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ABSTRACT

A STATISTICAL MODEL TO DETERMINE MULTIPLE
BINDING SITES OF A TRANSCRIPTION FACTOR ON DNA
USING CHIP-SEQ DATA

Rasika Jayatillake
Old Dominion University, 2012
Director: Dr. Nak-Kyeong Kim

Protein-DNA interaction is vital to many biological processes in cells such as cell
division, embryo development and regulating gene expression. Chromatin Immuno-
precipitation followed by massively parallel sequencing (ChIP-seq) is a new technol-
ogy that can reveal protein binding sites in genome with superior accuracy. Although
many methods have been proposed to find binding sites for ChIP-seq data, they can
find only one binding site within a short region of the genome. In this study we in-
troduce a statistical model to identify multiple binding sites of a transcription factor
within a short region of the genome using the ChIP-seq data. Mapped sequence reads
from the ChIP-seq experiments are modeled as the sum of observations from unknown
number of Poisson distributions. The rate parameters of these Poisson distributions
are considered as a function of the underlying distribution of the tags that depends
on the locations of the binding sites and their intensity parameters. For the param-
eter estimation of the model, two major approaches are discussed: one is a Bayesian
method, the other, the EM algorithm. For the Bayesian method the reversible jump
Markov chain Monte Carlo (RIMCMC) method is used for computation. An ex-
tensive simulation study was performed for the selection of proposal methods and
priors in RIMCMC as well as for the comparison of model selection criteria in the
EM algorithm. Real ChIP-seq datasets for transcription factors STAT1 and ZNF143
were used to demonstrate the performance of the proposed model. The results from
the multiple binding sites model were compared with existing peak-calling programs.
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CHAPTER 1

INTRODUCTION

1.1 DNA-PROTEIN INTERACTION

Genomic studies have become instrumental in investigation of many biological
processes. With evolving technologies, these studies generate massive volumes of
data that can be analyzed effectively using statistical methodologies. In this thesis
we present a statistical model to analyze data from ChIP-seq (Chromatin Immuno-
precipitation followed by sequencing) experiments to identify multiple binding sites
of a transcription factor protein on short regions of DNA (Deoxyribonucleic acid).

Protein-DNA interaction is vital to many biological processes in cells, especially
in regulating gene expression (Semenza 1998, Fields 2007, and Park 2009). Gene
expression is the process of using information in DNA to synthesize proteins and
other gene products such as RNA(Ribonucleic acid). Although many other factors
contribute to the regulation of genes, it is mainly controlled at the transcription phase
by a specific type of proteins referred to as transcription factors (Semenza 1998).
These transcription factors (TFs) bind to specific regulatory sequences of the DNA.
They then control the gene expression by either promoting or suppressing transcrip-
tion. In this thesis these specific DNA sequences are referred to as transcription
factor binding sites (TFBSs) and the binding of the protein on DNA is referred to
as a binding event. The process of transcription, which includes the interaction of
TFs and their impact, is complex and details of the process can be found in Se-
menza {1998) and Yilmaz and Grotewold (2010). When a TF is bound to DNA,
it interacts with other DNA bound T¥s and mediates the RNA polymerase, an en-
zyme, to bind to the promoter region of the DNA. Once the RNA polymerase is
bound, it traverses through the DNA segment, usually a gene, shearing its double
helix structure (Yilmaz and Grotewold 2010). Concurrently it reads the base pairs
of the template strand of the DNA and generates a messenger RNA, a complemen-
tary copy of the DNA sequence read. This process of generating the mRNA is called

This dissertation follows the style of Journal of the American Statistical Assoctation.



transcription. In a later phase, known as translation, the mRNA is used to synthesize
proteins. Figure 1 gives a graphical representation of a protein bound to the DNA
and the transcription process. In humans it is estimated that there are about 3000

TF's that are responsible for controlling gene expressions (Babu et al. 2004).

5 U
Transcription mRNA strand Strand
Factors

(b) Transcription process controlled by transcription factors.

Figure 1. Protein-DNA interaction.

1.2 CHROMATIN IMMUNOPRECIPITATION FOLLOWED BY
SEQUENCING (CHIP-SEQ) METHOD

There are many techniques developed to study protein-DNA interaction. Among
these, Chromatin Immunoprecipitation (ChIP) followed by genomic tiling microar-
ray hybridization {ChIP-chip) and ChIP followed by massively parallel sequencing
{ChIP-seq) are two of the most commonly used approaches. The ChiP-seq method
(Johnson et al. 2007) has several advantages over the ChIP-chip method. The fol-
lowing list contains some facts that have lead to the rapid adaptation of the ChIP-seq



raethod over ChIP-chip (Park 2009 and Ho et al. 2011):

o Ability to produce profiles with higher spatial resolution, dynamic range, and

ZENOMmIC coverage.

e Can be used to analyze virtually any species with a sequenced genome, since

it is not constrained by the availability of an organism-specific microarray.
o Can work with a smaller amount of initial material.
o More cost effective as the sequencing techniques continues to be cheaper.

Ideally the identification of these binding sites under various conditions and for all
the different TFs need to be performed using biological or biochemical experiments.
However, these experimental techniques are yet to be matured. Therefore, predicting
the TFBSs relies on statistical models that use data from available techniques such
as ChlIP-seq and ChlIP-chip. These models may reveal combined binding sites of a
transcription factor and its co-factors. They identify binding sites in species for which
experimental binding data is not available, and explain variation in binding affinities
that can have a functional effect {Reid et al. 2010). Therefore, in this thesis we
present a statistical model to analyze ChlIP-seq data. In the next section we present
a brief overview of the ChIP-seq method to better understand the characteristics of
ChIP-seq data.

1.2.1 WORK FLOW OF CHIP-SEQ APPROACH

The ChlIP-seq method consists of several steps as illustrated in Figure 2. The
steps can be categorized into two main parts: ChIP and sequencing. Following is a
summary of these steps (Fields 2007, Park 2009, and Kuznetsov, Singh, and Jen-
jaroenpun 2010).



tag distribution

Figure 2. Workflow of ChiP-seq.



e ChIP

1. Using about 10® cells, the transcription factors are cross-linked to their
DNA by treating the cells with formaldehyde.

2. Cells are lysed and the chromatin is isolated. The DNA is sheared into
small fragments by ultrasound sonication.

3. The protein and its associated DNA fragments are isolated by using a
protein specific antibody. The DNA fragments are separated from the
protein by reverse cross-linking.

¢ Sequencing

4. The released DNA fragments are directly sequenced in series of 20~80 bp
reads producing millions of short read sequences.

5. Short read sequences are mapped back to a reference genome.

After collecting these short sequence reads, they are mapped to a reference genome
using a mapping software/algorithm, such as MAQ (Li, Ruan, and Durbin 2008)
and Bowtie {Langmead et al. 2009). Mapped reads are usually referred to as tags
{Jothi et al. 2008). Most of the existing ChIP-seq data are generated by the lllumina
Genome Analyzer, but other platforms such as SOLiD and Helicos are also available
and can generate 100-400 million tags in a single run and 60-80% of these tags can
be mapped uniquely to the genome (Park 2009). When the sequences are mapped,
peaks of tags can be observed over the genome. These peaks may correspond to the
protein-DNA binding sites.

1.3 FEATURES AND CHALLENGES IN ANALYZING CHIP-SEQ
DATA

In this section we discuss some features and challenges associated with the analysis
of ChIP-seq data.

1. Mappability
For further analysis, raw sequence reads from a ChIP-seq experiment are
mapped back to the genome. These sequence reads can be mapped to unique
segments of the genome (with or without several mismatches), or they can be



mapped to more than one segment of the genome. The segments of the genome
that the tags cannot be mapped uniquely are referred to as unmappable and
segments that can be uniguely mapped are referred to as mappable. In the
analysis if one decides to use only the uniquely mapped tags, some true sites
will be invisible because they are located in repeats or recent duplicated region
{Pepke, Wold, and Mortazavi 2009}. On the other hand, including reads with
multiplicity and multi-reads can increase false positive peaks.

. Strand specific information

The backbone of the double helix structure of the DNA is made from alternating
phosphate and sugar bases. These alternating bonds between the sugar bases
and phosphate bases gives each of the two strands of the DNA directionality.
In the double helix structure the direction of the nucleotides in one strand
is opposite to their direction in the other strand. These asymmetric ends of
the DNA strands are called 5 (five prime) and 3 (three prime) ends. The
5 end have a terminal of phosphate base whereas the 3’ end have a sugar
base. The DNA strand that has the directionality of 5-3' is referred to as left
(positive, forward) strand and the other with directionality of 3-5 is referred
to as right (negative, backward) strand. As given by Park (2009}, when the
DNA sequence reads are mapped to the genome they results in two peaks, one
on each strand (see Figure 3). Furthermore, in ChIP-seq experiments the DNA
fragments are sequenced from 5 end. Therefore, when the sequence reads are
mapped to the left strand, they are mapped with a shift to the left from the
binding cross-link and when they are mapped to the right strand, they are
mapped with a shift to the right from the binding cross-link. In the analysis
of the data, one could consider combining the two peaks from the two strands
or use this directionality information to detect the locations of the peaks with
higher precision.

. Background noise

ChlIP-seq involves background noise which results in spikes of tag counts
due to factors other than protein-DNA binding. Kharchenko, Tol-
storukov, and Park (2008) describe some of these background noises and their
causes. The first are singular peaks of tag density at a single chromosome posi-
tion that is due to the non-uniform shearing of DNA around chromosomes. The



Figure 3. Shifted tag peaks on the left (positive} and the right (negative) strands
(Park 2009).

second are non-uniform wide clusters of increased densities and the third are
small clusters of strand specific tag density resembling the pattern of protein-
binding site but with smaller separation between strand peaks.

4. Ranking peaks
Due to the varying strength of the protein-binding, the height (intensities) of
the peaks will vary. In addition to detecting the tag peaks, it is also necessary
to determine the intensities of the peaks. These intensities can then be used to
rank or score the peaks allowing more in-depth analysis.



1.4 OVERVIEW OQOF EXISTING PEAK-CALLING ALGORITHMS

Since the introduction of ChiP-seq method many algorithms and software pro-
grams were developed to detect protein-DNA binding sites. A list of available pro-
grams and evaluations of these methods are given by Wilbanks and Facciotti (2010),
Pepke, Wold, and Mortazavi (2009), and Laajala et al. (2009). According to these
evaluations, no single method has a significant advantage over others and differ-
ent methods perform in varying degree of precision for different experimental data.
Therefore, developing new approaches to detect TFBS is an ongoing research and
new methods continue to be developed and published by the scientific community. In

this section, we present an overview of some popular methods in finding tag peaks.

¢ Hidden Markov model based Peak-finding algorithm (HPeak)

HPeak (Qin et al. 2010) method introduced by Qin et al. (2010) is based
on a Hidden Markov model (HMM). This procedure has four main steps. In
the initial step, it imports genomic coordinates of all mapped sequenced reads.
The short reads are extended directionally from its start position to form a
hypothetical DNA fragment (HDF), mimicking the ChIP-DNA fragment from
which the sequencing read was generated. In the second step, the entire mapped
genome is partitioned into small bins of fixed length (25 bp) and counts the
HDF’s that fall within the bins. In the third step, the two state HMM is applied
to the HDF counts to distinguish blocks of consecutive ChIP enriched bins from
the background. Authors have chosen the HMM approach due to the observed
strong correlation of HDF coverage in adjacent bins. Due to the wide dynamic
range of the ChIP-seq data, the number of HDF’s falling into the ChIP-enriched
bins varies dynamically and show significant over-dispersion. Therefore, a gen-
eralized Poisson {(GP) distribution that accounts the over-dispersion is used
in estimating the emission probabilities of the HMM model. Since there are
more empty bins in background data, zero inflated Poisson (ZIP) distribution
is used for control data. For experiments with control data and experimental
data, the authors have used the bivariate GP and ZIP. Parameters of the HMM
are estimated using the Viterbi algorithm.

s Quantitative Enrichment of Sequence Tags (QuEST)
QuEST (Valouev et al. 2008) starts analyzing the data by constructing two
profiles for the left and right strands. These profiles are fitted using the kernel
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density estimation (KDE) method with the Gaussian kernel density. The dis-
tance between the adjacent tag peaks of the two strands is estimated by using
a particularly robust subset of the data and the half distance between the two
peaks is referred to as peak shift. Then the left and the right profiles are com-
bined through out the genome to form the combined density profile (CDP) by
shifting the tags by peak shift. QuEST then searches the CDP’s for enriched
loci as positions in the genome corresponding to local maxima of the CDP
with sufficient enrichment compared to the background. Thus, a threshold for
the peak calling is required. To determine the threshold, the negative control
data is separated into two sets. One is used as a pseudo-ChIP sample in which
peaks are to be determined and the other is used as the background data for
the sample. Any peak that is predicted in this comparison is considered as
false positive. The false discovery rate (FDR) is calculated as the ratio of the
number of peaks predicted in the pseudo-ChIP sample to the number of peaks
identified in the real ChIP experiment data. This allows users to set specific
values for thresholds or vary the threshold until a desired FDR is achieved.
QuEST reports a score quantifying the tag enrichment at the peak and uses it
to rank the peaks.

Site Identification from Short Sequence Reads (SISSRs)

In SISSRs (Jothi et al. 2008), the entire genome is scanned using a window of
size w (20 bp wide) with an overlap of w/2. The net tag count is computed
by subtracting the number of antisense (left strand) tags from the number of
sense (right strand) tags. Each time the net tag count changes from positive
to negative, that location (t) is considered as a candidate for binding location.
For these locations to be confirmed, the number of tags (p) in the right strand
between [t — F, ] must be at least E, the number of tags n in the right strand
between [t,t + F| must be at least F and the total tags p + n must be at least
R. The value of R is estimated with the user defined FDR.

Model-based Analysis of ChIP-Seq data (MACS)

MACS (Zhang et al. 2008) takes the advantage of the bimodal pattern on
the left and the right strand to empirically model the shifting size to better
locate the binding site. Therefore, the initial step is an estimation of the peak
shift. Given a sonication size/bandwidth and a high-confidence fold-enrichment
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(mfold), MACS slides a window of size of 2 times the bandwidth size across
the genome to find regions with tags counts exceeding mfold times the counts
observed under random distribution. MACS randomly samples 1000 of these
high quality peaks and separates their left and right strand peaks. These peaks
are aligned by the midpoint between the left and right strand peak centers
if the left strand peak is to the left of the right strand peak. The distance
between the modes of the left and the right strand peaks in the alignment
is defined as “d”, and all the tags are shifted by d/2 toward the 3’ end and
use the shifted tags for peak detection. In peak detection, for experiments with
control data, MACS linearly scales the total control tag count to be the same as
the total ChIP count. Some of these tags, that may be sequenced repeatedly
more times than expected from a random genome-wide tag distribution, are
removed. For the shifted tags, MACS count the number of tags by using
a sliding window of two bandwidths across the genome to locate candidate
sites with significant enrichment based on a Poisson distribution p-value that
depends on the background rate. Overlapping enriched peaks are merged and
each tag position is extended by d bases from its center. The tag distribution
along the genome is modeled by a Poisson distribution. In the control sample,
the fluctuations that are often observed are accommodated by using a dynamic
rate parameter for the Poisson distribution defined for each peak.

SPP

As mentioned in section 1.2, ChIP-seq reads are mapped to the genome in
varying accuracy. SPP (Kharchenko, Tolstorukov, and Park 2008) method
use the length of the matched read and the number of nucleotides covered
by mismatches and gaps to classify the quality of the tag alignment. This
method then uses the strand cross-correlation profile to decide whether to in-
clude that tag in the analysis. The strand-cross correlation is the Pearson
correlation coefficient between genome-wide profiles of tag density of left and
right strands, shifted relative to each other by a specific distance. The SPP
adjusts for background anomalies by removing extremely deviated peaks and
subtracting the re-scaled background tag density. Within the SPP algorithm
there are two main sub-methods that are used in peak detection; they are
the WTD (widow tag density) method and the MTC (mirror tag correlation)
method. The WTD method scores peaks based on strand-specific tag counts
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upstream and downstream of the examined position. The MTC method scans
the genome to identify positions exhibiting pronounced positive and negative
strand tag patterns that mirror each other. The statistical threshold for FDR is
obtained by accounting for the degree of clustering present in the background.
Authors have used a randomization that maintains tag occurring at the same
or nearby positions together, instead of assigning them independent positions

as in the Poisson model.

o CisGenome
CisGenome (Ji et al. 2008) first calculates FDR that will later be used in
peak detection. When only ChlIP-seq experiment data is present and con-
trol data is unavailable, it computes FDR by dividing the genome into non-
overlapping windows of length w (100 bp}. Then the number of tags, n;, in each
i*» window is counted. The tag counts are modeled as n;|\; ~ Poisson(};),
Ai ~ Gamma(y,d) and n; ~ Negative Binomial{a, ). Parameters o and
B are estimated by fitting a negative Binomial distribution to the number of
windows with small number of tag counts (< 2 reads). This estimated null
distribution is then used in computing the FDR for each level of read counts.
In the presence of control data, also referred to as negative control sample, the
genome as in the previous case, is divided into windows of size w. For each
window %, the number of reads ky; in ChIP sample, number of reads ky; from
the control sample and the total count n; = ky; + ko is counted. Authors
assume that kyjn; ~ Binomial(n;,py). The parameter py is estimated from
windows with small total counts and uses it to estimate the FDR associated
with each level of n; and ki;/n;. Binding regions are detected by scanning the
genome using a sliding window of width w to detect the windows with FDR
smaller than user specified cut-off. Overlapping windows are merged and the
minimum FDR among the merged windows is considered as the FDR for the
merged windows. For each window, fold enrichment score is also computed by
Wkl where y; is the number of ChIP tags, z is the number of control tags,

roZ;+1?

and rp = 11»%5

When considering the given peak calling methods most of them detect peaks
using sliding widow and counting the number of tags within the window. For the
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calculation of FDR, most methods use a Poisson model or negative binomial distribu-
tions. Furthermore, these methods cannot identify multiple binding sites separated
by short distances.

1.5 CHIP-SEQ DATASETS

The model presented in this thesis is applied to two published ChIP-seq datasets
for two transcription factors: STAT1 and ZNF143. STAT1 belongs to the Signal
Transducer and Activator of Transcription (STAT) family of proteins that regulate
many aspects of growth, survival, and differentiation in cells. The raw data or
unmapped sequenced reads for STAT1 (Robertson et al. 2007) were mapped to the
human genome (NCBI Build 36.1) using Bowtie (Langmead et al. 2009) software.
When mapping reads, only the sequences with 27 bp length were used enabling the
mappability information to be used in the analysis. Furthermore, mismatches up to
2 were used in the analysis as long as it produced a unique mapping in the genome.
There were about 15.1 million mapped tags from this dataset.

Zinc finger protein 143 (ZNF143) is a transcription factor that positively regu-
lates many cell-cycle-associated genes and is highly expressed in multiple solid tu-
mors (fzumi et al. 2010}. The raw sequences from the ZNF143 ChIP-seq dataset
(Wanga et al. 2011) were approximately 36 bp in length and there were about 27
million mapped tags from this dataset.

1.6 ASSESSING THE BINDING SITES IDENTIFIED FROM PEAK
CALLING ALGORITHMS

One drawback in assessing binding sites for transcription factors is that there are
no complete lists of true binding sites for the transcription factors including STAT1
and ZNF143. However, these transcription factors have known binding motifs. Motifs
are DNA sequence patterns that characterize binding sites. By scanning through the
genomne using a position specific scoring matrix (PSSM) of the motif, hits or matches
for the motif can be collected. These hits are called motif sites. We could use these
motif sites as surrogates of true binding sites and assess the estimated or predicted
binding sites by the peak calling programs (Wilbanks and Facciotti 2010). This
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has been the standard method of assessing peak calling algorithms. Therefore, the
estimated or predicted binding sites by the proposed model is validated with respect
to motif sites.

However, it should also be noted that a single transcription factor may have more
than one motif. An alternative approach, as conducted by Valouev et al. (2008), is
to enter a long sequence {about 200 bp) around the identified peaks to a canonical
motif search algorithm and detect the percentages of known motifs present within
these sequences. This method of assessment can also reveal a new motif that is not
experimentally verified but is significantly detected by the peak calling algorithms.

1.7 ORGANIZATION OF THE THESIS

This thesis is organized into five chapters. The second chapter introduces and
describes the normal-exponential model for the tag distribution in the presence of
a protein binding event. The Poisson model for a single binding event as well as
its extension to multiple binding events are also described in details in this chapter.
Chapter 2 also gives details of the simulated datasets that are used in the subsequent
chapters. Chapter 3 gives a Bayesian model for estimating parameters of the model.
This chapter also contains the results obtained from the simulated datasets using
the RIMCMC scheme as well as a discussion on the limitations and strengths of the
RIMCMC scheme based on the simulated results. Section 3.6 contains the results ob-
tained by applying the RIMCMC scheme on STAT1 and ZNF143 ChiP-seq datasets.
Details of the application of the EM algorithm in estimating the parameters of the
multiple binding sites model is given in chapter 4, where the results from simulation
studies as well as the results from the STAT1 and ZNF143 ChIP-seq datasets are
also given in details. In chapter 4, we also present a comparison of performances of
the multiple binding sites models with other existing peak calling algorithms.
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CHAPTER 2

BASIC STATISTICAL MODEL FOR THE CHIP-SEQ

DATA

Although experimental techniques to determine DNA binding information of var-
ious transcription factors are being developed at a rapid speed they are a long way
from determining the binding sites for all transcription factors in all conditions
(Reid et al. 2010). Therefore, statistical and heuristic models for predicting TF-
BSs are vital in the advancement of the studies of transcription regulation and in the
construction of gene pathways.

The objective of this thesis is to present a more sophisticated statistical model to
estimate the TFBSs of a given transcription factor. In this chapter we present the
derivation of this statistical model that can estimate multiple binding sites within
& short region of the genome using the ChIP-seq data. In section 2.1, we present
some characteristics of the ChIP-seq data that lead to the introduction of the dual
normal-exponential model for the underlying distribution of the observed tags. The
Poisson model for a single and multiple binding events are described in sections 2.2
and 2.3 respectively. In the final section we describe the simulation datasets that are

used in chapters 3 and 4 for assessing the performance of the model.

2.1 BASIC MODEL FOR THE CHIP-SEQ TAG DISTRIBUTION

The data that is considered in this study are the mapped sequence reads from
the ChIP-seq experiment, where main variables of interest are the mapped location
of the tags on the genome, the strand information and number of mismatches in the
tag alignment to the genome. In the analysis rather than considering the genome as
a whole, we partitioned it into approximately 150~1500 bp long regions. We first
fit a statistical model for the mapped tags in these shorter regions. Subsequently,
this model can be applied to all the partitioned regions of the genome. Since a
ChIP-seq experiment generates millions of short sequence reads, it is expected that
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there will be muitiple tags mapped to the same location of the genome. Also it is
expected that significant number of tags will be around DNA-protein binding sites.
Figure 4 illustrates the tag distribution in a region starting at position 22122563 of
chromosome 3 for STAT1 ChlIP-seq data. Here we can clearly observe {as described
in section 1.3) two peaks of tags mirroring each other; one on the left strand and the
other on the right strand.

10
1

Number of Tags
6
i

1y

Relative position
Chromosome 3 Start position: 22122563

Figure 4. Distribution of tags in a genomic region from STAT1 ChIP-seq data.

To formulate our model let a:“ € {1,...,w;} be the j*, j ={1,...,nF}, mappable
tag location relative to the start location of the i** region, i = {1, ..., N}, of the left
strand. Here, w; is the width of the region, and n¥ is the number of mapped tags
in the region. Similarly, let zf € {1,...,w;} be the 5, j = {1,...,nF} mapped tag
location of the #** region, i = {1,..., N}, of the right strand where, j = {1,...,nf}
and nf is the number of mapped tags in the region. Note that nf and nf are not
the same in general, that is, n® and nf are not observed in pairs. Furthermore, to
incorporate the mappability information described in section 1.3, let X° denote the
unmappable locations in the region. Therefore, the observed tags for a given short
region i can be represented by the vector X = (2§, 25, . =R 2B . X9).

4] ﬂ'LL ) :nR ’



16

In the first step of a ChIP-seq experiment, the TFs are cross-linked to the DNA.
As illustrated in Figure 5, we assume these unobservable cross-link locations of the
TF, denoted by &;;, to have a random shift from the center of the binding site. For
mathematical convenience, we assume &; ~ N(u;,o?), where g is the binding site
location varying for regions, and o is the variance of the shift remaining the same
across the regions.

After the cross-links are established, the DNA is randomly sheared into millions
of fragments, most likely, several base pairs long to a couple of thousand base pairs
long. Average fragment sizes are 100~500 bp depending on experiments. We assume
that this shearing follows a Poisson process over the whole genome. The mapped
tags of the output of the ChIP-seq experiment are the shorter (about 20~80 bp
long) end segments of the fragments. Usually, these end reads are somewhere near
the corresponding cross-link location, but the shearing process causes randomness
in the exact distance between tag ends and cross-link location, and the short reads
on the two DNA strands show different systematic biases in their average position
relative to the cross-link location. That is, the short reads mapped to the right strand
are expected to demonstrate a shift from the cross-link location to the right and left
tags are expected to have a shift to the left of the cross-link location.

This shifting of the tags can be assumed to be an exponential distribution with

mean [, which is assumed to be the same for all regions from the Poisson process

R

assumption. Therefore, for the right tag location z;;, with the cross-link location 5,?;

, the density can be denoted by

R _¢R
wiie )= 3o (2D 1o > g

where I(-) is an indicator function.
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{b} Tag sequence mapped to the right strand.

Figure 5. Cross-link locations and mapped tag locations.



18
The joint density of the (zf,£8) is
n(ziy, 65) = n(zflel, B) - m(€f|wi, B)
= \/;;;em ((532;;1.-)2) %exp (_@_ﬁ'}_g_é?_)) 1(zf > ¢B).

By integrating over £f,

7 (2816, 1, 0%) = / 7 (22, €818, i, o%) dER

R —(m+o2/8)\ 1 1

—o (Wt TN o L aR v a2e) Y,
o p B

where ®(-) is the cumulative distribution function (CDF) of the standard normal

distribution. This density function is a normal exponential density (Kim, Jayatil-

lake, and Spouge 2012).

Similarly, the left tag location :cf; can be denoted with a given cross-link location
£ as
1 fz -8
™ (5165, 8) = Bm{#} I(a <€)

Hence, after integrating over £%, the density of z is
w (b8, %) = [ 7 (518, 0?) dh
zh— (- /B | 1 1
=[l-(1>( . ~ Eexp{g(xf‘j-—(m—az/%))}.
(2)

Note that for the left and the right tags of the i** region, the model parameters u,

v;, o, and S are the same. Therefore, the complete density can be given by

Wi

ﬁ(zfi,-..,xﬁ‘%,:l?ﬁ,---,zgflﬁ,m,az) = H w(xélﬁil‘i’a2)
JEmappable
w;
x [ =@EE8.m.0%). ()
JEmappable

The overlayed plot of the densities given in (1) and (2) is shown in Figure 6.
These density curves clearly reflects the duality of the kernel as well as the mirror
image feature. As described in section 1.3, this is one of the main features of the tag
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Figure 6. Dual normal-exponential density.

peaks at binding sites in ChIP-seq data. In fact, any peak that does not reflect this
mirror image characteristic can be considered as peaks only due to background noise
(Kuan et al. 2009).

Furthermore, the validity of the model can be assessed by investigating the dis-
tribution of the tags around the high scoring locations of a known motif. A motif is a
sequence pattern where its matches called motif sites can be observed throughout the
genome. Many transcription factors, including STAT1 and ZNF143 TFs analyzed in
this study, exhibit known binding sequence specificities or motif {(Kharchenko, Tol-
storukov, and Park 2008, Reid et al. 2010, and Izumi et al. 2010). These motif
sites can be identified and scored using a position specific scoring matrix {PSSM)
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based algorithm (Staden 1989). Among the candidate motif sites for a particular
motif, high scoring motif sites are selected using a user-specific cutoff value. The
distribution of the tags from ChIP-seq experiment around motif sites can then be
investigated by accumulating tag counts from various regions anchored at motif sites.
Figures 7 and 8 present frequency plots of the tags mapped to the left and the right
strand around the high-scoring motif sites for STAT1 and ZNF143, respectively. The
overlayed curve is the proposed dual normal-exponential kernel. For the STAT1 data
B =741 and & = 52.5. For the ZNF143 data § = 42.3 and & = 44.0. For details,
see Kim, Jayatillake, and Spouge (2012).

Density

00000 0.0005 0.0010 0.00t5 ©0.002¢ 0.0025 ©.0030 0.0035

Relative location

Figure 7. Anchored tag distribution of STAT1.

The fit of the dual normal-exponential kernel is good for both STAT1 and ZNF143
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Figure 8. Anchored tag distribution of ZNF143.

as the distribution of the tags closely follows the dual kernel. When observing the
two graphs the tag distributions are smoaother for ZNF143 than STAT1, which may
indicate that the noise level for ZNF143 data is lower than that for the STAT1 data.
For both datasets, slight deviations from the dual normal-exponential kernel can be
observed. The motif sites for both datasets were identified using the p-value cutoff
of 5.0e-6 using the PSSM-based algorithm.
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2.2 POISSON MODEL FOR SINGLE BINDING EVENT

An alternative representation of the tags is useful in proposing a Poisson model for
the tag distribution. Let y;? be the number of left tags observed at location j; yg’} the
number of right tags observed at location j. Tags cannot be observed at unmappable
locations. Thus for all practical purposes, (¥, ¥, - Yiu,» Ui Yiss - Yiny, X ) is &0
equivalent representation of the data X. Therefore, in this approach we assume the
observed tag counts y.-l’j and y{} to follow a Poisson model.

For the ChIP-seq data, we assume the observed tags to be generated by a Poisson
model with the rate parameter as a function of the location p; and the intensity
parameter v;. Consider a tag location j on the left strand and let yL be the number
of tags at the location j. Then, the probability mass function is

()"
PY y,,) = TIJ'—’
where
X5 = vin(jlus, 8, 0%),
with 7(jlw;, B, 0%) as given in (2) and y € {0,1,...}. Similarly for the tag location
j in the right strand with a tag count of y{}
vl AR
P(Y = yff») (i.)_’_?_”7
yi!
where
A = v (Gl B, %),
with 7(|u;, 8, 0%) as given in (1). Here 1; is the mean number of tags per strand due
to the binding in the #** region.

2.3 POISSON MODEL FOR MULTIPLE BINDING EVENTS

The model described in the previous section can only estimate parameters for a
single binding event in a given region. However, in some regions there can be multiple
binding events separated by about 300 bp or less. In this section, we introduce a
model to detect these multiple binding events within short regions.

Let us consider a short region ¢ in the left strand. Let us assume there are &

number of binding events within the region. In our model we propose that the number
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of tags yf'j at the mappable location 7 on the left strand is the sum of unobserved tag
counts zf’jh, h=0,...,k, belonging to the ¥ number of binding events. Therefore,

L__ L L L
Yi; = Zjo+ Zij+ ..+ 2y

k
h=0
Furthermore, we propose z{_;h ~ PoisSOﬂ(Af}f.) and the rate parameter )\fj’;h for

each of the binding event or component is a function of the overall distribution of
the tags of the binding event in that region and the intensity of the binding event
vin. That is

Mon = vinfr (Flwin, %, B)

where
: | — (pin — 02 1 1.,
Gt o) = [1 - 0 (L) | S {5 - - 120) .
for h =1,...,k. In addition, to the components for the binding events, we introduce

zf‘jg to denote the tag counts from the background noise. We propose

L
Aij(] = P,

where p = L. That is, we assume a uniform background noise.

w; "

Similarly, for region ¢ of the right strand, the number of tags y{} at j** location
can be modeled as the sum of unobserved tag counts such that

k
R_ R R R _ R
Yj=Zjeotzpn+.. .+ 25 = Z Zijh- (5)
h=0

The rate parameter is modeled as the function of binding event intensity and the
distribution of the tags corresponding the right strand,

)\;‘?k = vinfr (Fltin, 0%, B) ,
where
. . 2 1 1,. N
fR (le"hiazsﬁ) :‘i'(.?—(ﬂﬁ'a' /ﬂ)a)_ﬁexr) {"_"E (J“'(MJFJ /2!8))}5

for h = 1,...,k. Similar to the left strand, zf}o denotes the tag counts for the
background component from background noise in the right strand. By design, the
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sum of zfjh is always yf‘_? Therefore, the conditional distribution of the observed tags
given the corresponding unobserved tags can be expressed as
k
L 1 if Z zf‘jb = yfj’-
(ysjlzuo: »Zik) = 8 h=0

\ 0 otherwise

4

and similarly,
’
1 if Z jh = y;R
f Wl .. 28 =+ h=0 Y ’
0 otherwise.
Let 8 = (ta1, - - -, ik, %o, - - -, vx) and 255 = (2ky, ..., 25,). Using the known result

that the sum of Poisson distributions follows a Poisson distribution with the rate
parameter being the sum of the individual rate parameters, distributions of y{‘j and

yf} are

yu'p'! k v ~ Poisson (z ’\1_1:':)

h=0
k
vl k, v ~ Poisson (z )\,‘-‘}h) .
h=0
The conditional distribution of the unobserved tag counts can be obtained by

f (vklz%,6,k) f (z518)

1 (z5lyi, 0,k
(25l &:8) = == ate. )
kAL 1 y2&
I O
IXHW
— h=0 Zijh:
oM (St )"
y,,!
L) L za't,‘ia A zf;“
__wy(‘jg).(uk)_
Zgot - 2! \ Sho X Theo Adin
Therefore,
zL|yE, 8,k ~ Multinomial (y" '\30 )‘vk ) (6)
%5\ i) Sk : :
o ’ Zh=0’\{3h Eh—ﬂ’\t_jh

Similarly,

Af}o pY

: it )- (7)
Eh—{} Aljfl Eh——[) Aljh

zf|y5, 8,k ~ Multinomial (yij,
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The joint distribution of g% and z[; is

k e—,\{;.,,(AL )z,!-,.,, k
f (yljl 1_110 k) H mﬂm;f“-iﬁ'w" -1 ZzsLjh = ylLJ .

h=0 ijh’ =0
Similarly, for the right strand,
k ~AR R 2R
e (A5,)
f(ylj1 1_7|9 k) HTJ“ (Z Ziih = yg) .
h=0 ik’ A=0
Let yi; = (v5,v) and z;; = (25, 2). Assuming the left and the right strand tag

counts are independent, the joint distribution of tags at 7** position can be given by

kAL JARY PS4 R R
N (M) MR (O,
L (8, klys 25 = [| I Al

h=0 ijh* tjh

Therefore, the likelihood function for the tag counts in region i over the mappable
locations can be given by

;. ,\ z.,h :'R;'nh AR z:'};h
L(8,k|y;,z;) = H H ( }') (R ,h) , (8)

j€mappalle h=20 % " Zijh:

where y; is the vector of observed tag counts and z; is the vector of unobserved tag
counts for the mappable locations from both strands.

The Likelihood function in equation (8) of the proposed model for multiple bind-
ing sites can be used to estimate the intensities (1;’s) and locations (u;'s) of the
binding sites. However, since this likelihood also include unobserved tags from mul-
tiple binding events, the usual maximization methods cannot be applied. The current
estimation problem also differs from the usual set-up of mixture models or missing
data models since the number of components, in this case the number of binding
events itself is unknown and has to be estimated. In this thesis we investigate two
different approaches for the estimation of the parameters as follows:

1. A fully Bayesian approach considering & as a variable.
2. Expectation-maximization (EM) algorithm.

In the Bayesian paradigm the number of components, k, can be considered as a
variable with a suitable prior. However, updating the number of components causes

the dimension of the variable space to vary. For example, in a proposed move from
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k number of components to £ + 1 number of components the parameter space is
increased by the parameters of the added components. Methods in the Bayesian
paradigm that accommodate change of variable space have been introduced in the
birth-death method by Stephen (1998) and in the reversible jump Markov chain Monte
carlo {RJIMCMC) method by Green (1995). In chapter 3 we present in detail a
Bayesian model and an application of RIMCMC in estimation of the parameters.
On the other hand, the EM algorithm is applied to likelihoods with missing data,
where the number of components is known and is fixed. Therefore, we propose the
EM algorithm to be applied for the same region with different number of components,
say k = 1,...,3, and then choose the best model via a model selection criterion.
Details of the EM algorithm approach and its results are given in Chapter 4.

2.4 SIMULATION DATA

Simulation datasets were generated to investigate the performance of the model,
for selecting suitable priors, and to tune in parameters of the priors for the Bayesian
model (discussed in chapter 3). In our model, the main parameters of interest are
the number of components, k, other than the background component, the locations
(1in)’s, and the intensities (v4)’s. Therefore, for the simulation of the data, we
considered several values for each of these parameters as well as combinations of the
values mimicking scenarios that can be encountered in the real ChIP-seq data. In
this section we present a brief description of the simulated datasets that will be used
throughout the study. The simulation datasets can be categorized into twelve main
groups labeled group 1-group 12 that have varying values for location parameters
and number of components. The datasets in group 1-group 4 have two peaks with
equal intensities separated by 200 bp, 150 bp, 100 bp, and 75 bp respectively. Each
one of these groups have 6 subgroups of datasets with corresponding intensity values
of 150, 125, 100, 75, 50, and 25 for the two peaks (see Table 43 in Appendix).
These simulated datasets illustrate the increasing difficulty in detecting the peaks
and estimating the parameters as the distances between the peaks decrease and the
intensities decrease. Several examples of simulated data under these scenarios are
presented in Figure 9.

The datasets in group 5, group 7, and group 8 consist of two peaks separated by
distances of 200 bp, 150 bp, and 100 bp, respectively. Unlike the groups described
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previously, for datasets in these groups the intensities of the two peaks are set to be
different from each other. Furthermore, each of these groups has seven subgroups of
datasets with different combinations of peak intensities (see Table 44 in Appendix
A). These combinations are (200, 50}, (150, 50), (150, 75), (125, 50), (100, 25), (75,
25), and (50, 25). The dataset labeled group 7 consist of two peaks separated by 200
bp and its seven subgroups of datasets have the peak intensities in the reverse order
as {50, 200), (50, 150), (50, 125), (25, 100), (25, 75), and (25, 50). Some examples of
these simulated data are presented in Figure 10. The final four groups labeled group
8-group 12 are simulated to have 3 peaks. For the groups 9-group 11, the distances
between the peaks are set to be equal but vary with values of 200 bp, 150 bp and
100 bp, respectively. Again each group has six subgroups where the three peaks have
the intensities 150, 125, 100, 75, 50, and 25 (see Table 45 in Appendix A). Examples
of simulated data with three peaks are given in Figure 11.
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Figure 9. Examples of simulated data for two peaks with equal intensities: (a)
(11, p2) = (300,500) and (vo, v1,va) = (10,150, 150). (b) (pa1, 2 = (300, 500) and
(v0, 01, v2) = (10,75,75). () (p1, p2) = (300,400) and {vp, v, 1) = (10,150, 150).
(d) (”‘1?#’2) = (3001 400) and (VOJ Yy, V2) - (10, 75a 75)
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Figure 10. Examples of simulated data for two peaks with unequal intensities:
(a) (11, 12) = (300,500) and (vo, 1, v2) = (10,50,200). (b) (1, p2) = (300, 500)
and (u,v1,1) = (10,50,125). (c) (1, p2) = (300,400) and (vp,vq,1) =
(10,200, 50). (d) (g, p2) = (300,400) and (v, 11, 12) = (10, 125, 50).
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Figure 11. Examples of simulated data for three peaks: (a) (g4, pe, u3) =
(3007 500, 700) and (VO; V1, V2, V3) = (107 1001 100) 100)' (b) (P"l, M2, “3) =
{300, 500, 700) and (o, 11, 2, 13) = (10, 50, 50, 50).
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CHAPTER 3

A BAYESIAN MODEL WITH RIMCMC SCHEME FOR

ESTIMATING MULTIPLE BINDING SITES

In chapter 2, we introduced the basic model to determine multiple binding sites
within a short region of the genome. The estimates of the parameters of this model
provide the binding locations and their intensities as well as the number of binding
events within the region. In statistical inference, estimation of these parameters can
be viewed as a maximization of the likelihood or can be extended to a Bayesian model
where Bayes estimates for the parameters can be obtained. Direct maximization of
the likelihood of the observed data is challenging as the number of components itself is
unknown. In Bayesian paradigm, the parameters of the model are treated as variables
with prior distributions. Therefore, with the Bayesian approach, the number of
components can be treated as a variable and can be estimated simultaneously with
other parameters. However, variability of the number of components adds another
complication by causing the dimension of the variable space to change as the number
of components changes. Theory and methodologies have been developed in Bayesian
framework to address this issue, especially in the setting of finite mixture models
with unknown number of components (Green 1995 and Stephen 2000).

In this chapter we present details of estimating the parameters of the model for
the multiple binding sites using a Bayesian method, with the reversible jump Markov
chain Monte Carlo (RIMCMC) method for computation. We extend the model given
in the previous chapter to a Bayesian model and its details are given in sections 3.1
and 3.2. A brief introduction to the theory of RIMCMC method is provided in
section 3.3. Details of the RIMCMC scheme, especially its formulations, selection
of RIMCMC proposals and priors are given in section 3.4. Some alternative choices
in the implementation of the RIMCMC scheme, as well as detailed results from the
simulation study is presented in section 3.5. The final section of the chapter shows
the application of RIMCMC scheme to the STAT1 and ZNF143 ChlP-seq datasets.
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3.1 BAYESIAN MODEL FOR THE MULTIPLE BINDING SITES

Bayesian inference about a parameter # or unobserved data z are made in terms
of probability staternents conditional on the observed data z. A Bayesian statistical
model consists of a parametric model, f{z|8), and a priori information 7(6). Then the
posterior distribution, the distribution of the parameters conditioned on the observed
values, can be obtained by

f(z|6) = (6)
[ f(x|6)=(6) do
Here the denominator | f(z}8) m(8) df, which is independent of 8, can be considered
as a constant, usually referred to as the normalizing constant. Often in Bayesian

flz) =

modeling, the parametric model is the likelihood function {(8|x). By omitting the
normalizing constant we can obtain an equivalent form of the posterior distribution
as

f (6lz} o f(z|0) =(6)-
= Likelihood x Prior. (9)

Let us consider estimation of the parameter h(8) with §(z) under the loss function
L{6, ). Then the Bayesian risk can be computed as

R(r,8) = [ [ £(6,0) 1(alo(@) n(6) doda
- / / L(8,6(z))n(B}z) db f (z)dx
- f { / L(8, §(z))x(6]z) de] f(z)dz
_ f Ey [L(8,6(z))lz] f(z) db.

Then the Bayes estimator, d,(x), is the value of (z) that minimizes E, [L(8, §(x)}|z].
When L(6, ) = (h{#) — §(z))* the Bayes estimator reduces to

5:(z) = Ey [L(8, 6(z))la] = ] h(60) (8] db. (10)

In depth theory and proofs in inferences of Bayesian models and applications are
given by Robert and Casella (1999), Gelman et al. (2004), and Robert (2007).
The result given in (10) implies two main difficulties associated with Bayesian

estimations.
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e Often #{#|z) is not available in closed form.
e Integration, i.e. [ h(f)m(8|z)df, may not be done analytically.

Therefore, instead of seeking analytical solutions, the Bayes estimator is approxi-
mated by either numerical or simulation methods such as Markov chain Monte Carlo
(MCMC) techniques.

The Bayesian approach to the estimation of multiple binding events requires us
to determine the posterior distribution. As described in chapter 2, the model is for
estimating the binding events for a short region, say i**, of the genome. This model
can be applied to all the partitioned regions of the genome. The likelihood function of
the model for detecting multiple binding sites given in (8), referred to as f(yi,z:l9),
is the joint distribution of the observed data (y;’s) and the unobserved data (z;’s) of
the #** region. Since the prior distribution of the parameters depends on the number
of components for a given region i, let us consider m(v;]k) = [[5_o 7(vir) and (k)
as the priors of v; and &, respectively.

Generally in mixture models the identifiability of the components is important,
as discussed by Green (1995), McLachlan and Krishnan (1997), and McLach-
lan and Peel (2000). The proposed model is also invariant to the permutation of the
labels of the components, h = (1,...,k). Therefore, we propose a unique labeling
for the components by imposing a natural restriction on the location parameter u;;'s
such that they are of increasing oider, ie. pi < pi2 < ... < pig. Thus, the joint

prior distribution is 7 (g;|k) = k! H 7(win). Then the posterior distribution can be
computed by
ﬂ(oi kly‘ii Z.‘) X f(x‘n zila) W(“: Ik) ‘K(VtEk) ﬂ-(k)
uh(AL )‘.,r. e~ tjn(,\R )zuu

=1—[1—1 2!

jemappable h=0 'J'h Zijh:

k
x [ [ r(vin) x &t Hfr(u,-,,) x n(k). (11)
h=0 h=1

Due to the complexity of the above distribution, it is difficult to obtain analytical
estimates for the parameters. In such situations it is common to draw a large sample
from the posterior distribution and compute the sample mean as the Bayes estimates.
Here, the sample is generated using Markov chain Monte Carlo (MCMC) simulation
techniques.
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3.2 AN OVERVIEW OF THE RIMCMC SCHEME FOR MULTIPLE
BINDING SITES MODEL

To generate a sample from the posterior distribution given in (11) we follow a

scheme with four main steps.
e Update the intensity parameters v;.
o Update the location parameters ..
e Update the number of tags (z£,zF).
e Update the number of components k.

This scheme will be referred to as the RIMCMC scheme. One sweep of these steps
is considered to be one iteration. The first three steps do not change the dimension
of the parameter space, therefore, the usual Metropolis-Hastings algorithm (Hast-
ings 1970) and Gibbs sampler can be used. Complete description of these imple-
mentations will be provided in section 3.4. Intuitively, the number of components &k
can be updated by increasing the number of components by splitting an existing com-
ponent into two or can be decreased by one by combining two adjacent components.
These moves cause the dimension of the parameter space to change and requires the
use of the generalized Metropolis-Hastings method as described by Green (1995).

3.3 REVERSIBLE JUMP MONTE CARLO MARKOV CHAIN
(RIMCMC) METHOD

In general, Markov Chain Monte Carlo (MCMC) techniques, such as the Gibbs
sampler and the Metropolis-Hastings algorithm, provide a feasible approach to ap-
proximate complex posterior distributions where analytical techniques are tco com-
plex or not applicable. The reversible jump MCMC introduced by Green (1995), can
be considered as a generalization of the the Metropolis-Hastings algorithm allowing
us to generate samples from target distributions with varying dimensions of the pa-
rameter space. Since its introduction, RIMCMC has been applied to mixture models
(Richardson and Green 1997), change point estimations (Green 1995), clustering
(Brooks 2001}, and genomic studies {Tadesse, Naijun, and Vanucci 2005). Here
we present a brief outline of the theory for RIMCMC. For a detailed description see
Green (1995) and Waagepetersen and Sorensen (2001).
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A Markov chain (X;);», with a stationary distribution =, is constructed similar
to that of Metropolis-Hastings algorithm. Consider each state has two components,
ie. X; = (K;, ©;), where K; is the model indicator and ©; is a stochastic vector
in Ci. Let (k,8) be the values of the current state X, of the Markov chain. Let
Yo+1 = (K}, ©;,;) be a proposal for the next state X, with K7} ; as the proposal
of the model indicator K, +; and ©),,; as the proposal of the vector 6,,,. The new
model indicator is set to the value ¥’ with the probability pxi, where }'_j:',;','gl Pkt =
1. Given K, = K, the O], is generated in Ci.. Usually ©],, is obtained by
applying a deterministic mapping to 8, the value of the current state and to a random
component U. This can be obtained by expressing ©;,,, as 6, ;, = g1 (0, U),
where gy : R —» R™W is a deterministic mapping, and U is a random vector
on R™x~ with density gu (8, -). When moving from state {k, 8) to (¥, 8"), and for the
reverse from (¥, &) to (k,8), the dimension of vectors of Markov chain states and
proposal random variables, (8,u) and (8, u’) respectively, need to be equal. That

is, the following dimension matching condition must be satisfied:
Mg + Ngpr = N7 + Tprg, (12)

where ny is the dimension change of the parameter when making a move from

k to k. Similarly, ny is the dimension change of the parameter when making a

move from ¥’ to k. This ensures that fix(@)guw (0, u) and fir(8')gix (€', 1) are joint

densities on spaces of equal dimensions. Furthermore, assume there exist functions
ok R™Fa 5 R gnd

Gowk : RO 5 R
such that gy given by
(¢, v') = giw (8, u) = (g1ew (8, 1), g2rw (6, 1)) (13)
is one-to-one with
(6,u) = g5 (¢, &) = gwa(€', W) = (grin (€', 1), gorn (€', ) (14)
and is differentiable.
In addition to the dimension matching, one must also ensure reversibility. Assume
X, = (K,, 8,) ~ 7, then the condition for reversibility is
P(K,=k,© € Ay, Kny1 = K,Bp11 € By) =
P(K,=k O, € By, Kni1 = k,0,,1 € Ag), (15)
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for all k, ¥’ € (1,..., kmaz) and all subsets A; and By in Ci and Cy, respectively.
Also, the left hand side of (15) can be written in terms of conditional distribution
and py = P(K = k) as

P(Kn = k,G,. € Ak:Kn+l = k’; eﬂ+1 € Bk’) =

- /A fe(@)P(Kns1 = ¥, 8011 € By|X, = (£,0)).  (16)

Let Q3,.(8, By) be the joint probability of generating a proposal value with X%, = k’
and @}, in By and accepting the the proposal, given that X,, = (k, ). That is,

Q3(0, By) = P(Ky, = K, 83, € By and Yo, s accepted | X, = (k, 0)).
Furthermore, let 5:(@), the probability of rejecting the proposal, be

$1(6) = P(Yo1 is rejected | X, = (k, 8))
kfnu:c

= Zpkk' / Gir (0, 0)[1 — arpr (0, g1r (8, u))]du,

kfax]

where agy is the acceptance probability of the proposal. Then
P(Kpi1 =K, Onpy € By| X, = (k,0)) = Q354 (0, Br) + se(8)I{(k = ¥,0 € By).
The left hand side of {15) can be written as

pk./; [x(0)Q5u (€, Bir)d8 + py. ; fx(8)sk(8)I{k = k', 0 € By)dé =

/A Pefe(0)Q2: (0, By )do + fpkfk(a)sk(ﬂ)f(k =k,8 € AN By)dd. (17)
By symmetry the right hand side of (15) is
/B P Fo () Q2 (6, Ax)dE + f P fe(@)si(O)(k = K, & € By 0 A)dO. (18)

When considering the equations (17) and (18) it can be observed that the second
term is zero when k # &’ as the indicator function is zero and are equal when k = &/,
Therefore, a sufficient condition for reversibility given in (15) to hold is

/A pkfk(G)Q:.k;(e, Bk:)dg = pk'fk‘ (G’)Qﬁ,k(ﬂ, Ak)dﬂ' Vk, k’ (19)

Bk.r

Consider the following assumptions and results obtained in previous steps:
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(a) Y,41 is generated in Cp with probability pes.
(b) Yos1 € By < guw(0,U) € By.
(€) Yn41 is accepted with probability axw (6, gixx (6, U)).
(d) U~ g (8,-).
It follows that
Q(0, B) = pur [ T0ua(6,4) € Be) ave (6, guuw (0,w)) (6, ) du. (20

Then the left hand side of (19) can be written as

/A P fu(60) Q24 (6, Br) o = [ / I(8 € A, 91 (8, u) € By) Pife(6) pie
aw((), Qkx (9, u)) qkk:(l?, u)ds dll, (21)

and the right hand of (19) can be written as

/B P fio (0') Qi (6, Ar) 48 = [ / I(¢' € By, gu(0',%') € Ap) pifir(0') piok
ar (8, g1vi(6', 1)) gui(@’,u') d6 du. (22)

As stated in (13) and (14) we can consider 8 = gy (6, u'), 8’ = 1w (0,u) and
u = gy (@, 1'). Since giw is differentiable

_ dg;cy(o, ll)

d&'du’ = |g,,.{6, u}}dfdu,

and

’ Ogr 8’
9w (0, 0) = —‘gk:)é%uu))

[8_9ml (8,].!) 2&*1 (O,u):’
— o0 o9 .

8ylkh (09“) 8_92jk’ (O,u)
éu dn

With the above relations (22) can be expressed as

//I(glky(ﬂ, u} € By, 0 € Ax) p fir(guew (6, 1))

Pk Gk (g (0, 1), 8) o (G110 (0, 1), gorw (8, 1)) g1 (0, u)|dOdu. (23)
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From (21) and (23) it can be observed that the reversibility condition is satisfied by

P f1(0) P g (9, 1) apr (8, g1 (0, 1)) =

v fir (g (6, 0)) prk grers (G1ae (0, u), gora (6, 1))

3grx (68, u)

9200u (24)

ari{gn (0, u),8)

Choosing the acceptance probability to be as large as possible, while satisfying the
reversibility condition, gives the following acceptance probability for the proposal

b

Yn+1 :
Ogux (6, u)
080u

) Pr Fi(0) P, qrr(6', 1)
’ = 1
% (6,6) = min { " Pe [i(0) Prr, quw (0, 1)

3.4 IMPLEMENTATION OF THE RIMCMC SCHEME

In Bayesian models, the prior distributions on parameters reflect the prior infor-
mation on the parameters. In the absence of such prior information, the priors are
taken to be weakly informative. The priors chosen for the model are as follows:

Hin ™ U(lswt')!
vin ~ Gamma{a, b),

k ~ Poisson(}A;).

These priors and values for hyper-parameters were chosen to be weakly informative.
The prior for the u is chosen to be a uniform distribution over the region length.
The » parameter can also be considered as the number of tags belonging to each
component. In most regions, the number of tags are around 0-30, and in the presence
of a binding event, it can increase to larger values such as 200-500. Therefore, we
considered an exponential distribution with a mean of 25, which is skewed towards
zero with smaller probability on larger values. The rate parameter A, for the number
of additional components is chosen to be 0.5. Here we assume that the probability

of observing large number of components is small. With these priors the posterior
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distribution can be explicitly written as

Wi ko -af L yak, =B (\R V25,
e (A, ) on €T (A, )7
f(8,k|y;,2;) « 2 2
1 1\ 1<
tH] - e a—1 = )
x Kt (w.') (bar(a)) (o) eap (b ?;0”"‘
e )k
X~ (26)

In the following subsections we present the details of the four update steps intro-
duced in section 3.2.

3.4.1 PROCEDURE FOR UPDATING LOCATION PARAMETERS
(115)

New values of location parameters are generated by u}, ~ N(n, oﬁ), where pu;;
is the current value and h = (1, ..., k}. The new values are accepted with probability
min{1l,a,}, where 8" is the vector of parameters with proposed values and

o = 10,218, 5)
T f(y.zle. k)

3.4.2 PROCEDURE FOR UPDATING INTENSITY PARAMETERS
(V]H)’S

New values of intensity parameters, v}, are generated by v}, ~ N{v;, 02), where
h=1(0,...,k) and v;. The new values are accepted with probability min{1,e,}:

_ F, 2107 k) (- mt)! AN
= f(y,z|0,k) (Vz. .. V:)ﬂ*l &P {_E (Z Vp — ;Vh) } ,

h=0

where 8" is the vector of parameters with proposed values.
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3.4.3 PROCEDURE FOR UPDATING TAG COUNTS (Z;;)

This update step can be performed using the Gibbs sampler. For the j** mappable
position in the region, new values of the unobserved tags zf‘jl yeens z‘{; x and zgl yeers zgk
are generated from the the corresponding full conditional distributions given in (6)

and (7).

3.4.4 PROCEDURE FOR UPDATING THE NUMBER OF COMPO-
NENTS (K)

The number of components are updated by either decreasing the nurnber of com-
ponents by merging two adjacent components or by splitting an existing component
into two. In the previous section we defined pix as the probability the new num-
ber of components is set to k' when the current number of component is k. Before
invoking the step to update &, we set the values for these probabilities. In the im-
plementation we only consider an increase or decrease by one component. Let us
call a move type of ¥ to k+ 1 as split and a move type of k to £ — 1 a8 merge. We
set Prk+1) = Pr(k-1) = 0.5 when k € {2,...,knoz — 1}. Here kpay is the maximum
number of components and we set k. = 4, since we assume that the probability
of observing more than four binding sites for any given region is very small in real
data. When & = Kmaz; Prmasz(kmez+1) = 0 80d Dz (kmes—~1) = 1, @S more components
cannot be created, the only move allowed is a merge. Similarly, when &k = 1, pjo =0
and pys = 1, as there are no other components to merge, the only move type allowed
is splitting the current component. For all other cases pir = 0. Next, we present the
steps for updating the number of components.

First, a decision is made to split a component or merge a pair of adjacent com-
ponents based on the probabilities pi. Steps (a) and (b) give detailed description
of the procedure for splitting or merging components.

(a) Merging two components
We choose two adjacent components randomly, say h,; with parameters

(tthoys Vn,,) and h.o with parameters {(pa.,,Vr.,), to be merged into a single
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component h, with new parameters (un,, vy, ). We propose the following func-

tions to set the values for the new component

- Vhoi B + Vi, by
Vhe (27)
Vp, = Vhyy + Vhoo-

.

In addition the tags allocated to the two components is combined and re-
allocated to the new component. The proposal will be accepted with probability
min{l, @, }, which will be described later in this subsection.

(b) Splitting a component
Consider choosing component h, to split into two components h.; and k.
with parameters (u,,, ¥h.,) and (n,,, ¥, ), respectively. This move increases
the dimension of the parameter space by two. To match the dimension change,
generate a random vector U = (u,, uz) where u; ~ Ezp(e) and us ~ Beta(l,1).
The values for the new parameters are determined using the parameter values
of h, and U as follows,

U1 3

ﬂhtl = P"ht - 172

Hha = bh, + T
e T T T w) (28)

—

I}h-]. = ugvht

Vhez — (]. - 'U.Q)Vh_. J

The tags from the left and right strands are allocated to h. can be re-allocated
to the new components with probabilities (pZ, 1 —pL) and (p®, 1 — p?), respec-
tively, where

O Ga T ARG T (O AL

ijhay
The move will be accepted with probability min{l, ap}.

The sets of equations in (27) and (28) are the one-to-one mapping functions gis
and gy described in the theory of RIMCMC in section 3.3. In many applications
of RIMCMC, the mapping functions for combining components are obtained by
matching the moments of the parameters that change in the two states. However,
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it is not compulsory to follow this approach, especially when the moments of the
parameters are complex, and any set of functions that is one-to-one, deterministic
and differentiable will be sufficient. It can be observed that the set of equations in
(27) and (28) satisfy these conditions. In addition, these functions are also intuitive.
Specifically, when combining two components, we propose a weighted average based
on the intensities of the components so the combined component will be located closer
to the component with higher intensity. Simply adding the intensities to form the
intensity of the new component ensures that the total intensity of the region will be
preserved which also indirectly translates to the number of tags in the region. When
splitting a component, locations of the new components are set by subtracting and
adding a short length from the location of the original component. The advantage of
this proposal is that the length that is subtracted or added can vary while preserving
the order of the locations of the new components to satisfy the identifiability condition
stated in section 2.3.

The acceptance probability, asms, can be obtained from (25) given in section
3.3. Since the number of components are increased or decreased by one, we can
set k' = k+ 1. Also, we can consider p;fi(€) = ¢! x Posterior distribution,
where ¢! is the unknown normalizing constant. The ratio of piw/pis is replaced by
Pke+1)k/ (Pr(r+1) X Pattoc)- Here, Payoc is the probability of the particular re-allocation
of the tags in the original component to the new components created in the split
move. For our scheme this can be explicitly expressed as

L L R R
R L Ziin, L %, R Ziin, R Zijh,
Potioe = Zijn,! zt (M) ™ (M) (M5,) ™ (W) ™™
L A A Y zk P :
2l 2o V2o LA ! L L B R R iihe
$7he1’ “ijhaa’ “iihet1” “ijhaz (Aijh.l + A‘ijh.g) 35 (Aijh.l + Aijh..z) 3

Also, note that in the reverse move Fy,. = 1. Furthermore, since the random vec-
tor U is generated independent of the current state, the term gui (6, 0')/gwx (€', 1)
reduces to 1/(m(u;)m{uy)), where m(u;) and w(uz) are the densities of u; and us,
respectively.

The Jacobian for the transformation of variables from (up,,pp,,u1,u2) to

(1heys dihags Vhay Vha) €20 be computed as follows.
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Oth, OMh.g Fvny Ovng
aﬂ-h_ 6}1&- aﬂ-h. aﬂ-h_
aﬂh‘l 6}-";‘2 3]/}“1 6”":2
” J” = Bv;., av;“ av;._ av;,,
a“"‘:l 6“”‘-2 6Vh-1 3”"-‘2
o Suy Guy 3‘“1
8"‘*-1 3,1:.;. 2 8!)‘5_ 1 BV}; 2
Dup  Gup Buz Oug

1 1 0 0

0 0 Uo 1- Ua vy,
— 1 1 = —_ .
-2 2 0 o0 (1 — ugjuy
1
2 TwE YA TV

Therefore, the acceptance probability can be expressed as,
. ) 1 1 Vhortha )7
it = likelihood ratio x {(k + 1) (wt_) ( #(a) ( oy )

Ac di+1)k 1
g 8 x Jll 2
m—1 " (Prk+1)kPatioc)  m(u1)} m{uz) 11| (29)

The acceptance ratio derived here is somewhat reminiscent to the the acceptance
ratio used by Richardson and Green (1997) in their implementation of RIMCMC
method for estimating parameters of a Gaussian mixture model.

The objective of the RIMCMC scheme is to generate a sample from the posterior
distribution given in (26). Recall that one sweep of the four steps of the scheme is

considered as an iteration. The parameters are updated in batches. To obtain the
posterior sample, we ran 15000 iterations allowing a burn-in period of 5000 itera-
tions to discard, where the chain may not converge to the true posterior distribution.
The estimates for the number of components is calculated by taking the number of
components with the highest frequency. Since the location and intensities are condi-
tional on the number of components, their estimates were calculated with conditional
sample averages.

Usually the simulated data from MCMC techniques tends to be correlated. There-
fore, it is not accurate to consider the data to be independent and calculate the sample
standard deviation as the the standard deviation of the estimates. Thus, to mini-
mize this correlation among the sampled data, we sub-grouped the simulated draws
into groups of 20 and calculated the sample mean (batch means) for the parameters
(6%, ..., , b=number of subgroups). Then we approximate the standard deviation
of the estimates by the standard deviation of the batch means (Albert 2009).
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In addition to the priors and the one-to-one functions described in subsection
3.4.4, it is possible to propose alternative functions. We investigated a few alterna-
tives, especially for priors for the v parameter, and one-to-one functions for updating
the k parameter. To compare the performance of the RIMCMC scheme with the
alternatives, they were applied to simulated data, where the values of the parameters
are known (see section 3.5).

3.5 COMPARING ALTERNATIVE CHOICES IN
IMPLEMENTATION AND SIMULATION RESULTS

3.5.1 ALTERNATIVE ONE-TO-ONE FUNCTIONS FOR UPDATING
NUMBER OF COMPONENTS

Among the parameters to be estimated in the model, the number of peaks, k,
can be considered as the most crucial, as it directly affects the estimation of the
intensity and the location parameters. The success of the estimation of k¥ depends
on the one-to-one functions described in 3.4.4. Here we compare the performance
of the one-to-one functions given in section 3.4, referred to as propesal 1, with two
alternative proposals, proposel 2 and proposal 3.

¢ Proposal 2

(a) For merging two components

yh- = yhl + Vhﬂ
fay t pr, (30)
o, = R
{b) For splitting a component
3
Hh,y = W) Ha,
ph-2 = (1 - ul)p'h—
¢ (31)

Vp, = U2¥p,

Vh.z = (1 - ‘u"z)”h“J

Here u; ~ Beta(2,2) and uy ~ Beta(l, 1).
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¢ Proposal 3

{a) For merging two components

- Vhy iy + Vi fohg
Vs (32)

Uk. = Uhl + vhz-

HBh,

(b) For splitting a component

ph-l = ulph-
1~ uzuzp
P — h.

- > (33)
Vh-l = WV})'

Bho =

vht? = (1 - u2)Vh-~ y

Here u; ~ Beta(2,2) and uy ~ Beta(l,1).

The equations (30) and (31) in proposal 2 and the equations (32) and (33) in pro-
posal 2 satisfy the conditions of being one-to-one, deterministic and differentiable.
The proposal 2 can be viewed as the simplest or naive proposal, where when com-
bining two components, the location of the new peak is considered to be half way
between the two components.

However, in this proposal when splitting a random component, it is possible to
observe that the new location parameters are not in ascending order. In such cases
the constraint on identifiability of the components is violated. Therefore, in the
implementation, new proposal values that violate this condition are rejected.

In proposal I and proposal 3, the functions by default preserves the order of values
of the new locations. The combine steps in proposal 1 and proposal 8 are the same but
the split steps are different. In proposal 1, a random quantity is subtracted and added
to obtain the location parameters of the first and the second split components. In
proposal 3, locations of the new components are positioned by a ratio of the distance
between the start of the region and the location of the current component that is
being split. In each case, if existing components falls between the new components,
then we reject the proposed move.

The RIMCMC schemes with the separate proposals were applied to the simulated
data described in section 2.4. The priors for the ¥ is considered as Ezponential(10).
We consider the RIMCMC scheme to be a success if the estimate of the parameter
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k is the number of peaks considered in simulating the data and the estimates for
the location parameters y, is within 50 bp of the simulated values. Here we look
at the number of successes the three RIMCMC schemes reports on the simulated
data. Since each subgroup of data has 20 sample datasets, the maximum number of
successes is twenty. In general, a larger number of sample datasets would improve
the accuracy of the observation and conclusions derived. At the same time, 20 sam-
ples from each scenario provide a sufficiently large number of observations to make
an informed decision on the performance of the computation schemes, especially,
when considering the overall number of scenarios (96) and the time taken to run the
RIJMCMC scheme for each simulated dataset.

Table 1 summarizes the number of successes observed for the datasets simulated
with two peaks with equal intensities (group I to group {), and Table 2 summarizes
the number of successes observed for the datasets simulated with two peaks with
unequal intensities (group 5 to group 8). Finally, Table 3 gives the summary of the
number of successes observed for the datasets simulated with three peaks, group 9
to group 12.

When considering the results in Tables 1 and 2 for two peaks, it can be observed
that the proposal 1 and proposal 8 performed comparably, but proposal 2 performs
poorly, especially when the intensities decreases. Therefore, proposal 2 is disregarded
in the analysis of datasets simulated with three peaks. The results for the three peaks
(Table 3) also indicate that the performance of the proposal ! and proposal 8 are
comparable. However, when considering the results presented in Table 2, proposal 1
performs slightly better than proposal 3 when the distance between the peaks with
unequal intensities decreases. The objective of the study is to detect binding events
within short regions, where the sites are closer to each other. Therefore, proposal 1
can be considered as the best choice among the three proposals for the RIMCMC
scheme.
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Table 1. Results from simulated data with two peaks and equal intensities using
the RIMCMC schemes with the three proposals

Distance Intensities No. of successes (/20)
between peaks Peakl Peak2 Proposal 1 Proposal 2 Proposal 3
200 150 150 5 14 8
125 125 11 16 9
100 100 14 15 12
75 75 19 16 17
50 50 19 19 18
25 25 16 i1 13
150 150 150 9 10 6
125 125 14 16 9
100 100 17 17 17
75 75 19 17 19
50 50 20 18 19
25 25 17 4 17
100 150 150 13 14 15
125 125 17 15 16
100 100 18 11 16
75 75 17 10 19
50 50 13 2 11
25 25 11 0 13
75 150 150 12 6 15
125 125 17 4 17
100 100 11 2 15
75 75 11 0 14
50 50 9 0 13
25 25 0 0 8
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Table 2. Results from simulated data with two peaks and unequal intensities using

the RIMCMC schemes with the three proposals

Distance

Intensities

No. of successes (/20)

between peaks Peakl Peak2 Proposall Proposal 2 Proposal 3

200

150

100

75

200
150
150
125
100

75

50

50
50
75
50
25
25
25

200
150
150
125
100

75

50

200
150
150
125
100

75

50

50
50
75
50
25
25
25

200
150
150
125
100

75

50

50
50
75
50
25
25
25

80
50
75
50
25
25
25

9
11
12
15
10
16
18

19
18
16
20
16
19
20

7
13
13
18

7

8

9

10
12
19
17

6

6
12

17
15
11
14
10
13
17

19
16
17
19
14
17
15

14
11
13
12

4

NO OO~ 00X

10
16
18
15

7
12
15

19
17
18
19
13
16
17

10
13
16
14
6
8
7

12
10
10
11

7
10

9




Table 3. Results from simulated data with three peaks using the RIMCMC

schemes with the three proposals

Distances between

Intensities No. of successes (/20)

First two peaks Second two peaks of the peaks Proposal 1 Proposal 3

200 200 150
125

100

75

50

25

150 150 150
125

100

75

50

25

100 100 150
125

100

75

50

150 200 150
125
100
7%
50
25
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3.5.2 UPDATING NUMBER OF COMPONENTS

In this section we present a comparison of the performance of the RIMCMC
schemes with three different priors for the intensity parameter. The three priors we
considered are as follows:

e Exponential prior .

() =3 e¥  with A = 25.
e Truncated Cauchy prior
c . 2
‘"(Vi):m’f(vi>0) thh/\=25andc=7.

e Uniform(0, 2000)

Similar to the analysis in subsection 3.5.1, three RIMCMC schemes with these
priors were implemented and applied to the simulated datasets. Their results are
summarized in Tables 4-6. All three RIMCMC schemes employed proposal 1 in the
step for updating the number of components.

When compared to the results in subsection 3.5.1, the number of successes have
increased significantly for all the three priors than with the prior of Exp(10) on »;.
Overall, when compared to the Cauchy as well as the uniform prior, the exponential
prior with mean 25 performs better with more number of success, especially for
shorter distances between the the peaks. Therefore, we will consider the exponential
prior hereafter for the implementation of the RIMCMC scheme.
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Table 4. Results from simulated data with two peaks and equal intensities for the
RIMCMC schemes with the three priors

Distance Intensities No. of successes {/20)
between peaks peakl pesk2 Exponential Cauchy Uniform
200 150 150 20 20 20
125 125 20 20 20
100 100 19 20 20
75 75 20 20 20
50 50 20 20 20
25 25 16 16 13
150 150 150 20 20 20
125 125 20 20 20
100 100 20 20 20
75 75 19 20 20
50 50 20 20 20
25 25 16 8 6
100 150 150 20 20 20
125 125 19 16 18
100 100 18 18 17
75 75 19 12 12
50 50 14 7 5
25 25 5 1 0
75 150 150 19 9 10
125 125 16 6 7
100 100 15 2 3
75 75 10 3 3
50 50 8 1 0
25 25 0 0 0
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Table 5. Results from simulated data with two peaks and unequal intensities for

the RIMCMC schemes with the three priors

Distance Intensities No. of successes {/20)

between peaks peakl peak2 Exponential Cauchy Uniform
200 200 50 19 20 20
150 50 19 20 20

150 75 18 20 20

125 50 20 20 20

100 25 13 15 13

75 25 17 18 17

50 25 18 18 17

150 50 200 20 20 20
50 150 20 20 20

75 150 20 20 20

50 125 20 20 20

25 100 17 16 16

25 75 18 18 19

25 50 20 20 20

100 200 50 17 20 19
150 50 17 20 20

150 75 19 20 20

125 50 19 19 19

100 25 10 12 12

75 25 11 13 10

50 25 12 14 12

75 200 50 10 8 8
150 50 18 14 15

150 75 19 16 17

125 50 18 16 14

100 25 13 1 0

75 25 11 3 0

o0 25 11 1 0
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Table 6. Results from simulated data with three peaks for the RIMCMC schemes
with the three priors

Distances between Intensities No. of successes (/20)
first two peaks second two peaks of the peaks Exponential Cauchy Uniform
200 200 150 16 20 20
125 15 20 20
100 19 20 20
75 20 19 19
50 18 19 18
25 10 3 3
150 150 150 18 20 20
125 17 20 20
100 19 20 20
75 19 19 19
50 20 18 14
25 5 0 1
100 100 150 11 1 0
125 7 0 0
100 5 0 0
150 200 150 i% 20 20
125 19 17 18
100 19 20 18
75 15 17 17
50 12 3 2
25 1 0 0
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3.5.3 SIMULATION RESULTS USING THE RIMCMC SCHEME

From the results in the previous section, we select Exponential(25) for the in-

tensity parameter and proposal 1 for updating parameter k. In this subsection, we
present detailed results from the simulation study and discuss strengths and limita-
tions of the RIMCMC scheme. Tables 7-8 summarizes the results for simulated data
with two peaks and equal intensities, groups I1-4.

Table 7. Simulation results from the RIMCMC method for datasets in group I and

group 2
Peak 1 Peak 2 Background Peak 1 Peak 2 No. of

B Bl @ B2 o wm B v Vi w 2 successes

(sd) {sd) (sd) (sd) (sd)  (/20)
Group 1

300 299.0 500 4966 10 133 150 1440 150 152.2 20
(6.4) (6.2) (5.9) (12.0) (11.9)

300 2056 500 4969 10 114 125 1204 125 121.1 20
(6.9} (7.0) (5.5) (10.7) (10.9)

300 2947 500 4935 10 124 100 963 100 99.0 19
(7.9) (7.9) (5.5) (9.7) (9.9)

300 2854 500 4953 10 13.3 75 70.2 75 73.5 20
(9.6) (9.3) (5.5) (8.4) (8.6)

300 2024 500 488.0 10 141 50 43.7 50 51.2 20
(13.5) (11.9) (5.5) (7.2) (7.3)

300 2852 500 4821 10 13.1 25 22.3 25 26.0 16
(21.7) (20.0) (5.1) (5.5) (5.6)

Group 2

300 201.9 450 4439 10 103 150 1389 150 1588 20
(8.2) (7.6) (5.2) (15.4) (15.5)

300 2009 450 4410 10 134 125 1094 125 1328 20
(9.6) (8.5) (5.8) (13.9) (14.4)

300 2934 450 4462 16 11.1 100 92.7 100 1028 20
(9.7) (9.3) (5.1) (12.3) (12.4)

300 286.8 450 4376 10 11.0 75 62.4 7% 839 19
(13.2) (10.8) (5.0) (10.6) (11.3)

300 282.0 450 4374 10 122 50 40.8 50 56.5 20
(16.4) {14.0) (5.2) (9.0) (9.3)

300 286.5 450 431.3 10 118 25 22.2 25 255 16
(42.2) (30.9) (5.0) (8.5) (8.5)
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Table 8. Simulation results from the RIMCMC scheme for datasets in group 3 and

group 4
Peak 1 Peak 2 Background Peak 1 Peak 2 No. of
“ Bl P2 B2 W 7 n 9 ¥ ¥  successes
(sd) (sd) (sd) (sd) (sd) (/20)
Group §

300 282 400 3886 10 137 150 111.2 150 180.1 20
(14.6) (10.2) (5.7) (27.2) (27.6)

300 281.2 400 3854 10 145 125 9 125 1474 19
(16.4) (11.6) (5.8) (25.7) (26.2)

300 2775 400 384 10 12 100 69 100 125 i8
(22.7) (13.2) (5.3) (24.2) (24.6)

300 2804 400 387 10 12 75 57 75 88 19
(30.4) (17.5) (5.2) (22.9) (23.2)

300 2784 400 3909 10 12.4 50 392 50 56.3 14
(39.2) (24.9) (5.5) (18.1) (18.2)

300 2622 400 3972 10 11.7 25 219 25 26.1 5
(62.0) (46.5) (5.6) (12.4) (11.7)

Group 4

275 250.7 350 3353 10 12.9 150 929 150 1934 18
(30.9) (14) (6.1) (50.2) (50.7)

275 2516 350 3375 10 12.7 125 864 125 1539 16
(40.8) (18.6) (6.1) (49.8) (50)

275 2498 350 336.5 10 12.3 166 735 10 1201 15
(43.4) (20.8) (6.2) (43.1) (43.4)

275 2436 350 3378 10 12.7 75 547 75  89.7 10
(53.3) (23.9) (6.3) (35.2) (35.6)

275 2416 350 3429 10 10.1 50 40.4 50 64.1 8
(58.3) (29.3) (5.6) (27 (27.2)
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In addition to the nmumber of successes as defined in subsection 3.5.1, we present
a summary of the estimates and their standard deviations. As observed in previous
subsections, the RIMCMC scheme performs successfully when the distance between
the peaks are 100 bp or more and the intensities are higher (50 or more) by estimating
the correct number of peaks and the correct locations and intensities. However, as
the distance between the peaks and the intensities decrease, the performance starts
to deteriorate. This limitation can be expected as it becomes increasingly difficult
to distinguish peaks accurately as the distances decrease.

Tables 9-10 sumnmarize results from the two peaks simulation with unequal inten-
sities, group § to group 8. When the intensities are unequal, it becomes increasingly
difficult to detect the correct number of components and estimate their parameters.
In the simulation data, we considered several scenarios of unequal intensities by vary-
ing the intensities from high to low as well as varying ratios of the intensities of the
two peaks. The main goal of the simulated data in group 5 and group 6 is to inves-
tigate whether a significant difference in the performance of the RIMCMC can be
observed if the order of the intensities given in group 5 is reversed. From the results
given in Table 9, we do not observe a significant difference between the estimates for
the two groups. In addition, the intensities and the locations are estimated with a
good accuracy even for the simulation data with low intensities.

Continuing with the simulation data on two peaks with unequal intensities, Table
10 presents the results for the simulated datasets in group 7 and group 8, where the
distances between the two peaks are decreased. Considering the results, again we
observe a deteriorating trend in performances as the distance between the peaks
decreases.
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Table 9. Simulation results from the RIMCMC scheme for datasets in group 5 and

group 6
Peak 1 Peak 2 Background Peak 1 Peak 2 No. of

1 Bop2 B2 ow R m i w &  successes

(sd) (sd) (sd) (sd) (sd)  (/20)
Group 5

300 2092 500 49%6.8 10 138 200 1975 50 470 19
(4.9) (14.0) (6.0) (12.8) (8.3)

300 297.3 500 493 10 125 150 142.7 50 524 19

(6) (12.7) (5.6) (11.4) (8.3)

300 2981 500 4943 10 135 150 1436 75 73.9 18
{6.1) (9.9) (5.9) (11.2) (9.2)

300 2054 500 4885 10 118 125 121 50 508 20
(6.7 (13.3) (5.5) (10.8) (8.3)

300 295 500 4806 10 13.0 1060 92 25 296 13

(8) (22) (5.7) (10.2) (7.6)

300 2926 500 482.0 10 116 75 690 25 278 17
{(9.8) (22.1) (5.5) (9.0) (6.8

300 2882 500 490.1 10 10.5 50 46.9 25 273 18
(11.0) (17.8) (4.8) (6.9) (5.7

Group 6

300 2894 500 499.2 10 128 50 4.1 200 1949 20
(13.9) (4.8) (5.6) (7.8) (12.1)

300 2943 500 4967 10 124 50 479 150 1453 20
(13.1) (6) (5.4) (7.9) (10.8)

300 293.3 500 4969 10 118 75 734 150 147 20
(9.5) (5.9) (5.4) (8.9) (11)

300 291.2 500 4984 10 109 50 48.2 125 1261 20
(12.4) (6.3) (5.2) (7.5) (10.1)

300 2843 500 496.3 10 138 25 225 100 97.8 17
(25.4) {(7.6) (5.3) (6.3) (9.2)

300 2022 500 498.1 10 9.7 25 25.2 75 74.8 18
(20.1) (8.5) (4.5) (6.0) (7.9)

300 276.7 500 4949 10 12.7 25 23.6 80  52.2 26
(20.2) (10.7) (5.1) (5.6) (6.8)
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Table 10. Simulation results from the RIMCMC scheme for datasets in group 7 and

group 8
Peak 1 Peak 2 Background Peak 1 Peak 2 No. of

#1 B op2 B2 w w L w B successes

(sd) (sd) (sd) (sd) (sd) (/20)
Group 7

300 2058 450 4301 10 123 200 188 50 605 17
(7.2) (20.2) (5.8) (20) (17.1)

300 202.2 450 4338 10 12.8 150 1338 50 594 17
(8.7) (18.8) (5.7) (16.8) (14.6)

300 2954 450 4419 106 11.8 150 136.1 75 81.3 19
(8.1) (12.9) (5.5) (14.9) (13.5)

300 204.1 450 4384 10 11.8 125 118 50 575 19
(8.5) (17.3) (5.5) (14.1) (12.2)

300 2806 450 4184 10 13.6 100 83 25 36.9 10
(19.6) (32.2) (5.8) (17.9) (15.8)

300 286.2 450 4144 10 126 75 601 25 369 11
(23.3) (30.2) (5.6) (15.2) (14)

300 2826 450 4214 10 134 50 434 25 317 12
(24.4) (29.3) (5.8) (11.5) (10.2)

Group 8

300 2815 400 372 10 13 200 1462 50 101.4 10
(31) (25.8) (5.7) (48.2) (47.7)

300 2714 400 3675 10 129 150 95 50 103.2 18
(20.5) (18.3) (5.4) (30.8) (30.6)

300 280 400 3734 10 135 150 1012 75 118.3 19
(18.8) (16.5) (5.4) (32.4) (32.1)

300 274.1 400 369.1 10 13 125 803 50 929 18
(23.5) (19.8) (5.4) (27.7) (27.6)

300 2736 400 3642 10 142 100 648 25 58.1 13
(44.2) (39.3) (5.9) (33.7) (33.1)

300 2738 400 3715 10 120 75 50.1 50 489 11
(54.2) (48.1) (5.5) (29.1) (28.5)

300 2794 400 3972 10 121 50 259 25 473 11
(63) (27.9) (5.1) (17.1) (17.4)
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The estimates from the RIMCMC scheme for the simulated data with three peaks
are given in Table 11 and Table 12. In Table 12, the three peaks are simulated to
be equally distanced. The RIMCMC scheme performs successfully in estimating the
parameters when distances between the peaks are 200 bp, group 9. It shows at least

50% of success rate even for a intensity level as low as 25. However, the RIMCMC
scheme reaches its limitations as the distance between the peaks decreases below 150
bp, groups 10-11. Due to the absence of accurate estimates, some of the subgroups of

simulation datasets are not presented here. The datasets in group 12 were simulated

to investigate the performance of the estimation process when the three peaks are

at unequal distances. The success rate for many of the subgroups are comparable to
those with equal distances (see Table 11).

Table 11. Simulation results from the RIMCMC scheme for datasets in group 12

Peak 1 Peak 2 Peak 3 Background Peak 1 Peak 2 Peak 3

No. of

p1 Bl p2 P M3 B3 w B wm B vy vz D3 successes
(sd) (sd) (sd) (sd) (sd) (sd) (sd)  (/20)

Group 12

300 291.6 450 439.5 650 6448 5 8.7 150 132.7 150.0 150 150 154.6 18
@7 (105  (6.1) (5.5) (15.9) 158)  (12.0)

300 297.2 450 4456 650 648 5 81 125 1186 125 120.3 125 120.2 17
@5) (125  (7.4) (5.5) (15.3) (152)  (11.0)

300 296.4 450 442.9 650 6475 5 7.6 100 93.8 100 103.6 100 975 19
(10.9) (13.3) (8.0) (5.1) (14.3) (14.3) (10.2)

300 291.5 450 4405 650 6426 5 7.8 75 668 75 778 75 754 19
(12.7) (15.6) (9.4) (5.3) (12.2) (12.1) (9.1)

300 290.9 450 428.3 650 6366 5 88 50 430 50 484 50 526 20
(19.9) (21.6)  (11.5) (5.4) (11) (11.3) (7.6)

300 283.7 450 432.3 650 6409 5 82 25 235 25 27.7 25 274 5
(29.2)  (32.8)  (19.1) (5.2) (8.5) (8.7) (5.9)




Table 12. Simulation results from the RIMCMC scheme for datasets in
group $group 11
Peak 1 Peak 2 Peak 3 Background Peak 1 Peak 2 Peak 3

No. of
M B op2 B2 @3 B3 w R w1 v B vz U3 successes
(sd) (sd) (sd) (sd) (sd) (sd) (sd) _ (/20)
Group @
300 296 500 493.9 700 696.2 5 7.6 150 1426 150 144 150 147.8 16
66 (85  (6.3) (.1) aL7n (27 (1L8)
300 297.3 500 490.7 700 693.1 5 6.4 125 119.7 125 121.4 125 130.6 15
(7.3) (9.5) (6.7) (5) (11.2) (12) (11.2)
300 297 500 49 700 6926 5 10.7 100 98.2 100 95 100 98.1 19
8.1)  (11.3) (8) (5.9) (10.3)  (109)  (9.8)
300 294.5 500 489.4 700 693 5 84 75 702 75 724 15 729 20
(94)  (129) (9.5 (5.5) (8.9) (9.5) (8.9)
300 295.3 500 488.6 TOD 690.6 5 8.3 50 476 50 478 50 516 18
(1L7) (157 (113) (5.2 (7.4) () (7.6)
300 291.5 500 473.2 700 673 5 85 25 234 25 219 25 288 10
(251)  (34.3) (189)  (5.1) (6.5) (6.6) (6.1)
Group 10
300 292.7 450 438.9 600 5939 5 6.8 150 136.9 150 147.5 150 153.4 19
91 (144  (83) (4.6) 179  (194)  (17.2)
300 293.9 450 433.3 600 589.3 5 9.3 125 113.2 125 117.5 125 1339 19
{10.8) (17.5) (9.3) (5.3) (17.8) (18) (16}
300 290.3 450 432.5 600 5915 5 7.9 100 92.1 100 932 100 106.5 19
@2 (198 (107  (5.1) (158)  (162)  (145)
300 282.6 450 4286 600 593 5 7.8 75 604 75 7181 75 T78.7 15
(152)  (19.9)  (125) (5) (124) (138)  (12.3)
300 288.3 450 4176 600 578 b5 11.5 50 420 50 47.1 50 58.8 12
(27.3)  (328)  (16.4) (5.6) (135)  (145) (11)
300 271.8 450 400.7 600 5755 5 6.5 25 147 25 254 25 37.6 1
(441) (31.6) (1L9)  (36) (7.4) (8.7) (6.2)
Group 11
300 284.7 400 364.7 500 488.7 5 8.2 150 108 150 156.7 150 185.2 11
(326)  (29.8) (10) (5.7) (58.7)  (60.5) (32)
300 275.2 400 362.4 500 4860 5 104 125 87.1 125 124.8 125 152.2 7
(45.1)  (318)  (12.3) (6) (487  (5L1)  (29.7)

300 275.3 400 362.5 500 486.7 5 6.7 100 63.2 100 105 100 1225 5
(382)  (296)  (12.8) (5.1) (38) (30.1)  (23.9)
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Investigating the results from the simulation data revealed many of the strengths
and weaknesses of the RIMCMC scheme. The scheme is capable of accurately es-
timating the parameters when the peaks are apart by 100 bp or more or when this
distance is short but the intensities are of higher values.

It is also successful in detecting the correct number of components and estimating
their parameters correctly when the intensities of the peaks are unequal. Again the
limitation is reached as the distance between the peak decreases around 100 bp. This
trend holds for the three peaks.

3.6 RESULTS FROM THE STAT1 AND ZNF143 CHIP-SEQ DATA

With its ability to estimate peaks separated by 100 bp or more, we applied the
RIMCMC scheme to the two real ChIP-seq datasets introduced in section 1.5. As
described in section 3.1, we first partitioned the genome into smaller regions of 150 bp
to 1500 bp. Among these short regions many are expected to have only one binding
sites. Therefore, only a subset of the regions were selected for further analysis. The
single binding site model (section 2.1) was applied to all the partitioned regions and
the p-value for the goodness of fit of the single binding site model was obtained
(Kim, Jayatillake, and Spouge 2012). For STAT1 data, regions longer than 600 bp
with a goodness of fit p-value less than 0.01 were chosen for further analysis. For
ZNF143 data, regions longer than 650 bp with goodness of fit p-value less than 0.01
were chosen for further analysis. There were a total of 906 regions that matched the
given criteria for STAT1 ChIP-seq data and 1245 regions that matched the given
criteria for ZNF143 ChIP-seq data.

The RIMCMC scheme was applied to the selected regions. The binding sites
estimated by the RIMCMC scheme were compared to the motif sites by computing
the distance from a binding site to the nearest motif site. The number of binding
sites within 50, 100, 200, and 250 bp of a motif site for STAT1 is given in Table
13. In addition, we also compare these results with those obtained from the single
binding site model.

For the STAT1 data, the RIMCMC scheme detects an additional number of
peaks than those detected by the single biding site model. The highest difference of
30 peaks between the two approaches is observed when the distance to the nearest
motif site is 200 bp or less. The number of sites with a motif site in close proximity
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estimated by both models do not increase significantly even when the distance to the

nearest motif site is increased.

Table 13. Number of binding sites with motif site in close proximity for STAT1
data using the RIMCMC scheme

Distance to Number of sites
the motif Single binding RIMCMC
site site model scheme
50 292 309
100 301 326
200 305 335
250 308 335

For further investigation of the performance of RIMCMC scheme in detecting
multiple binding sites, we looked at the tag distribution of the regions with multiple
binding sites. Four such regions for STAT1 data are presented in Figures 12-15. In
these figures, locations with negative tag counts indicate unmappable locations. The
chromosome of the region, the relative location of the nearest motif site and the
relative location and intensity estimates for the binding sites for the four examples
are presented in Tables 14-17. When considering the distribution of tags in these
regions, we can clearly observe two peaks, but it is difficult to assert the location of
the two peaks as well as the intensities. Among the two peaks in the regions, the
RJMCMC scheme accurately detects peaks with high intensities (or those consist of
a higher number of tags). As in example 3, illustrated in Figure 14, when both peaks
have high intensities, the RIMCMC scheme estimates both peaks with a remarkable
accuracy.

In addition to the performance of the RIMCMC scheme, the results of study on
STAT1 indicate that there are at most two binding sites among these regions with
multiple binding sites with a motif site nearby {200 bp).
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Figure 12. Estimated sites from the RIMCMC scheme and motif sites for
STAT1 data for Example 1.

Table 14. Location of the motif site and estimates of the binding sites for STAT1
data using the RIMCMC scheme for Example 1

Region start  Motif
position location

Chrom Binding site (sd) Intensity (sd)

3 107332049 301 215 (25.4) 25 (7.0)
415 414 (10.4) 70.2 (8.9)
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Figure 13. Estimated sites from the RIMCMC scheme and motif sites for
STAT1 data for Example 2.

Table 15. Location of the motif site and estimates of the binding sites for STAT1
data using the RIMCMC scheme for Example 2

Region start  Motif
position location

Chrom. Binding site (sd) Intensity (sd)

5 83349149 231 184 (53.0) 32.8 (19.6)
335 338 (16.5) 103.6 (21.3)
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Figure 14. Estimated sites from the RIMCMC scheme and motif sites for
STAT1 data for Example 3.

Table 16. Location of the motif site and estimates of the binding sites for STAT1
data using the RIMCMC scheme for Example 3

Region start  Motif
position location

Chrom. Binding site (sd) Intensity (sd)

18 1906944 432 430 (5.8) 149.2 (10.8)
722 719 (5.6) 149.2 (10.9)
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Figure 15. Estimated sites from the RIMCMC scheme and motif sites for
STAT1 data for Example 4.

Table 17. Location of the motif site and estimates of the binding sites for STAT1
data using the RIMCMC scheme for Example 4

Region start  Motif
position location

Chrom. Binding site (sd) Intensity (sd)

19 39859520 286 302 (7.2) 149.7 (14.5)
560 477 (9.5) 121.2 (13.4)
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Similar to the study of STAT1 data, the RIMCMC scheme was applied to ZNF143
ChIP-seq data. Here also, the number of binding sites estimated by the single site
model was compared to the number of binding sites detected by the multiple binding
sites model using the RIMCMC scheme, by counting the estimated sites that have
motif sites in close proximity (see Table 18). The RIMCMC is able to detect at least
58 more peaks than those detected by the single binding site model. The additional
79 peaks with a motif site within 50 bp were detected by the RIMCMC method.
In addition, it predicts the binding locations with a better accuracy than STATI1.
Furthermore, for ZNF143 data, higher number of additional peaks were detected
than STAT1 data. This can be attributed to the higher number of sequenced tags in
ZNF143 ChIP-seq data, about 27 million sequenced tags, compared to 15.1 million
sequenced tags in the STAT1 ChiP-seq data.

Table 18. Number of binding sites with motif site in proximity for ZNF143 data
using the RIMCMC scheme

Distance to Number of sites
the motif  Single binding RJMCMC
site site model scheme
50 369 448
100 397 464
200 412 472
250 417 475

Distributions of the tag counts of some selected regions from ZNF143 with the
motif sites and estimated binding sites are given in Figures 16-19. Due to the large
number of sequenced tags in the ZNF143 dataset, most regions contain higher num-
ber of tags that results in high intensities and higher standard deviation for the
estimates. These figures also illustrate that the binding sites predicted by the RIM-
CMC scheme compares with the overall distribution of the tags. For example, in
Figure 17 two peaks of tag distributions with one peak smaller than the other can
be clearly observed. The RJIMCMC scheme successfully detects the two peaks with
smaller intensities for the smaller peak and higher intensity for the more pronounced
peak. Figure 19 illustrates the success of the RIMCMC scheme in detecting more
than two binding sites in a region with different intensities; infact, it found four.
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Figure 16. Estimated sites from the RIMCMC scheme and motif sites for
ZNF143 data for Example 1.

Table 19. Location of the motif site and estimates of the binding sites for ZNF data
using the RIMCMC scheme for Example 1

Region start  Motif e .
Chrom. position  location Binding site (sd) Intensity (sd)
1 242882654 401 413 (26.2)  890.6 (309.8)
537 501 (1.5) 1979.0 (177.2)
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Figure 17. Estimated sites from the RIMCMC scheme and motif sites for
ZNF143 data for Example 2.

Table 20. Locatior of the motif site and estimates of the binding sites for ZNF143
data using the RIMCMC scheme for Example 2

Region start  Motif
position location

14 89867390 396 401 (1.1) 1426.1 (26.7)
682 666 (1.4) 922.2 (23.1)

Chrom Binding site (sd) Intensity (sd)
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Figure 18. Estimated sites from the RIMCMC scheme and motif sites for
ZNF143 data for Example 3.

Table 21. Location of the motif site and estimates of the binding sites for ZNF143
data using the RIMCMC scheme for Example 3

Region start  Motif
position location

19 7522081 282 291 (3.2) 489.3 (29.5)
390 382 (4.8) 278.9 (27.9)

Chrom Binding site (sd) Intensity (sd)
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Figure 19. Estimated sites from the RIMCMC scheme and motif sites for
ZNF143 data for Example 4.

Table 22. Location of the motif site and estimates of the binding sites for ZNF143
data using the RIMCMC scheme for Example 4

Region start  Motif

Chrom position  location Binding site (sd} Intensity (sd)
19 52627514 98 113 (8.2) 42.8 (26.2)
328 353 (19.1) 46.2 (20.5)
492 479 (42.2) 25.1 (22.2)

828 821 (3.8) 170.7 (22.2)
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In analyzing ChIP-seq experiment data for both STAT1 and ZNF143 transcription
factors, the multiple binding sites model with the RIMCMC scheme successfully
detected more binding sites than the number of binding sites detected by the single
binding site model. As observed from the ZNF143 ChlIP-seq data, the RIMCMC
scheme detects even higher number of binding events in the presence of a large
number of sequence tags in the experiment data. In the next chapter, we present the
estimation of the parameters of the multiple binding sites using the EM algorithm.
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CHAPTER 4

ESTIMATING MULTIPLE BINDING SITES USING

EM-ALGORITHM

The basic model to estimate multiple binding events within a region was in-
troduced in section 2.3. The likelihood function of the proposed model given in
(8) consists of unobserved tag counts z;;3's belonging to putative multiple bind-
ing events. The maximum likelihood estimates (MLEs) for this particular type of
likelihoods with unobserved data cannot be computed directly using the usual max-
imization methods. The expectation-maximization (EM) algorithm described by
Dempster, Laird, and Rubin (1970) computes the MLEs from such likelihoods using
two steps: expectation and maximization, iteratively. Since the number of binding
sites itself is unknown, we propose estimating it by fitting several models with dif-
ferent numbers of components using the EM algorithm and choosing the best model
based on a model selection criterion. The number of components in the chosen model
will be considered as the estimated number of binding events within that region.

This chapter presents an application of the EM algorithm on ChIP-seq data to
identify multiple binding events within a short region. Section 4.1 of the chapter
gives a brief description of the EM algorithm. Its implementation to the current
problem is given in section 4.2. Section 4.3 gives a description of the calculation
of the asymptotic variance of the MLEs. Section 4.4 describes the model selection
criteria considered in this study. In section 4.5, we present results from the simulation
data and discuss the effectiveness and limitations of the EM algorithm in detecting
and estimating multiple binding sites.
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4.1 EXPECTATION-MAXIMIZATION ALGORITHM

This section presents a brief overview of the EM algorithm. More detailed deriva-
tion of the theory of the EM algorithm and its applications are given by Demp-
ster, Laird, and Rubin (1970), McLachlan and Krishnan (1997} and McLach-
lan and Peel (2000).

Consider LL{@), which consists only of observed data, to be the log likelihood of
the observed data and LLc(8), which consists of unobserved data as well as observed
data, to be the complete log likelihood. Then, in the EM algorithm, iterations begin
by setting initial values 8% for the parameters. Then the expectation step is carried
out by calculating Q (e|e‘°’) = Eyo{LLc(8)}, where Eqn{} is the expectation
evaluated at the current value of the parameter vector. The M-step, or the maxi-
mization step, is followed by finding 8%, the values of the parameters that maximize
Q (8|9(ﬂ)). These two steps are repeated as:

¢ E-Step: Obtain Q (9|9€*)) = Eyw{LLc(8)}.
o M-Step: Obtain 6%+ that maximizes Q (9[9(‘)).

Iteration continues until the observed likelihood converges, that is, LL{#*+D) —
LL{(8Y) < ¢, where ¢ is an arbitrary small value.

4.2 EM ALGORITHM FOR THE MULTIPLE BINDING SITES
MODEL

The observed data for ChIP-seq are the frequencies of the mapped tags at each
location of the i*® region of the genome, y;-[‘j’s and yg’s. The likelihood function
given in (8) for the proposed model consists of unobserved tag counts z;;,’s that be-
longs to multiple putative binding events. Furthermore, the sum of these unobserved
tags is equal to the observed tag count. Therefore, for a given region ¢, this like-
lihood function can be considered as the complete log likelihood function LLo{8),
as in the context of the EM algorithm, where @ is the vector of the parameters
(i1, - -, fks Yo, - - -, Vk)- The number of components for the model is assumed to be
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fixed and is set to be equal to k. Therefore,

wy k
LL(8)= Y D {2+ zEalog05,) — log(z54))
FEmappable A=0

—)‘Sh + zi}h!og(f\ﬁh) - 109(3"]} n}. (34)

The EM algorithm is initiated by setting the initial values of the location and intensity

parameters as follows:

h
Pfg) =w; X 'E,

(= w+ ¥ )
(0) __ \jEmappadle jEmappable
Yin = 2% ’

vg) = 0.05 x n,

where w; is the length of the i** region, A = (1,...,k) and n is the total number of
tags from the left and right strands. In setting these initial values for the location
parameters, we considered the peaks to be equally spaced across the region. The
initial values of the intensities of the binding events were set to be equal. Since
the intensity parameters are similar to the total number of tags in the region, the
intensity of the events were initialized by dividing the total number of tags by two
times the number of components. We also assume that the background intensity
would account for 5% of the total tag count.

4.2.1 E-STEP

In this step, we obtain Q(8]6®), the expectation of the complete log likelihood
function given the observed data y;; and 8, the values of the parameters at the ¢**

iteration:
Q(68]0M) =Ey (LL(Bly))

w; k
= 3 Y {-Ab+ Eulehuly) log(OE,) — Eg(log(zEy)ly)
FEmappable h=0

—«\f}h + Eo‘(zghb’) log ()\f}h) — Eg (log(Zf}h)ly)} . (35)

In section 2.3, it was shown that the distribution of the unobserved tags 25 and zf
given the observed data y; and ¥ respectively, follows a multinomial distribution
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with pij, = 0 and R = —,.—‘-"’— respectively. Therefore,

Eh D‘\L —D’\ub
M
0{‘}( Jhly) Yij ok 2 s
zh=0 A{;h
’\t ik
. A
g(‘}( Jh|Y) yzj -
Zh—o Atjh

Let cfjh = EB(‘)(thh|Y) ih T Eﬂ(‘}(ztjhly) ish = Eﬁt(log( h)ly) and bgh =
Eg(log(z jh)IY)' Then,

wi k
QOI0Wy = Y~ D { M+ chalog(AEs) — b — A, + clplog(MEs) ~ 6Ea}

JEmappable h=0
(36)

4.2.2 M-STEP

In this step, the values of the parameters that maximize (36) are determined
by setting the score functions of each parameter to zero. Let us first consider the
intensity parameter vy, where h = (0,..., k). The score function of 14, is derived by
taking the first derivative of LL(8) with respect to v, as follows:

o (Q(6169)) = 5 Z (o Tuliln ) + clog(en il o, 6)

—b5, — vnfr(ilpin, 0%, B) + cliplog(in fr(F|pin, 0*, B)) —bﬁh})

= 5 {0 0) + salilan, o i+ )}
JFE€Emappable
By setting the above function to zero, we obtain
Z (ci[_‘:ih + Cgh)
vyt = T . (37)
> (Gl 0% 8) + faliles), 5. B))
FEmappadle

For the background component, since we assumed the tags to be distributed uni-
formly over the region, (37) simplifies to

(t+l) Z ( ‘le o) s

JEmppable
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where [ is the number of mappable locations in the i** region. Similarly for binding

location parameter,

alom)- £ (et

j€mappable
a)«u,, MR 1
B T S E {0 (39

ijh

where L 8%, (oo™ B)
ik fL (ptin, 0°, B Y
E Brean = vin [ (G pin, 0%, ) (39)
e o5 Ofr (in, 0%, B)
‘Jh R /“"h! 3 — . TZI
aﬂ't'h Vin 6’-"\ = Vih fR(]lpﬂh Uz)ﬁ)' (40)
Furthermore,

‘g 2 oy L j“l‘ih‘*‘% 1 1/, o?
FLlsin, 0%, B) = —4 (T) Ee:vp{g (.? — fin + %)}

) +£ 1 2
—@(I—L-%L*—i)%exp{ﬁ(j~mh+;—ﬁ)} (41)

and

Using the results given in (39)-(42) and substituting uf,““) for vy, we set (38) to zero

and obtained the following nonlinear equation:

(H—l){ Z {fL(J'p‘h’ ,ﬂ)+fR(.7“‘1h: :ﬁ)}}

JEmaPPaNe
N Z { frUlpins o ,ﬁ)+ Sr(iltsin, o n@)} 0. (43)

st V> TGl 8) O ailan, o7, B)

{t+1}) .

Value of 4, ' is obtained by solving (43) numerically for z;;. Here we use a simple
¢+1)

root finding algorithm, the bi-section method (Press et al. 2002}, to obtain pu; " .
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These expectation and maximization steps are repeated until the value of the
observed log likelihood is converged. Once all the MLEs of the parameters are deter-
mined, their asymptotic variances can be computed as described in the next section.

4.3 ASYMPTOTIC VARIANCE OF THE MLES

The asymptotic variance of the MLEs can be computed using the Fisher’s infor-
mation which is the negative of the expected value of Hessian of the log likelihood
(McLachlan and Peel 2000). The Fisher’s information for the parameters with k

components is computed by

"92LL(8) &PLL(B) O°LL(6) 8LL(O) SLL(6)
31/30 Oviplpin  Owglun  ~ 7 OvioOpir  OvieOvix
SLL() BLL(G) O°LL(O) OLL(G) SLL(B)
Opndvig F i Opirva "7 Opaldpax  OpinOvik
SLL6) &LL(9) &°LL(8) 82LI(8) o2LL(6)
I(8) = —E | 190 Ovadpa T I T 2 (44)
SPLI(®) OLI(8) O*LL(8) J*LL(8) &*LL(6)
OpixOvig  OpanOpiy  Opadvy ~ "7 Bik  OpirOvie
BLL(G) &LL) LL(6) 82LL(6) 2LL(O)

Qv Oy By lps  Oupdry 0 Oupdpa Oy

where LL(#) is the log likelihood function of the observed data y;;’s of the i* region.

The elements of the Information matrix are as follows:

3"’LL(3)) 1 & { 1 1 }
- E (— = + .
Py, w? Z E:=0 )‘f}h Z::o )‘gh

s JEmappable

_E(M) =_E(32_M£’_))

ngoa,u;h 3%80,’0
S {fi(jlm,ﬂz,ﬁ) 1 Tl 7 ﬁ)} ,
Wi i cmappable Eﬁzo ’\f'jh Zf’:=c /\fﬁ.a
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-2(5an) = (5
1 & fL(JI#m,og B) . frlilmno ,5)}
=— +
Z { Zh—{) i7h Eh.—ﬂ ih

w I3
' JFEmappable

, Uil e, B))° }

(azLL(G)) o { (£2Gluin, 0%, B))?
Jemmmﬂe

62##& E:=0 A‘ll_ljh Zh—o th
(62LL )) (6’LLC(0))
6;t.h3p,g OptigOptin
, {fL(JIm, 7 B)i Gl % B) | ShGliin 7 P Ikl /3)}
= Uply + -
)emawable Zh-»{) Auh Zh-—o ijh
(62LL ) (azLL (e))
8;1,;.31/,;, 31’0!8#;);
{fll.', ]'ﬂth;a ﬁ fL(Jl#’h) )6) + f}’?(Jlﬂth’ ;ﬁ)fR(Jlﬂihao2)ﬂ)} i
]emppable zh—‘o ’\qh Eh.-o ’\tjh
PLL(O)\ _ . (0°LL(8)
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S {fzuw, 0%, B)fu(Glitse: %, B) | Frlilpin, o B)fililisg, o, ﬂ)}
— ¥R
JFEmappable Zh—o ’\uh wao Ai i3h

_E(w)= i {(fL(Jl#:h, ,ﬁ))2+(fn(.ﬂlhm ,5))}

2
av‘-h F€Emappable Eh—o ijh Zh—ﬂ ijh

g (WLLC(G)) g (BQLLC(e))

OvinOvig OvigOvin
o fulilisn, 02, B) fL(Glutsg, 0% B) | frlilpsn, o :;B)fR(jlﬂigndz,ﬂ)
= Y + .
jEmappable 2&-»0 Atjh zh—o izh

The asymptotic variance-covariance matrix is obtained by taking the inverse of
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the Fisher’s information matnx evaluated at the MLEs.

4.4 MODEL SELECTION CRITERIA

One of the key attributes of the EM algorithm is that the number of components
of the mixture model needs to be fixed and known. However, in ChIP-seq experiment
data the number of components or binding sites, within a region is unknown, and
needs to be estimated. To overcome this limitation, we apply the EM algorithm on
several models with different numbers of components ranging from one to kpe.=3 and
select the best model among them using a model selection criterion. The maximum
number of components need not to be restricted to three as proposed here, but we
assume that the possibility to exceed this upper limit is unlikely.

The usual approach of likelihood ratio test to select the number of components
is unavailable as the regularity conditions do not hold for mixture models (McLach-
lan and Krishnan 1997 and McLachlan and Peel 2000). However, in statistical liter-
ature there are many other model selection criteria based on the likelihood. McLach-
lan and Peel (2000) presents a comprehensive summary of criteria for assessing the
number of components of a mixture model. Most frequently used criteria are the
Akaike information criterion {AIC), and Bayesian information criterion (BIC). Both
of these criteria are based on penalized form of the likelihood. Usually the likelihood
increases with the addition of components to a mixture model, which often leads
to over-fitting. The AIC and BIC methods penalize the likelihood by subtracting a
term that depends on the number of parameters in the model, thereby overcoming
over-fitting. Following are the formulae to calculate AIC and BIC:

AIC =2p—2logL
BIC = plog(n) — 2logL,

where p is the number of parameters in the model, log L is the maximized value of
the log likelihood function (LLo(8)), 7 is the total number of observations. Since
the BIC penalizes the likelihood more than the AIC, BIC tends to select models with
fewer components. Due to the large number of regions that needs to be analyzed in a
genome-wide study, efficiency and simplicity in calculating a selection criteria plays a
very important role in overall efficiency of the estimation process. Many of the other
penalized likelihood criterion would require additional computations in terms of the
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information matrix or entropy. For this particular study we investigate only the AIC
and BIC criteria. Once the best model is selected, the number of components (k)
and the parameter estimates for the selected model are considered as the estimates
for the number of binding events and the corresponding parameters of the binding
events.

4.5 EM ALGORITHM ON SIMULATED DATA

The success of the above scheme using the EM algorithm mainly depends on
determining the number of components accurately. Therefore the EM algorithm
based scheme is applied on several simulated datasets, where the results can be
compared with the true values of the number of components as well as the parameters.
These simulated datasets are the same as the ones used in the study of the RIMCMC
scheme.

4.5.1 ASSESSMENT OF SELECTION CRITERIA USING SIMULATED
DATA

For each simulated dataset, the EM algorithm fits several models with the number
of components ranging from one to three and selects the best model among them
based on AIC or BIC. Table 23 gives the percentage of the number of times each
selection criteria selected the correct number of components or peaks. From the
table it can be observed that the success percentage is much higher for AIC than
for BIC, indicating that AIC is able to determine the number of components more
accurately. One of the known shortcoming of AIC in statistical literature, including
McLachlan and Peel (2000), is that it tends to over-fit the number of components.
Here the simulation group 1 to group 8 are simulated with two components and the
EM scheme fits up to three component models. The AIC selects the two components
model over the three components. Although BIC performs better in simulation groups
of 1, 2, 5, 6, 9 and 10, where the peaks are well separated and the intensities of the
peaks are high, it fails to select the correct model in other scenarios when the peaks
are closer to each other and have lower intensities.

Even for AIC, the success percentage decreases dramatically for simulated
datasets in groups 4, 8 and 11. The datasets in groups { and & are simulated
with two peaks separated by 75 bp and the datasets in group 11, for which the lowest
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Table 23. Percentage of correct selections

Success percentage

AIC BIC
group 1 100.0 95.8
group 2 983 87.5
group 8  80.8 42.5
group 4 46.7 1.7
group 5 99.3 97.9
group 6 99.3 92.1
group 7 97.9 75.0
group 8 40.0 14
group 9 100.0 92.5
group 10 95.0 80.8
group 11  15.8 0.0
group 12 85.8 65.8

Simulation

percentage is observed, is simulated with three peaks separated by 100 bp. It can be
concluded that the AIC method outperforms BIC on average. Therefore, hereafter,
we use only the AIC model selection criterion.

4.5.2 RESULTS FROM THE SIMULATION STUDY

Table 23 presents only percentages of selecting correct number of components for
each of the simulation datasets. As described in section 1.9, each simulation group
has 4 or 5 unique simulation scenarios with different intensities. Furthermore, each
of those scenarios have 20 simulated datasets or samples. In this section accuracy of
the estimates of the selected models is also presented. For ease of comparison, the
results from the 20 samples of each scenario are accumulated by taking the average
of the estimates of the correctly estimated models. Here models with the correct
nurnber of components and the estimates of the location parameter within 50 bp of
the true values are considered as correctly estimated models.

Tables 24 and 25 present the summary for results from simulation datasets in
groups 1-4 that are generated by setting the number of peaks to be two and the
intensity of the peaks to be equal. The last column of these tables gives the number
of times the model is correctly estimated out of the 20 samples of each simulation
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scenario. The EM algorithm scheme successfully identifies the correct model and
estimates the parameters accurately almost for all the simulated datasets, where the
peaks are far apart. This success rate decreases as the peaks get closer to each other
and the intensities of the events decreases.

Table 24. Simulation results from the EM algorithm for group I and group 2

Peak 1 Peak 2  Background  Peak 1 Peak 2 No. of

1 Bl p2 B2 w 0 n 7 va 7  successes
(sd) (sd) (sd) {sd) (sd) (/20)

Group 1

300 3022 500 4997 10 119 150 149.8 150 152.3 20
(6.2) (6.2) (6.9) (11) (11)

300 299.0 500 500.3 10 9.8 125 1249 125 121.7 20
(6.6) (6.8) (6.1) (9.9) (9.7)

300 2087 500 4977 10 104 100 1005 100 98.9 20
(7.6) (7.7) (6) (9) (8.9)

300 3006 500 5015 10 111 75 742 75 731 20
(8.9) (9.1) (6.3) (7.8) (7.7)

300 302.2 500 4975 10 11.7 50 475 5¢ 503 20
(11.9) (11.4) (6.1) (6.5) (6.6)

300 3003 500 4996 10 105 25 254 25 249 20
(16.7) (17.0) (5.4) (4.8) (4.8)

Group 2

300 2973 450 4489 10 85 150 1491 150 154.7 20
(7.6) (7.5) (5.6) (14.5) (14.5)

300 299.0 450 4480 10 117 125 1204 125 126.1 19
(8.8) (8.6) (6.5) (13.7) (13.6)

300 2993 450 4526 10 9.3 100 100.0 100 99.7 20
9.3) (9.5) (5.8) (11.8) (11.7)

300 2087 450 4481 10 89 7% 721 75 78.0 20
(11.6) (11) (5.6) (10.6) (10.7)

300 2972 450 4526 10 97 50 488 50 515 20
(14) (13.6) (5.5) (8.5) (8.5)

300 3019 450 4546 10 88 25 268 25 244 19

{20) (21.7) (5) (6.5) (6.3)
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Table 25. Simulation results from the EM algorithm for group 3 and group 4

Peak 1 Peak 2  Background  Peak 1 Peak 2 No. of

) BT p2 P2 W 2 % n 2 %  successes

(sd) (sd) (sd) (sd) (sd) (/20)
Group 3

300 2098 400 4021 10 117 150 1506 150 147.2 20
(11.9) (12.3) (6.4) (32) (31.7)

300 2988 400 3999 10 12.3 125 123 125 1223 20
(13.7) (14) (6.4) (30.5) (30.2)

300 2083 400 400.6 10 9.8 100 985 100 1008 19
(15.2) (15.4) (5.8) (27) (26.8)

300 2086 400 4058 10 89 7% 762 75 746 17
(16.6) (17.2) (5.5) (21.5) (21.2)

300 2908 400 4055 10 9.2 50 487 5 51.9 13
(19.7) (19.3) (5.3) (14.9) (14.8)

300 276.0 400 4145 10 7.0 25 243 25 259 4
(23.2) {(22) (4.5} (7.6) (7.6)

Group 4

275 269.7 350 3488 10 96 150 1338 150 160.3 16
(19.1) (16.5) (6.3) (61.4) (61.1)

275 2669 350 3479 10 83 125 1133 125 1419 12
{20) (16.8) (6.1) (52.9) (52.7)

275 2633 350 3491 10 7.8 100 865 100 1116 15
(21.5) (17.8) (5.6) (41.2) (41)

275 257.0 350 351.7 10 7.8 75 697 75 881 6
(21.2) (17.7) (5.6) (29.1) (28.9)

275 2477 350 3510 10 7.2 50 431 50 621 6
(24.3) (18.5) (4.8) (18.6) (18.7)
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The same pattern can be observed in Tables 26 and 27 which present the summary
for results from datasets simulated by setting the number of components to be two
and the peaks to have unequal intensities (groups 5-8). However, the success rate
is lower for the unequal intensities than for the equal intensities when the peaks are
separated by 100 bp. The simulation datasets in group 6 are generated to investigate
whether a significant difference in the performance of the EM algorithm can be
observed when the order of the intensities of the peaks are reversed such that the
first peak has the smaller intensity as opposed to simulations, where the first peak
has the higher intensity. From the comparison between the results from simulation
datasets in group 5 and group 6, it can be concluded that the order of magnitude of
the intensities does not affect the estimation.

Results from the final sets of simulations (simulated with three peaks) are pre-
sented in Tables 28 and 29. Here we observe the same trend as for the two peaks
simulations. Unlike in the two peaks simulations, the success rate is significantly
lower when the peaks are separated by 100 bp even when the intensities are higher.
This can be expected as it becomes increasingly difficult to distinguish all the peaks.
Moreover, the estimates of the locations as well as the intensities are less accurate
than those estimates when the peaks are far apart.

The simulation group 12 given in Table 29 presents the results from the EM
algorithm when the peaks are separated by unequal distances. Since the peaks are
separated with sufficient distance the success rate is almost 100% except when the
intensity of the peaks are as low as 25.
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Table 26. Simulation results from the EM algorithm for group 5 and group 6

Peak 1 Peak 2 Background Peak 1 Peak 2 No. of

I B op B ow B vi vg ¥  successes

(sd) (sd) (sd) (sd) (sd)  (/20)
Group 5

300 3009 500 5065 10 114 200 2044 50 46.2 20
(4.7) (13.3) (6.6) (11.5) (M

300 300.0 50C 500.0 10 10.5 150 1477 50 50.8 20
(5.8) (12.4) (5.9) (10.1) (7.2)

300 3005 500 499.1 10 113 150 1495 75 73.9 19
(5.9) (9.6) (6.4) (10.4) (8.3)

300 2086 500 4976 10 95 125 126.1 50 49.8 20
(6.3) (12.2) 5.7) (9.5) (7)

300 2094 500 4898 10 10.1 100 978 25 28.9 20
(7.3) (18) (5.6) (8.6) (6)

300 2078 500 499.7 10 9.5 7 738 25 26.5 20
8.3 (17.5) (5.3) (7.3) (5.3)

300 2059 500 5035 10 8.1 50 50.2 25 259 20
(10.3) (16.9) (5.2) (6.1) (4.9)

Group 6

300 2098 500 5022 10 11.2 50 478 200 196 20
(13) (4.8) (6.5) (7.3) (11.3)

300 34 500 500.2 10 16.1 50 515 150 146.2 19
(12.1) (5.9 (6.2) (7.4) (10.1)

300 298.7 500 500.2 10 9.9 75 772 150 148 20
(9.2) (5.9) (6.1) (8.3) (10.3)

300 2904 500 502 10 9 50 514 125 126.7 20
(11.7) (6.2) (5.8) (7 (9.4)

300 301.8 500 501.1 10 114 25 25 160 98.6 19
(19.7) (7.1) (5.9) (5.5) (8.3)

300 3045 500 503.2 10 8.1 25 272 75 744 20
(17.4) (8.3) (4.9) (5.4) (7.3)

300 294 500 5035 10 10.3 25 265 50 516 20
(16.6) (10.3) (5.5) (5) (6.1)




Table 27. Simulation results from the EM algorithm for group 7 and group 8

Peak 1 Peak 2 Background Peak 1 Peak 2 No. of
7 Bl ope B2 ow R m B 1w B successes
(sd) (sd) (sd) (sd) (sd) (/20)
Group 7
300 2098 450 4456 10 10.1 200 2005 50 52.7 20
(6) (17.4) (5.9) (15.2) (12.2)
300 2979 450 4471 10 10.8 150 1452 50 525 20
(7.3) (16.2) (6) (13.3) (11.1)
300 300 450 4506 10 9.6 150 1463 75 764 20
(7.3) (12.1) (5.9) (13.4) (11.8)
300 2983 450 452.1 10 8.6 125 1267 50 53.3 20
(7.6) (15.1) (5.5) (12) (10.1)
300 2984 450 4428 10 9.2 100 97.7 25 289 20
(0.1) (24.4) (5.4) (11.5) (9.5)
300 2962 450 4398 10 10.6 7 7.5 25 287 19
(11) (23.5) (5.6) (9.9) (8.5)
300 2927 450 4466 10 9.2 50 8505 25 274 18
(13.1) (21.4) (5.3) (8.1) (7.2)
Group 8
300 295.9 400 3954 10 94 200 186.1 50 62.1 14
(9.9) (25.1) (5.2) (32.8) (31.5)
300 2047 400 4006 10 10.1 150 1459 50 583 19
(10.7) (23.3) (5.2) (25.6) (24.3)
300 3004 400 401.3 10 11.1 15¢ 1513 75 73.7 19
(11) (20.7) (5.7) (29.1) (28.1)
300 206 400 398.7 10 10.5 126 1204 50 572 20
(12.2) (23.2) (5.5) (25) (24.1)
306 293.3 400 400.7 10 99 100 948 25 343 9
(12.9) (31.3) (5.2) (19.5) (18.9)
300 285.8 400 3999 10 7.7 7 658 25 338 9
(15.3) (28.4) (4.6) (14.8) (14)
300 307.7 400 4200 10 9.2 50 340 25 399 7

(25) (22.1) (5) (13.3) (13.3)
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Table 28. Simulation results from the EM algorithm for group 9 to group 11

Peak 1 Peak 2 Peak 3 Background Peak 1l Peak2 Peak 3

No. of

Bl Bl p2 B2 p3 3 W B w1 1w B vy D3 successes
(sd) (sd) (sd) {sd) (sd) (sd) (sd)  (/20)

Group 9

300 299.1 500 499.9 700 700 5 5.2 150 149.6 150 1493 150 148.7 20
(6.1) (8.3) (6.2) (5) (10.9) (11.8) (10.9)

300 300.6 500 497.3 700 697.6 5 4.6 125 122.8 125 1256 125 129 20
69  (92)  (6.6) (4.8) (101) 1 @o1)

300 300.7 500 499.2 700 697.8 5 7.9 100 103 100 974 160 96.9 20
(7.5) (10.7) (7.8 (6.1) (9.2) (9.8) (9)

300 2994 500 5003 700 700 5 5.3 7 42 75 T 75 Tl4 20
(8.8) (12) (9.2) (4.9) (7.8) (8.5) (7.7)

300 303.3 500 502.9 700 699.9 5 5.5 50 516 50 483 50 495 20
(108)  (15.5)  (112)  (4.9) (6.5) ™ (6.4)

300 300.2 500 497.6 700 692.7 5 5.5 25 252 25 242 25 258 20
(16.2)  (229) (164)  (46) 47) (5.1) (4.8)

Group 10

300 297.8 450 449.8 650 6498 5 6.3 150 145 150 149.3 150 153.3 20

8 (107 (6.2) (5.7) (153)  (151)  (11.3)

300 301.1 450 453.8 650 65156 5 5.4 125 127.1 125 1229 125 119.2 20
(8.5) (11.9) (7.1) (4.9) (141) (@137  (10.1)

300 302.1 450 453.2 650 6529 5 5 10¢ 101.4 100 103.8 100 96.2 20
©7 (129 (7.9 (4.8) 13) (127 (@1

300 298.2 450 4526 650 651 b 4.7 75 725 75 783 75 T3 20
aLs)  (Q47n  (9.2) (4.5) (10.8)  (108) (8)

300 300.8 450 451.5 650 649.2 5 5.2 50 494 50 489 50 498 20
(143) (198)  (11.3) (4.7) (9.3) (9.1) (6.6)

300 298 450 460.1 650 6579 5 4.3 25 283 25 273 25 225 14
(18.1)  (25.0)  (17.8) (4.0) (6.4) (6.4) (4.6)

Group 11

300 286 400 396.5 500 517 & 3 150 1204 150 221.5 150 1274 6
(156) (19.1)  (134)  (3.6) (872) (325  (30.7)

300 284.8 400 399.5 500 517 5 5.1 125 1654 125 173.7 126 96.7 6
(16) (215 (165)  (4.6) (315)  (287)  (286)

300 281.3 400 399.3 500 520.3 5 4.5 100 70.1 100 1483 100 72 3
(19.1)  (201) (184)  (46) (241)  (226)  (233)

300 277.0 400 396.0 500 515.0 5 2.3 75 63.3 75 1178 75 515 1
(188) (225 (222)  (35) (214) (200  (205)

300 282.0 400 425.0 500 5300 5 002 50 466 50 722 50 375 1

(165)  (27.8) (278)  (0.5) (1L5)  (184)  (214)
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Table 29. Simulation results from the EM algorithm for group 12
Peak 1 Peak 2 Peak 3 Background Peak1 Peak2 Peak 3

No. of
m1 Bl pe B2 pms B3 W B wvn A w B wv3 D3 successes
(sd} (sd) (sd) (sd) (sd) (sd) (sd) (/20)
Group 12
300 300.6 450 461.4 650 605.9 5 4.5 150 154.3 150 1579 150 134.3 20
(7.5) (13.2) (9.2) (4.1) (15.1) (17.6) (17.3)
300 304.4 450 463.9 65C 604.7 5 6.5 125 132.8 125 127.2 125 112.1 19
(8.2) (15.6) (10.6) (4.9) (14.3) (16.7) (16.6)
300 300.8 450 463.2 650 608.5 5 4.7 100 107 100 102 100 89.8 20
(9.0) (16.5)  (11.4) (4.2) (12.3)  (142)  (14.0)
300 298.2 450 458.7 650 609.7 5 4.9 75 753 75 802 75 66.6 20
(11.1)  (181)  (12.9) (4.3) (10.8)  (122)  (1L.3)
300 301.1 450 458.1 650 603.5 5 0.02 50 503 50 554 50 453 15
(14.4) (23.1) (17.0) (5.0) (9.3) (10.6) (10.3)
300 293.2 450 447.0 650 616.0 5 4.2 25 224 25 33 25 214 6
(240)  (261)  (21.7) (3.4) (7.1) (7.7 (5.6)

The results from the simulation study also reveal the limitations of the EM al-
gorithm based estimation scheme. It is capable of estimating the locations and
intensities accurately in the presence of two binding events when they are apart by
at least 100 bp. The accuracy and the the ability to detect the correct number of
binding events decrease as the intensities of the binding events decrease. For the
case of three binding events, estimation accuracy of the scheme is further reduced.
Therefore, for more accurate estimation, the binding events need to be separated by
at least 100 bp.

4.6 RESULTS FROM THE STAT1 AND ZNF143 CHIP-SEQ DATA

The EM algorithm described in the previous section was applied to the ChIP-seq
datasets of STAT1 and ZNF143 transcription factors. As described in section 3.6,
rather than applying the EM algorithm to all regions, it was applied to a selected set
of regions. These selected regions are same as those analyzed using the RIMCMC
scheme. The number of binding sites detected by the EM algorithm and the single
binding site model with a motif site within 50 bp, 100 bp, 200 bp, and 250 bp are
given in Table 30. Compared to the single binding site model, the multiple binding
sites model with the EM algorithm detects more binding sites that have a motif site
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in close proximity.

Table 30. Number of binding sites with motif site in proximity for STAT1 data
using the EM algorithm

Distance to Number of sites
the motif  Single binding RIMCMC
site site model scheme
50 292 305
100 301 320
200 305 326
250 308 327

We also present a few examples of the tag distribution of the regions where the
EM algorithm detected multiple binding sites. These are given in Figures 20-23. In
addition to detecting two binding sites, as in the majority of the regions, the EM
algorithm was also able to detect three binding events that have a motif site within
200 bp (see Figures 22 and 23). In each of these examples, it can be clearly observed
that the locations of the binding sites as well as the intensities are comparable with
the tag distribution in the regions.
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Figure 20. Estimated sites from the EM algorithm and motif sites for STAT1
data for Example 1.

Table 31. Location of the motif site and estimates of the binding sites for STAT1
data using the EM Algorithm for Example 1
Chrom. Regm.n.start Mot.xf
position location

12 88308402 280 303 (6.2) 103.1 (8.1)
642 325 (11.3) 42.1 (5.8)

Binding site (sd) Intensity (sd)
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Figure 21. Estimated sites from the EM algorithm and motif sites for STAT1
data for Example 2.

Table 32. Location of the motif site and estimates of the binding sites for STAT1
data using the EM Algorithm for Example 2

Region start  Motif
position location

18 1906944 432 431 (5.3) 152.7 (9.9)
722 721 (5.4) 152.2 (9.9)

Chrom. Binding site (sd) Intensity (sd)
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Figure 22. Estimated sites from the EM algorithm and motif sites for STAT1
data for Example 3.

Table 33. Location of the motif site and estimates of the binding sites for STAT1
data using the EM Algorithm for Example 3

Region start  Motif
position location
19 39859520 286 305 (6.5) 171.6 (12.5)
560 487 (7.7) 125.5 (11.3)
857 808 (17.6) 22.4 (4.6)

Chrom. Binding site (sd) Intensity (sd)
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Figure 23. Estimated sites from the EM algorithm and motif sites for STAT1
data for Example 4.

Table 34. Location of the motif site and estimates of the binding sites for STAT1
data using the EM Algorithm for Example 4

Region start  Motif
position location

19 39916036 319 337 (6.7) 132.3 (10.3)
597 514 (20.5) 30.9 (7.2)
896 880 (17.2) 21.2 (4.4)

Chrom. Binding site (sd) Intensity (sd)
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Similarly to the analysis of STAT1 ChIP-seq data, the EM algorithm was applied
to the ZNF143 ChlP-seq data. Here also, we considered the number of binding sites
detected with a motif site in close proximity. The number of binding events detected
by the multiple binding sites model using the EM algorithm, exceeds the number of
binding events detected by the single binding event model.

Table 35. Number of binding sites with motif site in proximity for ZNF143 data
using the EM algorithm

Distance to Number of sites
the motif Single binding RJMCMC
site site model scheme
50 369 422
100 397 444
200 412 450
250 417 456

The tag distribution for the selected regions given in Figures 24-27 illustrates
the precision of the model and the effectiveness of the EM algorithm in detecting

multiple binding sites in a short region of the genome.
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Figure 24. Estimated sites from the EM algorithm and Motif sites for ZNF143
data for Example 1.

Table 36. Location of the motif site and estimates of the binding sites for ZNF143
data using the EM Algorithm for Example 1
Chrom. Reglop ‘start Mot:if
position location

17 111877276 250 287 (L.6) 1232.9 (25.5)
931 901 {0.9) 3047.8 (44.8)

Binding site (sd) Intensity (sd)
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Figure 25. Estimated sites from the EM algorithm and Motif sites for ZNF143
data for Example 2.

Table 37. Location of the motif site and estimates of the binding sites for ZNF143
data using the EM Algorithm for Example 2

Region start  Motif
position location

11 72986597 341 335 (1.6) 1295.1 (26.4)
666 693 (1.2) 2182.2 (33.8)

Chrom. Binding site (sd) Intensity (sd)
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Figure 26. Estimated sites from the EM algorithm and Motif sites for ZNF143
data for Example 3.

Table 38. Location of the motif site and estimates of the binding sites for ZNF143
data using the EM Algorithm for Example 3

Region start  Motif o -
Chrom. position _ location Binding site (sd) Intensity (sd)

16 517026 427 419 (2.0) 1472.2 (34.8)
604 627 (1.2) 3086.7 (45.0)
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Figure 27. Estimated sites from the EM algorithm and Motif sites for ZNF143
data for Example 4.

Table 39. Location of the motif site and estimates of the binding sites for ZNF143
data using the EM Algorithm for Example 4

Region start  Motif
position location

19 19292070 276 260 (1.3) 2533.2 (40.1)
473 473 (2.3) 1053.2 (29.2)

Chrom. Binding site (sd) Intensity (sd)
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4.7 COMPARISON OF THE MULTIPLE BINDING SITES MODEL

WITH EXISTING PEAK CALLING METHODS

In the previous chapter as well as in this chapter, the multiple binding sites model
using the RIMCMC scheme and the EM algorithm were evaluated using simulated
datasets as well as the real ChIP-seq data. From the simulation datasets, it was
observed that both implementation methods performs successfully when the binding
events are separated by at least 100 bp or have higher intensity. Resuits from STAT1
and ZNF143 ChlIP-seq data were mainly evaluated by counting the number of esti-
mated binding sites that have a motif site within different cutoff distances. Table 40
summarizes these counts from both the RIMCMC scheme and the EM algorithm for
the two ChlP-seq data.

Table 40. Number of binding sites with motif sites
Distance to STAT 1 ZNF 143
the nearest RJMCMC EM RIMCMC EM
motif site scheme  algorithm  scheme  algorithm

50 309 305 448 422
100 326 320 464 444
200 335 326 472 450
250 335 327 475 456

For STAT1 data, the number of binding sites detected (that has a motif site in
close proximity) by the RIMCMC scheme and the EM algorithm differ by a few bind-
ing sites. However, for ZNF'143 data the RIMCMC scheme detects at least twenty
additional binding events than the EM approach. The RIMCMC scheme has the flex-
ibility to estirnate the number of components and other parameters simultaneously.
However, the RIMCMC scheme has following challenges:

1. It is computationally more expensive.

2. It requires an efficient one-to-one mapping function in updating the number of

components.

3. It requires judicious selection of priors.
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Due to the intensive computations, the RIMCMC scheme presented in chapter 3 was
implemented in C++ for fast execution.

The main disadvantage of the EM algorithm is its inability to estimate the num-
ber of components. This requires running the EM algorithm on several models with
different numbers of components and selecting the best model based on a model selec-
tion criterion. However, it is simpler to implement and computationally less intensive
than the RIMCMC. Moreover, the performance of the EM method is comparable to
the RIMCMC scheme.

We also compare the results from the multiple binding sites model obtained by
the RIMCMC scheme and the EM algorithm with several existing peak-calling pro-
grams. Currently there are at least 60 peak-calling algorithms and more are been
introduced every year. The selected methods are among the better performers in
recent evaluation studies {Laajala et al. 2009, Wilbanks and Facciotti 2010). A
brief description of these selected peak-calling algorithms was provided in section
1.4. Genome wide data of STAT1 and ZNF143 ChlP-seq data were analyzed using
these programs. Whenever required, default values of the parameters for the models
were used and the binding site estimates were collected.

The multiple binding sites model was applied only to a selected set of regions of the
genome, where we expect to have a higher probability of observing multiple binding
sites. Therefore, we selected the estimated binding sites given by the programs that
fall in the selected regions. These selected binding sites were then compared with
the motif sites. Summary of the number of binding sites that have motif sites within
short distance are given in Tables 41 and 42 for STAT1 and ZNF143 ChIP-seq data,
respectively.

Compared to the multiple binding sites model, the other programs detect very
small number of binding sites that have a motif site in close proximity. This is
mainly due to the fact that these algorithms lack the ability to detect peaks that are
separated by small distances. Another reason is that these programs also screen out
false positive binding sites based on false discovery rates or p-values. Many of the
less prominent peaks were screened out in this process, decreasing the total number
of binding sites that fall in the selected regions.



Table 41. Comparison of the peak calling methods using STAT1 data

Peak calling Total binding No. of binding sites with motif site within

method sites 50bp 100bp 200 bp 250 bp
RIMCMC 1514 309 326 335 335
EM 1323 305 320 326 327
MACS 67 22 25 25 25
sppMTC 88 25 26 27 27
sppWTD 87 25 26 27 27
QuEST 66 21 25 25 25
SISSRS 199 28 33 35 35
CisGenome 68 22 25 25 25
Hpeak 68 23 25 25 25

Table 42. Comparison of the peak calling methods using ZNF143 data

Peak calling Total binding No. of binding sites with motif site within

method sites 50 bp 100 bp 200 bp 250 bp
RIMCMC 2590 448 464 472 475
EM 1656 422 444 450 456
MACS 69 23 26 27 29
sppMTC 75 24 27 28 29
sppWTD 77 22 27 28 29
QuEST 68 24 26 27 28
SISSRS 164 25 30 35 39
CisGenome 7 0 [t} 1 1

Hpeak 7 0 0 0 0

102
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Among the existing programs, for both transcription factors, SISSRs found the
most number of binding sites with a motif site in close proximity. For ZNF143
ChIP-seq data, peak calling programs CisGenome and HPeak did not detect any
binding sites with a motif site (within 100 bp) that fall in the selected regions. When
considering the total count of binding sites predicted by the multiple binding sites
model with either the RIMCMC or the EM algorithm, only 18%-22% of them are
validated by the motif sites. Usually, for any transcription factor there are several
motifs that is known to be associated with the binding sites. In the evaluation of
the predicted binding sites we only considered the most dominant motif. Instead of
directly binding to the DNA, in some instances a transcription factor may interact
with other DNA bound proteins. In the ChIP-seq process, these indirect binding
sites can also be precipitated and sequenced. All of these can contribute to the large
number of seemingly false positive sites from the multiple binding sites. Overall, the
multiple binding site model is successful in detecting a larger number of binding sites
that are not reported by the other methods.
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CHAPTER 5

DISCUSSION

In this thesis we introduced a statistical model to identify multiple binding sites
of a transcription factor within a short region of the genome using ChIP-seq data.
In our model, we propose that the number of tags y{;— at the mappable location is the
sum of unobserved tag counts z%,, h =1,...,k, belonging to the k number of bind-
ing events. Therefore, the mapped sequence reads from ChIP-seq experiments were
modeled as the sum of observations from unknown number of Poisson distributions.
The rate parameters of these Poisson distributions are considered as a function of
the underlying distribution of the tags that depends on the location of the binding
site and an intensity parameter. The underlying distribution of the tags takes into
account some features of the ChIP-seq data such as mappability and strand specific
information. The background noise that is common in ChIP-seq data is modeled as
one of the components following the Poisson distribution whose underlying distribu-
tion, is considered as uniform for a given region.

One of the main challenges in estimating the parameters of the proposed model
arise from the fact that the number of components itself is unknown and needs to
be estimated. Therefore, the estimation of the parameters were conducted using two
different approaches: a Bayesian method and the EM algorithm.

In Bayesian paradigm, parameters of the model are considered as variables with
prior distributions. This provides direct capability for estimating the number of
components as well as other parameters, simultaneously. Sampling of the posterior
distribution of the Bayes model was carried out by using the reversible jump Markov
chain Monte Carlo (RJIMCMC) method that is capable of handling the change of
dimension of the parameter space. The simulation study on the RIMCMC scheme
allowed us to investigate several alternatives for the RIMCMC proposals and different
priors for the intensity parameters. The RIMCMC scheme with the exponential
prior with mean 25 for the intensity parameter and one-to-one functions given in
(27) and (28) were observed to perform the best in terms of estimating the correct
number of components and location parameters. The results of the simulation study
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also indicate that the the estimation process is limited to detecting binding sites
separated by at least 100 bp.

In the EM algorithm approach, to determine the number of components for each
region, we fitted several models with different numbers of components and selected
the best model based on a model selection criteria. Here we considered the AIC and
BIC methods, where when applied to simulated data, the AIC selected the correct
model more frequently than the BIC method.

When the results from the multiple binding site model on real ChIP-seq data for
transcription factors STAT1 and ZNF'143 were compared with those from the single
binding event model, it was observed that the multiple binding model successfully
detected two or more binding sites within a short region. These binding sites were
confirmed by the presence of motif sites in close proximity. Comparing the number
of binding sites detected for the two ChlP-seq data, we observed that more sites were
identified for the ZNF143 data than for the STAT1 data due to the large number of
sequence reads present in the ZNF143 ChIP-seq data. This also indicates that the
RJMCMC scheme may be capable of detecting a larger number of peaks when more
sequence reads are available.

When considering results from both the simulation data and real ChIP-seq data,
performances of the RIMCMC scheme and the EM algorithm are comparable. How-
ever, the RIMCMC method is more computationally intensive and time consuming
than the EM algorithm. Therefore, for a genome wide analysis, the EM algorithm
method may be more preferable.

The results from the multiple binding sites compared to those from existing peak
calling methods revealed that the multiple binding sites model is successful in de-
tecting significantly higher number of binding sites that are verified by the presence
of the motif sites at short distance. At the same time, a large number of predicted
binding sites were not validated by motif sites. By introducing other motifs that
are known to be associated with the transcription factor, we may decrease the false
positive sites and improve the results from other existing peak-calling programs.
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APPENDIX A

DETAILS OF SIMULATION STUDY DATA

Table 43. Simulation data in group 1 to group 4

Distance  Intensity of Intensity of
Group between the  the first the second

two peaks peak peak

1 200 150 150
125 125

100 100

75 75

50 50

25 25

2 150 150 150
125 125

100 100

75 75

50 50

25 25

3 100 150 150
125 125

100 100

75 75

50 50

25 25

4 75 150 150
125 125

100 100

75 75

50 50

25 25
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Table 44. Simulation data in group 5 to group 8

Distance  Intensity of Intensity of
Group between the  the first the second

two peaks peak peak
5 200 200 50
150 50
150 75
125 50
100 25
75 25
50 25
6 150 a0 200
50 150
75 150
50 125
25 160
25 75
25 50
7 100 200 50
150 50
150 79
125 50
100 25
75 25
50 25
8 75 200 80
150 50
150 75
125 50
100 25
75 25

50 25
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Table 45. Simulation data in group 9 to group 12

Distance between Distance between Intensity of Intensity of Intensity of
Group first and second second and third the first the second the third

peaks peaks peak peak peak

9 200 200 150 150 150
125 125 125

100 100 100

75 75 75

50 50 50

25 25 25

10 150 150 150 150 150
125 125 125

100 100 100

75 75 75

50 50 50

25 25 25

11 160 100 150 150 150
125 125 125

160 100 100

75 75 75

50 50 50

25 25 25

12 150 200 150 150 150
125 125 125

100 100 100

75 75 75

50 50 50

25 25 25
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