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ABSTRACT

A STUDY OF RELATIONSHIPS BETWEEN FAMILY MEMBERS
USING FAMILIAL CORRELATIONS

Corinne Wilson
Old Dominion University, 2010
Director: Dr. Dayanand Naik

Familial correlations measure the resemblance between family members and are used
in many fields of study including epidemiology, genetics, heredity, and psychology.
Here, an analysis of familial correlations where male and female children of the same
family can have different correlations in the unequal family size case is presented.
First, three likelihood based tests, namely the likelihood ratio test, Rao score test,
and Wald test, and two more asymptotic tests which use Srivastava’s estimator of the
intraclass correlation coefficient are considered to test the null hypothesis of equal-
ity of the intraclass correlation coefficients when families have unequal numbers of
children. These methods are implemented on Galton’s data set on human stature
and a simulation study is conducted to compare the different tests. The simulations
show the alternative tests to be better or comparable to the likelihood based tests in
certain situations. Additionally, testing the equality of interclass correlations from g
independent populations is considered where male and female children of the same
family can have different correlations and the family sizes within populations are
unequal. For this problem, the likelihood ratio test is compared with two asymptotic
alternative tests using Srivastava’s estimator of the interclass correlation coefficient
that are easier to compute. Simulations are used to study the size and power of these
tests. Based on the simulation study, the alternative tests perform well when com-
pared to the likelihood ratio test. Finally, the likelihood ratio test is compared with
an asymptotic alternative test of interclass correlation for testing the equality of two
parent interclass correlations coefficients, namely, parent-son and parent-daughter
interclass correlation coefficients, within families from a single population with un-
equal family sizes. Both tests are illustrated on Galton’s data set on human stature
and the results of a simulation study are shown. The results show the alternative

test to perform better for certain cases.
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CHAPTER 1

INTRODUCTION

I.1 FAMILIAL CORRELATIONS

Familial data is observed in many different fields of research including epidemiol-
ogy, genetics, heredity, and psychology. A common assumption of familial data is
a likeness or dependency between family members, as relatives tend to have similar
attributes. There is an extended history of research on estimating this dependency
using familial correlations. For example, in genetics, famialial correlations have been
used by Bouzigon et. al. (2004) to study the role of genetic traits in asthma devel-
opment and by Atramentova and Belyaeva (2003) to study the development of lung
cancer and large-intestine cancer. In epidemiology and psychology, Provencher et.
al. (2005) studied the familial similarities of eating behavior traits, and in heredity
and psychology, Knuiman et. al. (1996) studied the familial resemblance of cardio-
vascular risk factors. Familial correlations also have application in other fields, such
as sports medicine and business. Bouchard et. al. (1998) used familial correlations
when studying the genetic influences on maximal oxygen uptake, and Hackett and
Parmanto (2009) used familial correlations when studying usability of the homepage
of a website.

Formally, familial correlations measure the degree of resemblance between family
members with respect to some specified quantitative characteristic such as height,
weight, or blood pressure. The intraclass correlation (p) measures the degree of
resemblance between members of the same group. In familial correlations, it might
refer to the measure of resemblance between the children of a family (p.), the sons of a
family (p1), or the daughters of a family (p2). The interclass correlation measures the
degree of resemblance between members of different groups. In familial correlations,
it can refer to the measure of resemblance between the parents and children of a
family (pp.), the parents and sons of a family (p,1), the parents and daughters of a
family (pp2), or the sons and daughters of a family (p12). As mentioned, all these
types of familial correlations have applications in several areas of study. Estimation
of these correlations and testing for relationships between these correlations is of

interest here.



1.2 FAMILIAL CORRELATION LITERATURE REVIEW

One of the first methods of estimating the intraclass correlation, p, is the pair-
wise Pearson correlation, which is computed from all possible pairs of measurements
within families. Another commonly adopted estimator of p is the analysis of variance
estimator, 74, proposed by Fisher (1925), which estimates p as a ratio of variance
components in a one-way random effects model. Under the assumption of normality,
Donner and Koval (1980) derived the maximum likelihood estimator of p, which can
only be obtained in closed form when family sizes are balanced, but can be obtained
numerically in the unbalanced case. Donner (1986) gives a more detailed summary
and review of the research done on these more common estimators of p, including
significance testing and interval estimation. In practice, other problems arise for
which these standard methods of estimating p may not apply.

Consider the case when two independent populations or samples of familial data
are available for testing equality of the two intraclass coefficients. If family sizes in
each population are fixed and equal, the distribution of the ratio of F-statistics frorh
the one-way analysis of variance from each sample can be used to test the equality
of the intraclass correlations, as was worked out by Schumann and Bradley (1957),
Bross (1959), and Zerbe and Goldgar (1980). Donner and Bull (1983) derived the
likelihood ratio test for the equality of two independent intraclass correlations for
fixed family sizes. Their methods can accomodate the unequal family size case, but
require an iterative solution to maximize the likelihood function. Other methods for
testing the two independent populations case, in both the equal and unequal family
size situations, have been developed and are discussed in Donner (1986) and Young
and Bhandary (1998). Bhandary and Alam (2000) considered testing equality of
three intraclass correlation coefficients from independent populations when family
sizes are unequal. The more general case of testing the null hypothesis of equality of
g intraclass correlations was considered by Naik and Helu (2007). However, in their
work each family is grouped together as an entity and different levels of dependency
between family members are not considered.

Many authors have worked with the parent-children correlation structure using
the parent-child, pp., and child-child, p., correlations. In this set up, a parent score
and children scores are available for each family. One such author is Srivastava (1984),
who worked with one population of families and derived the iterative maximum

likelihood estimators of p,. and p. using a canonical reduction of the data. He also



proposed two sets of alternative estimators based on the canonical reduction that do
not require an iterative procedure and have better distributional properties. All three
sets of estimators allow families to have different numbers of children. Srivastava and
Katapa (1986) compared the asymptotic distributions of the maximum likelihood
estimators and alternative estimators proposed in Srivastava (1984).

Srivastava’s estimators of p. have been extended by several authors to other famil-
ial correlation situations. Young and Bhandary (1998), Bhandary and Alam (2000),
and Naik and Helu (2007) all used Srivastava’s estimator of intraclass correlation,
pe- Naik and Helu (2007) developed tests to compare several intraclass correlations
from independent populations. They compared three maximum likelihood asymp-
totic tests, namely the likelihood ratio test, Wald test, and Rao score test, and two
other tests based on Srivastava’s estimators. An illustration of their procedures tested
to see if the correlation between the daughters of one group of families equaled the
correlation between the sons of another group of families. While only an illustration
of methods, this approach assumed no dependency between the sons and daughters.

Consider the familial model where data is available for the sons and daughters of
each family in one population. Shoukri, Mian, and Tracy (1991) took a linear regres-
sion model approach to finding the maximum likelihood estimates of the brother-
brother (p;), sister-sister (p2), and sister-brother (p;2) correlations. The maximum
likelihood estimates for this familial model require a numerical solution. Donner and
Zou (2002) presented several procedures for testing the equality of two dependent
intraclass correlations, Hy : p; = ps, when family structures are identical, i.e. each
family has the same number of sons and the same number of daughters. Bross (1959)
noted that an exact test of this hypothesis, Hy : p; = p2, is available only when the
number of sons equals the number of daughters for each family and this number is
the same across all families; additionally, no dependency between sons and daughters
can exist, that is p12 = 0. Another problem of interest would be to test the equality
of the two dependent intraclass correlations, Hy : py = p2, when families are allowed
different numbers of both boys and girls. This problem will be considered in Chapter
1I.

The interclass correlations pp,. and pi, are very important in familial studies as
they account for the dependency between two groups within families. As noted above,
Srivastava (1984) and Srivastava and Katapa (1986) developed alternative estimates

of the interclass correlation pp. for familial data from one population with unequal



family sizes. Srivastava and Keen (1988) developed other noniterative techniques
for estimating p,. as alternatives to the iterative maximum likelihood estimator.
Donner, Eliasziw, and Shoukri (1998) reviewed different procedures for estimating
and testing pp. for families from one population with both equal and unequal family
sizes. The interclass correlation coefficient p;2 was estimated by Shoukri, Mian,
and Tracy (1991) using the maximum likelihood approach as already noted. Paul
(1996) considered a score test for testing the significance of py2 for families from one
population with unequal family sizes. Of further interest, is to test the equality of
several interclass correlations from independent populations. This problem will be
considered in Chapter III.

Family data can include parent data as well as data from the sons and daughters
as suggested above. Shoukri, Mian, and Tracy (1991) also incorporated a parent
score into their familial model and found maximum likelihood estimators for the
parent-brother correlation (pp;) and the parent-sister correlation (pp2). Another test
of interest is to determine if the correlation between the parent and sons of a family,
Pp1, equals that of the correlation between the parent and daughters of a family, ppa,
when families come from one population with unequal family sizes. This problem

will be considered in Chapter IV.

1.3 OVERVIEW OF THESIS

As noted above, Chapter II will focus on testing the equality of two dependent
intraclass correlations, namely p; and ps, when families from one population are
allowed to have unequal family sizes. Specifically following the methods of Naik and
Helu (2007), the likelihood ratio test (LRT), Rao Score test, Wald’s test, and two
other asymptotic tests based on Srivastava’s estimator of intraclass correlation are
developed. These five tests are illustrated on Galton’s data set on human stature.
Simulation studies are presented to compare the performance of the proposed tests.
In Chapter I11, testing the equality of several son-daughter interclass coefficients from
independent populations of familial data when families have unequal family sizes is
considered. Here the LRT, and two other asymptotic tests based on Srivastava’s
estimator of interclass correlation are developed and compared in simulation. In
Chapter IV, the problem of testing the equality of two parent interclass coefficients
within families, namely pp; and ppo, from one population with unequal family sizes is

considered. For this problem, the LRT is again compared with two other asymptotic



tests based on Srivastava’s estimator of interclass correlation. Galton’s data set on
human stature is again used as an illustration and further simulation studies are
presented. Finally, a summary of the methods and findings presented is given in

Chapter V, along with future areas of research.



CHAPTER 11

FAMILIAL CORRELATIONS: ONE POPULATION

II.1 INTRODUCTION

In this chapter, we consider the situation where familial data is available for the
sons and daughters of families from one population. The problem of interest is in
testing the equality of brother-brother and sister-sister intraclass correlations, namely
p1 and po, assuming that the brother-sister interclass correlation is not zero. This
problem has been considered in Donner and Zou (2002) under the assumption of
equal family sizes. Shoukri, Mian, and Tracy (1991) have considered this problem
under the unequal family sizes case and have taken a linear regression model approach
to finding the maximum likelihood estimates of the brother-brother (p; ), sister-sister
(p2), and sister-brother (p;2) correlations. The maximum likelihood estimates for
this familial model require a numerical solution. As noted by Bross (1959), an exact
test of this hypothesis, Hy : p; = p2, is not available when the number of sons and
the number of daughters are different and dependency between sons and daughters
exists, that is, p12 # 0. In this chapter, we provide three maximum likelihood based
asymptotic tests, namely, the likelihood ratio test, Wald’s test, and Rao’s score
test, along with certain alternative tests based on estimators similar to the ones
proposed by Srivastava (1984). Explicit expressions for both the score functions and
the elements of Fisher information matrix are provided as well. When compared
with the maximum likelihood based asymptotic tests, the alternative tests are easy
to compute and perform quite well.

Suppose data on the children of n randomly selected families are available from
a population. The number of boys and girls in each family is allowed to be different.
Denote the number of boys and girls in the i** family as m;; and ma;, respectively, for
i=1,...,n. Suppose Zy;;, j =1,...,my; i = 1,...,n is the observation on the j*
boy of the i** family. Similarly, zo;;, j = 1,...,mg; i = 1,...,n is the observation
on the j®* girl of the ** family.

Assume that the mean of the son scores is E(z1;;) = u1, the mean of the daughter
scores is E(z2;) = po, the variance of the son scores is Var(zy;) = o2, and the

variance of the daughter scores is Var(zq;;) = 02. Denote the son-son intraclass



correlation as p;, the daughter-daughter intraclass correlation as py, and the son-
daughter interclass correlation as pyp. Assume for each family of fixed 7 (1 <7 < n),
Corr(zyy, x1iyr) = py for j # 55 1 < 4,5 < my, Corr(aij, D2eyr) = pa for j # 55
1< 4,5 < myi, and Corr(zysj, Tay) = prz forall 4,55 1 < j <my; and 1 < 57 < my,.

Let the vector of observations on the i** family be

/ Z1i1 \

< X1 T1imy;
,i jmand =
X9 T2i1

\ m2im2,~
with
Falm,,
E(x;) = p; = ™
/‘21m2,-
and
V(IT(X,') — 21 _ 0%{(1 - pl)Imu + lemu} \ p120102Jm1iym2i
pl2alJ2Jm2i7mli 02{(1 - p2)Im2i + p2‘]m25}

where 1,, is a unit vector of length m, I, is an identity matrix of order m, J,, is
the m x m matrix of all ones, and J,, , is the m x n matrix of all ones. Note that

—00 < py < 00 and —o0 < pg < 00.
If there are both sons and daughters in a family, my; > 0 and my; > 0, then the

determinant of X3; is

|2i| — U%mliagmzi(l __pl)mh-——l(l _p2)m2,~—1

X ((1+ (mu = 1)p1) (1 + (mas ~ 1)p2) — muimaipis)-

Restrictions on the parameters so that X; positive definite are 62 > 0, 02 > 0, p; < 1,

p2 < 1, and
(1+ (my — 1)p1)(1 + (ma; — 1)p2) > magmaiply. (1)

If my; > 0 and my; > 0, then the inverse of X; is

1 1
—1 ;?A' 6162B’
zi = 1 B’ IC ?
orop i of i



where
= ——-——-—1 p1(1 + (Mg — 1)p2) — maiply
Ai B Imu B 2 Jmn‘ ?
1=p (1 + (my — 1)p1)(1 + (mai — 1)p2) — maamaipiy
B, = — P12
' (1 + (mli - 1)p1)(1 + (mg,- — 1)p2) — mliinp%Z ™myi,M25)
C, = L [ - p2(1 + (mli — 1)P1) - mupfz J }
1 1—pp |™ (14 (my — 1)p1)(1+ (mai — 1)pa) — mumaipdy

If there are no sons in the family, my; = 0, then the determinant of X; is
|| = 037 (1 — pa)™= 7 (1 + (Mg — 1) p2)
and the inverse of X; is

-1_ __1 _ o2
Ei - 0’2(1——p2) |:Im2i (1+(M2,‘—1)p2) JmZi] *

Similarly, if there are no daughters in the family, mq; = 0, then the determinant
of X; is

|Zi] = o7™4(1 — p)™ (1 + (mys — 1)p1)
and the inverse of X; is

-1_ __ 1 _ o
Zi T oi(l-m) [Imli (1+(m1.-1—~1)p1) Jmu]'

I1.2 LIKELIHOOD FUNCTION
Assume that x; ~ Ny, pmy: (i, 2i), 1 =1,...,n. Let

6= (”17“27 0%7 U%;Pl; Pz,Pu)l

then

s VY T Y s — s
L(0) = H?:l Lz(e) = H;lzl (277)("‘11'4'"1121‘)/2[2”1/26 2 (i p) By (im )

and

log(L(8)) = ) _ log(L(6)).

i=1



If my; > 0 and mg; > 0, then

log(L;(6)) = —n;“log(Qwaf)~%2—ilog(27ra§)
— = Dlog(1 ~ ) ~ 3 (ma; — 1log(1 ~ )
— 210g [(1+ (mas = Dpr) (1 + (mas = 1)) — maamasgly]
50— 'S 0 ),
Note x; = (Xu ) , where x3; = (ZT11,-- > T1imy;) and Xo; = (Toi1,- -+ s T2ima;) s
therefore e

(i — ) B7 (% — pa)

LA, LB | [ (xu-
i =o-Bi Xti — p1lmy,
= [(Xh — ullmli)l(XZi — I“"21’m2i)l] oil 1] 011 y " )
102 ol C; (X2’i - /1*2117121')

1 1
= (x1: — p1lmy,) ~5Ai(X1s — i lmy;) + (X2 — prolimg,) ——Bi(x1i — p1lm,)
o1 0102

1 1
+ (X3 — palm,,) —Bi(x0; — polm,,) + (X2 — ﬂ'21m2,~)l_2‘ci(x2i — palpy,).
0102 03

If my; = 0 and mgy; > 1, then

log(Li(0)) = — 22 log(2mo3) — i(m% —1)log(1 — p2)

1 1 _
- 5509(1 + (mai — 1)p2) — '2'(X2i — palny, ) B (k2s — piolimy,)-

And, if my; = 0 and mo; = 1, then
log(Li(8)) = —3l0g(2m03) — 507 (zai — pa)*.

Similarly, if my; > 1 and mg; = 0, then

log(L;(8)) = — 21 log(2mo?) — §(m1,- — 1)log(1 — p1)
1 1
- 5"’9(1 + (mu —1)p1) — §(X1i — 11, ) B (@1 — p1lmy,)-
And, if my; = 1 and mg; = 0, then

log(Li(8)) = —3log(2mo?) — 5%1;(331,' —m)
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The likelihood function L(@) or log(L(6)) can be maximized to obtain 8, the
maximum likelihood estimator (MLE) of 8. Let 6 = (i1, iz, 62, 62, p1, pa, p12) - From
the theory of maximum likelihood estimation, the asymptotic distribution of 0 is
multivariate normal with mean vector 6 and variance matrix V = Z(6)7!, where
Z(8) is the Fisher information matrix, details of which will be given a little later
below.

Suppose we are interested in testing the hypothesis that the two intraclass
correlation coefficients are equal, that is, Hy : p1 = p2 = p (say). Under Hj,
0 = (p1,p2,01,02,p,p,p12)'. The likelihood function, L(€) or log(L(0)) can also
be maximized under the null hypothesis Hy : p; - po to obtain éo.

The maximization procedure used will need to be provided with initial estimates
of the parameters. The initial values could be selected from the alternative estimates

given in Sections I1.9 and II.10.

I1.3 LIKELIHOOD RATIO TEST
The likelihood ratio test (LRT) for testing Hj is to reject Hy for large values of
LRT = 2logL(6) — 2logL(8y) (2)

This test statistic has a x? asymptotic distribution with 1 degree of freedom.
The other two asymptotic tests for testing Hy are Wald’s test and Rao’s score
test.

II.4 MODIFIED WALD’S TEST

The null hypothesis Hy : py = p2 can be written as Hy : CO = 0, where C =
(0,0,0,0,1, -1, 0). The Wald’s test then rejects Hy for large values of

Wald = (C6)'[CV,;, C'|7}(C8). 3)

This test statistic has a x? asymptotic distribution with 1 degree of freedom.

The standard Wald’s test uses Vj; instead of Vj;, but during analysis of this
problem the slightly modified Wald’s test performed uniformly better than the usual
Wald’s test.
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II.5 RAO’S SCORE TEST
The score test rejects Hy for large values of
Score = S(60)'Z(60)~'S(6y), (4)

where S(0) is the 7 x 1 score function vector,

s0) =Y s,0) =) 20,

i=1

where S;(0) = ‘”"95—1;;(0) and Z(6) is the 7 x 7 Fisher information matrix,

7(6) = éE Kdlogélg(e)) (&og(SLei(e))’}

This test statistic also has a x% asymptotic distribution with 1 degree of freedom.

In the next section, we provide the elements of the score function vector S(8) and

those of Fisher information matrix Z(6).

II.6 SCORE FUNCTION

The score function is
= " SlogL;(0
s(6) =Y si(0) = Y 20
i=1 =1
dlogL; (0
where S,(6) = 20eLi(®),

Here we provide the elements of S;(@) denoted S;[k],1 < k < 7. If my; > 1 and
ma; > 1, then let

a; = mapis — p1(1+ (my — 1)py),

b = mupiy — p2(1+ (my — 1)py),

¢ = (14 (mu—1)p1)L+ (M2 — 1)p — 2) — mumap3,,
di = (my— 1)1+ (mau — 1)p2),

ei = (mai —1)(1+ (my — 1)p1),



and

S;[1] =

S;[2] =

S:[3] =

S:[4] =

S:[5] =

X

1 o
P12 P12
20104C; (x2i - H21mzi)l.]m2i,m1i 1m1~; - 20’10’26,’ 1:"11' miima; (x;,i — “2]_m2i)’

1 b; W
?‘_%(1"‘—/)2)1;"2* [Imzi + E;Jm%- (x2i — ”21m2i)
P12

_P12_ 4 B ,
20102¢;

I
(%1i = p11img.) Tmpsmas Loy

20109¢; mg; mzi,mu(xli — M1 17711-;)
my; 1 a;

__?_LTIZ + 20-4(1 — Pl) (xli - /Lllmu), [Imu + aJmu] (xli - H11m1i)

1 1

P12

403 04c;
P12

4o304c;
Ma;

1 ’ bz‘
_E N m(x% ~ H2lmy,) [Imzi + aszi:l (x2; — palm,,)

(X% - #21'"21‘),']"121‘,"111' (xli — M1 1m1i)

(xli — 1m1,~)IJmliv'm2i (x% — ”21"121‘)7

40[1)(1723 o (X0i — 2Ly, ) e mys (X1i — palmy;)
40/1)‘172301' (Xli — M1 1m1,~)"]m1i,mz¢ (x2i — /‘21m2i),
my; — 1 d;
B 2
1 , a;c; — di(1— p1) (m_lf‘:;j + ai)
2or =t~ Hatm)” | Ly E -

(x1: — p1lmy;)
124
2;)1 0;02 (%25 — poalmy, ) Jimgsmys (XK1 — p11my;)
3
d
é%(xu — M lmu)'Jmu,mm (%2 — pi2lm,;)

(mli — 1)p2Ci + b;d;
205(1 — p2)c}

(Xzi — H2 1m2i),Jm2i (X2i - H2 1m2i)7

12
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ma; — 1 e;i  (mg — 1)pici + aze;
SZ[G] = 2(1——p;5 - —2?' + 20_2(1 . pl)cz : 1(x1i - H’llm“)IJmli(Xli — lullmh-)
1 1 a
P12€;
- —————2010262 (Xzz' - H21m2i)/.]m2hm”(xh- — lmu)
T
P12€
— 20102;2 (%15 — p11img;) Tmas mas (X2i — p2limg;)
1 , bic; — ei(1 — p2) <m;f_1 — bi)
- M(x% B #21m2,-) Im?i * c2 ma;
X (%21 = p2lmy,),
S,[7] = A1
c;
1 2m 12 2m1-m i a;
- 20%(1 - ,01) ( Zipl + z (322”012 z) (Xli —h 1m1i),Jm1‘ (xli — 1m1i)

1 1 2mymep?
(— + hTm) (x2i - iu‘21m2i),Jm2i,mli (xli - :ullmu)

20’10‘2 C; i
1 1 2m1im2-p2
20109 (a + 012 2 (xli 0! lmli),Jmliym‘zi (X2i - /‘21"121')
1 2myipra | 2maiimaipr2b;
- 20’%(1 - P2) ( c: * C? . (Xzi - 'u21m21‘)l‘]m2i (%2 — )u’2]-m2i)‘

If my; = 0 and mo; = 1, then

1
S:2] = = (T2 — p2),
2= (o = 1)
1 1

S;[4] (T2 — pa)® — 27‘3-

T 5 1
205

Other entries of S;(0) are zero for my; = 0 and my; = 1.

If my; = 1 and Mo; = 0, then

Sil1] = — (1 — ),

o
1 1
S;[3] = —(z1; — 2 _—_.
p [3] 20_411 (-Tl ﬂl) 20_%

Other entries of S;(0) are zero for mi; = 1 and mg; = 0.
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If my; = 0 and mso; > 1, then

1 P2
Sil2] = 7= Lo |Lmai — Jmge | (X20 — p2lny,),
[ ] O‘%(l — p2) ma; [ mo; 1+ (m% _ 1)p2 21] ( 2 H2 m21)

1 P2
Sild] = g (%2 — 1m~IIm~“ Jma i — M2l
[ ] 20’%(1 — pz) (x2 lu‘2 21) [ 2i 1 + (m2z — 1)p2 21jl (X2 ,u,2 21)

_ M2
202’
mg; — 1 my; — 1
S:[6] = -
J 21— p2)  2(1+ (ma —1)p2)

1 ,
- 20%(1 _ p2)2 (x2i - “217712:‘) [Imm‘
(1= p2)(1 + (ma2s — 1)pa2) — po(mas — 1)(1 — 2p2) — 1] o —
(1 + (mZi . 1)p2)2 szi:| ( 21 lU/21m2i)'

Other entries of S;(0) are zero for my; = 0 and my; > 1.

If my; > 1 and mg; = 0, then

1 P1
Si]. :'————linl:lm_ Jml-:| X1; — ].mi y
[ ] 0_%(1 _ pl) 14 1i 1 + (mlz _ 1)[)1 i ( 1 ul 1 )

1 4
Sif3] = s (%1 — palmy,) | I — omss | (%15 = p1Llim,
[ ] 20,411(1 _ pl)(X1 l“l‘l 11) l: 1i 1 + (mlz _ 1)p1 11:| (xl ‘Ll 1,,)
My
20%’
my; — 1 my; — 1
Si 5 = —
Bl = 30— 2T+ (= D)

1
- m(xn = 1lmy,) Iy

(1—p)(1 4+ (mu — )p1) — prl(ma — 1)(1 = 2p1) — 1] N
(1 + (mli - 1)p1)2 Jmli] (xlz Hllmli)'

Other entries of S;(0) are zero for my; > 1 and my; = 0.

If my; = 1 and mo; = 1, then

1 P12
Sill] = 57—~ (z1; — - ————— (T2 — U2),
W = gy (s )~ G =y (%~ 1)
1 P12
Si[2l = (725 — p2) — ———2——(z1; — 1),
= a = ) T ey T
1 1 P12
Si8] = 57—~ (@ — #1)2 ~ 55— s (@ — ) (@2 — pa),
3] 20%(1‘/’%2) : ? i '



1 1 P12
Sild] = (T — o)’ — == — —————~
M= saa = ™ 207~ 2010301 — /)
P12 P12 2 P12
Si[7] = - (@Tu—m) — ==
' 1—ply  of(1—pfy)? o3(1 — Pl
1+ pi,

ol - g e )

Other entries of S;(8) are zero for my; = 1 and my; = 1.

If my; =1 and mo; > 1, then

and

ci = 14 (mg; — 1)py — maipls,

14 (mg; — 1)p2

(T1 — ) (T2 — p2),

)2 (in - :u2)

Jmm’ (x2i - u21m2i)

Si[l] = 7a (1 — 1)
_ 20‘1) :201 1, (X2i — polp,;)
S = iy Mo [foe — 25 0| 5 )
my;
_ 012052 (1 — 1),
Si[3] = __5617_% = (T;azg‘c: ez (21 — m)°
_ Z{%(zu — )1, (%2 — polm,;)
Ma;
Sil4] = —T:%
+ m(xm - ,U2]-m2i), [Imzi -2 *. p%2
4;; 102361 (1 — p1)(X2i — palmy,) Ly,
P12

~ Toiole (225 — p1)1,,,, (X2 — polmy,),
3

15



my—1  mg—1
Si 6 = -
4 2(1 - p2) 2¢;

mas(mai — 1)p3, 2
20%012 (.7:1, .“1)

_ (mgi — 1)P12(

2010902 z1i — p1) 1, (X2i — palmy,)

_ (mg; — 1)p12
2Cr1(72(312

1
(e — palmy) (Lo
20_%(1 — p2)2 (X2 2 2:) [ 2i

(@15 — p1) (X2s — palimy:) Iy,

1 - pd)ci — (mag — 1)(1 — > — P2
B S IETSCRT AP [
Mmaipr2 Maipr2(1 + (Mo — 1)p2) 2
S:[7] = = ;-
’L[ ] G 0.%022 (xlz ﬂl)

1+ (mai — 1)pa + maip?

+ ( 2 2013_:; 2iP13 (xli - ,LL])(X% - ”217”21')’17"1«;
1 =+ (m9; — 1 +m " 2

+ ( : 20’1(3’2(23' S (:L'h' - #1)1:7%2-' (Xz,' - Nzlm?i)

(]

maipr2(p2 — p122) — prac;

i — 1m,'J . o — ol,. ).
P g o Hatma) G e

Other entries of S;(0) are zero for my; = 1 and my; > 1.

If my; > 1 and mo; = 1, then

¢ = 14 (my; — 1)p1 — muiply,

and
. 1 ’ P1— p%Q
Si[l] = 0_%(1 — pl)lmu Imli - ci Jmu (Xli - :ullﬂ’m)
_ M(J;% — o),
0102C;
14 (my — 1)p1
2 o (0 g

P12

20102ci 1:’711,; (X]j - l"l‘llmli)
P12

7
X1 — ol ) Imy,
201020,-( t i) Lo

16
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my;
S:[3] = —%1?
+ m(xh' — p1lmy,) [Imu — B—I—%B—%-Z-Jm”} (x15 — p1lmy,)
- 40/1;:261' (T2 — pr2) (%15 — p1Lmy,) Loy
= ot (@ = ) U G5t = L),
1 0123 - (T2 — p2) 10, (X125 — p1limy,)
- m(wm — p2)(%1i — p1lmy,) Lonyss
S:[5] = my; — 1 my; — 1

2(1 - ,01) - 2¢;

myi(my; — 1)p?
( 2(17202 ) 12 (-'1:21' . #2)2
2
(m1; — 1)p1a
B W(mﬂ — pa) 1y, (%1i — pialmy,)
1
(my; — 1)p12
- T@;_(wm‘ — pi2) (%15 — p1limy;) L,
2

]' /
"yt patmd fhm

1—p)e — (my; — 1)(1 — — p}
B ( Pia) (my = )( p1)(p1 P12)Jm“] (x1: — f1Lmy, ),
muprz Mipr2(l+ (my — 1)p1) 2
S;[7] = — i —
1[ ] ci O'%C? (‘r?z /1'2)
1+ (my; — 1)p1 + mupl
-+ ( L 2013_5(1: ! p12 (in - u?) (xli — Ha 1m1i),1m2.'
T
1+ (my; — 1)p1 + myp?
+ (s 201()75;_ 1312 (T2 — p2) 1, (X1 = p1lmy,)
£
mup12(p1 — p12%) — praci ,
i 1m i Jm X1 — 1)
+ 0_%(1 _pl)c% (xl /"Ll 11) 1:( 1i l‘Ll mh)

Other entries of S;(0) are zero for my; > 1 and mg; = 1.
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I1.7 INFORMATION MATRIX

The information matrix is the 7 x 7 matrix

7(6) ZL(")—ZE [((ﬂogL 0)) (510%1;(0))’]‘

If my; > 1 and mo; > 1, then recall

@ = maply — pi(1+ (ma — 1)p2),

b = muply — p2(l+ (my — 1)py),

¢ = (L+ (mu—1)p1)(1+ (Mg — 1)p — 2) — mymaiply,
di = (mu—1)(1+ (m2i —1)p2),

(m2; — 1)(1 + (my; — 1)p1).

€;

In this case, the entries of the information matrix are

1 m2.a;
11'171=—(m,-+ 1”)7
1,11 21 —p) \ &

T[1,2] = T2, 1] = ——kiT2ib12
0109C;

Ti1,3] = Ii[3,1] = 0,
Zi[1,4] = Zi[4,1] = 0,
Zi[1,5] = Z;[5,1] = 0,
L[1,6] = Z.[6,1] = O,
1,7 =L[7,1] = 0,
1 m2.b;

L[2,2] = 20=m) <m2i+ o ) ;
Zi[2,3] = Z;[3,2] = 0,
L2,4] = L.[4,2] = 0,
L[2,5] = L,[5,2] = 0,
Zi[2,6] = 7:[6,2] = 0,
L2, =L[7,2] = 0,

myi a;(1 my; — 1)y i 3 %2m1im2i
011(1“91)(1+ (+(Ci )p))—;%f—pT‘fCi—
mhmmplz

40203

Ii['?”'?’] =

3

Ii[374] = Ii[4: 3] =
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2
_ M1iMa;piad;
2
20%c2

g [ (1+ (myi = D) [mics — di(1 = pr) (5 + )]
1+

L.[3,5] = T.[5,3] =

T2 p) 7 |

i3
my(1 4 (my — 1)p1) (p1(ma; — 1) + aze;) . P31 M€

T[3,6] = 7i[6, 3] =

201(1 = pr1)c 207} '
myimaipr2(ci + 2myimo;p2s)
(3,7 = L;[7,3] =
3,7 =Zl7,3 o

_ mumgipi12(1 + (my; — 1p1)) (e + masas)
oi(l = pr)c ’
Mo (1 N bi(1 + (ma; — 1)/02)) _ M2 3phmuimy;
as(1 — p2) 204 doic;
mai(1 + (mai — 1)p2)((mai — Dpaci +bidi) — muimaiplydi

Ti[4,4] =

3
&

T,[4,5] = T.[5,4] =

203(1 - po)c} 2022
i — T _ _mlim2ip%2ei
T;[4,6] = Z,[6,4] = 9022
Mo 1 (14 (mai — 1)p2) [bici —&(1— p2) (m—z’:‘l‘ +b; )}
T3 Z ,

my;mMy; c,-+2mim,-2
T4, 7] = Tl7, 4 = PTGk Ay
2%
_ mumagipi2(1 + (ma; — 1)p2) (e + maibi)
o3(1 - p2)c ’

IOt (1+(mu = Dpr)(1 = pr)*Star)  mu—1  df
L[5,5] = (1= p)3 [1 + 2c 21—p)?* 2
_ 2mamaiptyd;  mai(l 4 (mai — 1)p2) (m bidy

e =) .

1

where
2a; 14+ (mg; — 1)p2 2a;d;
I-p)?  1-;m  (I-pa
" 2a,d; + di(14 (mgi = V)p1) | dZ(1 = p1) — cid;

c & (my —1)(1 = p1)ei’

Star, =
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Z,5,6] = I,[6,5) = (mai — 1)(7”2222— Dei — dies

myimaipis[(ma; — 1)(mg; — 1)¢ — 2d;e5]
3
G
_ m(1+ (my — 1)p1) [pr(ma — D)e + aze; " (1—p1)(mo — 1)
2(1 — p1)? c? ¢

(1= p1)die; (1= p1)[(my; — 1)(mg; — 1)asc; — 2a;die; — pr(meg; — 1)dici]:|

+ 3
(mh- — ].)62 &

7

+

iMaip12d; 1 | dmymoipt
{5, 7) = Ti[7, 5] = TSRS m]

2 + myma;p12d; [g + 3
1 1 2
mymo; (1 + (my — 1 [ myi(1 — p1)d;
15772 ((1 ('01)1202 )Pl)plz ¢ + mya; — 177(1 Pll) i
— p1)°c; I 1 —
_(=p)(a+ 2m1iai)di]
G
maima; (1 + (mg; — 1 [ 2ma;bid;
_ Mmyims ( q (p2z)c2 )P2)Pr2 di + mai(ma; — 1)pg + 201 i z:| ’
— p2)C; i i
my(1+ (my; — 1 a;e? mg; — 1 €2
— p1)C i - i
_ 2m1im2ip%2€? n mo; 14 (1 + (mzi — 1)p2)(1 — p2)2Star2
cf (1—p2)? 2¢; ’

where

Stary =

2b; _ 1+ (ml,- — 1)p1 i e,-(l + (mu — 1)p1)
(1—p2)? 1—ps ¢
2b;e; 4 2b;e? 4 e2(1 — p2) — cie;
(I=p2)ei & (my—1)(1—pa)ei’
my;Mo; €; 1 4m i1Mo; 2
L[G, 7] = Ii[77 6] = -“1“—'625& + myimoip12€; [; + —1032&2]

i

_ mamaip12(1 + (my; — 1)p1)
(1—p1)c
myMmaipr2(1 + (mg; — 1) p2) maoi(1 — p2)e;
_ d; — 2 P
201 = )’ e
(A =pa)(at 2m2ibi)ei:|
Ci b

2ma;aqe;
l:di + ma(ma; — )p1 + #}

T
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myme;  2m2.m2. p?
7,7 = 1 : 2 + 11022“012
3
_ mumgi(1+ (my — Do) [1 . dmimaiply | i dmiimaiplya;
1= p L& ¢ c? ¢
2m2.m2 0% 4Amymai p?
T Li 221/912 [3+ 1377102 P12]
_ mymgi(1+ (mgi — Dpa) [1 | dmumaipl, | maibi 4m1imgipfzbi]
1—p e c a a '
If my; = 0 and mo; = 1, then
1
1 2a 2| = 9
122

Li[2,4] = Li[4,2] = 0,
1

Other entries of Z;(8) are zero for my; = 0 and my; = 1.

If my; = 1 and mo; = 0, then

1

11[1)1] = '0__%7

[,3] =73,1] = 0,
1

11[3,3] - '2—5_}'

Other entries of Z;(0) are zero for mq; = 1 and my; = 0.

If m1; = 0 and my; > 1, then

1 m3;pa
L2,2=—[m‘— 24 ]
[ ] (7%(1 - pg) % 1+ (mgi - 1)p2

Li[2,4 = Ti[4,2] = 0,
T.[2,6) = Z;[6,2] = 0,

mo;
T4 = 5%
—Mo; 1 + p%(mm - 1)
'i47 = LD, R = 1-
7:[4,6] = 7;(6,4] 20.%(1 — p2)? [ (1 + (mmg; — 1)p2)?

|

2 — 1

o my (moi —1)(1 + p3(mas — 1))]
706,80 = 2 | T e ] 3
(mg; —1)°
2(1 + (mao;i — 1)p2)?®

Other entries of Z;(0) are zero for my; = 0 and my; > 1.

(1 —p2)?
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If my; > 1 and mo; = 0, then

2
1,1 = i ],

1
ﬁu—m>[1 1+ (my; — Doy
11[1,3] = Ii[?), 1] = O,

T1,5] = Zi[5,1] = 0,

L[373] = ;r:.l;’
—my 1+ pi(mi - 1)
75,5 =59 = gy s | T )
: o my (mui = (1 + pi(mi ~ 1)) _ M-l
255 = e | P e e |- sy

(my; = 1)
2(1 + (mai — 1)p1)?

Other entries of Z;(@) are zero for my; > 1 and my; = 0.
If my; =1 and my; = 1, then
1
oi (1 - pfy)’

—P12
1,2 =IL2,1] = o102 — %)

L[17 3] = Ii[3’ 1] = 07
T[1,4] = T,[4,1] = 0,
1,7 =1,7,1] = 0,

1
29 =——
BB gy
72,3 = T[3,2 =0,

L2, = L[7,2] = 0,

I,;[]., 1] ==

1 1 3pta
7,(3,3] = _ 1 ,
83 = ) " 2t i)
2
— P12
T[3,4) = T4,3] = — g2
3,4 5731 — )
p12(1 + p2,) P12
I’i 37 7= I‘L 71 3] = - s
e N (A
1 1 3p2
T4 —— o — P12

o3(L—ply) 205 403(1—ph)’



p12(1+ p,) B P12

20%(1 - P%2)2 U%(l - p%2)2,

2(1+3p})  14ph 20503+ pdy)
(I-p)}  (A—=ph)? (1—ph)3

Other entries of Z;(0) are zero for my; = 1 and mq; = 1.

L4,7 =T[7,4] =

Ii[77 7} =

If my; =1 and my; > 1, then

ci = 1+ (myg; — 1)pa — maips,

and
1 i — 1
T[,2] = T2, 1] = - 2P2
0102C;

T3] = T[3,1] =0,
T[1,4] = T4, 1] = 0,
T1,6] = Zi[6,1] =0,
L1, 7 = 47,1 = 0,

1 m3;(p2 — 32)
L03) = iy - TR,
Zi[2,3] = L,3,2] = 0,
Tf2,4) = T[4,2] = 0,
Ti[2,6] = L[6,2] =0,

I+ (mai~1)pp 1 3maypl,
3,3 = -
Z[3,3] ot 20t dotc;
mzinQ
103(1 + (mai — 1)p2 — maip?y)’

3

Ii[374] =Ii[4,3] = “'40

Z,(3,6] = 7,}6,3) = 0,

: _ _ magip12(1 + (mo; — 1)ps + magip?,) _ mai(1+ (Mo — 1)p2)p12
BT =5l 8 = 207c) A2

23

)



24

mai [1 _ (14 (mai = 1)p2)(p2 = pio)
o5(1 — p2) ¢
_ 3maipl, My

dosc;  20%
_mzi(m,?i — 1)pl,

20’%01'
L my {1 _ (1= p) (A + (mas — Dps)
203(1 — ps)? &

+ (mei — 1)(1 4 (mai — 1)p2)(1 — p2)(p2 — P%z)] ,

L4, 4 =

Ii[476] = Ii[67 4] =

c
maip12(1 + (Mo — 1) pa + maipdy)
14,7 = 1;(7,4] =
maipr12(1 + (mo; — 1)p2) [mzi(/)z —phy) — Cz}
o5(1 - p2) c ’
e al - Mai(ma —1%ph  (mai — 1) + dmai(ma — 1)°p},
. mMo; — 1 m2,-(1 - (1 + (m% - 1)p2)St(1/f'3)
2(1 — pg)? a ’
where
Star. — L7 Pz (mai —1)(1 —2»02)(1 — Pi2)
A a
+ (mai — 1)%(1 — p2)*(p2 — p2y)
3 b
G
i(Mg; — 1
Z6,7) = Ti[7,6] = "= (mzcg o
+ mai(ma; — 1) [pap12 + (mai — 1)p2,] + maipi2
3 )
G
07,7 = mai(1 + (ma; — 1)p2) (1 :; (mai — 1)p2 + 3maipl,)
_ mai(l+ (mai — 1)p2 + maipdy)  2m3ipT5(3 + 3(mai — 1) + maiply)
ct c
_ mai(1+ (mai — 1)p2) [4m3ipa(p2 — pTa) — (1 — pa + 4m2,-p§2)c,-]
1—po a ’

Other entries of Z;(8) are zero for my; = 1 and mo; > 1.

If my; > 1 and moy; = 1, then

ci =1+ (my; — 1)p1 — myipss,
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and
! mi(p1 — pF )]
1,1 = 55— [myy — 02 A2/}
L[ ] 0_%(1 _pl) [ml -
T(1,2] = T,[2, 1] = — kP12

1,3 = Z[3,1] = 0,
Li[1,4] = Z.[4,1] = 0,
Zi[1,5] = Z;[5,1] = 0,
1,7 = T[7,1] = 0,
Tj2,9 = 1 (ml;‘ —py
05¢;
Zi[2,3] = L.[3,2] = 0,
Li[2,4] = Z[4,2) = o,
Zi[2,5] = Z.[5,2] = 0,
L[2,7) = L.[7,2] = 0,

7

Z,3,3] = M [1 _ (4 (mu — 1)p1)(pr — P%2)]
0%(1 - Pl) Ci
_ 3muiply My
dote; 201’
2
mMyiP1a
I‘L3a4 :I—L4,3 R e
S =nLd dofolc
mai(ma; — 1)p3
i 375 =L 5, 3 = —
L.[3,5] = L[5, 3] 207

2012(1 - P1)2 C;

N (my; — 1)(1 + (myi — 1)p1)(1 — p1)(p1 — sz)} ,

c;
, o "
Z3,7) = Tfr,8) = TPl ¥ (s - Loy ¥ muieny)
016G
m“mﬂ1+(mu“1wﬂ[ann—p%)—Q]
oi(l—p1) c? ’
1 + (m i ]_ 1 3 ; 2
T, = L L o1 L _ muopd,
GZCi 202 4020i

) o 5 . B
T,[4,7) = I;[7,4] = myip12(1 + (m211 _ 1)p1 + myiply) _ ma (1 + (m2lz 1)p1)p12
726 o3ct

?
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mu(mi —1)%08, (i — 1)% + dmai(ma — 1)%0%,

Z.[5,5] =

CE’ 2012
M - 1 my(1 — (1 + (my; — 1)p1)Stars)
2(1 - 91)2 C? 9
where
— 2 L . 9
Stary = ',012 _ (my; —1)(2 cgpl)(l P1a)
4 (i = D*(1 = p1)*(p1 =~ o)
cl ’
myi(mys — 1)pr
L[5,7 = T.[7,6) = ,

+ mai(me; — 1) [p2p12 + (M2 — 1)p35] + maipra
03 ?

1

_ my(1+ (mys — D)) (1 + (mas — 1)p1 + 3mauply)

1,7 = 3
T
~ my(1 4+ (my = Dy +maaply)  2m3ip3(3 + 3(mus — 1)p1 + muspl,)
2 el
~ ma(1+ (s — Dpr) [4mEipta(pr — pla) — (1= p1 + 4m1ip?2)0i]
1-p é

Other entries of Z;(0) are zero for my; > 1 and my; = 1.

The three asymptotic tests that we just discussed are based on the asymptotic
chi-square distribution. The success of these tests is contingent upon the fact that the
sample size is large. Further, the computation of the maximum likelihood estimates
have to be obtained by numerically maximizing the likelihood functions. This process
many times leads to non-convergence and in these cases it is hard to obtain the
estimates.

Next, we will provide certain transformations which enables us to provide some

simple procedures for testing the intended null hypothesis.
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II.8 CANONICAL TRANSFORMATION

In this section, we apply a canonical transformation to the familial data simplifying
the variance-covariance structure of the model. Doing this, will provide transformed
data that can easily be used to estimate the model parameters as will be done in the

following sections.

X1 . - . . H1 ]-mh- .
Recall, x; = is distributed with mean p; = and covariance
X2 /‘1'21"712,'
matrix
D = U%{(l - pl)Imu + lemu} p120'102~]m1,',m21
p120102Jm251m1i 0’%{(1 - pZ)Imzi + p2']m2i}
Let
T _ BT Omli,mzi
i,(mai+mas Xmai+mo;) Orm,. s Ty,
where
1 1 1 1
( mii miq myi m—h \
1 —1
7 7 0 0
1 1 =2
Ly = G Ve Ve ;
\ 1 1 1 . —(m1;—-1)
Vmu(mii—1)  y/mu(mi-1)  y/mu(mu-1) myi(mai—1)
1 1 1 1
( mo; mai mo; mai \
1 =1
7 7 0 0
A 1 =2
Poi = V6 VB V6 ;
\ 1 1 1 . —(m2i—1)
Vmai(mai—1)  y/mai(mazi—1)  /mai(mai—1) V/mai(mei-1)

and 0,, , is the m x n matrix of all zeros.
Transform the family scores by making a Srivastava type transformation (Srivas-

tava, 1984) to create y;, the transformed vector of family scores,

Yi X14 i Omyymos X1 Iyixy
Yi = == Fz = = .
Yoi X2 Omyimy; T2 Xo; oixy;

Now, the expected value of the transformed son scores is
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H1
E(ylz) = . )

0

and the variance matrix of the vector of transformed son scores is

Var(yu) = 0ilu((1 = p1)Iny, + p13m, )T

2031+ (myi — 1)p1) 0
_ 0 o?(l—p1) - 0
0 0 - ot (1—p1)

Similarly, the expected value of the transformed daughter scores is

H2

0
E(ya)=| . |>

0

and the variance matrix of the vector of transformed daughter scores is

Var(yn) = 0302((1 — p2)lmy; + p2Jmg, )T

%0%(1 + (mg; — 1)p2) 0 . 0
_ 0 o3(1—p2) -+ 0
0 0 - 03(1-py)

The covariance matrix between the vector of transformed son scores and the vector

of transformed daughter scores is

Cov(yii,y2) = 010201201 mysmp. Ty

10 --- 0
00 --- 0
= 0102012
00 --- 0
my4,M2;

Note that only the first transformed son score and the first tfransformed daughter
Y1

is bivariate
Y2i1

score, namely y1;1 and ys;1, are correlated. Also, the vector (
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normal with mean ( =

and variance covariance matrix
H2

L o2(1 + (my; — 1)p1) 0102012
14 X ) . (5)
0102p12 m—%@(l + (ma; — 1) p2)

Additionally, y1;; and yo;; are independent of Yy, . - -, Ytim,; ~ N(0,0%(1 — p;)) and
Y2i2, - - - 7y2im2i ~ N(O; 0-%(]- - P2))

In terms of x;; and X»;, the first transformed son score, y1;1, is the average of all
the boy scores of the family. As well, the first transformed daughter score, y:1, is
the average of all the girl scores of the family. That is,

= 1 S, JURR S N
Y = i j=1 T1ij, Yoix = Ma: j=1 T2i5-

Hence, the average of the first transformed son scores is an average of the mean score

of sons for each family. Similarly, the average of the first transformed daughter scores

is an average of the mean score of daughters for each family. Thus,
— _ 1 n I § n 1 mii .
Y1 = o D1 Y1 = n > e Py Ej:l T1ij,
co_ 1w o1y 1 yma
Y2i1 = 3 zi=1 Yoir = 5, Zi:l Mo Zj:l T2i5-

Also, the sum of squares of the “left-over” transformed son scores, yi:2, - - -, Y1imy,
3 b ) ] 1i?

for a family can be written in terms of the second through last son of the fam-
ily. Similarly, the sum of squares of the “left-over” transformed daughter scores,
Y2i2, - - - » Y2imy;, TOr a family can be written in terms of the second through last daugh-

ter of the family. Specifically,

mii

2 182
E Yii; = (T1i2s - - - > Trimy,) Tl (mh‘z,---,xumu)
=

1
= (x1i27 .- azl’imli)’ (Imu - _Jmli) (wli27 .. 7$1im11‘)
my;
mii mii

1
_ 2 )2
= D 2% - o - z1)’,
§=2 1 e

mai

2 _ I v
E Yzi; = (Tais-- -, Taimy;) Lils (T2, -+, Taimy,)
i=2

1
= (T2 > T2im;) (Imgs — ——Jmg:) (Taizy - -+, T2imys)
ma;
ma; ma;

1
_ 2 32
= E :$2ij—"_—m (E :xm) .
=2 23 =2
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In order to simplify the transformed model, let I';3,T; =
i 01 012 01
Omli“l M Imli—l Omu—l Omu—l mai—1
012 O;nh—l 17%1, 0;712,—1
0m2i"1 Omn—l,mzi“l Omzi—l ’72Im2i—1

where

i = o1+ (mu — p1)/mu,
ns = o3(l+ (ma — 1)p2)/ma,
2
a1 (

7% = 1- Pl),
v = o5(1—p),
012 = 0102p12-

2 _ 2 2 2 _ 2 2 — -1 — -1
Note ni; = 0f — a1;77 and n3; = 05 — az7Y;, where a;; =1 —my; and ag; =1 —my; .

Also, there is a 1-1 transformation from the old parameters to a new set of parameters,

namely,
§l = 5
& = =,

O12
612 = 9 2-

II.9 FIRST SET OF ALTERNATIVE ESTIMATORS

From the distribution of the transformed familial data, alternative estimates can
be developed that do not require maximization of a non-linear constraint, as is the
case for finding the MLEs used in the LRT, Wald, and Score tests. Let n; be the
number of families with my; > 0, ns be the number of families with mo; > 0, and
ni2 be the number of families with my; > 0 and my; > 0. Since Yo, - . ., Y1im,; ~
N(0,4%) then Y 7%, s y}; is a complete, sufficient statistic for 7. Also, by the
Weak Law of Large Numbers » 7%, > ™5 Y3;; is a consistent estimator of 7§ because

B Y vl = Y2 P ¥ = 425" (my; — 1). Hence an unbiased and
consistent estimator of fyl is proposed as

~2 Z zm_léyh]
M= 2711(77’11"'1) (6)
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Similarly, 2 can be estimated by

;)./2 _ Z:Zl Z;ﬂ_zé yZz] (7)
? Yizi(mai — 1)

Next take

y

Gy = i (Y11 — T11) (Y2 — T3y)
im1 nig —1

—% 1 1 :
where 77, = Tz Z,—l Y11 and 73, = N1z 21_1 Y2i1- Since

Y141 ~N H1 ’ ﬂ%i 022 7
Y2i1 H2 g12 M

012 is an unbiased estimator of oys.

Since, o = % + awi = ;};(Z:iﬂl%z) + %712(27;1 ay;) and since
Y1i2s - -, Y1imy: (¢ = 1,...,n) were used for estimating ~Z, Srivastava (1984) pro-

posed using y11(¢ = 1, ...,n) to estimate o?. Consider E Do (yia — 711)?], where
Y = nll 27;1 Y1i1- That i 18,

nm n n
_ 1
E (E Y _nlyfl) = E (5 + 1%) — m (F E Ty +H%>
=1 =1 153

= (1 - ;11—1_) ;le"ﬁi
= (1 — nil) nyor — (1 - —) (Z ah)
=(ny —1)o? — (1 - Eli) % (; ali) -

Then estimate o2 by

e
. — fe 2 —~2 .
n1 1 21: Y1 — Y1) + nl’h (; ay;).

Similarly, one can estimate o2 by

nz—lz Yoir — 21)° T 'Yz Zazz
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From these, estimates of the other parameters are

pa = 1—(%/53),
012
G102

ﬁ12 =

Lastly, u; and ps can be estimated by the maximum likelihood method from the
distribution of y1;; and y9;;. These are not simple averages since the variance of 315
and the variance of y4;; are dependent on the family size.

Sub, [Sub1 — 2613 (25‘;2) pI] Tz—Tﬁ“ﬁ;_am]

H1 = 2 3
SubySuby — 452, [2;‘:; Wl_—a]

_ Suba [Subs — 200 ($8) S04 |

2 =

7
SubySuby — 45%, [Z'.m e ]

—1 72 72 _~2
=1 7, 7721_"12

Suby = Z Wil 4 Z _ 7)21?J1¢1~2 n 20122 ~2 ym

7)11 ”7117721 — Oi2 i 21 - 012

n12 niz

Suby = Z Z 7)21

i=1 7711 i—1 77117721 - 012

ni12

n12
Subs = Z Y2i1 + Z _ 73;,?J2z1~2 125 122 - ~y111 _

i im1 573 — Gt o1 il — 012
ni2 ni2 n
S’U,b4 S
Z 7721 Z 77117721 - 012

I1.10 SECOND SET OF ALTERNATIVE ESTIMATORS

A second transformation can be considered that has better distributional properties
providing simpler estimates of y3, p2, 0%, and o2.
Consider

miyi

ylzl_ylzl— \/—Z'ylzg (2—1,...,’[1)

and

m2i

1 .
yZzl Y2i1 — \/———ZZ/&] (’L= 1,...,n).
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Then
Ly - N _ o 2_ 2
E(tha) = m, Var(ta) =n; + auni = o1,

E(fair) = p2,  Var(fan) = n3; + azys = 03,
and
Cov(glilagm'l) = 012.

Hence, there are n;2 independent bivariate pairs of observations (g1, gei1) for i =

() () E)
Y2i1 M2 012 03

Note the variances of §1;; and ;1 are not dependent on the family size as was the

1, ...y N12 with

case in the first transformation (5).

Therefore, natural estimates of p;, s, 02, 02, and o1, are

_ 1 - _
Hia = 71_1 Z Y1i1 = Y11, (9)
i=1
3 1 A 3
Hoa = ;z; Z Y2i1 = Y21, (10)
i=1
ni
3t = . Z(ij - §11)%,
‘ n —1 i=1
n2
G2 = 1 Z(z}m — 21)?,
’ n — 1 i=1
. 1 & N _
012¢ = Yiir — Y1) \Y2i1 — Y2-1),
o = a1 ) )
where g1, = =313 fia1 and §5, = ;- 37 G Hence, the estimate of py, is
ﬁ — 512a
12a &la&2a ‘

While vZ and 42 can still be estimated as before by (6) and (7), a change could
be

Yk s (Y — Ti)?

e =

a = ’
>ty (my; — 1)

~2 it e (Yais — J2i.)?

720, = ’

S (mai — 1)
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where

miqi

_ 1
Y = My — 1 Zylijy

=2
m2q

_ 1
Y2i. = m;yzzjy

n} = number of families with my; > 1, and n} = number of families with my; > 1.
Note, 52, and 42, are independently distributed as are &2, and 52,. Hence,
la MNa 2a Y2a
~2
~ 71(1
= 1
Pla a_%a 3

=2
Pa = 1-— g—éz-

Both sets of alternative estimates are easier to compute than the MLEs as they
do not require an iterative procedure that does not always converge. However, the
second set of alternative estimators, p1, and p3,, requires the average number of boys
in the familial data set, m;, and the average number of girls in the familial data set,
Mg, to be greater than 2 so that the variances given below in equations (11) and
(12) are positive. The first set of alternative estimates, p; and p2, do not have this
restriction. However, it is possible for both sets of alternative estimates to violate
the model constraint (1). This will be discussed further after the simulation results

are presented.

II.11 VARTIANCE OF ALTERNATIVE ESTIMATORS

This section gives the asymptotic variance of both sets of alternative estimates. The
distributions of these estimates will be used to construct alternative tests to test the
null hypothesis later in the chapter. In order to determine the variance of the first

set of alternative estimators, consider the following asymptotic distributions

61 — ot

~2 2
ni/z [ MM j| N N(O,El),
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where

5 =2 Yi(my —1)7! Vi — 1)t Y2 ay ]
’Yf(ml - 1)—1 Zz 101 0%01

=1

nt n1
withc} =1 —2(1 — py)n7? Zah (1-p) {nfl Zai- + (Mg — 1) (ngt Z au)z} ,
i=1 i=1
o 2 2
andm, = "1_1 Zmu.
=1

Using the delta method, the asymptotic variance of p; is
1 o
A‘/l = 2(1 —_ p1)2—- [(ﬁll - 1)—1 + C? - 2(1 - pl)(’ﬁ’bl - 1)'1n;1 Zali] .
m i

Similarly, for the first alternative estimators based only on daughter scores

22 _ .2
nwlg E]%Nm&%
03 — 03
where
| LD - ) T e
Ya(ma — 1) Ingt 72 ay cio} ’

withcs =1 —2(1 — po)ny* Zazz + (1 — po)? {n_q ! Zah + (g — 1) (ny 20’2’ }

i=1 =1 i=1

na
andmg = n;l E Mo;.
i=1

Hence, the asymptotic variance of ps is

=1

A‘/2_2(1"p2) — (mg'—l) 1+c2—2(1—p2)(m2—1) -1 —120.21] .

In order to find the covariance of p; and go, consider

;)"% — ’)’% O 511 512 0 0
\/1_1 0'% - 0’1 SN 0 , (512 (522 0 524
’)’2 - ’)’2 0 0 0 533 534
5’% — 0‘% 0 0 624 534 (544
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Expressions for the terms 81, 812, 622, 033, 934, and d44 are clearly specified in ¥; and
3l5. We only need to specify d24. Using the distribution of & ) given in (5) and

Y2i
the distribution of the sample covariance matrix as given in Appendix A.2,

524 = CO’U(&%, 5’%)

= 2(7112 — 1)_10'%2.

Using the delta method, we have the following:

Cov(p1, p2) =2 pia(l = p1) (L = p).

n12—1

Let AV (p;) be the estimated AV;(j;) obtained by substituting the alternative
estimator j; for the unknown parameter, and let AV(j,) be the estimated AV5(5;)
obtained by substituting the alternative estimator po for the unknown parameter.
Also, let Cov(py, p2) be the estimated Cov(p,, f2) obtained by substituting the alter-
native estimators, py, g2, and p12 for the unknown parameters.

In order to determine the variance of the second set of alternative estimators,

consider the following asymptotic distributions

1 ~2 2

=2 2
n1/2 [ Mae ™ N
O1a — 01

:| — N(O, Zla)a

where

Y1.=2
' ! 0 of

ni
= —1§ :
m;=mn my;.
i=1

Using the delta method, the asymptotic variance of py, is

Y —2)71 0 }

AViy = 2(1 — ,)1)2ni1 [ —2)7 +1]. (11)

Similarly, for the second alternative estimates based only on daughter scores

2 ~2 2

~2 2
nl/? Y2e T 72
02¢ — 02

:| — N(0, 22,),
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where

n2
Mo = nz—l Z ma;.
i=1
Therefore using the delta method, the asymptotic variance of ps, is
1
AV =2(1 = o)’ — [(M2 — 2) 7" + 1], (12)
2

In order to find the covariance of pi, and pa,, consider

;ﬁa - ’7]? 0 511a 0 0 0
52 — o? 0 0 620 O bouq
Vil o ’ 0 o ||
72(1 - ’Yz 0 O O 5330, O
53, — 03 0 0 240 0 Ou4a

where 0114, 0224, 0330, and 044, are already specified in %;, and ¥5,. We only need

d244- Using the distribution of Z{” given in (8) and the distribution of the
Yoi
sample covariance matrix as given in Appendix A.2,

524 = CO'U(&%G, &ga)
= 2(1’112 - 1)_10%2.
Using the delta method, we have the following:
-~ 1
Cov(pras Paa) = 2——=pia(1 — p1)(1 — p2)-
Mg — 1

Let AV (p1a) be the estimated AVi,(51,) obtained by substituting the alternative
estimator py, for the unknown parameter, and let A~V(ﬁga) be the estimated AVa,(poq)
obtained by substituting the alternative estimator po, for the unknown parameter.
Also, let C’Bv(ﬁla, P2a) be the estimated Cov(pi,, p2.) obtained by substituting the

alternative estimators, P14, p2qa, and pia, for the unknown parameters.

I1.12 ALTERNATIVE TESTS

The two tests we propose are

~ ~ 2
P1— P2 2
TS, = & o= =N ~ ) 13

' (S-E-(m - pa)) X (13)
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where
S.E.(pr — p2) = AV (f1) + AV (p2) — 2Cov(py, ),
and
Pla — P2 ?
TS = (oo ri———] ~X, 14
2 (S-E'(pla - p2a)> X ( )
where

S.E.(pra — fra) = AV (p1a) + AV ($2a) — 2Cov(p1a, f2a)-

The two alternative tests, T'S; and T'Ss, are simpler to implement than the LRT,
Wald, and Score tests.

II.L13 ANALYSIS OF GALTON’S DATA

An example of a familial data set on which these procedures can be implemented
is Galton’s data set on human stature. Galton collected family heights from family
records and published his analysis on hereditary stature during the 1880s (Galton,
1886, 1889). Hanley (2004) worked directly with Galton’s notebooks to make the
raw familial data publicly available. Naik and Helu (2007) used Galton’s data set
as an illustration of their techniques to test the equality of independent intraclass
correlation coefficients. To do this, Galton’s data set was split into 2 groups from
which they tested if the son intraclass correlation from one group of families equaled
the daughter intraclass correlation from the other group of families. The tests pro-
posed here allow one to test the null hypothesis of equal son and daughter intraclass
correlation coefficients, Hp : py = p2, while accounting for any dependency between
the boys and girls of a family.

Galton’s data set consists of heights from 205 families with children. Of these 205
families, 197 had numerical heights for all their children. The other 8 families had
at least one child height recorded verbally, for example “tallish” (see Hanley 2004).
Family sizes range from 1 to 15 with the number of sons ranging from 0 to 10 and the

number of daughters ranging from 0 to 9. The distribution of family sizes is given in
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TABLE 1. For Galton’s data set, the maximum likelihood estimates @ and 8, are

S
I

-
i

i
fiz
5
53
1
P2

P12 |

fia

P2
P12

69.305345
64.155985
7.1050891
5.3345446
0.3954526
0.4066034
0.3860179

[ 69.060144
63.824326
7.7280211
6.4325128
0.3754032
0.4427573

| 0.4087418

5
f2
o
53
P

-

P

| P12

The alternative estimates of 8 for Galton’s data set

ﬁla
ﬁ2a

P12a |

are

[ 69.306173
64.155481
7.1242155
5.3212658
0.4008412
0.4008412
| 0.3863638

[ 67.785214
63.063426
6.6747275
5.9345296
0.3474392
0.4743360
| 0.4478932

The results of the five proposed tests for the null hypothesis that the correlation

between the boy heights equals the correlation between the girls heights , Hy : p; =

p2, in Galton’s data set are given in Table 2. All 5 tests fail to reject Hy at the

a = 0.05 significance level.

TABLE 1: Frequency Table of Galton’s Family Sizes.

# of Daughters
#ofSons |0 1 2 3 4 5 6 7 8 9
0 0 15 4 3 01 0 010
1 17 10 6 4 1 1 1 0 0 O
2 6 10 13 9 6 3 1 0 0 1
3 3 10 8 6 7 2 2 2 00
4 2 8 6 34 2 1100
5 0 0 1 6 1 0 00TO0O
6 1 1 1 2 1000O00O0
7 6 1 0 000 O0OOT1TD0
10 0 1 0 000 O0OOTOTDO
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TABLE 2: Galton’s Data, Hy : p; = po.
Test LRT Score Wald TS; TS,

Statistic 0.030 0.036 0.026 1.240 0.845
Pvalue 0.861 0.850 0.873 0.265 0.358

II.14 SIMULATION EXPERIMENTS AND RESULTS

All five tests are expected to behave similarly for large sample sizes, since they all have
an asymptotic chi-square distribution with 1 degree of freedom. A good comparison of
the tests is to assess their performance when applied to small samples. As previously
noted, in order for the variance of g, (11) and the variance of p2, (12) to be positive
the average number of boys per family, 7»;, and the average number of girls per
family, 79, need to be greater than 2. Therefore, two simulation experiments were
designed to examine the small sample performance of the tests. The first simulation
experiment has smaller family sizes and compares the LRT (2), Score (4), Wald (3),
and the first proposed test, T'S; (13). The second experiment compares all five tests:
LRT (2), Wald (3), Score (4), T'S; (13), and the second proposed test, T'Ss (14). In
both simulation studies, only positive values of the familial correlations, p;, p2, and
P12, are considered because the model constraint (1) restricts the negative values the
familial correlations can attain based on a family’s size.

For the first experiment, 50 family scores are simulated as multivariate normal
random vectors. The family size for each vector is simulated from a truncated neg-
ative binomial distribution with the number of children ranging from 1 to 15. The
mean of the negative binomial distribution is taken as 2.84 and the success probabil-
ity as 0.483. This distribution was suggested by Brass (1958) as the distribution of
U.S. births and has been used in several other previous simulation experiments in-
cluding Rosner, Donner, and Hennekens (1977), Srivastava and Keen (1988), Young
and Bhandary (1998), and Naik and Helu (2007). Gender was then assigned to each
child in the family using a discrete uniform distribution. The choices of parameters
are iy =0, pup =0, 02 =1, 02 = 2, and p; and p, range from 0.1 to 0.9 by increments
of 0.1. The interclass correlation p;, is set as the midpoint between 0 and the upper

bound for p;s:

_ Vo + A = p1)/mi)(pz + (1 — p2)/my)
P12 = 9 ’
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where m; is the maximum number of boys in the simulation and m, is the maximum
number of girls in the simulation. For each choice of parameters, 10,000 simulations
were run. For an arbitrary case of p; = p = 0.5, Table 3 shows the family size
distribution, Table 4 shows the distribution of the number of sons per family, and
Table 5 shows the distribution of the number of daughters per family. For this case,
the simulations produced 866,284 boys total and 866,584 girls total with an average
of 1.73 boys and 1.73 girls per family.

TABLE 3: Distribution of Family Sizes, First Simulation Experiment.
# Children # of Families

1 106089
2 105862
3 88523
4 66841
5 47089
6 31678
7 20764
8 13048
9 8194
10 5036
11 3076
12 1792
13 1036
14 617
15 355

For each choice of p; and p», estimated size and power values are computed for
testing, Hy : py = p2 = p. Tables 6-8 give the estimated sizes for a = 0.01,0.05,
and 0.10, respectively. Table 6 also gives the percentage of simulations for which the
maximum likelihood procedure did not converge and the percentage of simulations
for which the alternative estimates, g1, p2, and p;2, violated the model constraint (1).
These percentages apply for all 3 size tables, since the different sizes are estimated

from the same run. Similar percentages are also given in the rejection proportion
tables.



TABLE 4: Distribution of Male Family Sizes, First Simulation Experiment.

# Sons

# of Families

<

00 ~J O UL i W N -

96819
168088
112797
63089
32165
15423
6672
3045
1218
457
159
52
14
2
0
0

TABLE 5: Distribution of Female Family Sizes, First Simulation Experiment.

# Daughters

# of Families

o

O ~J O U i W N

96960
168224
112229
63274
32034
15468
6939
2966
1246
437
156
57
10
0
0

0
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*Percent that did not converge; **Percent that violated the model constraints.

TABLE 6: Sizes, a = 0.01, Hy : p; = p2 = p.

P2

LRT (¥

Score

Wald

TS: (**)

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.0103 (5.41%)
0.0146 (2.98%)
0.0182 (2.24%)
0.0161 (1.27%)
0.0158 (0.61%)
0.0131 (0.32%)
0.0115 (0.16%)
0.0118 (0.11%)
0.0121 (0.40%)

0.0114
0.0123
0.0141
0.0140
0.0123
0.0104
0.0123
0.0329
0.0842

0.0126
0.0154
0.0164
0.0183
0.0317
0.0499
0.0746
0.0601
0.0159

0.0114 (35.90%)
0.0097 (21.33%)
0.0112 (12.13%)
0.0093 (5.94%)
0.0120 (2.05%)
0.0108 (0.86%)
0.0114 (0.26%)
0.0107 (0.09%)
0.0111 (0.11%)

TN PTIN TN TN AN ST TN N

TABLE 7: Sizes, a =0.05, Hy : p; = ps = p.

p2 LRT

Score

Wald

TS,

0.1 0.0548
0.2 0.0644
0.3 0.0678
0.4 0.0667
0.5 0.0650
0.6 0.0590
0.7 0.0546
0.8 0.0548
0.9 0.0587

0.0391
0.0534
0.0642
0.0561
0.0501
0.0374
0.0321
0.0508
0.1153

0.0642
0.0605
0.0625
0.0691
0.0900
0.1123
0.1365
0.0954
0.0261

0.0520
0.0521
0.0542
0.0552
0.0553
0.0536
0.0557
0.0552
0.0618
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The following observations can be made. The Score test tends to be larger than

the assumed level except for p; = p2 = 0.9 for which the Score test is notably lower for

the o = 0.05 and 0.10 levels. Wald’s test is erratic as estimated sizes are sometimes

larger than the assumed level and other times lower than the assumed level. The

LRT performs well although it tends to be slightly larger than the assumed level.

The alternative test T'S; also performs well and tends to be slightly larger than the



TABLE 8: Sizes, a =0.10, Hy: p1 = p2 = p.

p2 LRT

Score

Wald

TS,

0.1 0.1020
0.2 0.1226
0.3 0.1284
04 0.1229
0.5 0.1188
0.6 0.1052
0.7 0.1045
0.8 0.1072
0.9 0.1113

0.0811
0.1100
0.1218
0.1102
0.0928
0.0688
0.0559
0.0674
0.1325

0.1255
0.1170
0.1204
0.1271
0.1496
0.1738
0.1921
0.1260
0.0337

0.1098
0.1056
0.1072
0.1106
0.1128
0.1041
0.1086
0.1171
0.1205
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assumed level, but generally closer to the assumed level than the LRT. Specifically,

T'S; is closest to the assumed level in 15 of the 27 cases. When comparing T'S; to
only the LRT, T'S] is closer to the assumed level than the LRT in 18 of the 27 cases.

Tables 9-17 give estimated power values adjusted to the level each test attained

in the size calculations. For each table, the rejection proportions are based on the

95t percentiles of the test statistics from the size simulation for the value of p;. For

example, Table 9 shows the proportion of simulations with test statistics greater than
3.98822 for the LRT, 4.26378 for the Score test, 3.48331 for Wald’s test, and 3.91926

for T'S; which were the 95" percentiles from the simulation of Hy : p; = p, = 0.1.

TABLE 9: Adjusted Rejection Proportions, a = 0.05, Hy : p1 = p2 = p, p1 = 0.1.

*Percent that did not converge; **Percent that violated the model constraints.

P2

LRT (¥)

Score

Wald

TS, (**)

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.0548 (5.41%)
0.0812 (3.57%)
0.1899 (2.51%)
0.3635 (1.63%)
0.5902 (1.28%)
0.8019 (1.02%)
0.9410 (0.57%)
0.9937 (0.68%)
0.9996 (0.96%)

0.0391
0.0803
0.1949
0.3821
0.6104
0.8139
0.9355
0.9532
0.8023

0.0642
0.0739
0.1641
0.3220
0.5417
0.7698
0.9217
0.9642
0.8196

0.0520 (35.90%)
0.0625 (29.03%)
0.1232 (24.73%)
0.2365 (22.33%)
0.4216 (20.83%)
0.6547 (19.38%)
0.8666 (18.86%)
0.9783 (18.37%)
0.9999 (18.47%)
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TABLE 10: Adjusted Rejection Proportions, @ = 0.05, Hy : p; = p2 = p, p1 = 0.2.

*Percent that did not converge; **Percent that violated the model constraints.

P2

LRT (*)

Score

Wald

TS, (**)

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.0655 (3.35%)
0.0644 (2.98%)
0.0816 (2.43%)
0.1775 (2.02%)
0.3622 (1.45%)
0.6019 (1.06%)
0.8438 (0.89%)
0.9777 (0.63%)
0.9986 (1.04%)

0.0624
0.0534
0.0811
0.1755
0.3623
0.5906
0.8065
0.8936
0.7493

0.0756
0.0605
0.0784
0.1732
0.3672
0.6208
0.8562
0.9360
0.7797

0.0626 (28.21%)
0.0521 (21.33%)
0.0685 (17.08%)
0.1372 (14.05%)
0.2863 (12.57%)
0.5145 (10.95%)
0.7793 (10.23%)
0.9590 (9.36%)

0.9993 (9.35%)

TABLE 11: Adjusted Rejection Proportions, a = 0.05, Hy : p1 = p2 = p, pp = 0.3.

*Percent that did not converge; **Percent that violated the model constraints.

P2

LRT (¥)

Score

Wald

TS (**%)

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.1515 (2.27%)
0.0782 (2.40%)
0.0678 (2.24%)
0.0813 (1.52%)
0.1810 (1.17%)
0.3959 (0.76%)
0.6914 (1.03%)
0.9303 (0.54%)
0.9981 (0.78%)

0.1313
0.0711
0.0642
0.0745
0.1621
0.3465
0.5853
0.7598
0.6589

0.1628
0.0780
0.0625
0.0901
0.2097
0.4476
0.7392
0.8838
0.7132

0.1190 (25.30%)
0.0680 (17.49%)
0.0542 (12.13%)
0.0774 (9.35%)
0.1634 (7.18%)
0.3622 (6.14%)
0.6537 (5.48%)
0.9122 (4.80%)
0.9974 (4.38%)

S~~~ p— p— p— p—
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TABLE 12: Adjusted Rejection Proportions, a = 0.05, Hy : p; = p2 = p, p1 = 0.4.

*Percent that did not converge; **Percent that violated the model constraints.

P2

LRT (¥

Score

‘Wald

TS (**)

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.3287 (1.56%)
0.1851 (1.79%)
0.0887 (1.83%)
0.0667 (1.27%)
0.0832 (0.76%)
0.2209 (0.78%)
0.5103 (0.40%)
0.8487 (0.29%)
0.9955 (0.66%)

0.3104
0.1785
0.0844
0.0561
0.0765
0.1834
0.3899
0.6024
0.5812

0.3049
0.1721
0.0790
0.0691
0.0966
0.2603
0.5652
0.7935
0.6474

0.2325 (21.99%)
0.1459 (14.13%)
0.0767 (9.19%)
0.0552 (5.94%)
0.0778 (3.64%)
0.2099 (3.27%)
0.4841 (2.27%)
0.8296 (1.85%)
0.9940 (1.76%)

TABLE 13: Adjusted Rejection Proportions, a = 0.05, Hy : py = p2 = p, p1 = 0.5.

*Percent that did not converge; **Percent that violated the model constraints.

P2

LRT (¥

Score

Wald

TS, (**)

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.5632 (0.99%)
0.3551 (1.60%)
0.1865 (1.40%)
0.0834 (0.89%)
0.0650 (0.61%)
0.0907 (0.47%)
0.2801 (0.25%)
0.6858 (0.25%)
0.9810 (0.52%)

0.5797
0.3707
0.1991
0.0870
0.0501
0.0788
0.2057
0.4136
0.4785

0.4528
0.2757
0.1424
0.0686
0.0900
0.1029
0.3103
0.6146
0.5535

0.4166 (20.63%)
0.2792 (12.67%)
0.1558 (6.70%)
0.0826 (3.90%)
0.0553 (2.05%)
0.0937 (1.72%)
0.2765 (0.91%)
0.6719 (0.76%)
0.9778 (0.74%)
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TABLE 14: Adjusted Rejection Proportions, a = 0.05, Hy : p1 = p2 = p, p1 = 0.6.

*Percent that did not converge; **Percent that violated the model constraints.

P2

LRT (%)

Score

Wald

TS, (**)

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.7961 (0.91%)
0.6184 (0.97%)
0.4269 (0.99%)
0.2355 (0.61%)
0.1010 (0.21%)
0.0590 (0.32%)
0.1246 (0.19%)
0.4497 (0.07%)
0.9370 (0.31%)

0.8344
0.6520
0.4489
0.2412
0.1016
0.0374
0.0935
0.2554
0.3961

0.6008
0.4289
0.2763
0.1516
0.0729
0.1123
0.1220
0.3535
0.4255

0.6503 (20.22%)
0.5007 (11.14%)
0.3519 (5.90%)
0.2116 (2.95%)
0.0978 (1.30%)
0.0536 (0.86%)
0.1288 (0.16%)
0.4505 (0.33%)
0.9294 (0.28%)

TABLE 15: Adjusted Rejection Proportions, a = 0.05, Hy : p1 = p2 = p, p1 = 0.7.

*Percent that did not converge; **Percent that violated the model constraints.

P2

LRT (*)

Score

Wald

TSy (**)

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.9406 (0.78%)
0.8632 (0.84%)
0.7253 (0.75%)
0.5396 (0.55%)
0.3092 (0.31%)
0.1254 (0.22%)
0.0546 (0.16%)
0.1940 (0.08%)
0.8000 (0.31%)

0.9525
0.8708
0.7388
0.5226
0.2811
0.1141
0.0321
0.1234
0.3058

0.7256
0.5837
0.4330
0.2804
0.1550
0.0792
0.1365
0.1273
0.2410

0.8599 (19.61%)
0.7708 (10.68%)
0.6440 (5.26%)
0.4725 (2.56%)
0.2731 (1.18%)
0.1150 (0.48%)
0.0557 (0.26%)
0.1892 (0.13%)
0.7878 (0.06%)

TABLE 16: Adjusted Rejection Proportions, o = 0.05, Hy : p; = p2 = p, p1 = 0.8.

*Percent that did not converge; **Percent that violated the model constraints.

P2

LRT (%)

Score

Wald

TS, (**)

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.9928 (0.61%)
0.9778 (0.75%)
0.9483 (0.59%)
0.8662 (0.31%)
0.6969 (0.20%)
0.4574 (0.09%)
0.1918 (0.06%)
0.0548 (0.11%)
0.4082 (0.46%)

0.9435
0.8844
0.7884
0.6278
0.4039
0.2222
0.0928
0.0508
0.1810

0.9260
0.8684
0.7942
0.6567
0.4760
0.2987
0.1275
0.0954
0.0953

0.9802 (18.68%)
0.9551 (9.83%)
0.9179 (4.92%)
0.8291 (1.74%)
0.6585 (0.72%)
0.4328 (0.32%)
0.1874 (0.17%)
0.0552 (0.09%)
0.4031 (0.05%)
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TABLE 17: Adjusted Rejection Proportions, o = 0.05, Hy : p; = p2 = p, p1 = 0.9.

*Percent that did not converge; **Percent that violated the model constraints.

P2

LRT (*)

Score

Wald

TS, (™)

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.9997 (0.72%)
0.9995 (0.87%)
0.9989 (0.65%)
0.9959 (0.32%)
0.9856 (0.18%)
0.9464 (0.15%)
0.7947 (0.04%)
0.4089 (0.06%)
0.0587 (0.40%)

0.6630
0.5557
0.4316
0.3273
0.2458
0.1797
0.1329
0.1002
0.1153

0.8268
0.7791
0.7276
0.6621
0.5814
0.4996
0.3832
0.2049
0.0261

0.9993 (17.79%)
0.9987 (9.70%)
0.9976 (4.46%)
0.9929 (1.92%)
0.9763 (0.67%)
0.9313 (0.33%)
0.7745 (0.08%)
0.3923 (0.09%)
0.0618 (0.11%)

Since only the LRT and T'S; performed consistently well in the size calculations,

it is reasonable to only compare power calculations of the LRT and T'S;. From the

tables, one can see that the LRT achieves higher power levels than 7'Sy, but 7'S; is
not far behind. In 32% of the simulations, the power of T'S; is greater than the LRT
or within 0.01. In 76% of the simulations, the power of T'S is greater than the LRT

or within 0.05.

Tables 18-26 give the power values for a nominal level a = 0.05.

TABLE 18: Rejection Proportions, « - 0.05, Hy: pr=p2=p, p1 =0.1.

*Percent that did not converge; **Percent that violated the model constraints.

P2

LRT (%)

Score

Wald

TS, (**)

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.0548 (5.41%)
0.0871 (3.57%)
0.2008 (2.51%)
0.3799 (1.63%)
0.6028 (1.28%)
0.8108 (1.02%)
0.9442 (0.57%)
0.9944 (0.68%)
0.9996 (0.96%)

0.0391
0.0635
0.1673
0.3374
0.5687
0.7919
0.9201
0.9494
0.8002

0.0642
0.0886
0.1903
0.3610
0.5839
0.7956
0.9337
0.9654
0.8205

0.0520 (35.90%)
0.0656 (29.03%)
1.1237 (24.73%)
0.2439 (22.33%)
0.4295 (20.83%)
0.6631 (19.38%)
0.8702 (18.86%)
0.9790 (18.37%)
0.9999 (18.47%)




TABLE 19: Rejection Proportions, a = 0.05, Hy: p1 = p2 = p, py = 0.2.

*Percent that did not converge; **Percent that violated the model constraints.

P2 LRT (%) Score Wald TS: (**)

0.1 0.0856 (3.35%) 0.0663 0.0919 0.0648 (28.21%)
0.2 0.0644 (2.98%) 0.0534 0.0605 0.0521 (21.33%)
0.3 0.1020 (2.43%) 0.0863 0.0932 0.0711 (17.08%)
0.4 0.2066 (2.02%) 0.1847 0.1997 0.1412 (14.05%)
0.5 0.4043 (1.45%) 0.3736 0.4004 0.2922 (12.57%)
0.6 0.6486 (1.06%) 0.6007 0.6539 0.5201 (10.95%)

(

(

(

0.7 0.8681 (0.89%) 0.8124 0.8729 0.7837 (10.23%)
0.8 0.9830 (0.63%) 0.8964 0.9394 0.9603 (9.36%)
0.9 0.9986 (1.04%) 0.7508 0.7808 0.9995 (9.35%)

TABLE 20: Rejection Proportions, a = 0.05, Hy : py = p2 = p, p1 = 0.3.

*Percent that did not converge; **Percent that violated the model constraints.

P2 LRT (*) Score Wald TS: (**)

0.1 0.1977 (2.27%) 0.1645 0.1887 0.1246 (25.30%)
0.2 0.1041 (2.40%) 0.0924 0.0948 0.0724 (17.49%)
0.3 0.0678 (2.24%) 0.0642 0.0625 0.0542 (12.13%)
0.4 0.1099 (1.52%) 0.0974 0.1055 0.0820 (9.35%)
0.5 0.2232 (1.17%) 0.1955 0.2383 0.1725 (7.18%)
(
(
(
(

0.6 0.5431 (0.76%) 0.3925 0.4850 0.3732 (6.14%)
0.7 0.7415 (1.03%) 0.6306 0.7647 0.6644 (5.48%)
0.8 0.9487 (0.54%) 0.7881 0.8920 0.9174 (4.80%)
0.9 0.9991 (0.78%) 0.6684 0.7155 0.9980 (4.38%)

o~ — p— —

TABLE 21: Rejection Proportions, a = 0.05, Hy : py = p2 = p, p1 = 0.4.

*Percent that did not converge; **Percent that violated the model constraints.

P2 LRT (*) Score Wald TS, (**)

0.1 0.3743 (1.56%) 0.3348 0.3543 0.2399 (21.99%)
0.2 0.2193 (1.79%) 0.1950 0.2093 0.1523 (14.13%)
0.3 0.1086 (1.83%) 0.0965 0.1032 0.0803 (9.19%)
0.4 0.0667 (1.27%) 0.0561 0.0691 0.0552 (5.94%)
0.5 0.1020 (0.76%) 0.0843 0.1220 0.0815 (3.64%)
0.6 0.2577 (0.78%) 0.1984 0.3062 0.2170 (3.27%)
0.7 0.5540 (0.40%) 0.4103 0.6094 0.4935 (2.27%)
0.8 0.8711 (0.29%) 0.6202 0.8126 0.8365 (1.85%)
0.9 0.9967 (0.66%) 0.5872 0.6507 0.9944 (1.76%)




TABLE 22: Rejection Proportions, a = 0.05, Hy : p1 = p2 = p, ;1 = 0.5.

*Percent that did not converge; **Percent that violated the model constraints.

P2

LRT (*)

Score

Wald

TS, (**)

0.1
0.2
0.3
04
0.5
0.6
0.7
0.8
0.9

0.6077 (0.99%)
0.3999 (1.60%)
0.2247 (1.40%)
0.1040 (0.89%)
0.0650 (0.61%)
0.1122 (0.47%)
0.3226 (0.25%)
0.7250 (0.25%)
0.9863 (0.52%)

0.5799
0.3709
0.1993
0.0870
0.0501
0.0788
0.2059
0.4141
0.4788

0.5883
0.3967
0.2367
0.1229
0.0900
0.1672
0.4068
0.6805
0.5647

0.4332 (20.63%)
0.2963 (12.67%)
0.1670 (6.70%)
0.0900 (3.90%)
0.0553 (2.05%)
0.1024 (1.72%)
0.2930 (0.91%)
0.6888 (0.76%)
0.9810 (0.74%)

TABLE 23: Rejection Proportions, a = 0.05, Hy : p1 = p2 = p, p1 = 0.6.

*Percent that did not converge; **Percent that violated the model constraints.

P2

LRT (¥)

Score

Wald

TS, (**)

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.8146 (0.91%)
0.6420 (0.97%)
0.4575 (0.99%)
0.2576 (0.61%)
0.1145 (0.21%)
0.0590 (0.32%)
0.1386 (0.19%)
0.4783 (0.07%)
0.9455 (0.31%)

0.7941
0.5961
0.3923
0.1998
0.0794
0.0374
0.0747
0.2225
0.3756

0.7998
0.6433
0.4843
0.3047
0.1673
0.1123
0.2220
0.4800
0.4622

0.6630 (20.22%)
0.5134 (11.14%)
0.3637 (5.90%)
0.2184 (2.95%)
0.1030 (1.30%)
0.0536 (0.86%)
0.1343 (0.61%)
0.4613 (0.33%)
0.9335 (0.28%)




TABLE 24: Rejection Proportions, a = 0.05, Hy : p1 = p2 = p, p1 = 0.7.

*Percent that did not converge; **Percent that violated the model constraints.

P2

LRT (%)

Score

Wald

TS; (**)

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.9452 (0.78%)
0.8714 (0.84%)
0.7374 (0.75%)
0.5540 (0.55%)
0.3255 (0.31%)
0.1356 (0.22%)
0.0546 (0.16%)
0.2058 (0.08%)
0.8105 (0.31%)

P

0.9221
0.8116
0.6361
0.4124
0.2036
0.0729
0.0321
0.0924
0.2741

0.9347
0.8755
0.7654
0.6049
0.4003
0.2155
0.1365
0.2472
0.3278

0.8681 (19.61%)
0.7842 (10.68%)
0.6635 (5.26%)
0.4893 (2.56%)
0.2870 (1.18%)
0.1262 (0.48%)
0.0557 (0.26%)
0.2013 (0.13%)
0.7988 (0.06%)

TABLE 25: Rejection Proportions, a = 0.05, Hy : py = p2 = p, p1 = 0.8.

*Percent that did not converge; **Percent that violated the model constraints.

P2

LRT (*)

Score

Wald

TS; (**)

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.9940 (0.61%)
0.9797 (0.75%)
0.9525 (0.59%)
0.8765 (0.31%)
0.7125 (0.20%)
0.4773 (0.09%)
0.2055 (0.06%)
0.0548 (0.11%)
0.4248 (0.46%)

0.9443
0.8866
0.7922
0.6320
0.4097
0.2261
0.0947
0.0508
0.1810

0.9639
0.9297
0.8973
0.8091
0.6662
0.4743
0.2337
0.0954
0.1467

0.9823 (18.68%)
0.9587 (9.83%)
0.9241 (4.92%)
0.8403 (1.74%)
0.6763 (0.72%)
0.4481 (0.32%)
0.2013 (0.17%)
0.0552 (0.09%)
0.4031 (0.05%)

TABLE 26: Rejection Proportions, a = 0.05, Hy : p1 = p2 = p, p1 = 0.9.

*Percent that did not converge; **Percent that violated the model constraints.

P2

LRT (*)

Score

Wald

TS, (**)

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.9997 (0.72%)
0.9996 (0.87%)
0.9990 (0.65%)
0.9964 (0.32%)
0.9874 (0.18%)
0.9543 (0.15%)
0.8133 (0.04%)
0.4367 (0.06%)
0.0587 (0.40%)

S~~~ — pr— pr—

0.7991
0.7429
0.6718
0.5907
0.4842
0.3893
0.2759
0.1736
0.1153

0.8205
0.7713
0.7160
0.6453
0.5551
0.4593
0.3234
0.1454
0.0261

0.9993 (17.79%)
0.9990 (9.70%)
0.9983 (4.46%)
0.9940 (1.92%)
0.9815 (0.67%)
0.9429 (0.33%)
0.8001 (0.08%)
0.4297 (0.09%)
0.0618 (0.11%)
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It can be seen that similar to the adjusted power levels, the LRT achieves higher
power levels than T'S; but T'S; is not too far behind. Since the estimated sizes for
the LRT are generally larger than the estimated sizes for T'S; one can expect the
LRT powers to have an advantage when not adjusted for the size levels the tests
achieved.

For the second experiment, 50 family scores are simulated as multivariate normal
random vectors. The family size for each vector is simulated from a truncated neg-
ative binomial distribution with the number of children ranging from 1 to 15. The
mean of the negative binomial distribution is taken as 6.72 and the success proba-
bility as 0.302. This is the estimated distribution of Australian births as proposed
by Brass (1958). This distribution has larger family sizes which satisfies the require-
ments for T'S, that both the average number of boys and the average number of girls
are greater than 2. The discrete uniform distribution was used to assign gender to
each child. Again, the choices of the parameters are y; =0, p; =0, 02 =1, 02 = 0,
and p; and pe range from 0.1 to 0.9 by increments of 0.1. The interclass correlation

p12 18 set as the midpoint between 0 and the upper bound for p;o:

vV (pr + (1= p1)/m1)(p2 + (1 — p2)/my)
2 bl

P12 =

where m; is the maximum number of boys in the simulation and ms is the maximum
number of girls in the simulation. For each choice of parameters, 10,000 simulations
were run. For an arbitrary case of py = ps = 0.5, Table 27 shows the family size
distribution, Table 28 shows the distribution of the number of sons per family, and
Table 29 shows the distribution of the number of daughters per family. For this case,
the simulations produced 2,600,132 boys and 2,602,861 girls with an average of 5.2
boys and 5.2 girls per family.
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TABLE 27: Distribution of Family Sizes, Second Simulation Experiment.
# of Children # of Families

1 1413
2 3659
3 7388
4 12570
5 19013
6 25736
7 32589
8 39160
9 44655
10 49212
11 52213
12 54140
13 53956
14 52972
15 51324

For each choice of p; and py, estimated size and power values are computed for
testing, Hy : p1 = po = p. Tables 30-32 give the estimated sizes for a = 0.01,0.05,
and 0.10, respectively. Table 30 also gives the percentage of simulations for which
the MLE procedure did not converge, the percentage of simulations for which the
alternative estimates, p1, g2, and 2, violate the model constraint (1), and the per-
centage of simulations for which the alternative estimates, f1q, P2, and fia,, violate
the model constraint (1). These percentages apply for all 3 size tables, since the
different sizes are estimated from the same run. Similar percentages are also given

in the rejection proportion tables to come.
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TABLE 28: Distribution of Male Family Sizes, Second Simulation Experiment.
# of Sons # of Families

0 4968
1 18776
2 38704
3 59271
4 75789
5 81882
6 76767
7 61476
8 42035
9 23918
10 11064
11 4022
12 1085
13 212
14 30

15 1

TABLE 29: Distribution of Female Family Sizes, Second Simulation Experiment.
# of Daughters # of Families

0 4881
1 18612
2 38616
3 59561
4 75468
5 81750
6 76767
7 61669
8 42171
9 24066
10 11022
11 4032
12 1146
13 205

14 34

15 0




TABLE 30: Sizes, a = 0.01, Hy: p1 = p2 = p.
*Percent that did not converge; **Percent that violated the model constraints; ***Percent that violated model constraints.

P2 LRT (*) Score Wald TS, (**) TS, (***)

0.1 0.0109 (0.17%) 0.0073 0.0095 0.0097 (4.15%) 0.0074 (14.03%)
0.2 0.0131 (0.04%) 0.0116 0.0107 0.0101 (0.45%) 0.0092 (7.55%)
0.3 0.0131 (0.03%) 0.0124 0.0109 0.0117 (0.03%) 0.0070 (2.83%)
0.4 0.0117 (0.09%) 0.0113 0.0093 0.0112 (0%) 0.0099 (1.06%)
0.5 0.0117 (0.08%) 0.0120 0.0099 0.0114 (0%) 0.0087 (0.24%)
0.6 0.0107 (0.07%) 0.0112 0.0100 0.0098 (0%) 0.0079 (0.06%)
0.7 0.0111 (0.10%) 0.0115 0.0139 0.0108 (0%) 0.0095 (0%)
0.8 0.0123 (0.15%) 0.0152 0.0274 0.0108 (0%) 0.0113 (0%)
0.9 0.0130 (0.22%) 0.0387 0.0372 0.0119 (0%) 0.0092 (0%)

TABLE 31: Sizes, a = 0.05, Hy : p1 = p2 = p.
p2 LRT Score Wald TS, TS,

0.1 0.0589 0.0510 0.0551 0.0494 0.0500
0.2 0.0585 0.0563 0.0506 0.0507 0.0498
0.3 0.0588 0.0580 0.0519 0.0544 0.0530
0.4 0.0545 0.0549 0.0502 0.0501 0.0473
0.5 0.0559 0.0562 0.0525 0.0537 0.0508
0.6 0.0542 0.0528 0.0536 0.0523 0.0521
0.7 0.0558 0.0524 0.0611 0.0548 0.0490
0.8 0.0587 0.0521 0.0832 0.0567 0.0507
0.9 0.0592 0.0798 0.0804 0.0559 0.0512

TABLE 32: Sizes, a = 0.10, Hy : p1 = ps = p.
p2 LRT Score Wald TS; TS,

0.1 0.1105 0.1056 0.1066 0.0978 0.1027
0.2 0.1096 0.1092 0.1030 0.0991 0.1059
0.3 0.1130 0.1126 0.1044 0.1087 0.1069
0.4 0.1041 0.1057 0.0978 0.1000 0.1037
0.5 01054 0.1062 0.1023 0.1030 0.1085
0.6 0.1039 0.1039 0.1034 0.1017 0.1028
0.7 0.1097 0.1018 0.1187 0.1082 0.1042
0.8 0.1121 0.0997 0.1381 0.1092 0.1068
09 0.1124 0.1217 0.1220 0.1089 0.1062
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The following observations can be made. The Score and Wald tests perform well
except for large values p for which the tests are larger than the assumed level. The
LRT performs well, although it is uniformly larger than the assumed level. Both
the alternative tests, T'S; and T'S; perform well. Specifically, T'S) is closest to the
assumed level in 7 of the 27 cases and T'S, is closest to the assumed level in 11 of the
27 cases. When comparing the alternative tests, 'S} and T'Ss, to only the LRT, T'S)
is closest to the assumed level 11 of the 27 cases and T'S; is closest to the assumed
level in the other 16 of the 27 cases. The LRT was not closer to the assumed level
than the alternative estimates in any of the simulations.

Tables 33-41 give estimated power values adjusted to the level each test attained
in the size calculations. For each table, the rejection proportions are based on the 95
percentiles of the test statistics from the size simulations for the value of p;. For ex-
ample, Table 33 shows the proportion of simulations with test statistics greater than
4.17172 for the LRT, 4.00311 for the Score test, 3.86216 for the Wald test, 3.80180
for T'Sy, and 3.84007 for T'S; which were the 95 percentiles from the simulation of
Hy:pp =p2=0.1.

TABLE 33: Adjusted Rejection Proportions, a = 0.05, Hy : p; = p2 = p, pp = 0.1.

*Percent that did not converge; **Percent that violated the model constraints; ***Percent that violated model constraints.

D2 LRT (*) Score Wald TS; (**) TSy (***)
0.1 0.0589 (0.17%) 0.0510 0.0551 0.0494 (4.15%) 0.0500 (14.03%)
0.2 0.2234 (0.04%) 0.2401 0.2217 0.1683 (1.74%) 0.0614 (11.02%)
0.3 0.6259 (0.02%) 0.6526 0.6227 0.5044 (1.43%) 0.1173 (8.35%)
0.4 0.9114 (0%) 0.9214 0.9099 0.8357 (1.19%) 0.2301 (6.95%)
0.5 0.9906 (0%) 0.9925 0.9904 0.9751 (1.19%) 0.4326 (6.94%)
0.6 0.9998 (0%)  0.9998 0.9998 0.9991 (1.04%) 0.6943 (6.45%)
0.7 1.0000 (0.01%) 1.0000 1.0000 1.0000 (0.97%) 0.9177 (0.97%)
0.8 1.0000 (0%) 0.9994 0.9994 1.0000 (0.99%) 0.9962 (6.09%)
0.9 1.0000 (0%) 0.9653 0.9651 1.0000 (0.83%) 1.0000 (5.81%)
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TABLE 34: Adjusted Rejection Proportions, & = 0.05, Hy : p1 = p2 = p, p1 = 0.2

*Percent that did not converge; **Percent that violated the model constraints; ***Percent that violated model constraints.

p» LRT (*)  Score Wald TS; (*%) TS, (***)

0.1 0.2376 (0.04%) 0.2358 0.2349 0.1674 (1.82%) 0.0644 (10.88%)
0.2 0.0585 (0.04%) 0.0563 0.0506 0.0507 (0.45%) 0.0498 (7.55%)
0.3 0.1882 (0.04%) 0.1901 0.1880 0.1622 (0.10%) 0.0670 (0.10%)
0.4 05852 (0%)  0.5852 0.5841 0.5111 (0.05%) 0.1377 (4.21%)
0.5 0.8992 (0%)  0.8999 0.8994 0.8484 (0.06%) 0.2954 (3.47%)
06 09910 (0%)  0.9918 0.9909 0.9812 (0.07%) 0.5522 (2.87%)
0.7 0.9998 (0%)  0.9998 0.9998 0.9996 (0.05%) 0.8515 (3.25%)
0.8 1.0000 (0%)  0.9999 0.9999 1.0000 (0.05%) 0.9873 (2.58%)
0.9 1.0000 (0%)  0.9627 0.9631 1.0000 (0.03%) 1.0000 (2.39%)

TABLE 35: Adjusted Rejection Proportions, a = 0.05, Hy : p1 = p2 = p, p1 = 0.3.

*Percent that did not converge; **Percent that violated the model constraints; ***Percent that violated model constraints.

P2 LRT (*) Score Wald TS: (*%) TS, (***)

0.1 0.6534 (0%) 0.6466 0.6510 0.5057 (1.45%) 0.1099 (8.76%)
0.2 0.1951 (0.03%) 0.1907 0.1946 0.1581 (0.14%) 0.0641 (5.37%)
0.3 0.0588 (0.03%) 0.0580 0.0519 0.0544 (0.03%) 0.0530 (2.83%)
0.4 0.1797 (0.02%) 0.1776 0.1812 0.1690 (0%) 0.0692 (2.04%)
0.5 0.5630 (0%)  0.5573 0.5635 0.5199 (0%)  0.1705 (1.52%)
0.6 0.9039 (0%)  0.9021 0.9062 0.8777 (0.01%) 0.4076 (1.42%)
0.7 0.9952 (0%) 0.9952 0.9957 0.9915 (0.01%) 0.7340 (1.25%)
0.8 1.0000 (0%)  0.9991 0.9994 0.9999 (0%)  0.9667 (0.96%)
0.9 1.0000 (0%) 0.9562 0.9568 1.0000 (0%) 0.9999 (0.70%)

TABLE 36: Adjusted Rejection Proportions, a = 0.05, Hy : p; = p2 = p, p1 = 0.4.

*Percent that did not converge; **Percent that violated the model constraints; ***Percent that violated model constraints.

P2 LRT (*) Score Wald TS, (**) TS, (***)

0.1 0.9235 (0.01%) 0.9225 0.9220 0.8414 (1.37%) 0.2331 (7.31%)
0.2 0.5796 (0.01%) 0.5786 0.5768 0.5095 (0.12%) 0.1428 (4.22%)
0.3 0.1919 (0.05%) 0.1905 0.1931 0.1801 (0%) 0.0800 (2.24%)
0.4 0.0545 (0.09%) 0.0549 0.0502 0.0501 (0%) 0.0473 (1.06%)
0.5 0.1934 (0.02%) 0.1928 0.1965 0.1900 (0%) 0.0847 (0.73%)
0.6 0.6101 (0.01%) 0.6043 0.6159 0.5877 (0%) 0.2403 (0.53%)
0.7 0.9464 (0%) 0.9441 0.9505 0.9406 (0%) 0.5846 (0.26%)
0.8 0.9993 (0%) 0.9971 0.9978 0.9991 (0%) 0.9351 (0.18%)
0.9 1.0000 (0%) 0.9469 0.9475 1.0000 (0%) 0.9999 (0.35%)




58

TABLE 37: Adjusted Rejection Proportions, o = 0.05, Hq : p1 = p2 = p, p1 = 0.5.

*Percent that did not converge; **Percent that violated the model constraints; ***Percent that violated model constraints.

P2 LRT (*) Score Wald TS, (**) TSy (**%)

0.1 0.9938 (0%) 0.9936 0.9931 0.9741 (1.06%) 0.4182 (6.82%)
0.2 0.8958 (0%) 0.8934 0.8903 0.8407 (0.04%) 0.2998 (3.78%)
0.3 0.5730 (0%) 0.5688 0.5673 0.5226 (0.01%) 0.1753 (1.83%)
0.4 0.1829 (0.02%) 0.1793 0.1790 0.1742 (0%) 0.0803 (0.59%)
0.5 0.0559 (0.08%) 0.0562 0.0525 0.0537 (0%) 0.0508 (0.24%)
0.6 0.2111 (0.04%) 0.2073 0.2120 0.2107 (0%)  0.1051 (0.12%)
0.7 0.7044 (0.01%) 0.6951 0.7128 0.6919 (0%) 0.3531 (0.12%)
0.8 0.9862 (0%) 0.9772 0.9845 0.9846 (0%) 0.8170 (0.04%)
0.9 1.0000 (0%) 0.9412 0.9433 1.0000 (0%) 0.9992 (0.03%)

TABLE 38: Adjusted Rejection Proportions, a = 0.05, Hg : py = p2 = p, p1 = 0.6.

*Percent that did not converge; **Percent that violated the model constraints; ***Percent that violated model constraints.

P2 LRT (*) Score Wald TS; (**%) TSy (**%)

0.1 0.9999 (0%) 0.9999 0.9999 0.9988 (1.02%) 0.6882 (6.58%)
0.2 0.9925 (0%) 0.9929 0.9912 0.9813 (0.12%) 0.5515 (3.07%)
0.3 0.9910 (0%) 0.9138 0.9048 0.8786 (0.01%) 0.3915 (1.24%)
0.4 0.6118 (0.01%) 0.6159 0.6003 0.5824 (0%) 0.2325 (0.51%)
0.5 0.2134 (0.03%) 0.2164 0.2080 0.2025 (0%) 0.1059 (0.09%)
0.6 0.0542 (0.07%) 0.0528 0.0536 0.0523 (0%) 0.0521 (0.06%)
0.7 02717 (0.04%) 0.2664 02764 0.2619 (0%)  0.1436 (0.01%)
0.8 0.8688 (0%) 0.8403 0.8710 0.8597 (0%) 0.5895 (0%)

0.9 0.9998 (0%) 0.9171 0.9195 0.9998 (0%) 0.9915 (0%)
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TABLE 39: Adjusted Rejection Proportions, o = 0.05, Hy : py = p2 = p, p1 = 0.7.
*Percent that did not converge; **Percent that violated the model constraints; ***Percent that violated model constraints.
P2 LRT (*) Score Wald TS, (*%) TSy (**¥*)

0.1 1.0000 (0%) 1.0000 1.0000 0.9999 (0.90%) 0.9166 (5.95%)
0.2 0.9999 (0%) 0.9999 0.9999 0.9992 (0.04%) 0.8524 (2.88%)
0.3 0.9962 (0%) 0.9965 0.9949 0.9942 (0%) 0.7467 (1.23%)
0.4 0.9457 (0%) 0.9485 0.9343 0.9344 (0%) 0.5707 (0.21%)
0.5 0.7131 (0%) 0.7201 0.6890 0.6982 (0%) 0.3613 (0.06%)
0.6 0.2637 (0.09%) 0.2687 0.2490 0.2573 (0%) 0.1443 (0.05%)
0.7 0.0558 (0.10%) 0.0524 0.0611 0.0548 (0%) 0.0490 (0%)
0.8 0.3972 (0.05%) 0.3665 0.4040 0.3966 (0%) 0.2498 (0%)
0.9 0.9915 (0%) 0.8859 0.8971 0.9909 (0%) 0.9447 (0%)

TABLE 40: Adjusted Rejection Proportions, a = 0.05, Hy : py = p2 = p, p1 = 0.8.
*Percent that did not converge; **Percent that violated the model constraints; ***Percent that viola(:ed model constraints.
P2 LRT (¥) Score Wald TS: (*%) TS, (***)

0.1 1.0000 (0%) 0.9996 0.9998 1.0000 (0.68%) 0.9949 (5.70%)
0.2 1.0000 (0%) 0.9993 0.9994 1.0000 (0.05%) 0.9870 (2.73%)
0.3 1.0000 (0%) 0.9995 0.9995 0.9999 (0%) 0.9708 (1.00%)
0.4 0.9993 (0%) 0.9977 0.9967 0.9990 (0%) 0.9265 (0.30%)
0.5 0.9866 (0%) 0.9830 0.9731 0.9841 (0%) 0.8184 (0.04%)
0.6 0.8555 (0%) 0.8410 0.7962 0.8496 (0%) 0.5778 (0%)
0.7 0.3912 (0.03%) 0.3692 0.3248 0.3863 (0%) 0.2475 (0%)
0.8 0.0587 (0.15%) 0.0521 0.0832 0.0567 (0%) 0.0507 (0%)
0.9 0.7600 (0%) 0.6242 0.6071 0.7540 (0%) 0.6125 (0%)

Since only LRT and T'S; performed consistently well in the first simulation ex-

periment, it is appropriate to only compare power calculations of the LRT, T'S, and

T'S,. From the tables, one can see that the LRT achieves higher power levels than
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TABLE 41: Adjusted Rejection Proportions, o = 0.05, Hy : py = p2 = p, p1 = 0.9.

*Percent that did not converge; **Percent that violated the model constraints; ***Percent that violated model constraints.

p» LRT (*)  Score Wald TS; (*%) TS, (¥*%)
0.1 1.0000 (0%)  0.9656 0.9658 1.0000 (0%)  1.0000 (0%)
0.2 1.0000 (0%)  0.9629 0.9630 1.0000 (0.02%) 1.0000 (2.66%)
0.3 1.0000 (0%)  0.9516 0.9506 1.0000 (0%)  0.9999 (0.91%)
0.4 1.0000 (0%)  0.9471 0.9499 1.0000 (0%)  0.9999 (0.31%)
0.5 0.9999 (0%)  0.9359 0.9369 1.0000 (0%)  0.9985 (0.03%)
0.6 0.9999 (0%)  0.9214 0.9252 0.9999 (0%)  0.9929 (0%)
0.7 0.9909 (0%)  0.8603 0.8843 0.9905 (0%)  0.9378 (0%)
0.8 0.7573 (0%)  0.5274 0.5910 0.7499 (0%)  0.6101 (0%)
0.9 0.0592 (0.22%) 0.0798 0.0804 0.0559 (0%)  0.0512 (0%)

both alternative tests, but T'S; is not far behind. In 40% of the simulations, the
estimated power of T'S; is greater than the LRT or within 0.001. In 63% of the sim-
ulations, the estimated power of T'S) is greater than the LRT or within 0.01. In 83%

of the simulations, the estimated power of T'S; is greater than the LRT or within

0.05.

Tables 42-50 give the power values for a nominal level a = 0.05.

TABLE 42: Rejection Proportions, a = 0.05, Hy : py = p2 = p, p1 = 0.1.

*Percent that did not converge; **Percent that violated the model constraints; ***Percent that violated model constraints.

p» LRT(*)  Score Wald TS; (**) TS, (¥**)

0.1 0.0589 (0.17%) 0.0510 0.0551 0.0494 (4.15%) 0.0500 (14.03%)
0.2 0.2495 (0.04%) 0.2420 0.2340 0.1655 (1.74%) 0.0614 (11.02%)
0.3 0.6574 (0.02%) 0.6526 0.6389 0.5044 (1.43%) 0.1173 (8.35%)
0.4 09223 (0%)  0.9221 0.9151 0.8342 (1.19%) 0.2301 (6.95%)
0.5 0.9925 (0%)  0.9925 0.9912 0.9749 (1.19%) 0.4326 (6.94%)
0.6 0.9998 (0%)  0.9998 0.9998 0.9989 (1.04%) 0.6942 (6.45%)
0.7 1.0000 (0.01%) 1.0000 1.0000 1.0000 (0.97%) 0.9177 (6.21%)
0.8 1.0000 (0%)  0.9994 0.9994 1.0000 (0.99%) 0.9962 (6.09%)
0.9 1.0000 (0%)  0.9653 0.9651 1.0000 (0.83%) 1.0000 (5.81%)




TABLE 43: Rejection Proportions, a = 0.05, Hy : p1 = p2 = p, pr = 0.2.

*Percent that did not converge; **Percent that violated the model constraints; ***Percent that violated model constraints.

P2 LRT (*) Score Wald TS, (**) TS, (***)
0.1 0.2542 (0.04%) 0.2507 0.2386 0.1688 (1.82%) 0.0644 (10.88%)
0.2 0.0585 (0.04%) 0.0563 0.0506 0.0507 (0.45%) 0.0498 (7.55%)
0.3 0.2028 (0.04%) 0.2014 0.1899 0.1638 (0.10%) 0.0669 (5.62%)
0.4 0.6059 (0%) 0.6013 0.5875 0.5131 (0.05%) 0.1373 (4.21%)
0.5 0.9071 (0%) 0.9057 0.9010 0.8494 (0.06%) 0.2949 (3.47%)
0.6 0.9923 (0%) 0.9924 0.9912 0.9815 (0.07%) 0.5516 (2.87%)
0.7 0.9998 (0%) 0.9998 0.9998 0.9996 (0.05%) 0.8513 (3.25%)
0.8 1.0000 (0%) 0.9999 0.9999 1.0000 (0.05%) 0.9873 (2.58%)
0.9 1.0000 (0%) 0.9627 0.9631 1.0000 (0.03%) 1.0000 (2.39%)

TABLE 44: Rejection Proportions, o = 0.05, Hy : py = p2 = p, p1 = 0.3.

*Percent that did not converge; **Percent that violated the model constraints; ***Percent that violated model constraints.

P2 LRT (*) Score Wald TS, (*% TS, (***)

0.1 0.6765 (0%) 0.6702 0.6583 0.5205 (1.45%) 0.1152 (8.76%)
0.2 0.2129 (0.03%) 0.2112 0.2008 0.1657 (0.14%) 0.0677 (5.37%)
0.3 0.0588 (0.03%) 0.0580 0.0519 0.0544 (0.03%) 0.0530 (2.83%)
0.4 0.1963 (0.02%) 0.1942 0.1865 0.1771 (0%) 0.0728 (2.04%)
0.5 05861 (0%)  0.5843 0.5726 0.5324 (0%)  0.1771 (1.52%)
0.6 0.9138 (0%) 0.9124 0.9095 0.8837 (0.01%) 0.4186 (1.42%)
0.7 0.9961 (0%)  0.9961 0.9958 0.9921 (0.01%) 0.7433 (1.25%)
0.8 1.0000 (0%) 0.9991 0.9994 0.9999 (0%) 0.9687 (0.96%)
0.9 1.0000 (0%)  0.9562 0.9568 1.0000 (0%)  1.0000 (0.70%)

TABLE 45: Rejection Proportions, a = 0.05, Hy : p1 = p2 = p, p1 = 0.4.

*Percent that did not converge; **Percent that violated the model constraints; ***Percent that violated model constraints.

P2 LRT (*) Score Wald TS; (*% TS> (**¥)

0.1 0.9296 (0.01%) 0.9287 0.9224 0.8416 (1.37%) 0.2266 (7.31%)
0.2 0.5978 (0.01%) 0.5982 0.5774 0.5097 (0.12%) 0.1384 (4.22%)
0.3 0.2057 (0.05%) 0.2041 0.1936 0.1801 (0%) 0.0764 (2.24%)
0.4 0.0545 (0.09%) 0.0549 0.0502 0.0501 (0%) 0.0473 (1.06%)
0.5 0.2070 (0.02%) 0.2058 0.1971 0.1901 (0%) 0.0823 (0.73%)
0.6 0.6258 (0.01%) 0.6223 0.6166 0.5879 (0%) 0.2328 (0.53%)
0.7 0.9522 (0%) 0.9497 0.9510 0.9407 (0%) 0.5757 (0.26%)
0.8 09994 (0%) 09973 0.9978 0.9991 (0%)  0.9324 (0.18%)
0.9 10000 (0%)  0.9471 0.9475 1.0000 (0%)  0.9999 (0.35%)
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TABLE 46: Rejection Proportions, a = 0.05, Hy : p; = p2 = p, p1 = 0.5.
*Percent that did not converge; **Percent that violated the model constraints; ***Percent that violated model constraints.

P2 LRT (¥) Score Wald TS; (**) TS, (***)

0.1 0.9946 (0%)  0.9945 0.9935 0.9757 (1.06%) 0.4212 (6.82%)
0.2 0.9030 (0%)  0.9027 0.8936 0.8475 (0.04%) 0.3028 (3.78%)
0.3 05915 (0%)  0.5906 0.5749 0.5332 (0.01%) 0.1773 (1.83%)
0.4 0.1946 (0.02%) 0.1942 0.1846 0.1823 (0%)  0.0819 (0.59%)
0.5 0.0559 (0.08%) 0.0562 0.0525 0.0537 (0%)  0.0508 (0.24%)
0.6 0.2219 (0.04%) 02218 02180 0.2174 (0%)  0.1073 (0.12%)

( (

( (

( (

0.7 0.7182 (0.01%) 0.7105 0.7197 0.7013 (0%) 0.3564 (0.12%)
0.8 0.9876 (0%) 0.9798 0.9580 0.9856 (0%) 0.8189 (0.04%)
0.9 1.0000 (0%) 0.9413 0.9434 1.0000 (0%) 0.9992 (0.03%)

TABLE 47: Rejection Proportions, a = 0.05, Hp : p1 = p2 = p, p1 = 0.6.
*Percent that did not converge; **Percent that violated the model constraints; ***Percent that violated model constraints.

P2 LRT (*) Score Wald TS: (**) TSy (%)

0.1 09999 (0%)  0.9999 0.9999 0.9990 (1.02%) 0.6938 (6.58%)
0.2 0.9932 (0%)  0.9934 0.9922 0.9828 (0.12%) 0.5580 (3.07%)
0.3 009171 (0%) 09173 0.9103 0.8832 (0.01%) 0.3978 (1.24%)
0.4 0.6251 (0.01%) 0.6266 0.6132 0.5945 (0%)  0.2370 (0.51%)
0.5 0.2234 (0.03%) 0.2228 0.2176 0.2121 (0%)  0.1091 (0.09%)
0.6 0.0542 (0.07%) 0.0528 0.0536 0.0523 (0%)  0.0521 (0.06%)
0.7 0.2820 (0.04%) 0.2759 0.2858 0.2735 (0%)  0.1488 (0.01%)
0.8 0.8749 (0%)  0.8446 0.8772 0.8659 (0%)  0.5965 (0%)

0.9 09998 (0%) 09174 09197 0.9998 (0%)  0.9922 (0%)
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TABLE 48: Rejection Proportions, a = 0.05, Hy : p1 = p2 = p, pp = 0.7.

*Percent that did not converge; **Percent that violated the model constraints; ***Percent that violated model constraints.

P2 LRT (*) Score Wald TS: (**) TSz (**%)
0.1 1.0000 (0%) 1.0000 1.0000 0.9999 (0.90%) 0.9156 (5.95%)
0.2 0.9999 (0%) 0.9999 0.9999 0.9995 (0.04%) 0.8508 (2.88%)
0.3 0.9969 (0%)  0.9970 0.9961 0.9945 (0%)  0.7446 (1.23%)
0.4 09509 (0%)  0.9515 0.9483 0.9383 (0%)  0.5671 (0.21%)
0.5 0.7278 (0%) 0.7266 0.7246 0.7127 (0%) 0.3584 (0.06%)
0.6 0.2768 (0.00%) 0.2742 0.2788 0.2690 (0%)  0.1427 (0.05%)
0.7 0.0558 (0.10%) 0.0524 0.0611 0.0548 (0%) 0.0490 (0%)
0.8 0.4122 (0.05%) 0.3733 0.4415 0.4077 (0%) 0.2477 (0%)
0.9 0.9919 (0%)  0.8875 0.8994 0.9918 (0%)  0.9437 (0%)

TABLE 49: Rejection Proportions, a = 0.05, Hy : p; = p2 = p, p1 = 0.8.

*Percent that did not converge; **Percent that violated the model constraints; ***Percent that violated model constraints.

p2 LRT (*) Score Wald TS: (**) TS, (***)
0.1 1.0000 (0%) 0.9996 0.9998 1.0000 (0.68%) 0.9949 (5.70%)
0.2 1.0000 (0%) 0.9993 0.9994 1.0000 (0.05%) 0.9873 (2.73%)
0.3 1.0000 (0%)  0.9995 0.9995 0.9999 (0%)  0.9713 (1.00%)
0.4 0.9995 (0%) 0.9977 0.9978 0.9991 (0%) 0.9281 (0.30%)
0.5 0.9896 (0%) 0.9837 0.9856 0.9868 (0%) 0.8215 (0.04%)
0.6 0.8693 (0%)  0.8453 0.8649 0.8612 (0%)  0.5823 (0%)
0.7 0.4154 (0.03%) 0.3760 0.4280 0.4074 (0%) 0.2508 (0%)
0.8 0.0587 (0.15%) 0.0521 0.0832 0.0567 (0%) 0.0507 (0%)
0.9 0.7762 (0%)  0.6297 0.6819 0.7703 (0%)  0.6162 (0%)

TABLE 50: Rejection Proportions, a = 0.05, Hy : p1 = p2 = p, pp = 0.9.

*Percent that did not converge; **Percent that violated the model constraints; ***Percent that violated model constraints.

p» LRT (*)  Score Wald TS (**) TS, (***)
0.1 1.0000 (0%)  0.9660 0.9666 1.0000 (0.95%) 1.0000 (5.25%)
0.2 1.0000 (0%)  0.9632 0.9638 1.0000 (0.02%) 1.0000 (2.66%)
0.3 1.0000 (0%)  0.9526 0.9516 1.0000 (0%)  0.9999 (0.91%)
0.4 1.0000 (0%)  0.9488 0.9507 1.0000 (0%)  0.9999 (0.31%)
0.5 1.0000 (0%)  0.9382 0.9394 1.0000 (0%)  0.9986 (0.03%)
0.6 0.9999 (0%)  0.9266 0.9280 0.9999 (0%)  0.9933 (0%)
0.7 09922 (0%)  0.8869 0.8976 0.9913 (0%)  0.9398 (0%)
0.8 0.7768 (0%)  0.6333 0.6822 0.7695 (0%)  0.6150 (0%)
0.9 0.0592 (0.22%) 0.0798 0.0804 0.0559 (0%)  0.0512 (0%)
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It can be seen that similar to the adjusted power levels, the LRT achieves higher
power than both T'S; and T'S,. Since the estimated sizes for the LRT are generally
larger than the estimated sizes for T'S; and T'S,, the LRT powers have an advantage
when not adjusted for the size levels each test achieved.

When family sizes were smaller, the alternative test T'S; compared well with the
LRT especially in size performance while the Score and Wald did not perform as
well as either the LRT or T'S;. When family sizes were larger, both alternative test
performed well compared to the LRT in size estimation, but only 7S] compared
well to the LRT in power estimation. The alternative test T'S; violates the model
constraints more often than the LRT does not converge, especially when family sizes
are smaller and the upper bound on p;2 is lower. In practice, both sets of alternative
estimates and corresponding tests are easy to compute. Generally, T'S; performed
better and does not require restrictions on the data set that T'S; needs, therefore

TS, is recommended.
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CHAPTER III

INTERCLASS CORRELATIONS: ¢ POPULATIONS

III.1 INTRODUCTION

Testing equality of g intraclass correlations was considered by Naik and Helu (2007)
under the general setup of unequal family sizes. However, under the model where
brother-sister interclass cvorrelation is nonzero, it is of interest to test the equality
of these interclass correlations from g independent populations. In this chapter,
we consider g independent populations where sons and daughters in a family can
have different intraclass correlations and different interclass correlations over the
populations. We consider the problem of testing if these interclass correlations are
the same. Suppose there are g independent populations and data on the children of
n; randomly selected families are available from each population. As in the second
chapter, the number of boys and girls in each family is allowed to be different.
Denote the number of boys and girls in the j%* family from the i** population as
my;; and my;;, respectively, for j =1,...,n;1=1,...,9. Let x5, k=1,...,my;;
j=1,...,n; i=1,...,g be the observation on the k** boy of the j** family from
the " population. Likewise, let ok, k= 1,...,may; j=1,...,n54=1,...,9 be
the observation on the k** girl of the j® family from the 5** population.

Assume that the expected value of the son observations in a family is E(z1;x) =
1, the expected value of the daughter observations in a family is E(zojk) = 2,
the variance of the son observations is Var(zi;c) = oi,;, and the variance of the
daughter observations is Var(zz;x) = 03;. Denote the son-son intraclass correlation
of the ™ population as p;;, the daughter-daughter intraclass correlation of the it
population as ps;, and the son-daughter interclass correlation of the i* population
as pi2;. Assume for each family in the i** population, Corr(zyjk, Tijw) = p1s for
k#K; 1< kK < myy, Corr(zaje, Taijir) = poy for k # k5 1 < k, k' < my;;, and
Corr(T1ijk, Taiji) = p12 for all k, k'; 1 < k < my;; and 1 < k' < my;.

Let the vector of observations on the j** family from the i** population be



66

( 351-1‘3'1 \

X1ij -Tl'ijmnj
xij = = )
( X2ij T2ij1

K x2ij177.2,'j
with
,ltl"]. i
E(X,ij)=[l,ij= idtmyg; ,
/1'2,1'1"&1'3'
and

Var (X,‘j) = Eij

- U%,i{(l - pl,i)Imnj + pl,i‘]mu;‘} p12,i011i02,iJm1ijym2ij
p12,i01,i02,iJm2ij,mlij og,i{(l - p2,i)Im2ij + p2,i']m2ij} ,

where I,,, is an identity matrix of order m, J,, is the m x m matrix of all ones, and
Jmn is the m x n matrix of all ones. Note —oo < p1; < 00 and —00 < pg; < 00.
If there are both sons and daughters in a family, my;; > 0 and mg;; > 0, then the

determinant of 3;; is
S5l = o1 ¥oar ™ (1 — pra) ™91 — pag)™20
X ((1+ (myj — Dp1a) A + (maij — 1)p2s) — masjma;pie ;)-

Restrictions on the parameters so that ;; is positive definite are 0%, > 0, 03, >0,

p1i <1, p2; <1, and
(1+ (maij — 1)p1,s) (A + (mai; — 1)p2s) > Maggmaijpig ;- (15)

If my;; > 0 and my;; > 0, then the inverse of ¥;; is

1 1
n-1 o1, Asj 01,i02,i Bi;
g 1 ] 1 ..
61,i0'2,iBij %}C’J



where
A 1
N 1- P
y [I . pra(l + (mayj — D)p2;) — mayiply; ] ]
(14 (magg — Dpra) (L4 (Maig — Do) — muggmagple; 0]
Bij = P12 ™Mi55,M2457
(1 + (ma; — D)pra) (1 + (mag; — 1)pas) — mliijijp%Q,i P
1
Ci = 1—pas
y [I o p2i(1 + (maij — Dpri) — mugpla, J ]
T (L4 (magg — Dpra) (1 + (magg — 1)pag) — mugmaigpla;

If there are no sons in a family, m,;; = 0, then the determinant of X;; is

2ma;;

1Bi5] = 055 7 (1 = o)™ (1 + (mas; — 1)p2,),
and the inverse of X;; is
-1 _ 1 _ P2,i
21.7 - Ug,i(l—pli) [Imﬁj (1+(m2,'j—1)p2,,~) JmZi.‘i] "
If there are no daughters in a family, mg;; = 0, then the determinant of ¥;; is
2my; o
1241 = o015 (1 — pra)™5 (1 + (my; — 1)p1,),

and the inverse of ¥;; is

-1 _ 1 . Pl,i
Eij T oii(1-p1) [Im“j (A+(m1i;—1)p1,:) Jm“j] :

II1.2 THE LIKELIHOOD FUNCTION

Assume that X;; ~ Ny, ymg; (B35, 3i5), = 1,...,ni5i=1,...,g. Let
0=(0,...,0,)
where
0; = (Nl,z‘aﬂ2,i7 U%,i; 0%,1-, Pl,i7p2,i;p12,i),-
Then

L(6) = Hﬂ Li;(0)

z'ljl

- H H e~ (i —ig) By (%5 —msis)
27T)(m11]+m213)/2 |Z |1/2

i=1 j= 1

67



68

and

log(L e))—ZZlog :(0)).

i=1 j=1

If My > 0 and Mo > 0, then

miis Mo
lOQ(Lij(B)) = ——21—Jlog(27raii) - 221109(27“73,1‘)
1 1
- §(m1ij = Dlog(1 — p1,4) — §(m2z‘j — Dlog(1 — pas)
1
— glog [(1 4 (magg — 1)pra) (1 + (mai; — 1)pai) — maijmai; pl,)

1 _
— =i — 1) B (x5 — pa)-

2
X144
Xij = y
X2ij

/ !
where X5 = (3311']'1, sy Ilijmh-,-) and X2ij = (-’1721'3'17 - 1x2ijmzij) )

(%55 — i) S5 (Xi5 — paiz)

Since

= [(ay = mrlmg) (Xaij — p2ilmg;) ]
1 1
ZA“ 01.:02: Bij |: (xlij - Nl,ilmm’) :'

X
1 ’ 1
oo B o2, Ci (%2 — pi2ilmg;;)
1
I
(%145 — Pl ) =5 A (X135 — pilmg,;)
J 0.% 7]
,l

! I

+ (%oij — p2,ilmy;) ———DBi;(X155 — p1141lm,;)

01,i02,4

1
+ (%15 =~ 1l ) ———Bii(Xeij — hzilmay,)

1,02,

1
+ (%ai = p2ilmay) —5~Coi(ais — H2almas)-

2,
If myi; = 0 and Ma;; > 1, then

— 22]log(27ragyi) - §(m2ij — Dlog(1 — pa;)

log(Ly;(0))
1 1 P
— §log(1 + (mzij )p2 z) (X21] #2,i1m2ij) Zij (x2ij - :u?,ilmzij)'

And, if my;; = 0 and my;; = 1, then
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log(Li;(8)) = —3log(2ma3;) — g (z2ij — p2.)”.

Similarly, if my;; > 1 and mg;; = 0, then
log(Ly(8)) = ~log(2m0%,) ~ 2 (mas — log(1 ~ 1)
- %’09(1 + (mag; — 1) — %(Xw = Bl ) B (15 — il
And, if my; = 1 and my;; = 0, then
log(L:;(8)) = —3log(2m0},) — g (21i — p)*.

The likelihood function L(@) or the log-likelihood function log(L(6)) can be
maximized to obtain 6, the maximum likelihood estimator (MLE) of €. Let
9, = (ﬂl,i,ﬂg,i,&ii,&gyi,[n,i, ﬁg’i,ﬁlzﬂ')l for i = 1,...,g. Our interest is to test the
hypothesis that the g interclass correlation coefficients are equal, that is, Hy : p12; =
... = prag = p1z (say). Under Ho, 0; = (s, o4, 034, 054, P1is P26 P12)- The like-
lihood function, L(@) or log-likelihood function log(L(@)) can also be maximized

under the null hypothesis Hy : p121 = ... = pi2,4 to obtain éo.

II1.3 LIKELTHOOD RATIO TEST
The likelihood ratio test (LRT) for testing Hy is to reject Hy for large values of
LRT = 2logL(6) — 2logL(6y). (16)

This test statistic has a y? asymptotic distribution with g — 1 degree of freedom.
The maximum likelihood procedures used to find the MLEs in the LRT need
fairly good initial values of the parameters which could be chosen as the alternative
estimates proposed in the following sections. The other two asymptotic tests, a
modified Wald’s test and Rao’s Score test, investigated in Chapter II for the one
population case are not investigated here since the LRT and the alternative tests

proposed were more favorable.

III.4 CANONICAL TRANSFORMATION

A canonical transformation can be applied here similarly as was done in the previous

chapter. The transformation simplifies the distribution of the data. The transformed
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data can be used in alternative estimators of the model parameters as will be shown

in the following sections.
xlij . . . - ﬂl,ilmlij .
Recall, x;; = is distributed with mean p;; = and covari-
X2ij H2,i 1m2ij
ance matrix

5 o3 {(1 = pri)Imy; + p1idmy; } £12,i01,i02,id my 5 mai;
? ‘7% 1{( — P2 z)Imm + pe, szzu}

£12,i01,i02i mys; mas;

Let
T _ I‘lij Omujanij
ij,(muitmo,mai+tma) — 0 r ’
Mo ,M1ij 2ij
where
1 1 1 1 \
myij o miij ™M
1 =1
1 1 =2
T = Ve Ve 76 0 ,
1 1 1 . —(mh i—1)
\/mlij(mlij_‘l) \/mlij(mlij'_l) \/muj(muj-l) v/ miij(mai;—1) )
/ 1 1 1 . 1 \
ma;j ma;j maij mog;
1 —1
7 7 0 0
Ty = 76 75 76 0 ;
K 1 1 1 o —(mzz _ —(may—-1)
\/mZij(m2ij_1) \/m21‘j(m2ij‘1) \/m2ij(m2ij-1) 4/ ma2ij(mai;i—1) /

and 0,, ,, is the m x n matrix of all zeros.
Transform the family scores by making a Srivastava type transformation to create

¥ij, the transformed vector of family scores,
. X1is
YVij = Y1ij — Fz’j 1i7
Yoij X2ij

_ rlij Omlij;mzij X1ij

Omzij,muj F2ij X2i5
_ Flz‘jxlij
Toixai;

Now, the expected value and variance of the vector of transformed son scores from

the j** family of the i** population are as follows
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Hi,i

E(y1i;) = : ;

and

’

Var(ylij) = Uiirlij((l - pl,i)Imuj + pl,iJmlij)rlij

%Uii(l + (mlij - 1)p1,,-) 0 .. 0
— 0 U%,i(l —p1i) o 0
0 0 -p)

The covariance between the vector of transformed son scores and the vector of trans-

formed daughter scores from the j% family in the i** population is

Cov(yiij, Yaij) = 01,:02ip12: 1653 mus; mas; Doij
10 --- 0
00 --- 0

= 01,i02,iP12,i

miij,M2ij

Similarly, the expected value and variance of the vector of transformed daughter

scores from the j** family of the i*® population are
Yy

H2

0
E(y2;) = N

and

Var(y%j) = Ug,iI‘?ij((l - p2,i)Im2ij + p2,iJm2ij )FI21]
303 (14 (mai; — 1)pas) 0
0 05,1 —p2z) -+ 0

0 0 wo 035(1— p2g)
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Note that only the first transformed son score and the first transformed daughter

score in a family, namely v1:;1 and yqi;1, are correlated. Also, the vector < Yl )
Yaij1

.. . . Hi,i . . .
is bivariate normal with mean and variance covariance matrix
M2,
1 2
P ,-(1 + (mh'j - 1)P1,i) 01,i02,iP12,i
12
01,02,iP12,: iy 02,4(1 + (M2ij — 1)p2y)
. 2
and are independent of y1jo, - . . , Y1ijmy;; ~ N(0,07 (1 —p14)) and Yasjo, - - -, Y2ijmay; ~

N(0,03,(1 = p2,))-

In terms of x;;; and Xg;;, the first transformed son score, %1451, is the average of
all the observed boy scores in the family. As well, the first transformed daughter
score, Ya;;1, is the average of all the observed girl scores in the family. That is,

SR I Wit e L §TM2iG
Yij1 = iy k=1 Tiijk,  Y2ij1 — Ty Lek=1 T2ijk-

Hence,

o _L ng . __1_ ng miij
Y1 = o Zj:l Yij1 = 37 2.5=1 th k=1 L1ijks

1 — 2ij
Yoir = Z] =1Y2ij1 = ] Z] =1 mm Zk 1 L2ijk-

The average of the first transformed son scores is a population average of the mean
family son scores. Similarly, the average of the first transformed daughter scores is a
population average of the mean family daughter scores. Further, the average of all
the first transformed son scores and the average of all the first transformed daughter

scores can be written in terms of the observed familial data as follows

7 1 g 3G .u — l 9 _;l_ 1ij
=4 Zi:l Ya = 5 2i-1 ; _1 mm Zk 1 T1ijk,

- _ l g . — l g _]._ ng 1 maij
Yar = Zi:l Y2il = 5 24i=1 n; 2uj=1 Ty k=1 T2i5k-

One can also see that

miij
2 - (Y]
E Yiijk  — (mliﬂ, < 7I1ijmuj) Fijrij (-'Elij27 e ,Ilz‘jmm)
’ 1
= (Ill]27 . 7x1ijm1,-j) (Imuj - ml. K Jmh-]-) (xlij27 bR 7'T1ijm1,'j)
17

muij miij

_ 2
= E : Trijk — E :xlmk)
k=2

L L
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and
maij
2 _ ' - .
E Yoije = (1’2ij2a---7372ijm2ij) rijrij (ivzuz,---,fﬂzz‘;mm-j)
k=2
' 1
= ($21j2, e 7$2ijm2ij) (Imgij - —_.szij) (xZij27 - 7m2ijmg,-j)
]
m24ij 1 maij
_ 2 N2
= § :x2ijk_—m (E :x2i3k) .
k=2 2ij k=2

That is, the sum of squares of the “left-over” transformed son scores,
Y1ik2, - - - » Ylijmys;» fOr @ family can be written in terms of the second through last
son of the family, and the sum of squares of the “left-over” transformed daughter
SCOTES, Y2ij2, - - - » Y2ijmyy;» fOT @ family can be written in terms of the second through
last daughter of the family.

In order to simplify the transformed model, let

2 ’ . /
Mij Omh-j -1 012, Omm—l

2
I..T. — Omlij"l ’yl,iImlij“l Omuj—l Omuj—l,mzij—l
i<ty 7 2 ; )
012,2' Oml,'j—l n2ij Omzij—l

2
Omzij—l Omlij‘—lym%j_l Omzij—l 72,1'177121‘]'—1

where

My = 011+ (M — 1)prs)/masj,

U%ij = Ug,i(l + (maij — 1)pas) /maij,

'Yf,i = Gii(l — P1i)s

’Yg,i = Ug,i(l - P2,i)1

012 = 01,i02,iP12;-
Note 77%1'3‘ = Uii - alij')’i?,i and U%ij = 05,,- - azij’Yg,i where a1;; = 1 — ml—,-;- and ag;; =
1 —ms}. Additionally, there is a 1-1 transformation from the old parameters to a

new set of parameters. Namely,

Q

gl,i - 2
1

§2,i = 2

12 =
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II11.5 ALTERNATIVE ESTIMATORS FOR g POPULATIONS

From the distribution of the transformed familial data, alternative estimators can be
developed similar to those in the second chapter that do not require maximization
of the non-linear constraints, as is the case for finding the MLEs used in the LRT.
In the previous chapter, two sets of alternative estimators were proposed. In the
second set of alternative estimators, the estimators p;, and po, require the average
number of sons in the data set and the average number of daughters in the data set
to both be greater than 2, but the alternative estimators ji;, and iz, are easier to
compute than the first set of alternative estimators. For familial data from several
populations, a combination of the alternative estimators from Chapter II is proposed
that does not require the restrictions on the data set and has simpler estimates of
the means.

Let ny; equal the number of families in the i* population with my;; > 0, na; equal
the number of families in the i** population with my;; > 0, and nip; equal the number
of families in the i** population with mi;; > 0 and my;; > 0. Similar to the first set
of alternative estimators proposed in Chapter II, y1ij2, - . ., Y1ijm,; ~ N(0,7%;) and

an unbiased and consistent estimator of 77, is

i Miij
’72 _ 27;1 k:lzJ y%ijk
b Yot (mag — 1)
Additionally, Y1552, - - - , Y2ijma,; ~ N(0,73;) and 43; can be estimated by
’yz _ 2?11 ZZZ; y%ijk
2 > i (may; — 1)
Since
i, 3 2 .
Yiij1 ~N Hi 7711‘]' 012,i
7 2 y
Y2ij1 K2, 012, Ty
take

?

P nsz (i1 — F1a) (Y2isn — ¥3a1)
12, o N1z — 1

1 Nn12i

=% =% __ _1 T12i = ~ :
where §i;; = 5270 yujn and §3q = 5= > 027 yain. Then, G1z; is an unbiased

estimate of o12;.
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Seeing that, o3; = ni; + a15;77; = 7o (72 M) + 771 (7 ;) and since
Y1ij2, - - > Yligmuy; (J = 1,...,n;) were used for estimating ’)’1,1'7 Srivastava (1984) pro-

posed using 151 (z = 1,...,m) to estimate o, Consider E [Z?;"l (11 — gm)Q],

where gy = i g 2 Y1ij1. Which is
n14 n1i n14
E (Z yi‘jl - nliﬂ%ﬂ) = Z(’ﬁz’j + ,‘1‘%1) - ( Z M + 11 z)
j=1 j=1 N
(1 - n_h) Zng

1 nij;
(L ) o)
nii
= (ny; — 1)0%,1' - (1 - _) ’Yu (Z alz]) .

et

1
—yia)? + —’)’1; Zahy)
7j=1

Now, estimate o7, by

Similarly, one can estimate ag,,. by

1 n2q 1 N2
ng - (y2z]1 y2zl) + _72 z(z a21])
mai — 1 j=1 j=1

From these, other estimates are

pri = 1—(31:/55:),
~ ~2 f~
P2 = 1— (’72,1'/03.,1'),
5 0124

12,6 -
* 01,i02;

The means p; ; and po; can be estimated similarly to the second set of alternative

estimators in the one population case, (9) and (10). Take

1 Miij

P = o Yiij1 — E Yuijk
Lo Vi 5
1 14

= ’IL_E gl'ijl
1 j=1
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and
_ 1 no; 1 maij
Mo = — Y2i51 — Y2ijk
N2 VAL et
1 n2q _
= __n- Y2ij1
21 j=1

I11.6 VARIANCE OF ALTERNATIVE ESTIMATORS

The variance of the alternative estimators will be assessed in this section which
will be used in construction of alternative tests to the LRT for testing the null
hypothesis that the interclass correlations p;s; from several populations are equal,
that is, Hy : p121 = ... = p124- In order to determine the variance of the alternative

estimators, pi2;, consider the following asymptotic distributions.

~2 2

01— 01
1/2 ~9 2

ng | 95, —03; | = N(0,Z12;),

0124 — 012

where
2 4 2 2
C1i01 012, A1i07 ;M2
— 2 2 4 2
22 =2 0124 €309 A2i03 ;0125 )

2 2 1 (.2 2 2
ALi07012i  A2i0%,0125 3 (012,i+01,i02,i/\1i>\2z’)
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with
N1

C%i =1- 2(1 - pl,i)nl_il Eah—j

J=1

nii nii
+(1—pr)? |:n;i1 > et + (g — 1) (g Zalm) }
=1
nai

C%i =1~ 2(1 - pz‘,-)nz_il Zagij

Jj=1

n2q n2g
-1 1/, -1 2
+ (1 - p24)* |nz E:azu (M2 — 1)7 (ny; E:a%j) )
j=1
nizi
5 alz];

n12;

E alz]a

)\li=1_(1‘“;01‘

Ao =1—(1

nii
-1
nh mlz]a

n2i

= -1
Mo = Ty; E M2ij.-
j=1

Using the delta method, the asymptotic variance of piq; is

~ 1 1 1
AV(p12,’i) = 5—1—2—- [p%z’z + p%Z’i (50?1- - 2A11 + 'Z‘Cgi hd 2A2i + 1) + )\1iA2i] .
2

3

Let A~V(ﬁ12,i) be the estimated AV(p12;) obtained by substituting the estimators in

this section for the unknown parameters.

II1.7 ALTERNATIVE TESTS

Here we propose two alternative tests for testing the null hypothesis that the inter-
class correlations p;2; from several populations are equal, Hy : p121 = ... = pia,g.
Let

P12 = (,012,1, cee “012,g)'-
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The null hypothesis Hy : p121 = ... = p12,4 can be written as Hy : Cpi2 = 0, where
1 -1 0 0 0
0 1 -1
C=
0 0 0 1 -1
g-Lg

The two test statistics we propose are

Ty = (Cpr)[CV.iC|H(Chra), (17)
where
V1 = diag(AV (p12.1), - - - AV (1)),
and
Ty = (Cpr2)[CVoC(Chra), (18)
where
Vo = diag(AV(pr2), ..., AV (p12))

1 g
:512 = _2512,2'-
94

Both T; and Ty have asymptotic chi-square distributions with g — 1 degrees of
freedom. T} and 7§ are simpler to implement than the LRT which requires an iterative
maximization procedure that does not always converge. However, the alternative
estimates pio; do not always satisfy the constraints of the this familial correlation

model (15), as was also noted in the one population case.

II1.8 SIMULATION EXPERIMENTS AND RESULTS

For testing Hy : pi21 = ... = pi24, the three tests shown here are expected to
behave similarly for large sample sizes, since they all have asymptotic chi-square
distributions with g — 1 degrees of freedom. In order to compare the tests, two small
sample simulation experiments were conducted. The first simulation experiment
had equal family sizes with 4 boys and 4 girls per family. The second experiment

simulated family sizes from the U.S. birth distribution proposed by Brass (1958). For
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both simulation experiments, only positive values of the familial correlations, pi2;,
are considered because the model constraints (15) restrict possible negative values
based on the other parameter values and a family’s size. Each size table for the
a = 0.01 level gives the percentage of the simulations with convergence problems
and the percentage of simulations with parameter violations; these percentages for
the o = 0.01 level also apply for the other size tables, the o = 0.05 and o = 0.10
levels, since the different sizes are estimated from the same run. The power tables
also give the percentage of simulations with convergence problems and the percentage
of simulations that violate the model constraints.

For the first experiment, n; = 50 family score vectors for g = 3 populations are
simulated as multivariate normal random vectors. The family size for each vector
is 8 children consisting of 4 sons and 4 daughters. The choices of parameters are
11 =0, 12 =0, 13 = 0, ail =1, 03’1 = 2, 0{2 = 0.5, 03,2 = 1.5, 0'%,3 =
1.5, 05,3 = 2.5, and p1; and py; take on values from 0.1 to 0.9. The interclass
correlations, pi2;, are set between 0 and the smallest population lower bound on
pi2i: mangy/((pr; + (1 — p1,i)/4)(p2;i + (1 — p2,i)/4)). For each choice of parameters,
5,000 simulations were run and estimated size and power values were computed for

testing, Ho : p121 = ... = p1z,9-
Table 51 gives parameter values for five different choices of p; and py;. Tables

52-54 give the estimated size values for the 5 choices of parameters in Table 51 when

p12; = min; \/((pl'i+(1—pl,i)/‘;)(ﬂz,i'{"(l"PZ,i)/li))

which is given in the table.

TABLE 51: Parameter Values for 3 Sample Simulations.
Simulation | p1,1 | p2,1 | P12 | P22 | P1,3 | P2,3

1 01709 03]07}05]05
0210804 | 06| 08|02
05103 (04{04)03]05
03 (07({031}07]|03/;07
0505 |05)05]05]05

Sl W N

All three tests tend to be slightly larger than the assumed level. The alternative
test T is closest to the assumed level in 13 of the 15 cases. The alternative test T}

comes close to the assumed level but is only closer than the LRT in 4 of the 15 cases.
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TABLE 52: Sizes, a = 0.01, Hp : p121 = p12.2 = p12,3 = Midpoint.

*Percent that did not converge; **Percent that violated the model constraints.

Simulation | pj2; LRT (*) T, (*%) To
1 0.274146 | 0.0111 (12.11%) | 0.0118 (0%) | 0.0108
2 0.291548 | 0.0108 (0.18%) | 0.0106 (0%) | 0.0100
3 0.272431 | 0.0126 (0%) 0.0116 (0%) | 0.0110
4 0.303367 | 0.0134 (0.03%) | 0.0152 (0%) | 0.0132
5 0.312500 | 0.0122 (0%) 0.0128 (0%) | 0.0118

TABLE 53: Sizes, a = 0.05, Ho P12, = P122 = P123 = Midpoint.
Simulation P12,i LRT Tl T()

1 0.274146 | 0.0530 | 0.0556 | 0.0526
0.291548 | 0.0534 | 0.0548 | 0.0532
0.272431 | 0.0552 | 0.0554 | 0.0540
0.303367 | 0.0578 | 0.0598 | 0.0586

0.3125 | 0.0584 | 0.0602 | 0.0566

Uk O N

Tables 55-57 give the estimated sizes for & = 0.01,0.05, and 0.10, respectively, for
the parameter choices in Simulation 3 from Table 51 for values of p;2; within bound.

One can see that the alternative tests, 71 and Tj still tend to be slightly larger
than the assumed level. The estimated sizes for the LRT generally perform well, but
notably smaller than the assumed level for p12; = 0.05. The alternative test Tj is
closest to the assumed level in 14 of the 24 cases.

Table 58 gives estimated power calculations adjusted to the level each test at-
tained in size estimation for the nominal level of @ = 0.05. The rejection propor-
tions are based on the 95 percentiles of the test statistics from the size simulation
for the parameter choices in Simulation 3 from Table 51. The 95" percentile was
6.21131 for the LRT, 6.25925 for Tj, and 6.15925 for T, from the simulation of
Hy : p12,1 = p12,2 = p12,3 for the specified parameters.

It can be seen that, the LRT has the highest power in 3 of the cases, T; has the
highest power in 2 of the 6 cases, and all 3 tests tie in the other case. When the
estimated power for the LRT is higher, 77 and Tg are typically not far behind. The
estimated powers for T; are less than 0.01 below the power levels of the LRT for 5
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TABLE 54: SiZGS, a = 010, Ho CP121 = P122 = P123 = Mzdpomt

Simulation P12 LRT Ty To
1 0.274146 | 0.1040 | 0.1078 | 0.1048
2 0.291548 | 0.1040 | 0.1050 | 0.1038
3 0.272431 | 0.1152 | 0.1140 | 0.1112
4 0.303367 | 0.1115 | 0.1114 | 0.1086
5 0.3125 |0.1122 | 0.1128 | 0.1088

TABLE 55: SiZGS, o = 001, Hg T P12,1 = P12,2 = P12,3 = pP12-
*Percent that did not converge; **Percent that violated the model constraints.

P12, LRT (*) T (*) To

0.05 | 0.0048 (0%) | 0.0110 (0%) | 0.0106
0.10 | 0.0076 (0%) | 0.0126 (0%) | 0.0118
0.15 | 0.0117 (0.23%) | 0.0144 (0%) | 0.0130
0.20 | 0.0098 (0%) | 0.0104 (0%) | 0.0102
0.25 | 0.0112 (0%) | 0.0116 (0%) | 0.0110
0.30 | 0.0098 (0%) | 0.0102 (0%) | 0.0082
0.35 | 0.0098 (0.07%) | 0.0128 (0%) | 0.0112
0.40 | 0.0085 (0.41%) | 0.0106 (0%) | 0.0104

of the 6 cases. The estimated powers for T} are either higher or less than 0.01 below
the power levels of the LRT for 4 of the 6 cases.

Table 59 gives the estimated power calculations for the nominal level of o = 0.05
for the parameter choices in Simulation 3 from Table 51.

It can be seen that the LRT has the highest power in 5 of the 6 cases, but Ty
and Ty are not far behind. The estimated powers for T} are less than 0.01 below
the power levels of the LRT and the estimated powers for Ty are also less than 0.01
below the power levels of the LRT for 4 of the 6 cases.

For the second experiment, n; = 50 family score vectors from g = 3 populations
are simulated as multivariate normal random vectors. The family size for each vector
is simulated from a truncated negative binomial distribution with the number of
children ranging from 1 to 15. The mean of the negative binomial distribution is
taken as 2.84 and the success probability as 0.483 which is the estimated distribution
of U.S. births as proposed by Brass (1958). The choice of parameters is the same
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TABLE 56: Sizes, a = 0.05, Hp : p12,1 = p122 = pP12,3 = P12-
P12,i LRT T To

0.05 | 0.0270 | 0.0544 | 0.0528
0.10 | 0.0468 | 0.0614 | 0.0594
0.15 | 0.0547 | 0.0590 | 0.0568
0.20 | 0.0512 | 0.0518 | 0.0498
0.25 | 0.0548 | 0.0556 | 0.0528
0.30 | 0.0502 | 0.0524 | 0.0490
0.35 | 0.0613 | 0.0648 | 0.0596
0.40 | 0.0512 | 0.0538 | 0.0512

TABLE 57: Sizes, a = 0.10, Hp : pi121 = p122 = p12,3 = P12-
p12,i LRT T]_ TO

0.05 | 0.0600 | 0.1036 | 0.1004
0.10 | 0.1010 | 0.1146 | 0.1130
0.15 | 0.1107 | 0.1170 | 0.1136
0.20 | 0.1112 | 0.1108 | 0.1096
0.25 | 0.1088 | 0.1080 | 0.1030
0.30 | 0.1090 | 0.1116 | 0.1076
0.35 | 0.1086 | 0.1136 | 0.1096
0.40 | 0.1030 | 0.1056 | 0.1042

as in the first simulation experiment for the 3 groups. For each case of parameters,
5,000 simulations were run.

The same five different choices of p;; and po; used in the first simulation exper-
iment (Table 51) are used in this experiment with unbalanced family sizes. Tables
60-62 give the estimated size values for the o = 0.01,0.05, and 0.10 levels of for the

5 choices of parameters in Table 51 when

pras = ming V@O0 it ()]

where b; is the maximum number of sons in a family from the i* population and g;
is the maximum number of daughters in a family from the i** population.

The following observations can be made. The LRT sizes are larger than the
assumed levels. The alternative test T} is closest to the assumed level in 5 of the 15

cases, and the alternative test Tj is closest to the assumed level in 9 of the 15 cases.
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TABLE 58: Adjusted Rejection Proportions, a = 0.05, Hp : p121 = p12,2 = p12,3 = p12-
*Percent that did not converge; **Percent that violated the model constraints.

P12,1 | P12,2 | P12,3 LRT (*) /A (**) To

0.15 | 0.20 | 0.25 | 0.1354 (0%) | 0.1342 (0%) | 0.1366
0.10 | 0.20 | 0.30 | 0.3760 (0%) | 0.3690 (0%) | 0.3722
0.05 | 0.20 | 0.35 | 0.7532 (0.04%) | 0.5524 (0%) | 0.5440
0.25 | 0.20 | 0.25 | 0.0758 (0%) | 0.0750 (0%) | 0.0760
0.10 | 0.25 | 0.10 | 0.2500 (0%) | 0.2500 (0%) | 0.2500
0.05 | 0.35 | 0.05 | 0.8872 (0.01%) | 0.8788 (0%) | 0.8780

TABLE 59: Rejection Proportions, a = 0.05, Hy : p121 = p122 = P123 = P12

*Percent that did not converge; **Percent that violated the model constraints.
Pi12,1 | P12,2 | P12,3 LRT (*) T (**) To

0.15 | 0.20 | 0.25 | 0.1348 (0%) | 0.1336 (0%) | 0.1300
0.10 | 0.20 | 0.30 | 0.4080 (0%) | 0.4058 (0%) | 0.3996
0.05 | 0.20 | 0.35 | 0.7695 (0.02%) | 0.7658 (0%) | 0.7628
0.25 | 0.20 | 0.25 | 0.0804 (0%) | 0.0814 (0%) | 0.0794
(
(

0.10 | 0.25 | 0.10 | 0.3000 (0%) 0.2800 (0%) | 0.2600
0.05 | 0.35 | 0.05 | 0.8954 (0%) 0.8866 (0%) | 0.8834

When comparing T; to only the LRT, T is closer to the assumed level in 11 of the
15 cases. Similarly when comparing 15 to only the LRT, Tj is closer to the assumed
level in 14 of the 15 cases.

Tables 63-65 give the estimated sizes for a = 0.01, 0.05, and 0.10, respectively, for
the parameter choices in Simulation 3 from Table 51 when values of p;2; are within
bound.

It can be observed that all three tests generally estimate the sizes well except for
pi2,; = 0.4. The LRT tends to be larger than the assumed level while the alternative
tests vary in direction. The alternative test 73 is closest to the assumed level in 11 of
the 24 cases, and the alternative test T is closest to the assumed level in 9 of the 24
cases. When comparing each alternative test to only the LRT, both tests are closer
than the LRT in 20 of the 24 cases.

Table 66 gives estimated power calculations adjusted to the level each test at-

tained in size estimation for the nominal level of & = 0.05. The rejection proportions
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TABLE 60: SiZGS, a = 001, HO S P121 = P12,2 = P23 = Mzdpoznt

*Percent that did not converge; **Percent that violated the model constraints.

Simulation LRT (*) Ty (*%) To
1 0.0114 (2.71%) | 0.0112 (9.18%) | 0.0100
2 0.0141 (1.23%) | 0.0154 (8.33%) | 0.0126
3 0.0162 (0.75%) | 0.0096 (6.69%) | 0.0080
4 0.0129 (1.82%) | 0.0130 (5.87%) | 0.0106
5 0.0127 (2.04%) | 0.0186 (2.16%) | 0.0154

TABLE 61: Sizes, a = 0.05, Hy : p121 = p12,2 = p123 = Midpoint.
Simulation | LRT T To

1 0.0653 | 0.0492 | 0.0458
0.0636 | 0.0580 | 0.0554
0.0717 | 0.0488 | 0.0452
0.0565 | 0.0556 | 0.0522
0.0550 | 0.0560 | 0.0528

Ok W N

are based on the 95" percentiles of the test statistics from the size simulation for the
parameter choices in Simulation 3 from Table 51. For the specified parameters, the
95t percentile was 6.80493 for the LRT, 5.88769 for T}, and 5.74912 for T5 from the
simulation of Hy : p121 = p122 = pi23-

The adjusted power estimates in the unbalanced case show 7T) to have higher
powers for 3 of the 5 cases. T also has higher adjusted powers than the LRT for
these same 3 cases. For the other 2 cases, the LRT adjusted powers are higher but
not by much.

Table 67 gives the estimated power calculations for the nominal level of o = 0.05
for the parameter choices in Simulation 3 from Table 51.

The unadjusted power estimates in the unbalanced case show the LRT to have
higher powers than both alternative tests. The alternative test 7; has estimated
powers closer to the LRT than the alternative test T,. Since the estimated sizes of
the LRT were mostly larger than the estimated sizes of both alternative tests, the
LRT has an advantage when not adjusted for the size values attained for a nominal

level of o
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TABLE 62: Sizes, a = 0.10, Hy : p121 = p122 = pi23 = Midpoint.
Simulation | LRT T T,

1 0.1267 | 0.0988 | 0.0958
0.1193 | 0.1044 | 0.1000
0.1312 | 0.0960 | 0.0918
0.1179 | 0.1082 | 0.1036
0.1090 | 0.1074 | 0.1000

Gt W IN

TABLE 63: Sizes, Q = 001, H() P12, = P12,2 = P12,3 = P12.
*Percent that did not converge; **Percent that violated the model constraints.

pizi| LRT (%) T (*%) T

0.05 | 0.0118 (0.01%) | 0.0074 (2.28%) | 0.0054
0.10 | 0.0100 (0.14%) | 0.0114 (2.81%) | 0.0084
0.15 | 0.0165 (0.28%) | 0.0110 (4.06%) | 0.0084
0.20 | 0.0139 (0.51%) | 0.0126 (6.08%) | 0.0096
0.25 | 0.0185 (1.30%) | 0.0128 (9.79%) | 0.0106
0.30 | 0.0210 (2.84%) | 0.0156 (14.94%) | 0.0108
0.35 | 0.0266 (5.21%) | 0.0182 (22.53%) | 0.0136
0.40 | 0.0273 (9.35%) | 0.0248 (31.42%) | 0.0200

The percentages of non-convergence and violation constraints observed in this
simulation experiment are comparable. In practice, the alternative estimates and
corresponding test are easy to compute, although, one would need to check to see if
the calculated alternative estimates meet the model constraints before their use. If
the model constraints are violated then the LRT can be used.

When family sizes are balanced, both alternative tests compare well to the LRT,
but the alternative test Ty performs better than the 7;. When family sizes are un-
balanced, again both alternative tests compare well to the LRT. The alternative test
Ty had better size performance while Ty performed better in the power calculations.
When family sizes were unbalanced, the alternative tests violated the model con-
straints more often than the LRT failed to converged, but particulary when p;; is
close to its upper bound. In practice, the alternative estimates and both correspond-
ing tests are easy to compute. Generally, both alternative tests are recommended,

but Ty showed an advantage when family sizes are equal.



TABLE 64: SizeS, o = 005, HO S P12

P12,i

LRT

I;

To

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

0.0340
0.0407
0.0603
0.0647
0.0676
0.0712
0.0781
0.0708

0.0420
0.0482
0.0490
0.0472
0.0524
0.0620
0.0660
0.0810

0.0388
0.0446
0.0458
0.0430
0.0464
0.0576
0.0590
0.0740

TABLE 65: Sizes,

o= 010, HO - P12,1

P12,

LRT

I

To

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

0.0638
0.0854
0.1195
0.1283
0.1230
0.1296
0.1264
0.1267

0.0808
0.0916
0.0946
0.0944
0.0960
0.1138
0.1202
0.1362

0.0784
0.0858
0.0904
0.0890
0.0908
0.1058
0.1136
0.1296

= P12,2 = P12,3 = P12-

= P12,2 = P12,3 = P12-
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TABLE 66: Adjusted Rejection Proportions, a = 0.05, Hy : p12,1 = p12,2 = p12,3 = p12-

*Percent that did not converge; **Percent that violated the model constraints.

P12,1 | P12,2 | P12,3 LRT (*) Ty (**) To

0.15 | 0.20 | 0.25 | 0.0641 (0.72%) 0.0732 (6.70%) 0.0706
0.10 | 0.20 | 0.30 | 0.1344 (0.90%) 0.1330 (8.54%) 0.1324
0.05 | 0.20 | 0.35 | 0.2790 (1.57%) 0.2624 (11.43%) 0.2640
0.25 | 0.20 | 0.25 | 0.0520 (0.97%) 0.0600 (8.73%) 0.0534
0.10 | 0.25 | 0.10 | 0.0999 (0.44%) 0.1122 (5.17%) 0.1110
0.05 | 0.35 | 0.05 | 0.3423 (1.41%) 0.3214 (9.69%) 0.3186




TABLE 67: Rejection Proportions, a = 0.05, Hp : p121 = pi22 = pi123 = P12

*Percent that did not converge; **Percent that violated the model constraints.
P12,1 | P12,2 | P123 LRT (*) Ty (*%) To

0.15 | 0.20 | 0.25 | 0.0830 (0.94%) | 0.0682 (4.72%) | 0.0640
0.10 | 0.20 | 0.30 | 0.1841 (0.94%) | 0.1370 (8.23%) | 0.1282
0.05 | 0.20 | 0.35 | 0.3486 (1.60%) | 0.2574 (11.71%) | 0.2466
0.25 | 0.20 | 0.25 | 0.0705 (1.50%) | 0.0654 (5.11%) | 0.0608
0.10 | 0.25 | 0.10 | 0.1318 (0.31%) | 0.1044 (5.02%) | 0.0960
0.05 | 0.35 | 0.05 | 0.4324 (1.30%) | 0.3240 (9.75%) | 0.3066




88

CHAPTER 1V

PARENT INTERCLASS CORRELATIONS

IV.1 INTRODUCTION

In this chapter we consider interclass correlations between the parent and sons and
between the parent and daughters in a family. The problem of interest is to test the
equality of these dependent interclass correlations. Suppose data on a parent and
the children of n randomly selected families are available from one population. The
number of boys and girls in each family is allowed to be different. Denote the number
of sons and daughters in the 3t* family as my; and my;, respectively, fori =1,...,n.
Suppose Ty, ¢ = 1,...,n is the observation on the parent of the i** family. Also,
suppose Ty, j = 1,...,my; 4= 1,...,n is the observation on the j** boy of the **
family. Similarly, z;, 7 = 1,...,mg; @ = 1,...,n is the observation on the j** girl
of the i** family.

Assume that the expected value of the parent observations is E(zp) = pp, the
expected value of the son observations is E(zy;;) = p1, and the expected value of
the daughter observations is E(z2;;) = po. Assume that the variance of the parent
observations is Var(zy) = 012,, the variance of the son observations is Var(zy;) = 0%,
and the variance of the daughter observations is Var(zs;;) = oZ. Denote the parent-
son interclass correlation as p,; and the parent-daughter interclass correlation as
pp2. Assume for each family Corr(zp,z1;) = pp and Corr(zp, T2;) = ppe for
all j. Additionally, denote the son-son intraclass correlation as p;, the daughter-
daughter intraclass correlation as p,, and the son-daughter interclass correlation as
p12. Assume for each family Corr(zyj,zuy) = p1 for 7 # 55 1 < 5,5 < my,
Corr(xaij, Xaijr) = pe for j # 75 1 < 4,5 < mo;, and Corr(ziij, Tujr) = pi2 for all
5,73 1<j<myand 1 <j < my.

Let the vector of observations on the i** family be
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/Ipi\

T1i1
Tpi
X; = X1 = Tlimy;
X2i T2i1
\ -’E2im2,~ )
with
Hp
Ex)=pmi=| mlm, |,
/J'217nzi
and
VG/I'(X,') = 2,‘
Ug pplapallinh- pp2apa21;712i
= Pp10p01 1m1i U%{(l - Pl)Imu + lemu} p120102Jm1ixm2i ’
pp2apa21m2i p120-10-2']m2i7m1i 0‘%{(1 - pZ)Imzi + p2Jm2i}

where I, is an identity matrix of order m, J,, is the m x m matrix of all ones, and
Jmn is the m x n matrix of all ones. Note ~o00 < u, < 00, —00 < 3 < 00, and
—00 < g < 00.

If a family consists of both sons and daughters, my; > 0 and my; > 0, then the

determinant of X; is
IZi| = o2oi™edm (1 — p)™ (1 — o)™ e
)
ppl

— P~

2
1iM2i  Pp2

a; m
x |1-— (my + E;mfi) + 2pp1Pp2p12 -

where

a; = maply — p1(l+ (ma — 1)p2),
b = muply — po(l + (my —1)p1),
¢ = (14 (my—1)p1)(L + (ma — 1)p2) — mumaipts.
Restrictions on the parameters so that X; positive definite are 62 > 0, 07 > 0, 05 > 0,

P1<1,P2<1,

(14 (my; — D)p1)(1 + (mg; — 1)pa) > mysma;pls, (19)
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and

a; 1M, P 2 b;
-, (ma; + ém%i) — 2pp1pp2pr2 ;_ + 1 pz(m% + c,m2’) <L (20)

If my; > 0 and mo; > 0, then the inverse of 3; is

D; E; F;
Ei'l =| E G H,; [,
where
D, - 1 [1 N maippdi + maiplpei — 2maimaipp pra(p12 — p”lp’ﬂ)]
gg d;e; — mumzi(pu - pplpp2)2 ’

_ MaiPp2(P12 — Pp1Pp2) — Ppi€i ’

E,‘ = 1m1"
al,,cfl(d,ez m11,m2z(P12 - pplpp2) ) '

F. - m1ipp1 (P12 — Pp1Pp2) — Pp2di 1
¢ op02(die; — m1Ma;i(pr2 — Pp1Pp2)?) e

G; = _1— [I _ ei(pr — Pf;l) — mai(p12 — Pp1Pp2)* }
1 afl—p) [ die; — mumai(pr2 — ppp2)® )
—(py2 —
H, = (P12 — Pp1Pp2) o

0102(di6i — M7y (p12 - pplpp2)2)
1 di(P2 - ;012;2) — My (P12 - pplpp2)2 ]
mo; k)

Ki = —— |Ln,, —
U%(l - p2) [ ™ die; — maumoi(pr2 — pplpp2)2

and

di = 14 (mai —1)p2 — maiply,

I

€; 1+ (mli - 1)p1 - mh-pf,l.

However, these expressions simplify quite a bit if a family consists of only daugh-

ters, my; = 0. The determinant of 33; is then
|| = 020572 (1 — po)™ M1 + (mas — 1)p2 — masply),

and the inverse of ¥; is

1+(mo;—1)po —pp2 1,
2.-'1 — a§(1+(m2,-—l)p2—m2,»p§2) Up02(1+(m2,-—1)p2——m2,-p22) mei
—Pp2 1 _ I _ P2 sz ,]
opo2(l+(mai—1)pa—maip2,) = M2 Ui(l-pg m2i T TH(mai—1)pa—maipy ¥ M2

Similarly, if a family consists of only sons, my; = 0, then the determinant of X; is

=] = 0307™ (1 = p1)™ (L + (myi — 1)p1 — muiply),



and the inverse of X; is

14+(mys—1)p; —pp1 ’

1
2‘1 — ‘7%(1+(m1i_1)91_m1ip?,1) a'pdl(1+(mli—1)P1—m1ip21) mii
i —Pp1 1 1 I . P1—Pp J
opo1(1+(m1i—1)p1 —maspl,) ~ M oZ(1-p1) |“™ai 1+(m1i“1)91—m1il’§1 M1

IV.2 LIKELITHOOD FUNCTION
Assume that x; ~ Ny, pmoit1 (B3, 25), 1 =1,...,7n. Let

4
0= (#py#l;ﬂ270;2;; 0.%7 0%7 P11P27P12:Pp1:pp2)

then

L(6) =1L, Li(6) =IT : 3 Cei—pne) 57 (=)

i=1 (27r)(7"11"*""2i+1)/2|2i|l/‘«’(3 2

and
log(L(6)) = Zlog(Li(o».

If my; > 0 and my; > 0, then

mi; ma;

1
log(L;(0)) = —§log(27rcr§) - log(2ma?) — 5 log(2ma3)
1 1
= g(mi = Dlog(1 = p1) = 7 (mai — 1)log(1 — p2)
1
- ilog [(1+ (my — 1)p1) (1 + (ma; — 1)p2) — magmaiply)

1 p21 a; mM1iMo;
— Zlog|1—--L2 L+ —mi;) +2 —
5109 [ T (my + - my;) + 2pp1Pp2p12 -

2
pp2 bz 2
1 _ p2( 2i ¢ 21)]

1 -
- i(xz - Hi)lzi I(Xi — i)
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Tpi
! 14
Note x; = x1; |, where x;; = (1, -+, T1imy,) and X = (Zost, - -+, Toimy; )

Xo;
therefore

(i — i) B (%5 — pai)
D; E; F; (Tpi — Hp)
[(mzn - :u';D) (xli - :U’llmu), (X2i - /"21"12:‘),] E; G; H; (xli — H1 lmli)
F; H: K'i (x2i — M2 1m2i)

(Tpi — p1p)*Di + (Tpi — p) (X1i — p11my,)'E;
(%pi — pp)(X2i — oLy ) Fi + (Tpi — pip)Bi(%1s — p1lmy,)
(Xli - lu'llmu)lGi(xli - ,ullmu) + (x2i - /1’2177121‘,)/H;(x1i - ;U'llmh')

(Zpi — p)Fi(Xoi — palimg) + (X1i — p1 Loy, ) Hi(xai — palimg,)

+ + o+ +

(%2i = p2lmy, ) Ki(x2i — piolmy,)-
If my; = 0 and my; > 1, then
log(Li(60)) = —%longaf, - %log@ﬂ'ag) - %(mgz — 1)log(1 — p2)
- —;-log(l + (mai — 1)pa — myiply)
1+ (mg — 1)p2

2
— x . —
20‘12,(1 + (mzi - l)pg - mzipgz)( v /J'p)

pp2 ,
: — 1) (X2 — H2Limys) Loy
i 20p02(1 + (Mg — 1)p2 — maipls) (Tpi — pp) (X2 — polmy,) Ly,
Pp2 ,
Tpi — Hp) Ly, (X2i — p2lm,,
+ 20,05(1 4 (mg; — 1)p2 — m2ip§2)( pi = Hp) Ly, (X2i — p121my,)

1

2

P2 — Pp2

o (xpi— piali) L — 2
20_%(1 _ p2) (xz'l /’Lz 21) [ mai 1

+ (magi ~ 1)p2 — maipp,

mag

X (Xg,‘ - /"21"121‘)'

In the case my; = 0 and mg; = 1, then

1 1
log(Li(8)) = ~Hlog(2ra2a?) — Slog(1 — £
1 2 1 2
— m . — —_ x ’i —
20— T T Ay )
+ i )(xm' — pip)(T2i = pa)-

opo2(1 — P1272
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Similarly, if my; > 1 and mo; = 0, then
1 9 mi;
log(Li(0)) = —-510927er — Tlog(Qﬂal) — —(mh- — 1)log(1 — p1)

1
- Elog(l + (my; — 1)py — mh-ppl)

_ 1+ (mi — 1) (26 — 1)
202(1+ (ma — Dpr —muply) 0 TP

ppl ,
+ Tpi — X1i — p1lmy,.) Lomy,
20,01(1 + (my; — 1)p1 — mlipf)l)( pi = p) (¥1s = p1lmy,) I,
Ppl
+ : ( l‘l’p) mii (xh' iu’llmli)

20p01(1 —+ (mli — 1)p1 mhppl)
P1— Py ]
1+ (my = )pr —mupd,

1
- (%1 — 11m,) Iy, —
20_%(1 _pl) (Xl lul 11) [ 1i

X (xli - ,ullmu)a

and if my; = 1 and mo; = 0, then
: 1
log(Li(8)) = —3log(2mayat) — ~log( - P5)

L 1
—_— . — H _——_—_—
200(1—pp) " T 208(1 = pfy)

. Pt
—F _ (z T1i
apal(l _ppl)( pi “P)( 1 :u‘l)

The likelihood function L(@) or log(L(@)) can be maximized to ob-
tain @, the maximum likelihood estimator (MLE) of . Let § =

(xu - #1)2

(fip» 11, ,[Lg,&g,6%,&%,ﬁl,ﬁ2,ﬁ12,ﬁp1,ﬁp2)'. Suppose we are interested in testing the
hypothesis that the two interclass correlation coefficients between the parent and
children are equal, that is, Hy : pm = pp2 = pp (say). Under Hy, 6 =
(up,ul,pg, , 03,02, p1, P2, P12, Pp, Pp)’- The likelihood function, L(6) or log(L(8))

can also be ma.xmnzed under the null hypothesis Hy : pp1 = pp2 to obtain 6o.

IV.3 LIKELIHOOD RATIO TEST

The likelihood ratio test (LRT) for testing Hp is to reject Hyg for large values of
LRT = 2logL(6) — 2logL(6y). (21)

This test statistic has a x? asymptotic distribution with 1 degree of freedom.
This test depends on the computation of the maximum likelihood estimates which

have to be obtained numerically as described above. This procedure requires good
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initial values of the parameters, which could be selected as the alternative estimators
provided in the following sections. Further, as noted in previous chapters, non-

convergence is an issue making it harder to obtain estimates in some situations.

IV.4 CANONICAL TRANSFORMATION

Similar to the previous chapters, we apply a canonical transformation to the familial
data reducing the variance-covariance structure of the model. This provides trans-
formed data that can be easily used to estimate the model parameters, as will be

seen in the next section.

Zpi Hp
Recall, x; = | x;; | hasmean pu; = | u;1,,, | and variance matrix
X2i ,u21m2,-
2 1/ 1I
Op Pp10pT1in,, Pp20p021,,,
Li=| pnopoilmy; 0P{(1 = p1)Lny + p1Imy} P120102T my; my,
pp20'p0'21m2i pl?ald?szi,mli 0'%{(1 - p2)1m2i + p2Jm2i}
Let
1 O;nlf 0”"’”21
I‘iy(mli+m2i+lxm1i+m25+l) = Omu Ty Omu,mzi 3
01712: 0m2i1m11 r2z
where
1 1 1 1
([ i m“‘; )
1 -1
7 7 0 0
1 1 =2
Ty = v v 76 ;
1 1 1 . —(mu—l)
\ Vmi(mu-1)  fmi(mi—1)  /mi(m-1) Vvmui(mii—1) )
1 1 1 1
( mo; mai ma; T mog \
1 -1 0
V2 V2
1 1 —2
Ty = 76 I 76 " 0 ,
—(m21_1)

1 1 1 ..
\\/77121'('”12:'—1) Vmai(mai—1)  y/mai(mai—1) y/ma2i(m2i—1) )
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0,, is the m x m matrix of all zeros, and 0,,,, is the m x n matrix of all zeros.
Transform the family scores by making a Srivastava type transformation to create

yi, the transformed vector of family scores,

= Omh- Fli Omli,m2i X1

0m2i Om2i yMai F2i X2i

Tpi
=1 Iuxy

Loixa;
The expected value and variance of the transformed parent scores are still
E(ypi) = pp and Var(yy) = o2.
But now, the expected value of the transformed son vector is

H1
0

E (Yh') = . ,
0

and the variance matrix of the transformed son vector is

Var(yu) = 0il1(( ~ p1)lmy, + p13m, )T

1+ (mi~Dp) 0 0
_ 0 A1-p) o0
0 0 - oi(l—p1)

Similarly, the expected value of the transformed daughter vector is

H2

0
E(Y2z) = . ’



96

and the variance matrix of the transformed daughter vector is

Var(yz) = 0302%((1 — p2)lmg, + podmy, )Ty

305(1 4 (mai — 1) p2) 0 e 0
0 o3(1—p2) --- 0
0 0 e 03(1 - p2)

The covariance matrix between the transformed son vector and the transformed
daughter vector is

'
Cov(y1i,¥2i) = 0102012716 my;me T

‘10 --- 0
00 --- 0
= 0102p12
00 --- 0

mii,M24
Further, the covariance vector between the transformed son vector and the parent
score is
Tp01Pp1
0
COU(Yliaypi) = . )

0
and the covariance between the transformed daughter vector and the parent score is

Op01Pp2
0
Cov (}’21'7?};:1‘) =

0
Note that only the transformed parent observation, the first transformed son obser-
vation, and the first transformed daughter observation, namely yp;, ¥1:1, and Y21, are

Ypi Hp

correlated. Also, | 15, | is a tri-variate normal with mean | p; | and variance-

Yai1 s
covariance matrix
2
Op Op01Pp1 Gp02fp2
12
0p01Pp1  7=01(1+ (M1 — 1)py) 010212 . (22)

OpO2Pp2 0102012 ,%2,.05(1 + (mg; — 1)p2)
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The observations ¥y, %11, and y2; are also independent of Yi,...,Y1my ~
N(01 O'%(]. - .01)) and Y22, - - - y Y2img; ™ N(O; 0'%(1 - P2))-
In terms of xy; and xo;,
Y11 = ;1; szli Tiij, Yoax = m—lz,; Zmzi Togj-
One can see that the first transformed son score, 4141, is the average of all the boy

scores of the family, as well as the first transformed daughter score, that is yo;; is the

average of all the girl scores of the family. Hence,

1 1 n 1 mi;
Y = Zz 1910 = 5 Zi=1 mi Z j=1 T1ij)

and

— 1 n L1 n 1 mo;
Poir = 5 21 Y2l = 7 Din1 gy Dt 20
The average of the first transformed son scores is an average of the mean son score

for each family. Similarly, the average of the first transformed daughter scores is an

average of the mean daughter score for each family. Also,

mig
Zyij = (T1i2,-- - Ftimy;) Tils (Ti2, - -+ Ttimy;)
=2
’ 1
== (.'1,'11'2, L axlimh’) (Imli - —-—-—Jm”) ('Tli2a .. 7x1im1.')
mii
miy; myq

= Z "1"113 (Z .’L'h])

and

ma;

Z ygij = ($2z'2, c. ,xzimz,-)l I‘ZI‘i (172@'2, ces am2im2i)

1
- (1.21:2, . 7x2im2,-)' (Img,- - __sz,') (.T2i2, ... a$2im2i)
Mmai
mag ma;i

_ 2
= E :$213_ E :'T2'U)

The sum of squares of the “left-over” transformed son scores, Y12, - . . , Y1im,;, for a
family can be written in terms of the second through last son of the family. Similarly,
the sum of squares of the “left-over” transformed daughter scores, y2:2, - - . , Y2imy;, fOr
a family can be written in terms of the second through last daughter of the family.
In order to simplify the transformed model, let the variance matrix of the trans-

formed family vector be



0'p1

LXCi= | 04,1

L Oin—l

where

J12

Op1 07 -1 Op2 0,1

Uit 001 012 O;nz,-—l
Omh’—l ’Y%Imu—l Omu—l Omu—l,mm—l

012 0.—1 5 01
Omzi—l Omu—l,mzi-—l Omzr-l V%Imzi—l

OpU1Pp1,
Op020p2,
o2 (1 + (my; — 1)py) /mas,
a3 (1 + (ma; — 1)pa) [ma,

0%(1 - ,01),
0‘%(1 - ,02),
0102p12.
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Note n%; = 02—ay;7? and n%; = 02—a27Z where ay; = 1-mj;! and ag; = 1-mj;!. Also,

there is a 1-1 transformation from the old parameters to a new set of parameters.

Namely,

§1 = 99
52 = 3

§2 = =5

IV.5 ALTERNATIVE ESTIMATORS

The transformed familial data has good distributional properties from which alter-

native estimators can be constructed that do not require a maximization procedure.

Let n; = number of families with my; > 0, nz = number of families with my; > 0,

and ni2 = number of families with my; > 0 and ms; > 0. Recalling that alternative

estimators for familial data consisting of only sons and daughters were constructed

in the second chapter. These estimators can be applied in this chapter as well. Both

sets of alternative estimators performed well in the simulation experiments; a disad-

vantage of the second set of alternative estimators is the requirement that my; > 2
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and moy; > 2, but the second set of alternative estimators has better distributional
properties that make estimating p; and p. easier. For familial data including a par-
ent observation, our proposed alternative estimators start with a combination of the
two previously proposed sets.

An unbiased and consistent estimator of 4?2 is

~2 Z z"—l-li ylzj

no= Y (mi — 1)

Similarly, 72 can be estimated by

~92 Z Z’m_z; yZz ¥

7T T (g 1)

Take an unbiased estimator of ;5 as

(Y1a — T11) (Wair — T31)
O12 = Z s — 1

?

where g5y = 3271 Y11 /mae and F3 = 377 Yaa /112, since
Y1i1 H1 7):12- J12

~N , ! R .
Yai1 M2 g12 73

07 = 7 ik (v — ynn)? + AT (0 an),

Estimate o7 by

and estimate o2 by
&% = ﬁ 221 (Y201 — Z/§1)2 + ;2'722(27; az).
From these, other estimators are
o= 1-(3/3),

p2 = 1“(72/‘73)
012

P12 = ——=-
0102

Estimate p; and p» using a second transformation as was done in the second set
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of alternative estimators in Chapter II, (9) and (10).

mi4
B o= — Z {Um - = th]}
i=1

1
= — Y141,
™4
mo;
B = —z[ym— _zy%}
i=1

E g?il-
Ng “—
j=1

Estimate p, and 012, by the standard unbiased estimators

1 n
by = ;L‘Zypi =Up
i=1

1 n
...2 _ - 2
P o1 ;(ypi yp) -

Then oy, and o, can be estimated by

Op1 = m—1 Z D) (i1 — 1)

and
.1 & @ -
Op2 = E :(yzn Yp ) (Yai1 — F1),
ny —1 i=1
where

1 &
oy L ,
75 m;ym,

1 &

=2 — .

75 - ; Ypis

_ 1 o

. = — Y1i1,
™o

_ 1 &

Y1 = — Yai1.
U]
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Finally, estimates of pp and p,s are

Opt
~ P
Ppl = =T =
p01
and
Op2
~ _ Op
Pp2 = — =
0p01

These alternative estimators are easier to implement than the MLEs. However,
as before, it is possible for the alternative estimators to violate the model constraints,
(19) and (20).

IV.6 VARIANCE OF ALTERNATIVE ESTIMATORS

In this section, the asymptotic variance of the alternative estimators is derived in
order to construct alternative tests for testing the null hypothesis that the parent-son
correlation equals the parent-daughter correlation, Hy : pp1 = pp2 = pp.
In order to find the asymptotic distribution of g1 and pp2, the distribution of the
sample covariance matrix for
Ypi
Yi= | Ya
Y2u1
is needed. Using the distribution of y; given in (22) and the distribution of the sample
covariance matrix as shown in Appendix A.3, one can find the following asymptotic

distributions needed for the variance and covariance of pp1 and ppe

Op1 — Opl
5’;,2 — Op2
Vi | 62—02 | = N(0,%,),
a1 — o}
o3 — 0}
where
%(031 + 012,0%)\1) %(Upldpz + 012,012) af,opl Moiop1  Op2012
%(Upldpz + 0'}2,0'12) %(0’32 + 0'30'%/\2) 0'1270'1,2 0p1012 /\20'ng2
x,=2 020p 00 o o o ,
Alafapl Op1012 0,2;1 dof ot
| Op2012 )\205 012;2 ‘7%2 C%”%
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and where
niz ni2 niz
d=1-201-p)ng > au+(1—p) lnle > af+ (my — 1) (g Zah‘f} :
i=1 =1 =1

ni2 ni2 n12
G=1-21-p)ng Y az+ (1 - pp)° ["le > oaki+ (e~ 1) g Y (121')2] ;
i=1 i=1

i=1
niz

M =1-(1=p)nis Y au,

j=1
ni2

do=1—(1-po)ngy Y au,

=1
n12

iy = Ny me
j=1
ni2
Mo = n1—21 Zmzi.
j=1
Therefore using the delta method,
AV (pp1) = - [Pzn + P (501 —2M - 5) + )\1]
AV () = — | oty 4 5% (2B — 22 — &
V(pp2) = ™ Pp2 + Pp2 §C§ —2h -3 + A2

and Cov(pp1, fp2) =

1 9 1 1, 2 1 3 1,
"o Pi2 = P12fp ~ 5Pp1Pp2 t 5P e — P12Ppa T 5P P T 5P 12Ppi P2 | -

Let A~V(ﬁp1) be the estimated AV(j5,1) obtained by substituting the alternative
estimators j; and j, for the unknown parameters. Let AV(f,2) be the estimated
AV (pp2) obtained by substituting the alternative estimators p, and ppe for the un-
known parameters. Also, let C~ov( Pp1, Pp2) be the estimated Cov(pp, fp2) obtained by

substituting the alternative estimators pi2, pp1, and pyy for the unknown parameters.

IV.7 ALTERNATIVE TEST

The test we propose is

~ ~ 2
Pp1 — Pp2 2
TS = ——) ~ 23

(S-E‘(ppl_pzﬂ) X 23
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where
S.E.(pr — pz) = AV (Bp) + AV (ppa) — 2C0ov(Bp1, fpa)-

TS is easier to implement than the LRT.

IV.8 SIMULATION EXPERIMENT AND RESULTS

Both tests are expected to behave similarly for large sample sizes, since they both
have an asymptotic chi-square distribution with 1 degree of freedom. To compare the
performance of the tests a small sample simulation experiment was performed. In this
experiment, 50 family score vectors consisting of a parent score and children scores
were simulated as multivariate normal random vectors. As was done in the previous
simulation experiments, the number of children in each family is simulated from a
truncated negative binomial distribution ranging from 1 to 15 children per family.
The parameters of the negative binomial come from the estimated distribution of
U.S. births with a mean of 2.84 and the success probability as 0.483 (Brass 1958). A
discrete uniform distribution was used to assign gender to each child. The arbitrary
choices of parameters were , = 0,41 = 0,2 = 0,02 = 1,0 = 1.5,0% = 2,p, =
0.7, p2 = 0.3, and p;2 = 0.1. Values of p,; and p, ranged from 0.1 to 0.5 in increments
of 0.05 and 0.1. Only positive values of the interclass correlations were simulated
because the model constraints restrict possible negative values based on parameter
choices and family size.

For each choice of parameters, 10,000 simulations were run and estimated size
and power values were computed for testing Hy : pp1 = pp2 = pp. The a = 0.01
size table and rejection proportion tables provide the percentage of simulations for
which the maximum likelihood procedure did not converge and the percentage of
simulations for which the alternative estimates violated the model constraints (19)
and (20).

Tables 68-70 give the estimated sizes for & = 0.01,0.05, and 0.10, respectively.

From the tables, we can see that both the LRT and TS estimate the assumed level
reasonably well, but the alternative test TS clearly performs better, as TS is closer
to the assumed level in 21 of the 24 cases simulated. As p, increases the performance
of the LRT decreased, but TS continued to perform well.

Tables 71-74 give estimated power values adjusted to the level each test attained

in the size calculations. For each table, the rejection proportions are based on the
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TABLE 68: Sizes, a = 0.01, Hy : pp1 = pp2 = pp-

*Percent that did not converge; **Percent that violated the model constraints.

P LRT (*) TS (**)

0.10 | 0.0083 (3.76%) | 0.0123 (2.73%)
0.15 | 0.0119 (2.31%) | 0.0116 (2.81%)
0.20 | 0.0116 (1.94%) | 0.0094 (3.18%)
0.25 | 0.0144 (1.96%) | 0.0111 (3.74%)
0.30 | 0.0134 (3.63%) | 0.0105 (4.83%)
0.35 | 0.0139 (6.60%) | 0.0120 (7.50%)
0.40 | 0.0185 (12.53%) | 0.0099 (10.96%)
0.45 | 0.0317 (27.38%) | 0.0106 (19.90%)

TABLE 69: Sizes, a = 0.05, Hy : pp1 = pp2 = pp-
pp | LRT | TS

0.10 | 0.0447 | 0.0486
0.15 | 0.0529 | 0.0455
0.20 | 0.0565 | 0.0459
0.25 | 0.0596 | 0.0468
0.30 | 0.0569 | 0.0482
0.35 | 0.0578 | 0.0502
0.40 | 0.0624 | 0.0449
0.45 | 0.0788 | 0.0551

95" percentiles of the test statistics from the size simulations for the value of Ppl-
For example, Table 71 shows the proportion of simulations for which the test statistic
LRT is greater than 3.60548 and TS is greater than 3.68883.

The tables show the alternative test TS to perform better than the LRT in 15 of
the 20 estimated powers. In the other 5 cases, the estimated powers for TS are not
far behind that of the LRT.

Tables 75-78 give the estimated powers for a nominal level a = 0.05.

Here the powers of the alternative test TS were not as favorable compared with
the LRT, but the alternative test TS was closer to the assumed level in the size
calculations and the LRT’s estimated size tended to be larger than the corresponding
estimated size for TS. Because of this, estimated powers for the LRT are expected

to be larger than the estimated powers for TS when not adjusted for the size each



TABLE 70: Sizes, a = 0.10, Hy : pp1 = pp2 = pp.

pp | LRT

TS

0.10 | 0.0880
0.15 | 0.0992
0.20 | 0.1105
0.25 | 0.1103
0.30 | 0.1076
0.35 | 0.1104
0.40 | 0.1147
0.45 | 0.1264

0.0896
0.0889
0.0946
0.0939
0.0939
0.0972
0.0974
0.1098
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TABLE 71: Adjusted Rejection Proportions, a = 0.05, Hy : pp1 = pp2 = pp, pp1 = 0.1.

*Percent that did not converge; **Percent that violated the model constraints.

pp2

LRT (*)

TS (*¥)

0.1
0.2
0.3
0.4
0.5

0.0447 (3.76%)
0.0754 (2.48%)
0.1924 (4.48%)
0.3848 (12.69%)
0.6413 (41.01%)

0.0486 (2.73%)
0.0684 (3.08%)
0.1667 (5.55%)
0.3526 (10.31%)
0.7337 (22.89%)

test actually attained.

The percentages of non-convergence and violation constraints observed in this

simulation experiment are comparable. In practice, the alternative estimators and

corresponding test are easy to compute. Generally, the alternative test TS performs

better than the LRT in the simulation studies so is recommended.
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TABLE 72: Adjusted Rejection Proportions, a = 0.05, Hy : pp1 = pp2 = pp, Pp1 = 0.2.

*Percent that did not converge; **Percent that violated the model constraints.

ppz| LRT () TS (**)

0.1 | 0.0835 (2.11%) | 0.0906 (2.55%)
0.2 | 0.0565 (1.94%) | 0.0459 (3.18%)
0.3 | 0.0819 (3.67%) | 0.0807 (5.58%)
0.4 | 0.1875 (12.07%) | 0.1985 (9.77%)
0.5 | 0.3747 (39.25%) | 0.4836 (23.01%)

TABLE 73: Adjusted Rejection Proportions, a = 0.05, Hy : pp1 = pp2 = pp, Pp1 = 0.3.

*Percent that did not converge; **Percent that violated the model constraints.

Pp2 LRT (*) TS (**)

0.1 | 0.1833 (1.11%) | 0.1794 (2.32%)
0.2 | 0.0880 (1.43%) | 0.0881 (3.11%)
0.3 | 0.0569 (3.63%) | 0.0482 (4.83%)
0.4 | 0.0792 (11.65%) | 0.0886 (10.24%)
0.5 | 0.1760 (38.08%) | 0.2477 (23.89%)

TABLE 74: Adjusted Rejection Proportions, a = 0.05, Hy : pp1 = pp2 = pp, pp1 = 0.4

*Percent that did not converge; **Percent that violated the model constraints.

Pp2 LRT (*) TS (**)

0.1 | 0.3704 (1.05%) | 0.3958 (2.81%)
0.2 | 0.1983 (2.03%) | 0.2135 (3.37%)
0.3 | 0.0954 (4.09%) | 0.1068 (5.12%)
0.4 | 0.0624 (12.53%) | 0.0449 (10.96%)
0.5 | 0.0776 (42.93%) | 0.1291 (26.78%)

TABLE 75: Rejection Proportions, a = 0.05, Hy : pp1 = pp2 = pp, pp1 = 0.1.

*Percent that did not converge; **Percent that violated the model constraints.

Pp2

LRT (*)

TS (*¥)

0.1
0.2
0.3
0.4
0.5

0.0447 (3.76%)
0.0849 (2.48%)
0.2107 (4.48%)
0.4073 (12.69%)
0.6627 (41.01%)

0.4865 (2.73%)
0.0749 (3.08%)
0.1761 (5.55%)
0.3679 (10.31%)
0.7561 (22.89%)




TABLE 76: Rejection Proportions, a = 0.05, Hy : pp1 = pp2 = pp, pp1 = 0.2

*Percent that did not converge; **Percent that violated the model constraints.

Pp2 LRT (*¥) TS (**)

0.1 | 0.0913 (2.11%) | 0.0811 (2.55%)
0.2 | 0.0565 (1.94%) | 0.0459 (3.18%)
0.3 | 0.0908 (3.67%) | 0.0717 (5.58%)
0.4 | 0.2032 (12.07%) | 0.1773 (9.77%)
0.5 | 0.3949 (39.25%) | 0.4508 (23.01%)

TABLE 77: Rejection Proportions, a = 0.05, Hy : pp1 = pp2 = pp, pp1 = 0.3.

*Percent that did not converge; **Percent that violated the model constraints.

Pp2 LRT (%) TS (**)

0.1 | 0.1970 (1.11%) | 0.1623 (2.32%)
0.2 | 0.0961 (1.43%) | 0.0771 (3.11%)
0.3 | 0.0569 (3.63%) | 0.0482 (4.83%)
0.4 | 0.0867 (11.65%) | 0.0770 (10.24%)
0.5 | 0.1894 (38.08%) | 0.2206 (23.89%)

TABLE 78: Rejection Proportions, a = 0.05, Hy : pp1 = pp2 = pp, pp1 = 0.4.

*Percent that did not converge; **Percent that violated the model constraints.

pp2

LRT (*)

TS (**)

0.1
0.2
0.3
0.4
0.5

0.4136 (1.05%)
0.2284 (2.03%)
0.1133 (4.09%)
0.0624 (12.53%)
0.0918 (42.93%)

0.3523 (2.81%)
0.1804 (3.37%)
0.0886 (5.12%)
0.0449 (10.96%)
0.1024 (26.78%)
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CHAPTER V

CONCLUDING REMARKS AND FUTURE WORK

In this thesis we have considered the problem of studying the relationships between
various members of the family, namely, son-son, son-daughter, daughter-daughter,
parent-son, and parent-daughter when families are allowed to have different numbers
of boys and girls. We also considered the analysis of data on families coming from
different independent groups. Both estimation and testing of hypothesis problems
are considered using methods based on maximum likelihood and certain alternative
estimators. The alternative estimators are obtained using canonical transformation
of the data. Galton’s data is used to illustrate some of the methods that have been
developed. Maximum likelihood based tests are compared with the tests developed
using transformed data using simulations. In most cases, the alternative tests that
we have proposed do quite well compared to the likelihood ratio test. Since the alter-
native estimators and their corresponding tests are easy to compute we recommend
using them in practice.

Our future investigation involves exploring the analysis of familial data when we
have very large family sizes and very small number of families, as in gene expression
data. Assuming that each blood serum sample is a family and the genes are the
children, the problem is to study the correlations between various genes. Recently,
numerous papers have explored the use of intraclass correlation in bioinformatics.
For example, see Pellis et al. (2003), Dobbin et al. (2005), and Tan et al. (2008). A
careful study of application of intraclass and interclass correlations in the situation
of high dimensional data is to be done and our future plan is to explore this area of

application.
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APPENDIX A

MULTIVARIATE NORMAL DISTRIBUTIONS

In order to determine the variance of the alternative estimators proposed in Chapters
IT and IV, we need the following results on the distribution of a sample covariance

matrix from a multivariate normal random sample.

A.1 SAMPLE COVARIANCE MATRIX DISTRIBUTION

Assume Y,Y,,...,Y, are independent multivariate normal random vectors with
mean p and covariance matrix 3. The p x p sample variance-covariance matrix is
defined as

1 & _ _
Z(Yi -Y)(Y:-Y)

i=1

n—1
where

Y =

S|

Z Y..
i=1
Suppose Spxp = (818 ... Sp) where S; is the it* (p x 1) column vector of S, then
S:
Sy
vec(S)p2x1 = : ,
Sp

and vech(S) is the ﬂ%ﬂl x 1 vector of non-redundant elements of S.
For any sample variance-covariance matrix of the same form, the Duplication

matrix D, is a p? x 22 matrix such that
Dpvech(Spxp) = vec(S).
From multivariante normal samples, we have
v/n(vech(S) - vech(X)) — N(0,A)
where

A = 2AD})(S DD},
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D = (D,D,)'D,,

4

and ® is the Kronecker product between the two matrices.

Details will be worked out for the 2 x 2 and 3 x 3 cases.

A.2 BIVARIATE SAMPLE COVARIANCE MATRIX DISTRIBUTION

For the 2 x 2 case, Y; = ( Y ) and
Y2i

Su Sz
S x2 = = S S .
o (Slz 322) (s 8:)

Sll
’UCC 4><1 ( 512
512
822

Su
vech(S)sx1 = | Si2

S22

We have

and

We can see that Dyvech(S) = vec(S) for

1 00

010
Dyaxs =

010

0 01

Then,

1 00
D,D,=|0 2 0

001

3x3



Hence,
0 00
D=0l 1o |,
0 0 01
3x4
2®2=<0n 0’12)®(011 012)
12 092 012 022
011011 011012 012011 012012
__ | 01012 011022 012012 012022
012011 012012 022011 022012
012012 012022 022012 022022
and
202, 2011012 202,
A= 2011012 01022+ 03y 201202
20%2 2012099 20%2
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A.3 TRI-VARIATE SAMPLE COVARIANCE MATRIX DISTRIBU-

TION
Y
For the 3 x 3 case, Y, = | y | and
Ysi
Su Sy
Saxz = Sz S
S13 Sas
We have
vec(S)ox

J
w
I

( S

S].Z
SIS
SlZ
1= S22
Sa3
S13
S23
\ S

(s1 S, s3).
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and

[ S )
Sl?
513
SZ?

Sa3
\ 5 )

vech(S)ex1

vec(S) for

We can see that Dyvech(S)

(100000

——
o O 0o o o0 o o -
o O OO - O —H O
SO O O +H O O o ©
o - O o o +H O O
~ O 4 O O o O O
O O O o O O o ©o
K

Il

©

X

23

DP

6x6

020000
002000

(10000 0)
000100

000020
\000001)

Then,



Hence,

( 011011
011012
011013
012011
= 012012
012013
013011
013012

K 013013

and A =

( 201
2011012

2
2015

\ 202,

YY=

011012
011022
011023
012012
012022
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013012
013022

013023

2011012

2
011092 + 07y
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2013093

Il

o O O O O =
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