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ABSTRACT

CANONICAL CORRELATION AND 
CORRESPONDENCE ANALYSIS OF LONGITUDINAL 

DATA

Jayesh Srivastava 
Old Dominion University, 2007 
Director: Dr. Dayanand Naik

Assessing the relationship between two sets of multivariate vectors is an important 
problem in statistics. Canonical correlation coefficients are used to study these re

lationships. Canonical correlation analysis (CCA) is a general multivariate method 
that is mainly used to study relationships when both sets of variables are quantitative. 

When the variables are qualitative (categorical), a technique called correspondence 
analysis (CA) is used. Canonical correspondence analysis (CCPA) is used to deal 
with the case when one set of variables is categorical and the other set is quantitative. 
By exploiting the interrelationships between these three techniques we first provide 

a theoretical basis for CCPA.

Next, in this dissertation, we have generalized each of these three techniques to 
analyze the relationships between two sets of repeatedly or longitudinally observed 
data. When the two vectors are quantitative, we use a block Kronecker product 
matrix to model dependency of the variables over time. We then apply canonical 
correlation analysis on this matrix to obtain canonical correlations and canonical 
variables. When the variables are qualitative, the data are summarized in the form 
of a contingency table. It is generally not straightforward to model dependency of 

contingency tables over time. However, we have proposed fitting correlated linear 
models to the summary statistics obtained by performing the usual correspondence 
analysis at each time period. We have shown that the most useful summary measure 
for this purpose is the first singular value of the correspondence matrix, which is 

essentially the matrix of relative frequencies obtained from the given contingency 

table. Our method is a reasonable approach to analyze repeated contingency table 
data. Finally, to deal with the case when one set of variables is categorical and
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the other set is quantitative, we have proposed combining the two approaches to 
deal with quantitative and qualitative variables. We have illustrated and studied the 
performances of our methods my implementing them on simulated data sets.

High dimensional data are now common due to the Internet, genomics, pro- 
teomics, and the like. Although, correspondence analysis and other methods consid

ered in this dissertation are general techniques for analyzing multivariate data their 
usefulness for analyzing very high dimensional data have not been compared with 
the other more modern machine learning methods. In the last chapter of this dis
sertation, we provide a brief introduction to a machine learning method that is used 

to analyze very high dimensional and sparse contingency table data from the field of 
language processing or information retrieval, named latent semantic analysis (LSA). 
We then propose certain criteria to compare the performance of LSA with the cor

respondence analysis. Based on these criteria we find that under certain situations 

correspondence analysis performs better.

R e p r o d u c ed  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



ACKNOWLEDGMENTS

This dissertation could not have been completed without the invaluable help of a 

large number of individuals to whom I am gratefully indebted. Dr. Dayanand Naik 
read countless drafts and revisions, and provided guidance and help at every stage. 
He shaped my thoughts on multivariate statistics in myriad ways and constantly 

encouraged me to be a focused researcher, exploring current theories in canonical 
correspondence analysis. Similarly, Dr. N. Rao Chaganty left a lasting impression 
on my intellectual and personal development. His standard of excellence was second 

to none, and he continually pushed me to be better than what I was or could be. 
Without his mentoring and guidance, early on, such an undertaking would not have 
been completed.

I would like to thank Drs. Larry Lee and Edward Markowski for serving on my 
dissertation committee. I also like to thank Dr. Larry Lee for editorial help. Thanks 

are also due to Dr. Irwin Levinstein for his immense encouragement and financial 
support. Special thanks to Dr. Deepak Mav for providing me an efficient SAS code 
to simulate multivariate Poisson random variables. I would also like to thank the 
faculty and staff in the department of Mathematics and Statistics at Old Dominion 
University. In particular, Dr. Ram C. Dahiya, Dr. John M. Dorrepaal, Dr Hideaki 
Kaneko, Barbara Jeffrey and Gayle Tarkelsen who have shared with me infinitely 
more patience and wisdom than I ever deserved.

Finally, I would like to thank all my colleagues and friends, who provided me 
their support and put up with me in this phase of my life.

v

R e p r o d u ce d  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



I dedicate this thesis to my parents.

vi

R e p r o d u ce d  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



v i i

TABLE OF CONTENTS

Page

List of T a b le s .................................................................................................................  ix

List of Figures ..........................................     xi

CHAPTERS

I Introduction ................................. ................................................................ ... 1

II Repeated Canonical Correlation Analysis  ....................................................  4

11.1 Introduction  ......................................................   4

11.2 Repeated Measures Case     . 5

11.3 Sample canonical correlations  ...........................   . 8

IL4 Hypothesis  ....................    8

11.5 Constructing a Variance Covariance Matrix for S im u la tio n ................  10

11.6 Results and D iscussion ................................     11

11.7 Concluding Remarks  ...............      . 13

III Repeated Correspondence A n a ly s is ..................................................................  16

111.1 Introduction  .............................      16

111.2 Correspondence Analysis  ................   16

111.2.1 An Example  ...................   19

111.3 Correspondence Analysis as a Canonical Correlation Analysis . . . .  21

111.4 Repeated Correspondence Analysis .............    23

111.4.1 Performing Correspondence Analysis with repeated contin
gency table  ................      27

111.5 Concluding Remarks  .............................................................   28

IV Canonical Correspondence Analysis  .................    40

IV.1 In troduction ...................       40

IV.2 Canonical Correspondence Analysis  ..............................    41

R e p r o d u ce d  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



viii

IV.2.1 Hunting Spider E x a m p le ................................................................. 43

IV.3 Canonical Correspondence Analysis (CCPA) as Canonical Correlation
Analysis (C C A ).............................................................................................. 50

IV.3.1 Hunting Spider E x a m p le ................................................................. 50

IV.4 Population Canonical Correspondence Analysis .................................... 55

IV.4.1 Some Important Special C ases .......................................................  57

IV.5 Canonical Correspondence Analysis of Longitudinal D a t a ...................  60

IV.6 An Example: Analysis of Simulated D a ta ................................................  61

IV.7 Concluding R e m a rk s ....................................................................................  62

V CA for Higher D im ensions................................................................................. 68

V.l In troduction ....................................................................................................  68

V.2 Latent Semantic Analysis ..........................................................................  68

V.3 Illustration of L S A .......................................................................................  71

V.3.1 Example 1 .............................................................................   71

V.3.2 Example 2 ..........................................................................................  76

V.4 Correspondence Analysis of High Dimension Data  ........................  77

V.5 Concluding R e m a rk s ....................................................................................  81

APPENDIX

Multivariate Poisson Simulations in S A S ....................................................... 96

VITA ..............................................................................................................................  99

R e p r o d u c ed  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



IX

LIST OF TABLES

TABLES Page

2.1 Hypothesis T e s t in g ............................................................................... 14

2.2 General Structure Correlation E s t im a te s ........................................ 14

2.3 General Structure E stim a te s ............................................................... 15

3.1 Socioeconomic Status by Mental Health of Children D a ta ........... 29

3.2 Mental Health Data: Chi-Square Decomposition  ..........................  29

3.3 Mental Health Data: Canonical C orrelations.................................  29

3.4 Two Dimensional Coordinates for Socioeconomic Status: (Standard
ized Form: Mean =  0, SD =  1) ................................................................. 30

3.5 Two Dimensional Coordinates Mental Health Status: (Standardized
Form: Mean =  0, SD =  1 ) .................................................................  30

3.6 First Singular Value Ap AR1 Structure Result (Truncated at 2 Deci
mal Places)   31

3.7 Second Singular Value A2: AR(1) Structure Result (Truncated at 2
Decimal Places) ..........................................................   32

3.8 First Dimension D l: AR(1) Structure Result (Truncated at 2 Decimal
Places) .........................    33

3.9 Second Dimension D2: AR(1) Structure Result (Truncated at 2 Dec
imal Places)   34

3.10 First Principal Axis for Row U l: AR(1) Structure Result (Truncated
at 2 Decimal P la c e s ) ........................................................................... 35

3.11 First Principal Axis for Column VI: AR(1) Structure Result (Trun
cated at 2 Decimal Places) .......................................................................  36

3.12 Second Principal Axis for Row U2: AR(1) Structure Result (Trun
cated at 2 Decimal Places) .......................................................................  37

3.13 Second Principal Axis for Column V2: AR(1) Structure Result (Trun
cated at 2 Decimal Places) .......................................................................  38

3.14 First Singular Value Ai, Mean is not Changing Over Time: AR(1) 
Structure Result ........................................................................................... 39

3.15 Simulated Contingency Table Example : Repeated E ffe c t ........... 39

R e p r o d u c ed  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



X

4.1 Hunter Spider: Canonical C o rre la tio n s ...................................................  46

4.2 Hunting Spider Species Abundance D a t a ................................................ 46

4.3 Hunting Spider Data Observed on 6 Environmental Variables for 28
S i t e s .................................................................................................................  47

4.4 CCPA: Site Scores (Standardized Form: Mean =  0, SD =  1 ) ............  48

4.5 CCPA: Species Scores (Standardized Form: Mean =  0, SD =  1) . . . 49

4.6 CCA Approach; Hunter Spider Data: Canonical C orrelations............  53

4.7 CCA: Species Scores (Standardized Form: Mean =  0, SD =  1) . . .  53

4.8 CCA: Site Scores (Standardized Form: Mean =  0, SD =  1)   54

4.9 Simulated Data Example: Canonical C o rre la tio n s ...............................  62

4.10 Simulated Data Example: Site Scores ..................................................  64

4.11 Hypothesis Testing: Simulated Data .......................................................  64

4.12 Simulated Contingency table for 10 Time P e rio d ..................................  65

4.13 Simulated Environmental Variables for 10 Time P e r io d .....................  66

4.14 Simulated Data Example: Species S c o re s ...............................................  67

5.1 Formulas for Local Term W e ig h ts ............................................................. 70

5.2 Formulas for Global Term Weights .......................................................... 71

5.3 Database of Titles from Books Received in SIAM R e v ie w ...................  72

5.4 16 x 17 Term-Document M a tr ix ................................................................  74

5.5 LogEntropy Weighting Scheme Ai6xi7 Term-Document Matrix . . . .  74

5.6 LSA: 2-Dimensional Coordinates of Socioeconomic Status by Mental
Health of Children D a t a .............................................................................  77

5.7 LSA: Ranked Documents Based on their C o s in e ...................................  86

5.8 CA: Ranked Documents Based on their C osine....................................... 87

5.9 Characteristics of MED D a ta s e t ................................................................  87

5.10 Average Precision of Correspondence Analysis (CA) for MED Dataset 88

5.11 Average Precision of Latent Semantic Analysis (LSA) for MED Dataset 89

R e p r o d u c ed  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



LIST OF FIGURES

FIGURES Page

3.1 CA: Two-Dim Plot of Socioeconomic Status by Mental Health Data. . 21

4.1 Biplot of Hunting Spider D ata................................................................  45

4.2 Species Scores Profile After Fitting the Variance Covariance Structure. 63

5.1 LSA: Two-Dimensional Plot of Terms and Documents...................... 82

5.2 CA: Two-Dimensional Plot of Terms and Documents.......................  83

5.3 LSA: Two-Dimensional Plot of Socioeconomic Status by Mental
Health of Children D ata...........................................................................  84

5.4 LSA: Two-Dimensional Plot of Query Vector...................................... 85

5.5 MED: Average Precision (Avpgd) as a Function of Dimension........ 90

5.6 MED: Precision-Recall Curve for 200-Dimensional Space.................  91

5.7 MED: Precision-Recall Curve for 500-Dimensional Space.................  92

R e p r o d u ce d  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



1

CHAPTER I 

INTRODUCTION

The main focus of this dissertation is to provide methods to study the relationships 

between two sets of repeatedly or longitudinally observed data. Methods are de
veloped for all the three different cases, namely, when (i) both sets of variables are 

quantitative, (ii) both sets are qualitative, and when (iii) one set is quantitative and 
the other set is qualitative. These cases are considered in separate chapters that 
follow. A brief introduction to each chapter is provided next.

Studying the relationship between two sets of variables is an important multivari
ate statistical analysis problem. Hotelling (1936) introduced his famous canonical 
correlation analysis (CCA) to study the relationship between two sets of quantitative 
variables. In this analysis, one finds a linear combination of the first set of variables 

and a linear combination of the second set of variables such that they both have unit 
variance and the Pearson correlation coefficient between them is maximum. Thus the 

obtained pair of linear combinations are called the first canonical variables and the 

correlation is called the first canonical correlation. This process is repeated to obtain 
the second, third,... canonical variables and correlations with the additional restric
tion that the pair of linear combinations currently being computed are uncorrelated 
with all the previously obtained pairs. Use of few canonical variables to perform data 

analysis is in fact a general way of dimension reduction. Although CCA has been 
generalized in several directions (see Kettenring (1971)), its generalization to deal 
with longitudinally observed sets of variables has not been done in the literature. In 
the next chapter (Chapter 2) we provide canonical correlation analysis of longitu
dinally observed sets of data. Suppose two random vectors x and y, of dimensions 
p x 1 and q x 1 respectively are observed over t time periods on n  subjects. Then 
assuming a block Kronecker product variance covariance matrix to the (pt + qt) x 1 
random vector we account for the dependency of the variables over time. Various 

testing of hypothesis problems under this scenario are considered and the CCA using 
these matrices is illustrated on simulated data sets.

When both variables are qualitative, the data are summarized in the form of a

This dissertation follows the style of Journal of the American Statistical Association.
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contingency table. Correspondence analysis (CA) is a method that is used to project 
the relationship between the two qualitative variables on to a smaller dimension 
space. Benzecri (1969, 1992), Hill (1974), Greenacre (1984), and others have stud

ied correspondence analysis in detail and provided numerous applications. Also see 

Khattree and Naik (2000). Correspondence analysis results can be obtained by per
forming canonical correlation analysis on certain matrices. However, generalization 
of the CCA approach proposed in Chapter 2 of this thesis to deal with repeated data 

does not apply to repeatedly observed contingency tables. The reason why the CCA 
approach fails here is because it is difficult to model the dependency of contingency 
tables over time by the usual correlations. To overcome this problem, in Chapter 3 

we have proposed fitting generalized linear models to the summary statistics of CCA 
corresponding to each time period. This gives us a reasonable approach to handle 
analysis of repeated contingency table data. Illustration of the methods is performed 
on simulated data. Assuming the frequencies in contingency tables are independently 

distributed as Poisson, we use certain extensions of an algorithm due to Sim (1993) 

to generate correlated Poisson frequencies over time periods. These extensions of the 
algorithm and the SAS code implementing the algorithm are given in Mav (2004) 

and Chaganty and Mav (2007).

Canonical correspondence analysis (CCPA) is used to deal with the case when one 

variable is categorical and the other set of variables is quantitative. The method was 
introduced by Ter Braak (1986) to analyze species abundance and environmental 
variables data obtained at a certain number of sites. In Chapter 4 we review this 
method and show that the results obtained using CCPA too can be obtained by 
performing CCA on a set of matrices obtained from the data. In the literature, 
we found no population versions to these matrices. Using the approach of Olkin 
and Tate (1961) we provide a theoretical basis to CCPA in Section IV.3. Then we 
propose methods to deal with repeated data by combining the approaches that we 
have taken in Chapters 2 and 3. Methods are illustrated using simulated data sets.

High dimensional data are now common due to the Internet, genomics, pro- 

teomics, and the like. Although, correspondence analysis and other methods consid
ered in this dissertation are general techniques for analyzing multivariate data their 

usefulness for analyzing very high dimensional data have not been compared with 
the other more modern machine learning methods. In Chapter 5 of this dissertation,

R e p r o d u c ed  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .
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we provide a brief introduction to a machine learning method that is used to analyze 
very high dimensional and sparse contingency table data from the field of language 

processing or information retrieval, named latent semantic analysis (LSA) (Deer- 
wester et ah, 1990). We then propose certain criteria to compare the performance of 
LSA with the correspondence analysis. Based on these criteria we find that under 

certain situations correspondence analysis performs better.

Most of the computations and simulations are done using IML procedure in SAS 
software. The results from different chapters are provided in numerous tables and 
figures.
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CHAPTER II 

REPEATED CANONICAL CORRELATION ANALYSIS

II .1 Introduction

Canonical correlation analysis (CCA) is a well known statistical technique used to 
identify and measure the association between two sets of random vectors using specific 
matrix functions of variance-covariance matrices of these variables. This is also one 

of the most general methods for data reduction in multivariate analysis. CCA was 
introduced by Hotelling (1936) while studying the relationship between two sets 
of variables in instructional research. Now CCA has found many applications in 

different fields and it is routinely discussed in many multivariate statistical analysis 
textbook. For example, see Mardia, Kent and Bibby (1979) or Johnson and Wichern 

(2002). Suppose the random vector x  of p components and random vector y of 
q components have the variance-covariance matrix E rrx and T,yy respectively and 
suppose Hxy =  cov(x, y). That is,

■y ŷ
yy

I
HSs

w

-X . 1 M <ci E jxx

The main idea behind canonical correlation analysis is to find a q x 1 vector a and 
a p x 1 vector b, given Exx, T,yy and Tixy, so that the correlation between a'y and 

b'x is maximized.

The ith pair of canonical variables (a'y, b'x) is obtained by solving

' ‘̂yy'^‘yx^‘xx^y<H =  pj&i (2-1.1)

and E ^ E ^ E ^ E ^ b *  =  p]b*, (2.1.2)

where pi is a canonical correlation and pf is eigenvalue of E xx^ EXyE^j)E^xExx^ ■

Kettenring (1971) has generalized CCA to several sets of variables and it has 

found many generalizations in the literature. Beaghen (1997) has used canonical 
variate method to analyze the means of longitudinal data. However, no methods 
have been developed to perform CCA on longitudinally observed data. Focus in this
chapter is to generalize canonical correlation analysis to repeatedly observed data on
x =  (x1,. . . ,xp)' and y =  (y1, ..., yq)'.

R e p r o d u c ed  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .
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II.2 R epeated M easures Case

Suppose we have observed x and y repeatedly over t time periods. Let Xj and y* 
be the vectors y and x observed at the ith occasion. Define y  =  (yj , . . . ,  y [)' and

To model the dependency of repeated measures we assume that the variance

The matrices £lyy, Vtxx and flyx are used to model the dependency over t time 
period of repeated measurements on y, on x and of the covariance matrix between 
repeated measures of y and x respectively. Kronecker product structures have been 

successfully utilized to analyze multivariate repeated measures data in Naik and Rao 
(2001) and Chaganty and Naik (2002).

The problem here is to determine linear functions U =  a'T and V — h'X such 
that the correlation between them is maximum. Here a is qt x 1 and b is pt x 1 
vectors. Assuming E (y )  — 0, E(X)  = 0 and restricting U and V  to have unit 

variances, i.e

Thus the algebraic problem is to find a and b to maximize 2.2.4 subject to the 
conditions 2.2.2 and 2.2.3.

where A and p. are Lagrange multipliers. Setting the partial derivatives of A with

covariance matrix D of u  =  (T7, X')' has a Kronecker product matrix structure. 
That is,

j - j  _  ^ y y  ®  ^ y y  ^ y x  ®  ^ y x  ^  2

QXy ® Oxx (D

E(U2) =  1 => a!E(y'y)a.  =  a'Ow <g> Eyya =  1 

E(V2) =  1 => b'E{X'X)b =  b'fixx ® Exxb =  1,

(2 .2 .2 )

(2.2.3)

the correlation between U and V is given by

E(UV) =  E(a!yX'b) =  a'E(yX')b  =  a'VLyx ® S yxb. (2.2.4)

Let

ip — a Qyx ® T,yxb 2 (**■ ^yy ® -̂‘yŷ - ^) ^ ^xx ® H ^ b  1), (2.2.5)

R e p r o d u c ed  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .
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respect to a  and b, equal to zero yields

XlyX 1) XA\yy yy tl  - Oj

and Ctxy <E> EXJ/a — tAlxx ® Exxb  =  0.

Pre multiplication of equation 2.2.6 by a ' and equation 2.2.7 by b ' gives

a 'f lyx <g> E ^ b  — Aa'Q,yy ® Eroa  =  0,

and b'QXy ® E ^ a  — /nb'flxx <8> Erab =  0.

Since a 'Q,yy ® S raa  =  1 and b'Clxx ® Exxb =  1 we get

a QyX ® E^xb A ~  0; 

and b 'f lxy ® EX2/a  — n = 0.

This shows that
A =  fi — a 'ClyX <g> E ^ b .

Hence equations 2.2.6 and 2.2.7 can be written as

 X i l y y  ® EyySi T Xlyx ® Eyjjb =  0,

xy ® EX2/a  Aflxx ® Exxb 0.

Multiplying equation 2.2.12 by A and premultiplying equation

(f̂ xx ® Exx) we get

A Xhyy ® Ey^a 'T Qyx ® EyXAb — 0? 

and (Xlxx ® Exx) &>xy ® EXyU — Ab.

Combining these equations we get

A Qyy ® EjlyO. -)- {yiyx ® Eyx){̂ XlXx ® EXx) {Axy ® Ex̂ )a 0,

i.e ^(£2yX ® Sjyi)(Hu ® Exx) (foxy ® Exj/) A fijyy ® Ej/^^a 0

It is clear from equation 2.2.17 that A2 is an eigenvalue of

A  =  ( f t y y  ®  E y y )  ^  ( X ^ y x  ®  E y x ^ i ^ x x  ®  E x x )  ( f i x y  ®  E x y ) i S ^ y y  ®  E y y )

=  ̂ ® Eyjy  ̂ ® Syx)(f2xx ® Exx ) (f̂ XJ/ ® S Xy ) { £ l y y

— (O  - 1 / 20  O “ xO O _1/ 2'i 6?) IT  ~ 1/ 2e  f  _ 1 f  e  _1/ 2i— \ y y  * “y x * Lx x  ^ “x y ^ u y y  )  ^  \  yy  *-Jy x /L-ix x  x y  y y  /*
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(2.2.13)

2.2.13 by

(2.2.14)

(2.2.15)
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1/2 ® S V 1/2)



7

Similarly we can show that equations 2.2.6 and 2.2.7 can be written as

Q y x  ®  ' ^ y x  b l  V ® — 0,

j j B l x x  ®  E x x b  "F Q Xy  0  E x y a  — 6 .

(2.2.18)

(2.2.19)

Multiplying equation 2.2.19 by /x and equation 2.2.18 by (Qyy 0  T,yy) 1 we get

{^lyy 0  Eyy} i^yX ® EyX)b   /X&,

/X Qxx ® “I- fJjQxy 0  EXyU 0*

(2 .2 .20)

(2 .2 .21 )

As before combining these we get

(£lXy ® '̂ -‘xy)(S^‘yy ® '̂ -‘yy) yx ® E ^^b  fi £lxx ® Exxb — 0, (2.2.22)

((fts„ <8> Exy)(ttyy 0  Eyy)”1 (!ftyx 0  Eyx) -  /x2fisx ® Exx) b  =  0, (2.2.23)

where fi2 is an eigenvalue of

B  — (Vtxx 0  E ^ i )   ̂ (QXy 0  E x ji)(Ŝ yy 0  E yy) {Qyx 0  E y X) ( f 2 a;x 0  'Bxx')

In general the vectors a* and b,, such that (a 'Jb tyA ) is the ith pair of canonical 

variables, are obtained as the solutions of

It is interesting to note that after fitting the repeated effect the canonical correlations

(Qxx 1/2n xyttyy ^yx^xx 1/2) and (Ew 1/2EJ/3;EXX 1ExyS yy 1/2) respectively. 
Further, the vector a* can be constructed by a* =  a f 0  a f , where a f and a f are the 

x eigenvectors of {£lyy  ̂ f2^xf2xx ^xy^yy  ̂ ) and (E ^   ̂ E^XEXX EX̂ Eyy  ̂ ) 
respectively. Similarly we can construct bj from the corresponding matrices.

Also notice that if there is no repeated effect (that is, fly =  / ,  for i , j  =  x,y)  or all 
the repeated effect is same (that is, fly =  fl) then

and

are scaled by the eigenvalues of repeated effect matrix (Qyy l^Q,yxi1XX 1̂ x y ^ yy l^2)- 
It is possible to write A2 =  A^ ® A |, where A^ and Af are the eigenvalues of

(^xx  ̂ f^ij/flj/y Qyx^xx  ̂ ) wi-tt 

and Af =  col t , where a; is a positive constant.
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11.3 Sample canonical correlations

Usually the matrices Y>yy, Eyx, T,xx, Qyy, Qyx and Qxx are not known and need to 

be estimated from the data. The population canonical correlation will be estimated 
by the sample canonical correlations. Let us assume that u  =  (T', X')'  is distributed 
as multivariate normal with mean vector ji and variance covariance matrix D.

Let u 1;. . . ,  u„ be the random sample from the iV(/q D) where variance-covariance 
matrix D is given by equation 2.2.1.

The log-likelihood function of the parameters given the observed data is

n

L(p, D) =  —0.5(n log( |D |) +  -  /r)'D _1(ui -  //)). (2.3.1)
i=i

The estimates fi and D can be obtained by maximizing the above log-likelihood 
function. We used SAS non linear optimization routine for maximizing the log- 
likelihood function. Suppose Clyy, &yx, and f lxx are the maximum likelihood estimates 
of flyy, £lyx, and Qxx respectively and Era, E ^ , and T,xx are the maximum likelihood 

estimates of E ^ , E:yx. and Exx respectively.

Then the sample canonical correlations ri >  r 2 >  . . .  > rp are obtained as the 
positive square roots of the nonzero eigenvalues of

® (AU A  A A A A 2)-

The vectors a* and bj corresponding to ith pair of canonical variables are obtained 
as the solution of (Clyy 2̂flyxCl^ClxyClyy^2) ® (flyy 2̂f}yxE~x ExyEyy^2)ai =  and

® ( A A A A l A - A A A  =  A?b„

11.4 H ypothesis

Before performing any canonical correlation analysis using the samples u i , . . .  ,u n, 
the following hypotheses may be tested.
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1. First test for the repeated effect on the variance covariance matrices of y, of x 
and on cov(x, y), i.e. test

....
“1 ^yy lyx ^yx vs Ha D =

1

to 0 ŷyy yx y‘-‘yx
ŷxy Ixx '̂ -‘xx xy y‘-‘xy y‘-‘XX

Note that the null hypothesis here specifies that the variance and covariance 
matrices do not change with the time factor. Here as well as in the cases 
that follow, the alternative hypothesis is assumed to be as in our assumed 
model, that it is unstructured Kronecker product block matrix. Testing can 

be performed using the likelihood ratio test (LRT) statistic. Maximizing the 

log-likelihood function L(/qD ) =  — 0.5(n log(|D i) +  E r= i(u i -  -
//)) under H q and Ha will produce the maximum likelihood estimates. The 
likelihood ratio test statistic is then

—2logA = -2log(£0/£a),

where £q and l a denote the maximized likelihood functions under the null and 

alternative hypothesis. Under H q, —2logA has a chi-squared distribution, as 
n —>■ oo. The degrees of freedoms equal to the difference in the dimensions of 
the parameter spaces under H0 U H a and under Hq.

2. If we accept H0 then we can do the usual canonical correlation analysis by 

merging all the data. Otherwise we will test whether the effect of time (or the 
repeated effect) is on the covariances between (x and y) only. This amounts 

to testing

...
...

.1
<e» ® ŷyy £lyX y‘-‘yx vs H0 D =

flyy ^yy Vlyx ® y‘-‘yx

1 to ® ^xy IXX Rxx d Xy ^xy ® Z xx

To test this hypothesis, i a is as in the previous case, i.e. as in (1) above. 
The maximum likelihood estimate and the maximum value of the likelihood 
under H q 1 can be obtained by maximizing 2.3.1 under Hq\.

3. If we accept Hq 1 , then we can perform canonical correlation analysis (CCA) 
using the estimated variance covariance matrix given under Hqi in (2). above. 
Otherwise we will test for repeated effect on variance covariance matrices of y, 
x, by testing,
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Hnx : D

Hoy : D

1
to 0 ^yy ClyX0 Ej/x VS Ha : D =

fO «c» 0 ŷyy Vtyx 0 E yx
ClXy 0 y xy Ixx 0 Exx VtXy ® E Xy ^xx 0 Exx

--
---

-1

O ^yy klyx 0 E yx
VS Ha : D =

1
fO 0 ^yy klyx 0 y‘-‘yx

xy 0 y xy ^11 0 y klXy 0 y‘-‘xy ^11 0 y‘-‘xx

As before the MLE and the value of the maximum likelihood function under 

Hox ( and H oy) can be obtained by maximizing 2.3.1 under the null hypothesis. 
Under Ha, the value l a remains the same.

4. If we accept Hox or Hgy then we can perform canonical correlation analysis 
(CCA) using the corresponding estimated variance covariance matrix as in (3). 

Otherwise we will test for the same repeated effect, that is, test

Ht t :D

The MLE of the common £lu and the other parameters can be obtained by 

maximizing 2.3.1 under Htt and in the same way as before the LRT can be 
constructed.

5. If we accept Hu then it suggest that change in variance covariance matrices over 
time is same and we should perform canonical correlation analysis (CCA) using 
the estimated structured variance covariance matrix as discussed in (4) above. 

Otherwise we should proceed with the general structured variance covariance 
matrix

0 v‘-‘yy &tt 0 E y x
vs Ha : D  =

1

0 E yy k l y x 0 E y x

Qtt 0 E Xy 0 y
‘- ‘x x i to 0 ŷ

x y 0 y
/LJx x

D =
a

yy Jyy Vty x -‘y x

x y Exy f̂ xx

II.5 C onstructing a Variance Covariance M atrix for Sim ulation

In order to illustrate the analysis discussed here, we will work with simulated data. 
First we use the Helmert matrix to generate the positive definite matrices. The 
general form of a Helmert matrix HR of order k has k-1/2 l'k for its first row, and 
each of its other k — 1 rows for i =  1 , . . . ,  k — 1 has the partitioned form

1' 0
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with Xi =  2 ( 2  +  1). A Helmert matrix is an orthogonal matrix, that is, H 'H  =  H H ' 
Ik- For example, the 4th order Helmert matrix is given by

H4

1 1 1 1
v/4 P i + 4 + 4
1 - 1 0 0+ 2 V2
1 1 - 2 0

+ 6 v/6 + 6
1 1 1 - 3

a/1 2 + 1 2 + 1 2 + 1 2

The spectral decomposition of a symmetric matrix, A is A =  J^AjUju', where 

the U j’s  are the eigenvectors of A.
Now to generate a k x k  positive definite matrix we take the kth order Helmert matrix, 

whose columns will give us the eigenvector of the desired matrix. Then choosing k 
positive eigenvalues and using the spectral decomposition property we can construct 
the desired k x k  positive definite matrix. We will use thus constructed positive 
definite matrix as E. Partitioning E  will give

E  = -‘y y -‘y x

y  y^xy ^xx

and Yiyy, Exx and E,yx can be used as variance-covariance matrix for y, x  and covari
ance matrix between y and x respectively. Then by choosing t  x t modeling matrix 

f lyy to associate with Ew , f lxx with Exx and VLyx with Y,yx we can construct the
desired matrix

D =
a

a
y y y x -‘yx

“x y  y

We can simulate any desired number of observations from the multivariate Normal 
N (0, D) and do repeated canonical correlation analysis on them as discussed in 
section II.3.

II.6 R esults and D iscussion

To conduct a simulation purpose we chose three y  components, two x components 
and three repeated measurements on those i.e. q =  3, p =  2, and t = 3. A Helmert 
matrix of order 5 is chosen and used to determine a 5 x 5 positive definite variance 
covariance matrix E. In addition the following eigenvalues are arbitrarily selected,
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9.5262261, 8.7983733, 4.3901993, 2.2263795 and 1.9919697 to generate a positive 
definite matrix E by the method described earlier

5.3866296 2.1523738 0.3669639 -1.729692 1.580125
2.1523738 5.3951715 1.9648395 1.3893513 1.0761869

E = 0.3669639 1.9648395 4.7251901 0.2368742 0.183482
-1.729692 1.3893513 0.2368742 8.4097148 -0.864846
1.580125 1.0761869 0.183482 -0.864846 3.016442

By partitioning E we get Eyy, Exx and Eyx as follows:

5.3866296 2.1523738 0.3669639

M II 2.1523738 5.3951715 1.9648395 5

0.3669639 1.9648395 4.7251901

v  _^xx —

-1.729692 1.580125
8.4097148 -0.864846 '

and Piyx — 1.3893513 1.0761869
-0.864846 3.016442

0.2368742 0.183482

We assume AR(  1) structure for repeated modeling matrices f lyy, Vlxx, and Vtyx with 
correlation parameter py = 0.1, px =  0.2, and pyx =  0.1 respectively. Arranging all 

the matrices together we have

D
a yy y  oyy •yx -‘yx

xy  ® Exy  ^ x x  ® ^ x x

We simulated 500 observations from the multivariate Normal N ( 0, D) and estimated 
the population parameters Ero, Exx, E ^ , py, px, and pyx. The estimates were found 
by maximizing the log-likelihood function using SAS NLPQN  optimization routine.

To illustrate the idea of hypothesis testing we used a data set generated from one 

of the simulations and tabulated the chi square test statistics values. P-values for 
testing different hypothesis are shown in Table 2.1. As can be seen from the Table 2.1, 
all of the p-values are quite small except for the Htt hypothesis (p — val =  0.1121743). 
Thus all hypotheses except the Htt are rejected. In hypothesis Htt we are testing 
that the repeated effect is same on all components. In our simulation we have used 
the AR(  1) structure for the repeated correlation matrix with correlation parameter 

py =  0.1, px =  0.2, and pyx =  0.1. Apparently these values are not very different to
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reject Htt using likelihood ratio test and this sample data. However, when we chose 
quite different AR(1) parameters, the LRT did reject Htt.

We repeated the above procedure 5000 times and calculated the average values 

of estimates. Table 2.3 shows the average of the parameter estimates based on 

these simulations. Table 2.2 presents the mean of sample canonical correlations’ 
estimates. At the left of estimates we have provided true parameter values. In 

Table 2.2, minimum and maximum bias values are 0.001382172 and 0.011013628 
respectively. Similarly in Table 2.3 biases ranges from 4.23009.5' — 05 to 0.00409767. 
From both the tables it can be said that the estimates are very close to the true 

values.

II.7 Concluding Remarks

In this chapter, we have provided an easy to implement procedure to perform canoni
cal correlation analysis of repeatedly observed data sets. To accommodate the effects 

of repeated measure we have adopted a Kronecker product structure to the variance 
covariance matrices. To account for the existence of repeated measure effects on dif
ferent blocks of the variance covariance matrix, we have provided testing of different 

hypothesis. All of the procedures have been implemented on simulated data sets.
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Table 2.1: Hypothesis Testing

H ypothesis Chi Square Test Statistics D of p-value
H0 108.0483 3 0
Hoi 85.490536 2 0
H o x 53.496484 1 2.59E-13
H0y 44.505918 1 2.54E-11
Htt 4.3754035 2 0.1121743

Table 2.2: General Structure Correlation Estimates

Can. Corr. Param eter Estim ate R oot MSE Bias
P P V E ( ( p -  p)2) ! (p -p ) l

Pi 0.237273404 0.2418999 0.025882426 0.004626013
P2 0.208651984 0.2124004 0.018033303 0.003754997
Pz 0.177922968 0.1889365 0.020921281 0.011013628
P4 0.1591106 0.159546475 0.018627936 0.009110434
P5 0.14793029 0.1447519 0.016281892 0.00317805
P6 0.126144001 0.1247618 0.018398369 0.001382172
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Table 2.3: General Structure Estimates

Pop. Para. Para.

9

Estim ate

§

R oot MSE

\ l m - m

Bias

l (* -» ) l
2̂/3/(1> 1) 5.38663 5.386232775 0.196693162 0.000397225

Eyy( 2, 2) 5.39517 5.394642743 0.201315673 0.000527257
Eyy( 3, 3) 4.72519 4.724343576 0.175820078 0.000846424
'Eyyi 1) 2) 2.15237 2.149807789 0.151351577 0.00256221
S ro(l, 3) 0.36696 0.367644263 0.131625226 0.000684262

3) 1.96484 1.963606497 0.139320494 0.001233503
£**(1,1) 8.40971 8.406462064 0.312531758 0.003247938
^xx(2, 2) 3.01644 3.014373036 0.111293755 0.002066964
S sxl,2 -0.86485 -0.864892301 0.131922326 4.23009E-05

Eyx( l , l ) -1.72969 -1.727133373 0.177219073 0.002556627
£,*(1,2) 1.58013 1.57732949 0.111941503 0.002800511
£,a;(2,1) 1.38935 1.387468714 0.175657622 0.001881287
£,*(2,2) 1.07619 1.073755928 0.109225913 0.002434073
£ ,i(3 , 1) 0.23687 0.232772331 0.159496395 0.00409767
£yx(3, 2) 0.18348 0.182754843 0.097614036 0.000725157

P y 0.1 0.100341533 0.024503061 0.000341533
P x 0.2 0.199774535 0.034666987 0.000225466

P y x 0.1 0.100673171 0.041535527 0.000673171
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CHAPTER III 

REPEATED CORRESPONDENCE ANALYSIS

111.1 Introduction

Correspondence analysis (CA) is a graphical multivariate technique for performing 

an exploratory data analysis of a contingency table. The main problem of interest 
in CA is that of graphically representing rows and columns of a contingency table 
as points in a lower dimensional Euclidean space such that the affinities of the rows 
or columns in the higher dimensional space are preserved as much as possible in the 
lower dimensional Euclidean space. The graph is then used to gain understanding of 

the data and to extract information from it. The graphs in correspondence analysis 

can be used to determine, to some extent, the possible association between the two 
sets of variable. CA is used frequently to determine those categories of a variable 
that are similar.

In the next section, for the benefit of introducing the notation, we will briefly 
review canonical correspondence analysis. More details about the method and its 

applications can be found in many books. For example, see Greenacre (1984) and 
Khattree and Naik (2000). However, the main focus in this chapter is to extend 

correspondence analysis to repeated measures data. First we illustrate how corre
spondence analysis can be viewed as CCA of the previous chapter and then we will 
provide methods for performing an analysis of longitudinally observed contingency 
tables.

111.2 Correspondence A nalysis

Let X and Y  denote two categorical variables with a and b categories respectively. 
Let N  be a x b contingency table with frequency, > 0 in the (i , j ) th cell. The 
correspondence matrix P  is defined as the matrix of elements of N  divided by the 
grand total , that is,

P  axb = (Pij) = (— )» where n =  E E » « -
* j

R e p r o d u ce d  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



17

The correspondence matrix along with the row and column marginal totals can 
be displayed as

P l l P i  2 • • • P ib P i .

P21 P 22  • • ■ P2b P2.

P a l P a2  ■ ■ ■ Pab Pa.

P . 1 P .2  ■ ■ ■ P.b 1

of P be r =  P I =  (Pl-» - - ■ ,P a .

sums of P  be c =  P 'l  =  (p.1;. . .  ,p_b)'. Let

D r =  diag(r) = =

Pi. 0  . . .  0

0 p2. . . .  0

0  0 P a.

and

D c =  diag( c) = =

p.x 0 . . .  0

0  P .2  ■■■ 0

0 0 . . .  p.b

Then the row-profiles in the 6-dimensional space are given by

R  =  D ^ P

f 'a

and column-profiles in the a-dimensional space are given by

c'.

C =  D ^ P ' =
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The row and column profiles define two clouds of points in respective b- and a- 
dimensional Euclidean spaces. The centroids of row and column clouds in their 

respective spaces are

Row centroid: c =  R 'r  Column centroid: r  =  C'c.

Note: R 'r  =  P 'D “ 1r  =  P ' l  =  c and C 'c =  P D j 1c =  P I  =  r.

The overall spatial variation of each cloud of points is quantified by their to
tal inertia, that is, the weighted sum of squared distances from the points to their 
respective centroids,

in(a) = 'Y ^ r i{ri -  c / D ^ f i  -  c)
i

and

in(b) =  ^  ci &  -  r ) ' D r  -  r),
i

where in(a) and in(b) are total inertia of row profiles and column profiles respectively. 

Also, Q and r* are the ith elements of the vectors c and r  respectively. Both clouds 
have the same total inertia and n times it is equal to the chi-square statistic for 

“independence,” that is,

in(a) =  in(b) =  trace\D~l {P — r c ') D j1(P — rc')'] =  x 2/ n .

A lower dimensional space, say the k* -dimensional subspace, of the row and 
column clouds which are closest to the points in terms of weighted sum of squared 
distances are determined using generalized singular value decomposition of the matrix 
(P  — rc ') , that is given by

(P -  rc') =  AA B', (3.2.1)

where matrix A axm and B 6xto are such that A 'D “XA =  Im and B 'D “ 1B =  Im and 
A is the diagonal matrix whose diagonal elements are the singular values X i, . . .  ,Xm 
of (P — rc'). The matrices A and B can be obtained from the usual singular value 
decomposition of T  =  Dr 1//2(P — r c ^ D ^ 2. Note that Xf,. . . ,  X2m are the eigenvalues 
of T T '.

In practice the value of k* is taken to be 2 or 3. The coordinates for the a row 

profiles are the a rows of the matrix formed by taking the first k* columns of

F  =  D ^ A A  (3.2.2)
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and for b column profiles are the b rows of the matrix formed by taking the first k* 
columns of

G =  D~XBA. (3.2.3)

These coordinates are generally plotted on a plane on the same graph. This kind of 

display is called symmetric plot ( Greenacre, 1984). In this plot the distance between 

the points corresponding to the row profiles or those points corresponding to column 
profiles are the approximation to the corresponding chi-square distances between the 

respective profiles. But the distance between two points, one corresponding to a row 
profile and another corresponding to a column profile, has no such interpretation. In 

the following example we use a real life data set to illustrate correspondence analysis.

I I I .2.1 A n E xam ple

The data considered here are from Srole, Langner, Michael, Kirkpatrick, Opler and 

Rennie (1978) and given in Table 3.1. The objective of the study is to examine the re
lationship, if any, between children’s mental impairment and parent’s socioeconomic 
status. There are six levels of socioeconomic status from 1 (high) to 6 (low) and four 

levels of mental health status: Well, mild symptom formation (MILD), moderate 
symptom formation (MODERATE) and impairment (IMPAIRED). Data obtained 

in the form of 6 by 4 contingency table are based on a sample of 1660 residents of 
Manhattan.
Correspondence analysis of these data is shown in Khattree and Naik (2000). For 
testing the null hypothesis of no association between the parent’s socioeconomic sta

tus and children’s mental impairment, chi-square test statistics resulted in 45.9853 
with 15 degree of freedom. Chi-square decomposition is given in Table 3.2. The small 
P-value (< 0.00001) suggests that we reject the null hypothesis and conclude that 
parent’s socioeconomic status and children’s mental impairment are not independent. 
The correspondence matrix P  for these data is given by
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0.0385542 0.0566265 0.0349398 0.0277108
0.0343373 0.0566265 0.0325301 0.0240964

0.0343373 0.0632530 0.0391566 0.0361446
0.0433735 0.0849398 0.0463855 0.0566265

0.0216867 0.0584337 0.0325301 0.0469880
0.0126506 0.0427711 0.0325301 0.0427711

The co-ordinates of parent’s socioeconomic status and children’s mental impair

ment in two-dimensional space are given by F 6 X 2 and G 4 X2 respectively, and they 
are

0.1809
0.1850

0.0192

0.0116 0.2595 -0.0121

0.0590 0.0222 0.0296 -0.0237
-0.0089 -0.0421

Gr4x2 —
-0.0142 0.0699

-0.1654 -0.0436 _ -0.2374 -0.0189
-0.2877 0.0620

Figure 3.1 is a two-dimensional plot generated by correspondence analysis of the 
socioeconomic status by mental health of children data. For the first dimension the 

value of the principal inertia is =  0.0260. The percentage of total inertia explained 
by the one-dimensional approximation is approximately 94%. This percentage ex

plained by two-dimensional approximation is close 99%. Since the whole space here 
is three-dimensional we can be confident that the two-dimensional representation of 
the row profiles will be a reasonably good approximation to the whole space. In this 
case, categories are ordered and the order is maintained along the first principal axis. 
Categories 1 and 2 cannot be clearly distinguished hence it may be clubbed together 
to form one group. The two middle categories corresponding to the mental status 
of children are quite close to each other, but there is a clear distinction between the 
other categories.
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Figure 3.1: CA: Two-Dim Plot of Socioeconomic Status by Mental Health Data.

III.3 Correspondence Analysis as a Canonical Correlation Analysis

In the following, we illustrate how correspondence analysis can be formulated as 
canonical correlation analysis. See Goodman (1981) and O’Neill (1981).

Let X  =  (X\, ...,XaY and Y  =  (Yi,...,Yb)' be two categorical variables with a 
and b categories respectively. Consider

Y x F 2 . • Y b

X x P u P i  2 • P lm P i.

X 2 P21 P22 ■ P 2 m P2.

X a P n l P n 2  ■ ■ P n m Pa.

P .  1 P .2  • P.b 1

where Pij is the probability of X  assuming the ith category and Y  assuming the j th 
category, p_j is the marginal probability that Y  assumes j th category and pi_ is the
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marginal probability that X  assumes the i th  category. Then the variance covariance 
matrix of X  and Y  is given by

Y v
yy M

1

X S xy

where

yy

D

P .l( l~ P .l)  “ P.lP.2

- P . l P . 2  P . 2 { l - P . 2 )

(3.3.1)

- P . l P . b ~P.2P.b

X x x  —

P l . ( l - P l . )  - P 1 .P 2 .  

- P 1 .P 2 .  P 2 . ( l ~ P 2 . )

- P l . P a . -P 2 .P a .

and

Jx y

P l l  ~  P l .P . l  P l 2  ~  P l.P .2  

P21 -  P 2 .P .1  P 22 ~  P 2 .P .2

- P . l P . b

~ P .2 P .b

P .b (  1 -  P .b )

- P l . P a .

- P 2 .P a .

P a . ( 1 “ P a . )

P lb  ~  P l.P .b  

P2b -  P 2 .P .6

(3.3.2)

(3.3.3)

(3.3.4)

P a l  -  P a .P . l  P a 2  ~  P a .P .2  ■ ■ ■ Pab ~  P a .P .b  

Now performing canonical correlation analysis on this variance covariance matrix of 
X  and Y  will result in canonical variables of X  and Y, that are highly correlated. 

Canonical correlations are the square root of the eigenvalues of

' ^ x y ' ^ y y ^ y x ' ^ x x  ° r  ' ^ y x ^ x x ^ x y ^ y y i

where and are the generalized inverses of Hyy and respectively. All of 

the population parameters are estimated by the corresponding sample counterparts. 
The first and second dimension coordinates of X  and Y  are the canonical coefficients 
of first and second dimension canonical variables.

The estimated variance covariance matrix of socioeconomic status by mental 
health of children data considered in section III.2.1 as given by equation 3.3.1 is
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given by

0.15 -0 .07 -0 .04 -0 .04 0 . 0 1 0 . 0 1 0 . 0 0 0 . 0 0 - 0 . 0 1 - 0 . 0 1  "

-0 .07 0.23 -0.08 -0.09 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0

-0 .04 -0.08 0.17 -0.05 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0

-0.04 -0.09 -0.05 0.18 - 0 . 0 1 - 0 . 0 1 0 . 0 0 0 . 0 0 0 . 0 1 0 . 0 1

0 . 0 1 0 . 0 0 0 . 0 0 - 0 . 0 1 0.13 - 0 . 0 2 -0.03 -0.04 -0.03 - 0 . 0 2
s  =

0 . 0 1 0 . 0 0 0 . 0 0 - 0 . 0 1 - 0 . 0 2 0.13 -0.03 -0.03 - 0 . 0 2 - 0 . 0 2

0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 -0.03 -0.03 0.14 -0.04 -0.03 - 0 . 0 2

0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 -0.04 -0.03 -0.04 0.18 -0.04 -0.03

- 0 . 0 1 0 . 0 0 0 . 0 0 0 . 0 1 -0.03 - 0 . 0 2 -0.03 -0.04 0.13 - 0 . 0 2

- 0 . 0 1 0 . 0 0 0 . 0 0 0 . 0 1 - 0 . 0 2 - 0 . 0 2 - 0 . 0 2 -0.03 - 0 . 0 2 0 . 1 1

(3.3.5)
Canonical correlations obtained from canonical correlation analysis is shown in Table 

3.3.

The two dimensional coordinates for socioeconomic status and mental health sta
tus obtained from canonical correlation analysis approach and correspondence anal

ysis (CA) approach are shown in Table 3.4 and 3.5 respectively. It is very clear from 
values in these tables that by performing canonical correlation analysis on variance 

covariance matrix of X  and Y  we will get results similar to that of correspondence 
analysis.

III.4 R epeated Correspondence Analysis

In this section we will show how to perform correspondence analysis if we have a 
repeated contingency table. Suppose, as before X and Y  are two categorical variables 
with a and b categories and are observed over t time periods. Our data then constitute 
t contingency tables, N x, 1V2, . . . ,  N t, each is of a x b dimension, that is,

■Yfc (yijk)i i l , . . . , u ,  j  — 1 , . . . , 6 , k 1 , . . . ,  t

in which yijk denotes the frequency of the ith category of X  and j th category of Y  in 

the kth contingency table.

Performing correspondence analysis (CA) on these tables and restricting the anal

ysis to two dimensions, for each time period k {k =  1, . . . ,  t) we get the quantities,
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Aijt, A2k, the first and second singular values; Du,, D 2 coordinates for plotting a + b 
points on a two-dimensional plane; Ui^, V lfc, the principal axis for row; and U 2k, 
V 2 k, the principal axis for column. The primary objective of the analysis is to see 
if there is any repeated measure effect on t correspondence analyses. If there is no 
repeated effect then we can merge t contingency tables into one and perform corre

spondence analysis (CA) of that table. Otherwise we have to interpret the result of 
correspondence analysis (CA) of each contingency table separately.

To assess the repeated effect we use the general linear modeling framework. We 
fit a general linear model with correlated errors to each of the above quantities. For 

example, a general linear model with correlated errors for the t first singular values 
is given by

Ai k = /3k + ek k = l , . . . , t ,  (3.4.1)

where e*, are the correlated random errors for k =  1 , . . . ,  t. Why such a model would 
be reasonable is clear from the results in O’Neill (1981). Since we have only one first 
singular value from each time period we have to assume a certain autoregressive type 

of structure to model the correlations among the errors.

Next, we discuss estimation of /3 and correlation parameter p for the model in

3.4.1, when e ~  N (0 ,a 2V(p)), where V(p) =

1

P
P
1 P

„t-i

jt- 2

p t  1 p t  2 p t  3
1

an

AR(1) structure and e — (e i,..., et)'.

The log likelihood function of the parameters, given Ai =  (A i,..., A*)', is given by

logf(p,a2,p |Ai) =  -log{ 2tt)-
a  (3.4.2)

where T  =  (1, . . . ,  t)’ and S 1 =  7 -—  ̂ 2.
(1 ~ P )

1  - p  0

-P  1 + P2 -P

0

0

1 + p2 - p0 • • •  •

0    - p  1

Differentiating the log likelihood function with respect to /? and o 2 and equating to

zero will give the following maximum likelihood estimating equations for f3 and a2
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respectively.
T 'E ^ A i

P T 'E ~xT

a2  =
(^i ~  /5T)'E~ 1 (A1 -  /3T)

(3.4.3)

(3.4.4)

Let e =  Ai — /3T then differentiating the log likelihood with respect to p and equating 
to zero will give

where

d E _  _
dp ( 1  -  p2f

i dE_1
dlogf _  (t -  l)p  t e dp e

dp ~  (1 -  p2) 2 e'E_1e

2  p - ( 1  +  p2) 0

- ( 1  + P2) 4:p — ( 1  + P2)

0 , (3.4.5)

0

0

, g E  

6  dp 6

e'E_1e

( 1  -  p2)2 

1

( W )

0  

0

4 p - (1  +  p2)

- ( 1  +  P2) 2 p

t-i t-i
2 pe2 +  2 pe2 — 2 ( 1  +  p2) ejej+i +  4 p ^ E 2

i—1
t- 1 t-1

+  e2 — 2 p ^  ejej+i +  ( 1  +  p2) ^  e2

i—1 i=2

Substituting e ' - ^ —e and e'E_1e in equation 3.4.5 will give

^  ^  _  t [pel +  Pet2 -  (1 +  P2) E H  e+ m  +  2p E * lj  e|]

That is,

,(3.4.6)

(3.4.7)

H + - 2p E S  e,el+1 + (1 + ̂ ) Eta e2] =  0 . (3.4.8)

*=l

i—1 t- 1

p3(f - ! )  ei + p2(2 ~ *) X ] ~  p ei + e t + (T + 1 ) Y l e*2
i—2 i—1

t- 1

t- 1  t- 1

((f - l)p -tp )(e ^ + e 2 ) +( t ( l +p 2 ) - 2 p2 ( f - l ) ) ^ e ; e m + ( ( l + p 2 ) ( f - l ) p - 2 t p ) ^ e 2 =  0 ,
’ " i= 2

(3.4.9)
t-i

-1 'y  ̂ejei+i =  0.

(3.4.10)
The iterative solutions to equation 3.4.3 and 3.4.10 will converge to the maximum 
likelihood estimates of f3 and p. Similarly we can fit correlated linear models on 

and the other variables.
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To illustrate these procedures we resolved to simulation. First we need to generate 
the repeated contingency tables for t time periods. For this, we used Mav (2004) ’s 
extension of Sim (1993) algorithm to generate correlated Poisson count data. Also see 
Chaganty and Mav (2007). The cell frequency for a given contingency table is used 
as a mean of a Poisson distribution. In our case we used the following contingency 

table   .
64 94 58 46
57 94 54 40

57 105 65 60
72 141 77 94

36 97 54 78
2 1 71 54 71

to generate repeated contingency tables for time periods t = 5,10,15,20, 25, 30. Sup

pose riijk, k = 1, 2, . . .  t are the correlated Poisson counts (generated using Sim’s 
algorithm) whose means are changing over time. Mean at time k = 1 is given by 

bij, the (i , j ) th cell frequency of contingency table B. The results based on 500 
simulations of fitting a general linear model with correlated errors corresponding to 

parameter Ai, A2 , D i, D 2 , U i, V i, U 2 and V 2 is shown in Tables 3.6 - 3.13 respec
tively. The 95th, 90th and 75th percentiles and median of the p-values to test the null 

hypothesis, H0 : f3 =  0, are denoted by P95P, P90P, Q3P, and P50P respectively. 
Similarly estimates of correlation quantiles were denoted by R95, R90, R3P, and 
R50. It can be seen in Table 3.6 that the value of P90P is 0 for 25th time period 
and R  =  0. Small 90th percentiles of the p-values suggests that when intial Poisson 
counts are independent then we need at least 25 contingency tables to identify the 
repeated effect in them. However, as the value of R  increases, we need fewer number 
of repeated contingency tables. Table 3.6 shows that we need at least 10 contingency 
tables to reject the null hypothesis H0 when R  is non zero. Results of 500 simu
lations of the first singular value Ai when the mean is not changing over time are 
shown in Table 3.14. When R is not 0.5 then P15, 15th percentile of the p-values to 
test the null hypothesis, ranges from 0.051 to 0.143. Hence we can say that 85% of 

time we accept Ho at 5% significance level when simulated data does not have time 
effect. From the simulation results it is quite clear that the first singular value Ax is 
successful in capturing the repeated effect (mean changing over time) in contingency 

table.
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III.4.1 Perform ing Correspondence A nalysis w ith repeated contingency  
table

Let Ni is the ith contingency table, where i = 1 , . . .  ,t. As it is shown in the above 
section the repeated effect in contingency tables observed over time can be detected 

by fitting a correlated linear model of the first singular value Ax. Hence we can study 
the given contingency tables, Ni s, by fitting the correlated model of the first singular 

value X\. If the analysis shows that there is no repeated effect in the contingency 
tables then we can do correspondence analysis on the combined contingency table N 
given by

N  =  JV1 +JV2 +  . . .  +  iVt . (3.4.11)

If there is any repeated effect in the contingency tables and interest is to see how 
relationship is changing between two categorical variables over time then it better to 

perform correspondence analysis on each table separately and interpret the results. 
But if we want to combine the results and see how the categories at different time 

periods are related to each other, we can perform correspondence analysis on the 

contingency table N  which is given by

N x 0

m = 0 N';

0   N t

By doing correspondence analysis on contingency table N  we can plot the profiles 

of different categories and the plot can be used for better understanding of the 
relationship between the categories of different time periods.

To demonstrate the above method we use the data given in Table 4.12. For our 
example data let four column categories be denoted by F 1 ,F 2 ,F 3  and Y 4 and let 
six row categories be denoted by X I ,  X2, X3, X4, X 5  and X6.  The output of the 
correlated linear model on Ai is shown in Table 3.15. Since time has a significant 
effect on Xi it can be concluded that the contingency tables corresponding to 1 0  

time periods possess the repeated effect. Hence the 10 contingency tables can not be 

merged together. We therefore use the block diagonal contingency table N  for our 

analysis.
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III.5 Concluding Remarks

In this chapter we demonstrated the use of correspondence analysis for longitudinally 

observed contingency tables. In order to determine the effect of repeated measure (or 
the longitudinal effect), we used correlated linear models fitting summaries statistics 
resulted in performing correspondence analysis (CA) of contingency tables at different 

time periods on time. Using simulation experiments we determined that the first 

singular values obtained as a result of correspondence analysis is the best statistical 
measure of the time effect.
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Table 3.1: Socioeconomic Status by Mental Health of Children Data

Parent Socioeconomic Status
Well

Mental Health Status 
Mild Moderate Impaired

l(high) 64 94 58 46
2 57 94 54 40
3 57 105 65 60
4 72 141 77 94
5 36 97 54 78
6  (Low) 2 1 71 54 71

Table 3.2: Mental Health Data: Chi-Square Decomposition

Singular Value Principal Inertia Chi-Square Percent Cumulative Percent
0.16132 0.02602 43.2013 93.95 93.95
0.03714 0.00138 2.2894 4.98 98.92
0.01726 0.00030 0.4946 1.08 1 0 0 . 0 0

Total 0.02770 45.9853 1 0 0 . 0 0

Table 3.3: Mental Health Data: Canonical Correlations

Canonical correlations p P2 Percent Cumulative Percent
0.16132 0.02602 93.95 93.95
0.03714 0.00138 4.98 98.92
0.01726 0.00030 1.08 1 0 0 . 0 0

Total 0.02770 1 0 0 . 0 0
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Table 3.f:  Two Dimensional Coordinates for Socioeconomic Status: (Standardized 
Form: Mean = 0, SD = 1)

Socioeconomic status CCA CA
Diml Dim2 Diml Dim2

1 0.9850 -0.3508 0.9849 0.3499
2 1.0064 -0.1645 1.0065 0.1642
3 0.3432 -0.4228 0.3432 0.4232
4 -0.0143 1.1482 -0.0143 -1.1483
5 -0.8382 1.1855 -0.8382 -1.1850
6 -1.4820 -1.3955 -1.4820 1.3960

Table 3.5: Two Dimensional Coordinates Mental Health Status: (Standardized Form: 
Mean = 0, SD = 1)

Mental Health Status CCA CA
Diml Dim2 Diml Dim2

Well 1.2283 0.3591 1.2282 -0.3587
Mild 0.0992 0.6198 0.0993 -0.6204

Moderate -0.1158 -1.4914 -0.1158 1.4913
Impaired -1.2117 0.5125 -1.2117 -0.5122
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Table 3.6: F irst Singular Value A R 1 Structure Result (Truncated at 2 D ecim al
Places)

First Singular Value Ai
Variable Correlation R  == 0 Correlation R  = 0.1
TimeP 5 1 0 2 0 30 5 1 0 2 0 30
P95P 0.85 0.62 0.13 0 0.79 0 . 1 2 0.09 0

R95 0 . 0 1 0.29 0.29 0.34 0 . 0 1 0.42 0.38 0.4
P90P 0.67 0.45 0.06 0 0.61 0.04 0.04 0

R90 -0.08 0.17 0 . 2 1 0.26 -0 . 1 0.26 0.3 0.32
Q3P 0.39 0.15 0 . 0 1 0 0.33 0 . 0 1 0 0

R3P -0.33 -0 . 0 2 0.07 0.14 -0.37 0.07 0.14 0 . 2

P50P 0.13 0.04 0 0 0.13 0 0 0

R50 -0.65 -0.24 -0.08 -0.03 -0.63 -0 . 2 -0.04 0.05
Variable Correlation R  = 0 . 2 Correlation i? =  0.3
TimeP 5 1 0 2 0 30 5 1 0 2 0 30
P95P 0.77 0.03 0 0 0.73 0.03 0 0

R95 0.04 0.42 0.54 0.52 0 . 0 2 0.45 0.57 0.72
P90P 0.61 0 . 0 1 0 0 0.59 0 . 0 1 0 0

R90 -0.06 0.31 0.46 0.44 -0.07 0.34 0.51 0 . 6 6

Q3P 0.3 0 0 0 0.28 0 0 0

R3P r0.34 0 . 1 1 0.29 0.34 -0.3 0.19 0.36 0.56
P50P 0.14 0 0 0 0 . 1 2 0 0 0

R50 -0.63 -0 . 1 2 0.09 0.18 -0.59 -0.08 0 . 2 0.44
Variable Correlation R  — 0.4 Correlation R  =  0.5
TimeP 5 1 0 2 0 30 5 1 0 2 0 30
P95P 0.77 0.06 0 0 0.71 0.04 0 0

R95 0.04 0.51 0.64 0.7 0.04 0 . 6 0.71 0.79
P90P 0.59 0 . 0 2 0 0 0.52 0 . 0 1 0 0

R90 -0.08 0.4 0.54 0.64 -0.03 0.51 0.63 0.73
Q3P 0.27 0 0 0 0.23 0 0 0

R3P -0.29 0.19 0.39 0.54 -0.25 0.33 0.48 0.64
P50P 0.09 0 0 0 0.07 0 0 0

R50 -0.62 -0.04 0 . 2 0.4 -0.56 0.05 0.32 0.52
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Table 3.7: Second Singular Value A2; A R (1 ) Structure R esult (Truncated at 2 D eci
m al P laces)

Second Singular Value A2

Variable Correlation R  ~= 0 Correlation R  — 0.1
TimeP 5 1 0 2 0 30 5 1 0 2 0 30
P95P 0.93 0.93 0.94 0.96 0.96 0.93 0.92 0.9
R95 0.03 0.28 0.26 0.28 0 . 0 1 0.4 0.36 0.44

P90P 0.87 0.87 0.87 0.9 0.91 0.87 0.87 0.79
R90 -0.08 0.17 0.18 0 . 2 2 -0.09 0.29 0.29 0.38
Q3P 0.72 0.71 0.61 0.74 0.71 0.7 0.65 0.52
R3P -0.29 -0.03 0.05 0 . 1 -0.35 0.07 0.15 0.26
P50P 0.42 0.39 0.28 0.46 0.43 0.42 0.34 0.28
R50 -0.62 -0.24 -0.09 -0 . 0 2 -0.65 -0.19 -0 . 0 1 0 . 1 2

Variable Correlation R = 0 . 2 Correlation R  = 0.3
TimeP 5 1 0 2 0 30 5 1 0 2 0 30
P95P 0.94 0.93 0 . 8 0.92 0.95 0.95 0.95 0.57
R95 -0 . 0 2 0.37 0.46 0.45 0 . 0 2 0.49 0.5 0.52

P90P 0 . 8 8 0.87 0.69 0.84 0.89 0.87 0.87 0.38
R90 -0 . 1 0.27 0.4 0.39 -0.06 0.37 0.44 0.46
Q3P 0.71 0.67 0.36 0.62 0.69 0.65 0.63 0 . 1 2

R3P -0.3 0 . 1 0.26 0.28 -0.24 0 . 2 0.29 0.34
P50P 0.44 0.43 0 . 1 2 0.26 0.39 0.37 0.27 0 . 0 2

R50 -0.61 -0 . 1 2 0.08 0.13 -0.57 -0 . 0 2 0.14 0 . 2

Variable Correlation R  — 0.4 Correlation R  — 0.5
TimeP 5 1 0 2 0 30 5 1 0 2 0 30
P95P 0.94 0.94 0.9 0.91 0.94 0.91 0 . 8 6 0.85
R95 0.05 0.49 0.51 0.53 0 . 0 1 0.5 0.59 0.59

P90P 0.87 0.83 0.82 0.83 0.9 0.82 0.75 0 . 6 6

R90 -0.05 0.36 0.43 0.45 -0.08 0.42 0.5 0.52
Q3P 0.7 0.63 0.55 0.55 0.7 0 . 6 0.43 0.3
R3P -0.25 0.18 0.27 0.34 -0.25 0 . 2 1 0.36 0.42
P50P 0.39 0.35 0.26 0 . 2 2 0.4 0.29 0 . 1 2 0.05
R50 -0.57 -0.08 0 . 1 1 0 . 2 1 -0.55 -0.05 0 . 2 0.28
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Table 3.8: F irst D im ension  D l :  A R (1 ) Structure Result (Truncated at 2 D ecim al
Places)

First Dimension D l
Variable Correlation R  - - 0 Correlation R  = 0 . 1

TimeP 5 1 0 2 0 30 5 1 0 2 0 30
P95P 1 1 1 0.89 1 1 1 1

R95 1 0.99 0.97 0.83 1 1 0.98 0 . 8 8

P90P 1 1 1 0.56 1 1 1 1

R90 1 0.99 0.94 0.77 1 1 0.98 0.82
Q3P 0.99 1 0.58 0.05 1 0.96 0.93 0.84
R3P 0.99 0.98 0.81 0 . 6 6 0.99 0.99 0.89 0.73
P50P 0.83 0.77 0 . 0 1 0 0.91 0.56 0.17 0.15
R50 0.99 0.94 0 . 6 0.53 0.99 0.99 0.64 0.59

Variable Correlation R  = 0 . 2 Correlation R  = 0.3
TimeP 5 1 0 2 0 30 5 1 0 2 0 30
P95P 1 1 1 1 1 1 1 1

R95 1 1 1 0.97 1 1 1 1

P90P 1 1 0.98 1 1 1 0.95 0.99
R90 1 1 1 0.95 1 1 1 0.99
Q3P 1 0.99 0.83 0.93 0.99 0.96 0.69 0.7
R3P 0.99 0.99 0.99 0 . 8 8 1 1 1 0.89
P50P 0.91 0.82 0.26 0.16 0.85 0.62 0.24 0.08
R50 0.99 0.99 0.79 0.71 0.99 0.99 0.77 0.72

Variable Correlation R  — 0.4 Correlation R  = 0.5
TimeP 5 1 0 2 0 30 5 1 0 2 0 30
P95P 1 1 1 1 1 1 1 1

R95 1 1 1 0.93 1 1 1 0.99
P90P 1 1 0.99 1 1 1 1 1

R90 1 1 0.99 0 . 8 8 1 1 1 0.93
Q3P 0.99 0.98 0.85 0.82 0.99 0.96 0.78 0.89
R3P 1 0.99 0.82 0.75 1 1 0.9 0.85
P50P 0.79 0.58 0.17 0.17 0.78 0.59 0.25 0 . 2

R50 0.99 0.85 0.59 0.54 0.99 0.99 0 . 6 8 0.65
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Table 3.9: Second D im ension  D 2: A R (1 ) S tructure Result (Truncated at 2 D ecim al
P laces)

Second Dimension D2
Variable Correlation R  - = 0 Correlation R  = 0 . 1

TimeP 5 1 0 2 0 30 5 1 0 2 0 30
P95P 1 0.98 0 . 2 0 . 0 1 1 1 0.26 0

R95 0.97 0 . 8 6 0.51 0.38 0.98 0.97 0 . 8 0.74
P90P 0.98 0.93 0.07 0 1 1 0.06 0

R90 0.96 0.82 0.42 0.32 0.98 0.97 0.74 0.69
Q3P 0.74 0.4 0 . 0 1 0 0.96 0.97 0 0

R3P 0.92 0.61 0.32 0.26 0.95 0.93 0.61 0.61
P50P 0.16 0 0 0 0.49 0.47 0 0

R50 0.81 0.36 0 . 2 1 0.17 0.9 0 . 8 6 0.48 0.49
Variable Correlation R  = 0 . 2 Correlation R  = 0.3
TimeP 5 1 0 2 0 30 5 1 0 2 0 30
P95P 1 1 0.93 0.03 1 1 0.89 0.33
R95 0.96 0.93 0.91 0.77 0.97 0.95 0.91 0 . 8 8

P90P 0.98 0.96 0.55 0 1 0.99 0.28 0.07
R90 0.95 0 . 8 8 0.87 0.72 0.96 0.93 0.85 0.83
Q3P 0.78 0.34 0 . 0 2 0 0.92 0 . 6 8 0 . 0 1 0

R3P 0 . 8 6 0.76 0.76 0.62 0.92 0.84 0.73 0.75
P50P 0 . 2 0 . 0 1 0 0 0.42 0.08 0 0

R50 0.57 0.54 0 . 6 0.52 0.74 0.56 0.56 0.62
Variable Correlation R  = 0.4 Correlation R  = 0.5
TimeP 5 1 0 2 0 30 5 1 0 2 0 30
P95P 1 1 1 0.42 1 1 1 1

R95 0.98 0.97 0.93 0.87 0.99 0.98 0.97 0.96
P90P 1 1 0 . 8 8 0 . 1 2 1 1 1 0.97
R90 0.97 0.95 0.9 0.82 0.98 0.97 0.96 0.95
Q3P 0.9 0.87 0.13 0 0.94 0.96 0.87 0.44
R3P 0.94 0.9 0 . 8 0.74 0.96 0.94 0.92 0.89
P50P 0.35 0.13 0 0 0.35 0.45 0.08 0 . 0 1

R50 0.81 0.71 0 . 6 8 0.64 0.89 0.87 0.82 0.81
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Table 3.10: F irst Principal A xis fo r  R ow  U l :  A R (1 ) Structure Result (Truncated at
2 D ecim al P laces)

First Principal Axis for Row U l
Variable Correlation R  == 0 Correlation R  = 0 . 1

TimeP 5 1 0 2 0 30 5 1 0 2 0 30
P95P 1 1 0.99 0.98 1 1 1 0.98
R95 0.99 0 . 6 0.43 0.36 1 0.74 0.55 0.43

P90P 1 1 0.98 0.95 1 1 0.99 0.96
R90 0 . 8 6 0.52 0.33 0.28 0.99 0 . 6 6 0.46 0.36
Q3P 0 . 8 8 0.96 0.91 0.82 0.89 0.98 0.97 0.89
R3P 0.81 0.28 0 . 2 0.17 0.85 0.47 0.32 0.25
P50P 0.67 0 . 6 6 0.56 0.41 0 . 6 6 0.72 0.78 0.65
R50 0.26 0.08 0.05 0.06 0.26 0 . 2 0.13 0.13

Variable Correlation R  = 0 . 2 Correlation R  = 0.3
TimeP 5 1 0 2 0 30 5 1 0 2 0 30
P95P 1 1 1 1 1 1 1 1

R95 1 0.77 0.57 0.49 1 0 . 8 8 0.65 0.57
P90P 1 1 1 0.99 1 1 1 1

R90 0.99 0.7 0.54 0.43 1 0.71 0.56 0.5
Q3P 0.94 0.99 0.99 0.96 0.98 0.99 0.99 0.99
R3P 0.81 0.49 0.34 0.31 0 . 8 6 0.52 0.41 0.37
P50P 0.67 0.81 0.78 0.77 0.67 0.72 0.77 0.84
R50 0.31 0 . 2 1 0.16 0.19 0.35 0.26 0.23 0.23

Variable Correlation R  = 0.4 Correlation R = 0.5
TimeP 5 1 0 2 0 30 5 1 0 2 0 30
P95P 1 1 1 1 1 1 1 0.99
R95 1 0.91 0 . 6 6 0.58 1 0.99 0.77 0 . 6 8

P90P 1 1 1 0.99 1 1 1 0.99
R90 0.99 0.72 0.56 0.51 1 0.92 0.67 0.58
Q3P 0.95 0.96 0.97 0.93 0.95 0.96 0.96 0.94
R3P 0 . 8 6 0.52 0.44 0.39 0.98 0 . 6 6 0.52 0.49
P50P 0 . 6 6 0.61 0.79 0.67 0 . 6 6 0.65 0.67 0 . 6 6

R50 0.36 0.27 0.27 0.26 0.36 0.38 0.34 0.36
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Table 3.11: F irst Principal A xis fo r  Column V I :  A R (1 ) Structure Result (Truncated
at 2 D ecim al P laces)

First Principal Axis for Column V I
Variable Correlation R  == 0 Correlation R  = 0 . 1

TimeP 5 1 0 2 0 30 5 1 0 2 0 30
P95P 1 1 1 0.99 1 1 0.99 0.96
R95 1 0.62 0.45 0.38 1 0.75 0.57 0.43

P90P 1 1 0.98 0.97 1 1 0.99 0.93
R90 0.87 0.54 0.34 0.3 1 0 . 6 8 0.46 0.36
Q3P 0.85 0.94 0.92 0.85 0.85 0.96 0.95 0.84
R3P 0.83 0.29 0 . 2 0.18 0.87 0.49 0.32 0.25
P50P 0.62 0 . 6 6 0.55 0.42 0.62 0.71 0.77 0.63
R50 0.28 0.09 0.06 0.05 0.28 0 . 2 2 0.13 0.13

Variable Correlation R  = 0 . 2 Correlation R  = 0.3
TimeP 5 1 0 2 0 30 5 1 0 2 0 30
P95P 1 1 1 0.99 1 1 1 1

R95 1 0.79 0.58 0.5 1 0.89 0 . 6 6 0.58
P90P 1 1 1 0.98 1 1 1 0.99
R90 1 0.72 0.55 0.44 1 0.73 0.57 0.51
Q3P 0.87 0.97 0.98 0.93 0.95 0.96 0.96 0.97
R3P 0.83 0.51 0.35 0.31 0.87 0.54 0.42 0.37
P50P 0.62 0.76 0.76 0.71 0.62 0.69 0.72 0.78
R50 0.36 0.23 0.17 0.18 0.38 0.28 0.23 0.23

Variable Correlation R  = 0.4 Correlation R  = 0.5
TimeP 5 1 0 2 0 30 5 1 0 2 0 30
P95P 1 1 1 0.99 1 1 1 0.99
R95 1 0.92 0 . 6 8 0.58 1 1 0.78 0.69

P90P 1 0.99 0.99 0.98 1 0.99 0.99 0.99
R90 1 0.73 0.57 0.51 1 0.92 0 . 6 8 0.59
Q3P 0.9 0.94 0.95 0.91 0.9 0.94 0.94 0.94
R3P 0.87 0.54 0.45 0.4 0.99 0 . 6 8 0.54 0.5
P50P 0.61 0.58 0.77 0.64 0.61 0 . 6 0.65 0 . 6 6

R50 0.38 0.28 0.27 0.27 0.38 0.4 0.35 0.36
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Table 3.12: Second Principal A xis fo r  R ow  U 2 :  A R (1 ) Structure R esult (Truncated
at 2 D ecim al P laces)

Second Principal Axis for Row U2
Variable Correlation R  == 0 Correlation R  — 0 . 1

TimeP 5 1 0 2 0 30 5 1 0 2 0 30
P95P 0.89 0.89 0.18 0 . 0 1 0.99 0.99 0.54 0 . 0 2

R95 0.99 0.91 0.57 0.44 0.99 0.99 0.89 0.78
P90P 0 . 8 0.81 0.09 0 . 0 1 0.99 0.98 0.31 0

R90 0.99 0.87 0.5 0.39 0.99 0.99 0.82 0.7
Q3P 0.63 0.57 0.03 0 0.96 0.93 0.09 0

R3P 0.98 0.74 0.41 0.32 0.99 0.98 0.7 0.61
P50P 0.47 0.17 0 . 0 1 0 0.82 0 . 6 8 0 . 0 2 0

R50 0.93 0.46 0.31 0.24 0.98 0.95 0.56 0.49
Variable Correlation R  = 0 . 2 Correlation R  = 0.3
TimeP 5 1 0 2 0 30 5 1 0 2 0 30
P95P 0.96 0.89 0.77 0.07 0.98 0.95 0.69 0.27
R95 0.97 0.94 0.95 0.82 0.99 0.97 0.94 0.91

P90P 0.93 0.77 0.64 0 . 0 2 0.96 0.9 0.55 0.14
R90 0.96 0.92 0.92 0.75 0.98 0.96 0.91 0.87
Q3P 0.79 0.49 0.25 0 0 . 8 8 0.78 0.23 0.03
R3P 0.93 0.84 0.83 0.65 0.97 0.93 0.84 0.82
P50P 0.56 0.19 0 . 0 2 0 0 . 6 6 0.56 0.05 0

R50 0.82 0 . 6 8 0 . 6 8 0.56 0.91 0 . 8 6 0.73 0.72
Variable Correlation R  = 0.4 Correlation R  = 0.5
TimeP 5 1 0 2 0 30 5 1 0 2 0 30
P95P 0.99 0.98 0.87 0.35 0.99 0.99 0.96 0.78
R95 0.99 0.99 0.97 0.9 0.99 0.99 0.99 0.97

P90P 0.98 0.97 0.75 0 . 1 2 0.98 0.98 0.9 0.62
R90 0.99 0.99 0.94 0.83 0.99 0.99 0.98 0.95
Q3P 0.94 0.89 0.27 0 . 0 1 0.93 0.94 0.55 0.15
R3P 0.98 0.97 0.83 0.73 0.99 0.98 0.93 0.87
P50P 0.7 0.41 0 . 0 2 0 0 . 6 8 0.51 0 . 1 0 . 0 1

R50 0.93 0.76 0 . 6 8 0.64 0.98 0.92 0.77 0.76
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Table 3.13: Second Principal Axis for Column V 2: AR(1) Structure Result (Trun
cated at 2 Decimal Places)

Second Principal Axis for Column V2
Variable Correlation R  = 0 Correlation R  = 0 . 1

TimeP 5 1 0 2 0 30 5 1 0 2 0 30
P95P 0.99 0.93 0.48 0 . 1 1 0.99 0.98 0.77 0.26
R95 1 0.99 0.74 0.58 1 1 0.97 0.89

P90P 0.97 0.89 0.26 0.04 0.97 0.94 0.63 0.09
R90 1 0.98 0 . 6 6 0.51 1 1 0.93 0.83
Q3P 0 . 8 0.67 0.09 0 . 0 1 0.9 0 . 8 0 . 2 2 0 . 0 1

R3P 1 0.92 0.52 0.42 1 0.99 0.77 0.71
P50P 0.45 0.3 0 . 0 1 0 0.59 0.43 0.05 0

R50 0.99 0.58 0.39 0.33 0.99 0.96 0.64 0.58
Variable Correlation R  = 0 . 2 Correlation R  = 0.3
TimeP 5 1 0 2 0 30 5 1 0 2 0 30
P95P 0.96 0 . 8 8 0 . 8 6 0.49 0.96 0.9 0.67 0.53
R95 0.99 0.97 0.97 0.93 0.99 0.97 0.95 0.95

P90P 0.93 0.84 0 . 8 0.23 0.94 0.83 0 . 6 0.38
R90 0.98 0.95 0.96 0 . 8 8 0.98 0.96 0.94 0.92
Q3P 0.77 0 . 6 8 0 59 0.04 0.84 0.71 0.37 0.17
R3P 0.95 0.92 0.92 0.75 0.96 0.93 0 . 8 8 0 . 8 6

P50P 0 . 6 0.48 0.18 0 0 . 6 6 0.5 0.09 0 . 0 2

R50 0.84 0.81 0 . 8 0.63 0.89 0.83 0.76 0.76
Variable Correlation R  = 0.4 Correlation R  = 0.5
TimeP 5 1 0 2 0 30 5 1 0 2 0 30
P95P 0.98 0.95 0 . 8 0.57 0.99 0.96 0 . 8 6 0.81
R95 1 1 0.98 0.95 1 1 0.99 0.99

P90P 0.97 0.92 0.69 0.29 0.98 0.91 0.78 0 . 6 6

R90 1 0.99 0.96 0.89 1 1 0.99 0.98
Q3P 0.91 0.75 0.47 0.07 0 . 8 6 0.71 0.56 0.43
R3P 0.99 0.98 0.89 0 . 8 1 0.99 0.96 0.93
P50P 0 . 6 6 0.4 0.08 0 . 0 1 0.51 0.37 0.24 0.07
R50 0.94 0.82 0.73 0 . 6 8 0.99 0.94 0.83 0.82
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Table 3.14: First Singular Value Ai, Mean is not Changing Over Time: AR(1) 
Structure Result

First Singular Value Ax
Variable Correlation R — 0 Correlation & II o 1

TimeP 1 0 15 2 0 25 1 0 15 2 0 25
P10 0.082 0.115 0 . 1 0 1 0.086 0.061 0.084 0.092 0.071
P15 0.140 0.149 0.148 0.139 0 . 1 1 0 0.129 0.135 0 . 1 2 1

P20 0.181 0.195 0.189 0.190 0.144 0.171 0.174 0.169
RIO -0.622 -0.448 -0.380 -0.325 -0.587 -0.400 -0.321 -0.270
R15 1-0.550 -0.398 -0.324 -0.291 -0.508 -0.352 -0.257 -0 . 2 1 0

R20 -0.502 -0.347 -0.281 -0.254 -0.451 -0.286 -0.209 -0.174
Variable Correlation R  =  0 2 Correlation

oII 3
TimeP 1 0 15 2 0 25 1 0 15 2 0 25

P10 0.050 0.061 0.055 0.044 0.037 0.042 0.031 0.031
P15 0.083 0.092 0.090 0.093 0.074 0.060 0.056 0.064
P20 0 . 1 2 2 0.114 0.128 0.140 0.103 0 . 1 0 2 0.090 0.093
RIO -0.523 -0.340 -0.237 -0.168 -0.445 -0.270 -0.192 -0.090
R15 -0.438 -0.264 -0.178 -0.124 -0.386 -0.197 -0.086 -0.047
R 2 0 ^ -0.372 -0.208 -0.135 -0.091 -0.314 -0.133 -0.041 -0.009

Variable Correlation R  =  0 4 Correlation

oIIa; 5
TimeP 1 0 15 2 0 25 1 0 15 2 0 25

P10 0.036 0.039 0.029 0.026 0.031 0.024 0.019 0 . 0 1 0

P15 0.071 0.059 0.051 0.051 0.048 0.054 0.030 0.028
P20 0.097 0.093 0.079 0.075 0.066 0.083 0.051 0.047
RIO -0.477 -0.240 -0.132 -0.068 -0.371 -0.127 -0 . 0 2 2 0.081
R15 -0.387 -0.181 -0.087 -0.025 -0.282 -0.079 0.052 0.137
R20 -0.324 -0.123 -0.046 0.018 -0.230 -0.013 0 . 1 0 1 0.179

Table 3.15: Simulated Contingency Table Example : Repeated Effect

Effect Estimate Standard Error DF t Value P r > \t\
Intercept 0.1660 0.006252 8 26.55 < . 0 0 0 1

t -0.00454 0.001008 8 -4.50 0 . 0 0 2 0
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CHAPTER IV 

CANONICAL CORRESPONDENCE ANALYSIS

IV. 1 Introduction

Canonical correspondence analysis (CCPA) is a multivariate data analysis technique 
which was introduced by Ter Braak (1986) to relate community composition to 

known variation in the environment. Problems in community ecology often require 
the determination of species-environment relationship from community composition 

data and associated habitat measurements. Typical data for such problems consist 
of the two sets, one the abundance of a number of species at a series of sites, and 
another data set on a number of environmental variables measured at the same sites. 
A site here is the basic sampling unit, separated in space or time from other sites. 

By treating species-abundance data over different sites as a contingency table, cor
respondence analysis (CA) can be performed to graphically represent these data. 
Such graphical displays can be helpful in identifying the sites that have a maximum 

abundance of a certain species. Frequently ecologists are also interested in determin

ing the relationship between the environmental variables favorable for the growth of 
certain species. Basically the idea is to represent the relationship between the en
vironmental variables and species graphically. This analysis is named as Canonical 
correspondence analysis (CCPA). In the literature this analysis is also abbreviated 
as CCA, but to avoid confusion with canonical correlation analysis (CCA) we will 
denote this here by CCPA. Ter Braak (1986) has developed a Fortran program, 

named CANOCO, to perform this analysis. Hegde and Naik (1999) developed a 
SAS program to perform the same analysis. Also see Khattree and Naik (2000) for 

a review and analysis of CCPA.

It is clear, like in the previous two chapters, that here also the basic problem 
is to study the relationship between two sets of variables. While in Chapter 2 we 
study the relationship between two sets of quantitative variables, in Chapter 3 we 
studied the relationship between two sets of qualitative variables. However, here 
the interest is in studying the relationship between a set of qualitative variables and 

another set of quantitative variables. In the next section, in order to introduce the 
notation and background we provide Ter Braak’s formulation of CCPA. In Section
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3 we will show how CCPA can be performed using canonical correlation analysis 
of certain variance covariance matrices. In Section 4 we will provide a theoretical 
basis to matrix formulation of CCPA. In Section 4 we will also provide canonical 
correspondence analysis to longitudinally observed data.

IV .2 Canonical Correspondence Analysis

In this section we present the details used by Ter Braak (1986) to explain canonical 
correspondence analysis (CCPA). Suppose a survey of n sites lists the occurrences 

(presence as 1 , absence as 0  ) of m  species and the values of q environmental variables 
(q < n). Let yit represents the abundance of the Ith species at the ith site, where 
i — 1, . . . , n  and I =  1, . . . ,  m  and Zij, j  =  1, . . . ,  q is the value of the j th environmental 
variable at the ith site. Let Y nXm =  (yu) denote the n  by m  matrix of species 

abundance.

It is assumed that yu has independent Poisson distribution with mean mu. Canon
ical correspondence analysis (CCPA) can be considered as a two step method. The 

first step is to summarize the main variation in the species abundance data by or

dination. The method of Gaussian ordination as described by Gauch, Chase and 

W hittaker (1974) does this by constructing an axis such that the species optimally 
fit the Gaussian response curve,

~(xj -  in)2

mu =  qe 2ch , (4.2.1)

along the constructed axis. Here mu is the expected value of yu at site i that has 
site score x*, which is usually an unknown linear combination of the environmental 

variables, on the ordination axis; pi can be interpreted as the value of x t resulting in 
maximum abundance for the Ith species; q  can be interpreted as the value of maxi
mum mean abundance and cp as an index of the tolerance, a measure of ecological 
amplitude. It is shown by the Ter Braak (1985) that correspondence analysis (CA) 
approximates the maximum likelihood solution of Gaussian ordination, if the sam
pling distribution of species abundances is Poisson and if these assumptions made, 

that The species’ tolerances ai are all equal to o\ The species’ maxima ci are all 
equal to c; The species’ optima pi are homogeneously distributed over an interval I\
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that is large compared to a\ and The site scores Xi are homogeneously distributed over 
an interval 1-2 that contains I\.

The second step of canonical correspondence analysis (CCPA) is to relate the or
dination axis to the environmental variables by doing multiple regression of the site 

scores on the environmental variables. Before doing multiple regression, environmen

tal variables Zij are standardized such that their weighted means over all sites are 
zero, and the corresponding weighted standard deviations are all one. Hence suppose

=  0  and X > 4  =  1 ,
i i

where Wi = yL =  YliVu and V- =  H iJ h V u  and denote the n  by q matrix of 
these standardize environmental variables by Z =  (zij). Then the multiple regression 
of site scores on environmental variables is given by

Xi = PiZii +  . . .  +  /3qziq =  z'/3. (4.2.2)

The main objective of canonical correspondence analysis (CCPA) is to estimate the 
vectors of unknown parameters fx = (/xi, . . . ,  fxm)' and /3. This can be done by 

simultaneously estimating the species optima and regression coefficient by equation
4.2.1 and 4.2.2. Estimating equations in matrix form for fi and are given by

S2-21S21Sr11S12 -  AI =  0  (4.2.3)

S ^ S 12S ^ S 2l - X l  = n,  (4.2.4)

where S2i =  Z'Y, Si2 =  Y 'Z, Sn =  diag(y,\,. . .  ,y.m) and S22 =  Z'DZ, with 
D =  diag(yi',. . . ,  yn) .  The solution to equations 4.2.3 and 4.2.4 are obtained by 
singular value decomposition of the matrix

W  = Sn1/2S12S2-21/2.

Singular value decomposition of matrix W  is given by

W  -  UAV'. (4.2.5)

Hence r (rank of W) solutions of equations 4.2.3 and 4.2.4 are given by the matrices:

B =  ( & : . . . : & )  =  S2-21/2V
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and

M  =  (A, : • • • : Ar) =  sr,1/2u.
The site score matrix and species scores matrix are given by

X  =  ZB (4.2.6)

and

M  =  S n ^ Y ' X A -1 (4.2.7)

respectively.

More detailed mathematical explanations and geometrical interpretations of
canonical correspondence analysis (CCPA) can be found in Hegde and Naik (2006,
Preprint). To illustrate the method we use an example in the following subsection.

IV .2.1 H u n tin g  S p ider E xam ple

Although data description and analysis are given in Khattree and Naik (2000), for 

completeness sake we will describe the same here. The data considered in this ex
ample is from Ter Braak (1986), Table 3, and were originally adapted from Van der 
Aart and Smeek-Enseink (1975) after transformation. Data consist of abundance of 
12 species of hunting spider at 28 sites, representing pitfall traps, caught in pitfall 
traps over a period of 60 weeks, along with measurements on six environmental vari
ables, namely percentage of soil dry mass, percentage cover of bare sand, percentage 
cover of fallen leaves and twigs, percentage cover of the herb layer and reflection of 
the soil surface with cloudless sky. The square root transformation was performed 
on the species abundance and a logarithmic transformation was performed on the 
environmental variables. Only the integer part of the square root transformed abun
dance were considered. A value of 9 for species abundance indicates the number of 
individuals of the species found is greater than or equal to eighty one. Further, the 
range of each transformed environmental variable was divided into 10 equal cate
gories denoted by 0-9 and these numbers were used as the data corresponding to the 
environmental variables. An objective of the study was to determine the distribution 

of these 12 species of hunting spiders in a Dutch dune area in relation to the envi

ronmental variables. Species abundance data and environmental data at 28 pitfall
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traps are shown in Table 4.2 and 4.3 respectively. The fundamental matrix W  for 
the hunting spider data is given by

0.0905928 0.0221424 -0.018828

-0.07908 -0.120468 -0.122306

0.0985968 0.0062076 -0.048164
0.118231 -0.006221 -0.090492

0.1194795 -0.077528 -0.022274

0.0441676 -0.030179 -0.047171
0.0698714 -0.078222 -0.084326

0.05573 -0.056263 -0.0273
-0.01269 -0.012869 0.2247585

-0.229019 0.1024604 0.155209
-0.257685 0.2716802 0.0779809
-0.241603 0.2128121 0.0113994

-0.0339 -0.042086 0.043711
-0.144538 0.2624115 -0.147858

-0.124552 0.0042143 0.02378
-0.013082 -0.065483 0.0897482

-0.016324 -0.095579 0.1384742

-0.019193 -0.009464 0.1225125

-0.095609 0.1093381 -0.050272

0.0460913 0.0662339 0.0193313
0.1192219 -0.072703 0.002098
0.1450659 -0.064858 -0.030001
0.1071344 -0.088528 -0.151806
0.1153476 -0.064448 -0.166911

The canonical correlation resulted by canonical correspondence analysis (CCPA) 
and their contribution towards the variance explained is shown in Table 4.1.

Corresponding site and species scores resulted by canonical correspondence anal

ysis (CCPA) are shown in Tables 4.4 and 4.5. The Biplot graphical display for the 
hunting spider data is given by Figure 4.1. The graphical display suggests that the 
species Alop-fabr (Al-f) and Arct-peri (Ar-p) were mainly found in habitats with 

higher percentage of sand (BARE-SAND). The species Arct-lute (Ar-1), Pard-pull 
(Pa-p), Pard-mont (Pa-m), Pard-nigr (Pa-n) and Aulo-albi (Au-a) are found in habi
tats with well developed herb layers (COVER-HERBS). Only the species Pard-lugu 
(Pa-1) is found in the habitats with fallen twigs and leaves represented by the variable 

FALLEN-TWIGS in the graph.
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Figure f . l :  Biplot of Hunting Spider Data.
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Table 4-1: Hunter Spider: Canonical Correlations

Cannonical Correlation Eigenvalue Percent Cumulative %
0.7341518 0.538978865 61.88304447 61.88304447
0.473724 0.224414428 25.76622003 87.64926449
0.2698241 0.072805045 8.359136364 96.00840086
0.1407824 0.019819684 2.275603876 98.28400473
0.1063434 0.011308919 1.298437407 99.58244214
0.0603057 0.003636777 0.417557858 1 0 0

Table 4-2: Hunting Spider Species Abundance Data

Sites Ar-I Pa-L Zo-s Pa-n Pa-p Au-a Tr-t Al-c Pa-m Al-a Al-1 Ar-p
1 0 2 1 0 0 0 5 0 0 0 0 0

2 0 3 1 1 0 0 4 1 0 0 0 0

3 0 3 1 0 0 0 4 1 0 0 0 0

4 0 2 2 1 0 0 5 1 0 0 0 0

5 0 1 1 0 0 0 4 0 0 0 0 0

6 0 2 0 0 0 0 5 1 0 0 0 0

7 0 1 3 3 6 5 8 1 1 0 0 0

8 0 7 1 1 1 2 5 3 1 0 0 0

9 0 4 1 0 1 0 4 1 1 0 0 0

1 0 1 1 4 9 8 3 9 4 1 1 0 0

1 1 2 0 5 5 4 2 7 2 3 0 0 0

1 2 1 1 5 3 8 2 9 1 3 0 0 0

13 1 1 5 5 9 4 9 2 2 1 0 0

14 3 1 4 9 9 4 9 2 5 1 0 0

15 1 1 4 7 8 4 9 6 4 1 1 0

16 1 1 1 4 6 3 8 4 5 3 1 0

17 0 0 2 3 6 2 7 3 7 5 0 0

18 0 0 0 1 1 0 1 1 5 1 0 0

19 0 0 0 1 2 0 3 3 9 4 0 0

2 0 0 1 2 2 0 1 4 1 3 3 3 0

2 1 0 0 0 0 1 1 2 1 9 3 1 0

2 2 0 0 0 0 0 0 1 0 4 1 1 0

23 0 0 0 0 0 0 1 0 2 3 3 1

24 0 1 0 0 0 0 1 0 2 4 3 2

25 0 0 0 0 0 0 1 0 1 2 4 1

26 0 0 0 0 0 0 0 0 1 5 3 2

27 0 0 0 0 0 0 0 0 1 3 4 2

28 0 0 0 0 0 0 1 0 0 1 2 4
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Table 4-3: Hunting Spider Data Observed on 6 Environmental Variables for 28 Sites

Sites Water Content Bare Sand Cover Moss Light Reft Fallen Twigs Cover Herbs
1 9 0 1 1 9 5
2 7 0 3 0 9 2

3 8 0 1 0 9 0

4 8 0 1 0 9 0

5 9 0 1 2 9 5
6 8 0 0 2 9 5
7 8 0 2 3 3 9
8 6 0 2 1 9 6

9 7 0 1 0 9 2

1 0 8 0 0 5 0 9
1 1 9 5 5 1 7 6

1 2 8 0 4 2 0 9
13 6 0 5 6 0 9
14 8 0 1 5 0 9
15 9 3 1 7 3 9
16 6 0 5 8 0 9
17 5 0 7 8 0 9
18 5 0 9 7 0 6

19 6 0 8 8 0 8

2 0 3 7 2 5 0 8

2 1 4 0 9 8 0 7
2 2 4 8 7 8 0 5
23 0 7 8 8 0 6

24 0 6 9 9 0 6

25 1 7 9 8 0 0

26 0 5 8 8 0 6

27 2 7 9 9 0 5
28 0 9 4 9 0 2
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Table 4 - 4 - ' CCPA: Site Scores (Standardized Form: Mean = 0, SD = 1)

Site Diml Dim2 Dim3 Dim4 Dim5 Dim6

1 -1.1158 -0.9066 0.3801 -0.0755 0.2837 0.8169
2 -0.6289 -1.4222 0.6536 0.8009 -0.2028 -0.4257
3 -0.6153 -1.6232 -0.0219 1.2911 1.2458 -1.4878
4 -0.6153 -1.6232 -0.0219 1.2911 1.2458 -1.4878
5 -1.0496 -0.8916 0.5568 -0.3084 0.8261 0.9413
6 -0.9283 -1.3203 0.3483 -1.0637 0.5093 0.7142
7 -0.9765 0.3872 -0.2516 -0.4947 -0.9478 0.2506
8 -0.7874 -1.4951 0.8415 -1.4583 -1.5292 1.1536
9 -0.6543 -1.7284 0.1375 0.2005 0.0344 -0.7245

1 0 -0.7663 0.6338 -1.1703 -0.8247 0.2691 -1.0837
1 1 -0.6306 0.5598 -0.4668 2.0894 -0.6019 2.4838
1 2 -0.9141 1.2013 -0.6685 1.0749 -1.8326 -0.8595
13 -0.3684 0.8630 0.3955 -0.4669 -0.6524 -0.3679
14 -0.7536 0.7869 -0.9123 -0.5245 0.1505 -0.9344
15 -0.5872 0.8218 -0.7100 -0.7970 1.8040 1.5797
16 -0.2360 0.8929 0.7489 -0.9329 0.4325 -0.1191
17 -0.0765 0.9235 1.3145 -0.7876 -0.2402 0 . 1 0 2 0

18 0.1423 0.9592 1.4890 0.9990 0.1442 -0.9852
19 -0.1114 1.2671 1.4681 0.2854 0.4646 -0.0914
2 0 0.6491 0.0651 -2.4635 -1.0747 -1.6915 0.5129
2 1 0.2561 0.7837 1.7701 -0.0068 -0.1368 -0.5180
2 2 1.1272 0.9796 -1.1434 1.2939 0.9515 0.7503
23 1.4993 0.0314 -0.3465 -0.7022 -1.3062 0.7082
24 1.4878 0.1154 0.3742 -0.7932 -0.8917 0.6810
25 1.8971 -0.0511 -0.4676 1.9595 1.3386 -1.5877
26 1.3184 -0.1367 0.2254 -1.0187 -1.3249 0.1062
27 1.3965 0.6655 -0.0657 0.5929 0.3765 0.7170
28 2.0416 -0.7388 -1.9935 -0.5486 1.2814 -0.8449
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Table 4-5: CCPA: Species Scores (Standardized Form: Mean = 0, SD =

Species Diml Dim 2 Dim3 Dim4 Dim5 Dim6

Ar-I -0.6913 0.9620 -1.0973 1.5969 0.1113 1.1018
Pa-L -0.6762 -2.5548 1.0037 -0.3359 -0.7031 -0.5241
Zo-s -0.6513 0.0298 -0.5823 1.4449 -1.0598 0.5209
Pa-n -0.5832 0.6254 -0.6738 -0.4404 0.6122 -0.4176
Pa-p -0.6035 0.8832 0.0818 -0.4277 -0.4371 -1.3998
Au-a -0.5995 0.5546 -0.0967 -1.5129 -1.1171 1.1684
Tr-t -0.5220 -0.4104 0.2618 0.3843 0.2883 -0.2868
Al-c -0.4805 0.0185 0.7858 -0.8298 1.8411 1.2281

Pa-m 0.1415 0.8376 1.6617 1 . 0 0 2 2 0.2425 -0.2734
Al-a 0.8860 0.3549 1.1386 -0.9710 -1.1417 0.1074
Al-f 1.6397 -0.3144 -0.9652 0.6755 -0.2649 0.6748
Ar-p 2.1401 -0.9863 -1.5180 -0.5861 1.6282 -1.8998
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IY.3 Canonical Correspondence A nalysis (CCPA) as Canonical Corre
lation Analysis (CCA)

In this section we will discuss the connection between canonical correspondence anal

ysis and canonical correlation analysis. This connection between CCPA and CCA 

is helpful in providing theoretical insight to CCPA. We will show how to generate 
all the results generated by canonical correspondence analysis by using canonical 

correlation analysis. As we mentioned earlier, CCA is an analysis of two sets of 
quantitative variables, where as, CCPA is an analysis of two sets of data of which 
one set is of qualitative in nature (e.g. species abundance data: m  different species 
observed at n  different sites) and the other one is quantitative (e.g. data on en

vironmental variables: q different environmental variables observed at n sites). To 
perform CCA on these data, we first create a matrix of indicator variables indicating 
in which category of species each of the N  individuals from the species abundance 

matrix Y nxm belong. Then we create a large matrix HjvX(m+g) by augmenting the 

environmental data matrix Znxg with the indicator matrix. Here N  = )TL ■ nij — n ..- 
Then we can calculate the canonical scores for different sites, called site scores, based 

on canonical coefficients of environmental variables. Next based on the site scores 
we will calculate the species scores. Finally, using the other information provided 

by CCA we will be able to create a graphical display of species abundance data and 
environmental data. We use the same Hunting Spider example for illustration.

IV .3.1 H unting Spider Exam ple

Let yu represents the abundance of the Ith species at the ith site, where i =  1 , . . . ,  n 
and I =  1 , . . . ,  m  and j  = 1 , . ..,</ is the value of the j th environmental variable 
at the ith site. Let N nxm =  (yu) denote the n  by m  matrix of species abundance 
and Znxq — (Zij) denote the n  by q data matrix of environmental data. Using the 
species abundance matrix N nxm we create an indicator variable matrix, indicating 

in which category of species each of N  individuals belong, and augment that matrix 
with the environmental data matrix Znxg. This would create an N  x (m + q) matrix, 

H N x ( m + q ) ,  where N  =  ]T \. riij = n .. A canonical correlation analysis is performed on 
this matrix by taking the indicator variable matrix as the data on one set of variables 

and the data on the environmental variables repeated so many times as the second
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data set. For example, if N 2 x2

H6x5 —

2 3
and Zox3 =

0 1

1 0 9 2 5.6
1 0 9 2 5.6
0 1 9 2 5.6
0 1 9 2 5.6

0 1 9 2 5.6
0 1 6.5 1 6 . 1

9 2 5.6
6.5 1 6.1

then we get

To perform CCA we use the estimated variance covariance matrices of y, z, and 
the covariance between y  and z. The estimated variance covariance matrices given 
in blocks

D y y yy ŷ
y z

- Z . ^ z y ^ z z

are obtained from absence/presence matrix, Hjvx(m+?)- They are given by

P . l ( l - P . l )  - P . I P . 2  ■■■ ~ P . l P . r n

- P . 1 P . 2  jP.2 ( 1  P . 2 )  - p . 2 P . r ny  — yy ~

-P.iPa -P.2P.T. ■ ■ ■ P.mi. 1 P.mi)

(4.3.1)

where p.i denotes the estimated probability of finding the i  species. The ( i ,  k )  

element of Y)yz is given by

\ t h

N
®ik N

and

y  1 zjkPji p.i y  ̂  zjkPj.
Lt=l 1 = 1

(4.3.2)

(4.3.3)

where Szz is the usual sample variance covariance matrix of environmental data,

N  =  E i  E ,? n i j ,  pij  =  7 f , P i .  =  Ij ^ , n i .  =  E j  n*j, P.j =  and n -j =  E i
n ni

In the following we use CCA approach on the Hunter Spider data and compute 

the species and sites scores. Canonical correlation coefficients resulted by canonical 
correlation analysis and their contribution towards the variance explained is shown 
in Table 4.6. It can be seen clearly from the Tables 4.6 and 4.1 that all the canonical
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correlation obtained by CCA is similar to what we get by CCPA. The first two canon
ical correlations capture approximately 8 8 % of the relationship between species and 
environmental variables. Species and site scores computed by canonical correlation 
analysis approach are shown in Table 4.7 and 4.8 respectively. Thus, species and site 

scores calculated by CCA and CCPA do not differ.
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Table 4-6: CCA Approach; Hunter Spider Data: Canonical Correlations

Cannonical Correlation Eigenvalue Percent Cumulative %
0.7341518 0.538978865 61.88304447 61.88304447
0.473724 0.224414428 25.76622003 87.64926449
0.2698241 0.072805045 8.359136364 96.00840086
0.1407824 0.019819684 2.275603876 98.28400473
0.1063434 0.011308919 1.298437407 99.58244214
0.0603057 0.003636777 0.417557858 1 0 0

Table ^.7: CCA: Species Scores (Standardized Form: Mean — 0, SD = 1)

Species Diml Dim2 Dim3 Dim4 Dim5 Dim6

Ar-I 0.6913 0.9620 -1.0973 -1.5969 0.1113 1.1018
Pa-L 0.6762 -2.5548 1.0037 0.3359 -0.7031 -0.5241
Zo-s 0.6513 0.0298 -0.5823 -1.4449 -1.0598 0.5209
Pa-n 0.5832 0.6254 -0.6738 0.4404 0.6122 -0.4176
Pa-p 0.6035 0.8832 0.0818 0.4278 -0.4371 -1.3998
Au-a 0.5995 0.5546 -0.0967 1.5129 -1.1171 1.1684
Tr-t 0.5220 -0.4104 0.2618 -0.3843 0.2883 -0.2868
Al-c 0.4805 0.0185 0.7858 0.8298 1.8411 1.2281

Pa-m -0.1415 0.8376 1.6617 -1 . 0 0 2 2 0.2425 -0.2734
Al-a -0.8860 0.3549 1.1386 0.9710 -1.1417 0.1074
Al-f -1.6397 -0.3144 -0.9652 -0.6755 -0.2649 0.6748
Ar-p -2.1401 -0.9863 -1.5180 0.5861 1.6282 -1.8998
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Table 4-8: CCA: Site Scores (Standardized Form: Mean = 0, SD = 1)

Site Diml Dim2 Dim3 Dim4 Dim5 Dim6

1 1.1158 -0.9066 0.3801 0.0755 0.2837 0.8169
2 0.6289 -1.4222 0.6536 -0.8009 -0.2028 -0.4257
3 0.6153 -1.6232 -0.0219 -1.2911 1.2458 -1.4878
4 0.6153 -1.6232 -0.0219 -1.2911 1.2458 -1.4878
5 1.0496 -0.8916 0.5568 0.3084 0.8261 0.9413
6 0.9283 -1.3203 0.3483 1.0637 0.5093 0.7142
7 0.9764 0.3872 -0.2516 0.4947 -0.9478 0.2506
8 0.7874 -1.4951 0.8415 1.4583 -1.5292 1.1536
9 0.6543 -1.7284 0.1375 -0.2005 0.0344 -0.7245

1 0 0.7663 0.6338 -1.1704 0.8247 0.2691 -1.0837
1 1 0.6306 0.5598 -0.4668 -2.0894 -0.6019 2.4838
1 2 0.9141 1.2013 -0.6685 -1.0749 -1.8326 -0.8595
13 0.3684 0.8630 0.3955 0.4669 -0.6524 -0.3679
14 0.7536 0.7869 -0.9123 0.5245 0.1505 -0.9344
15 0.5872 0.8218 -0.7100 0.7970 1.8040 1.5797
16 0.2360 0.8929 0.7489 0.9329 0.4325 -0.1191
17 0.0765 0.9235 1.3145 0.7876 -0.2402 0 . 1 0 2 0

18 -0.1423 0.9592 1.4890 -0.9990 0.1442 -0.9852
19 0.1113 1.2671 1.4681 -0.2854 0.4646 -0.0914
2 0 -0.6491 0.0651 -2.4634 1.0747 -1.6915 0.5129
2 1 -0.2561 0.7837 1.7701 0.0068 -0.1368 -0.5180
2 2 -1.1272 0.9796 -1.1434 -1.2939 0.9515 0.7503
23 -1.4993 0.0314 -0.3465 0.7022 -1.3062 0.7082
24 -1.4878 0.1154 0.3742 0.7932 -0.8917 0.6810
25 -1.8971 -0.0511 -0.4676 -1.9595 1.3386 -1.5877
26 -1.3184 -0.1367 0.2254 1.0187 -1.3249 0.1062
27 -1.3965 0.6655 -0.0657 -0.5929 0.3765 0.7170
28 -2.0416 -0.7388 -1.9935 0.5486 1.2814 -0.8449
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IV .4 Population Canonical Correspondence Analysis

The interest here is to provide population versions to the quantities used for canonical 

correspondence analysis. Consider

Site V i V2  • Um

1 P u P l 2  ■ P l m P i .

2 P21 P22 ■ P 2 m P2.

n P n l P n 2  ■ P n m Pn.

P . I P .  2 • • P.m.

where pij is the probability of finding the j th species at the ith site, p,j is the marginal 
probability of finding the j th species and p,. is the marginal probability of finding 

species at the ith site.

Following the ideas from Olkin and Tate (1961), we assume for a given site, 
vector of the environmental variables has multivariate normal distribution:

z |(site k) ~  N {nk  , S).

Variance covariance matrix of species and environmental variable (y, z) is then 
given by

where

y  _  ‘-‘yy ~

D
■y

1
M

\ .....

w

z. E lzy E zz

- P . i ) - P . l P .2

(4.4.1)

-P .1 P .2  p . 2 ( l ~ P . 2 )

- P . l P . m

~ P .2 P .r n

P . m (  1 P .m .)

(4.4.2)

P . l P . m  ~ P .2 P .r n

and 8ik, the covariance of ith species and kth environmental variable, that is, the 
(i, k)th element of Hyz, is given by

8ik =  E(yiZk) -  E(yi)E(zk), (4.4.3)
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where

E { V i z k)  = P ( y i  at Site =  1 ) E ( z k at Site =  1) +  b P { y i  at Site =  n ) E ( z k at Site =  n)

E ( y l Z k ) P l i P l k  P  P 2i P2k  ~b ' ‘ ' P  P n i p n k
n

E ( yiZk) =  ^  'jPjiPjk
3=1

E ( y i ) =  p . i
n

E(zk) = y  ̂ Pj.P'jk
3 = 1

Substituting E ( y i Z k ) ,  E ( y i ) ,  and E ( z k ) in equation 4.4.3 we get
n n

^  j P j i P j k  P. i  y  j Pj-P'jk- (4.4.4)
3=1 3=1

It is interesting to note that Sik is zero when site and species are independent of each
other, that is, when =  pi.p.j or when all the means of environmental variables are

equal, that is, (/i^ =  V Similarly the (i , j ) th element of Ezz, or
the covariance of i}h and j th environmental variable, can be computed using

n
E(ziZj) =  y  ^ ( z jZ ^ S i t e  — k)P(Site  =  k)

k = 1 
n

E ( . z i z j )  — y  j (.(-ri3 "b P k i P k j ) P k .
k = 1

n

E { Z i Z j )  — <^ij P  y  '  P'ki pkjPk.
k = l

n

C o v ( Z i , Z j )  =  ipi j =  Oij  +  HkiP'kjPk.  -  ^ 2 I P P P -  Vkj Pk .  (4.4.5)
fc=l k = 1 k = 1

Let Sfc=i P'kiPk. =  P . i  and Y l k = i  P k j P k .  — P . j -  Then equation 4.4.5 can be written as
n

Ipij ~  &ij  p  y  ^P k X P k i  P . i ) ( .P k j  Abj) (4.4.6)
k = 1

If we let M  =  {rriij) =  (/r^ — g.j), i =  1 , . . . ,  n; j  =  1 , . . . ,  q then equation 4.4.2, 
4.4.4 and 4.4.6 can be written as

Ew =  Diag(Pc) — P'CPC (4.4.7)

Eyz =  P'M (4.4.8)

E 22 =  E  +  M'Diag(Pr)M, (4.4.9)
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where P  =  (pu),i =  1 , . . . ,  n, I =  1 , . . . , m ,  Pc =  (p.i, . . . ,p .m) and Pr -  (px. , .. . ,p„.). 
We note that I S yz — 0.

Now doing canonical correlation analysis on variance covariance matrices of 
species and environmental variables (y, z) will result in canonical variables of 

species and environmental variables that are highly correlated. The set of, say 

v  =  (wi,. . .  ,vm) and w =  (uq, . . .  ,w q), canonical variables are the linearly trans

formed variables of y  and z. Canonical correlations are the square root of the eigen
values of 'Zyy^‘2T,yZT,^T,Zy'Eyy/2. Since Eyy is a singular matrix, some canonical co

efficients will be zero and a generalized inverse will be used to compute Eyy^2 ■ The 
canonical variables w is used to compute canonical scores. These canonical scores 
are called site scores. Species scores are calculated using site scores and is given by 

equation 4.2.7. All the population parameter are estimated by the corresponding 
sample counterparts.

We want to make an important remark about the equation 4.4.9 here. In the usual 

canonical correspondence analysis (CCPA) proposed by Ter Braak, E, the variance 

covariance matrix of environmental variables, is completely ignored due to lack of 
enough data to estimate it. Hence only the second part of the matrix Ezz, that is, 

MDtag(Pr)M' is used for the calculation of site and species scores. But in practice, 

E can be estimated using the historical data on the environmental variables and this 

estimate can be used for performing the above calculations.

IV .4.1 Som e Im portant Special Cases

As described above canonical correlations are the square root of the eigenvalues of 
Tiyj/2Ey z EzyYjyy^2. Since S yy is a singular matrix a generalized inverse could 

be used to compute E yy^2 ■ For the special case, when m  = 2,n = 2 and q > l a  
generalized inverse of T,yy, can be taken as

E,yy
0

P .I P .2 

0  0
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and the matrix B  — Tiyy ^ T lyzTiz}'Ezy'Eyy ^  is given byJy z LJz z  ^ z y ^ y y

y - l / 2 y
y y  v z

B

B

B  =

B  =

0
V P . l P .2  

0  0

P l l  -  P l .P .1  P21 -  P l .P .2  

P l 2  ~  P2.P .1  P22 -  P2.P .2

P l l

P21

Pig
p2q

PK

V p I p .2 
0

0

P l l - P l . p . l  P21  P 2 . P . 1  

y/P.lP.2 s/P.lP.2

0  0

P l l  -  Pi.P.I P21 -  P2.P.1
y / P . i P . 2  

0

P n  ~  P i .P . i
V P . l P . 2  

P21 ~  P2.P.1 q
VP-lP-2

P l l  ~  Pi.P.I P21
y / P . i P . 2

0

p n - p i . p . i  n  
y/P.lP.2 

P21—P2.P.1 Q 
y/P.lP.2

)

)

1

E 7 1
_  /i(2) _

ZZ P
( 1)' ^ ( 2 )'

P2.P.1
y / p . i p . 2

0

P (1)^ z z P { i y  P (1 )^ z z l P {2Y

P . lP .2

0

0

0

where M  =  [(pn  -  pi.p.i)p(1) +  (p2 i -  P 2. P . i ) p {2)]

0

Hence the eigenvalue of matrix B  is given by

\ 2

a  = {Pn -  , l(2)] £ « V 1) -  /*(2)]'.
P . l P .2

Note that when the two mean vectors are same or/and when the independence 
holds in the contingency table, i.e. p n  =  pi.p.i, the eigenvalue A =  0. In general for 

n  > 1 and the same choice for m  and q, matrix B  is given by

B
M S - XM '  0

P . i P . 2  

0  0

(4.4.10)

where

M  =  (p n  -  P l . p . l ) p {1) +  (p2l -  P2.P. i ) P {2) +  ■ ■ ■ +  (p„i -  P n . P . l ) p ( n)
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Note as before that if all the mean vectors are the same or/and when the conditional 
independence holds at each table then the eigenvalue will be zero. Although we have 
not pursued here, one can develop tests for testing the eigenvalues to be zero which 

would in turn test for independence or equality of the means.
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IV .5 Canonical Correspondence Analysis o f Longitudinal D ata

In this section we will discuss how to perform canonical correspondence analy

sis (CCPA) when we have repeated data. Suppose we have a fixed number n 

sites, m  species vector y  =  ( y i , y 2, ■ ■ ■ , y m) and q environmental variables vector 
z = (zi, z2, ■ ■ ■, Zg), that were observed at t time periods.

Site
Time Period 

P i  V2 ■■■ s
t-H 

5̂̂

II Time Period =  k Time Period 

P i  P2

= t

P m

1 P i l l P l2 1  ■ • ■ P l m l P u t P l 2 t  • ■ ■ P lm t P i . .

2 P211 P221 P 2 m l P 2 1 t P 2 2 t P 2 m t P2..

n P n l l Pn 2 1 P n m l P n l t P n 2 t  ■ ■ ■ P n m t P n ..

P . l l P .21  ■ • • P . m l P i t P .2 t  ■ ■ ■ P .m t 1

Here Pijk is the probability of finding j th species at ith site at kth time period, p,jk is 

the probability of finding j th species at kth time period and Pi., is the probability of 
finding species at ith site. Similarly we have a vector of the environmental variables, 

z =  (zi, z2, , Zg) observed over t time periods i.e. Z =  (z1; z2, . . . ,  zt). Assuming 

we have a repeated effect in both variables i.e. in both species abundance and 
environmental variables, we can proceed as follows.

In this case the variance covariance matrix of species and environmental variables 

(Y, Z) is given by

J( m + q ) t x ( m + q ) t  —

y  yL-lyy /..j.y z

E z y

where
Qtxt ® E 4 - M 'Diag{Pr)Nl

(4.5.1)

(4.5.2)

E.

P . l l ( l - P . l l )  - P . l l P . 2 1  

- P . l l P . 2 1  P .21 ( 1  P .2 l )

P . l l P .m t  

"P .21  P . m t

yy

P . l l P .m t  P .2 lP .m t  • • • P . m t ( l  P .m t)

(4,5.3)
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The covariance of Ith species at kth time period or overall m t  species categories and 
rth environmental variable at kth time period or overall qt environmental categories 
is given by (l ,r ) th element of T,yz.

n  n

dir =  ^ 2  ZjrkPjlk -  P.lk Y 2  zjrkPj.. I = I , . . .  ,mt\ r = l , . . . , q t .  (4.5.4)
3 = 1 3 =1

The estimates of Otxt ® £  can be obtained from the environmental data observed over 
t time periods by maximizing the log likelihood of multivariate normal function. See 
Naik and Rao (2001). We can then calculate the species and site scores as suggested 
in IV.3. After fitting the above variance-covariance relationship and calculating the 

species scores we can plot the species scores for all the time periods. If these profiles 
are homogeneous then we can take summary statistics of species scores and call it 
final species scores.

In the following example, we use simulated data to to illustrate the methods 

discussed in this section.

IV .6 A n Exam ple: Analysis o f Sim ulated D ata

A ( 6 x 4 ) ,  site by species, simulated contingency table is shown in Table 4.12. A 
simulated set of correlated multivariate normal data considered as data on environ
mental variables for 10 time periods is given in Table 4.13. To test the time effect 
on contingency table we can use the method as discussed in section III.4. The out
put of correlated linear model on Ai is shown in Table 3.15. The small p-value 
(p — val — 0 .0 0 2 0 ) suggest that there is a repeated effect in the contingency table. 
To test the repeated effect in simulated environmental data we can test

H0 : £* =  Itt ® £  Vs Ha : E* =  ® £,

The likelihood ratio test (LRT) as discussed in II.4 can be used to test above hypoth
esis. The result from LRT test statistics is shown in Table 4.11. The likelihood ratio 
test statistic is 30.320489 and we compare this with 1 degree of freedom chi-square. 
The small p-value (3.6624E - 8 ^ 0 )  concludes that there is a repeated effect in the 

environmental variables.

Hence we have to calculate the species and site scores as described in section
IV.5. In this example because of longitudinal study of environmental variables we
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have sufficient data to estimate the variance covariance structure of environmental 
variables. The resulted canonical correlation between species and environmental 

variables are shown in Table 4.9. The maximum and minimum canonical correlations 

are 0.130619 and 0.000071 respectively. The first two canonical variables capture 
approximately 98% of the relationship between species and environmental variables. 
Species and site scores after fitting the structure is shown in Tables 4.14 and 4.10. 

Species score profiles after fitting of the variance covariance structure is shown in 

Figure 4.2. These profiles can be used to get a better understanding of species scores 
at different time periods. As in this case Figure 4.2 suggests that the ranking of 

species 1 is higher as compared to other species for all the time periods. It can also 
be inferred from the species profile that score of 3rd specie is almost constant for all 
time periods.

IV .7 Concluding Remarks

In this chapter we have considered canonical correspondence analysis (CCPA) where 

the relationship between a set of qualitative and another set of quantitative variables 
is studied. After providing an introduction of the CCPA we show that this analysis 

can be performed using canonical correlation analysis (CCA) of a certain matrices. 
Next using this equivalence relation between CCPA and CCA, we provide a theoret
ical basis to CCPA which did not exist in the literature. Finally, we provide CCPA 
method for analyzing repeatedly observed data.

Table 4-9: Simulated Data Example: Canonical Correlations

Cannonical Correlation Eigen Value Percent cum %
0.130619 0.017061 91.01627101 91.01627101
0.035188 0.001238 6.604427847 97.62069885
0.015259 0.000233 1.242998133 98.86369699
0.013306 0.000177 0.9442518 99.80794879
0.00599 0.000036 0.192051214 1 0 0

0.000071 0 0 1 0 0
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Figure 4-2: Species Scores Profile After Fitting the Variance Covariance Structure.
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Table 4-10: Simulated Data Example: Site Scores

Site Diml Dim2
1 1.2198324 -0.561291
2 1.2199394 -0.479067
3 0.5770421 -0.501926
4 0.1992913 1.3983152
5 -0.764373 0.5793593
6 -1.466163 -1.28597

Table 4-11: Hypothesis Testing: Simulated Data

H ypo thesis C hi S quare  Test S ta tis tic s  D of p-value
H0 30.320489 1 3.6624£ - 8 ^ 0
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Table 4-12: Simulated Contingency table for 10 Time Period

Site Time Period = 1 Time Period =  2 Time Period =  3
Y 1 y 2 Y3 y 4 y i y 2 y 3 y4 y i y 2 y 3 y 4

1 69 93 63 50 69 94 62 49 53 85 48 37
2 62 93 59 44 61 94 58 44 46 85 45 31
3 62 104 70 65 61 105 70 65 46 97 55 49
4 77 140 83 93 77 135 82 94 60 1 2 1 64 85
5 40 96 59 84 40 97 58 83 28 89 45 6 6

6 24 76 59 76 24 76 58 76 16 59 45 59
Site Time Period = 4 Time Period =  5 Time Period =  6

Y 1 Y  2 Y3 y 4 y i y 2 y3 y4 y i y 2 y3 y 4
1 75 109 69 56 84 108 79 6 6 74 105 67 56
2 6 8 109 65 51 78 108 75 59 6 6 105 65 49
3 6 8 119 76 71 78 118 87 81 6 6 117 75 69
4 85 145 89 109 94 151 98 108 82 148 8 6 105
5 47 1 1 1 65 90 56 1 1 1 75 1 0 1 45 108 65 8 8

6 29 83 65 83 37 93 75 93 31 81 65 81
Time Period = 7 Time Period =  8 Time Period =  9

Y 1 Y  2 y3 y 4 y i y 2 y 3 y4 y i y 2 y 3 y 4
1 80 1 1 0 74 61 74 1 0 0 67 55 79 103 71 60
2 72 1 1 0 70 57 65 1 0 0 63 50 71 103 6 8 54
3 72 1 2 2 80 75 65 1 1 2 74 6 8 71 114 80 73
4 89 168 94 1 1 0 81 164 85 1 0 0 8 6 159 92 103
5 50 113 70 94 46 103 63 87 50 106 6 8 93
6 36 87 70 87 32 80 63 80 35 84 6 8 84

Time Period = 1 0

Y 1 Y  2 y 3 y 4
1 94 1 1 0 8 8 75
2 87 1 1 0 83 6 8

3 87 1 2 1 96 90
4 103 166 107 1 1 0

5 65 1 1 2 83 109
6 47 1 0 2 83 1 0 2
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Table 4-13: Simulated Environmental Variables for 10 Time Period

Site Time Period =  1 Time Period =  2
Z l Z  2 Z3 Z4 Z l Z 2 Z3 Z4

1 -0.333 -0.209 0.854 0.050 -0.568 -0.662 0.170 1.584
2 -1.263 -0.170 0.650 0.789 -1.247 0.724 0.403 0.358
3 0.186 -0.190 -0.477 0.470 -1.239 0.842 0.434 0.314
4 -0.804 -1.940 -1.168 -0.323 0.436 -1.431 -0.238 0.169
5 0.049 0.375 0 . 6 6 6 1.520 0.080 -0.462 -0.399 -0.244
6 -0.986 1.256 1.080 0.856 0.276 1.265 1.180 0.241

Site Time Period =  3 Time Period =  4
Z1 Z  2 Z  3 Z4 Z l Z 2 Z3 Z4

1 0.313 -0.986 -0.861 -0.450 0.342 0.779 0.154 0.912
2 -1.860 0.123 -0.173 -0.644 -1.229 0.346 0.744 0.629
3 0.156 0.695 -0.531 0.311 -1.296 0.294 -0.742 1 . 2 0 0

4 0.106 -0.896 0.235 -1.537 -0.127 -0.261 0.148 - 1 . 0 2 2

5 0.182 -0.437 -1.296 0.116 1.416 0.139 -0.106 1.061
6 -0.095 -0.669 0.632 -0.857 -0.123 -1.573 0.318 -0.834

Site Time Period =  5 Time Period =• 6

Z l Z  2 Z3 Z4 Z l Z  2 Z3 Z4
1 -1.397 -1,371 -1.506 -0.850 -0.428 -1.580 -1.762 -0.950
2 -1.904 -0.408 -0.182 0.935 1.439 1.143 0.948 -0.054
3 -1.058 -0.753 -0.153 0.669 -0.693 0.096 -0.028 0.306
4 0.344 0.783 0.592 1.097 0.745 -0.307 0.007 0.771
5 1.382 -0.396 0.451 -0.157 0.440 -1.008 0.217 -0.678
6 -1.028 0.098 1.421 -0.643 -2.240 -2.199 0.499 0.591

Site Time Period =  7 Time Period =  8

Z l Z  2 Z  3 Z4 Z l Z 2 Z3 Z4
1 1.069 0.109 -0.343 2 . 2 2 0 1.158 -0.437 0.182 -0.143
2 -0.186 -0.085 1.648 0.869 -0.137 -0.424 0.509 0.938
3 -0.480 -0.656 0.117 0.802 -0.800 0 . 1 2 0 0.515 -0.041
4 1.508 1.236 0.487 0.932 0.839 1.042 -0.104 -0.103
5 0.437 0.014 -1 . 1 0 0 0 . 0 1 0 0.738 -0.588 -0.718 -0.637
6 -0.132 1.197 1.313 1.759 0.880 0.631 1.024 1.283

Site Time Period =  9 Time Period =  10
Z l Z  2 Z3 Z4 Z l Z 2 Z3 Z4

1 0 . 6 6 8 0.405 0.171 0.062 -0.019 1.795 2.061 -0.449
2 0.037 0.143 1.233 0.386 0.577 0.834 0.963 0.116
3 -0.862 -0.390 -0.285 0.297 -0.291 0.047 1.186 0.593
4 -0.269 0.082 0.372 -0.186 1.572 0.678 1.592 0.205
5 0.134 -0.291 -0.812 -1.961 0.679 0.273 0.353 0.086
6 1.087 0.098 -0.778 0.460 -0.179 -1.424 -1.414 -0.719
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Table 4 -H : Simulated Data Example: Species Scores

Site Diml Dim2
YI 3.327406 0.0366452
Y2 1.6533054 0.22165
Y3 1.4446456 -1.763773
Y4 -0.091516 -0.054695
Y5 3.3060126 0.1208377
Y6 1.6720557 -0.154116
Y7 1.4552013 -1.760965
Y 8 -0.09651 0.0406095
Y9 3.5176559 0.5331461
Y10 1.8987538 0.4119444
Y ll 1.4593547 -1.732534
Y12 -0.205689 1.8258446
Y13 3.1318553 -0.000828
Y14 1.777647 -0.538074
Y15 1.4289463 -1.95384
Y16 0.045522 0.3905538
Y17 2.945997 -0.489913
Y18 1.5609583 -0.648671
Y19 1.4138317 -2.318864
Y20 0.1084241 -0.896651
Y21 3.0573451 -0.422625
Y22 1.7510877 -0.111497
Y23 1.3837949 -2.154246
Y24 0.0479367 0.2603134
Y25 2.9492438 -0.599125
Y26 1.707198 0.5135694
Y27 1.4111945 -2.062872
Y28 0.154055 -0.164113
Y29 2.976622 -0.51178
Y30 1.6876132 1.1155571
Y31 1.4334355 -2.09477
Y32 0.0602423 -0.103159
Y33 2.9599476 -0.708904
Y34 1.654596 0.4819819
Y35 1.4110358 -2.033619
Y36 0.1225163 -0.38352
Y37 2.7411247 -0.992219
Y38 1.4453846 -0.367862
Y39 1.4203872 -2.440335
Y40 0.2132843 -1.746722
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CHAPTER V 

CA FOR HIGHER DIMENSIONS

V .l  Introduction

Although canonical correlation and other methods discussed in the previous chapters 
are general methods, their utility when dealing with really large data sets have not 
been well studied. In this era of internet, genomics, and proteomics, information 
available in the form of data are explosive in nature. Hence it is important that we 
look at analysis of at least some of such large data sets using some of the methods 
we have studied thus far.

In this chapter, we work with a high dimensional data set in the field of language 
processing. The data are in the form of contingency tables and usually very sparse 
in nature. We will use correspondence analysis to analyze these data and compare 

its performance with a well established method in this are named latent semantic 
analysis (LSA).

In the next section, we will review latent semantic analysis (LSA) which is a 

popular method of analysis of the data among the practitioners in natural language 
processing. In Section 3 we show that a correspondence analysis can be used for this 
purpose. We compare the two methods in Section 4 and provide some guidelines on 
which method is better in what situation.

V.2 Latent Sem antic Analysis

Latent semantic analysis (LSA) is a technique in natural language processing, in 
particular in vectorial semantics, invented by Deerwester, Dumais, Furnas, Landauer 
and Harshman (1990). LSA analyze relationships between a set of documents and 
the terms they contain by producing a set of concepts related to the documents and 
terms. It is a fully automatic mathematical/statistical technique for extracting and 

inferring relation of expected contextual usage of words in passages of discourse. It 
is not a traditional language processing or artificial programme. It uses no humanly 
constructed dictionaries. It takes as its input only the raw text parsed into words
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defined as unique character strings and separated into meaningful passages or samples 
such as sentences or paragraphs (Landauer, Foltz and Laham, 1998). The underlying 
idea is that the totality of information about all the word contexts in which a given 
word does and does not appear provides a set of mutual constraints that largely 
determines the similarity of meaning of words and set of words to each other. In one 

sense it can be said that LSA represents the meaning of a word as a kind of average 

of the meanings of all the passages in which it appears, and the meaning of a passage 
as a kind of average of the meaning of all the words it contains.

In LSA the first step is to represent the text as a matrix, called term-document 
matrix, in which each row stands for a unique word and each column stands for a 
text passage or other context. Each cell of this matrix contains the frequency with 
which a word in its row appears in the passage denoted by its column. If we represent 
such a matrix by A then

A =

where denotes the frequency in which the ith term occurs in the j th document. 

Since every word does not normally appear in each document, the matrix A is usually 
quite sparse. Next, the cell entries are subjected to a preliminary transformation in 
which each cell frequency is weighted by a function that expresses both the word’s 

importance in the particular passage and the degree to which the word type carries 
information in the domain of discourse in general. Thus, is represented as

aij = L(i,j)G (i),

where L (i, j )  is called local weighting for term i in document j ,  and G(i) is called 
global weighting for term i. Some popular local and global weighting schemes are 
given in Tables 5.1 and 5.2 respectively.

where
1  if a,ij > 0

0  if a 0

pi;i = probability of the ith term in the j th document and ndocs =  Total number of 

documents in the collection. It has been seen in practice that LogEntropy weighting 

scheme,
_ (  PijlogiPij) \

V log(ndocs) Jaij ~  log (aij +  1 ) x
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Table 5.1: Formulas for Local Term Weights

Sym bol N am e F orm ula
b Binary, Salton and McGill (1983)

I Logarithmic, Harman (1992)

n  Aug. normalized term frq, Salton and 
McGill (1983); Harman (1992)

Term Frequency, Salton and McGill 
(1983) ________

5 (a^j) 

log(l + a i:j)

S(aij) +  (max a kjk

a,13

is the best. Next, LSA involves determining the singular value decomposition (SVD) 

of the matrix A as
A =  U S V ',

where it is well known that any rectangular matrix can be so decomposed perfectly, 

using no more factors than the smallest dimension of the original matrix. When 

fewer than the necessary number of factors are used, the reconstructed matrix is 
a least-squares best fit. One can reduce the dimensionality of the solution simply 
by deleting coefficients in the diagonal matrix, ordinarily starting with the smallest. 

Thus k-dimensional best fit of A would be

A k =  UkEkV'

The truncated SVD captures most of the important underlying structure in the 
association of terms and documents, yet at the same time removes the noise or 

variability in word usage. The result of the SVD is a k-dimensional vector space 
containing a vector for each term and each document. Finally term and document 
vectors are plotted in A;—dimensional space on the same graph.

One can interpret the analysis performed by SVD geometrically. The location 
of term vectors reflects the correlations in their usage across documents. Similarly, 
the location of document vectors reflects correlations in the terms used in the docu
ments. In this space the cosine or dot product between vectors corresponds to their
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Table 5.2: Formulas fo r  Global Term Weights

Sym bol N am e F orm ula

e Entropy, Dumais (1991) -| ( y-' Pijlog(pij) \  
V J log(ndocs) /

/ Inverse document frequency (IDF), Dumais 
(1991); Salton and McGill (1983) ^ ( EX ) ) +1

9 Gfldf, Dumais (1991) E j a°ij 
E j 6{oij)

n Normal, Dumais (1991)
V 4

V Probabilistic Inverse, Salton and McGill 
(1983); Harman (1992)

(  ndocs-E ,M(ai7-)\ 
9 V E, 5(atJ) )

estimated semantic similarity. Thus, by determining the vectors of two pieces of 
textual information, we can determine the semantic similarity between them.

V.3 I llu s tra tio n  of LSA

In this section we will explain LSA technique through examples.

V .3.1 E xam ple  1

This example uses 17 book titles from book reviews published in the SIAM Review, 
Volume 54. All the underlined words in Table 5.3 denote keywords used as referents 
to the book titles. The parsing rule used for this example required that keywords 
appear in more than one book title.

The term-document matrix A i6 xi7 , corresponding to text in Table 5.3, is shown in 
Table 5.4. The elements of this matrix are the frequencies in which a term occurs in a 
document or book title. For example, in book title B l, the first column of the term- 
document matrix A 1 6 xi7, the terms equations and integral occur once. Transforming
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Table 5.3: Database of Titles from Books Received in SIAM Review

Label T itle
B1
B2
B3

B4
B5

B6

B7

B8

B9
BIO
B ll

B12
B13

B14
B15

B16

B17

A course on Integral Equations
Attractors for semigroups and Evolution Equations
Automatic Differentiation of Algorithm: Theory,
Implementation, and Application
Geometrical Aspects of Partial Differential Equations
Ideals, Varieties, and Algorithms - An Introduction to
Computational Algebraic Geometry and Commutative
Algebra
Introduction to Hamiltonian Dynamical Systems and 
the A-—Body Problem
Knapsack Problems: Algorithms and Computer
Implementations
Methods of Solving Singular Systems of Ordinary
Differential Equations
Nonlinear Systems
Ordinary Differential Equations
Oscillation Theory for Neutral Differential Equations 
with Delay
Oscillation Theory of Delay Differential Equations 
Pseudodifferential Operators and Nonlinear Partial 
Differential Equations
Sine Methods for Quadrature and Differential Equations 
Stability of Stochastic Differential Equations with Re
spect to Semi-Martingales
The Boundary Integral Approach to Static and Dynamic 
Contact Problems
The Double Mellin-Barnes Type Integrals and Their 
Applications to Convolution Theory
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the elements of term-document matrix A i6 Xi7 according to LogEntropy weighting 
scheme we get transformed matrix A i6xi7 , truncated to one decimal place, as shown 
in Table 5.5. Next, SVD decomposition of transformed matrix A i6 xi7 gives

L16xl7

Now choosing k = 2, the truncated SVD 
rank-2 approximation A 2

U l S x k ^ k x k ^ k x l 7

of the transformed matrix A 1 6 x l 7 will give

A ~  A 2 — U2S 2V2,

where U2 =

r ’ 0.1771327 0.0387424
0.0072051 0.4077252

0.1698369 -0.048172
0.0121796 0.3464152

0.0352476 0.6100063
0.1219809 0.1798224

0.324861 -0.117421
0.6134575 -0.09226

0.0017018 0.1781205
0.7228448 -0.10095

0.013891 0.0936102
0.0061875 0.3073185

0.0031065 0.3279531
0.0405602 0.237913

0.3558455 -0.165735
0.0025155 0.0890314

V2 = 0.0219.399 -0.03182
0.1099096 -0.093971

0.3254413 -0.121073
0.0574432 -0.054779

0.378056 0.2744157
0.1099096 -0.093971

0.378056 0.2744157
0.1219809 0.1798224

0.3341281 -0.135369
0.1063124 -0.082826

0.3254413 -0.121073
0.0045159 0.2143652

0.30771 -0.090284
0.0704532 -0.037973

0.0081081 0.1652258
0.1605313 0.6296756

- _ 0.0402492 0.447279

and
" 5.3477028 0 

0 2.633105

Using the first column of U2 multiplied by first singular value, ay, for the 

x —coordinates and the second column of U2 multiplied by second singular value, 
cr2, for the y —coordinates, the terms can be represented on the Cartesian plane. 
Similarly, the first column of V2 scaled by oy are the x —coordinates and the second 
column of V2 scaled by a2 are the y—coordinates for the documents. Figure 5.1 is a 
two-dimensional plot of the term-document matrix Ax6xl7.
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Table 5-4: 16 x 17 Term-Document M atrix

Terms Documents
B1B2B3B4B5B6 B7B8 B9BIOB ll B12B13B14B15B16B17

Algorithms 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0

Application 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Delay 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0

Differential 0 0 0 1 0 0 0 1 0 1 1 1 1 1 1 0 0

equations 1 1 0 1 0 0 0 1 0 1 1 1 1 1 1 0 0

implementation 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0

integral 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

introduction 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0

methods 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0

nonlinear 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0

ordinary 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0

oscillation 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0

partial 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0

problem 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0

systems 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0

theory 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1

Table 5.5: LogEntropy Weighting Scheme 4̂ i6 xi7 Term-Document Matrix

Terms Documents
Algo 0 . 0 0 . 0 1 . 0 0 . 0 1 . 0 0 . 0 1 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0

App 0 . 0 0 . 0 0.9 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0.9
Delay 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0.9 0.9 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0

Diff 0 . 0 0 . 0 0 . 0 1 . 2 0 . 0 0 . 0 0 . 0 1 . 2 0 . 0 1 . 2 1 . 2 1 . 2 1 . 2 1 . 2 1 . 2 0 . 0 0 . 0

eq 1.3 1.3 0 . 0 1.3 0 . 0 0 . 0 0 . 0 1.3 0 . 0 1.3 1.3 1.3 1.3 1.3 1.3 0 . 0 0 . 0

impl 0 . 0 0 . 0 0.9 0 . 0 0 . 0 0 . 0 0.9 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0

int 1 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 1 . 0 1 . 0

intro 0 . 0 0 . 0 0 . 0 0 . 0 0.9 0.9 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0

metd 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0.9 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0.9 0 . 0 0 . 0 0 . 0

non 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0.9 0 . 0 0 . 0 0 . 0 0.9 0 . 0 0 . 0 0 . 0 0 . 0

ord 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0.9 0 . 0 0.9 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0

osc 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0.9 0.9 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0

par 0 . 0 0 . 0 0 . 0 0.9 0 . 0

oo

0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0.9 0 . 0 0 . 0 0 . 0 0 . 0

prob 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 1 . 0 1 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 1 . 0 0 . 0

sys 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 1 . 0 0 . 0 1 . 0 1 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0

theory 0 . 0 0 . 0 1 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 1 . 0 1 . 0 0 . 0 0 . 0 0 . 0 0 . 0 1 . 0
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Since the initial data are in the form of a contingency table, we can adopt corre
spondence analysis to get a two-dimensional representation of terms and documents. 

The correspondence matrix -P(^r) can be calculated easily. The coordinates for the 
16 term profiles and 17 document profiles in 2-dimensional space are given by F i 6 X 2 

and G i7><2 respectively.

r 1 * -0.0144 -0.5753 "
1.7175 0.106

-0.7533 -0.1281
1.089 -1.3636

1.2748 -0.876
-0.5192 -0.9361

-0.8482 0.1055
-0.7661 -0.0243

1.7677 1.0284
-0.696 -0.1051

1.0938 1.5674
1.6195 -0.4677

1.7174 0.1085
0.6694 -0.839

-0.645 0.5772
1.5487 1.5817

Gi7x2 — -0.2832 1.912
-0.7886 0.4249

-0.8121 0 . 1 2
-0.5829 1.4899

-0.4796 -0.7681
-0.7886 0.4249

-0.4796 -0.7681
-0.5192 -0.9361

-0.7939 0.5331
-0.8887 0.3891

-0.8121 0 . 1 2
1.4229 0.6288

-0.7913 -0.0788
0.0597 1.6479

1.1324 -0.1281
0.2849 -1.1499

L - 0.7373 -1.3619 _

Figure 5.2 is a two-dimensional plot generated by correspondence analysis of the 
term-document matrix A i6 x17 .

Note that in Figure 5.1 documents ( BIO, B14, B15, B13 ) and terms pertaining to 
differential equations are clustered around the x —axis. Similarly we can see that B ll  
and B12 form a cluster. Such grouping suggest that subset of book titles contains 
titles similar in meaning. Similar things can be seen in Figure 5.2 as well.
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V.3.2 Example 2

In Chapter 3 we have shown correspondence analysis of Parents’ socioeconomic status 

on children’s mental health. See details in III.2.1. Latent semantic analysis (LSA) 

can also be used to analyze these data. In the following we will provide a two 
dimensional representation of parent’s socioeconomic status and children’s mental 
impairment using LSA. First transforming the data given in Table 3.1 according to 

LogEntropy weighting scheme we get

A 6 x 4 —

8.2434487 8.9928529 8.0521928 7.6031504

7.9736259 8.9425983 7.8693324 7.292464
8.0217832 9.2130581 8.277053 8.121414
8.463827 9.7764036 8.5945178 8.9834729
7.0574758 8.9612387 7.8322626 8.5400093
5.9968356 8.2970273 7.7745028 8.2970273

Next, truncated SVD decomposition of transformed matrix A 6 x 4  in two dimension 

gives
a 2 =  u 2 e 2v '

where Uo

and

0.4075903

A «

-0.417695

0.3977873 -0.425438
0.417101 -0.146411
0.444232 -0.020594

0.4023228 0.3591943
0.377434 0.7026044

V2 =

0.4641468 -0.752015 
0.5484784 -0.032818 

0.4896015 0.0919584
0.4939936 0.6518749

040.375905
0 1.9094061

The co-ordinates of parent’s socioeconomic status and children’s mental impairment 

in two-dimensional space is shown in Table 5.6. Figure 5.3 is a two-dimensional plot 
generated by latent semantic analysis (LSA) of the socioeconomic status by mental 
health of children data.

It is interesting to note that categories are ordered in socioeconomic status by 

mental health of children data and the order is maintained in both two-dimensional 

representation, i.e, in Figure 3.1 and 5.3. The point corresponding to status category 
6  (low status) is closest to IMPAIRED, followed by other categories in a decreasing
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Table 5.6: LSA: 2-Dimensional Coordinates of Socioeconomic Status by Mental 
Health of Children Data

Label Diml Dim2
1 16.4568 -0.79755
2 16.061 -0.81233
3 16.8408 -0.27956
4 17.9363 -0.03932
5 16.2441 0.68585
6 15.2392 1.34156

WELL 18.7403 -1.4359
MILD 22.1453 -0.06266

MODERATE 19.7681 0.17559
IMPAIRED 19.9454 1.24469

order. Similarly, point corresponding to the status 1 (High) is closest to the point 

corresponding to WELL, followed by other status categories in the increasing or
der. The points representing the status categories 1 and 2 form a cluster in both 

two-dimensional representation. Hence these categories may be clubbed together to 
form one group. The categories corresponding to the mental status of children also 

follow an order from IMPAIRED to WELL. The two middle categories are quite 
close to each other, but there is a clear distinction between the other categories. 

This is captured by more in latent semantic analysis (LSA) representation than by 

correspondence analysis representation.

V .4 Correspondence A nalysis o f High D im ension D ata

In section V.3 we have seen that data given in the form of contingency table can be 
analyzed by both correspondence analysis (CA) and latent semantic analysis (LSA). 
We can get two types of graphical representation of the same data and it is generally 
difficult to decide which one is better. Interpretation of graphical representation of 

the given data in the form of contingency table is very subjective. Taking the data 
from information retrieval area we will provide ceratin analysis to decide on which 
of the two representation is better.

There is now a huge amount of information stored in electronic format. This
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includes books, newspapers, magazines, academic journals, web sites and on-line 
databases. The World Wide Web (WWW) has made this electronic information 

accessible to a large number of people. The purpose of an Information Retrieval 
(IR) system is to help people find relevant information when they request it. The 
objective of correspondence analysis (CA) and latent semantic analysis (LSA) is to 

represent the relationship between the categories, in this case various terms (£*) in 

different documents (dj), of two variables in lower dimensional space. If we can 
retrieve more relevant documents for a given query in the low dimensional space 
using, say correspondence analysis (CA) then we can say it is better than latent 

semantic analysis (LSA).

For the purposes of information retrieval, a query must be represented as a vector 

in low dimensional space and compared to documents. A query or pseudo-document 
is a set of words. Let X  be term-document matrix. Then according to latent semantic 

analysis (LSA), A;—dimensional space is given by SVD decomposition of matrix X 
and taking A;—largest singular triplets.

X ~ X  =  T txkY,kxkD kxd (5.4.1)

Here T tXfc : term coordinates in A;—dimensional space and DfcX(j : document coordi
nates in A;—dimensional space. Query can be represented by equation 5.4.2 as given 

by Deerwester, Dumais, Furnas, Landauer and Harshman (1990).

D g =  q T  txk^kxki  (5.4.2)

where q is simply the vector of words in the query. Thus, the query vector is a
weighted sum of its constituent term vector. The query vector can then be compared
to all existing document vectors, and documents ranked by their similarity to the 
query. One measure of similarity is the cosine between the query vector and document 

vector. For example, suppose we are interested in the documents that pertain to 
application theory in Example 1 of section V.3. Query representation in 2-dimensional

R e p r o d u c ed  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



79

space is given by equation 5.4.2

0

/
0.0072051 0.4077252

1 0.0121796 0.3464152
0 0.1219809 0.1798224
0 0.6134575 -0.09226
0 0.7228448 -0.10095
0 0.0061875 0.3073185
0 0.0405602 0.237913
0 0.0025155 0.0890314
0 0.1099096 -0.093971
0 0.0574432 -0.054779
0 0.1099096 -0.093971
0 0.1219809 0.1798224
0 0.1063124 -0.082826
0 0.0045159 0.2143652
0 0.0704532 -0.037973
1 0.1605313 0.6296756

5.3477028 0 
0 2.633105

- l

D g =  [0.0323,0.3707],

The two-dimensional representation of query vector is shown in Figure 5.4. This 
query vector is then compared to all the documents in the database and ranked 
based on their cosine. This is shown in Table V.4.

Similarly in correspondence analysis query or pseudo-document can be repre

sented by equation 5.4.3
=  q T)r 1A tXkAk^k. (5.4.3)

Query coordinates in two-dimensional space is given by

D 9 =  [34.6565, -61.42546]

and ranking of documents based on their cosine is shown in Table V.4.

The performance of information-retrieval, as discussed by Berry and Browne 

(2005), is often summarized in terms of two parameters: precision and recall.
Recall is the proportion of all relevant documents in the collection that are retrieved
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by the system, that is,

« = ^ ,  (5-4.4)

where Docr is the number of relevant documents retrieved and N r is the total num
ber of relevant documents in the collection. Precision is the proportion of relevant 

documents in the set return to the user, that is,

„  D o C r

P = D ^ ’ <5-4 5 >

where Doct is the total number of documents retrieved. Precision is calculated for 
several levels of recall, and averaged over queries. For our purpose of compari

son between latent semantic analysis (LSA) and correspondence analysis (CA) we 
have taken MED collection. The Medline (also referred to as MED, MEDLARS or 
MED1033) was the commonly studied collection of medical abstracts. It consists 
of 1033 documents and 30 queries and frequently used in the IR literature. Some 
characteristics of the MED dataset are shown in Table V.4. The number of unique 
terms can vary somewhat because different term-processing algorithms were used 

in the different systems. In our case we have counted only those terms which oc

cur in more than one document and not on SMART’S stop list of common words. 
Stop lists are lists of words that have little or no value as a search item. SMART’S 
stop list is a list of word developed by SMART system at Cornell University (see 

ftp: /  /  ftp.cs.cornell.edu /  pub/sm art /  english.stop).

Each cell of Table 5.10 shows average precision of correspondence analysis (CA) 
method, average taken over all 30 queries, for a given Doct- The last column of 
Table 5.10 represent average precision (Avpqd), averaged over all 30 queries and 9 
level of Doct. Similarly Table 5.11 shows average precision of latent semantic anal
ysis (LSA) method. Figure 5.5 shows average precision as a function of dimension 
for latent semantic analysis (LSA) and correspondence analysis (CA). For the low
est level of dimension, precision of correspondence analysis (CA) method lies well 

above that obtained with latent semantic analysis (LSA). But for high dimensional 
space, precision of latent semantic analysis (LSA) method is above than that obtained 

with correspondence analysis (CA). Thus, latent semantic analysis (LSA) captures 
some structure in the data in high dimensional space which is obscured when corre
spondence analysis (CA) is used. Similarly correspondence analysis (CA) performed 
better in representing the structure of data in lower dimension than latent semantic 
analysis (LSA). Figure 5.6 and 5.7 shows precision-recall curves where precision is
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plotted as a function of recall (from 0.1 to 0.9) for dimension 250 and 500 respectively. 
These data represent average data from the 30 queries available with the MED col
lection. These are typical precision-recall curves, with precision decreasing as recall 

increases. The important thing to notice is the difference between latent seman
tic analysis (LSA) and correspondence analysis (CA) methods. In 500-dimensional 
space latent semantic analysis (LSA) representation results in better performance in 
the discrimination of relevant from irrelevant documents. Similarly it can be said for 

correspondence analysis (CA) in 200-dimensional space.

V .5 Concluding Remarks

In this final chapter we have assessed the performance of correspondence analysis 

as compared to a method named, latent semantic analysis, which is especially use
ful for analyzing high dimensional sparse contingency table data. Our comparison 
concludes that correspondence analysis (CA) can be very useful method even for 
high dimensional data when the representation is sought on a smaller dimensional 

subspace.
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Figure 5.1: LSA: Two-Dimensional Plot of Terms and Documents.
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Figure 5.3: LSA: Two-Dimensional Plot of Socioeconomic Status by Mental Health 
of Children Data.
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Figure 5.4: LSA: Two-Dimensional Plot of Query Vector.
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Table 5.7: LSA: Ranked Docum ents Based on their Cosine

Document Cosine
B16 0.9999227
B3 0.9995526
B5 0.9977227
B7 0.9977114
B17 0.9955983
B6 0.9788947

B ll 0.4170113
B12 0.4170113
B1 0.192965
B2 -0.051833

B15 -0.056541
B4 -0.089106

BIO -0.094128
B14 -0.094128
B13 -0.109775
B8 -0.138082
B9 -0.508324
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Table 5.8: CA: Ranked Documents Based on their Cosine

Document Cosine
B17 0.9998468
B3 0.8982405
B1 0.8584114

B16 0.5861591
B ll 0.478505
B12 0.478505
B7 0.4355108
B5 -0.01321
B2 -0.338412

B15 -0.402618
B6 -0.433028
B4 -0.595136
BIO -0.613468
B14 -0.613468
B13 -0.893458
B9 -0.933531
B8 -0.946973

Table 5.9: Characteristics of MED Dataset

Number of Documents 1033
Number of Indexing Terms 5478

Percentage of Nonzero entries in Matrix 0.91
Number of Queries 30

Number of Queries of relevant documents 696
Avg. No of Relevant Document per Query 23
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Table 5.10: Average Precision of Correspondence Analysis (CA) for  MED Dataset

Dimension
60 1 2 0

Documents Retrieved (Doct)
180 240 300 360 420 480 540 600

Avpqd

1 0 0.60 0.61 0.59 0.56 0.54 0.51 0.51 0.50 0.49 0.48 0.54
2 0 0.72 0.70 0.69 0.65 0.63 0.63 0.60 0.60 0.58 0.56 0.64
30 0.77 0.75 0.72 0.70 0.69 0 . 6 6 0.65 0.64 0.62 0.61 0 . 6 8

40 0.77 0.76 0.76 0.76 0.74 0.71 0.70 0 . 6 8 0 . 6 6 0.65 0.72
50 0.78 0.79 0.76 0.74 0.75 0.73 0.72 0.69 0.67 0.65 0.73
60 0.83 0.80 0.78 0.73 0.72 0.72 0.71 0.69 0.67 0 . 6 6 0.73
70 0.78 0.78 0.77 0.74 0.74 0.73 0.72 0.70 0 . 6 8 0.65 0.73
80 0.80 0.80 0.76 0.74 0.73 0.70 0.70 0 . 6 8 0 . 6 6 0.64 0.72
90 0.80 0.80 0.77 0.72 0.71 0.70 0 . 6 8 0 . 6 6 0.64 0.63 0.71

1 0 0 0.82 0.75 0.73 0.71 0.72 0.70 0 . 6 8 0.65 0.63 0.62 0.70
150 0.80 0.75 0.71 0.67 0 . 6 6 0.65 0.64 0.63 0.61 0.59 0.67
2 0 0 0.70 0 . 6 8 0.67 0.64 0.63 0.63 0.60 0.57 0.56 0.54 0.62
250 0.70 0.67 0.64 0.62 0.60 0.58 0.57 0.56 0.54 0.52 0.60
300 0 . 6 8 0 . 6 6 0.61 0.59 0.56 0.54 0.53 0.51 0.49 0.48 0.57
350 0.63 0.58 0.59 0.57 0.54 0.51 0.50 0.48 0.46 0.46 0.53
400 0.62 0.58 0.56 0.53 0.53 0.50 0.48 0.48 0.47 0.45 0.52
450 0.58 0.58 0.55 0.52 0.51 0.49 0.47 0.46 0.45 0.43 0.50
500 0.58 0.57 0.54 0.52 0.49 0:48 0.46 0.45 0.44 0.43 0.50
550 0.62 0.58 0.54 0.50 0.50 0.48 0.46 0.44 0.43 0.41 0.49
600 0.60 0.54 0.53 0.51 0.49 0.46 0.45 0.43 0.42 0.40 0.48
650 0.58 0.53 0.51 0.50 0.48 0.46 0.44 0.42 0.40 0.38 0.47
700 0.60 0.55 0.50 0.49 0.47 0.46 0.43 0.41 0.39 0.38 0.47
750 0.55 0.53 0.51 0.47 0.46 0.44 0.41 0.39 0.38 0.37 0.45
800 0.55 0.53 0.47 0.44 0.44 0.43 0.40 0.38 0.37 0.35 0.44
850 0.57 0.51 0.46 0.44 0.43 0.41 0.40 0.37 0.36 0.35 0.43
900 0.57 0.51 0.46 0.45 0.41 0.40 0.40 0.37 0.35 0.34 0.42
950 0.52 0.49 0.46 0.43 0.39 0.40 0.38 0.36 0.35 0.34 0.41

1 0 0 0 0.50 0.48 0.43 0.42 0.40 0.38 0.37 0.36 0.35 0.34 0.40
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Table 5.11: Average Precision of Latent Semantic Analysis (LSA) for MED Dataset

Dimension
60 1 2 0

Documents Retrieved (Doct)
180 240 300 360 420 480 540 600

Avpqd

1 0 0.37 0.28 0.28 0.28 0.28 0.28 0.26 0.25 0.24 0.24 0.28
2 0 0.48 0.44 0.43 0.41 0.40 0.40 0.39 0.39 0.38 0.37 0.41
30 0.50 0.47 0.47 0.46 0.46 0.44 0.42 0.41 0.40 0.40 0.44
40 0.52 0.50 0.48 0.50 0.49 0.48 0.46 0.46 0.44 0.43 0.48
50 0.53 0.55 0.53 0.50 0.52 0.51 0.49 0.47 0.46 0.44 0.50
60 0.55 0.53 0.55 0.54 0.50 0.49 0.48 0.47 0.45 0.44 0.50
70 0.62 0.61 0.55 0.55 0.51 0.49 0.49 0.47 0.46 0.45 0.52
80 0.60 0.61 0.56 0.54 0.52 0.51 0.49 0.48 0.47 0.46 0.52
90 0.63 0.61 0.57 0.58 0.57 0.55 0.52 0.50 0.47 0.46 0.55

1 0 0 0.62 0.63 0.60 0.55 0.53 0.53 0.51 0.50 0.48 0.47 0.54
150 0.67 0.64 0.63 0.58 0.57 0.55 0.52 0.50 0.49 0.48 0.56
2 0 0 0.77 0 . 6 8 0.62 0.59 0.57 0.57 0.56 0.53 0.51 0.48 0.59
250 0.77 0 . 6 8 0.63 0.60 0.57 0.56 0.53 0.52 0.50 0.49 0.59
300 0.78 0.69 0.63 0.59 0.56 0.56 0.53 0.51 0.48 0.47 0.58
350 0.78 0.73 0.63 0.60 0.57 0.55 0.51 0.50 0.48 0.46 0.58
400 0.77 0 . 6 8 0.63 0.61 0.55 0.53 0.51 0.50 0.48 0.45 0.57
450 0.78 0 . 6 8 0.65 0.59 0.55 0.52 0.50 0.49 0.47 0.45 0.57
500 0.82 0 . 6 8 0.64 0.60 0.55 0.53 0.49 0.49 0.47 0.45 0.57
550 0.80 0 . 6 8 0.65 0.59 0.55 0.53 0.50 0.46 0.46 0.44 0.56
600 0.82 0 . 6 6 0.63 0.58 0.53 0.52 0.48 0.46 0.44 0.43 0.56
650 0.77 0.65 0.62 0.59 0.54 0.51 0.48 0.45 0.43 0.42 0.55
700 0.78 0 . 6 8 0.62 0.58 0.55 0.50 0.48 0.45 0.44 0.42 0.55
750 0.78 0.67 0.59 0.56 0.52 0.48 0.47 0.45 0.43 0.40 0.53
800 0.78 0.64 0.58 0.53 0.50 0.48 0.46 0.44 0.41 0.40 0.52
850 0.75 0.62 0.55 0.53 0.50 0.48 0.44 0.42 0.40 0.39 0.51
900 0.73 0.60 0.57 0.52 0.48 0.48 0.45 0.42 0.40 0.39 0.50
950 0.72 0.62 0.54 0.52 0.49 0.46 0.42 0.40 0.39 0.39 0.49

1 0 0 0 0.67 0.57 0.52 0.48 0.46 0.44 0.41 0.40 0.39 0.38 0.47
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Figure 5.5: MED: Average Precision (A vp?d) as a Function of Dimension.
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APPENDIX

MULTIVARIATE POISSON SIMULATIONS IN SAS

*SAS Subroutines for Multivariate Poisson Simulations;
/ * ----------------------------------------------------------------------------------------------------------------* /

/* The following subroutine simulates nsims multivariate Poisson */ 
/* obs from given covariance matrix Sigma using Sim’s algorithm */ 
/* as given in Deepak Mav PhD thesis (2004). */
/ * ---------------------------------------------------------------------------------------------------------------------* /

START SIMP0I(seed, Sigma, nsims);
RUN Decompose(Sigma, alpha, lambda, Error, m); 
if (Error < 0) then do;

print "Simulations Failure"; 
return(Error); 

end;

Z = J(m, nsims, 0); 
do k = 1 to nsims;

X = J(m, 1, 0); 
do j = 1 to m;

do i = 1 to j-1;
if(X[i] & (alpha[j,i] >0)) then 

Z[j,k] = Z[j,k] +
RANBIN(seed, X[i], alpha[j,i]);

end;
X[j] = RANP0I(seed, lambdaCj]);
Z[j ,k] = Z[j ,k] + X[j] ; 

end; 
end;
return(Z);

Finish SIMP0I;
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Start Decompose(Sigma, alpha, lambda, Error, m);
m = nrow(Sigma); alpha = I(m); lambda = J(m, 1, 0); Error=l; 
lambda[1] = Sigma[1,1]; 
do j = 2 to m;

alpha[j,l] = Sigma[l,j]/lambda[1];
if((0 > alpha[j,l]) I (alpha[j,l] >1)) then Error = -1; 
do i = 2 to (j-1); 

do k = 1 to (i-1);
alpha [ j , i] = alpha [j,i] +

alpha[i,k]*alpha[j ,k]*lambda[k];
end;
alpha[j,i] = (Sigma[i,j] - alpha[j,i])/lambda[i]; 
if((0 > alpha[j,i]) I (alpha[j,i] >1)) then Error = -1; 

end;
do k = 1 to (j-1);

lambda[j] = lambda[j] + alpha [j ,k] *lambda[k] ; 
end;
lambda[j] = Sigma[j,j] - lambda [j] ; 
if(lambda[j] <= 0) then Error = -2; 

end;
Finish Decompose;

/ * -----------------------------------------------------------------------------------------------------------------------* /

/* This subroutine computes first four central moments of Poisson */
/* random variables.The functional arguments are alpha and lambda */
/ * -----------------------------------------------------------------------------------------------------------------------* /

Start Moments(alpha, lambda);
m = nrow(lambda); dim = m+m*(m+l)/2; V = J(dim, dim, .);
/* Second order moments */ 
do i = 1 to m; 

do j = 1 to i;
value = alpha[Unique(iI Ij),]; value =value[#,]*lambda;
V[i,j] = value; V[j,i] = value; 

end;
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end;
/* Third order moments */ 
do i = 1 to m; 

do j = 1 to i;
indexl = m + i*(i-l)/2+j; 
do k = 1 to m;

value = alpha[Unique(i|IjIlk),]; 
value = value[#,]*lambda;
V[indexl, k] = value; V[k, indexl] = value; 

end; 
end; 

end;
/* Fourth order moments */ 
do i = 1 to m; 

do j = 1 to i;
indexl = m + i*(i-l)/2+j; 
do k = 1 to m; 

do 1 = 1 to k;
index2 = m + k*(k-l)/2+l; 
if (indexl >= index2) then do;

value = alpha[Unique(iI IjI Ik I 11),]; 
value = value[#,]*lambda;
V[indexl,index2] = value + V[i,k]*V[j ,1] 

+ V [i ,1] *V [j ,k] ;
V[index2,indexl] = V[indexl,index2]; 

end; 
end; 

end; 
end; 

end;
return(V);

Finish Moments;
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