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ABSTRACT 

A STUDY OF RELATIONSHIPS BETWEEN FAMILY MEMBERS 
USING FAMILIAL CORRELATIONS 

Corinne Wilson 
Old Dominion University, 2010 
Director: Dr. Dayanand Naik 

Familial correlations measure the resemblance between family members and are used 
in many fields of study including epidemiology, genetics, heredity, and psychology. 
Here, an analysis of familial correlations where male and female children of the same 
family can have different correlations in the unequal family size case is presented. 
First, three likelihood based tests, namely the likelihood ratio test, Rao score test, 
and Wald test, and two more asymptotic tests which use Srivastava's estimator of the 
intraclass correlation coefficient are considered to test the null hypothesis of equal-
ity of the intraclass correlation coefficients when families have unequal numbers of 
children. These methods are implemented on Galton's data set on human stature 
and a simulation study is conducted to compare the different tests. The simulations 
show the alternative tests to be better or comparable to the likelihood based tests in 
certain situations. Additionally, testing the equality of inter class correlations from g 
independent populations is considered where male and female children of the same 
family can have different correlations and the family sizes within populations are 
unequal. For this problem, the likelihood ratio test is compared with two asymptotic 
alternative tests using Srivastava's estimator of the interclass correlation coefficient 
that are easier to compute. Simulations are used to study the size and power of these 
tests. Based on the simulation study, the alternative tests perform well when com-
pared to the likelihood ratio test. Finally, the likelihood ratio test is compared with 
an asymptotic alternative test of interclass correlation for testing the equality of two 
parent interclass correlations coefficients, namely, parent-son and parent-daughter 
interclass correlation coefficients, within families from a single population with un-
equal family sizes. Both tests are illustrated on Galton's data set on human stature 
and the results of a simulation study are shown. The results show the alternative 
test to perform better for certain cases. 
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CHAPTER I 

INTRODUCTION 

1.1 FAMILIAL CORRELATIONS 

Familial data is observed in many different fields of research including epidemiol-
ogy, genetics, heredity, and psychology. A common assumption of familial data is 
a likeness or dependency between family members, as relatives tend to have similar 
attributes. There is an extended history of research on estimating this dependency 
using familial correlations. For example, in genetics, famialial correlations have been 
used by Bouzigon et. al. (2004) to study the role of genetic traits in asthma devel-
opment and by Atramentova and Belyaeva (2003) to study the development of lung 
cancer and large-intestine cancer. In epidemiology and psychology, Provencher et. 
al. (2005) studied the familial similarities of eating behavior traits, and in heredity 
and psychology, Knuiman et. al. (1996) studied the familial resemblance of cardio-
vascular risk factors. Familial correlations also have application in other fields, such 
as sports medicine and business. Bouchard et. al. (1998) used familial correlations 
when studying the genetic influences on maximal oxygen uptake, and Hackett and 
Parmanto (2009) used familial correlations when studying usability of the homepage 
of a website. 

Formally, familial correlations measure the degree of resemblance between family 
members with respect to some specified quantitative characteristic such as height, 
weight, or blood pressure. The intraclass correlation (p) measures the degree of 
resemblance between members of the same group. In familial correlations, it might 
refer to the measure of resemblance between the children of a family (pc), the sons of a 
family (pi), or the daughters of a family (p2). The interclass correlation measures the 
degree of resemblance between members of different groups. In familial correlations, 
it can refer to the measure of resemblance between the parents and children of a 
family (ppc), the parents and sons of a family (ppi), the parents and daughters of a 
family (pp2), or the sons and daughters of a family (pi2). As mentioned, all these 
types of familial correlations have applications in several areas of study. Estimation 
of these correlations and testing for relationships between these correlations is of 
interest here. 
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1.2 FAMILIAL CORRELATION LITERATURE REVIEW 

One of the first methods of estimating the intraclass correlation, p, is the pair-
wise Pearson correlation, which is computed from all possible pairs of measurements 
within families. Another commonly adopted estimator of p is the analysis of variance 
estimator, r^, proposed by Fisher (1925), which estimates p as a ratio of variance 
components in a one-way random effects model. Under the assumption of normality, 
Donner and Koval (1980) derived the maximum likelihood estimator of p, which can 
only be obtained in closed form when family sizes are balanced, but can be obtained 
numerically in the unbalanced case. Donner (1986) gives a more detailed summary 
and review of the research done on these more common estimators of p, including 
significance testing and interval estimation. In practice, other problems arise for 
which these standard methods of estimating p may not apply. 

Consider the case when two independent populations or samples of familial data 
are available for testing equality of the two intraclass coefficients. If family sizes in 
each population are fixed and equal, the distribution of the ratio of F-statistics from 
the one-way analysis of variance from each sample can be used to test the equality 
of the intraclass correlations, as was worked out by Schumann and Bradley (1957), 
Bross (1959), and Zerbe and Goldgar (1980). Donner and Bull (1983) derived the 
likelihood ratio test for the equality of two independent intraclass correlations for 
fixed family sizes. Their methods can accomodate the unequal family size case, but 
require an iterative solution to maximize the likelihood function. Other methods for 
testing the two independent populations case, in both the equal and unequal family 
size situations, have been developed and are discussed in Donner (1986) and Young 
and Bhandary (1998). Bhandary and Alam (2000) considered testing equality of 
three intraclass correlation coefficients from independent populations when family 
sizes are unequal. The more general case of testing the null hypothesis of equality of 
g intraclass correlations was considered by Naik and Helu (2007). However, in their 
work each family is grouped together as an entity and different levels of dependency 
between family members are not considered. 

Many authors have worked with the parent-children correlation structure using 
the parent-child, p^, and child-child, pc, correlations. In this set up, a parent score 
and children scores are available for each family. One such author is Srivastava (1984), 
who worked with one population of families and derived the iterative maximum 
likelihood estimators of Ppc and pc using a canonical reduction of the data. He also 
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proposed two sets of alternative estimators based on the canonical reduction that do 
not require an iterative procedure and have better distributional properties. All three 
sets of estimators allow families to have different numbers of children. Srivastava and 
Katapa (1986) compared the asymptotic distributions of the maximum likelihood 
estimators and alternative estimators proposed in Srivastava (1984). 

Srivastava's estimators of pc have been extended by several authors to other famil-
ial correlation situations. Young and Bhandary (1998), Bhandary and Alam (2000), 
and Naik and Helu (2007) all used Srivastava's estimator of intraclass correlation, 
pc. Naik and Helu (2007) developed tests to compare several intraclass correlations 
from independent populations. They compared three maximum likelihood asymp-
totic tests, namely the likelihood ratio test, Wald test, and Rao score test, and two 
other tests based on Srivastava's estimators. An illustration of their procedures tested 
to see if the correlation between the daughters of one group of families equaled the 
correlation between the sons of another group of families. While only an illustration 
of methods, this approach assumed no dependency between the sons and daughters. 

Consider the familial model where data is available for the sons and daughters of 
each family in one population. Shoukri, Mian, and Tracy (1991) took a linear regres-
sion model approach to finding the maximum likelihood estimates of the brother-
brother (pi), sister-sister (p2), and sister-brother (pn) correlations. The maximum 
likelihood estimates for this familial model require a numerical solution. Donner and 
Zou (2002) presented several procedures for testing the equality of two dependent 
intraclass correlations, Hq : p\ = p2, when family structures are identical, i.e. each 
family has the same number of sons and the same number of daughters. Bross (1959) 
noted that an exact test of this hypothesis, Hq : pi = p2, is available only when the 
number of sons equals the number of daughters for each family and this number is 
the same across all families; additionally, no dependency between sons and daughters 
can exist, that is pi2 = 0. Another problem of interest would be to test the equality 
of the two dependent intraclass correlations, Hq : pi = p2, when families are allowed 
different numbers of both boys and girls. This problem will be considered in Chapter 
II. 

The interclass correlations p ^ and pi2 are very important in familial studies as 
they account for the dependency between two groups within families. As noted above, 
Srivastava (1984) and Srivastava and Katapa (1986) developed alternative estimates 
of the interclass correlation pp<. for familial data from one population with unequal 
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family sizes. Srivastava and Keen (1988) developed other noniterative techniques 

for estimating ppc as alternatives to the iterative maximum likelihood estimator. 

Donner, Eliasziw, and Shoukri (1998) reviewed different procedures for estimating 

and testing p ^ for families from one population with both equal and unequal family 

sizes. The interclass correlation coefficient p u was estimated by Shoukri, Mian, 

and Tracy (1991) using the maximum likelihood approach as already noted. Paul 

(1996) considered a score test for testing the significance of pi2 for families from one 

population with unequal family sizes. Of further interest, is to test the equality of 

several interclass correlations from independent populations. This problem will be 

considered in Chapter III. 

Family data can include parent data as well as data from the sons and daughters 

as suggested above. Shoukri, Mian, and Tracy (1991) also incorporated a parent 

score into their familial model and found maximum likelihood estimators for the 

parent-brother correlation (ppi) and the parent-sister correlation (pp2). Another test 

of interest is to determine if the correlation between the parent and sons of a family, 

ppi, equals that of the correlation between the parent and daughters of a family, pp2, 

when families come from one population with unequal family sizes. This problem 

will be considered in Chapter IV. 

1.3 O V E R V I E W OF THESIS 

As noted above, Chapter II will focus on testing the equality of two dependent 

intraclass correlations, namely p\ and p2, when families from one population are 

allowed to have unequal family sizes. Specifically following the methods of Naik and 

Helu (2007), the likelihood ratio test (LRT), Rao Score test, Wald's test, and two 

other asymptotic tests based on Srivastava's estimator of intraclass correlation are 

developed. These five tests are illustrated on Galton's data set on human stature. 

Simulation studies are presented to compare the performance of the proposed tests. 

In Chapter III, testing the equality of several son-daughter interclass coefficients from 

independent populations of familial data when families have unequal family sizes is 

considered. Here the LRT, and two other asymptotic tests based on Srivastava's 

estimator of interclass correlation are developed and compared in simulation. In 

Chapter IV, the problem of testing the equality of two parent interclass coefficients 

within families, namely pp\ and pp2, from one population with unequal family sizes is 

considered. For this problem, the LRT is again compared with two other asymptotic 
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tests based on Srivastava's estimator of interclass correlation. Galton's data set on 
human stature is again used as an illustration and further simulation studies are 
presented. Finally, a summary of the methods and findings presented is given in 
Chapter V, along with future areas of research. 
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CHAPTER II 

FAMILIAL CORRELATIONS: ONE POPULATION 

II. 1 I N T R O D U C T I O N 

In this chapter, we consider the situation where familial data is available for the 

sons and daughters of families from one population. The problem of interest is in 

testing the equality of brother-brother and sister-sister intraclass correlations, namely 

Pi and P2, assuming that the brother-sister interclass correlation is not zero. This 

problem has been considered in Donner and Zou (2002) under the assumption of 

equal family sizes. Shoukri, Mian, and Tracy (1991) have considered this problem 

under the unequal family sizes case and have taken a linear regression model approach 

to finding the maximum likelihood estimates of the brother-brother (pi), sister-sister 

(p2), and sister-brother (pn) correlations. The maximum likelihood estimates for 

this familial model require a numerical solution. As noted by Bross (1959), an exact 

test of this hypothesis, H0 : pi — p2, is not available when the number of sons and 

the number of daughters are different and dependency between sons and daughters 

exists, that is, pi2 ^ 0. In this chapter, we provide three maximum likelihood based 

asymptotic tests, namely, the likelihood ratio test, Wald's test, and Rao's score 

test, along with certain alternative tests based on estimators similar to the ones 

proposed by Srivastava (1984). Explicit expressions for both the score functions and 

the elements of Fisher information matrix are provided as well. When compared 

with the maximum likelihood based asymptotic tests, the alternative tests are easy 

to compute and perform quite well. 

Suppose data on the children of n randomly selected families are available from 

a population. The number of boys and girls in each family is allowed to be different. 

Denote the number of boys and girls in the ith family as m u and m2 i , respectively, for 

i = 1 , . . . , n . Suppose Xuj, j = 1 , . . . , m ^ ; i = 1 , . . . , n is the observation on the jth 

boy of the ith family. Similarly, x2ij, j = 1 , . . . ,m2i; i = 1 , . . . ,ra is the observation 

on the jth girl of the ith family. 

Assume that the mean of the son scores is E(xu j ) = pi , the mean of the daughter 

scores is E(x2ij) = p2, the variance of the son scores is Var(xUj) = erf, and the 

variance of the daughter scores is Var(x2ij) = a\. Denote the son-son intraclass 



correlation as pi, the daughter-daughter intraclass correlation as p2, and the son-

daughter interclass correlation as pi2. Assume for each family of fixed i (1 < i < n), 

Corr{x\ij, Xuj') = Pi for j ± / ; 1 < j, j' < mu, Corr(x2ij,x2ij>) = p2 for j ^ j ' ; 

1 < j,j' < m2i, a n d Corr(xuj,x2ij>) = P12 for all j , j ' ; 1 < j < rriH a n d 1 < j' < m2i. 

Let the vector of observations on the ith family be 

( xm ^ 

Xlj 

X2 i 

with 

£ ( x j ) = ^ = 

•^limij 

\ %2im2i ) 

Mllmii 

m2i 

and 

mu mi j, 
Var(xi) = S j = 

,m2i 

+ P2Jm2J J 
where l m is a unit vector of length m, I m is an identity matrix of order m, J m is 

the m x m matrix of all ones, and J m j n is the m x n matrix of all ones. Note that 

—00 < pi < 00 and —00 < /z2 < 00. 

If there are both sons and daughters in a family, mu > 0 and m2 j > 0, then the 

determinant of S j is 

| S i | = < T f n i i o f n M ( l - p 1 ) m i i - 1 ( l - p 2 ) m 2 i ~ 1 

x ((1 + ( m u - l )p i ) ( l + (m2i - 1 )p2) - miim2iPi2). 

Restrictions on the parameters so that S j positive definite are of > 0, a \ > 0, pi < 1, 

p2 < 1, and 

(1 + (mij - l )p i ) ( l + (m2i - l)p2) > mum2ip\2. (1) 

If mu > 0 and m2 i > 0, then the inverse of is 



where 

Ai 

Bi 

1 - p i 
j Pi(l + (m2i - 1 )p2) - j 

m i i (1 + (mii - l ) p i ) ( l + (m2 i - l )p 2 ) - mum2ipi2 

T 

Ci = 

(1 + (mu - l )pi) ( l + (m2i - l)p2) - murn2ipi2
 mii'm2i' 

1 T p 2 ( l + (mu - l ) p i ) - mup\2 

. m 2 i (1 + K - l ) P l ) ( l + (m2i - l)p2) - mum2ip\2 1 - P2 

If there are no sons in the family, mu = 0, then the determinant of is 

|Ei| = 4m2i(l - p2)m*-\ 1 + (m2i - l ) p 2 ) 

and the inverse of Xj is 

y - l _ 1 
- l - n ) 

T 91 / 

Similarly, if there are no daughters in the family, m2i — 0, then the determinant 

of is 

|Si | = 1 - p i ) m i i _ 1 ( l + ( m i i _ l ) p i ) 

and the inverse of is 

V" 1 - i - <Hf(l-/n) 
£1 7 (l+(mij—l)pi) mi 

I I .2 L I K E L I H O O D F U N C T I O N 

Assume that x* ~ ^ i ) , i = l,...,n. Let 

0 = (Pl,P2,0"i,cr|,pi,p2,pi2)' 

then 

m = n m = n r = i (27r)<mli+m2i)/2|Si|1^2 -iCxi-^ysr^Xi-Aii) e 2 

and 

«=i 



If ran > 0 and m2i > 0, then 

mu log{Li{0)) = log(2irof) - ^log^ncrj) 

mu - l)log(l - pi) - ^(m2i - l)log(l - P2) 

1 
- -log [(1 + (mu - l )p i ) ( l + (m2i - 1 )p2) - mum2ip\2) 2 

-(xi - ^i i)'E,-1(x i - Hi). 

Note Xi = ( X h ] , where x H = ( a ; m , . . . , x H m i i ) ' and x2i = ( x m , . . . , x2im2 
\x2i J 

therefore 

(xi - x(xi - /x^ 

[(*li - Ml lmn)'(x2i - M2lm2i)'] 

V 1 

—-—Bj <T( 1 0\G2 ' 
—•—B! crio-2 > <x2 » 

(Xii - / i l l m i i ) 

(x2i - / i2lm2 l) 

, 1 (xH - /Xilm i i) '-2 Aj(xii - / i l l m i i ) + (x2i - P2lm2 i) ' B^Xji - / i l lm i <) cr <7102 
1 f 1 

+ (xii - flllmu)' Bi(x2 i - M2Im2i) + (x2i ~ telm*)'Ci(x2i - M2lm2i) 
<7I<72 cr2 

If mu = 0 and m2i > 1, then 

log(Li{6)) = -^log(2ir4)-^(m2i-l)log(l-p2) 

- ^log( 1 + (m2i - l)p2) - i(x2i - AtalmMj'Sr^xa - M2Imj-

And, if raij = 0 and r»2i = 1, then 

log{Li{0)) = -\log{2ir<%) - ^{x2i - p2f. 

Similarly, if mu > 1 and m2i = 0, then 

log(Li(0)) = - ^ Z o 5 ( 2 7 r ^ ) - i ( r a i i - l ) / 0 5 ( l - p i ) 

- ^log( 1 + (mii - l)pi) - ^(xii - p i l ^ J ' S ^ ^ X u - / x i l m J . 

And, if mu = 1 and m2 j = 0, then 

log(Li(d)) = -\log(2-nal) - - pi)2-
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The likelihood function L(0) or log(L(9)) can be maximized to obtain 0, the 
maximum likelihood estimator (MLE) of 6. Let 6 = (pi, p 2 ,v 2 , pi,p2 , Pvi)' • From 
the theory of maximum likelihood estimation, the asymptotic distribution of 6 is 
multivariate normal with mean vector 6 and variance matrix Vq = Z(d)"1, where 
1(0) is the Fisher information matrix, details of which will be given a little later 
below. 

Suppose we are interested in testing the hypothesis that the two intraclass 
correlation coefficients are equal, that is, H0 : p\ = p2 — p (say). Under Hq, 
6 = (pi,p2,(Ji,(T2,p,p,pi2)'. The likelihood function, L (6 ) or log(L(0)) can also 
be maximized under the null hypothesis Ho : p\ — p2 to obtain 90. 

The maximization procedure used will need to be provided with initial estimates 
of the parameters. The initial values could be selected from the alternative estimates 
given in Sections II.9 and 11.10. 

11.3 LIKELIHOOD RATIO TEST 

The likelihood ratio test (LRT) for testing H0 is to reject H0 for large values of 

LRT = 2logL(0) - 2logL(60) (2) 

This test statistic has a x 2 asymptotic distribution with 1 degree of freedom. 
The other two asymptotic tests for testing Ho are Wald's test and Rao's score 

test. 

11.4 MODIFIED WALD'S TEST 

The null hypothesis Hq : pi = p2 can be written as H0 : CO = 0, where C = 
(0, 0, 0, 0, 1, —1, 0). The Wald's test then rejects Ho for large values of 

Wald=(Ce)'[CVgoC']-1(Ce). (3) 

This test statistic has a x 2 asymptotic distribution with 1 degree of freedom. 

The standard Wald's test uses Vg instead of Vgo, but during analysis of this 
problem the slightly modified Wald's test performed uniformly better than the usual 
Wald's test. 
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11.5 RAO'S SCORE TEST 

The score test rejects H0 for large values of 

Score = S(0o)'X(0o)~1S(0o), (4) 

where S ( 9 ) is the 7 x 1 score function vector, 

i=1 i=l 

where Sj(0) = Sl°9^{0) a n cj X(6) is the 7 x 7 Fisher information matrix, 

1 { d ) = '^SlogLii&y^ ^SlogUWy 

This test statistic also has a x2 asymptotic distribution with 1 degree of freedom. 
In the next section, we provide the elements of the score function vector S (9) and 

those of Fisher information matrix X(9). 

11.6 SCORE F U N C T I O N 

The score function is 

i=l i=l 

where S<(0) = S l°f j( 0) . 

Here we provide the elements of S2(0) denoted S»[A:], 1 < k < 7. If mi, > 1 and 

rri2i > 1, then let 

a% = m2ipl2-pi(l + (m2i-l)p2), 

bi = mup\2 - p2{l + (mu - l)pi), 

Ci = (1 + (m u - l )pi)( l + (m2i - 1 )p - 2) - mum2ip\2, 

di = (mu - 1)(1 + (m2i - 1 )p2), 

et = (m2i - 1)(1 + (mu - 1 )px), 
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and 

S i [ 1 ] ~ o f ( l - p i ) 1 ™ " 
T -l- — T 

Ci 
(xii - //limn) 

P 1 2 

Si[2] 

2<Ti£r2Ci 
1 

ol{l-p2fm* 
Pl2 

(x2i P2^-m2i) Jm2i,miilmii 

b. 

P12 
- l ' J , 2i(X2i — ftlmzJi 

T 4 - — T 
Ci 

2a ia 2 C ; 1 " i 2 i J m 2 i ' m u ( X l i / ' l l m i i ) 2^^204 

/(Jj^Ci 

(x2i - ju2lm2i) 

Si[3] = — —^ + 0 ~ ( x l i - p l lmu) ' T 4 - — 7 
Ci 2a? ' 2a\{l-Pl) 

Acfto c f * ~ ~ Mllmii) 

(XH - Mllmu) 

(x l i — Ml Imij)'Jmij ,m2i (x2i — M2lm2i), 4<7f er2Ci 
1 a m m2» , Si[ 41 = + 2af 2 a f ( l - p 2 ) (*2i - P-2 lm2l)' I 4 — 1 

Ci 
(X2i - M2lm2i) 

Pl2 (x2i — M2 lm2i Y^m2i ,m\i (x l i — /i i lm i i ) 

(Xli — Mllmii)/Jmii,m2i(x2j — M2lm2i), 

Si[5] = 

iaia^c, 
P12 

4cri a\c, 
mu — 1 di 

2 ( 1 - pi) ~ 2q 

2 a ? ( l - p i ) 2 (Xij - MllmxJ' 
aiCi - dj(l - Pi) ( ^ Z Y 4 Oi) 

lmii "I ^ Jmii 

X (XH - Mll m u ) 
Pl2d; 

2o\(J2<?i 
Pndi 

(X2i — M2lrn2i)'Jm2i,m1i(xli — £film i i) 

(Xli — Mllmli)'Jmli,m2i(x2i — p2lm2i) 

4 

2CTI <T2C? 
(mij - l)p2Cj + bid. 

2 a f ( l - p 2 ) c 2 (*2i — P2lm2i)'Jm2, (x2i ~ P2lm2i)> 
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c r„n m2i-l ei (m2i - l)p1ci +a^i y , , 
Si 6 = 7T7- r - — + 2 r-2 (Xji - MllmJ Jroi«(Xli ~ Mmi*) 

2(1 - pa) 2of (1 - p i K 
— 2 (X2« _ /i2lm2i)/Jm2i,mii(xli ~~ MllmiJ 2cricr2q 

~~ Z 1 2 '.2 (Xl« ~~ MllmiJ'Jmii.nfciC^t — M2lm2i) ZCTî q1 

~ 2 ^ ( 1 ^ ) 2 ( X 2 i _ M 2 l m 2 i ) / 

X (x2i - /X21 m2 i), 
miim2ipi2 

b l c i - e i ( l - p 2 ) 
I-m2i o m2i 

S,[7] = 

/2m2ip12 2mlim2ip12ai\ v , . 
- 7r~27i V + J ( X l i ~ V^mii) Jmii(Xli - Pllmii) 2ffj(i - pi) V Ci cf y 

1 / I 2mii7n2iPi2\ , v , . 
+ 1 "5 (X2i - / ^ 2 l m 2 J J m 2 i , m i i (X i i - ^ l l m i J 2ci<T2 \Ci q / 

1 / I 2miim 2 ipf 2 \ , V T , ^ \ 
+ 1 "o (Xii - P l l m i J Jmii,m2i(x2i - V2*-m2i) 

1OXO2 \D CF J 

1 (2mupn , 2miim2ipi2bi\ ( , , . 
- _ 9 / 1 T 1 3 I (X2i - /i2lm2ij Jm2<lX2i - p2i-m2i)-

2 a ^ ( l - p 2 ) V Ci Ci / 

If mii — 0 and m2i = 1, then 
Si [2] = —2 (X2i — p2), 

a2 

Other entries of Si(0) are zero for mXi = 0 and m2i = 1. 

If mii = 1 and m2» = 0, then 

Sj[l] = \ ( x u - pi), 
ax 

Other entries of Si(0) are zero for mu = 1 and m2i = 0. 



If mu = 0 and m2 j > 1, then 

1 
Si [2] = 

Si [4] = 

S, [6] = 

-1 ' rr^n „ \ m2i 
^l1 ~ P2) 

1 

P2 
1 + (m2i - 1 )p2

 J m 2 ' 
( x 2 i — p 2 l m2i)> 

(x2i - p2i m2iy P2 
2af (1 - p2) 
m2i 

m2j - 1 m2i - 1 
2(1 - P 2) 2(1 + (m2i - l)p2) 

1 ( x 2 i -p2lm2i)'[I 

T ^ T 
1 + [m2i - l)p2 

(x2i - / i2 lm 2 i) 

_ (1 - p2)(l + (m2j - l)p2) - p2[(m2j - 1)(1 - 2p2) - 1] 
(1 + (m2i - 1 )p2)2 

Other entries of Si(0) are zero for mu = 0 and m2i > 1. 

If mu > 1 and m2i = 0, then 

(x2i — p 2 l m2i 

Si[l] = 

Si [3] = 

Si [5] = 

aKl-pi)1'"11' 
I El j (xii - P ! l m i i ) , 

2 ^ ( 1 - P i ) 
mu 
2a\' 
mu - 1 

(X U - / i l l m i i ) ' Pi 
•mxi 

1 + ipiu - l)pi 
(xXi - Ml lmu) 

m u 

2(1 - pi) 2(1 + (mM - l)pi) 

~ 2 a 2 ( l - p i ) 2 ( X l i ~ 

_ (1 - pi)(l + (mii - l)pi) - pi[(mH - 1)(1 - 2pi) - 1] 
(1 + (mii ~ l)pi)2 

Other entries of Sa(0) are zero for mu > 1 and m2i = 0. 

If mu — 1 and m2i = 1, then 

'mu (xii — P l l m i i 

Si[l] = -(rcii - fix) - P12 
-PI2) 

S i [ 2 ] = a i ( l - p l 2) ( X 2 i ~ 
S M = n _ A , } J i d x l i - Ml)2 - T O -

<TlC72(l - p{2) 
Pl2 

(Ti(T2(1 - p\2) 

(x2i - p2), 

(xii - Ml). 

P\2 
2 ^ ( 1 2al 2a\a2{\ - p\2) 

(xu - p,i)(x2i - p2), 



Si[4] (x2i ~ /X2)2 ~ 
P l 2 

2^(1 -P?2) 
P l 2 P i 2 

2ct22 2cti<T2(1 - p?2) 
2 Pl2 

+ 

1-P?2 ^ ( 1 - P f 2 ) 2 

1 + P12 

(xu - m) -

(Xli ~ Pl)(%2i ~ P2) 

(x2i - nl) 

(xu - pi)(x2i - p2). (Jia2(l - p\2)2 

Other entries of S.^9) are zero for mu = 1 and m2i = 1. 

If mu = 1 and m2i > 1, then 

Cj = 1 + (m2i - 1 )p2 - m2ip\2, 

and 

c m 1 + ( ™ 2 i - 1 ) P 2 , x 
S i t 1 ] = 2 - A*l) a\ci 

P12 

Si [2] 

Si [3] 

2aia2Ci
 m2 

P l 2 

2(TiCT2Ci 
1 

lm2i(X2i _ P2lm2J 

(x2i — /x2 lm 2 j) ' lm 2 i , 

-1' 
m2ipi2 

T _ p 2 - P l 2 T Am2i
 J m 2 , (x2i - p 2 l m 2 J 

-(xii - pi), 0"lCT2Ci 
1 1 + (m2i - l)p2 2 

~2af 2 ^ 

1 
4afa2Ci 

S i [ 4 ] = _ 2o| 
1 

+ 

(xu - Pi)(x2 i - p2lm2i)'lm2i, 

2a| ( l - p 2 ) ( X 2 i - P 2 l m 2 i ) ' 
P2 ~ P l 2 Lm2, •m2i ( X 2 i - p 2 l m 2 i ) 

P l 2 

4<Ti 02 Q 
P l 2 

4(Ti crfci 

(xii - Pi)(x2i - /x2lm24)'lm24 

(®1» - ^ l ) lL»( x 2i - P2lm2i), 



Si [6] = 

16 

mu — 1 m2 i — 1 
2(1 - pi) 2a 
m2i(m2i - r 

2 a2c? 
(m2i - l)pi2 

m2j(m2i - l)pf2^ \2 
+ ~ W 

0 "2 ~ M l ) 1 ^ (X2i - M2lm2J 

- Ml)(x2i - M2lm2i)'l 

1 

_ /Vv,-. _ i V l _ J 1 1 
(x2j — p2lm2i)> 

2 V -̂li - _ M2imjiJ im2i 

2<7I cr2Cj 

W (x2i — P2lm2i ran 

(1 - p\2)Ci - (m2i - 1)(1 - p2)(p2 - pf2) 2 i 

Sj[7] = _ + _ ) 2 Q (TjC2 

, 1 + (m2i - l)p2 + m2ipl2 u v H — —ixU - Pl)(x2i - P2Im2i) Imu 2<7l<72Ci 
, 1 + {m2i ~ l)p2 + m2 ip\2 . , . 

+ 2 ( 7 i ^ c - (®li - Pl)lm2i(X2i - P2lm2i) 

, m2ip12(p2 - pl22) - P12Q. v , , 
1 oT-. 2 lx2i — P-2i-m2i) Jm2ilx2i — H2*-m2t)-^ K 1 - p2jcr 

Other entries of Si(8) are zero for mu = 1 and m2 j > 1. 

If mu > 1 and m2i = 1, then 

d = 1 + (mH - l)pi - miip2
2, 

and 

T _ Pi ~ Pl2 T imii Jmi, 
Ci ^ ( I - P l ) 1 ^ 

™HPl2 / x 
\%2i - H2), 

<J\a2Ci 

<J2Ci 

~ ( X l i — P2lm l i) /lm l i , 2<7iCT2Ci 

(xH - JUllmij) 



I [ « J 2a\ 

+ -(Xxj - / i l l m ^ ' t _ Pi ~ Pl2 T l-mii _ T̂Oii 

"•mu 

2 o f ( l - p ! ) 

- —(x2i - P2)(xii - Hilmii)'l 4af<72Ci 

- A(jfa2c (X2i ~ ~ 

o ui 1 , 1 + ( m i i ~ 1 \2 
- —2ct| 

- , 1
 3 (X2i ~ P2) l„ l i (X l i ~ Plimii) 

—{%2i — P2)(xi i — Pllmii)'lm l i, 

Cj 
(Xii - p i l m i i ) 

Si [5] = 

+ 

4o-i erf c* 
mi, - 1 _ ran - 1 

2 ( 1 - p i ) 2q 
'12 T r a i i ~ 1)P2 

2 atf 
(x2i - p2)5 

^201 ~ ^'miMu ~ Ml1".!,) 

(mH ~ l)pi2 
20i02cf 

1 

(x2i - p 2 ) ( x i i - / i l l m i J ' l m u 

-(Xji - / i i l m i i ) ' [ I •mii 
2 0 2 ( l - p i ) 2 

(1 - pj2)ci - (mu ~ 1)(1 ~ pi)(pi ~ Pi2) t 
9 mlt 

Si[7] = I ^ H _ ^ ( l + j m i i - l ) ^ ) ^ _ 

(xii — pi lm i i ) , 

+ 
+ 
+ 

Ci 
1 + (mii - l)pi + mupl2 

20i a2Ci 
1 + (ma - l)Pi + miip^2 

2oi 02Q 
miipi2(pi - pl22) - pi2Ci 

- Pi)^ 

Other entries of Si(0) are zero for mu > 1 and m2i = 1 

(x2i - p2)(xii - / i i l m i i ) ' l m 2 i 

(x2i ~ p2)l^li(xii - pilmii) 

(Xii — Pllm l i)'Jmi i(xli — Pilmii)-



II. 7 INFORMATION MATRIX 

The information matrix is the 7 x 7 matrix 

i{d) = Y j U e ) = Y J E 
i=1 i=1 

If mu > 1 and m2 j > 1, then recall 

^SlogLi(6) 
66 

5logLi(0)V 
69 

ai = m2ipl2 ~ Pi(l + {m2i - l)p2), 

bi = mup\2 - p2( 1 + (mu ~ l)pi), 

Ci = (1 + (mu ~ l )p i ) ( l + (m2i - 1 )p - 2) - miim2ip2
12, 

di = {mu ~ 1)(1 + (m2i - 1 )p2), 

ei = {m2i-\)(l +(mu-l)pi). 

In this case, the entries of the information matrix are 

1 
£ [ M ] = mu + 

rn^ai 

^li1 ~ Pi) \ 
mum2ipi2 £[1,2] =£[2,1] = -

£[1,3] = £ [ 3 , 1 ] = 0 , 

£[1,4] = £ [ 4 , 1 ] = 0, 

£[1,5] = £ [ 5 , 1 ] = 0, 

£[1,6] =£[6,1] = 0 , 

£[1,7] = £ [ 7 , 1 ] = 0, 

£[2,2] = - — ^ r 
- P2) 

£[2,3] = £ [ 3 , 2 ] = 0 , 

£[2,4] = £ [ 4 , 2 ] = 0 , 

£[2,5] = £ [ 5 , 2 ] = 0 , 

£[2,6] =£[6,2] = 0, 

£[2,7] = £ [ 7 , 2 ] = 0 , 
mu 

CTl<T2Ci 

m2i + 
mljbj 

Ci 

£[3,3] = 
oi(i-Pi) 

i + 
aj( l + (mu ~ l)pi)A m u 3Pi 2 mum 2 i 

2 af 4 afci 

£[3,4] = £ [ 4 , 3 ] = 
-mHTO2ipf2 

4 a\alci 
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mu 

~ P i ) 2 
1 + 

(1 + (mH - l)pj) OjCj — dj(l — P i X ^ z y + ai) 

c? 

£ [ 3 , 6 ] = £ [ 6 , 3 ] = 

£ [ 3 , 7 ] = £ [ 7 , 3 ] = 

mu( l + (mu ~ l)pi)(pi(m2i - 1)q + 0 ^ ) p ^ m ^ m ^ 
2 ^ ( 1 - P i ) c ? 

miim2iPYi(ci + 2mum2ip%2) 

miim2 ipi2(l + K - lpi))(cj + mijOj) 

£ [ 4 , 4 ] = 
m2i 

^K 1 - P2) 

^ ( l - P i ) c 2 

6i(l + (m2i - l )p 2 ) \ m2i 3p2
l2mllm2l 1 + 

2 (To 4a. 

£ [ 4 , 5 ] = £ [ 5 , 4 ] = 
m 2 i( l + (m2i - l)p2)((mli - l)p2c i + Mi) mum2ip\2di 

2a | ( l - p 2 ) c ? 2a|cf 

T M si T rfi /ii miim2ip12ej £ [ 4 , 6 ] = £ [ 6 , 4 ] = — 

m2i 
^ (1 + (m2i - l)p2) - ei(l - p2) ( ^ ^ n + fei) 

£ [ 4 , 7 ] = £ [ 7 , 4 ] = 

2 a | ( l - p 2 ) 2 ^ c? 

miim2ipi2(ci + 2miim2iPi2) 
2 atf 

mum2ipi2(l + (m2i - 1 )p2)(ci + m2ibi) 

£ [ 5 , 5 ] 

where 

mu 

(1 - Pi)3 

*2
2(1-P2)C? 

1 | (l + (mii-l)pi)(l-pifStan 
2c 

mu - 1 d? 
2 ( 1 - P i ) 2 2c? 

Stari = 

2mum2ip{2d1 _ m2i( 1 + (m2i - l)p2) 
cl (1 - P2)cf 

1 + (m2i - l)p2 2a,d, 

(mu ~ 1 )p2di + — c 

2 ai 

(1 - Pi)2 1 - P i (1 - pi)Ci 

+ 2M? dj(l + (ro2f - l)pi) - pi) - Cjdj 
cf ^ (mu - l)(l - pi)Ci 



£[5 ,6 ]=2 i [6 ,5 ] 
(mu - 1 )(m2j - 1 )cj - djej 

2c? 

+ 
miim2ipj2[(mii — 1 )(m2i — 1 — 2 g ^ 

m i j ( l + (mi i ~ l ) p i ) fpi(y»2i - l ) c j + a»ej (1 - p i ) ( m 2 j - 1) 

2(1 -P i ) 2 L 
(1 - pi)rfje, (1 - pi)[(mH - l ) (m 2 j - l)ajCj - 2 ^ ^ - px(m2i - l)djCj 
(mu ~ 1 )c? cf 

m 2 i ( l + (m 2 i - l )p2) [ , , P2 P2e» 
— r (run - 1) 1 + 
2 ( l ~ P 2 ) C i V 1 _ P 2 Ci 

(1 + (mii - l)piM + (mu - l)(m2i - 1 )bi 2bidiei + bidi 
Ci (?i ( 1 - P 2 ) Q 

Ii[5,7] = l i [ 7,5] = m u T n 2 * P u d l + miim2 ipi2di 

+ 

£[6,6] = 

where 

c2 

m1 jm2 i ( l + (mu ~ l)pi)pi2 

(1 - Pi)2^ 
(1 - pi)(ci + 2miiai)di 

Ci 
mijm 2 i ( l + (m2» - l)p2)pi2 

(1 " PiYi 
mij ( l + (mu ~ l)pi) 

(1 - Pi)c2 

2mum2iPj2e2 

4miim2ipl2 

cf c? 

Ci + miiOi - p\)dj 
mu ~ 1 

di + m2i(mii - 1 )p2 + 
2 m2ibidi 

(m2i - l)pxei + a»e21 

Ci 

Ci 
m2i - 1 e? 

2 ( 1 - P 2 ) 2 2cf 

C? 
+ 

m2i 

(1 - P2)3 
1 + 

(1 + (m 2 j - l ) p 2 ) ( l - p2fStar2 

2 Ci 

Star2 = 
2 h 

( I - P 2 ) 2 

1 + (mu ~ l)pi ej(l + (mu ~ l)pi) 
1 - P2 Ci 

2biti 2he? e? ( l - p2) - c ^ 
( l - p 2 ) c i cf (m 2 i - 1)(1 - p2)ci 

T\a -71 Tf7 «i mum 2 iPi 2ei 2i[6,7J = Ii[7,6J = ^ 1- miim2ipi2ei c2 

^HTn2»Pi2(l + (raii - l )pi) 
( l - P i ) c 2 

mum2ipi2(l + (m2i - l)p2) 
2(1 - p2)2c? 

(1 — Pi)(<k + 2m2ibi)ei 

Amum2ipi21 

di + m i i ( m 2 i - l ) p i + 
2muaiei 

c + m2idi 
m 2 i ( l - p 2 )e j 

m2i - 1 



^ = mi,ffl2, + 2m2
limlip2
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Ci 
m l i m 2 j ( l + (mii ~ l )pi) 

1 -Pi 
4mHm2 ;Pi2 , 4mfjm2ip^2ai 

~H r> 1 o I 
c? c? 

+ 
c? 

3 + 4miim2iPi2 

miim 2 i ( l + (m2i - l)p2) 
1 - PI 

If m u = 0 and m2i = 1, then 

Ci 
+ 4mijm2jPi2 m2ibi _ Amum^p^b, 

a c2 

£[2,2] = 9 > 

£[2,4] = £ [ 4 , 2 ] = 0, 

£[4 ,4] = 

Other entries of £ ( 0 ) are zero for mii = 0 and m2i = 1. 

If mii = 1 and m2 , = 0, then 

£ [ l , l ] = 4 

£[1 ,3] = £ [ 3 , 1 ] = 0, 
1 

£[3 ,3] = 
2crf 

Other entries of £ ( 0 ) are zero for m u = 1 and m2i = 0. 

If mu = 0 and m2i > 1, then 

1 
Xi%2] = al{l-p2) 

£[2,4] = £ [ 4 , 2 ] = 0, 

£ [ 2 , 6 ] = £ [ 6 , 2 ] = 0, 

£[4 ,4] 

m2i 
m2

2ip2 

1 + (m2i - l ) p 2 j 

m2 j 
2c 2 ' 

£ [4 ,6] = £ [ 6 , 4 ] = 
-m2i 

2 ^ ( 1 - P 2 ) 2 

l + p | (m 2 j ~ 1) 
(1 + (m2i - l)p2)2 

£[6,6] = 
m2 i 

( I - P 2 ) 2 

(m2i - l ) ( l + p|(m2i - 1)) 
(1 + (m2i - l)p2)2 

m2 j - 1 
2 ( 1 - P . ) 2 

(ma - l)2 

2(1 + (m2i — l)p2)2 

Other entries of £ ( 0 ) are zero for m u — 0 and m2 i > 1. 



If mu > 1 and m2i — 0, then 

1 
£[1> 1] = • 2n ^ 

- P i ) 

£[1,3] = £ [ 3 , 1 ] = 0, 

£[1,5] = £ [ 5 , 1 ] = 0, 

mu 
m2

upi 
1 + (mu ~ I)Pi. 

£[3,3] = 
mu 
2a}' 

£[3,5] = £ [ 5 , 3 ] = 
-mu 

2 ^ ( 1 - P i ) 2 

l + p^(mi i - l ) 
(1 + (mu ~ l)pi)2 . 

£[5,5] = 
mu 

(1 - P i ) 2 

(mu — 1)(1 + Pi(mXi — 1)) 
(1 + (mu - l)pi)2 

mu 
2 ( 1 -

(mu - l)2 

2(1 + (mii — l)pi)2 

Other entries of £ ( 0 ) are zero for mu > 1 and m2i = 0. 
If mu = 1 and m2 j = 1, then 

1 
£[1,1 

£[1,2 

£[1,3 

£[1 ,4 

£[1,7 

£[2,2 

£ [ 2 , 3 

£ [2 ,4 

£ [ 2 , 7 

£ [ 3 , 3 

£ [ 3 , 4 

£ [3 ,7 

£ [4 ,4 

^ ( i - p y 

= £[2,1] = 
"Pl2 

CTl<72(l - P12) ' 

= £[3,1] = 0, 

= £[4,1] = 0, 

= £[7,1] = 0, 

~ ° 2 ( 1 — P12)' 

= £[3,2] = 0, 

= £[4,2] = 0 , 

= £[7,2] = 0, 

1 1 3 p 
a i ( l — P12) 2of 4 a l ( l - p j 2 y 

= £[4,3] = 
wiv2\s. - pi2) 

/ O \ 
P12 = £[7,3] = 

4 ^ | ( i -P\2y 
Pi2( l + P2

2) 

2 c r i ( l — P12)2 ° i ( l ~ P12)2 ' 
1 1 3p?2 

ofti -p\2) 24 4^(1 -p\2y 
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£ [ 4,7] = £ [ 7 , 4 ] = 

£[7,7] 

Pi2(l + P?2) 
2*i(i -P\2y 

i + p?2 

Pl2 

2(1 + 3 / ^ ) 

(1 -P2u)3 (1 ~p\2)2 (1 - P h ) 3 

"2(1 -P?2)2 ' 
2p?2(3 + p?2) 

Other entries of £ ( 0 ) are zero for mu = 1 and m2i = 1. 
If mu = 1 and m2i > 1, then 

Ci = 1 + (m2i - l)p2 - rn2ipl2, 

and 

1 + (m2i - l)p2 

m2iPi2 
0\02Ci 

<j\Ci 

£[1,2] =£[2,1] = -

£[1,3] = £ [ 3 , 1 ] = 0, 

£[1,4] = £ [ 4 , 1 ] = 0, 

£[1,6] =£[6,1] = 0, 

£[1,7] = £ [ 7 , 1 ] = 0, 

£[2,2] = — i 
- P2) 

£ [ 2 , 3 ] = £ [ 3 , 2 ] = 0, 

£[2,4] = £[4,2] = 0, 

£[2,6] =£[6,2] = 0, 

£ [ 2 , 7 ] = £ [ 7 , 2 ] = 0, 

£[3,3] = 1 + ( m 2 ; ~ 1 ) P 2 
a\Ci 

m2i -
"4(P2 ~ PU) 

Ci 

J- 3 m2ip\2 

2af 4afa ' 
m2iPi2 £[3,4] £ [ 4 , 3 ] - 4 a ^ ( l + ( m 2 i - l ) p 2 - m a p f 

£ [ 3 , 6 ] = £ [ 6 , 3 ] = 0, 

£[3,7] = £ [ 7 3] = m 2 l P l ^ 1 + ( m 2 i ~ + m2iPi2) _ m2i( l + {m2i - l)p2)pi2 
^c2 
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£[4,4] = 
m2i 1 -

(l + ( m 2 i - l ) p 2 ) ( p 2 - p 2
2 ) 

^K1 - PI) 
3rn2ipf2 _ m^ 
4o%a 2a\ ' 

£[4,6] = £ [ 6 , 4 ] = -

m2i 

m2i(m2i - 1 )p\2 

2a2Ci 

2a2(l - p2)2 
(l-p2

2)(l + (m2i-l)p2) 

+ 
(m2i - 1)(1 + (m2i - l)p2)(l - p2)(p2 - p\2) 

£[4,7] = £ [ 7 , 4 ] = 

c? 
m2ip12(l + (m2i - l)p2 + m2iPi2) 

2al<* 

+ m2ip12{l + (m2i - 1 )p2) 
-Pi) 

•m2i{p2 - p\2) - Ci 
c? 

£[6,6] = 
m2i(m2i - 1 )2p\2 _ (m2i - l)2 + Am2i(m2i - 1 )2p\2 

2c2 

m2i- 1 m2j(l - (1 + (m2i - 1 )p2)Star3) ~T Q ? 2(1 — P2Y 

where 

Star3 = 

+ 

1 ~Pi2 _ (m2i - 1)(1 - p 2 ) ( l ~ p\2) 
Cj c? 

(m2i - 1)2(1 - p2)2(p2 - p2
2) 

cf 

£[6,7] = £ [ 7 , 6 ] = 
m2i(m2i - l)p12 

c? 

+ m2i(m2i - 1) [p2pi2 + (m2i - l)p?2] + m2ip12 

£[7,7] 
m2i( 1 + (m2i - l)p2)(l + (m2i - 1 )p2 + 3m2 ip[2) 

m2i( 1 + (m2i - l)p2 + m2 ipf2) _ 2m^p?2(3 + 3(m2i - 1 )p2 + m2ip^2) 

m2i( 1 + (m2i - l)p2) 
c? 

4m2iPl2(p2 - P12) - (1 - P2 + 4m2ip2
2)c i 

1 - P2 

Other entries of £ (0) are zero for mu = 1 and m2i > 1 

If mu > 1 and m2i = 1, then 

c? 

Ci = 1 + (mH - l)pi - miip2
2, 
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and 

£[1,1] = m u -

muPn £ [ l , 2 ] = £ [ 2 , l ] = -

£[1,3] = £ [ 3 , 1 ] = 0, 

£[1,4] = £ [ 4 , 1 ] = 0, 

£[1,5] = £ [ 5 , 1 ] = 0, 

£[1,7] = £ [ 7 , 1 ] = 0, 

£ [ 2 , 2 ] = l + ( m r 1 ) p i , 
cr2ci 

£[2,3] = £ [ 3 , 2 ] = 0, 

£[2,4] = £ [ 4 , 2 ] = 0, 

£[2,5] = £ [ 5 , 2 ] = 0 , 

£[2,7] = £ [ 7 , 2 ] = 0 , 

mli{pi ~ P12) 
Ci 

£[3,3] = mu 1 -

_ 3muPi2 _ 
4*?Ci 2of' 

£[3,4] = £ [ 4 , 3 ] = 

(l + ( m i i - l ) p i ) ( p i - p ? 2 ) 

£[3,5] = £ [ 5 , 3 ] = -

m u 

4a\a\ci' 
"iii(mii - l)p?2 

2^(1 "Pi ) 2 1 -

2 <j\ci 
(1-P?2)( l + K i - I ) p i ) 

+ 

£[3,7] = £ [ 7 , 3 ] = 

(mu - 1)(1 + (mu - l )pi) ( l - pi)(pi - pj2) 

raiiPi2(l + (mu - l)pi + muPu) 

+ 

£[4,4] = 

^i iPi2( l + (mu - l)pi) 
- P i ) 

1 + (mu - l)pi _ 

A ^ 

2 o*<* 
mu(pi ~ Pi2) - Q 

c? 

2<r| 
3m!ipf2 

4 o-IQ 

£[4,5] = £ [ 5 , 4 ] = 0, 

£[4,7] = £[7,4] = m i ^ i 2 ( l + (mii - l)pi + mupn) _ mu(l + (TO^ - l)pi)pi2 
2<xf cj 
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mu(mi j ~ 1)2P?2 (mij - I)2 + 4m l i (mi i - l ) 2pf 2 

mu ~ 1 - (1 + (mu ~ I)pi)Star^) 
2 (1 -P i ) 2 ' 

where 

1 — P12 (mu - 1)(1 ~P i ) ( l - P i 2 ) Star4 = 
+ 

K i - i ) 2 ( i - p i ) 2 ( p i - p ? 2 ) 
C? 

£[ 5 ! 7]=2i [7 ,6] = m i j ( m V 1 ) P l 2 
Ci 

m2i(m2i - 1) [p2pi2 + (m2j - 1 )p\2] + m2iPi2 

4 
m i j ( l + ( m u ~ l ) P i ) ( l + ( m u - l ) p i + 3 m u p j 2 ) 

cf 
m u ( 1 + ( m i j ~ l ) p i + mup\2) _ 2 m ^ p ? 2 ( 3 + 3(r»i j - l ) p i + m i j p f 2 ) 

c? c? 

£[7,7] 

m H ( 1 + (mii - l ) p i ) 

Pi 

4 r r a i iPi2(Pi ~ P12) - (1 ~ Pi + 4mi ip f 2 ) c j 
c? 

Other entries of £ ( 0 ) are zero for m u > 1 and m2i = 1. 

The three asymptotic tests that we just discussed are based on the asymptotic 

chi-square distribution. The success of these tests is contingent upon the fact that the 

sample size is large. Further, the computation of the maximum likelihood estimates 

have to be obtained by numerically maximizing the likelihood functions. This process 

many times leads to non-convergence and in these cases it is hard to obtain the 

estimates. 

Next, we will provide certain transformations which enables us to provide some 

simple procedures for testing the intended null hypothesis. 
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II.8 C A N O N I C A L T R A N S F O R M A T I O N 

In this section, we apply a canonical transformation to the familial data simplifying 

the variance-covariance structure of the model. Doing this, will provide transformed 

data that can easily be used to estimate the model parameters as will be done in the 

following sections. 

Recall, Xj 

matrix 

S i = 

Let 

)is distributed with mean = ( ^ m u J and covariance 
V P2I m2i J 

mii,m2i 

m2i + P2Jm2i} 

r, T u 0 
j,("iii+m2iXmij+m2i) 

where 

1 
mu 
1 

V2 J _ 
V6 

1 
mii 
- 1 
V2 
1 

VE 

Jm2i,m\i 

1 
mii 
0 

mii,m2i 
r2i 

^ \ 

- 2 
\/6 

\ -y/mii (mii —1) ^f mXi{mxi-\) -y/miiCmij-l) 

/ 

• 2 i — 

1 
m2i 1 
V2 
1 

vs 

1 
m2i 

v/2 
1 

v/6 

1 
m2i 
0 

- 2 

V6 

_1 
mii 
0 
0 

—(mij—1) 
y'mii(mii-l) / 

\ 

m2i 
0 
0 

1 1 1 . . . -(m2j-l) 
\ y/m2i(m2i-1) \/m^7(m2i-l) \/m2i(m2i-l) A/m2i(m2i-l) / 

and 0TO>„ is the m x n matrix of all zeros. 
Transform the family scores by making a Srivastava type transformation (Srivas-

tava, 1984) to create yj, the transformed vector of family scores, 

0 m2i,mii 

Now, the expected value of the transformed son scores is 



28 

£(yi i) = 

\ 0 / 
and the variance matrix of the vector of transformed son scores is 

Var(yii) = ^ ^ ( ( l - pi)Im i i + p ^ j r ' ^ 

t + (mu - l)pi) 0 

o tff(i-Pi) ••• 

0 
0 

\ 0 0 

Similarly, the expected value of the transformed daughter scores is 

E(Y2i) 

\ ° / and the variance matrix of the vector of transformed daughter scores is 

Var(y2i) = ajr2i((l - p2)lm2i + p23m2i)T'2i 

1 ±<7f (1 + (m2i - 1 )p2) 
0 

0 

- P2) 

0 
0 

\ 0 0 ••• "2(1 -P2) 

The covariance matrix between the vector of transformed son scores and the vector 
of transformed daughter scores is 

Cov(yu,y2i) = 0-l<J2Pl2TuJmu,m2X2i 
( 

G\G2P\2 

1 0 
0 0 

0 0 

0 
0 

0 \ / mii,m2i 
Note that only the first transformed son score and the first transformed daughter 

Via score, namely ym and y2n, are correlated. Also, the vector is bivariate 
V2il 
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normal with mean and variance covariance matrix 

(5) 

Additionally, ym and y2»i are independent of yu2, • • • ,yiimu ~ N(0, crj(l — pi)) and 

V2i2, • - • ,y2im2i ~ N(0, olU - P2))-
In terms of Xi, and x2j, the first transformed son score, ym, is the average of all 

the boy scores of the family. As well, the first transformed daughter score, y2n, is 
the average of all the girl scores of the family. That is, 

Hence, the average of the first transformed son scores is an average of the mean score 
of sons for each family. Similarly, the average of the first transformed daughter scores 
is an average of the mean score of daughters for each family. Thus, 

Also, the sum of squares of the "left-over" transformed son scores, 3/1,2, • • •, yiimu, 
for a family can be written in terms of the second through last son of the fam-
ily. Similarly, the sum of squares of the "left-over" transformed daughter scores, 
V2i2, • • •, V2im2i> f° r a family can be written in terms of the second through last daugh-
ter of the family. Specifically, 

1 1 V̂ m2« 
Via = 2^=1 X1 ij» V2ii - 1 x2iy 

1 
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In order to simplify the transformed model, let I^SiI^ 

where 

•ni n' <7I2 n' 

Omii-l Omii-1 Omii —l,m2i —1 

0"l2 n' vi rv 

0m 2 i - l Omii —l,m2i —1 7 2 I m 2 i - l 

vl •• a\(l +(mii-l)pi)fmu, 

vli = oKl + (m2i ~ l)p2)/m2i, 

7? = al(l-Pl), 

72 = " 2 ( 1 - P 2 ) , 

(712 = crlcr2Pl2-

Note rj'u = o\ — a ^ j f and r]2i = erf — a 2 i j 2 , where = 1 — m \ l and a2j = 1 — m^1 . 
Also, there is a 1-1 transformation from the old parameters to a new set of parameters, 
namely, 

6 = 

6 = 

62 = 

D 
7 i ' 

9 > 
72 
<7: 

12 

7l72 ' 

II.9 FIRST SET OF ALTERNATIVE ESTIMATORS 

From the distribution of the transformed familial data, alternative estimates can 
be developed that do not require maximization of a non-linear constraint, as is the 
case for finding the MLEs used in the LRT, Wald, and Score tests. Let ni be the 
number of families with mu > 0, n2 be the number of families with m2i > 0, and 
ni2 be the number of families with mu > 0 and m2i > 0. Since yu2, • • •, yumu ~ 
iV(0,7i2) then 

1 J2T=2 Viij i s a complete, sufficient statistic for 7?. Also, by the 
Weak Law of Large Numbers X^Si S j = 2 Vuj a consistent estimator of 7^ because 

= = l l Y H U i m u - 1). Hence an unbiased and 
consistent estimator of 7J is proposed as 

7i = 
En 1 yr^mu 2 i=i Z^7=2 yi 13 

YTiUimu-iy (6) 
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Similarly, 7! can be estimated by 

E«2 2 
_ i=1 2^=2 y2ij , . 

72 E S i C ^ - i ) - ( 7 ) 

Next take 

(yiii - i/n)(j/2ii - J/21) 1̂2 = = E 
i=i n i 2 - 1 

where y*n = ^ E S J/m a n d Vk = ^ E S 2/2*1 • Since 

' 2 

2/2*1 / V V 2̂ / V CT12 % 
0"i2 is an unbiased estimator of 012. 

Since, 02 = T]i + ai i7 l
2 = ^ ( E S i ^ h ) + £ 7 i ( £ " = i °i<) a n d s i n c e 

Vii2, • • • ,yumii{i = l , . . . , n ) were used for estimating 72, Srivastava (1984) pro-
posed using ym(i = 1 , . . . ,n) to estimate a2 . Consider E — yii)2], where 

yn = ^ YZi y^- That is' 

(m \ ni / 1 m \ 

S J/m - «i2/ii J = + - m ( ^ J ] Vl + lA j 

1 - — ) niCT2 

= (ni 

Then estimate a \ by 

ni j m 

-7 J2(ym - yh)2 + —72(Y] 1 n\ n i - i ' - r ni »=i i=i 

Similarly, one can estimate cr| by 

j "2 ^ n2 

i = l j = l 
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From these, estimates of the other parameters are 

h = 1 - ( 7 i 2 M ) , 

P2 = 1- (li/o%), 

Pl2 = 
<712 

a io2 

Lastly, pi and p2 can be estimated by the maximum likelihood method from the 
distribution of ym and y2a • These are not simple averages since the variance of ym 
and the variance of y2n are dependent on the family size. 

Sub4 
Mi 

Subi - 2cti2 ( E ^ - i 1 \Sub2J viMi-v 

Sub2 
M2 = 

Sub2Sub4 - 4*?2 [ES 

Sub3-2*12(§%)z^^2 

Sub2Sub4-4af2[^i\^E] 
" 1 2 Til "12 ~2 

% msili - <?i2 ^ 
y2n 

O ~0 5 
~t vuvii - "12 

" 1 2 1 n 12 
f)2i Sub2 = E ~=2 + E ~2 ~2 ~2 ' 

^ Vu ^ % % - "12 

+ 2 a i 2 E 
yi»i 

0 - 0 ~o 5 
1 % % - "12 

«12 j "12 
sui>4 = E w + E fSi 

i=1 

11.10 SECOND SET OF ALTERNATIVE ESTIMATORS 

A second transformation can be considered that has better distributional properties 
providing simpler estimates of p i ,p 2 , a2 , and a\ . 

Consider 

^ mu 
ym = ym — 1 = JZvuj («= 1, - • • , n ) 

and 

V2il a = V2ii 7= E 2/2ij (« = 1, • • •, n). 
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Then 

E(ym) = Hi, Var(ym) = + aXi -yf = o f , 

E{y2n) = H2, Var(y2n) = tf2i + a2a% = cxf, 

and 

Cov(yUi,y2ii) = a 12. 

Hence, there are n\2 independent bivariate pairs of observations (ym,y2n) for i — 
1 , . . . ,ni2 with 

(im) ~ "(("'If ̂  <8> 
V U2il j \ \ J V CTl2 a2 / / 

Note the variances of ym and y2n are not dependent on the family size as was the 
case in the first transformation (5). 

Therefore, natural estimates of hi, P2, of, <?2, a n d ai2 a r e 

I n\ 
— ym = 1/1-1» (9) Via 

= (10) 
712 l^i 

3 Y 5 3 ~ 
i=1 

^ TJ2 
2a = n _ 1 53 (^ 2 i l ~ 

j=l 
j " 1 2 

— 5 3 ~ yi-Ofei - y2i), 

= 

1̂2a = 
" " - i = 1 

where y*hl = ^ YJl=i Vm a n d 2/21 = ^ E"=i 2/2zi- Hence, the estimate of p12 is 

5l2a 
Pi 2a — — 

f la^a 
While 72 and 72 can still be estimated as before by (6) and (7), a change could 

be 

7io 

72a 

T Z i T ^ i y w - y i i - ) 2 

- 1 ) ' 

E " i i Y ^ i y n j ~ vn) 2 

E S i - 1 ) ' 
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where 

n\ = number of families with mu > 1, and n\ = number of families with m2i > 1. 

Note, o\a and are independently distributed as are o\a and 7f0. Hence, 

Both sets of alternative estimates are easier to compute than the MLEs as they 
do not require an iterative procedure that does not always converge. However, the 
second set of alternative estimators, p\a and p~2a, requires the average number of boys 
in the familial data set, fhi, and the average number of girls in the familial data set, 
m2, to be greater than 2 so that the variances given below in equations (11) and 
(12) are positive. The first set of alternative estimates, p\ and p2, do not have this 
restriction. However, it is possible for both sets of alternative estimates to violate 
the model constraint (1). This will be discussed further after the simulation results 
are presented. 

11.11 V A R I A N C E OF ALTERNATIVE ESTIMATORS 

This section gives the asymptotic variance of both sets of alternative estimates. The 
distributions of these estimates will be used to construct alternative tests to test the 
null hypothesis later in the chapter. In order to determine the variance of the first 
set of alternative estimators, consider the following asymptotic distributions 

Pla 

P2a 
72a 

1/2 7 l - 7l —>• N(0, Ei), 
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where 

S i = 2 7l
4(mi " I )"1 

nx 

7 l
4 ( m 1 - l ) lnl

xYZliau 

with c2 = 1 — 2(1 — p i ) / ^ 1 E + (1 - Pi) 
i=1 

"l 
and mi = n^-1 ^ ^ m i j . 

i=l 

Using the delta method, the asymptotic variance of pi is 

i=l i=l 

-| '"I 
AVi = 2(1 - pj)2— (mx - I )" 1 + c2 - 2(1 - pi)(mi - l ) " 1 ^ 1 £ 

^i • 1 

L »=1 

Similarly, for the first alternative estimators based only on daughter scores 

>jV(0,S2), ,1/2 72 - 7f 
- °2 

where 

S 2 = 2 
72

4(m2 - l ) - 1
 7

4 (m 2 - 1)" V £ £ i <**> 

_ 7 2
4 ( ^ 2 - l ) - 1 n 2

1 E : = i a 2 i c2o-2 

"2 
with d; = 1 - 2(1 - p 2 )n 2

1 E «2i + (1 - p2)2 

i=l 

andm 2 = n2* ^ ^ m2z. 
i=l 

Hence, the asymptotic variance of p2 is 

n. 
n2 Ti2 

1 E 4 + (^2 - i r W E a2») 
i=l i=1 

= 2(1 - p2) : 

n2 

"2 
(ma - I )" 1 + 4 - 2(1 - p2)(m2 - l ) - 1 n 2

1 ^ «2i 
i=1 

In order to find the covariance of pi and p2, consider 

7i - 7 i 2 " / " o " ' Su £12 0 0 \ 

5? -»• AT 
0 S12 $22 0 ^24 

72 - 7 2 
-»• AT 

0 
5 

0 0 £33 <̂ 34 

a2 -<r2
2 

V _ 0 _ 0 2̂4 £34 644 _ / 
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Expressions for the terms <5n, 8i2, £22, £33, <̂ 34, and £44 are clearly specified in Si and 

£2. We only need to specify <$24- Using the distribution of [ j given in (5) and 
V Vm J 

the distribution of the sample covariance matrix as given in Appendix A.2, 

$24 = Cov(a\, 

= 2(n12 - 1 )~V2
2. 

Using the delta method, we have the following: 

1 
Cov(pi,p2) = 2 

n12 - 1 Pi2(! - P i ) ( l - P i ) -

Let AV(p\) be the estimated AV\(p\) obtained by substituting the alternative 
estimator px for the unknown parameter, and let AV(p2) be the estimated AV2(p2) 
obtained by substituting the alternative estimator p2 for the unknown parameter. 
Also, let Cov(p\,p2) be the estimated Cov(pi, p2) obtained by substituting the alter-
native estimators, pi,p2, and p\2 for the unknown parameters. 

In order to determine the variance of the second set of alternative estimators, 
consider the following asymptotic distributions 

n 1/2 7l« - 7l 

~°\a -

Ar(0,Sla), 

where 

-'la 
7l

4(m1 - 2)"1 

0 
ni 

rnx 
i=1 

Using the delta method, the asymptotic variance of pXa is 

1 
AVia = 2(1 - P l f — [(m, - 2)-1 + 1] . 

ni 

Similarly, for the second alternative estimates based only on daughter scores 

(11) 

n, 1/2 72a 72 

2̂a - <?2 
N( O.Eaa), 
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where 

J2 a 
72

4(m2 - 2)"1 

0 
n2 

m2 = n 2
1 E m2t-

i=l 

Therefore using the delta method, the asymptotic variance of p2a is 

= 2(1 - p2)2- [(fh2 - 2)-1 + l] . 
n2 

In order to find the covariance of p\a and p2o, consider 

(12) 

r /la — 7i / " 0 " 

\pri 
lla - 7 t 

—» N 
0 

0 
> 

\ _ 0 

l̂lo 0 0 0 
0 filla 0 <5l4a 
0 0 <$33a 0 
0 &24a 0 &t4a / 

where 5na , 522a, 633a, and <̂440 are already specified in Ei a and E2a . We only need 

<524a- Using the distribution of ( J given in (8) and the distribution of the 
V Vli J 

sample covariance matrix as given in Appendix A.2, 

52i = Cov(a\a, &la) 

= 2(n12 - l ) - 1 ^ . 

Using the delta method, we have the following: 

Cov(pla, P2a) = 2- - p 2
2 ( l - p i ) ( l - p 2 ) . 

n12 - 1 

Let AV(pia) be the estimated AVia(pia) obtained by substituting the alternative 
estimator pia for the unknown parameter, and let AV(p2a) be the estimated AV^ipia) 
obtained by substituting the alternative estimator p2a for the unknown parameter. 
Also, let Cov(pia, p2a) be the estimated Cov(p\a,p2a) obtained by substituting the 
alternative estimators, p\a,pia-, and pi2a for the unknown parameters. 

11.12 ALTERNATIVE TESTS 

The two tests we propose are 

TS\ = Pi - pi 
S.E.(pi - p2) xl (13) 
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where 

S.E.{~Pl - p2) = AV{px) + AV{p2) - 2C~ov(pup2), 

and 

where 
S.E.(pla - p2a) = AV(pla) + AV(p2a) - 2C~ov(pia, p2a). 

The two alternative tests, TS\ and TS2, are simpler to implement than the LRT, 
Wald, and Score tests. 

11.13 ANALYSIS OF GALTON'S DATA 

An example of a familial data set on which these procedures can be implemented 
is Galton's data set on human stature. Galton collected family heights from family 
records and published his analysis on hereditary stature during the 1880s (Galton, 
1886, 1889). Hanley (2004) worked directly with Galton's notebooks to make the 
raw familial data publicly available. Naik and Helu (2007) used Galton's data set 
as an illustration of their techniques to test the equality of independent intraclass 
correlation coefficients. To do this, Galton's data set was split into 2 groups from 
which they tested if the son intraclass correlation from one group of families equaled 
the daughter intraclass correlation from the other group of families. The tests pro-
posed here allow one to test the null hypothesis of equal son and daughter intraclass 
correlation coefficients, H0 : pi = p2, while accounting for any dependency between 
the boys and girls of a family. 

Galton's data set consists of heights from 205 families with children. Of these 205 
families, 197 had numerical heights for all their children. The other 8 families had 
at least one child height recorded verbally, for example "tallish" (see Hanley 2004). 
Family sizes range from 1 to 15 with the number of sons ranging from 0 to 10 and the 
number of daughters ranging from 0 to 9. The distribution of family sizes is given in 
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TABLE 1. For Galton's data set, the maximum likelihood estimates 8 and 8o are 

fa " 69.305345 " fa " 69.306173 

M2 64.155985 fa 64.155481 

5? 7.1050891 7.1242155 

a2
2 

= 5.3345446 > SO — af = 5.3212658 

PI 0.3954526 P 0.4008412 

P2 0.4066034 P 0.4008412 

Pl2 0.3860179 . P12 . _ 0.3863638 

The alternative estimates of 9 for Galton's data set are 

Pi 69.060144 Pla 67.785214 

fa 63.824326 P2a 63.063426 

7.7280211 aja 6.6747275 

erf = 6.4325128 > oa — n2a 
2 = 5.9345296 

Pi 0.3754032 Pla 0.3474392 

P2 0.4427573 P2a 0.4743360 

Pl2 0.4087418 Pl2a 0.4478932 

The results of the five proposed tests for the null hypothesis that the correlation 

between the boy heights equals the correlation between the girls heights , H0 : PI = 
P2, in Galton's data set are given in Table 2. All 5 tests fail to reject H0 at the 

a = 0.05 significance level. 

TABLE 1: Frequency Table of Galton's Family Sizes. 

# of Sons 0 1 
# 2 

of Daughters 
3 4 5 6 7 8 9 

0 0 15 4 3 0 1 0 0 1 0 
1 17 10 6 4 1 1 1 0 0 0 
2 6 10 13 9 6 3 1 0 0 1 
3 3 10 8 6 7 2 2 2 0 0 
4 2 8 6 3 4 2 1 1 0 0 
5 0 0 1 6 1 0 0 0 0 0 
6 1 1 1 2 1 0 0 0 0 0 
7 0 1 0 0 0 0 0 0 1 0 
10 0 1 0 0 0 0 0 0 0 0 
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TABLE 2: Galton's Data, H0 : pi = p2. 
Test L R T Score Wald T 5 i TS2 

Statistic 
Pvalue 

0.030 
0.861 

0.036 
0.850 

0.026 
0.873 

1.240 
0.265 

0.845 
0.358 

11.14 SIMULATION E X P E R I M E N T S A N D RESULTS 

All five tests are expected to behave similarly for large sample sizes, since they all have 
an asymptotic chi-square distribution with 1 degree of freedom. A good comparison of 
the tests is to assess their performance when applied to small samples. As previously 
noted, in order for the variance of pia (11) and the variance of p2a (12) to be positive 
the average number of boys per family, mi, and the average number of girls per 
family, fh2, need to be greater than 2. Therefore, two simulation experiments were 
designed to examine the small sample performance of the tests. The first simulation 
experiment has smaller family sizes and compares the LRT (2), Score (4), Wald (3), 
and the first proposed test, TS\ (13). The second experiment compares all five tests: 
LRT (2), Wald (3), Score (4), TSX (13), and the second proposed test, TS2 (14). In 
both simulation studies, only positive values of the familial correlations, pi,p2, and 
Pi2, are considered because the model constraint (1) restricts the negative values the 
familial correlations can attain based on a family's size. 

For the first experiment, 50 family scores are simulated as multivariate normal 
random vectors. The family size for each vector is simulated from a truncated neg-
ative binomial distribution with the number of children ranging from 1 to 15. The 
mean of the negative binomial distribution is taken as 2.84 and the success probabil-
ity as 0.483. This distribution was suggested by Brass (1958) as the distribution of 
U.S. births and has been used in several other previous simulation experiments in-
cluding Rosner, Donner, and Hennekens (1977), Srivastava and Keen (1988), Young 
and Bhandary (1998), and Naik and Helu (2007). Gender was then assigned to each 
child in the family using a discrete uniform distribution. The choices of parameters 
are pi = 0, p2 = 0, a\ = 1, a2 = 2, and p\ and p2 range from 0.1 to 0.9 by increments 
of 0.1. The interclass correlation p12 is set as the midpoint between 0 and the upper 
bound for pi2: 

y/(pi + (1 - Pi)/mi){p2 + (1 - P2)/m2) 
P12 = z , 
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where mi is the maximum number of boys in the simulation and m2 is the maximum 
number of girls in the simulation. For each choice of parameters, 10,000 simulations 
were run. For an arbitrary case of pi = p2 = 0.5, Table 3 shows the family size 
distribution, Table 4 shows the distribution of the number of sons per family, and 
Table 5 shows the distribution of the number of daughters per family. For this case, 
the simulations produced 866,284 boys total and 866,584 girls total with an average 
of 1.73 boys and 1.73 girls per family. 

TABLE 3: Distribution of Family Sizes, First Simulation Experiment. 
# Children # of Families 

1 106089 
2 105862 
3 88523 
4 66841 
5 47089 
6 31678 
7 20764 
8 13048 
9 8194 
10 5036 
11 3076 
12 1792 
13 1036 
14 617 
15 355 

For each choice of pi and p2, estimated size and power values are computed for 
testing, Hq : P\ = p2 = P- Tables 6-8 give the estimated sizes for A = 0.01,0.05, 
and 0.10, respectively. Table 6 also gives the percentage of simulations for which the 
maximum likelihood procedure did not converge and the percentage of simulations 
for which the alternative estimates, pi, p2, and pi2, violated the model constraint (1). 
These percentages apply for all 3 size tables, since the different sizes are estimated 
from the same run. Similar percentages are also given in the rejection proportion 
tables. 
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TABLE 4: Distribution of Male Family Sizes, First Simulation Experiment. 
# Sons # of Families 

0 96819 
1 168088 
2 112797 
3 63089 
4 32165 
5 15423 
6 6672 
7 3045 
8 1218 
9 457 
10 159 
11 52 
12 14 
13 2 
14 0 
15 0 

TABLE 5: Distribution of Female Family Sizes, First Simulation Experiment. 
# Daughters # of Families 

0 96960 
1 168224 
2 112229 
3 63274 
4 32034 
5 15468 
6 6939 
7 2966 
8 1246 
9 437 
10 156 
11 57 
12 10 
13 0 
14 0 
15 0 
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TABLE 6: Sizes, a = 0.01, H0 : pi = (H = p. 
*Percent that did not converge; **Percent that violated the model constraints. 

p2 LRT (*) Score Wald T 5 i (**) 

0.1 0.0103 (5.41%) 0.0114 0.0126 
0.2 0.0146 (2.98%) 0.0123 0.0154 
0.3 0.0182 (2.24%) 0.0141 0.0164 
0.4 0.0161 (1.27%) 0.0140 0.0183 
0.5 0.0158 (0.61%) 0.0123 0.0317 
0.6 0.0131 (0.32%) 0.0104 0.0499 
0.7 0.0115 (0.16%) 0.0123 0.0746 
0.8 0.0118 (0.11%) 0.0329 0.0601 
0.9 0.0121 (0.40%) 0.0842 0.0159 

0.0114 (35.90%) 
0.0097 (21.33%) 
0.0112 (12.13%) 
0.0093 (5.94%) 
0.0120 (2.05%) 
0.0108 (0.86%) 
0.0114 (0.26%) 
0.0107 (0.09%) 
0.0111 (0.11%) 

TABLE 7: Sizes, a = 0.05, H0: p i = p 2 = p. 

P2 LRT Score Wald TSi 

0.1 0.0548 0.0391 0.0642 0.0520 
0.2 0.0644 0.0534 0.0605 0.0521 
0.3 0.0678 0.0642 0.0625 0.0542 
0.4 0.0667 0.0561 0.0691 0.0552 
0.5 0.0650 0.0501 0.0900 0.0553 
0.6 0.0590 0.0374 0.1123 0.0536 
0.7 0.0546 0.0321 0.1365 0.0557 
0.8 0.0548 0.0508 0.0954 0.0552 
0.9 0.0587 0.1153 0.0261 0.0618 

The following observations can be made. The Score test tends to be larger than 
the assumed level except for pi = p% = 0.9 for which the Score test is notably lower for 
the a = 0.05 and 0.10 levels. Wald's test is erratic as estimated sizes are sometimes 
larger than the assumed level and other times lower than the assumed level. The 
LRT performs well although it tends to be slightly larger than the assumed level. 
The alternative test TSI also performs well and tends to be slightly larger than the 
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TABLE 8: Sizes, a = 0.10, Hp : px = p2 = p. 
p2 LRT Score Wald T S i 

0.1 0.1020 0.0811 0.1255 0.1098 
0.2 0.1226 0.1100 0.1170 0.1056 
0.3 0.1284 0.1218 0.1204 0.1072 
0.4 0.1229 0.1102 0.1271 0.1106 
0.5 0.1188 0.0928 0.1496 0.1128 
0.6 0.1052 0.0688 0.1738 0.1041 
0.7 0.1045 0.0559 0.1921 0.1086 
0.8 0.1072 0.0674 0.1260 0.1171 
0.9 0.1113 0.1325 0.0337 0.1205 

assumed level, but generally closer to the assumed level than the LRT. Specifically, 

TS\ is closest to the assumed level in 15 of the 27 cases. When comparing TS\ to 

only the LRT, TSi is closer to the assumed level than the LRT in 18 of the 27 cases. 

Tables 9-17 give estimated power values adjusted to the level each test attained 

in the size calculations. For each table, the rejection proportions are based on the 

95th percentiles of the test statistics from the size simulation for the value of pi. For 

example, Table 9 shows the proportion of simulations with test statistics greater than 

3.98822 for the LRT, 4.26378 for the Score test, 3.48331 for Wald's test, and 3.91926 

for TSi which were the 95th percentiles from the simulation of H0 : px = p2 = 0.1. 

TABLE 9: Adjusted Rejection Proportions, a = 0.05, Ho : pi = p2 = p, Pi 
*Percent that did not converge; **Percent that violated the model constraints. 

p2 LRT (*) Score Wald TSX (**) 

0.1. 

0.1 0.0548 (5.41%) 0.0391 0.0642 
0.2 0.0812 (3.57%) 0.0803 0.0739 
0.3 0.1899 (2.51%) 0.1949 0.1641 
0.4 0.3635 (1.63%) 0.3821 0.3220 
0.5 0.5902 (1.28%) 0.6104 0.5417 
0.6 0.8019 (1.02%) 0.8139 0.7698 
0.7 0.9410 (0.57%) 0.9355 0.9217 
0.8 0.9937 (0.68%) 0.9532 0.9642 
0.9 0.9996 (0.96%) 0.8023 0.8196 

0.0520 (35.90%) 
0.0625 (29.03%) 
0.1232 (24.73%) 
0.2365 (22.33%) 
0.4216 (20.83%) 
0.6547 (19.38%) 
0.8666 (18.86%) 
0.9783 (18.37%) 
0.9999 (18.47%) 
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TABLE 10: Adjusted Rejection Proportions, a = 0.05, H0 : pi = p2 = p, fh = 0.2. 
*Percent that did not converge; **Percent that violated the model constraints. 

p 2 LRT (*) Score Wald TS± (**) 

0.1 0.0655 (3.35%) 0.0624 0.0756 
0.2 0.0644 (2.98%) 0.0534 0.0605 
0.3 0.0816 (2.43%) 0.0811 0.0784 
0.4 0.1775 (2.02%) 0.1755 0.1732 
0.5 0.3622 (1.45%) 0.3623 0.3672 
0.6 0.6019 (1.06%) 0.5906 0.6208 
0.7 0.8438 (0.89%) 0.8065 0.8562 
0.8 0.9777 (0.63%) 0.8936 0.9360 
0.9 0.9986 (1.04%) 0.7493 0.7797 

0.0626 (28.21%) 
0.0521 (21.33%) 
0.0685 (17.08%) 
0.1372 (14.05%) 
0.2863 (12.57%) 
0.5145 (10.95%) 
0.7793 (10.23%) 
0.9590 (9.36%) 
0.9993 (9.35%) 

TABLE 11: Adjusted Rejection Proportions, a = 0.05, H0 : pi = p2 = p, p\ = 0.3. 
*Percent that did not converge; **Percent that violated the model constraints. 

p2 LRT (*) Score Wald TSX (**) 
0.1 0.1515 (2.27%) 0.1313 0.1628 
0.2 0.0782 (2.40%) 0.0711 0.0780 
0.3 0.0678 (2.24%) 0.0642 0.0625 
0.4 0.0813 (1.52%) 0.0745 0.0901 
0.5 0.1810 (1.17%) 0.1621 0.2097 
0.6 0.3959 (0.76%) 0.3465 0.4476 
0.7 0.6914 (1.03%) 0.5853 0.7392 
0.8 0.9303 (0.54%) 0.7598 0.8838 
0.9 0.9981 (0.78%) 0.6589 0.7132 

0.1190 (25.30%) 
0.0680 (17.49%) 
0.0542 (12.13%) 
0.0774 (9.35%) 
0.1634 (7.18%) 
0.3622 (6.14%) 
0.6537 (5.48%) 
0.9122 (4.80%) 
0.9974 (4.38%) 
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TABLE 12: Adjusted Rejection Proportions, a = 0.05, H0 : px = p2 = p, p\ = 0.4. 
*Percent that did not converge; **Percent that violated the model constraints. 

p2 LRT (*) Score Wald TSt (**) 

0.1 0.3287 (1.56%) 0.3104 0.3049 
0.2 0.1851 (1.79%) 0.1785 0.1721 
0.3 0.0887 (1.83%) 0.0844 0.0790 
0.4 0.0667 (1.27%) 0.0561 0.0691 
0.5 0.0832 (0.76%) 0.0765 0.0966 
0.6 0.2209 (0.78%) 0.1834 0.2603 
0.7 0.5103 (0.40%) 0.3899 0.5652 
0.8 0.8487 (0.29%) 0.6024 0.7935 
0.9 0.9955 (0.66%) 0.5812 0.6474 

0.2325 (21.99%) 
0.1459 (14.13%) 
0.0767 (9.19%) 
0.0552 (5.94%) 
0.0778 (3.64%) 
0.2099 (3.27%) 
0.4841 (2.27%) 
0.8296 (1.85%) 
0.9940 (1.76%) 

TABLE 13: Adjusted Rejection Proportions, a = 0.05, HQ : p\= p2 = p, p\ = 0.5. 
*Percent that did not converge; **Percent that violated the model constraints. 

p2 LRT (*) Score Wald T S i (**) 

0.1 0.5632 (0.99%) 0.5797 0.4528 
0.2 0.3551 (1.60%) 0.3707 0.2757 
0.3 0.1865 (1.40%) 0.1991 0.1424 
0.4 0.0834 (0.89%) 0.0870 0.0686 
0.5 0.0650 (0.61%) 0.0501 0.0900 
0.6 0.0907 (0.47%) 0.0788 0.1029 
0.7 0.2801 (0.25%) 0.2057 0.3103 
0.8 0.6858 (0.25%) 0.4136 0.6146 
0.9 0.9810 (0.52%) 0.4785 0.5535 

0.4166 (20.63%) 
0.2792 (12.67%) 
0.1558 (6.70%) 
0.0826 (3.90%) 
0.0553 (2.05%) 
0.0937 (1.72%) 
0.2765 (0.91%) 
0.6719 (0.76%) 
0.9778 (0.74%) 
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TABLE 14: Adjusted Rejection 
*Percent that did not converge; 

Proportions, a = 0.05, H0 : p\ — p2 — p, p\ = 0.6. 
**Percent that violated the model constraints. 

p 2 LRT (*) Score Wald TS1 (**) 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

0.7961 (0.91% 
0.6184 (0.97% 
0.4269 (0.99% 
0.2355 (0.61% 
0.1010 (0.21% 
0.0590 (0.32% 
0.1246 (0.19% 
0.4497 (0.07% 
0.9370 (0.31% 

0.8344 0.6008 0.6503 (20.22%) 
0.6520 0.4289 0.5007 (11.14%) 
0.4489 0.2763 0.3519 (5.90%) 
0.2412 0.1516 0.2116 (2.95%) 
0.1016 0.0729 0.0978 (1.30%) 
0.0374 0.1123 0.0536 (0.86%) 
0.0935 0.1220 0.1288 (0.16%) 
0.2554 0.3535 0.4505 (0.33%) 
0.3961 0.4255 0.9294 (0.28%) 

TABLE 15: Adjusted Rejection Proportions, a = 0.05, H0 : pi = p2 = p, p\ 
*Percent that did not converge; **Percent that violated the model constraints. 

p 2 LRT (*) Score Wald TS1 (**) 

0.7. 

0.1 0.9406 (0.78%) 0.9525 0.7256 
0.2 0.8632 (0.84%) 0.8708 0.5837 
0.3 0.7253 (0.75%) 0.7388 0.4330 
0.4 0.5396 (0.55%) 0.5226 0.2804 
0.5 0.3092 (0.31%) 0.2811 0.1550 
0.6 0.1254 (0.22%) 0.1141 0.0792 
0.7 0.0546 (0.16%) 0.0321 0.1365 
0.8 0.1940 (0.08%) 0.1234 0.1273 
0.9 0.8000 (0.31%) 0.3058 0.2410 

0.8599 (19.61%) 
0.7708 (10.68%) 
0.6440 (5.26%) 
0.4725 (2.56%) 
0.2731 (1.18%) 
0.1150 (0.48%) 
0.0557 (0.26%) 
0.1892 (0.13%) 
0.7878 (0.06%) 

TABLE 16: Adjusted Rejection Proportions, a = 0.05, H0 : pi = p2 = p, p\ = 0.8. 
*Percent that did not converge; **Percent that violated the model constraints. 

P2 LRT (*) Score Wald TS i (**) 
0.1 0.9928 (0.61%) 0.9435 0.9260 0.9802 (18.68%) 
0.2 0.9778 (0.75%) 0.8844 0.8684 0.9551 (9.83%) 
0.3 0.9483 (0.59%) 0.7884 0.7942 0.9179 (4.92%) 
0.4 0.8662 (0.31%) 0.6278 0.6567 0.8291 (1.74%) 
0.5 0.6969 (0.20%) 0.4039 0.4760 0.6585 (0.72%) 
0.6 0.4574 (0.09%) 0.2222 0.2987 0.4328 (0.32%) 
0.7 0.1918 (0.06%) 0.0928 0.1275 0.1874 (0.17%) 
0.8 0.0548 (0.11%) 0.0508 0.0954 0.0552 (0.09%) 
0.9 0.4082 (0.46%) 0.1810 0.0953 0.4031 (0.05%) 
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TABLE 17: Adjusted Rejection Proportions, a = 0.05, H0 : pi = p2 = p, pi 
*Percent that did not converge; ** Percent that violated the model constraints. 

p 2 LRT (*) Score Wald TS1 (**) 

0.9. 

0.1 0.9997 (0.72%) 0.6630 0.8268 
0.2 0.9995 (0.87%) 0.5557 0.7791 
0.3 0.9989 (0.65%) 0.4316 0.7276 
0.4 0.9959 (0.32%) 0.3273 0.6621 
0.5 0.9856 (0.18%) 0.2458 0.5814 
0.6 0.9464 (0.15%) 0.1797 0.4996 
0.7 0.7947 (0.04%) 0.1329 0.3832 
0.8 0.4089 (0.06%) 0.1002 0.2049 
0.9 0.0587 (0.40%) 0.1153 0.0261 

0.9993 (17.79%) 
0.9987 (9.70%) 
0.9976 (4.46%) 
0.9929 (1.92%) 
0.9763 (0.67%) 
0.9313 (0.33%) 
0.7745 (0.08%) 
0.3923 (0.09%) 
0.0618 (0.11%) 

Since only the LRT and TSi performed consistently well in the size calculations, 
it is reasonable to only compare power calculations of the LRT and TSi. From the 
tables, one can see that the LRT achieves higher power levels than TS\, but TS\ is 
not far behind. In 32% of the simulations, the power of TSi is greater than the LRT 
or within 0.01. In 76% of the simulations, the power of TSi is greater than the LRT 
or within 0.05. 

Tables 18-26 give the power values for a nominal level a = 0.05. 

TABLE 18: Rejection Proportions, a = 0.05, H0 : pi = p2 = p, p\ = 0.1. 
*Percent that did not converge; **Percent that violated the model constraints. 

p2 LRT (*) Score Wald T S i (**) 

0.1 0.0548 (5.41%) 0.0391 0.0642 
0.2 0.0871 (3.57%) 0.0635 0.0886 
0.3 0.2008 (2.51%) 0.1673 0.1903 
0.4 0.3799 (1.63%) 0.3374 0.3610 
0.5 0.6028 (1.28%) 0.5687 0.5839 
0.6 0.8108 (1.02%) 0.7919 0.7956 
0.7 0.9442 (0.57%) 0.9201 0.9337 
0.8 0.9944 (0.68%) 0.9494 0.9654 
0.9 0.9996 (0.96%) 0.8002 0.8205 

0.0520 (35.90%) 
0.0656 (29.03%) 
1.1237 (24.73%) 
0.2439 (22.33%) 
0.4295 (20.83%) 
0.6631 (19.38%) 
0.8702 (18.86%) 
0.9790 (18.37%) 
0.9999 (18.47%) 
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TABLE 19: Rejection Proportions, a = 0.05, H0 : pi — p2 = p, P\ — 
*Percent that did not converge; **Percent that violated the model constraints. 

p2 LRT (*) Score Wald T 5 i (**) 

0.1 0.0856 (3.35%) 0.0663 0.0919 0.0648 (28.21%) 
0.2 0.0644 (2.98%) 0.0534 0.0605 0.0521 (21.33%) 
0.3 0.1020 (2.43%) 0.0863 0.0932 0.0711 (17.08%) 
0.4 0.2066 (2.02%) 0.1847 0.1997 0.1412 (14.05%) 
0.5 0.4043 (1.45%) 0.3736 0.4004 0.2922 (12.57%) 
0.6 0.6486 (1.06%) 0.6007 0.6539 0.5201 (10.95%) 
0.7 0.8681 (0.89%) 0.8124 0.8729 0.7837 (10.23%) 
0.8 0.9830 (0.63%) 0.8964 0.9394 0.9603 (9.36%) 
0.9 0.9986 (1.04%) 0.7508 0.7808 0.9995 (9.35%) 

0.2. 

TABLE 20: Rejection Proportions, a = 0.05, H0 : pi = p2 = p, pi = 
*Percent that did not converge; **Percent that violated the model constraints. 

P2 LRT (*) Score Wald TST (**) 

0.3. 

0.1 0.1977 (2.27%) 0.1645 0.1887 
0.2 0.1041 (2.40%) 0.0924 0.0948 
0.3 0.0678 (2.24%) 0.0642 0.0625 
0.4 0.1099 (1.52%) 0.0974 0.1055 
0.5 0.2232 (1.17%) 0.1955 0.2383 
0.6 0.5431 (0.76%) 0.3925 0.4850 
0.7 0.7415 (1.03%) 0.6306 0.7647 
0.8 0.9487 (0.54%) 0.7881 0.8920 
0.9 0.9991 (0.78%) 0.6684 0.7155 

0.1246 (25.30%) 
0.0724 (17.49%) 
0.0542 (12.13%) 
0.0820 (9.35%) 
0.1725 (7.18%) 
0.3732 (6.14%) 
0.6644 (5.48%) 
0.9174 (4.80%) 
0.9980 (4.38%) 

TABLE 21: Rejection Proportions, a = 0.05, Ho • pi = p2 = P, Pi = 0.4. 
*Percent that did not converge; **Percent that violated the model constraints. 

P2 LRT (*) Score Wald TS^ (**) 

0.1 0.3743 (1.56%) 0.3348 0.3543 
0.2 0.2193 (1.79%) 0.1950 0.2093 
0.3 0.1086 (1.83%) 0.0965 0.1032 
0.4 0.0667 (1.27%) 0.0561 0.0691 
0.5 0.1020 (0.76%) 0.0843 0.1220 
0.6 0.2577 (0.78%) 0.1984 0.3062 
0.7 0.5540 (0.40%) 0.4103 0.6094 
0.8 0.8711 (0.29%) 0.6202 0.8126 
0.9 0.9967 (0.66%) 0.5872 0.6507 

0.2399 (21.99%) 
0.1523 (14.13%) 
0.0803 (9.19%) 
0.0552 (5.94%) 
0.0815 (3.64%) 
0.2170 (3.27%) 
0.4935 (2.27%) 
0.8365 (1.85%) 
0.9944 (1.76%) 
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TABLE 22: Rejection Proportions, a — 0.05, Ho • pi = p2 = p, Pi = 0.5. 
*Percent that did not converge; **Percent that violated the model constraints. 

p2 LRT (*) Score Wald TSX (**) 
0.1 0.6077 (0.99%) 0.5799 0.5883 
0.2 0.3999 (1.60%) 0.3709 0.3967 
0.3 0.2247 (1.40%) 0.1993 0.2367 
0.4 0.1040 (0.89%) 0.0870 0.1229 
0.5 0.0650 (0.61%) 0.0501 0.0900 
0.6 0.1122 (0.47%) 0.0788 0.1672 
0.7 0.3226 (0.25%) 0.2059 0.4068 
0.8 0.7250 (0.25%) 0.4141 0.6805 
0.9 0.9863 (0.52%) 0.4788 0.5647 

0.4332 (20.63%) 
0.2963 (12.67%) 
0.1670 (6.70%) 
0.0900 (3.90%) 
0.0553 (2.05%) 
0.1024 (1.72%) 
0.2930 (0.91%) 
0.6888 (0.76%) 
0.9810 (0.74%) 

TABLE 23: Rejection Proportions, a = 0.05, H0 : pi = p2 = P, Pi = 0.6. 
*Percent that did not converge; **Percent that violated the model constraints. 

P2 LRT (*) Score Wald TSX (**) 

0.1 0.8146 (0.91%) 0.7941 0.7998 
0.2 0.6420 (0.97%) 0.5961 0.6433 
0.3 0.4575 (0.99%) 0.3923 0.4843 
0.4 0.2576 (0.61%) 0.1998 0.3047 
0.5 0.1145 (0.21%) 0.0794 0.1673 
0.6 0.0590 (0.32%) 0.0374 0.1123 
0.7 0.1386 (0.19%) 0.0747 0.2220 
0.8 0.4783 (0.07%) 0.2225 0.4800 
0.9 0.9455 (0.31%) 0.3756 0.4622 

0.6630 (20.22%) 
0.5134 (11.14%) 
0.3637 (5.90%) 
0.2184 (2.95%) 
0.1030 (1.30%) 
0.0536 (0.86%) 
0.1343 (0.61%) 
0.4613 (0.33%) 
0.9335 (0.28%) 
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TABLE 24: Rejection Proportions, a = 0.05, H0 : pi = pi = p, pi = 0.7. 
*Percent that did not converge; **Percent that violated the model constraints. 

p2 L R T (*) Score Wald TS1 (**) 

0.1 0.9452 (0.78%) 0.9221 0.9347 
0.2 0.8714 (0.84%) 0.8116 0.8755 
0.3 0.7374 (0.75%) 0.6361 0.7654 
0.4 0.5540 (0.55%) 0.4124 0.6049 
0.5 0.3255 (0.31%) 0.2036 0.4003 
0.6 0.1356 (0.22%) 0.0729 0.2155 
0.7 0.0546 (0.16%) 0.0321 0.1365 
0.8 0.2058 (0.08%) 0.0924 0.2472 
0.9 0.8105 (0.31%) 0.2741 0.3278 

0.8681 (19.61%) 
0.7842 (10.68%) 
0.6635 (5.26%) 
0.4893 (2.56%) 
0.2870 (1.18%) 
0.1262 (0.48%) 
0.0557 (0.26%) 
0.2013 (0.13%) 
0.7988 (0.06%) 

TABLE 25: Rejection Proportions, a = 0.05, : p\ = p2 = p, pi = 0.8. 
*Percent that did not converge; **Percent that violated the model constraints. 

P2 L R T (*) Score Wald TS i (**) 
0.1 0.9940 (0.61%) 0.9443 0.9639 0.9823 (18.68%) 
0.2 0.9797 (0.75%) 0.8866 0.9297 0.9587 (9.83%) 
0.3 0.9525 (0.59%) 0.7922 0.8973 0.9241 (4.92%) 
0.4 0.8765 (0.31%) 0.6320 0.8091 0.8403 (1.74%) 
0.5 0.7125 (0.20%) 0.4097 0.6662 0.6763 (0.72%) 
0.6 0.4773 (0.09%) 0.2261 0.4743 0.4481 (0.32%) 
0.7 0.2055 (0.06%) 0.0947 0.2337 0.2013 (0.17%) 
0.8 0.0548 (0.11%) 0.0508 0.0954 0.0552 (0.09%) 
0.9 0.4248 (0.46%) 0.1810 0.1467 0.4031 (0.05%) 

TABLE 26: Rejection Proportions, a = 0.05, H0 : pi = p2 = p, pi = 
*Percent that did not converge; **Percent that violated the model constraints. 

0.9. 

P2 L R T (*) Score Wald T S i (**) 

0.1 0.9997 (0.72%) 0.7991 0.8205 
0.2 0.9996 (0.87%) 0.7429 0.7713 
0.3 0.9990 (0.65%) 0.6718 0.7160 
0.4 0.9964 (0.32%) 0.5907 0.6453 
0.5 0.9874 (0.18%) 0.4842 0.5551 
0.6 0.9543 (0.15%) 0.3893 0.4593 
0.7 0.8133 (0.04%) 0.2759 0.3234 
0.8 0.4367 (0.06%) 0.1736 0.1454 
0.9 0.0587 (0.40%) 0.1153 0.0261 

0.9993 (17.79%) 
0.9990 (9.70%) 
0.9983 (4.46%) 
0.9940 (1.92%) 
0.9815 (0.67%) 
0.9429 (0.33%) 
0.8001 (0.08%) 
0.4297 (0.09%) 
0.0618 (0.11%) 
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It can be seen that similar to the adjusted power levels, the LRT achieves higher 
power levels than TSI but TS\ is not too far behind. Since the estimated sizes for 
the LRT are generally larger than the estimated sizes for TS\ one can expect the 
LRT powers to have an advantage when not adjusted for the size levels the tests 
achieved. 

For the second experiment, 50 family scores axe simulated as multivariate normal 
random vectors. The family size for each vector is simulated from a truncated neg-
ative binomial distribution with the number of children ranging from 1 to 15. The 
mean of the negative binomial distribution is taken as 6.72 and the success proba-
bility as 0.302. This is the estimated distribution of Australian births as proposed 
by Brass (1958). This distribution has larger family sizes which satisfies the require-
ments for TS'2 that both the average number of boys and the average number of girls 
are greater than 2. The discrete uniform distribution was used to assign gender to 
each child. Again, the choices of the parameters are pi = 0, /z2 = 0, of = 1, erf = 0, 
and pi and p2 range from 0.1 to 0.9 by increments of 0.1. The interclass correlation 
P12 is set as the midpoint between 0 and the upper bound for pi2: 

V(pi + (1 - pi)/m1)(p2 + (1 - p2)/rn2) 
P12 = g ' 

where mi is the maximum number of boys in the simulation and m2 is the maximum 
number of girls in the simulation. For each choice of parameters, 10,000 simulations 
were run. For an arbitrary case of pi = p2 = 0.5, Table 27 shows the family size 
distribution, Table 28 shows the distribution of the number of sons per family, and 
Table 29 shows the distribution of the number of daughters per family. For this case, 
the simulations produced 2,600,132 boys and 2,602,861 girls with an average of 5.2 
boys and 5.2 girls per family. 
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TABLE 27: Distribution of Family Sizes, Second Simulation Experiment. 
# of Children # of Families 

1 1413 
2 3659 
3 7388 
4 12570 
5 19013 
6 25736 
7 32589 
8 39160 
9 44655 
10 49212 
11 52213 
12 54140 
13 53956 
14 52972 
15 51324 

For each choice of px and p2, estimated size and power values are computed for 
testing, H0 : pi = p2 = p. Tables 30-32 give the estimated sizes for a = 0.01,0.05, 
and 0.10, respectively. Table 30 also gives the percentage of simulations for which 
the MLE procedure did not converge, the percentage of simulations for which the 
alternative estimates, pi,p2, and pi2, violate the model constraint (1), and the per-
centage of simulations for which the alternative estimates, pia,(ha-, and pi2a, violate 
the model constraint (1). These percentages apply for all 3 size tables, since the 
different sizes are estimated from the same run. Similar percentages are also given 
in the rejection proportion tables to come. 
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TABLE 28: Distribution of Male Family Sizes, Second Simulation Experiment. 
# of Sons # of Families 

0 4968 
1 18776 
2 38704 
3 59271 
4 75789 
5 81882 
6 76767 
7 61476 
8 42035 
9 23918 
10 11064 
11 4022 
12 1085 
13 212 
14 30 
15 1 

TABLE 29: Distribution of Female Family Sizes, Second Simulation Experiment. 
# of Daughters # of Families 

0 4881 
1 18612 
2 38616 
3 59561 
4 75468 
5 81750 
6 76767 
7 61669 
8 42171 
9 24066 
10 11022 
11 4032 
12 1146 
13 205 
14 34 
15 0 
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TABLE 30: Sizes, a = 0.01, H0 : Pl = p2 = p. 
* P e r c e n t t h a t d i d n o t c o n v e r g e ; * * P e r c e n t t h a t v i o l a t e d t h e m o d e l c o n s t r a i n t s ; * * * P e r c e n t t h a t v i o l a t e d m o d e l c o n s t r a i n t s . 

P2 LRT (*) Score Wald T S i (**) TS2 (***) 
0.1 0.0109 (0.17%) 0.0073 0.0095 0.0097 (4.15%) 
0.2 0.0131 (0.04%) 0.0116 0.0107 0.0101 (0.45%) 
0.3 0.0131 (0.03%) 0.0124 0.0109 0.0117 (0.03%) 
0.4 0.0117 (0.09%) 0.0113 0.0093 0.0112 (0%) 
0.5 0.0117 (0.08%) 0.0120 0.0099 0.0114 (0%) 
0.6 0.0107 (0.07%) 0.0112 0.0100 0.0098 (0%) 
0.7 0.0111 (0.10%) 0.0115 0.0139 0.0108 (0%) 
0.8 0.0123 (0.15%) 0.0152 0.0274 0.0108 (0%) 
0.9 0.0130 (0.22%) 0.0387 0.0372 0.0119 (0%) 

0.0074 (14.03%) 
0.0092 (7.55%) 
0.0070 (2.83%) 
0.0099 (1.06%) 
0.0087 (0.24%) 
0.0079 (0.06%) 
0.0095 (0%) 
0.0113 (0%) 
0.0092 (0%) 

TABLE 31: Sizes, a = 0.05, H0:p1 = P2 = p. 
P2 LRT Score Wald TST TS2 

0.1 0.0589 0.0510 0.0551 0.0494 0.0500 
0.2 0.0585 0.0563 0.0506 0.0507 0.0498 
0.3 0.0588 0.0580 0.0519 0.0544 0.0530 
0.4 0.0545 0.0549 0.0502 0.0501 0.0473 
0.5 0.0559 0.0562 0.0525 0.0537 0.0508 
0.6 0.0542 0.0528 0.0536 0.0523 0.0521 
0.7 0.0558 0.0524 0.0611 0.0548 0.0490 
0.8 0.0587 0.0521 0.0832 0.0567 0.0507 
0.9 0.0592 0.0798 0.0804 0.0559 0.0512 

TABLE 32: Sizes, a = 0.10, H0:pi = P2 = P-
P2 LRT Score Wald TSI TS2 

0.1 0.1105 0.1056 0.1066 0.0978 0.1027 
0.2 0.1096 0.1092 0.1030 0.0991 0.1059 
0.3 0.1130 0.1126 0.1044 0.1087 0.1069 
0.4 0.1041 0.1057 0.0978 0.1000 0.1037 
0.5 0.1054 0.1062 0.1023 0.1030 0.1085 
0.6 0.1039 0.1039 0.1034 0.1017 0.1028 
0.7 0.1097 0.1018 0.1187 0.1082 0.1042 
0.8 0.1121 0.0997 0.1381 0.1092 0.1068 
0.9 0.1124 0.1217 0.1220 0.1089 0.1062 
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The following observations can be made. The Score and Wald tests perform well 

except for large values p for which the tests are larger than the assumed level. The 

LRT performs well, although it is uniformly larger than the assumed level. Both 

the alternative tests, TS\ and TS2 perform well. Specifically, TS\ is closest to the 

assumed level in 7 of the 27 cases and TS2 is closest to the assumed level in 11 of the 

27 cases. When comparing the alternative tests, TSi and TS2 , to only the LRT, TSi 

is closest to the assumed level 11 of the 27 cases and TS2 is closest to the assumed 

level in the other 16 of the 27 cases. The LRT was not closer to the assumed level 

than the alternative estimates in any of the simulations. 

Tables 33-41 give estimated power values adjusted to the level each test attained 

in the size calculations. For each table, the rejection proportions are based on the 95th 

percentiles of the test statistics from the size simulations for the value of pi. For ex-

ample, Table 33 shows the proportion of simulations with test statistics greater than 

4.17172 for the LRT, 4.00311 for the Score test, 3.86216 for the Wald test, 3.80180 

for TSi , and 3.84007 for TS2 which were the 95th percentiles from the simulation of 

Ho : pi = P2 = 0.1. 

TABLE 33: Adjusted Rejection Proportions, A = 0.05, H0 : PI = p2 = p, pi = 0.1. 
* P e r c e n t t h a t d i d n o t c o n v e r g e ; * * P e r c e n t t h a t v i o l a t e d t h e m o d e l c o n s t r a i n t s ; * * * P e r c e n t t h a t v i o l a t e d m o d e l c o n s t r a i n t s . 

P2 LRT (*) Score Wald T S t (**) TS2 (***) 
0.1 0.0589 (0.17%) 0.0510 0.0551 0.0494 (4.15%) 0.0500 (14.03%) 
0.2 0.2234 (0.04%) 0.2401 0.2217 0.1683 (1.74%) 0.0614 (11.02%) 
0.3 0.6259 (0.02%) 0.6526 0.6227 0.5044 (1.43%) 0.1173 (8.35%) 
0.4 0.9114 (0%) 0.9214 0.9099 0.8357 (1.19%) 0.2301 (6.95%) 
0.5 0.9906 (0%) 0.9925 0.9904 0.9751 (1.19%) 0.4326 (6.94%) 
0.6 0.9998 (0%) 0.9998 0.9998 0.9991 (1.04%) 0.6943 (6.45%) 
0.7 1.0000 (0.01%) 1.0000 1.0000 1.0000 (0.97%) 0.9177 (0.97%) 
0.8 1.0000 (0%) 0.9994 0.9994 1.0000 (0.99%) 0.9962 (6.09%) 
0.9 1.0000 (0%) 0.9653 0.9651 1.0000 (0.83%) 1.0000 (5.81%) 
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TABLE 34: Adjusted Rejection Proportions, a = 0.05, H0 : p\ = p2 = p, pi = 0.2. 
• P e r c e n t t h a t d i d n o t c o n v e r g e ; * * P e r c e n t t h a t v i o l a t e d t h e m o d e l c o n s t r a i n t s ; * * * P e r c e n t t h a t v i o l a t e d m o d e l c o n s t r a i n t s . 

p2 LRT (*) Score Wald TSJ. (**) TS2 (***) 
0.1 0.2376 (0.04%) 0.2358 0.2349 
0.2 0.0585 (0.04%) 0.0563 0.0506 
0.3 0.1882 (0.04%) 0.1901 0.1880 
0.4 0.5852 (0%) 0.5852 0.5841 
0.5 0.8992 (0%) 0.8999 0.8994 
0.6 0.9910 (0%) 0.9918 0.9909 
0.7 0.9998 (0%) 0.9998 0.9998 
0.8 1.0000 (0%) 0.9999 0.9999 
0.9 1.0000 (0%) 0.9627 0.9631 

0.1674 (1.82%) 
0.0507 (0.45%) 
0.1622 (0.10%) 
0.5111 (0.05%) 
0.8484 (0.06%) 
0.9812 (0.07%) 
0.9996 (0.05%) 
1.0000 (0.05%) 
1.0000 (0.03%) 

0.0644 (10.88%) 
0.0498 (7.55%) 
0.0670 (0.10%) 
0.1377 (4.21%) 
0.2954 (3.47%) 
0.5522 (2.87%) 
0.8515 (3.25%) 
0.9873 (2.58%) 
1.0000 (2.39%) 

TABLE 35: Adjusted Rejection Proportions, a = 0.05, Ho : pi = = p, p\ — 0.3. 
* P e r c e n t t h a t d i d n o t c o n v e r g e ; * * P e r c e n t t h a t v i o l a t e d t h e m o d e l c o n s t r a i n t s ; * * * P e r c e n t t h a t v i o l a t e d m o d e l c o n s t r a i n t s . 

p2 LRT (*) Score Wald TSX (**) TS2 (***) 
0.1 0.6534 (0%) 0.6466 0.6510 
0.2 0.1951 (0.03%) 0.1907 0.1946 
0.3 0.0588 (0.03%) 0.0580 0.0519 
0.4 0.1797 (0.02%) 0.1776 0.1812 
0.5 0.5630 (0%) 0.5573 0.5635 
0.6 0.9039 (0%) 0.9021 0.9062 
0.7 0.9952 (0%) 0.9952 0.9957 
0.8 1.0000 (0%) 0.9991 0.9994 
0.9 1.0000 (0%) 0.9562 0.9568 

0.5057 (1.45%) 0.1099 (8.76%) 
0.1581 (0.14%) 0.0641 (5.37%) 
0.0544 (0.03%) 0.0530 (2.83%) 
0.1690 (0%) 0.0692 (2.04%) 
0.5199 (0%) 0.1705 (1.52%) 
0.8777 (0.01%) 0.4076 (1.42%) 
0.9915 (0.01%) 0.7340 (1.25%) 
0.9999 (0%) 0.9667 (0.96%) 
1.0000 (0%) 0.9999 (0.70%) 

TABLE 36: Adjusted Rejection Proportions, a — 0.05, H0 : pi = P2 = p, Pi = 0.4. 
* P e r c e n t t h a t d i d n o t c o n v e r g e ; * * P e r c e n t t h a t v i o l a t e d t h e m o d e l c o n s t r a i n t s ; * * * P e r c e n t t h a t v i o l a t e d m o d e l c o n s t r a i n t s . 

p2 LRT (*) Score Wald TSX (**) TS2 (***) 
0.1 0.9235 (0.01%) 0.9225 0.9220 
0.2 0.5796 (0.01%) 0.5786 0.5768 
0.3 0.1919 (0.05%) 0.1905 0.1931 
0.4 0.0545 (0.09%) 0.0549 0.0502 
0.5 0.1934 (0.02%) 0.1928 0.1965 
0.6 0.6101 (0.01%) 0.6043 0.6159 
0.7 0.9464 (0%) 0.9441 0.9505 
0.8 0.9993 (0%) 0.9971 0.9978 
0.9 1.0000 (0%) 0.9469 0.9475 

0.8414 (1.37%) 0.2331 (7.31%) 
0.5095 (0.12%) 0.1428 (4.22%) 
0.1801 (0%) 0.0800 (2.24%) 
0.0501 (0%) 0.0473 (1.06%) 
0.1900 (0%) 0.0847 (0.73%) 
0.5877 (0%) 0.2403 (0.53%) 
0.9406 (0%) 0.5846 (0.26%) 
0.9991 (0%) 0.9351 (0.18%) 
1.0000 (0%) 0.9999 (0.35%) 
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TABLE 37: Adjusted Rejection Proportions, a = 0.05, Ho : pi — p2 = p, pi = 0.5. 
^ P e r c e n t t h a t d i d n o t c o n v e r g e ; * * P e r c e n t t h a t v i o l a t e d t h e m o d e l c o n s t r a i n t s ; * * * P e r c e n t t h a t v i o l a t e d m o d e l c o n s t r a i n t s . 

p2 LRT (*) Score Wald TSX (**) TS2 (***) 
0.1 0.9938 (0%) 0.9936 0.9931 
0.2 0.8958 (0%) 0.8934 0.8903 
0.3 0.5730 (0%) 0.5688 0.5673 
0.4 0.1829 (0.02%) 0.1793 0.1790 
0.5 0.0559 (0.08%) 0.0562 0.0525 
0.6 0.2111 (0.04%) 0.2073 0.2120 
0.7 0.7044 (0.01%) 0.6951 0.7128 
0.8 0.9862 (0%) 0.9772 0.9845 
0.9 1.0000 (0%) 0.9412 0.9433 

0.9741 (1.06%) 0.4182 (6.82%) 
0.8407 (0.04%) 0.2998 (3.78%) 
0.5226 (0.01%) 0.1753 (1.83%) 
0.1742 (0%) 0.0803 (0.59%) 
0.0537 (0%) 0.0508 (0.24%) 
0.2107 (0%) 0.1051 (0.12%) 
0.6919 (0%) 0.3531 (0.12%) 
0.9846 (0%) 0.8170 (0.04%) 
1.0000 (0%) 0.9992 (0.03%) 

TABLE 38: Adjusted Rejection Proportions, A — 0.05, HO : PI = PI = P, PI — 0.6. 
* P e r c e n t t h a t d i d n o t c o n v e r g e ; * * P e r c e n t t h a t v i o l a t e d t h e m o d e l c o n s t r a i n t s ; * * * P e r c e n t t h a t v i o l a t e d m o d e l c o n s t r a i n t s . 

P2 LRT (*) Score Wald TSj, (**) TS2 (***) 
0.1 0.9999 (0%) 0.9999 0.9999 
0.2 0.9925 (0%) 0.9929 0.9912 
0.3 0.9910 (0%) 0.9138 0.9048 
0.4 0.6118 (0.01%) 0.6159 0.6003 
0.5 0.2134 (0.03%) 0.2164 0.2080 
0.6 0.0542 (0.07%) 0.0528 0.0536 
0.7 0.2717 (0.04%) 0.2664 0.2764 
0.8 0.8688 (0%) 0.8403 0.8710 
0.9 0.9998 (0%) 0.9171 0.9195 

0.9988 (1.02%) 0.6882 (6.58%) 
0.9813 (0.12%) 0.5515 (3.07%) 
0.8786 (0.01%) 0.3915 (1.24%) 
0.5824 (0%) 0.2325 (0.51%) 
0.2025 (0%) 0.1059 (0.09%) 
0.0523 (0%) 0.0521 (0.06%) 
0.2619 (0%) 0.1436 (0.01%) 
0.8597 (0%) 0.5895 (0%) 
0.9998 (0%) 0.9915 (0%) 
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TABLE 39: Adjusted Rejection Proportions, a = 0.05, Ho : pi = p2 = p, Pi = 0.7. 
* P e r c e n t t h a t d i d n o t c o n v e r g e ; * * P e r c e n t t h a t v i o l a t e d t h e m o d e l c o n s t r a i n t s ; * * * P e r c e n t t h a t v i o l a t e d m o d e l c o n s t r a i n t s . 

p 2 LRT (*) Score Wald T S i (**) TS2 (***) 

0.1 1.0000 (0%) 1.0000 1.0000 
0.2 0.9999 (0%) 0.9999 0.9999 
0.3 0.9962 (0%) 0.9965 0.9949 
0.4 0.9457 (0%) 0.9485 0.9343 
0.5 0.7131 (0%) 0.7201 0.6890 
0.6 0.2637 (0.09%) 0.2687 0.2490 
0.7 0.0558 (0.10%) 0.0524 0.0611 
0.8 0.3972 (0.05%) 0.3665 0.4040 
0.9 0.9915 (0%) 0.8859 0.8971 

0.9999 (0.90%) 0.9166 (5.95%) 
0.9992 (0.04%) 0.8524 (2.88%) 
0.9942 (0%) 0.7467 (1.23%) 
0.9344 (0%) 0.5707 (0.21%) 
0.6982 (0%) 0.3613 (0.06%) 
0.2573 (0%) 0.1443 (0.05%) 
0.0548 (0%) 0.0490 (0%) 
0.3966 (0%) 0.2498 (0%) 
0.9909 (0%) 0.9447 (0%) 

TABLE 40: Adjusted Rejection Proportions, a = 0.05, H0 : pi = p2 = p, Pi = 0.8. 
* P e r c e n t t h a t d i d n o t c o n v e r g e ; * * P e r c e n t t h a t v i o l a t e d t h e m o d e l c o n s t r a i n t s ; * * * P e r c e n t t h a t v i o l a t e d m o d e l c o n s t r a i n t s . 

P2 LRT (*) Score Wald TSi (**) TS2 (***) 

0.1 1.0000 (0%) 0.9996 0.9998 1.0000 (0.68%) 0.9949 (5.70%) 
0.2 1.0000 (0%) 0.9993 0.9994 1.0000 (0.05%) 0.9870 (2.73%) 
0.3 1.0000 (0%) 0.9995 0.9995 0.9999 (0%) 0.9708 (1.00%) 
0.4 0.9993 (0%) 0.9977 0.9967 0.9990 (0%) 0.9265 (0.30%) 
0.5 0.9866 (0%) 0.9830 0.9731 0.9841 (0%) 0.8184 (0.04%) 
0.6 0.8555 (0%) 0.8410 0.7962 0.8496 (0%) 0.5778 (0%) 
0.7 0.3912 (0.03%) 0.3692 0.3248 0.3863 (0%) 0.2475 (0%) 
0.8 0.0587 (0.15%) 0.0521 0.0832 0.0567 (0%) 0.0507 (0%) 
0.9 0.7600 (0%) 0.6242 0.6071 0.7540 (0%) 0.6125 (0%) 

Since only LRT and TSi performed consistently well in the first simulation ex-
periment, it is appropriate to only compare power calculations of the LRT, TSI, and 
TS2- From the tables, one can see that the LRT achieves higher power levels than 
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TABLE 41: Adjusted Rejection Proportions, a = 0.05, H0 : pi = p2 = p, pi = 0.9. 
* P e r c e n t t h a t d i d n o t c o n v e r g e ; * * P e r c e n t t h a t v i o l a t e d t h e m o d e l c o n s t r a i n t s ; * * * P e r c e n t t h a t v i o l a t e d m o d e l c o n s t r a i n t s . 

P2 LRT (*) Score Wald T S i (**) TS2 (***) 
0.1 1.0000 (0%) 0.9656 0.9658 1.0000 (0%) 1.0000 (0%) 
0.2 1.0000 (0%) 0.9629 0.9630 1.0000 (0.02%) 1.0000 (2.66%) 
0.3 1.0000 (0%) 0.9516 0.9506 1.0000 (0%) 0.9999 (0.91%) 
0.4 1.0000 (0%) 0.9471 0.9499 1.0000 (0%) 0.9999 (0.31%) 
0.5 0.9999 (0%) 0.9359 0.9369 1.0000 (0%) 0.9985 (0.03%) 
0.6 0.9999 (0%) 0.9214 0.9252 0.9999 (0%) 0.9929 (0%) 
0.7 0.9909 (0%) 0.8603 0.8843 0.9905 (0%) 0.9378 (0%) 
0.8 0.7573 (0%) 0.5274 0.5910 0.7499 (0%) 0.6101 (0%) 
0.9 0.0592 (0.22%) 0.0798 0.0804 0.0559 (0%) 0.0512 (0%) 

both alternative tests, but TSi is not far behind. In 40% of the simulations, the 
estimated power of TSi is greater than the LRT or within 0.001. In 63% of the sim-
ulations, the estimated power of TSi is greater than the LRT or within 0.01. In 83% 
of the simulations, the estimated power of TSi is greater than the LRT or within 
0.05. 

Tables 42-50 give the power values for a nominal level a = 0.05. 

TABLE 42: Rejection Proportions, a = 0.05, H0 : pi — p2 = p, pi = 0.1. 
* P e r c e n t t h a t d i d n o t c o n v e r g e ; * * P e r c e n t t h a t v i o l a t e d t h e m o d e l c o n s t r a i n t s ; * * * P e r c e n t t h a t v i o l a t e d m o d e l c o n s t r a i n t s . 

p2 LRT (*) Score Wald TSX (**) TS2 (***) 
0.1 0.0589 (0.17%) 0.0510 0.0551 0.0494 (4.15%) 0.0500 (14.03%) 
0.2 0.2495 (0.04%) 0.2420 0.2340 0.1655 (1.74%) 0.0614 (11.02%) 
0.3 0.6574 (0.02%) 0.6526 0.6389 0.5044 (1.43%) 0.1173 (8.35%) 
0.4 0.9223 (0%) 0.9221 0.9151 0.8342 (1.19%) 0.2301 (6.95%) 
0.5 0.9925 (0%) 0.9925 0.9912 0.9749 (1.19%) 0.4326 (6.94%) 
0.6 0.9998 (0%) 0.9998 0.9998 0.9989 (1.04%) 0.6942 (6.45%) 
0.7 1.0000 (0.01%) 1.0000 1.0000 1.0000 (0.97%) 0.9177 (6.21%) 
0.8 1.0000 (0%) 0.9994 0.9994 1.0000 (0.99%) 0.9962 (6.09%) 
0.9 1.0000 (0%) 0.9653 0.9651 1.0000 (0.83%) 1.0000 (5.81%) 
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TABLE 43: Rejection Proportions, a = 0.05, H0 : pi — pi = p, pi = 0.2. 
* P e r c e n t t h a t d i d n o t c o n v e r g e ; * * P e r c e n t t h a t v i o l a t e d t h e m o d e l c o n s t r a i n t s ; * * * P e r c e n t t h a t v i o l a t e d m o d e l c o n s t r a i n t s . 

P2 LRT (*) Score Wald TST (**) TS2 (***) 
0.1 0.2542 (0.04%) 0.2507 0.2386 0.1688 (1.82%) 0.0644 (10.88%) 
0.2 0.0585 (0.04%) 0.0563 0.0506 0.0507 (0.45%) 0.0498 (7.55%) 
0.3 0.2028 (0.04%) 0.2014 0.1899 0.1638 (0.10%) 0.0669 (5.62%) 
0.4 0.6059 (0%) 0.6013 0.5875 0.5131 (0.05%) 0.1373 (4.21%) 
0.5 0.9071 (0%) 0.9057 0.9010 0.8494 (0.06%) 0.2949 (3.47%) 
0.6 0.9923 (0%) 0.9924 0.9912 0.9815 (0.07%) 0.5516 (2.87%) 
0.7 0.9998 (0%) 0.9998 0.9998 0.9996 (0.05%) 0.8513 (3.25%) 
0.8 1.0000 (0%) 0.9999 0.9999 1.0000 (0.05%) 0.9873 (2.58%) 
0.9 1.0000 (0%) 0.9627 0.9631 1.0000 (0.03%) 1.0000 (2.39%) 

TABLE 44: Rejection Proportions, a = 0.05, H0 : pi = p2 = p, pi = 0.3. 
* P e r c e n t t h a t d i d n o t c o n v e r g e ; * * P e r c e n t t h a t v i o l a t e d t h e m o d e l c o n s t r a i n t s ; * * * P e r c e n t t h a t v i o l a t e d m o d e l c o n s t r a i n t s . 

P2 LRT (*) Score Wald TSJ. (**) TS2 (***) 
0.1 0.6765 (0%) 0.6702 0.6583 0.5205 (1.45%) 0.1152 (8.76%) 
0.2 0.2129 (0.03%) 0.2112 0.2008 0.1657 (0.14%) 0.0677 (5.37%) 
0.3 0.0588 (0.03%) 0.0580 0.0519 0.0544 (0.03%) 0.0530 (2.83%) 
0.4 0.1963 (0.02%) 0.1942 0.1865 0.1771 (0%) 0.0728 (2.04%) 
0.5 0.5861 (0%) 0.5843 0.5726 0.5324 (0%) 0.1771 (1.52%) 
0.6 0.9138 (0%) 0.9124 0.9095 0.8837 (0.01%) 0.4186 (1.42%) 
0.7 0.9961 (0%) 0.9961 0.9958 0.9921 (0.01%) 0.7433 (1.25%) 
0.8 1.0000 (0%) 0.9991 0.9994 0.9999 (0%) 0.9687 (0.96%) 
0.9 1.0000 (0%) 0.9562 0.9568 1.0000 (0%) 1.0000 (0.70%) 

TABLE 45: Rejection Proportions, A = 0.05, H0 : PI = p2 = P, PI = 0.4. 
* P e r c e n t t h a t d i d n o t c o n v e r g e ; * * P e r c e n t t h a t v i o l a t e d t h e m o d e l c o n s t r a i n t s ; * * * P e r c e n t t h a t v i o l a t e d m o d e l c o n s t r a i n t s . 

P2 LRT (*) Score Wald (**) TS2 (***) 
0.1 0.9296 (0.01%) 0.9287 0.9224 0.8416 (1.37%) 0.2266 (7.31%) 
0.2 0.5978 (0.01%) 0.5982 0.5774 0.5097 (0.12%) 0.1384 (4.22%) 
0.3 0.2057 (0.05%) 0.2041 0.1936 0.1801 (0%) 0.0764 (2.24%) 
0.4 0.0545 (0.09%) 0.0549 0.0502 0.0501 (0%) 0.0473 (1.06%) 
0.5 0.2070 (0.02%) 0.2058 0.1971 0.1901 (0%) 0.0823 (0.73%) 
0.6 0.6258 (0.01%) 0.6223 0.6166 0.5879 (0%) 0.2328 (0.53%) 
0.7 0.9522 (0%) 0.9497 0.9510 0.9407 (0%) 0.5757 (0.26%) 
0.8 0.9994 (0%) 0.9973 0.9978 0.9991 (0%) 0.9324 (0.18%) 
0.9 1.0000 (0%) 0.9471 0.9475 1.0000 (0%) 0.9999 (0.35%) 



TABLE 46: Rejection Proportions, a = 0.05, H0 : pi = p2 = p, pi = 0.5. 
P e r c e n t t h a t d i d n o t c o n v e r g e ; * * P e r c e n t t h a t v i o l a t e d t h e m o d e l c o n s t r a i n t s ; * * * P e r c e n t t h a t v i o l a t e d m o d e l c o n s t r a i n t s . 

p2 LRT (*) Score Wald T S i (**) TS2 (***) 

0.1 0.9946 (0%) 0.9945 0.9935 0.9757 (1.06%) 0.4212 (6.82%) 
0.2 0.9030 (0%) 0.9027 0.8936 0.8475 (0.04%) 0.3028 (3.78%) 
0.3 0.5915 (0%) 0.5906 0.5749 0.5332 (0.01%) 0.1773 (1.83%) 
0.4 0.1946 (0.02%) 0.1942 0.1846 0.1823 (0%) 0.0819 (0.59%) 
0.5 0.0559 (0.08%) 0.0562 0.0525 0.0537 (0%) 0.0508 (0.24%) 
0.6 0.2219 (0.04%) 0.2218 0.2180 0.2174 (0%) 0.1073 (0.12%) 
0.7 0.7182 (0.01%) 0.7105 0.7197 0.7013 (0%) 0.3564 (0.12%) 
0.8 0.9876 (0%) 0.9798 0.9580 0.9856 (0%) 0.8189 (0.04%) 
0.9 1.0000 (0%) 0.9413 0.9434 1.0000 (0%) 0.9992 (0.03%) 

TABLE 47: Rejection Proportions, a = 0.05, H0 : pi — p2 = p, pi = 0.6. 
P e r c e n t t h a t d i d n o t c o n v e r g e ; * * P e r c e n t t h a t v i o l a t e d t h e m o d e l c o n s t r a i n t s ; * * * P e r c e n t t h a t v i o l a t e d m o d e l c o n s t r a i n t s . 

p2 LRT (*) Score Wald TSX (**) TS2 (***) 

0.1 0.9999 (0%) 0.9999 0.9999 0.9990 (1.02%) 0.6938 (6.58%) 
0.2 0.9932 (0%) 0.9934 0.9922 0.9828 (0.12%) 0.5580 (3.07%) 
0.3 0.9171 (0%) 0.9173 0.9103 0.8832 (0.01%) 0.3978 (1.24%) 
0.4 0.6251 (0.01%) 0.6266 0.6132 0.5945 (0%) 0.2370 (0.51%) 
0.5 0.2234 (0.03%) 0.2228 0.2176 0.2121 (0%) 0.1091 (0.09%) 
0.6 0.0542 (0.07%) 0.0528 0.0536 0.0523 (0%) 0.0521 (0.06%) 
0.7 0.2820 (0.04%) 0.2759 0.2858 0.2735 (0%) 0.1488 (0.01%) 
0.8 0.8749 (0%) 0.8446 0.8772 0.8659 (0%) 0.5965 (0%) 
0.9 0.9998 (0%) 0.9174 0.9197 0.9998 (0%) 0.9922 (0%) 



TABLE 48: Rejection Proportions, a = 0.05, H0 : pi = p2 = p, pi = 0.7. 
" " P e r c e n t t h a t d i d n o t c o n v e r g e ; """"Percent t h a t v i o l a t e d t h e m o d e l c o n s t r a i n t s ; """""Percent t h a t v i o l a t e d m o d e l c o n s t r a i n t s . 

P2 LRT (*) Score Wald T S i TS2 (***) 

0.1 1.0000 (0%) 1.0000 1.0000 0.9999 (0.90%) 0.9156 (5.95%) 
0.2 0.9999 (0%) 0.9999 0.9999 0.9995 (0.04%) 0.8508 (2.88%) 
0.3 0.9969 (0%) 0.9970 0.9961 0.9945 (0%) 0.7446 (1.23%) 
0.4 0.9509 (0%) 0.9515 0.9483 0.9383 (0%) 0.5671 (0.21%) 
0.5 0.7278 (0%) 0.7266 0.7246 0.7127 (0%) 0.3584 (0.06%) 
0.6 0.2768 (0.09%) 0.2742 0.2788 0.2690 (0%) 0.1427 (0.05%) 
0.7 0.0558 (0.10%) 0.0524 0.0611 0.0548 (0%) 0.0490 (0%) 
0.8 0.4122 (0.05%) 0.3733 0.4415 0.4077 (0%) 0.2477 (0%) 
0.9 0.9919 (0%) 0.8875 0.8994 0.9918 (0%) 0.9437 (0%) 

TABLE 49: Rejection Proportions, a = 0.05, H0 : p\ = pi = p, Pi = 0.8. 
" " P e r c e n t t h a t d i d n o t c o n v e r g e ; * * P e r c e n t t h a t v i o l a t e d t h e m o d e l c o n s t r a i n t s ; """"""Percent t h a t v i o l a t e d m o d e l c o n s t r a i n t s . 

P2 L R T (*) Score Wald TSi (**) TS2 (***) 

0.1 1.0000 (0%) 0.9996 0.9998 1.0000 (0.68%) 0.9949 (5.70%) 
0.2 1.0000 (0%) 0.9993 0.9994 1.0000 (0.05%) 0.9873 (2.73%) 
0.3 1.0000 (0%) 0.9995 0.9995 0.9999 (0%) 0.9713 (1.00%) 
0.4 0.9995 (0%) 0.9977 0.9978 0.9991 (0%) 0.9281 (0.30%) 
0.5 0.9896 (0%) 0.9837 0.9856 0.9868 (0%) 0.8215 (0.04%) 
0.6 0.8693 (0%) 0.8453 0.8649 0.8612 (0%) 0.5823 (0%) 
0.7 0.4154 (0.03%) 0.3760 0.4280 0.4074 (0%) 0.2508 (0%) 
0.8 0.0587 (0.15%) 0.0521 0.0832 0.0567 (0%) 0.0507 (0%) 
0.9 0.7762 (0%) 0.6297 0.6819 0.7703 (0%) 0.6162 (0%) 

TABLE 50: Rejection Proportions, a = 0.05, H0 : pi — p2 = P, Pi = 0.9. 
" " P e r c e n t t h a t d i d n o t c o n v e r g e ; """"Percent t h a t v i o l a t e d t h e m o d e l c o n s t r a i n t s ; """"""Percent t h a t v i o l a t e d m o d e l c o n s t r a i n t s . 

P2 LRT (*) Score Wald TSX (**) TS2 (***) 

0.1 1.0000 (0%) 0.9660 0.9666 1.0000 (0.95%) 1.0000 (5.25%) 
0.2 1.0000 (0%) 0.9632 0.9638 1.0000 (0.02%) 1.0000 (2.66%) 
0.3 1.0000 (0%) 0.9526 0.9516 1.0000 (0%) 0.9999 (0.91%) 
0.4 1.0000 (0%) 0.9488 0.9507 1.0000 (0%) 0.9999 (0.31%) 
0.5 1.0000 (0%) 0.9382 0.9394 1.0000 (0%) 0.9986 (0.03%) 
0.6 0.9999 (0%) 0.9266 0.9280 0.9999 (0%) 0.9933 (0%) 
0.7 0.9922 (0%) 0.8869 0.8976 0.9913 (0%) 0.9398 (0%) 
0.8 0.7768 (0%) 0.6333 0.6822 0.7695 (0%) 0.6150 (0%) 
0.9 0.0592 (0.22%) 0.0798 0.0804 0.0559 (0%) 0.0512 (0%) 
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It can be seen that similar to the adjusted power levels, the LRT achieves higher 
power than both TS\ and TS2 . Since the estimated sizes for the LRT are generally 
larger than the estimated sizes for TS\ and TS2L the LRT powers have an advantage 
when not adjusted for the size levels each test achieved. 

When family sizes were smaller, the alternative test TSi compared well with the 
LRT especially in size performance while the Score and Wald did not perform as 
well as either the LRT or TS\ . When family sizes were larger, both alternative test 
performed well compared to the LRT in size estimation, but only TSi compared 
well to the LRT in power estimation. The alternative test TSi violates the model 
constraints more often than the LRT does not converge, especially when family sizes 
are smaller and the upper bound on p i 2 is lower. In practice, both sets of alternative 
estimates and corresponding tests are easy to compute. Generally, TSi performed 
better and does not require restrictions on the data set that TS2 needs, therefore 
TS\ is recommended. 
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CHAPTER III 

INTERCLASS CORRELATIONS: g POPULATIONS 

III . l I N T R O D U C T I O N 

Testing equality of g intraclass correlations was considered by Naik and Helu (2007) 

under the general setup of unequal family sizes. However, under the model where 

brother-sister interclass correlation is nonzero, it is of interest to test the equality 

of these interclass correlations from g independent populations. In this chapter, 

we consider g independent populations where sons and daughters in a family can 

have different intraclass correlations and different interclass correlations over the 

populations. We consider the problem of testing if these interclass correlations are 

the same. Suppose there are g independent populations and data on the children of 

Hi randomly selected families are available from each population. As in the second 

chapter, the number of boys and girls in each family is allowed to be different. 

Denote the number of boys and girls in the jth family from the ith population as 

muj and m2ij, respectively, for j = 1 , . . . , n,; i = 1 , . . . , g. Let x l l j f c , k = 1 , . . . , muj-, 

j = 1 , . . . ,nf, i = 1 , . . . ,g be the observation on the kth boy of the jth family from 

the ith population. Likewise, let x2ijk, k — 1 , . . . , m2ij\ j = 1 , . . . , n f , i — 1 , . . . , g be 

the observation on the kth girl of the jth family from the ith population. 

Assume that the expected value of the son observations in a family is E(xujk) = 

/z^i, the expected value of the daughter observations in a family is E(x2ijk) = p2 

the variance of the son observations is Var(xujk) = and the variance of the 

daughter observations is Var{x2ijk) = a2 i. Denote the son-son intraclass correlation 

of the ith population as the daughter-daughter intraclass correlation of the ith 

population as p 2 j , and the son-daughter interclass correlation of the ith population 

as p\2yi. Assume for each family in the ith population, Corr(xUjk, Xiljk>) = pX i for 

k k'; 1 < k, k' < mUj, Corr(x2ijk, x2ijk>) = p2)i for k ^ k'; 1 < k, k' < m2ij, and 

Corr(x\ijk, x2ijk>) = pn,i for all k, k'; 1 < k < m^ and 1 < k' < m2ij. 

Let the vector of observations on the jth family from the ith population be 
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Xl ij 

X2 ij 

with 

( xU]i \ 

xlijmuj 

%2ijl 

\ X2ijm2ij ) 

and 

Var(x.ij) -'i] 

(" l . iK 1 - Pl,i)Imly +Pi , i3m u i } Pl2,iO~l,iV2,lJmi13,m2,3 \ 

PUjClA^iJmiij.mnj <T2,i{(l ~ p2,i)lm2ij + p2,i3m2ij} J 

where I m is an identity matrix of order m, 3 m is the m x m matrix of all ones, and 

Jm,n is the m x n matrix of all ones. Note —oo < ^ < oo and —oo < p2ji < 00. 

If there are both sons and daughters in a family, m u j > 0 and m2ij > 0, then the 

determinant of is 

x ((1 + (muj - l)pi,i){l + (m2 i j - l)p2,i) - rnu^ijpuj. 

Restrictions on the parameters so that is positive definite are a \ { > 0, a 2 i > 0, 

Pi,i < 1, P24 < 1, and 

(1 + (muj - l)pi,i)(l + {m2ij - l)p2,i) > mhjm2ijP2i2,i-

If m u j > 0 and m2ij > 0, then the inverse of Ey is 

(15) 

Sr.1 
v 

af : 1 
1 •« 
1 p / 

i C i j 



where 

A ij — 

B ij = 

Cij — 

1 ~ Pi,i 

Imiij 
Pi,i(l + (m2ij - l)p2,i) - "i2lJP?2)J 

(1 + (miij - l)pi,i)(l + (m2ij - l)p2,») - ,miijm2ijpl2; 
2 miij 

-PV2,i 
(1 + (miy - l)pi,i)(l + (m2ij - 1 )P2,») - mujTnnjPh 

1 
1 - P2,i 

2 "miij,m2ijj 
i 

Ir, 
P24(1 + - l)pi,i) - miijPn,-, 

*m2ii (1 + (mUj - l)pi,i)(l + {m2ij - l)p2,i) - mUjm2l:jp2
12 l

 m2ij 

If there are no sons in a family, m u j = 0, then the determinant of E^- is 

\Vij\ = o-l™2ii( 1 - p2,i)m2ij~1(l + (m2ij - 1 )p2:i), 

and the inverse of E^- is 

-<-1 _ I 
o%Al-P2,i) 

P2,i 
\ JTT Lm2ij (l+(m2y-l)p2,i) m2ii_ 

If there are no daughters in a family, m2ij = 0, then the determinant of E2 j 

1 ^ 1 = < 7 ^ ( 1 - Pi , i ) m i y _ 1 ( l + (mUj ~ l)pi,i), 

and the inverse of E^- is 

V" 1 — i Pi,i <1 it 'm Uj (l+(mii3—1 )pi,i) miiJ 

I I I .2 T H E L I K E L I H O O D F U N C T I O N 

Assume that ~ A ^ - H n ^ E^) , j = 1 , . . . , n,; i = 1 , . . . , Let 

where 

Then 

fy = (Pl,i, P2,i, (?2<i, Pl,i, P2,i, Pl2,i) • 

9 rii 

i=1 j=l 
9 ni 

p n (27r)(mly+m2y)/2 | S . . | l /2 
g- | (Xij -(i.jl'S,/ (xy —fJ-ij ) 
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and 

9 ni 

i=1 j=1 

If muj > 0 and m2lj > 0, then 

logiL^O)) = - ^ l o g ^ o l ) 
m2ij 

log(2n<j2,i) 

Since 

- ^ (mi i j - 1)/05(1 - p M ) - m2ij - l)log(l - p24) 

- i l og [(1 + (mUj - l)pi,i)(l + (m2ij - l)p2,i) ~ mu^ijP^i] 

- o (xjj ~~ t^ij) ̂ ij (xij — t^ij)' 

xlij 
x2ij 

where xHj = . . . , i i , j m i t j ) ' and x2ij = ( x 2 l J i , . . . , a^ jm^) ' , 

(xy — /iy) (xy- — /Jjj) 

= [ (Xlij - /Xl.ilmiy)' (X2ij - P2,ilm2lJ)'] 

(xlij ~ AĤ -̂miy) 
(X2ij — M2,ilm2y) 

—•—Bi,-

<n,i02,iBij 4iCij 

— (xiij Ml.ilmiy) 2 ( x l i j Ml,»lmiy) 

Ol.i^.i 

+ (Xlij ~ Mhilmuj)' 
1 

Cl ,i&2,i 
Bij{X-2ij ~ M2,ilm2ij) 

v 1 
+ (X2ij — p2,i lm2ij )'~2~ Cij (x2jj — /i2,i lm2ij ) -

2,i 

If muj = 0 and m2tj > 1, then 

log{Lij(d)) = -T^-log{2'Ka\i) - ^ ( m 2 i j - l)/o£?(l - p^i) 

- + (™2y - l)p2,i) - ^ (x 2 i j - p2,ilm2,J)'S i3
1(x2l3 - p 2 , i l m 2 y ) . 

And, if TOiy = 0 and m2lj = 1, then 
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log(Lij(6)) = -\log{2nolj - ^-(x2ij - p2<i)2. 
2 , t 

Similarly, if muj > 1 and m2ij = 0, then 

- h o g ( l + (mii,- - l)pi,i) - ^(xi i j - p^ilrniij)'T,^{xlij - filtilmiij). 

And, if m u j = 1 and m2ij = 0, then 

log{Lij(0)) = -\log{2-Ko\J) - ^-(xUj -1 ,i 

The likelihood function L{6) or the log-likelihood function log(L(6)) can be 
maximized to obtain 6, the maximum likelihood estimator (MLE) of 6. Let 

— V2,i,G\,i,v2j,P\,hfa,hP\2,i)' for i = 1 ,...,g. Our interest is to test the 
hypothesis that the g interclass correlation coefficients are equal, that is, H0 : p12ji = 
• •• = Pw,g = P12 (say). Under H0, 0i = p2,u alkali, phU p2ji, pl2)'. The like-
lihood function, L{0) or log-likelihood function log(L(6)) can also be maximized 
under the null hypothesis H0 : pi2|1 = ... = p12 g to obtain 60 . 

111.3 LIKELIHOOD RATIO TEST 

The likelihood ratio test (LRT) for testing H0 is to reject Ho for large values of 

LRT = 2 logL(d) - 2logL(0o). (16) 

This test statistic has a x2 asymptotic distribution with g — 1 degree of freedom. 
The maximum likelihood procedures used to find the MLEs in the LRT need 

fairly good initial values of the parameters which could be chosen as the alternative 
estimates proposed in the following sections. The other two asymptotic tests, a 
modified Wald's test and Rao's Score test, investigated in Chapter II for the one 
population case are not investigated here since the LRT and the alternative tests 
proposed were more favorable. 

111.4 C A N O N I C A L T R A N S F O R M A T I O N 

A canonical transformation can be applied here similarly as was done in the previous 
chapter. The transformation simplifies the distribution of the data. The transformed 
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data can be used in alternative estimators of the model parameters as will be shown 
in the following sections. 

Recall, = ( l y J is distributed with mean /x^ = f m u j ) and covari-
V x2a J \ m2ij J 

ance matrix 

( 1 
m2ij,muj 

S y — 

Let 

where 

r 1 7.1. ij,(mn+m2i,mii+m2i) 

~ P2,i)lm2ij + P2,i3m2ij} 

Tiy 0 
0 

ij — 

1 
muj 

1 
y/2 J _ 
V6 

1 
mi a 
-1 
V2 
1 

V6 

m2ij,miij 

1 
muj 

0 

mnj,m2ij 
r2 ij 

=2 
V6 

\ y/muj (muj — 1) y/muj(muj-l) yjmuj{muj-l) 

_J_ \ muj 
0 

0 

-(miij-1) 

r2i 2 ij 

( _i_ 
m2ij 

1 
V2 1 
V5 

l 
m2ij 
-1 
V5 
1 

V6 

1 
"12 ij 

0 

V6 

^/m2ij(m2ij-l) / \ A/m2ij(m2ij-l) y/m2ij(m2ij-1) \/m2ij(maj—l) 

and 0m>„ is the m x n matrix of all zeros. 
Transform the family scores by making a Srivastava type transformation to create 

yy, the transformed vector of family scores, 

Jm2ij,miij 

(TlijXlij \ 

r2«x2tf y 
Now, the expected value and variance of the vector of transformed son scores from 
the jth family of the ith population are as follows 
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E(yuj) 

T ^ ^ 

\ 0 / 
and 

Var( yuj) al,iT\ij({l ~ P\,i)Imuj + Pl,iJmiy)r'lij 

( + (muj ~ l)pi,i) 0 

0 <(1 - Phi) 

0 

0 

\ 0 0 

The covariance between the vector of transformed son scores and the vector of trans-

formed daughter scores from the jth family in the ith population is 

Cov(yuj,y2ij) = cru^iPn^iij^muj^ij^ij 
/ i n n \ 1 0 ••• 0 

0 0 - 0 

0 0 ••• 0 \ / mnj,Tn2ij 

Similarly, the expected value and variance of the vector of transformed daughter 

scores from the jth family of the ith population are 

E{ y2ij) = 

(P2, ^ 

v 0 / 

and 

Var(y2ij) = ~ P2,i)lm2ij + P2^m2ijW2ij 

( 1 4 , i i 1 + (m2ij - 1)P2li) 0 
o 4 i ( i - P2,i) 

V 

o 

0 

of . iU-f l J . i ) ) 
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Note that only the first transformed son score and the first transformed daughter 

(Ulijl \ I 
V2ijl J 

is bivariate normal with mean ( I and variance covariance matrix 
P2, 

^-<7^(1 + (muj ~ l)Pl,i) <Tl,i<72,iPl2,i mnj 
<7l,i<T2,iPl2,i ^ J O " 1 + (m2ij - l)/92,i) 

and are independent of ylij2, • • •, yujmUj ~ N(0, cr^(l - P l i)) and y2ij2,..., y2ijm2ij ~ 

^ ( 0 , 4 , ( 1 - ^ ) ) . 

In terms of Xiy and x2y, the first transformed son score, yuji, is the average of 
all the observed boy scores in the family. As well, the first transformed daughter 
score, y2iji, is the average of all the observed girl scores in the family. That is, 

1 r^mii j \ 
Vlijl - — Z^fc=l xlijk, V2ijl - — X2ijk-

Hence, 

— 1 v-»n; l v-m, 1 
yul ~ ^ 1 y^j'1 — TH 2-rj=l ^ J 2^fc=l 
— 1 X —̂m* 1 
y2i l ~ ^ y2ijl — 1 ^ T 2jfc=l x2ijfc • 

The average of the first transformed son scores is a population average of the mean 
family son scores. Similarly, the average of the first transformed daughter scores is a 
population average of the mean family daughter scores. Further, the average of all 
the first transformed son scores and the average of all the first transformed daughter 
scores can be written in terms of the observed familial data as follows 

— 1 — 1 1 1 j 
y 11 — g 2/lil — g Z^i=l 1 2^fc=l Xlijk, 

— i — 1 v^p 1 1 v — j 
2/21 - - 1 2/2.1 — g 1 Ti L>j=1 2^k=l x2ijk • 

One can also see that 
muj 
^ ] Vlijk = (xlij2, • • • > xlijmnj ) ^ij^ij {xlij2, • • • > Xlijmuj) 
k=2 

— (^1 ij2i • • • i xlijmUjS) {Imuj ) (xlij2, • • • t ^lijmiy) Tfl\ij 
mu j ^ m\ij 

k=2 ^ k—2 
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and 
m2ij 

y^ijk ~ (x2ij2, • • • , X2ijm2ij) ^'ij^ij {x2ij2, • • • , ijm2ij) 
k=2 

(x2ij2i • • • > %2ijrn,2ij ) {Im2ij Jm2ij) (%2ij2i • • - , X2ijrn2l] ) m,2ij 
m2ij m2ij ai tj ^ j 

k=2 3 k=2 

That is, the sum of squares of the "left-over" transformed son scores, 
Viik2, • • • ,yiijmUj, for a family can be written in terms of the second through last 
son of the family, and the sum of squares of the "left-over" transformed daughter 
scores, y2ij2, • • - ,y2ijm2ij, for a family can be written in terms of the second through 
last daughter of the family. 

In order to simplify the transformed model, let 

F ' V- F. . A i]'1]1- V 

where 

Viij 0' miij — 1 012 ,i °m2y-1 

®miy —1 —1 Omi.j-1 0miy_ijm2i:!-
n' V2ij °m2i,-1 

0m2y-l l2,i^rn2ij-l 

nl^ = ,i(l + {mUj -

vlj = ali(l + (m2ij - l)P2,i)/m2ij, 

i l = A1 ~ Phi)' 
= vlA1 ~ P2,i)> 

0\2 ,i = 

Note ri{l3 = <Tj j - and r^ - = erf^ - <3^7^ where aw = 1 - m1 A and a2ij = 
1 — rri^ij- Additionally, there is a 1-1 transformation from the old parameters to a 
new set of parameters. Namely, 
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III.5 ALTERNATIVE ESTIMATORS FOR g POPULATIONS 

From the distribution of the transformed familial data, alternative estimators can be 
developed similar to those in the second chapter that do not require maximization 
of the non-linear constraints, as is the case for finding the MLEs used in the LRT. 
In the previous chapter, two sets of alternative estimators were proposed. In the 
second set of alternative estimators, the estimators p\a and p2a require the average 
number of sons in the data set and the average number of daughters in the data set 
to both be greater than 2, but the alternative estimators p.\a and p2a are easier to 
compute than the first set of alternative estimators. For familial data from several 
populations, a combination of the alternative estimators from Chapter II is proposed 
that does not require the restrictions on the data set and has simpler estimates of 
the means. 

Let Tin equal the number of families in the ith population with m u j > 0, n2i equal 
the number of families in the ith population with m2ij > 0, and ri\2i equal the number 
of families in the ith population with m u j > 0 and m2ij > 0. Similar to the first set 
of alternative estimators proposed in Chapter II, yu j 2 , . . . ,yujmUj ~ N(0, 7 ^ ) and 
an unbiased and consistent estimator of 7\ - is 

_ j=1 z^fc=2 yujk 
1 U ~ T£x(rnlti - l) • 

Additionally, yuj2,... ,y2ijm2ij ~ -/V(0,7^) and 7 ^ can be estimated by 

E"2i \p™2ij 2 
_ j=1 Z^fc=2 V2ijk 

1 2 4 1 ) ' 

Since yuji) ~ n ( ( ^ Y( ̂  a i 2 > i X ) , 
SftMjl / \ \ ) ' \ <712,i V2ij J J ' 

take 

- ^ (vw ~ ym)(y2iji - y2n) <?i2, i = y , z , -f-f n12i - 1 

where y*ul = Y!j=i yiiji a n d V*2ii = E"=i 2/2iji- Then, ax%i is an unbiased 
estimate of 012,i-
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Seeing that, a 2 , = r?Uj + a ^ = + ^ 7 2 i ( E ; = i ij) and since 

Vlijli • • • i yiijmuj (.j = 1 were used for estimating 7 ^ , Srivastava (1984) pro-
posed using yuji (i = 1 , . . . ,m) to estimate <7^. Consider E E"=livuji ~ fjui) 
where yul = E"=i Viiji- Which is 

E ( E y l j 1 - n H y 2
a J = + - n u ( ^ ^ + ^ ) 

j"=i 

= 1 

j=i 

n\i 

Tin 

: £ i » . 

= (nu - 1 ) . ^ - - ^ 7 l i j • 
Now, estimate by 

j=i n u 3=1 

Similarly, one can estimate u | ^ by 

= - — 7 X ^ 1 ~ y™)2 + a2y)-ft2i — i —7 TlOi — 

-l2, = 
"li 

J=1 j=l 

Prom these, other estimates are 

Phi = 1 - (TiV^m), 

02,i = 1 - ( l l i / v l i ) , 

Pl2,i = - - • 

The means and p2,i can be estimated similarly to the second set of alternative 
estimators in the one population case, (9) and (10). Take 

muj 

^M = — y^1 1==-. E Vuik 
^ " I t 

j=l L 
j iii 

— Y ^ t i w nu r - f 
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and 

U 
«2i 

E 
j=1 

^ «2i 
- E ^ i i-

U 

III.6 V A R I A N C E OF A L T E R N A T I V E E S T I M A T O R S 

The variance of the alternative estimators will be assessed in this section which 

will be used in construction of alternative tests to the LRT for testing the null 

hypothesis that the interclass correlations p12ji from several populations are equal, 

that is, H0 : /?i2,i = . . . = Pn,g- In order to determine the variance of the alternative 

estimators, pi2,i, consider the following asymptotic distributions. 

n 1/2 
12i 

ul,i l,i 

012,i 
2 ,i 

012,i 

i v ( 0 , s 1 2 i i ) , 

where 

-<12,1 

r2 rr4 t-1 iO liul 

' 12,i ^2iu2 ^2i02,i012,i 
12,i 

r2 rr4 t-Oi o o 
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with 
ni« 

c u = 1 - 2(1 - P i . iKj 1 5 3 a i i i 
j=l 

nu "li 

4 = 1 - 2(1 - P2,i)™2/ 5 3 ^ 

"m* 5 3 + ( m i i ~~ 1 ( n i ' 1 5 3 
j=l J=1 

1*2i 

3=1 

+ (1 - P2,i)2 
"2« 

"a 1 a2ij + (m2i - 1) l{n2i 5 3 ai i j f 
j=l 

"12 i 
j=1 

AH = i - (i - P I , » ) — 5 3 oiij, 
"I2i j = 1 

j «12i 
A2i = 1 - ( 1 - P2,i) / 3 Olij, 

Hin- ' * J=l 
"li 

Wii = n^1 5 > i y , 
j'=i 
"2t 

= n^1 5 3 m 2 y 
j=i 

Using the delta method, the asymptotic variance of p12>j is 

1 
"12,i Pi2,i + Pi2,» ( - 2Aii + - 2A2i + 1 1 + AHA2i 

Let AV(pi2,i) be the estimated AV(pi2)Z) obtained by substituting the estimators in 
this section for the unknown parameters. 

III.7 ALTERNATIVE TESTS 

Here we propose two alternative tests for testing the null hypothesis that the inter-
class correlations P124 from several populations are equal, Hq : p12fl — . . . = p\2>g. 
Let 

Pl2 = (Pl2,l, • • • , Pl2,g)'• 
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The null hypothesis H0 : p12ji = . . . = pi2j9 can be written as H0 : Cpn = 0, where 

/ 1 - 1 0 -•• 0 0 

0 1 - 1 ••• 0 0 

\ 

0 0 0 1 - 1 U U U -L — i / 

\ / 9-1,5 

The two test statistics we propose are 

Ti = (Cp12)'[CV1C']-1(Cp12), 

where 

and 

where 

Vi = diag(AV(p12>1),... ,AV(p12>g)), 

To = (Cp12)'[CV0C']-1(Cp12), 

Vo = diag(AV(p12),...,AV(p12)) 

Pl2 
1 9 

Pl2,, 

(17) 

(18) 

Both Ti and T0 have asymptotic chi-square distributions with g — 1 degrees of 
freedom. T\ and To are simpler to implement than the LRT which requires an iterative 
maximization procedure that does not always converge. However, the alternative 
estimates p\2ti do not always satisfy the constraints of the this familial correlation 
model (15), as was also noted in the one population case. 

III.8 SIMULATION E X P E R I M E N T S A N D RESULTS 

For testing Ho : pi2,i = . . . = Pi2,g, the three tests shown here are expected to 
behave similarly for large sample sizes, since they all have asymptotic chi-square 
distributions with g — 1 degrees of freedom. In order to compare the tests, two small 
sample simulation experiments were conducted. The first simulation experiment 
had equal family sizes with 4 boys and 4 girls per family. The second experiment 
simulated family sizes from the U.S. birth distribution proposed by Brass (1958). For 
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both simulation experiments, only positive values of the familial correlations, Pu,i, 

are considered because the model constraints (15) restrict possible negative values 

based on the other parameter values and a family's size. Each size table for the 

a = 0.01 level gives the percentage of the simulations with convergence problems 

and the percentage of simulations with parameter violations; these percentages for 

the a = 0.01 level also apply for the other size tables, the a — 0.05 and a = 0.10 

levels, since the different sizes are estimated from the same run. The power tables 

also give the percentage of simulations with convergence problems and the percentage 

of simulations that violate the model constraints. 

For the first experiment, n,t = 50 family score vectors for g = 3 populations are 

simulated as multivariate normal random vectors. The family size for each vector 

is 8 children consisting of 4 sons and 4 daughters. The choices of parameters are 

A»i,i = 0, = 0, = 0, a \ x = 1, crh = 2, a \ 2 = 0.5, a \ 2 = 1.5, of i 3 = 

1.5, 02,3 = 2.5, and and p2ji take on values from 0.1 to 0.9. The interclass 

correlations, pi2,i, are set between 0 and the smallest population lower bound on 

Pi2,i'- miniy/((pi,i + (1 — Pi,i)/4)(p2,i + (1 — P2,i)/4)). For each choice of parameters, 

5,000 simulations were run and estimated size and power values were computed for 

testing, H0 : p12,i = . . . = p12,g. 

Table 51 gives parameter values for five different choices of pi^ and p2<i. Tables 

52-54 give the estimated size values for the 5 choices of parameters in Table 51 when 

P\%i = mirii^ 2 

which is given in the table. 

TABLE 51: Parameter Values for 
S imula t ion Pi.i P2,l Pi,2 P2,2 Pi,3 P2,3 

1 0.1 0.9 0.3 0.7 0.5 0.5 
2 0.2 0.8 0.4 0.6 0.8 0.2 
3 0.5 0.3 0.4 0.4 0.3 0.5 
4 0.3 0.7 0.3 0.7 0.3 0.7 
5 0.5 0.5 0.5 0.5 0.5 0.5 

Sample Simulations. 

All three tests tend to be slightly larger than the assumed level. The alternative 

test T0 is closest to the assumed level in 13 of the 15 cases. The alternative test T\ 
comes close to the assumed level but is only closer than the LRT in 4 of the 15 cases. 
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TABLE 52: Sizes, a = 0.01, H0 : pi2, i = Pn,2 = Pi2,3 = Midpoint. 
*Percent that did not converge; **Percent that violated the model constraints. 

Simula t ion Pl2,i L R T (*) Tx (**) To 
1 0.274146 0.0111 (12.11%) 0.0118 (0%) 0.0108 
2 0.291548 0.0108 (0.18%) 0.0106 (0%) 0.0100 
3 0.272431 0.0126 (0%) 0.0116 (0%) 0.0110 
4 0.303367 0.0134 (0.03%) 0.0152 (0%) 0.0132 
5 0.312500 0.0122 (0%) 0.0128 (0%) 0.0118 

TABLE 53: Sizes, a = 0.05, H0 : pi2,i = pi2,2 = Pi2,3 = Midpoint. 
Simula t ion Pl2,i L R T To 

1 0.274146 0.0530 0.0556 0.0526 
2 0.291548 0.0534 0.0548 0.0532 
3 0.272431 0.0552 0.0554 0.0540 
4 0.303367 0.0578 0.0598 0.0586 
5 0.3125 0.0584 0.0602 0.0566 

Tables 55-57 give the estimated sizes for a = 0.01,0.05, and 0.10, respectively, for 
the parameter choices in Simulation 3 from Table 51 for values of pi2ji within bound. 

One can see that the alternative tests, Ti and To still tend to be slightly larger 
than the assumed level. The estimated sizes for the LRT generally perform well, but 
notably smaller than the assumed level for pw,i = 0.05. The alternative test T0 is 
closest to the assumed level in 14 of the 24 cases. 

Table 58 gives estimated power calculations adjusted to the level each test at-
tained in size estimation for the nominal level of a — 0.05. The rejection propor-
tions are based on the 95th percentiles of the test statistics from the size simulation 
for the parameter choices in Simulation 3 from Table 51. The 95^' percentile was 
6.21131 for the LRT, 6.25925 for Tu and 6.15925 for T2 from the simulation of 
Hq : p\2,i — Pi2,2 = Pi2,3 for t h e specified pa r ame te r s . 

It can be seen that, the LRT has the highest power in 3 of the cases, To has the 
highest power in 2 of the 6 cases, and all 3 tests tie in the other case. When the 
estimated power for the LRT is higher, Ti and To are typically not far behind. The 
estimated powers for Ti are less than 0.01 below the power levels of the LRT for 5 
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TABLE 54: Sizes, a = 0.10, H0 : p12ii = pi2,2 = Pi2,3 = Midpoint. 
Simula t ion Pl2,i LRT Ti To 

1 0.274146 0.1040 0.1078 0.1048 
2 0.291548 0.1040 0.1050 0.1038 
3 0.272431 0.1152 0.1140 0.1112 
4 0.303367 0.1115 0.1114 0.1086 
5 0.3125 0.1122 0.1128 0.1088 

TABLE 55: Sizes, a = 0.01, H0 : p12,i = pi2,2 = pi2,3 = Pi2-
*Percent that did not converge; **Percent that violated the model constraints. 

Pl2 , i L R T (*) T i (**) To 
0.05 0.0048 (0%) 0.0110 (0%) 0.0106 
0.10 0.0076 (0%) 0.0126 (0%) 0.0118 
0.15 0.0117 (0.23%) 0.0144 (0%) 0.0130 
0.20 0.0098 (0%) 0.0104 (0%) 0.0102 
0.25 0.0112 (0%) 0.0116 (0%) 0.0110 
0.30 0.0098 (0%) 0.0102 (0%) 0.0082 
0.35 0.0098 (0.07%) 0.0128 (0%) 0.0112 
0.40 0.0085 (0.41%) 0.0106 (0%) 0.0104 

of the 6 cases. The estimated powers for To are either higher or less than 0.01 below 
the power levels of the LRT for 4 of the 6 cases. 

Table 59 gives the estimated power calculations for the nominal level of a = 0.05 
for the parameter choices in Simulation 3 from Table 51. 

It can be seen that the LRT has the highest power in 5 of the 6 cases, but T\ 
and T0 are not far behind. The estimated powers for T\ are less than 0.01 below 
the power levels of the LRT and the estimated powers for To are also less than 0.01 
below the power levels of the LRT for 4 of the 6 cases. 

For the second experiment, n, = 50 family score vectors from g = 3 populations 
are simulated as multivariate normal random vectors. The family size for each vector 
is simulated from a truncated negative binomial distribution with the number of 
children ranging from 1 to 15. The mean of the negative binomial distribution is 
taken as 2.84 and the success probability as 0.483 which is the estimated distribution 
of U.S. births as proposed by Brass (1958). The choice of parameters is the same 
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TABLE 56: Sizes, a = 0.05, H0 : pi2,\ = Pi2,2 = Pi2,3 = PO-

Pl2 ,i L R T Ti To 
0.05 0.0270 0.0544 0.0528 
0.10 0.0468 0.0614 0.0594 
0.15 0.0547 0.0590 0.0568 
0.20 0.0512 0.0518 0.0498 
0.25 0.0548 0.0556 0.0528 
0.30 0.0502 0.0524 0.0490 
0.35 0.0613 0.0648 0.0596 
0.40 0.0512 0.0538 0.0512 

TABLE 57: Sizes, a = 0.10, Hp : pi2il = pi2,2 = Pi2,3 = Pi2-

P l 2 , i LRT Tr To 

0.05 0.0600 0.1036 0.1004 
0.10 0.1010 0.1146 0.1130 
0.15 0.1107 0.1170 0.1136 
0.20 0.1112 0.1108 0.1096 
0.25 0.1088 0.1080 0.1030 
0.30 0.1090 0.1116 0.1076 
0.35 0.1086 0.1136 0.1096 
0.40 0.1030 0.1056 0.1042 

as in the first simulation experiment for the 3 groups. For each case of parameters, 
5,000 simulations were run. 

The same five different choices of piti and p2ji used in the first simulation exper-
iment (Table 51) are used in this experiment with unbalanced family sizes. Tables 
60-62 give the estimated size values for the a = 0.01,0.05, and 0.10 levels of for the 
5 choices of parameters in Table 51 when 

Pi2,i = rnirii g 

where bi is the maximum number of sons in a family from the ith population and gl 

is the maximum number of daughters in a family from the ith population. 

The following observations can be made. The LRT sizes are larger than the 
assumed levels. The alternative test T\ is closest to the assumed level in 5 of the 15 
cases, and the alternative test To is closest to the assumed level in 9 of the 15 cases. 
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TABLE 58: Adjusted Rejection Proportions, a = 0.05, Ho : pi2,i = P 12,2 = Pi2,3 = P12-
*Percent that did not converge; **Percent that violated the model constraints. 

P l 2 , l P l 2 , 2 P l 2 , 3 L R T (*) Ti (**) T0 

0.15 0.20 0.25 0.1354 (0%) 0.1342 (0%) 0.1366 
0.10 0.20 0.30 0.3760 (0%) 0.3690 (0%) 0.3722 
0.05 0.20 0.35 0.7532 (0.04%) 0.5524 (0%) 0.5440 
0.25 0.20 0.25 0.0758 (0%) 0.0750 (0%) 0.0760 
0.10 0.25 0.10 0.2500 (0%) 0.2500 (0%) 0.2500 
0.05 0.35 0.05 0.8872 (0.01%) 0.8788 (0%) 0.8780 

TABLE 59: Rejection Proportions, a = 0.05, Ho : Pi2,i = Pi2,2 = Pi2,3 = Pi2-
*Percent that did not converge; **Percent that violated the model constraints. 

P l 2 , l P l 2 , 2 P l 2 , 3 L R T (*) Ti (**) To 
0.15 0.20 0.25 0.1348 (0%) 0.1336 (0%) 0.1300 
0.10 0.20 0.30 0.4080 (0%) 0.4058 (0%) 0.3996 
0.05 0.20 0.35 0.7695 (0.02%) 0.7658 (0%) 0.7628 
0.25 0.20 0.25 0.0804 (0%) 0.0814 (0%) 0.0794 
0.10 0.25 0.10 0.3000 (0%) 0.2800 (0%) 0.2600 
0.05 0.35 0.05 0.8954 (0%) 0.8866 (0%) 0.8834 

When comparing Ti to only the LRT, T\ is closer to the assumed level in 11 of the 
15 cases. Similarly when comparing To to only the LRT, To is closer to the assumed 
level in 14 of the 15 cases. 

Tables 63-65 give the estimated sizes for a = 0.01,0.05, and 0.10, respectively, for 
the parameter choices in Simulation 3 from Table 51 when values of are within 
bound. 

It can be observed that all three tests generally estimate the sizes well except for 
Pi2,j = 0.4. The LRT tends to be larger than the assumed level while the alternative 
tests vary in direction. The alternative test Ti is closest to the assumed level in 11 of 
the 24 cases, and the alternative test T0 is closest to the assumed level in 9 of the 24 
cases. When comparing each alternative test to only the LRT, both tests are closer 
than the LRT in 20 of the 24 cases. 

Table 66 gives estimated power calculations adjusted to the level each test at-
tained in size estimation for the nominal level of a = 0.05. The rejection proportions 
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TABLE 60: Sizes, a = 0.01, H0 : pi2,i = pi2,2 = Pi2,3 = Midpoint. 
*Percent that did not converge; **Percent that violated the model constraints. 

Simula t ion L R T (*) T i (**) To 

1 0.0114 (2.71%) 0.0112 (9.18%) 0.0100 
2 0.0141 (1.23%) 0.0154 (8.33%) 0.0126 
3 0.0162 (0.75%) 0.0096 (6.69%) 0.0080 
4 0.0129 (1.82%) 0.0130 (5.87%) 0.0106 
5 0.0127 (2.04%) 0.0186 (2.16%) 0.0154 

TABLE 61: Sizes, a = 0.05, Ho : pn,\ = Pi2,2 = Pi2,3 = Midpoint. 
Simula t ion L R T Tx T0 

1 0.0653 0.0492 0.0458 
2 0.0636 0.0580 0.0554 
3 0.0717 0.0488 0.0452 
4 0.0565 0.0556 0.0522 
5 0.0550 0.0560 0.0528 

are based on the 95th percentiles of the test statistics from the size simulation for the 
parameter choices in Simulation 3 from Table 51. For the specified parameters, the 
95th percentile was 6.80493 for the LRT, 5.88769 for Tlt and 5.74912 for T2 from the 
simulation of H0 : pn,i = pi2,2 = Pi2,3-

The adjusted power estimates in the unbalanced case show Ti to have higher 
powers for 3 of the 5 cases. T0 also has higher adjusted powers than the LRT for 
these same 3 cases. For the other 2 cases, the LRT adjusted powers are higher but 
not by much. 

Table 67 gives the estimated power calculations for the nominal level of a = 0.05 
for the parameter choices in Simulation 3 from Table 51. 

The unadjusted power estimates in the unbalanced case show the LRT to have 
higher powers than both alternative tests. The alternative test T\ has estimated 
powers closer to the LRT than the alternative test To. Since the estimated sizes of 
the LRT were mostly larger than the estimated sizes of both alternative tests, the 
LRT has an advantage when not adjusted for the size values attained for a nominal 
level of a . 
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TABLE 62: Sizes, a = 0.10, H0 : pi2,i = Pi2,2 — Pi2,3 = Midpoint. 
Simulat ion L R T T0 

1 0.1267 0.0988 0.0958 
2 0.1193 0.1044 0.1000 
3 0.1312 0.0960 0.0918 
4 0.1179 0.1082 0.1036 
5 0.1090 0.1074 0.1000 

TABLE 63: Sizes, a = 0.01, H0 • pn,i = pu,2 = Pi2,3 = Pi2-
*Percent that did not converge; **Percent that violated the model constraints. 

P l 2 , t L R T (*) T l (**) To 

0.05 0.0118 (0.01%) 0.0074 (2.28%) 0.0054 
0.10 0.0100 (0.14%) 0.0114 (2.81%) 0.0084 
0.15 0.0165 (0.28%) 0.0110 (4.06%) 0.0084 
0.20 0.0139 (0.51%) 0.0126 (6.08%) 0.0096 
0.25 0.0185 (1.30%) 0.0128 (9.79%) 0.0106 
0.30 0.0210 (2.84%) 0.0156 (14.94%) 0.0108 
0.35 0.0266 (5.21%) 0.0182 (22.53%) 0.0136 
0.40 0.0273 (9.35%) 0.0248 (31.42%) 0.0200 

The percentages of non-convergence and violation constraints observed in this 
simulation experiment are comparable. In practice, the alternative estimates and 
corresponding test are easy to compute, although, one would need to check to see if 
the calculated alternative estimates meet the model constraints before their use. If 
the model constraints are violated then the LRT can be used. 

When family sizes are balanced, both alternative tests compare well to the LRT, 
but the alternative test T0 performs better than the Ti. When family sizes are un-
balanced, again both alternative tests compare well to the LRT. The alternative test 
To had better size performance while T\ performed better in the power calculations. 
When family sizes were unbalanced, the alternative tests violated the model con-
straints more often than the LRT failed to converged, but particulary when is 
close to its upper bound. In practice, the alternative estimates and both correspond-
ing tests are easy to compute. Generally, both alternative tests are recommended, 
but To showed an advantage when family sizes are equal. 
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TABLE 64: Sizes, a = 0.05, Hp : p12>1 = pi2|2 = Pi2,3 = PO-

Pl2 ,i L R T Ti T0 

0.05 0.0340 0.0420 0.0388 
0.10 0.0407 0.0482 0.0446 
0.15 0.0603 0.0490 0.0458 
0.20 0.0647 0.0472 0.0430 
0.25 0.0676 0.0524 0.0464 
0.30 0.0712 0.0620 0.0576 
0.35 0.0781 0.0660 0.0590 
0.40 0.0708 0.0810 0.0740 

TABLE 65: Sizes, a = 0.10, Hp : p12ti = pi2|2 = Pi2,3 = PO-

P l 2 , i L R T To 
0.05 0.0638 0.0808 0.0784 
0.10 0.0854 0.0916 0.0858 
0.15 0.1195 0.0946 0.0904 
0.20 0.1283 0.0944 0.0890 
0.25 0.1230 0.0960 0.0908 
0.30 0.1296 0.1138 0.1058 
0.35 0.1264 0.1202 0.1136 
0.40 0.1267 0.1362 0.1296 

TABLE 66: Adjusted Rejection Proportions, a = 0.05, Hp : pi2,i = pi2)2 = pi2,3 = pi2-
^Percent that did not converge; **Percent that violated the model constraints. 

P l 2 , l P l 2 , 2 P l 2 , 3 L R T (*) T i ( * * } To 
0.15 0.20 0.25 0.0641 (0.72%) 0.0732 (6.70%) 0.0706 
0.10 0.20 0.30 0.1344 (0.90%) 0.1330 (8.54%) 0.1324 
0.05 0.20 0.35 0.2790 (1.57%) 0.2624 (11.43%) 0.2640 
0.25 0.20 0.25 0.0520 (0.97%) 0.0600 (8.73%) 0.0534 
0.10 0.25 0.10 0.0999 (0.44%) 0.1122 (5.17%) 0.1110 
0.05 0.35 0.05 0.3423 (1.41%) 0.3214 (9.69%) 0.3186 



TABLE 67: Rejection Proportions, a = 0.05, H0 : pi2,i = pi2,2 = Pi2,3 = Pi2-
*Percent that did not converge; **Percent that violated the model constraints. 

P l 2 , l P l 2 , 2 P l 2 , 3 L R T (*) Ti (**) T0 

0.15 0.20 0.25 0.0830 (0.94%) 0.0682 (4.72%) 0.0640 
0.10 0.20 0.30 0.1841 (0.94%) 0.1370 (8.23%) 0.1282 
0.05 0.20 0.35 0.3486 (1.60%) 0.2574 (11.71%) 0.2466 
0.25 0.20 0.25 0.0705 (1.50%) 0.0654 (5.11%) 0.0608 
0.10 0.25 0.10 0.1318 (0.31%) 0.1044 (5.02%) 0.0960 
0.05 0.35 0.05 0.4324 (1.30%) 0.3240 (9.75%) 0.3066 
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CHAPTER IV 

PARENT INTERCLASS CORRELATIONS 

IV. 1 I N T R O D U C T I O N 

In this chapter we consider interclass correlations between the parent and sons and 
between the parent and daughters in a family. The problem of interest is to test the 
equality of these dependent interclass correlations. Suppose data on a parent and 
the children of n randomly selected families are available from one population. The 
number of boys and girls in each family is allowed to be different. Denote the number 
of sons and daughters in the ith family as mu and m2i, respectively, for i = 1 , . . . ,n. 
Suppose Xpi, i = 1 , . . . ,n is the observation on the parent of the ith family. Also, 
suppose Xuj, j = 1 , . . . , mu; i = 1 , . . . , n is the observation on the jth boy of the iLh 

family. Similarly, x2ij, j = 1,..., m%\ i = 1 , . . . , n is the observation on the jth girl 
of the ith family. 

Assume that the expected value of the parent observations is E{xrrl) = pp, the 
expected value of the son observations is E{xuj) = pi, and the expected value of 
the daughter observations is E(x2ij) = p2. Assume that the variance of the parent 
observations is Var(xpi) = a2, the variance of the son observations is Var(xuj) = of, 
and the variance of the daughter observations is Var(x2ij) = a\. Denote the parent-
son interclass correlation as ppi and the parent-daughter interclass correlation as 
pp2. Assume for each family Corr(xpi,xuj) = ppi and Corr(xpi, x2ij) = pp2 for 
all j. Additionally, denote the son-son intraclass correlation as pi, the daughter-
daughter intraclass correlation as p2, and the son-daughter interclass correlation as 
Pi2. Assume for each family Corr(xiij, Xuj>) = pi for j j'; 1 < j,j' < mu, 
Corr{x2ij,x2ij>) = p2 for j ^ j'-, 1 < j,j' < m2i, and Corr(xUj, x2l]>) = p12 for all 
j, j'; 1 < j < mu and 1 < j < m2i. 

Let the vector of observations on the ith family be 
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Xi = 

t x \ 
Apt 
Xli 

x2 i ) 

with 

E(xi) = fii = 

pi 

Xlimu 

Y 2-2IM2, J 

Pi lm^ 

\ P2Iran / 

and 

Var(xi) = Si 

/ PplCpfllm \ 

/ 

Pp2<VT2lm2i 

Ppl Gp&l - P l ) 1 ^ + PlJmxi} P^CTl^J m ii,m2i 

m2i + P2Jm2i} 

where ITO is an identity matrix of order m, J m is the m x m matrix of all ones, and 

Jm,n is the m x n matrix of all ones. Note —00 < pp < 00, —00 < pi < 00, and 

—00 < p2 < 00. 

If a family consists of both sons and daughters, mu > 0 and m2i > 0, then the 

determinant of S i is 

= o?a?m Mafm 2 4( l - P i ) m i i - X ( l - p2)m2i-1Ci 

x Ppl / , 0-i 2 \ , o m l i m 2 i 
-—(nil, H "hi ) + 2ppipp2pi2 1 — Pi Q Ci 

Pp2 , bi 2 

1 - P2 (H 

where 

- m2iPi2 - p i ( l + (m2i - l)p2), 

= mi ip^ - P2(l + (mu - l)pi), 

q = (1 + (mH - l )p i ) ( l + (fn2i ~ l)p2) - mum2ip2
12-

Restrictions on the parameters so that S i positive definite are a 2 > 0, a 2 > 0, a 2 > 0, 

Pi < 1, P2 < 1, 

(1 + (mu - l )p i ) ( l + (m2i - l)p2) > mum2ip\2, (19) 
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and 

P p l , , a i 2 \ o miim2i Pp2 , . h 2 \ ^ -I ijn\i + — mu) - 2ppipp2pi2— h n
 r ^ (m2i + -m2i) < 1. " " Cj 1 - Pi C i ' Ci 1 - P2 

If mii > 0 and m2i > 0, then the inverse of S i is 

( Di Ei Fi N 

EJ Gi Hi s r ^ 

\ H^ Ki / 
where 

Di = 

Ei = 

Fi = 

Gi = 

Hi = 

K, = 

1 rniip^dj + m2iPp2ei ~ 2miim2ippipp2(pi2 ~ PpiPpi) 
diei - m l im2i(pi2 - PPiPP2)2 

m2ipp2(pi2 ~ PplPp2) - Ppiei 

and 

apai(dlei — mvm2i{pi2 ~ PpiPpi)2) 

muppi (pi2 - PplPp2) ~ Pp2^i , , 

apa2(diei — miim2i(pi2 - ppipp2)2) " m 2 i ' 
1 ' ei(pi - p2i) - m2 i(pi2 - ppipp2) 
- Pi) "mi* diei - miim2 i(pi2 - ppipp2)2 

— (Pl2 - PplPp2) j 
aia2(diei — miim2 i(pi2 - ppipp2)2)"mii'm2i' 

1 j di(p2 - p2
2) - mji(pi2 - ppipp2) 

ffK1 - Pa) "m2 ' diei - miim2i(pi2 - ppipp2)2 

di = 1 + (m2i - l)p2 - m2ip2
2, 

'm2i 

(20) 

e j = 1 + ( m i i - l ) p i -mup2
pl. 

However, these expressions simplify quite a bit if a family consists of only daugh-

ters, mu = 0. The determinant of Ei is then 

|£ i | = < 7 * ^ ( 1 - p 2 ) m 2 - 1 ( 1 + (m2i - 1 )p2 - m2iP
2

2), 

and the inverse of Ei is 

l + ( m 2 j - l ) p 2 
'2 iPp2) 

1 
^ , - 1 _ I o - ? ( l + ( n » 2 i - l )p2-m2ip22) 

zem 

-Pp 2 -jy 
<Tp<r2(l+(m2i-l)p2-m2î 2) m2i 

I mm 

v2> 

P2~Pp2 
" 7! 

Similarly, if a family consists of only sons, m2i = 0, then the determinant of E j is 

|Ei| = a2
palm^{ 1 - p i ) m i i _ 1 ( l + (mii - l)pi - mup2

pl), 



and the inverse of S j is 

l+("»H-l)pi ZM \> fp£ri(l+(mii —l)pi—miiPpj) mi; 
-Ppl 

IV.2 LIKELIHOOD F U N C T I O N 

'mi; Pi ~Ppl T 
l+(mii—l)pi—miiPpi 

Assume that Xi ~ A^mii+rn2i+i(^i, i = 1 , . . . ,n. Let 

then 

= n i u w ) = n i u (27r ) (m l i+m2i+1 )/2|S i|1/2 
g-Kxi-^ySr^Xi-Mi) 

and 

log{L{d)) = Yjlog{Li{0)). 
i=1 

If mu > 0 and m2» > 0, then 

1, 
log(Li(d)) = ~log(2^p) - ^ l o g ^ o j ) - ^log(2ir<r*) 

- - l)l°9{ 1 - Pi) - - 1 ) ^ ( 1 - P2) 

- \lo9 [(1 + (™>U - l )pi) ( l + (m2i - 1 )p2) - mHm2iPi2] 

2x »™2i 

- ~2log 1 ~ (mu "I ""hi) + 2ppipp2pi2 J- Pi Q Ci 

r ^ - ( m 2 i + ^m 2 i ) 
1 - P 2 Ci 

-(Xi - /Xi) 'S7 x(xi - /Xi). 
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Note Xj = 

therefore 

f x \ 

Xli 

VX2i ) 

, where xXi = {xm,..., xlimu)' and x 2 i = (x2a, • • •, x2irn2i)', 

(Xi - 2(xi - Hi) 

[(Xpi - nP) (x^ - Hilmii)' (x2i - fi2lm2i)'} 
( Dj E j F j 

E^ G j H j 

F! H! Ki / 

(xpi Hp) 
(xu - p i l m i i ) 

(x2i - /i2lm2i) 

= (Xpi - /ip)2Dj + (Xpi - Hp)(xli - / / i lm i i) 'E-

+ (Xpi - Hp) (x2i - fl21 m2i )'F • + (Xpi - Hp)Ei (Xii - Pi l m i j ) 

+ (xH - Atllm i i) 'Gj(Xij - P l l m i i ) + (x2i - H2lm2i)'^i{xU - PllTOl i) 

+ (Xpi - Hp)Fi(x2i - / x 2 l m 2 i ) + ( X l i - P l l ^ J ' H ^ X ^ - p 2 l m 2 i ) 

+ (x2i - p 2 1 m2i )'Kj (x2i - p2 lm2, ) • 

If mii = 0 and m 2 j > 1, then 

log{Li{9)) = ~log2nal-^log{2Ttcl)-]^m2i-l)log{l-P2) 

1 
- -Zog(l + (m2i - l)p2 - m2iPp2) 

1 + (m2i - l)p2 

+ 

+ 

2o"p(l + (m2i - l)p2 - m2ip2
2) 

Pp2 
2apa2(l + (m2i - l)p2 - mufy) 

PP2 
2crpc72(l + (m2i - l)p2 - m2ip2

2) 

(x2i - p 2 l m 2 i ) ' 

{Xpi Pp) 

(Xpi — pp)(x2i — p2l77l2i)'lm2i 

(Xpi ~ Pp)l'm2.(x2i - p2lm2i) 

2 a | ( l - P2) 
x (x2i - p 2 lm 2 J-

In the case m ^ = 0 and m2i — 1, then 

Im2i 
P2-Pp 2 

1 + (m2i - l)p2 - m2ipl2 
o "m2i 

log(Li(6)) = -hog(2nay2)-hog(l-p2
p2) 

1 

2*2(1 - P2
2) 

(Xpj Pp) 
2^2(1 - Pp2) 

(x2i - p2)2 
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Similarly, if mu > 1 and m2 i — 0, then 

log(Li(d)) = --log2ir<j2
p - -±log(2na2) - - ( m u - l)tog(l - P l ) \log2-nal - ^logpira2) - ±( 

\log{ 1 + (mu - l)pi - ™>uP2
pi) 

1 + (mii - l)pi , _ ->2 
2aj(l + (mii - l)pi - mup$i) 

+ 2apa1(l + (m1-~l)p1-mlifPpl){Xpi K1^'1"* 

+ 2apa . i l + ( m u - l ) P l - ( a * " ~ 

(Xii — / i l l muY 
2 ^ ( 1 - P i ) 

x (xii - P l lm i J , 

and if m u = 1 and m2i = 0, then 

I m Pi ~ P2PI j 
m i i 1 + (mH - l)pi - miip2! 

» r ° " 1 

1 
M ^ W ) = ~log{2^pffi) - -log{\ - p2

pl) 

{xpi-pp) -TTj^f. ^-T(XU-PI) 

The likelihood function L(6) or log(L(6)) can be maximized to ob-

tain 0, the maximum likelihood estimator (MLE) of 6. Let 6 = 

(/ip, pi , p2 , &2, Pi' P2> Pi2> Ppij Ppi) • Suppose we are interested in testing the 

hypothesis that the two interclass correlation coefficients between the parent and 

children are equal, that is, H0 : ppl = pp2 = pp (say). Under H0, 9 = 

(Pp, 

Ph P2,0p,02,02, Pi, P2, P12, Pp, Pp)'• The likelihood function, L(6) or log(L(6)) 
can also be maximized under the null hypothesis H0 : pp\ = pp2 to obtain 00. 
IV.3 LIKELIHOOD RATIO T E S T 

The likelihood ratio test (LRT) for testing H0 is to reject Ho for large values of 

LRT = 2logL(0) - 2logL(d0). (21) 

This test statistic has a x 2 asymptotic distribution with 1 degree of freedom. 

This test depends on the computation of the maximum likelihood estimates which 

have to be obtained numerically as described above. This procedure requires good 
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initial values of the parameters, which could be selected as the alternative estimators 
provided in the following sections. Further, as noted in previous chapters, non-
convergence is an issue making it harder to obtain estimates in some situations. 

IV.4 C A N O N I C A L T R A N S F O R M A T I O N 

Similar to the previous chapters, we apply a canonical transformation to the familial 

data reducing the variance-covariance structure of the model. This provides trans-

formed data that can be easily used to estimate the model parameters, as will be 
seen in the next section. 

/ „ . \ 
Recall, x^ = Xli 

\ x 2 i y 

/ 

Si = 

has mean fii 

pplapoil'm 

Pp 

Pi lmii 

V A^lm2i ) 

Pp\(Jp(Tllmii 

\ Pp2&p&2lm2i 

mii 

and variance matrix 

Pp2(Tp(J2l'rn2i \ 

Pi20"icr2J m2i,mii 

Let 

r, j,(mii+m2i+lxmii+m2i+l) 

^ I K 1 _ P2)Im2i + P2Jm2i} 

\ 

0 mu 

\ 0m2i 

Omi, 
Tli 

Jrri2i,mii 

°m2i 

0 mii,m2i 
r2i 

where 

T u = 

( J^ i_ 
mu 
1 

V2 
1 

V6 

1 
mu 

V2 
1 

V6 

1 
mii 
0 

- 2 

V6 

1 
mii 

0 

0 

\ s/mii(mii—1) y'miiCmii-l) y'mii(mii-l) 
-(mii-1) 

•y/mii(mii-l) / 

/ 

• 2i 

1 
m2i 

1 
V2 
1 

VS 

1 
m2i 

V2 
1 

V6 

1 
m2i 
0 

- 2 

V6 

1 
m2i 

0 
0 

\ 

\ ^/m2i(m2i-l) -^/m2i(m2i-l) ^/m2i(m2i-l) 
—(m2j—1) 

\/m2i(m2i-l) / 
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Om is the m x m matrix of all zeros, and 0mj„ is the m x n matrix of all zeros. 

Transform the family scores by making a Srivastava type transformation to create 

yj, the transformed vector of family scores, 

y i = 
^ Ypi ^ 

yi» 

\ Y2i ) 

r, 
/ x . \ 

pi 
Xii 

\ x2 i ( 1 

0 m H 

\ °m2l 

/ X, 

Omii 
r u 

\ 

0 rri2i 
0 mii,m2i 

r2i 

( x •Aspi 

Xii 

VX2i J 
pi 

TijXjj 

y r 2 ix 2 i j 

The expected value and variance of the transformed parent scores are still 

E(ypi) = Hp and Var(y^) 4 

But now, the expected value of the transformed son vector is 

E{yu) = 

( n \ Pi 

\ U / 
and the variance matrix of the transformed son vector is 

Var(yH) = o f ^ ^ l - Pi)Im i i + p iJ m i i )Ti 1 i 
( + K - l ) P l ) 0 

0 of (1 - pi) 

0 

0 

V 0 0 a f ( l - P l ) y 

Similarly, the expected value of the transformed daughter vector is 

E( y2i) 
0 

v u y 
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and the variance matrix of the transformed daughter vector is 

Var(y2i) = a\T2i{{l - p2)Im2i + P2Jm2i)r'2i 

+ (m2i - l)p2) 0 

0 of (1 - ft) • - -

( 0 
0 

V o 0 ••• o f ( l - P 2 ) j 
The covariance matrix between the transformed son vector and the transformed 

daughter vector is 

Cov(yu,y2i) = cricr2pi2Tii3 
/ . i n n ^ 

= 0102P12 

•1 0 
0 0 

0 0 

0 

0 

0 
\ / mi,,m2i 

Further, the covariance vector between the transformed son vector and the parent 

score is 

/ CTpOlPpl ^ 

Cov(yli,ypi) = 

V o / 
and the covariance between the transformed daughter vector and the parent score is 

0 
( <JpGipp2 ^ 

C<yv(y2i,ypi) 

\ 0 / 
Note that only the transformed parent observation, the first transformed son obser-

vation, and the first transformed daughter observation, namely ypi, ym, and y2n, are 

f Upi \ / Pp ^ 
correlated. Also, 

covariance matrix 

ym 
\ y2n / 

1 

is a tri-variate normal with mean Pi 
\P2 J 

and variance-

<ViPP i 

VpVlPpl T^VK1 + ( m n ~ l)Pi) 

crpf2Pp2 
<?l02pi2 

\ 

\ apcr2pp2 0\02P\'l 

(22) 

1 + (m2i - 1 )p2) J 
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The observations yjn: ym, and y2n are also independent of yu2,... ,y\%mu ~ 
N(0, a2{l - Pi)) and y2i2,... ,y2im2i ~ N(0, o%( 1 - p2)). 

In terms of xi, and x2i, 

YM = ~ E^I XW, Y-2ZI = — X2A-

One can see that the first transformed son score, ym, is the average of all the boy 

scores of the family, as well as the first transformed daughter score, that is y2n is the 

average of all the girl scores of the family. Hence, 

— V - v n v - * r a 1 v ^ T O i i 
YIIL — - ZJI=L 2/1*1 ~~ N MU XLIJ, 

and 

V'IIL ~ ~ 2-JI=1 Y^-IL — N L~TI=\ M2I
 X2IJ • 

The average of the first transformed son scores is an average of the mean son score 
for each family. Similarly, the average of the first transformed daughter scores is an 
average of the mean daughter score for each family. Also, 

mu 
YZ VLIJ = (XLI2, •••, XLIMNY T-TJ (XLI2, . . . , XLIMU) 
3=2 

— (XLI2, • • • , XLIMU) {IMU J'MU) (XLI2, • • • , XLIMU) mu 
mu ^ mu 

j=2 17111 3=2 

and 
m2i 

YI Y2IJ — (X2I2, • • • , X2IM2I) T'ITI (X2I2, . . . , X2IM2I) 
3= 2 

— (X2I2, • • • , X2IMN) (IM 2 I JM2I) (̂ 212) • • • , X2IM2I) M2I 

m2i ^ m2i 

j=2 17121 3=2 

The sum of squares of the "left-over" transformed son scores, y u 2 , . . . , yu m u , f ° r a 

family can be written in terms of the second through last son of the family. Similarly, 
the sum of squares of the "left-over" transformed daughter scores, y 2 i 2 , . . . , y2im2i, f° r 

a family can be written in terms of the second through last daughter of the family. 
In order to simplify the transformed model, let the variance matrix of the trans-

formed family vector be 
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r ^ r , 

where 

-P2 O m x i - l 0 p 2 n' 

<yp\ Vli 0'mu-l 0"12 n' 

O m i i - l O m i i - 1 7 l l m i i - l 0 m i i - i 0 m i i - l , m 2 i -

Cp2 CT12 Q'mu-1 ol n' m2i ~ 1 

0 m 2 i - l 0?7l2i —1 OjTlli — l ,m 2 i -- 1 0 m 2 i _ i 7 2 ^ " i 2 j - l 

<7pl = (Tp&lPpl, 

Cp2 = Op02pp2, 

nl = af{ 1 + {mu ~ l)pi)/mu, 

vh = + ( m 2 i - 1 )p2)/m2i, 

7 ? = - Pi), 

722 

0 1 2 = <Ticr 2 pi2 . 

Note 77̂  = <j\—oiiTi a n d = a \ ~ a 2 i l \ where au = 1—mj"1 and a2i = 1—m^1. Also, 
there is a 1-1 transformation from the old parameters to a new set of parameters. 
Namely, 

£1 

6 

£12 

7 i ' 
of 

9 > 
7 2 

7I72 ' 

IV.5 A L T E R N A T I V E E S T I M A T O R S 

The transformed familial data has good distributional properties from which alter-

native estimators can be constructed that do not require a maximization procedure. 

Let n\ = number of families with mu > 0, n2 — number of families with m2l > 0, 

and ni2 = number of families with mu > 0 and m2i > 0. Recalling that alternative 

estimators for familial data consisting of only sons and daughters were constructed 

in the second chapter. These estimators can be applied in this chapter as well. Both 

sets of alternative estimators performed well in the simulation experiments; a disad-

vantage of the second set of alternative estimators is the requirement that mu > 2 
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and m2i > 2, but the second set of alternative estimators has better distributional 
properties that make estimating /ii and /i2 easier. For familial data including a par-
ent observation, our proposed alternative estimators start with a combination of the 
two previously proposed sets. 

An unbiased and consistent estimator of jf is 

Eni sr^m li 2 
_ _ 8=1 yiij 

7 1 ~ YTiUtrnu-iy 

Similarly, can be estimated by 

Eri2 2 
_ _ i=1 2^3=2 y2ij 

7 2 ~ TZD^-IY 

Take an unbiased estimator of a12 as 

<J12 
"12 (ym - 2 / 1 * 1 X 2 / 2 . 1 - 2 / 2 1 ) £ 

n i 2 - 1 

where y*n = E r = i ? W n i 2 and y*2l = E"=i2/2ii/"i2, since 

( YIIL ) ~ N ( ( ^ Y ( 1)1 A I 2 ) ) . 
\ 2/2.1 J \ \ / ' \ cr12 y J 

Estimate a\ by 

= E S ^ y i i i - 2/ii)2 + ^ 7 i 2 ( £ S I aM), 

and estimate a2 by 

= - 2/ii)2 + ^72 2 (ESI <*)• 

From these, other estimators are 

h = l - ( 7 i f / 5 ? ) , 

p2 = 1 - (72
2/52

2), 
012 

P l 2 = 

Estimate fii and p2 using a second transformation as was done in the second set 



of alternative estimators in Chapter II, (9) and (10). 

Pi 

P2 

n i 

l_ 
nx 

l_ 
n2 

ni 

E yiii 
i=1 

53^' 
k=i 
«2 • 

E 2/2.1 
i=l 
«2 
5 > n . 
j=i 

E ynj 

m2i 

\/rn2i - 5 3 
j=2 

Estimate pp and <r2 by the standard unbiased estimators 

1 " 
Pp = — 5 3 yp*= yp 

i=1 

and 

5? = n 
1 " 

i=l 

Then <rpi and rrp2 can be estimated by 

^pi = w _ 1 5 3 _ yp1})(yiii - yn) 
2 = 1 

and 

^>2 = r 5 3 ~ J/p2))(2/2ii - jfei), 
~ 1 i=i 

where 

= — 5 3 y ^ 

j "2 
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Finally, estimates of pv\ and pp2 are 

PP 1 = -
0pi 

and 

PP 2 

<>:/': 

Op2 
VpO 1 

These alternative estimators are easier to implement than the MLEs. However, 
as before, it is possible for the alternative estimators to violate the model constraints, 
(19) and (20). 

IV.6 V A R I A N C E OF ALTERNATIVE ESTIMATORS 

In this section, the asymptotic variance of the alternative estimators is derived in 
order to construct alternative tests for testing the null hypothesis that the parent-son 
correlation equals the parent-daughter correlation, Hq : pp\ = Pp2 = pp. 

In order to find the asymptotic distribution of pv\ and pp2, the distribution of the 
sample covariance matrix for 

T ^ 
Yi Via 

\ yn\ ) 

is needed. Using the distribution of y, given in (22) and the distribution of the sample 
covariance matrix as shown in Appendix A.3, one can find the following asymptotic 
distributions needed for the variance and covariance of pv\ and pv2 

y/nm 

°pi — cipi 

<3~p2 — &p2 
-

07 07 

(To — <7o 

N( 0 , E P ) , 

where 

S p = 2 

|(crpl(Jp2 + o-p(T12) p̂CTpl AiCTjCTpi &p20\2 
K*2

p2 + * y 2 A2) O2p°p2 crpicr12 \2a2ap2 

0p0pl 0p0p2 
\io\api <Jp\CF\2 A 012 
Op2&l2 A 2 a \ -I2 012 4<4 
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and where 

"12 

cf = 1 - 2(1 - P l ) n ^ 5 3 an + (1 - P l f 
i=1 
"12 

c2 = 1 - 2(1 - p2)n^ 5 3 «2i + (1 - P2)2 

j=i 
" 1 2 

Ai = 1 - (1 - P\)rh2 5 3 

" 1 2 

A2 = 1 - (1 - p2)n];21 53 aii' 
j=i 

" 1 2 

= n r 2 5 3 m i i ' 
3=1 
" 1 2 

™2 = nf2 5 3 m 2 i -

n 

n 

1 5 3 + - i ) _ 1 ( n i 2 1 5 3 a i i ) 2 

i=l 2=1 
" 1 2 " 1 2 

i 1 5 3 + ( m 2 - w 5 3 a *) 2 

i=l 2 = 1 

3=1 

Therefore using the delta method, 

Hi 
1 

n2 

AV(Ppl) = 

AV(Pp2) = 

Ph + PU [24-2\1--J+X1 

Pp2 + P p 2 ( ^ - 2 A 2 - 0 + A 2 

and Cov(ppl,pp2) = 

P\2 ~ PiiP2
p\ ~ ^PpiPpi + 2^piPp2 _ Pi2pp2 + 2pPlpp2 + 2p2nPplPp2 J _ 

nu 

Let AV(ppi) be the estimated AV(pp\) obtained by substituting the alternative 
estimators p\ and pp\ for the unknown parameters. Let AV(pp2) be the estimated 
AV(pp2) obtained by substituting the alternative estimators p2 and pp2 for the un-
known parameters. Also, let Cov(ppi, pp2) be the estimated Cov(ppi, pp2) obtained by 
substituting the alternative estimators pi2,ppi, and pp2 for the unknown parameters. 

IV.7 ALTERNATIVE TEST 

The test we propose is 

TS = Ppl ~ Pyl 
S.E.(ppi - pp2) ~Xi> (23) 
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where 

S.E.{px - h) = AV(ppi) + AV(pp2) - 2Cov(ppl,pp2). 

TS is easier to implement than the LRT. 

IV.8 SIMULATION E X P E R I M E N T A N D RESULTS 

Both tests are expected to behave similarly for large sample sizes, since they both 
have an asymptotic chi-square distribution with 1 degree of freedom. To compare the 
performance of the tests a small sample simulation experiment was performed. In this 
experiment, 50 family score vectors consisting of a parent score and children scores 
were simulated as multivariate normal random vectors. As was done in the previous 
simulation experiments, the number of children in each family is simulated from a 
truncated negative binomial distribution ranging from 1 to 15 children per family. 
The parameters of the negative binomial come from the estimated distribution of 
U.S. births with a mean of 2.84 and the success probability as 0.483 (Brass 1958). A 
discrete uniform distribution was used to assign gender to each child. The arbitrary 
choices of parameters were pp = 0, = 0, p2 = 0, cr2 = 1, af = 1.5, a\ = 2, pi = 
0.7, p2 — 0.3, and p\2 = 0.1. Values of pv\ and pp2 ranged from 0.1 to 0.5 in increments 
of 0.05 and 0.1. Only positive values of the interclass correlations were simulated 
because the model constraints restrict possible negative values based on parameter 
choices and family size. 

For each choice of parameters, 10,000 simulations were run and estimated size 
and power values were computed for testing H0 : ppi = pp2 — pp. The a = 0.01 
size table and rejection proportion tables provide the percentage of simulations for 
which the maximum likelihood procedure did not converge and the percentage of 
simulations for which the alternative estimates violated the model constraints (19) 
and (20). 

Tables 68-70 give the estimated sizes for a = 0.01,0.05, and 0.10, respectively. 
From the tables, we can see that both the LRT and TS estimate the assumed level 

reasonably well, but the alternative test TS clearly performs better, as TS is closer 
to the assumed level in 21 of the 24 cases simulated. As pp increases the performance 
of the LRT decreased, but TS continued to perform well. 

Tables 71-74 give estimated power values adjusted to the level each test attained 
in the size calculations. For each table, the rejection proportions are based on the 
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TABLE 68: Sizes, a = 0.01, H0 : pv\ — pp2 = pp. 
*Percent that did not converge; ** Percent that violated the model constraints. 

Pp L R T (*) TS (**) 

0.10 0.0083 (3.76%) 0.0123 (2.73%) 
0.15 0.0119 (2.31%) 0.0116 (2.81%) 
0.20 0.0116 (1.94%) 0.0094 (3.18%) 
0.25 0.0144 (1.96%) 0.0111 (3.74%) 
0.30 0.0134 (3.63%) 0.0105 (4.83%) 
0.35 0.0139 (6.60%) 0.0120 (7.50%) 
0.40 0.0185 (12.53%) 0.0099 (10.96%) 
0.45 0.0317 (27.38%) 0.0106 (19.90%) 

TABLE 69: Sizes, a = 0.05, H0 : Ppl = pp2 = Pp. 

PP L R T TS 

0.10 0 .0447 0.0486 
0.15 0.0529 0.0455 
0.20 0.0565 0.0459 
0.25 0.0596 0.0468 
0.30 0.0569 0.0482 
0.35 0.0578 0.0502 
0.40 0.0624 0.0449 
0.45 0.0788 0.0551 

95th percentiles of the test statistics from the size simulations for the value of pvi. 
For example, Table 71 shows the proportion of simulations for which the test statistic 
LRT is greater than 3.60548 and TS is greater than 3.68883. 

The tables show the alternative test TS to perform better than the LRT in 15 of 
the 20 estimated powers. In the other 5 cases, the estimated powers for TS are not 
far behind that of the LRT. 

Tables 75-78 give the estimated powers for a nominal level a = 0.05. 
Here the powers of the alternative test TS were not as favorable compared with 

the LRT, but the alternative test TS was closer to the assumed level in the size 
calculations and the LRT's estimated size tended to be larger than the corresponding 
estimated size for TS. Because of this, estimated powers for the LRT are expected 
to be larger than the estimated powers for TS when not adjusted for the size each 
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TABLE 70: Sizes, a = 0.10, H0 : ppl = pp2 = pp. 

Pp L R T TS 

0.10 0.0880 0.0896 
0.15 0.0992 0.0889 
0.20 0.1105 0.0946 
0.25 0.1103 0.0939 
0.30 0.1076 0.0939 
0.35 0.1104 0.0972 
0.40 0.1147 0.0974 
0.45 0.1264 0.1098 

TABLE 71: Adjusted Rejection Proportions, a = 0.05, Ho • pp\ = pp2 = pp, ppi = 0.1. 
*Percent that did not converge; **Percent that violated the model constraints. 

Pp 2 L R T (*) TS (**) 

0.1 0.0447 (3.76%) 0.0486 (2.73%) 
0.2 0.0754 (2.48%) 0.0684 (3.08%) 
0.3 0.1924 (4.48%) 0.1667 (5.55%) 
0.4 0.3848 (12.69%) 0.3526 (10.31%) 
0.5 0.6413 (41.01%) 0.7337 (22.89%) 

test actually attained. 

The percentages of non-convergence and violation constraints observed in this 
simulation experiment are comparable. In practice, the alternative estimators and 
corresponding test are easy to compute. Generally, the alternative test TS performs 
better than the LRT in the simulation studies so is recommended. 
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TABLE 72: Adjusted Rejection Proportions, a = 0.05, Ho : pv\ = pv2 = pp, pp 1 = 0.2. 
*Percent that did not converge; **Percent that violated the model constraints. 

Pp2 L R T (*) TS (**) 

0.1 0.0835 (2.11%) 0.0906 (2.55%) 
0.2 0.0565 (1.94%) 0.0459 (3.18%) 
0.3 0.0819 (3.67%) 0.0807 (5.58%) 
0.4 0.1875 (12.07%) 0.1985 (9.77%) 
0.5 0.3747 (39.25%) 0.4836 (23.01%) 

TABLE 73: Adjusted Rejection Proportions, a = 0.05, Ho : pp 1 = pp2 = pp, pp 1 = 0.3. 
*Percent that did not converge; **Percent that violated the model constraints. 

Pp2 L R T (*) TS (**) 

0.1 0.1833 (1.11%) 0.1794 (2.32%) 
0.2 0.0880 (1.43%) 0.0881 (3.11%) 
0.3 0.0569 (3.63%) 0.0482 (4.83%) 
0.4 0.0792 (11.65%) 0.0886 (10.24%) 
0.5 0.1760 (38.08%) 0.2477 (23.89%) 

TABLE 74: Adjusted Rejection Proportions, a = 0.05, H0 : ppi = pp2 = pp, pp 1 = 0.4. 
*Percent that did not converge; **Percent that violated the model constraints. 

Pp2 L R T (*) TS (**) 

0.1 0.3704 (1.05%) 0.3958 (2.81%) 
0.2 0.1983 (2.03%) 0.2135 (3.37%) 
0.3 0.0954 (4.09%) 0.1068 (5.12%) 
0.4 0.0624 (12.53%) 0.0449 (10.96%) 
0.5 0.0776 (42.93%) 0.1291 (26.78%) 

TABLE 75: Rejection Proportions, a = 0.05, Ho : pp 1 = pp2 = pp, pp 1 = 0.1. 
^Percent that did not converge; **Percent that violated the model constraints. 

PP 2 L R T (*) TS (**) 

0.1 0.0447 (3.76%) 0.4865 (2.73%) 
0.2 0.0849 (2.48%) 0.0749 (3.08%) 
0.3 0.2107 (4.48%) 0.1761 (5.55%) 
0.4 0.4073 (12.69%) 0.3679 (10.31%) 
0.5 0.6627 (41.01%) 0.7561 (22.89%) 



TABLE 76: Rejection Proportions, a = 0.05, Hq : pv\ = pp2 = pp, pp 1 = 0.2. 
*Percent that did not converge; **Percent that violated the model constraints. 

Ppi LRT (*) TS (**) 

0.1 0.0913 (2.11%) 0.0811 (2.55%) 
0.2 0.0565 (1.94%) 0.0459 (3.18%) 
0.3 0.0908 (3.67%) 0.0717 (5.58%) 
0.4 0.2032 (12.07%) 0.1773 (9.77%) 
0.5 0.3949 (39.25%) 0.4508 (23.01%) 

TABLE 77: Rejection Proportions, a = 0.05, Ho : pp\ = pp2 = pp, pp\ = 0.3. 
*Percent that did not converge; **Percent that violated the model constraints. 

Pp2 LRT (*) TS (**) 

0.1 0.1970 (1.11%) 0.1623 (2.32%) 
0.2 0.0961 (1.43%) 0.0771 (3.11%) 
0.3 0.0569 (3.63%) 0.0482 (4.83%) 
0.4 0.0867 (11.65%) 0.0770 (10.24%) 
0.5 0.1894 (38.08%) 0.2206 (23.89%) 

TABLE 78: Rejection Proportions, a = 0.05, H0 : pp 1 = pp2 = pp, pv\ = 0.4. 
*Percent that did not converge; **Percent that violated the model constraints. 

PP2 LRT (*) TS (**) 

0.1 0.4136 (1.05%) 0.3523 (2.81%) 
0.2 0 .2284 (2.03%) 0.1804 (3.37%) 
0.3 0 .1133 (4.09%) 0.0886 (5.12%) 
0.4 0 .0624 (12.53%) 0.0449 (10.96%) 
0.5 0 .0918 (42.93%) 0.1024 (26.78%) 
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CHAPTER V 

CONCLUDING REMARKS AND FUTURE WORK 

In this thesis we have considered the problem of studying the relationships between 
various members of the family, namely, son-son, son-daughter, daughter-daughter, 
parent-son, and parent-daughter when families are allowed to have different numbers 
of boys and girls. We also considered the analysis of data on families coming from 
different independent groups. Both estimation and testing of hypothesis problems 
are considered using methods based on maximum likelihood and certain alternative 
estimators. The alternative estimators are obtained using canonical transformation 
of the data. Galton's data is used to illustrate some of the methods that have been 
developed. Maximum likelihood based tests are compared with the tests developed 
using transformed data using simulations. In most cases, the alternative tests that 
we have proposed do quite well compared to the likelihood ratio test. Since the alter-
native estimators and their corresponding tests are easy to compute we recommend 
using them in practice. 

Our future investigation involves exploring the analysis of familial data when we 
have very large family sizes and very small number of families, as in gene expression 
data. Assuming that each blood serum sample is a family and the genes are the 
children, the problem is to study the correlations between various genes. Recently, 
numerous papers have explored the use of intraclass correlation in bioinformatics. 
For example, see Pellis et al. (2003), Dobbin et al. (2005), and Tan et al. (2008). A 
careful study of application of intraclass and interclass correlations in the situation 
of high dimensional data is to be done and our future plan is to explore this area of 
application. 
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APPENDIX A 

MULTIVARIATE NORMAL DISTRIBUTIONS 

In order to determine the variance of the alternative estimators proposed in Chapters 
II and IV, we need the following results on the distribution of a sample covariance 
matrix from a multivariate normal random sample. 

A . l S A M P L E COVARIANCE MATRIX D I S T R I B U T I O N 

Assume Yi , Y 2 , . . . , Y„ are independent multivariate normal random vectors with 
mean p, and covariance matrix The p x p sample variance-covariance matrix is 
defined as 

1 , n 

S n - 1 

where 

1 n 

Y = - £ Y 
n i=i 

Suppose S p x p = (Si S2 • - • Sp) where S2 is the ith (p x 1) column vector of S, then 

vec(S)p2xi = 
S2 

y Sp f 

and vech(S) is the x 1 vector of non-redundant elements of S. 
For any sample variance-covariance matrix of the same form, the Duplication 

matrix D p is a p2 x si£±ll m a t r i x such that 

Dpfech(Spxp) = t;ec(S). 

From multivariante normal samples, we have 

y/n(vech(S) - vech{T,)) -)• N{0, A) 

where 

A = 2(D+)(E®£)(D+) ' , 
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D ; = (DpDp)_1Dp, 

and <8> is the Kronecker product between the two matrices. 
Details will be worked out for the 2 x 2 and 3 x 3 cases. 

A.2 BIVARIATE S A M P L E C O V A R I A N C E M A T R I X D I S T R I B U T I O N 

For the 2 x 2 case, Y< Vu 
V2i 

S 2 x 2 — 

and 

Sn S12 
S i 2 5*22 

j = ( Si s 2 ) . 

We have 

wec(S)4xi = 

and 

vech(S)3xl = 

f S n \ 

S12 

Sl2 

V S22 / 

( S » \ 
Oi2 

y S22 j 

We can see that Dp?;cc/i(S) = vec(S) for 

/ 1 0 0 \ 

DP|4x3 
0 1 0 
0 1 0 

VO 0 1 / 

Then, 

0 2 0 
0 0 1 

3x3 
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Hence, 

/ 1 n n n \ 

£<g>£ = 

CllCTll 0*110*12 0*120*11 0*120*12 ^ 
011012 (Xli 022 0*120*12 0120*22 
012011 0120*12 0*220*11 0*22̂ 12 

\ 0*120*12 0*120*22 0*220*12 0*220*22 / 

and 

20*11 20*12 20110*12 

20110*12 0*110*22 + 0*12 2012022 
r22 20*12 20120*22 202 

\ 

/ 

A.3 TRI-VARIATE SAMPLE COVARIANCE MATRIX DISTRIBU-
TION 

For the 3 x 3 case, Y j 2/2 i 

\ 2/3i ) 
( 

and 

§3x3 — 
S11 S\2 S13 y 
S\2 S22 S23 = ( Si S2 S3 

S13 s23 S33 j 
We have 

vec{ S) 9x1 

f Sn\ 
512 
513 
S\2 
522 
523 
S13 
S23 

\ S33 J 
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and 

vech(S)6xl = 

/ c \ 
<->11 
'S'12 
S13 
522 
523 

y S33 
We can see that Dpt»ec/i(S) = vec(S) for 

D p,9x6 

f 1 0 0 0 0 0 ^ 
0 1 0 0 0 0 
0 0 1 0 0 0 
0 1 0 0 0 0 
0 0 0 1 0 0 

0 0 0 0 1 0 
0 0 1 0 0 0 

0 0 0 0 1 0 

0 0 0 0 1 J 

Then, 

1 0 0 0 0 0 
0 2 0 0 0 0 
0 0 2 0 0 0 
0 0 0 1 0 0 
0 0 0 0 2 0 
0 0 0 0 0 1 

6x6 
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Hence, 

DP
+ 

S ® S 

1 0 0 0 0 0 0 0 0 

0 1 
2 0 1 

2 0 0 0 0 0 

0 0 1 
2 0 0 0 1 

2 0 0 

0 0 0 0 1 0 0 0 0 

0 0 0 0 0 1 
2 0 1 

2 0 

0 0 0 0 0 0 0 0 1 

\ CT11 (Ji2 0 13 

012 022 023 

^13 023 <733 j 

/ 6x9 

( 0-H 012 0"13 ^ 

012 022 023 

y
 a13 023 °33 

f <711011 <711012 011013 <712011 <712012 012013 <7l3<7ll 013012 013013 ^ 

011012 <711022 011023 <7l2<7l2 012022 012023 013<7l2 013022 <7l3<723 

<711013 011023 <711033 012013 <712023 012033 <7l3<7l3 <713023 <713033 

012011 <712012 012013 <722011 <722 <712 022<7l3 <723<7ll <723012 <723<7l3 

012012 <712022 012023 <722012 022022 022023 023<712 023<722 023023 

012013 <712023 <712033 022013 <722<723 022<733 023<7l3 <723<723 <723<733 

<713011 <7l3<7l2 <7l3<7l3 <723<7ll <723<7l2 023<7l3 033<7ll 0"33 <712 <733<7l3 

013012 <713022 <7l3<723 <723<7l2 <7*23 <722 023<723 033<7l2 033 <722 <733<723 

\ 013013 <7l3<723 013033 <723 <713 023<723 023033 033<713 <733<723 033033 / 

and A = 

^ 2o\x 20110-12 20-H0-13 20^2 2012013 2of3 ^ 

20110-12 011022 + 012 012013 + 011023 2c t 1 2 0 2 2 012^23 + 013022 2 0 1 3 0 2 3 

2011013 012013 + ^11023 0"llC33 + C13 20i2023 012<733 + <7l3<723 2013033 

2012 20120-22 2012023 20^ 2022023 20^ 
20120-13 012023 + <713022 012033 + 013023 2022023 022033 + 023 2023033 

y 20?3 20i30"23 2013033 20^ 2023033 20^ y 
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