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ABSTRACT

POST-PROCESSING TECHNIQUES AND WAVELET
APPLICATIONS FOR HAMMERSTEIN INTEGRAL
EQUATIONS

Khomsan Neamprem
Old Dominion University, 2010
Director: Dr. Hideaki Kaneko

This dissertation is focused on the varieties of numerical solutions of nonlinear Harn-
merstein integral equations. In the first part of this dissertation, several acceleration
techniques for post-processed solutions of the Hammerstein equation are discussed.
The post-processing lechniques are implemented based on interpolation and extrap-
olation. In this counection, we generalize the results in [29] and [28] to nonlinear
integral equations of the Hammerstein type. Post-processed collocation solutions
are shown to exhibit better accuracy. Moreover, an extrapolation technique for the
Galerkin solution of Hammerstein equation is also obtained. This result appears new
even in the setting of the lincar Fredholm equation.

In the second half of this dissertation, the wavelet-collocation technique of solv-
ing nonlincar Hammerstein integral equation is discussed. The main objective is
to establish a fast wavelet-collocation method for Hammerstein equation by using a
‘linearization’ technique. The sparsity in the Jacobian matrix takes place in the fast
wavelet-collocation method for Hammerstein equation with smooth as well as weakly
singular kernels. A [ast algorithm is based upon the block truncation strategy which
was recently proposed in [10]. A multilevel angmentation method for the linearized
Hammerstein equation is subsequently proposed which further accelerates the solu-
tion process while maintaining the order of convergence. Numerical examples are

given throughout this dissertation.
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CHAPTER I

INTRODUCTION

Many physical problems in our daily life can be formulated in terms of mathematical
models via differential or integral equations. In most cases, a solution of a differential
equation or an integral equation is found by using a numerical method. This disserta-
tion is focused on solving a class of nonlinear integral equations calied Hammerstein
equations. An integral equation occurs as a reformulation of a differential equation.
In particular, when a two-point boumdary value problem contains a nonlinear fore-
ing term, its integral reformulation is the Hammerstein equation. Also, the Green's
formula is one of the well-known reformulation techniques to convert a differential
equation to an integral equation. Integral equations can be classified into two types,
linear and nonlinear. As a basic background and for the purpose of introduction
and motivation, the lincar Fredholm integral equation of the second kind will be pre-
sented first. This will be followed by the nonlinear integral Hammersticn equation.

New golution techniques prescnled in this dissertation are applied to this equation.

This dissertation presents two approaches, broadly classified, to solve nonlinear
integral eguations numerically. First, we present several methods to improve the
accuracy of numerical solution by post-processing techniques. Each one of the post-
processing techniques results in numerical solutions with higher order accuracies and
they can be obtained with a relatively inexpensive numerical cost. Second in this
dissertation, we focus our attention on the issue pertaining to the reduction of the
computational cost both in terms of the computing time and the computer memory.
Here, a class of wavelet basis will be applied. A multiresolution structure embedded in
the wavelet basis allows us to employ a truncation strategy which eliminates a large
number of elements in the corresponding Jacobian matrix. We will also establish
an augmentation method for the nonlinear Hammerstein equation. A multilevel
augmentation method, whose idea was originally presented in the paper [7], uses the
multiresclution structure of the wavelet basis to obtain a numerical solution at a finer
resolution level by correcting a coarser level solution by adding correction term. This
results in an overall reduction of computational cost to the solution process while

maintaining the order of accuracy.



A general form of the Fredholm integral equation of the second kind is
u(t) — / ks, thu(s)ds = f(1), te D (1)
o

where D is a closed bounded set in R™, m > 1. The kernel & and the forcing term f
are known functions and u is the unknown function to be determined. The historical

background of (1) can be found in Fredholm [13] and Bernkopf {5].

During the last four decades or so, various numerical methods for solving (1) were
developed. Among them, the well-known and frequently used numerical approaches
are the methods of degenerate kernel, collocalion, Galerkin and Nystrém. Their
methodologics are compiled in a recent monograph by Atkinson [3]. Also, additional
expositions in both theoretical and analytical details of (1) can be found in Kress {22],
Atkinson and Han [4] and Vanikko [34]. In this dissertation, we will be concerned

with the eollocation and Galerkin methods.

In order to enhance the order of accuracy of numerical solutions of the linear
Fredholm equation, a number of techniques was presented in [28] and [29]. These
techniques deal directly with the nmumerical solution which is obtained by a tra-
ditional method and by posi-processing it by way of interpolation and extrapola-
tion. Post-processing by interpolation of the collocation solutions of the equation
(1) was constructed and also global extrapolation of the collocation method was
obtained in [29]. Additionally, the interpolation ol the Galerkin solutions of the
Volterra integral equations can be found in the same paper. Lin et al. [28] con-
structed the extrapolation of iterated collocation solutions of the Fredholm equation.
Post-processed solutions show higher rates of convergence, a phenomenon commonly
known as superconvergence. The results in [29] and [28] motivated the author to ex-
tend the same technigues to the nonlinear Hammerstein equation. This will be done
in Chapter III. We noie that an extrapolation technique to accelerate the accuracy
of the iterated Galerkin solution for the nonlinear Hammerstein equation presented

in Chapter IIT appears new cven in the setting of the linear Freholm equation.

In approximating the solution of a linear integral equation using a numerical
method mentioned above, it is always the casc that a large system of linear equations
must be solved. A matrix involved in the system is generally dense and therefore

it is expensive to solve, particularly in the case of a multivariate integral equation.



Moreover, if one requires a higher order accuracy in the numerical solution, a standard
way to achieve this is to increase the order of the basis functions. This results in a
nch larger system to solve which leads to a higher computational cost. In a series of
recent, papers, ([1], [2], [30! and references cited therein}, a class of wavelet functions
was used and applied to solving the equation (1). Onc ol the advantages of the use
of wavelet functions in this enviromment is due to the fact that the application of
the wavelets results in a coefficient matrix which is sparse. Further work in this area
can be found in Micchelli and Xu [31] and in Chen et al. [6], which is followed by
a paper {10] by Chen et al. in which a fast collocation algerithm for solving (1) is
presented. The multiscale piecewise linear, quadratic and cubic polynomial functions
and the corresponding multiscale collocation functionals were constructed in [10]. In
this dissertation, the piecewise linear polynomial wavelet will be used exclusively to

demonstrate the validity of new theorems.

The integral equation which this dissertation primarily addresses is the nonlinear

Hammerstein integral equation

u(t) — Ak(s,t)aﬁ)(s:u(s))ds = f(t}, teD (2}

where the funclions k&, f and 4 are known and u 1 an unknown function to be
determined. As stated earlicr, this equation ariges as a reformulation of two-peint
boundary value problems with a certain nonlinear boundary condition. In equalion
{2), note that solution » appears under the nonlincar term . The degenerate kernel
method [20], the collocation method [25], the Galerkin method [21] and the Nystrom
method [26] methods were successfully used to find numerical solutions of this non-
linear equation. When applying these methods to equation (2}, a nonlinear system
of algebraic equation will take place and implementation of solving this nonlinear
system is much meore difficult than solving the linear system for the Fredholm case.
We will show in Chapter IV of this dissertation that sparsity can be preserved in the

Jacobian matrices which are part of the Newton method.

As part of the post-processing technigques, Kaneko et al. established the iterative
methods for the Galerkin method and the collocation method in [21] and [18§],
regpectively. The iterative method, when apphied to the collocation as well as to
the Galerkin method, double the order of accuracy provided that the solution and

the kernel of the integral equations arc sufficiently smooth. Tterative solutions are



obtained by iterations of a numerical solution through an integral operator. This
s an cxcellent method to improve the accuracy of numerical approximation, since,
as stated earlier, doubling the order of basis functions to attain the same order of
accuracy results in a much larger system of nonlinear equations. On the other hand,
the iteralive methods present accuracy enhancement techniques which avoid this
larger system and thus are computationally more efficient. In this study, the post-
processing techniques based upon the interpolation and extrapolation are developed
and applied to nonlinear equation (2). These techniques result in numerical solutions
with higher accuracy but also are obtained with less expensive computational cost
than the iterative method. In addition, we also discuss Lwo other technigues as
parts of the post-processing methods. We establish asymptotic orders of the iterated
solutions, both the Galerkin and collocation method, for the nonlinear Hammerstein
equation (2). Such results on the asymptotic errors lend naturally to the Richardson
extrapolation method of accelerating the order of accuracy. We will see that this
additional step of extrapolation brings an enhancement of the order of accuracy by

twe for the Galerkin and the collocation iterated methods.

In a recent paper, Chen et al. 9] esiablished a new approach to solving an op-
erator equation which is called multilevel augmentation method. Using a class ol
wavelet functions as a basis of computation and laking advantage of its multireso-
lution structure, the new method calls for obtaining a numerical solution at a finer
resolution level by adding a correction term to a sclution at a coarser level. The ap-
proach produces a numerical solution of high accuracy without solving a large system
of linear equations. Following the paper [9], Chen et al. introduced a similar multi-
level augmentation methed te approximate the nonlincar Hammerstein equation in
[11]. They obtained an order of convergence which is optimal and the computing
time of the proposed method is less than the computing time of the traditional pro-
jection methods. In the second half of this dissertation, we implement a fast wavelet
collocation algorithm to solve the nonlinear Hammerstein equation and establish a
multilevel angmentation method for the equation. What is done differently in this
paper from [11] is that, due to a ‘linearization’ of equation (2}, the sparsity which
was obtained by the application of the wavclets to linear equalions now manifest
in the Jacobian matrices and the corresponding block truncation strategy proposed
in [10] can be implemented to obtain a fast wavelet-collocation algorithm for the

Hammerstein equation. This point will be demonstrated both on the Hammerstein
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equations with smooth as well as weakly singular kernels.

In summary, the main goals.of this dissertation are as follows. A number of
post-processing techniques which can be used to enhance the accuracy of numerical
solutions of nonlinear integral equations of the Hammerstein type will be established.
One type of the methods relies on interpolation and another relies on extrapolation.
A second phase of this dissertation is a wavelet collocation methoed to acquire a fast
‘algorithm to solve the Ha.mmer_sﬁein equation. The class of piebewise polynomial
wavelets constructed by Chen et al. [10] will be used. Next, a multilevel augmen-
tation scheme is created in a similar way to [11] but this method is derived from a
different operator form and it is a fast algorithm due to the preserving of the sparsity

structure within the framework of a nonlinear solver.

This dissertation is organized into five chapters. After the current introductory
- chapter, we introduce necessary theoretical backgrdund in Chapter II which helps
the reader to follow the materials in the ensuing chapters. This includes a method
of construction of piecewise linear wavelets and that of the corresponding collocation
functionals. Moreover, the collocation and the Galerkin methods which are parts of
the projection method are also discussed in Chapter I1. In Chapter I11, we present sev-
eral post-processing techniques of the collocation solutions. Additionally, the inter-
polation and extrapolation techniques for the Galerkin solutions of the Hammerstein
equation are also obtained. In Chapter IV, the wavelets defined in Chapter II are
used to approximate the solution of the Hammerstein equation. A multilevel augmen-
tation is also discussed. Numerical results are interspersed throughout the Chapters
III and IV. Finally, some conclusions, discussions and future research work will be

. presented in Chapter V.
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Define &,(s) = k(s, t) for t, s € [0, 1] to be the ¢ section of k. We assume through-

out this paper, unless stated otherwise, the following conditions on &, f and -
(A1) %im e — ki, = 0,7 € {0,1];
(A2) M = sup fol Wel(s, t)|ds < oo;
£(0,1]
(A3) feC[o, 1]

(Ad4) 3(s,x) is continuous in s € [0, 1] and Lipschitz continuous in z € (—o0, cc),

i.e., there exists a constant €, > 0 for which

1y — 22| for all &y, ms € (—o0,00);

[(s, 21) — (s, m2)] < CY

(A5) the partial derivative ¥{®1) of 1 with respect to the second variable exists and

is Lipschitz continuous, i.e., there exists a constant C, > 0 such that

‘7,0(0’1) (t, 731) - w(o:l)(t}xz)l < Cg |$1 — {E2| for all X1, Lp € (—DO, OO),

(A6) for z € C[0, 1] and %(., z(.)), ¥OLV(, 2(.)} € C[0,1].

Additional assumptions will be given later as needed.



CHAPTER II

NUMERICAL BACKGROUNDS AND WAVELETS

This chapter is used to L'éview two standard mcthodé used to approximate the solu-
tion of linear and nonlinear integral equations as wcll as to review the recent results
in the area of wavelets which is pertinent to this dissertation. The collocation and
the Galerkin methods are two of the most commonly used methods of approximat-
. ing the solution of integral equations. They are both classified as special cases of
the projection method. In the area of wavelct analysis and its applic_dLiOII {0 inte-
gral equations, the review is particularly focused on the recent, discoveries in 6], 8]
and. {10]. In these papers, interpolation functionals and a class of wavelet functions
are established. Subsequently, they are applied to obtain a fast wavelet-collocation

- algorithm for selving the Fredholm integral equation.

II.1 NUMERICAL METHODS FOR INTEGRAL EQUATIONS

The Fredholm integral equation of the second kind is written in the general form as

ult) / k(s Ou(s)ds = £(0),  te (0,1, (3)

1]

and the Hammerstein integral equation takes the following form

u{t) — A (s, t1p(s, uls))ds = f(t), te[0.1]. . (4}

Here the kernel k(s, t), the forcing term f and the nonlinear term ¢ are known and
the function u is to be determined.

Denote ' "
Ku(t) == ] K(s, Duls)ds,
0 . :
and
W(u)(t) = it u(t)).

Then cquations {3) and (4) can be written in the operator form as
u—Ku=f, (5)

and . .
u— K¥{u) = f. _ - (6)
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With the conditions described at the end of Chapter I, K, K'¥ map & Banach space
X into X. Usually, we choose X to be L£=[0,1] or C[a, b] for the collocation analysis
and £2]a, ] to formulate the Galerkin method. |

To describe the method of projection, we let {X,} be a sequence of subspaceé in

X with the closure of the union of all X, equal to X, i.e.

and define P, : X — X, be a projection. Unless the solution of (3) or (4) belongs to
X,., there would be a residual associated with an approximation t,. Hencé, for each

U, € Xy, residuals r, defined below are not zero;
o= f — (I — K}uy,
and
' = f = (I — K,

The projection method finds a solution by requiring the residual to disappear under
the projection Py, Le.,
P, =0. : (7)

If £, is an interpolalion projection, then it is the collocation method, whereas,

if P, is an orthogonal projection, then it defines the Galerkin method. Equation (7)

reduces to .
Up — PoKu, = P, f, Up € Xn,
- for (5) and '
ty — PaKWu, = P, f, thy € Xy,
for (6).
Let {b1,b2,...,b,} be a basis for X,, and assume that an approximate solution

u, € X, of both integral equations can be written in the form
ua(t) = > ebi(t),  te[0,1], (8)
=1 .

where {¢;}™, is a set of constants to be determined.



I1.1.1 Collocation Method

For collocation, we set X = (C[0,1] and X,, = span{b, bs,....b,} where b, has an

interpolation properiy. Namely, there exists a set of points {¢;}7_; for which
b(t)) =0y, i=1,...,n j=1,...,n |
This implies that for each 3: e X,
Pox(t) = > a(ta)bi(t).
Thus, equation (7) becomes

ra(t;) =0, i=12,...,n ' a (9)

When we substitute (8) into the Fredholm equation and apply (9) we get

Th

n i
> abilly) —Zq/; k(s tb(s)ds = f(t;),  F=12....n
i=1 .

=1
or

_izzlzcé/olk(s,tj.)b*(s.)ds SR LI

This is a system of n linear equations with.n unknown coefficients {¢;}1.,
Ac=f,

where a;; = b;(! fﬂ s, t;1b;(s}ds. It is known that this linear system has a unigue
solution if and only if det[b;(2;)] # 0.

When the interpolation projéction is applied to the nonlinear Hammerstien equa-
tion we obtain '

T

Zci;b@[tj) - ‘/(; k(s.t;) (s, Z c‘;bi(s)) ds = f(t;), i=12...,n

i=l

or ' _ .
. 1

cj-—/ 5t)1L( Zgb(s))de j=12,...,n
0

This is a system ol n nonlinear equations with n unknown coeficients {¢;}7,

" A nonlinear solver is used to find the solution {¢;}2,
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i1.1.2 Galerkin Method

To describe the Galerkin method, we let X be a Hilbert space with the inner product

{-,-). In this subsection, we assume X = L?[0,1]. Let X, € X be a finite dimensional
“subspace of X and F, : X — X, an orthogonai projection. Assume that X, is

spanned by {b;.7 = 1,2,...,n}. The Galerkin method, being a projection method,

seeks solution by requiring {7), where P, is the orthogonal projection onto X,,. This

is equivalent to having the residual in the orthogonal complement of X, in X. That

is

{rn, by} =0, 3 =1,2,...,n

Equivalently, we have

> albi by =Y (Kb by ={f.b),  j=12..,n
i=1 .

g1

which is

Zf"/ b (1), (t}di — Zcz/ / k(s,t)b;(s)b;(t)dsdt / F{E)b;

' 1<ij<n
If {1, b2, ..., b5} is an orthonormal basis then

I .
{bi, by = / bi(t)b;(t)dt = by
_ 0
and therefore the system of linear equations becomes

- /ﬂ /0 k(s, £)bi(s)b;(t)dsdt = /n FObd, 1<ij<n.

For the nonlinear Hammerstein equation, a discretized Galerkin equation becomes

Zc,/ bi(t)b;(t)dt — // st)u')( ())dsb()

/f(t)bj(t)dt, 1<ij<n
0

If {b;,7 = 1,...,n} is an orthonormal basis then the nonlinear system can be given

cj—/;/;k(s,c)w( chb(s))dsb t)dt = /f (t)dt, 1 <i,j <n.

=1

as



11

This noniinear system is solved by a nonlincar system solver, such as the Newton

method or the quasi-Newton method.

Remarks: Matrices associated with the collocation method and the Galerkin
‘method, when spline bases are used, are in general dense and computationally expen-
give to establish and its corresponding systems of equations, linear and nonlinear, are
expensive to solve. Matrices associated with the Galerkin method are more expansive
to build than those of the collocation mefhod, due primarily to the fact that each
component of the matrix involves an calculation of a double integral. To attenuate
the computational cost, we will see in Chapter IV that certain sparseness can be

obtained if wavelcts are used to generate these matrices.

I1.2 WAVELETS_

In this section, we review necessary preliminary information which will be used to
establish the wavelet collocation method [or the nonlinear Hammerstein equation in
Chapter IV. The wavelets have been used to solve a number of problems in several
areas of science and engineering such as signal processing, image processing, comnputer
graphics and approximation theory. The original construction of a class of wavelets
by using translation and contraction of a function ¥(¢) was introduced by Grossman
and Morlet [14], i.e.

t—b
Pap(t) = |a_1/2|1,!) (—*-—) \ a,beR, a+#£0.
a
Fach wavclet construction is based on a multiresolution analysis.

In the recent paper of Chen et al. [6], the concept of a refinable set was introduced
which led to a set-theoretic multiresolution analysis. Subsequently, a construction
of multiscale piecewise polynomial functions and its corresponding multiscale collo-
cation functionals arc established. It is helpful here to describe the definition of a

multiresolution analysis and that of a refinable set.
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1I.2.1 Multiresolution analysis and Refinable set

Definition I1.2.1. [Multiresolution analysis]
The function ¢ is a multiresolution analysis of L?(R) if there exists a nested sequence

of closed subspaces {X,,}nez such that

1. there exists ¢(t) € Xy such that {¢{t — 1} : | € Z} is an orthonormal basis of
Xo, '

9 XnC Xopiforallne Z,te, ... CX0CXoC X1 ...,
3. f(t) € Xn < f(2) € Xppy foralln € Z,

4 A X, =1{o),

5. U X,isdensein L*(R), ic, U X.=L3(R).

The function ¢ is called a scaling function. We define W, to be the orthogonal

complement of X, in X4, L€,
Xﬂ.—l—l' = Xﬂ & H';'m S ne Z’a

and then
W, L W, ifn#n'

Since X, is a nested subspace it follows that

N-n-1

Xy =X.® @ Wiitm, forn < N,

m=0

and that -

L(R) = Xo & P W..
n=0

From the multiresolution analysis, there exists another function ¥ in Wy such that
{(t ~1) : 1 € Z} is an orthonormal basis for Wy. The function ¢ is called a wavelet
generator.

Following [6], the definition of a refinable set is given next. The notion of refinable
sets enables us to construct a class of wavelets and its corresponding functionals,
together give the collocation method which exhibit the multiresolution properties.

Proofs of the following theorems and examples can be found in [6].
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Definition I1.2.2. [Refinable set] o
A subset V' of X is said to be refinable relative to the mappings ® if V C &{V).

Lxamples of a refinable set are shown in examples below when we define the

mapping © as follows: with X =R and an integer g > 1,

L+ ¢ -
b (t) = T‘,x eER,e € Z,, (10)

Z,:={01,...,u—1},

with a positive integer p and
ZE=Z, % ... X Zy, k times.
Define the family of contractive mappings
¢ .= {p.:e€Z,}.

Example I1.2.3. The set 1} := {Jk- 1] € Zk+1} is refinable relative to the mappings
. ' '

Example I1.2.4. The set ¥, = {ELLI 3—1e€ Zk} is refinable relative to the map-
pings @ if and ouly if 4 and &£ + 1 are relatively prime.

I1.2.2 Basic Tools

In what follows in this section, we take directly from [8], [10] and assume that £ =
[0,1]. To understand the wavelet collocation method, we first introduce a family of
contractive mé»ppings@# = {¢e: € € Zu}, Z, = {0,1,--- ,pp — 1}, with a fixed
positive integer p on the interval [ := [0, 1] defined by

_tte

de(t) o tel, e€Z,

where

I.= U ¢.(7), and meas{¢ (/)N (1)} =0, e#¢".

EELy,
Let X be the space of polynomials of order k¥ > 0 on I and 7. : L=(I) — L*=(])

linear operators which are defined as follows;

Tex =100, Xpuny,  for z € L=(I), (11) .
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where x4 is the characteristic function of A for a subset A C I. A sequence of

subspaces X, can be defined by using the operator in {11} as follows;

| Xn-l—] = @ ZX'!&! ne NO:

CEZ;:.

where Np := {0,1,...} and A @B denotes a direct sum of spaces A and B. It is easy

to see that the following statements are true:
o The sequence of the subspaces is nested, i.e., X, C X.,&l;n € Ny,

¢ X, is the space of piecewise polynomials of order k on I with knots at Jiut g =
1,2,..., 40 =1, '

L dlm(Xn) = kﬂ:n, nc N(].
Because the subspaces have the nested property, we can obtain
X, =WeW, o.. oW,

with Wy := X, and W, is the orthogonal complement of X;_; in X;, 1 =1,2,...,n,
ie.,
X?; - Xi_l @ Wi-

It is known from [31] that

Wn-i—l :® ’Tn;Wn.‘ HEN,

ceZy,
when the initial space WI is constructed. For ¢ € Ny, with w(¢) := dimW,, we have
win) =k(p— D™, neN

The spaces {W, }, serve as mulfiscale subspaces of L™=(I). Next, wavelet bases and
corresponding collocation functionals on L™(f) must be constructed. To define a
base for W;, we use the fact that W, is subspace of X; and every element w € W,

must be orthogonal to Xy = Wy, i.e.,

where {wy;,7 € Zi} is a basis for Wy. Note that the dimension of X; is kp, and

equation (12) gives r := &{px — 1) linearly independent sclutions wy;, 5 € Z, which
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form a basis for W,. To generate bases for the subsequent wavelet spaces W,,4 > 1,

we define a composition operator 7. by

7;::7;.[}0"'07;' 11

i—

where e := (eg,...,&_1) € Z, = Z, X -+ X Z,, €; e Z,for 7 =0,...1—1. With

1 times
ple) = Ve + - peg +eio,
and for ¢ =2,3,...,n, we let
iuij =Tewy, j=upleyr+il, ec ch"l, ez, (13)

and then W, = span{wy : j € Z}.

In order to facilitate the establishment of a wavelet collocation method, Chen,
Micchelli and Xu ([6}, [8]} defined the notion of a refinable set and consequently the
collocation functionals in ¥* with ¥ := C(I). Here, ¥* denotes the dual space of V.
Now select k distinct points Vp := {t;: 7 € Z} in I so that V; is refinable relative to

“the mappings ®,, i.e., Vp C V4 := ®,(V5). For example, it is shown in [6] that, when

pand k£ + 1 are relatively prime, the set

is refinable relative to ®,. For Ievery point ¢; € V), we define £y; := &, j € Z, where
& &, 7 = z(t;) with z € C(I). We order the points in V; so that the first &
points coincide the points in the set V. For each j € Zy(,-1), we find the vector
[¢js : 8 € Zy,) such that

&y = Z €501, 7 € Zigu—1) | (14)
Sezkp
satisfies the equations
& by, woy = 0, i € Z, (15)
and
<<_f13-,w1jr = (Sjj’} jr [ Z,«. (16)

Equations (15) and (16) give rise to a unique solution ¢,;, which defines the inter-

polatory linear functionals ¢y, relative to the basis functions in W,. To define linear
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functionals with the interpolation property relative to basis {wy;}, ¢ > 1, we let
L. ¥V* — V* be defined by the equation '

K Lz >=< {7 ¢ >, forallz € Vand £ € V¥, (17)
and for e := (eg,...,€n-1) € Z;‘ define
Lei=Lyo...0L, .
Finally, for i = 2,3,...,n, define |
2 :=_Ce’€1h i=upleyr+1, ec th__i, le Z. {18)

The basis functions w;; and the collocation functionals £;; which are generated by

- using (17) and (18) have the following important properties.

e They have vanishing moments of order k, that is, for all element p in the space

of polynomials of degree less than k on I,
€ fij'?p > =0, (w_ij’p) =0, j& Zk{u—l)#“-_li jEeN {19)

e They satisfy the semi-biorthogonelity, that is, for any 4,7 € Ny
& ey wi >§ = G305, (LN, G Ye U, <7, (20)
where U = {(z,7) : ¢ € No, j € Zui)}-
e There exists a positive constant -y for which

ool tywg > <y, GG e, ixid. (21)
J€Zuwy

Next, the bases for the space X, and W, are shown for multiscale piecewise lin-
ear, quadratic and cubic polynomials and their corresponding multiscale collocation

functionals,
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1. Piecewise linear polynomials.
In the linear case, we set k= 2and p = 2. Denote X,,, n € Ny Lo be the space of
piecewise linear polynomials on 7 with knots at /2% 5 = 1,2, ., 2" — 1. Obviously,

w and k + 1 are relatively prime and ®; := {¢p, ¢1} where -

¢o(t)=-;- and cﬁn(t)zf;—l, tel.’ (22)

A refinable set relative to @, is given by

i+1 : 1 2
’ { ki1 ?} {3’3}’

and V; = ©2(Vo) = {},3,2.2}. A basis for the space X, is chosen to have the

Lagrange interpolation linear property, i.e.,

t—2/3

wUD(t)ZWZQ—Sﬁ, f,Ef}
and /3
: t—1
‘!.Um(t):m:—l-{—3t, te L

From equation (12), a basis for space Wy having an orthogonal property can be given

1—%t,  tel0d] 1-%, te[0g]
Ny A »2ls =4 2 2 12
et {—1+§t, ey, ™Y { Lo ()

Associated with the basis functions, we have the collocation functionals given by
‘E()j = (stj: ] € ZQ'

then

EDO § and .Eﬁl -

1 2.
3 3

“To define the collocation functionals in V;, we have to find the vector [c;s 1 s € Zy]
such that &y; = 37 5 €s0;,, j € Zo under the conditions (15) and (16}, then we can

obtain the unique solutions

fio =081 — =0y + =5

+ 502, fu_z

=] )
e

(1T

1
[
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2. Piecewise quadratic polynomials.

For the quadratic case, we choose k& = 3 and g = 3. Define X,, n € Ny to be the
space of piecewise quadratic functions on / with knots at /37,5 = 1,2,...,3* — 1,

and ®3 := {dn, ¢1, P2} where

E+1 L+ 2
Bt ==, and gy == tel

(;"50({’) = %}

A refinable set relative to @3 is given by

o, i+l R
VD—{iJ—k+1JGZi}”{432:4

and Vy = @3(V0) = {5.3. 3 5.3, 5, 2. 2. 11 }. A basis for space X is chosen to have

a Lagrange interpolatory quadratic property, i.e.,
woo(t) = (26 — 1)(4¢ — 3), wer(t) = —(dt — 1){4t — 3), and wpo(t) = (4¢ — 1)(2t — 1}.

A basis for space W is given by

422y 4 6842, te ol
w(t) = { ’ o [,3],

“Lsy g2 pe (L],

_ 46 544 11642 1
wi(t) = ?@_ +ﬁ£{):_—72_;t2’ ttee [(Oi, 51]] |
27 T 3o S

22 | 224 1242 1
wip(t) = ;_ffgt;t | ii ([[l] ﬂ ’
9 9 37 S
9_182t+%52, te [0,%]:
0y — 12442 e (2,1],

27

) LB te
walt) = — lodey | 1162y
27 3 ¥

3
182
9

1, 26 2
—3+ 5t — 4, ¢
f

134 1000 2

wys(t) =

wis(t) = { _g%jg__

The collocation functionals associated with the space X, is given by

'Q(}D‘_*f5 5

1
4

gm —_ 5

bl

&
[ =X
[

=
1]
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and those associated with space Wy is given by

.8 S - i
fluzoll_g—gfsé-ﬁ-%}%—-g-b%, fllzg%—20%+25%—0%,
: 1 8 8 - 1
312=—E5i+251_52—§(5%+51_72, 313:5%—-3*5%-1-20%—*55%,

_ . 1 8
514——0%4-25%—25%4‘0%, 5152—55%4-25%—55%4-5%

3. Piecewise cubic polynomials.

In this case we take £ = 4 and g = 2 and the mappings ¢g, ¢ as defined by (22).
Let X, be the space of piecewiqe cubic polynomials on I with knots at j/2",j =
1,2,...,2" — Land Vg := {32 & 4} A basis for space X, is chosen to have a
Lagrange interpolatory cubic property, i.e.,

woo(t) = {13(53—2)(&_3)(& 4), '_wm(a:)4_:%(5¢—1)(5c—3)(5¢—4),

woa(t) = — = (56 — 1)(50 — 2)(5¢ — 4),  wea(t) = %(m —1)(5t — 2)(5¢ — 3).

2
As described earlier, wé construct a basis for space W, given by
T S s SR i
B -1 4 3 e (3.1],
wi{t) = { %_mt+%t2_%t3’ te [0=%]1
TS 3095, @ BB g (1],

I X G
' 12225 + 827.)t 55Ot2 49?5: te (:f]é's 1j| ,

wya(t) = { % - _t + 22%2 5?2%3 te [0! %] .
_lss45 o 1rmoy _ d2mag2 1475:‘3 te (1,1].

The collocation functionals associated with the space Xy have the form

oo =0y, lyy =0z, Lop=14d3, fo3 =0,
and those associated with the space W is given by
\ 2 3 1
£m=5'5ﬁ—251+253—(54 —1——-65_6_, 5112-1—0-52—6 +64——(56 +55%
1 1 .3 1 3.2
ﬁlg—gﬁ%—ifs%—%d% 0%—1-551, 313—E5%—5%+20%—-§é%+56%.
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Next, we focus on the construction of linear wavelet bases on any resolution level
W;,7 > 1 and that of correspending lincar functionals €;;. Then wec use them to
implement the wavelets collocation of the nonlinear equation (4) in the Chapter TV.

The formulation to find the wavelets bases at finer resclution levels is given as follows:
wi o= Tewy, J=yple)yr+1i, ec Z;_l, le Z,

and also the corresponding collocation functionals can be defined by
by =Ly, j=ple)r+l, ec Z;_I: le Z,.

For example, when i = 2,
Cr=22~1)=2e={0,1} € Z}, pleg) = 0, u(e;) = 1 and

j=0=0-2+0,
j=1=0-2+1,
j=2=1-2+0,

j=3=1.2+1.

Then a basis for space Wy can be obtained by

wyp = TeeWio = Wio © $5 Xgo(l)
1-8(2t) =19t te [0,4],
N { ~1+3(2) = ~1+31, te (L,1],
Cwy = Teowin = Wit 095 X
{rieetma o aendl
—I+22t)=-L+0t, te (53],
wyy = Te w10 = wio © ¢ Xy (1) |

_ J1-s-n=3-9, i€ (3
—1+32-1)=-2+3t te(d1]
Woy = 7;11911 = @ ¢1_1X¢1(1J

_ [4-ter-n=2-m cefhd)
I+ 82-1)=-8+9t te(d1],



and the collocation functionals associated with space W is given by

Ezn = ﬁgfln where <& ﬁ[}gm}x B = fm, Xo Q—L’U e
3(5 15
5T 5% %

«‘211 where <& £0€11,X = & E]_I;XOQ'I)(] e

I
="

1

——51 —i—§5T

<“‘-. @—

10 where << Lif10,x » = <& f1p,x0 ¢>1 >

] hl.\:lr—dh

-

502 -+ é’s,

511 where <& £1£11,X o= << fu,xo (})1 3

-
L&l

=

[=IE]

mlb—l[‘\

3
—55%4-5%.

Similarly, when i = 3, e = {(0,0), (0,1),(1,0), (1,1)} € 22,

e =0-240=0pule)=0-2+1=1,
#(‘32)=1'2+0=2.,,u(e3):1-24-1:37

and

j=0=0-2+0,
§=2=1.240,
j=4=2-2+0,
j=6=3.2+0,

j=1=0-2+1
j=3=1-2+41,
j=5=2-241,
j=7=3-2+1

The composition operators and their inverses are

Cdoo(t)=deoda(t) =5 = ok, () =4t
Pty = ¢ao di(t) = % = Sty =4t —1,
Puo(t) =grodo(t) =22 = ¢l (1) =4t ~2,
bun(t) = drodi(t) =12 = o) (1) =4t -3,
Then a basis for space W can be obtained by |

Wz = Wpo Qf)(-ofo) Xé,0,(1)
_ ] 1-gl =118, te[0,5],
_14 34ty = —1 +6t, te (54

1
Wil = W1 © ‘]D((m X

_ {%—5("“)—— 6z, : € [0, §].

—I+ 34ty = ~1 +18¢, te(@ﬂ



ws = w0 oy (0,13X %0, 1)(")

_ 1— (4t — 1) = ¥~ 181, te [ g,
~1+3 (4£ 1)——§+6t: tE(%,%],
Wiz = Wil 0‘.35(0‘1))('9(0,1)(1)
[ i-da-n=2-6, te 53,
~IT+3a -1 =-8+18, te (1],
Wag = w10°¢(1‘uJX¢f1.m(1)
9 . 1 5
_ fr-da-n=10-18,  te[hd]
1+ 34t -2)=—-4+6t, te(d2]
W, = w110¢(1,0}X¢u_,o>(f) .
1 3 7 1 5
_ [ i-sw-n=1-s te (3.3,
~I 4 -2)= -2 418, te (53],
Uy = Tiflﬂoé(_ﬁl))(cb(n,l)(-f)
C[i-fw-zn =218,  teliLI)
1434t -3)= - +6t, te (L],
Wy = Wi 0¢(1,1)X¢{_1,1)(1)
[ i-dw-3)=5-6, telf i,
Iyt —3)=—17+18t, te (L,1],

and the collocation functionals associated with space W3 is given by

4‘330 = ﬁ(g g)gm Where & ﬁ(g 0)4‘?19} X >> <& P]U,X o] Qb(j o Q‘)U 3
3
= (5 1 —6 1 (51
.oz 2 *

531 ] £(U,O)£]1 “’here Ly Il:(u‘[)}g]_l:x 2 =& 3117){ @ 460 o ¢'0 =

bay = Ly, 1)510 where < Loonfio,x > =< f19, X0 ¢gpo 1 >

= 4 ) 10
= ?—51—1-2152:

£33 = ,C(Q 1)51] where < L (o, 1)€11,X 2= << €11,X ] @0 ] Qf’l 2
3

= —51—505 +d‘é—"



23

f3s = Lanfin where <€ Lo nbg, x> —< f1g,x 0 g1 0 ¢y >
' 3 1
by = 1(-‘«(110)*611 where <& ﬁ(l,o)fu, X = I, X0 ¢ 0 ¢y >
- 15 5 ‘ . .
- 9'G 50% o4
&3 = Lanbo where < Lyl x > =< fig,x0dy0 ¢ >
- 3 1
fyr = Loy where < Lo, x> =<K by, x0 ¢ 0 >
1 '

= 253—%5%-}-52‘

ad

The figures of these multiscale piecewise linear functions and the corresponding mul-

tiscale collocation functionals are shown in FIG. 1 - FIG. 8.

Eventually, the formulation of multiscale piecewise linear wavelets and their cor-
responding collocation functionals can be summarized in the following forms.

For any (i,7} € U,

atbt, tell,l], V4.4,
wm(t) = wi(t) = . -
c+df, t¢€ (1—2}[3], ifi>=1,
“end
6;1: ifi= 0,
b =Ly = < 8, — 28, + 36, if 4+ 0 and j is even,

16, — 36, + 6y, ifi+# 0and jis odd.
where the coefficients are collected in the TABLE 1 and TABLE 3.

The wavelet functions and the corresponding collocation functionals are the bases
of Wy Wy ... ® W, that amount is 1024. These bases are used in Chapter IV to
obtain the fast wavelet-collocation scheme for Fredholm and Hammerstein eq115tions.
For convenience of calculation, all of these coefficients are stored in database by

Microsoft Excel and are recalled by the zlsread command of the Matlab program.
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FIG. 3: Linear muitiscale wavelet bases on Wa.
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FIC. 7: Linear multiscale collocation functionals associated with Wa.
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FIG. 8: Linear multiscale collocation functionals associated with W,
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TABLE 1: Coeflicients of piecewise linear wavelet functions wy;.
' Wavelet bases '

(d) pm — b c (a1 L ] L |7
00y [1] 2 -3 - N 1 -
Wo 01 |2 -1 3 - - 10 1 -
wo | @O [ 3 1T 1920 1 3]0 12 |1
Yy b4l y-s2) 72 9210 172 1
20 |5 ] 1 9 [ -1 3ol 174 J1/2
wo | @D | 6]1/2| 3 -7/219 |0 /4|12
@2y [ 7 |1/2] 9 | -5/2| 3 [1/2] 3/4 | 1
23 |8} 2 | -3 8|9 |1/2] 3/4 | 1
@o)y 9] 1 [-18] -1 6 | 0 | 1/8 [1/4
(3,1y twof 1/2{ -6 | -7/2 | 18 { 0 | 1/8 [1/4
(32) |11|11/2| -18 | -5/2 | 6 |1/4| 3/8 |1/2
w. | B3 |12 2 | 6 & |18 |1/41 3/8 |1/2
1 (34) |13] 10 | -18 | -4 | 6 |1/2] 5/8 |3/4
(35) |14} 7/2| 6 [-25/2]| 18 |1/2| 5/8 |3/4
(3,6) |15 }29/2 | -18 |-11/2| 6 |3/4| 7/8 | 1
(3.7 116 5 6 | -17 | 18 [3/4| 7/8 1
(40) [17] 1t [-36 ] -1 [12] 0 [ 1/16 [1/8
(4,1) (18] 1/2 | -12 | -7/2 {36 | O | 1/16 | 1/8
(4,2) |19 |11/2| -36 | -5/2 | 12 | 1/8| 3/16 | 1/4
(43) |20} 2 | -12| -8 |36 |1/8] 3/16 |1/4
(4,4) |21| 10 | -36 | -4 | 12 |1/4] 5/16 | 3/8
(4,5) |22 7/2 | -12 | -25/2| 36 |1/4] 5/16 | 3/8
(4,6) 123]29/2] -36 [-11/2| 12 | 3/8 | 7/16 | 1/2
w, | @7 |24| 5 | 12| 17 | 36 |3/8) 7/16 |1/2
48 |25 19 | 36| -7 | 12(1/2] 9/16 |5/8
(4,9) |26 [ 13/2| -12 | -43/2 | 36 | 1/2 | 9/16 | 5/8
(4,10) | 27 | 4772 | -36 |-17/2 | 12 | 5/8 | 11/16 | 3/4
(4,11) |28 8 | -12 | -26 | 36 |5/8|11/16 | 3/4
(4,12) 29| 28 | -36 | -10 | 12 |3/4|13/16 | 7/8
(4,13) [ 30 | 19/2 | -12 | -61/2 | 36 |3/4 | 13/16 | 7/8
(4,14) | 31 [ 65/2 | -36 |-23/2| 12 | 7/8| 15/16 | 1
(4,15) {32 11 | -12 | -35 | 36 | 7/8|15/16| 1
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TABLE 2: Coeflicients of piecewise linear wavelet function w;; [Cont.].

Wavelet bases

@iy | mo— 2 AR d I A Tz

(5,0) | 33 1 72 -1 24 0 1732 | 1/16
(5,1) | 34 | 1/2 | 24 | -7/2 | T2 0 1/32 | 1/16
(52) | 35 | 11/2 | -712 | -5/2 | 24 1/16 3/32 1/8
(5,3) | 36 2 | -24| -8 72 1/16 3/32 1/8
(54) | 37 | 10 {-12| -4 24 1/8 5/32 | 3/16
(55 | 88 | 7/2 { -24 | -25/2 | 72 1/8 5/32 | 3/16
(56) | 39 | 28/2 | -72 | -11/2 | 24 | 3/16 7/32 1/4
(5,7} | 40 5 | -24 1 -17 72 3/16 7/32 1/4
(58) | 41 19 | -712{ -7 24 1/4 9/32 | 5/16
(59) | 42 | 13/2.| 24 | -43/2 | 72 1/4 9/32 | 5/16
(5,10) | 43 | 47/2 | -72 | -17/2 | 24 | 5/16 11/32 | 3/8
(511) | 44 8 | -24 | -26 72 5/16 11/32 | 3/8
(512) | 45 | 28 | -72 | -10 24 3/8 13/32 | 7/16
(513) | 46 | 19/2 | -24 | -61/2 | 72 3/8 13/32 ] 7/16
(514) | 47 | 65/2 | -72 | -28/2 | 24 | 7/16 | 15/32 | 1/2
(5,15) | 48 11 | -24 | -35 72 7/16 .| 15/32 | 1/2
(5,16) | 49 | 37 | -72 | -13 24 1/2 17/32. | 9/16
Y| 50 | 25/2 | -24 | -79/2 | 72 1/2 17/32 | 9/16
Y| 51 | 83/2 | -T2 | 29/2 | 24 | 9/16 19/32 | 5/8
(5,19) | 52 14 | 24 | -44 72 9/16 19/32 | 5/8
(520) | 53 | 46 | -T2 | -16 24 5/8 21/32 | 11/16
(5,21) | 54 | 31/2 | -24 | -97/2 | 72 5/8 21/32 | 11/16
(5,22) | 55 |101/2| -72 | -35/2 | 24 | 11/16 | 23/32 | 3/4
(5,23) | 56 17 | -2¢ | -53 72 | 11/16 | 23/32 | 3/4
(524) | 57 | 55 | -72 | -19 24 3/4 25/32 | 13/16
(525) | 58 | 37/2 | 24 |-115/2| 72 | 3/4 25/32 | 13/16 |
(5,26) | 59 | 11972 -72 | -41/2 | 24 | 13/16 | 27/32 | 7/8
(5,27) | 60 | 20 | -24 | -62 72 1 13/16 | 27/32 | 7/8
) | 61 64 | -T2 | -22 24 7/8 29/32 | 15/16
)1 62 | 43/2 | -24 | -133/2| 72 7/8 29/32 | 15/16
(5,30) | 63. | 137/2] -72 | -47/2 | 24 | 15/16 | 31/32 1
)

64 23 -24 -71 72 15/16 31/32 1

(0,512) | 1024 | 383 |-384 | -1151 | 1152 | 255,256 | 511/512 | 1
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TABLE 3: Cocflicients of piecewise linear collocation functional £i;.
' Collocation functinals '

m

Collocation functinals

GO T 6 [ 6 ) h [ 6 ] &

w. | 00 [ 1] 1/3 - - (5,0) | 33 | 1/96 | 1/48 | 1/24
1 (01) | 2 | 2/3 - . (51) | 34 | 1/48 | 1/24 | 5/96
w | GO 3] 16 [1/3 | 2/3 (5,2) | 35 | 7/96 | 1/12 | 5/48
Y1an |4 1/3 | 2/3 | 5/6 (5,3) | 36 | 1/12 | 5/48 | 11/96
(20) [ 5 | i/127] 1/6 | 1/3 (54) | 37 |13/96 | 7/48 | 1/6

w. | (2D 16] 1/6 | 1/3 | 512 (5,5) | 38 | 7/48 | 1/6 |17/96
@ | 7| T2 | 2/3 | 576 (56) | 39 |19/96 | 5/24 | 11/48
2,3 | 8 | 2/3 | 5/6 |11/12 (5,7) | 40 | 5/24 | 11748 | 23/96
B30y [ 9| 1/24 T 1/12 | 1/6 (58) | 41 |25/96 | 13/48 | 7/24
3,0 (10| 1/12 ] 1/6 | 5/24 (5,9) | 42 [13/48 | 7/24 | 29/96
32) 11| 7/24 | 1/3 | 5/12 (5,10) | 43 |31/96 | 1/3 | 17/48

w. | (33 (12| 1/3 | 5/12 | 11/24 (5,11) | 44 | 1/3 |17/48 | 35/96
1 (3.4) | 13| 13/24 | 7/12 | 2/3 (5,12) | 45 |37/96 | 19/48 | 5/12
(35) | 14| 7/12 | 2/3 | 17/24 (5,13) | 46 |19/48 | 5/12 | 41/96

(3,6) |15 |19/24 | 5/6 |11/12 (5,14) | 47 |43/96 | 11/24 | 23/48
(37) | 16| 5/6 [11/12|23/24 | | (515) | 48 | 11/24 | 23/48 | 47/96
(4,0) {17 | 1/48 | 1/24 | 1/12 51 (5,16) | 49 |49/96 | 25/48 | 13/24
(4,1) 118 | 1/24 | 1/12 | 5/48 (517) | 50 |25/48 | 13/24 | 53/96
(4,2) |19 7/48 | 1/6 | 5/24 (5,18) | 51 |55/96 | 7/12 | 29/48
(4,3) | 20| 1/6 | 5/24 | 11/48 (519) | 52 | 7/12 | 298/48 | 59/96
(4,4) 121 | 13/48 | 7/24 | 1/3 (5,20) | 53 |61/96 | 31/48 | 2/3
(45) 122 7/24 | 1/3 | 17/48 (5,21) | 54 |31/48 | 2/3 |65/96
(4,6) | 23| 19/48 | 5/12 | 11/24 (5,22) | 55 |67/96 | 17/24 | 35/48
w, | 47 |24 5/12 | 11/24 | 23/48 (5,23) | 56 [17/24 | 35/48 | 71/96-
11 (4,8) | 25| 25/48 | 13724 | 23/48 (5,24 | 57 | 73/96 | 37/48 | 19/24
(4,9) | 26 | 13/24 | 7/12 | 29/48 (525) | 58 |37/48 | 19/24 | 77/96
(4,10) | 27 | 31748 | 2/3 |17/24 (5,26) | 59 |79/96 | 5/6 |41/48
(4,11) | 28 | 2/3 | 17/24 | 35/48 (527) | 60 | 5/6 | 41/48 | 83/96
(4,12) [ 29 | 37/48 | 19/24 | 5/6 (5,28) | 61 |85/96 | 43/48 | 11/12
(4,13) | 30 | 19/24 | 5/6 | 41/48 (520) | 62 |43/48 | 11/12 | 89/96
(4,14) | 31 [ 43/48 | 11/12 | 23/24 (5,30) | 63 [ 91796 | 23/24 | 47/48
(4,15) | 32 [ 11/12 | 23/24 | 47/48 (5,31) | 64 |23/24|47/48 | 95/96

Wy | (9,512) | 1024 | 8 | 7 | 18%
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CHAPTER III

POST-PROCESSED TECHNIQUES

In this chapter, we investigate a number of pbst-processing technigues which can be
used to enhance the accuracy of numerical solutions of nonlinear integral equations
of the Ilammerstein type. Post-processing techniques discussed here can be classified
into two groups, one based upon an interpolation and another based upon an extrap-
olation. Motivation for this research originates in the recent papers [29] and [28]
in which similar results were obtained for linear integral equations of the Fredholm
type. One of the goals of this study is to extend the results in [29] and [28] to a
class of nonlinear equations. We represent that the posL—prbcessing techniques based
upon .an interpolation and an extrapolation results in even simpler processing of nu-
merical solutions which results in less expensive coraputational cost in improving the

accuracy of numerical solutions than the criginal projection methods.

I11.1 PRELIMINARY

In this preliminary secti'on, we gather together several results which alrcady exist
in the area of post-processing techniques for the lincar as well as nonlinear integral
equationé. Included are the technique based upon an iteration, an interpolation
and an extrapolation. The iterative methods were investigated by _niany authors,
e.g., see Atkinson [3], Graham et al. {15], Sloan and Thomas [33], Kaneko and
Xu [20], and Kaneko et al. [18]. Several post-processing techniques based upon
an interpolation of the collocation solution and that of the Galerkin solutions were
studied by Lin et al. [29]. We will see that the post-processing technid_ue based upon
the interpolation is more cost effective computationally than the iterative methods.
Finally, an extrapolation of iterated collocation solutions and global extrapolation
for the Fredholm equation discovered by Lin et al. (28] and [29] respectively are
presented. We extend many existing theorems on the post-processing techniques to

nonlinear Hammerstein equations" This will be done in Sections I11.2 - II1.6.

Recall the Fredholm equation of the second kind is written as

'_u(t)_/o k(s,tyu(s)ds = f(t),  tel=1[0,1], (23)
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or in the operator form

u— Ku=f
Denote S* to be the space of piecewise polynomials ol degree < =, je.,
§h = {ve L*(I): vl, € P,0<i< N -1},

where P, denotes the space of all polynomials of degree < r.

I11.1.1 Iterative method for Fredholm eﬂuation

Under the projection operator 7, either interpolation projection or an orthogonal
projection, the solution of equation (23) is approximated by solving the projection
equation;

uwh — P,Ku" = P, f, thy € Xi,. (24)
The itcrated solution is then obtained by calculating f from
ul = f+ Ku". | (25)
Applying P, to both sides of (25), we obtain
| Poul = Puf + P Kul, | -? (26)
Using (24) and (26}, we.see that | |
| Pl = ut.
Thus, the solution uf, satisfies
: ui‘; = [ + K.P%u?t.
It is proved in [3] that if f € C**2(]) and k € C**2(] x [}, then
e — it = O(r"+),
whereas |lu — u|| = O(h"™*1).

Therefore, the iterative method, when applied to the collocation method as well
as to the Galerkin method, doubles the order of accuracy of a numerical solution,
provided that the solution and the kernel of the integral equation are sufficiently

smooth. This is an excellent method to improve the accuracy of numerical solution.
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We note that, in order to (10_1_1ble the rate of convergence of numerical approximation
by the collocation or the Galerkin method, it is necessary that the number of basis
functions must be doubled. This results in the solution process which involves a much
larger system of linear or nonlinear equations. The iterative methods, bn the other
hand, presents an accuracy enhancement technique which avoids a larger system and

thus is computationally more efficient.

" 1I1.1.2 Interpolation method for Fredholm equation

A post-processing technique based upon interpolation appea.red in a 1998 paper by
Lin et al. [29]. The paper is concerned with the interpolaiion -of the collocation
solutions of (23). _

To describe briefly this method, let 7" be a uniform partition on J with mesh
sizé h and then define 7% with mesh sizc 22 by subdividing each element of 7" into
two elements. Moreover, define the collocation points to be the zeros of the Legendre
polynomial of degree {r + 1) mapped to each subinterval. Then using these collation -
peints, a higher interpolation opera.tdr f%g“ of degréc (2r + 1) over two consccutive

subintervals is defined. The following superconvergence result is obtained,
Ju(t) = BEH )] = O(rF*).

We note that, in order to establish this result, one crucial property called superclose
plays a critical role. It is shown that the interpolation method can be used to attain
the same convergence rate as the iterated method with less computational cost.

A global superconvergence of the Galerkin solution of Volterra integral equation
by interpolation is also reported in [29].. It is obtained that if v € C™2(1),

u(t) — Iy u(t) = O(h™?),

where /5! is an interpolation operator of degree of (r + 1) associated with the mesh
T, '
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III.1.3 Extrapolation method for Fredholm equation

A post-processing technique based upon the extrapolation of the iterated collocation
method for. (23) reported by Lin et. al. [28] is now discussed. This extrapolation
technique can be derived by using the following theorem in [28] which derives an

asymptotic expansion of the error of the iterated collocation solution %%,

N .
ult) — () = 3R / b(s, s + O(RT™),  tel,

k=1
where k € C™3(] x I) and w € C*¥4(]).
Using this formula, the Richardson extrapolation gives

ut) — 4y () = O(h¥*4),

where ) hr2
252 ~ (1)
22r+2 -1 .

ﬁ-it/z(t) =

We see that the rate of extrapolation method is higher than the rate of iterated
method. This leads to another efficient scheme to obtain more accuracy of numerical
approximation.

A global extrapolation approximation was also introduced in [29] by using a simi-
lar idea to the extrapolation scheme just described. Here, the Richardson extrapola-
tion is performed on the interpolated collocation solution of the Fredholm equation.

More specifically, we compute

22r+2}§;23uh/2(t) _ f§£+3uh(t)

22qr+2 _ 1

— uft) = O(r*™),

where % *% is the interpolation operator of degree (2r + 3) over three conseculive

subintervals.

In the subsequent sections, we show how these post-processing techniques for
the Fredholm equation can be extended to solve nonlinear Hammerstein integral
equation. In Section II1.2, we study a global superconvergence property of the inter-
polation post-processing technique for the collocation method for the Hammerstein
equation. The case of the weakly singular Hammerstein equation is also included in -
this section. After this manuscript was completed, the paper by Huang and Zhang

[16] was brought to the authors’ attention which proved the same superconvergence
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resull. for the post-processing collocation method. Despite this discovery, we decided
to keep Section II1.2 in this study since the proof provided here is different from the
one giv.en in [16] and it is more concise. Moreover, we present, in Section IIL.2, &
numerical example exhibiting that the same superconvergence of the post-processed
collecation method can be obtained for two-dimensional Hammerstein equations.
Numerical experiments conducted on the two-dimensional Hammerstein reveals that
there exist a number of interesting and important. issues which must be addressed
for a successful implementation of the post-processing technique via interpolation for
multi-dimensional integral equations. They will be discussed in future research. In
Section 111.2, we also briefly mention a post-processing technique by interpolé,tion
io enhance the order of accuracy of a numerical solution of one-dimensional weakly
singular Hammerstein equation. A numerical example using constant basis functions.
is reported in [16]. We include in Section IIL.2 two additional numerical examples
for wéak]y singular Hammerstein equations using linear basis [unctions. We consider

both types of weak singularities; 10garithinic and algebraic.

An extrapolation technique for the iterated collocation solution of the Haminer-
stein equation is discussed in Section I1L3. Results in Section II1.3 play a critical
" role in establishing the global extrapolation method presented in Section I11.4. The
final two sections, Section II1.5 and IIL6, are concerned with superconvergence of
the Galerkin method by the post-processing techniques. In Section IIL5, we apply
the interpolation-technique explored in Section II1.2 to the Galerkin methed., We
achieve a superconvergence result but the rate of acceleration is not as great as that
of the collocation case of Section II1.2. This result is consistent with a similar result
for the Volterra equation reported in [29]. An extrapolation of the iterated Galerkin
method is treated in the final section, Section II1.6. Results in Section II1.6 appear

new evén in the setting of the linear Fredholm equation.
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-II1.2 GLOBAL SUPERCONVERGENCE FOR HAMMERSTEIN
EQUATION BY COLLOCATION METHOD

In this section, we consider the following Hammerstein equation,
1 :
w(t) — / k(s (s, u(s)ds = F(1), L€ T=[0,1], 27)
0

where &, f and ¢ are known functions and u is the function to be determined.

First, we introduce two kinds of norm

”U”m:oo = O%%{vaum}!

- y 1/2
[vllm,2 = {AZ(v('i)(x))zdx} |

i=0

and

where vn 15 a nonnegative integer.

Let T" be a partition of I:
0:.!‘,0<{51<.“'<t;\.'=1:

and g = [tﬁ,ti.ﬁrl), 7= 0,1‘..}N — 2 and EN—1 = [tN—I;tN], h,t' = ljy1 — i and

h = max; h;. We denote by S* the space of piecewise polynomials of degree < r, i.e.,

St={ve L*(I):v

W €P,0<i< N -1},

where . denotes the space of all polynomials of degree < r. Let B= DB, consist of
zeroes of r+1 degree Legendre polynomial located in [—~1, 1]. Define &;: [—1,1] — ¢;,
i=0,...,N—1, by -

14t 11—t .
(I)d(t) = 5 tiva1 + Tté, t e [—]_, 1]? .
and
N-=1
A= | @(B),
i=0

so that A contains the collocation points. The collocation approximation u* € S* is

obtained under the assumption that the residual

Rty = (1) - / k(s, t)(s, u"(s)}ds — f(t)
D
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disappears under the interpolation projection i}, of C(I} onto S*. Here & : C(I} — $*
is defined by
ihule, € Pr,  fu(t) = ult), for t € ©,(B).

Equivalently,

ul(t) — ]1 k(s,)9(s,u"(s))ds = f(1), for all t € A. (28)
0

To describe equations (27) and (28) in operator form, we let

K¥(u)(t) = /0 k(s,t)@(s',u(s))ds, tel,

and :
\I'(u)(s) = (s, u(s)).

Then (27) and (28) can be written, respectively, as
w=KW(u) = f, )

and
ut — i KU (u) =i} f. -~ (30)

We now establish a superclose estimate for w* — i} in relation to the Hammerstein
equation. From (29),

i — i, KU (u) = 4, f. _ (31)
Let '
9(t, 5, ipuls), u"(s), 6) = k(s, )y (s, Guls) + 6(u"(s) — ifuls))),

where 0 < @ < 1 and

+1

Ghu(s)éjo g(tys}i};u(s),uh(s)}Q)U(.s)ds.

Here we assume that t is not an eigenvalue of the operator G, so that / — G is
invertible. Using (30) and {31), we obtain '

wh — ity = K (uh) — KU (u)
= K0 (uh) — B(iu) + U(itu) — U{u)]

or

[t - ) - G () - U(Gw)] = KR (Gu) - $(w)),
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and
ut — iy = (I — i5Gp) L K[ (i5u) ‘P(u)] (32)

An estimate on the right side of {32) was investigated in [18] and in the present

setting, it is proved that
(I = G K [2(iu) ~ T(w)] = O™ ),
which gives the superclose identity
o iu = ORI 2. (33)

The remaining analysis for obtaining global superconvergence by interpolation post-
processing technique is the same as that for the linear case. First, we obtain a.

h over the partition T" where it is assumed that the total

collocation solution u
number N of intervals is even. u” is then interpolated at the collocation points over
two consecutive intervals e;Ue; 11 by a polynomial of degree 2?"—1—1 In this connection,

-we define an 111‘rerpolat10n operator 121! as [ollows:

) }'Z'r‘-i-l U

eiles € P?‘r—i—l; 1= U} 2, o N - 2:

and _

If uw € C*7+2(1), then

1435w = ulloeo € M3 ~ iqulloo + 1437 hu — ulloo

< Ol — dulloce + 1157 6 = ullo e,
here we used the obvious fac_t that
12’"+lzh = 2+ ME* o0 < €, for some C > 0.
This together with(33) gi\res
1557 u? = ullo,eo = O(R® ). (38

We note that a similar estimate to (34) under L2 norm is also valid.

In all mumerical experiments of this Chapter, unless otherwise stated, we use the

following general settings:
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FIG. 9: Uniform nieshes on f.

s The space of piccewise inear polynomials are considered, i.e- r = 1.

e The interval [0,1] is divided by uniform meshes, that is h = &
then f; =th, +1=0,1,...,N and & = [t;, i1

» The collocation points {ti;} are chosen from the zeros of Legendre polynomial
of degree two transformed by linear mapping to each subinterval e;, that is,
B= {—%%} then 1, — ®,(B),i=0,1,...,N and j = 1,2.

- —+ 40—t
* * * *
Lg1 tozti161.2

* -
E1r1—1,1 tn—l.z

to t1_ t2 T _ Lh—1 Iy

FIG. 10: Location of collocation points.

e The following linear spline bases are obtained as

: St '
() = oo LE (bt
(1) = 24,
) 0, otherwise
t—t!
Qﬁ (t) . g‘*g_‘t;L 1 te [t‘i7 ti+1]
1,2 -

0, otherwise.

FIG. 11: Linear spline bases on each e;.



Therefore, the projection solution uw” is defined by

N

w(t) == Z Z Cijdig(t)

i—1 j=1

40

» The Lagrange interpolation is employed over two consecutive intervals to obtain

the post-processed solution, see more details of interpolation in Appendix A.2.

Note that for our specific problem, since the linear spline basis is used, the

solution is.interpolated by a cubic piecewise polynomial.

3

2

R = =

[T

FIG. 13: Global cubic interpolation on 1.

. L3 .
ff.z rH—].] IJ'+I.2

. 12: Cubic interpolation on e; X e;,).
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Moreover, the corresponding nonlinear systems are selved by two different iter-

ation schemes. The original Newton-Raphson iteration method is used first with a

sufficicntly close initial clement. Another approach is Quasi-Newton obtained by

Crypy — Cp — J“l(f_?kﬂ)F(Ck)
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where ¢ is an unknown coeﬂicient to be determined the solution is u, & is the number
of iteration times and & is a fixed number of iteration times. That is, the Jacobian
is fixed throughout the iterations in the Quasi-Newton method. A stopping crileria

is taken within fourteen digit accuracy, i.e., tolerance ¢ < 1071,

Example 111.2.1. Consider the equation

) .
u(t) — fu sin(w(s 4 £))u’(s)ds = f{t), t€[0,1],

© where f() is chosen so that, the exact solution is uft) = sin{wt).
Notice that we define

e =l — o, B =log; \ 75 )
o=l — I oo, Rn=logy (22

We use NI for the total number of iterations, and CT is the CPU time for solving

the collocation method of éa_ch scheme.

TABLE 4: Computational results of interpolation with smooth kernel.

Colloeation Newton | Quasi-Newton | Interpolation
N <h Hh NI CT NI CT . Eh .Rh
2| 7.5734e-2 51 012 |7 0.09 9.0912e-2
4 23643¢-21168| 5 | 019 [ 8 0.15 4.4949¢-3 | 4.34
8 |6.2060e-31191| 5 | 067 | 8 0.68 [ 3.3793e-4 [ 3.73
16 | 1.5982¢-3 | 198 | 5 | 254 | 8 2.00 2.2050e-5 | 3.94
32 {4.0108e-4 | 199 5 [ 9.77 | 8 7.50 1.3928e-6 | 3.98
64 | 1.0037e-4 | 2001 6 [ 46.19 | 8 29.47 | 8.7283¢-8 | 4.00
128 | 2.5098¢-5 { 2.00 | 6 | 183.00| 9 124,41 | 5.4588e-9 | 4.00

We can see the tesults confirm the estimate described in {34). See [16] for addi-
tional examples. Although the Quasi-Newton method requires more iterations than
the Newton's method, the computing time of Quasi-Newton method is less. This
difference is more pronounced in the Galerkin based computation which will be p're-_
sented in Sections IIL.5 and II1.6.

In the case of the Hammerstein equations with weakly singular kernels, the su-
perconvergence result of (34) by the interpolation post-processing technique can also

be obtained. Here, the kerncl is assumed to be of the type

k(s 1) = b (f) %
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3

where, with o = + and D! denoting the differential operator of order ¢,

1 Co<1, £=0
/ O'£|ng*(0')i-(-{g- < 0 <4, )
Jo : C<oo, €21

[#)

It is known that the optimal order of convergence of the collocation method for
weakly singular Hammerstcin equations can be obtained by use of a graded mesh,
see, -e.g., (3], [19]. For example, if the spline of degree r is used in computation,
one may select a partition Tj,, 0 =ty < &1 < --- <ty = 1, with ; = (£)? and
g > 7+ 1 to preserve the optimal order of convergence. To attain a similar super-
convergence result for the numerical solution of weakly singular equations by the
interpolation post-processing technique, we simply select the partition by defining
t, = (%)q.,q > 2r 4+ 2 and perform post-processing by the interpolation described
above over the intervals begiuning with #;. - Note that a selection of {; = N7? guar-
antees the size of the first interval [0,#1] small enough so that the approximation
error from this interval is consistent with the errors from the subsequent intervals
despite the fact that the solution may not be differentiable over {0,;]. A numerical
experiment is reported in [16] demonstrating the effectiveness of this approach using

a constant basis whereas we present two additional examples using the linear basis.

Example I11.2.2. Consider the equation

u{t) —/0 log |s — thu*(s)ds = f(t),. t € [0,1},

where f(t) is chosen so that the exact solution is u(t) = ¢*.

TABLE 5: Computational results of interpolation with logarithmic singular kernel.

Collocation Interpolation
N Eh Rh ) . éh Rh
4 | 1.066500e-2 8.492456e-3

8 | 2.606709e-3 [ 1.9490 | 7.007576e-4 | 3.5992
16 | 6.518285e-4 | 1.9997 | 5.297109%-4 | 3.7256
32 | 1.628305e-4 | 2.0011 | 3.722810e-6 | 3.8307
64 | 4.069555e-5 | 2.0004 | 2.388927e-7 | 3.9620
128 | 1.017298e-5 | 2.0001 | 1.43122%-8 | 4.0610
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Example II1.2.3. Consider the equation

1 1 2. o
’u(i’) —/ﬂ —ﬁu (‘S)db = f(t), L e [0, 1],

where f(t}'is.éhosen so that the exact solution is u(t) = 2.

TABLE 6: Computational results of interpolation with algebraic singular kernel.

Collocation Interpolation
N en By - €y Ry,
4 | 3.202584e-1 4.562162e-1

8 | 8.081319e-3 | 5.3085 | 7.209956e-3 | 5.9836
16 | 1.035601e-3 | 2.9643 | 5.693164e-4 | 3.6627
32 | 1.897584e-4 | 2.4481 | 4.070014e-5 | 3.8061
64 [ 4.280083e-5 { 2.1485 | 3.377003e-6 | 3.5912
128 | 1.038697e-5 | 2.0429 | 2.746804e-7 | 3.6199

Now we are rcady to exhibit an example of multi-variable Hammerstein equation
to demonstrate that the post-processing technique based upon the interpolation can

be applied to multi-variable Hammersiein equation. For 5,¢ € R?, we consider

uf) —/0 /0 k(5, D(5, u(3))ds = f(I), sitelxl (35)

We use the tensor product of S* with itself, S* ® S* as our approximating space.
Note that Uy-o(S" ® S*) is essentially dense in C(I x I), see [27]. With i} = @1},
in: O x-I) - S" @ S satisfies

Tleve, €L OP,  Tuf)=u(f), for fe d,(B) x b,(B).
The collocation method is to solve
‘rl 1
@ [ [ e DUG s = [0, TE Uncisav@B) < (). (30)
o Jo .

Once ©*(f) is obtained, one may interpolate its values at the collocation points

over four squares ¢; U ;41 X e, Ue;4 by the two-dimensional polynomial in the form
h rno_ ’ ' 2 2 1) 2o, 4y 3 ;
[ (t,t ) =g tast’' +agt+agtt +agt” +agl” +ar;tt’” +agl®t +agl™ + apt”. (37)

Here, recall that linear splines arc used to discretise the solution in each direction. To

double the order of accuracy, we require a polynomial of degree three in two variables


file:///f/s-t/

44

t,t as indicated in (37). Our numerical experiment indicates that the location of
these ten interpolation points influences much in achieving the superconvergence of
a desired accuracy. More discussions on the post-processing technique for multi-

variable Hammerstein equations will be made in future research.

Example [11.2.4. Consider the following two-dimensional equation

u(t,t') — /D /0 (s = 8)(s' — (s + 8" +uls,sN)dsds’ = f(t,¢), (& E)elxI,

where f is chosen so that the exact solution is w(t,t') = exp(t + #}. Ten
points are selected from four contiguous squares e; U e X €5 U €1, 4, =
0,2,...,2N — 2 and they are circled in FIG. 14, or (t,, ¢} (#5111, t510)
(12 t5); (22:3"2) (a2 520 G ik Gla i)y (Ben 1 ihna)s

( 32'7 "”*+1,2)= and (’H—l,?" ‘j+1,2)'

J2
£ * ©
® ® ® *
r_;+|
* © * ®
* ®
{ : i Lz

FIG. 14: Location of ten interpolating points.

In TABLE 7, NC is the total number of collocation points in domain [ x . With
the ten interpolation points described, our numerical experiment confirms the same

superconvergence as the one-dimensional problem in Example I11.2.1.
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TABLE 7: Computational results of interpolation for two dimensional equation.

_ Collocation Interpolation
( N'- N) NC €4 Rfr, éh Rh
(2,2) 16 | 2.604955¢-1 5.303465¢-2

(4,4) 64 | 7.078941e-2 | 1.8797 | 4,.782085e-3 | 3.4712
(8,8) 256 | 1.845300e-2 | 1.9396 | 3.604376e-4 | 3.7298
(16,16} | 1024 | 4.710457e-3 | 1.9700 | 2.412651c-5 | 3.9011
(32,32) | 4096 | 1.189914e-3 | 1.9850 | 1.376186e-6 | 4.1319

I11.3 EXTRAPOLATION OF ITERATED COLLOCATION SOLU-
TION FOR HAMMERSTEIN EQUATION '

In this section, we generalize the result obtained in [28] concerning an extrapolation

h

technique for the iterated collocation method. The iterated collocation solution u’

for the Hammerstein integral equation is defined as follows: for a collocation solution
u® of (30), '

uh = 1 s, £)ib(s, ut(s))ds,
it f(t)—i_/(; k(t)lfll/(! ())d

or, in the operator form,

ul = f+ KOt - (38)
From equation (38), | |
il = 45 f + i KO ("), (39)
and (30) and (39) yield
iguﬁ =",
Thus, (38} becomes .
uy = f+ KU (iu)). : (40)

It is proved in [18] that if f € C* (1) and k € C*™2(I x I) then
lu = whlloo = OHZ*).

The following theorem, which generalizes Theorem 1 of [28], establishes the basic
fact which underlines the extrapolation technique for the numerical solution of Ham-

‘merstein equation.
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Theorem I1IL.3.1. Assume that k € CT¥3([0,1) x [0,1]) and the solution v of (27)
satisfies w € CTH[0,1]. Also assume that 1 is not an eigenvalue of the linear operator
(KUY (u). Then there exists b € C([0,1) x [0,1]), independent of the partition, such
that .

4%

—ul(t) = Zhg'”/ s,t)ds + O(R* ), te(0.1].
Proof. From (29) and (40},

T ui‘t = K¥{u)-— Klll(z}’luft
)~

= K¥{u qu(zhu + KU{ifu) — KU(ul). (41)

Now, recall from the previous section,

Gru(s) = /nl alt, s, inuls), imul(s), §)u(s)ds,.
where Y 15 also defined in Section II1.2. Then
KW (i) - KW(id) = Gyipfu — o).
Equation (41) becornes
w—uly = KO(u) — KU(iu) + Grip(u — ul). (.42)

Arguing as in {18] and using assumptions (A2), (A5) and (A6}, we can show that
{Griy} is a family of collectively compact operators and Gri, — G = (KU)'(u).
pointwise as & — 0. Since G is compart and (I — @)1 exists by assumption, {rom
~ a theory of compact operators (see, -e.g., [3]), (I — Gi%) ™! exists and is uniformly
bounded. This shows that |

le — o < €

KT (u) — KUl = O(R™?), : (43)

which establishes the superconvergence of tle iterated collocation solution {18]. For

present purposes, we require the following. Since
(7= Guf)™ = (1= Ga)™' = (1 = Gaip) Gl = iR) (I - Gyl (44)
using (42) and (44), we obtain

w—uly = (I~ Gip) YK U(w) - K¥(iu)}
= (-G = (= Guin) G — i) - Gh) M
= V"~ (I =~ Cua) 'Ca(l — )", . (45)
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“where wh = KU(u) — KT(itu),
and
V= (7= Gy) " = (I — Gp) T K[ (u) — B (iu).
Let L = ({ — G,,) 'K where L is an integral operator with a kernel I*(s, ¢) with the

same smoothness properties as k(s, t).
Then

o) = L{T(u) — ¥(ifu) = / (5, )[w(s, uls)) — $(s.ifuls))lds.

Using the mean value theorem, when 0 < # < 1, we have
v O - - .
) = [ 105 (s ok 06 =) () (u = ) (s)s
1 ' -
/ Hs, t}(u—iu)(s)ds
0

N

Z/F I(s, t)(u — Tu)(s)ds,

where {(s, ¢} = (s, t-)%%' (s, (u+ 80 u — u)) (s)).

By applying the results of Lemma 3 of [28] to each subinterval I (and noting

that the change of scale introduces a factor (ky/2)7 for the jth derivative), we obtain

N hk 2e42 rgl . N
w(t) = Z (7) : Z cﬁ/g DIl (s,t) D'u(s)ds + O (R*) u 2rsa,
&

k=1 i=r41
F+1=2r42

where ), denotes the partial derivative with respect to 5. The result may be rewritten

as ’
N ' '
EEOED YN A / b(s, t)ds + O(K ), (46)
k=1 Ex '
where .
] : '
b(s,t) = 27D N ¢, DIl (s, 1) D'uls).
f=r41
J41=2742
Also,
I(F = Guip) 'Grld — i5)vPflome < CHGR{T = 450" o0
<Ol = i) loe _
< CR|[v"|loe0 = O(B***). (47)

EQuations (45)-(47) give the desired result. 0
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Theorem II1.3.1 lends naturally to an extrapolation of the iterated collocation
method for Hammerstein equation. Let 7%/ be a partition of /¢

U:ﬂ0<t1/2<ﬂ1 <ﬁ3/2<"' <ﬁ}\.r_1/2<t;\._= 1,
where

L

fe—1/2 = 2 k=1,...,N.

Let »*/2 and 4% denote the collocation and iterated collocation approximation for

Hammerstein equation with respect to this new partition, Theorem I11.3.1 yields

N .
u(t) — vt/ ) = 2O N / b(s, t)ds + O(RZ+).

k=1 : €k

Richardson extrapolation gives a new approximation

{20 22?’““?:/2 —uh(t)
it (t) = Sw+z _ 1

It is straightforward that

u(t) -/ *(t) = O(h™™*4). (48)
Example 111.3.2. Consider the equation

ult) — /01 eyt (s)ds = f(t), tel0,1],

where f(#) is cliosen so that the exact solution is u(t) - cos(t)
Notice that we define

&y = ||u -— u?ﬁ”ﬂ,oo; Ry, = log, (Z%.;)
s _h/2 = £
en = |lu— ui:t/ oo, and Ry =log, [ s

Bp /2
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TABLE 8: Computatlonal results of extrapolation of iterated collocation solutions.

Collocation Newton | Quasi-Newton Post-Processing

N en g |N| or [N| oT & R, En R
2 1.1667e-2 } 5 0.11 10 0.08 1.2547e-3

4 2.7077c-3 | 211 1 5 0.1% 10 0.1% 7.1920e-5 | 4.12 | 1.738%9-5

8 6.5883e-4 | 204§ 5 | 067 10 0.64 4.4079%-6 | 4.03 | 2.3326c-7 | 6.22
16 | 1.6330e-4 | 2011 5 2.48 10 2.29 274197 | 4.01 | 3.4813e-9 | 6.07
32 | 4.7258c-5 | 1.79 | 5 9.64 10 8.58 1.7117e-8 | 4.00 | 5.3746e-11. | 6.02
64 | 1.0175e-5 | 221 | 5 38.17 | 10 33.26 1.0695e-% | 4.00 | 8.4259=-13 | 5.99
128 1 2.5433e-6 | 200 | 5 | 151.04 | 10 131.60 6.6836e-11 | 4.00 { 1.7511e-14 | 5.59

IH.4 GLOBAL EXTRAPOLATION FOR HAMMERSTEIN EQUA-
TION

Theorem II1.3.1 plays, once again, a critical role in establishing another method of
improving the accuracy of numerical solution of the Hammerstein equation. Here, we

examine a global extrapolation method for the Hammerstein equations. From (46), -

() = Tl i [, (s t)ds + O(h*+)

= p2e2 N (BNTTR [ b(s 1)ds + O(RY )
:h2r+2 (£)+O(h2r+4),

w(t) = E (h’“)w / b(s, 1)ds.

k=]

where

Equivalently,
(I_ — G G — Gu)(t) = ¥ Ru(t) + O(R> ). (49)
App]ying (32) and using the fact that
([—5G™ = (I = G = (I = i5G) ™I — WG = Gh) 7,
we get |
wh—itu = (I - Gh)'le‘EGh(i:u —u)
(=GN - )G ~ Gr) ML CaliT — u)

= (-G 'Culitu—w)+ T — G ™I - &)Gn(u — ihu)
—(I =G — )G — Gy YinGrlitu—v). (50)
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By virtue of the fact that v —:ju = 0 on the Gaussian points and argning similarly
to [29], it can be shown that

(I = Ca) ' = §3)Ci(u ~ dhu) = O(R™9), - (51)

and
(I — &G HI = )G = G M Guliru — u) = O(hF 3. (52)

Equationé (49)-(52) yield the superclose identity with asymptotic error terms.

2+ 2w(t) + O(hH), ¢ > 1,

h2w(t) + O(R®), r=0. (53)

ut(t) = fu(t) = {
Equations in (53} lead naturally to the follow.ing extrapolation method. The theory
follows exactly the same way as the one given in [29]. We include it for completeness.
Let N be the number of elements of 7" and assume that it is a multiple of 3. Definc
an interpolation operator I?;:H mapping into a space of polynomials of degree 2r + 3,

r > 1, as follows:

2r+3 s /. N
13,31 ?Lei_LUsiUﬂi".{_l S P2r‘+3: 1“3£+1|‘€_0711“'7§_ 3

I§;+3u(f'—) = U(t), t e @5_1(8) U (I)t'—i-l(B) U {80 5:-—},

71

where ®;(B) = {s0....,s'}. Using (53) and

2r43,r r+3
I = 1
and arguing as in [29}, we obtain
IR — = B 4+ O(RTTY). (54)

Equation (54} leads naturally to a global extrapolation method for the solution of
the Hammerstein equation. In order to implement the global extrapolation, let S$*/2

be the space of piecewise polynomials of degree less than or equal to r with partition

points
T2, O=fp <ty <t <ts< < ty_1 <tw =1,
where
' ti-1+ 14
b, 1 = —— =1,..., N.
3 7 ! '

Denote the collocation approximation and interpolation operator of degree 2r + 3

with respect to the partition 7%/2 by «*? and Ig;;,"f so that

2r42
fé?;}f—;.uh/? — = (..QE) w -k O(}£2r+4).
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The standard Richardson extrapolation gives an approximation with higher order of
accuracy, namely '

| [52}1-23&}1{2 —u= O(hQr—i-zl)‘

where Gr42 7248, A2 143, B
T ' (] _ r
[ 3Rz A et 3 W
3h/2 = 92r+2 _ |

Example II1.4.1. Consider the equation
1 .
uft) —f S (s)ds = f(8),  te(0,1],
0 :

where f(t) is chosen so that the exact solution is u(t) = ¢’
Notice that we define '

o=t~ 5 o, Bu=log, (&),
én = u— IZT35"y 0, and R, =log, (e:*;z) :

TABLE 9: Computational results of global extrapolation technique.

Collocation Newton | Quasi-Newton Post-Processing

N en R, |NI| CT |NI| CT n By & R,
3 | 2.2399¢c-2 6 G20 | 13 0.14 4.2392¢-4

6 | 5.9444e-3 1 191 | & 044 | 13 0.45 | 2.7526e-5 | 3.94 | 4.8T14e-T

12 | 1.5295e-3 { 1.96 | B 1.70 | 14 1.65 1.7380e-6 | 3.98 | 7.7383e-9 | 5.98
24 | 38781e-4 | 196 | 6 638 | 14 6.08 1.0806e-7 | 3.99 | 1.218Be-10 | 5.99
48 [ 9.7635%e-5 | 199 | 6 | 24.82 | 14 23.23 6.8247e-9 | 4.00 | 1.9062e-12 | 6.00
96 | 2.4494e-5 | 199 | 6 | 98.93 | 14 91.31 4.2677e-10 | 4.00 | 3.2196¢c-14 | 5.89

IIL.5 GLOBAL SUPERCONVERGENCE FOR HAMMERSTEIN
EQUATION BY GALERKIN METHOD:

In this section, we examine global superconvergence of the post-processed Galerkin
method by interpolation: In other words, we apply the technique in Section I11.2 to
the Galerkin method. We denote by P, the orthogonal projection of L*([) onto S*.
More precisely, .

(u— Phu,v) =0, for all v € 8. (55)

Then the Galerkin method in solving (29) can be written as

u" — PKU(uh) = Pf, ute St (56)



The weak forms of (29} and (56} are

(u,0) — (K(u),v) = {f,0),  forall we LX), (57)

and
(u v — (!(‘P(uh),v) ={f,v), forallve S (58)

Using (57) and (58) along with (55), it is obtained that

{uh — Pou, vy — (KU (") — K (Pou), vy = (KY(Pu) — KU(u),v), foralve S,
which ean be further reduced to

(" — Pou, vy — (KUY (E}(u" — Pyu),v) = (KU (Pyu) — K¥(u), vy, for all v € S,

| (59)
where £ = ou + (1 — 8)Pyu for some 8 € (0,1). The standing conditions (A4)-(A6}
described in Section II1.2 guarantee that (K'Y (£) is a compact linear operator and
P — I pointwise as b — 0. A standard argument shows that (I — P,(K¥)'(¢€))~"
exists for sufficiently small 4. Using the stroﬁg form of (59} and its rearrangements
of terms, we see with £, = #FPu + _(1 — )u that

uh ~ P = (1= Bu(K ) (€))7 [P (K W) (€0) (Pt — )] | |
= = (HUPE)THEYY () (Pru —u) -+ (I = (KU)(E) 7T — PYE LY (1) (u - Pru)
—(I = Pa(KOY(E)THI ~ BLXE LY (T — (KE¥)(€)  Po(H8Y (61)(Pru — u).
-(60)
Conditions (A4)-(A6) once again guarantees that (KU)(£;) is a compact linear

operator and we assume that it is in the form
(KOY(€u(l) = / K (s, tyus)ds,
!

with k*'e C™2(f x I). Since for each t € I,

XPh(sjk*(s, H(Pat — w)(s)ds = 0,

we obtain

(KUY (&) (Pau —w) =305 [ k(5. 6)(Pou —u)(s)ds
— Z;.N:E] j;‘_(I — Po(s))k* (s, )(Pou — u)(s)ds
= O(F"*?) |l 41.00-



Hence, _ _
(7 — (K 9)Y(€) T K Y (&) (Pru = ullog = OR )l s, (61)
where ¢ = 2, 00. For the second and third terms in (60}, we proceed as follows;
(T = (K&)' ()1 — B)(KEY () (u — Fau)llog
< CH(_I ~ P (K®) (&) (v — Paullog
< Ch|lk(s,8)|[1qllu — Patillog < CR P uflring,

(62)

I(1 = PA(KRY ()T = P (KUY ()] — (KTY(€)™ Pl KDY (&) (Fau — w)llog

< ChIT — (K)Y(€) Pu(K LY (&) (Pru — u)llog
< Ch||Pru — ulng '
§ Chr+2”u1|-r+l,q> ) . (63)

When (61}, (62) and {63) are combined with (60), we obtain -
I = Prallog = O™t 4100 (8

In order to utilize (64} and obtain a global superconvergence of the Galerkin method
by interpolation, it is necessary to define an interpolation operator 7' as follows.

In rclation with the mesh 7%,

I e eivec € Prets i=0,2,...,N —2, such that

/I;:ludf;:/uds, / I;:luds=/ uds
=) € Eifl -

1

and

: / vl uds = / vuds, for all v € Pre; U eigq)-
e;les

e\ 1
Using
It Pu= 137,
115 wlos < Clivllog, for all v € S8,
115570 = vllog < CH2|v]lr424,
with ¢ = 2, oo, the global superconvergence of the Galerkin method by interpolation
for the Hammerstein equation is now attained from
15 " —ullog < 145 e — I Paullog + || 555 Pru — tllog
< Clu® = Paullog -+ 55w = ullo,

= O(R ) (llulrs1.00 + lfullri2)-
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Example I11.5.1. Consider the equation

ult) — ./; stu(s)ds = f(t), te€[0,1],

where f(t) is chosen so that the exact solution is u(t)} = exp(t).

Notice that we define

e = |lu — v, R, = logy (éﬁ:) !
B =
é;'a, = Hu - I£:1Uh”0:2 and R;L = lng.(%)

TABLE 10: Computational results of interpolation Galerkin techmigue.

Galerkin Newton Quasi-Newton | Interpolation
N e R, INI| CT |NI CT &, R,
-2 | 1.6482e-2 5 0.11 7 (.06 2.1565e-3
4 |4.1484e-3 199 5 0.26 7 0.17 1.8942e-4 | 3.51
8 |1.0398e-3|2.00( 5 | 1.03 | 7| 069 2.0170e-5 | 3.23
16 | 2.6013e-4 [ 200 5 3.98 7 262 2.3970e-6 | 3.07
32 | 6.5044e-5 | 2.00 | 5 | 1557 | 7 10.30 2.9560e-7 | 3.02
64 | 1.6262¢-5 |1 2.00| 5 ; 61.70 + 7 | 40.95 3.6823¢-8 | 3.00
128 | 4.0655e-6 [ 2.00 | 8 [ 39636 7 164.33 | 4.5988e-9 | 3.00

We poinl out a much shorter computational time with Quasi-Newton algorithm

in this example.

1.6 EXTRAPOLATION OF ITERATED GALERKIN SOLUTION
FOR HAMMERSTEIN EQUATION

In this final section, we explore the extrapolation technique developed in Section
I11.3 for the iterated collocation method for Hammerstein equations and extend it
to accelerate further the rate of convergence of the iterated Galerkin method. The
results reported in this section appear new even for the linear Fredholm equations.

The iterated Galerkin solution, u%, is obtained by
R h
uy = [+ K¥(u®), (65)
where u" is the solution of the Galerkin method (see (56)),

T PhK‘I"{”'h) = P f, uh e ",
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and P, is the orthogonal projection of Ly(f) .onto 5%, From (65),
Pl = Puf + P K (u"). (66)
From (66) and (56), we see that |
Pl = uh.. _ (67)
It is shown in [21} that if f € C**2(J) and & € C**2(]), then
Ju = whlloz = O(K ).

In order to successfully coinplete the current extrapolation method, it is necessary
to establish an asymptotic error expansion for the iterated Galerkin solution which
is analogous to Theorem I1I11.3.1. A proof can be made similar to the proof of The-
orem II.3.1 but the interpolation projection ¢} must be replaced by the orthogonal
projection F,. Some differences which must be incorporated are highlighted in the

proof of Lemma II1.6.2 below.

Theorem IIL1.6.1. Assume that k € C™([0,1] x [0,1]) and the solution u of (27)
satisfies u € C7H[0,1]. Also essume that 1 is not an eigenvalue of the linear operator
(KUY (u). Then there exists b€ C([0,1] x [0,1]), ndependent of the partition, such
that

u(t) — uh(t thf“ / (s,t)ds + O(R*™), ¢t [0,1].

Theorem II1.6.1 is based upon the following lemma.

Lemma II1.6.2. Assume that x,z € C"™[—1,1] and let P, is the orthogonal pro-
jection of L?[—1,1] onto S,,. Then there exists a constant c.41 .11, independent of x

and z, such that
1 1 - .
[ xte=Piadds = [ DD s £0() 3D DD
-1 -1 i+522r+4
"Proof. Expand x and z in Maclaurin series to gét

r+3

Z 1D3 (0)¢J+O(Dr+4 )

i= 0
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r+3

Z = D'z(0)¢; + O(D™2),

where ¢;(s) = s/. Since F,: L2 [—1, 1} = 8% Py¢; = ¢, for 0 < j < r and thus

r+3 :
z—= Pyz= =D z(0) (¢ ~ Puoy) + O(D™H2).

!
2
i=r+1

Also noting that

1
/ w(s)(z — Puz)(s)ds = 0, forall p € S%,

1

and thus
gl r+3 3 ' 1 i .
/ x(s)(z — Pre)(s)ds = Z Z ﬁD" (D)/ ¢;(8) (¢ — Pnebs)(s)ds
-t jerlim -1
r+3 . +3 .
+OW(ID 2| Z 107 x| + 1D **x|] Z [F2gb
: J=r+1 j=r41
L S ) ) . 3 . _
= Y 3w DD 0 + oI Y IDx]
gy — Planeit
r+3 ) .
HID X Y 1Pz, (68)
d=vr41

where ¢;; = ;lj—l j_ll &i(8)(¢; — Pup;)(s)ds. Note that, in the first term of the last
exXpression, C,y) 42 = Cri2,41 = 0. To see this, note that, if r + 1 is odd, then
Griy — Phd)TH is also odd, since, with (u, v) f . wvds,

Pgri =Y, whore b= 5l

and thus b, = 0 whenever i is even for in this case ¢p+1¢; becomes an odd function.
Hence, Py, is odd and thus ¢, 3 — Prgr4q 1s also odd. Under the assumption that
r+ 1 is odd, ¢r.2 an even function which in turn makes ¢, 2(¢r11 — Padps1) 0dd,

providing the result that ¢, 4142 = 0. &yo,41 = 0 is similar. Returning to (68),

JLx() (2= Paz)(8)ds = 24 ra DT X(0)D"12(0)
e rra DX (0) D 2(0) + ¢ r+1Dr+l (0) D *32(0)

r+3 -3
OMUD™42l Y 1D Xl + 107X D 107z
J=r+1 _ d=r+1
= Crr s [1 DD ads +O(1) Y0 | Dol
iz 2r44

where the second order Maclaurin expansion was used in the last step. a
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Proof. {Theorem IIL.6.1) Arguing exactly the same way as between (41) and (44)
with the interpolation projection i} replaced by the orthogonal projection P, we

obiain : )
w—l = ot — (I — GuP) TG (I — PV, - (69)

where )
G;&U(S) = / g(t: 5. P},"LL(S), PhuEt(S)v e)u(s)d‘g:
: 0

where g is defined in"Section II1.2,
Cwh = KU(u) —~ KU {P,u),

" and ._ _
P = (I - Gr) Tt = (1 — G KT (w) — U(Bu)).
Let L = (I — Gy) 'K so that L is an integral operator with a kernel * (s,t) with the

same smoothness properties as k(s, {).
Then

1 ' _ |
V(1) = L[ u) T(Pu)] = /C: (s, O (s, uls)) — (s, Pyuls))ds.

Using the mean value theorem as was done before in the proof of Theorem IIE3.1,

© we obtaiq .
) = Z/E s, 8)(u — Pyu)(s)ds,

where {(s,t) = [*(s,) 5% (5, (u + 6Pyue) (5)).
By applying Lemma I11.6.2 to each subinterval & and noting that the change of

scale introduce a factor (h;/2)7 for the jth derivative, we obtain

i

hk 2r+2 i . ’

v =3 (%) eren [ D60 DS 40 (1) ful e, (70
k=1 2

where D, denotes the partial derivative with respect tos. The result may be rewritten

as
N

() = A2 f b(s, t)ds + O(h2 ), (71)

k=1 By
where
b(sl f’) = 2_(‘2',»—1-2)‘31"+1 f‘+1D:+1E (S! t) DT+1U’(S)'
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We already know that [jv*|| = O(hR*¥7). Also,

1 = i)' GolT — PW"|| < C|ICalI — Pu)v"|
< Ol — B!
< CR|v"|| = O(RZ*4). (72)

Equations (69), {71) and (72) give the desired result. _ -

Theorem 111.6.1 engenders the extrapolation of the iterated Galerkin method for
the Hammerstein equation. The process is the same with the extrapolation of the
jterated collocation method, namely, we use the classical Richardson extrapolation

technique. Let T"/2 be a partition of I:
0?£0<i1;2<t1 <t3;‘2<"'<t3\1_1,}2<f3\r=1,

where
te1+ 1t

5 N.

th_1/2 =

'

k=1

Let /2 and /> denote the Galerkin and iterated Galerkin approximation for Ham-

merstein equation with respect to this new partition. Theorem I11.6.1 yields
. : !\‘I'
u(t) — ui;”(t) — 2—_(2r+2) Z h_.i'ﬁ—',—?/ b(s, t)db + O(h2r+4)‘
k=1 £k

An extrapolation gives a new approximation

ZQTJFQTJ:E;’22 ~ uli(#)
2‘2r+2 -1

T hf2
.u%_:z' (t)=
It is straightforward that

u(t) — @y (t) = O(R¥+4),



Example 1I1.6.3. Consider the equation

where f(t) is chosen so that the exact solution is u(t} = e’

. Notice that we definc

TABLE 11: Computational results of extrapolation of iterated Galerkin solutions.

_h}
- uit/2||g‘2 and

- uﬁl l0,2

u(t) — /1 stul(s)ds = f(t), .£€10,1),

4

<

Galerkin Newton Quasi-Newton "Post-Processing

N R Nt oer || cT & B, g, B
2 1.6482e-2 3 0.11 7 0.06 1.6450e-3

4 4.1484c-3 | 199 | 5 0.26 T 0.17 1.0573c-4 | 3.96 | 5.3988c-6

8 1.0398e-3 | 2.00 | 5 1.03 7 0.69 6.65650e-6 | 3.99 | 8.6269e-8 | 5.96
16 | 2.6013c4 [ 200 5 3.98 T 2.62 4.166Ve-7 | 4.00 ¢ 1.3552¢-9 | 5.99
32 | 6.5044e-5 | 2.00 ] 5 16.57 7 10.30 2.6053c-8 | 4.00 ] 2.1203e-11 | 6.00
64 | 1.6262e-5 | 2.00 | 5 61.70 7 40.95 1.6285e-9 | 4.00 | 3.3128e-13 | 6.00
128 | 4.0655c-6 | 200 | 8 | 39636 | 7 164.33 1.01%3e-10 | 4.00 | 7.9836c-15 | 5.37

As with the example II1.5.1, we note that the Quasi-Newton method results in
less than half of the computing time than that of the Newton’s method.
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CHAPTER IV

WAVELETS-COLLOCATION METHOD

In this chapter, we construct a wavelet-collocation method for Hammerstein integral
equations. A wavelet-collocation method for Fredholm equation is recently estab-
lished in [10]. Our first objective. is to establish a fast wavelet-collocation methocd
for Hamimerstein equation by using the idea of ‘linearization’ technique described in
~ [25} and [17]. We use the multiscale wavelet bases constructed by [10], which was
introduced in Chapter II, to solve the nonlinear integral equation. We show that
the sparsity of coefficient in the Jacobian matrices occurs for equations with either
smooth or weakly singularity kernel. We use the block truncation strategy of [10} to

attain a fast algorithm.

The second ohjective is to create a multilevel augmentation method for the Ham-

| merstein equation. It is based upon the transformed linearized norﬂinear equation
and it is different from, even though greatly inspired by, the multilevel augmenta-
tion method recently established in the paper [11]. The main goal of a multilevel
augmentation method is to avoid solving a large nonlinear system. In accomplishing
this goal, two steps have to be implemented. The first step is to solve the nonlinear
equation at a lower resolution level and secondly the error is compensated by adding
a correction term from higher resolution level. The method leads us to a faster

numerical technique while still preserving the order of convergence of approximation.

IV.l1 PRELIMINARY

There have been many papers written in the recent years which establish numerical
techniques for finding an approximation of a Solutién of the Hammerstein equation
(see, -e.g.,[11],[18],[19],[21],[20],[23],[24}.[25]}. In each of these methods, numerical so-
Iution is found by solving a system of nonlinear equations using a nonlinear solver such
as the Newton method, the secant method or the quasi-Newton method. In executing
its iterative process, the Newton's method as well as the secant method require up-
dating of the Jacobian matrix which is normally dense. The quasi-Newton’s method
eliminates the need for the update by fixing a Jacobian matrix in computation. This
reduces the overall cost of computation despite the fact thal more itcrations may

be nceded, since a large portion of the computing time is used for the assembly of
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the Jacobian matrices. We point out that the Jacobian matrices used in the New-
ton method, the secant method and the quasi-Newton method are dense when spline
bases are used. In general, to advance one iteration in the Newton's method or in the
quéxsi—Newton’s method requires O({N?) operation counts in an N x N system, and
thus if one desires a higher accuracy in appr.oximation; computational complexity
increases with . In [11], a class of wavelets was used in approximating a solution
of Hammérstein equation which uscs a fast multilevel augmentation method. The
method is a generalization of the multilevel method for linear operator equations
which was first established in [7] and when it was applied to Hammerstein equation,

the complexity of computation decreases to O(N log N).

It was established in [1] that a class of wavelet basis can be applied to approximat-
ing a solution of the Fredholm integral equation of the second kind which produces
a linear system with sparse structure. This has had a significant implication in the
reduction of an overall computational expense in approximating a solution of the
Fredholm equation, since, as stated earlier, a standard spline basis results in a lin-
ear system which is dense. This discovery was greatly expanded and generalized in
the recent years in a series of papers, [32], [35], [8], [10], where truncation strategics
were established to produce sparse systems, leading to fast algorithms. The latter
three papers deals with the wavelet collocation methods for the Fredholm integral

equations of the second kind.
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IV.1.1 Wavelet collocation method for the second kind Fredholm equa-
tion

Using the functions wy; and the functionals £, ; thus constructed, fast wavelet collo-
cation methods were developed in [8], {10]. The Fredholm integral equations of the

second kind 15 written as _
1 .
() — / k(s Qu(s)ds = f(1),  tel, (73)
. Jo .

where k and f € C(7} are known functions and « is the function to be determined.
Inn the operator form, (73) is _
u—Ku=f ' (74)

In the wavelet collocation method, an approximate solution 1, for  in (74) is found

Up 1= E u;-j'wt-j

o (L FYEUn

in the form

where, with
w, = fu; 1 (4,5) € Un)"
and .
Ua= {1315 € Zui € Znaa),

ug; are found by solving
< gi"j*: un(t] = fj’j’-l. (f -+ K'L-',n)(t)) 2, (1.;; _}"') = Uu. (75)

Moreover, using the lexicographic ordering on Z, 41 X Z,41, equation (75} yields

(En - Kn)un = fm . (76)
where
E, = [<< Ef’j”w?ﬁj 2 (fﬂjf)! (1.}) € Uﬂ]?
Kn = [<< Ei’j’:Kﬁ"ij 2 (é!aj?):(i:j) € Un]|

and f, == [« by, [ > (¢, 5) € UplT. _
Recently, Chen et. al. ([8], [10]) estimated the size of the components in the
wavelet collocation matrix for the Fredholm integral equation of the second kind.

More specifically, with Kyy i = < £, Kwy; *» and under the assumption that
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the kernel k(s.t) is weakly singular, ie., k(s,t) has continuous partial derivatives
%%k(s; t) for @ <k, 8 <k, when s,t € 7 with s # { and there exists 0 < o < 1

and . # such that
oo
| dse gtf

Denote by 5;; the support of w,; and

k(s,t)‘ <Y

< g e

dt' = max{diam(Sz—j}: _j' S Zw(i}]’; 1= U} 1....

then the conditions-on the functionals 7y and the wavelet functions w,; gnarantee
the following lemma (Lemma 3.1 [8]) which serves as a foundation of the truncation

strategy.

Lemma IV.1.1. /8] If there is a constant r > 1 such that
disﬁ{s—gj, Sifjr) Z T(d.,_ -} dt’);

then there exists a positive constent ¢ such that
' . 1
+ . . k ———
[K%"J"JJ'J < efdidi) Z /S |s — t|2k+adt‘
sESi_:J-; u

To use Lemma IV.1.1, partition K, := [Kyj ] 5.65)etnp L0
Kﬂ. = [K?:'?:]‘i" L=

where
Ky; = (K t’j’,'tj]j'ezut,«),jezw(q-;<

A truncation parameter €;; = €(+',4,n) is chosen to form a matrix

K{e)vi = [K(€)uj iilyez, 0, €200

where

0 otherwise.
The following theorem was shown in [§] .(Theorem. 4.6) which serves as a basis for
a fast wavelet collocation algorithm. Here N(A) denotcs the number of nonzero

elements in A.
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Theorem IV.1.2. [8] Let b and b be real numbers not larger than one and the

truncation parameter €;; = {1’ i, n), 't € Z, 4,1, be chosen such that

€y = ma-x{aﬂx[_n%(n‘iHb’(n_i’)W: r{d; +di)}, i € Zoti,

for some constants a = 0 and r > 1. Then

N(E, — K(¢)) = O(f(n) log™ f(n}),
where f(n) = dim(X,), 7 =1 ezcept for b =18 =1, in which case 7 = 2.

In the above theorem, we take d = 1 in this study. It was also shown in [8] that
the choice of parameter ¢ not only generate a sparse matrix K(e) but also preserve
the optimal order of convergence of numerical solution.

Recently, Theorem 3.3 was improved by Chen, Wu and Xu in [10] to a more
practical form in which its implementation is much easier. In the practical block
truncation strategy, each rectangular block K, ; in X, is further partitioned into a

block having the same number of row sub-blocks and column sub-blocks, i.e.,
Ky = (K ¢,9 € Zuomn),
where i = min{¢’, i} and the following lemma help to classify the entries of each
sub-block. '

Lemma IV.1.3. [10] For i € Znyy,j = pl€)r + 1,5 = ple)r +1,¢ € Zieec
Zi V€ Z, Ky is an entry of K of and only if

¢ =ple, and ¢g= \‘ffe“),J when 1 > ¢/,

q'q

and

' !
¢ = \‘”(ESJ , and q=ple), wheni<i.
He
The block truncation strategy is then to select a family of parameters according to
Theorem IV.1.4 below so that the order of convergence and computational complexity

are preserved. Specifically, the block truncation strategy is to define
KM = [K(p)z‘q qd,q€ 2 ie-1],
and

K(p)y, : (78)

0 otherwise,

oL { K;dq; g ‘_-G}| < Pitis

where parameters py; are speciﬁed in the following theorem.
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Theorem IV.1.4. [10] Suppese that v € W*®(I). For any constant a > 0 and
v>1, fori <, let

pig = {1+ ma.x{q;xbx(“_f)_"ﬂ-’“, v 4 1)},
and for i’ = ¢ let

pey = {1+ max{apb’(“_f}_li p(p i+ 1),

k—a’
2k—o'

such that

where <¥W <1, with0 < ¢’ <1— 0. Then, there exists a positive constant ¢

Ju = @lloeo < ef () log” fln}l|ullkc,

 where T denotes the solution to the Fredholm integral equalion of the second kind

under the truncation strategy and 7 is either 1 or 2 and

N(E, = Ka) = O(f(n) log £ ().

We note that the choice for p;; defined in Theorem IV.1.4 for the block truncation

strategy ensures that
diSt(Sg!jf, Sij) S €3ty

where ¢;; is defined in Theorem IV.1.2, and hence
Kz = Koy
is guaranteed.

Remark: We note that the constants ¢ > 0 and » > 1 can be any number for
the wavelet collocation method to converge at the optimal rate, but cur numerical
experiments show that CPU times vary significantly with different values of ¢ > 0

and v > 1.
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Throughout all numerical experiments reported helow, we choose the linear mul-

tiscale wavclets to be the basis functions.
Example'IV.l.S.. Cousider the equation

T _uls) B gs=f(1), te[01],

u(t) — S e

where f(t) is chosen so that the exact solution is u(t) = 2.

" TABLE 12; CPU time CT and number of nonzeros N for solving the wavelet collo-

cation method.

f(n} cr CT, | CT, | CTy CTy CTs
0208 | 0.190 | 0.203 | 0208 | 0.212 | 0.216
64 |- 0706 | 0.549 | 0.569 | 0.608 | 0.705 | 0.707
128 | 2677 | 1.613 | 1642 | 1.787 | 2.717 | 2714
256 | 11.903 | 5.006 | 5.019 | 5.424 | 11.306 | 11.621
512 | 93.018 | 17.09C | 17.148 | 18.180 | 44.662 | 63.459
1024 | 1486.343 | 64.806 | 64.976 | 68.580 | 212.690 | 530.878

32

f(n) N(A) N{A;) | N(Az) N(AS) N{Ay) | N(45)
32 1024 912 928 976 1024 1024
64 4096 2816 2832 3136 4096 4096
128 16384 7856 TET2 8816 16384 | 16384
256 | 65536 20448 | 20464 | 22816 | 61152 | 63512
512 | 262131 | 50704 | 50720 | 56016 | 167000 | 212336
1024 | 1045230 | 121408 | 121424 | 132736 | 360088 | 616136

where CT and N{A) is the results without the block truncation strategy,
CT, and N{A,) is the results with ¢ = 0.01,» = 1.01 and ¥/ = 0.8,
CT» and N(Ay) is the results with @ = 0.25,» = 1.01 and ¥ = 0.8,
CTs and N(A;) is the results with a = 0.5, = 1.5 and ¥ = 0.5,
CT, and N (A ) is the results with @ = 20,7 = 1.01 and ¥ = 0.8,
CTs and N{As) is the results with & = 0.25, v = 20 and ¥ = 0.8,
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Next, some numerical experiments of wavelet collocation method of the Fredholm

equation are shown. Denote

en=|u—ullose, Ru=log (—) _
Chy2

Example 1V.1.6. Consider the equation

u(t) — ]o sin{s + thu(s)ds = f(t), ¢t€]0,1],

where f(t) is chosen so that the exact solution is u(t) = €.

TABLE 13: Computational results of Fredholm equation with smooth kernel.
f(n) = R, CT
2 | 4.816643e-1 0.008
4 1.23985%-1 { 1.9578 | 0.018
8 | 3.198254e-2 | 1.9548 | 0.042
16 | 8.154885e-3 | 1.9716 | 0.137
32 [ 2.060935e-3 | 1.9844 | (.473
64 | 5.181485e-4 | 1.9919 | 1.754
128 | 1.299022e-4 | 1.9959 | 6.820 -
256 | 3.251324e-5 | 2.0007 | 26.929
512 | 8.124553e-6 | 1,9983 | 108.058
1024 | 2.022185e-6 | 2.0064 | 438.780 }

Note that we use the numerical quadrature scheme.in Appendix A to calculate
integral term of smooth kernel case. Recall that the numerical error of collocation
method is O(A™"1). Therefore, in this case, we see that the expected convergence

rate is.2.

Example 1V.1.7. Consider the equation

| T(S) ds = f(t), teo1]

ult) = 0 |s— 1

and f(t) is chosen so that the exact solution is u(f) = ¢2.

Note that we use analytic integration to calculate the integral term in the weakly
singular kernel case. From FIG. 15, we see that the sparsity of corresponding matrix
for solving linear system occurs when using wavelet bases for the weakly singular

kernel case.
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TABLE 14: Computational results of Fredholm equation with weakly singular kernel.

f(n) eh R, CT & R, cT
2 | 1.704125e-1 0.007 | 1.70412%-1 | 0.007
4 |5.012502-2 | 1.7654 | 0.011 |5.012502e-2 | 1.7654 | 0.012
8 |1.276033e-2 | 1.9739 | 0.040 | 1.276033¢-2 | 1.9739 | 0.027
16 | 3.099368e-3 | 2.0416 | 0.079 | 3.009368e-3 | 2.0416 | 0.069
32 | 7.733665e-4 | 2.0027 | 0.208 | 7.734493e-4 | 2.0026 | 0.203
64 | 1.943866¢-4 | 1.9922 | 0.706 | 1.945008e-4 | 1.9915 | 0.569
128 | 4.886239%-5 | 1.9921 | 2.677 | 4.897603e-5 | 1.9896 | 1.642
956 | 1.243263¢-5 | 1.9746 | 11.903 | 1.246557¢-5 | 1.9741 | 5.019
512 | 3.151628¢-6 | 1.9800 | 93.018 | 3.182451¢-6 | 1.9697 | 17.148
1024 | 7.704299¢-7 | 2.0324 | 1486.343 | 8.773358¢-7 | 1.8589 | 64.976

One of the goals of this Chapter i1s to extend the previous implementatibn to
the wavelet collocation method for the Hammerstein equation. We show, in Section
1V .2, that by ‘linearlizing’ the Hammerstein equation, our wavelet collocation method
produces Jacobian matrices which are sparse. This generalizes a similar result to
the Petrov-Galerkin method for the Hammerstein equation {17]. In Section IV.3,
a multilevel augmentation method applied directly to the linearlized Haminerstein
equation is discussed. The new fast multilevel augmentation method is similar to
the one established in [11], but also takes an advantage of the sparse structure of
the Jacobiah matrix which leads to an added reduction in the overall computational

cost.

IV.2 WAVELET COLLOCATION METHOD FOR HAMMERSTEIN
EQUATION '

The purpose of this section is to establish & wavelet collocation method for the

Hammerstein equation written as

- ull) _/0 (s, (s, u(s))ds = f{t), | tel.. (79)

. In the case of nonlinear Hammerstein equation, a similar fast algorithm based
upon the same truncation strategy described in section IV.1.1 must be modified,
since the basis functions w;; appear under the nonlinear term 3. To circumvent this

difficulty, we first transform {79) as follows: Define

A0 =l ult), (80)
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and substituting it into (79), we get

-u(r.):f(t)f/; K(t5)=(s)ds. | @Y

Equations (80) and (81) give
1

z(t) = (¢, Ft} +~/0 k(t,5)z(s)ds). (82)

As in the Fredholm case, we seek a solution z, of (82) in the form
Zn 1= Z ZijWij,
{ig)etn

and z;; are found by requiring that

& iy, 2n(t) > = < Ly P(L, f(1) + Kzo(t)) >, (V,7)yeUp.  (83)

Once z, is found, the approximate solution ,, of (79) can be found from (81), namely

(1) :f{t)Jr/0 k(t, s)zn(s)ds.

It should be pointed out that the substitution techniques described between (80) and
(82) were first introduced in [25], [23] and [24], and also used in conjunction with
some other methods in {17] and [21]. Let P, be an interpolation projection mapping
C(I) onto X, which is defined by ' '

Pu(z)(t)i= ) <Lz > wylh). _ (84)
{i,)eln '
Then,
Pr—zx asn —» oo and for z € c(I)

from which we obtain by the uniform bounded principle,

sup | Pulloco < M,  where M is independent of n.

With . _
T{x}) := ft} +_K;(t), ze L>*(),tel,

equation (82) can be written as
z=9T(z), (85}
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. whereas equation (83) can be written in opcrator form as
= PaUT(z), 2 € X, (86)

Under the assumptions (A1)-{A5) along with the condition that 1 is not an eigenvalue
of the linear operator (¥7")'(z}, the Fréchet derivative of T a z, it was shown [25]
that equatic_ﬁl (85} has an isolated solution. Similarly, one may invoke theorem 1 of
[25] to show the existence of a solution z, of (86). Alternatively, one may utilize

theorem 2 of Vainikko [34], as was done in [21}], to obtain the following.

Theorem IV.2.1. Let 2 be an isolated solution of (85). Assume thal 1 is not
an eigenvalue of the linear operator (V1Y (z), where (\I'T)’(z) denotes the Fréchet
derivative of UT at z. Then the wavelet collocation approzimation egualion (86) has
o unique solution z, in o ball B(z,8):={ce€ C(I) |z — z|lo,0c < 8} for some d >0
and for sufficiently lurge n. Moreover, there exists d constant 0 < ¢ < 1, independent
of n, such that

(Xn ST
< Zn — oz S y 87
22 < o o < 122 7
where oy, == ||(I — (BYT)Y (2)) 1 ({(P.¥T)(z) — ¥T(2)}||o,00. Finelly

En(2) < |2 — 2llo.cc < CEA(z), (88)

where C is a constant independent of n and E.(2) = infex, ||z — ul|o.co-

It is noted that under the current polynomial.wavelets,
1

Now, in order to find the solution z, of (86), one must more likely use an iterative
method. Here we consider the Newton’s method for an illustration. First, for each

(’.’:’, j") c Un and 2, = [Zt'j](é‘j)EUn With Zp = Z(’i,j)eb'ﬂ z_,;jwt-j., we let

F'i"j’ (zn) = & f‘é’j’: zﬂ(t) > - <K gi?j’a w(ta f + Kzn(t)) >
=< Ly, Y peu, Wi (1) > — < Loy, wlt, f+ K Y yeun 2Wis(E)) >
Entries of the ‘; gcoPie;n matrix are computed from

Jé’j’:aﬁ(zn) = —aiF

= € Ly Waplt) > — < Ly, WOVE S 2 Kwy(t) - Kwas(t) », (90) -
. (2.9Yel,
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with 7' € w(i'), 8 € wla); i, @ € Z, ;1. The first term in the last equation is simpli-
fied as & fijr, waps(t) = 8855, @ < i'. The second term points to the significance -
of the ‘linearlized’ equation (82) or equivalently (85). Notice that wavelets wy; and
weg appear directly under the linear operator K. This enables the present. method
to use the truncation strategies of Chen et. al. described in the last section. More

specifically, recalling (14), the sccond term of (90) can be written as

K Loy, YOO f + D e, 2w (1)) - Kwap(t) >
= Zsezkp cjs‘llb{o’l)(f‘f.s‘: f(ft,s) - ZI(I'J}EU“ Z-inrwéj(!'s)) - KU}aJ@(t_q)

= Z i OV 1, FE) + z zU/ Kty )wi;(s)ds) - ] (t,, s)was(s)ds {91}

LAY (L,F)EU,

Bv assu;fnption (A5), we may assurme, for M > 0,
WOl < M, ty € (—00,00). | (92)
Lemma 1V.2.2, If there is a constani r > 1 such that
dist(Sy5, Seryr) = rld; + dy),

then there erists a positwe constant c such that

i) < cldsdy ) Z/

SeS()

(93)

5 — £I2k+a

2d

MaeEe1— T

where ¢ = JzR==g5= in which 8 and o are defined in (77) and [{4; ] + llwislloe < 6.

Proof. This fol]ows.immedia.tely from Lemma IV.1.1 (lemma 3.1, [§]) and (92). O

- Once the estimate (.93) for the entries Jyj op(2Za) of the Jacobian J(z,) of
F(z{k)) = [Fy (zn )]JEw{r)nean are given, the block truncation strategy of Chen
et. al. [10], also described in section IV.1.1, can be applied to this Jacobian.
o Namely, let p = {pyi: 7.1 € Z, 41} be the sequence defined in Theorem IV.1.4 and let
J(z,) = [Jyalz): T a € Z,41] where Jia(z.) = [Jip,ap(Zn}: 7 € W(T), 8 € w(a)].
Define FJU(ZH) = [jq-:,a(zn): i, € Z,41] where .

Jir alzs) = [J(zﬂ)(p)gf; qd.q€ Z mintst )15
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o J(Zﬂ)g’z |q{ - Q| = pé’a:
0 otherwise,
where J(z,)(p)i, is defined similarly to the method in [10] which was stated in section

IV.1.1.

Lemma'IV._Z;fi. Give ¢ > 0. Then parameters p as defined in Theorem IV.1.4 can
be chosen so that for z ¢ RI™)

13(2) — J(z)lloo < €.

Proof. Note that lemma 3.2 [8] ensures that there exists a positive constant ¢ such
that for all i, & € Z,4; and all z € R,

T —(2k—a) k(i o
ia(z) = Toa(Z)llose < ke (94)

Once estimate (94) is obtained, then arguing in the same way as in the proof of -
lemma 4.2 {equation (4.12) [8]), ' '

1(3(z) = I (@D Vilooo < et ™ |Vlo 00

where v € R/®™ ¢ is a constant independent of n and 0 < ¢’ < min{2k,d —o}. Here
recall that o is the parameter of weak singularity. Hence, this lemma is proved by

selecting n so that |cu™7™%| < e. : mt

In Lemma I'V.2.3, for the current discussion, d = 1 so that ¢’ = 2k. The Newton’s
method finds the solution z, of (86) as follows: Starting with an initial vector z4' =
- [2%], which we assume to be sufficiently close to the solution 2z, = [z] of (86) or

equivalently z, = F(z,) so that the Newton’s method couverges, we compute
Y =gl D). (95)

Of course, one does not invert the Jacobian J (zgf}_) directly for each n, but rather
solve for y,(f) in
Iy =F@E!), (96)

13

and (95) is implemented as
S o)
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Now, we are ready to propose a fast wavelel-collocation method for Hammerstein

equation based upon (86). Let equations (96) and (97') are replaced by

JzZP)yE = Fie?), - (98)
and
zFFD — gl _ g(B) _ (99)

= {0)

respe(,tlvely, where 20 = 2. First, we note the following lemma.

Lemma IV.2.4. For each n € N z ) e RIOY gnd ¢ > 0, then parameters p defined

in Theorem IV.1.4 can be chosen so that, for all k € N, we have
12507 = 267 loo < €. (100
Proof. We prove this by induction. With &£ = 1, since 70 = zq(no),
2 —2) =yl -l
= [17E) - T ED)| P
= I =2 IED) - I EFED).
Taking the norm on both sides and noting that ”J(zn ) J{z SZO))HU!OC can be made

arbitrarily small by Lemma I\/A2.3} we prove the case when k = 1. Now assume that
(100) is true for &k — 1. Then

égv) _ z,(;k) — zgr—-l) (k—l) (y(k 1) y(k 1)

T I BTET o)
+ITEETDFEETD) — FEE ) + (371 EED) - I D) FE-))

= T4 IT+ 111 + 1V,
For 17,

(@YY = T EENFEE ) oo < all TEED) = JEE D)o, (101)

where ¢; = 137 EE ) ool T ZE ™ 000 FGE ™) 000 The right side of (101)
can be made < § by Lemma IV.2.3. For [1],

1 EE ) FEEY) - FF )l < el ZF Y — 28 o e, (102)

where o2 = [[J7 EE Moo |[TEE™ + 8EF ™Y — 25 |looe with 0 < 6 < 1.
Applying induction, the right side of (102} can be made < §. Finally for IV,

HIEED) — I DR EE Y oo < ]2 — 287|000, (103)
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where ¢; = HF(Z?(:C_”)HU,WHH(E&’C_D + BEE - zﬂ““))”o,m with 0 < < 1 and
H(a) denotes the Hessian of F at a € R/ Another application of the induction
hypothesis and considering (101)-(103), we complete the proof of this lemma. O

The following theorem establishes the convérge‘nce ol the fast wavelet-collocation

method for Hammerstein equation described in (98) and (99).

Theorem IV.2.5. Assume that z,, = [z;] 15 o solution of (86), Le., 7 = F(z,).
Also let z € RI™ be such that the Newton iteration given in (95)-(97) generate
o sequence z%) that converges to z,, as k — oo. Then the parameler p in the block
truncation strategy can be chosen so that the fast wavelet-collocation method described

in (98)-(99) generates a sequence 55 which converges to z, as k — oo.

Proof. This follows by noting that
R T

and apply Lemma IV 2.4 to first two terms and the convergence assumption to the

remaining two terms. ' (i

Next, the numerical results of wavelet collocation scheme of solving the linearized
Hammerstein equation are shown. The comparison between the full wavelet colloca-
tion solutions and the compressed wavelet collocation sohitions is presented. Here,
the word ‘full’ means solving the corresponding system without the truncation strat-
ezy and ‘compressed’ means solving the corresponding system with the block trun-

cation strategy, setting ¢ = 0,25,y = 1.01 and ¥ = 0.8.
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Example IV.2.6. Consider the equation

ult) — /1 e tut(s)ds = f(t), t€]0,1],

where f(#) is chosen so that the exact sclution is %(t) = cos(t}.

- TABLE 15: Computational results of Hammerstein equation lor Example 1V.2.6.

: full collocation solution compressed collocation solution .
f(n) Ex Rh . T éh ﬁh : éh’f
-2 2.779527e-2 0.005 2.779527e-2 0.004

4 5.77975%e-3 | 2.27 0.014 5.779759%-3 [ 2.27 | 0.015

8 1.386280c-3 | 2.06 0.070 1.386280e-3 | 2.06 (.064

16 | 3.431079e-4 | 2.01 0.281 3.43107%-4 | 2.01 } - 0.271

32 | 8.556368e-5 | 2.00 1.127 8.556261e-5 | 2.00 1.027

64 |-2.137762e-5 | 2.00 4.526 2.137565e-5 | 2.00 | . 3.515
128 | 5.343552e-6 | 2.00 | 18.205 | 5.341373e-6 | 2.00 11.709
256 | 1.335814e-6 | 2.00 | 73.153 | 1.333582e-6 | 2.00 38.913
512 | 3.339281e-7 | 2.00 | 293.516 | 3.316833e-7 | 2.01 133.359
1024 | 8.345797c-8 | 2.00 | 1177.954 | 8.980856e-8 | 1.8% 474.664

Example IV.2.7. Consider the equation

u(t) - ./01 cos(s + t)etds = f(¢), te[0,1],

where f(t) is chosen so that the exact solution is u(¢) = 1.

Computational results of Hammerstein equation for Example 1V.2.7.

TABLE 16:
full collocation solution compressed collocation solution
f(n) e R, | cT | & R, CT
2 | 5.87768%¢-2 0.004 | 5.877689%-2 0.003
4 1.662155e-3 | 1.82 0.021 | 1.662155e-2 | 1.82 0.014
8 |4.284816e-3 [ 1.96 | 0.066 | 4.284816¢c-3 | 1.96 0.070
16 | 1.079426e-3 | 1.99 | 0.278 | 1.079426e-3 | 1.99 0.278
32 [ 2.703726e-4 | 2.00 | 1.104 | 2.703743e-4 | 2.00 1.051
64 | 6.762578e-5 | 2.00 | 4475 | 6.762899¢-5 | 2.00 3.485
128 | 1.690883e-5 | 2.00 | 17.936 | 1.691238e-5 | 2.00 11.608
256 | 4.227701e-6 | 2.00 | 74.831 | 4.231332¢-6 | 2.00 |  38.693
512 | 1.057301e-6 | 2.00 | 297.746 | 1.060952e-6 | 2.00 132.352

2.646933e-7 | 2.00 | 1172.390 | 2.693742e-7 | 1.98 | 472.071
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Example IV.2.8. Consider the equation
I
u(t) — 1w (s)
o |5 — ¢
2

where f(t) is chosen so that the exact solution is u(t) = ¢°.

dS:f(t), te [0: l]v

TABLE 17: Computational results of Hammerstein equation for Example IV.2.8.
full collocation solution compressed collocation solution
fn) e R.| cCT & | R CT
2 2.917026e-1 0.004 | 2.917026e-1 0.005
4 1.606610e-1 | 0.86 { -0.024 | 1.606610e-1 | 0.86 0.020

8 | 4.71635%-2 | 1.77 | 0.050 | 4.716359¢-2 | 1.77 0.051

16 | 1.597451le-2 | 1.56 | 0.215 | 1.597451e-2 | 1.56 0.201
32 - 3.360508e-3 { 225 0.730 | 3.360610e-3 } 2.25 0.720
64 | 8.634520e-4 | 1.96 | 2.937 | 8.638484c-4 | 1.96 2.696
128 | 2.198411e-4 | 1.97 | 11.439 | 2.203948e-4 | 1.97 10.055
256 | 5.411619%-5 | 2.02 | 46.018 | 5.471957e-5 | 2.01 39.429
512 | 1.326851e-5 | 2.03 | 184.283 [ 1.388284e-5 | 1.98 154.570
1024 | 3.300703e-6 | 2.01 | 740.624 | 3.358074e-6 | 2.05 | - 600.178

Example 1V.2.9, Consider the equation
. r '
u(t) -~ [ ogls = thut(s)ds = o), ¢ [0.1),
0 : .
where f(t) is chosen so that the exact solution is u(t) = t2.

TABLE 18: Computational results of Hammerstein equation for Example I1V.2.9.
: full collocation solution compressed collocation sohition
: f(?’b) Eh Rh, or _éh Eh 6“?
2 | 1.848228e-1 0.004 [ 1.848228e-1 0.003
4 | 4.479195e-2 | 2.04 [ 0.012 | 4.479195e-2 | 2.04 0.016

8 | 1.048831e-2 | 2.09 | 0.038 | 1.048831e-2 | 2.09 0.041

16 | 2.277151e-3 | 2.20 | 0.147 | 2.277151e-3 | 2.20 0.143
32 | 4.831762e-4 | 2.24 | 0.598 | 4.831753e-4 | 2.24 0.562
64 | 1.090730e-4 | 2.15 | 2.255 | 1.090665¢-4 | 2.15 2.060
128 |'2.676196e-5 | 2.03 [ 9.044 | 2.675423e-5 | 2.03 7.827
256 | 6.516920e-6 | 2.04 | 36.575 | 6.508463e-6 | 2.04 30.108
512 | 1.613282¢-6-| 2.01 | 167.634 | 1.604425e-6 | 2.02 116.387
1024 | 4.997735e-7 | 1.69 | 672.429 | 5.217983e-7 | 1.62 | 539.528




TABLE 19: Number of zeros of compressed Jacobian matrix.

fin) 32

64

128 256 512 1024

number of zeros G6

1264

8512 45072 211424 927152

ratio of zeros (in %) | 9.375 30.8594

01.95631 68.7744 80.6519 88.4201

78

In summary, the computing times of compressed solutions are less than the com-

puting time of full collocation solutions, especially in the smooth kernel case. From

TABLE 19 and FIG. 16 is shown the sparsity of the Jacobian matrices in the fast

wavelet-collocation method. These show that the number of non-zeros components

of the Jacobian matrix is O{f(n) log f(n)) which is consistent to Theorem IV.1.4, In

the next section, we present yet another numerical technique, called the multilevel

augmentation method, which further improve the solution process of the wavclet-

collocation method for Hammerstein equation in terms of CPU time and computer

memory.
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FIG. 16: Sparsity of compressed Jacobian matrix of linearized Hammerstein equation.
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Iv.3 MULTILEVEL AUGMENTATION METHOD FOR HAMMER-
STEIN EQUATION

A first form of a multilevel augmentation method appeared in [7] in connection
with the Fredholm integral equation of the second kind. Multilevel angmentation
methods are used with a basis having a multiresolution structure such as wavelet
functions. Each multilevel augmentation method solves an underlying equation at a
low dimensional subspace and enhances the accuracy of its approximation by adding
successively to the solution corrected terms which can be obtained by solving systems
of high dimension. The method was recently extended to obtain a fast algorithm for
a class of nonlinear Hammerstein equations [9]. In this section, we present ancther
multilevel augmentation method for the Hammerstein which is based upon the ‘lin-
carlization’ technique which was explored in Section IV.2. The block truncation
strategy is also used in coristructing the Jacobian matrices. Numerical examples are
provided to demonstrate the convergence of the new multilevel augmentation method
and the effectivencss of the truncation strategy.

Recall the decomposition of the subspace X, for L=(5), e, withn =k +m,
Xrm =X, OWip 1 D ... D Wi

Our method goes as follows: first, we obtain an approximation of the solution of the
Hammerstein equaticn in the space X; by solving {86) exactly to obtain the solution
z,. The next step is to obtain an approximation of the solution z;,y of equation (86)

with n = &k + 1. For this purpose, we decompose
Zpgpl = z;:"H —+ sz, with z{,; € X, and 2f+1 € Wy
so that (86) becomes
Z;;EA + 20 = Pen ¥{(f + Kz).
This equation can be transformed into
ziy = PU(f + Ko 1) + (P — POY(F + Kzpn ) — %, (104)
or equivalently,

Pelztyy + 2h) = Pe¥(f + Kon) + (Pens = P)U(f + Kzea) — 20, (105)
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Here we used the fact that szf“ =0 as z;;*'ﬂ £ Wit and Py is a projection onto

X,,. Next, we compute
ziy = (P — B)B(f + Kz), (106)

and note that z;;’__'l € Wisi. In (104), we replace sz and the second term in the

right hand side by 2]/, to obtain an equation for z£, € X;:
2y = PU(f + K(zf, —i—.zfl)). (107)

The element z,‘a] turns out to be a good approximation to z,f‘HA We then obtain an

approximation to the solution 2y, of equation (86) by setting
2e1 = z{y + 24 | © (108)

Note that z7, and z/|, respectively, represent the lower and higher frequency com-
ponents of z ;. ' '
We continue this process to find an approximation of the solution of equation

(86) with n = k + 2. Specifically, we compute
Zs?,rz = (Poys — Pr)W{(f + Kz1)

using the approximate solution zp; obtained in the previous step, and solve for

2§, € Xy from the equation
z}iz = PU(f + K(zf'z + zfz)) .

An approximation to the soclution zxi» of equation (86) with » = k£ 4 2 is hence
obtained by sctting

— L H
Zk‘z — zk,2 + zkz .

This procedure is repeated to obtain an approximation z ., of the solution zg4r,, of

equation {86) with n = k + m. Once z; ,, is obtained, then let
Uk = f + sz,m (]‘09)

which approximates the solution w, of (81) with n = k + m. The preceding steps can

~ be summarized in the following algorithm.
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Algorithm1: The Multilevel Augmentation Method: An Operator Form

Let k£ be a fixed positive integer,

Stepl: Find the solution z € Xy of the equation (86} with n := k. Set zx0 == 2
" and £:=1. ' '

Step2: Compute
zily = (Peyt — PO (f + Kz e-1), (110)

Step3: Solve for.zj;-',g € X from the equation
ziezpklp(f+K(z,‘:‘,f+zgf)). (111)

Step4: Let
Zig = Zeg T 2y (112)

Set £ «— £+ 1 and go back to Step 2 until £ = m.

Step5: Obtain the approximate solution of u, in .(81) by thm = f + K2k .

L

The existence of the solution 2y, of (111} can be guaranteed similarly as in

“Theorem IV.2.1. Let

T(@)(u)t) = (1) + K(u+a)(t),  uae (),

so that (111) with £ = m can be written as
zﬁJcL,m = Pk@T('zﬁgﬂ)(ztnl)" (113)

Lemma IV.3.1. Let z be an isolated solution of (85). Assume that 1 is not an
etgenvalue of the linear operator (¥T(a)) (2), where ($T(a)Y(z) denoies the Fréchet
derivative of WT{a} .a_.i z with a € L®(I). Then the equation (113} has a unigue
solution zf, in o ball B(z,8) := {c € C(I}: ||z — z|lp,00 < 8} for some & > 0 and for
sufficiently large k. Moreover, there exists a constant 0 < q < 1, independent of k,

such that
. .

1+¢ 1-¢’ |

where o = ||(J — (P¥T(a}) (2)) Y ((Pe®T(a)}(2) — $T(a)}(2))]0,c0- Finally

273

< ”zém - Z”{)‘OC‘ =

Ek(z) < “z;ct,m - zHO,m < CEk(Z):

where C is a constand independent of k end Fp(2) = infuex, |2 — 91)lo.00-
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Lemma IV.3.2. Lel z be an isolaled solution of (85). Assume that 1 is not an
esgenvalue of (¥T)'(z). Then there exists a sequence of positive numbers oy m, k € N,

m € Ny with limy_ o ar e = 0 uniformly for m € Ny and a positive integer N s.'u,ch
that for allk > N and m € Ny,

||zk,m - zk+m|| S ak,m“zk,m—l - zk+m||'
Proof. From {110), (111) and (112),
zk__m - zf:ar‘,rm + z?im
= (Pk_+-}n, - Pk)‘l’(f + sz,'m.—l} + PR:LI'(f + sz,m.)- (114)
Using (114) and (86) with n = k + m,
zk,‘m- — Zgtm (Pﬁ.‘-‘r‘m - Pk)(lIlT(zk,\rn—l) - ‘I{T(zk—‘r?n))
= (Pk+m - Pk)(lI'T)’(zfc+m + g(zk+m - Zk‘m——l))(zk+m - zk,m—l);

where 0 < # < 1. Let arm = [(Pewm — Pl ®T) (2 + zeam — Zawn-1))]]-
Assumptions (A1), (A2) and (A5) guarantee that ay,, ~ 0 uniformly in m € Ny as

k — oo and finally

|l Zkmm — Zhtmll < CkmilZem—1 = Zktml].
O

The rate of convergence of the multilevel augmentation method is now discussed.
We utilize the idea of a majorization sequence introduced in [11]. A sequence of
nonnegative numbers v,, n € Ny, is called a major'ization sequence of F,, n € Ny, if
v = By, for all n € Ny and there exists a positive integer N, and a positive constant

o such that for n > N,

Yr+l 2 o
’Yﬂ
For the wavelet collocation method described in Section IV.1.1, it is known (the-

orem 5.2 {11]) that the majorization constant can be selected as

1 ;
sllelhe (115)

Fn = C

where z € W,.5(E), r is the order of the wavelet and c is independent of n such that
E,. < .. Proof of the following theorem is included for completeness (see Theorem
3.3 [11}). '
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Theorem IV.3.3. Let z be an wolated solulion of (85) and lei v, n € Ny e a
majorization sequence of B, n € Ng. Assume that I is not an eigenvalue of (PT)(2).
Then there ewists o positive constant p and a positive constanl N such thet for all
k> N and m € Ny, '

2 = zemll < (P4 1)Verm. (116)
Proof. We apply induction on m. The estimate clearly holds with m = 0. Suppose
that {(116) holds for 7n—1. Then, using the inductive Hypot_hesis and the majorizéttion
property, '

”zk,m—l — Zram|] < ||Zk,m-1 - 3“ .‘f‘l_||zk+m -~ 2|
S o+ EE) et
Choosing N large enough that for £ > N, Lemma V.22 holds and that axm{p +
*‘%1) < 1, we get
| zkm — Zkgmll € Yetm.

Finally, _
2 = 2l < Iz — el + 2im — 2 < (04 Do

D .
IV.3.1 Discrete Multilevel Augmentation method for Hammerstein
equation:

In this subsection, a discrete version of the multilevel augmentation method is de-
scribed. Recall the functionals 4; € X*, the dual space of X = L*°([), and the
corresponding interpolation functions w;; € X. Here, using the Hahn-Banach theo-

rem, we may assume X* to be the dual of C{[}, see [8]. We let

Xo = span{wo; : § € Zuy}, Lo =span{fo;: j € Zug)},

W, =span{w;; : 7 € Zyw}, VYi=span{ly;:j€ Zyy), >0,
and '
X, =span{w;;: (i,5) € Up}, L, =span{f,: (i,j) € U}, n> Ny

With the projection P, defined in (84), for all x € X and for all ¢ € L,, we have
% ¢,z — P,x >» = 0. This implies the decomposition '

H-Jn-l—l = ]Ln @ VTL-HI:
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and
Lk—l—'m = ]Lk & vk,m:

where Vk,m - vk-g—] & V.ﬁ;+m-

For any v € X¢4m, we have a unique expansion

v = E Vi Wy 4.

(élj)EUkJ.-m

The vector v = [v;; : (4,5} € Upim|® represents ». Thus, for solution z ., of
(113), its representation vector is given by Zym = [(Zkm)is : (8,5} € Ukym)” - Setting
Ut := Uiy \ Uk, we oblain that

Uk,m = {(E:J) : j E.Zw{i}:i < Z’k-ﬁ-m-ﬁ-l \Zk-i-l}‘ )

Consequently, we have the represen‘aations

Zhm = DO (memliws; and 2l = Y (zem)ijwise

(.)€l (53R

Algorithm?2: The Multilevel Augmentation Method:

A Discrete Form

Let & be a fixed positive integer.

Stepl: Solve the nonlinear system
< E;‘f,j!, Z (Zk)g?ng,j =& E@r,jr., \IJ f + I( Z (zk)%-‘jw%-‘j >‘>,
(#)EUx - (EEx

for (‘.‘E",j,) € Uy, and for z; := [(zk)z',j : (.’,j) = Uk]T. .

Let zyp =2z and [ := 1.
Step2: Solve the linear system

Koy D (Figwiy » =K by, U(f+ Kzgya) >, (0,5 € Uy
(4.7)El

- S H ._ Ry oo
to obtain z;}; and define z; '= 3" sep, (2 )i Wiy



86

Step3: Solve the nonlinear system

<& gé’,j’, Z (zic‘l)‘f.jwi.-j + Zﬁi e = f._;:__ja,‘l’ (f+ K ( z (zfc:j),;rjma-‘j + ZEI)) 2,

(4,716l el

(7, 3') € Ux to obtain zy, = [(2},)s; 1 (1,7) € U™
Define
gm0 ok )igwiy

REFISN
and

Zgy = ziji + z;"}
Stepd: Set [+ I+ 1 and go back to Step 2 until [ = m.
Stepﬁ: Obtain the approximation solution of w, from

Up 1= f =+ sz,m-

In order to solve the nonlinear equation in Step 3, we use the Newton method
. and apply the block truncation strategy described in section IV.2. This establishes .

a fast multilevel augmentation method for Hammerstein equations.
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The numerical experiments of the multilevel augmentation method to solve the
Hammerstein cquation are presented below.

Denocte

e}
8;1 = H’U, - uk,m”D,oo:. R.;l = 10g2 J;h‘ ]
_ . €2

- é:;l
0,00, R;L = 10g2 —; H
€ns2

where ug., is the multilevel augmentation solution with fixed & and 'ﬁ;‘m is the

éh. = ||T..r: - ﬁ;:m]

compressed multilevel augmentation solution.

Example IV.3.4. Congider the equation

-u.(t) - -/0 sin(s + #) cos(log{u(s}))ds = f(1), t € [0,1],

where f{#} is chosen so that the exact solution is u(t) = exp(t).

TABLE 20: Computational results of Hammerstein equation for Example IV.3.4.

full collocation solution compressed collocation solution
f(?l) 2h Rh CT éh Fih E’H}:
16 | 2.907214¢-4 0.267 2.907214c-4 0.290

32 | 7.271394e-5 | 2.00 [ 1.031 7.271390e-5 | 2.00 0.049

64 | 1.818057e-5 | 2.00 1 4.219 1.818049¢-5 | 2.00 3.212
128 | 4.545257e-6 { 2.00 | 16.766 | 4.545178e-6 | 2.00 10.453
256 | 1.136307e-6 | 2.00 | 67.557 | 1.136227e-6 | 2.00 34.085
512 | 2.840621e-7 | 2.00 | 271.659 | 2.839310e-7 | 2.00 113.927
1024 | 7.100113e-8 | 2.00 | 1088.084 | 7.394344e-8 | 1.94 [ 398.177

Multilevel Augmentation schemes when & = 3

full multilevel solution compressed multilevel solution
m | f(n) e, R, | CT g, R, CT
0| 16 |2.907214e-4 | (0.294 | 2.907214e-4 0.301
1] 32 | 72741185 (2.00 | 0.934 |7.274116e-5 | 2.00 0.864
21 64 | 1.818908e-5|2.00 | 3.334 | 1.818901e-5 | 2.00 2.342
3 | 128 | 4.547493e-6 | 2.00 | 12.735 | 4.547414e-6 | 2.00 6.240
4 | 256 | 1.136873e-6 | 2.00 | 50.140 | 1.136792c-6 | 2.00 | 16.194
5.| 512 | 2.842040e-7 | 2.00 | 200.264 | 2.84122%-7 | 2.00 [ 41.490
6 | 1024 | 7.404369e-8 | 1.94 | B00.396 | 7.397767e-8 | 1.94 | 105.701
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Example IV.3.5. Consider the equation

u{t) — fo sin{m(s 4 £))u*(s)ds = f(t), t€[0,1],

where f(t) is chosen so that the exact solution is u(f) = sin(mt).

TABLE 21: Computational resnlts of Hammerstein equation for Example IV.3.5.

full collocation solution compressed collocation solution
f(n) Eh Rh CT . é;-,, ﬁh é‘i{:
16 | 3.119330e-3 © 0293 3.119330e-3 0.286

32 | 7.737703e-4 | 2.01 1.123 | 7.733855¢-4 | 2.01 1.025
64 | 1.930683e-4 | 200 | 4.492 1.92201%-4 | 2.01 3.536
128 | 4.824368e-5 | 2.00 | 17.964 | 4.737521e-5 | 2.02 11.879
256 | 1.205938e-5 | 2.00 | 72516 | 1.117841e-5 ! 2.08 38.117
512 [ 3.014675e-6 [ 2.00 | 288.766 | 2.167331e-6 | 2.37 129,749
1024 § 7.536243e-7 | 2.00 | 1161.637 | 4.791776e-7 | 2.18 457.543

Multilevel Augmentation schemes when k = 3

full multilevel soluticn compressed multilevel solution
Fn) e, R, | cT e R | T
16 | 3.119330e-3 0.310 | 3.119330e-3 0.307

32 | 7.474600e-4 | 2.06 | 1.004 | 7.471047e-4 | 2.06 0.894

64 | 1.853357e-4 | 2.01 | 3.460 | 1.845625e-4 | 2.02 2.433
128 | 4.623852e-5 § 2.00 | 13.016 | 4.538137e-5 | 2.02 6.419
296 | 1.155368e-5 [ 2.00 | 51.414 | 1.068286e-5 | 2.09 16.655
512 | 2.887972e-6 | 2.00 | 205.567 | 2.055478e-6 | 2.38 42.378
1024 ; 7.130420e-7 | 2.02 | 822.314 | 5.026841e-7 | 2.03 | 107.972

Do W= S| F

For Example IV.3.4 and IV.3.5, we see that the computing time of. the compressed
multilevel augmentation solutions is less than one-tenth of the corﬁputing time of the
full colloéatiOn solutions when solving the nonlinear equation with smooth kernel. It
is the most efficient numerical method among the ones compared and it also preserves

the order of accuracy.



Example I'V.3.6. Consider the equation

1
u(t) — ] log |s — tju(s)ds =
n .

1),

£ €[0,1],

where f(#) is chosen so that the exact solution is u(f) = /%.
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TABLE 22: Computational results of Hammerstein equation for Example IV.3.6.

full collocation solution compressed collocation solution
f(nJ Ep Rh CT éh ﬁh d}_f
16 | 8.489815e-4 0.156 | 8.489815e-4 0.158
32 | 1.949720e¢-4 | 2.12 | 0.619 | 1.949640e-4 | 2.12 0.588
64 | 4.655164c-5 | 2.07 | - 2.439 1 4.653352¢-5 | 2.07 2.228
128 | 1.157152e-5 | 2.01 | 9.697 | 1.154975e-5 | 2.01 8.242
256 | 2.857055e-6 | 2.02 | 38.861 | 2.834520e-6 | 2.03 31.851
512 | 7.097962e-7 | 2.01 | 155.001 | 6.876834e-7 | 2.04 123.318
1024  2.220791e-7 | 1.68 | 620.824 | 2.265562e-7 | 1.60 482.955
Multilevel Augmentation schemes when &k = 3
full multilevel solution “compressed multilevel solution
m | fn) ¢, R | CT g, R | T
0| 16 | 8.489815e-4 0.157 | 8.480815e-4 0.152
1| 32 | 1.763337e-4 | 2.27 | 0.395 | 1.763280e-4 | 2.27 0.375
2} 64 |[4.56998le-5{1.95| 0.976 | 4.568140¢-5 | 1.95 0.789
3 1 128 [ 1.118496e-5 | 2.03 | 2.948 [ 1.116352e-5 | 2.03 1.765
4 1 256 | 2.832751e-6 | 1.95 | 10.798 | 2.810179e-6 | 1.99 4.588
5 | 512 | 6.997331e-7 | 2.02 | 46.039 | 6.776315e-7 | 2.05 | 17.527
6 | 1024 | 2.475600e-7 | 1.50 | 215.279 | 2.415896e-7 | 1.49 90.497




Example IV.3.7. Consider the equation

u(t).— /ﬂ log |s — t|u®(s)ds = f(1), t<][0,1],

where f(t) is chosen so that the exact solution is u(t) = ¢3/2.
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TABLE 23: Computational results of Hammerstein equation for Example 1V.3.7.

full collocation solution compressed collocation solution
f(n) . £y Rh CT 'éh : ﬁéh 537;
16 | 1.339395e-3 0.152" [ 1.339395¢e-3 0.153
32 | 2.926967c-4 | 2.19 | 0.600 [ 2.926941e-4 | 2.19 0.580
64 | 6.783471e-b | 2.11 | 2.445 | 6.782715e-5 | 2.11 2.253
128 | 1.632947e-5 | 2.05 | 9.526 | 1.631710e-5 | 2.05 8.397
256 | 4.018497e-6 | 2.02 | 38.435 | 4.007189%¢-6 | 2.02 32.336
512 | 9.960398e-7 | 2.01 | 154.430 | 9.841026e-7 | 2.02 124,945
1024 | 3.567405e-7 | 1.48 | 615.768 | 3.723903e-7 | 1.40 491.206
Multilevel Augmentation schemes when & =3
full multilevel sclution compressed multilevel solution
m | fln) e, R, | cT & | R | Cr
0 16 | 1.339395e-3 0.157 | 1.339395e-3 0.156
1| 32 |2411157e-4 | 247 | 0398 | 2.411149e-4 | 2.47 0.382
2| 64 |[6.7724324e-5 | 1.84 | 1.016 | 6.723707e-5 | 1.84 0.789
3 | 128 [ 1.531932e-5 | 2.13 | 2.992 | 1.530542e-5 | 2.13 1.773
4 | 256 | 3.953759%-6 | 1.95 | 10.836 | 3.942501e-6 | 1.96 4,580
5 1 512 [ 9.808793e-T | 2.01 | 46,077 | 9.689500e-7 | 2.02 17.473
6 | 1024 [ 3.797881e-7 | 1.37 } 215.179 | 3.738184e-7 | 1.37 { 90.79%8

For Example IV.3.6 and IV.3.7, we see that the computing time of the compressed

multilevel augmentation solutions is less than one-fifth of the computing time of the

full collecation selutions when solving the nonlinear equation with weakly singn-

lar kernel. Therefore, the multilevel augmentation method is the fastest numerical

algorithm.
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CHAPTER V

CONCLUSIONS AND FUTURE WORK"

In this dissertation, two separately major topics concerning the nonlincar Hammer-
stein equation have been investigated. First, we discussed several acceleration tech-
niques based upon the interpolation and eerapolation of the numerical solution of
the Hammerstein equation arising out of the projection methods; collocation and
Galerkin. Numerical examples confirm the validity of the acceleration techniques.
‘Most of the acceleration techniques reported in this dissertation providec a means to
oblain more accurate approximation to the solution of a nonlinear equation without
increasing the size of nonlinear system. A second topic which we discussed in this
dissertation is the solution process for the nonlinear Hammerstein equation based
on the linearization technique along with a cla,.ss of multiscale wavelets bases. This
led us to fast wavelet-collocation method of Chapter I.V. The fast wavelet-collocation
method is based upon the block truncation strategy and it was explored in concert

with the multilevel augmentation method.

V.1 CONCLUSIONS

TABLE 24 and TABLE 25 recapitulate the superconvergence results in the post-
acceleration techniques deseribed in Chapter I when the technique is applied to a
collocation solution and a Galerkin solution, respectively, when the kernel is smooth.
We recall that the last item Eztrapolation Scheme corresponds to the global extrap-

olation or the extrapolation of iterated projection solutions.

TABLE 24: Summary of the collocation techniques.
Numerical Implementation | Numerical Approximation Error

Collocation Scheme [[v* —illoee = OGR™)
Iterative Scheme Hul — @l = O(R¥2)
Interpolation Scheme HEM ! —iflpee = O(RT*2)

17257 %0" ~ o oo,

Extrapolation Scheme hjp
or [[9; " — @llo.o

= O ( h_2r+4)

Note that # is an isolated solution of the Hammerstein equation.
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TABLE 25: Summary of the Galerkin techniques.

Nurnerical Implementation | Numerical Approximation Error
Galerkin Scheme {[u" —dfloe = O
Iterative Scheme ||uh. —@llga = O

Interpolation Scheme | — dloe = O(h"”)
Extrapolation Scheme ]|u,?t/ ‘_ #lloz = O(RTTY

In addition, an acceleration technique based upon the interpolation of weakly
singular Hammerstein equations has also been presented, see numerical results in
Example II1.2.2 and Example II1.2.3. Furthermore, the post-processed interpolation
techniques was extended to two-dimensional nonlinear integral equations. Similar
nimmerical unprovement are also found in this case. For more deta.l]s see Example
I11.2.4. This brings a number of interesting and 1mportant issues of post processing
technique via interpolation for the multi-dimensional integral equation. These issues
will be addressed in the future. Brief comparisons of the post-processing technigues
discussed in Chapter III are given below. '

First, we found that the iterative method has a higher computational complexity
than the interpolation method duc primarily to the fact that the iterative process
requires the calculation of the solution under a nonlinear integral term. - This must
be done numerically utilizing efficient quadratures. For an equation with weakly
singular kernel, a class of graded meshes generated by the singularity of the kernel
has to be used to approximate the nonlinear integral and this increases greatly the
complexity of the calculation involved in the iterative methods.

For methods based upon interpolation, post-processing techniques are designed
to obtain an approximation by interpolating the existing numerical solution over two |
- successive intervals. This method therefore needs only the addition and multipli-
cation of simple closed forms and thus there is no need for numerical quadratures.
Therefore, even though the interpolation and iterated post-processing methods have
the same convergence rate, the interpolation technique gives simpler caleulation than
the iterated technique to attain the same accuracy in approximation. Numerical re-
sults for the collocation and Galerkin solutions based upon the interpolation are
shown in Example I111.2.1 and Example II1.5.1, respectively.

Finally, we studied the post-processing technique based upon the extrapolation of

the projection solution. This approach requires an additional calculation performed



93

on the iterative or on the interpolation solutions. The cost of the additional cal-
culation is rainimal. The global extrapolation requires first an interpolation of the
projection solution over three consecutive intervals. Then a post-processed solution is
obtained by using the Richardson extrapolation scheme. This extrapolation scheme
~ has been derived from Theorem I11.3.1. An extrapolation of the iterated solution
also requires Richardson extrapolation as established from Theorem I11.6.1. Compu-
tational complexitics of completing various extrapolation schemes were found to be
dependent on the difficulty of cither interpolation or iteration technique associated
with the extrapolation. In summary, Table 24, Table 25 and the numerical results in
Chapter 111 (sce Exarhple 111.3.2, II1.4.1 and ITL.6.3) reveal that the extrapolation of
the prejection solutions gives the highest order of accuracy.

In the sccond half of this disscrtation, we addressed the issuc pertaining to an cfli-
cient solution process of solving numerically for a solution of nonlinear Hammerstein
equation. When the numerical accuracy must be enhanced, 61’10 is required to use
approximate subspaces of higher dimensions. Thus, it demands a significantly large
amount of computational effort. Therefore, in order to reduce the computational cost
of both computing tirme and computer memory, we established fast algorithms using
wavelet bases. The multiscale piecewise polynomial wavelets and the correspond-
ing collocation functionals were reviewed in Chapter II. The fast wavelet-collocation
method was implemented to solve linear as well as nonlinear integral equations. As
for the linear equation with weakly singular kernel, the sparsity of the corresponding
matrix occurs when using the block truncation strategy with truncation parameters
defined by Theorem IV.1.4. The numerical results show that the collocation method
and the fast wavelet-collocation method have the same optimal rate of convergence.
Here we also discovered that computing time varies according to the size of param-
eters a and v in Theorem 1V.1.4 (see Example IV.1.5). Example IV.1.7 shows that
the fast wavelet-collocation method is much quicker to execute than the traditional
collocation method. '

In Chapter IV, the wavelet-collocation method for the Hammerstein equation
was established which uses a linearization technique. The Newton method is used
to solve the system of nonlinear equations. A block truncation strategy was used in
building the Jacobian matrix at each iteration of the Newton method. This gives
each Jacobian matrix a sparse structure which results in a fast wavelet-collocation
algorithm, Examples V.23 - IIV..Q.G exhibit the effectiveness of the algorithm and
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IFFIG. 16 shows the structure of this sparsity. When the corresponding nonlineaf 8yS-
tem is much larger, it was shown that the multilevel augmentation scheme reduces
the problem to a séque_nce of calculations with smaller scales. In other words, the
multilevel augmentation technique is to solve the nonlinear system at a lower dimen-
sion with fixed Jacobian matrix and correct the solution by adding a corrected term
from a higher resolution level. This method leads us to a faster numerical t,eéhnique
while still preserving the order of convergence of the approximation. Uniqueness
and existence of the solution of the wavelet-collocation method and the multilevel
augmentation method are stated in Theorem IV.2.1 and Lemma IV.3.1, respectively..
Also, the convergence of the the wavelet-collocation methed and the multilevel aug-
mentation method are proved in Theorem 1V.2.5 and Theorem IV.3.3, respectively.
In nurerical exﬁ:eriments reported in Examples IV.3.4 - IV.3.7, we see fhat the pro-
posed fast multilevel angmentation method gives the fastest computing time when
compared with the traditional collocation method and the multilevel augmentation
method without the compression strategy. .

All numerical experiments in this dissertation were done with the Matlab program

and they were run on a personal computer with 2.0GHz CPU and 4 GB memory.

V.2 FUTURE WORK

We list ‘below several interesting research topics which arose while the author was

engaged in this dissertation work. These topicé will be pursued in the future.

1. We intend to obtain global extrapolation results for nonlinear Hammerstien

. integral equation with weakly singular kernel.

2. We intend to inipiement the post-processing techniques to solve the multi-

dimensional Hammerstein equation.

3. We intend to extend the wavelet-collocation method, based on the linearization

technique, to multi-dimensional Hammerstein equations.

4. Weintend to study how to implement the post-processing techniques on wavelet

collocation solutions.

5. We intend to apply multiscale wavelets to solving nonlinear integral equations
by using other numerical schemes such as the degenerate kernel method and
the Nysirem method. '
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APPENDIX A

NUMERICAL SCHEMES

Al GAUSSIAN QUADRATURE

A Caussian quadrature approximates the definite integral of a function.
In particular, the integral of the form f_11 f(z)dx, can be approximated efficiently
with the weight function W{z) = 1 and using the Legendre Gaussian. quadrature.

An n-point Legendre Gaussian quadrature formula is obtained as

22n+1 (n1)4 .

when the abscissas or zeros of Legendre polynomials x; and weight factors w, are

listed below.

TABLE 26: Lagrange Quadrature coeflicients for n =4 to 8.

T

:|:$1'

wy

4

D

0.339981043584856
0.861136311594053
{1.0000C0000000000
0.538469310105683
0.906179845938664
0.238619186083197
0.661209386466265
0.932469514203152
0.000000000000000
0.405845151377397
0.741531185599394
0.949107912342759
0.183434642495650

0.525532409916329 .

(.796666477413627
0.960289856497536

0.652145154862546
0.347854845137454
0.568888838888889
0.478628670499366
0.236926885056189
0.467913934572691
0.360761573048139
(0.171324492379170.
0.417959183673469
(.381830050505119
0.279705391489277
0.129484966168870
0.362683783378362
0.313706645877887
0.222381034453374
0.101228536290376

An integral over an arbitrary interval [a, b] can be computed by Gaussian quadra-

ture by simply transforming the interval [a,}] into [—1, 1]. More specifically,

b : 1 ' o
/a F(z)dz = h;a.-/_lf(b;ﬂr+u.—2i—f)) iz,



and thus

[ stz =

with the error term

wlf( ¢ -+a—;——b)+Em
i=1 .

(b G,)Qn-i-l(n[)
(2 + D{2n)1f?

Fn = 7o), €€ (a,b).

Next, to apply Gaussian quadrature to double integral written in the form

d(m)
/ / Sz, y)dyde
e(z)

first requircs tranélating, for cach @ in {a,b], the interval [¢(z),d(z)] to [-1,1] and
then_applying Gaussian quadrature. This results in the formula '

“ ydx P d(z) —clz) § o f (d(w)40(x))x3-+d(:c)+c(x)
/ /{I) (z, y}dydz N/a 7 ; vy f (--: . > ) dr, (117)

‘where, as before, the abscissas z; and coefficients w; come from TABLE 26. Now
the interval [a,b] is translated to [—1, 1] and Gaussian quadrature is applied to ap-

proximate the integral on the right side of equation {(117).

A.2 LAGRANGE INTERPOLATION

The Lagrange interpo]atidn polynomial P, _{#} is the polynomial of degree n — 1
that passes through n prescribed points. Assuming that (z1, y1), (Z2, %2}, - - -+ (Tr; Ya)

are given distinct points, there exists the unique polynomial £, | which satisfics

Poiz;) = flzy), V¥i=12...,n

The formula is given by
Paoi(z) = Zyj

where

— X

L(z) = Ha —
k=17 k.
kZEy

Note that L;(x) has the property that

1 k=4 '
Li{ae) = Sy = T oVk=1,..,n
0 k#j



100

VITA

Khomsan Neamprem

Department of Computational and Applied Mathematics
0Old Dominion University

Norfolk, VA 23529

PREVIOUS DEGREES:

B.S. Applied Mathematics, 2003, KMITNB, Bangkok, Thailand, GPA 3.60 (first-
class honours) : _
M.S. Applied Mathematics, 2006, Mahidol University, Bangkok, Thailand, GPA 3.50,
Thesis: Degenerate kernel method for Hammerstein integral equations : wavelets ap-
plication |

Advisor: Dr. Boriboon Novaprateep

SCHOLARSHIPS:

The Commission on Higher Education Staff Development Project, Thailand, 2003-
2005 |
The Higher Educational Strategié Scholarships for Froutier Research Network (SFR
Network), Thailand, 2006-2010 | |

WORKS: _
Graduated Teaching Assistance, Mahidol University, Thailand, 2005-2006
Graduated Teaching Assistance, Old Dominion University, USA, 2009-2010

JOURNAL PUBLICATION: _
Neamprem K. and Kaneko H. (in press), Acceleration Techniques by Post-Processing
-of Numerical Solutions of Hammerstein Equation, Journal of Integral Equations and

Applications.

Typeset using ETEX.



	Old Dominion University
	ODU Digital Commons
	Summer 2010

	Post-Processing Techniques and Wavelet Applications for Hammerstein Integral Equations
	Khomsan Neamprem
	Recommended Citation


	ProQuest Dissertations

