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ABSTRACT

CANONICAL CORRELATION AND
CORRESPONDENCE ANALYSIS OF LONGITUDINAL
DATA

Jayesh Srivastava
Old Dominion University, 2007
Director: Dr. Dayanand Naik

Assessing the relationship between two sets of multivariate veetors is an important
problem in statistics. Canonical correlation coefficients are used to study these re-
lationships. Canonical correlation analysis (CCA) is a general multivariate method
that is mainly used to study relationships when both sets of variables are quantitative.
When the variables are qualitative (categorical), a technique called correspondence
analysis (CA) is used. Canonical correspondence analysis (CCPA) is used to deal
with the case when oue set of variables is categorical and the other set is quantitative.
By exploifing the interrelationships between these three techniques we first provide
a theoretical basis for CCPA.

Next, in this dissertation, we have generalized each of these three techniques to
analyze the relationships between two sets of repeatedly or longitudinally observed
data. When the two vectors arc quantitative, we use a block Kronecker product
matrix to model dependency of the variables over time. We then apply canonical
correlation analysis on this matrix to obtain canonical correlations and canonical
variables. When the variables are qualitative, the data are summarized in the form
of a contingency table. It is generally not straightforward to model dependency of
contingency tables over time. However, we have proposed fitting correlated linear
models to the summary statistics obtained by performing the usnal correspondence
analysis at each time period. We have shown that the most useful summary mecasure
for this purpose is the first singular value of the correspondence matrix, which is
essentially the matrix of relative frequencies obtained from the given contingency
table. Our method is a reasonable approach to analyze repeated contingency table

data. Finally, to deal with the casc when one set of variables is categorical and
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the other set is quantitative, we have proposed combining the two approaches to
deal with quantitative and qualitative variables. We have illustrated and studied the

performances of our methods my implementing themn on simulated data sets.

High dimecnsional data are now common duc to the Internct, genomics, pro-
teomics, and the like. Although, correspondence analysis and other methods consid-
ered in this dissertation are general techniques for analyzing multivariate data their
uscfulness for analyzing very high dimensional data have not been compared with
the other more modern machine learning methods. In the last chapter of this dis-
sertation, we provide a brief introduction to a machine learning method that is used
to analyze very high dimensional and sparse contingency table data from the field of
language processing or information retrieval, named latent semantic analysis (LSA).
We then proposc certain criteria to compare the performance of LLSA with the cor-
respondence analysis. Based on these eriteria we find that under certain situations

correspondence analysis performs better.
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CHAPTER I
INTRODUCTION

The main focus of this dissertation is to provide methods o study the relationships
between two sets of repeatedly or longitudinally observed data. Methods are de-
veloped for all the three different cases, namely, when (i) both sets of variables are
quantitative, (ii) both sets are qualitative, and when (iii) one set is quantitative and
the other set is qualitative. These cases are considered in separate chapters that

follow. A brief introduction to cach chapter is provided next.

Studying the rclationship between two sets of variables is an important multivari-
ate statistical analysis problern. Hotelling (1936) introduced his famous canonical
correlation analysis (CCA) to study the relationship between two sets of quantitative
variables. In this analysis, one finds a linear combination of the first set of variables
and a linear combination of the second set of variables such that they both have unit
variance and the Pearson correlation coefficient hetween them is maximum. Thus the
obtaincd pair of linear combinations are called the first canonical variables and the
correlation is called the first canonical correlation. This process is repeated to obtain
the second, third,... canonical variables and correlations with the additional restric-
tion that the pair of linear combinations currently being computed are uncorrelated
with all the previously obtained pairs. Use of few canonical variables to perform data
analysis is in fact a general way of dimension reduction. Although CCA has been
generalized in several directions (see Kettenring (1971)), its generalization to deal
with longitudinally observed sets of variables has not been done in the literature. In
the next chapter (Chapter 2). we provide canonical correlation analysis of longitu-
dinally observed sets of data. Suppose two random vectors x and y, of dimensions
p % 1 and ¢ X 1 respectively are observed over ¢ time periods on n subjects. Then
assuming a block Kronecker product variance covariance matrix to the (pt + ¢t) x 1
random vector we account for the dependency of the variables over time. Various
testing of hypothesis problems under this scenario are considered and the CCA using

these matrices is illustrated on simulated data sets.

When both variables are qualitative, the data are summarized in the form of a

This dissertation follows the style of Journal of the American Statistical Association.
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contingency table. Correspondence analysis (CA) is a method that is used to project
the relationship between the two qualitative variables on to a smaller dimension
space. Benzéeri (1969, 1992), Hill (1974), Greenacre (1984), and others have stud-
ied correspondence analysis in detail and provided numerous applications. Also see
Khattree and Naik (2000). Correspondence analysis results can be obtained by per-
forming canonical correlation analysis on certain matrices. However, generalization
of the CCA approach proposed in Chapter 2 of this thesis to deal with repeated data
does not apply to repeatedly observed contingency tables. The reason why the CCA
approach fails here is because it is difficult to model the dependency of contingency
tables over time by the usual correlations. To overcome this problem, in Chapter 3
we have proposed fitting generalized linear modcls to the summary statistics of CCA
corresponding to ecach time period. This gives us a reasonable approach to handle
analysis of repeated contingency table data. Iilustration of the methods is performed
on simulated data. Assuming the frequencies in contingency tables are independently
distributed as Poisson, we use certain extensions of an algorithm due to Sim (1993)
to generate correlated Poisson frequencies over time periods. These cxtensions of the
algorithm and the SAS code implementing the algorithm are given in Mav {2004)
and Chaganty and Mav (2007).

Canontical correspondence analysis (CCPA) is used to deal with the case when onc
variable is categorical and the other set of variables is quantitative. The method was
introduced by Ter Braak (1986) to analyze species abundance and environmental
variables data obtained at a certain number of sites. In Chapter 4 we review this
method and show that the rcsults obtained using CCPA too can be obtained by
performing CCA on a set of matrices obtained from the data. In the literature,
we found no population versions to these matrices. Using the approach of Qlkin
and Tate (1961) we provide a theoretical basis to CCPA in Section IV.3. Then we
propose methods to deal with repeated data by combining the approaches that we

have taken in Chapters 2 and 3. Methods are illustrated using simulated data sets.

High dimensional data are now common duc to the Internet, genomics, pro-
teomics, and the like. Although, correspondence analysis and other methods consid-
ered in this dissertation are general techniques for analyzing muitivariate data their
nsefulness for analyzing very high dimensional data have not been compared with

the other more modern machine learning methods. In Chapter 5 of this dissertation,
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we provide a brief introduction t0 a machine learning method that is used to analyze
very high dimensional and sparse contingency table data from the field of language
processing or information retrieval, named latent semantic analysis (LSA) (Deer-
wester et al., 1990). We then propose certain criteria to compare the performance of
LSA with the correspondence analysis. Based on these criteria we find that under

certain situations correspondence analysis performs better,

- Most of the computations and simulations are done using IML procedure in SAS
software. The resuits from different chapters are provided in numerous tables and

figures.
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CHAPTER II

REPEATED CANONICAL CORRELATION ANALYSIS

I1.1 Introduction

Canonical correlation analysis {(CCA) is a well known statistical technique used to
identify and measure the association between two sets of random vectors using specific
matrix functions of variance-covariance matrices of these variables. This is also one
of the most gencral methods for data reduction in multivariate analysis. CCA was
introduced by Hotelling (1936) while studying the relationship between two sets
of variables in instructional research. Now CCA has found many applications in
different fields and it is routinely discussed in many mulfivariate statistical analysis
textbook. For example, scc Mardia, Kent and Bibby (1979) or Johnson and Wichern
(2002). Suppose the random vector x of p components and random vector y of
¢ components have the variance-covariance matrix 2., and X, respectively and
suppose 34, = cov{x,y). That is,

o[-

Yyy Lya
ny Exx

The main idea behind canonical correlation analysis is to find a ¢ x 1 vector a and
a p x 1 vector b, given X, 3, and 3, so that the correlation between a'y and

b’'x is maximized.

The ** pair of canonical variables (a’y, b!x) is obtained by solving

S e = pla (2.1.1)
and ;15,2 Db, = pib;, (2.1.2)

: : . 9 . . —1/2 _ —1/2
where p; is a canonical corrclation and p? is cigenvalue of Yo ZWZWIEWZM/ :

Kettenring (1971) has generalized CCA to several sets of variables and it has
found many gencralizations in the literature. Beaghen (1997) has used canonical
variate method to analyze the means of longitudinal data. However, no mcthods
have been devcloped to perform CCA on longitudinally observed data. IFocus in this
chapter is to generalize canonical correlation analysis to repeatedly observed data on

x = (21,...,2,) and y = (y1, ..., yg)'-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(3]

I1.2 Repeated Measures Case

Suppose we have observed x and y repeatedly over ¢ time periods. Let x; and y;

be the vectors y and x observed at the

X =(x],...,x})".

occasion. Define Y = (y},...,y}) and

covariance matrix D of u = ()", A”) has a Kronecker product matrix structure.
coLhat is,
T D= Quy @ 2y Qe @ T
U= :
| 9,85, 2.0, |

(2.2.1)

12.2.1)

The matrices €, .. and Q,, are used to model the dependency over ¢ time
period of repeated measurements on y, on x and of the covariance matrix between
repeated measures of y and x respectively. Kronecker product structures have been
successfully utilized to analyze multivariate repeated measures data in Naik and Rao
(2001) and Chaganty and Naik (2002).

The problem here is to determine linear functions U = a’) and V = b’X such
that the correlation between them is maximum. Here a is ¢f X 1 and b is pf x 1
vectors. Assuming E(Y) = 0, E(X) = 0 and restricting U and V' to have unit
variances, i.e

EU)=1=dE(YY)a=aQ, 0S,a=1 (2.2.2)
E(VH) =1=bWEX'X)b=bQ,, ®,,b =1, (2.2.3)

the correlation between U and V is given by

E(UV) = E(@YX'b) = aE(YX)b = a'Qy, ® 5,.b. (2.2.4)

Thus the algebraic problem is to find a and b to maximize 2.2.4 subject to the
conditions 2.2.2 and 2.2.3.
Let

W = a'Qyy @ Tyzb — %(a'gyy ®Tpa—1) - LB ©Tab - 1), (225)

where X\ and p are Lagrange multipliers. Setting the partial derivatives of 1 with
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respect to a and b, equal to zero yields

Qe ® Eyab — Ay, ® 5,8 = 0, (2.2.6)
and Qy @ Lpyd — pfl, @ Epb = 0. (2.2.7)

Pre multiplication of cquation 2.2.6 by a’ and equation 2.2.7 by b’ gives

a'y, ® Lyb — X'y, ®X,,a =0, (2.2.8)
and b'Q,, ® Tppa — pb'Q,, ® Bpb = 0. (2.2.9)

Since a'Q, @ ¥,pa =1 and b'{l,, ® X,,b =1 we get

a'Cye ® Dy — A =0, (2.2.10)
and b'Qgy ® Ypa — p=0. (2.2.11)

This shows that
A= H= nyr;: @ Eymb-

Hence equations 2.2.6 and 2.2.7 can be written as

— Ay ® Lypa + Q,, @ Byeb =0, (2.2.12)
Qay © Tay@ — My @ Tzeb = 0. (2.2.13)

Multiplying equation 2.2.12 by A and premultiplying equation 2.2.13 by
(Qpe ® E,_,,.Q,)_l we get

— A2y, @ Tyya + Qyy @ Ty Ab = 0, (2.2.14)
and (Qgz ® Suz) ' Uy ® Tpya = Ab. (2.2.15)

Contbining these equations we get

A2, @ T a4 (e @ ) (e ® Taw) " (e @ Tpp)a =0,  (2.2.16)
e (e © Da) (Qur © Ta) ™ (U © Tuy) = N2y ® z:w)a —0.  (2.2.17)

It is clear from equation 2.2.17 that A? is an eigenvalue of

A - (ny @ Eyy)_lﬂ (Szyx ® Ey-f‘)(Q.’c'r & Exx)“l(‘wa ® Emy)('ny & Ey'y]_l/‘z
= (ny—lfz ® Eyy_lﬂ)(ﬂyx ® Eyw) (me_l ® Em_l)(ﬂmy ® E:cy)(ﬂyy-wuz ® Eyy _1"2)
= (ny—lﬂﬂymﬂzz~-1Q$yny_1f2) @ (Eyy_lﬂzymzmx_lzxyZ}yy—h]’m).
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Simitarly we can show that equations 2.2.6 and 2.2.7 can be written as
Multiplying equation 2.2.19 by u and equation 2.2.18 by (2, ® Eyy)_l we get
(Qyy ® Eyy)_l(Qym ® Lye)b = pa, (2.2.20)
1122 @ Db + sy @ Typpa = 0. (2.2.21)
Asg before combining these we get
(Qx!ﬂ’ ® E-"f?f)(ﬂ'yy @ Eyy)_l(ﬂ'y:v & E'ym)b - JUQQ:L'.'L‘ & E:c:rb - 0; (2-2-22)
((Qx'y &® Zwy) (ny & Ey’y) o (Qyw @ Ey:s) . P'-ZQz:x P Ea:zc)b =0, (2.2.23)
where 1® is an eigenvalue of
B = (er @ Eﬂlx)_lﬁ(szﬂiy ® Z«T'y)(ﬂyy ® Eyy)_l(ﬂyx @ ):U'B)(Qxa' ® Em:)_hug
= (Qm“mﬂmygyy_1Qy$9m_l’j2) & (2;}”22@2;;2%2;3}}’2),

In general the vectors a; and b;, such that (a]Y,b/X) is the i** pair of canonical

variables, are obtained as the solutions of
(2 Qe Qe Uy ) ® (0 VP80 D D0y By Py = Moy

and
(Qaz ™y Ry ™ e ™%) @ (50250 Ty By B3 )bi = Ay,

It is interesting to note that after fitting the repeated effect the canonical correlations
are scaled by the eigenvalues of repeated effect matrix (ny_lf 2QymS2m_Imeny_U 4.
It is possible to write A% = A% ® A%, where A% and A} are the eigenvalues of
(e 2y Q" 0y %) and (Eyy_lfzzyxEmhlExyEw“m) respectively.
Further, the vector a; can be constructed by a; = aéi' ® auf‘:, where a? and afJ are the
it eigenvectors of (R4, Y20y Qe " Uy Ry ™2 and (Byy V28 Y0 Sy By V)
respectively. Similarly we can construct b; from the corresponding matrices.

Also notice that if there is no repeated effect (that is, Q;; = I, for ¢,7 = »,y) or all
the repeated effect is same (that is, €;; = Q) then

('QM_UQQMQM_IQngm_lfz) = wly

and A}, = wl,, where w is a positive constant.
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I1.3 Sample canonical correlations

Usually the matrices X, ¥,., Y.p, Oy, 4y, and £, are not known and need to
be estimated from the data. The population canonical correlation will be estimated
by the sample canonical corrclations. Let us assume that u = (}’, X’)’ is distributed

as multivariate normal with mean vector i and variance covariance matrix D.

Let uy,...,u, be the random sample from the N{u, D) where variance-covariance

matrix D is given by equation 2.2.1.

The log-likelthood function of the parameters given the obscrved data is

L{u.D) = ~0.5(n og(ID]) + 3 (1t = /D" (s ~ ). (2:3.1)

g=1
The estimates fi and D can be obtained by maximizing the above log-likelihood
function. We used SAS non linear optimization routine for maximizing the log-
likelihood function. Suppose €2, s, and €1, are the maximum likelihood estimates
of Qyy, e, and Oy, respectively and Zﬂ,. fly.n, and f)w are the maximum likelihood

estimates of X,,, ¥, and 2., respectively.

Then the sample canonical correlations vy > v > ... > r, are obtained as the

positive square roots of the nonzero eigenvalues of

(220,050 0y 017 @ (8,78, 500 5, B0 7).

The vectors a; and 15 corresponding to i* pair of canonical variables are obtained
as the solution of (Q5, 20720, %) @ (5578, 8218, 504 = A2, and

(Q72%0, Q}}Q 0a’?) © (2570 2 5 B0 7) by = Ab.

II.4 Hypothesis

Before performing any canonical correlation analysis using the samples uy, ..., u,,

the following hypotheses may be tested.
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1. First test for the repeated effect on the variance covariance matrices of y, of x

and on cov(x,y), i.e. test

3

I Sy Lyx @ Xon
Hy: D= w® 2w Ly @ 2y vs H,: D=

Qyy @By Qye @ By
Q,Ly &® E:::y Qa:a: & EI:C

Note that the null hypothesis here specifies that the variance and covariance
matrices do not change with the time factor. Here as well as in the cases
that follow, the alternative hypothesis is assumed to be as in our assumed
model, that it is unstructured Kronecker product block matrix. Testing can
be performed using the likelthood ratio test (LRT) statistic. Maximizing the
log-likelihood function L{g, D) = —0.5(n log(|D}) + > o, (u; — pyD ™ (u; —
t#)) under Hy and H, will produce the maximum likelihood cstimates. The
likelihood ratio test statistic is then

—2logA = —2log(lo/L,),

where £y and £, denote the maximized likelihood functions under the null and
alternative hypothesis. Under Hy, —2logA has a chi-squared distribution, as
n — 00. The degrees of freedoms equal to the difference in the dimensions of

the parameter spaces under HytJ H, and under Hy.

2. If we accept Hy then we can do the usual canonical correlation analysis by
merging all the data. Otherwise we will test whether the effect of time (or the
repeated effect) is on the covariances between (x and y) only. This amounts
to testing

Ly @ By Slys @ Lyg
Q:cy ® Zmy I:rx & Eww

Q'yy @ Eyy ny ® 23@

H(Jl D=
Q:cy @ E:t:y Q:c:c ® Z:t::t:

vs H,: D=

To test this hypothesis, ¢, is as in the previous case, i.e. as in (1) above.
The maximuam likelihood estimate and the maximum value of the likelihood

under Hy; can be obtained by maximizing 2.3.1 under Hy;.

3. If we accept Hyp, then we can perform canonical correlation analysis (CCA)
using the estimated variance covariance matrix given under Hy in (2). above.
Otherwise we will test for repeated effect on variance covariance matrices of y,

x, by testing,
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EI . D — Sz'yy ® B'yy Szym ® ny Vs H . D — Szyy ® Zyy Q'yx ® ny

0""‘ L me & Emy Top @ Xpg | ’ | Qxy ® E:1::1,« sz ® Yzg ] ‘
o D= Lyy @ By Sy ® B vs H. D — Quy @By, Oy ® Ly

’ L me =Y Ezy oz @ Xao ] I Q:ry & Ez'y Qpz @ Yo ]

As before the MLE and the value of the maximum likelihood function under
H,, (and H,,) can be obtained by maximizing 2.3.1 under the null hypothesis.

Under H,, the value £, remains the same.

4. If we accept H,, or H,, then we can perform canonical correlation analysis
(CCA) using the corresponding estimated variance covariance matrix as in (3).

Otherwise we will test for the same repeated effect, that is, test

Qit ® Zyy Qtt & Eyw
Qi @ Ty (it @ X

ny ® E‘U?J Qyz @ E‘UCU

]{u D= i

vs Hy - D=

The MLE of the common §}; and the other parameters can be obtained by
maximizing 2.3.1 under Hy and in the same way as before the LRT can be

constructed.

5. If we accept Hy then it suggest that change in variance covariance matrices over
time is same and we should perform canonical correlation analysis (CCA) using
the estimated structured variance covariance matrix as discussed in {4) above.
Otherwise we should procecd with the general structured variance covariance
matrix

D= Quy ® By ye @ T .

Qa;y ® Ezy Qxa: ® Z:u

IL.5 Constructing a Variance Covariance Matrix for Simulation

In order to illustrate the analysis discussed here, we will work with simulated data.
First we use the Helmert matrix to generate the positive definite matrices. The
general form of a Helmert matrix Hy of order &£ has &:_V 21}, for its first row, and

each of its other k — 1 rows for ¢ = 1,..., k — 1 has the partitioned form

[ —ilo]/vn
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with A; = i(s+1). A Helmert matrix is an orthogonal matrix, that is, H'H = HH' =
I. For example, the 4!* order Helmert matrix is given by

e o

Ssl = 8-

S e
S S SN

The spectral decomposition of a symmetric matrix, A is A = Y Au;u}, where
the u;’s are the eigenvectors of A.
Now to generatc a k x k positive definitc matrix we take the ™ order Helmert matrix,
whose columns will give us the eigenvector of the desired matrix. Then choosing &
positive eigenvalues and using the spectral decomposition property we can construct
the desired & X k& positive definite matrix. We will use thus constructed positive
definite matrix as 3. Partitioning 3 will give

3 — E?}’y ny ) .
Ezy Py ‘

and 2,,, 2., and 2,; can be used as vartance-covariance matrix for y, x and covari-
ance matrix between y and x respectively. Then by choosing ¢ X £ modeling matrix
Qyy to associate with B, Q.. with ¥ ; and €, with ¥, we can construct the
desired matrix

Qyy @ Ly Qs @ Lo
py @ Xpy Doy @ Xy

We can simulate any desired number of observations from the multivariate Normal

N(0,D) and do repeated canonical correlation analysis on them as discussed in
section 11.3.

II.6 Results and Discussion

To conduct a simulation purpose we chose three y components, two x components
and three repeated measurements on those i.e. ¢ =3, p = 2, and { = 3. A Helmert
matrix of order 5 is chosen and used to determine a 5 x 3 positive definite variance

covariance matrix . In addition the following eigenvalues are arbitrarily selected,
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0.5262261, 8.7983733, 4.3901993, 2.2263795 and 1.9919697 to generate a positive
definite matrix X by the method described earlier

[ 5.3866206 2.1523738 0.3669639 —1.720602 1.580125 |
21523738 5.3951715 1.9648395 1.3893513 1.0761869
Y= | 0.3669639 1.9648395 4.7251901 0.2368742 0.183482
~1.729692 1.3893513 0.2368742 8.4097148. —0.864846
1.580125 1.0761869 0.183482 —(.864846 3.016442

By partitioning ¥ we get X, Yoo and Xy, as follows:

5.3866296 2.1523738 0.3669639
2y = | 2.1523738 5.3951715 1.9648395 |,
0.3669639 1.9648395 4.7251901

| 8.4097148 —0.864846

= 1.3893513 1.0761869
—0.864846  3.016442

0.2368742 0.183482

Tx

—1.729692 1.580125

We assume AR(1) structure for repeated modeling matrices Q,,, £,,, and ,, with
correlation paramcter p, = 0.1, p, = 0.2, and p,; = 0.1 respectively. Arranging all

the matrices together we have

Qyy O Ly e @ Ly

D= .
Q:ry i E:cy on: & Eav:a:

We simulated 500 observations from the multivariate Normal N(0, D) and estimated
the population parameters flw, s fsy:m Py, Pz, and py,. The estimates were found

by maximizing the log-likelihood function using SAS NLP@N optimization routine.

To illustrate the idea of hypothesis testing we used a data set generated from one
of the simulations and tabulated the chi square test statistics values. P-values for
testing different hypothesis are shown: in Table 2.1. As can be seen from the Table 2.1,
all of the p-values arc quite small cxcept for the Hy; hypothesis (p—val = (.1121743).
Thus all hypotheses except the H;, are rejected. In hypothesis H, we are testing
that the repeated effect is same on all components. In our simulation we have uscd
the AR(1) structure for the repeated correlation matrix with correlation parameter

py = 0.1, pp = 0.2, and p,, = 0.1. Apparently these values are not very different to
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reject Hy using likelihood ratio test and this sample data. However, when we chose
quite different AR(1) parameters, the LRT did reject Hy,.

We repeated the above procedure 5000 times and calculated the average values
of estimates. Table 2.3 shows the average of the paramcter estimates based on
these simulations. Table 2.2 presents the mean of sample canonical correlations’
estimates. At the left of estimates we have provided true parameter values. In
Table 2.2, minimum and maximum bias values are 0.001382172 and 0.011013628
respectively. Similarly in Table 2.3 biases ranges from 4.23009F — 05 to 0.00409767.
From both the tables it can be said that the estimates are very close to the true

values.

II.7 Concluding Remarks

In this chapter, we have provided an casy to implement procedure to perform canoni-
cal correlation analysis of repeatedly observed data sets. To accommodate the effects
of repeated measure we have adopted a Kronecker product structure to the variance
covariance matrices. To account for the existence of repeated measure effects on dif~
ferent blocks of the variance covariance matrix, we have provided testing of differcnt

hypothests. All of the procedures have been implemented on simulated data sets.
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Table 2.1: Hypothesis Testing

14

Hypothesis | Chi Square Test Statistics Dof | p-value
Hy 108.0483 3 0
Hy 85.490536 2 {)
H,, 53.496484 1 2.59E-13
H,y, 44.505918 1 2.54E-11
Hy 4.3754035 2 101121743

Table 2.2: General Structure Correlation Estimates

Can. Corr. | Parameter Estimate Root MSE Bias
P p VE(We—p)?)  p—5)
I 0.237273404  0.2418999 0.025882426  0.004626013
02 0.208651984  0.2124004 0.018033303  0.003754997
03 0.177922968  0.1889365 0.020921281  0.011013628
P4 0.1591106  0.159546475 | 0.018627936  0.009110434
o5 0.14793029  0.1447519 0.016281892  0.00317805
P6 0.126144001  0.1247618 0.018398369  0.001382172
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Table 2.83: General Structure Estimates
Pop. Para. | Para. Estimate | Root MSE  Bias
0 6 E((§ -9)%) [(9-0)]

Lyw(1,1) 5.38663  5.386232775 | 0.196693162  0.000397225
£,,(2,2) 5.39517 5.394642743 | 0.201315673  0.000527257
yy(3,3) 4.72519  4.724343576 | 0.175820078  0.000846424

Ey(1,2) 2.15237  2.149807789 | 0.151351577  0.00256221
(1, 3) 0.36696  0.367644263 | 0.131625226  (1.000684262
Ty(2,3) 1.96484  1.963606497 | 0.1393204%94  0.001233503
X.(1,1) 8.40971  8.406462064 | 0.312531758  0.003247938
ex(2,2) 3.01644  3.014373036 | 0.111293755  0.002066964
Sezl, 2 -0.86485 -0.864892301 | (.131922326  4.23009E-05
Yue(1,1) | -1.72969 -1.727133373 | 0.177219073  0.002556627
ye(1,2) 1.58013  1.57732949 | 0.111941503  0.002800511
Yye(2,1) 1.38935  1.387468714 | 0.175657622  0.001881287
Yy (2,2) 1.07619  1.073755928 | 0.109225913  0.002434073

Yye(3,1) 0.23687  0.232772331 | 0.159496395  0.00409767
2y (3, 2) 0.18348 0.182754843 | $.097614036  0.000725157
Py 0.1 0.100341533 | 0.024503061  0.000341533
P 0.2 0.199774535 | 0.034666987  0.000225466
Py 0.1 0.100673171 | 0.041535527  0.000673171
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CHAPTER HI

REPEATED CORRESPONDENCE ANALYSIS

I11.1 Introduction

Correspondence analysis (CA) is a graphical multivariate technique for performing
an exploratory data analysis of a contingency table. The main problem of interest
in CA is that of graphically representing rows and columns of a contingency table
as points in a lower dimensional Euclidean space such that the affinities of the rows
or columns in the higher dimensional space are preserved as much as possible in the
lower dimensional Euclidean space. The graph is then used to gain understanding of
the data and to extract information from it. The graphs in correspondence analysis
can be used to determine, to some extent, the possible association between the two
scts of variable. CA is used frequently to determine those categories of a variable

that are similar.

In the next section, for the benefit of introducing the notation, we will briefly
review canonical correspondence analysis. More details about the method and its
applications can be found in many books. For example, see Greenacre (1984) and
Khattree and Naik (2000). However, the main focus in this chapter is to extend
correspondence analysis to repeated measures data. First we illustrate how corre-
spondence analysis can be viewed as CCA of the previous chapter and then we will
provide methods for performing an analysis of longitudinally observed contingency
tables.

II1.2 Correspondence Analysis

Let X and Y denote two categorical variables with ¢ and b categories respectively.
Let N be a X b contingency table with frequency, n;; > 0 in the (i, 7)* cell. The
correspondence matrix P is defined as the matrix of elements of N divided by the

grand total , that is,

(177 -
Poo = (pij) = (-ﬁ—), where n = szj,
v
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The correspondence matrix along with the row and column marginal totals can

be displayed as

P P12 - - . DPw | P
P P2 - - . P | Do
Pal Pez - - - pu;b DPa.
p1 p2 - - . ps| 1
Let the vector of row sums of P ber = P1 = (py,...,p..)" and the vector of column

sums of P be c =P'1 = (p4,...,py)". Let

-Pl. 0 |
D, = diag(r) == 0 Ifz.
| 0 0 Pa.
and ~ |
p1 0 0
D, = diag(c) == | © P? 0
0 0 o

Then the row-profiles in the b-dimensional space are given by

t)
R=D;'P=

=t
ra

and column-profiles in the a-dimensional space are given by

¢
C= D;lP" =

=t
Cy
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The row and column profiles define two clouds of points in respective & and a-
dimensional Euclidean spaces. The centroids of row and column clouds in their

respective spaces are
Row centroid: ¢ = R'r Column centroid: r = Ce.
Note: Rr = P'D;'r=P'1=cand Cc=PD ¢ =Pl =r.

The overall spatial variation of each cloud of points is quantified by their to-
tal inertia, that is, the weighted sum of squared distances from the points to their

respective centroids,

in(a) = Y rilE; — ) D (F ~ ¢)

1

and
in(b) = a(& — YD E ~ 1),

;
where in(a) and in(b) are total inertia of row profiles and column profiles respectively.
Also, ¢; and r; are the i elements of the vectors ¢ and r respectively. Both clouds
have the same total inertia and n times it is equal to the chi-square statistic for
“independence,” that is,

in(a) = in(b) = trace[D; (P — r D' (P - rc)] = x*/n.

A lower dimensional space, say the k* -dimensional subspace, of the row and
column clouds which are closest to the points in terms of weighted snm of squared
distances are determined using generalized singular value decomposition of the matrix
(P — rc’), that is given by

(P —rc) = AAB, (3.2.1)

where matrix A, ., and By, are such that A'D_ 'A =1, and B'Dc_lB =1I,, and
A is the diagonal matrix whose diagonal clements arc the singular values Aq,..., Ay
of (P —rc'). The matrices A and B can be obtained from the usual singular value
decomposition of T = D;'m(P — rc')D; /% Note that A2, ..., A, are the eigenvalues
of TT.

In practice the value of £* is taken to be 2 or 3. The coordinates for the a row

profiles are the ¢ rows of the matrix formed by taking the first &* columns of

F =D 'AA (3.2.2)
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and for & column profiles are the b rows of the matrix formed by taking the first &*
columns of
G =D.'BA. (3.2.3)

These coordinates are generally plotted on a plane on the same graph. This kind of
display is called symmetric plot ( Greenacre, 1984). In this plot the distance between
the points corresponding to the row profiles or those points corresponding to column
profiles are the approximation to the corresponding chi-square distances between the
respective profiles. But the distance between two points, one corresponding to a row
profile and another corresponding to a column profile, has no such interpretation. In

the following example we use a real life data set to illustrate correspondence analysis.

II1.2.1  An Example

The data considered here are from Srole, Langner, Michael, Kirkpatrick, Opler and
Rennie (1978) and given in Table 3.1. The objective of the study is to examine the re-
lationship, if any, between children’s mental impairment and parent’s socioeconomic
status. There are six levels of socioeconomic status from 1 (high) to 6 (low) and four
levels of mental health status: Well, mild symptom formation (MILD), moderate
symptom formation (MODERATE) and impairment (IMPAIRED). Data obtained
in the form of 6 by 4 contingency table are based on a sample of 1660 residents of
Manhattan. .

Correspondence analysis of these data is shown in Khattree and Naik (2000). For
testing the null hypothesis of no association between the parent’s sociceconomic sta- -
tus and children’s mental impairment, chi-square test statistics resulted in 45.9853
with 15 degree of freedom. Chi-square decomposition is given in Table 3.2. The small
P-value (< 0.00001) suggests that we reject the null hypothesis and conclude that
parent’s socioeconomic status and children’s mental impairment are not independent.

"The correspondence matrix P for these data is given by
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[ 0.0385542

0.0343373
0.0343373
0.0433735
0.0216867

(.0566265
0.0566265
0.0632530
0.0849398
0.0584337
0.0427711

0.0349398
0.0325301
0.0391566
0.0463855
0.0325301
0.0325301

0.0277108
0.0240964
0.0361446
0.0566265
0.0469880
0.0427711

20

0.0126506

The co-ordinates of parent’s socioeconomic status and children’s mental impair-

ment in two-dimensional space are given by Fg,o and Gaxy respectively, and they

are
[ 01809 0.0192 |
0.1850  0.0116 0.2505 —0.0121
0.0500  0.0222 0.0296 —0.0237
F6><2= G4><2=
—0.0089 —0.0421 00142 0.0699
—0.1654 —0.0436 ~0.2374 —0.0189
_02877  0.0620

Figure 3.1 is a two-dimensional plot generated by correspondence analysis of the
socioeconomic status by mental health of children data. For the first dimension the
value of the principal inertia is A7 = 0.0260. The percentage of total inertia explained
by the one-dimensional approximation is approximately 94%. This percentage ex-
plained by two-dimensional approximation is close 99%. Since the whole space here
is three-dimensional we can be confident that the two-dimensional representation of
the row profiles will be a reasonably good approximation to the whole space. In this
case, categories are ordered and the order is maintained along the first principal axis.
Categories 1 and 2 cannot be clearly distinguished hence it may be clubbed together
to form onc group. The two middle categories corresponding to the mental status
of children are quite close to each other, but there is a clear distinction between the

other categories.
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marginal probability that X assumes the " category. Then the variance covariance
maftrix of X and Y is given by

Y 2?1 2 z
D[ ]: w S | (3.3.1)
X zmy 23:r.r
where ~ _
pi(l—p1)  —pip2 ...  —=DiDs
—_ paoll —po) ... —D
5, = pip2 pal | p2) . pabs (33.2)
| —Paps —paps oo Pall—pa) |
p.(l—p) —ppe ... —PiPe
%, — p%.Pz Pz.( | Pz.) . P:T.Pa. (3'3'3)
| —Dipa —poPs. --- Pa(l—Da) |
and ) )
Puu—pP1 Pr— P2 .- P PrPua
2, = Pa —’pzlp.l P22 —.Pzp.z . Pay —'Pz.p.b (3.3.4)
| Pal = PalPr Pu2 —DPaP2 --- Dab —DaPbh |

Now performing canonical correlation analysis on this variance covariance matrix of
X and Y will result in canonical variables of X and Y, that are highly correlated.
Canonical correlations are the square root of the eigenvalues of

DI 0 I SR oD Y 35l 30

yy?

where X and X, are the generalized inverses of X, and X, respectively. All of
the population parameters are estimated by the corresponding sample counterparts.
The first and second dimension coordinates of X and Y are the canonical coefficients

of first and second dimension canonical variables.

The estimated variancce covariance matrix of socioeconomic status by mental

health of children data considered in scction II1.2.1 as given by equation 3.3.1 is
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given by

0.15 -0.07 —-0.04 —-0.04| 0.01 001 .D.DO 0060 —-0.01 —-0.01
-0.07 023 -0.08 -0.09; 0.c0 0.00 0.00 000 0060 0.00
-0.04 -0.08 ¢.17 -0.05{ 0.00 0.00 000 0.00 0.00 0.00
—-0.04 -0.09 -0.05 0.18 |-0.01 -0.01 000 0.00 0.01 0.01

001 000 000 -001| 013 -0.02 -003 -0.04 -0.03 -0.02

== 001 0.00 000 -0.01|-002 013 =003 -0.03 -0.02 -0.02

0.00 0.00 000 000 ;-0.03 —-003 014 -0.04 -0.03 -0.02

0.00 0.00 000 0.00 !-0.04 —0.03 —-0.04 018 —0.04 —0.03

~0.01 000 0.00 001 |-0.03 —-0.02 -0.03 -0.04 013 -0.02

. —0.00 000 000 001 |~002 ~0.02 -0.02 -0.03 -0.02 0.11

(3.3.5)

Canonical correlations obtained from canonical correlation analysis is shown in Table
3.3.

The two dimensional coordinates for socioeconomic status and mental health sta-
tus obtained from canonical correlation analysis approach and correspondence anal-
ysis (CA) approach are shown in Table 3.4 and 3.3 respectively. It is very clear from
values in these tables that by performing canonical correlation analysis on variance
covariance matrix of X and Y we will get results similar to that of correspondence

analysis.

II1.4 Repeated Correspondence Analysis

In this section we will show how to perform cotrespondence analysis if we have a
repeated contingency table. Suppose, as before X and Y are two categorical variables
with ¢ and b categories and are observed over £ time periods. Our data then constitute

t contingency tables, Ny, No, ..., Ny, each is of @ X b dimension, that is,
f\Tk: (yéjk)’ Z.ﬁl,...,(l,; jxl,...,b; k= 1,...,t

in which y;;;, denotes the frequency of the i category of X and j* category of Y in

the k" contingency table.

Performing correspondence analysis (CA) on these tables and restricting the anal-

ysis to two dimensions, for each time period k (k = 1,...,t) we get the quantities,
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Ak, Asg, the first and second singular values; D1y, Doz, coordinates for plotting a+ 0
points on a two-dimensional plane; Uy, Vy, the principal axis for row; and Uy,
Vo, the principal axis for column. The primary objective of the analysis is to sec
if there 1s any repeated measure effect on ¢ correspondence analyses. If there is no
repeated effect then we can merge ¢ contingency tables into one and perform corre-
spondence analysis (CA) of that table. Otherwise we have to interpret the result of

correspondence analysis (CA) of cach contingency table scparatcly.

To assess the repeated effect we use the general linear modeling framework, We
fit a general linear model with correlated errors to each of the above quantities. For
example, a general linear model with correlated errors for the ¢ first singular values
is given by '

Ayp=pk+e k=1,...,1, (3.4.1)

where € are the correlated random errors for £ =1, ...,4. Why such a model would
be reasonable is clear from the results in O’Neill (1981). Since we have only one first
singular value from each time period we have to assume a certain antoregressive type

of strueture to modcl the corrclations among the errors.

Next, we discuss estimation of 8 and correlation parameter p for the model in

l p p2 v pt_l
1 e t-2
3.4.1, when € ~ N(0,0°V(p)), where V(p) = p , p ‘ ,0. , an
pf,«l pt—2 pt-3 1

AR(1) structure and € = (€, ..., &)’

The log likelihood function of the parameters, given Ay = (Aq, ..., A)', is given by

log £(8, 02, pIAy) = %log(%)—t; 1eog(1-p2)~%zog(aﬁ)m5§5(;\l —BTYS " (A1—BT),
(3.4.2)
[ 1 —p 0 0 ]
—p 1+,02 —p e 0
where T =(1,...,t) and 7! = (—_1—57 : : : ‘.. :
g 0 R N
0 v o —p 1

Differentiating the log likelihood function with respect to 8 and o2 and eq-uating to

zero will give the following maximum likelihood estimating equations for 8 and o?

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



respectively.
- TR
3 = —— 3.4.3
P~ oy (3.4:3)
N A — BTV N\, — £
02 — ( 1 * ) - (Al JS’T) (344)

Let € = A\ — AT then differentiating the log likelihood with respect to p and equating

to zero will give

dlogs  (t—vp 1€
og L= 1)p p -
= i = 3.4.5
op T (=) 2ese O (345)
where 3 )
20 (140 0
R TR O S 0
dx" _ 1. : : - : :
dp (1 — [)2)2 ) * y . . )
e “ e 4p _(1+p2)
i -(1+p  2p ]
e 1 t—1 t—1
e - e = (l——) [Zpel+2p€t—2 1+ p? Zei(Jz+1+4pZ€:l (3.4.6)
p =1 ] §=2
1 ¥, - *
ey le = = el + e — 2,02 eieiv1 + (1 + p%) Zef} ‘ (3.4.7)
' i=2

1
Substituting e’ %— e and €'Y~ 'e in equation 3.4.5 will give

[} + 06} = (1+ ) S eieurs + 2p 0k €]

(t—1)p - £ ~0. (3.4.8)
63 + e — 203010 ) esein + (3 + p2) 215 €]
That is,
t—1 t—1
(t-D)p—tp)(ed+e])+ (1 +07)-20° (1)) Y esesn+{(1+07)(t—1)p—2tp) >_ € =0,
i=1 i=2
(3.4.9)
1 i1 11
ps(t—I)Zeg%—pz(Q*t)ZeieiH e +e+ T+1)Z +tZeie.,;+1 = (.
i=2 . i=1 i=1
(3.4.10)

The iterative solutions to equation 3.4.3 and 3.4.10 will converge to the maximutn
likelihood estimates of 3 and p. Similarly we can fit correlated lincar models on Dy,

and the other variables.
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To itlustrate these procedures we resolved to simulation. First we need to gencrate
the repeated contingency tables for ¢ time periods. For this, we used Mav (2004)’s
extension of Simn (1993) algorithin to generate correlated Poisson count data. Also see
Chaganty and Mav (2007). The cell frequency for a given contingency table is used
as a mean of a Poisson distribution. In our case we used the following contingency
table

64 94 58 46
57 04 54 40
57 105 65 60
72 141 77 94
36 97 54 78
21 71 54 71

to generate repeated contingency tables for time periods £ = 5, 10, 15, 20, 25, 30. Sup-
pose i, k = 1,2,...t are the correlated Poisson counts (generated using Sim’s
algorithm) whose means are changing over time. Mean at time & = 1 is given by
bij, the (i, )" cell frequency of contingency table B. The results based on 500
simnlations of fitting a general linear model with correlated errors corresponding to
parameter Ay, Ay, Dy, Dy, Uy, Vi, Uy and Vs is shown in Tables 3.6 - 3.13 respec-
tively. The 95 90% and 75" percentiles and median of the p-values to test the nuil
hypothesis, H, : § = 0, are denoted by P95P, PO0P, Q3P, and P50GP respectively.
Similarly estimates of correlation quantiles were denoted by R95, RS0, R3F, and
R50. Tt can be scen in Table 3.6 that the value of POOP is 0 for 25 time period
and R = 0. Small 90 pefcentiles of the p-values suggests that when intial Poisson
counts are independent then we need at least 25 contingency tables to identify the
repeated effect in them. However, as the valize of R increases, we need fewer number
of repeated contingency tables. Table 3.6 shows that we need at least 10 contingency
tables to reject the null hypothesis Hy when R is non zero. Results of 500 simu-
lations of the first singular value A; when the mean is not changing over time are
shown in Table 3.14. When R is not 0.5 then P15, 15" percentile of the p-values to
test the null hypothesis, ranges from 0.051 to 0.143. Hence we can say that 85% of
time we accept Hy at 5% significance level when simulated data does not have time
effect. From the simulation results it is quite clear that the first singular value A, is
successful in capturing the repeated effect (mean changing over time) in contingency
table.
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II1.4.1 Performing Correspondence Analysis with repeated contingency
table

Let N; is the ¢** contingency table, where ¢ = 1,...,¢. As it is shown in the above
section the repeated effect in contingency tables observed over time can be detected
by fitting a correlated linear model of the first singular value A;. Hence we can study
the given contingency tables, N;'s, by fitting the correlated model of the first singular
value X;. If the analysis shows that there is no repeated effect in the contingency
tables then we can do correspondence analysis on the combined contingency table N
given by

N=N+Ny+...+ N (3.4.11)

If there is any repeated effect in the contingency tables and interest is to see how
relationship is changing between two categorical variables over time then it better to
perform correspondence analysis on each table separately and interpret the results.
But if we want to combine the results and see how the categories at different fime
periods are related to each other, we can perform correspondence analysis on the
contingency table A which is given by

Ny 0
0O N, ... O

N=| P | (3.4.12)
0 ... ... N

By doing correspondence analysis on contingency table AV we can plot the profiles
of different categories and the plot can be used for better understanding of the

relationship between the categories of different time periods.

To demonstrate the above method we use the data given in Table 4.12. For our
example data let four column categories be denoted by Y1,Y2, Y3 and ¥4 and let
six row categories be denoted by X1, X2, X3, X4, X5 and X6. The output of the
corrclated lincar model on A; is shown in Table 3.15. Since time has a significant
cffect on A, it can be concluded that the contingency tables corresponding to 10
time periods possess the repeated effect. Hence the 10 contingency tables can not be
merged together. We therefore use the block diagonal contingency table N for our

analysis.
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I1I1.5 Concluding Remarks

In this chapter we demonstrated the use of correspondence analysis for longitudinally
observed contingency tables. In order to determine the effect of repeated measure (or
the longitudinal effect), we used correlated linear models fitting summaries statistics
resulted in performing correspondence analysis (CA) of contingency tables at different
time periods on time. Using simulation experiments we determined that the first
singular values obtained as a result of correspondence analysis is the best statistical

measure of the time cffect.
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Table 3.1: Socioeconomic Status by Mental Health of Children Data

Parent Socioeconomic Status Mental Health Status
Well Mild Moderate Impaired

1(high) 64 94 58 46
2 57 94 54 40
3 a7 105 65 60
4 72 141 77 94
5 36 97 54 78
6(Low) _ 21 71 54 71

Table 3.2: Mental Health Data: Chi-Squere Decomposition

Singular Valuc | Principal Inertia Chi-Square Percent | Cumulative Percent
0.16132 0.02602 43.2013 93.95 93.95
0.03714 0.00138 2.2894 4.98 98.92
0.01726 0.00030 0.4946 1.08 100.00

Total 0.02770 45.9853  100.00

Table 3.8: Mental Health Data: Canonicael Correlations

Canonical correlations p p* Percent | Cumulative Percent
0.16132 0.02602  93.95 93.95
0.03714 0.00138  4.98 98.92
0.01726 0.00030  1.08 ~ 100.00

Total 0.02770  100.00
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Table 3.4: Two Dimensional Coordinates for Socioeconomic Status: (Standardized
Form: Mean = 0, SD = 1)

Socioeconomic status CCA CA

Dim1l Dim?2 Dimi Dim?2
0.9850 -0.3508 | 0.9849 0.3499
1.0064 -0.1645 | 1.0065 0.1642
0.3432 -0.4228 | 0.3432 0.4232
-0.0143 1.1482 | -0.0143 -1.1483
-0.8382 1.1855 | -0.8382 -1.1850
-1.4820 -1.3955 | -1.4820 1.3960

(=2 R QS S

Table 3.5: Two Dimensional Coordinates Mental Health Status: (Standardized Form:
Mean = 0, 5D = 1)

Mental Health Status CCA CA
Diml Dim2 Dim1l Dim2
Well 1.2283  0.3591 | 1.2282 -0.3587
Mild 0.0992 0.6198 | 0.0993 -0.6204
Modcrate -0.1158 -1.4914 }{ -0.1158 1.4913
Impaired -1.2117  0.5125 | -1.2117 -0.5122
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Table 3.6: First Singular Value Xy: AR1 Structure Result {Truncated at 2 Decimal
Places)

First Singular Value A,

Variablé Corrclation R =0 Correlation R = 0.1
TimeP | 5 10 20 30 5 10 20 30
PO5P {0.85 0.62 .13 ¢ | 079 012 0.09 0

R95 0.01 0.20 029 0.34] 0.01 042 038 04
P9OP 10.67 0.45 0.06 01061 004 0.04 0
Ro0 FO.08 017 0.21 0.261 -0.1  0.26 0.3 0.32
Q3P 10.39 0.15 0.01 0 | 0.33 0.01 0 0
R3P 10.33 -0.02 0.07 0.14{-0.37 0.07 014 0.2
P50P |0.13 0.04 0 01013 0 0 0
R50 +0.656 -0.24 -0.08 -0.03 -0.63 -0.2 -0.04 0.05

Variable  Correlation 2 =0.2 Correlation R = 0.3
TimeP | 5 10 20 30 5 10 20 30
P95P |0.77 0.03 0 0 | 0.73 0.03 0 0

R95 [0.04 0.42 0.54 052} 0.02 045 057 0.72
P9OP (0.61 0.01 0 0 | 059 0.01 0 0
Ro0 [0.06 031 046 0.44)-0.07 0.34 051 0.66
Q3P [ 0.3 { 0 0 | 0.28 0 0 0
R3P 034 011 0.29 0.34] -0.3 019 036 0.56
P50P |0.14 1 0 0 | 0.12 0] 0 0
R50 +0.63 -0.12 0.09 0.18/-0.59 -0.08 0.2 044

Variable Corrclation R =0.4 | Correlation R = 0.5
TimeP | 5 10 20 30 5 10 20 30
P95P |0.77 0.06 0 0] 071 004 0 0

R95 (0.04 051 0.64 07]004 06 071 0.79
POOP (0.59 0.02 0 0 | 0.52 0.01 0 0
RO0 +0.08 04 0.54 0.64}-0.03 051 063 0.73
Q3P {0.27 0 0 0 | 0.23 0 0 0
R3P 10.20 0.19 039 0.54|-0.25 033 048 0.64
P50P [0.09 0 0 0 | 6.07 0 0 0
R50 10.62 -0.04 0.2 0.47-0.56 0.05 0.32 0.52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



32

Table 3.7: Second Singular Value Ay: AR(1) Structure Result (Truncated at 2 Deci-
mal Places) '

Second Singular Value A,

Variabld Correlation £ =0 Correlation R = 0.1
TimeP | 5 10 20 30 5 10 20 30
P95P (093 093 094 096} 096 093 0.92 09

RO5 [0.03 028 0.26 0.28] 0.01 0.4 036 .44
P90OP [0.87 087 087 0.9} 091 087 087 0.79
RS0 [0.08 0.17 0.18 0.22(-0.09 029 0.29 0.38
Q3P 0.72 0.71 061 0.74{ 0.71 0.7 0.65 0.52
R3P [0.29 -0.03 0.05 01[-035 0.07 0.15 0.26
P50P (042 0.39 0.28 046] 043 042 034 0.28
R50 +0.62 -0.24 -0.09 -0.0Z-0.65 -0.19 -0.01 0.12

Variablg . Correlation B = 0.2 Correlation R = 0.3
TimeP | 5 10 20 30 ) 10 20 30
P95P 1094 093 08 0.92] 0.95 095 0.95 0.57

R95 +0.02 037 046 0.45] 0.02 049 05 0.52

- P90P [0.88 087 0.69 0.84] 089 0.87 087 0.38

ROG [-0.1 027 04 0.39{-0.06 037 044 0.46
Q3P (0.7t 067 0.36 062] 0.69 0.65 063 0.12
R3P |-0.3 0.1 0.26 0.28-024 0.2 029 034
P50P {044 0.43 0.12 .26/ 0.39 0.37 027 0.02
R50 [0.61 -0.12 0.08 0.13]-0.57 -0.02 0.14 0.2

Variableg Correlation 12 = 0.4 Correlation B = 0.5
TimeP | 5 10 20 30 5 10 20 30
PO5P (094 094 09 091 094 091 0.86 0.85

R95 |0.05 049 051 0.53] 001 0.5 059 0.59
POOP [0.87 0.83 082 083 0.9 082 0.75 0.69
R90 +0.05 036 0.43 0.45/-0.08 042 05 0.52
Q3P {0.7 0.63 055 0.55f 0.7 06 043 0.3
R3P +0.25 0.18 0.27 0.34|-0.25 0.21 036 0.42
P50P [0.3¢ 0.35 0.26 0.22] 04 029 0.12 0.05
R50 H0O.57 -0.08 0.11 0.21]-0.55 -0.06 0.2 0.28
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Table 8.8: First Dimension D1: AR(1) Structure Result {Truncated at 2 Decimal
Places)

First Dimension D1

Variable Correlation B = 0 Correlation R = 0.1
TimeP 5 10 20 30 5 10 20 30
PI5P 1 1 1 089 1 1 1 1
R95 1 089 097 083 1 1 098 0.88
PooP 1 1 1 0.56 1 1 3 1
R9O0 1 0.99 094 077 1 1 0.98 0.82
Q3P 099 1 058 005 1 096 093 0.84
R3P 0.99 098 0.81 066099 099 0.89 0.73
P50P | 083 6.77 001 0 |091 056 0.17 0.15
R50 0,99 094 06 05371099 099 064 0.59
Variable Correlation R = 0.2 Correlation It = 0.3
TimeP 5 10 20 30 5 10 20 30
Po5P 1 1 1 1 1 1 1 1
R95 1 1 1 097 1 1 1 1
Po0P 1 T 098 1 1 1 095 0.99
R90 1 1 1 098] 1 1 1 099
Q37 1 099 083 093|099 096 069 0.7
R3P 0.99 099 099 083 1 1 1 0.89
P50P 1091 082 026 0.16 {0.85 062 0.24 0.08
R50 0.99 099 0.79 0.71]099 0.99 0.77 0.72
Variable Correlation R = 0.4 Correlation R = 0.5
TimeP 5 10 20 30 5 10 20 30
P95P 1 1 1 1 1 1 1 1
R9S 1 1 1 093 1 1 1 099
PoopP 1 1 099 1 1 1 1 4
R90 1 1 099 088 1 1 1 0.93
Q3P 0.99 098 085 0.82(0.99 09 0.78 0.89
R3P 1 099 082 075 1 1 0.9 0.85
P50P | 0.79 0.58 0.17 0.17]0.78 0.59 0.25 0.2
R50 099 0.85 0.59 0.5410.99 0.99 0.68 0.65
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Table 3.9: Second Dimension D2: AR(1) Structure Result (Truncated ot 2 Decimal

Places)
Second Dimension D2
Variable Correlation R = (} Correlation R = 0.1
TimeP 5 10 20 30 5 10 20 30
P95P 1 098 02 001 1 1 026 0
RY5 097 0.86 051 038]098 097 08 0.74
POOP 1098 093 007 0 1 1 006 0
R90 096 0.82 042 032|098 0.97 074 0.69
Q3P 0.74 04 001 0 096 097 0 0
R3P 092 0.61 032 026095 093 061 061
P50P [(0.16 0 0 0 (049 047 O 0
R50 0.81 0.36 021 0.17] 0.9 0.86 048 0.49
Variable | Correlation £ = 0.2 Correlation £ = 0.3
TimeP 5 16 20 30 5 10 20 30
Pa5P 1 1 093 003 1 1 0.89 0.33
95 0.96 0.93 091 0771097 095 091 0.88
POOP [ 0.98 096 055 0 1 099 0.28 0.07
R90 0.95 088 0.87 0.72]096 093 0.85 0.83
Q3P 0.78 034 0.02 0 (092 068 00F 0
R3P 0.8 076 0.7¢ 0.62]0.92 084 073 0.75
P50P 02 001 O 0 [0.42 0.08 0 0
R50 0.57 054 0.6 052]1074 0.56 056 0.62
Variable | Correlation R = 0.4 Correlation R = 0.5
TimeD 5 10 20 30 5 10 20 30
PosP 1 1 1 0421 1 1 1 1
R95 0.98 0.97 093 0.87]099 098 097 0.96
PI0OP 1 1 0.88 012 1 1 1 097
R90 097 095 09 082098 097 0.96 0.95
Q3P 0.9 087 0.13 ¢ |094 096 0.87 0.44
R3P 094 09 08 0.74]09 094 092 0.89
P50P {035 0.13 0 0 1035 045 0.08 0.01
R50 0.81 0.71 068 0.64]0.88 087 0.82 (.81
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Table 3.10: First Principal Azis for Row Ul: AR(1) Structure Result {Truncated at
2 Decimal Places)

First Principal Axis for Row Ul
Variable Correlation R =0 Correlation R = 0.1
TimeP | 5 10 20 307 5 10 20 30
PO5P | 1 1 099 09g 1 1 1 098
R95 099 06 043 036 1 074 055 0.43
PSOP | 1 1 098 095 1 1 099 0.96
R90 .86 0.52 0.33 0.28 099 0.66 0.46 0.36
Q3P 0.88 096 091 0.82 6.89 0.98 0.97 0.89
R3P 0.81 0.28 0.2 0.170.85 047 0.32 0.25
P50P p.67 0.66 0.56 0.41 0.66 0.72 0.78 0.65
R50 0.26 0.08 0.05 0.06 0.26 02 0.13 0.13
Variablg Correlation R =0.2 | Correlation R = .3

Timel | 5 1@ 20 30 5 10 20 30
PO5P | 1 1 1 1 i 1 1 1
R95 |1 077 057 049 1 088 0.65 057
Poor | 1 1 1 099 1 1 1 1

RO 099 0.7 054 043 1 071 056 05
Q3P 094 0.99 099 096 0.98 099 093 (.99
R3P [0.81 0.49 0.34 0.35 0.86 0.52 0.41 .37
P50P 0.67 0.81 0.78 0.7740.67 0.72 0.77 0.84
R50 0.31 021 016 0.19 035 026 .23 (.23
Variable Correlation R = 0.4 | Correlation R = (0.5
TimelP | 5 10 20 300 5 10 20 30
P95P | 1 1 1 1 1 1 1 0.99
R95 1 091 066 058 1 0.99 0.77 0.68
POOP | 1 1 1 0.99 1 1 1 0.99
ROO 099 0.72 056 051 1 0.92 0.67 0.58
Q3P 095 0.96 0.97 093095 096 0.96 0.94
R3P 0.86 0.52 0.44 0.39 0.98 0.66 052 0.49
P50 0.66 0.61 0.79 0.67 0.66 0.65 0.67 0.66
R50 10.36 0.27 0.27 0.26 0.36 0.38 0.34 0.36
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Table 3.11: First Principal Azis fm" Column V1: AR(1) Structure Result {Truncated
at 2 Decimal Places)

First Principal Axis for Column V1
Variable Corrclation R =0 Correlation R = 0.1
TimeP | 5 10 20 30| 5 10 20 30
PO5P | 1 1 T 099 1 1 099 096
1 1
1

RO5 0.62 0.45 0.38 0.75 0.57 0.43
POOP | 1 1 098 0.97 1 099 0.93
RO0O 0.87 054 034 03] 1 068 0.46 0.36
Q3P .85 0.94 0.92 0.85 0.85 0.96 0.95 0.84
R3P 0.83 0.29 0.2 0.18 0.87 049 0.32 0.25
P50P 0.62 0.66 0.35 0.420.62 0.71 0.77 0.63
R50 0.28 0.09 0.06 0.05 0.28 022 0.13 0.13
Variableg Correlation R = 0.2 Correlation R = 0.3
TimcP | 5 10 20 30| 5 10 20 30
PasI? 1 1 1 099 1 1 1 1
R95 0.79 0.58 1 083 066 0.58
PoOP | 1 1 1 0 98‘ 1 1 1 099
RO {1 072 055 044 1 073 037 0.51
Q3P 0.87 0.97 098 0.93 095 096 096 097
R3P 0.83 0.51 0.35 0.31 0.87 0.54 0.42 0.37
P50P 0.62 0.76 0.76 0.71 0.62 0.69 0.72 0.78
R50 0.36 0.23 0.17 0.18 0.38 0.28 0.23 0.23
Variabld Correlation £ = 0.4 Correlation R = 0.5
TimeP| 5 10 20 306] 5 10 20 30
POSP | 1 1 1 099 1 1 1 099
R9 |1 092 068 058 1 1 0.78 0.69
POOP {1 099 099 098 1 099 099 0.99
ROO |1 073 057 0514 1 092 0.68 0.59
Q3P (0.9 094 095 093y 0.9 094 094 094
R3P 0.87 054 045 0.4{09% 068 054 05
P50P 0.61 0.58 0.77 064 0.61 06 0.650 0.66
R50 0.38 ©.28 0.27 027038 04 .35 0.36

—
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Table 3.12: Second Principal Azis for Row U2: AR(1) Structure Result (Truncated
at 2 Decimal Places)

Second Principal Axis for Row U2
Variablg Correlation R = 0 Correlation R = 0.1
TimeP | 5 10 20 30| 5 10 20 30
Po5P 0.8¢ 089 0.18 0.01 0.99 0.99 054 0.02
R95 0.99 091 0.57 044099 099 0.89 0.78
P9OP [0.8 0.81 0.09 001099 098 031 ¢
R90 ©0.99 087 0.5 03%099 099 082 0.7
Q3P P63 057 0.03 0109 093 009 @
R3P 1098 0.74 041 032099 098 0.7 0.61
P50P 0.47 0.17 0.01 0 (0.82 0.68 002 0
R50 [0.93 0.46 0.31 0.24 098 095 0.56 0.49
Variabld Correlation R = 0.2 | Correlation £ = 0.3
TimeP | 5 100 20 30| 5 10 20 30
PY5P 0.96 0.89 0.77 0.07 098 035 069 0.27
R95 0.97 094 095 0.820.99 0.97 094 091
POOP [0.93 0.77 064 0.0200.96 09 055 .14
R0 0.96 0.92 0.92 075098 096 0.91 087
Q3P 0.79 0.49 025 07088 .78 0.23 0.03
R3P 0.93 0.84 0.83 0.65 0.97 093 0.84 0.82
P50P 0.56 0.19 0.02 0 |066 056 0.05 0
R50 .82 068 0.68 0.56 0.91 0.8 0.73 0.72
Variablg Correlation R = 0.4 | Correlation R = 0.5
TimeP | 5 10 20 30| 5 10 20 30
P95P 0.99 098 0.87 0.35 0.99 0.99 0.96 0.78
R95 0.99 0.99 0.97 0.9/099 099 099 0.97
PO0P 098 097 0.75 0.120.98 098 0.9 0.62
R90 10.99 099 094 0.83 099 099 098 0.95
Q3P 094 089 0.27 0.014093 094 055 0.15
R3P 0.98 0.97 0.83 0.730.99 0.98 0.93 0.87
P50P (0.7 0.41 0.02 01068 051 0.1 0.01
R50 0.93 0.76 0.68 0.641 098 092 0.77 0.76
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Table 3.13: Second Principal Azis for Column V2: AR(1) Structure Result {Trun-
cated at 2 Decimal Places)

Sccond Principal Axis for Column V2
Variablgq Correlation R = 0 Correlation 2 = 0.1
TimeP | 5 10 20 30 5 10 20 30
PO5P $.99 0.93 0.48 .11 099 098 0.797 0.26
R95 |1 099 074 058 1 1 0.97 0.89
POOP 0.97 0.89 0.26 0.04 0.97 094 0.63 0.09
RO |1 098 066 051 1 1 093 083
Q3P (0.8 0.67 009 0.04 09 08 022 001
R3P |1 092 052 042 1 099 077 0.71
P50P 0.45 0.3 0.01 0059 043 0.05 0
R50 0.99 0.58 0.39 0.3310.99 (.96 0.64 0.58
Variabld Correlation R = 0.2 | Correlation B = 0.3
Timel?| 5 10 20 30 5 10 20 30
POSP .96 0.88 0.8¢ 0.49 0.96 0.9 0.67 0.53
R95 10.99 0.97 097 093099 0.97 095 095
PO0OP 093 084 0.8 023094 083 0.6 0.38
R90 £.98 0.95 096 0.880.98 096 0.94 0.92
Q3P 0.77 0.68 059 0.04 0.8¢ 0.71 0.37 0.17
R3P 0.95 092 092 0.75% 096 093 0.88 (.86
P50P |06 0.48 018 0066 05 009 002
R0 0.84 0.81 0.8 0.630.89 0.83 0.76 .76
Variablg Correlation £ = 0.4 { Correlation R = 0.5
TimeP | 5 10 20 300 5 10 20 30
P95P P98 0.95 0.8 0.570.99 096 0.86 0.81
RO5 |1 1 098 095 1 1 0.99 0.99
POOP 10.97 092 0.69 029 0.98 091 0.78 0.66
RS0 {1 099 096 0.89 1 T 099 098
Q3P 091 0.75 047 0.070.86 0.71 0.56 043
R3P ©0.99 098 089 08j 1 0.99 096 0.93
P30P 0.66 0.4 0.08 0.0l 0.51° 0.37 0.24 0.07
R50 0.94 (.82 0.73 0.68 0.99 094 0.83 (.82
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Table 3.14: First Singular Value Ay, Mean is not Changing Over Time: AR(1)
Structure Result '

First Singular Value A,

Variablé Correlation B = 0 Correlation £ = 0.1
TimeP | 10 15 20 25 10 15 20 25
P10 [0.082 0.115 0.101 0.086f 0.061 06.084 0.092 0.071
P15 {0.140 0.149 0.148 0.139{ 0.110 06.129 0.135 0.121
P20 10.181 0.195 0.189 0.190{ 0.144 0.171 0.174 0.169
R10 }0.622 -0.448 -0.380 -0.325 -0.587 -0.400 -0.321 -0.270
R15 F0.550 -0.398 -0.324 -0.291] -0.208 -0.352 -0.257 -0.210 -
R20 (0.502 -0.347 -0.281 -0.254] -0.451 -0.286 -0.209 -0.174
Variablo Correlation B = 0.2 Correlation R = 0.3
TimeP | 10 15 20 25 10 15 20 . 25
P10 {0.050 0.061 0.055 0.044| 0.037 0.042 0.031 0.031
P15 {0.083 0.092 0.090 0.093| 0.074 0060 0.056 0.064
P20 10.122 0.114 0.128 0.140| ¢.103 0.102 0.080 0.093
R10 (0523 -0.340 -0.237 -0.168 -0.445 -0.270 -0.192 -0.090
R15 (0438 -0.264 -0.178 -0.124 -0.386 -0.197 -0.086 -0.047
R20 +0.372 -0.208 -0.135 -0.091 -0.314 -0.133 -0.041 -D.009
Variablg Correlation B = 0.4 Correlation R = 05
TimeP | 10 15 20 25 10 i5 20 25
P10 [0.036 0.039 0.029 0.026! 0.031 0.024 0.019 0.010
P15 0.071 0.059 0.051 0.051} 0.048 §.054 0.030 .028
P20 {0.097 0.093 0.079 0.075; 0.066 0.083 0.051 0.047
R10 (0.477 -0.240 -0.132 -0.068 -0.37t -0.127 -0.022 0.081
R15 (0.387 -0.181 -0.087 -0.025 -0.282 -0.079 0.052 0.137
R20 +0.324 -0.123 -0.046 0.018}-0.2306 -0.013 0.101 0.179

Table 3.15: Simulated Contingency Table Ezarnple : Repeated Effect

Effect

Estimate Standard Error

DF t Value Pr > ¢

Intereept

t

0.1660 0.006252
-0.00454 0.001008

8 26.55 < .0001
8 -4.50 0.0020
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CHAPTER 1V
CANONICAL CORRESPONDENCE ANALYSIS

IV.1 Introduction

Canonical correspondence analysis (CCPA) is a multivariate data analysis technigue
which was introduced by Ter Braak (1986) to relate community composition to
known variation in the environment. Problems in community ecology often require
the determination of spccies—environmcnt relationship from community composition
data and associated habitat measurements. Typical data for such problems consist
of the two sets, one the abundance of a number of species at a scrics of sites, and
another data set on a number of environmental variables measured at the same sites.
A site here is the basic sampling unit, separated in space or time from other sites.
By treating species-abundance data over different sites as a contingency table, cor-
respondence analysis (CA) cau be performed to graphically represent these data.
Such graphical displays can be helpful in identifying the sites that have a maximum
abundance of a certain species. Frequently ecologists are also interested in determin-
ing the relationship between the environmental variables favorable for the growth of
certain specics. Basically the idea is to represent the relationship between the en-
vironmental variables and specics graphically. This analysis is named as Canonical
correspondence analysis (CCPA). In the literaturc this analysis is also abbreviated
as CCA, but to avoid confusion with canonical corrclation analysis (CCA) we will
denote this here hy CCPA. Ter Braak (1986) has developed a Fortran program,
named CANOCQO, to perform this analysis. Hegde and Naik (1999} developed a
SAS program to perform the same analysis. Also sec Khattree and Naik (2000) for
a review and analysis of CCPA.

It is clear, like in the previous two chapters, that here also the basic problem
is to study the relationship betwecn two sets of variables. While in Chapter 2 we
study the relationship between two sets of quantitative variables, in Chapter 3 we
studied the relationship between two scts of qualitative variables. However, here
the interest is in studying the relationship between a set of qualitative variables and
another set of quantitative variables. In the next section, in order to introduce the

notation and backgronnd we provide Ter Braak’s formulation of CCPA. In Section
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3 we will show how CCPA can be performed using canonical correlation analysis
of certain variance covariance matrices. In Scction 4 we will provide a theoretical
basis to matrix formulation of CCPA. In Section 4 we will also provide canonical

correspondence analysis to longitudinally observed data.

IV.2 Canonical Correspondence Analysis

In this section we present the details used by Ter Braak (1986) to explain canonical
correspondence analysis (CCPA). Suppose a survey of n sites lists the occurrences
(prescnce as 1, absence as 0 ) of m specics and the values of ¢ environmental variables
(¢ < n). Let y; represents the abundance of the {** species at the i** site, where
i=1,...,nandl =1,...,mand z;, j = 1,...,¢is the value of the j* environmental
variable at the i site. Let Yoy, = (yg) denote the n by mn matrix of species

abundance.

1t is assumed that ¥, has independent Poisson distribution with mean ;. Canon-
ical correspondence analysis (CCPA} can be considered as a two step method. The
first step is to summarize the main variation in the species abundance data by or-
dination. The method of Gaussian ordination as described by Gauch, Chase and
Whittaker (1974) does this by constructing an axis such that the specics optimally

fit the Gaussian response curve,

—(ﬂ%‘ - Mz)Q

2
mi = ¢e 20} , (4.2.1)

along the constructed axis. Here m; is the expected value of y; at site ¢ that has
site score x;, which is usually an unknown lineatr combination of the environmental
variables, on the ordination axis; y;; can be interpreted as the value of x; resulting in
maximum abundance for the I** species; ¢ can be interpreted as the value of maxi-
mum mean abundance and oy as an index of the tolerance, a measure of ecological
amplitude. It is shown by the Ter Braak (1985) that correspondence analysis (CA)
approximates the maximum likelihood solution of Gaussian ordination, if the sam-
pling distribution of species abundances is Poisson and if these a'ssumptions made,
that The species’ tolerances o; are all equal to ¢; The species’ mazxima c; are all

equal to ¢; The species’ optima py are homogeneously distributed over an interval Iy
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that is large compared to o; and The site scores x; are homogeneously distributed over

an interval Iy that contains I,.

The second step of canonical correspondence analysis (CCPA) is to relate the or-
dination axis to the environmental variables by doing multiple regression of the site
scores on the environmental variables. Before doing multiple regression, environmen-
tal variables z;; are standardized such that their weighted means over all sites arc

zero, and the corresponding weighted standard deviations are all onc. Hence suppose

E w;z;; = ( and E 1.u,-zfj =1,
i

k3

where w; = g"—, Y. = > yyq and y = 3.3 yi and denote the n by ¢ matrix of
these standardize environmental variables by Z = (z;;). Then the multiple regression

of site scores on environmental variables is given by
Ty = Fzan +...+ ﬁqz,-q = Z;ﬂ ' (422)

The main objective of canonical correspondence analysis (CCPA) is to estimate the
vectors of unknown parameters p = {(p3,...,m) and B. This can be done by
simultaneously estimating the species optima and regression coefficient by equation

4.2.1 and 4.2.2. Estimating equations in matrix form for ¢ and 8 are given by

Sy 82187181 — AL = 3 (4.2.3)
8118128580 — Al = p (4.2.4)

;

where 8o = ZIY, Sip = Y(Z, Sy = dz’ag(y.l,.,.,y_.m) and Sy = Z'DZ, with
D = diag(yy,...,Yn.)- The solution to equations 4.2.3 and 4.2.4 are obtained by

singular value decomposition of the matrix
W = s;f“sns;;/?
Singular value decomposition of matrix W is given by
W = UAV'. ' (4.2.5)
Hence r (rank of W) solutions of equations 4.2.3 and 4.2.4 are given by the matrices:

B:(Blz...:ér):sgﬂv
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and

-~

M= (ft, ...t ) = S, "0

The site score matrix and species scores matrix are given by
X =1ZB (4.2.6)

and
M = S} /2Y'XA ™! (4.2.7)

respectively.

More detailed mathematical explanations and geometrical interpretations of
canonical correspondence analysis (CCPA) can be found in Hegde and Naik (2006,

Preprint). To illustrate the method we use an example in the following subsection.

IV.2.1 Hunting Spider Example

Although data description and analysis are given in Khattree and Naik (2000), for
completeness sake we will describe the same here. The data considered in this cx-
ample is from Ter Braak (1986), Table 3, and were originally adapted from Van der
Aart and Smeek-Enseink {1975) after transformation. Data consist of abundance of
12 species ol hunting spider at 28 sites, representing pitfall traps, caught in pitfall
traps over a period of 60 weeks, along with measurements on six environmental vari-
ables, namely percentage of soil dry mass, percentage cover of bare sand, percentage
cover of fallen leaves and twigs, percentage cover of the herb layer and reflection of
the soil surface with cloudless sky. The square root transformation was performed
on the species abundance and a logarithmic transformation was performed on the
environmental variables. Only the integer part of the square root transformed &bun-
dance were considered. A value of 9 for species abundance indicates the number of
individuals of the species found is greater than or equal to eighty one. Further, the
range of each transformed environmeuntal variable was divided into 10 equal cate-
gories denoted by 0-9 and these numbers were used as the data corresponding to the
environmental variables. An objective of the study was to determine the distribution
of these 12 species of hunting spiders in a Dutch dune area in relation to the envi-

ronmeéntal variables. Species abundance data and environmental data at 28 pitfall
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traps are shown in Table 4.2 and 4.3 respectively. The fundamental matrix W for
the hunting spider data is given by

[ 0.0005928 0.0221424 —0.018828 —0.0339 —0.042086 0.043711 |
—0.07908 —0.120468 —0.122306 —0.144538 0.2624115 —0.147858
0.0985968  0.0062076 —0.048164 —0.124552 0.0042143  0.02378
0.118231  —0.006221 —0.090492 —0.013082 —0.065483 0.0897482
0.1194795 —0.077528 —0.022274 —0.016324 —0.095579 0.1384742
0.0441676 —0.030179 —0.047171 —0.019193 —0.009464 0.1225125
0.0698714 —0.078222 —0.084326 —0.095600 0.1093381 —0.050272
0.05573  —0.056263 —0.0273  0.0460913 0.0662339 0.0193313
~0.01269 —0.012869 0.2247585 0.1192219 —0.072703 0.002098
—0.229019 0.1024604  0.155209  0.1450659 —0.064858 —0.030001
—~0.257685 0.2716802 0.0779809 0.1071344 —0.088528 —0.151806

| —0.241603 0.2128121 0.0113994 0.1153476 —0.064448 —0.166911

The canonical correlation resulted by canonical correspondence analysis (CCPA)

and their contribution towards the variance explained is shown in Table 4.1.

Corresponding site and species scores resulted by canonical correspondence anal-
ysis (CCPA) are shown in Tables 4.4 and 4.5. The Biplot graphical display for the
hunting spider data is given by Figure 4.1. The graphical display suggests that the
speéies Alop-fabr {Al-f) and Arct-peri (Ar-p) were mainly found in habitats with
higher percentage of sand (BARE-SAND). The species Arct-lute (Ar-1), Pard-pull
(Pa-p), Pard-mont, (Pa-m), Pard-nigr (Pa-n) and Aulo-albi (Au-a} are found in habi-
tats with well developed herb layers (COV ER-HERBS). Only the species Pard-lugu
(Pa-1} is found in the habitats with fallen twigs and leaves represented by the variable
FALLEN-TWIGS in the graph.
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Figure 4.1: Biplot of Hunting Spider Data.
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Table 4.1: Hunter Spider: Canonical Correlations

Cannonical Correlation  Eigenvalue Percent Cumulative %
0.7341518 0.538978865 61.88304447  61.88304447
0.473724 0.224414428 25.76622003  87.64926449
0.2698241 0.072805045 8.359136364  96.00840086
0.1407824 0.019819684 2.275603876 9828400473
0.1063434 0.011308919 1.298437407  99.58244214
0.0603057 0.003636777 0.417557858 100

Table 4.2: Hunting Spider Species Abundance Data
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Table 4.3: Hunting Spider Data Observed on 6 Environmentol Variables for 28 Sites

Sites | Water Content| Bare Sand; Cover Mosy Light Reft| Fallen Twigg Cover Herbs
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Table 4.4: CCPA: Site Scores (Standardized Form: Mean = 0, SD = 1)

Sitc | Diml  Dim2 Dim3 Dim4 Dimb Dim6
1 | -1.1158 -0.9066 0.3801 -0.0755 0.2837 0(.8169
2 | -0.6289 -1.4222 0.6536 0.8009 -0.2028 -0.4257
3 | -0.6153 -1.6232 -0.0219 1.2911 1.2458 -1.4878
4 1-0.6153 -1.6232 -0.0219 1.2911 1.2458 -1.4878
5 |-1.0496 -0.8916 0.5568 -0.3084° 0.8261 0.9413
6 | -0.9283 -1.3203 (.3483 -1.0637 0.5093 0.7142
7 1-0.9765 0.3872 -0.2516 -0.4947 -0.9478 0.2506
8 |-0.7874 -1.4951 0.8415 -1.4583 -1.5292 1.1536
9 |-0.6543 -1.7284 (.1375 0.2005 0.0344 -0.7245
10 | -0.7663 0.6338 -1.1703 -0.8247 0.2691 -1.0837
11 |-0.6306 0.5598 -0.4668 2.0894 -0.6019 2.4838
12 }-0.9141 1.2013 -0.6685 1.0749 -1.8326 -0.8595
13 1-0.3684 0.8630 0.3955 -0.4669 -0.6524 -0.3679
14 1-0.7336 0.7869 -0.9123 -0.5245 0.1500 -0.9344
15 1-0.5872 0.8218 -0.7100 -0.797¢ 1.8040 1.5797
16 | -0.2360 0.8929 0.7489 -0.9329 (.4325 -0.1191
17 {-0.0765 0.9235 1.3145 -0.7876 -0.2402 ©.1020
18 | 0.1423 0.9592 1.4890 0.9990 0.1442 -0.9852
19 | -0.1114 1.2671 1.4681 0.2854 0.4646 -0.0914

20 | 0.6491 0.0651 -2.4635 -1.0747 -1.6915 0.5129
21 | 0.2561 0.7837 1.7701 -0.0068 -0.1368 -0.5180
22 | 1.1272 0.9796 -1.1434 1.2939 0.9515 0.7503
23 | 14993 0.0314 -0.3465 -0.7022 -1.3062 0.7082
24 | 1.4878 0.1154 0.3742 -0.7932 -0.8917 (.6810
25 | 1.8971 -0.05it -0.4676 1.9595 1.3386 -1.5877
26 | 1.3184 -0.1367 ©0.2254 -1.0187 -1.3249 0.1062
27 | 1.3965 0.6655 -0.0657 0.5929 0.3765 0.7170
28 | 2.0416 -0.7388 -1.9935 -0.5486 1.2814 -0.8449
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Table 4.5: COPA: Species Scores (Standardized Form: Mean = 0, SD = 1)

Species | Diml  Dim2  Dim3 Dim4  Dimb  Dim6
Ar-I | -0.6913 0.9620 -1.0973 1.5969 0.1113 1.1018
Pa-L |-0.6762 -2.5548 1.0037 -1.3359 -0.7031 -0.5241
Zo-s | -0.6513 0.0298 -0.5823 1.4449 -1.0598 (.5209
Pa-n | -0.5832 0.6254 -0.6738 -0.4404 0.6122 -0.4176
Pa-p |-0.6035 0.8832 0.0818 -0.4277 -0.4371 -1.3998
Au-a [ -0.5995 0.5546 -0.0967 -1.5129 -1.1171 1.1684
Tr-t | -0.5220 -0.4104 0.2618 0.3843 0.2883 -0.2868
Al-c | -0.4805 0.0185 0.7858 -0.8298 1.8411 1.2281
Pa-m [ 0.1415 0.8376 1.6617 1.0022 0.2425 -0.2734
Al-a | 0.8860 0.3549 1.1386 -0.9710 -1.1417 0.1074
At | 16397 -0.3144 -0.9652 0.6755 -0.2649 0.6748
Ar-p | 21401 -0.9863 -1.5180 -0.5861 1.6282 -1.8998
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IV.3 Canonical Correspondence Analysis {(CCPA) as Canonical Corre-
lation Analysis (CCA)

In this section we will discuss the connection between canonical correspondence anal-
ysis and canonical correlation analysis. This connection between CCPA and CCA
is helpful in providing theorctical insight to CCPA. We will show how to generate
all the results generated by canonical correspondence analysis by using canonical
correlation analysis. As we mentioned earlier, CCA is an analysis of two sets of
quantitative variables, where as, CCPA is an analyvsis of two scts of data of which
one set is of qualitative in nature (e.g. species abundance data: m different species
observed at n different sites) and the other one is quantitative (e.g. data on en-
vironmental variables: ¢ different environmental variables observed at n sites). To
perform CCA on these data, we first create a matrix of indicator variables indicating
in which category of species each of the N individuals from the species abundance
matrix Y, ., belong. Then we create a large matrix Hyy(m+q by augmenting the
environmental data matrix Z,y, with the indicator matrix. Here N = EU Niy =N
Then we can calculate the canonical scores for different sites, called site scores, based
on canonical coefficients of environmental variables. Next based on the site scores
we will calculate the species scores. Finally, using the other information provided
by CCA we will be able to create a graphical display of species abundance data and

environmental data. We nse the same Hunting Spider example for illustration.

IV.3.1 Hunting Spider Example

Let yy represents the abundance of the I species at the i site, where i = 1,...,n

and ! =1,...,m and 2y, j = 1,...,q is the value of the 7" environmental variable
at the i site. Let Npym = (¥a) denote the n by m matrix of species abundance
and Z,y, = (zi;) denote the n by ¢ data matrix of environmental data. Using the
speccies abundance matrix Ny, we create an indicator variable mairix, indicating
in which category of species each of N individuals belong, and augment that matrix
with the environmental data matrix Z,,. This would create an N x (m + ¢) matrix,
Hpyy (mtq), Where N = Zij ni; = n_. A canonical correlation analysis is performed on
this matrix by taking the indicator variable matrix as the data on one set of variables

and the data on the environmental variables repeated so many times as the second
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data set. For example, if Nays = 1: 01 ] and Zis,z = 1: 6 0 . } then we get

o

5.6
5.6
5.6
5.6
5.6
6.1

H6><5 =

oo o o =
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O O O O W
(A R SR R U N

To perform CCA we usc the cstimated variance covariance matrices of y, z, and

the covariance between y and z. The estimated variance covariance matrices given

I
of?] = [ %]

are obtained from absence/presence matrix, Hyx(m4q). They are given by

i blocks

pu{l—p1) PPz ... —Pibm
. —D D 3o(1 — P —Dap
5, = ],.lp.2 Pl | P2) . p..?p m | (431)
] ""ﬁ.lﬁ.m "TS.Qﬁ.m - I).m(l - I;m) i

where 5; denotes the estimated probability of finding the i** species. The (i, k)™
element of ¥, is given by

Oig = _ 1 ; ZJ’CPJQ i Z ijpg (4.3.2)
and
izz - Szza (433)

where 5,, is the usual sample variance covariance matrix of environmental data,

nz A _
N = E E T34, pZ] N’ Pi. = _1,1._ ng. = E ij, p] N and g = Ei TR

In the following we use CCA approach on the Hunter Spider data and compute
the species and sites scores. Canonical correlation coefficients resulted by canonical
correlation analysis and their contribution towards the variance explained is shown

in Table 4.6. It can be seen clearly from the Tables 4.6 and 4.1 that all the canonical
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correlation obtained by CCA 1s similar to what we get by CCPA. The first two canon-
ical correlations capture approximately 88% of the relationship between species and
environmental variables. Species and site scores computed by canonical correlation
analysis approach are shown in Table 4.7 and 4.8 respectively. Thus, species and site
scores caleulated by CCA and CCPA do not differ.
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Table 4.6: CCA Approach; Hunter Spider Data: Canonical Correlations

Cannonical Correlation  Eigenvalue Percent Cumulative %
0.7341518 0.538978865 61.88304447  61.88304447
0.473724 0.224414428 25.76622003  87.64926449
0.2698241 0.072805045 8.359136364  96.00840086
0.1407824 0.019819684 2.275603876  98.28400473
0.1063434 0.011308919 1.298437407  99.58244214
0.0603057 0.003636777 (.417557858 100

Table 4.7: CCA: Species Scores (Standardized Form: Mean = @, SD = 1}

Species | Diml  Dim2  Dim3 Dim4 Dimd  Dim6
Ar-l 0.6913 0.9620 -1.0973 -1.5969 0.1113 1.1018
Pa-L. | .6762 -2.5548 1.0037 0.3359 -0.7031 -0.5241
Z0-s 0.6513 0.0298 -0.3823 -1.4449 -1.0698 0.5209
Pa-n 0.5832 0.6254 -0.6738 0.4404 0.6122 -0.4176
Pa-p 0.6035 0.8832 0.0818 (.4278 -0.4371 -1.3998
Au-a | 0.5995 0.5546 -0.0967 1.5129 -1.1171 1.1684
Tr-% 0.5220 -0.4104 0.261& -0.3843 0.2883 -0.2868
Al-c 0.4805 0.0185 0.7858 0.8298 1.841%1 1.2281
Pa-m | -0.1415 0.8376 1.6617 -1.0022 0.2425 -0.2734
Al-a | -0.8860 0.3549 1.1386 0.9710 -1.1417 0.1074
Al-f | -1.6397 -0.3144 -0.9652 -0.6755 -0.2649 0.6748
Ar-p | -2.1401 -0.9863 -1.5180 0.5861 1.6282 -1.8998
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Table 4.8: CCA: Site Scores (Standardized Form: Mean = 0, SD = 1)

Site | Diml Dim2 Dim3 Dim4 Dimd  Dim6
1 1.1158 -0.9066 0.3801 0.0755 0.2837 (1.8169
0.6289 -1.4222 0.6536 -0.8009 -0.2028 -{).4257
0.6153 -1.6232 -0.0219 -1.2911 1.2458 -1.4878
0.6153 -1.6232 -0.0219 -1.2911 1.2458 -1.4878
1.0496 -0.8916 0.5568 0.3084 0.8261 0.9413
0.9283 -1.3203 0.3483 1.0637 (.5093 (.7142
0.9764 0.3872 -0.2516 0.4%947 -0.9478 0.2506
0.7874 -1.4951 0.8415 1.4583 -1.5292 1.1536
0.6543 -1.7284 0.1375 -0.2005 0.0344 -0.7245
10 | 0.7663 (.6338 -1.1704 0.8247 0.2691 -1.0837
11 | 0.6306- 0.5598 -(.4668 -2.0894 -0.6019 2.4838
12 | 0.9141 1.2013 - -0.6685 -1.0749 -1.8326 -0.8395
13 | 0.3684 0.8630 .3955 0.4669 -0.6524 -0.3679
14 | 0.7536 0.7869 -0.9123 0.5245 0.1505 -0.9344
15 | 05872 0.8218 -0.7100 0.7970 1.8040 1.5797
16 | 0.2360 0.8929 (.7489 0.6326 0.4325 -0.1191
17 1 0.0765 0.9235 1.3145 0.7876 -0.2402 0.1020
18 [ -0.1423 0.9592 1.4890 -0.9990 0.1442 -{(.9852
19 | 0.1113  1.2671 1.468% -0.2854 0.4646 -0.0914
20 | -0.6491 0.0651 -2.4634 1.0747 -1.6915 (.5129
21 1-0.2561 0.7837 1.7701 0.0068 -0.1368 -0.5180
22 1-1.1272 (0.9796 -1.1434 -1.2939 0.9515 0.7503
23 |-1.4993 0.0314 -0.3465 0.7022 -1.3062 (.7082
24 | -1.4878 0.1154 0.3742 0.7932 -0.8917 0.6810
25 | -1.8871 -0.0511 -0.4676 -1.9595 1.3386 -1.B877
26 | -1.3184 -0.1367 0.2254 1.0187 -1.3249 0.1062
27 1-1.3965 0.6655 -0.0657 -0.5929 0.3765 0.7170
28 | -2.0416 -0.7388 -1.9935 0.5486 1.2814 -0.8449

O o0 ~I s W
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I1V.4 Population Canonical Correspondence Analysis

The interest here is to provide population versions to the quantities used for canonical

correspondence analysis. Consider

Site | y1. 42 ... Um
1 P P12 .- Pim | PL
2 Por P2z .. Pom | P2
n Pn1 Pn2 -oo Pnm | Pn.
P1 P2 ... Dm

where p;; is the probability of finding the j* species at the it* site, p; is the marginal
probability of finding the j** species and p; is the marginal probability of {inding
th :

species at the ¢** site.

Following the ideas from Olkin and Tate (1961), we assume for a given site,
vector of the environmental variables has multivariate normal distribiition:
z|(site = k) ~ N{py ,2).

Variance covariance matrix of specics and environmental variable (y,z) is then

given by
Ty 5
D[y] = | Tw e | (4.4.1)
Z Zzy Z:zz
where _ )
pul—pi) =pip2 ..  “PiPm

- 1 — cer = N
5, = | Paps Pl | 29 . PP (1.4.2)

] —Pi1Pm "_p.2p.m RS p.m(l - p.m) J

and §;, the covariance of i species and k** environmental variable, that is, the

(i, k)" element of %,,, is given by

O = Elyize) — E{y:) E(2x), (44.3)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



where
E(yizg) = Pl{y; at Site = 1)E(z; at Site = 1) + -+ + P(y; at Site = n)E(z; at Site = n)
E(yizk) = Puphie + Dagfiok + - + Pnifing
E{yizk) = Y pjitte
j=1
E (yz‘) = Pi

n
E(z) = > piju
=1

Substituting E{y;z), E(y;), and E(z;) in equation 4.4.3 we get

b3 n
Gik = ijiﬂjk — P ij,,u,jk. (4.4.4)
j=1

j=1
It is interesting to note that d; is sero when site and species are independent of each
other, that is, when p;; = p; p; or when all the means of environmental variables are
cqual, that is, (u;; = pyy ¥V 5,4, 4, 7). Similarly ¢y, the (¢, )" element of £,,, or
the covariance of 3 and j** environmental variable, can be compuied using
i
E(zz;) = Z E(z2;|Site = k) P(Site = k)
k=1
n
- — N
E{ziz;) = L(C’m + kit )P,

k=1

n
B(ziz) = 0i+ Y biftkiPe.

k=1

T TH T
- - .
Cov(zi, zj) = ¥y = oy + }_J,ukarukjpk. - Z#m}?k. Zukjpk. (4.4.5)
Let S0y pripk. = pg and > 5, psPr. = ty. Then equation 4.4.5 can be written as

. n
Yi; = 045 + Zpk.(#m: — i) (g — Bj) (4.4.6)
k=1

If we let M = (my;) = (ps5 — pj).i=1,...,n; 7=1,..., ¢ then equation 4.4.2,
4.4.4 and 4.4.6 can be written as

Yy = Diag(P)—- PP, (4.4.7)
S, = PM (4.4.8)
S, = O+ M Diag(P)M, (4.4.9)
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where P = (py),i=1,....0,0=1,....m, P.=(p1,...,pm) and P, = (pr,....pn.).
We note that 1%, = 0.

Now doing canonical correlation analysis on variance covariance matrices of
species and environmental variables (y,z) will result in canonical variables of
species and environmental variables that are highly correlated. The set of, say
v = (v,...,0,) and w = {wy,...,w,), canonical variables are the linearly trans-
formed variables of y and z. Canonical correlations are the square root of the eigen-
values of 2;; / ?EWZ};;ZWEJJ/ ?_ Since 2y 15 a singular matrix, some canonical co-
efficients will be zero and a generalized inverse will be used to compute Z;};’/ ?. The
canonical variables w is used to compute canonical scores. These canonical scores
arc called site scores. Species scores arc calculated using site scores and is given by
equation 4.2.7.. All the population parameter are cstimated by the corresponding

sample counterparts.

We want to make an important remark about the equation 4.4.9 here. In the usual
canonical correspondence analysis (CCPA) proposed by Ter Braak, 3., the variance
covariance matrix of environmental variables, is completely ignored dune to lack of
cnough data to estimate it. Hence only the second part of the matrix 3J,,, that is,
MDiag{P,)M' is used for the calculation of site and species scores. But in practice,
¥ can be estimated using the historical data on the environmental variables and this

estimate can be used for performing the above calculations.

IV.4.1 Some Important Special Cases

As described above canonical correlations are the square root of the eigenvalues of
~1/2 — -1 . . . . . -

Zyy/ DI It I 3 2. Since Yy 18 a singular matrix a generalized inverse could

be used to compute E;yu ?, For the special case, when m = 2,n = 2and ¢ > 1 a

generalized inverse of ¥, can be taken as

1
P pap.2

v 0 0
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: - -1/2 — —-1/2 . .
and the mattix B = £,,°%,, 5725, 5 is given by

—

1
2;31/221}2 = VPiP2 0 P11 —P1P1 P —Pirp2 i1 .. flig
| 0 0 Piz — P2.pa P22 — P2.Pa2 fa1 ... jog
Pri—pip1 pa—prpa ey
-2y o NEVES N AVE] f
v~y 0 9 )

Pn —DPaPa
L vPaP2
Puu — P P21 —PaPa { /15(1)2;;#(])' ”(1)2;21”(2), ]

B = VPP VPap.2 R A
0 0 TS iy TRV Vel i

i Pn—m.pa 0 ‘|
]

VPaP3
P21-P2.pP0
| “VEs
[ MRZM | .
B = Pip2 . where M = [(p11 — pr.p1) e + (por — pap )it?)]
0 0

_ 2 .. PN
B - (Pnp’lg;m) [N(” _ “kz)]zz—; LM-(U _ p,’(z)qlr 0

{0 0

Hence the eigenvalue of matrix B is given by

2
)= (P11 — pLp1) [“(1) . M'(Q)]E_I[M(U _ #(QJJ"
papa zz

Note that when the two mean vectors are same or/and when the independence
holds in the contingency table, i.e. py; = pi1.p.1, the eigenvalue A = 0. In general for

n > 1 and the same choice for m and ¢, matrix B is given by

Mz M 0
B = PiP2 : : (4.4.10)
0 0

where

M = (p11 — prpa) 1Y + @ — pop )t + .+ (Do — Pap )™,
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Note as before that if all the mean vectors are the same or/and when the conditional
independcence holds at each table then the eigenvalue will be zero. Although we have
not pursued here, one can develop tests for testing the eigenvalues to be zero which

wonld in turn test for independence or equality of the mcans.
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IV.5 Canonical Correspondence Analysis of Longitudinal Data

In this section we will discuss how to perform canonical correspondence analy-
sis (CCPA) when we have repeated data. Supposc we have a fixed number n
sites, m specics vector ¥ = (y1,¥2,.--,¥Um) and ¢ environmental variables vector

z = (21,22, .-, 24}, that were observed at ¢ time periods.

Time Period =1 Time Period = & Time Period =1
Site | 1 ¥ . Ym | e HooYr - Ym
I | pmn pn ..o Prm e Pt Prze -+ Pimt | Pl
2 | pann Pa2r ... P2 s Fote P2ot -~ Poamt | Po.
N3 Pna1 Pp2t -+ Pnami .- Prit Pn2t -+ Pnmt | Pn.
Pu P2z - Pl - Pt Pat - P | 1

Here pyj, is the probability of finding j* specics at ™ site at k% time period, p j is
the probability of finding j** species at & time period and p;_ is the probability of
finding specics at i site. Similarly we have a veetor of the environmental variables,
z = {21, 29,..-, z;]) observed over t time periods i.e. Z = (21,2s,...,2;). Assuming
we have a repeated effect in both variables i.e. in both species abundance and

environmental variables, we can proceed as follows.

In this case the variance covariance matrix of species and environmental variables
(Y,Z) is given by

231 k! Z z
2(n1+q)tx(na+q)t = 2:: Ezz :I ) (4.5.1)
where
Zzz = tht QL+ M‘DEQQ(PT)M (452)
pa(l— 17_.11) ~pupa e —P11P.me
iyy — *13.1-113.21_ Pl “' Pa) - - *ﬁ.z}ﬁ,mt (4.5.3)
L _ﬁ.llﬁ.mt _ﬁ.Zlﬁ.mt v ﬁ.mt(l - ﬁ.mt) ]
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The covariance of [ species at k™ time period or overall m¢ species categories and
r* environmental variable at & time period or overall gt environmental categories
is given by (I,7)® element of ,,.

n

n
0':77. = szrkﬁﬂk — ﬁ_gk szrkﬁj‘_ = 1, Ve ,’Hlt; = 1, ey qt. (454)

j=1 j=1

The estimates of Q. @ can be obtained from the environmental data observed over
¢ time periods by maximizing the log likelihood of multivariate normal function. See
Naik and Rao (2001). We can then calculate the species and site scores as suggested
in IV.3. After fitting the above variance-covariance relationship and calculating the
species scores we can plot the species scores for all the time periods. If these profiles
are homogeneous then we can take summary statistics of specics scores and call it

final species scores.

In the following example, we use simulated data to to illustrate the methods

discussed in this section.

IV.6 An Example: Analysis of Simulated Data

A (6 x 4), site by species, simulated contingency table is shown in Table 4.12. A
simulated set of correlated multivariate normal data considered as data on environ-
mental variables for 10 time periods is giveri in Table 4.13. To test the time effect
on contingency table we can use the method as discussed in section 111.4. The out-
put of correlated linear model on Ay is shown in Table 3.15. The small p-value
(p — vel = 0.0020) suggest that there is a repeated effect in the contingency table.
To test the repeated effect in simulated environmental data we can test

HolZ*zfﬂ®ZVSHolE*:Qﬁ®E-.

The likelihood ratio test (LRT) as discussed in I1.4 can be used to test above hypoth-
esis. The result from LRT test statistics is shown in Table 4.11. The likelihood ratio
test statistic is 30.320489 and we compare this with 1 degree of freedom chi-square.
The small p-value (3.6624F — 8 ~ 0) concludes that there is a repeated effect in the

environmental variables.

Hence we have to calculate the species and site scores as described in section

IV.5. In this cxample because of longitudinal study of environmental variables we
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have suflicient data to estimate the variance covariance structure of environmental
variables. The resulted canonical correlation between species and environmental
variables are shown in Table 4.9. The maximum and minimum canonical eorrclations
are 0.130619 and 0.000071 respectively. The first two canonical variables capture
approximately 98% of the relationship between species and environmental variables.
Species and site scores after fitting the structure is shown in Tables 4.14 and 4.10.
Species score profiles after fitting of the variance covariance structure is shown in
Figure 4.2. These profiles can be used to get a better understanding of species scores
at different time periods. As in this case Figure 4.2 suggests that the ranking of
species 1 18 higher as compared to other species for all the time periods. It can also
be inferred from the species profile that score of 37¢ specie is almost constant for all

time periods.

IV.7 Concluding Remarks

In this chapter we have considered canonical correspondence analysis (CCPA} where
the relationship between a set of qualitative and another set of quantitative variables
is studied. After providing an introduction of the CCPA we show that this analysis
can be performed using canonical correlation anatysis (CCA) of a certain matrices.
Next, using this equivalence relation between CCPA and CCA, we provide a theoret-
ical basis to CCPA which did not exist in the literature. Finally, we provide CCPA
method for analyzing repeatedly observed data.

Table 4.9: Simulated Data Frample: Canonical Correlations

Cannonical Correlation Eigen Value Percent cum %
0.130619 0.017061  91.01627101 91.01627101
0.035188 0.001238  6.604427847 97.62069885
0.015259 0.000233  1.242998133 98.86369699
0.013306 0.000177 0.9442518  99.80794879
0.00599 0.000036  0.192051214 100
0.000071 0 0 100
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Figure 4.2: Species Scores Profile After Fitting the Variance Covariance Structure.
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Table 4.10: Simulated Data Ezample:; Site Scores

Site Dim] Dim2
1 | 1.2198324 -0.561291
2 11.2199394 -0.479067
3 | 0.5770421 -0.501926
4 10.1992913 1.3983152
5 | -0.764373 0.5793593
6 | -1.466163 -1.28597

Table 4.11: Hypothesis Testing: Simulated Data

Hypothesis | Chi Square Test Statistics Dof p-value

H,

30.320489

1 (36624 ~8=~0
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Table 4.12: Simulated Contingency table for 10 Time Period

Site Time Period =1 Time Period = 2 Time Period = 3
Y1 Y2 Y3 Y4|Y1 V2 Y3 Y4|VY Y2 Y3 Y4
1 69 93 63 S0 169 94 62 49 [ 53 85 48 37
2 62 93 59 44 | 61 94 58 44 | 46 85 45 31
3 62 104 70 65 | 61 105 70 65 {46 97 5H 49
4 77 140 83 93 | 77 135 82 94 |60 12t 64 85
5 40 96 59 84 |40 97 58 83|28 8% 45 66
6 24 76 39 V6 124 76 58 76 |16 59 45 59
Site Time Period = 4 Time Period = a TFime Period = 6
Yi Y2 Y3 Y4 |Y1 Y2 V3 Y4 |V1 Y2 Y3 Y4
1 75 109 69 56 | 84 108 79 66 | 74 105 67 56
2 68 109 65 51 78 108 75 59 | 66 105 65 49
3 68 119 76 71 | 78 118 87 81 | 66 117 75 69
4 85 145 89 10994 151 98 108 | 82 148 86 105
5 47 111 65 90 |56 111 75 101} 45 108 65 88
6 20 83 65 8337 93 75 93 131 8L 65 81
Time Period == 7 Time Period = 8 Time Period = 9
Y1 Y2 Y3 Y4 |Vl Y2 Y3 Y4|Y1 Y2 Y3 Y4
1 80 110 74 61 174 100 67 55|79 103 71 60
2 72 110 70 37 |65 100 63 50 | 71 103 68 54
3 72 122 80 75 |65 112 74 68 | 71 114 80 73
4 8 168 94 110 |81 164 8 100 8 159 92 103
5 50 113 70 94 | 46 103 63 87 { 50 106 68 93
6 36 &7 70 87 132 80 63 8 {35 84 68 &4
Time Period = 10
Yi Y2 Y3 Y4
1 94 110 88 75
2 &7 110 83 68
3 87 121 96 90
4 103 166 107 110
O 60 112 83 109
6 47 102 83 102
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Toble 4.153: Simulated Environmental Variables for 10 Time Period
Site Time Period =1 Time Period = 2
Z1 Z2 Z3 Z4 Z1 Z2 Z3 Z4
1 1-0.333 -0.2090 0.854 0.050 | -0.568 -0.662 0.170 1.584
2 1-1.263 -0.170 0.650 0.789 | -1.247 0.724 0.403 0.358
3 0.186 -0.190 -0.477 0470 {-1.239 0.842 0434 0.314
4 |-0.804 -1.940 -1.168 -0.323| 0.436 -1.431 -0.238 0.169
5 0.049 0.375 0.666 1.520 | 0.080 -0.462 -0.399 -0.244
6 |-0.986 1.266 1.080 0.856 | 0.276 1.265 1.180 0.241
Site Time Period = 3 Time Period =4
Z1 Z2 Z3 Z4 Z1 Z2 z3 Z4
1 0.313 -0.986 -0.861 -0.450 | 0.342 0.779 0.154 0.912
2 1-1.860 (.123 -0.173 -0.644 {-1.229 0.346 0.744 0.629
3 0.156 0.695 -0.331 0.311 | -1.296 0.294 -0.742 1.200
4 0.106 -0.896 0.235 -1.537-0.127 -0.261 0.148 -1.022
5 0.182 -0.437 -1.296 O0.116 { 1.416 0.139 -0.106 1.061
6 |-0.095 -0.669 0.632 -0.857|-0.123 -1.573 0.318 -0.834
Site Time Period =5 Time Period = 6
Z1 Z2 Z3 Z4 Z1 Z2 Z3 Z4
1 1-1.397 -1.371 -1.506 -0.850 |-0.428 -1.580 -1.762 -0.950
2 1-1.904 -0.408 -0.182 0935 | 1.439 1.143 0948 -0.054
3 | -1.058 -0.753 -0.153 0.669 |-0.693 0.096 -0.028 0.306
4 0344  0.783 0.592 1.097 | 0.746 -0.307 0.007 0771
5 1.382 -0.396 0.451 -0.157 } 0.440 -1.008 0.217 -0.678
6 |[-1.028 0.098 1.421 -0.643}|-2.240 -2.199 0.499 0.591
Site Time Period =7 Time Period = 8
Z1 Z2 Z3 Z4 Z1 Z2 Z3 Z4
1 1.060  0.109 -0.343 2.220 | 1.158 -0.437 0.182 -0.143
2 -0.186 -0.085 1.648 0.869 |-0.137 -0.424 0.509 0.938
3 [-0.480 -0.656 0.117 0.802 | -0.800 0.120 0.515 -0.041
4 1.508 1.236 0.487 0.932 | 0.839 1.042 -0.104 -0.103
) 0.437 0.014 -1.100 0.010 | 0.738 -0.588 -0.718 -0.637
6 |-0.132 1.197 1313 1.759 | 0.880 0.631 1.024 1.283
Site Time Period = 9 Time Period = 10
Z1 Z2 Z3 Z4 Z1 Z2 Z3 Z4
1 0.668 0.4056 0.171 0.062 | -0.019 1.795 2.061 -0.449
2 0.037 0.143 1.233 0.386 | 0.577 0.834 0.963 0.116
3 | -0.862 -0.390 -0.285 0.297 |-0.291 0.047 1.186 0.593
4 1-0.269 0.082 0372 -0.186| 1.572 0.678 1.392 0.205
5 0.134 -0.291 -0.812 -1.961 { 0.679 0.273 0.353 0.086
6 1.087 0.098 -0.778 0.460 | -0.179 -1.424 -1.414 -0.719
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Table 4.14: Simulated Data Example: Species Scores

Site Dim1 Dim?2
Y1 | 3.327406  0.0366452
Y2 1 1.6533004  0.22165
Y3 | 1.4446456 -1.763773.
Y4 | -0.091516 -0.054695
Y5 | 3.3060126 0.1208377
Y6 | 1.6720557 -0.154116
Y7 | 1.4552013 -1.760965
Y8 | -0.09651  (.0406095
Y9 | 3.5176559 (1.6331461
Y10 | 1.8387538 0.4119444
Y11 | 1.4593547 -1.732534
Y12 | -0.205689 1.8258446
Y13 { 3.1318353 -0.000828
Y14 | 1.777647 -0.538(074
Y15 | 1.4289463 -1.95384
Y16 | 0.045522 0.3905538
Y17 | 2.945997 -0.489913
Y18 | 1.5609583 -0.648671
Y16 | 1.4138317 -2.318864
Y20 | 0.1084241 -0.896651
Y21 1 3.0573451 -0.422625
Y22 | 1.7510877 -0.111497
Y23 | 1.3837949 -2.154246
Y24 | 0.0479367 0.2603134
Y25 {2.9492438 -0.599125
Y26 | 1.707198 0.5135694
Y27 | 14111945 -2.062872
Y28 | 0.154055 -0.164113
Y29 | 2976622 -0.51178
Y30 | 1.6876132 1.1155571
Y31 | 1.4334355 -2.09477
Y32 1 0.0602423 -0.103159
Y33 | 2.9599476 -0.708904
Y34 | 1.654596 0.4819819
Y35 | 1.4110358 -2.033619
Y36 | 0.1225163 -0.38352
Y37 | 2.7411247 -0.992219
Y38 | 1.4453846 -0.367862
Y39 | 1.4203872 -2.440335
Y40 | 0.2132843 -1.746722
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CHAPTER V

CA FOR HIGHER DIMENSIONS

V.1l Introduction

Although canonical correlation and other methods discussed in the previous chapters
are general methods, their utility when dealing with really large data sets have not
been well studied. In this era of internet, genomics, and proteomics, information
available in the form of data are explosive in nature. Hence it is important that we
look at analysis of at least some of such large data sets using some of the methods
we have studied thus far.

In this chapter, we work with a high dimensional data sct in the ficld of language
processing. The data arc in the form of contingency tables and usually very sparse
in nature. We will use correspondence analysis to analyze these data and compare
its performance with a well established method in this are named latent semantic
analysis (LSA).

In the next section, we will review latent semantic abalysis (LSA) which is a
popular method of analysis of the data among the practitioners in natural language
processing. In Section 3 we show that a correspondence analysis can be used for this
purposc. We compare the two methods in Section 4 and provide some guidelines on
which method is better in what situaftion.

V.2 Latent Semantic Analysis

Latent scmantic analysis (LSA} is a technique in natural language processing, in
particular in vectorial semantics, invented by Deerwester, Dumais, Furnas, Landauer
and Harshman (1990). LSA analyze relationships between a set of documents and
the terms they contain by producing a set of concepts related to the documents and
terms. It is a fully automatic mathematical/statistical technique for extracting and
inferring relation of expected contextual usage of words in passages of discourse. It
is not a fraditional language processing or artificial programme. It uses no humanly

constructed dictionaries. It takes as its input only the raw text parsed into words
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defined as unique character strings and separated into meaningful passages or samples
such as sentences or paragraphs (Landauer, Foltz and Laham, 1998). The underlying
idea is that the totality of information about all the word contexts in which a given
word does and does not appear provides a set of mutual constraints that largely
determines the similarity of meaning of words and set of words to each other. In one
sense it can be said that LSA represents the meaning of a word as a kind of average
of the meanings of all the passages in which it appears, and the meaning of a passage

as a kind of average of the meaning of all the words it contains.

In LSA the first step is to represent the text as a matrix, called term-document
matrix, in which cach row stands for a unique word and each column standg for a
text passage or other context. Each cell of this matrix contains the frequency with
which a word in its row appears in the passage denoted by its column. I we represent
such a matrix by A then

A = lay],
where a;; denotes the frequency in which the " term occurs in the j** document.
Since every word does not normally appear in each document, the matrix A is usually
guite sparse. Next, the cell entrics arc subjected to a preliminary transformation in
which each cell frequency is weighted by a function that expresses both the word’s
importance in the particular passage and the degree to which the word type carries

information in the domain of discourse in general. Thus, a,; is rcpresented as
ai; = L{i, )G (4),

where L{i, j) is called local weighting for term ¢ in document j, and G(i) is called
global weighting for term i. Somne popular local and global weighting schemes are
given in Tables 5.1 and 5.2 respectively.

where
1 ifa, >0
5(ay) = o
0 if i3 = ]
pi; = probability of the i term in the j* document and ndocs = Total number of
documents in the collection. It has been seen in practice that LogEntropy weighting

scheme,

o _ (N Pistog(pig)
Qi; = EOQ(GU + 1) X [1 ( - Eog(ndOCS))}
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Table 5.1: Formulas for Local Term Weights.

Symbol | Name Formula
b Binary, Salton and McGill (1983) d(aij)
l Logarithmic, Harman (1992) log(1 + ai;)
"
d{ai; 7
(ai) + (ma.x ukjj
n Aug. normalized term frq, Salton and 9 £
MeGill (1983); Harman (1992)
t Term Frequency, Salton and MceGill i
(1983)

is the best. Next, LSA involves determining the singular value decomposition (SVD)
of the matrix A as
A=UZV/

where it is well known that any rectangulér matrix can be so decomposed perfectly,
using no more factors than the smallest dimension of the original matrix. When
fewer than the necessary number of factors are used, the reconstructed matrix is
a least-squarcs best fit. Onc can reduce the dimensionality of the solution simply
by deleting coefficients in the diagonal matrix, ordinarily starting with the smallest.
Thus k-dimensional best fit of A would be

Ak - UkEKVé

The truncated SVD captures most of the important underlying structure in the
association of terms and documents, yet at the same time removes the noise or
variability in word usage. The result of the SVD is a k-dimcnsional vector space
containing a vector for each term and each document. Finally term and document

vectors are plotted in k—dimensional space on the same graph.

One can interpret the analysis performed by SVD geometrically. The location
of term vectors refiects the correlations in their usage across documents. Similarly,
the location of document vectors reflects correlations in the terms used in the docu-

ments. In this space the cosine or dot product between vectors corresponds to their
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Tuble 5.2: Formulas for Global Term Weights

Symbol | Name Formula
- _ piilog(pi;)
e Entropy, Dumais (1991) 1 (EJ m)
f Inverse document frequency (IDF), Dumais 1092(—%) +1
(1991); Salton and McGill (1983) 225 O\
g GfIdf, Dumais (1991) YL
' _ ' 3 6(a:;)
n Normal, Dumais (1991) L
' 225 i
P Probabilistic Inverse, Salton and MecGill | log (ndogs—éz(é 'O'ga'ij ))
(1983); Harman (1992) FON

estimated semantic similarity. Thus, by determining the vectors of two pieces of

textual information, we can determine the semantic similarity between them.

V.3 TIlustration of LSA

In this section we will explain LSA technique throngh examples.

V.3.1 Example 1

This example uses 17 book titles from book reviews published in the STAM Review,
Volume 54. All the underlined words in Table 5.3 denote Keywords used as referents
to the book titles. The parsing rule used for this exampie required that keywords

appear in more than one book title.

The term-document matrix Aygx17, corresponding to text in Table 5.3, is shown in
Table 5.4. The elements of this matrix are the frequencies in which a term occurs in a
document or book title. For example, in book title B1, the first column of the term-

document matrix Aqsx17, the terms equations and integral occur once. Transforming
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Table 5.3: Database of Titles from Books Received in SIAM Review

Label

Title

B1
B2
B3
B4
B5
B6
B7
B8
B9
B10
B11

B12
Bi3

B14
B15

B16

B17

A course on Integral Equations

Attractors for semigroups and Evolution Equations
Automatic Differentiation of Algorithm:  Theory,
Implementation, and Application

Geometrical Aspects of Partial Differential Equations
Ideals, Varietics, and Algorithms - An Introduction to
Computational Algebraic Geometry and Commutative
Algebra

Introduction to Hamiltonian Dynamical Systems and

the N—Body Problem
Knapsack Problems: Algorithms and Computer
Implementations '

| Methods of Solving Singular Systems of Ordinary

Differential Equations
Nonlinear Systems
Ordinary Differential Equations

g—)-scillati.on Theory for Neutral Differential Equations

with Delay

Oscillation Theory of Delay Differential Equations
Pseudodifferential Operators and Nonlinear Partial
Differential Equations

Sinc Methods for Quadrature and Differential Equations
Stability of Stochastic Differential Equations with Re-
spect tG Semi-Martingales

The Boundary Integral Approach to Static and Dynamic
Contact Problems

The Double Mellin-Barnes Type Integrals and Their
Applications to Convolution Theory
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the elements of term-document matrix Aqgyx17 according to LogEntropy weighting
scheme we get transformed matrix Aqgyy7, truncated to one decimal place, as shown

in Table 5.5. Next, SVD decomposition of transformed matrix Ajgx17 gives

!
Avex1r = Utk Dixk Vixar

Now choosiug & = 2, the truncated SVD of the transformed matrix A gy 7 will give
rank-2 approximation A, '
A= Ag = YQEQV—QI,

- [ 0.1771327 0.0387424 |
0.1698369 —0.048172
0.0352476 0.6100063
0.324861 —0.117421
0.0017018 0.1781205
0.013891  0.0936102

[ 0.0072051  0.4077252
0.0121796  0.3464152
0.1219800 0.1798224
0.6134575  —0.09226
0.7228448  —0.10095
0.0061875 0.3073185 ]
- 0.0031065 0.3279531
0.0405602  0.237913 ) |
- 0.3558455 --0.165735
0.0025155 0.0890314 , |

where Uy = Vo= | 0.0219399 —0.03182

0.1009096 —0.093971
0.3254413 —0.121073

0.0574432 —0.054779
0.378056  0.2744157

0.1099096 —0.093971
0.378056  0.2744157

0.1219800 0.1798224
0.3341281 —0.135369

0.1063124 —0.082826 ]
0.3254413 -0.121073
0.0045159  0.2143652
0.30771 —0.090284

0.0704532 —0.037973
0.0081081 0.1652258
0.16(5313  0.6296756
- - 0.0402492 0.447279

and
5.3477028 O

o 2633105 |

Using the first column of Us multiplied by first singular value, ¢y, for the
z—coordinates and the second column of U, multiplied by second singular value,
oy, for the y—coordinates, the terms can be represented on the Cartesian plane.
Similarly, the first column of V5 scaled by o, are the z—coordinates and the second
column of ¥, scaled by o3 are the y—coordinates for the documents. Figure 5.1 is a

two-dimenstonal plot of the term-document matrix Ajgw1r.
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Table 5.4: 16 x 17 Term-Document Matriz

Terms

Docutments

Algorithms
Application

Delay

Differential

equations

implementation

integral

introduction

methods
nonlinear
ordinary
oscillation
partial
problem
systems
theory
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Table 5.5: LogEntropy Weighting Scheme Ajgx1y Term-Document Matrix

Terms e Documents

Algo [ 0.0 0.0 1.0y 0.0/ 1.6 0.0 1.0y 0.0 0.0 0.0 0.00 0.0 0.0y 6.0 0.0y 0.0/ 0.0
App 0.00 0.0 0.9 0.0 0. 0.0 0.(¢ 6.4 0.0¢ 0.0 0.0 0.0 0.0y 0. 0.0y 0.0 0.9
Delay | 0.0 0.0/ 0.0 0.0 0.0 0.0 0.0 0.0y 0.0 0.00 0. 0.9 0.0 0.0y 0.0 0.0y 0.0
Diff 0.00.0 0012 000000120012 12121212120.00.0
eq 1.3 1.3 0.60 1.3 0.00 0.0 0.04 1.3 0.0 1.3{ 1.3 1.3 1.3 1.3 1.3 0.0{ 0.0
impl | 0.00 0.0 0.9 0.0 0.0¢ 0.0 0.9/ 0.04 0.0 0.04 0.0 0.0 0.4 0.0y 0.0 0.0 0.0
int 1.0 0.0, 0.0y 0.0 0.¢f 0.0y 0.0{ 0.0y 0.0 0.4 0.0 0.0 0.0 0.0y 0.0 1.¢¢ 1.0
intro | 0.0 0.0 0.0, 0.6 0.9 0.9 0.0/ 0.0y 6.0 0.0 0.0¢ 0.G 0.0, 0.0y 0.0, 0.0¢ 0.0
metd | 0.0/ 0.0¢ 0.0{ 0.4 0.0 0.0y 0.0 0.9 ©.0; 0.0/ 6.0, 0.0 0.0, 0.9 0.0 0.0y 0.0
non 0.0 0.0 0.0, 0.00 0.0/ 0.0y 0.0, 0.0/ 0.9 0.0 0.0/ 0.00 0.9 0.0 0.0 0.0y 0.0
ord 0.0 0.4 0.0/ 0.0y 0.0 0.0t 0.0 0.9 0. 0.9 0.0 0.0 0.6 0.0 0.04 0.0y 0.0
0sC 0.0 0.0 0.0/ 0.0y 0.0/ 0.0 0.%: 0.4 0. 0.0 0.9 0.9 0.0 0.0 0.4 0.G; 0.0
par 0.0 0.00 0.0 0.9 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0y 0.9 0.0 0.0 0.0 0.0
prob | 0.0 0.00 0.0, 0.0/ 0.0 1.0 1.¢ 0.0 0.0y 0.4 0.6 0.0; 0.0y 0.0 0.0 1.0} 0.0
SYS 0.00 0.04 0.0. 0.0 0.0 1.0, 0.00 1.0/ 1.0{ 0.0: 0.0 0.0, 0.0 0.0 0.0 0.0 0.0
theory | 0.00 0.0/ 1.0 0.0 0., 0.0 0.G; 0. 0.0y 0.0 1.0y 1.0y 0.(3 0. 0.0 0.0 1.0
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Since the initial data are in the form of a contingency table, we can adopt corre-
spondence analysis to get a two-dimensional representation of terms and docuinents.
The correspondence matrix P(52) can be calculated easily. The coordinates for the
16 term profiles and 17 document profiles in 2-dimensional space are given by Figxo

and Giyxo respectively.

- . [ —0.0144 —0.5753

1.7175 0.106 .
—0.7333 —0.1281
1.089 -1.3636
- 1.2748 —0.876

—0.5192 -0.9361
—0.8482  0.1055

—-(0.7661 -0.0243
1.7677  1.0284

—-0.696 -0.1051 : 5
1.0938  1.5674
1.6195 —0.4677
1.7174  0.1085

0.6694 —0.839
—0.645  0.5772

o | LsasT 18817 G| —oosm  1oms
T 07886 0.4249 1 0'8121 612

-0.5829  1.4899
—0.4796 —0.7681

—0.7886  0.4249 .
—0(.4796 —0.7681

—0.5192 —-0.9361 , .
—0.7939  0.5331

—0.8887  0.3801
' —0.8121 0.12

1.4229  0.6288
—0.7913 —0.0788

0.0597  1.6479
1.1324 —-0.1281

0.2849 —1.1499
- - | 0.7373 —1.3619

Figure 5.2 is a two-dimensional plot generated by correspondence analysis of the

term-document matrix Aigx17.

Note that in Figure 5.1 documents ( B10, B14, B15, B13 ) and terms pertaining to
differential equations are clustered around the z—axis. Similarly we can see that B11
and B12 form a cluster. Such grouping suggest that subset of book titles contains

titles similar in meaning. Similar things can be seen in Figure 5.2 as well.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



76

V.3.2 Example 2

In Chapter 3 we have shown correspondence analysis of Parents’ socioceconomic status
on children’s mental health. See details in II1.2.1. Latent semantic analysis (LSA)
can also be used to analyze these data. In the following we will provide a two
dimensional representation of parent’s socioeconomic status and children’s mental
impairment using LSA. First transforming the data given in Table 3.1 according to

LogEntropy weighting scheme we get

[ 8.2434487 8.9928529 8.0521928 7.6031504 ]
7.9736209 8.9425983 7.8693324 7.292464
8.0217832 9.21305681 8.277053 8.121414
8.463827 9.7764036 8.5945178 8.9834729
7.0574758 8.9612387 7.8322626 8.5400093
5.9968356 8.2970273 7.7745028 8.2970273

CAga =

Next, truncated SVD decomposition of transformed matrix Ag.q in two dimension

gives
Ax Ay =UpS,V,
[ 0.4075903 —0.417695 |
0.3977873 —0.425438 0.4641468 —0.752015
Chere T, = | 0417101 0146411 |} 05484784 —0.032818
0.444232 —0.020594 0.4896015 0.0919584
0.4023228  0.3591943 0.4939936 0.6518749
0.377434  0.7026044
and i i

40.375905 0
0 1.9004061 |

The co-ordinates of parent’s socioeconomic status and children’s mental impairment

2:

in two-dimensional space is shown in Table 5.6. Figure 5.3 is a two-dimensional plot
generated by latent semantic analysis (LSA) of the socioeconomic status by mental
health of children data.

It is interesting to note that categories are ordered in socioeconomic status by
mental health of children data and the order is maintained in both two-dimensional
representation, i.e, in Figure 3.1 and 5.3. The point corresponding to status category

6 (low status) is closest to IMPAIRED, followed by other categories in a decreasing
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Table 5.6: LSA: 2-Dimensional Coordinates of Socioeconomic Status by Mental
Health of Children Data

Label Dim1 Dim?2
1 16.4568 -0.79755
2 16.061  -0.81233
3 16.8408 -0.27956
4 17.9363 -0.03932
5 16.2441 0.68585

6 15.2392  1.34156
WELL 18.7403 -1.4359
MILD 22.1453 -0.06266

MODERATE | 19.7681 0.17559
IMPAIRED | 19.9454 1.24469

order. Similarly, point corresponding to the status 1 (High) is closest to the point
corresponding to WELL, followed by other status categories in the increasing or-
der. The points representing the status categorics 1 and 2 form a cluster in both
two-dimensional representation. Hence these categories may be clubbed together to
form one group. The categories corresponding to the mental status of children also
follow an order from IMPAIRED to WELL. The two middle categories are quite
close to each other, but there is a clear distinction between the other categories.
This is captured by more in latent semantic analysis (LSA) representation than by

correspondence analysis representation.

V.4 Correspondence Analysis of High Dimension Data

In section V.3 we have seen that data given in the form of contingency table can be
analyzed by both correspondence analysis (CA) and latent semantic analysis {LSA}.
We can get two types of graphical representation of the same data and it is generally
difficult to decide which one is better. Interpretation of graphical representation of
the given data in the form of contingency table is very subjective. Taking the data
from information retrieval area we will provide ceratin analysis to decide on which

of the two representation is better.

There is now a huge amount of information stored in electronic format. This
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includes books, newspapers, magazines, acadentic journals, web sites and on-line
databases. The World Wide Web (WWW) has made this clectronic information
accessible to a large number of people. The purpose of an Information Retrieval
{IR) system is to help people find relevant information when they request it. The
objective of correspondence analysis (CA) and latent semantic analysis (LSA) is to
represent the relationship between the categories, in this case various terms (¢;) in
diffcrent documents (d;), of two variables in lower dimensional space. If we can
retrieve more relevant documents for a given query in the low dimensional space
using, say correspondence analysis (CA) then we can say it is better than latent

semantic analysis (I.SA).

For the purposes of information retrieval, a query must be represented as a vector
in low dimensional space and compared to documents. A query or pseudo-document
is a set of words. Let X be term-document matrix. Then according to latent semantic
analysis (LSA), k—dimensional space is given by SVD decomposition of matrix X
and taking k—largest singular triplets.

X ~ X = Tk ZixxDixa (5.4.1)

Here Ty : term coordinates in £—dimensional space and Dyyq : document coordi-
nates in k—dimensional space. Query can be represented by equation 5.4.2 as given

by Deerwester, Dumais, Furnas, Landauer and Harshman ({1990).
Dy = ¢ Texr Sk (5.4.2)

where ¢ is simply the vector of words in the query. Thus, the query vector is a
weighted sum of its constituent term vector. The query vector can then be compared
to all existing document vectors, and documents ranked by their similarity to the
query. One measure of similarity is the cosine between the query vector and document
vector. For example, suppose we are interested in the documents that pertain to

application theory in Example 1 of section V.3. Query representation in 2-dimensional
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space is given by equation 5.4.2

- ¢/

0 | 0.0072051  0.4077252
1 0.0121796  0.3464152
0 0.1219809  0.1798224
0 0.6134575  —0.09226
0 0.7228448 —0.10093
0 0.0061875  0.3073185
0 0.0405602  0.237913
B, 0 0.0025155  0.0890314 5.3477028 0 -

0 0.1099096 —0.093971 0 2.633105
0 0.0574432 —0.054779
0 0.1099096 —0.093971
0 0.1219809 0.1798224
0 0.1063124 —0.082826
0 0.0045159  0.2143652
0 0.0704532 —0.037973

[ 1] | 01605313 0.6296756

~

D, = [0.0323,0.3707).

The two-dimensional representation of query vector is shown in Figure 5.4. This
query vector is then compared to all the documents in the database and ranked
based on their cosine. This is shown in Table V.4.

Similarly in correspondence analysis query or pseudo-document can be repre-
sented by equation 5.4.3

Query coordinates in two-dimensional space is given by
D, = [34.6565, —61.42546]

and ranking of documents based on their cosine is shown in Table V.4.

The performance of information-retrieval, as discussed by Berry and Browne
{2005), is often summarized in terms of two parameters: precision and recall.

Recall is the proportion of all relevant documents in the collection that are retrieved
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by the system, that is,

Doc,
R= 4.4
j\'r‘r ’ (5 )

where Doc, is the number of relevant documents retrieved and N, is the total num-

ber of relevant documents in the collection. Precision is the proportion of relevant

docnments in the set return to the user, that is,
P Doc,

Doc;’

where Doc, 1s the total number of documents retrieved. Precision is calculated for

(5.4.5)

several levels of recall, and averaged over queries. For our purpose of compari-
sont between latent semantic analysis (LSA) and correspondence analysis (CA) we
have taken MFED collection. The Medline (also referred to as MED, MEDLARS or
MED1033) was the commonly studied collection of medical abstracts. It consists
of 1033 documents and 30 queries and frequently used in the IR literature. Some
characteristics of the MED dataset arc shown in Table V.4. The number of unique
terms can vary somewhat becausc different term-processing algorithms were used
in the different systems. In our case we have counted only those terms which oc-
cur in more than one document and not on SMART’s stop list of common words.
Stop lists are lists of words that have little or no value as a search item. SMART’s
stop list is a list of word developed by SMART system at Cornell University (sce
ftp:/ /ftp.cs.cornell.edu/pub/smart /english.stop).

Each cell of Table 5.10 shows average precision of correspondence analysis (CA)
method, average taken over all 30 queries, for a given Doc;. The last column of
Table 5.10 represent average precision (Avp,,), averaged over all 30 queries and 9
level of Doc;. Similarly Table 5.11 shows average precision of latent semantic anal-
ysis (LSA) method. Figurc 5.5 shows average precision as a function of dimension
for latent semantic analysis (LSA) and correspondence analysis (CA). For the low-
est level of dimension, precision of correspondence analysis {CA) method lies well
above that obtained with latent semantic analysis (LLSA). But for high dimensional
space, precision of latent semantic analysis (LSA) method is above than that obtained
with correspondence analysis (CA). Thus, latent semantic analysis (LSA) captures
some structure in the data in high dimensional space which is obscured when corre-
spondence analysis (CA) is used. Similarly correspondence analysis (CA) performed
better in representing the structure of data in lower dimension than latent semantic

analysis (LSA). Figure 5.6 and 5.7 shows precision-recall curves where precision is
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plotted as a function of recall (from 0.1 to 0.9) for dimension 250 and 500 respectively.
These data represent average data from the 30 queries available with the MED col-
lection. These are typical precision-recall curves, with precision decreasing as recall
increases. The important thing to notice is the difference hetween latent seman-
tic analysis (LSA) and correspondence analysis (CA) methods. In 500-dimensional
space latent semantic analysis (LSA) representation results in better performance in
the discrimination of relevant from irrelevant documents. Similarly it can be said for

correspondence analysis (CA) in 200-dimensional space.

V.5 Concluding Remarks

In this final chapter we have assessed the performance of correspondence analysis
as compared to a method named, latent semantic analysis, which is especially use-
ful for analyzing high dimcnsional sparse contingency table data. Qur comparison
concludes that correspondence analysis (CA) can be very useful method even for
high dimensional data when the representation is sought on a smaller dimensional

subspace.
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Figure 5.1: LSA: Two-Dimensional Plot of Terms and Documents.
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Figure 5.4: LSA: Two-Dimensional Plot of Query Vector.
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Table 5.7: LSA: Ranked Documents Based on their Cosine

Document. Cosine
Bi6 0.9999227
B3 0.9995526

B5 0.9977227

B7 0.9977114
B17 0.9955983
B6 0.9788947
B11 0.4170113
B12 0.4170113

B1 0.192965
B2 -0.051833
B15 -0.056541
B4 -0.089106
B10 -0.094128
Bi4 -0.094128
B13 -0.109775
B8 -0.138082
B9 -0.508324
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Table 5.8: CA: Ranked Documents Based on their Cosine

Document Cosine
B17 0.9998468
B3 0.8982405
Bl 0.8584114
B16 0.5861591
B11 0.478505
B12 0.478505
BT 0.4355108
B5 -0.01321
B2 -(.338412
B15 -(.402618
B6 -0.433028
B4 -0.595136
B10 -0.613468
Bl4 -0.613468
B13 -0.893458
B9 -0.933531
B8 -0.946973

Table 5.9: Characteristics of MED Dataset

Number of Documents 1033

Number of Indexing Terms 5478
Percentage of Nonzero entries in Matrix | 0.91
Number of Queries 30

Number of Queries of relevant documents | 696
Avg. No of Relevant Document per Query | 23
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Table 5.10: Average Precision of Correspondence Analysis (CA) for MED Dataset

Dimension Documents Retrieved (Doc) Avpya
60 120 180 240 300 360 420 480 540 600

10 0.60 061 059 056 054 051 051 050 049 0.48 | 0.54
20 0.72 070 0.69 065 0.63 063 060 0.60 0.58 0.56 | 0.64
30 0.77 0.75 0.72 070 069 066 065 0.64 0.62 061 | 0.68
40 0.77 076 0.76 076 0.74 0.71 0.70 0.68 0.66 0.65| 0.72
20 0.78 0.79 0.76 074 075 0.73 0.72 069 067 0.65| 0.73
60 0.83 0.80 0.78 073 0.72 0.2 0.71 0.69 0.67 0.66 | 0.73
70 0.78 0.78 077 0.74 0.74 093 0.52 0.70 0.68 0.65| 0.73
80 0.80 080 ©.76 0.74 0.73 0.0 0.90 0.68 0.66 0.64| 0.72
90 0.80 0630 077 0.72 0771 0.0 0.68 .66 0.64 0.63| 0.71
100 0.82 075 0.73 071 072 0.70 068 0.65 0.63 0.62| 0.70
150 0.80 0.75 0.71 0.67 0.66 0.65 064 0.63 0.61 0.59 | 0.67
200 0.70 0.68 0.67 064 063 0.63 060 057 0.56 0.54| 0.62
250 0.70 0.67v 0.64 0.62 060 '0.58 0.57 0.56 0.54 0.52| 0.60
300 0.68 0.66 0.61 0.59 0.56 0.54 053 0.51 0.49 0.48 ] 0.57
350 0.63 0.58 058 057 054 051 050 048 046 046 0.53
400 0.62 0.58 006 053 053 0.50 048 048 0.47 045 0.32
450 0.58 0.58 0.55 0.52 0.51 049 047 046 045 043 | 0.50
500 0.58 0.57 054 052 049 0.48 046 045 0.44 043} 0.50
550 0.62 058 054 050 050 048 0.46 044 043 041} 0.49
600 0.60 0.54 053 (.51 049 046 045 0.43 042 040! 0.48
650 0.68 053 051 050 048 046 044 042 040 0.38 | 047
700 0.60 0.5 0.50 049 047 046 043 041 039 038 0.47
750 0.55 053 051 047 046 044 041 0.39 038 037 045
800 0.55 0.53 047 044 0.44 043 0.40 0.38 0.37 0.35| 0.44
350 0.57 0.51 046 044 043 041 040 037 036 035 043
900 0.57 0.51 046 045 0.41 040 040 037 0.35 034 | 042
950 0.52 049 046 043 039 040 038 0.36 035 034 041
1000 0.50 048 0.43 042 040 038 037 036 035 034| 040

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



89

Table 5.11: Average Precision of Latent Semantic Analysis (LSA) for MED Dataset

Dimension Documents Retrieved (Doc,) Avpgq
60 120 180 - 240 300 360 420 480 540 600

10 0.37 0.28 028 0.28 0.28 028 026 025 0.24 0.24 ] 0.28
20 048 0.44 043 041 040 040 039 039 038 0.37] 041
30 0.50 047 47 046 046 044 042 041 040 0.40| 0.44
40 0.52 050 048 050 049 048 046 046 044 0.43| 0.48
a0 0.53 0.55 0.53 0.50 0.52 0.51 049 047 046 044 | 0.50
60 0.55 053 0.5 054 050 049 048 047 045 0441 0.50
70 0.62 061 0.55 055 051 049 0.49 047 046 045 | 0.52
80 0.60 061 0.56 054 052 051 049 048 047 (.46 | 0.52
90 .63 0.61 0.57 058 057 0.55 052 050 047 046! 0.55
100 0.62 0.63 060 055 0.53 053 051 050 048 0.47; 0.54
150 0.67 064 063 058 057 055 052 050 049 048 0.56
200 0.77 0.68 0.62 0.59 0.57 057 056 053 051 048 0.59
250 0.77 0.68 0.63 0.60 0.57 056 0.53 0.52 0.50 049 0.59
300 0.78 0.69 063 059 056 056 053 051 048 0.47 .58
350 0.78 073 063 060 0.57 055 0.51 0.50 048 0.46{ 0.58
400 0.77 0.68 0.63 061 055 0.53 0.51 050 048 045 | 0.57
450 0.78 0.68 0.65 0.59 0.55 052 0.50 0.49 047 045 | 0.57
500 0.82 068 0.64 060 0.55 053 049 049 047 045 G.57
550 080 0.68 0.65 0.59 055 053 050 046 046 044 | 0.56
600 082 0.66 0.63 058 053 052 048 046 044 043 | 0.56
650 0.77 0.65 0.62 059 0.54 051 048 045 043 042 0.55
700 0.78 068 0.62 0.58 0.55 050 048 045 044 042 | 0.55
750 0.78 0.67 0.59 0.56 0.52 048 047 045 043 040 | 0.53
800 0.78 0.64 0.58 0.53 050 048 046 044 041 040 | 0.52
850 0.75 0.62 0.55 0.53 050 048 044 042 040 0.39 | 0.51
900 0.73 0.60 0.57 052 048 048 045 042 040 039} 0.50
950 0.72 0.62 054 052 049 046 042 040 039 0391 0.49
1000 0.67 0.57 0.52 048 046 044 041 040 0.39 0.38 | 0.47
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APPENDIX

MULTIVARIATE POISSON SIMULATIONS IN SAS

*SAS Subroutines for Multivariate Poisson Simulations;
R o e e e e e e e e e */

/* The following subroutine simulates nsims multivariate Poisson */

/* obs from given covariance matrix Sigma using Sim’s algorithm */
/* as given in Deepak Mav PhD thesis (2004). x*/

START SIMPOI(seed, Sigma, nsims);
RUN Decompose{Sigma, alpha, lambda, Error, m);
if (Error < 0) then do;
print "Simulations Failure";
return(Frror);

end;

Z = J(m, nsims, 0);
do k 1 to nsims;

X=Jm, 1, 0);

do 3 =1 to m;

do i =1to j-1;
if (X[i] & (alphalj,i]l > 0)) then
Z[j.k} = Z[j,k] +
RANBIN(seed, %[i], alphalj,il};

It

end;
X[j] = RANPOI(seed, lambdaljl);
z[j.k1 = Z[j,kl + X[jl;
end;
end;
return(Z);
Finish SIMPOI;
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Start Decompose(Sigma, alpha, lambda, Error, m);
m = nrow{(Sigma); alpha = I(m); lambda = J(m, 1, 0}; Error=1;
lambdafl] = Sigmal[1,1];
do j = 2 to m;
alphalj,1] = Sigmall,j}/lambdal1];
if((0 > alphafj,1]) | {(alpkafj,1] > 1)) then Error = -1;
do i =2 to (j-1);
do k = 1 to (i-1);
alphafj,i] = alphalj,i] +
alphali,k]*alphalj,k]+*lambda[k];
end;
alphalj,i] = (Sigmali,j] - alphalj,i])/lambdalil;
if((0 > alphalj,i]) | (alphalj,i]l > 1)) then Error = -1;
end;
do k = 1 to (j-1);
lambdal[j] = lambdal[j] + alphalj,k]x*lambdalk];
end;
lambda[j] = Sigmalj,jl - lambdal[j};
if (lambda[j] <= 0) then Error = -2;
end;

Finish Decompose;

/* This subroutine computes first four central moments of Poisson */
/* random variables.The functional arguments are alpha and lambda */

JE - e e e e e e e e e e e e e e e e e e e e e e */

Start Moments(alpha, lambda);
m = nrow(lambda); dim = m+m*{(m+1)/2; V = J(dim, dim, .);
/* Second order moments */
d¢oi=1tom;
do j =1 to i;
value = alphal[Unique(il|j),]; value =valuel#,]*lambda;
V[i,j] = value; V[j,i] = value;

end;
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end;
/* Third order moments */
doi=1 to m;
do j =1 to i;
indexl = m + ik (i=-1)/2+j;
do k =1 to m;
alphafUnique(illjitk),];
value = valuel#,]*lambda;

V[index1, k] = value; V[k, index1] = value;

value

end;
end;
end;
/* Fourth order moments */
do i =1 to m;
do J =1 to 1i;
indexl = m + i*(i-1)/2+j;
do k =1 to m;
do 1 =1 to k;
index2 = m + kx(k-1)/2+1;
if {indexl >= index?2) then do;
value = alphalUnique(ilijllklI1),1;
value = value[#,]*lambda;
V[index1,index2) = value + V[i,k]*V[j,1]
+ V[i,1]*V[j,k];
V[index2,index1] = V[index1,index2];
end;
end;
end;
end;
end;
return(V);

Finish Moments;
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