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ABSTRACT

ANALYSIS AND SIMULATION OF KINETIC MODEL FOR 
ACTIVE SUSPENSIONS

Panon Phuworawong 
Old Dominion University, 2013 

Director: Dr. Ruhai Zhou

In this research, we study the recently proposed kinetic model for active suspen­

sions, where the active particles are assumed to be rigid rod and are driven in the  sus­

pension either by their own biological/chemical forces or external electric/m agnetic 

fields. We first study the stability of the isotropic suspension in quiescent flow. Then 

we investigate the weak shear perturbation of the isotropic sta te  and study some 

rheological properties of the suspension by explicit analytic formulas derived directly 

from the model. For imposed shear, we give some bifurcation diagrams of the stable 

states in some param etric spaces through numerical simulations. Some rheological 

properties are also examined. Finally, we study the spatio-tem peral structures of 

suspensions by taking into account the long-range particle interactions with periodic 

boundary conditions. A Galerkin approach is used to  develop numerical method 

for the kinetic model equations, which projects the number density function onto 

the subspace of Fourier modes. Extensive numerical simulations are performed in 

various physical domains w ith different param eter values. Several complex physical 

phenomena are observed and carefully studied.
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CHAPTER 1 

INTRODUCTION

In the last decade, suspensions of active (self-propelled) particles have attracted  

much attention and interest due to their relevance in many scientific areas such as 

pathology [24], ecology [5, 34], as well as technological and medical application [25, 

26, 36]. Examples of active suspension include swimming microorganisms, such as 

bacteria and microalgae, and synthetic nanoparticles th a t can driven themselves via 

chemical reactions or external imposed magnetic fields. These swimming mechanisms 

have the common feature th a t each self-propelling particle exerts a propulsive force 

on the surrounding fluid resulting in disturbance flows in the fluid, hydrodynamic 

interactions, and modifications of the effective rheology of their suspensions.

The are two types of active particle. The particle th a t swim using its head is 

called ’’puller” whereas the particle th a t swim using its tail is called ’’pusher” . Gen­

erally, researchers consider the active particles as self-propelled rods. The swimming 

direction of each particle is assumed to  be aligned with its axis of symmetry. Figure 

1 shows the picture of active particle moving in direction p.

Because of their geometry, we can break down the order of the particles into three 

categories (see Figure 2). First, the isotropic state  where all particle are randomly 

oriented. Second, the polar state  where all particles are on average aligned in the 

same swimming direction. Third, the nematic state where particles are paralleled 

but with random swimming directions.

Many particle-based models and simulations have been proposed to  explain and 

predict the dynamics of such systems [16, 19, 32, 39], These researches amazingly 

yield results in qualitative agreement with experimental data. However, because of 

their expensive computational cost, their simulations become size limited and are 

difficult to study systematically. To overcome such difficulties, people have found it 

useful to study active suspension as a complex system then use statistical physics 

tools such as kinetic and hydrodynamic equations to  derive continuum or mesocropic 

models. Notable works include Giomi et al. [11, 12, 13] where they derive macro­

scopic model for particle concentration and polar/nem atic orientational param eter, 

and Shelley et al. [17, 30, 31] where they propose a microscopic model for active
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FIGURE 1: A self-propelled rod moving in direction p.

(b) Polar state (c) Nematic state(a) Isotropic state

FIGURE 2: Three ordered phases of rod-like particles.

suspensions and then project the microscopic information onto macroscopic variables 

to  get the concentration, and polar/nem atic orientation. These models, however, are 

valid in the regime of weak particle interactions. For the in-depth discussion of 

various models, we refer the reader to recent reviews of M archetti et al. [22] and 

Saintillan et al. [29],

This research presents a systematic study of the suspensions of rigid rod-like par­

ticles in two-dimensional case in a dilute regime by focusing on the recently proposed 

kinetic model by M.G. Forest, Q. Wang, R. Zhou [7], The model is an extension of 

the kinetic model for passive nematic polymers [4, 8 , 43] and takes into account of 

what have been neglected from other models such as intermolecular potential and 

new extra stress contributions to the disturbance flow equation. We begin our dis­

cussion in Chapter 2 with the kinetic model of active particles. Using this model in 

Section 3.1, we discuss the linear stability of isotropic suspensions in the absence of 

fluid flow. We show in Section 3.2 th a t the explicit formula for the  alignment of parti­

cles and rheological properties of suspensions can be derived directly from the kinetic
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model in the case of shear perturbed isotropic suspension. In section 3.3, we remove 

the restriction of the weak shear and continue investigating the bifurcation structure 

of the model, behavior of the particle, and the effect of swimming mechanism to the 

rheological properties of suspensions. In Chapter 4, we develop numerical method 

in 2D physical space and ID  orientational space then study the long-time evolution 

of instability and pattern  formation of inhomogeneous suspensions in both square 

and rectangle domains. Several simulation results are carefully studied to  show the 

complex spatio-tem poral structures of active suspensions.
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CHAPTER 2

KINETIC MODEL FOR ACTIVE SUSPENSIONS

In this research, we will utilize the kinetic model proposed recently for dilute and 

semidilute active suspensions where the concentration is low [7]. Each particle is 

assumed to be rigid and rod-shaped (see Figure 3) described by its length L, width 

d, center-of-mass position x  and axis of sym m etry m. Here, the force generated by 

the swimming mechanism of active particle is assumed to  be along the direction of 

m . The kinetic model consists of the Smoluchowski equation,

(1) ^  +  V • ( ( v  +  UQ (d m  +  y i ^ d W ) )  / )  =  V • D*s ( V /  +  f VU)

+  - ^ - f t  • ( f t /  +  f n u ) -  f t  ■ (m  x  m / ) ,
JJe

where / ( x ,  m , t)  denotes the number density function corresponding to the probabil­

ity th a t the axis of symmetry of a particle at location x  is aligned with the direction 

m  a t time t, and the Navier-Stokes equations,

dv
(2) * = V ' ( - P l  +  rP +  r„) -  (V ^) ,

V ■ v  — 0.

We refer the reader to [7] for the derivation of the model. One can see from (1) that,

in three dimensional case, we need to  solve for six dimensional problems arisen from

x  6  R3, in  €  R2, and 1 G 1 . This problem set is very complicated and requires a lot 

of computational power. In our study, however, we will restrict our attention to two 

dimensional periodic systems of dilute suspensions. The particles, are assume to move 

and rotate only in (x, y ) plane with orientation parameterized by an angle ip e  [0 , 2ir). 

Hence, the systems become four-dimensional problems (x  G R2, m  € R, and t e  R). 

The notations, variables, and param eters in (1) and (2) are described below:

•  Uq is the self-propulsion speed.

•  f t  is the rotational gradient operator given by

dip

where k is a unitvector pointing in vertical axis.



FIGURE 3: Rigid rod-like particle with length L, width d, and direction m .

•  m  is the particles orientation with i t ’s perpendicular vector, m U  Both are unit 

vectors and are defined by

m  =
COS (fi

and m x =
— sint/?

sin ip COS (p

•  ct is a self-propulsion direction param eter. Generally, a = 1 as we assume th a t 

the particle swim along the axis of orientation m.

•  De is the Deborah number, or the rotational diffusion coefficient.

• D*s is the translational diffusion coefficient.

•  U represents the intermolecular potential which is given by

3 N  1 1
(3) U =  Ni  (1) — 7  (m) • m  — (m m ) : m m , n  =  -  ( m ) , M  =  -  (m m )

2 c c

where ATX, 7, and N  are the strength of space inhomogeneity, polarity, and ne­

matic interaction respectively, and c is the characteristic density of the particle. 

The notation
2tt

((•)) =  J  ( • ) / ( “ *, x, i) cfy?
0

denotes the average over orientational space. Also, note here th a t the operator 

(•) and (:) denote tensor contraction.

•  m  is the Jeffery’s orbit describing the rotation of each particle in viscous fluid. 

The orbit is defined by

(4) rh =  D • m  +  a (D  • m  — D  : m m m ) ,
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where the rate-of-strain tensor, D , and the vorticity tensor, £2, are defined by

D  =  ^ (V v +  V v T) and £2 =  i  (V v  — V vT) .

The param eter a is called geometric particle param eter given by, a = 

( r2 — 1) /  ( r2 +  1), where r  is the particle aspect ratio,r — L / d  (see Figure 

3). Thus, in the case of long rigid rods, L »  d, a is generally close to  1 .

•  Ta  is the tensor representing the stress generated by the active force of the 

particle. The active stress tensor is given by

(5) Ta = c<„ (m  -  ,

where G  and Qa are the anisotropic stress coefficient and the active param eter 

respectively. Depending on the mechanism for swimming of the self-propelled 

particle, (a can be either positive or negative: A negative active param eter, 

(a < 0 , indicates th a t such particle swims using its ta il (pusher), whereas 

a particle th a t swims using its head (puller) will result in a positive active 

param eter, (a > 0. Also, note th a t a zero active param eter, ( a = 0 , represents 

a passive particle.

•  r p is the passive stress, i.e. the stress from the viscous solvent, elasticity of the 

rod ensemble, and the friction between the active rods and the solvent. The 

passive stress is given by

2 /  / l )  N
(6) r p -  —  D  +  G M  -  AAl -  N M 2 + —  M  : (m

lifi \  2 c

2nn — -  ((m m m ) • n +  n • (m m m ))
c

+ (D • M  +  M  • D ) +  —^— (m m m m ) : D ,
Re2 Rezc

where Re  is the solvent Reynolds number, Re2 and Re3 are the Reynolds 

numbers associated with the viscous stress of the particle-solvent interaction, 

respectively, and qo is the polar stress coefficient.

•  The body force acting on the fluid results from the interfacial force, — (Vyu), 

which is generated by the chemical potential

(7) /i =  ln f  + U.
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CHAPTER 3

STABILITY AND SCALING BEHAVIOR OF THE

DILUTE ACTIVE SUSPENSIONS

In this chapter, we assume th a t there are no interactions between particles because 

of the diluteness of the suspensions. This allows us to neglect the spatial dependence 

of the distribution function, / ,  i.e. the distribution function is now uniform on entire 

domain [28]. Therefore, (1) reduces to

where /  represents /  (m , t). We will use (8) to investigate various properties of the 

active suspensions with and w ithout imposed shear flows. We also show tha t, in 

the special circumstance such as when the suspensions are perturbed by weak shear, 

many properties of active suspensions can be represented by explicit formulas.

3.1 S T A B IL IT Y  O F  IS O T R O P IC  S U S P E N S IO N

In this section, we consider the stability of the steady isotropic state  of the sus­

pensions in the absence of flows. Therefore, (8) further reduces to

where U is an integral function of /  defined in (3). The normalization condition 

becomes

(10) /  fd<p = 1.
J o

Thus, the steady isotropic state  is given by

(8) %  W  +  f7ZU)  ~  U  ' ( m  X “ ) /s

(9)

(11)
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k  Eigenfunction Eigenvalue

1 a \  sin ( ip) 7 —2 c 
2 cDe

1 b \  cos (<p) 7 —2 c 
2 cDe

2 02 sin (2 <p)
2 ( N - 2 c )

cDe

2 a 2 cos (2<p)
2 ( N - 2 c )

cDe

> 3 a/-  sin { k i p ) - k 2 
De

> 3 b k  cos {kp>) - k 2
.......D e ...................

TABLE 1: Six categories of the  eigenfunctions and their associated eigenvalues of 
the linearized differential equation.

To study the stability of this state, we linearize the equation by setting

(12> J = 2 1  +  e /l

and substituting into (9). As a result, we obtain the linearized operator

/ / '  2N  sin (2v0 ( J T  / i  sin (2(p)d<p) 2N  cos (2ip) f x cos (2<p) dip
“  We +  7rcDe +  ncDe

(13)

7  sin (<p) ( / 02?r h  sin {p)dp)  7  cos cos ^  d{p

2ircDe 2n cDe

Because of the orthogonality of the trigonometric function, one can see th a t the 

eigenfunctions of the operator £  are scalar multiples of sin(fcyj), or cos (k(p), where 

k  is any positive integer. The eigenfunctions and their corresponding eigenvalues are 

summarized in Table 1. Note th a t the eigenvalues are always negative for k >  3. For 

k =  1 and k = 2, the eigenvalues are and respectively. As a result, the

isotropic state  is stable for all param eter values, provided 7  < 2c and N  < 2c. Since, 

throughout this research, we fix c =  1, our stability region of the isotropic state  are 

7  <  2 and N  < 2 as shown in Figure 4.

To confirm the stability condition from our analysis, we also perform the bifur­

cation analysis numerically using the software AUTO [3]. The general procedure is
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Polar/Nematic

Isotropic

N

FIGURE 4: Stability region for the strength of polarity, 7 , and nematic interaction, 
N.

to first represent /  by the truncated Fourier series

K

(14) /  (m , t) «  b0 (t ) +  (afc (t) sin {kip) +  bk (t) cos {kip)).
k=1

Then, substitute (14) into (9) to get a  system of ordinary differential equations of ak 

and bk as follows (we omit the details of derivation):

( 2 N  ( 0 2  ( a i  — 0 3 )  +  62  ( b \  —  6 3 ) )  

—7  (a id2 +  b\ (62 — 2£>o))),

db0
=  0,

dt
dbi 1 , 7T

dt = ~ W e h  + 2 cDe

db2 4 n .
~dt De 2 cDe {-

dbk k 2 7rk
dt De k 2cDe

((ai (03 +  CI3) +  b\ (63 — 61))

+ 2 N  (0204 +  62 (64 — 260))) 1

(7 (a l (ak - 1 +  Ofc+l) +  &1 (&fc+l — bk-1))

+ 2iV (02 (flfc-2 +  a fc+2) +  (pk+2 — bk-2))) ,

(15) 3 < k < K ,

(7 (aj (260 +  £>2) — a 2&i)

+ 2 N  ( a 2 (&! +  6 3 ) -  ( a j  +  a 3 ) 6 2 ) ) ,

dax 1 TC
~dt ~ ~D~ea ' + 2 cDe

da2 4 n .

dt - D e a2 + cDe (
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Parameter Value
De 1

1
1
1

c
iV(when 7 is a free parameter) 
7 (when N  is a free parameter)

TABLE 2: Param eter values used to produce bifurcation diagram.

dak
~ ~ ^ e ak +  2 c D e  ^  ^  _  <2fc+1) +  (kfc+i +  bk- 1 ))

+ 2N  (62 (flfc-2 — flfe+2) +  a2 (bk-2 + bk+2))) , 

3 < k < K,

dt

where K  is the number of harmonics in (14) and is taken as K  — 20 in our study. 

Note tha t, we define ak =  0, bk — 0 for k > K .  Next, the numerical bifurcation 

analysis is perform by supplying (15) to AUTO except bo since it is a constant. To 

characterize the state  of the system we employ commonly used measure, which is an 

order parameter, s, calculated by [6 , 21 ]

We will discuss more about order param eter in the next section. For now, s =  0 

represents isotropic state  of the suspension while 0 indicates th a t the suspension 

is in the nematic state. All param eters using in the process are shown in Table

2. Figure 5 shows the bifurcation diagram in the plane of order param eter, s, and 

the nematic strength, N .  The isotropic state  is found to  be stable up to N  = 2 

as expected. As the nematic strength pass through the pitchfork bifurcation at 

N  — 2, the isotropic branch becomes unstable while the stable nematic branches 

(s ^  0) become the new attractors. As a result, isotropic-to-nematic transition takes 

place. Similarly, Figure 6 shows stability results by varying polarity potential, 7 . As 

expected, the isotropic state  is stable for 7  <  2 and the isotropic-nematic transition 

occurs at 7  =  2 .

(16)
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U n s ta b le

Nematic0.5

Isotropic

-0.5

0 2 31 4 5
N

FIGURE 5: Stability of the isotropic and nematic state using the nematic strength, 
N ,  as a free param eter. The transition between two s ta te  occurs a t N  = 2 .

 S ta b le

—  U n sta b le
Nematic

0.5

Isotropic

-0.5

- 1.0

0 2 3 41 5
y

FIGURE 6 : Stability of the isotropic and nematic state  using the polarity strength, 
7 , as a free param eter. The transition between two state  occurs at 7  =  2.



12

3.2 ISO TRO PIC SU SPE N SIO N  W ITH  W EA K -SH EA R  
PER TU R BA TIO N

Our goal in this section is to  show tha t, in the case of shear perturbed isotropic 

suspension, the explicit formula for the  angle of alignment of the particle and some 

rheological properties of the fluid can be derived. To see this, we pertu rb  the isotropic 

state  by the weak-shear continuation given, in Cartesian coordinate (x, y), by

where P e  is a small Peclet number (non-dimensionalized shear rate). The shear flow is

layers of the fluid is assumed to increase linearly in the flow-gradient direction from 

the bottom  to the top (see Figure 7). Note th a t, in this case, the number density 

function is given by (8).

From (17), it is straightforward to  obtain the rate-of-strain tensor

Substituting (20) and (21) into the right-hand side of (8) and retaining first and

(17) d  yv  =  Pe
0

generated by filling the fluid between two parallel plates and then sliding the upper 

plate to the right while holding the bottom  plate. The velocities of intermediate

(18)
2 v
1 [ 0 Pe
2 Pe 0

and the vorticity tensor

(19) n = I (w  -  vvT)

1 0 P e

~  2 - P e  0

Hence, the second term  of the right-hand side of (8) becomes

(20) —7Z ■ (m  x m / )  =  — 1Z • (m  x (Q ■ m ) +  am  x (D • m )) /
1 d f

—  (P e — aPe  cos (2ip)) +  a f  (Pe sin (2<^)).
2 dip

We then expand the distribution function, / ,  in the Peclet number, Pe:

(21) /  =  2 -  + P e /, + Pe2h  + p< ?h +  -
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y

x

FIGURE 7: Shear flow generated by sliding one plate on top of another.

second order term s yield

■ (11 f  + f U U )  -  f t  • (m x m) /
De

p e | 7  cos (</?) cos ((f) fidip +  2 N  cos (2ip) / 02?r cos (2ip) f xdip
2ncDe ncDe

+  7  sin (<p) / 027r / i  sin (y?) dy  277 sin (2p) / 2?r / t sin (2y?)
2ncDe ncDe

A V  asin  (2</?)7 
De 2n )

2 /  7  cos (2y) / i  /o2" cos (297) / xdy  477 cos (2<p) /1 / 027r cos (2y?) /idy?4. p e   v r ' J L J  u v y +
V c£>e cDe
7  cos (9?) fgn cos (</?) / 2d</? 2 N  cos (2cp) JqW cos (2ip) f 2dtp

- j -  --------------------------------------------------------------------------- - | - ------------------------------------------------------------------------------------------

2ircDe ixcDe
(22) 7/1  sin (ip) / 027r /1 sin (y>) dy? 7  sin (<p) fpn f 2 sin (y?) dy?
1 ; c£>e 2ncDe

477/1 sin (2y>) fgn f x sin (2<p) dy
cDe

+  a f i  sin (2cp) +

2 N  sin (2<p) / 02?r f 2 sin (2ip) dip f f  1 ,
+ ----------------^ ---------------- T “  - a  cos (2<p) / ,

_  7  cos (ip) f i  JqW f i  sin (tp) dip _  27/ cos (2p) / /  / 027r f x sin (2y>) dy?
cDe cDe

+ 7  sin (9?) / /  / 027r cos (y?) /idy? +  2 N  sin (2y?) / /  / 02?r cos (2y?) /idy? 
cDe cDe

+ l )  + ° ( pe3>-
where the prime symbol (') indicates the derivative respect to angle, <p. 

Consider the  first-order terms in (22). For the steady state, we have

f \  1 (  (  f 2n \(23) ~  +  2ncDe ( 7  (cos (tp) J ' f x cos (ip)dip + sin (cp) j  ̂ f x sin (ip)dip\

+ 477 ^cos (2ip) J  /1 cos (2 ip)dip +  sin (2<p) J  f x sin (2(p)d<p̂ j ^

asin  (2tp) =
27T
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Using the orthogonality of the trigonometric functions, the solution for this integral- 

differential equation is

acDe
(24) /■ = sin (2(p).

47r (2c — N)

By substituting (24) into the second order term  in (22), we have, after simplification, 

the steady state  equation for f 2:

r2w r2n
(25) +

1
7  ( cos

27T

/*Z7r T
((fi) /  f 2 cos ( f ) d f  + sin ( f )  /  f 2 sin ( f ) d f  

Jo JoDe 2i:cDe
/ r2ir /*27t

4- 4iV ^cos (2f )  J  f 2 cos ( 2 f ) d f  +  sin (2<p) J  f 2 sin (2tp)dip

a2c2De cos (4<p) acDe cos (2cp)
2tt(2c - N f  + 4tt(2 c - N )

We again have the integral-differential equation. The solution can be explicitly given

by

(26) /2  =
ac2De2

cos (2 <p)
a2c2De2

COS (497)
87r(2c — N )2 32n(2c — N )2

From (24) and (26) , the second-order approximation for the number density function 

in weak shear is

(27) /
1 „  /  acDe .

 b Pe  ( ---- ;------- —  sin (2lo)
2tt \47t (2c — N)

-b  Pe
ac2De2

8tt(2c -  N ) ‘
cos (2(f)

a2c2De2

32tt(2c -  N ) ‘
cos (4f )

Note th a t higher order approximation can be done in the  same manner. From (27), 

some closed-form approximations of alignment and rheological properties can be 

recovered by direct substitution. We first look into details about the alignment 

properties of the shear-perturbed isotropic state. One convention to measure the 

orientation is to project /  onto the symmetric traceless second-moment tensor, Q

[10].

(28) Q =  (m m )

(cos2 f )  — |  (cos (f sin f )  

(sin f  cos f )  (sin2 f )  — \

acDe 
8 (2c -  N)

--Pe
’ 0 1 " 2 ac2De2 

+  Pe - - ^
' 1 0

1 0 16(2c -  N ) 0 - 1
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The eigenvalues of Q through O (Pe2) are

(29) A1 =

and

acDePeyJc2De2Pe 2 +  4(2c -  TV)5 

16(2c — A )2

acDePex c2De2Pe2 +  4(2c -  N Y  
(30) A2 = ---------------- V

n r

16(2c - N Y

Our next task is to get the m ajor director, n j ,  and the order param eter s. The major 

director is a unit vector
cos (ip) 

sin (ip)

which indicates the preferred orientation of the molecules. It is defined to be aligned 

with the eigenvector, vx, associated with the largest eigenvalue, Ai. The order pa­

ram eter is a non-negative scalar,

s =  A] — A2,

which indicates the degree of alignment. Clearly, the s ta te  in which s =  0 implies 

the isotropic state.

From (28), it is straightforward to  obtain

vx = (c D eP e  + y j  c2De2Pe2 + 4(2c -  N )2 , 2(2c -  N ) j  .

Obviously, the alignment angle, ip, which is defined as the angle between the major 

director and the flow direction, can be computed by

(31) ip =  tan - i  I 2(2c - N )

cDePe  +  J c 2De2Pe2 +  4(2c -  iV)

Note th a t the value in the parenthesis is smaller than 1, thus \ip\ < 45°. This result 

suggests that, being perturbed a t isotropic state by weak shear, the molecules break 

their random orientation by shifting prim ary alignment along the flow direction. 

Another clue we can see from (31) is th a t the alignment angle in the weak shear 

limit, Pe  —> 0, is 45° given N  < 2c, or —45° given N  > 2c, although the la tte r case 

is unstable as will be seen in section 3.3. In fact, it is also interesting to  see, from
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Parameter Value
a 1
Pe  (if not a free parameter) 0.1
c 1
De 2
7 1
TVi 1

TABLE 3: Param eter values used in comparison between theoretical approximations 
of alignment properties and numerical results.

the explicit formula, th a t the alignment angle, ijj, does not depend on geometrical 

property of particle, a. We now verify if our analysis is consistent with the numerical 

simulations. Simultaneously, we study more carefully about the alignment angle, 

order param eter, and other rheological properties.

Figure 8 shows the alignment angle versus weak shear with five different values 

of nematic strength, TV. The molecular and flow parameters chosen are shown in 

Table 3. The solid line is the predicted angle given by (31) while the dots represent 

the results from numerical simulations. It is clear from the figure th a t the alignment 

angle is a decreasing function of Pe  as we expect from the formula. T ha t is, as 

the shear rate increases, the major director becomes more aligned with the flow 

direction. For five values of nematic strength, the numerical results confirm our 

second-order explicit formula as well as the alignment angle of 45° in the weak shear 

limit. The prediction performs best at low nematic strength but start to fall off 

as nematic strength increase toward the critical isotropic-nematic transition value, 

TV =  2. Form (29) and (30), the order param eter is

a c D eP e \ /c 2De2P e 2 -f 4(2c — TV)2 
(32) s = ------------¥---------------- 5---------------- .

8(2c — TV)

For comparison, we again plot the values from explicit formula (32) together with 

the numerical results in Figure 9 , which shows the scaling behavior of the degree of 

alignment versus the nematic strength. The param eters chosen are listed in Table 3. 

It is clearly seen th a t our approximation works very well a t low nematic strength and 

weak shear. As the nematic strength increases, the order param eter also increases. 

So the particles are more likely to  align with the flow direction.

Another noteworthy result is the construction of /  in (27) does not contain cos (</?),
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N = 0 .2 5

N = 0 .5

4 0

1=1.5

 Theoretical approximation

•  Numerical result

0.00 0 . 0 5 0.10 0 . 1 5 0.20 0 . 2 5 0 . 3 0

Pe

FIGURE 8: Comparison of scaling behavior between explicit formula (solid line) of 
the alignment angle and numerical results (dots).

sin (ip) or any other cos (kip) , sin (k<p) components with k odd. Now, if we consider 

the polarization vector (mean director field),

xoox , t r (cos ((/?))(33) p  =  (m ) =
L <s in (^)>

we will have p  =  0. T hat is, there is no polarity. We now derive closure approx­

imation for rheological properties of the shear-perturbed suspension, which are the 

viscosity (apparent stress), a, and the normal stress difference, J\f\. The viscosity 

determines a  fluid’s resistance to flow whereas the normal stress difference generates 

a force pushing the plate apart or pulling them  together. These two rheological prop­

erties are very useful in polymer characterization.

The viscosity, a , and the normal stress difference, N \ , are given by

a = r i2/P e  and A/i =  tu  -  r 22,

where r  = Tp + ra is the stress tensor. At this point we refer the reader to (5) and (6) 

for the equation of stress tensor, r .  From (27), we notice that, apart from molecular 

and flow parameters, only bo ,a2 , b2, and 64 have non-zero values.

Therefore,

/ o  _  7rQ2 ^ ? (C a ~b 1 ) , 71-frp 7T ( 2bp — 64)  1___7T2 Q2 (26p +  fo4 ) G N
Pe  2 cPe cRe2 8cRe3 Re  8 c2Pe
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0 . 0 5

0 . 0 4

0 . 0 3

0.02  Theoretical approximation j T

#  Numerical result

0.0 0.2 0 .4 0.6 0.8 1.0 1.2 1 .4

N

FIGURE 9: The comparison between theoretical approximations (solid line) of the 
degree of alignment, s , and the numerical results (dots).

and

/oc\ \r  _  _  n b2G (Ca +  1) n 2b2G N  (2b0 — 64)(35) N \  — T\i — t22 — -  ^  •

Hence, we finally have

(36) a =  a D e G (4< »  +  4 c ~ N ) , __L _ , _ L _  , J _
v '  32c(2c -  N )  2cRe2 8cRe3 Re

/  ascDe3G N  a2cDe2 \  2
+  V l0 2 4 (2 c -A )3 +  256i?e3( 2 c - iV)2J  6

and

a g e2G (4cC. +  4c -  IV) ,  _  a ^ D e ' G N  ,

1 '  1 32(2<: ■- ,V)2 1024(2c -  IV)*

In Figure 10, the viscosity is plotted as a function of nematic strength, N ,  for sus­

pensions of pullers (Ca > 0), pushers (C, < 0), and passive particles ((a =  0). All 

param eters chosen are shown in Table 4. Regardless of the fact th a t the formula 

will blow up as the nematic strength increases toward the region of isotropic-nematic 

transition ( N  —> 2) the scaling behaviors of all suspensions from our approximation 

are consistent w ith numerical values given sufficiently low nematic strength. As ne­

matic strength increases, the viscosity of the suspension with puller-type particles
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Parameter Value
a 1
De 1
G 2
c 1
7 1
Ni 1
Re 15
Re 2 15
Rez 15
ao 1

TABLE 4: Param eter values used in comparison between theoretical approximations 
of rheological properties and numerical results.

also increase while the reverse effect happens for suspension w ith pusher-type par­

ticles. This effect is alleviated for suspension with passive particles as increasing in 

nematic strength has minimal effect to  viscosity. The positive effect of pusher and 

negative effect of puller to the viscosity of active suspensions in weak flows are also 

suggested in other models [15, 28]. This phenomenon is also supported by exper­

imental results from Sokolov and Aranson [35] in which they concluded th a t the 

combined action of swimming bacteria (pushers) can reduce the viscosity of a liquid 

by up to  a factor of seven. The experiment in the case of puller particles is also 

reported by Rafai et al. [27] where they observed a significant increase in viscosity 

as a result of the swimming activity of microalgae (pullers).

Similar results can be observed in Figure 11, where the first normal stress differ­

ence, Mi,  is plot against nematic strength, N ,  except th a t the differences in the effect 

of active particle is more apparent as N  approach 2. It is interesting to  see that, 

when the effect of nematic strength are negligible (N  — 0) all suspensions feature 

nearly equivalent normal stress difference. The nearly zero values of Mi  in a weak 

shear for all type of suspensions are expected since the formula for normal stress 

difference is of order O {Pe2).
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2.0

Theoretical approximation

#  N u m e r ic a l  r e s u lt

0.5b

0.0

- 1 . 0 -

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

N

FIGURE 10: The comparison between theoretical approximations (solid line) of the 
viscosity, a, and the numerical results (dots). The active parameter, (a, vary from 
—3 to 3.

0 .03L T h e o r e t ic a l  a p p r o x im a tio n

0  N u m e r ic a l  r e s u lt
0 .0 2 -

0.01

0.00

- 0.01

- 0.02

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

N

FIGURE 11: The comparison between theoretical approximations (solid line) of the 
normalized first normal stress difference, A/i, and the numerical results (dots). The 
active param eter, £a, vary from —3 to  3.
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3.3 D ILU TE A C TIV E SU SPE N SIO N  IN THE IM PO SED SH EA R  
FLOW S

From the analysis of the suspension in weak shear, we continue our investigation 

on monodomain suspension w ith general shear flow. The density function is still 

described by (8). But, the shear flow is now not necessary weak, i.e. Pe  is not 

necessarily small. As previously done in section 3.1, we fist derive the differential 

equation for the Fourier modes by substituting (14) into (8). We now obtain

—  =0  
9t '

Tit = ~  W e '  +  d k  {2N  (“2 (Ul “  “3) +  62 {bi ~  h ) )
Pe

—7  (0 ^ 2  +  bi (62 — 26o))) +  ((a +  2 )ai — 003) ,

W  =  ~  i k ((tti (° ‘ +  ° 3) +  61 {bs ~ 6i))
Pe

+ 2N  (a2CJ4 +  62 (64 — 26o))) H— — (2a2 — 004) ,
Lt

dbfc kp1 7tk
~  ~  2~jj~ (7 (a i (a fc-i +  °fc+i) +  h  (bk+i — bk~i))

+2N  (a2 (flfc-2 +  0^+2) +  b2 (bk+2 — bk-2))) 
k

(38)  —  (a (afc_2 +  a fc+2) -  2ak) ,3  < k < K,

da 1 7r
W  =  "  W eai +  2^Dt  <7 (° ‘ (2i° +  ^  “  “2' ' l)

Pe
+ 2N  (02 (^1 +  ^3) — (a i +  03) 62)) H— — ((a — 2)6i +  063) ,

^  4
= — ~£^a2 3" (7 (a 2 (26i 4- 63) — a.361) +  2N  (a2 (2bo +  f>4) — 0462))

Pe
+  —  (2a (60 + b4) — 2b2) ,

ddf~ k^ irk
— ~  ~Q^ak 3" 2cDe ^  ^  — afc+1) 3" Gl (^fc+i 3" bk-i))

+ 2 N  (62 (dk-2  — afc+2) +  02 (tfc-2  +  frfc+2)))
1

+  -fcPe (a (&*_2 +  6fc+2) -  26fc) ,3 < k  < K.

Again, we define a*, =  0, 6*, =  0 for k > K  and the number of harmonics is chosen to 

be K  = 20. One can see th a t b0 is still a constant in this case and will be excluded 

from our concern.

All figures in this section illustrate results obtained by considering the shear rate 

as a free param eter. Each figure consists of two graphs- one showing the degree of
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Parameter Value
a 1
De 5
c 1
Qq 1

TABLE 5: Param eter values used in shear sweep analysis.

alignment s, and the other showing the angle of alignment ip. Both s and ip are 

calculated by the definition mentioned in previous section. Note th a t, in the case of 

periodic solution, we represent s and ip as follows:

(39) s = 7r \ / a i 2 +  b22, ip =  ta n -1 j ---------~ = ^ . ...._
\ b 2 +  y a y 2 +  b2

where

( « )  O  =  i  £  (.) i t ,

and T  is the period. Different bifurcation diagrams result from different values of 

nematic strength, N,  and polarity strength, 7 . Other param eters using throughout 

this section are shown in Table 5.

We find tha t, for all nematic and polarity strength below the isotropic-nematic 

transition values (N  < 2 and 7 <  2), only one stable stationary  solution branch 

appears. Figure 12 shows the solution diagram for N  — 1 and 7 =  1. In Figure 

12a, increasing in the flow strength results in increasing in the degree of alignment. 

In fact, as one might expect, this behavior always happen in all cases (see Figure 

12,13,15,19). In Figure 12b, the angle of alignment, ip, is plotted as a function of 

shear rate, Pe.  As we already discussed in previous section, the alignment angle 

tends to  45° for vanishing shear rate. The decreasing function shown in the figure 

implies th a t the stronger flows (high Pe)  induce the particles to  align w ith the flows 

direction (ip = 0). In fact, flow-aligning always occurs at strong flow (high Pe) 

regardless of the nematic and polarity strength (see Figure 12,13,15,19).

Figure 13 presents the bifurcation diagram for larger nematic strength, N  = 4 and 

7 = 1. We can see th a t both periodic and steady solutions, which are represented by 

thick and ordinary solid line respectively, arise in this setup. The periodic solutions 

emerge from Hopf bifurcation labeled as H B ,  at Pe  «  2.36. This is also where the
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(a) Order parameter, s, versus shear rate, Pe.

5Q~r
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1 0 r
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Pe
(b) Alignment angle, ■([>, versus shear rate, Pe.

FIGURE 12: Bifurcation diagram for N  — 1 and 7  =  1. O ther param eters are shown 
in Table 5.

transition between wagging/tumbling (periodic solution) and flow-aligning (steady 

solution) take places. For Pe  < 2.36, unlike the previous case, the steady branch 

is now unstable while the periodic branch is always stable. This implies th a t in 

the weak shear limit the particles exhibit oscillatory responses instead of steady 

alignment of —45° indicated by closed-form formula (31). For Pe > 2.3 the particles 

appear to  be steady aligned, with orientation closer to the flow direction (U =  0) 

as indicated by steady branch. Figure 14 shows the diagram of flow-aligning and 

wagging/tumbling regimes in the (N, Pe)  plane. The two states are separated by a 

solid line which represents Hopf bifurcation line. We clearly see from the figure that,
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(a) Order parameter, s , versus shear rate, Pe.

o
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- 1 0 '
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 Stable periodic branch-30
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- 5 0 1   '---------- :----------------- -— -— ■ ■ ■     ■— -— J-----------    -
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(b) Alignment angle, ip, versus shear rate, Pe.

FIGURE 13: Bifurcation diagram for N  =  4 and 7  =  1. O ther param eters are shown 
in Table 5.

for the suspensions with low nematic strength, N ,  any oscillatory responses from 

exerted shear flow are impossible. The figure also suggests that, even the particle is 

in the wagging/tumbling state, the flow-aligning always occurs given strong enough 

shear flows (high Pe).

Similar diagrams are observed in Figure 15. Here, param eters chosen are low 

nematic strength, N  — 1, and high strength of polarity, 7  =  4. In this case, the 

transition between wagging/tumbling and flow-aligning state occurs a t Pe  ~  1.84, 

which is marked by HB. Figure 15b reveals th a t the oscillatory response still occurs 

in the weak shear limit even with N  < 2. This suggest th a t the closed-form formula
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FIGURE 14: Critical flow strength, Pe, below which an oscillation response (wag­
ging/tumbling) occurs, as a function of nematic strength, N.  The solid line is the 
Hopf bifurcation line.

(31) is valid only in the range of N  < 2 and 7  <  2. Figure 16 shows the range 

of shear rates and polarity strengths for which the particles exhibit oscillatory, or 

steady, response. Here, we take the opportunity to  show some examples of wagging 

and tum bling state  of the particles. If we choose 7 =  4 and Pe = 1, the active 

particle will be in the tumbling sta te  as seen in Figure 17. The top-left and the 

bottom -left figure show the periodic fluctuation (with the period ~  9.6) of the degree 

of alignment, s, and the polarity magnitude, |p |, respectively as tim e evolves. The 

top-right figure presents the angle of nematic orientation, as a  function of time. 

The angle oscillates between —90° and 90°, which indicates the tumbling behavior 

of the particle. The similar periodic pattern  can be observed in bottom -right figure 

presenting the polarity angle, <f), as a function of time. The wagging state  can be 

discovered by choosing 7  =  8 and Pe  =  6 . Figure 18 shows similar (with higher 

frequency) periodic behavior of s, |p |, and <fi to those in Figure 17, except for ip th a t 

oscillates between 0 .6° and 16°, which clearly indicates tha t nematic orientation of 

the particle is in the wagging state.

Another interesting stability result is shown in Figure 19 for N  =  5 and 7  =  9 . 

In this setup, the first Hopf bifurcation, H B 1 , and the second Hopf bifurcation, 

H B 2 , appear a t Pe ^  4.12 and Pe  «  7.70, respectively. The first periodic branch 

associated with H B 1 has no physical effect to the particles since it is unstable. 

The second periodic branch emerging from H B 2, however, consists of stable and
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FIGURE 15: Bifurcation diagram for N  =  1 and 7 =  4. Other param eters are shown 
in Table 5.

unstable periodic solution with the turning point at Pe  ~  8.20 marked by the limit 

point bifurcation, L P . Consider the shear rate in the regime around H B 2  and L P  

(7.70 < Pe < 8.20). This is a bistable region, where both steady flow-aligning and 

wagging/tumbling state  coexist, and both are stable. If the wagging/tumbling states 

first arise, the transition from wagging/tumbling state  to flow-aligning occurs when 

Pe  > 8.20. Conversely, the transition from flow-aligning to wagging/tumbling state 

take places when Pe < 7.70.

Some interesting rheological properties of spatially homogeneous suspension in 

shear flow are also investigated. For all results presented below, the nematic and the
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FIGURE 16: Critical flow strength, Pe,  below which an oscillation response (wag­
ging/tumbling) occurs, as a function of polarity strength, 7 . The solid line is the 
Hopf bifurcation line.

polarity strength are chosen to  be N  =  1 and 7 =  1, respectively. O ther parameters 

chosen are shown in Table 5. The viscosity, a  is plotted against Peclet number, Pe  

in Figure 20. Both suspension of puller, ( a >  0, and suspension of passive particle, 

Ca =  0, exhibit shear thinning behavior, whereas suspension of pusher, £a < 0, shows 

shear thickening. It can be seen th a t the effect of swimming mechanism is strongest 

in weak flows and vanishes in strong flows (high Pe).  An enchantments of a  in 

puller-type suspensions, and the opposite in pusher-type suspensions, in weak flows 

(low Pe), have been mentioned in previous section. This phenomenon is shown more 

clearly in Figure 21 showing the range of active param eter, Q, and shear rate, Pe,  for 

which a  < 0, or o  > 0. The critical line in the figure confirms th a t negative viscosity 

will occur in weak flows of strongly active pusher suspension. Figure 22 shows first 

normal stress difference coefficient, M i/P e ,  as a function of shear rate, Pe, for pullers, 

pushers, and passive particles. The effect of swimming mechanism increases as the 

shear rate increases and is strongest at Pe  ^  0.5. After that, similar to  the case of 

viscosity, the effect of activity degenerate to  nearly zero in strong flows. The normal 

stress difference coefficient of all particles exhibit bo th  increasing and decreasing 

function depending on shear rate. A suspension of pullers and passive particles 

behaves as increasing function for M\  <  0.5 then operates as decreasing function 

for M\  > 0.5. The behaviors in the case of suspension of pusher are reversed. The 

negative first normal stress difference coefficient occuring in suspensions of pushers
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FIGURE 17: Time evolution of the order param eter, s, the alignment angle ,0, 
the polarity m agnitude ,|p |, and the polarity angle ,0 , during the tumbling state 
(7 =  4 ,P e  =  1).

is illustrated more clearly in Figure 23. One can clearly see from the figure tha t 

the negative normal stress difference almost always occur in weak flow. However, 

changing in sign will eventually take place at strong flow.
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(7 =  8 ,P e  = 6 ).
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FIGURE 19: Bifurcation diagram for N  =  5 and 7  =  9. O ther param eters are shown 
in Table 5.
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CHAPTER 4

SPATIO-TEMPORAL STRUCTURES OF ACTIVE

SUSPENSIONS

In this chapter, we drop the relaxation of the previous chapter, i.e. the inter­

actions between particles are now taken into account. Therefore, -the equation for 

the distribution function, / ,  given by (1) is fully utilized without the homogeneous 

assumption of the physical domain. The procedures in this chapter are as follows. 

First, we derive a system of partial differential equations for the Fourier modes of 

/  from (1). Then, this system together with the Navier-Stokes equation in (2) are 

solved numerically. After th a t, we study various behaviors and structures of the 

active suspensions systematically by projecting the microscopic information onto 

macroscopic variables such as the local concentration, the polarization direction, the 

nematic orientation, and the degree of alignment.

4.1 G ALERKIN PR O C E D U R E  FOR THE SM OLUCHOW SKI 

EQUATION

Recall th a t the system in three dimensional case is a complex 6 dimensional prob­

lem. Due to the extensive com putational cost and the complex physical phenomena, 

it is almost impossible to  solve it directly numerically. Here we make the assumption 

tha t, all particles are on the flow-flow gradient (x-y) plane. This reduces the system 

to a 4 dimensional problem (2D in space, ID in orientation, and ID in time). As a 

result, we can approximate the distribution function by truncated Fourier series
K

(41) /  (x, m , t) «  b0 (x, t) +  (ak (x, t) sin (kip) -I- bk (x, t) cos (kip)).
k=1

Our ultim ate goal in this section is to  obtain a set of partial differential equations 

of the Fourier coefficients by substituting (41) into (1). It is more convenient if we 

consider substitution term  by term.

Firstly, it is easy to see th a t
K

(42) 1Z-TZf = — (k2ak sin (kip) + k 2bk cos (kip))
k=o
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and

(43)
K

V 2/  =  (V 2a*; sin (kip) +  V 2bk cos ( k p ) ) .
k—0

Consider the convection term, we have

(44) V • +  U0 | a m  +  y / l  -  a 2m x ^  / j  =  v  • (V /)  +  U0a ( m  • V /)

+  U oV  1 -  a 2 (m 1 • V / )  . 

Substituting (41) into the right-had side of (44) gives

K

(45) v  ■ (V /)  =  v  • V60 4- ^ 2  (v  ' s n̂ ( ^ )  +  v  • V6fc cos (kip))

and

k=1

t/0a  (m  • V /)  +  [70 V l - 5 2 (m x • V /)

( j r - d b o  r -----------Z ^ d b 0 \  .  ,  ,  ( t t  - d b 0  , J T  R -----------= 2 d b ° \\ U 0 a —  -  U o v  I  -  a  J  s m(V7) +  ( 1 +  -  a 2 — J

K

£
it=i

C0q / dak _  d h \  UoVl -  a 2 f  dak d h
2 \  dx  d y )  2 \  <9y cte

(46)
f U 0a f d a k dbk \  U0y/1 -  a 2 ( dak dbk
V 2 V d x  d y )  2 \  dy dx
'Uoa / dak d h \  U0y/1 -  a 2 f d h  _ d o k

2 \  dy  dx  J  2 \  <9x

(cos ip) biTT

(sin p) a\n

{Tot* { d h  _  d a ^ \  U p V l  -  a 2 /56^ 5a*
2 \  d x  dy J  2 \  <9y <9:c

Given definition of m and ((•)), we have

(47) (m) =

and

(48) (mm) =

Substituting (47) and (48) into (3) leads to

(49) U = ^ N i  — — ̂  2nb0 — —  ( h  cos (ip) +  ai sin (ip))

cos (ip) 

sin ((k — 1) ip)

sin ((k +  1) ip) 

cos ((k — 1) ip) 

cos ((k +  1) ip) >.

(cos2p) (cos p  sin p) bpTT + h- f  * f  '

(sin p  cos p) (s in V )

I
011O~c>§hi
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N tt

c
(b2 cos (2ip) +  a2 sin (2i p ) ) .

By substituting (41) and (49) into the translational diffusion term , we have

D*SV  ■ ( f V U )  = -  V  ■ (b0V a 2) sin (2<p) -  • (feoVflj) sin (ip)

2D* (N xc -  N ) tt„  „ ,
+  — ---------- —  V  • (b0Vb0)

c
D *N n  Z)*'>7T

 2 V • (b0Vb2) cos (2ip)------2-h-V • (boVbi) cos (p)
c c

J U  ( 2D *(N lC-  N ) n „  . . . n  ,
+  2 J  < -----------------   V • (akVb0) sin (fc<p)

fc=i I

+  (V • (bkV a 2) -  V ■ (akVb2)) sin ((k -  2) </?)
Ac

Z)*'Y 7T
+  - f 1 -  (v • ( b y a i ) -  V • (ajfcV&O) sin ((fc -  1) y>)

2c
D*'Y7T

(50) -  (V • (6fcVaa) +  V • (ajtV&O) sin ((fc +  1) y»)

-  (V • (f>fcV a2) +  V • (akVb2)) sin ((A: +  2) <p)
Ac

2D* (N \C — N )  ix , t m  .
_l :-------------------v  • (bkVbo) cos  (kip)

c
D *Nn

-  - 4 —  (V • (bkVb2) + V • (a*Va2)) cos ((k -  2) <p)
Ac

-  (v • ( b y b i )  + v  • (ay a i )) cos ((k - 1) <p)
Ac 

Z )* 7 7 T
H —

2c
d :ntt

(V • (ajfcVai) -  V • ( b y b i ) )  cos ((k + 1) tp)

(V • (ak V a2) -  V • (bkVb2)) cos ((£ +  2) </?) V.
2c

Substituting (41) into the rotational diffusion term , yields

(5i) j ^ R  ■ ( fR U )  { — ■ (bi sin (y>) -  «i cos (v>))

2iW  \
H —  (f>2 sin (2<p) -  a2 cos (2c/?)) 1

1 /  --y7r
+  T r f  —  (fei cos (p) +  “ i sin fa))1/e \  c

4  N t t
H (b2 cos (2ip) +  a2 sin (2ip))

c
4 N ,k 771"

-b0a2 sin (2ip) 4— —  bQai sin (ip)
cDe cDe
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AN tt 'yk
+  ~ ^ ^ bo h  cos (2(p) +  - ^ , boh  cos (y?)

+  j  ~ ~c D e ~ " ^ fc° 2 ~~ akb^  Sin ~  ^k=1 I.

+  c D e ^  ^bkUl ~~ akbl  ̂Sin ~  ^  ^

+ ^ 2 c D e  ^  ^akbl + bk<Xl̂ Sin ^ k  +  ^  ^
(fc -1_ 2)N n  

H ^ ----- (akb2 4- hfca2) sin ((A: +  2) y?)

(Ac — 2)N n
(aka2 + bkb2) cos ((Ac -  2) y?)

cDe 
(Ac — 1)77T 

2 cDe
(akai + bkbi) cos ((Ac -  1) y?)

+  ~~^ g 7?r (bk h  ~  o-ka-i) cos ((Ac +  1) y?)

(AC +  2)Â 7T //, r,\ \ I
H ---- (0*02 -  a fca 2) COS ((Ac +  2) y>) f .

In the same manner, the last term  of the Smoluchowski equation can be w ritten as

(52) —7Z ■ ( m  x rh/ )  =  — 7Z ■ ( m  x (f2 • m )  +  a m  x (D • m ) )  /

1 d f  
= 2 dip ^ 12 ~~ a^12 C° S + a(^n  Sin 

+  a f  (dn  cos (2y?) 4- d\2 sin (2y?))

=ab0di2 sin (2y?) +  abodu  cos (2y?)

*  r Ac
+  ^ 2  ) “  2 bkUJu sin

k=i
a (k — 2)

+ -----^----- (bkd u  -  akdn ) sin ((Ac -  2) y>)

c (fc +  2)
+ -----^-----{bkd\2 +  akdn)  sin ((Ac +  2) tp)

k  n  ^+  -afca;x2 cos (Acy?)
2
a (Ac — 2) 

4
( M i l  +  cos ((Ac -  2) y?)

+  +  2 -̂ (6fcdn  -  akdi2) cos ((Ac +  2) y?) ^ ,

where, given v  =  (v * ,^ ) ,

f ^ \  j  u i dvx dvy(53) du  =  2—  and d12 =  —— +  —
Ox ay ox
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are the components of the rate-of-strain tensor

1
D =

and

(54) ^12

is the component of vorticity tensor

ft

d n  di2 

di2 —dn

dvx dvy 
dy dx

0 U)i2
—U) 12 0

The final procedure is straightforward. We substitute (42), (43), (45), (46), (50), 

(51), and (52) into (1). Subsequently, we collect and equate like modes to  get a set 

of partial differential equations of the Fourier coefficients as follows:

db0
(55)

(56)

(57)

(58)

(59)

(60) 

(61)

=  D y %  -  (F2 + G i + H 0) ,

=  D y %
Webi — (F3 +  Fi +  G 2 +  Go +  Hi +  Io) ,

dt

dbi 
dt

A J  i

=  D y %  -  — b2 -  (F4 + Fo + G3 + H 2 + h  + Jo ) ,

db k2
= D * V 2bk -  — bk -  (Fk+2 +  Gk+\ + H k + Ik_i +  Jk_2) ,

3 < k < K ,

— D*sV 2a1 — ~De.ai ~~ _  ~  ’

da2
dt

dak

D*sV 2a2 ~  ^ 2  -  ( A , - A 0 + B 3 + C2 + Di + E q) ,

k2
D*sV 2ak — j~^ak — (Ak+2 +  B k+i +  Ck +  Dk- i  +  F/t_2) , 

3 <  k < K,

where

(62) A k = ^ J L  (V - (afcV&2) -  V  • (ftfcV a2)) -  (bka2 -  akb2)
2c cDe
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a ( k - 2 ) ( b ( ^  + d p \ _ 2 a dv.
4 \  \ d y  dx  J  dx

(ao\ d _ U o a d a k t U0V l  -  a 2 dak UQa d b k i UQ\ / 1 -  a 2 dbk
(w ) * - — -5 7 +  2 ~ g ^ ~ ~ T d i +  2 ~di

+ ̂  (V ■ (atV6,) -  V ■ (bfcVa,)) + ^  -  M i ) ,

(64) f t  = v  • Vat -  ™ : ( n c - N ) * v  ^  + ^  ^  ̂  j  _

r> U0a d a k U0V 1 -  a 2 3 a fc U0a d b k U0\ / 1 -  a 2 <%fc
<65) ° ‘ = — a 7  +  — 2— +  ---------2— &

+ D|̂ - (v ■ fcv,.,; + V ■ (otV6,)) -  W  + ''./Hi,

(66) f t  = (V ■ KVa,,) + V ■ («»,V62i) -  ( t ^ y7r (M 2 +  Mi)
«( * +  2) +

4 \  \  dy  dx  J  dx

(67) Fk (V • (6fcV62) +  V • (akV a 2)) +  (<**<*2 +  bkb2)

, a ( f c - 2 )  ^  dvx
+  ^ —  & +  “* +  &  j j  ■

/-coa n  U0d d a k UoVl -  a 2 dak UQa d b k U0V l  -  a 2 dbk
(68) Gfe ■—  -  —  +  —  + ---------------

+  — r 1  (v  • ( ^ V6i) +  v  • (a*V a>)) +  (fco ~ n 7?r (a*ai +  W  *2c i c u e

,„n. rr 2D* (NiC — N )  n k  ( dvx dvy \
(69) f t  = v  . V f c   K V  . { ttV 6o) -  5 *  ( ^  -  g * )  ,

_ U 0a d b k U0V 1 -  a 2 dbk U0a d a k U0V 1 -  a 2 dak
1 j k ~  2 dx 2 dy 2 dy  2 dx

-  (V • KVa,) -  V ■ (fc*V6i)) -  (Mi -  ata.),

and

D*7V7r (k 4- 2)Nn
(71) Jk = (V • (6fcV62) -  V • (ofcVa2)) -  ^  (bkb2 -  aka2)

a ( k  + 2) (  dvx ( d v x dvy \ \

-

 ~dx ~  ° fe \~dy ~dx )  /  ’
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Hk = Ik = Jk — 0 ifIn this instance, Ak = Bk =  Ck =  Dk =  Ek =  Fk =  Gk 

k >  K.

Solving Navier-Stokes equation involve calculating the stress from active force, 

passive stress, and the interfacial force contributed by chemical potential. We first 

turn  our attention to the stress tensors. The stress tensor from active force, ra is 

easily obtained by substituting (48) into (5).

(72) Ta =
nGCa

2c
b2 -  2b0(c -  1) a2

a,2 260(c — 1) +  b2

To compute the passive stress tensor, tp, we need to perform the contraction of the 

third-moment and the fourth-moment tensors

(73) (m m m ) • n =  (r r i im jm k )

b\ix2

(mk)

4c

2

3 6 j  +  63 O j +  0 3 a i 7r 2 
+  — —

Q l + 6 l  — 63

a j  +  0 3 61 -  63 . 4 c 6 4 — 63 3 g j  — 0.3

7T

4c
T  U3O1 +  b\ (3b\ +  6 3 )  03&1 +  o-i ( 2 bi — 6 3 )

a 2 b i  - f  a \  ( 2 6 i  — 6 3 )  3 a \  — a 2a \  -I- b i  ( b \  — 6 3 )

(74) (m m m m ) : D  =  (m imjmk'mi) dki

dn 7T 
16

where

660 -(- 462 -f- 64 2a2 -f- 0.4 di27T 2a2 ■+- 26o — ^4

2a2 -|- 04 260 — b<i 8 26o — 4̂ 2a 2 — Q4

d\\nr 
16

7T

'8

64 — 26o — 2a 2

a4 — 2a 2 — 66q — 64

^12 

X12 X22

Xu — (2a2 +  a4) d\2 +  (26o T  2£>2 +  64) d n ,

X\2 =  04(̂ 11 +  (26q — ^4) di2,

and

x22 — (a4 — 2a2) d i2 +  (26q — 262 +  64) d u .
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Similarly,

(75) n* / \ (mirrij)M : (m m m m ) = ------- — (m im jrr ik m i )

7T
8 c

Vu 2/12 

2/12  2/22

where

2/i i — 2aj 4  O4O2 4  86q 4  2^2 4  66062 4  6264, 

2/12 =  4̂62 4  0-2 (66q — 64) ,

and

2/22 — 2a2 — 0^0,2 +  86q 4  26| — 66062 — 6264

W ith above results and (6), we now have

(76)

where

Z U  z 12 

z 12 z 22

Z U
tt^G (2q0 (of 4  O3Q1 4  61 (63 — 61)) 4  3U2O4IV — 66062/V 4 36264./V)

■ 24c2 “
^  7r (02CI12 4  (260 4  62) d a )  ft ((2a2 4- 04) di2 4- (26q 4- 262 4- 64) dn )

4

2cRe2 
7r (260 4  62) G

Z12 8cRe>

nb0G 4  

4

H I

2c ' f i e ’
7r (ot.4di 1 4  (26q 64) d\2) ftbodi2 d \2 7ta,2G

cReo Re +  2c

and

2̂2

7t2G- (2q;o (®i (26i 4  63) — Q361) — 80462 iV 4  3d22 ( 26o 4  64) iV)
24^  :

ft (°2di2 4  (62 — 260) dii) ft ((04 — 2,02) d i2 4  (26q — 262 4  64) dn )
2 cRe 8 cRe

1t2G (2c*0 (of 4  oaO\ 4  61 (63 — 61)) 4  302040 4  362 (64 — 26q) Ar)
24c2

ft (26o — 62) G d n
+  2c------------^ - R - e -

Note to  the reader here th a t dn  and d i2 are already defined in (53).
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We now consider the calculation of interfacial force term , (V/x) . From (7) and

(49), we have

2?r

(77) { V v ) = J / V v d < p
0
2tr

J ( V f  +  f V U ) d v

0

=2ttV6o +  (VC/)

=  (iVi -  47t260V6o -  r2 ^  V ai)

N
 7r2 (62V62 +  a2V a2) .

c

4.2 SPATIAL D ISCRETIZA TIO N OF SM OLUCHOW SKI 
EQUATION

Consider the spatial domain for i G  [0, X ) , y £ [0, F] . We subdivide the interval 

[0, A] and [0, Y)  into N x and N y panels such th a t 0 <  i < N x ,0 < j  < N y, and 

denote the length of the panels in x  and y  direction by hx and hy respectively. 

We approximate first partial derivative, second partial derivative, and mixed partial 

derivative, by using standard  second-order finite difference m ethod as follows:

( d f _ \  f i + i j  -  f i - i j

\ d x  J  ^  2 hx

f d f \  f i + i j  ~  f i - i j

\ d x / i j  2 h v

( 9 2f \  _ f i + i , j  — 2/i,j +

(  ~  2 f h i  +  f i j - 1

W ) t,  "  hi
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i.j+1

i-1.j i.j i+t j

i.j-1

FIGURE 24: The spatial domain of number density function, /  (x, m , t)

Also,

( ■ £ ) ) . *  ( 5  ( • ! ..........

"  (“ i +  ( “ S ) i j + j  “  ( “ “ ) « - }

2 h i

hX hy

((®*P A Ai+lp) ^ip) (®i—lp T flip) (&ip ^i—lp))

T 2/j2 ®*P+1) (^»p+1 ^tp) (flip —1 T Q.jp) (^ip ^ip-l)) •

4.3 TIM E IN TEG R A TIO N  OF SM O LUCHO W SK I EQUATION

Let n  be the time step and recall th a t i . j  are spatial indexes on the grid, we 

discretize the numerical values of /  (x, m, t) and U (x, m, £) into n -th  time step as 

Sij  (m ) and U™j (m) respectively. Hence, one can construct a linearly semi-implicit 

scheme

(78) f i j  (m H « ( m ) =  _  V  • ( ( v “ +  j/0 (a m  +  P i  - » y ) )  (m ))

+  V • £>; ( V / ^ 1 (m) + / ” (m) W "  (m))

+ ' (K / y  1 <m > +  / u  (” ) K t/S  (” ))
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-  n  • (m  x m / £  ( m ) ) .

Om itting the spatial indexes, the scheme can be rewritten as 

^1 -  D*AfV2 -  ^ - T l  ■ n j  / n+1 =  -  A tV  • ( ( v n +  Uq ( a m  +  y / l  -  a W ) )  / n)

(79) +  £>s*AtV • (f nV U n) + ^  U  ■ ( f nK U n)

— 71 - (m  x rn /" )  +  f n.

Hence, the linearly semi-implicit equation can be written as a system of the inhomo- 

geneous Helmholtz equations in the Fourier space, which are given by

(80)

( y2 -  o k 1)  6»n+1= ~ i h + w  ■+ G"+ ™ .

(81)

( D p  4 -  A  t  \  b n  1

v  -  = + d j  w + F i " + + G S + " r + ^ 1

(82)

( v 2 D * +̂ i )  k  "' =  — + 4 -  </-:(■ +  f ” +  g ;  +  //;■ +  +  j y j ,
V D e D ; A t  j  ‘ D ; A t  D;  4 ” J 2 1 “

(83)

( v2 “ i S ^ T 1) ^  = - ^ i + SJ + G‘+>+ + + ’
3 < k < K ,

(84)

f v2  -  « r+1 =  - 7 A -  +  4 -  (^3  -  A i +  B i  -  +  c r  +  z>o) ,V D e D ' A t  J  1 D*At £>* 3 0 0

(85)
De + 4 A t J \  n+1 02 1

V 2 -  ^  ^  -A I a"+1 =  - T T i r -  + + + C2 +  D? +  E k ) ,D e D zA t  )  2 D tA t £>! v 4 0 3 2 1 o ; ’

( 8 6 )

(v2 - ^ i0 l) a‘+‘ - -z $ i+b. ̂ +B‘« +G‘ + +E*-») ■
3 < k  < K.
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4.4 SPATIAL DISCRETIZA TIO N OF NAVIER-STO K ES  
EQUATIONS

The problem with standard grid when solving Navier-Stokes equations is th a t 

we could get artificial pressure oscillations. This oscillation problem is generally de­

scribed in textbooks (e.g. [20, 41]) about numerical solution of differential equation.

To avoid such problem, we use a staggered grid, in which the different variables

are not located a t the same grid points. In 2D, the staggered grid we shall use has 

three subgrids, one for the pressure p , one for the horizontal velocity u and one for 

the vertical velocity v. As a result, the location of the discrete value of u, v and p 

are shifted by half a grid in the direction relative to the other subgrid as shown in 

Figure 25.

We now look at the Navier-Stokes equation in (2). Let tp — t p  — -^D . Then, we 

have
d'v
—  = V  • ( -p i  +  Tp +  Ta) -  (V//)

=  -  V • pi  +  V • D +  Tp + Ta^ -  (V/z)

=  -  Vp +  ^ A v  +  V • (fp +  r a) -  <V„> •

Thus, the Navier-Stokes equation th a t we need to solve is

d v  1
(87) —  +  v • V v =  -V p  +  —  Av + V • (fp +  ra) -  (V/z).

Notice tha t spatial discretization of the convective term does not fit into the 

staggered grid scheme if we use the standard central differences to approximate the 

derivatives. This is because p, u, and v  are not in the same location. Therefore it is 

convenience to rewrite the expression as [14]

/00. du du d ( u 2) d(uv)
(88) “ & + “ a r ^ r  +  - k r

and

, > dv dv d ( v 2) d{uv)

The discretizations are given by the following expressions [14], For u at the midpoint 

of the right edge of cell (i, j ) ,  we use

X,j ^i,j
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FIGURE 25: Staggered grid.

1 f  \^i,j d" ^4+1,j |  ^ 4 + l j )  |^4—l j  d~ ^4,j| ^ i . j)
“E Ts ~~......"........

'hx \  2 2 2 2

d  (wu)   1 / d~ Vi+Xj) (ViJ d- ^4j-fl) iVi,j — 1 d" ^ i+ lj —l) (.V-ij — 1 d~ ^4j)
d y  V 2 2 2 2

1 /" l ̂ t j  d" U j+ l j l  ( ^ 4 j  ^2,7 + 1) —1 d- 1| ( ^ 4 j  —1 d~ ^ 4 j )
' 7s'hy \  2 2 2 2

d u  . j j 2(ij j 4* rtj—ij 7 /1 Uij+i  4~ ^̂   ̂ i
dx2 /i2 ’ dy2 h2

d p  _ p i+i,j -  p j j  

d x  h x

For v at the mid point of the upper edge of cell ( i , j ) ,  we use

d  (uu)   1  /  (itj j  4" (vi.j d- u>i+ij )  (uj_i j  4* Uj—ij+ i)  (wj_ij 4" ?4,j)
dx ~ Y X V 2 2 2 2

1 ^  |^4,j d~ ^ 4 j  + l |  ( ^ t j  ^ i+ l , j )  |^4— l,j d" ^4—l,j + l |  {Vi—l j  d- Uj7j )
i 7s 1

V 2

d(^2) = _1_ /  / Vjj + Vtj+iV  _ / fjj-i -  t>jjx 2"
d y  ~ h y [ {  2 ;  V 2

1 d- ^4j+l| {pi,j ^i,j+1 ) —1 d- Uj j | ^i,j)

7X  V 2 2 2 2
d 2u _ u i+ i j  -  2 u i j  4- U j_ i j  d 2u _  U j j+ i  -  2 v UJ +  V j j - i

d x 2 h i  ’ dy2 hix y
d p  Pi j+1 -  Pi,j
dy hy

Notice th a t there are the stability terms introduced in the numerical scheme with 

the stability param eter j s. According to the paper by Hirt et al. [18], the stability
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param eter for the discretization of the convective terms is chosen such tha t 

.   /  Ui jA t  Vi ,• A t \
(90) U m a x  ( - ^ -  , ) < 7. < 1

is satisfied.

4 .5  T IM E  IN T E G R A T IO N  O F  N A V IE R -S T O K E S  E Q U A T IO N S

To ensure th a t the divergence of the velocity vanishes in every time step, we use 

the projection method [1] for numerical treatm ent of the Navier-Stokes equations. 

In the projection method, we s ta rt calculation by solving the interm ediate velocity, 

v*, by

(91) +  V n • V v n =  A v" +  V • (fe +  Ta) -  (V/i) .
At H e

Next, we solve the pressure Poisson equation

,i V • v*
(92) A p  =  — .

Finally, the velocity is calculated by

(93) v n+1 =  v* -  A tV pn+1.

The time step size A t  is chosen such th a t the condition by Tome and McKee [38] and

the Courant-Friedrichs-Lewy (CFL) condition [2] are satisfied. Hence, an adaptive

tim e step size control is given by

n • i Re (  1 1 \ _1 A x  A y(94) A t <  0.9mm —  — - +
2 \ A x 2 A y 2 J  ’ |u;* m a x  L m a x

where |umax| and |umax] are the maximal absulute values of the horizontal and vertical 

velocity occurring on the grid.

4.6 SIM ULATION RESULTS

In this section, we investigate long-time evolution of instability and pattern  for­

m ation of inhomogeneous suspensions. Here, initially perturbed isotropic suspension 

is given by

1 K
(95) / ( x , m , t )  =  —  +  ] T  (ek (x , y) cos (ktp) +  4  (a:, y) sin (k<p)),

k= i
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where £k (x,  y)  and 8k (x , y)  are small random coefficient chosen in the interval 

[—0.001,0.001]. The boundary conditions of all configurations of the suspensions 

are assumed to  be periodic. More reasonable boundary condition will be considered 

in the the future work.

The simulations for pullers (£a >  0) and passive particles (£a =  0) were performed 

but did not show any instability (i.e. the flows v  quickly dissipate and the system 

converges back to uniform isotropic state, /  =  after perturbation). This is consis­

tent with the results in [12, 30, 31]. Therefore, all results shown in this section are 

only for the suspension of pusher ((Q <  0). The numerical algorithm is implemented 

in C + + , with the help from FORTRAN module [37] for solving Helmholtz equa­

tions. Note tha t, during the simulation, we truncate Fourier approximation in (41) 

at K  = 20, which corresponds to  41 partial differential equations, since increasing 

K  shows little improvement. All numerical simulations are conducted on the Zorka 

system at Old Dominion University with 40 compute nodes (two dual core 2.99 GHz 

Intel Xeon, 8GB RAM).

The simulations are extensively conducted in square and rectangle domains by 

varying various param eters, mainly the nematic strength, N,  the Deborah number, 

De, the transnational diffusion coefficient, D*s , and the active param eter, £a . We 

find th a t not every pusher, Q <  0, gives the interesting results. For small values 

of |£a|, the perturbed system relaxes to  uniform isotropic state, ju st like the case of 

pullers or passive particles. The existence of threshold of (a is also reported in other 

literature [11, 12]. We present various spatio-tem peral structures observed from the 

simulations in the view of velocity field, v, local concentration, C = (1) = 2nbo, 

mean director field (polarization direction describing polar state), p  =  (m ), nematic 

orientation (major director describing nematic state), n i ,  and degree of alignment, s, 

as described in previous sections. While in the nematic state, the m ajor director, n 1; 

is a head-tail symmetric vector since n x and — nq carry the same angle of orientation. 

However, p  is still a true vector since the polar state  does not posses this symmetry.

4.6.1 SQ U A RE D O M A IN

We first perform various numerical simulations in a square domain. Below are 

the four m ajor patterns th a t we discover.
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Parameter Value
N 1
a 1
D e 15
N 1 3
UQ 1
D ; 0.02
7 1
c 1
G 1
<*o 1
R e 10
R e  2 10
Re-i 10
u - 4
a 1

TABLE 6: Param eter values used to  obtain numerical results in Figure 26.

P e rio d ic  s ta te

For a majority of numerical simulations we performed in unit square domain, 

time-periodic structures of suspensions are observed. An example can be obtained by 

conducting the simulation using the param eters listed in Table 6. Figure 26 presents 

snapshots, a t long times, of the velocity field superimposed to  the density plot of 

the local concentration, C, (left column) polarization direction, p, superimposed to 

the density plot of its magnitude, |p |, (middle column) and nematic orientation 

superimposed to the density plot of the degree of alignment, s, (right column). The 

color bar displayed at the bottom  of each column corresponds to  the gauge of, from 

left to right columns, C, |p |, and s. We can see in all figures of the velocity field and 

polarization direction th a t there are four quadrants in the domain with two circles 

and two hyperbolic points. At the circles, the local concentration takes the minimum 

value (see the figure in the left column, second row) and the degree of alignment is 

weak (see the figure in the right column, second row), while at the hyperbolic points, 

the concentration takes the maximum value and the degree of alignment is strong. 

Yet, the polarity field is weak a t both circles and hyperbolic points, it is at its peak 

value in the middle of the transition from one circle to  another (see the figure in 

the middle column, second row). Now, we discuss various features of the periodic 

structure of the suspension.
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First, the reversal of velocity and polarization director: We can easily see flows 

and polarity reversal by looking at Figure 26 and comparing the direction of flows (left 

column) and polarity (middle column) at different times. Some detailed examples of 

these phenomena are presented in Figure 27 showing the cross-sectional data  by the 

plot, at two different times, of the polarization angle, 0, as a function of y  with fixed 

x  = |  (left figure), and the cross-sectional da ta  by the plot, at two different times, 

of the polarization angle, 0, as a  function of x  w ith fixed y = \  (right figure). The 

solid and dashed line represent the polarity angle at tim e t = 198.6 and t = 199.8, 

respectively. Both figures clearly show the switching between upward and downward 

of the polarity angle. In Figure 27 (left), a t t = 198.6, the the polarization direction 

points downward (—180° <  0 < 0°) while at t = 199.8 the polarity points upward 

(0° < 0 < 180°). The switching between left (90° <  0 < 180° or —180° <  0 < —90°) 

and right (—90° <  0 < 90°) direction is also shown in Figure 27 (right).

Second, the 90° rotations of nematic orientation in nearby monodomains, thus 

causing defects. Figure 29 presents the contour plots of the angle of nematic orien­

tation, 0 , a t two different times. One can easily see th a t both contour planes are 

characterized by two regimes with distinct nematic orientation angle 0  ~  45° and 

0  «  —45°, respectively. These two regimes keep switching back and forth though 

times resulted in the rotation of 90° of the m ajor director. This defect structure can 

also be seen from the order param eter s. At the boundary between any two regimes 

with orthogonal nematic orientations, the order param eter is nearly zero (see Figure 

28).
Third, the fluctuations of scalar quantities such as the local concentration, the 

magnitude of polarity, and the degree of alignment: Figure 30 shows the three di­

mensional plot of the local concentration, C, at different times resulting in grouping 

and breaking up of the molecules as time evolves. The time-periodicity has been 

confirmed in Figure 33, which shows the time evolution, with the period ss 2.2, of 

the magnitude of different spatial Fourier modes of the local concentration field given

by
n M  —1 N —l

(«*) F"  = m E Z c ^ - i2' ( t ” +‘* )-
m—0  n = 0

Here, we can see th a t the spectrum  of Fourier decomposition is completely dominated 

by low-wavenumber modes since high-wavenumber modes appear to  decay to zero 

at long times. The periodic behaviors can also be seen in Figure 31 showing the
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complete velocity orbit. The figure is obtained by, as time evolves, collecting the 

velocity a t particular spatial location ( (x , y ) =  ( | ,  | ) ) ,  then plot the phase portrait 

by showing the horizontal, vx , and vertical, vy, components of the velocity on the 

plane.

One can see in the left and the middle column of Figure 26 th a t the velocity and 

the polarization direction seem to be correlated. This is described more precisely 

in Figure 32 , showing the spatially averaged correlation between particle polarity 

and fluid velocity fields along the simulation time. We represent the macroscopic 

correlation by (cos 0(v,p)},  where 6 (v, p) is the angle between the velocity and 

polarization direction. It is clearly seen in the figure th a t most of the time in the 

period, the polarity director positively correlates with the flow (indicated by the value 

1 of the cosine angle between these two fields). The negative correlation (indicated by 

the value -1 of the cosine angle) occurs when the flow is weak and the polar director 

goes against the flow direction.
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FIGURE 26: Snapshots, at long times, of (left column) the velocity filed v  su­
perimposed to  local concentration, C, (middle column) the mean director field, p, 
superimposed to the density plot of |p |, and (right column) the nematic orientation 
superimposed to the density plot of the degree of alignment, s.
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150

0.6

y

—501

0.0 0.2 0.4 0.6 0.8 1.0

FIGURE 27: The cross-sectional data, at two different times, of the polarization 
angle, cf>, as a function of y where x  =  |  (left), and the cross-sectional data, a t two 
different times, of the polarization angle, 0, as a  function of x  where y = \  (right). 
The solid and dashed lines represent two different times.

t= 199.4

0 . 0  0  2  0 . 4  0  6  0 . 8  1 0

FIGURE 28: The contour plot of the degree of alignment, s, at t 199.4. The blue 
area, s ^  0, represents defect structure.
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t = 198.3 t=  199.4

FIGURE 29: The contour plot of nematic orientation angle, tp, in Figure 26, at two 
different times in the period.



1.0

FIGURE 30: The three dimensional plot showing the fluctuation of the local con­
centration in, C, Figure 26, at different times.
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FIGURE 31: The velocity orbit at location (x,y) = ( | ,
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time

FIGURE 32: Spatially averaged correlation between the velocity , v , and polarization 
direction, p.

FIGURE 33: Time evolution of the magnitude of various spatial Fourier modes of
the local concentration field, C.



56

S te a d y  s ta te

Figure 34 shows the results based on the assumption tha t the effect of swimming 

activity of pusher is high, i.e. we further increase the magnitude of ( a to 15. All pa­

rameters chosen for this simulation are shown in Table 7. In this case, the simulation 

converges to a steady a ttracto r which is clearly illustrated by Figure 35 showing the 

time evolution of horizontal and vertical components of the velocity at specific point 

(x ,y)  =  ( | ,  | ) ,  and Figure 36 showing time series of the magnitude of some spatial 

Fourier modes. We again observe th a t the low-wavenumber modes still dom inate the 

spectrum  of Fourier decomposition. Figure 34 shows the final steady state  of velocity, 

local concentration, polarity, and nematic patterns in the same m anner as th a t of 

the row in Figure 26. It is revealed th a t, a t steady state, the velocity field possesses 

two-dimensional structure similar to previous case which consists of two circles and 

two hyperbolic points. The local concentration is high a t the hyperbolic points and 

also at the transition region between two circles. However, we clearly see in Figure 34 

th a t there is a strong correlation between the velocity and the nematic orientation. 

This is different from previous case in which velocity and polarity are strongly corre­

lated. Figure 37 represents the macroscopic correlations between the velocity field, 

v, polarization direction, p, and nematic orientation, n i.  While the velocity-nematic 

orientation correlation is strongly positive as expected, we surprisingly observe the 

negative correlation (~  —0.15) between velocity and polarization direction, i.e., on 

average, the particle does not swim with the flow. This phenomenon is emphasized 

by Figure 38 showing the contour plot of the velocity-polarity correlation of entire 

domain. It can be seen in the figure th a t the local correlations are mostly zero or 

negative. This result is , however, counter intuitive since the polarity should be 

positively correlated with the fluid flow. W hether this feature is caused by high 

swimming activity of the particles ((a = —15) will be investigated in future study.
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Parameter Value
N 1

a 1

De 50
N 1 3
UO 1

d ; 0.5
7 1

c 1

G 1

C*0 1

Re 1 0

Re 2 1 0

Re 3 1 0

Ca -1 5
a 1

TABLE 7: Param eter values used to  obtain the results in Figure 34.

t  =  4 0 0 t  =  4 0 0 1 =  4 0 0

0 .0  0 .2  0 .4  0 .6  0 .8  1 .0

W (
0 .0  0 .2  0 4  0 .6  0 .8  1 .0 0 .0  0 .2  0 .4  0 .6  0 .8  1 0

0 .9 6  0 .9 8  1 .0 0  1 .0 2  1 .0 4  1 .0 6 0 .0 0 3  0 .0 1 0  0 .0 1 5 0 .2  0 .4  0 .6

FIGURE 34: Final steady state  of the numerical simulation. Left: the velocity 
filed v  superimposed to  the density plot of local concentration, C. Middle: the 
mean director field, p, superimposed to  the density plot of |p |. Right: the nematic 
orientation superimposed to the density plot of the degree of alignment, s.
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FIGURE 35: H orizontal,^, and vertical, vy, components of the velocity as a function 
of time at the location (x ,y) — ( | ,  ^).
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FIGURE 36: Time evolution of the magnitude of various spatial Fourier modes of
the local concentration field, C.
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FIGURE 37: The correlations between the velocity field, v, polarization direction, 
p , and nematic orientation, n i .  Top: Spatially averaged correlation between the 
velocity and polarization direction. Bottom: Spatially averaged correlation between 
the velocity and nematic orientation.
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t = 400
1.0 

0.8 

0.6 

0.4 

0.2 

0.0
0.0 0.2 0.4 0.6 0.8 1.0

FIGURE 38: The contour plot of the correlation between the velocity field, v, and 
the polarization direction, p.
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Parameter Value
N 1
a 1
De 15
N 1 3
UO 1
d ; 0.04
7 1
c 1
G 1
QO 1
Re 10
Re-i 10
Re 3 10
C a - 7
a 1

TABLE 8 : Param eter values used to obtain the suspension structures in Figure 41-43.

I r re g u la r  s ta te  w ith  in te rm it te n t  q u a s ip e r io d ic  p a t te r n s

Another interesting result of the simulation of inhomogeneous suspension in a 

unit square domain is th a t the system undergoes a transition of an irregular regime 

which consists of different quasiperiodic fluctuations in different tim e intervals. We 

illustrate this phenomenon by the simulation using param eter values in Table 8 . 

Figure 39 shows the plot of horizontal and vertical components of the velocity as a 

function of time. It can be seen th a t we have four different quasiperiordic regions 

characterized by time interval 200 < t < 255, 255 < t < 290, 290 <  t < 350, and 

350 < t < 400, respectively. We then confirm the quasiperiordic fluctuation for 

each time interval by spectrum  analysis. For example, on the left of Figure 40 is 

the example of the plot of magnitude of the Fourier modes against corresponding 

frequencies of vx at x  = y  =  |  in the tim e interval 350 < t < 400 while similar plot 

for vy is shown on the right. As one might anticipate, both vx and vy signals have 

many dominant long-wave frequency components.

We investigate the configurations of active suspension during each time interval 

and find th a t they posses the similar patterns. Here, we present only the results for 

350 < t <  400. Since the interesting features of all configurations appear a t different 

times, we decide to present each of them  separately rather than combine them  as pre­

viously done. Figure 41 shows snapshots of long-time behavior of fluid velocity , v,
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FIGURE 39: The plot of velocity as 
at the center of simulation domain, ; 
region. Left: the plot of the horizontal 
component, vy.
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i function of time during quasiperiodic state  
; =  y  =  separated by four quasiperiodic 
component,vx. Right: the plot of the vertical

superimposed to  the density plot of the local concentration, C. We observe flow rever­

sal and position switching between spinning vertices, where the local concentration 

is low, and saddle points, where the local concentration is high. Figure 42 presents 

the stream plot, at four different times, of polarization direction , p, superimposed 

to the density plot of |p |. One can see tha t the regions of polarization direction are 

typically in the form of vertical (top left) and horizontal (bottom  left) banded struc­

tures. As these bands get denser, they become unstable and fold themselves into 

spiral patterns (right column). After tha t, they break up and reconstruct as new 

bands in the perpendicular direction to  the previous ones. The behavior of namatic 

alignment can be seen in Figure 43 showing snapshots of nematic orientation, n 1; 

superimposed to the density plot of the degree of alignment, s. The namatic align­

ment exhibits the switching between horizontal and vertical layers. These dynamics 

underlay the irregular periodicity of the spatial Fourier modes of the local concen­

tration (Figure 44). Similar to the case of perfect periodic pattern, the macroscopic 

correlation between fluid velocity and polarity is mostly positive as shown in Figure 

45. As one might anticipated, the correlation plunges into the negative region for a 

short time a t the flow reversal where the velocity is low. The quasiperiodic pattern 

of active suspension is also reported in [30].
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FIGURE 40: The magnitude of discrete Fourier transform spectrum  of the time 
series of horizontal component ,vx (left), and vertical component, vy (right), of the 
velocity a t the center of simulation domain (x ,y) — (§, | )  during the time interval 
350 <  t < 400.
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t = 377. t = 378.4
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FIGURE 41: Snapshots of long time behavior of fluid velocity , v , superimposed to 
the density pot of the local concentration, C.
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FIGURE 42: Snapshots of long time 
posed to  the density plot of |p |.
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FIGURE 43: Snapshots of long time behavior of nematic orientation , n i ,  superim­
posed to the density plot of the degree of alignment, s.
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FIGURE 44: Time evolution of the m agnitude of various spatial Fourier modes of 
the local concentration field, C.
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FIGURE 45: Spatially averaged correlation between the velocity , v , and polarization 
direction, p.
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Irregular oscillatory state

We also discover additional unstable pattern  which occurs during the simulation in 

4x4 square domain (see Figure 46) using the param eters shown in Table 9. As it can 

be seen in velocity field (left column) and polarization direction (middle column), 

the center of spinning vortices, the saddle points, and the dense regions of local 

concentration (high C) appear to  travel in random directions. Likewise, the nematic 

orientation (right column) now continuously shift in unpredictable fashion with the 

defect line changing location and direction irregularly. We remark th a t the patterns 

of the defect are consistent w ith the recent experiment of active microtubule liquid 

crystals by Sanchez and coworkers [33], which they observe the nematic director 

configuration around disclination defects of charge 1/2 and —1/2 (see Figure 47 for 

the schematic illustrations). Figure 48 shows one snapshot of nem atic director field 

a t time t — 380 in which the topological defect with 1/2 disclination occurs in box 

B, and, a t the same time, the defect with —1/2 disclination occurs in box A.

The uncommon oscillations are illustrated more clearly in Figure 49 showing 

the time evolution of various spatial Fourier modes of the local concentration, and 

Figure 50 presenting the velocity as a function of time a t the center of simulation 

domain x  = y = 2. Both figures clearly suggest th a t the configurations of active 

suspension in this case exhibit slower fluctuation than those in the unit square domain 

resulting in smoother flows, i.e. no abrupt change of the velocity or polarity direction. 

Interestingly, the polarity and the fluid velocity are positively correlated a t all times 

as shown in Figure 51. The irregular oscillation patterns of active suspensions are 

also reported in other studies [12, 42],
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Parameter Value
N 1
a 1
De 15
N 1 3
UO 1
d ; 0.05
7 1
c 1
G 1
QO 1
Re 10
Re 2 10
i?e3 10
a -2.5
cv 1

TABLE 9: Param eter values used to obtain the results in Figure 46.
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FIGURE 46: Irregular oscillation during the simulation in 4x4 domain. Left column: 
the velocity filed, v, superimposed to  local concentration, C. Middle column: the 
mean director field, p, superimposed to  the density plot of |p |. Right column: the 
nematic orientation superimposed to  the density plot of the degree of alignment, s.
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FIGURE 47: Schematic illustrations of the nematic director configuration around 
disclination defects of charge 1/2 (left) and —1/2 (right).

t  =  380

0  0 .1  0 . 2  0 .3  0 .4

FIGURE 48: Topological defect with 1/2 (box B) and —1/2 (box A) disclinations 
during the simulation in 4x4 domain.
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FIGURE 49: Time evolution of the magnitude of various spatial Fourier modes of 
the local concentration field, C , during the irregular oscillation state  of the active 
suspension.
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FIGURE 50: The plot of velocity during the irregular oscillation sta te  at the center 
of simulation domain, x = y = Left: the plot of the horizontal component of the 
velocity, vx, as a function of time. Right: the plot of the vertical component of the 
velocity, vy, as a function of time.
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FIGURE 51: Spatially averaged correlation between the velocity , v, and polarization 
direction, p, during the irregular oscillation state  of the active suspension.
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Parameter Value
N 0.5
a 1
De 5
N l 3
UO 1
D*s 0.01
7 1
c 1
G 1
a  o 1
Re 10
Re 2 10
Re-s 10
Ca -2 .5
a 1

TABLE 10: Param eter values used to  obtain flow reversal and ID banded pattern  of 
active suspension in 4x1 domain.

4.6.2 RECTANGLE D O M A IN

For our simulations in rectangle domains, strongly oscillatory spatio-temporal 

structures are also observed. However, the formations of the suspensions observed 

in this case are different from what we discover in the case of square domains as will 

be shown in the followings.

Periordic state: ID  banded patterns with flow reversal.

We begin presenting our results for the simulation in rectangle domain with a flow 

reversal and one dimensional banded pattern . All param eters used in simulation are 

listed in Table 10. Figure 52 shows the snapshots of the flow field, v, superimposed 

to the density plot of local concentration, C, with the color bar located on the right 

as its gauge. Here, it is interesting to  see from the scale of the color bar th a t the 

fluctuations of local concentration is low comparing to  previous results from the 

simulations on square domain. The one dimensional structure of this sta te  consists 

of two vertical reversible shear layers flowing in opposite directions. The quiescent 

flow along the x-axis is illustrated more clearly in Figure 53 presenting the velocity 

as a function of time at the center of simulation domain, (x ,y )  =  (2, | ) .  The plot
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on the left shows th a t the horizontal component, vx, of the velocity vanishes at all 

times while the plot on the right shows the oscillation of vertical component, vy, of 

velocity resulting in the flow reversal along y-axis. We also confirm one dimensional 

structure by considering the time evolution of some spatial Fourier modes shown in 

Figure 54. We can see from the figure th a t the m agnitude of all y-dependent modes, 

jPi,i, * 2,i, and F0.2, are nearly zero whereas the pure ^-dependent mode, F2io, saturate 

to  periodic function with the period of 9.8. This approves both  ID structure and 

periordic behavior of the active suspension.

Figure 55 shows the polarity director field, p, superimposed to  the density plot 

of the polarity magnitudes, |p |. The structures of the polarization direction are very 

similar to those of the vertical field. We again discover two vertical shear layers 

with opposite direction and the reversal of the polarity direction occurring during 

the period of evolution. The polarity magnitudes are in the form of vertical band 

th a t fluctuate through time. The switching of the polarization direction during the 

tim e period is investigated more in details in Figure 56 presenting the cross-sectional 

da ta  by the plot, at two different times, of the polarization angle, 0, as a function 

of y with fixed x  = 2 (left figure), and similar plot for fixed y — |  (right figure). 

The dashed and solid line represent the polarity angle a t t — 382.8 and t = 292.8 

respectively. From both figures, we clearly observe the 180° shifting of the polarity 

angle, thus implying the reversal of polarization direction. The correlation between 

the velocity and the polarization direction is also investigated and shown in Figure 

57 which is similar to the results of periodic state  in a unit square domain, but with 

larger period.

Figure 58 shows the snapshots of nam atic orientation, ip, superimposed to  the 

density plot of the degree of alignment, s. We observe banded structures for the 

degree of alignment just like the case of |p |. Also, it is clear from the figure th a t the 

particles appear to  shift their alignments from one angle to  another. This oscillatory 

response is investigated more in details in Figure 59 showing the contour plot of the 

nematic orientation at two different times where the degree of the alignment reach its 

peak value. We can see th a t the the suspension can be categorized by two different 

regimes, i.e ip ss 50° and ip «  —50°. This implies th a t, in one period, the particles 

in the band switch their alignments back and forth between these angles. We also 

discover another the periodic state  during simulation in 8x1 domain using param eter 

listed in Table 11. However we find th a t the simulation yields the same structures as
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Parameter Value
N 0.25
a 1
De 15
N 1 3
UO 1
d ; 0.01
7 1
c 1
G 1
o 0 1
Re 10
Re 2 10
Re-3 10
Ca -2 .5
a 1

TABLE 11: Param eter values used to  obtain flow reversal and ID banded pa tte rn  of 
active suspension in 8x1 domain.

of 4x1 domain with twice repetitive patterns along the ^-direction as seen in Figure 60 

showing, from top to bottom , snapshots of velocity, polarity direction, and nematic 

orientation. Thus, this result will not be discussed here any further.



77

t = 382.8

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0
7 410

t =  386.8

t = 392.8

■r iO

’’ -1

1.0

0.8

0.6

0.4

0.2

0.0
3 40 1

)l "

I

1

yi

i

1.040000

1.035000

1.030000

1.025000

1.040000

1.035000

1.030000

1.025000

I

1.040000

1.035000

1.030000

1.025000

t = 396.8
1.0

0.8

0.6

0.4

0.2
0.0

1.040000

1.035000

1.030000

1.025000

FIGURE 52: Snapshots of long time behavior of fluid velocity , v, superimposed to
the density pot of the local concentration, C.
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FIGURE 53: The plot of velocity during periodic state  a t the center of simulation 
domain, x  = y  =  Left: the plot of the horizontal component of the velocity, vx, 
as a function of time. Right: the plot of the vertical component of the velocity, vy, 
as a function of time.
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FIGURE 54: Time evolution of the magnitude of various spatial Fourier modes of
the local concentration field, C.
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FIGURE 55: Snapshots of long time behavior of polarization direction , p, superim­
posed to the density plot of |p|.
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FIGURE 56: The cross-sectional data, a t two different times, of the polarization 
angle, 0, as a function of y  where x  =  2 (left), and the cross-sectional data, a t two 
different times, of the polarization angle, 0, as a function of x  where y — \  (right). 
The solid and dashed lines represent two different times in the period.
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FIGURE 57: Spatially averaged correlation between the velocity , v ,  and polarization 
direction, p .
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FIGURE 58: Snapshots of long time behavior of nematic orientation . n i, superim­
posed to the density plot of the degree of alignment, s.
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t = 398.4

FIGURE 59: The contour plot of nematic orientation angle, xft, in Figure 58, at two 
different times in the period.
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FIGURE 60: Snapshots of long time behavior of the active suspension simulated in 
8x1 domain with param eter shown in Table 11. Top: Velocity field, v, painted with 
local concentration, C. Middle: Polarization direction, p, painted with |p|. Bottom: 
Nematic orientation n 1; painted with degree of alignment, s.
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Parameter Value
N 0.5
a 1
De 15
N 1 3
C/0 1
d ; 0.01
7 1
c 1
G 1
c*o 1
Re 10
Re2 10
Re-s 10
Ca -3.5
a 1

TABLE 12: Param eter values used to  obtain traveling wave pattern  of active sus­
pension in 4x1 domain.

Q u a s ip e rio rd ic  s ta te :  T rav e lin g  w aves.

Once we raise the magnitude of active param eter to  3.5 and adjust the nematic 

strength to  0.5 with all other param eters fixed (see Table 12), the flow switching 

ID banded pattern  disappears and the traveling wave emerges in the system. As 

shown in Figure 61, there are two shear layers flowing along y-direction in opposite 

directions. Here, the dense regions of the local concentration (high C) appear at the 

boundary between two shear and follow the flow at constant speed, thus forming 

traveling waves across y-direction. Note tha t, in this case, the flow reversal occurs 

only long x-direction. The dynamics of the flow are confirmed by Figure 62 showing 

the horizontal component, vy, and vertical component, vx , of the velocity as a function 

of time at the center of simulation domain (x ,y ) =  (2, | ) .  We can see in the figure 

th a t both components exhibit quasiperiodicity with vy oscillates only in the positive 

region, thus explaining no flow reversal along y-direction. The quasiperiodicity is 

further investigated in Figure 63 showing the magnitude of Fourier spectrum  of time 

series of vx (left figure) and vy (right figure). Since both time series are dominated 

by high frequency modes, we expect th a t the configurations of the suspension should 

exhibit much faster fluctuation than  previous case (periodic state).

We also observe two layers pattern  for the polarization direction, p, as seen in
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Figure 64 showing two regions characterized by the  magnitude of polarity, |p|, travel­

ing in opposite directions. This is illustrated more clearly in Figure 65 presenting the 

cross-sectional da ta  by the plot of polarization angle, ifi, along x-axis with fixed y  =  |  

(dashed line), y — \  (solid line), and y  =  |  (dotted line). Here, the difference in 4> 

between two regions ( x  E (0.37,2.43) and x  E (2.43,4)) is roughly 180°. We again 

examine the velocity-polarity correlation and find th a t the velocity and polarization 

direction are positively correlated a t all times as shown in Figure 66.

Interestingly, it appears th a t the degree of alignment, s, also possesses the trav­

eling waves behavior as seen in Figure 67 showing the dense region (high s) and the 

defect (s ss 0) traveling up (down) on the left half (right half) of the domain.

In fact, one can notice th a t the structure a t this quasiperiordic state  is similar 

to ID structure with little flow and polarity reversal along x-direction. This is in 

agreement w ith Figure 68, which shows the time evolution of various modes of spatial 

Fourier decomposition of the local concentration, C. It is clear from the figure th a t 

the spectrum  is again dominated by pure x- depandent modes, F2)0 and F4 0 w ith the 

period of 1.4.
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FIGURE 61: Snapshots of long time behavior of fluid velocity , v, superimposed to
the density pot of the local concentration, C.
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FIGURE 62: The plot of velocity during periodic state  a t the center of simulation 
domain, x  = y  =  Left: the plot of the horizontal component of the velocity. vx, 
as a function of time. Right: the plot of the vertical component of the velocity, vy, 
as a function of time.
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FIGURE 63: The magnitude of discrete Fourier transform spectrum  of the time 
series of the horizontal component, vx, (left) and the vertical component, vy, (right) 
of the velocity at the center of simulation domain (x ,y ) =  (2, | ) .
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FIGURE 64: Snapshots of long time behavior of polarization direction , p, superim­
posed to the density plot of |p|.
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FIGURE 65: The cross-sectional d a ta  of the polarization angle, 4>, as a function of 
x  where y = |  (dashed line), y = \  (solid line), and y = |  (dotted line).
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FIGURE 66: Spatially averaged correlation between the velocity , v, and polarization 
direction, p.
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FIGURE 67: Snapshots of long time behavior of nematic orientation , n i, superim­
posed to the density plot of the degree of alignment, s.
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C H A P T E R  5  

C O N C L U S I O N S

In this research, we investigate a recently proposed kinetic model for dilute sus­

pensions of self-propelled particles [7], which are assumed to be long th in  polar rods 

th a t move along their axis of symmetry. By using this model and the assumption 

th a t there are no particle interactions, we analyze the linear stability of the sus­

pensions about uniform isotropic sta te  w ithout disturbance flow and find th a t this 

state  is stable only in small ranges of the strength of polarity, 7 <  2 , and nematic 

interaction, N  < 2 . Out of this region, stable nematic sta te  becomes a new attractor 

which indicates th a t the particles prefer to align in some directions. We then ana­

lyze the weak flow perturbation by imposing simple weak shear to  this stable state. 

From this, it turns out th a t many explicit formulas for the  alignment angle, degree of 

alignment, and normal and shear stresses can be derived. These closed-form formulas 

are confirmed by numerical results. Notable outcome is th a t the particles are steady 

aligned with the flows, with an alignment angle of 45° in the weak shear limit. We 

also numerically study the stability and rheological properties of the active suspen­

sion when the shear flow is not necessarily weak. We discover at this time th a t the 

formula for the angle of alignment is not valid when the strength of nematic inter­

action is high, N  > 2. In fact, the numerical results suggest th a t the particles may 

exhibit oscillatory response rather than  steady alignment even in weak shear limit. 

However, in any case, the steady flow-alignment will still occur given strong enough 

flow. Additionally, we find the bistable region where both periodic and flow-aligning 

states are stable. This phenomenon occurs when the strength of polarity, 7 , and ne­

matic interaction, N , are relatively high. The numerical results from the model also 

infer some im portant features of active suspension th a t the pusher causes negative 

effect to  the fluid viscosity and the opposite for the puller.

Lastly, we consider the case when the effects from the interactions between parti­

cles are taken into account. We first develop the numerical method by approximating 

the number density function, / ,  by truncated Fourier transform. After substitutions, 

manipulations and simplifications, we end up with a truncated system of 41 partial
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differential equations th a t need to be solved together with the Navier-Stokes equa­

tions. We then extensively conduct numerical simulations to  investigate long-time 

behavior and structure of the active suspensions on square and rectangle domains. 

Many simulations are performed in square and rectangle domains by varying the 

nematic strength, N , the Deborah number, De, the transnational diffusion, £>*, and 

the active param eter, (a■

We frequently observe time-periodic structures of suspensions when the numerical 

simulations are performed on a  unit square domain. We discuss various features of 

this periodic pattern , for example, the reversal of velocity and polarization director, 

the rotations of nematic orientation, and the fluctuations of scalar quantities such 

as the local concentration, the magnitude of polarity, and the degree of alignment. 

We find th a t the spatially averaged correlations between velocity and polarization 

direction are mostly positive. However, there is the time when the polar director goes 

against the flow direction. This happens during the flow reversal where the velocity 

becomes weak. The steady state of the suspension occurs at high activity of active 

particles ((a =  —15). The interesting result in this case is the negative correlation 

between velocity and polarization direction which indicates th a t, on average, the 

particle does not swim with the flow. We also observe the irregular structure where 

there are different quasiperiodic fluctuations corresponding to different tim e intervals. 

In this state, the regions of polarization direction are in the form of vertical and 

horizontal banded structure while the general structure of velocity field are in the 

form of position switching between spinning vertices and saddle points. We also 

obtain an additional irregular/chaos pattern  which occurs during the simulation in 

4x4 domain. We observe from velocity field and polarization direction th a t the 

center of spinning vortices, the saddle points, as well as the dense regions of local 

concentration appear to travel in random directions. The nematic orientation also 

continuously shift w ithout specific pattern.

For the rectangle domain, we mostly perform the simulation in 4x1 domain and 

observe two main patterns. First, we observe the periodic sta te  with ID  vertical 

banded pattern  with flow reversal, in which the horizontal components of both ve­

locity and polarization director vanish. The structures of velocity and polarity are 

characterized by two shear layers flowing in opposite directions. The flow reversal 

occurs in every period of time and the nematic orientation switches back and forth
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between 50° and —50°. This pa tte rn  also appears during the simulation in 8x1 do­

main bu t with twice repetitive pattern  along the x-direction. The second pattern  

is more interesting, where two vertical shear layers of velocity and polarity director 

flowing in opposite directions but w ith quasiperiodic oscillations along the horizontal 

direction. However, there is no reversal appearing anywhere along the vertical direc­

tion. Also, the dense regions of the local concentration, the magnitude of polarity, 

and the degree of nematic alignment move along the flow at constant speed. As a 

result, we observe two vertical traveling waves moving in opposite directions.
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