3‘ 5210{;' agpij 32}3@3‘ 32}%‘ 32?:‘5 321%
OB, 0B, 3/\3;8,8,“’ 8\ 08, BA;‘-’ ’E)A,.B)\j’ OAON, OAZ '
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and their analytical expressions are derived as given below. The second order partial

derivative of log-likelihood with respect to 8, and £y, (m # m') is given by
Fpy; q(8,v,w) dym
aﬁm,ajﬁm N _/ / CI)(w) 8ﬁm (1;[ Ar(0,v w)) [Z A8, v,w) /1 — /\2]
a{0,v,w) dan
(H Ax(8,v 'w)) [Z 400 w) \/ﬁ} (w) $(v) dw dv
dik’m"
= A8 (60,1, W) ———
L[ (L o)t ]
Z a;(e v, w) dﬂm + HAI:(B " w) Z zlm
40,v,0) i) T (114G ion

(8, v,w)ty(v,w, 1, 7)  digw + (a;(ﬂ, v, W) ) it
Ai(8, v, w) V137 A8, u,w) ) /1 — Py
d(w) ¢(v) dw dv.

Therefore,

p?-.:-‘ : ak; 9 v, w dik’m-‘
aﬁm@ﬁ’m / _/ ‘I’ (g Ak(e’ v,w)) { Z Ak:(G v 'w) 1- /\%,]

Z al(e U w) ditm Z it a; 9 v 'w)

=1 A{(B,U,UJ)1,1_A:2 ﬁ)l_A2A£(B (3 TU)

\/% {-tl(u,w,z,j)+%}}} ${w) $(v)dudv.
l o,

(35)

Similarly the second order partial derivative of log-likelihood with respect to 8, and
A; is given by

62})@' _ £ aievw ilm
%08, _/ / 3(w) Iry (kHlA’“B”w) [ZAl(euw),ﬂ— 4

a(0,v,w) duym

A;(G v, w) /1 -\

] ¢{w) ¢(v) dw dw.
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This can be simplified as

pi._‘,l _ h
OX;08m _/ _[ { L}(#J) 3 ( H Ak(e,’U,’LU)) aw(6,v,w)

k(#k')=1

;s ay 6 v ‘UJ‘) itm i
ta(v, w, k', 7)) (ZAlegw)J—F)_(klzllAk(e:U)w))
[Z Gitm {tz v w,l,y)z((%—))tl(” w, 1,9
2
+ (%) tz('u,w,l,j)}] } Bw)(v)dwdy

~ a0, v,w) ta{v,w, K, §
f / o) (HAk(evw)){[ > ( Ak’()eiiw) 3)}

K (#i)=1

a8, v, w it dam (0,0, w) .
(EAI(B v w)\/—1_,\2) [Z VT3 A4(0,0,w) 2 )
{tl(v}w,z,:f) ' ﬂ%ﬁ%}] } b(w) $(v) duo do. (36)

Now, the second order partial derivative of log-likelihood with respect to 3, and
Ar, (r # j) can be obtained as

&py
ot~ ) wwon (HA"(B”“”)

(H 440, w)) = j‘f‘: Y \/‘f"‘_LA] B(w) $(u) duw dv

= / f 5w ){ H Ai(8,v,w) o, (6, v,w) ts{v,w,7, J)

k(#r)=1

@ (6,v,w)  dim a.{8,v,w)
ZA; B'Uw),/_)\?:I (HA" 6“‘") [_A,,.(B,U,w)
d’a’rm tl('U,w, T:J) tE(v:- w, T:J) dlrma'r(eaviw) )Lr
V11— 22 Ar(6,v,w) (1—22)%2

dirm t3(v,w,r,j) ar(evv}w) ?
- T (A,(G,fu,'w)) ] }q&(w)t;ﬁ(v)dwdv.

i: al(et U,?.U) dﬂm
=1 AI (9: U,'UJ) LY/ 1 )k:c




o4

Therefore,
Ppy; (8, v, w) a; (6, v, w
ONObm ] / 3w )(HAkevw)Ar(evw) ZA,evw)
(r#3)
dilm ¢ (’U w.r ) _ dirm [GT(BIU,'LU) " (U .y )
\/m? 3\Y, RV ﬂ Ar(B,U,?ﬂ) 3\ Y, ) 1.}

+t1(vl w, 7, .?) t3(vi w,7r, J)

s | bowowauan. @

Further, the second order partial derivatives of log-likelihood with respect to )\? is

Ppi; 1 @ (¥ ~ o8,v,w) (v, w1, §)
az / / TE’??(,HA"(&’”’W)) LZ ‘ A;(a,i,w) }

(#i)=1

+ (II Ak(e,v,w)) o [ 5 et )} Hw) 6(0) duw
k=1 7 AN .

#d)=1

_ oo a (8, v, w) ta{v, w, 1, §)
- / f B(w) {W I(HA“ @, ) 46,0, w)

- a;(G,'u,w) tg(U,‘w,l,j) : - a;(@,v, w)
[ Z A6, v,w) ] + (g Ak(ﬂ,v,w)) l Z {Ag(e,v,w)

{#4)=1 (#)=1

3 _ No (0, v,w) %
tl(va w, z!.?) t?(viw: l!.?) (A;(G,U,w)t2(v’ w, E:j))

(0, v, w) d Aj AJE' v) dw dv
A8, v,w) V1- N (\/I—A§ + (1—)\?)3/2) }] }é(w) P(v) dw dv.

Hence,
' 2
azp;-j i < {Ig(e,'l},‘UJ) tg ("U, W, 3,3)
= Ax(@
Y / / o(w) (gl xl ""’w)) { L (7%::1 A1(6, v, w) }
B a;(0,v,w) _ 2 w
I{;} A8, v,w) [tl(v’w’l’“?)tz(v’w’z’ﬂ " V1= X1 — A2)3/2
) talovw, 3| o) 8s) dw v

(38)
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Also, the second order partial derivatives of log-likelihood with respect to A; and

Ml # 5) is

8?\};;3- _/ f ®(w) A, (HA‘C(B v w)) [ Z j;i i Z,w iz(v,w,l,j):‘

(r#3) H#9)=1

(H Ai(8,v w)) Bi [ z az(e}vﬁ:?;’ti(j;;u’l’j)} $(w)p(v) dwdv

H#i)=1

k(#r)=1

“~ a(0,v,w) ta(v,w,1, 7) < a.(8,v,w)
[ Z A6, v, w) ] + (gAk(B,v,w)) [—AT(O,v,'w)

H#j)=1

'/ f @w){ H Ai(0,v,w) ar {0, v,w)ts(v, w, T, 7)

tl(vy w,'r,j) tZ(vi 'wa'raj) t3('v,w, r:j) - t2(v)wa 'f‘,j) ia(v; W, T, .7)

(a,(e, v, w) )2 N a-(0,v,w) AV Ajw Ar
A8, v, w) A8, v,w) \ (1 -2 [ A2 (1—Az)%2

d(w) ¢(v) dw dv.
Hence,
&ps; a.(8,v,w) c ,
OAON; / [ (HAk(e v "”)) m > ta(v,w, 1)
(r#3) 0 {#1)=1
%((6_’,1:,—-1:)))] ta(v,w,r,7) — [t1{v,w,m, 3) ta(v, 0, 7, §) ta(v, w0, 7, 5)
ar(ﬂ,'v,w) R N A‘r 3 Aj'w
P A @) D ) = g ( ,_”F_*A;)H

P(w) p(v) dw dv. (39)
Similarly, the second order partial derivatives of log-likelihood with respect to A(r #

j)is

ol W (HA'“(O“")) gt

(r#37)

+ (g Ak(e,?),w)) 8?\, [Z((Z’,Z:?:’)) t3(v,w,r, j)} H(w) ¢(v) dw dv.
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This can be simplified as
(r3) =
(H A8, 'w))
_ (k]‘[ 44(0,, 'w)) “’ (68, ‘“) e L J))2
)

+ (H Ar(6,v,w) ar(z z; 1:; ) 9% Ua;U r.J) } d{w) ¢p(v) dw dv
k=1

a-(8,v,w)
A.0.0,w t3(1)11)7‘j)t1(1)11)7’j)

Note that,

5 (1 — A2)572

Therefore,

5()925\,? f / ) (HA“ (8,v, w)) a(0,v, w) {[ —ty (v, w, 7, §ta(v, w7, § )

T?—“J)

_|._

(5 — ) (L 2202) + Oy + 20,02 = 30 v+ /1= 221+ 202w
@37

d{w) ¢(v) dw dv. (40)

Finally, the second order partial derivatives of log-likelihood with respect to

Ar(r # 7) and AL(r # 7' 5% j)is

Bfff;;r - _/ _/ 8&_ (H Ak(g v, ’UJ)) [ r((eﬂiz,‘l:;))t3(vawar$j)}
(rir' i)
d(w) ¢p(v) dw dv

=[] iyt (H A8 “”))

a, (8, v, w)
A (0, v,w)

t3(’u ‘ZU,?",}) ( ] (U)dwdv
(41)
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4.5 ASYMPTOTIC EFFICIENCY COMPARISONS

In this section, we compare the discrete choice probit model with product correla-
tion structure to the paired combinatorial logit model in large samples. As described
in Section 3.4, comparisons can be done in small samples using mean square error.
However, we do not perform these computations in this dissertation due to time
consuming computations that run into several days. As mentioned in Section 3.3.1,
normalization of scale is required to compare logit models with probit models. This
is even true for comparison of PCL model with discrete choice probit model with
product correlation. In order to ensure both models are at same level, we assume a
product correlation structure for the PCL model. With normalization of scale, the
new beta coefficients in PCL are BPCL/ (7 /+/6). With this the two models are on

par with each other and can be compared.
4.5.1 ASYMPTOTIC RELATIVE EFFICIENCY

From the general theorems for logit models shown by McFadden (1974), it follows
that the maximum likelihood estimator gpc; for the PCL model asymptotically has
a norma! distribution with mean # and covariance matrix Zpg,;, where Z is the Fisher

information in n subjects given by

(42)

Toos = _E [aze(e)]

8606’
Similarly, the maximum likelihood estimator gMDcp for the discrete choice probit
model with product correlation structure is asymptotically normal with mean 8 and

covariance matrix I;ﬁ)c p Where

5606 (43)

We computed the asymptotic variances of beta estimates by taking the diagonal ele-

Tupop = ~E [823(9)]

ments of the inverses of (42) and (43). The asymptotic relative efficiencies (ARE) are
calculated taking the ratio of the variances for the PCL model over the corresponding

variances of the MDCP model with product correlation.

8pcy ~
ARE — Var(Z2%%) _ 1 Var{fpcr)
V&I'(QMDCP) '”2/6 V&I‘(BMDCP)

The expression for second order partial derivatives of PCL model is given in (8).

This does not involve y;; terms and the expectation of this term is itself. For the
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multinomial discrete choice probit model, the second order partial derivative matrix
consists of expressions (35) through (41) and the expectation of these expressions are
as given below.

828(5) ] . o 621"&” o 1 Ipi; pi;
E[aﬁm;aﬁm_ N ZZ aﬁmaémf)“.zgf aﬁi) B*B;f?)

Plovs) = 22 (oomi) 225 (5) (3)

Plovan) = 22 (onam) 21 (3) (53)

o[os) = (o) -Soa (3 ()
sl = L (o) S35 (32)
o[22 - >3 (5) - La ()
%) = L2 (%) -2 ()

4.5.2 ARE COMPUTATIONS FOR DATA FROM MARKET SCE-
NARIO

As described in Section 3.3.3, for the choice models data usually comes from two
sources namely consumer panels and discrete choice experiments. We perform the
efficiency comparisons only in case of data coming from consumer panels, The results
are similar in case of data coming from discrete choice experiments. We assume the
same setup as in the case of asymptotic efficiency computations for comparing CNL
to the probit model with equicorrelation structure. We generate the continuous
covariate from multiple normal mixture so as to resemble real market scenario.

Similar to efficiency comparison of CNL to the probit model with equicorrelation
structure, we took a large sample of n = 1000 observations with two covariates. The
first covariate is a continuous covariate generated from multiple normal mixtures

(Figure 2) and the second covariate is a discrete covariate with three levels (Table
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Table 16. Arbitrarily chosen values of A

S. No. value of A

1 (-0.754, -0.681, -0.769, -0.738)
2 (-0.701, -0.516, -0.1686, 0.379)
3 (0.283, -0.075, -0.546, 0.293)
4 (0.676, -0.547, -0.426, -0.810)

7). We assumed the number of choices ¢ = 4 and computed ARE for arbitrarily
chosen values of correlation parameters A. We selected 4 different values of A to
see how both models perform relative to each other. Large number of simulations
for different values of A can considered, but omitted due to computational burden.
These computations are heavier, often run into several days and require optimization
of R program we developed. With this setup, the total number of covariates are 6
that include 3 intercepts, 1 continuous covariate and 2 dummy variables for discrete

covariate. The mean function is
ij = BorInt! + BoaInt® + BoaInt® + Pz, + 521$§§j + ﬁzz:rggj (44)

The fixed regression coefficients are as follows: Intercepts: fp = -0.479, Sge = 1.051,
Baz = 0.475, Continuous covariate: 8; = 0.781, Discrete covariate: 8y = 0.107, foy
= -0.525 We simulated the data with these specifications and for 4 different values of
A. They are given in Table 16. We obtained the asymptotic variances of both PCL
and MDCP model with product correlation structure as negative expected value of
hessian matrix and computed the variance of parameter estimates as inverse of the
Fisher information matrices. Table 17 and Table 18 presents the asymptotic variance

and (ARE) for the data simulated from true market scenario.
4.5.3 DISCUSSION

ARE computations does not involve any parameter estimation and doest not re-
quire use of optimization routines. The analytical expression for second order partial
derivatives are derived and then coded directly into SAS IML and R softwares. We
computed the expressions (42) and (43) for arbitrarily chosen values of A and ob-

tained the inverse of Fisher information matrix for MDCP with product correlation



Table 17. Asymptotic variances and ARE for 3 estimates

SNo Method Bn Bo2 Bos B B Baz
1 MDCP II 00475 0.0305 0.0483 0.001 0.6063 0.0043
PCL 0.0738 0.0536 0.0501 0.0163 0.0101 0.0133
ARE 1.56537 1.7574 1.0373 23.2857 1.6032 3.0930

2 MDCP II 00139 0.0062 0.0145 0.0017 0.0077 0.0063
PCL 0.0102 0.0086 0.0080 0.0027 0.0069 0.0063
ARE 0.7338 1.2464 0.5517 1.5882 0.8661 1.0000

3 MDCP II 0.0235 0.0183 0.0183 (.0014 0.0093 0.0066
PCL 0.0035 0.0120 0.0051 0.0055 0.0026 0.0041
ARE 0.1489 0.6557 0.2698 3.9286 0.2796 0.6212

4 MDCP II 0.0346 0.0063 0.0089 9.7349 0.0054 0.0045
PCL 0.2450 0.1156 0.0740 10.9208 0.0068 0.0174

ARE 7.0809 18.3492 8.3146 1.1218 1.2533 3.8667

Table 18. Asymptotic variances and ARE for X estimates

S.No Method M A2 A A
1 MDCPIH 0.0094 0.0028 0.0091 0.0150
PCL 0.0675 0.0851 0.0997 0.0406
ARE 7.1809 30.3929 10.9560 2.7067
2 MDCPII 0.0408 0.0028 0.0170 0.0045
PCL 0.0821 0.0417 0.0093 0.0217
ARE 2.0123 14.8929 0.5471 4.8222
3 MDCPII 00180 0.0033 0.0044 0.0701
PCL 0.0242 0.0039 0.0729 0.0227
ARE 1.3444 1.1818 16.5682 0.3238
4 MDCPII 00640 00018 00061 0.0102
PCL 0.1207 01293 0.0745 0.1015

ARE 1.8850 71.8333 12.2131 9.9510
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and PCL models. The AREs are calculated for each parameter by taking the ratio
of diagonal elements of inverse Fisher information of the two models. The results are
displayed in Table 17 for 3 estimates and in Table 18 for the correlation parameters
A. ARE computations for various formulation of mean term (Section 2.2.1) are not
performed due to the fact that the results will be similar irrespective of mean formu-

lation.

The ARE’s are expected to be around 1.64 without normalization of PCL model.
Some of the AREs in Table 17 and Table 18 are much higher or much lower than
1.64 due to estimation error. This is especially true in case of the MDCP II model,
as the MDCP II models require numerical approximation of a double integral and
the built-in “integrate” routine in R sometimes fail. Exploration of other numerical
methods to evaluate double integral are required to accurately estimate the variances
in the MDCP 1II model. Note that, the small values of variances indicate that the
results are very close to the true values. However, valid conclusions can be drawn only
after estimating the variances of MDCP II model to the desired level of accuracy.
In general, probit models are preferred to incorporate other phenomenon such as
random taste variation or repeated responses. If the data does not contain any of

this information, PCL is preferred for its simplicity over probit model.
4.6 REAL DATA EXAMPLE

Example 1. Laundry Data:

To illustrate the two models and compare the results, we revisit the laundry detergent
example and apply two models. Here we consider two different formulation of mean
as discussed in section 2.2.1. To recap, the data is from a market research study and
contains information about the brand and price of the laundry detergent purchased
by 2657 consumers originally analyzed by Chintagunta and Prasad (1998). The
dataset contains the log prices of six detergent brands Tide, Wisk, EraPlus, Surf,
Solo, and All as well as the brand chosen by each household. We fit both PCL model
and Multinomial discrete choice probit model with product correlation structure
to identify the relationship between detergent choice and the price accounting for
correlation between alternatives. Table 19 provides point estimates, standard errors
and p-values for both the PCL model and the multinomial discrete choice probit
model. It also presents the AIC criterion for comparison of likelihoods of the two
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models. Though both models have similar results, we observed that these estimates

Table 19. ML estimates for the laundry detergents data

MDCP I1 PCL*
Parameter EST. SE  p-value EST. SE  p-value
Intercept Tide 3.8442 11948  0.0013 3.7509 1.5416  0.0150
Wisk 26804 1.4877  0.0716 3.3861 1.4319  0.0180
EraPlus  3.4800 1.4492  0.0161 3.7226  1.5096  0.0137
Surf 43297 11014  0.0001 3.8608 1.4230  0.0067
Solo 1.7799 1.7632  0.3128 2.4863 1.5551  0.1099
All 0.0000 — — 0.0000  0.0000 —
log-price Tide -108.533 12.9253 < 0.0001  -108.489 128931 <0.0001
Wisk  -105.327 12.0531 < 0.0001  -105.926 6.7383 <0.0001
EraPlus -105.720 10.6645 < 0.0001  -106.190 10.2816 <0.0001
Surf -106.205 11.1658 < 0.0001  -105.474 11.0812 <0.0001
Solo -103.499 19.8372 < 0.0001  -104.123 19.7120 <0.0001
All 106.629 35.4821 < 0.0001  -106.088 35.9607  0.0032
Correlation Tide  0.6569 0.4519  0.1460 1.0000 0.5238  0.0562
' Wisk -0.0419 02813  0.8817 -0.6833  0.3559  0.0549
EraPlus  0.1120 0.2645  0.6719 0.1146 0.1083  0.2900
Surf -0.5427 08284  0.5124 -0.9868 0.5265  0.0609
Solo 0.9088 0.9648  0.3462 1.0000 0.7346  0.1735
All 0.3748 0.1827  0.0403 0.2231 0.3752  0.5522
AIC 7584.25 7610.18

*Normalization of scale to have unit variance.

are susceptible to starting values. Some more starting values have to be tested before

confirming the results of these two models. Due to time consuming computational

issues, not all observations were used in estimation. Also, computation of choice

probabilities in MDCP model require use of built-in “integrate” routines in R, which

does not. yield accurate results. Further exploration of numerical methods is required

for accurate results. In view of this, we do not interpret the model coefficients and

draw any conclusions.
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Example 2. Travel mode choice:

We illustrate the probit model with product correlation structure and the PCL model
applied to the following travel data example. The data source is Greene (2003) Table
21.2. This data contains choices made by 210 individuals traveling between Sydney
and Melbourne in Australia. The response has four modes of travel namely Air,
Train, Bus or Car. The explanatory variables that are specific to alternative are
waiting time, travel cost, travel time, general cost, party size and we also have in-
dividual specific variable like household income. There are 840 observations by 210
individuals. We are interested to model the travel mode choice using the explanatory
variables such as time, cost, waiting time, etc. We fit both PCL model and Multi-
nomial discrete choice probit model with product correlation structure and compare
the results. Table 20 provides point estimates, standard errors and p-values for both
the PCL model and the multinomial discrete choice probit model. It also presents
the AIC criterion for comparison of likelihoods of the two models.

Table 20. ML estimates for the travel mode data

MDCP II PCL*
Parameter EST. SE  p-value EST. SE p-value

Intercept Air 49645 0.9282 < 0.0001 4.5117 0.9468 <0.0001
Train  4.6968 0.6260 < 0.0001 4.8459 0.5420 <0.0001
Bus 3.0787 0.6631 < 0.0001 4.0197 0.6121 <0.0001

Car 0.0000
Waiting time ~-0.1739 0.0548 0.0015 -0.1150 0.0120 <0.0001
Travel cost -0.1661 0.0648 0.0104 -0.1095 0.0254 <0.0001
Travel time -0.0347 0.0526 0.5094 -0.0180 0.0033 <0.0001

General cost 0.0677 0.0717 (0.3453 0.0934 0.0241  0.0001
Correlation Air  0.8026 0.6405 0.2102 1.0000 0.6377 0.1168
Train -0.7291 0.5019 0.1463 -0.5874 0.4505 0.1922
Bus 0.8704 0.8094 0.2822 1.0000 0.7173 0.1633
Car -0.8954 0.6876 0.1928 -0.9958 0.7512  0.1849
AIC 490.813 465.851

*Normalization of scale to have unit variance.

From Table 20, Though both models have similar results, we observed that these
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estimates are susceptible to starting values. Some more starting values have to be
tested before confirming the results of these two models. Due to time consuming
computational issues, not all observations were used in estimation. Also, computation
of choice probabilities in MDCP model require use of built-in “integrate” routines in
R, which does not yield accurate results. Further exploration of numerical methods
is required for accurate results. In view of this, we do not interpret the model

coefficients and draw any conclusions.
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CHAPTER 5

DISCRETE CHOICE COPULA MODELS

In the previous two chapters, we developed discrete choice probit models for two
correlation structures namely equicorrelation structure and product correlation strue-
ture. Further, we compared the efficiency of these probit models to the equivalent
specification of logit models and concluded that probit models perform better than
logit models. A probit model is obtained by assuming that the unobserved factors
have a multivariate normal distribution with a correlation structure in which the
diagonal elements are always one. However, logit models do not have unit variance
structure across diagonals and require normalization of scale to compare with probit
models (see Section 3.3.1). Note that the joint distribution of unobserved factors in
a multivariate probit model can be represented using Gaussian copula with standard
normal marginals. Without having to normalize the scale, the ideal choice of a logit
model to compare with a probit model is the logit model with the joint distribution
of unobserved factors modeled using Gaussian copula with extreme value marginals.
Further, the logit models can be represented using extreme value copulas that de-
scribe the multivariate extreme value distribution with extreme value marginals.
Extreme value copulas define a multivariate extreme value distribution with a de-
pendence function that governs the dependence structure between alternatives and

choice of several dependence functions lead to several logit models.

In this chapter, we present the theory of copulas, basic definitions, examples and
application of copulas in modeling discrete choice behavior. We focus our attention
on two copulas, the extreme value copula for logit models and Gaussian copula for
probit models. Extreme value copulas are introduced in Section 5.3.1 and Gaussian
copulas are given in Example 5.2. Further, we derive previously studied logit and
probit models as special cases of these two copulas. We conclude this chapter with

some ideas of future research on copula based methods for discrete choice data.
5.1 COPULAS

Copulas are general tools to construct or describe multivariate distributions with

specified marginal distributions. By definition, a copula by itself is a multivariate
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distribution with marginals that are uniform on the unit interval [0, 1}. In addition, a
copula characterizes the structure of the dependence between the chosen marginals.
The simplest way of constructing a multivariate copula function is to “invert” the
marginal distribution functions and use them as the elements for the joint distribu-
tion function. In the following sections, we define a copula, discuss some well known

examples, study their basic properties and related results.

Definition 5.1 A d-dimensional copula is a function C : [0,1]¢ — [0,1] with the
following properties. Let u = (uy,...,uq) be in [0, 1}%. Then

1. C({u) = 0 if at least one element of u is 0.
2. If all elements of u are 1 except ug, then C(u) = uy, fork=1,...,d.
3. C(u) ts right continuous as a function of u.

4. ForallO0<aj <aj, <1, 3=1,...,4d,

2 2 2
Z Z T Z(_l)f’l-l'fﬁ-i--‘-—}-rdc(ah“ Qoray v v ad‘rd) ?.. 0

ri=1ro=1 ra=1

It follows that image of C' = [0,1], so C is a multivariate uniform distribution

function. Below are some examples of copulas that are useful in our context.
5.1.1 EXAMPLES OF COPULAS

Example 5.1 Independence Copula. This is also known as Product Copula. It is a

d-variate function given by

d
Calu) = [ [ ws- (45)
i=1

Example 5.2 Multivariate Gaussian Copula. Let R be a symmetric and positive def-
inite correlation matrix. Let ®.(z1, ..., z4 0, R) be the d-variate normal distribution

function with mean 0 and correlation R. given by

= = 1 1
Dylz, ... 20, R) = o e exp(-i7R2 ) d
4z 2a ) ./_oo /_m T exp ( 57 z) z

The multivariate Gaussian copula with correlation matrix R. is given by

C('I.I; R) = @d(fﬁ‘l(ul), “eay (I)_I(‘U.d); 0, R), (46)
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where ®1(.) is the inverse of the cumulative standard normal distribution function.

Note that when R = I, this copula reduces to the Independence Copula.

Example 5.3 Multivariate Gumbel-Hougaard Copule. This multivariate copula is

given by
C(u;8) = exp{—((—logu)? +---+ (~ Iogud)e)lm}. (47)

The range of the parameter £ is [1, o0), and it is an indicator of the degree of
dependence. This copula reduces to the independence copula when @ = 1, and as
8 — oo it converges to the Fréchet-Hoeffding upper bound Cy given below. See
Gudendorf and Segers (2009} for a discussion of this copula.

To establish the relationship between multivariate cumulative distribution func-
tions and their univariate margins via a copula function, the following fundamental
theorem due to Sklar (1959) plays an important role.

Theorem 5.1. Let F(y,...,yq) be a joint distribution function of d random vari-
ables with marginal distribution functions F1(y1}, ..., Fy(ys). Then there exists a
d-variate copula C such that for real numbers y;, 1 <1 < d,

Fy,-.,ya) = C(Fi(n), - -, Falya))- (48)

Further, if Fi,..., Fy are continuous, then C is unique. Otherwise, C is uniquely
determined on the set Range(F)) x Range(Fy), x --- x Range(Fy). Conversely, if
C is a d-variate copula and Fi(¥1),..., Fa(ys) are univariate distribution functions,
then the function F(v1,...,ys) defined by (48) is a d-variate distribution function
with marginals Fy(wn),.. ., Falys).

The copulas are bounded functions and the bounds are known as Fréchet-Hoeffding
bounds which are described in the following theorem.

Theorem 5.2 If C is any d-variate copula, then for every u = {(u,,...,uq) in {0, 1)¢,
Cp(u) < Clu) < Cy(u)
where the Fréchet-Hoeffding lower bound C}, and upper bound Cy are defined as

Crlu) = max(0,u;+ -+ ug — {d - 1)),

Cy(u) = min(u,...,uq).
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The upper bound Cy is a d-variate copula for any d > 2. It is known as comono-
tonicity copule. The lower bound Cp, is a copula for only d = 2, and it is known as

countermonotonicity copula.
5.1.2 COPULA DENSITIES

By Sklar’s theorem, the cumulative distribution function of d-variate random

vector Y = (Y}, ..., Yy) can be written as

Fly) = C(Fi{n), - - ., Fa(ya)),

where C is a d-dimensional copula. When Y is a continuous random vector, the joint

probability density function of Y can be obtained as

d
f&) =11 filw) clFilw),-- -, Falya),

=1
where f;(y;) is the marginal probability density function of ¥;, and the copula density
of C' given by '

c(u u ) — adc(uh"':ud)
Bt T e By . Bug

Similarly, when Y is a discrete random vector, the joint probability mass function of

Y can be written as
2 2 2 _
Priyy = - D (-1 ¥icluy, ug, - - ug,),
j1=1j2=1 Ja=1

where uj(y;) = Fi(y;) and up(y;) = Fi{ws). Also, the conditional distribution

F(’U.'.}, e ,‘U.d_]_lutj) is given by

ac(ulv st ud)

F(ulz ey ud—llud) = B'U-d_

5.2 GAUSSIAN COPULA DISCRETE CHOICE MODELS

We now introduce a more general form of discrete choice probit model using the
Gaussian copula and show that the probit models in previous chapters are a special
case. This generalization allows us to construct discrete choice models with various

correlation structures for the unobserved factors. Also, the construction allows us to
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use other marginal distributions other than standard normal, such as Gumbel and

allows comparison without normalization of scale.

Let Y = (Y¥},...,Y.) denote the response vector of ¢ choices in a discrete choice
experiment. Note that Y is ¢-variate binary random vector with the restriction that

only one of Y; is equal to 1 and rest all are zero. Or simply,

[4 <
Y ~ Multinomial(l, (p1,...,p.)) with ij = 1 and ZYJ., = 1.
— ,

Following the utility maximization theory, let U; be the latent utility of the jth
alternative for 7 = 1,..., c. Further, assume that U; = u; + Z;, where y; is the mean
and Z; denotes the unobserved random component. Then the choice probability can

be computed as

p;i = Pr{U; > Uy, k#7)
= Pr(Zy < Zj+ (1 — ), k#J)-
Additional assumptions are needed to compute this choice probability. An assump-
tion that the joint distribution of Z = (Z4, .. ., Z,) is multivariate normal with mean
0 and correlation matrix R leads to the discrete choice probit model. Replacing
the distribution of Z = (Z),..., Z.) by a copula based distribution would lead to

Discrete Choice Copula models. Discrete choice probit model is a Gaussian copula

model with marginals as standard normal.

Suppose that the joint distribution of Z = (Z;,...,Z.) can be represented by a

Gaussien copula as
F(z) = ®(F(n),...,F(z))

where F'(z;) is the cumulative distribution function of Z;. Then the choice probability

can be written as

pi = Pr(Zx<Zi+(uj— ), k#7)
- ] Pr(Zc < (u; — ) + 2 k # §12; = 2;) f(z) dz;

[ (I)C—i(F(z;)v SERR ] F(z;-l)! F(z;+1)s vy F(z:)le = zj) f(zj) dzj (49)
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where ZZ = (H’j — ,U-k) + 24 and @C_l(F(Zl), ey F(Zj-l), F(2j+1), N ,F(Zc)|Zj = Zj)
denotes the conditional distribution function. We can simplify the probability (49)

further when the marginals are assumed to be standard normal as given below.
Let R be the correlation matrix parameter in the Gaussian copula. Let R be parti-

1
R = Ri2
Ry Ra

- The conditional distribution of Z_; = (Z1,...,Zj.1,Zj41, ..., Z) given Z; = z; Is
MV N{Ra12;, Ra2 — R2;Ry2). Hence the choice probability (49) can be written as

tioned as

P =

] ‘I)c.,l(F(Z;), ey F(Z;_&l), F(Z;+1 yrevy F(Zc*), Rglzj, R22 - Rg]_Rlz) f(zj) dzj

The matrices Ry; and Rgz — R31Ry5 can be easily caleulated for equicorrelation and

product correlation structures.
5.3 EXTREME VALUE THEORY

Extreme value distributions are limiting distributions of extremes such as mini-
mum or maximum of a sequence of random variables. In the univariate case, the well

known “Fisher-Tippett-Gnedenko” three types theorem can be described as follows.

Let Xi, Xs,..., X, be iid random variables with a common distribution function
F. Let X(n) = max(X;,...,X,). For suitably chosen sequences {a,} and {b.}, the
possible limiting distribution of (X, — a,)/b, as n — oo is one of the following

distributions.
1. Gumbel or Extreme value distribution with Fy(z) = exp{—e™*}, —00o < z < 00
2. Fréchet distribution with Fy(z,6) = exp{—-27%},2> 0,8 > 0
3. Weibull distribution with F_;(z,8) = exp{—(—2)°},2 < 0,6 >0

where z is of the form z = (z — u}/o. With location-scale changes, the three distri-
butions can be combined into the Generalized Extreme Value (GEV) family as

F(z;7) = exp{—(1 + 72)1*"}, —00 < z < 00, —00 < 7 < 0, (50)
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where (t); = max{0,t}. When v — 0, F(z;7v) reduces to Gumbel distribution,
when v > 0, F(z;7) reduces to Fréchet distribution and lastly the condition v < 0
yields the Weibull distribution. This theory can be extended to multivariate case
yielding multivariate extreme value distributions and the dependence structure via

a multivariate copula, known as Ezxfreme Value Copula.
5.3.1 EXTREME VALUE COPULAS

Before proceeding onto extreme value copulas, we first describe the character-
ization of a multivariate extreme value distribution. Let (X, Xi,..., Xig) for
t = 1,...,n be d-dimensional ilid random vectors with a common joint distribu-
tion function F, which is determined by a Copula Cr and marginals F,..., Fy.
Let (Xn1), X(n2)s - - - » X(na)) denote the componentwise maxima and Fiuy,. .., Fing
denote their distribution functions. Then the multivariate extreme value (MEV)
distribution is a limiting distribution of ((X(n1y — @a1)/ba1, - . -, (X(ng) — nd)/brd) as
n — oo and for some suitable normalizing constants a,; and by;, 1 < 7 < m. It can
be written in the form C(H(21; M), ..., H(z4;74)), where H{z;;;) is a GEV distri-
bution parametrized by v;, for 7 = 1,...,d. To construct a MEV distribution and
the copula that characterizes this distribution, we need to study the copula related

to the maximums. The case of minimums will be similar by symmetry.

Note that the copula of a maximum of n random vectors can be written as Cp,y(u) =
Cr(ud’™, ... ,u;‘/“)”‘ for u in [0, 1] To see this, observe that Fi,;(z;) = Pr(X;; <
t; V1 < i < n) = [Pr(Xy; < z;)]* = [Fj(z;)]*. Now, the joint distribution of

componentwise maxima. can be obtained as

Foy(Tt, .., 2a) = Pr(Xmy <21, Xngy < 24)
= Pr(Xy<a,..., X < 24 ¥i)
= [F(z1,...,zg)]"
= [Cr(F(m), ..., Falza))]"
= [Cr([Fan(@)]™,..., [Frna(za)]™)]™
Therefore, the copula that characterizes the joint distribution of component-

wise maxima, denoted by Cp)(u,...,uqs) can be written as Cyy(uy,...,uq) =
Crlul™, ... ,u/™Y". This leads to the following definition.
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Definition 5.2 A copula C'is called an Eztreme Velue Copulaif there exists a copula
Cr(u) such that

Crul™,... ,ul™" = C(u) asn = oo

for all u = (uy,...,uq) in [0,1)%. The copula Cr(u) is said to be in the domain of

attraction of C(u).

Because copula is a multivariate distribution function, we have the following defini-

tion.

Definition 5.3 A d-variate copula C(u} is maz-stable if
Clu) = Clud”, ... ,ul/"y

holds for every integer r > 1 and all u = (uy,...,ug) in [0, 1]%

One can show that a copula is max-stable if and only if it is an extreme value copula.
See Nelsen (2006) for a proof. We now describe a procedure for constructing extreme

value copulas using Pickands (1981) representation.

Let C(u}) be a d-variate max-stable copula. Let the distribution of the random vector
X = (Xj,...,X4) be determined by C'(u) and standard exponential marginals with

mean one. The joint survival function is given by
S(z1,. - 28) = Pr(Xy > 21,..., X > zg) = Cle™,...,e7%) (51)
- where 5 is the survival function of the copula . Let
2; =:r:j./(x1 +--t+zg)andr =z, + -+ 24
Note that E}LI z; = 1. Since C'(u) is max-stable, we have

S(z1,...,zq) = Slrzy,...,rza)
= T, e
= [Cle™,...,e™™)]"
= exp{-—7 A(2,...,23)}
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where A : [0,00)¢ — [1/d, 1] is the function defined as
Alz, ..., 24) = —log Ce™™,...,e7%). (52)

The above function A(z, ..., z4) is known as tail dependence function of the extreme

value copula. It is related to the extreme value copula by the equation

a
C(ul,...,ud) — exXp {log (];[uj) A (ﬁﬁ,,f%) } . (53)

Therefore, if C(u) is an extreme value copula, then it is of the form (53) for an
appropriate choice of A(z1,...,2z4). For (53) to be a copula, A(z,...,z) must
satisfy the following properties.

1. A(z,...,24) is convex.

2. A(z1,...,z4) is homogeneous of order 1, that is, A(rz1,...7z4) = rA(zy,. .., z3)

for » > 0.
3. max(z,...,24) < Az, ..., 2q) < 1forall (z1,...,24) in [0,1]%

The above construction is known as Pickands representation of a min-stable mul-
tivariate exponential distribution (MSMVE) using survival function (or max-stable

using distribution function). The result is summarized in the following theorem.

Theorem 5.3 A d-variate copula C{u} is an Extreme Value Copula if and only
if there exists finite measure H on the unit simplex D, = {(wi,...,wy) €

[0, 00)%; Zle w; = 1}, called as spectral measure, such that
C(u) =exp{—A(—loguy,...,—logug)},

where the tail dependence function A : {0, 00)% — [1/d, 1] is given by
A(zl,...,zd) :/ [maijzj] dH(wl,...,wd), (zl,...,zd) S [U,OO)d
Dy 1<5<d

For a proof of the above theorem, see Galambos (1987). The above representation
of C(u) can be siraplified further in bivariate case, that is, when d = 2. In bivariate
case, Theorem 5.3 reduces to the following result.
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Theorem 5.4 A bivariate copula is an Extreme Value Copula if and only if

Clunr, uz) = exp {log (uruz) A (M) }

log (uyu9)

where A : {0,1] — [0.5,1} is convex and satisfies min{z,1 — 2) < A(2) < 1 for all
z € [0,1].

5.4 EXTREME VALUE COPULA MODELS

Extreme value copulas with a dependency function A of the form —log S, where
S is a survival function, result in extreme value distributions that are MSMVE.
Joe (1997), Section 6.3, described three dependency functions that are of the form
—log §. Two of the three dependent functions are relevant to our discussion. The
first one results in Gumbel (1960) family of extreme value copulas and. the second
results in normal family of extreme value copulas. All GEV models, discussed in Sec-
tion 2.3.1, can be represented using Gumbel family of extreme value copulas with a
variety of dependence patterns generated from the given dependency function. This
process first described by McFadden (1978) to generate GEV family is actually based
on the properties of MSMVE distributions. Using the normal family of extreme value
copulas, we can generate extreme value models with dependency structure similar
to that of a multivariate normal distribution. These have not be explored to model
choice behavior in the literature. The dependency function that generates normal
family of extreme value copulas is derived as an extreme value limit of bivariate or
multivariate normal distribution. We exploit the properties of MSMVE distributions
to obtain the choice probabilities, which result in a closed form expressions due to

the property that the class of MSMVE distributions is closed under margins.

As a way forward, we first explore the case of bivariate families of copula with a
single parameter for dependency function and then consider multivariate extensions

with multiple parameters that describe the dependency structure between marginals.

5.4.1 GUMBEL-HOUGAARD COPULA MODEL
Counsider the dependence function of the form

Alzr, 203 N) = (7 + 2), (54)



75

where A > 1. The related extreme value copula is given by
Clur, ug; A) = exp{—((—logu1)* + (— log uz)*)**}. (55)

This copula family is known as Gumbel-Hougeard Copula. It is one of the earliest
multivariate extreme value copula models. The copula density of this family is given
by
Cluq, ug; A) (log u; loguz)*
wus  [(—logui)? + (— logug )1/
x {[{(—logu)* + (= loguz)’ ] Y2+ A —1}.  (56)

c{uy, ug; A) =

A value of A = 1 leads to the independence, in which the dependence function be-
comes A(z,2) = 2, + 23. Fréchet upper bound is obtained by letting A go to
oo, in which case the dependence function becomes A(z1,2z2) = max(z,2;). This
family can easily be extended to multivariate case with different forms of depen-
dency structure. For example, we can consider the dependency function of the form
Alz1,...,24) = (2} + -+ 2z})V/* that has a single dependency parameter A. This
could be used to generate a copula model with exchangeable correlation between
alternatives. We can also consider other dependency functions that allow clustering
between alternatives. Using the properties of MSMVE distributions, we obtain the

closed form expressions for choice probabilities in the next section.

5.4.2 HUSLER-REISS COPULA MODEL

Consider the dependency function of the form

Alz1, 7223 0) = 7® (31\— + %log(zl/zfg)) + 2P (% + %log(zg/’zl)) (57)

for A > 0. The bivariate extreme value copula with dependency function {57) is given
by

_ B 1 A log 1
Ol i) = exp { ~(og) @ (5 -+ 5 1og (2522 ) )

1 A log us
—(loguz) ® (X +3 log (logul)) } : (58)

where ® denoted the standard normal distribution function. This copula family was
introduced by Husler and Reiss (1989) and it is known as Husler-Reiss Copula. This
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copula is obtained as a limiting form of bivariate Gaussian copula, assuming the
dependency correlation p converges to 1. The copula density of this family is given

by
) _ Clus,ug; A) 1 A logul)) 1A log uy
c{uy, tg; A) = " ® 3 + 3 log oz 4 ® 3 + 5 log log

A 1 A log uy
_210gu2¢ (X M 2 log (logul))] (59)

where ¢ is the standard normal density. When A = 0, this copula becomes indepen-

dence copula and when A — o0 it attains the Fréchet upper bound. The multivariate
extension of this dependency function is closed under margins and dependency pa-
rameter for pair (ji,j2) is same as for the pair (j2,7:). The dependency structure
is similar to that of multivariate normal distribution. This model is an extreme
value model with normal margins, not yet explored to analyze choice behaviors in
the literature. The dependency function of the multivariate case can be written in a

recursive form as

Arm(z, M2, Aim) =
Al.“m—l((zh vy zm»l)) Al?; reny Am—?,m—l) + B(Z], v zm-—l)
(60)

where

m 1 Aim z .
B(z1,...2m-1) = f Q1 (5—“ + —32— [108(“)] JE<m—1; [pmjk]j'€k{m—1) dz.
0 im 25

See Joe (1997) for details.

5.4.3 COMPUTATION OF CHOICE PROBABILITIES

In this section, we illustrate the computation of choice probabilities for the ex-
treme value copula models. MEV distributions obtained from an extreme value
- copula have the MSMVE property and hence dependency function A is of the form
—log S. Further, the function A is homogeneous of order 1. We exploit these prop-

erties to show that the choice probabilities are in a closed form.

Let U = (U7,...,U,) be a random vector of ¢ random variables, where U; denote

the utility associated with jth alternative in a choice model with ¢ choices. Further,
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assume that U has MEV distribution obtained from an extreme value copula with
dependency function A{u). Since an extreme value copula has dependency function
of the form —log S, where § denotes survival function of MEV distribution, we have
S(u)} = exp(—A(u)). Further, let A;(U) denote the partial derivative of A with

respect to u;. Then we have,

35(“) _ —eA(u] 314(11
Buj o 61:;3-
= —5(u)4;(u)
Now using the property of homogeneity we have for u; > 0, A{uy,..., %) =
ulA(]‘l u’?/ula s :uc/ul)' Hence:
as :
S S(0) [ A u, /) = 3k un) AL s, )
1 k=2

For 4 = 1, comparing above two equations yields,

C

A(n) = A(ufuy) =D (up/ur)Ag(u/u).

k=2

Thus A;(u) only depends on the ratios ux/u;. In a similar way, A;(u) only depends

on the ratios ux/u;, k(# 7) = 1,..., c. Now consider the conditional survival function

PT(U& >uk,k7éj and Uj ‘:Uj)

Pr(Uy > ug, k# 3|U; =u;) =

Pr(U; = u;)
o dS(u) 1
B Ou; e~ %

= €% S(u) A;, i=1...,c

Now, the survival function of minimum denoted by Uyy = min(Uf, . .., U,,) such that

Uy = Uj is given by

PriUy >t Uy =U;) = f e A Az, ..., z) de

t

- f e A0V A(L L 1) da

i

il

A.?(]'! Ty 1) f e_'mA(l,..‘,l) d&'}
t
1)

A1, ..

—£A{1,..,1) 61
A, 1) ¢ (61)
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Therefore, 37, Pr(Uny > Uy = U;) = Pr(Uy > t) = e A(tD) since
> =1 A1, 1) = A(1,...,1). Thus the survival probability of minimum is in
a closed form. We will exploit this property to obtain the choice probabilities in

closed form using the survival function.

Let Z denote the random vector of unobserved utility components that follow MEV
distribution F(z) = exp{—A(e™™,...,e™*)}, obtained from an extreme value copula,
with dependency function A of the form —logS. Let U; be the total utility of jth
choice alternative that is sum of mean y; and the uncbserved component Z;,j =
1,...,c. The jth option is selected if U; > Uy for all & # j. Therefore, the choice
probability of lst alternative being chosen is

p1=PT(U1>Uk;k=2,...,C) = PT(Z1>Zk'*"(ﬂk_ﬂl)ikzz)"')c)
= PT(Z!C<Zl_(#k_ﬂl))k=27"wc)

To write this probability in terms of survival function, let Wy = e % and w,, = e#*.

Then we have

f

¥4 PT(Zk<Z1“(/J-k—[£1),k=2,...,C)
Pr (e"Z" >e Belmm) p—2 ,c)

= Pr(wk>w"wl, k=2,...,c)
(2251

i

The range of Z; is from 0 to co. Using the properties of MSMVE distributions,

o
p = / g Amrualen 'm'wc/wl)Al(l; wa/wn, - . ., wefwr)dz
0 .

A](l, ’IU2/'LU1, PN ,wc/wl)

A(lawi’/wl; aan 7wc/w1)

_ Al(wliwza"'iwc)
(1/w1)A(wi, we, .. we)
e‘“Al(e‘“, vy 6“‘)
Alem, . .. eme)
Similarly, the choice probability for jth option is in a closed form given by
eﬂjAj(e#17 e, el‘c)
pi = Alem, ... ete) (62)

Therefore, the models derived from max-stable MEV copulas are convenient in that

closed form expressions are obtained for the choice probabilities. This is exactly the
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procedure McFadden (1978) described to generate GEV models (see Section 4.1).
Further, we can assume a regression framework for y; as a function of covariates and
estimate the regression parameters using likelihood estimation methods. We present

few examples in the following section.

5.4.4 EXAMPLES

In this section, first we present examples of Gumbel-Hougaard Copula Model with

various dependency functions.

Example 5.4 Complete Independence: Let A(z) = z + ---+ z.. Then A;(z) =1

and the choice probability becomes
et
This is the conditional logit model with an assumption that the unobserved factors

are independent.

Example 5.5 Equicorrelation: Let A(z) = (2f +--- + 28)1/%,8 > 1. Then A;(z) =
(28 + - + 22)790-1519"D and the choice probability becomes
et

P = e
7 Ej..—_l 63;&3
This is the logit model with equicorrelation dependency structure between unob-

served factors.

Example 5.6 Nested Structure: Let A(zy, 22, 23) = ((22 + 28)%% + 25}, 1 <6 < 8.
Such a dependency function has alternatives {1,2} as one nest and alternative 3

forms a different nest with one alternative. Then the partial derivatives are

Aj = [(zla + zg)&fa + 2‘35](1./5)_1 (zf + zg)(fsl'ﬂ)——lzg—l fOI'j — 1‘ 2

Az = [( +2)° + )07

and the choice probabilities are

W (wf+ud)
(w] +wf) ((w] + 28)%% + wi)
w
((wi + )% +w)

Py for j=1,2

P3 =
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where w; = e#, 7 = 1,2, 3. This is a simple example of nested logit model. Complex
models can be obtained with different dependency structures by using different de-

pendency functions.

Now, we present few examples of Husler-Reiss copula model in bivariate case with a
dependency function of the form (57). This model has dependency structure similar

to the bivariate normal distribution with normal margins.

Example 5.7 Bivariate Husler-Reiss model: Let the dependency function is of the
form (57). Then the partial derivatives A;(z1, 2z2; A),j = 1,2 are

L 1 A F2) A2 é 2 A 1 A %
M) = @ (5408 + 520 (5 + lon™)) - 5o (5 + 108(D)).
and

N — 1.2 Az (1 x AN A (1 Az
talany i) = @ (5 510 + 526 (5 + 3lou@)) - 3o (5 + Sroe2).
Therefore, the choice probabilities are given by '
| e1® (5 + 3 (i — 1))
e1® (3 + 5( — po)) + 2@ (3 + ${u2 — 1))’
= 2@ (5 + 3 (42 — )

e1® (3 + 3(m — pa)) +e22® (5 + (2 — )

For the multivariate case, we have the recursive relation of the dependency function

n =

as in (60). For mn = 3 with a single dependency parameter A, the dependency function

in recursive form can be written as
3 I A z. 1 A rz. 1
Az, 29,23, X) = A(21, 29; M) +f0 D, (1 + > log(z—l), 3 + 5 log{z—Q), 5) dz

and the choice probabilities can be obtained in a similar way. With multivariate
extension, this model is a multivariate extreme value model with equicorrelation
dependency structure. Other complex models can be obtained using the recursive
relation and by imposing a dependency structure to reduce the number of dependency

parameters.
5.5 FINAL REMARKS

To summarize, a more general form of choice models are presented using multi-

variate copulas. We presented a brief introduction of discrete choice copula models
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using Gaussian copula and Extreme value copulas. Copula representations are useful
in building multivariate distributions with several choices for marginals. The multi-
nomial probit models are Gaussian copula models with marginals that are standard
normal and the GEV models are extreme value copula models with marginals that
are extreme value distributions. This generalization shows a way of constructing new
models using copulas by choosing different marginals within the copula representa-
tion. For example, a Gaussian copula choice model with Gumbel marginals or an
Extreme value copula choice model with normal marginals are possible. Such models
are not yet explored to model choice behavior and this provides a road map to future
research.
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CHAPTER 6

SUMMARY

Discrete choice models are very popular in Economics to model consumer choice
behavior and the conditional logit mode} is the most widely used model. We first in-
troduced this well known conditional logit model with IIA assumption and explained
how the failure of such an assumption lead to incorrectly specified models using a
numerical example. We presented an overview of existing models in the literature
that relax ITA assumption such as GEV models. However, they are limited to handle
different phenomenon that occur in consumer choice behavior. To overcome these
limitations, we introduced the discrete choice probit models. Though they are flex-
ible, they involve difficult computation of multivariate normal distribution function

to compute choice probabilities.

In this dissertation, we presented discrete choice probit models for two correla-
tion structures namely equicorrelation and product correlation. We derived exact
analytical expressions for the computation of choice probabilities for both structures
using stochastic representations. Further, we described the procedure of obtain-
ing maximum likelihood estimates for the model parameters and derived analytical
expressions for Fisher information matrix to compute their standard errors. Using
simulations, we compared the performance of probit models with logit models in both
large sample case as well as small samples. The results show that the probit models
are efficient over logit models in both cases as correlation increases. We provided

Sample R-code that performs all computations in the appendix.

Finally, a unified approach combining logit and probit models is presented us-
ing’ multivariate copulas. Copula representations are useful in building multivari-
ate distributions with several choices for marginals. First we introduced discrete
choice copula models using Gaussian copula and Extreme value copula. We showed
that the discrete choice probit models are Gaussian Copula models with marginals
that are standard normal and the GEV models are Extreme Value Copula models
with marginals that are extreme value distributions. This insight shows a way of

constructing new models using copulas by choosing different marginals within the
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copula representation. For example, a Gaussian Copula choice model with Gumbel
marginals or an Extreme Value Copula choice model with normal marginals are pos-
sible. Such models are not yet explored to model consumer choice behavior and it

leaves a lot of potential for future research.
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APPENDIX
Here we provide two set of R-programs that perform computations of asymptotic
efficiency, small sample efficiency and maximum likelihood estimation for Condi-
tional Logit and MDCP with equicorrelation models, Paired Combinatorial Logit
and MDCP with Product Correlation models.
Conditional Logit and MDCP Equicorrelation

#libraries needed for this program to run
library (MASS)
"library (pumDeriv)
library (mnormt}
lidrary (mvtnorm)
library (MNP)
library (VGAM)
P R Y e L R L R LT R )
# Functions needed far compuiations such as col preduct, integrands of likelihood,#
# first derivetives wr t the, w r t beie etc #
e e e
#funclion to compute column product of a malriz
colprad.matrix=function(x) {
a=x[,1]
for{i in 2:dim(x) [21)
a=a*x[,i]
a = matrix(a, orow{x), 1)
return (a)
}
#function to compute column division of ¢ malriz
coldiv.matrix <- function(x,y} {
z = x
for(i in 1:din(x)£2]) {
2[,il=xE,11/y
}
return{z)

}

#1.1 funcitien to compute integrand for comgputing probailities
ProbIntegrand <- function(v, ¥uVec, rho, j)} {
product = i/pnorm(v)
for (1 in 1:nChoice)} {
product = product*pnorm(v - (MuVec (1] - HBuVec[jl})/sqrt{i-rho))
}
ProbInteg = product*exp{-vsv/2)/sqrt(2¥pi)
return {(Problnteg)
¥

#2.1 funciian to compule integrand fovr first derivatives w v t beta
FirstDerBetaIntegrand <- function(v, MuVec, xho, xDift, j, m) {
SumBeta = 0 i
for (k in 1:nChoice) {
IenProd = 1/pnora(v - (MuVecfk]l - MuVec[jl)/sqrt(i-rho))



for (1 in t:nChaice) {
InnProd = IanProdspaorm{v ~ (MuVec({1l] - Muvec[jl)/sqrt{l-rho))
}
SumBeta = SumBeta + InnProd#deorm(v - (MuVecfk] - MuVec[jl)/sqrt{(i-rha})}s»
(xDiff{{(m-1)*nChoicae+k]-xDiff [{m-1)*nChoice+j1}/aqrt(1-xho)
}
SumBeta = SumBeta/paorm(v)
FirstDerInteg = SumBataxexp(-v*v/2)/sqrt{2*pi)
return(FirstDerInteg)
¥

#2.2 funciion to compute integrand feor first derivatives w r t Rho
FirstbDerRhoIntegrand <- fupction(v, MuVec, rho, j) {
SunRho = &
for (k in 1:nChoige) {
InnProd = 1/pnorm(v - (MuVec [k} - MuVecfjl)/sqrt{li-rho)d}
for (1 in 1:nChoice) {
InnProd = InnProdr*pnorm(v - (MuVec[l] - MuVec(jl)/sqrt{(1-tho}}
} .
SumRho = SumRho + InnProd#dmorm(v - (MuVecfkl - MuVec{jl)/sqrt{i-rho))#*
(MuVec [kl - MuVec[3j])/{(2*(i-rho)"(1.5))
}
SumRhe = SumRho/pnorm{v)
FirstDerRhoInteg = SumBhorexp(-v=v/2)/3qrt(2+«pi)
return(FirstDerRhoInteg)
}

#8.1 function ito compule inlegrand for second dervivaiives w r t betaM beteM’
# (whern m = m’, we get second derivatives for same paervameier)
SecondPerBetaMMpmIntegrand <- function(v, MuVec, rho, xDiff, j, m, mpm) {
InnProd = t
for (1 in t:nChoice) {
InnPred = InnProd#tpnorm(v - (MuVecfll - MuVec[jl)/sqrt{i-rho})
}
SumBeta = 0
for (k in t:nChoice) {
SumBeta2 = ¢
for (kpm in 1:nChoice) {
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SumBeta2 = SumBeta?2 + dnorm(v - {(MuVec[kpm]l - MuVec[jl)/sqrt(i-rho})/pnorm(v - (

MuVec [kpm) - MuVec{jl})/sqrt(1-rho))*{(xDiff [(mpn-1)*nChoice+kpm)-xDiff [(mpm

-1)}*nChoice+j1)
}

SumBeta3 = -SumBeta2 + (v - (MuVec (k] - MuVec(3jl)/sqrt(l-rho))«(zDiff [(mpm-1)+

aChoice+k]~xDiff [(mpm~1) #nChoice+jl) + dnorm{v - (MuVec[k] - HuVec[jl)/sqrt
{1-rho})/pnora{vy - (MuVec[k] - MuVec[jl)/sqrt(i-zho)})+(xDiff [(mpm-1)vnChoice

+k}-xDiff [{mpm~-1)*nChoice+j})

SumBeta = SumBeta + InnProd#SumBeta3*dnorm(v - {MuVec([k} - MuVec[j})/sqrt(l-rho)

)*{xDiff ({(m-1)*nChoice+kl-xDiff [(m-1)*nChoice+jl)/(prorm{v ~ (MuVec[k]) -
MuVec[j])/sqrt (i~rho))*(i-rho))

¥

SumBeta = -SumBeta/pnorm{v)

SecondDerIntegBataMipm = SumBetavexp(-v*v/2})/sqrt(2+pi)
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return(SecondPerIntegBetaMMpm)
}
#8.2 function te compute initegrend for second derivatives w r it belaM and rho
SecondDerRhoBetaMIntegrand <- functiom(v, MuVee, rho, xDiff, j, m) {
InnPred = 1

for (1 in 1:nChoice) {

InnProd = InnProdspnorm{v - (MuVec([l] -~ MuVec[jl)/sqrt{(i-rho))

}

SumBeta = 0

for (k in 1:nChoice) {
SumBeta2 = 0

for (kpm in 1:nChoice) {

SpmBeta2? = SumBeta? + dnarm{v - {MuVec[kpm]} - MuVec[jl)/sgrt(i-rha})/pnorm{v - (
MuVec [kpm] - MuVec[j})/sqrt(1-rhe)}*{(MuVec [kpm] - MuVec[j]}

}

SumBeta3 = -SumBeta2 + (v - (MuVeclk] - MuVec[jl)/sqrt(l-the))*{HuVec[k] - MuVec
£3j1) + dnorm(v - (MuVec[k]l - MuVec([jl)/sqrt{(i-rhe))/pnerm{v - (KuVec[k] -
MuVec [j1)/sqrt(1-rho))*(MuVec[k] - MuVec[jl) + sqrt(l-rho)

SumBeta = SumBeta + InnProd=SumBeta3sdnorm(v - (MuVec[k] - MuVec[jl)/sgrt(i-rha)
)*x{(xDiff [{m-1) *nChoice+k]}-xDiff [(m-1) *nChoice+3})/(pnerm(v - (MuVec[kl -
HuVec[jl)/sqrt(1~7ho)})*2+(i-tho)"2)

}
SumBeta = ~SumBeta/pnorm(v)
SecondDerIntegBetaMRho = SumBeta+exp{-v*v/2)/sqrt{2+pi)
return (SecondDerIntegBetaMRho)
}
#3.2 function io compute integrand for second derivatives w r t rho
SecondDerRho2Integrand <- function(v, MuVec, rho, xDiff, j) {
InnPred = 1t

for (1 in 1:nChoice) {

InnProd = InnProd*pnorm{v - (MuVec[l] - MuVecf(jl)/sgrt{1-rho))

}

SumRho = O

for (k in 1:nChoice) {
SumBeta2 = 0

for (kpm in 1:nChaice} {

SumBeta2 = SumBeta2 + dnorm{v - (MuVec[kpm] - MuVec(}]))}/sqrt(l-rho))/pnorm(v - (
MuVec [kpm] - MuVec[j])/sqrt(i-rho))*(MuVeclkpm] - MuVec[jl)

}

SumBeta3 = -SumBeta2 + (v ~ {MuVec[k} - MuVec[jl)/eqrt(i-rho))»(MuVecik] - MuVec
[j1) + dnorm(v - (MuVec[kl - MuVec[jl)/sqrt{(i-rho))/pnorm{v - (MuVec[k]l -
MuVec [j))/sqrt (1-rho)})+*{(MuVec [kl - MuVecfjl) + 3ssgrt{i-rho)

SumRho = SumRho + InnProd*SumBeta3d*dnorm{v - {(MouVec[k] - MuVec(jl)/sqrt{(i-rko))=*
{MuVec (k] - MuVec[jl)/{pnorm(v - (MuVec{k] - MuVec(jl)/sgrt(i1-rho)})*4*{t-rho
)-3)

}

SumRho = -SumRho/pnorm{v)

SecondDerIntegRbhe2 = SumRho*exp(-v#*v/2)/sqrt{2=pi)
return (SecondDerIntegRho2)

¥
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#‘litii**t**ti***t***********i*titttt‘*t“tt‘iititttiititJI**t‘tﬂ‘**i!"tt*“*‘*"*t*#
# Defining Probabilities, Derivatives, Double Derivatives for MDOP I weodel #
R e e e L P Ty Ty
#function to compute Eguicoarrelated Probit Probabdilities
ProbMDCP <~ function(Data, pars) {
betainn = pars[l:nCovariates]
rho = pars[(nCovariates+1)]
xdata = Datal,2:(nCovariates+1)]
means = xdata%*%betainn
SpHeans = matrix (0, n0bs*nChoice, nChoice)
for (i im 1:mr0bs) {
SpMeans [((i-~1)*anCheice +1):(i*aChoice) ,1:aChoicel} = matrix{1,nChoice ,1)%=*
%t (means [((i-1)*nChoica+1) : {(i*nChoice)} ,11})
}
Prob = matrix (0, nObs+*nChoice, 1)
KHuVe¢ = matrix (0,nChoice ,1)
for (i in 1:mlObs) {
for (3 im 1:nChoice) {
MuVec = SpMeans [((i~1)+nChoice+j),1:nChoice]
ql = iategrate (ProbIntegrand, lower = 0, upper = Inf, MuVac, rho, j)
92 = integrate (ProbIategrand, lower = -20, upper = Q, MuVec, rhe, j)
Prob [((i-1)#+nChoice+j) ,11= ql$value + q2$value
}
}
return (Prob)
}
#function to cewmpute Equicorreiated Probit derivetives
DerMDCP <~ function{Pata, pars) {
betainn = pars[l:nCovariates]
rho = parsfaCovariates+1]
xdata = Datal,2:{nCoevariates+1)]}
means = xdata¥=*%{betainn
SpMeans = matrix{0,n0bs*nChoice, nChoice}
SpXs = matrix (0, nObssnChoice, nChoices*nCovariates)
for (i in 1:n0bs) {
SpMeans £({i~1) #nChoice+1) : {i*nChoice) ,t:nChoice] = matrix{1,nCheoice ,1)%*¥%t
(meaas [((i-1)*nChoice+1):{i*+nChoice) ,1])
rearrange = t(Data[{(i-1)*nChoice+1):(i*nChoice) ,1+1])
for (m in 2:nCovariates) {
rearrange = cbind(rearrange, t{Data[{{i-1)*nChoice+1):(i*nChoice),m
+11))
}
SpXs [((i-1)*nChoice+1):{i¥nChoice) ,1:(nChoice*nCovariates)] = matrix(1,
nChoica ,1)%*%rearrange
}
DerProbBeta = matrix(0, nDbs+*nChoice, nCovariates)
DerProbRhoe = matrix {0, nObs#nChoice, 1)
MuVec = matrix (0, aChoice ,1)}
for (i in 1:n0bs}) {
for (j in 1:nChoice) {
MuVec = SpMeans [((i-1)»nChoice+j) ,1i:nChoicel
xDiff = SpXs[({i-1)#nChoice+j),1:(nChoice*nCovariates)]
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for (m in 1l:nCovariates) {
drBeta¥l = integrate (FirstDerBetalntegrand, lower = O, upper = Inf, MuVec, rho
>, xDiff, j, m}

drBetaM2 = integrate (FirstDerBetalntegrand , lower = -10, upper = 0, MuVec, rho
. xDiff, j. m)
BerProbBeta {((i-1}*nChoice+j},m] = -drBetaMi$value - drBetaM2$value

}
drRhol = integrate (FirstDerRhoIntegrand , lower = O, upper = Ipf, MuVec, rho, j)
drRhe2 = integrate (FirstDerRholntegrand , lawer = -10, upper = 0, MuVec, rho, j)
DerProbRha [((i-1)*nChoice+j),1] = -drRhoi$value - drRho2$value
}
}
return{cbind (DerProbBeta, DerProbRho )}
)
#funciion te compule Equicorrelated Probii Hessian
MDCP.Hessian <- function{Data, pars) {
betain = pars[i:nCovariates]
rhe = pars[nCovariates +1i]
xdata = Datal,2:{nCovariates+1)]
means = xdataX*Ybetain
SpMeans = matriz(0,nObs*nChoice, nChoice}
SpXs = matrix (0, nObs*nChoice, nChojce*nCovariates)
for (i in 1:n0bs) 1
SpMeans [((i-1}+*aChoice+1):{i*nChoice) ,1:nChoice]l = matrix(1l,nChoice ,1)%+%t
(means [({(i-1) »nChoice+1):(i*nChoice) ,1])
rearrange = t(Data(((i-1)+nChoice+1):{i*nChoice) ,1+1])
for (m in 2:nCovariates)}
rearrange = cbind (rearrange, t{(Dataf{(i-1)#*nChoice+1):(i*nChoice),m
+11))
}
SpXs [((i-1)*nChoice+1) : (i*nChoice} ,1: (nChoice*nCovariates)}] = matrix(l,
nChoice , 1) %U*¥%rearrange
}
Prob = ProbMDCP (Data, pars)
Der = DerMDCP{(Data, pars)
DerProbBeta = Derl[,l1:nfovariates]
DerProbRho = as.matrix(Der [1:(nObs»nChoice),nParl)
DDerProbBeta = patrix(0, nCbs*nChoice, nCovariates ~2)
PDerProbRho = matrix (¢, nObs*nChoice, nPar)
KuVec = matriz(0, nChoice ,1)
for (i in 1:n0bs) {
for (j in 1:nChoice) {
MuVec = SpMeans [{({i-1)+nChoice+j),1:nChoice]
xDiff = SpXs[({i-1)+anChoice+j),1:{uChoice*nCovariates)])
for (m irn 1:nCovariates) {
for {mpm in 1:nCovariates) {
ddrBetaM1l = integrate (SecondDerBetaMMpmIntegrand, lower = O, upper = Inf,
MuVec, rho, xDiff, j, m, mpnm)
ddrBetaM2 = integrate {(SecondDerBetaMMpmIategrand, lower = -10, upper = 0,
MuVYec, tho, xDiff, j, m, mpm)
DDerProbBatal[{((i-1)*nChoice+j),({m-1)#+nCovariates+mpm)} = ({(ddrBetaMig$value
+ ddrBetaM2$value)
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- {DerProbBeta [{{i~-1)*pnChoice+j),m}»DRerProbBeta [((i-1)*nChoice+j) ,upn

1)/Prob{{{i-1)*nChaice+j),11}

¥

for {(m in t:nCovariates) {

ddrBeta¥Rhot = integrate (SecondDerRheBetaMIntegrand, lower = O, upper = Inf,
MuVec, rho, xDiff, j, m}

ddrBetaMRhe2 = integrate (SecondDerRhoBetaMIntegrand, lower = -10, upper = 0,
MuVec, zxho, xDiff, j, m)

bDexrProbRho [((i-1}*nChoice+j),m] = ((ddrBetaMRhoi$value + ddrBetaMRho2$valua)

- {DerProbBeta [{(i-1)#*nChoice+j),m]/Probl{({i-1}snChoice+3) ,11}»(
DerProbRho {((i-1)*nChoice+j) ,1]1))

}

ddrRhol = integrate (SecondDerRho2Integrand, lower = O, upper = Inf, MuVec, rho,
xDiff, j)

ddrRho2 = integrate (SecondDerRho2Integrand, lower = -10, upper = 0, MuVac, rho,
xDiff, j)

DDerProbRho (((i-1) *nChoice+j),nPar}l = ((ddrRhol$value + ddrRho2$value}l
- (DerProbRho [{{i-1)*nChoice+j),1}/Prob[{(i-1)«nChoice+j)},11))

}

MDCPHess = matrix (0, nPar, nPar)
DDerBeta = apply{DDerProbBeta, 2, sum)
DDerRhe = apply(DDerProbRho, 2, sum)

MDCPHess [1:nCovariates, i:nCovariates] = matrix{DDerBeta, nCovariates, nCovariates)

MDCPHess [nPar,1l:nParl = amatrix(DDerRho, 1, nPar}
MDCPHess [1:nPar ,nPar] = matrix (DDerRho, nPar, 1)
return { MDCPHess)

}
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# Defining Probabilities, Derivatives, Double Deriveaetives for CNL model

#

#&ti*tttt*******tt*ttttti#ttt#1*!t**ttttt*!t**!*****1*‘**#***‘******ttt#***t*tt**ttt#

# function to compuie Condtional logit Probabilities
ProbCNL <~ function(Data, pars) {
betainn = pars[t:nCovariates])

patal,2:{nCovariates+1)]

i

xdata

means = xdata%*%betainn

SpMeans = matriz{(0,nObss*nfChoice, nChoicel}
for (i in 1:ndbs) {

SpMeans [{{1-1) #nChoice+1) : (i*nChoice) ,1:nChoice] = matrix(1l,nChoice ,t)¥%*%t

(means [({i~-1)#*nChoice+1) : (i*nChoice) ,1])
}
Prob = exp{means)/apply(exp(SpMeans),!, sum)
return{Prob}

}

# Junction to compute Condiional logit derivatives
DerCNL <- function{Data, pars) {

Prob = ProbCNL(Data, pars)

xdata = Datal,2:(nCavariates+1))

DerProbBeta = {Datal[,1)}-Prob[,1]})+*xdata
DerPrebBetal = cbind(DerProbBeta, 0)
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return{DerProbBetal)
) 2

#Hessian for Conditional Logit

CNL .Hessian <- function{Data, pars) {

betainn = pars([l:nCovariates)

xdata = Patal[,2:{nCovariates+1)]

means = zxdata¥*jibetainn

SpMeans = matrix{0,n0Obs*nChoice, nChoice)}

faor (i in 1:n0bs) {
SpMeans [({i-1)*nChoice+1) : {i®nChoice) ,1:nChoice}l = matrix{1l,nChoice ,1)¥%»%t
(means [{{i-1)*nChoice+1i) : (i*nChoice},1})

3

Prob = exp(meens)/apply(exp{SpMeans),1,sun)

CNLHess = matrix{0, nCovariates, nCovariates)

for (m in t:nCovariates) {

for {(mpm in %1:nCovariates) {
Spks = matrix{0,nDbs*nChoice, nChoice)
far (i in 1:n0bs) {
SpXs[({{i-1) *nChoice+1) : (i*nChoice) ,t:nChoice] = matrix(},nChoice ,1)%*%t(
xdata [{(i~1)*nChoice+1) : {i+nChoice) ,mpm])
}
CNLHess [m, opm}l = sum(Probf[,1ls»(xdata(,mpm]} - apply(SpXexoxp(SpMeans), t, sum)/
apply{exp(SpHeans), 1, sum))*zdatal,m]}

}

return (CNLHess)

}
##ttttiti*t‘*#i*‘tt*t!*!‘t!!’*¥‘#‘!*****‘*‘*****t****t*t***t*lt#*‘t*!t?#—‘*#t#11‘"1‘**#
# Defining ltkelihood , Gradient, Hessian for equicorrvelated probit model #
#“ttt*‘t*‘*‘***t*t!****************iit*tt‘t*tiiﬂii‘li#‘*ﬁt!1!t‘*tt!*#!***!*******itt#
#Defining likelihood for egqui—correlated probit madel.

¥DCP.Liksliheod <- function{Data, pars) {

Prob = ProbMDCP{Data, pars}

lix = Dataf,1)+log(pmax(1e-323,Pzrob))

loglike = sum{lik)}

return(loglike)

b

#Defining gradient for equi-—correlated probdit meodel
MDCP.Gradient <- furnction (Data, pars) {

Prob = ProbMPCP (Data, paxs)

Der = DerMDCP (Data, pars)

Grad = matrix (0, nPar,1)

Grd = Datal[,1)+*(coldiv.matrix (Der ,Prob)};

Grad = apply(6rd,2,sum)}

return{Grad);

}
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#1¥‘*t‘*iit**ii*ii***ii**iiiiiittit*‘t*‘**t‘i*‘i*‘*ittt**‘**#t*t**t*‘l‘*‘t.‘*‘**’**#
# Defining likelihood , Gradient, Hessian for Comnditional Logit model #
R e L s Ty
#Defining likelihood for Conditional logit model.
CNL .Likelihood <- function{(data, pars) {
betainn = pars[l:nCovariates]
gdata = Dataf,2:(nCovariates+1)]
means = xdataZsibetainn
SpMeans = matrix{0,n0bs#+nChoice, nChoice}
for (i im t:n0bs) {
SpMeans [((i~1) »nChoice+1):(i»nChoice) ,1:nChoice] = matrix(1,nChoice ,1)%*%t
(means [({i-1)*nChoice+1) : (i*aChoice) ,1])
¥
Prob = exp(means)/apply{exp(SpMeans),1,sum)
lik = Datal,1]l*log{pmax(1e-323,Prob)})
loglike = sum{lik)
return(loglike)
}

#Defining gradient for Conditional ltogit model.
CNL.Gradient <- function(Data, pars) {
betainn = pars[i:nCovariates]
xdata = Datal[,2:(nCavariates+1)]
means = xdata)*Xibetainn
SpMeans = matrix(CG,n0bs*nChoice, nChoice)
for (i in 1:n0bs) {
SpMeans [((i-1)*nChoice+1}:(i*aChoice),1:nChoice] = matriz(1,nChoice ,1)%s%t
(means [((i~1)*nChoice+1):(i+nChoice) ,1})
}
Prob = exp(means)/apply(exp(SpMeans),1,sum)
DerProbBeta = apply((Datal(,1]1-Prob(,1})+*xdata, 2, sum)
DerProbBetal = ¢{DerProdBeta, O0)
return(DerProbBetal)

}

#’i*ti******#****i*******t***********tti**itﬁ**t‘ﬁl‘*tt*“‘"*‘*¥¥¥”$*"¥¥*¥‘**¥*'*t#
#* Simulating data for computation of asympiolic efficiency x4
#ﬂittiiti(‘lliﬁ**ttﬁ*iiitt**‘*‘ttt**“*itti*'!‘**“*‘**“**‘**"*‘*‘***************t***#
DataSim <~ function{(seed, nObs, nChoice, nLevel, StartBeta, rheo) {
set .seed(seed)
intrat = rbind(diag{nChoice -1}, matrix (0, 1, nChoice-1))
xInt = intaat

for (i in 1:{(n0bs~1)) {

xInt = rbind{(xIat, intmat}

¥

ix = sample{(c(3,4), nChoice, prob = c(1/2, 1/2), replace = TRUE)

xCont = matrix (0, nlbs, nChoice)

xDis¢ = matrix (0, nObs, nChoice)

xDiscProb = runif{nChoice*(nLevel-t), min = 0, max = t/(nlevel ~1))

"zDiscProp = matrix(0, nChoice, nLevel)

zDiscProp [,1:{nlevel -1}] = matrix{xDPiscPrab, nChoice, nlevel~-1)

xPiscProp[,.nLevell = 1-apply{xDiscProp[,i:(nlevel-1)}, 1, sum)



for (i in 1:nChoice) {

xCantMean = runif (ix[il, min = 1.5, max = 4.5)

xContSd = ¢{runif(t, min = 0, max = 0.5), runif(ix[i}-1, min = 1, max = 2.5))
xContBind = matrix {0, nbbs, ix(i))

xContBind [,1] = rnorm{(n0Obs, mean = xContMeanfl]l, sd = xCent3d[1])

for (j im 2:ix[il) {

zContBind [,j] = rnorm{nDbs, mean = xContMeanfjl, sd = xContSaljl)

4

oneprob = runifd{l, min = 0.5, max = 1)

ixProb = c(oneprob, runif((ix[i}-2), min = 0, max = {1-oneprob)/(ix{i]-2)})
ixCont = sample(seq(1:ix[i1]), nObs, prob = <(ixProb, 1~sum(ixProb)}), replace =

TRUE)
xCont [, i] = xContBind [,1)*(ixCont==1)
for (j in 2:ix[3i1) {
xCont [, i) = xCont[, i)l + xContBimd [,jl*{ixCont==j)

}
xDisc[,i] = cut(runif{nbbs, O, 1), c(0, cumsum(xDiscProp[i,l)), labels = =saq(i:
nLevel)) ’
1
%xDiscInd = matriz (0, nObs*nChoice, nLevel -1)
xDiscl = matrix(t{xDisc), nOba*nChoice, 1)
for (j im 1:(nlevel-1}} {
xPiscInd[,j] = (xDisci == j)
H

xData = c¢bind(xInt, matrizx(t{(abs(xCont)), nObs*nChoice, 1), xDiscInd)
Mean = xData’%*%StartBeta
Cov = (i-rho)*diag(nChoice) + rhor*matrix(i, nChoice, nChoice)
u = avrnorm(nCbs, matrix (0, nChoice, 1}, Cov)
MeanNew = matrix (Mean, nllbs, nChoice, byrew = TRUE)
su = MeanNew + u
supmax = matrix{apply(su, 1, max),nlbs, 1)
y = matriz (0, nlbs, nChoice)
for (j in 1:nChoice) {
y[.31 = {(sul,}] == sumax)
}
ybData = matrix(t(y), nObs#*nChoice, 1)
return{cbind (yData, zData))
}

#Computation of asympietic efficiency for real markei
asympeff <- function{Data, StartBeta, rheo) {

MDCP.Hess = MDCP.Hessiam{Data, c(StartBeta, rho))

CRL .Hess = CNL.Hessian(Pata, c{StartBeta, rha))

InvFishMDCPF = seolve (-MDCP.Hess)

InvFish¢NL = solve{~CNL.Hess)

eff = diag(InvFishCNL)/diag(InvFishMDCP [1:nCovarjates, 1:nCovarjates])
return{eff?>

}

#Input parameters for asymptotic efficiencies of real market
seed = 16461
nlbs = 1000



nChoice = 4

nlevel = 3 #Number of levels for discrete cowuariaile

nCovariates = nChoice+alevel - 1§ #Number of cowvariates such as intercepts,
parameters

nPar = nCovariates + 1 #Number of parameters

Data = DataSim(seed, aDbs, nChoice, nLevel, StartBeta, rho)

efficiency = wmatrix(0, 10, nCovariates)

for (i in 1:10) {
efficiency [i,}l = asympeff (seed = 16461, StartBeta = c{-0.479, 1.05t, 0.478,
0.781, 0.107, -0.525), rho = (i-1}+0.1)

#Inputl parameters for asympiotic efficiencies of choice design
nlbs = 900

nChoice = 4

nLlevel = 3 #Number of levels for discrete cowvariaie

nCovariates = nChoice+nLevel - t #Number of covariates such as intercepts,
parameters

nPar = nCovariates + 1 #FNumber of parameters

seed = 16461

fabric <- read.table("€:/Users/bravi/Desktop/Bhaskar@0DU¥ /Class Materials/Research/
SAS code/Data sets/fabric softner.txt", sep="", header = FALSE)

fabriepric <- as.matrix(fabric[,4:7])

fabricpricl = matrix(t(fabricpric), nObs#+nChoice, 1)

Data = DataBSim(seed, nObs=900, nChoige, nlavel, StartBeta, rhe)

Datal, 5] = fabricpricl

aefficiency = matrix(0, 10, nCovariates)

for (i in 1:10) {

efficiency [1,] = asyompeff (seed = 16461, StartBeta = ¢(-0.479, 1.051, 0.475,
0.781, 0.107, -0.525), rho = (i-1)s0.1)

#Data generation of smell—sample efficiencies
.xDataGen <— function {seed, nlbg, nChoice, nLevel, StartBeta, rho) {
set.seed{seed)
intmat = rbind(diag{nChoice -1}, matrix{(0, 1, nChoice-1})
xInt = intmat
for (i in 1:(nObs-1}) {
xInt = rbind{xInt, intmat)
}
ix = sample(c(3,4), nChaice, prob = «(1/2, 1t/2)}, replace = TRUE)
xCont = matrix (0, nlbs, nChoice)
xDisc = matriz (0, nObs, nChoice)
xDiscProb = runif (nChoice#*{nLevel-1), min = Q, max = 1/(nLevel -1))}
xDiscProp = matrix(0, nChoice, nLevel)
xDiscPropf,1:{(nkevel-1}) = matrix(xDiscProb, nChoice, nLevel -1}
xDiscPropf,nLevel) = l1-apply{xDiscProp[,1:{(nLevei~1)}, 1, sum)
for (i im 1:nChoice) {
xContMean = runif (ixfil}, mim = 1.5, max = 4.5)
xContSqd = ¢(runif {1, win = 0, max = 0.5), runif(ixfi)-1, min = 1, max = 2.5})
xContBind = matrix{0, nObs, ix[i])
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xContBind [,1) = rnorm{(nObs, mear = xContMean[1], sd = xCont8d4[1])
for (j in 2:ix[1]1) {

xCantBind [,j] = rnorm(a0bs, mean = xContMean{j}, sd = xContSd[3i])
}

oneprob = runif{i, min = 0.5, max = 1)

ixProb = c¢{aneprob, rTunif((ix[il-2), min = 0, maxz = (i-omeprob)/{ix[i)-2)))
ixCont = sample{seq{(Ll:ix{i]), mObs, prob = c(ixProb, 1-sum{ixProb)), replace =

TRUE)
xCont{, i) = xContBind[,1)*(ixCont==1)
for {(j im 2:ixfi}) {
xCont [, i} = =xCont[, i} + xContBind(,jl#*(ixCont==j)
T
xDisc[,i] = cut(rumif(albs, ©, 1), c¢{0, cumsum(xDiscProp[i,}}), labels = seg(1:
nLevel))
}

xDiscInd = matrix (0, nObs+*nChoice, nLevel -1)
xDisct = matrix{t(xDisc), nDbsenChoice, 1)
for (j in 1:{nLevel-1)) {
xDiscInd [, j] = (=zDiscl == j)
}
xData = cbind{xInt, matrix{(t{(abs{(xCont}), nObs*nChoica, 1), xDiscInd)
return (xData)

}

xData = xDataGen (16461, nObs=1000, nChoicer4, nlevel=3, StartBeta, rho=0.8)
#function for swmall semple efficiency
smalleff <- Fumction (xData, nDbs, nChoice, nlevel, nSim, StartBeta, rho) {
count2 = matrix{(Q, nSim, 1)
countl = matrix(0, nSim, 1)
for (i in 1:nSim) {
Mean = xData’*)StartBata
u = rgumbel (nBbz*nChoice, location = 0, scale = 1)
MeanNew = matrix(Mean, nObs, nCholce, byrow = TRUE)
unew = matrix{u, nDbs, nChoice)
su = MeanNew + unew
sumax = matrix (apply{(su, 1, max),n0bs, 1)
y = matrix(0, nfbs, nChoice)
for (j in 1:nChaice) {
y[,3i)] = (sul.,j) == sumax)
}
apply(y., 2, sum)
yData = matrix(t{y), nObs*nChoice, 1)
sampleD = cbind(yData, xData)
initial = ¢{(StartBeta + runif(nCovariates, min = -0.5, max = 0.5}, runif(l, min =
0, max = min(rho+0.2, 1}))
s0l.CNL = optim{initial, CNL.Likelihood, gr = CNL.Gradient, Data = sampleD, method
=!L-BFGS-B>, lower = c(rep(~-50, nCovariates), -1/(nChoice-1)), upper = c(rep
(50, nCevariates), 0.99), contrel=list(trace=6, fanscale = -1))
if {sol.CNL$convergence == 51 | sol.CNL$convergence == 52) {
count1{i,} = t
i = i-1 }
elss {



BetaHatCNL [i, ] = s0l.CNL$par
Mean = xDatai*¥StartBeta

Cov = (t-rho)+*disg{nChoice) + rtho*matrix{(t, nChoice, nChoice)

u = mvronorm{nObs, matrix (0, nCheice, 1), Cov)

MeanNew = matrix{(Mean, nObz, nCheice, byrowv = TRUE)

sy = MeanNew + u

sumax = matrix{apply{su, 1, max),nObs, 1}

y = matrix (0, nObs, nCheoice)

for (j ir 1:nChoice) {

y£,51 = {sul,j} == sumax)

}

yData = matrizx{t{y), nObs*nChaice, 1)

sampleD = cbind(yData, =xData)

sol .KDCP = aptim(initial, MDCP.Likelihocod, gr

MDCP.Gradient,
~1/(nChoice -t} ),

method='L-BFGS-B’, lower = c{rep(-Inf, nCevariates),

c{rep{Inf, nCaevariates), 0,99), contrel=list(trace=6,
if (sol.MDCP$message == 51 | sol,MDCP§message == 52) {

connt2[i,] = 1
i=1i~1}
else { BetaHatMDCP([i, ] = s0l.MDCP$par}
}
}

eff = cbind(BetaHatCNL, BetaKatMDCP, countil, count2)

return{eff)

}

nSim = 1000
BetaHatCNL = matrix{0, nSim, nPar)
BetaHatMDCP = matrix{), =nSim, nPax)

effi = smalleff (xData, n0bs=30, nChoice=4, nLevel=3, nSim=1000, StartBeta
1.08f, 0.475, 0.781, ©.107, -0.525), rho

#Analysis of Laundry Detergent data

0.5)
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upper =

c{0.479,

Laundry = read.table("C:/Users/bravi/Desktop/Bkaskar@0DVU/Class Materials/Research/

SAS code/Data sets/Laundry.txt", sep="", header

Laundry = as.matrix (Laundry, 2657, 13)

rhe = 0.01

nChoice = &
nCovariates = 11
nPar = nCovariates+}
n0bs = 28657

Price = Laundry[1:n0bs ,2:7]

Select = Laundry[1:n0Obs,8:13]

PriceNew = matrix(t{Price), nObs*unChoice, 1)
SelectNew = matrix{(t(Select), mlbs*nChoice, 1)}

TRUE)

intmat = rbind{diag(nChoice -1}, matrix(0, 1, nChoice-1)})

xIpt = intmat

for (i im 1:(m0bs-1)) {
xInt = rbind{(xInt, intmat)
}
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pint = diag(nChoice)

pricelnt = plint

for (i in 1:{(nObs-1)}) {

pricelnt = rbind(pricelnt, pIrnt)

}

PriceN = matrix (0, nObs*nChoice, nCheoice)
for (i in 1:nCheica) {

PriceN[,i} = PriceNewspricelnt [,1]

}

zxData = cbind{xInt, PriceN)}

yPata = SelectNew

LaundryNew = cbind{ybata, xData)

initial = c(2, t, t, 2, 1, rep(-120,nChoice) , 0.33)

501 .CNL = optim{initial, CNL.Likelihood, gr = CNL.Gradient, Data = sampleD, methad=’
L-BFGS~B*, control=list(trece=6, fascale = -1, maxit = $1000))
sol .MDCP = constrOptim (initial , MDCP.Likelihood, gr=MDCP.Gradient, ui=rbind{c(xep{(C,
nCovariates)}, 1), c{rep(9,nCavariates), -1)), ci=rbind{-1/(aChoice -1}, -1), mu =
1e-06, control = list{fmnscale=-1),
method = "BFGS”", onter.iterations = 100, outer.eps = 1e-08, Data=
LaurdryNew , hezsian = FALSE)

MDCP .Hess = MDCP.Hessian (LaundryNew, sol.MDCP$par)
CNL .Hess = PCL.Hessiapn (LaundryNew, sol.CNL§par)

seMDCP = salve (-MDCP.Hess)
seCNL = solve{-CNL.Hesgs)

#Travel mode data

Travel = read.table("C:/Users/bravi/Desktop/Bhaskar@0DV¥/Class Materials /Research/SAS
coda/Data sets/Travel data.txt", gep="", header = TRUE)

nObs = 219

Travel = as.matrix{Travel, nbbs, 7)

oChoice = 4

nCovariates = 7

nPar = nCovariates +t

intmat = rbind(diag{(nChoice -1}, matrix(0Q, 1, nChoice -i)}

xInt = intmat

for {i in 1:(n0bs-1)) {

xInt = rbind{(xInt, intmat)

}

lower = c¢(rep{-Inf, nCovariates), -1/{(nCheice-1)), upper = c{rep(Inf, nCovariates},
0.99),

TravelNew = matrix(0C, nOhs*aChoice, mCovariates+1)

TravelNew [,1} = Travel[,1]

TravelNew {,2:4] = xInt

TravelNew {,5:8] = Travel[,2:5]

initial = runif(nCovariates+l, min = -1, max = 1)

sol .CNL = optim(initial , CNL.Likelihood, gr = CNL.Gradient, Data = TravelNew, methoad
='L-BFGS-B?, control=list(trace=6, fnscale = -1, maxit = 1000) )
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sol .MPCP = censtrOptim(initial , MDCP.Likelihood, gr=MDCP.Gradient, ui=rbind{c(xep (0,
nCovariates), 1), c(rep(0,nCovariates}, -1)), cisrbind{(-1/(nChoice=~1), -1), mu =
te-06, control = list(fnscale=-1),
method = "BFGS", outer.iteratians = 100, outer.eps = 1e-05, Data=
TravelNew, hessian = FALSE)

MDCP .Hess = MDCP.Hessian{TravelNew, sol .MDCP$par)
CNL.Hess = PCL.Hessian(LaundryNew, sol.CNL$par)

seMDBCP = solve (-MDCF.Hess)
seCNL = salve(-CNL.LHess)
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Paired Combinatorial Logit and MDCP Product Correlation

#libraries needed for this program to run#
library (MASS)
library (numberiv)
library (mnormt)
library (mvtnorm)
library (MNP)
library (VGAM)
#‘V**#t#**#**i*********#’i******t#‘i**tt“*‘*‘*‘**t#t““*‘*’F'**¥*******t**tt*it‘!¥**#
#* Functions needed for compulalions such as col producl, integrands of 3
# {ikelihood , first derivaiives w r t tho, w v t beta etc * 4
#1!ttttt*!tt!t.tt‘!!l*t!t’***t*#i**#****t**tt***t*tttttttttttttt¥t$¥#¥!¥1!#*t***ttt#
#function to compute column product of e mairiz
colprod.matrix=function(x) {
a=xf,1}
for(i in 2:dim{x)[2]1)
a=a»x[,il}
a = matrix(a, nrow{x)}, 1)
return(a)
}
#function to compute celumn division of a mairiz
coldiv.matyix <- fupction(x,y) {
z = x
for(i in 1:dim(x)[2]) {
2[,i)=x[,1]/y
}
return(z)
}
#functions needed to compuie first and second order partial devrivatives.
t1 <~ function(v,v,MuVac, lambda, 1, j) {return( ((MuVec[j}-MuVec[1l) + (lambdaf[jl-
lambda [1])#v + sqrt(l-lambdal(j]~2)#*w}/sqrt{i-lambdafll-2)) }
t2 <~ function (v,w,MuVec, lambda, 1, j) {return{ v/sqrt{l-lambda[l]-2) - lambdafjls*w
/sqrt ({1-lambda[11"2)*={1-lambda[j]l~2))}}
t3 <- function{v,w,MuVec, lambda, r, j) {return( ((MuVec[jl-MuVec[r})+lambdal[r]-v=
(1-lambda [r]"2)+lambda[r}*(lambda[jl~lambda[r])*v+lambda [r]*sqrt{1-lambda[j]1"2)=
w)/(t-lambda[r}~2)~(3/2) )}

d_ilm <- function(xDiff ,k,j,m){retura({xPiff [(m-1)+*nChoice+k]-xDiff [{m~1)+*nChoice+}
123}

A1 _theta_v_w <- function{v, w, MuVec, lambda, 1, j) { return(prarm(tt{v,w, MuVec,
lambda ,1,3))) }

al_theta_v_w <- fpnctiom(v, w, MuVec, lambda, 1, j)} { return(dnorm{(ti{v,w, MuVec,
lambda ,1,3j))) ¥

ProdAl theta_.v_w <- fuaction(v, w, MuVec, lambda, j) {
product = 1/pnora(w)
for (k in 1:nChoice) { product = product*Al_theta_v_w(v, w, MuVec, lambda, k, j)
}

return (product}

#1. function to compute inlegrand for computing probailifies
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ProbIntegrand <- fuaction{v, w, MuVec, lambda, j)} {

ProbInteg = ProdAl _theta_v_w(v, w, MuVec, lambda, jl*exp(-vs*v/2)rexp(-wxu/2)/(2+
pi}

return (Prodlnteg)

}

#I. function to compute integrend for first derivatives w r I betaM
FirstDerBetalntegrand <~ function(v, w, MuVec, lambda, xDiff, j, m) {
SumBeta = 0
for (k in 1:nChoice) {
SumBeta = SumBeta + al_theta_v_w(v,w,MuVec,lambda ,k,jl*d_ilm(xDiff ,k,j,m)}/(
Al _theta_v_w(v,w,MuVec ,lambda ,k,j)*sqrt(i-lambda[k]"2))
}
FirstDerInteg = -ProdAl_theta_v_w(v, w, MuVec, lambda, j)*SumBetaxexp(-vrv/2)x*
exp(~wasw/2) /(2*pi)
return(FirstDerlnteg)
}
#2. function to compule integrand for first derivatisves w v ¢ lambda_j
FirstDerLambdajIntegrand <- fun¢tien(v, w, MuVec, lambda, j) {
SumLambdaj = 0
for (k in 1:nChoice) {
SumLambdaj = SumLambdaj + al_theta_v_w{v,w,MuVec,h lambda,k,j)*t2(v,w,HuVec,
lambda ,k,3}/Al_theta_v_w(v,w,MuVec,lambda ,k,j}
}
SumLambdaj = SumLambdaj - {(dnorm{w}/pnorm(w))*t2{(v,w,MuVec,blambda,j,j’
FirstBPerLamjInteg = ProdAl _theta_v_w{v, w, MuVec, lambda, j)*Sumlambdaj*exp{-v=*v
/2yvexp{-~w*w/2)/(2%pi}
return (FirstDerLanjInteg)
I
#3. Function to cowmpule integrand for first derivatives w v t lambda_r
FirstPerLambdarIntegrand <- function{v, w, MuVec, lambda, r, j) {
FirstDerLaarInteg = ProdAl _theta_v_w{v, w, MuVec, lambda, jl+«al_theta_v_w(v, w,
HuVec, lambda, r, 3)*t3(v,v,HuVec, lambda, r, jlrexp(-v*v/2)*exp(-w*w/2)/ (2=
pi*Al _theta_v_w(v, w, MuVec, lambda, r, j)}
return (FirstDerLamrInteg)

}

#1. function to compute integrand for second derivatives w 7 t betaM betaM’
# (when m = m’, we get second devivatives with the same paerameter)
SecondDerBetaMMpmIntegrand <~ function{v, w, MuVec, lambda, xDiff, j, m, mpm) {
SumBetaMpm = 0
for (kpm in 1:nChoice) {
SumBetaMpm = SumBetaMpm + al_theta_v_w{v,w,MuVec,lambda, kpm,j)+d_ilm(xDiff,
kpm, j ,mpm}/ (41 _theta_v_w(v,w,MuVec, lambda ,kpm, j)*¥sqrt (1-lambda[kpm]~2))
].
SumBetaM = 0
for (k in t:nChoice) {
SumBetaM = SumBetaM + al_theta_v_w(v,w,MuVec,lambda ,k,j)*d_ilm{xDiff ,k,j,m)/
(Al_theta_v_w(v,v,MuVec,lambda ,k, j)*sqrt (1-lambda[kl~2))
}
SumBetaMBetaMpm = ©
for (1 in 1:nCheice) {
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SumBetaMBetaMpn = SumBetaMBetaMpm + (d_ilm(xDiff ,1,j,.m)*al_theta_v_w(v,%,
MuVec ,lambda ,l,j)*d_ilm(xDiff ,}1,j,mpm))/((i-lambda [11"2)*A)_theta_v_w{v,
w,MuVec,lambda ,1,j))*{(t1(v,w,HuVec,lambda,l,j) + al_theta_v_w(v,u,NnuVec,
lambda ,2,3j)/(Al_theta_v_w{v,w, MeVec,h6lambda ,1,j)))

¥

SecondDerIntegBetaMMpm = -ProdAl_theta_v_w{v, w, ¥uVec, lambda, j)+(-SumBetaMpm=»
SumBetaM+SumBeta¥BetaMpm)*rexp{-vev/2)sexp{-wsw/2)/(2xpi)

return{SecondDerIntegBetaMMpnm)

}

#2. function to compuie integrand for second derivatives w v t lambdaj, betaM

SecondDerLambdajBetaMIntegrand <- function{v, w, MuVec, lambda, xzDiff, j, a) {

SumBetaMpm = 0
for (kpm in 1:nCheice) {

SumBataMpm = SumBetaMpm + al_theta_v_w{v,w,MuVec, lambda , kpm,jl*t2{v,w, MuVec
, lambda , kpm,})}/Al_theta_v_w{(v,w,MuVec,lambda ,kpm, j)

}

SumBetaMpm = SumBetaMpm - (danorm(w}=*t2{v,w, MuVec, lambda,j,j)/prorm{w))
SumBeta¥d = 0
for (k in 1:nChoice) {

SumBetaM = SumBetaM + al_theta_v_w{v,w,HuVec,lambda ,k,jl*d_ilm{xDiff k,j,m)/
(Al_theta_v_w(v,w,MuVec, lambda .k, jl*sqrt(1-lambda[k]1-2))

¥

SumBetaMLanbdaj = ¢

for (1 in 1:nChoice) {

SumBetaMLambdaj = SumBetaMLambdaj + (d.ilm{(xDiff ,1,3j,m)*al_theta_v_wi{v,v,
KuVec ,lambda ,},j)/(sqrt(1-lambda[1]1°2)%Al_theta_v_w{v,w,HNuVec,lambda,l,]
Y))x{t1(v,w,MuVac ,lambda ,),j)*t2(v,v,MuVec ,lambda ,l, jl+al_theta_v_w(v,w,
MuVec ,lambda ,l,j)*t2{v,w,MuVec ,lambda,l,j)/Al_theta_v_w{(v,v,M¥uVec, lambda
1,30

}

SecondberInteglambdajBetaM = ProdAl_theta_v_w{v, w, MuVec, lambda, j)+*(-
SumBetaMpm*SumBetaM+SumBetaMLambdaj)*exp{-v*v/2)sexp (-w*u/2)/{(2*pi)

return(SecondPDaerinteglambdajBetaM)

H

#3. function toe compule tntegrand for second devivetives w r t Lambda.r BetaM

SecondDerLarbdarBetaMIntegrand <- function{v, w, MuVec, lambda, xDiff, r, j, m)

{
SumBetaM = ©
for (¥ in 1:nChoice) {

SumBetaM = SumBetaM + al_theta_v_w{v,w,MuVec,lambda ,k,jl*d_ilm(xDiff ,x,j,.m}/
(Al_theta_v_w(v,v,HuVec,lambda ,k,j)*sqrt(i-lambdafk]~2)}

}

product = t3{v,w,MuVec, lambda, ¥, j)*SumBetaM - (d_ilm{(xDiff,r,j,m)/sqrt(1-
lambda [r]-2))*(t1(v,w,¥uVec,lambda ,r,j)*»+t3(v,v,MuVec,lanbda,r,jl+{al_theta_v
_w{v,w,MuVec,lambda ,r,jl*t3(v,w,MuVec ,lambda ,r,j) /Al _theta_v_w(v,v,NuVac,
lambda ,r,j))~lambda(r)/(1-lambdafrl-2))

SecondDerTntegLambdarBetaM = -ProdAl_theta_v_w(v, w, MuVec, lambda, j}+al_theta_
v_w(v,w,MaVec ,lanbda ,r, j}*product *exp(~v+v/2)*xexp (~wsw/2) /(2*pi*Al _ theta_v_w
(v,w,MuVec ,lambda ,r,j))

return{(SecondPerInteglLambdarBetaM)

}

#4. function te compute integrand for second derivalives w v t Lambda_j 2
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SecondDerLambdaj2Integrand <- functicn(v, w, MHuVec, lambdbda, j) {
SumLambdaj = @
for (k in 1:nChoice) {
SumLambdaj = Sumlanmbdaj + al_theta_v_w(v,w,MuVec, lambda ,k,j)+*t2{v,w,MuVec,
lambda ,k, j)/Al_theta_v_w{v,w,MuVec, lambda ,hk,})
}
Sumlambdaj = SumLambdaj =~ {dnorm{w)*t2(v,w,MuVec,lambda,j,j)/pnorm{w)}
SumLambdaj2 = 0
for {1 in 1:nChoice) {

SualLambdaj2 = SumbLambdaj2 + (al_theta_v_w(v,w,MuVec,lambda,l,j)/Al_theta
_v_w{v,w,MuVec ,laaobda ,l,j})}*(t2(v,w,HuVec, lanbda ,1,j) " 2+{t1(v,w,
MuVec , lambda ,1,j) + al_theta_v_w{v,w,MuVec,lambda,l,j)}/Al _theta_v_w(
v,w,MuVec,lambda ,1,3j)) + w/(sqrt{i-lambda[1]"2)}*(1-lambda{fji~2)"(3/
2} )

}

Sumlambdaj2 = SumLambdaj2 - {dnorm{w)/pnorm(w))+(t2(v,w,MuaVec,lambda,j,j) "2+(t1(
v,w,MaVec ,lambda,j,j) + donorm(w)/punorm(w)) + w/({(1-lambdalj]l~2)"(2)))

SecondDerLanj2Enteg = ProdAl_theta_v_w(v, w, MuVec, lambda, j)+*(SumLambdaj "2 -
SumLambdaj2 )*exp{-vev/2)rexp{-wrw/2)/(2*xpi)

return (SecondDerLanj2Integ)

¥

#&. funclion to compule integrand for second derivatives w r t Lambdda_j Lembda_r

SecondDerLamjLamrIntegrand <~ function{(v, w, MuVec, lambda, r, j) {

SumLambdaj = O

for (k in 1:nChoice) {
SumlLambdaj = SumLambdaj + al_theta_v_w(v,w,MuVec,lambda,k,jl)*t2{v,w, KuVec,
lanmbda ,k,j) /Al _theta_ v_vw(v,w,MuVec, lanbda ,k,j)

}

SumLambdaj = SumLambdaj - {(dnorm(w)}/pmnorm{w})*t2(v,w,MuVec,lambda,j,j)

product = SumLambdaj *t3{v,w,MuVec,lambda,r,j} - ti(v,w,MuVec,lambda,r,jl*t2{v,
v,MuVec ,lambda ,r,j)*+3(v,w,HuVec ,lambda ,r,j) ~ al_stheta _v_w(v,v, MuVec,
lambda ,r, j)»t2{(v,v,MuVec,lambda ,r,j)*t3{v,w,MuVac ,lanbda ,r,j)/Al_theta_v_v
(v,w,MuVec,lanbda ,r,j} + lambdalrl+v/{l-lambdal[r}~2)-(3/2) - w+lambda{jle
lambda[z}/{sqrt(1-lambdaf[j)"2)*(1-lambda[r]-2)}"(3/2})

SacondDerLamjLamrInteg = ProdAl_theta_v_w(v, w, MuVec, lambda, j)*producteal_
theta_v_w(v,v,NuVec,lambda ,x,jr*exp(-vev/2)xexp(-wv*w/2)/(25pi*Al_theta_v_w(v
,w,MuVec , lambda ,r,j})

return{SecandDerLamjLamrinteg)

}

#6. funciion to cempute integrand fovr second derivatives w r ¢t Lambda_r "2

SecondDerLamr2Integrand <- function(v, w, MuVec, lambda, r, 3) {

product = -ti(v,v,MuVec,lambda,r,j)*t3(v,wv,HnuVec,lanbda,r,j) 2 + ((t+2+«lambdal
r1*2)»(MuVec (jl-MuVec[r] + wersqrt(i-lambda(jl~2)) + (lambda[j} + 2+lambdal
jl*lambdal[r}~2 - 3+lambdafrl)=v)/(i-lamnbda[r1-2)-(5/2)

SecondDerLamr2Integ = ProdAl _theta_v_w{v, w, MuVec, lambda, j)*product=al_theta_
v.w{v,w,MuVec,lambda ,r,j)rexp(-vev/2) rexp (~weu/2) /(2*%pi*Al _theta_v_w{v,wv,
MuVec ,lambda ,r,j))

return (SecondDerLanr2integ)

}

#7. function fo compuie integrend for second derivatives w v { Lambde_ r Lambda_rpm

SecondDerLamrpmLamrIntegrand <~ function(v, w, MuVec, lambda, r, rpm, j) {
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product = al_theta_v_w{v,w,NuVec,6 lanbda,r,j)*»t3(v,w,HuVec, lanbda,r,j)*al_theta
_v_v(v,w,MuVec ,lambda ,rpm, j)*t3{v,w,MuVac , lanbda ,rpm, j)/ (Al _theta_v_wiv,w,
MuVec ,lambda ,r, j)*Al_theta_v_w{v,w,MuVec,lambda ,rpm,j))
SecondDerLamrpmLamrInteg = Prodil_theta_v_w(v, w, MuVac, laambda, j)+product*exp
(~v*v/2)rexp(-wru/2) /(2+%pi)
return (SecondDerLanrpmLanrinteg)
}
Chk <- function{(llim, Integrand, ulim) {
possibleErrort <- tryCatch(integrate {furction(v) { sapply{(v, function{(v) {
integrate (function{(w) Integrand{v,w}, lower = 1llim, upper = 0)$value }) ¥,
iower = 1llim, upper = Q)
,8xror=functicn (o) e)
possibleError2 <- tryCatch(integrate{fumction(v) { sapply(v, function{v) {
integrate (function(w) Integrand{v,v}, lower = 1llim, upper = 0)3%value }> },
lower = 0, upper = ulim)
,error=function (g8) e)
poessibleError3 <~ tryCatch(integrate{(functiern(v) { sapply(v, function{v) {
integrate (function(w} Integrand{(v,w), lower = @, upper = ulim)$value }} },
lower = 1lim, upper = 0) )
,exror=function{e) o)
possibleError4 <- tryCatch(integrate{function{v) { sapply(v, function{(v) {
integrate (function(w) Integraad(v,w), lower = C, upper = ulim)$value }) },
lower = O, upper = ulim)
,error=function{e) e)
return (c{({inherits (passibleErrorl , “simpleErrar”)), (inherits{possibleError2, "
simpleError ")), (inherits (possibleError3, “"simpleError*))}, (inherits(
possibleError4, "simpleError"})}))

#Module te perform integration without interupion
Doublelnteg <- function(llim, Integrand, ulim} o
ch = Chk(2lim, Integrand,. ulim)
chk = (ch{1) | ¢h(2] | ch(3) | ch(4})
if {chk == TRUE) {
11lim = -40
ulim = 40
pessibleErrxorl <~ tryCatch{integrate (function(v) { sapply{v, function(v) {
integrate (function(w) Integrand{v,v}, lower = 1llim, upper = 0¢)$%value }) },
lower = llim, upper = 0)
,error=function (e) &)
while ((inherits (possibleErrorl, ®simpleError"} == TRUE) & {(1llim <= -10)) {
11lim = 1lim + 5
possibleErrorl <- tryCatch (integrate (function(v) { sapply(v, function{v) {
integrate {function(w) Integrand(v,w), lower = 1lim, upper = 0)$value }) ¥,
lower = 1lim, upper = 0)
,error=function (e) 8)
}
possibleError4 <- tryCatch(integrate (functioen(v) { sapply(v, fupctien(v) {
integrate (function(w) Integrand{(v,w), lover = 0, upper = ulin}$value }) 2,
lowver = 0, upper = ulim)
,error=function (e) e)
while ({(inherite (passibleExrrord , "simpleError") == TRUE & (ulim >= 10)})) {
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ulim = ulim - 5
possibleError4 <~ tryCatch (integrate (function(v) { sapply(v, function(w) {
integrate {(function(w) Integrand{v,w), lower = 0, upper = ulim)$value }) },
lower = 0, upper = ulim)
error=function{e)} e)
}
possibleError2 <- tryCatch{integrate{function(v) { sapply(v, function(v) {
integrate (function(w} Integrand(v,w}, lower = 1lim, upper = 0)$value }) },
lower = ¢, upper = ulim)
,error=function{e) e)
possibleErrar3 <~ tryCatch{integrate (function(v) { sapply(v, function{v) {
integrate (function(w) Imntegrand(v,v), lower = 0, upper = ulim)$valus }} },
lover = 1lim, upper = Q)
. ,error=funetion(e) e)
chk2 = (inherits (possibleError2, "simpleError”)) | (inherits{(possibleError3, *
simpleError "))
while ({ehk2 == TRUE) & (1lim <= -10 & ulim >= 10)) {
llim = llim + 5
ulinm = ulim - &
possibleBrror2 <- tryCatch (integrate (function(v) { sapply(v, function(v) {
integrate (fuaction(w) Integrand (v,w), lower = 1llim, upper = Q)$value }) },
lower = 0, upper = ulim)
,error=function (e} e)
possibleError3 <- tryCatch{integrate (function(v) { =apply(v, function(v} {
integgrate (function(w) Integrand(v,w), lower = 0, upper = uylim)3valune }} },
lover = 1lim, upper = 0)
,error=functionf{e) e)

chk? = (inherits(possibleError2, "simpleError")) | (inherits{(possibleError3, "
simpleError "))}

}

}

if ((1llim >= ~10} | {ulim <= 10)) {
a = seq{(-~10, 10, by=1)
b = saq{(-10, 10, by=1)
al = ©
for (apm in 1:(length(a)-1}) {
for (bpm in t:{length{b}-1)) {
possibleError <- tryCatch(integrate (functian{v} { sapply(v, function{v) {
integrate (function(w) Integrand(v,w), lower = b{bpm], upper = blbpm+1})$
value }) }, lower = alapm]l, upper = afapm+1])
,error=function(e) e}

if (inherits (pessibleError, "simpleError“))

{ add = ¢ }

else {

add = integrate (function(v) { sapply(v, function(v) { integrate (function (w)

Integrand {v,v), lower = b[bpm]., upper = blbpm+il)$value }) }, lower = a[
apm], upper = afapm+1])$value

}

al = at + add

}

}
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else {
pessibleErrorl <- tryCatch{integrate (function{v} { sapply(v, fumnction(v) {
integrate (function(v) Integrand(v,w), lower = 1llim, upper = O)$value }) },
lower = 1lim, upper = 0)
.error=function(e) e)
if (inherits{possibleErrort, "simpleError")) { ct = 0}
else {c1 = integrate(function{(v) { sapply(v, function(v) { integrate (functiop(w)
Integrand{v,w), lower = 1llim, upper = 0)$value }) }, lJower = 1llim, upper = O)$%
value }

possibleErrer2 <- tryCatch{integrate (function(v) { sapply(v, function(v) {
integrate (function (w) Integrand{(v,w), lower = 1llim, upper = 0)$value }) 1},
lover = 0, upper = ulim)

,error=function (e} e)

if (inherits (possibleError2, “simpleError")) { c2 0}
else {c2 = integrate{function(v) { sapply{v, function{(v) { integrate (function(w)
Integrand (v,v}, lower = llim, upper = O)}$value }} }, lower = 0, upper = ulim)$

value}

possibleError3 <- tryCatch(integrate (functior(v) { sapply(v, function(v) {
integrate {(function (v) Integrand(v,w), lower = 0, upper = ulim)$value }) },
lower = 1lim, upper = @)

,error=function{e) a)

if (inherits (possibleError3, "simplaExror")) { ¢3 = 0}

else {¢3 = integrate {(function(v} { sapply(v, function(v) { integrate (fumction (w)}
Integrand(v,w), lower = 0, upper = ulim)$value }) }, lower = 1llim, upper = 0)$
value }

possiblaError4 <- tryCatch (integrate (function{v) { sapply(v, function(v) {
integrate (function(w) Integrand(v,v), lewer = 0, upper = ulim)$value }) },
lLower = 0, upper = ulim)
,aerror=function (e} &)
if (inherits (possibleError4, "simpleError"}) { c4 = 0}

else {c4 = intagrate (function(v) { sappliy{v, functien{v) { integrate (function{w)

Integrand{v,w), lower = 0, upper = ulim)$value }) }, lower = 0, upper = ulim)$
valuel}
al = c2 + ¢c2 + €3 + c4d
}
return{al)
}

#&vtttttttttttvttvttttsttrtttttttt*ttt*t*tt*ttt**t**tttttttttt*a»tttttttt-ttt*#****#
# Defining Probabilities, Derivatives, Double Derivatives for MDCP Il model #
#‘**ttﬁt*tiiittiiiii*iiitiit‘t‘.“*“tt#*‘*“*‘!***’I**t***‘i*t‘**t*ititiiﬁt*t‘ﬁ*ﬂ**#
# funciien to computie MOCP FProbabilities
ProbMDCP <- function(n, Data, pars, nSub, nCovariates, nChoica) {

betainrn = pars[(1:nCovariates]

lambda = pars[(erCovariates+1):(nCovariates+nChoice)]

xdata = Datafl{((r-1)*nSub*nChoice+1}:{p*nSub*nChoice) ,2:(nCovariates+1)]

means = xdata¥*Ybetainn

SpMeans = matrix{0,nSub=*nChoice, nChoice}



for (i in 1:nSub) {
SpMeans [((i-1)#*nCheice+1):(i*nChoice) ,t:nChoice] = matrix(t,nChoice ,1)}%*

Prob

for

%t{means (((i-1)*nCheice+1):(i*nChoice) ,1])
}
= matrix (0, nSubsnChoica, 1)
(i in 1:mSub) {

for (j in 1:nChoice) {

}

KuVec = SpMeans [{{(i-1)*nChoice+j},1:nChoice]
Integrand <- function(v,w) {
return{ProbIntegrand(v, w, MuVec, lambda, j))

Prob[((i-1)*nChoice+j),1] = DoublelInteg(-Inf, Integrand, Inf)
}

}

return(Prob)

#wrapper for parellel compuiation in esiimalion

ProbMDCP1 <- fuanction (nlLoop, Data, pars, nSub, nCovariates, nChoice) {

xProb <-foreach(m=t:nLcop,

nCovariates , nChoice)

return {xPrab)

}

# Ffunction to compute MDCP derivatlives

DerMDCP <- function{n, Data, pars, nSub, nCovariates, nChoice) {

betainn = pars[1:nCovariates]

lambda = pars[{nCovariates+1):(nCovariates+nChoice)]
a = Datal({n~1)*nSub*nChoice+1):(n*nSub*nChoice) ,2:{nCovariates +1)]
means = xdata%*%betainn

xdat

1

3pMeans = matrix (0,nSub*nChoice, nChoice)

SpXs
for

DerProbBetaMLambda = matrix {0, nSub#*nChoice, (nCovariates+nChaice))

for (
for

= matrix {0, nSub*nChoice, nChoice*nCovariates)}
(i in 1:mSub} {

.combine=rbind) %dopar¥ PrebMDCP{m, Data,

pars,

nSub,
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SpMeans [{(i-1) *nChoice+1) : (i*nChaice) ,1:nChoice] = matrix (1,nChoice ,1)%#*¥%t

(means [((i-1)*nChoice+l) : (i*nChoice) ,1])
rearrange = t(Datal[((i-1)*nChoice+i):{i*nChoice) ,1+1])
for (m in 2:nCovariates) {

rearrange = cbind(rearrange, t(Data[((i-1)+*nCheice+1):{i*nChoice),m

+11))
}

SpXs [({((i-1)¥nChoice+1) : {i*nChaice)} ,t:{nChoicesnCovariates)]

nChoice ,1)%4*%rearrange

}

i in 1:mSub) {
(j in 1:nChoice) {

MuVec = SpMeans [((i-1)#nChoice+j),1:nChoice]

xDiff = 8pXs[{(i-1)*nChoice+j) ,1:(nChoice*nCovariates})

for

(m in i:aCovariates) {
Integrand <- function(v,w) {

return(FirstDerBetalntegrand (v, w, MuVec, lambda, xDiff,

i

m))

matrix (L,
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DerProbBeta¥Lambda [((1i-1)*nChoice+j) ,m] = Doubleinteg(-Inf, Integrand, Inf)
}
for {r in 1:nChoice) {
if (xr == j) {
Integrand <- function(v,w) {
return(FirstDerLanbdajIntegrand (v, w, MuVec, lambda, j))

}
a2 = DoubleInteg{-~Inf, Integrand, Inf)
}
else {
Integrand <- functian{v,w) {
return{(FirstDerLambdarIntegrand (v, w, MuVec, lambda., r, j}?
}
a2 = DoubleInteg (-Inf, Integrand, Inf)
}
DerProbBetaMLambda[((i-1)#nChoice+3j) ,nCovariates+r] = a2
¥
}
}
return (DerProbBetaMiambda)

}

# wrapper function to be used in estimation

DerMDCP1 <- functicn{nLoop, Data, pars, nSub, nCovariates, anCheice, Prob) {

xber <~ foreach{m=1:nLoop, .¢ombine=rbind) %dopary DerMDCP{m, Data, pars, nSub,
nCovariates, nChoice}

return (xDer)

>

# function to compute MDCP Double deriveatlives
DDerMDCP <- functien(n, Data, pars, nSub, nCovariates, nCheoice) {
betaine = para([l:nCovaziates]
lambda = parsf[(mCovariates+1):(nCavariates +tnChaice)]
¥data = Data[{({n-1)*nSub*nChoice+1):{n*nSub*nChoice} ,2:{(nCovariates+1)]
means = <xdata¥*%betainn
SpMeans = matrix (0, nSub*nChoice, nChoice)
SpXs = matrix {0, nSub#*nChoice, nChoicex*nCovariates)
for ¢(i in 1::Sub) {
SpMeans [({i-1)*nChoice+1) :(i+nChoice) ,1:nChoice] = matrix(l,nChoice ,1}%sJt
(means [({(i-1)*nChoice+1) : {(i*nChoice) ,1])
rearrange = t(Datal((i-1)+nChoice+l1):{(i*nChoice) ,1+1])
for (m in 2:nCovariates) {
rearrange = cbind(rearrange, t{Data(((i-1)~+nChoice+1):{i*nChoice).m
+11})
}
SpXs [((i-1)*+nChoice+1) : (i*nChoice) ,1:(nChoicesnCovariates)] = matrix(1,
nChoice ,1)%«%rearrange
}
DDerProbBetaMlLambda = matrix(0, nSub¥nChoice, (nCovariates+nChoice}"2)
for (i in 1:nSub} {
for (j in 1:nChoice} f{
MuVec = SpMeans {((i-1)}*nChoice+j},1:nChoice)
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xPiff = SpEs[((i~1)+nChoice+j)},1:(nChoice*nCavariates}]
bt = matrix (0, (oChoice+nCevariates),{nChoice+nlovariates))
for (m in 1:nCovariates) {
for (mpm in m:nCovariates) {
Integrand <- function{v,w) {
return(SecondDerBetaMMpmIntegrand (v, w, MuVec, lambda, xDiff, j, m,
mpm) )
}
bifm,mpm} = bllm,.mpm] + Doublelnteg (-Inf, Integrand, Inf)
}
for (r in 1:nChoice} {
if (xr == j) {
Integrand <- function{v,v) {
return(SecondDerLambdajBetaHIntegrand(v, w, MuVec, lambda, xDif¥,

js m}}
H
add = Doublelateg (-Inf, Integrand, Iaf)
}
else {
Integrand <- function(v,w) {
return (SecondbPerLanbdarBetaMIntegrand(v, w, MuVec¢, lambda, xDiff,
¥, j. m})
}
add = Doublelnteg (-Inf, Integrand, Inf)}
H

bi[m.(n;uvariates+r)]=b1[m,(nCnvariates+r)]+add

}
for (r in 1:nChoice) {
for {(rpm in r:nChoice) {

if ({r==rpm} & (r == j)}) {
Integrand <- function{v,w) {
return (SecondDerLambdaj2Integrand{v, w, MuVee, lambda, j))
) .

add = DoubleInteg(-Inf, Integrand, Inf)
}
else if ((rt=rpm) & (r == j)) {

Integrand <- function{v,w) {
return{SecondDerLanjLanrIntegrand(v, w, MuVec, lambda, rpm, 3))

add = DonbleInteg(-Inf, Integrand, Inf)
}
else if {({r==rpm) & (r '= j)) {
Integrand <- functioen(v,w} {
return (SecondDerLamr2Integrand (v, w, MuVec, lambdé, r, j)}

add = Doublelnteg (-Inf, Integrand, Inf)
}
else if {((rl=rpm) & ({r!'= j) | (rpm t= ))> {
Integrand <- fuanction(v,w)} {
return (SecondDerlamrpnlLamrIntegrand (v, w, MuVec, lambda, r, rpm,

N
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}
add = Dovblelnteg (-Inf, Integrard, Inf)
}
bt [(nCovariates+r) ,(nCovariates+rpm)J=bi[(nCavariates+r),(nCovariates+
rpr ) l+add
}
}
BRerProbBetaMLambda [((i-1}*nChoice+j)},) = as.vector{bt+t(bl)-diag(diag{(bl)))
¥
}
return{DDerProbBeta¥Lambda)
}

#Wrapper to compute DDer MDCP

DDerMDCPt <- function(nLoop, Date, pars, nSub, nCovariates, nChoice) {

xDDer <- foreach{(m=1:nloop, .combine=rbind) %dopar% DDerMbDCP{m, Data, pars, nSub,
nCovariates, nChoica)

return (xDDer}

}

P ok R e R T s Y e L PP Ty
# Defining Probabilities, Derivatives, Double Derivaiives for PCL model #
#""F*-****"‘*"““‘*’F‘*"‘**‘*‘*******t***t**#iiii*iitiii**tit**l*t#‘*****‘***i‘i#
# function to compuie PCL Probabilities
ProbPCL <~ function(Pata, pars) {
betainn = pars([l:nCovariates)
lambda = pars[(nCovariates+1):{(aCovariates+nChoice)]
xdata = Datal[,2:{nCovariates+1)]
means = xdatay+*ibetainn
Prob = matrix{0, nObs»*nChoice, 1)
MuVee = matrix (0, nChoice, 1)
for (i in 1:n0bs) {
MuVec = means [((i-1)*nChoice+1):{(i+*nChoice) ,1}
ProbMatrixNr = matrix (0, nChoice, nfhoice)}
ProbMatrixDr = matrixz (0, nChoice, nChoice)
for (j in 1l:nChoice) {
for (k in 1:nChoice) {
if (j==k) {
ProbMatrizNr(j.k}=0
ProbMatrixDPr[j,kl=0
¥
else {
ProbMatrixNr[j,k] = exp(MuVec[j)/(lambda[jl«lambda(k})}*(exp{MuVac[jI/(
lambdal[jl+lambdafk])) + exp(MuVec[k}/(lambda[jl=*lambdalk]}})~(lambda{jle
lambda [k]-1)
ProbMatrixDr[j,k} = {(exp(MuVec[jl/(lambdal[jl*lambda(k])) + exp(MuVec([kl/(
lambda [jl*lambdalk])))~{lambda[j)*lanbda(k})
if (is.finite(ProbMatrixNr(j,kl)==FALSE) { ProbMBatrixNr[j,kl = O}
if (is.finite(ProbMatrixDr[(j,k])}==FALSE) { ProbMatrizDrlj.kl = 0}
}



Prob[({i-1)#aChoice+1) : (i+nChoice), 1l= 2+apply(ProbMatrizNr, 1, sum)/sum(

ProbMatrixDr)
}
return (Prod)
¥

# function lo compuie PCL Probabilities for each i+ & 3

ProbPCL.ij <~ function{pars, Data, n, o, p, nSub, nCovarjates, nChaice) {

betainr = pars[l1:nCovarjates]
lambda = pars({nCovariates+1):(nCavariates+nChoice)]
xdata = Data[{(n-1) *nSub*nChoice+i):(n*nSub*nChoice) ,2:{nCovariates+1)1

means = xdata¥+%betainn
Prob = matrix (0, nSubxnCheice, 1)
MuVec = matrix (0, nChoice, 1)
i=o0
MuVec = means [({i-1)+nChoice+1):{i*nChoice), 1]
ProbMatrixNr = matrix (¢, nChoice, nCheice)
ProbMatrixDy = matrix (¢, nChoice, nChoice)
for (j in 1:nChaice} {
for (k in t:nCheice) {
if {j==x) {
ProbMatrixNr(j,ki=0
ProbMatrixDrfj,k]=0
}
else {

ProbMatrixNr(j,.k} = exp{(MuVec([jl/{lambdal[jl+*lambda(kl))# (exp(MuVac[jl/(
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lambda [jl1+lambda[k]l))} + exp{(KuVec(k}/(lambda(jl+lanbhda(kl))) " (lambdal[jl+

lambda [k]1-1)

ProbHatrixDr[j,k].= (exp(MuVec(j)/(lambda(j]*lambda[kl)) + exp(MuVec[k]/(

lambdafj)*lanbda [k}))}~(lambda[j] *lambda [k1}
if (is.-finite(ProbMatrixNr[j,k])==FALSE)} { ProbMatrixNx([j,kl = 0}
if (is.finite(ProbMatrixDr[j,k])==FALSE} { ProbMatrixDrf[j,.kl = Q}

}
H
}
Prob[((i-1}*nChoice+1):(i*nChoice), 1]J= 2+apply(ProbMatrixNr, 1, sum)/sum{
ProbMatrixDr)
return (Prob{{((i-1)*nChoice+p) ,11}

}

# function to compute PCL derivatives
DerPCL <- function(n, Data, pars, pnSub, nCovariates, nChoice) {
library (numBeriv)
PCL.Dor = matrix {0, nSub*nChoice, (nCovariates+nChoice)})
for (4 in 1:nSub) {
for {j im 1:nChaice) {

q3 = grad(ProbPCL.ij, pars, method = “Richardson®, Data=Data, n=a, o=i, p=j,

nSub=nSub, nCovariates=nCovariates, nChaice=nCheoice)
PCL.Dexr [(i~1)*nChoice+j,] = as.vector (g3)

>
return {(PCL.Der)
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DerPCLt <- function(nLeoop, Data, pars, nSub, nCovariates, nChaice) {

PCL.Der1l <- foreach(m=1l:nLoocp, .combine=rbind) ¥dopar DerPCL(m, Data, pars, nSub,
nCovariates , nChoice)

return {PCL.Derl)

}

# function to compute PCL Double derivatives
DBerPCL <- function{n, Data, pars, nSub, nCovariates, nChoice) {
PCL .DBer = matrix{(0, nSub#*nChoice, (nCovariates+nChoice)~2)
for (i im 1:nSub) {
for (j in 1:nChoice) {
93 = hessian(ProbPCL.ij, pars, method = "Richardsoan", Data=Data, n=n, o=i, P=]
, nSub=nSub, nCovariates=anCovariates, nChoice=nChoice)}
PCL.DbDer ((i-1)#*nChoice+j,] = as.vecter{g3)

}
return (PCL.DDer)
¥

DDerPCL: <~ func¢tion{nloop, Data, pars, nSub, nCovariates, nChoice} {

clusterExport(c2, c(®pars®))

PCL.DDer1 <- foreach{m=l:nLoop, .combine=rbind) Ydopar’ DDerPCL{m, Data, pars, nSub,
pnCovariates , nChoice)

return (PCL.DDert)

}

#’kt***tlﬁtti************#i*'ﬁtt#***********#***i**i*******t*****t*tt*i**‘t*ti¥¥¥¥$¥¥#

# Defining likelihood , Gradient, Hessian for product correlated probit model #

R e L L s R e e e e s

#DCP Liketihood

MDCP.Likelihood <- function{(Data, pars, nLoop, nSub, nCovariates, nChoice) {

clusterExport(c2, c("Data", "para"))

Prob = ProbMDCP1 (nlcop, Data, pars, nSub, nCovariates, nChoice)

lik = Datal[,i]*log(pmax(i1e-323,Prob))

loglike = sum(lik)

return{loglike)

}

#MDCP Gradient

MDCP.Gradient <- functiom{Data, pars, nLoop, nSub, nCovariates, nChoice) {
clusterEzxport(c2, c{"Data", "pars"))

Prob = ProbMDCP1 {nLoop, Data, pars, nSub, nCovariates, nChoice)

Der = DerMDCP1{nlLcop, Data, pars, nSudb, nCevariamtes, nChoice}

Grd = Datal[,1]1*{(celdiv.matrix(Der,Prob));

return (apply (Grd ,2,sum))

}

#MDCP Hessian

MDCP.Bessian <- functioan{nLeop, Data, pars, nSub, nCovariates, nChoice)} {
Prob = ProbM¥DCPI (nLoop, Data, pars, nSub, nCuvariates, nChoice)

Der = DerMDCP1 (nLoop, Data, pars, nSub, nCovariates, nChoice)
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DDer = DDerMDCP1{mpLoop, Data, pars, nSub, nCovariates, nChoice)
Product = matrixz (0, nObs*nChoite, (nCovariates+nChaoice) “2)
for (i in 1:(nCovariates+nChoice)) {
for (} in 1:(nCovariates+nChoica}) {
Product [,{(i-1}*(nCovariates+nChoice)+j} = Derf,i)+*Derl, jl
}
I
Hess = DDer-coldiv.matrix (Preduct, Prob)
return (apply(Hess, 2, sum})
}

e R e e e L T e L T e T2
# Defining likelihood , Gradient, Hessian for PCL Model * g
#1******‘*’I********1******‘*#**t**‘**tﬁ***t‘i***tt**““*'*‘*'*‘*“*"*****ttt**t*‘*#
#PCL Likelihood

PCL.Likelihood <~ function (pars, Data, nLoop, nSub, nCovariates, nChoica) {
clusterExport(c2, c("Data", “"pars"})

Prob = PrabPCL (Data, pars)

1ik = Datal,1)*log(pmax(1e-323,Prob))

laglike = sum(lik)

return (loglike)

}

#PCL Grodient

PCL.Gradient <- function(pars, Data, aLoop, nSub, rCaovariates, nChoicas) {
clusterExport(c2, c{("Data", "parsa"))

Prob = ProbPCL{Data, pars)

Der = DerPCL1 (aLoop, Data, pars, nSub, nCovariates, nChoice)

Grd = Datal,1]1*{coldiv.matrix(Der ,Prob)})

return (apply(Grd,2, sum))

}

#PCL Hessiaon
PCL.Hesslan <~ function (nLoop, Data, pars, nSub, nCovariates, aChoice) {
Prob = ProbPCL{(Data, pars)
Der = DerPCL1(nLecop, Data, pars, nSub, nCovariates, nChoice)
DDer = DPerPCL1(nLoop, Data, pars, nSub, nCovariates, nChoice)
Product = matrix {0, rOba*nChoice, (nCovariates+nChaice)~2)
for (i in t:(nCovariates+nChoice)) {
for (j in 1:{nCovariates+nChoice)) {
Product [, (1-1)+«(nCovariates +nChoice)+j] = Der[,il«Der(,j]
}
}
Ress = DDer-~coldiv.matrix{Product, Prob)
return (apply (Hess, 2, sum))
}

bR LR R R L e R P e s
#* Compuiation of asymptotic efficiency for real market #
#ﬁtii*tittitt‘t'!t‘*t"‘t‘*“"*"¥¥¥¥$¥¥“¥‘t*tt#t‘#tttt**‘*********‘**‘**t*‘t*t*t*#
#input parameters for asymptotic efficiency

seed = 16461

nlbs = 4
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nCheice = 4

plLevel = 3 #Number of leuvels for discrete cowariate

nCovariates = nChoice+nlevel ~ 1 #Number of covariates such as intercepls,
porameters

nPar = nCovariates + nChoice #FNumber of parameiers

# Four arbilreirly chosen vafues of lambda, lhe correlation paerameter

lambdal = c(-0.7541376, -0.6808193, -0.7693839, -0.7381692)

lambda2 = c(-0.7015052, -0.5163027, -0.1686635, 0.3792168)

lambda3 = c( 0.28316480, -90.07476282, 0.54631999, 0.29311195)

lambdad4 = c(0.6755678, -0.5467673, -0.4264408, -0.8104457)

StartBetae = ¢{(-0.479, 1.061, 0.475, 0.781, 0.107, -0.525)

Data = DataSim{(seed, nObs, nChoice, nlevel, StartBeta, 0.3)

#Set up for parellel computing
Library (doSNOW)
nCores <~ 4 # number of CPUs
nSub <- nbbs/pCorves
nLoop = nCores
c2<-makeCluster (nCores)
clusterExport{c2, <("nSub", "nLoop", "nrCovariates", "nChoice"})
clusterExport{c2, c{"ProbWDCP", "DexrMDCP", "DDerMDCP", "PrecbPCLY, "DerPCL", "DDer¥PCL
", "ProbPCL.ij", "DoubleInteg", "Chk", "colprod.matrix™, "“¢oldiv.matrix", "ti",
T£2", "$3", "d_ilm"™, “Al_theta_v_w", "al_theta_v_w", “"ProdAl_theta_v_w", "
ProbIntegrand™))
clusterExpart{c2, ¢{"FirstDerBetalntegrand®, "FirstDerLambdajIntegrand”, "
FirstDerLambdarIntegrand", "SecondDerBetaMMpmIntegrand", "
SecondDerLambdajBetaMIntegrand”, "SecondDerlLambdarBetaMIntegrand®,
"SecondDerLambdaj2Integrand”, "SecondDerlLamjlamrIntegrand”, "
SecondDerLamr2Integrand”, "SecondDerLamrpmLamrIntegrand”®})
registerDaSNOW(c2)
stopCluater (c2)
#Asymptotic efficiency
asympeff <- function{Data, StartBeta, lambda) {
pars = c{StartBeta, lambdal)
¢lusterExport{c2, "pars")
MDCP.Hess = MDCP.Hessian (nCores, Data, pars, nSnb, nCovariates, nChoice)
MDCP .Hess = matrix{MDCP.Hess, {nCovariates+nChoice}, (aCavariates+nChoice))
PCL,Hess = PCL,Hassian{Data, pars)
PCL .Hess = matrix (PCL.Hess, (nCovariates+nChoice), {(nCovariates +nChoice))
InvFishMDCP = solve{-MDCP.Hess)
InvFishPCL = solve(-PCL.EHess)
eff = diag(InvFiBhPCL)/diag(IanishHDCP]
return (eff)

}

affl <~ asympeff {Data, StartBeta, lambdat)
eff2 <- asympeff (Data, StartBeta, lambda2)
eff3 <- asympeff (Data, StartBetas, lambda3}
eff4d <- asympeff {Data, StartBetz, lambdad}
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#’***t*""“"""itt*******“t"*'**t'*‘*"*‘*'*‘*‘*"#*#‘***#*tﬁ*tt*tt*t‘*ttt‘t‘#
#* Application {o real time date o
P L e R Y P
#Laundry Detergent dala

Laundry = read.table("C:/Users/bravi/Desktep/Laundry.txt”, sep="", header = TRUE)
Laundry = as.matrix (Laundry, 2657, 13)

&

nCovariates = 11

nChoice

nPar = nCovariates +nChoice
nlbs = 1000

Price = Laupdry([1:(nDbs) ,2:7]

Select = Laundryf[1:{n0Gbs),8:13]

PriceNew = matrix(t(Price), nObs+*nChoice, 1}
SelectNew = matrix{t(Select), nObs*nChoice, 1)
intmat = rbind(diag(nCheice-1), matrix{9, 1, nChoice~1))
xInt = intmat

for (4 in 1:(nbbs-1)) {

xInt = rbind(xInt, iatmat)

}

plnt = diag(nChoice)

priceint = plnt

for (i in t:(m0Obs-1)) {

priceInt = rbind(pricelInt, pInt)

}

PriceN = matrix{0, nDbs*nChoice, nChoice}

for (4 in 1:nChoice) {

PriceN[,1] = PriceNewxpricelnt{,i]

}

xData = ¢bird(xInt, PricelN)

yData = SelectNew

LaundryNew = chind{(yData, xData)

Betalnit = ¢(2, &, 1, 2, 1, rep(-105, nChoice))
LambdaInit = runif (nChoice, -1, 1)

initial = c(Betalpit, Lambdalnit)

$0l .PCL = constrOptim{initiel, PCL.Likelihood, gr=PCL.Gradient, ui=cbind(matrix{0, 2
*nCheice, nCovariates), rbind{diag(nChoice), -diag{(nChoice})), ciwec(rep(-1, 2%
nChoice})), mu = 1e~06, control = list{(fnscale=-1},

method = "BFGS", outer.iterations = 100, outer.eps = 1e-05, Data=
LaundryNew , aLoop=nLoop, nSub=nSub, aCovaristes=nCovariates, nChoice
=nChoice, hessian = FALSE)

sol .MDCP = constrOptim(initial , MDCP,Likelihood, gr=MDCP.Gradieat, uvi=cbind{(matrix
(0, 2*nChoice, nCovariates), rbind(diag{nChoice), -diag(nChoicel)), ci=c(rep(-1,

2xnChoice) ), mu = 1e-06, control = list(fmscale=-1),
method = "BFGS", outer.iteratioms = 100, outer.eps = 1e-05, Datas
LauvndryNewv , nLoop=nLoop, nSub=nSub, nCovariates=nCovariates, nChoice
=pChoice , hessian = FALSE)

MDCP ,Hess = MDCP.Hessian(nCores, LaundryNew, sol.MDCP$par, nSvb, nCovariates,
nChaoice)
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PCL.Hess = PCL.Hessian{unloop, LaundryNew, sol.PCL$par, nSub, nCovariates, nChoice)
MDCP .Hess = matriz (MDCP.Hess, (nCovariates+nChoice), (nCovariates +nChoicel})

PCL .Hess = matrix {(PCL.Hess, {nCovariates+nChoice), (nCovariates+nChoicea))

seMDCP = sqrt{diag(solve (-MDCP.Hess)))

sePCL = sgrt(diag{solve(-PCL.Hess)})

#Travel mode deate

Travel = read.table("C:/Users/bravi/Desktop/Travel data.txt”, sep="", header = TRUE)
n0bz = 210

Travel = as,patrix(Travel, ndbs, 7)

nChoice = 4

nCavariates = 7

nPar = nCovariates+nChoice

albs = 208 #To mahke use of parellei compuiling

intmat = rbipd(diag{(nCheice-1), matrix(0, i, nChoice-1))

xInt = intmat

for (i in 1:(n0bs-1}) {

xInt = rbind(xInt, intmat)

}

TravelNew = matxix(0, nDbs*nChoice, nCovariates+1)

TravelNew [1: (n0bs*nChoice) ,1] = Travel [1:{nlbssnCheoice) ,1]

Travellew [1: (nObs*nChaice) ,2:4] = xInt

Travellew [1: (nObs*nChoice) ,5:8} = Travel (1:(aObs*nChoice) ,2:5]

jnitial = c(2.24711280, 3.36113649, 2.90822876 , 0.42927333, 0.83296026,
0.08111699, 0.12676757, 0.54327163, ~0.,48312499, 0.81285843, -0.%1332281)

5ol .PCL = constrOptim (initial, PCL.Likelihood, gr=PCL.Gradient, ui=cbind(matrix(0, 2
*nChoice , nCovariates), rbind{diag(nChoice), -diag(mChoice})}), ci=c{zep(-1, 2»
nChoice)), mu = 1e-06, comtrol = list{fnscale=-1),

method = “BFGS", auter.iteratioms = 100, outer.eps = 1le-05, Data=
TravelNew, nLoop=nloop, nSub=nSub, nCeovariates=nCovariates, nChoice=
nChoice, hessian = FALSE)

801 .MDCP = constrOptim (initial , MDCP.Likelihood, gr=MDCP.Gradient, ui=cbind{matrix
(¢, 2+«nChoice, nCovariatesz), rbind(diag(nChoice), -diag(aChoice)}), ci=c{rep(-1,
2*nChoice)), mu = 1e-06, contrel = list{fanscale=-1)},

method = "BFGS", outer.iteratiomns = 100, outer.eps = 1e-05, Data=
TravelNew, nlLoop=nLoep, nSub=nSub, nCovariates=nCovariates, nChoice=
nChoice, hessian = FALSE)

MDCP .Hess = MDCP.Hessian(nCores, TravelNew, sol.MDCP$par, nSub, nCovariates, nChoice
)

PCL.Hess = PCL,Hassian(nloop, TravelNew, sol .PCLS$par, nSub, nCovariates, nChoice?

MDCP.Hess = matrix (MDCP.Hess, (nCovariates+aChoice), (nCovariates+nChoice)}

PCL .Hess = matriz (PCL.Hess, {(nCovariates+nChoice), (nCovariates+nChoice)})

5eHDCP = sgrt{(diag(solve (-MDCP.Hess)}))

sePCL = sqrt(diag(solve(-~PCL.Hess)))



120

VITA

Bhaskara Ravi

Department of Mathematics and Statistics
Old Dominion University

Norfolk, VA 23529

Education

e Ph.D. in Applied and Computational Mathematics (Statistics), Old Dominion
University, Norfolk, VA (December 2012)

s M.Sc. in Statistics and Operations Research, University of Hyderabad, Hyder-
abad, India (May 1999) '

e B.Sc. in Mathematics, Physics and Statistics, Andhra University, India (May
1997)

Experience

2010-2012, GRA, Eastern Virginia Medical School, Norfolk, VA.

e 2008-2010, GRA, Department of Mathematics and Statistics, Old Dominion
University, Norfolk, VA.

* 2004-2008, Project Manager, TNS India Pvt. Ltd. Mumbai, India.

e .2003-2004, Sr. Executive Market Research, Mensamind Pvt. Ltd, Hyderabad, .
India.

s 2001-2003, Research Executive, Pragna Research and Consultancy Services,
Hyderabad, India.

e 2000-2001, Faculty of Statistics, Vivekananda School of PG Studies, Hyder-
abad, India.

Typeset using EITEX.



	Old Dominion University
	ODU Digital Commons
	Winter 2012

	Analysis of Discrete Choice Probit Models with Structured Correlation Matrices
	Bhaskara Ravi
	Recommended Citation


	00001.tif

