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ABSTRACT 

POST-PROCESSING TECHNIQUES AND WAVELET 

APPLICATIONS FOR HAMMERSTEIN INTEGRAL 

EQUATIONS 

Khomsan Neamprem 

Old Dominion University, 2010 

Director: Dr. Hideaki Kaneko 

This dissertation is focused on the varieties of numerical solutions of nonlinear Ham-

merstein integral equations. In the first part of this dissertation, several acceleration 

techniques for post-processed solutions of the Hammerstein equation are discussed. 

The post-processing techniques are implemented based on interpolation and extrap-

olation. In this connection, we generalize the results in [29] and [28] to nonlinear 

integral equations of the Hammerstein type. Post-processed collocation solutions 

are shown to exhibit better accuracy. Moreover, an extrapolation technique for the 

Galerkin solution of Hammerstein equation is also obtained. This result appears new 

even in the setting of the linear Fredholm equation. 

In the second half of this dissertation, the wavelet-collocation technique of solv-

ing nonlinear Hammerstein integral equation is discussed. The main objective is 

to establish a fast wavelet-collocation method for Hammerstein equation by using a 

'linearization' technique. The sparsity in the Jacobian matrix takes place in the fast 

wavelet-collocation method for Hammerstein equation with smooth as well as weakly 

singular kernels. A fast algorithm is based upon the block truncation strategy which 

was recently proposed in [10]. A multilevel augmentation method for the linearized 

Hammerstein equation is subsequently proposed which further accelerates the solu-

tion process while maintaining the order of convergence. Numerical examples are 

given throughout this dissertation. 
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CHAPTER I 

INTRODUCTION 

Many physical problems in our daily life can be formulated in terms of mathematical 

models via differential or integral equations. In most cases, a solution of a differential 

equation or an integral equation is found by using a numerical method. This disserta-

tion is focused on solving a class of nonlinear integral equations called Hammerstein 

equations. An integral equation occurs as a reformulation of a differential equation. 

In particular, when a two-point boundary value problem contains a nonlinear forc-

ing term, its integral reformulation is the Hammerstein equation. Also, the Green's 

formula is one of the well-known reformulation techniques to convert a differential 

equation to an integral equation. Integral equations can be classified into two types, 

linear and nonlinear. As a basic background and for the purpose of introduction 

and motivation, the linear Fredholm integral equation of the second kind will be pre-

sented first. This will be followed by the nonlinear integral Hammerstien equation. 

New solution techniques presented in this dissertation are applied to this equation. 

This dissertation presents two approaches, broadly classified, to solve nonlinear 

integral equations numerically. First, we present several methods to improve the 

accuracy of numerical solution by post-processing techniques. Each one of the post-

processing techniques results in numerical solutions with higher order accuracies and 

they can be obtained with a relatively inexpensive numerical cost. Second in this 

dissertation, we focus our attention on the issue pertaining to the reduction of the 

computational cost both in terms of the computing time and the computer memory. 

Here, a class of wavelet basis will be applied. A multiresolution structure embedded in 

the wavelet basis allows us to employ a truncation strategy which eliminates a large 

number of elements in the corresponding Jacobian matrix. We will also establish 

an augmentation method for the nonlinear Hammerstein equation. A multilevel 

augmentation method, whose idea was originally presented in the paper [7], uses the 

multiresolution structure of the wavelet basis to obtain a numerical solution at a finer 

resolution level by correcting a coarser level solution by adding correction term. This 

results in an overall reduction of computational cost to the solution process while 

maintaining the order of accuracy. 
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A general form of the Fredholm integral equation of the second kind is 

u(t)- k(s,t)u(s)ds = f(t), teD (1) 
JD 

where D is a closed bounded set in Mm, m > 1. The kernel k and the forcing term / 

are known functions and u is the unknown function to be determined. The historical 

background of (1) can be found in Fredholm [13] and Bernkopf [5]. 

During the last four decades or so, various numerical methods for solving (1) were 

developed. Among them, the well-known and frequently used numerical approaches 

are the methods of degenerate kernel, collocation, Galerkin and Nystrom. Their 

methodologies are compiled in a recent monograph by Atkinson [3]. Also, additional 

expositions in both theoretical and analytical details of (1) can be found in Kress [22], 

Atkinson and Han [4] and Vanikko [34]. In this dissertation, we will be concerned 

with the collocation and Galerkin methods. 

In order to enhance the order of accuracy of numerical solutions of the linear 

Fredholm equation, a number of techniques was presented in [28] and [29]. These 

techniques deal directly with the numerical solution which is obtained by a tra-

ditional method and by post-processing it by way of interpolation and extrapola-

tion. Post-processing by interpolation of the collocation solutions of the equation 

(1) was constructed and also global extrapolation of the collocation method was 

obtained in [29]. Additionally, the interpolation of the Galerkin solutions of the 

Volterra integral equations can be found in the same paper. Lin et al. [28] con-

structed the extrapolation of iterated collocation solutions of the Fredholm equation. 

Post-processed solutions show higher rates of convergence, a phenomenon commonly 

known as superconvergence. The results in [29] and [28] motivated the author to ex-

tend the same techniques to the nonlinear Hammerstein equation. This will be done 

in Chapter III. We note that an extrapolation technique to accelerate the accuracy 

of the iterated Galerkin solution for the nonlinear Hammerstein equation presented 

in Chapter III appears new even in the setting of the linear Freholm equation. 

In approximating the solution of a linear integral equation using a numerical 

method mentioned above, it is always the case that a large system of linear equations 

must be solved. A matrix involved in the system is generally dense and therefore 

it is expensive to solve, particularly in the case of a multivariate integral equation. 
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Moreover, if one requires a higher order accuracy in the numerical solution, a standard 

way to achieve this is to increase the order of the basis functions. This results in a 

much larger system to solve which leads to a higher computational cost. In a series of 

recent papers, ([1], [2], [30] and references cited therein), a class of wavelet functions 

was used and applied to solving the equation (1). One of the advantages of the use 

of wavelet functions in this environment is due to the fact that the application of 

the wavelets results in a coefficient matrix which is sparse. Further work in this area 

can be found in Micchelli and Xu [31] and in Chen et al. [6], which is followed by 

a paper [10] by Chen et al. in which a fast collocation algorithm for solving (1) is 

presented. The multiscale piecewise linear, quadratic and cubic polynomial functions 

and the corresponding multiscale collocation functionals were constructed in [10]. In 

this dissertation, the piecewise linear polynomial wavelet will be used exclusively to 

demonstrate the validity of new theorems. 

The integral equation which this dissertation primarily addresses is the nonlinear 

Hammerstein integral equation 

u{t) - J k(s, t)ip(s, u{s))ds = f(t), te D (2) 
JD 

where the functions k, f and ijj are known and u is an unknown function to be 

determined. As stated earlier, this equation arises as a reformulation of two-point 

boundary value problems with a certain nonlinear boundary condition. In equation 

(2), note that solution u appears under the nonlinear term tp. The degenerate kernel 

method [20], the collocation method [25], the Galerkin method [21] and the Nystrom 

method [26] methods were successfully used to find numerical solutions of this non-

linear equation. When applying these methods to equation (2), a nonlinear system 

of algebraic equation will take place and implementation of solving this nonlinear 

system is much more difficult than solving the linear system for the Fredholm case. 

We will show in Chapter IV of this dissertation that sparsity can be preserved in the 

Jacobian matrices which are part of the Newton method. 

As part of the post-processing techniques, Kaneko et al. established the iterative 

methods for the Galerkin method and the collocation method in [21] and [18], 

respectively. The iterative method, when applied to the collocation as well as to 

the Galerkin method, double the order of accuracy provided that the solution and 

the kernel of the integral equations are sufficiently smooth. Iterative solutions are 
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obtained by iterations of a numerical solution through an integral operator. This 

is an excellent method to improve the accuracy of numerical approximation, since, 

as stated earlier, doubling the order of basis functions to attain the same order of 

accuracy results in a much larger system of nonlinear equations. On the other hand, 

the iterative methods present accuracy enhancement techniques which avoid this 

larger system and thus are computationally more efficient. In this study, the post-

processing techniques based upon the interpolation and extrapolation are developed 

and applied to nonlinear equation (2). These techniques result in numerical solutions 

with higher accuracy but also are obtained with less expensive computational cost 

than the iterative method. In addition, we also discuss two other techniques as 

parts of the post-processing methods. We establish asymptotic orders of the iterated 

solutions, both the Galerkin and collocation method, for the nonlinear Hammerstein 

equation (2). Such results on the asymptotic errors lend naturally to the Richardson 

extrapolation method of accelerating the order of accuracy. We will see that this 

additional step of extrapolation brings an enhancement of the order of accuracy by 

two for the Galerkin and the collocation iterated methods. 

In a recent paper, Chen et al. [9] established a new approach to solving an op-

erator equation which is called multilevel augmentation method. Using a class of 

wavelet functions as a basis of computation and taking advantage of its multireso-

lution structure, the new method calls for obtaining a numerical solution at a finer 

resolution level by adding a correction term to a solution at a coarser level. The ap-

proach produces a numerical solution of high accuracy without solving a large system 

of linear equations. Following the paper [9], Chen et al. introduced a similar multi-

level augmentation method to approximate the nonlinear Hammerstein equation in 

[11]. They obtained an order of convergence which is optimal and the computing 

time of the proposed method is less than the computing time of the traditional pro-

jection methods. In the second half of this dissertation, we implement a fast wavelet 

collocation algorithm to solve the nonlinear Hammerstein equation and establish a 

multilevel augmentation method for the equation. What is done differently in this 

paper from [11] is that, due to a 'linearization' of equation (2), the sparsity which 

was obtained by the application of the wavelets to linear equations now manifest 

in the Jacobian matrices and the corresponding block truncation strategy proposed 

in [10] can be implemented to obtain a fast wavelet-collocation algorithm for the 

Hammerstein equation. This point will be demonstrated both on the Hammerstein 
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equations with smooth as well as weakly singular kernels. 

In summary, the main goals of this dissertation are as follows. A number of 

post-processing techniques which can be used to enhance the accuracy of numerical 

solutions of nonlinear integral equations of the Hammerstein type will be established. 

One type of the methods relies on interpolation and another relies on extrapolation. 

A second phase of this dissertation is a wavelet collocation method to acquire a fast 

algorithm to solve the Hammerstein equation. The class of piecewise polynomial 

wavelets constructed by Chen et al. [10] will be used. Next, a multilevel augmen-

tation scheme is created in a similar way to [11] but this method is derived from a 

different operator form and it is a fast algorithm due to the preserving of the sparsity 

structure within the framework of a nonlinear solver. 

This dissertation is organized into five chapters. After the current introductory 

chapter, we introduce necessary theoretical background in Chapter II which helps 

the reader to follow the materials in the ensuing chapters. This includes a method 

of construction of piecewise linear wavelets and that of the corresponding collocation 

functionals. Moreover, the collocation and the Galerkin methods which are parts of 

the projection method are also discussed in Chapter II. In Chapter III, we present sev-

eral post-processing techniques of the collocation solutions. Additionally, the inter-

polation and extrapolation techniques for the Galerkin solutions of the Hammerstein 

equation are also obtained. In Chapter IV, the wavelets defined in Chapter II are 

used to approximate the solution of the Hammerstein equation. A multilevel augmen-

tation is also discussed. Numerical results are interspersed throughout the Chapters 

III and IV. Finally, some conclusions, discussions and future research work will be 

presented in Chapter V. 
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Define kt(s) = k(s, t) for ( , s £ [0,1] to be the t section of k. We assume through-

out this paper, unless stated otherwise, the following conditions on k, f and ip: 

(Al ) l i m p * - M o o = 0, r e 10,1]; 

(A2) M = sup Jo \k(s,t)\ds < oo; 
te[o,i] 

(A3) / e C [ f l , l ] ; 

(A4) ip(s,x) is continuous in s G [0,1] and Lipschitz continuous in x G (-00,00), 

i.e., there exists a constant C\ > 0 for which 

[ip(s,xi) — 'ip(s,X2)\ < C\ \x\ — x2\ for all xi,x2 G (—00,00); 

(A5) the partial derivative T//0'1) of ip with respect to the second variable exists and 

is Lipschitz continuous, i.e., there exists a constant C2 > 0 such that 

\ipi0<1)(t,x1)-ip(°-1\t,x2)\ < C 2 | x i - X 2 | f o r al lx! ,x 2G (-00,00); 

(A6) fo rx€C[0 , l ] and ip(.,x(.)),^°^(.:x(.)) e C[0,1}. 

Additional assumptions will be given later as needed. 
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CHAPTER II 

NUMERICAL BACKGROUNDS AND WAVELETS 

This chapter is used to review two standard methods used to approximate the solu-

tion of linear and nonlinear integral equations as well as to review the recent results 

in the area of wavelets which is pertinent to this dissertation. The collocation and 

the Galerkin methods are two of the most commonly used methods of approximat-

ing the solution of integral equations. They are both classified as special cases of 

the projection method. In the area of wavelet analysis and its application to inte-

gral equations, the review is particularly focused on the recent discoveries in [6], [8] 

and [10]. In these papers, interpolation functionals and a class of wavelet functions 

are established. Subsequently, they are applied to obtain a fast wavelet-collocation 

algorithm for solving the Fredholm integral equation. 

II. 1 NUMERICAL METHODS FOR INTEGRAL EQUATIONS 

The Fredholm integral equation of the second kind is written in the general form as 

u(t) - / k{s, t)u(s)ds = f(t), t G [0,1], (3) 
Jo 

and the Hammerstein integral equation takes the following form 

u(t)- [ k(s,t)i/j(sMs))ds = f(t), te[0,l]. (4) 
Jo 

Here the kernel k(s,t), the forcing term / and the nonlinear term ip are known and 

the function u is to be determined. 

Denote 

Ku{t) := / k(s,t)u(s)ds, 
Jo 

and 

tf(u)(t):=tf(*,u(<)). 

Then equations (3) and (4) can be written in the operator form as 

u-Ku = f; (5) 

and 

u - K$(u) = f. (6) 
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With the conditions described at the end of Chapter I, K, K^ map a Banach space 

X into X. Usually, we choose X to be L°°[0,1] or C[a, b] for the collocation analysis 

and L2[a,b] to formulate the Galerkin method. 

To describe the method of projection, we let {Xn} be a sequence of subspaces in 

X with the closure of the union of all Xn equal to X, i.e. 

\Jxn = x. 
n>l 

and define Pn : X —> Xn be a projection. Unless the solution of (3) or (4) belongs to 

Xn, there would be a residual associated with an approximation un. Hence, for each 

un € Xn> residuals rn defined below are not zero; 

"fn : = / - ( / • - K)un, 

and 

rn := / - (/ - K*)un. 

The projection method finds a solution by requiring the residual to disappear under 

the projection Pn, i.e., 

Pnrn = 0. (7) 

If Pn is an interpolation projection, then it is the collocation method, whereas, 

if Pn is an orthogonal projection, then it defines the Galerkin method. Equation (7) 

reduces to 

for (5) and 

Un - PnKVUn = Pnf, Un e Xn, 

for (6). 

Let {b\, b2, • • •, bn} be a basis for Xn and assume that an approximate solution 

un € Xn of both integral equations can be written in the form 

n 

un(t) = ^2cA(t), 't e [0,1], (8) 

where {Q}™=I is a set of constants to be determined. 
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II. 1.1 Collocation Method 

For collocation, we set X = C[0,1] and Xn = span{6i,&2,- • • ,bn} where bi has an 

interpolation property. Namely, there exists a set of points -{tj}™=1 for which 

bi(tj) = 5i:j, i = l , . . . , n , j = l,...,n. 

This implies that for each i G l , 

n 

Pnx(t) = J2x(ti)bi(t). 

Thus, equation (7) becomes 

rn(tj) = 0, j = l , 2 , . . . , n . (9) 

When we substitute (8) into the Fredholm equation and apply (9) we get 

n n i>\ 

y^Cibiitj)-^^ k(s,tj)bi(s)ds = f(tj), j = l,2, . . . , n 

or 
n ,\ 

Cj - ] T °i / k(s> t3)bi{s)ds = f(tj), j = 1, 2 , . . . , n. 

This is a system of n linear equations with n unknown coefficients {CJ}™=1, 

Ac = f, 

where a^ = bi(tj) — JQ k(s, tj)bi(s)ds. It is known that this linear system has a unique 

solution if and only if det[6j(i,)] ^ 0. 

When the interpolation projection is applied to the nonlinear Hammerstien equa-

tion we obtain 
n ~i / n \ 

y^Cikitj) - 7 k(s,tj)ipis,^2cibi(s)\ds = f(tj), j = l,2,...,n 
i=i Jo \ i=i / 

Cj - / k(s,tj)ip I s, ^2 Cibi(s) 1 ds = f(tj) 

or 
pi ( j ^ \ 

,-), j = l,2,...,n. 

This is a system of n nonlinear equations with n unknown coefficients {Q}™=1. 

A nonlinear solver is used to find the solution {CJ}™=1. 
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I I . 1.2 G a l e r k i n M e t h o d 

To describe the Galerkin method, we let X be a Hilbert space with the inner product 

(•,•). In this subsection, we assume X = L2[0,1]. Let Xn C l b e a finite dimensional 

subspace of X and Pn : X —> Xn an orthogonal projection. Assume that Xn is 

spanned by {bj, j = 1 ,2 , . . . , n}. The Galerkin method, being a projection method, 

seeks solution by requiring (7), where Pn is the orthogonal projection onto Xn. This 

is equivalent to having the residual in the orthogonal complement of Xn in X. That 

is 

(rn,bj) = 0, J = 1,2, . . . , n . 

Equivalently, we have 

Y2 Ci(bi, bj) - ] T c^Kbi, bj) = (/, bj), j = 1,2,..., n 
i = l i = l 

which is 

Y]ci bi(t)bj(t)dt-^d / / k(s,t)bt{s)bj(t)dsdt = / f(t)b3(t)dt, 
i = 1 Jo 2=1 Jo Jo Jo 

1 < i, j < n. 

If {6i, 6 2 , . . . , bn} is an orthonormal basis then 

(bi,bj)= [ bi{t)bj{t)dt = 5ij 
Jo 

- V Q / / k{s,t)bi(s)bj(t)dsdt = f(t)bj(t)dt, 
i=1 Jo Jo Jo 

and therefore the system of linear equations becomes 

1 < i, j < n. 

For the nonlinear Hammerstein equation, a discretized Galerkin equation becomes 

J ^ C i / b^bji^dt - I A : ( s ,< )V ' [ s , ^c i & j ( s ) ) r f5 6j(t)dt 

= / f(t)bj(t)dt, l<i,j<n. 
Jo 

li {bj.j = 1,... ,n} is an orthonormal basis then the nonlinear system can be given 

as ' 

k(s,t)^ 5 , ^ C i 6 j ( s ) dsbj(t)dt = j f(t)bj(t)dt,l <i,j < n. 
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This nonlinear system is solved by a nonlinear system solver, such as the Newton 

method or the quasi-Newton method. 

Remarks: Matrices associated with the collocation method and the Galerkin 

method, when spline bases are used, are in general dense and computationally expen-

sive to establish and its corresponding systems of equations, linear and nonlinear, are 

expensive to solve. Matrices associated with the Galerkin method are more expansive 

to build than those of the collocation method, due primarily to the fact that each 

component of the matrix involves an calculation of a double integral. To attenuate 

the computational cost, we will see in Chapter IV that Certain sparseness can be 

obtained if wavelets are used to generate these matrices. 

II.2 WAVELETS 

In this section, we review necessary preliminary information which will be used to 

establish the wavelet collocation method for the nonlinear Hammerstein equation in 

Chapter IV. The wavelets have been used to solve a number of problems in several 

areas of science and engineering such as signal processing, image processing, computer 

graphics and approximation theory. The original construction of a class of wavelets 

by using translation and contraction of a function ip (t) was introduced by Grossman 

and Morlet [14], i.e. 

1>a,b(t) = \a~l,2H [-~] > a,beR, a^O. . 

Each wavelet construction is based on a multiresolution analysis. 

In the recent paper of Chen et al. [6], the concept of a refmable set was introduced 

which led to a set-theoretic multiresolution analysis. Subsequently, a construction 

of multiscale piecewise polynomial functions and its corresponding multiscale collo-

cation functional are established. It is helpful here to describe the definition of a 

multiresolution analysis and that of a refmable set. 
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II.2.1 Multiresolution analysis and Refinable set 

Definition II.2.1. [Multiresolution analysis] 

The function ^ is a multiresolution analysis of L2 (R) if there exists a nested sequence 

of closed subspaces {Xn}nez such that 

1. there exists </>(£) € X0 such that {<f>(t — I) : I € Z} is an orthonormal basis of 

XQ, 

2. Xn C Xn+i for all n £ Z, i.e., . . . C X-i <Z XQ C Xx C .., 

3. f(t) e l „ « /(2i) € Xn + i for all n€ Z, 

OO 

4. ft *n = {0}, 
n = —oo 

CO OO ' 

5. |J Xn is dense in L2(R), i.e, \J Xn = L2(R). 
n=—oo n = — oo 

The function q> is called a scaling function. We define Wn to be the orthogonal 

complement of Xn in Xn+i, i.e., 

X n + r = I„ff iW n i n e Z , 

and then 

iy„±VKn,, if n ^ n ' . 

Since Xn is a nested subspace it follows that 

N-n-l 

XN = Xn® 0 Wn+m, forn<7V, 
m=0 

and that 
oo 

L2(R) = X o © 0 V K „ . 
n=0 

From the multiresolution analysis, there exists another function ip in W0 such that 

{ip(t — I) : I G Z} is an orthonormal basis for VVo- The function ip is called a wavelet 

generator. 

Following [6], the definition of a refinable set is given next. The notion of refinable 

sets enables us to construct a class of wavelets and its corresponding functionals, 

together give the collocation method which exhibit the multiresolution properties. 

Proofs of the following theorems and examples can be found in [6]. 
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Def in i t ion II .2.2. [Refinable set] 

A subset V of X is said to be refinable relative to the mappings $ if V C <£(V). 

Examples of a refinable set are shown in examples below when we define the 

mapping $ as follows: with X = R and an integer \i > 1, 

^ ) = — , f e l , £ E ^ (10) 

^ : = { 0 , l , . . . , / i - l } , 

with a positive integer ^ and 

Z* := ZM x x Zp, k times. 

Define the family of contractive mappings 

$ := {<f>£ : t eZJ. 

E x a m p l e II .2 .3. The set Vo :={•£: j € Z fc+1} is refinable relative to the mappings 

E x a m p l e II .2.4. The set Vo = {]rp[ : j - 1 G Zk} is refinable relative to the map-

pings $ if and only if \i and k + 1 are relatively prime. 

II .2.2 Bas ic Tools 

In what follows in this section, we take directly from [8], [10] and assume that E = 

[0,1]. To understand the wavelet collocation method, we first introduce a family of 

contractive mappings $M := {<j>e- : e 6 ZM}, Zfl = { 0 , 1 , - - - ,fj, — 1}, with a fixed 

positive integer ji on the interval / := [0,1] defined by 

where 

/ := ( J & ( / ) , and meas{&(/) n &/(*)} = 0, e ^ e'. 

eezM 

Let X0 be the space of polynomials of order k > 0 on I and Te • L°°(I) —> L°°(I) 

linear operators which are defined as follows; 

%x : = I P ^ ' X « / ) I for x <E L°°(7), (11) 
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where XA is the characteristic function of A for a subset A C I. A sequence of 

subspaces X„ can be defined by using the operator in (11) as follows; 

X„+1 = 0 TeX„, n G N0, 
eeZn 

where N0 :— {0,1,.. .} and A©B denotes a direct sum of spaces A and B. It is easy 

to see that the following statements are true: 

• The sequence of the subspaces is nested, i.e., X„ C X„+ 1 ,n '€ N0. 

• Xn is the space of piecewise polynomials of order k on I with knots at j/l-in,j .= 

l , 2 , . . . , / i " - l . 

• dim(Xn) = k/j,n, n € N0. 

Because the subspaces have the nested property, we can obtain 

X„ = W o © W 1 © . . . © W „ , 

with Wo := Xo and W, is the orthogonal complement of Xj_i in Xj, i = 1, 2 , . . . , n, 

i.e., 

Xi = X i_1©W i . 

It is known from [31] that 

W„+i = 0T e W„, neN, 
eez„ 

when the initial space Wi is constructed. For i £ No, with u(i) := dimWj, we have 

u(n) = il;(/i-l)/i"-1
1 n € N . 

The spaces {Wi}™_0 serve as multiscale subspaces of L°°(I). Next, wavelet bases and 

corresponding collocation functionals on L°°(I) must be constructed. To define a 

base for Wi, we use the fact that Wi is subspace of Xi and every element w € Wi 

must be orthogonal to X0 = Wo, i.e., 

> , w 0 j ) = 0 , j€Zk, ,(12) 

where {woj,j € Z/.} is a basis for Wo- Note that the dimension of Xi is k/j,, and 

equation (12) gives r := fc(// — 1) linearly independent solutions w\j,j € Zr which 
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form a basis for Wi. To generate bases for the subsequent wavelet spaces W,, i > 1, 

we define a composition operator Te by 

% •= Teo O • • • o T e j _ 1 , 

where e .:= (eo, • • •, &%-\) 6 Z% = Z^ x •• • x Z^, ej € Z^ for j = 0 , . . . i — 1. With 

z times 

fj,(e) : = M(i~1)eo H r- Mei-2 + ej_i, 

and for i = 2 , 3 , . . . , n, we let 

Wij := Tewu, j = fj.(e)r + l, e E Z%~x, I e Zr, (13) 

and then W, = spanju;^ : j € Zu^}. 

In order to facilitate the establishment of a wavelet collocation method, Chen, 

Micchelli and Xu ([6], [8]) defined the notion of a refinable set and consequently the 

collocation functionals in V* with V := C(I). Here, V* denotes the dual space of V. 

Now select k distinct points V0 := {tj : j € Z^} in / so that V0 is refinable relative to 

the mappings <E>M, i.e., V0 C V\ := &^(V0). For example, it is shown in [6] that, when 

/i and k + 1 are relatively prime, the set 

*=-{&i : '-6 Z '} 
is refinable relative to <£M. For every point tj 6 V0, we define ^ :=z ^t-iJ £ Z^, where 

<C 5t-,x 3> := x(ij) with x € C(7). We order the points in Vi so that the first k 

points coincide the points in the set V0. For each j € Zk^-i), we find the vector 

[cjS : s € Zkfi] such that 

£ij; : = 5Z c i A » J ' € -Zfc^-i) (14) 

satisfies the equations 

« * y , u ; < y ' » = 0, / e 4 (15) 

and 

<C £ij,U>ij' 2> = ^ y , j ' € Zr. (16) 

Equations (15) and (16) give rise to a unique solution £ij, which defines the inter-

polator linear functionals l\j relative to the basis functions in Wi. To define linear 
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functionals with the interpolation property relative to basis {?%}, i > 1, we let 

Ce : V* —> V* be defined by the equation 

<C £e£, x » = « : £, x • (f>e » , for all .x G V and £ G V*, (17) 

and for e := ( e 0 , . . . , en_x) G Z™, define 

£e:= £eoo ...o£enl. 

Finally, for i = 2 , 3 , . . . , n, define 

iij-cen, j = fx(e)r + i, eez;~\ iezr. (18) 

The basis functions w^ and the collocation functionals ^ which are generated by 

using (17) and (18) have the following important properties. 

• They have vanishing moments of order k, that is, for all element p in the space 

of polynomials of degree less than A; on I, 

< C ^ , p > = 0 , (wij,p} = 0, j e V i l / i ' - 1 * J ' G N - (1 9) 

• They satisfy the semi-biorthogonality, that is, for any i,i' G No 

< ii>jltWij » = <J«/<J ,̂ (i, j ) , (i',j") £ [ / , i < i', (20) 

where U := {(i, j ) : i G N 0 , j G Z w W } . 

• There exists a positive constant 7 for which 

Y^ I < ^ ' , t% » I < 7, (», j)r(*',/) e t/, i > t". (21) 

Next, the bases for the space X0 and Wi are shown for multiscale piecewise lin-

ear, quadratic and cubic polynomials and their corresponding multiscale collocation 

functionals. 
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1. Piecewise linear polynomials. 

In the linear case, we set k = 2 and /J, — 2. Denote Xn, n G N0 to be the space of 

piecewise linear polynomials on / with knots at j/2n. j = 1. 2 , . . . , 2™ — 1. Obviously, 

li and k + 1 are relatively prime and $2 := {<A)> 0i} where 

M<) = | a n d <M*) = ^ > <e / . (22) 

A refinable set relative to $M is given by 

and Vi = $2(^0) = {|i |) | i | } - A basis for the space X0 is chosen to have the 

Lagrange interpolation linear property, i.e., 

wooW=i0h=2~3t' teI> 
and 

t — 1/3 

^i(*J = 273^173 = - 1 + 3*' < G L 

From equation (12), a basis for space Wi having an orthogonal property can be given 

J l - ft, te [0, | ] , / 1 - f i, i G [0, §], 

\ -1 + fi, t G ( | , l ] , 1 - | + |t, <€ (1,1]-

Associated with the basis functions, we have the collocation functionals given by 

4 ; = Stj, j G Z2, 

then 

(•00 — Si a n d ^01 = &i • 
3 3 

'To define the collocation functionals in Vi, we have to find the vector [CJS : s G Z4] 

such that £ij = ^2sez4
 cjs$ts> 3 £ Z2 under the conditions (15) and (16), then we can 

obtain the unique solutions 
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2. Piecewise quadratic polynomials. 

For the quadratic case, we choose k = 3 and /J, = 3. Define X„, n E NO to be the 

space of piecewise quadratic functions on / with knots at j / 3 " , j = 1, 2 , . , . , 3n — 1, 

and $ 3 := {<£o, </>i, ^2} where 

M*) = g» M*) = - 3 - . and Mt) = -j-, t E /. 

A refinable set relative to $3 is given by 

and Vi — $3(Vo) = {j^, | , | , ^ , | , 7 ,̂ | , §, | | } . A basis for space X0 is chosen to have 

a Lagrange interpolatory quadratic property, i.e., 

w00(t) = (2i - l)('4i - 3), w01(t) = -{At - 1)(4* - 3), and ty02(£) = (4« - l)(2t - 1). 

A basis for space Wi is given by 

ww{t) = < 

wn(t) = < 

1012 (*) = < 

W1S(t) = < 

wu(t) = < 

w15(t) = < 

k -f + ft-4t2, 

' 46 5 4 4 . , 116^2 
27 27 "^ 3 ' 

89 , 3201 28^2 
27 "^ 27 3 > 

22 1 224 J. 124^2 
9 "^ 9 l 3 ^ > 

113 3 7 0 | 1 9 2 J 2 

. 9 9 "•" 3 ' • 

' 19 182 ^ , 9212 
9 9 "^ 3 • ' 

170 , 520 ^ 124^2 
9 " r 9 3 > 

7 1 184 ^ 28^2 
9 "^ 27 3 ' 

182 1544 J. 1 116^2 
I 9 27 l "•" 3 ' 

f - I + fi-4^2, 

4 € 

* E 

t E 

i E 

te 

te 

te 

te 

te 

t E 

[0,1], 

[o,|], 

(1,1], 

[o,|], 

(1,1], 

[o , I ] , 

(1,1], 

[o , I ] , 

(1,1], 

[o,l], 

(!,!]• 

The collocation functional associated with the space X0 is given by 

4o = <5l, 4 l=<*I , 42 = ^2, 
4 2 4 
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and those associated with space Wi is given by 

8 1 
£10 = Si. - -Si + 281. - -SJL, £n = 5i- 2Si + 25js_ - Si, 

12 3 6 4 3 1 2 6 4 12 2 

1 8 8 1 
^ 2 = —z6i + 2 5 A - -6i + S±, £13 = 5JL - -Si + 28x. - -5*, 

3 4 12 3 2 12 12 3 2 12 3 4 
1 8 

eu = -8i +28? - 25s + Ss, £15 = —Sj_ + 28s 8s + Sn. 
2 12 4 6 3 1 2 • 4 3 6 1 2 

3. Piecewise cubic polynomials. 

In this case we take k — 4 and \i = 2 and the mappings <f>a, <f>\ as defined.by (22). 

Let X„ be the space of piecewise cubic polynomials on I with knots at j/2n,j = 

1,2,... ,2™ — 1 and VQ := | | , | , | , | } . A basis for space X0 is chosen to have a 

Lagrange interpolatory cubic property, i.e., 

u;oo(*) = - ^ ( 5 * - 2 ) ( 5 t - 3 ) ( 5 * - 4 ) , '.iooi(t) = | (5* - 1)(5* - 3)(5t 

wm{t) = - | ( 5 i - 1)(5« - 2)(5i - 4), w03(t) = | (5 i - l)(5i - 2).(5i - 3). 

As described earlier, we construct a basis for space Wi given by 

Wio(t) = 
M _ 1 2 5 / _i_ 575 /2 _ 1475/3 / f= Tn I I 
32 12 ~T 2 4 > fc LU> 2} ' 

235 _i_ 575^ _ 175/2 , 575 /3 + c (1 l l 
32 ' 12 ^ 2 """ 12 ' ^ V 2 ' J ' 

WllW = 

^12(0 = 

wi3(*) = 

1145 _ 1775 
288 24 

t + l S 5 t 2 _ M 5 i 3 > i € [ 0 ) | ] , 

7495 1 3 6 2 5 / _ 525 /2 , 2525 /3 / a (I 1 ] 
288 "*" 24 2 "•" 18 ' C V2 ' XJ ' 

805 _ 3 7 5 / 1 4 7 5 / 2 _ 2525 /3 f e [ n 11 
288 8 l ~r 3 l 18 l ' L fc LU ' 2 j ' 

- ^ + ^ - 5 5 0 ^ + ^ , t € ( i , l ] , 

95 _ 5 0 / , 225 /2 _ 5 7 5 / 3 / ^ Tf) I I 

96 3 l + 4 l 12 *• ' l fc LU ' 2 j ' 

13345 , 1775 / _ 3275 /2 , 1475/3 / c (1 l l 
96 "1" 3 fc 4 fc "*" 4 ( , ' ( ' t : V 2 ' 1 J -

The collocation functionals associated with the space X0 have the form 

0̂0 = $1, 4 i = fe, £02 = 83, £03 = S±, 
5 5 5 5 

and those associated with the space Wi is given by 

2 3 1 3 1 1 
1̂0 = TT^-L — 7:^2. + 28 3_ — 8 A. + r r ^ A , £n = TTT^-2- — 8s_+ 5A. — TT^A + -5j_, 

5 10 2 10 io io 10 io 10 io io io 2 10 5 10 

1 1 3 1 3 2 
£\o — — 83 St +86 —Si -\ 8s, lii = —84 — 8e +28 7 88 -\—89. 

5 i o 2 io To io 1 0 i o ' 1 0 io io io 2 io 5 io 
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Next, we focus on the construction of linear wavelet bases on any resolution level 

Wj,i > 1 and that of corresponding linear functionals ^ . Then we use them to 

implement the wavelets collocation of the nonlinear equation (4) in the Chapter IV. 

The formulation to find the wavelets bases at finer resolution levels is given as follows: 

w%j:=%wu, j = fi(e)r + l, eeZ1^1, I <E Zr, 

and also the corresponding collocation functionals can be defined by 

eif := CJU, j = n(e)r + 1, e e Z ; 1 , / € Zr. 

For example, when i = 2, 

r = 2(2 - 1) = 2, e = {0,1} e Z\, fj.(e0) = 0, /z(ex) = 1 and 

j = 0 = 0-2 + 0, 

j = 1 = 0-2 + 1, 

j = 2 = 1 • 2 + 0, 

j = 3 = 1-2 + 1. 

Then a basis for space W2 can be obtained by 

w2o = %0w10 = w10 o ^XMI) 

f 1 - |(2t) = 1-9*, te [0, i ] , 

\ - 1 + 1(2*) = - 1 + 3*, t€(l\], 

w2i = Teown = wn o 4>olX4>a{i) 

{ 1-1(20 = 1-3*, te[0,i] , 

\ - Z + |(2*) = - 1 + 9*, * € Q , | ] , 

w22 = Teiww = ww o (p^XMi) 

= f l - | ( 2 * - l ) = f - 9 * , i € [ i , f ] , 

\ - 1 + |(2* - 1) : f + 3t, * € ( f , l ] , 

W23 = TeiWU = Wn O 4>ilX<t>i{I) 

f § - f(2* - 1) = 2 - 3*, * e [ i , f ] , 

\ - | + | ( 2 i - 1 ) = - 8 + 9*, * € ( | , 1 ] - , 
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and the collocation functionals associated with space W2 is given by 

2̂0 = JO,0£io where <C £0lw, x > = < l i 0 , x o ^ 0 > 
3 r l r 

= 0 1 — — di + — Oi , 
• 12 2 5 2 J 

^21 = £0^11 where <C £ 0 ^ n , x » = <C ^11, x o </>0 » 
! - 3 r • c 

= T : 0 1 ~ 7:01 + 0 5 , 
2 e 2 3 12' 

£22 = £1^10 where <C £1^10,x » = <C 4 o , x o ^ i » 
3 . L 

= 0 7 — - 0 2 + - 0 5 , 
12 2 3 2 5 ' 

2̂3 = £1^11 where « A f n , x » = « ! i i , x o ^ » 
1 : 3 r 

= —02 05 + On.. 
2 3 2 6 12 

Similarly, when i = 3, e = {(0,0), (0,1), (1,0), (1,1)} e Z. 

/x(eo)• = 0 • 2 + 0 = 0, ju(ei) = 0 • 2 + 1 = 1, 

/x(e2) = 1-2 + 0 = 2, /i(e3) = 1-2 + 1 = 3, 

and 

j = 0 = 0 • 2 + 0, j = 1 = 0 - 2 + 1 

j = 2 = 1 • 2 + 0, j = 3 = 1 • 2 + 1, 

j = 4 = 2 - 2 + 0, j = 5 = 2 - 2 + 1, 

j = 6 = 3 - 2 + 0, j = 7 = 3 - 2 + 1. 

The composition operators and their inverses are 

0(0,0)(*) = 0o o 0O(O = 3 => 0 i ) ( O = At> 

4><p,i)(t) = <f>0o<l>1(t) = t-¥ => ^ 1 } ( t ) = 4 t - l , 

0(i,o)(O = 0i°0o(i) = ^ a =* 0a!o)(i) = 4 i - 2 , 

0(u)W = 0i°0i(O = ^ =» ^aa)(*) = 4t - 3. 

Then a basis for space W3 can be obtained by 

™30 = W10 O </>^o)X0(o,o)(/) 

™31 

J 1 - §(4*) = 1 - 18*, 

\ - l + f(4<) = - l + 6i, 

Wu ° ^o!o)X* ( 0 lo)(/) 

f | - l ( 4 * ) = | - 6 i , 

1 - | + 1(4*) = - | + 18*, 

*e[0,|], 

*€(§.*]. 

«e [0,|], 

**&& 



22 

W32 = ^10° </>(()*!)X0(Oil)(/) 

f l - |(4i - l) = ^ - l8t, t e f r f ] , 

\ - l + § (4 i - l ) = - § + 6i, t€ (§,§], 

W33 = V)U ° ^Sl)X*(0li)(/) 

| i - | ( 4 t - l ) = 2 -6 i , * € [ i , | ] , 

\ - I + | ( 4 4 - l ) = -8 + 18f, £G (§,§], 

W34 = U>lO°^o)X0(ilO)(/) 

f l - § ( 4 * - 2 ) = 10-18i, <e [ i f ] , 

\ - l + f(4t-2) = -4 + 6i, * e (§,f], 

w35 = wn o ^-|o)x0 ( l iO) (/) 

f I - f (4*-2) = Z-6t, < e [ L | ] , 

\ -Z + I(4t-2) = - f + 18t, t e ( § , f ] , 

^36 = ^10 O ^ J X ^ L D W 

= f l - | ( 4 t - 3 ) = f -18 t , * e [f, f], 
\ - l + §(4<-3) = - ^ + 6t, < e ( | , l ] , 

™37 = ^11 0 ^ I J X ^ L D C / ) 

1-1 |(4t - 3) = 5 - 6*, te[H], 

- | + f(4t-3) = -17 + 18t, t € ( | , l ] , 

and the collocation functionals associated with space W 3 is given by 

4o = ^(0,0)^10 where < £(0,o)^io, x » = «C £10, x o <̂ 0 o </>0 » 

= o i — —o i + —oi, 
. 2 4 2 12 2 6 ' 

hi = £(o,o)4i where < £(o,o)4i, x » = « < n , x o ^ o ^ » 

L 3 r 
= — 0 l 0 1 + 0 5 , 

2 12 2 6 24 

42 = £(o,i)4o where < £(o,iAo, x » = < 4o, x o ^ o ^ i » 
3 . 1 . ' 

= d 7 — —01 + — 0 5 ' 
24 2 3 2 12 

43 = £(o,i)4i where < £(o,i)^n,x » = < ^n,x o 0O o ̂  » 
L 3 r 

= —01 0_5_ + O H . 
2 3 2 I 2 24 ' 
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hi = £(1,0)̂ 10 where <C £(i,0)4o,x > - < 4 , x o (px o (p0 » 

= 013 o x H — 0 2 . 

24 2 12 2 3 ' 

45 = £(i,o)^n where « £(i,o)^n, x » = « l n , x o ^ o ^0 » 

! r
 3 r 

= —Ox 02 + O i l . 

2 12 2 3 24' 
4e = £(1,1)̂ 10 where « £ ( n ) f 1 0 , x » = «l1 0 ,xo(i>1o l j ! i1» 3 r 1-

= 0i9 05 H On. 
24 2 6 2 12 ' 

47 = £(i,i)Ai where « £(i,i)4i,x » = « ^n,x o ^ o ^ » 
= —05 Oil + 023. 

2 6 2 12 24 

The figures of these multiscale piecewise linear functions and the corresponding mul-

tiscale collocation functional are shown in FIG. 1 - FIG. 8. 

Eventually, the formulation of multiscale piecewise linear wavelets and their cor-

responding collocation functionals can be summarized in the following forms. 

For any (ij) € U, 

wm(t) :.= Wij^t) 
a + bt, te[h,I2], V i , j , 

c + dt, te(I2,h], i f t > = l , 

and 
Stl, if i = 0. 

% = { Stl - \St2 + \SH, if i ^ 0 and j is even, 

|o~tl — |o~(2 + St3, if i 7̂  0 and j is odd. 

where the coefficients are collected in the TABLE 1 and TABLE 3. 

The wavelet functions and the corresponding collocation functionals are the bases 

of W0 © W2 © . • • © W9 that amount is 1024. These bases are used in Chapter IV to 

obtain the fast wavelet-collocation scheme for Fredholm and Hammerstein equations. 

For convenience of calculation, all of these coefficients are stored in database by 

Microsoft Excel and are recalled by the xlsread command of the Matlab program. 
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FIG. 1: Linear multiscale wavelet bases on Wo-

0.4 0.6 0.8 1 

FIG. 2: Linear multiscale wavelet bases on Wi. 
w ,n( l ) 

FIG. 3: Linear multiscale wavelet bases on 
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FIG. 4: Linear multiscale wavelet bases on W3. 
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FIG. 5: Linear multiscale collocation functional associated with WQ. 
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FIG. 7: Linear multiscale collocation functionals associated with W2. 
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1
—
> 

t
o
 

-3/2 -7/2 9/2 0
 

1
—
> 

t
o
 

t
—
' 

(1,0) C
O
 

I
—
1
 

-9/2 l 

I
—
-

1 

3/2 0
 

1
—
' 

t
o
 

1
—
*
 

0
 

t
o
 

1
 

h
-
'
 

C
O
 

(0,0) 1
—
> 

t
o
 

1 C
O
 

'
 
'
 

1 
1
 

O
 

1
—
I 

0
 

1
—
l
 

'
 .
'
 

t
-
O
.
 

3
 

p
 

0
-

0
 

R
.
 

^
 

"
—

I 

t
o
 

Wavelet bases 

3
 

O
 

o
 

C
D

 

S
3 

(5
' 

to
 

0
0

 



C
O
 (9,512) i
—
'
 

o
 

.
.
.
 

t
o
 

4
^
 

383 -384 i
 

i
—
'
 

.
.
.
 

e
n
 

i
—
>
 

i
—
'
 

h
-'
 

C
n
 
'
 "
 

t
o
 

t
o
 

t
o
 

C
n
 

O
l
 

C
n
 

M
 

C
n
 

h
-
1
 

t
o
 

o
i
 

C
n
 

C
O
 

I
—
'
 

"
"
 

O
l
 

*- t
o
 

C
O
 

1
 

t
o
 

4
^
 

i
 

-
J
 

1
—
'
 

-
J
 

t
o
 

1
—
»
 

C
n
 91/ 

C
O
 

h
-
'
 

C
O
 

t
o
 

C
n
 

C
O
 

o
 

o
i
 

C
o
 

C
O
 

t
o
 

1
 

t
o
 

4
^
 

-
J
 

t
o
 

t
o
 

4
^
 

1
—
'
 

C
n
 

O
S
 

C
O
 

t
—
'
 

C
O
 

t
o
 

C
n
 

t
o
 

C
O
 

o
i
 

t
o
 

43/ to
 

i
 

t
o
 

4
^
 

i
—

' 

C
O
 

C
O
 

t
o
 

-
j
 

t
o
 

-
a
 

0
0
 

t
o
 

C
O
 

C
O
 

t
o
 

1
—
>
 

C
n
 

i
—
l
 

o
>
 

C
n
 

t
o
 

0
0
 

o
i
 

1
—
'
 

O
l
 

4
^
 

~~
1
 

t
o
 

1
 

t
o
 

t
o
 

t
o
 

*>
.
 

-
a
 

0
0
 

t
o
 

C
O
 

C
O
 

t
o
 

1
—
'
 

C
n
 

I
—
1
 

O
l
 

C
n
 

t
o
 

o
s
 

o
 

t
o
 

o
 

1
 

t
o
 

4
^
 

i
 

O
S
 

t
o
 

-
J
 

t
o
 

t—
'
 

C
O
 

1
—
'
 

O
S
 

t
o
 

-
J
 

C
O
 

t
o
 

-~
I
 

0
0
 

C
n
 

t
o
 

a
i
 

v
 
'
 

c
n
 

C
O
 

i
—
>
 

I
—
'
 

C
O
 

t
o
 

1
 

t
o
 

1
 

4
^
 

1
—
»
 

t
o
 

t
o
 

4
^
 

i
—
'
 

C
o
 

i
—
1
 

O
l
 

t
o
 

~
J
 

C
O
 

t
o
 

-
J
 

0
0
 

C
n
 

t
o
 

c
n
 

*
•

 
' 

C
J
1
 

0
0
 

37/ to
 

i
 

I
O
 

*>
•
 

1
 

I
—
1
 

1
—
>
 

C
n
 

N
T
 

~*
1
 

t
o
 

C
O
 

4
^
 

t
o
 

C
n
 

C
O
 

t
o
 

t—
>
 

C
O
 

1
—
»
 

O
l
 •
C
n
 

t
o
 

4
^
 

*"
 

c
n
 

^
J
 

C
n
 

C
n
 

i
 

-
J
 

t
o
 

i
 

l
—
'
 

C
O
 

t
o
 

*- C
O
 

4
^
 

t
o
 

C
n
 

C
O
 

t
o
 

1
—
'
 

C
O
 

1
—
l
 

O
l
 

C
n
 

t
o
 

C
O
 

v
 '

 

C
J
1
 

O
l
 

1
—
»
 

i
 

f
O
 

4
^
 

i
 

C
n
 

C
O
 

-
J
 

t
o
 

I
—
1
 91/ 

t
o
 

C
O
 

C
O
 

t
o
 

C
O
 

4
^
 

C
n
 

t
o
 

t
o
 

v
 C
n
 

C
n
 

i
—
'
 

O
 

h
-
1
 

t
o
 

1
 

-
J
 

t
o
 

C
O
 

C
n
 

t
o
 

t
o
 

4
^
 

1
—
J
 

1
—
'
 

O
l
 

t
o
 

C
O
 

C
O
 

t
o
 

C
O
 

4
^
 

C
n
 

t
o
 

h
-
'
 

v
 
'
 

C
n
 

4
^
 

31/ to
 

t
o
 

4
^
 

i
 

C
O
 

-
v
l
 

t
o
 

-
J
 

t
o
 

C
J
1
 

0
0
 

t
o
 

1
—
»
 

C
O
 

t
o
 

1
—
L
 

h
-
'
 

O
l
 

C
n
 

t
o
 

o
 y

 

C
n
 

C
O
 

4
^
 

O
l
 

1
 

t
o
 

t
 

1
—
'
 

O
S
 

t
o
 

4
^
 

C
n
 

0
0
 

t
o
 

I
—
1
 

C
O
 

t
o
 

t
—
'
 

1
—
'
 

O
l
 

C
n
 

C
O
 

C
n
 

t
o
 

I
—
1
 

4
^
 

i
 

t
o
 

4
^
 

i
 

4
^
 

-.
1
 

t
o
 

C
O
 

1
—
'
 

O
l
 

h
-
'
 

C
O
 

C
O
 

t
o
 

C
n
 

0
0
 

C
n
 

h
-
>
 

0
0
 

C
n
 

h
-
1
 

83/ to
 

1
 

t
o
 

1
 

t
o
 

C
O
 

t
o
 

t
o
 

4
^
 

C
O
 

1
—
'
 

O
l
 

1
—
"
 

C
O
 

C
O
 

t
o
 

C
n
 

0
0
 

C
n
 

i
—
>
 

C
n
 

O
 25/ to
 

i
 

t
o
 

4
^
 

i
 

-
J
 

C
O
 

t
o
 

-
J
 

t
o
 

1
—
"
 

t
o
 

h
—
'
 

~
J
 

C
O
 

t
o
 

C
O
 

O
l
 

C
n
 

O
l
 

4
^
 

C
O
 

C
O
 

-
a
 

i
 

t
o
 

C
O
 

t
o
 

4
^
 

i
—
'
 

t
o
 

(—
> 

^
J
 

C
O
 

t
o
 

C
O
 

I
—
1
 

O
l
 

c
n
 

i
—
1
 

C
n
 

4
^
 

0
0
 

I
—
»
 

i
 

t
o
 

4
^
 

i
 

C
O
 

C
n
 

-.
1
 

t
o
 

-
J
 

O
l
 

H
-
'
 

C
n
 

C
O
 

t
o
 

h
-
'
 

t
o
 

C
n
 

i
—
1
 

4
^
 

-
J
 

65/ to
 

i
 

t
o
 

t
o
 

C
O
 

t
o
 

t
o
 

4
^
 

-
J
 

O
l
 

•
—
'
 

C
n
 

C
O
 

t
o
 

I
—
1
 

t
o
 

C
n
 

C
O
 ' 

4
^
 

O
l
 

C
O
 

t
o
 

1
 

t
o
 

4
^
 

i
 

O
l
 

H
-
>
 

t
o
 

-
J
 

t
o
 

C
O
 

0
0
 

1
—
>
 

C
O
 

C
O
 

t
o
 

-
a
 

O
l
 

C
n
 

h
-
>
 

t
o
 

*
•
 

'
 

4
^
 

C
n
 

t
o
 

0
0
 

1
 

-
J
 

t
o
 

1
 

1
—
>
 

o
 

t
o
 

4
^
 

C
O
 

0
0
 

(—
'
 

C
O
 

C
O
 

t
o
 

~
J
 

O
l
 

C
n
 

1
—
'
 

h
-
>
 

""
""
"
 

4
^
 

4
^
 

0
0
 

i
 

t
o
 

4
^
 

i
 

t
o
 

O
l
 

-
J
 

t
o
 

C
n
 

O
l
 

h
-
'
 

I
—
1
 

C
O
 

t
o
 

C
O
 

0
0
 

C
n
 

o
 

4
^
 

C
o
 

47/ to
 

-U
 

t
o
 

1
 

-
J
 

t
o
 

t
o
 

4
^
 

C
n
 

h
-
1
 

O
l
 

1
—
l
 

1
—
'
 

C
O
 

t
o
 

C
O
 

0
0
 

C
n
 

C
O
 

4
^
 

t
o
 

l
—
'
 

C
O
 

t
o
 

t
o
 

4
^
 

i
 

4
^
 

C
O
 

t
o
 

^
J
 

t
o
 

I
—
1
 

4
^
 

C
O
 

C
O
 

t
o
 

C
n
 

I
—
>
 

O
l
 

C
n
 

0
0
 

4̂
.
 

I
—
1
 

I
—
1
 

C
O
 

-<
I
 

t
o
 

-
J
 

t
o
 

4
^
 

i
—
'
 

4
^
 

C
O
 

C
O
 

t
o
 

C
n
 

O
l
 

C
n
 

-
4
 

r
f
^
 

O
 

C
n
 

t
o
 

4
^
 

i
 

I
—
1
 

-
J
 

-̂
1
 

t
o
 

C
o
 

i
—
'
 

O
l
 

~
J
 

C
O
 

t
o
 

h
^
 

4
^
 

C
n
 

O
l
 

C
O
 

C
O
 

28/ to
 

t
o
 

1
 

1
—
"
 

H
^
 

t
o
 

t
o
 

*- C
O
 

1
—
>
 

O
l
 

-
J
 

C
O
 

t
o
 

1
—
'
 

4
^
 

C
n
 

C
n
 

C
O
 

0
0
 

7/2 t
o
 

4
^
 

t
o
 

c
n
 

t
o
 

-.
1
 

t
o
 

1
—
>
 

0
0
 

C
n
 

C
O
 

t
o
 

C
O
 

O
l
 

c
n
 

4
^
 

C
O
 

-
J
 

i
—
'
 

o
 

1
 

-
J
 

t
o
 

4i
>
 

t
o
 

4
^
 

I
—
'
 

0
0
 

C
n
 

C
O
 

t
o
 

C
O
 

h
-
1
 

O
l
 

C
n
 

C
O
 

C
O
 

O
l
 

t
o
 

1
 

t
o
 

4
^
 

0
0
 

~
4
 

t
o
 

1
—
>
 

1
—
'
 

O
l
 

C
O
 

C
O
 

t
o
 

h
-
'
 

0
0
 

C
n
 

t
o
 

C
O
 

C
n
 

i
—
1
 

i
—
>
 

t
o
 

i
 

~-
1
 

t
o
 

-5/2 t
o
 

4
^
 

H
-
"
 

1
—
»
 

O
l
 

C
O
 

C
O
 

t
o
 

h
—
>
 

0
0
 

C
n
 

h
—
'
 

C
O
 

4
^
 

i
—
1
 

t
o
 

t
o
 

4
^
 

-7/2 -
j
 

t
o
 

o
 

1
—
"
 

C
O
 

t
o
 

H
-
1
 

O
l
 

C
n
 

o
 

C
O
 

C
O
 

1
—
I
 

1
 

t
o
 

M
 t
o
 

4
^
 

o
 

1
—
'
 

C
O
 

t
o
 

1
—
>
 

I
—
"
 

O
l
 

^
o
 .
 

<
-
o
.
 

3
 

s>
 

C
T
-

C
l
 

f
x
 

•
—
<
 

^
 

^
 

s <
?

 

elet b cn
 

O
 

o a>
 

B
i 

S
' 

a
 

cn
 

O
 O
 

O
 

0
 

to
 

C
O

 



30 

TABLE 3: Coefficients of piecewise linear collocation functional ^ . 

Wo 

W-i 
VV \ 

w2 

w3 

w4 

a i"i 
i*, j) 

(0,0) 

(0,1) 

(1.0) 

(1,1) 
(2,0) 

(2,1) 

(2,2) 

(2,3) 

(3,0) 

(3,1) 

(3,2) 

(3,3) 

(3,4) 

(3,5) 

(3,6) 

(3J) 

(4,0) 

(4,1) 

(4,2) 

(4,3) 

(4,4) 

(4,5) 

(4,6) 

(4,7) 

(4,8) 

(4,9) 

(4,10) 

(4,H) 

(4,12) 

(4,13) 

(4,14) 

(4,15) 

m 

i 
2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

Collocation functinals 

*i 

1/3 

2/3 

1/6 

1/3 
1/12 

1/6 

7/12 

2/3 

1/24 

1/12 

7/24 

1/3 

13/24 

7/12 

19/24 

5/6 

1/48 

1/24 

7/48 

1/6 

13/48 

7/24 

19/48 

5/12 

25/48 

13/24 

31/48 

2/3 

37/48 

19/24 

43/48 

11/12 

t2 

-

-

1/3 

2/3 

1/6 

1/3 

•2/3 

5/6 

1/12 

1/6 

1/3 
5/12 

7/12 

2/3 

5/6 

11/12 

1/24 

1/12 

1/6 

5/24 

7/24 

1/3 
5/12 

11/24 

13/24 

7/12 

2/3 

17/24 

19/24 

5/6 

11/12 

23/24 

*3 

-

-

2/3 

5/6 

1/3 

5/12 

5/6 

11/12 

1/6 

5/24 

5/12 

11/24 

2/3 

17/24 

11/12 

23/24 

1/12 

.5/48 

5/24 

11/48 

1/3 

17/48 

11/24 

23/48 

23/48 

29/48 

17/24 

35/48 

5/6 

41/48 

23/24 

47/48 

w5 

w9 

(i i\ 
ViJ) 

(5,0) 

(5,1) 

(5,2) 

(5,3) 

(5,4) 

(5,5) 

(5,6) 

(5,7) 

(5,8) 

(5,9) 

(5,10) 

(5,11) 

(5,12) 

(5,13) 

(5,14) 

(5,15) 

(5,16) 

(5,17) 

(5,18) 

(5,19) 

(5,20) 

(5,21) 

(5,22) 

(5,23) 

(5,24) 

(5,25) 

(5,26) 

(5,27) 

(5,28) 

(5,29) 

(5,30) 

(5,31) 

(9,512) 

m 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

1024 

Collocation functinals 

h 
1/96 

1/48 

7/96 

1/12 

13/96 

7/48 

19/96 

. 5/24 

25/96 

13/48 

31/96 

1/3 

37/96 

19/48 

43/96 

11/24 

49/96 

25/48 

55/96 

7/12 

61/96 

31/48 

67/96 

17/24 

73/96 

37/48 

79/96 

5/6 

85/96 

43/48 

91/96 

23/24 

383 

384 ... 

«2 

1/48 

1/24 

1/12 

5/48 

7/48 

1/6 

5/24 

11/48 

13/48 

7/24 

1/3 

17/48 

19/48 

5/12 

11/24 

23/48 

25/48 

13/24 

7/12 

29/48 

31/48 

2/3 

17/24 

35/48 

37/48 

19/24 

5/6 

41/48 

43/48 

11/12 

23/24 

47/48 

767 
7fi8 

H 
1/24 

5/96 

5/48 

11/96 

1/6 

17/96 

11/48 

23/96 

7/24 

29/96 

17/48 

35/96 

5/12 

41/96 

23/48 

47/96 

13/24 

53/96 

29/48 

59/96 

2/3 

65/96 

35/48 

71/96 

19/24 

77/96 

41/48 

83/96 

11/12 

89/96 

47/48 

95/96 

1535 
1536 
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CHAPTER III 

POST-PROCESSED TECHNIQUES 

In this chapter, we investigate a number of post-processing techniques which can be 

used to enhance the accuracy of numerical solutions of nonlinear integral equations 

of the Hammerstein type. Post-processing techniques discussed here can be classified 

into two groups, one based upon an interpolation and another based upon an extrap-

olation. Motivation for this research originates in the recent papers [29] and [28] 

in which similar results were obtained for linear integral equations of the Fredholm 

type. One of the goals of this study is to extend the results in [29] and [28] to a 

class of nonlinear equations. We represent that the post-processing techniques based 

upon an interpolation and an extrapolation results in even simpler processing of nu-

merical solutions which results in less expensive computational cost in improving the 

accuracy of numerical solutions than the original projection methods. 

III.l PRELIMINARY 

In this preliminary section, we gather together several results which already exist 

in the area of post-processing techniques for the linear as well as nonlinear integral 

equations. Included are the technique based upon an iteration, an interpolation 

and an extrapolation. The iterative methods were investigated by many authors, 

e.g., see Atkinson [3], Graham et al. [15], Sloan and Thomas [33], Kaneko and 

Xu [20], and Kaneko et al. [18]. Several post-processing techniques based upon 

an interpolation of the collocation solution and that of the Galerkin solutions were 

studied by Lin et al. [29]. We will see that the post-processing technique based upon 

the interpolation is more cost effective computationally than the iterative methods. 

Finally, an extrapolation of iterated collocation solutions and global extrapolation 

for the Fredholm equation discovered by Lin et al. [28] and [29] respectively are 

presented. We extend many existing theorems on the post-processing techniques to 

nonlinear Hammerstein equations. This will be done in Sections III.2 - III.6. 

Recall the Fredholm equation of the second kind is written as 

. u(t) - J k(s, t)u{s)ds = f(t), t € / = [0,1], (23) 
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or in the operator form 

u — Ku = / . 

Denote Sh to be the space of piecewise polynomials of degree < r, i.e., 

Sh = {ve L2(I): v\et ePr,0<i<N-l}, 

where Pr denotes the space of all polynomials of degree < r. 

III.1.1 Iterative method for Fredholm equation 

Under the projection operator P/,, either interpolation projection or an orthogonal 

projection, the solution of equation (23) is approximated by solving the projection 

equation; 

uh - PhKuh = Phf, un G Xn. (24) 

The iterated solution is then obtained by calculating u\ from 

u1t = f + Kuh. (25) 

Applying Ph to both sides of (25), we obtain 

Phv!lt = Phf + PhKuh. (26) 

Using (24) and (26), we see that 

Phu\ = uh. 

Thus, the solution u^t satisfies 

•u% = f + KPhu
h

a. 

It is proved in [3] that if / G C2r+2(7) and k € C2r+2(I x 7), then 

\\u-u^\\ = 0(h2r+2), 

whereas \\u - uh\\ = 0{hr+l). 

Therefore, the iterative method, when applied to the collocation method as well 

as to the Galerkin method, doubles the order of accuracy of a numerical solution, 

provided that the solution and the kernel of the integral equation are sufficiently 

smooth. This is an excellent method to improve the accuracy of numerical solution. 
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We note that, in order to double the rate of convergence of numerical approximation 

by the collocation or the Galerkin method, it is necessary that the number of basis 

functions must be doubled. This results in the solution process which involves a much 

larger system of linear or nonlinear equations. The iterative methods, on the other 

hand, presents an accuracy enhancement technique which avoids a larger system and 

thus is computationally more efficient. 

III.1.2 Interpolation method for Fredholm equation 

A post-processing technique based upon interpolation appeared in a 1998 paper by 

Lin et al. [29]. The paper is concerned with the interpolation of the collocation 

solutions of (23). 

To describe briefly this method, let Th be a uniform partition on / with mesh 

size h and then define T2h with mesh size 2h by subdividing each element of Th into 

two elements. Moreover, define the collocation points to be the zeros of the Legendre 

polynomial of degree (r + 1) mapped to each subinterval. Then using these collation 

points, a higher interpolation operator I%1+1 of degree (2r + 1) over two consecutive 

subintervals is defined. The following superconvergence result is obtained, 

\\u{t)-lH+\t)\\=0(h^). 

We note that, in order to establish this result, one crucial property called superclose 

plays a critical role. It is shown that the interpolation method can be used to attain 

the same convergence rate as the iterated method with less computational cost. 

A global superconvergence of the Galerkin solution of Volterra integral equation 

by interpolation is also reported in [29]. It is obtained that if u G Cr+2(I), 

u(t) - r2+
lu(t) = o{hr+i), 

where I^1 is an interpolation operator of degree of (r + 1) associated with the mesh 
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III.1.3 Extrapolation method for Fredholm equation 

A post-processing technique based upon the extrapolation of the iterated collocation 

method for (23) reported by Lin et. al. [28] is now discussed. This extrapolation 

technique can be derived by using the following theorem in [28] which derives an 

asymptotic expansion of the error of the iterated collocation solution u\, 

N f 
u(t) - «£(*) = J2 hlr+2 / 6(s> l)ds + 0{h2r+i), t e I, 

fc=i Je* 

where k e Cr+3(I x /) and u e C2r+4(I). 

Using this formula, the Richardson extrapolation gives 

u(t)-u';t
/2(t) = o(h™), 

where 
Uit \l) — 2 2r+2 _ I 

We see that the rate of extrapolation method is higher than the rate of iterated 

method. This leads to another efficient scheme to obtain more accuracy of numerical 

approximation. 

A global extrapolation approximation was also introduced in [29] by using a simi-

lar idea to the extrapolation scheme just described. Here, the Richardson extrapola-

tion is performed on the interpolated collocation solution of the Fredholm equation. 

More specifically, we compute 

2™l?J2W
2(t) - j£+V(t) 

u(t) = 0(/i2 r + 4), 
2 2r+2 _ I 

where I2r+3 is the interpolation operator of degree (2r + 3) over three consecutive 

subintervals. 

In the subsequent sections, we show how these post-processing techniques for 

the Fredholm equation can be extended to solve nonlinear Hammerstein integral 

equation. In Section III.2, we study a global superconvergence property of the inter-

polation post-processing technique for the collocation method for the Hammerstein 

equation. The case of the weakly singular Hammerstein equation is also included in 

this section. After this manuscript was completed, the paper by Huang and Zhang 

[16] was brought to the authors' attention which proved the same superconvergence 
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result for the post-processing collocation method. Despite this discovery, we decided 

to keep Section III.2 in this study since the proof provided here is different from the 

one given in [16] and it is more concise. Moreover, we present, in Section III.2, a 

numerical example exhibiting that the same superconvergence of the post-processed 

collocation method can be obtained for two-dimensional Hammerstein equations. 

Numerical experiments conducted on the two-dimensional Hammerstein reveals that 

there exist a number of interesting and important issues which must be addressed 

for a successful implementation of the post-processing technique via interpolation for 

multi-dimensional integral equations. They will be discussed in future research. In 

Section III.2, we also briefly mention a post-processing technique by interpolation 

to enhance the order of accuracy of a numerical solution of one-dimensional weakly 

singular Hammerstein equation. A numerical example using constant basis functions 

is reported in [16]. We include in Section III.2 two additional numerical examples 

for weakly singular Hammerstein equations using linear basis functions. We consider 

both types of weak singularities; logarithmic and algebraic. 

An extrapolation technique for the iterated collocation solution of the Hammer-

stein equation is discussed in Section III.3. Results in Section III.3 play a critical 

role in establishing the global extrapolation method presented in Section III.4. The 

final two sections, Section III.5 and III.6, are concerned with superconvergence of 

the Galerkin method by the post-processing techniques. In Section III.5, we apply 

the interpolation technique explored in Section III.2 to the Galerkin method. We 

achieve a superconvergence result but the rate of acceleration is not as great as that 

of the collocation case of Section III.2. This result is consistent with a similar result 

for the Volterra equation reported in [29]. An extrapolation of the iterated Galerkin 

method is treated in the final section, Section III.6. Results in Section III.6 appear 

new even in the setting of the linear Fredholm equation. 
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III.2 GLOBAL SUPERCONVERGENCE FOR HAMMERSTEIN 

EQUATION BY COLLOCATION METHOD 

In this section, we consider the following Hammerstein equation, 

u(t) - [ k(s, t)1>(s, u(s))ds = f(t), t e I = [0,1], (27) 
Jo 

where k, f and ip are known functions and u is the function to be determined. 

First, we introduce two kinds of norm 

v\\m.oo = max {Halloo}, 
0<i<m 

M^lim.oo — „"-ltS"- I I I ' 
0 < i < m 

and 

Nk2 = wf>(%)^4 
where m is a nonnegative integer. 

Let Th be a partition of 7: 

0 = tQ < h < ••• < tN = 1, 

and e, = [ti,ti+1), i = 0 , 1 . . . , N - 2 and eN-i = [tN-i,tN], hi = ti+i - U and 

h = max, hi. We denote by Sh the space of piecewise polynomials of degree < r, i.e., 

Sh = {v G L2{I): v\ei E Pr, 0 < i < N - 1}, 

where Pr denotes the space of all polynomials of degree < r. Let B = Br+i consist of 

zeroes of r + 1 degree Legendre polynomial located in [—1,1]. Define $ j : [—1,1] —> e,, 

i = 0 , . . . , i V - l , b y 

^ / N l + < l - t 
Ht) = —2~*»+i + ~^-^ « e [-1, l], 

and 
J V - 1 

A = |J MB), 
i=0 

so that A contains the collocation points. The collocation approximation u G S is 

obtained under the assumption that the residual 

Rh{t) = uh(t)- [ k(s,t)4>(s,uh(s))ds-f(t) 
Jo 
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disappears under the interpolation projection ir
h of C(I) onto Sk. Here ir

h: C(I) —>• Sh 

is denned by 

ir
hu\ei <E Pr, ir

hu{t) = u(t), for t e $i(B). 

Equivalently, 

uk(t) - I k(s, t}ip(s, uh(s))ds = f(t), for all t € A. (28) 
Jo 

To describe equations (27) and (28) in Operator form, we let 

KV(u){t)= / fc(s,t)V>(s,u(s))c(s, tel, 
Jo 

and 

*(u)(s) = ip(s,*i(s)). 

Then (27) and (28) can be written, respectively, as 

u-K*(u) = f, (29) 

and 

U
h-HK*(uh) = ir

hf. (30) 

We now establish a superclose estimate for uh — ir
hu in relation to the Hammerstein 

equation. From (29), 

ir
hu-ilK*(u) = irJ. (31) 

Let 

g{t, s, fhu(s),uh(s),9) = k(s, t)^°^(s, fhu(s) + 9(uh(s) - ir
hu(s))), 

where 0 < 0 < 1 and 

Ghu(s)= I g(t,s,ir
hu(s),uh(s),Q)u(s)ds. 

Jo 

Here we assume that 1 is not an eigenvalue of the operator Gh, so that / — Gh is 

invertible. Using (30) and (31), we obtain 

uh-ir
hu =ir

hK$>{uh)-ir
hKy{u) 

= ir
hK[V(uh) - V(ir

hu) + *(»;«) - *(«)] 

or 

[uh - i{u] - ir
hK[m{uh) - m{fhu)) = ir

hKMi» - *(«)], 
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and 

uh - i\u = {I- ir
hGhrh\K[^hu) - *(«)]-. (32) 

An estimate on the right side of (32) was investigated in [18] and in the present 

setting, it is proved that 

(/ - ilGhy
lir

hK[^{?hu) - *(«)] = 0 ( ^ + 2 ) , 

which gives the superclose identity 

uh-ir
hu = 0{h2r+2). (33) 

The remaining analysis for obtaining global superconvergence by interpolation post-

processing technique is the same as that for the linear case. First, we obtain a 

collocation solution uh over the partition Th where it is assumed that the total 

number N of intervals is even. uh is then interpolated at the collocation points over 

two consecutive intervals eiUei+i by a polynomial of degree 2 r + l . In this connection, 

we define an interpolation operator I2r
h

+X as follows: 

• I22r
h
+1u\e%Uei+1 e Par+i, i = 0, 2 , . . . N - 2, 

a n d 

Ilr
h

+lu{t) = u{t), teMB)U*i+1{B). 

If ue C2r+2(I), then 

| | / 2
2 r 1 « h - Wllcoo < I l 4 r + 1 ( ^ - ^ ) | | 0 , o o + \\IH+%U - U.||0>oo 

< C\\uh - ?hu\\QiO0 + \\llr
h

+lu - «||0iOO, 

here we used the obvious fact that 

I22H+% = l!r
h

+\ ||/2
2r1Ho,oo<C, for some 0 0. 

This together with (33) gives 

\\I2r
h
+1uh - u||0,oo = 0(h2r+2). (34) 

We note that a similar estimate to (34) under L2 norm is also valid. 

In all numerical experiments of this Chapter, unless otherwise stated, we use the 

following general settings: 
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o = t„ k t2 t-n-l *n ~~ *~ 

FIG. 9: Uniform meshes on / . 

The space of piecewise linear polynomials are considered, i.e.- r = 1. 

The interval [0,1] is divided by uniform meshes, that is h = jj 

then ti = ih, i = 0,1,... ,N and ê  = fa, ti+i\. 

The collocation points {£*_,•} are chosen from the zeros of Legendre polynomial 

of degree two transformed by linear mapping to each subinterval e%, that is, 

B = { - ^ , ^ } then t*id = $i(B),i = 0 , 1 , . . . , N and j = 1, 2. 

'-\ h' H—!-H—H— 
•-0,1 L 0 , 2 t l , l ' - 1 . 2 

^0 ^1 ^2 

t n - l , l t n - 1 . 2 

FIG. 10: Location of collocation points. 

The following linear spline bases are obtained as 

<t>xM = 

'\2 (0 = 

'•V1 

^ , 2 vi,l 

o, 

' - * : , i 

^ , 2 L i , l 

0, 

£ £ [ti,ii+i 

otherwise 

£ € fa, ti+\ 

otherwise. 

t 'u 

FIG. 11: Linear spline bases on each e» 
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Therefore, the projection solution u is defined by 

N 2 

• The Lagrange interpolation is employed over two consecutive intervals to obtain 

the post-processed solution, see more details of interpolation in Appendix A.2. 

Note that for our specific problem, since the linear spline basis is used, the 

solution is. interpolated by a cubic piecewise polynomial. 

2 -\ 

\ 

'A 
0 - \ 

2 -

S 

-

\ 
\ 
\ 

FIG. 12: Cubic interpolation on e* x el+\. 

\r 
vy 

\ i 

W 
\ \ 

\ 

M; 

\ i 
0 0.1 0.2 0.3 0.4 05 0.6 0.7 08 0.9 1 

FIG. 13: Global cubic interpolation on / . 

Moreover, the corresponding nonlinear systems are solved by two different iter-

ation schemes. The original Newton-Raphson iteration method is used first with a 

sufficiently close initial element. Another approach is Quasi-Newton obtained by 

cfc+1 = cfc - J~l{ck,)F{ck) 
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where Ck is an unknown coefficient to be determined the solution is u, k is the number 

of iteration times and k' is a fixed number of iteration times. That is, the Jacobian 

is fixed throughout the iterations in the Quasi-Newton method. A stopping criteria 

is taken within fourteen digit accuracy, i.e., tolerance e < 10~14. 

Example III.2.1. Consider the equation 

u(t)- sm{n{s + t))u2(s)ds = f(t), i € [0,1], 
Jo 

where f(t) is chosen so that the exact solution is u{i) = sin(7r£). 

Notice that we define 

eh = | |u-u"||0,oo, 

eh = \\u-llr
h

+1uh\\0tOO, 

Rh = iog2 ^ j ' 
^ = lo^(ft) 

We use NI for the total number of iterations, and CT is the CPU time for solving 

the collocation method of each scheme. 

TAB 

N 

2 
4 
8 
16 
32 
64 
128 

^E 4: Computational results of 
Collocation 

e/> 
7.5734e-2 
2.3643e-2 
6.2950e-3 
1.5982e-3 
4.0108e-4 
1.0037e-4 
2.5098e-5 

Rh 

1.68 
1.91 
1.98 
1.99 
2.00 
2.00 

Newton 

NI 
5 
5 
5 
5 
5 
6 
6 

CT 
0.12 

.0.19 
0.67 
2.54 
9.77 

46.19 
183.00 

interpolation with smooth kernel. 
Quasi-Newton 

NI 
7 
8 
8 
8 
8 
8 
9 

CT 
0.09 
0.15 
0.58 
2.00 
7.50 

29.47 
124.41 

Interpolation 

eft 

9.0912e-2 
4.4949e-3 
3.3793e-4 
2.2050e-5 
1.3928e-6 
8.7283e-8 
5.4588e-9 

Rh 

4.34 
3.73 
3.94 
3.98 
4.00 
4.00 

We can see the results confirm the estimate described in (34). See [16] for addi-

tional examples. Although the Quasi-Newton method requires more iterations than 

the Newton's method, the computing time of Quasi-Newton method is less. This 

difference is more pronounced in the Galerkin based computation which will be pre-

sented in Sections III.5 and III.6. 

In the case of the Hammerstein equations with weakly singular kernels, the su-

perconvergence result of (34) by the interpolation post-processing technique can also 

be obtained. Here, the kernel is assumed to be of the type 

k{s,t) = k* l 
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where, with a = - and De denoting the differential operator of order £, 

a^D'k^a 

It is known that the optimal order of convergence of the collocation method for 

weakly singular Hammerstein equations can be obtained by use of a graded mesh, 

see, -e.g., [3], [19]. For example, if the spline of degree r is used in computation, 

one may select a partition Tu, 0 = tQ < t\ < • •• < t^ = 1, with t; =. (jj)q and 

q > r + 1 to preserve the optimal order of convergence. To attain a similar super-

convergence result for the numerical solution of weakly singular equations by the 

interpolation post-processing technique, we simply select the partition by defining 

ti — (fj)g,q > 2r + 2 and perform post-processing by the interpolation described 

above over the intervals beginning with tx. Note that a selection of t\ = N~q guar-

antees the size of the first interval [0, ̂ i] small enough so that the approximation 

error from this interval is consistent with the errors from the subsequent intervals 

despite the fact that the solution may not be differentiable over [0,ii]. A numerical 

experiment is reported in [16] demonstrating the effectiveness of this approach using 

a constant basis whereas we present two additional examples using the linear basis. 

Example III.2.2. Consider the equation 

u(t)- log\s-t\u2(s)ds = / ( i ) , £€[0,1], 
Jo 

where /(£) is chosen so that the exact solution is u(t) = t2. 

putat 

N 

4 
8 
16 
32 
64 
128 

onal results of interpo 
Collocation 

eh 

1.006500e-2 
2.606709e-3 
6.518285e-4 
1.628305e-4 
4.069555e-5 
1.017298e-5 

R-h 

1.9490 
1.9997 
2.0011 
2.0004 
2.0001 

ation with log ;arithmic 
Interpolation 

eft 

8.492456e-3 
7.007576e-4 
5.297109e-4 
3.722810e-6 
2.388927e-7 
1.431229e-8 

Rh 

3.5992 
3.7256 
3.8307 
3.9620 
4.0610 

singular kernel. 
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Example III .2.3. Consider the equation 

, i ! 

u(t) u2(s)ds = f(t), *G [0,1], 
'o \f\s-t\ 

where /( i) is chosen so that the exact solution is u(t) = t2. 

TABLE 6: Computational results of interpolation with algebraic singular kernel. 

N 

4 
8 
16 
32 
64 
128 

Collocation 

&h 

3.202584e-l 
8.081319e-3 
1.035501e-3 
1.897584e-4 
4.280083e-5 
1.038697e-5 

Rh 

5.3085 
2.9643 
2.4481 
2.1485 
2.0429 

Interpolation 

eh 

4.562162e-l 
7.209956e-3 
5.693164e-4 
4.070014e-5 
3.377003e-6 
2.746804e-7 

Rh 

5.9836 
3.6627 
3.8061 
3.5912 
3.6199 

Now we are ready to exhibit an example of multi-variable Hammerstein equation 

to demonstrate that the post-processing technique based upon the interpolation can 

be applied to multi-variable Hammerstein equation. For s , t e l 2 , we consider 

u(t)- I f k(s,t)ij(s,u(s))ds = f(t); 
Jo Jo 

s,tel.xl. (35) 

We use the tensor product of Sh with itself, Sh <g> Sh, as our approximating space. 

Note that Uh>Q(Sh <g> Sh) is essentially dense in C(I x / ) , see [27]. With \ = ir
h® ir

h, 

C{I x •/) -> Sh® Sh satisfies 

ly.U\, ePr ir
hu(t) = u(t), for * G $i(5) x $j(B). 

The collocation method is to solve 

uh{t}~ f I k(s,t)ij(s,uh(s))ds = f(t), te\Jo<ij<N-iMB)x*j(B)- (36) 
Jo Jo 

Once uh(t) is obtained, one may interpolate its values at the collocation points 

over four squares e, U ei+\ x ê  U e^+i by the two-dimensional polynomial in the form 

uh(t, t') = ax + a2t' + a3t + a4t t' + a5t'
2 + a6t

2 + a7t t'
2 + o8i21' + a9t'

3 + ai0t3. (37) 

Here, recall that linear splines are used to discretise the solution in each direction. To 

double the order of accuracy, we require a polynomial of degree three in two variables 

file:///f/s-t/
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t,t' as indicated in (37). Our numerical experiment indicates that the location of 

these ten interpolation points influences much in achieving the superconvergence of 

a desired accuracy. More discussions on the post-processing technique for multi-

variable Hammerstein equations will be made in future research. 

Example III.2.4. Consider the following two-dimensional equation 

u(t, t') - [ f (s - t)(s' - t')(s + s' + u(s, s'))2dsds' = f(t, t'), (t,t') elxl, 
Jo Jo 

where / is chosen so that the exact solution is u(t,t') = exp(t + t').~ Ten 

points are selected from four contiguous squares e, U ei+i X e7 U eJ+1, i,j = 

0,2,...,2N - 2 and they are circled in FIG. 14, or (i*1; t"^), (£*+u, 4'* J , 

('%2' *j+l,2)> a n ( i V'i+l,2't j+l,2J-

* 

© 

* 

© 

© 

© 

0 

* 

* 

© 

H= 

Q 

© 

* 

© 

© 

U+2 

FIG. 14: Location of ten interpolating points. 

In TABLE 7, NC is the total number of collocation points in domain I x I. With 

the ten interpolation points described, our numerical experiment confirms the same 

superconvergence as the one-dimensional problem in Example III.2.1. 
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TABLE 7: Computational results of interpolation for two dimensional equation. 

(N,N) 

(2,2) 
(4,4) 
(8,8) 

(16,16) 
(32,32) 

NC 

16 
64 
256 
1024 
4096 

Collocation 

eh 

2.604955e-l 
7.078941e-2 
1.845359e-2 
4.710457e-3 
1.189914e-3 

Rh 

1.8797 
1.9396 
1.9700 
1.9850 

Interpolation 

eh 

5.303465e-2 
4.782085e-3 
3.604376e-4 
2.412651e-5 
1.376186e-6 

Rh 

3.4712 
3.7298 
3.9011 
4.1319 

III.3 EXTRAPOLATION OF ITERATED COLLOCATION SOLU-

TION FOR HAMMERSTEIN EQUATION 

In this section, we generalize the result obtained in [28] concerning an extrapolation 

technique for the iterated collocation method. The iterated collocation solution u^t 

for the Hammerstein integral equation is defined as follows: for a collocation solution 

uh of (30), 

«£ = / (* )+ / k(s,t)ip(s,uh(s))ds, 
Jo 

or, in the operator form, 

14 = / + #*( A ' 

ir
hu*t = tlf + ir

hK*(uh), 

(38) 

(39) 

*•;«£ = «*• 

From equation (38), 

and (30) and (39) yield 

Thus, (38) becomes 

«£ = / + *:*(*;•«£). (40) 

It is proved in [18] that if / e C2r+2(I) and k e C2T+2{I X /) then 

||«-4||0,oc = O ( ^ + 2 ) . 

The following theorem, which generalizes Theorem 1 of [28], establishes the basic 

fact which underlines the extrapolation technique for the numerical solution of Ham-

merstein equation. 
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Theorem III.3.1. Assume that k 6 Gr+3([0,1] x [0,1]) and the solution u of (27) 

satisfies u 6 G2r+4[0,1]. Also assume that 1 is not an eigenvalue of the linear operator 

(K^/)'(u). Then there exists b € C([0,1] x [0.1]), independent of the partition, such 

that 

N f 

u(t)-uUt) = Y,hlr+2 Ks,t)ds + 0(h2r+i), te[0,l}. 
fc=i Je* 

Proof. From (29) and (40), 

u-uh
it = K^{u)-K<H{?hu

h
lt) 

= K*(u)--K*(ilu) + K*Fhu)-K*{?huti. (41) 

Now, recall from the previous section, 

Ghu(s) = g{t,s,ir
hu(s),ir

hu^t(s),6)u{s)ds, 
Jo 

where g is also defined in Section III.2. Then 

K*(ilu) - K*(ilu*) = Ghvl(u - 4 ) . 

Equation (41) becomes 

u - u% = K<b{u) - K<H{Vhu) + Ghfh(u - 4 ) . (42) 

Arguing as in [18] and using assumptions (A2), (A5) and (A6), we can show that 

{Ghi'h} is a family of collectively compact operators and GhiT
h —> G = (K^)'(u) 

pointwise as h —> 0. Since G is compact and (/ — G) _ 1 exists by assumption, from 

a theory of compact operators (see, -e.g., [3]), (/ — G ^ ) _ 1 exists and is uniformly 

bounded. This shows that 

\\u-u%tOO<C\\K^(u)-K^{ir
hu)\\0,oo = O(h2r+2), (43) 

which establishes the superconvergence of the iterated collocation solution [18]. For 

present purposes, we require the following. Since 

( / - G h t ; ) - 1 = ; ( / - G f c ) - 1 - ( / - G h t X ) - 1 G f c ( / - i ; ) ( / - G f c ) - 1 , (44) 

using (42) and (44), we obtain 

u — u. 
.h 
it = (I-G^h)-

l{Km(a)-KWhu)} 

= ' ( / - Ghy
lwh -{I- GhVhy

lGh{I - ir
h)(I - Gh)~

lwh 

= vh-{I-Gh?hy'Gh(I-il)v\ (45) 
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where wh = K$(u) - K^(ir
hu), 

and 

vh = (I- Gh)-
lwh = (I- Gh)-

lK[^{u) - y(fhu)}. 

Let L = (I — Gh)~lK where L is an integral operator with a kernel l*(s,t) with the 

same smoothness properties as k(s,t). 

Then 

vh(t) = L[*(u)-*(ir
hu)] = [ l*(s,t)[i;(S,u(s))-^(S,ilu(s))}dS. 

Jo 

Using the mean value theorem, when 0 < 9 < 1, we have 

v\t) = J\*{s,t)^{s,[u + e{ehu-u)){s)){u-ir
hu){s)ds 

= / l(s, t)(u — ir
hu){s)ds 

Jo 
N 

= ' S / Ks,t){u-ir
hu)(s)ds, 

fc=i •'•E* 

where l(s,t) = l*(s,t)^(s,(u + 9(ir
hu-u))(s)). 

By applying the results of Lemma 3 of [28] to each subinterval Ek (and noting 

that the change of scale introduces a factor (hk/2y for the j th derivative), we obtain 

N , , v 2r+2 2r+2 . 

^ ( 0 = Y. ( y ) J2 cJi Dil (*.*) ^«(s)rfs + o (/i2r+4) Huiî +4, 
fc=l ^ ' i=r+l JEk 

j+ l=2r+2 

where Ds denotes the partial derivative with respect to s. The result may be rewritten 

as 
N 

vh(t) = ] T h2
k
r+2 / b(s, t)ds + 0(h2r+4), (46) 

fc = l ^Bk 

where 
2r+2 

i=r+l 
j+ l=2r+2 

Also, 

\\(I-Ghii)-
lGh(I-ii)v%t00 < C | |G , ( / - ? > f t | | 0 , oo 

< C| | ( / -^)« h | | o > 0 o. 

< Ch2\\vh\\0,oo = O(h2r+4). (47) 

Equations (45)-(47) give the desired result. • 
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Theorem III.3.1 lends naturally to an extrapolation of the iterated collocation 

method for Hammerstein equation. Let Th^2 be a partition of /: 

0 = *0 < h/2 < h < h/2 <•• < ^AT-l/2 < tN = 1, 

where 
tk-i + tk 

tk-\/2 = ^ ' k = l,...,N. 

Let uhl2 and uit denote the collocation and iterated collocation approximation for 

Hammerstein equation with respect to this new partition. Theorem III.3.1 yields 

u(t) - uhJ\t) = 2 - ^ 2 > jr h™ f b(s, t)ds + 0(h™). 
k=i Je* 

Richardson extrapolation gives a new approximation 

uit \LJ — 2 2 r - + 2 _ ] _ • • • 

It is straightforward that 

u(t)-uhJ2(t) = 0(h*+i). (48) 

Example III.3.2. Consider the equation 

u(tj- f e7'(s-t)u2(s)ds = f{t), £€[0,1], 
Jo 

where f(t) is chosen so that the exact solution is u(t) = cos(t). 

Notice that we define 

eh = ||u - u^||o,oo, Rh = log2 (j^) , 

ih = ||«-««/2||o,oo,- and Rh = \og2[f^j. 
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^ABLE 8: Computational results of extrapolation of iterated collocation solutions 

N 

2 
4 
8 
16 
32 
64 
128 

Collocation 

eh 

1.1667e-2 
2.7077e-3 
6.5885e-4 
1.6330e-4 
4.7258e-5 
1.0175e-5 
2.5433e-6 

Rh 

2.11 
2.04 
2.01 
1.79 
2.21 

2.00 

Newton 

NI 

5 
5 
5 
5 
5 
5 
5 

CT 

0.11 
0.19 
0.67 
2.48 
9.64 

38.17 
151.04 

Quasi-Newton 

NI 

10 
10 
10 
10 
10 
10 
10 

CT 

0.08 
0.19 
0.64 
2.29 
8.58 
33.26 
131.60 

Post-Processing 

eh 

1.2547e-3 
7.1920e-5 
4.4079e-6 
2.7419e-7 
1.7117e-8 
1.0695e-9 

6.6836e-ll 

Rh 

4.12 
4.03 
4.01 
4.00 
4.00 
4.00 

eh 

1.7389e-5 
2.3326e-7 
3.4813e-9 
5.3746e-ll. 
8.4259e-13 
1.7541e-14 

Rh 

6.22 
6.07 
6.02 
5.99 
5.59 

III.4 GLOBAL EXTRAPOLATION FOR HAMMERSTEIN EQUA-

TION 

Theorem III.3.1 plays, once again, a critical role in establishing another method of 

improving the accuracy of numerical solution of the Hammerstein equation. Here, we 

examine a global extrapolation method for the Hammerstein equations. From (46), 

= h2r+2 E L (4)2r+2 JEk Ks, t)ds + o(h»«) 
= h2r+2w(t) + 0(h2r+4), 

where 

Equivalently, 

N / h \2r+2 r 

fc=l ^ ' J Ek 

(I - Ghy
lGh{u - ilu){t) = h2r+2w(t) + 0(h2r+A). 

Applying (32) and using the fact that 

(/ - ir
hGhy

l = (I - Gh)-
X -{I- ir

hGh)-\l - ir
h)Gh{I - Ghy\ 

(49) 

we get 

u — ihu (I-Gh)-h\Gh{?hu-u) 

-(I- ir
hGh)-\l - ir

h)Gh(I - Gh)-HhGh(ilu - u) 

(I - GhY'G^u - u) + (/ - Ghy
l{I - ir

h)Gh{u - %\u) 

-(I - ir
hGh)-\l - il)Gh(I - Gh)-%Gh{?hu - u). ' (50) 
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By virtue of the fact that u — ir
hu = 0 on the Gaussian points and arguing similarly 

to [29], it can be shown that 

(I-Gh)-
1(I-?h)Gh(u-ir

hu) = 0(h3r+3), (51) 

and 

(/ - ir
hGhy\l - ir

h)Gk{I - Ghy%Gh(fhu -u) = 0{h^). (52) 

Equations (49)-(52) yield the superclose identity with asymptotic error terms. 

u {t)-ihu{t) = l (53) 
[ hzw{t) + 0(hA), r = 0. 

Equations in (53) lead naturally to the following extrapolation method. The theory 

follows exactly the same way as the one given in [29]. We include it for completeness. 

Let N be the number of elements of Th and assume that it is a multiple of 3. Define 

an interpolation operator I2l+3 mapping into a space of polynomials of degree 2 r+ 3, 

r > 1, as follows: 

hi. u\ei-iUeiUei+i £ ^ 2 r + 3 , i = 3 ^ + 1,'£ = 0, 1, . . . , y — 1, 

lH+*u(t)=u{t), « E ^ ( B ) U $ i + i ( B ) U { S ; , < } , 

where $;(£) = {s° , . . . , s\}. Using (53) and 

r2r+3 T _ r2r+3 

and arguing as in [29], we obtain 

• IJl+\h-u = h2r+2w + 0{h2T+A). (54) 

Equation (54) leads naturally to a global extrapolation method for the solution of 

the Hammerstein equation. In order to implement the global extrapolation, let Sh^2 

be the space of piecewise polynomials of degree less than or equal to r with partition 

points 

Th/2: 0 = t0<ti < h < ts < ••'• < tN_i < tN = 1, 
2 2 ' v 2 

where 
k-i + U . 

«i-i = 2 ' * = 1,---,W-

Denote the collocation approximation and interpolation operator of degree 2r + 3 

with respect to the partition Th/2 by uh/2 and I2^ so that 

2r+2 

\) w + 0(h2^). 
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The standard Richardson extrapolation gives an approximation with higher order of 

accuracy, namely 

where 

,2r+3-h/2 = 
13/1/2 — 

2%r+2j2r+3 h/2 _ j2r+3 
'3ft/2 3/i U 

2 2r+2 _ l 

Example III.4.1. Consider the equation 

u(t) - [ e{s't)u2(s)ds = f(t), t e [0,1], 
Jo 

where f(t) is chosen so that the exact solution is u(t) = el. 

Notice that we define 

eh = \\u - J^+3u||o,oo, Rh = log 

ih = \\u- lM+3uh,2\\o,<x>, a n d Rh = log; 

N 

3 
6 
12 
24 
48 
96 

TABLE 9: Computational results of glo 
Collocation 

eh 

2.2399e-2 
5.9444e-3 
1.5295e-3 
3.8781e-4 

9.7635e-5 
2.4494e-5 

Rh 

1.91 
1.96 
1.98 
1.99 
1.99 

Newton 

NI 

6 
6 
6 
6 
6 
6 

CT 

0.20 
0.44 
1.70 
6.38 
24.82 
98.93 

Quasi-Newton 

NI 

13 
13 
14 
14 
14 
14 

CT 

0.14 

0.45 
1.65 
6.08 
23.23 
91.31 

Dal extrapolation technique. 
Post-Processing 

e-h 

4.2392e-4 
2.7526e-5 
1.7389e-6 
1.0906e-7 
6.8247e-9 

4.2677e-10 

Rh 

3.94 

3.98 
3.99 
4.00 
4.00 

4 

4.8714e-7 
7.7383e-9 
1.2189e-10 
1.9062e-12 
3.2196e-14 

Rh 

5.98 
5.99 
6.00 
5.89 

III.5 GLOBAL SUPERCONVERGENCE FOR HAMMERSTEIN 

EQUATION BY GALERKIN METHOD: 

In this section, we examine global superconvergence of the post-processed Galerkin 

method by interpolation. In other words, we apply the technique in Section III.2 to 

the Galerkin method. We denote by Ph the orthogonal projection of L2(I) onto Sh. 

More precisely, 

(u-Phu,v)=Q, for a l i v e 5"'. (55) 

Then the Galerkin method in solving (29) can be written as 

PhKV(uh) = Phf, uh e Sh. (56) 
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The weak forms of (29) and (56) are 

{u,v)-(KV(u),v) = (f,v), for ally G L2(I), (57) 

and 

(uh,v)-(KV(uh),v) = ( /», . iovallveSh. (58) 

Using (57) and (58) along with (55), it is obtained that 

(uh - Phu,v) - (K^(uh) - KV{Phu),v) = (K*(Phu)- K*(u),v), for all v G Sh, 

which can be further reduced to 

(uh - Phu,v) - ({K<S>)\C){uh - Phu),v) = (KV(Phu)-- KV(u),v), for all v G Sh, 

(59) 

where f = 8uh + (1 - 8)Phu for some 8 G (0,1). The standing conditions (A4)-(A6) 

described in Section III.2 guarantee that (Kty)'(£) is a compact linear operator and 

Ph —>• I pointwise as h —>• 0. A standard argument shows that (/ — P^K^)'^))'1 

exists for sufficiently small h. Using the strong form of (59) and its rearrangements 

of terms, we see with £i = 8Ph,u + (1 — 8)u that 

uh - Phu ={I- Pfc(tf¥)'(0)-1[fi.(K'*)'(fi)(J'/.u - u)] 

= (i - (KmorHKmtiXPhu -«) + (/- (m'iorni - ph)(Kmti)(u - ^«) 
-(/ - PHiKvym-Hi - ph)(m'(0(i - (KvywyiPkiKmtiXPhv - «)• 

(60) 

Conditions (A4)-(A6) once again guarantees that (K^)'^) is a compact linear 

operator and we assume that it is in the form 

{K*),(S1)u{t) = Jk*{s,t)u(S)dS, 

with k* e CT+2{I x / ) . Since for each t G / , 

[ph{s)k*(s,t){Phu-u){s)ds = 0, 

we obtain 

(KVYfoXPhU-u) =T,*£ feik'(s,t)(PhU-v.)(s)ds 

= El'o11 J1 - Ph(s))k'(s, t)(Phu - u)(s)ds 

= 0(^+ 2) | |u | | r + 1 ,o c . 
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Hence, 

| |(/ - (AT*)'(C))-1(A:*)'(ei)(/J/l« - u)\\0,q = 0(hr+2)\\u\\r+1,q, (61) 

where q = 2, oo. For the second and third terms in (60), we proceed as follows; 

ii(/ - (KvnorHi - Ph)(m\zi)(u - phU)\\0:q 

<C\\(I-Ph)(K^n^)(u-Phu)\\0,q 

< Ch\\k*(s, «)||i,,||u - Phu\\0tq < C/i r+2 | |u|| r+i,„ 

(62) 

ii(7 - p^Kvywr'ii - ph) (Kmov - (m'ior'Pkim'&KPHU - U)\\0,q 

< chui-iKvyior'PhiKvyfoKPhu-uno* 
< Ch\\Phu-u\\0ig 

< C7ir+2||u||r+1,,. (63) 

When (61), (62) and (63) are combined with (60), we obtain 

| |U
h-P f c«| |o, , = 0(/ir+2)|HJr+i,oo- (64) 

In order to utilize (64) and obtain a global superconvergence of the Galerkin method 

by interpolation, it is necessary to define an interpolation operator I^1 as follows. 

In relation with the mesh T2h, 

^ih"luUuei+i € Pr+u % = 0, 2,... . , N - 2, such that 

/ I^uds = / uds, / I^uds = / uds 
Je, Jet J e.i+\ Jei+i 

and 

Using 

/ v^2hlu^s = / vuds, for all v 6 Pr{&i U ei+\). 

rr+1 p r r+1 
J2h rh — L2h > 

l l ^ v l k < C||u||o,„ for all v £ Sh, 

\\Ir2^V - V\kq < Chr+2\\V\\r+2,q, 

with q = 2, oo, the global superconvergence of the Galerkin method by interpolation 

for the Hammerstein equation is now attained from 

\\r2^uh - u||0i, < \\r2^u - r2t
lPhu\wq + \\r2t

lPhU - u%,q 

<C\\uh-Phu\\Q„ + \\r£lu-u\\Qjq 

= 0(hr+2){\\u\\r+1,00 + \\u\\r+2>q). 
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Example III.5.1. Consider the equation 

u{t)- I stu2(s)ds = f(t), <-€[0,l], 
Jo 

where f(t) is chosen so that the exact solution is u(t) = exp(t). 

Notice that we define 

e'h=\\u-u%,2, R'h = log2(^-), 
\ h/2 / 

e'k = h ~ ^ 1 l o , 2 and R'h = l o g 2 ( ^ - ) . 
\ h/2 / 

TAB! 

N 

2 
4 
8 
16 
32 
64 
128 

_<E 10: Computational results o: 
Galerkin 

e'h 

1.6482e-2 
4.1484e-3 
1.0398e-3 
2.6013e-4 
6.5044e-5 
1.6262e-5 
4.0655e-6 

K 

1.99 
2.00 
2.00 
2.00 
2.00 
2.00 

Newton 

NI 
5 
5 
5 
5 
5 
5 
8 

CT 

0.11 
0.26 
1.03 
3.98 
15,57 
61.70 
396.36 

" inte rpolation Galerkin technique. 
Quasi-Newton 

NI 

7 
7 
7 
7 
7 
7 • 

7 

CT 

0.06 
0.17 
0.69 
2.62 
10.30 
40.95 
164.33 

Interpolation 

< 
2.1565e-3 
1.8942e-4 
2.0170e-5 
2.3970e-6 
2.9560e-7 
3.6823e-8 
4.5988e-9 

K 

3.51 
3.23 
3.07 
3.02 
3.00 
3.00 

We point out a much shorter computational time with Quasi-Newton algorithm 

in this example. 

III.6 EXTRAPOLATION OF ITERATED GALERKIN SOLUTION 

FOR HAMMERSTEIN EQUATION 

In this final section, we explore the extrapolation technique developed in Section 

III.3 for the iterated collocation method for Hammerstein equations and extend it 

to accelerate further the rate of convergence of the iterated Galerkin method. The 

results reported in this section appear new even for the linear Fredholm equations. 

The iterated Galerkin solution, u\, is obtained by 

where uh is the solution of the Galerkin method (see (56)), 

uh-PhK*(uh) = Phf, uheSh, 

(65) 
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and Ph is the orthogonal projection of L2(I) onto Sh. From (65), 

Phu^ = Phf + PhK^(uh). (66) 

From (66) and (56), we see that 

Phu^ = uh. (67) 

It is shown in [21] that if / € C2r+2(I) and k G C2r+2{I), then 

\\u-u%,2 = 0(h2r+2). 

In order to successfully complete the current extrapolation method, it is necessary 

to establish an asymptotic error expansion for the iterated Galerkin solution which 

is analogous to Theorem III.3.1. A proof can be made similar to the proof of The-

orem III.3.1 but the interpolation projection ir
h must be replaced by the orthogonal 

projection Ph. Some differences which must be incorporated are highlighted in the 

proof of Lemma III.6.2 below. 

Theorem III.6.1. Assume that k G Cr+3([0,1] x [0,1]) and the solution u of (27) 

satisfies u G C2r+4[0,1]. Also assume that 1 is not an eigenvalue of the linear operator 

(Kty)'(u). Then there exists b G C([0,1] x [0,1]), independent of the partition, such 

that 

u(t) - r4(t) = J2 hlV+2 [ b(s, t)ds + 0(h2r+i), t G [0,1]. 
i i Jet fe=l Jek 

Theorem III.6.1 is based upon the following lemma. 

Lemma III.6.2. Assume that x , z £ Cr+4[—1,1] and let Ph is the orthogonal pro-

jection of L2[—1,1] onto Sh- Then there exists a constant c r+1 r + 1 , independent of x 

and z, such that 

f X{z-Phz)ds = cr+lr+l f Dr+1
XDr+1zds + 0(l) J^ II^XIIII^II-

i+j>2r+4 

Proof. Expand x a n d z in Maclaurin series to get 

r+3 

J! 

r+3 

3=0 
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r+3 -. 

z(s) = J^-Diz(0)^ + O(Dr+Az), 

where <j>j(s) = sJ. Since F^: L2[— 1,1] —> Sh, P^j = 4>j for 0 < j < r and thus 
r+3 

z-Phz = J2 \D%Z^)^ - Ph<Pi) + 0(Dr+4z). 
i=r+l 

Also noting that 

/ 'ip(s)(z - Phz)(s)ds = 0, for all ip e Sh, 

and thus 
i r+3 r-f-3 l 

/ X(B)(Z - Phz)(8)ds = Yl E ^ * ^ / ^(s)^ - Ph4>t)(s)ds 

r+3 r+3 

+0(1)(||Z?'-+42|| Y \\DJX\\ + IPr+4xll Y II^^H) 
j—r+1 j '=r+l 

r+3 r+3 r+3 

= Y £^x(o)Z)Mo) + o(i)(||ir+4*|| Y ll^xll 
j= r+ l i=r+l j = r + l 

r+3 

+ii^r+4xii E ii^zii)> (68) 
j=r+l 

where Cy = -^• f_14>j(s)(4>i — Ph4>i){s)ds. Note that, in the first term of the last 

expression, cr+i r+2 = cr+2 r+i = 0- To see this, note that, if r + 1 is odd, then 

4>r+\ — Ph<t>r+i is also odd, since, with (u, v) = f_1 uvds, 

r 

Ph<j>r+1 = Y2bi<f>i' where k = ^ ,+ff i , 
i=0 

and thus 6; = 0 whenever i is even for in this case (pr+ifc becomes an odd function. 

Hence, Ph4>r+i is odd and thus (f)r+\ — Ph<f>r+i is also odd. Under the assumption that 

r + 1 is odd, <j>r+2 &n even function which in turn makes </>r+2(</v+i — Ph<t>r+i) odd, 

providing the result that cr+i r+2 = 0. Cr+2T+i = 0 is similar. Returning to (68), 

£lX{s) (z-Phz)(s)ds = 2cr+lr+1D
r+1

X(0)Dr+1z(0) 

+cr+1 r+3D
r+3

x(0)Dr+lz(0) + Cr+3 r+1D
r+1

X(0)Dr+3z(0) 

+0(l)(\\D^z\\rJ2\\Djx\\ + \\Dr+\\\Y2\\D>z\\) 
j—r-\-l j=r+l 

= cr+lr+1J
1_1D

r+1xDr+1zds + 0(l) J2 -11^x1111^1, 

where the second order Maclaurin expansion was used in the last step. • 
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Proof. (Theorem III.6.1) Arguing exactly the same way as between (41) and (44) 

with the interpolation projection ir
h replaced by the orthogonal projection F/,, we 

obtain 

u~u'>t = vh-(I-GkPh)-
1Gh(I-Ph)v

h, (69) 

where 

Ghu(s) = g(t,s,Phu(s),Phu^t(s),e)u(s)ds,. 
Jo 

where g is defined in'Section III.2, 

wh = KV{u) - K<H(Phu), 

and 

vh==(I-Gh)-
1vjh = {I-Gh)-

1K[*(u)-V(Phu)}. 

Let L = (I — Gh)~lK so that L is an integral operator with a kernel l*(s, t) with the 

same smoothness properties as k(s,t). 

Then 

vh(t) = L[*(u) - *{Phu)] = [ l*(s,t)[rl>(sMs))-1>(s',Phu(s))]ds. 
Jo 

Using the mean value theorem as was done before in the proof of Theorem III.3.1, 

we obtain 
N 

"" ( t ) = "« 
fc=l • / i i * 

where /(s, t) = l*(s, t ) g (s, (u + BPhu) (s)). 

By applying Lemma III.6.2 to each subinterval Ek and noting that the change of 

scale introduce a factor (/ifc/2}3 for the jth derivative, we obtain 

A * ) = E ( f ) *+* r+i J D°+H (s> *) Dr+1u{s)ds + O {h2r+4) ||U||c2r+4, (70) 

where Ds denotes the partial derivative with respect to s. The result may be rewritten 

as 

A*) = Y ) / l(s,t)(u-Phu)(s)ds, 
,._, JEL 

v*(t) = J2 hf+2 f b(s, t)ds + 0(h2r+4), (71) 
1 1 J Ek. 

where 

b{s, t) = 2-(2r+2>cr+1 r+iDr
s
+1l (s, t) Dr+1u(s). 
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We already know that \\vh\\ = 0{h2r+2). Also, 

| | ( / -G / l P f c ) - 1 G f c ( / -P h ) t ; ' l | | < C\\Gh(I - Ph)v
h\\ 

< C\\(I - Ph)v
h\\ 

< Ch2\\vh\\ = 0(h2r+4). (72) 

Equations (69), (71) and (72) give the desired result. • 

Theorem III.6.1 engenders the extrapolation of the iterated Galerkin method for 

the Hammerstein equation. The process is the same with the extrapolation of the 

iterated collocation method, namely, we use the classical Richardson extrapolation 

technique. Let Thl2 be a partition of / : 

0 = t0 < ti/2 < h < ts/2 < • • • < t^-i/2 < tN = 1, 

where 

tk-l/2 = ^ , k = l,...,N. 

Let uhl2 and uj denote the Galerkin and iterated Galerkin approximation for Ham-

merstein equation with respect to this new partition. Theorem III.6.1 yields 

u(t) - uT{t) = 2-^+2> £ h^2 f b(s, t)ds + 0{h2^). 
fc=i J

*>° 

An extrapolation gives a new approximation 

-v2 m_22^4 / 2 -<(0 

It is straightforward that 

u(t)-u*/2(t) = 0(h™). 
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Example III.6.3. Consider the equation 

u{t)- stu2(s)ds = f(t), .<e[0 , l ] , 
Jo -

where f(t) is chosen so that the exact solution is u(i) = el. 

Notice that we define 

eh = \\U ~ Uti\\0,2, 

-h/2 

K = iog2 ( ^ ) , 

u~uu 110,2 and Rh = log2 
'h/2 

TAB] 

N 

2 
4 
8 
16 
32 
64 

128 

_,E 11: Computational results of extrapolation of iterated Galerkin solutions. 
Galerkin 

< 
1.6482e-2 
4.1484e-3 
1.0398e-3 
2.6013e-4 
6.5044e-5 
1.6262e-5 
4.0655e-6 

R'H 

1.99 
2.00 
2.00 
2.00 
2.00 
2.00 

Newton 

NI 

5 
5 
5 
5 
5 
5 
8 

CT 

0.11 
0.26 
1.03 
3.98 
15.57 
61.70 
396.36 

Quasi-Newton 

NI 

7 
7 
7 
7 
7 
7 
7 

CT 

0.06 
0.17 
0.69 
2.62 
10.30 
40.95 
164.33 

Post-Processing 

e'h 

1.6450e-3 
1.0573e-4 
6.6550e-6 
4.1667e-7 
2.6053e-8 
1.6285e-9 
1.0179e-10 

R'H 

3.96 
3.99 
4.00 
4.00 
4.00 
4.00 

-^ 
th 

5.3988e-6 
8.6269e-8 
1.3552e-9 

2.1203e-ll 
3.3129e-13 
7.9936e-15 

K 

5.96 
5.99 
6.00 
6:00 
5.37 

As with the example III.5.1, we note that the Quasi-Newton method results in 

less than half of the computing time than that of the Newton's method. 
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CHAPTER IV 

WAVELETS-COLLOCATION METHOD 

In this chapter, we construct a wavelet-collocation method for Hammerstein integral 

equations. A wavelet-collocation method for Fredholm equation is recently estab-

lished in [10]. Our first objective is to establish a fast wavelet-collocation method 

for Hammerstein equation by using the idea of 'linearization' technique described in 

[25] and [17]. We use the multiscale wavelet bases constructed by [10], which was 

introduced in Chapter II, to solve the nonlinear integral equation. We show that 

the sparsity of coefficient in the Jacobian matrices occurs for equations with either 

smooth or weakly singularity kernel. We use the block truncation strategy of [10] to 

attain a fast algorithm. 

The second objective is to create a multilevel augmentation method for the Ham-

merstein equation. It is based upon the transformed linearized nonlinear equation 

and it is different from, even though greatly inspired by, the multilevel augmenta-

tion method recently established in the paper [11]. The main goal of a multilevel 

augmentation method is to avoid solving a large nonlinear system. In accomplishing 

this goal, two steps have to be implemented. The first step is to solve the nonlinear 

equation at a lower resolution level and secondly the error is compensated by adding 

a correction term from higher resolution level. The method leads us to a faster 

numerical technique while still preserving the order of convergence of approximation. 

IV . l PRELIMINARY 

There have been many papers written in the recent years which establish numerical 

techniques for finding an approximation of a solution of the Hammerstein equation 

(see, -e.g.,[11],[18],[19],[21],[20],[23],[24],[25]). In each of these methods, numerical so-

lution is found by solving a system of nonlinear equations using a nonlinear solver such 

as the Newton method, the secant method or the quasi-Newton method. In executing 

its iterative process, the Newton's method as well as the secant method require up-

dating of the Jacobian matrix which is normally dense. The quasi-Newton's method 

eliminates the need for the update by fixing a Jacobian matrix in computation. This 

reduces the overall cost of computation despite the fact that more iterations may 

be needed, since a large portion of the computing time is used for the assembly of 
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the Jacobian matrices. We point out that the Jacobian matrices used in the New-

ton method, the secant method and the quasi-Newton method are dense when spline 

bases are used. In general, to advance one iteration in the Newton's method or in the 

quasi-Newton's method requires 0{N2) operation counts in an JV x N system, and 

thus if one desires a higher accuracy in approximation, computational complexity 

increases with N. In [11], a class of wavelets was used in approximating a solution 

of Hammerstein equation which uses a fast multilevel augmentation method. The 

method is a generalization of the multilevel method for linear operator equations 

which was first established in [7] and when it was applied to Hammerstein equation, 

the complexity of computation decreases to 0(N log TV). 

It was established in [1] that a class of wavelet basis can be applied to approximat-

ing a solution of the Fredholm integral equation of the second kind which produces 

a linear system with sparse structure. This has had a significant implication in the 

reduction of an overall computational expense in approximating a solution of the 

Fredholm equation, since, as stated earlier, a standard spline basis results in a lin-

ear system which is dense. This discovery was greatly expanded and generalized in 

the recent years in a series of papers, [32], [35], [8], [10], where truncation strategies 

were established to produce sparse systems, leading to fast algorithms. The latter 

three papers deals with the wavelet collocation methods for the Fredholm integral 

equations of the second kind. 
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IV. 1.1 Wavelet collocation method for the second kind Fredholm equa-

tion 

Using the functions Wij and the functionals tyy thus constructed, fast wavelet collo-

cation methods were developed in [8], [10]. The Fredholm integral equations of the 

second kind is written as 

u(t)- f k{s,t)u(s)ds = f{t), t€l, (73) 
Jo 

where k and / G C(I) are known functions and u is the function to be determined. 

In the operator form, (73) is 

u - Ku = f. (74) 

In the wavelet collocation method, an approximate solution un for u in (74) is found 

in the form 

Un . = y ^ ILijWij 

(i,j)eUn 

where, with 

u„ := [uij : (i,j) G Un]
T 

and 

Un = {(i,j) : j G Zu(i),i G Zn+1}, 

found by solving 

< ^ , « n ( i ) > = < ^ ' , ( / + ̂ «n)(<))», {i',j')eUn. (75) 

Moreover, using the lexicographic ordering on Zn+\ x Zn+\, equation (75) yields 

(En - K n)u n = fn, (76) 

where 

E„ := [< ifj,, Wij » : ( « ' , / ) , (i,j) G £/„], 

Kn := [<:li,J,,Kwij^:(i,,j'),(i,j)eUn}: 

and f„ := [<£•£??, f » : (»', / ) G f/„]T. 

Recently, Chen et. al. ([8], [10]) estimated the size of the components in the 

wavelet collocation matrix for the Fredholm integral equation of the second kind. 

More specifically, with K^y^ := <C £i'j>,Kwij S> and under the assumption that 
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the kernel k(s,t) is weakly singular, i.e., k(s,t) has continuous partial derivatives 

Jpj-Jp-fc(s, t) for a < k, (3 < k, when s,t € I with s ^ t and there exists 0 < a < 1 

and. 9 such that 

——rfc(s,<) 
| dsa dtP 

Denote by Sij the support of ^ and 

£ iTTTFW- <"> 

di :=max{diam(5y): j G Zw(j)}, i = 0 , 1 , . . . 

then the conditions on the functional £i>j> and the wavelet functions wzj guarantee 

the following lemma (Lemma 3.1 [8]) which serves as a foundation of the truncation 

strategy. 

Lemma IV. 1.1. [8] If there is a constant r > 1 such that 

dist(Sij, Si'ji) > r(di + dii), 

then there exists a positive constant c such that 

To use Lemma IV.1.1, partition K„ := [Ki'j>,ij](i>,j'),(i,j)eu„+i into 

where 

K-i>i = [Ki>j>,ij]j>ezij(il),jezu(iy 

A truncation parameter e^ = e(i', i, n) is chosen to form a matrix 

K(e)i>i = [Ki^i'j'^jjj'ez^jez^y 

where 
... . J Ki'j',ij> dlSt(Oj/j/, bij) < £j',, 
K{e)i'j',ij = \ 

y 0 otherwise. 

The following theorem was shown in [8] (Theorem 4.6) which serves as a basis for 

a fast wavelet collocation algorithm. Here N(A) denotes the number of nonzero 

elements in A 
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Theorem IV. 1.2. [8] Let b and b' be real numbers not larger than one and the 

truncation parameter e.t>t = c(i'.i,n), i'i E Zn+\, be chosen such that 

eilt = max{a^-n+b^+b'(n-^/d,r(dt + dt,)}, x',i E Zn+1, 

for some constants a > 0 and r > 1. Then 

N(En-K(e)) = 0(/(n)log r/(n)), 

where f(n) = dim(X„), T — 1 except for b — b' — 1, in which case r = 2. 

In the above theorem, we take d = 1 in this study. It was also shown in [8] that 

the choice of parameter e not only generate a sparse matrix K(e) but also preserve 

the optimal order of convergence of numerical solution. 

Recently, Theorem 3.3 was improved by Chen, Wu and Xu in [10] to a more 

practical form in which its implementation is much easier. In the practical block 

truncation strategy, each rectangular block Kj'j in Kn is further partitioned into a 

block having the same number of row sub-blocks and column sub-blocks, i.e., 

Kj'i = [ 1 % : q',q € Z^o-i], 

where IQ = min{i', i} and the following lemma help to classify the entries of each 

sub-block. 

Lemma IV.1.3. [10] For i', i € Zn+Uf = /i(e')r + l',j = fi(e)r + I, e' e Z^~\ e € 

Zl~l,V, I E Zr,' Ki'fjj is an entry ofKp if and only if 

q' = fJ.(e'), and q = 

and 

p}-1' 
when i > i', 

q' 
Me') , and q = /i(e), when i < i'. 

The block truncation strategy is then to select a family of parameters according to 

Theorem IV. 1.4 below so that the order of convergence and computational complexity 

are preserved. Specifically, the block truncation strategy is to define 

K,i = [K(p)pq:q',qEZfli0-1}, 

and 

79 ' l\q[-P^ (78) 
U otherwise, 

where parameters p^ are specified in the following theorem. 
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Theorem IV.1.4. [10] Suppose that u € Wk>°°(I). For any constant a > 0 and 

v > 1, for i' < i, let 

pVi := {1 + maX{a/("-1 '»- i + , '+ 1 , ^ri+i' + 1)}, 

and for %' > i let 

pVi := {1 + max{o / ( n - i ' ) - 1 , v ^ ' ^ + 1)}, 

where fc~ff, < b' < 1, with 0 < a' < 1 — a. Then, there exists a positive constant c 

such that 

II" - «||o,oo < cf{n)~k logT /(n)||u||jti00, 

where u denotes the solution to the Fredholm integral equation of the second kind 

under the truncation strategy and r is either 1 or 2 and 

i V ( E n - K n ) = 0( / (n) log / (n) ) . 

We note that the choice for pin defined in Theorem IV.1.4 for the block truncation 

strategy ensures that 

dist(Si'f, Si:j) < ej/j, 

where e^ is defined in Theorem IV. 1.2, and hence 

is guaranteed. 

Remark: We note that the constants a > 0 and v > 1 can be any number for 

the wavelet collocation method to converge at the optimal rate, but our numerical 

experiments show that CPU times vary significantly with different values of a > 0 

and v > 1. 
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Throughout all numerical experiments reported below, we choose the linear mul 

tiscale wavelets to be the basis functions. 

Example IV.1.5. Consider the equation 

u(t)- f u{s --ds = f(t), t € [ 0 , l ] , 
VIs-t\ 

where f(t) is chosen so that the exact solution is u(t) = t2. 

TABLE 12: CPU time CT and number of nonzeros 'N for solving the wavelet collo-
thod. 

f(n) 
32 
64 

128 

256 

512 

1024 

CT 

0.208 

0.706 

2.677 

11.903 

93.018 

1486.343 

' CTi 

0.190 

0.549 

1.613 

5.006 

17.090 

64.806 

CT2 

0.203 

0.569 

1.642 

5.019 

17.148 

64.976 

CT3 

0:208 

0.608 

1.787 

5.424 

18.180 

68.580 

CT4 

0.212 

0.705 

2.717 

11.306 

44.662 

212.690 

CT5 

0.216 

0.707 

2.714 

11.621 

63.459 

530.878 

f(n) 
32 
64 

128 

256 
512 

1024 

N(A) 

1024 

4096 

16384 

65536 

262131 

1045230 

N(Ai) 

912 
2816 

7856 

20448 

50704 

121408 

N(A2) 

928 
2832 

7872 

20464 

50720 

121424 

N(A3) 

976 
3136 

8816 

22816 

56016 

132736 

N(A4) 

1024 

4096 

16384 

61152 

167000 

360088 

N(A5) 

1024 

4096 

16384 

63512 

212336 

616136 

where CT and N(A) is the results without the block truncation strategy, 

CTi and N(A{) is the results with a = 0.01, v = 1.01 and b' = 0.8, 

CT2 and N{A2) is the results with a = 0.25, u = 1.01 and b' = 0.8, 

CT3 and A^(^3) is the results with a = 0.5, v = 1.5 and b' = 0.5, 

C~fi and N(A4) is the results with a = 20, v = 1.01 and V = 0.8, 

CT5 and N(A*,\is the results with a = 0.25, v = 20 and b' = 0.8. 



67 

Next, some numerical experiments of wavelet collocation method of the Fredholm 

equation are shown. Denote 

eh = \\u - u^Wo.oc, Rh = log2 ( —— ) • 
\eh/2j 

Example IV.1.6. Consider the equation 

u(t)- sm(s + t)u(s)ds = f(t), t e [ 0 , l ] , 
Jo 

where f(t) is chosen so that the exact solution is u(t) = e*. 

TABLE 13: Computational results of Fredholm equation with smooth kernel. 

/(n) 

2 
4 

8 

16 
32 

64 

128 

256 

512 

1024 

eh 

4.816643e-l 

1.239859e-l 

3.198254e-2 

8.154885e-3 

2.060935e-3 

5.181485e-4 

1.299022e-4 

3.251324e-5 

8.124553e-6 

2.022185e-6 

Rh 

1.9578 

1.9548 

1.9716 

1.9844 

1.9919 

1.9959 

2.0007 

1.9983 

2.0064 

CT 

0.009 

0.018 

0.042 

0.137 

0.473 

1.754 

6.820 

26.929 

108.058 

438.780 

Note that we use the numerical quadrature scheme in Appendix A to calculate 

integral term of smooth kernel case. Recall that the numerical error of collocation 

method is 0(hr+1). Therefore, in this case, we see that the expected convergence 

rate is 2. 

Example IV.1.7. Consider the equation 

u(s) 
i(t) - f 

Jo 
ds = /(«), t 6 [0,1] 

V\s~t\ 

and f(t) is chosen so that the exact solution is u(t) — t2. 

Note that we use analytic integration to calculate the integral term in the weakly 

singular kernel case. From FIG. 15, we see that the sparsity of corresponding matrix 

for solving linear system occurs when using wavelet bases for the weakly singular 

kernel case. 
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(d) f(n) = 256 

1000 

(f) f(n) = 1024 

FIG. 15: Sparsity of corresponding matrix of Fredholm equation. 
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TABLE 14: Computationa! 

f(n) 
2 
4 
8 
16 
32 
64 
128 
256 
512 
1024 

eh 

1.704129e-l 
5.012502e-2 
1.276033e-2 
3.099368e-3 
7.733665e-4 
1.943866e-4 
4.886239e-5 
1.243263e-5 
3.151628e-6 
7.704299e-7 

results of Fredholm equation with weakly singular kernel 

Rh 

1.7654 

1.9739 

2.0416 

2.0027 

1.9922 

1.9921 

1.9746 

1.9800 

2.0324 

CT 

0.007 
0.011 
0.040 
0.079 
0.208 
0.706 
2.677 
11.903 
93.018 

1486.343 

en 
1.704129e-l 

5.012502e-2 

1.276033e-2 

3.099368e-3 

7.734493e-4 

1.945008e-4 

4.897603e-5 

1.246557e-5 

3.182451e-6 

8.773358e-7 

Rh 

1.7654 

1.9739 

2.0416 

2.0026 

1.9915 

1.9896 

1.9741 

1.9697 

1.8589 

CT 

0.007 
0.012 
0.027 
0.069 
0.203 

.0.569 
1.642 
5.019 
17.148 
64.976 

One of the goals of this Chapter is to extend the previous implementation to 

the wavelet collocation method for the Hammerstein equation. We show, in Section 

IV.2, that by 'linearlizing' the Hammerstein equation, our wavelet collocation method 

produces Jacobian matrices which are sparse. This generalizes a similar result to 

the Petrov-Galerkin method for the Hammerstein equation [17]. In Section IV.3, 

a multilevel augmentation method applied directly to the linearlized Hammerstein 

equation is discussed. The new fast multilevel augmentation method is similar to 

the one established in [11], but also takes an advantage of the sparse structure of 

the Jacobian matrix which leads to an added reduction in the overall computational 

cost. 

IV.2 WAVELET COLLOCATION METHOD FOR HAMMERSTEIN 

EQUATION 

The purpose of this section is to establish a wavelet collocation method for the 

Hammerstein equation written as 

u(t)- [ k(s,t)iP(s,u(s))ds = f(t), tel. (79) 
Jo 

In the case of nonlinear Hammerstein equation, a similar fast algorithm based 

upon the same truncation strategy described in section IV. 1.1 must be modified, 

since the basis functions w^ appear under the nonlinear term ?/>. To circumvent this 

difficulty, we first transform (79) as follows: Define 

z(i) = M , «(<)), (80) 
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and substituting it into (79), we get 

u(t) =f(t)+ / k(t,s)z(s)ds. 
Jo 

Equations (80) and (81) give 

z(t) = i{>(tj(t)+ [ k(t,s)z(s)ds). 
Jo 

As in the Fredholm case, we seek a solution zn of (82) in the form 

(81) 

(82) 

and z^ are found by requiring that 

< £*?, zn(t) » = « ei,f,ii>(t, f(t) + Kzn{t)) » , (i',f) e Un. (83) 

Once zn is found, the approximate solution un of (79) can be found from (81), namely 

un(t) = f(t) + / k(t,s)zn(s)ds. 
Jo 

It should be pointed out that the substitution techniques described between (80) and 

(82) were first introduced in [25], [23] and [24], and also used in conjunction with 

some other methods in [17] and [21]. Let Pn be an interpolation projection mapping 

C{I) onto Xn which is defined by 

Pn(x)(t):= Y^ ^ v - s »*%(<)• (84) 

Then, 

Pnx —> x, as n —>• oo and for x G C(I) 

from which we obtain by the uniform bounded principle, 

sup ||Fn||o,oo < M, where M is independent of n. 
n 

With 

T(x)(t):=f(t) + Kx(t), x€L°°{I),teI, 

equation (82) can be written as 

z = VT(z), (85) 
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whereas equation (83) can be written in operator form as 

zn = Pn*T(zn), zneXn. (86) 

Under the assumptions (A1)-(A5) along with the condition that 1 is not an eigenvalue 

of the linear operator ($>T)'(z), the Frechet derivative of ^ T at z, it was shown [25] 

that equation (85) has an isolated solution. Similarly, one may invoke theorem 1 of 

[25] to show the existence of a solution zn of (86). Alternatively, one may utilize 

theorem 2 of Vainikko [34], as was done in [21], to obtain the following. 

Theorem IV.2.1. Let z be an isolated solution of (85). Assume that 1 is not 

an eigenvalue of the linear operator (^T)'(z), where (vl'T)'(z) denotes the Frechet 

derivative of^T at z. Then the wavelet collocation approximation equation (86) has 

a unique solution zn in a ball B(z, 8) := {c 6 C( / ) : \\x — 2||o,oo < ^} for some 5 > 0 

and for sufficiently large n- Moreover, there exists a constant 0 < q < 1, independent 

of n, such that 

*" < | | ^ - ^ | | o , o o < ^ , . (87) 
1+q - " " " u ' ° ° - " 1 - g ' 

where an := \\(I - (P^Tyiz^dP^T)^ - *T(z))||0,oo- Finally 

Zn Z 110,00 < CEn(z), 

where C is a constant independent of n and En(z) = infu6x„ \\z — |̂|o,oo-

It is noted that under the current polynomial.wavelets, 

*>(*) - 0(-L). (89) 

Now, in order to find the solution zn of (86), one must more likely use an iterative 

method. Here we consider the Newton's method for an illustration. First, for each 

(i',f) € Un and zn := [%](ij)€t/n with zn = Z)(ij)et/„
 zijWij, we let 

F i Y(zn) := « ti'j',zn(t) » - « £i'f,ip(t, f + Kzn{t)) > 

= « ti'f, E(ij)ei/„ %<% W » - < ti'j'MtJ + K E(ij)et/„ %<%(0) > 

Entries of the Jacobian matrix are computed from 
J („ \ . _ 9FSi'M 

= <&ei>j>,wap(t)^-<z:ei>j>,ipW{t,f+ J2 ZijKwij{t))-KwaP{t)^, (90) 
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with f G w(i'), /? G w(a); i', a G Zn+i. The first term in the last equation is simpli-

fied as <C £i>j',wap(t) 2>= Si'aSj'p, a < i'. The second term points to the significance 

of the 'linearlized' equation (82) or equivalently (85). Notice that wavelets Wy and 

wap appear directly under the linear operator K. This enables the present method 

to use the truncation strategies of Chen et. al. described in the last section. More 

specifically, recalling (14), the second term of (90) can be written as 

« 4 Y ) V
(0,1)(*, / + E(io)6l/B ZiiKviM • KwaP{t) » 

= E c3s^(0'1)(is,/(*s) + E 2iJ / Hts,s)wij{s)ds) • k(ts,s)wap(s)ds. (91) 

By assumption (A5), we may assume, for M > 0, 

\i>{0'l)(t,y)\<M, t,ye (-00,00). (92) 

Lemma IV.2.2. If there is a constant r > 1 suc/i i/iai 

dist(5y, 5JY) >r(di + di>), 

then there exists a positive constant c such that 

\Ji>j>,ap(Zn)\ <€&&>)" J2 f \s_\\2k+^ (93) 
- */ on \ I 

where c = t 2 , 1 ' ° f . 1 ) J m which 0 and a are defined in (77) and ||^y|| + ||*%||o,oo < Q\-

Proof. This follows immediately from Lemma IV.1.1 (lemma 3.1, [8]) and (92). • 

Once the estimate (93) for the entries Ji'j',a,s(zn) 'of the Jacobian J(zn) of 

F(z„ ) := [Fij(zn )]jew(i),iez„+1 are given, the block truncation strategy of Chen 

et. al. [10], also described in section IV. 1.1, can be applied to this Jacobian. 

Namely, let p = {pin: i'.i G Zn+\) be the sequence defined in Theorem IV. 1.4 and let 

J(zn) = [Ji 'a(zn): i',a G Zn+1] where Jj-Q(zn) := [Ji'j',Qja(zn): f G w(i')./3 € w(a)]. 

Define J(zn) := [Ji',a(zn): i', a G Z„+i] where 

J»',a(zn) := [J(zn)(p)*',°: </,<? G Z min{i',a}-i], 
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and 

I 0 otherwise, 

where J('zn)(p)*? is defined similarly to the method in [10] which was stated in section 

IV.1.1. 

Lemma IV.2.3. Give e > 0. Then parameters p as defined in Theorem, IV.1.4 can 

be chosen so that for z e R^("), 

| | J (z) -J (z) | | 0 ,oo<e. 

Proof. Note that lemma 3.2 [8] ensures that there exists a positive constant c such 

that for all i', a € Zn+1 and all z € M /(n), 

IIJ i 'a (z ) - J i 'a(z) | |o ,oo < C e ^ f " V ^ ' ^ • ( 9 4 ) 

Once estimate (94) is obtained, then arguing in the same way as in the proof of 

lemma 4.2 (equation (4.12) [8]), 

U ( J ( Z ) - J ( z ) ) v | | o , o o < C / X - C T ' n / d | | v | | 0 , o o , 

where v e R-̂ ™', c is a constant independent of n and 0 < a' < min{2fc, d — a}. Here 

recall that a is the parameter of weak singularity. Hence, this lemma is proved by 

selecting n so that \c\x~'J'nld\ < e. D 

In Lemma IV.2.3, for the current discussion, d = 1 so that a' = 2k. The Newton's 

method finds the solution zn of (86) as follows: Starting with an initial vector z„ = 

[zfj], which we assume to be sufficiently close to the solution zn = [z,j] of (86) or 

equivalently zn = F(z„) so that the Newton's method converges, we compute 

z ( ^ i ) = z W _ j - i ( z W ) F ( z W ) . ( 9 5 ) 

Of course, one does not invert the Jacobian J(z„ ) directly for each n, but rather 

J(zW)yW = F(zW), (96) 

solve for y i in 

and (95) is implemented as 

^ + 1 ) = ^ - y i f c ) - 0 7 ) 
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Now, we are ready to propose a fast wavelet-collocation method for Hammerstein 

equation based upon (86). Let equations (96) and (97) are replaced by 

J(z(fc))ylfc) = F(z(fc)), (98) 

and 

4fc+1)=zifc)-yifc\ (99) 

respectively, where z„ = z„ . First, we note the following lemma. 

Lemma IV.2.4. For each n 6 N, z„ € R-̂ ™) and e > 0, then parameters p defined 

in Theorem IV. 1.4 can be chosen so that, for all k G N; we have 

Pi fc)-zi fc>||o,oo<£. (100) 

Proof. We prove this by induction. With k = 1, since z„ — z„ , 

z (D_ z ( i ) _ v (o)_^(o) 

= J-i(zS)))[J(z<l
0)) - J ( z r ) ] J - 1 ( z f ) F ( z f ) . 

Taking the norm on both sides and noting that | |J(zn ) — J(z„ )||o.<x> can be made 

arbitrarily small by Lemma IV.2.3, we prove the case when k = 1. Now assume that 

(100) is true for k - 1. Then 

s(fc) „(*) - ?(
fc-!) _ 7(

fc-!) _ fivC*-1) - v(fc_1)l 
^n An — An An ^ n j n ^ 

= zT 1 } - z r 1 ' + [ J - 1 ^ ) - J-\z^)]F&k-V) 

+J-1(zifc-1))[F(z(1
fc-1)) - F^"1))] + [J"1^-1)) - J - 1 ^ - 1 ' ) ^ - 1 ) ) ] 

:=/ + / / + / / / + IV. 

For / / , 

I K J - 1 ^ " 1 ) ) - J-1(z(f-1))]F(z(fc-1))||0,oo < c v l l J ^ - 1 ) ) - JC^-^JIkoo, (101) 

where cx = ||J-1(z^"1))||o,oo||J-1(^fc"1))llo,oo||F(z^-1))||0,oo. The right side of (101) 

can be made < | by Lemma IV.2.3. For III, 

I I J - 1 ^ - 1 ) ) ^ ^ - 1 ) ) - F ^ - ^ H c o o < c2\\^'l) - z^-^Ho.oo, (102) 

where c2 = ||J-1(zlfc-1))||o,oo||J(z^1) + 0(z<*_1) - z i ^ ) ) ^ with 0 < 6 < 1. 

Applying induction, the right side of (102) can be made < | . Finally for IV, 

ii[j-i(zri))-j-i(z(fc-i))]F(zri))iio,00<c3iizri)-z(fe-i)||0,00, (103) 
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where c3 = ||F(z^-1))||o,00 | |H(z^-1) + P{i{n~l) - z^~l)))\\^ with 0 < p < 1 and 

H(a) denotes the Hessian of F at a € W^nK Another application of the induction 

hypothesis and considering (101)-(103), we complete the proof of this lemma. • 

The following theorem establishes the convergence of the fast wavelet-collocation 

method for Hammerstein equation described in (98) and (99). 

Theorem IV.2.5. Assume that zn = [zy] is a solution of (86), i.e., zn = F(zn). 

Also let zn € W^ be such that the Newton iteration given in (95)-(97) generate 

a sequence z„ that converges to zn as k —> oo. Then the parameter p in the block 

truncation strategy can be chosen so that the fast wavelet-collocation method described 

in (98)-(99) generates a sequence zn which converges to zn as k —» oo. 

Proof. This follows by noting that 

and apply Lemma IV.2.4 to first two terms and the convergence assumption to the 

remaining two terms. • 

Next, the numerical results of wavelet collocation scheme of solving the linearized 

Hammerstein equation are shown. The comparison between the full wavelet colloca-

tion solutions and the compressed wavelet collocation solutions is presented. Here, 

the word 'full' means solving the corresponding system without the truncation strat-

egy and 'compressed' means solving the corresponding system with the block trun-

cation strategy, setting a = 0.25, v = 1.01 and V = 0.8. 
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Example IV.2.6. Consider the equation 

u(t) - f es+tu2(s)ds = f{t), t e [0,1], 
Jo 

where f(t) is chosen so that the exact solution is u{t) = cos(i). 

TABLE 15: Computational results of Hammerstein equation for Example IV.2.6. 

f(n) 

2 
4 
8 
16 
32 
64 
128 
256 
512 
1024 

full collocation solution 

eh 

2.779527e-2 
5.779759e-3 
1.386280e-3 
3.431079e-4 
8.556368e-5 
2.137762e-5 
5.343552e-6 
1.335814e-6 
3.339281e-7 
8.345797e-8 

Rh 

2.27 
2.06 
2.01 
2.00 
2.00 
2.00 
2.00 
2.00 
2.00 

CT 

0.005 
0.014 
0.070 
0.281 
1.127 
4.526 
18.205 
73.153 
293.516 
1177.954 

compressed collocation solution 

e-h 

2.779527e-2 
5.779759e-3 
1.386280e-3 
3.431079e-4 
8.556261e-5 
2.137565e-5 
5.341373e-6 
1.333582e-6 
3.316833e-7 
8.980856e-8 

Rh 

2.27 
2.06 
2.01 
2.00 
2.00 
2.00 
2.00 
2.01 
1.88 

CT 

0.004 
0.015 
0.064 
0.271 
1.027 

. 3.515 
11.709 
38.913 
133.359 
474.664 

Example IV.2.7. Consider the equation 

u{t) - f cos(s + t)es+u(-s)ds = f(t), t € [0,1], 
Jo 

where f(t) is chosen so that the exact solution is u(t) = 1. 

TABLE 16: Computational results of Hammerstein equation for Example IV.2.7. 

fin) 

2 
4 
8 
16 
32 
64 
128 
256 
512 
1024 

full collocation solution 

eh 

5.877689e-2 
1.662155e-3 
4.284816e-3 
1.079426e-3 
2.703726e-4 
6.762578e-5 
1.6908836-5 
4.227701e-6 
1.057301e-6 
2.646933e-7 

Rh 

1.82 
1.96 
1.99 
2.00 
2.00 
2.00 
2.00 
2.00 
2.00 

CT 

0.004 
0.021 
0.066 
0.278 
1.104 
4.475 
17.936 
74.831 

297.746 
1172.390 

compressed collocation solution 

eh 

5.877689e-2 
1.662155e-2 
4.284816e-3 
1.079426e-3 
2.703743e-4 
6.762899e-5 
1.691238e-5 
4.231332e-6 
1.060952e-6 
2.693742e-7 

Rh 

1.82 
1.96 
1.99 
2.00 
2.00 
2.00 
2.00 
2.00 
1.98 

CT 

0.003 
0.014 
0.070 
0.278 
1.051 
3.485 
11.608 
38.693 
132.352 
472.071 
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Example IV.2.8. Consider the equation 

-1 u2(s) 
u{t) - [ 

Jo 
ds = f(t), t e [0,1], 

/o yj\s -t\ 

where f(i) is chosen so that the exact solution is u(t) = t2. 

TAB LE 17: 

/ ( " ) 

2 
4 
8 
16 
32 
64 
128 
256 
512 
1024 

Computation al resu Its of Hammerstein equation f< 
full collocation solution 

eh 
2.917026e-l 
1.606610e-l 
4.716359e-2 
1.597451e-2 
3.360508e-3 
8.634525e-4 
2.198411e-4 
5.411619e-5 
1.326851e-5 
3.300703e-6 

Rh 

0.86 
1.77 
1.56 
2.25 
1.96 
1.97 
2.02 
2.03 
2.01 

CT 

0.004 
0.024 
0.050 
0.215 
0.730 
2.937 
11.439 
46.018 
184.283 
740.624 

}r Example IN 
compressed collocation solution 

eh 

2.917026e-l 
1.606610e-l 
4.716359e-2 
1.59745 le-2 
3.360610e-3 
8.638484e-4 
2.203948e-4 
5.471957e-5 
1.388284e-5 
3.358074e-6 

Rh 

0.86 
1.77 
1.56 
2.25 
1.96 
1.97 
2.01 
1.98 
2.05 

CT 

0.005 
0.020 
0.051 
0.201 
0.720 
2.696 
10.055 
39.429 
154.570 
600.178 

Example IV.2.9. Consider the equation 

u{t)- / l o g \s-t\u2(s)ds = f(t), £€[0,1], 
Jo 

where f(t) is chosen so that the exact solution is u(t) = t2. 

TAB LE 18: 

fin) 

2 
4 
8 
16 
32 
64 
128 
256 
512 
1024 

Computation al resu Its of Han 
full collocation solution 

en 
1.848228e-l 
4.479195e-2 
1.048831e-2 
2.277151e-3 
4.831762e-4 
1.090730e-4 
2.676196e-5 
6.516920e-6 
1.613282e-6 
4.997735e-7 

Rh 

2.04 
2.09 
2.20 
2.24 
2.15 
2.03 
2.04 
2.01 
1.69 

CT 

0.004 
0.012 
0.038 
0.147 
.0.598 
2.255 
9.044 

36.575 
167.634 
672.429 

lmerstein equation for Example I\ 
compressed collocation solution 

eh 

1.848228e-l 
4.479195e-2 
1.048831e-2 
2.277151e-3 
4.831753e-4 
1.0906656-4 
2.675423e-5 
6.508463e-6 
1.604425e-6 
5.217983e-7 

Rh 

2.04 
2.09 
2.20 
2.24 
2.15 
2.03 
2.04 
2.02 
1.62 

CT 

0.003 
0.016 
0.041 
0.143 
0.562 
2.060 
7.827 

30.108 
116.387 
539.528 
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TABLE 19: Number of zeros of compressed Jacobian matrix. 
/(n) 

number of zeros 
ratio of zeros (in %) 

32 

96 
9.375 

64 

1264 
30.8594 

128 
8512 

51.9531 

256 
45072 

68.7744 

512 
211424 
80.6519 

1024 
927152 
88.4201 

In summary, the computing times of compressed solutions are less than the com-

puting time of full collocation solutions, especially in the smooth kernel case. From 

TABLE 19 and FIG. 16 is shown the sparsity of the Jacobian matrices in the fast 

wavelet-collocation method. These show that the number of non-zeros components 

of the Jacobian matrix is 0(f(n) log/(n)) which is consistent to Theorem IV.1.4. In 

the next section, we present yet another numerical technique, called the multilevel 

augmentation method, which further improve the solution process of the wavelet-

collocation method for Hammerstein equation in terms of CPU time and computer 

memory. 
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FIG. 16: Sparsity of compressed Jacobian matrix of linearized Hammerstein equation. 
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IV.3 MULTILEVEL AUGMENTATION METHOD FOR HAMMER-

STEIN EQUATION 

A first form of a multilevel augmentation method appeared in [7] in connection 

with the Fredholm integral equation of the second kind. Multilevel augmentation 

methods are used with a basis having a multiresolution structure such as wavelet 

functions. Each multilevel augmentation method solves an underlying equation at a 

low dimensional subspace and enhances the accuracy of its approximation by adding 

successively to the solution corrected terms which can be obtained by solving systems 

of high dimension. The method was recently extended to obtain a fast algorithm for 

a class of nonlinear Hammerstein equations [9]. In this section, we present another 

multilevel augmentation method for the Hammerstein which is based upon the 'lin-

earlization' technique which was explored in Section IV.2. The block truncation 

strategy is also used in constructing the Jacobian matrices. Numerical examples are 

provided to demonstrate the convergence of the new multilevel augmentation method 

and the effectiveness of the truncation strategy. 

Recall the decomposition of the subspace X„ for L°°(E), i.e., with n — k + m, 

Xk+m = Xfc © Wfc+1 © . . . © Wk+m. 

Our method goes as follows: first, we obtain an approximation of the solution of the 

Hammerstein equation in the space Xfc by solving (86) exactly to obtain the solution 

zk. The next step is to obtain an approximation of the solution zk+\ of equation (86) 

with n = k + 1. For this purpose, we decompose 

Zk+i = 4+1 + zk+i, w i t h zt+i e Xfc and zf?+1 <E Wfc+i 

so that (86) becomes 

4+i + z?+i = Pk+iV(f + Kzk+1). 

This equation can be transformed into 

^ + i = i ,
f c * ( / + ^ f c + i ) + ( p * + i - p * ) * ( / + ^ * + i ) - ^ + i . a o 4 ) 

or equivalently, 

Pk(4+i + *k+i) = Pk*{f + Kzk+i) + (iVu - PkMf + Kzk+l) - z»+1. (105) 
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Here we used the fact that Pkzf?+1 = 0 as zk+l € Wfc+i and Pk is a projection onto 

Xfe. Next, we compute 

zft := (Pk+1 - Pfc ) * ( / + Kzk), (106) 

and note that zkl G Wfc+1. In (104), we replace zff+1 and the second term in the 

right hand side by zk
H

x to obtain an equation for zkl € Xfc: 

zt1 = P^(f + K(z^ + z^1)). (107) 

The element zkl turns out to be a good approximation to zk+l. We then obtain an 

approximation to the solution zk+\ of equation (86) by setting 

* M : = 4 , I + < I - (108) 

Note that zkl and zkl, respectively, represent the lower and higher frequency com-

ponents Of Zfc,l-

We continue this process to find an approximation of the solution of equation 

(86) with n = k + 2. Specifically, we compute 

zffl2--={Pk+2-PkMf + Kzktl) 

using the approximate solution zfc,i obtained in the previous step, and solve for 

zk2 .€ Xfc from the equation 

4,2 = n * ( / + A:(4,2 + <2))- . 

An approximation to the solution zk+2 of equation (86) with n = k + 2 is hence 

obtained by setting 

zk,2 '•= Zk2 + Zk2. 

This procedure is repeated to obtain an approximation zk^m of the solution zk+m of 

equation (86) with n = k + m. Once zk<m is obtained, then let 

uk,m = / + KzKm (109) 

which approximates the solution un of (81) with n = k + m. The preceding steps can 

be summarized in the following algorithm. 
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Algorithm!.: The Multilevel Augmentation Method: An Operator Form 

Let k be a fixed positive integer. 

Stepl: Find the solution zk 6 Xk of the equation (86) with n := k. Set zkfl := zk 

and £ := 1. 

Step2: Compute 

2 & : = ( P f c + f - P f c ) * ( / + tf;ZM-i)- (110) 

Step3: Solve for zki 6 Xfc from the equation 

4,«= * w + *(*M + *&))• (U1) 

Step4: Let 

zk,e •= zk,t + zk,v. (1-12) 

Set £ -4— £ + 1 and go back to Step 2 until £ = m. 

Step5: Obtain the approximate solution of un in (81) by uk>m :— f + Kzkt7n. 

The existence of the solution zkm of (111) can be guaranteed similarly as in 

Theorem IV.2.1. Let 

T(a)(u)(t):=f(t) + K(u + a)(t), u,a€L°°(I), 

so that (111) with £ = m can be written as 

z£m = Pk*T{zJ!it)(zj;tm).- (113) 

Lemma IV.3.1. Let z be an isolated solution of (85). Assume that 1 is not an 

eigenvalue of the linear operator ($T(a))'(z), where ($T(a))'(z) denotes the Frechet 

derivative of ^T(a) at z with a 6 L°°(I). Then the equation (113) has a unique 

solution z^m in a ball B(z, 5) := {c € C(I): ||x — .z||o,oo < 5} for some 5 > 0 and for 

sufficiently large k. Moreover, there exists a constant 0 < q < 1, independent of k, 

such that 

l + qS)\zkin z\\o,00<1_q, 

where an :^ \\(I - (Pn^T(a)y(z))-\(Pk^T(a))(z) - ^T(a)(z))\\0tOO. Finally 

Ek{z)<\\zlm-z\\Q,00<CEk{z), 

where C is a constant independent of k and Ek{z) = infuexfc \\z — it||o,oo-
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L e m m a IV.3 .2 . Let z be an isolated solution of (85). Assume that 1 is not an 

eigenvalue of (^T)' (z). Then there exists a sequence of positive numbers ak.m, k &N, 

m 6 N0 with limfe-^ afc_m = 0 uniformly for m G No and a positive integer N such 

that for all k > N and m e No, 

||-2fc,m ^fc+m]| 5: Otk,m\\zk,m—l -^fc+mll-

Proof. From (110), (111) and (112), 

zk.m — zk,m ' Zk,m 

= (Pk+m-PkW + Kzk,m-i) + Pk*(f + Kzk,m). (H4) 

Using (114) and (86) with n = k + m, 

Zk.m — zk+m = {Pk+m ~ Pk){^T{zh,m-\) ~ ^T(zk+m)) 

= {Pk+m ~ Pk){^T)'(zk+m + 6{zk+m - z
k,m-l)){zk+m - zk,m-l): 

where 0 < 9 < 1. Let aktTn '•— \\{Pk+m ~ Pk){^T)'{zk+m + 6{zk+ 

))ll-

Assumptions (Al) , (A2) and (A5) guarantee that ak,m —> 0 uniformly in m £ N0 as 

k —» oo and finally 

\\zk,m ~ zk+m\\ < &k,m\\zk,m-l ~ zk+m\\-

a 

The rate of convergence of the multilevel augmentation method is now discussed. 

We utilize the idea of a majorization sequence introduced in [11]. A sequence of 

nonnegative numbers 7„, n £ N0, is called a majorization sequence of En, n € No, if 

In > En for all n £ N0 and there exists a positive integer NQ and a positive constant 

a such that for n > No, 

> a. 

In 

For the wavelet collocation method described in Section IV. 1.1, it is known (the-

orem 5.2 [11]) that the majorization constant can be selected as 

7n-=C—\\z\\r>, (115) 

where z £ Wrt2{E), r is the order of the wavelet and c is independent of n such that 

En < In- Proof of the following theorem is included for completeness (see Theorem 

3.3 [11]). 
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Theorem IV.3.3. Let z be an isolated solution of (85) and let 7„, n G No be a 

majorization sequence of En, n G No- Assume that 1 is not an eigenvalue of(^/T)'(z). 

Then there exists a positive constant p and a positive constant N such that for all 

k> N and m G N0, 

\\Z ~ -Zfc.mll < (P + l)7fc+m- ( H 6 ) 

Proof. We apply induction on m. The estimate clearly holds with m = 0. Suppose 

that (116) holds for m — 1. Then, using the inductive hypothesis and the majorization 

property, 

lkfc,m-l — Zfc+m|| < Ikfc.m-l — z\\ + ||Zfc+m — z\\ 

<{P+^)lk+m.. 

Choosing N large enough that for k > N, Lemma IV.2.2 holds and that a^^p + 

£±i) < 1, we get 

\\Zk,m — Zk+m\\ < 1k+m-

Finally, 

\\Zk,m — z\\ < \\Zk,m — Zk+m\\ + ||^fc+m — z\\ < (p + l)"fk+m-

a 

IV.3.1 Discrete Multilevel Augmentation method for Hammerstein 

equation: 

In this subsection, a discrete version of the multilevel augmentation method is de-

scribed. Recall the functionals £y G X*, the dual space of X = L°°(I), and the 

corresponding interpolation functions Wij G X. Here, using the Hahn-Banach theo-

rem, we may assume X* to be the dual of C(I), see [8]. We let 

X0 = span{tu0j •' j £ Zw(o)}, L0 = span{4j ' : j € %w(o)}, 

Wj = sp&n{wid : j G Zu.(i)}. V; = s p a n j ^ :j G Zw^}, i > 0, 

and 

Xn = span{witj : (i,j) G £/„}, L„ = spanj^j : (i,j) G Un}, n > N0. 

With the projection Pn defined in (84), for all x G X and for all £ G Ln, we have 

<C £, x — Pnx 3> = 0. This implies the decomposition 

L n + 1 = L n - © V n + i , 
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and 

where Vfc,m = Vfe+i © • • • © V f c+m . 

For any u £ Xfc+m, we have a unique expansion 

v= ^2 vi,jwij-

The vector v := [vij : (i,j) € Uk+m]T represents v. Thus, for solution Zk,m of 

(113), its representation vector is given by zjtim := [{zk,m)i,j '• (hj) e Uk+m]T- Setting 

Uk,m •= Uk+m \Uk,we obtain that 

Uk,m = {(hj) • 3 G.Zw(j),i E Zk+m+l \ Z f c + i } . 

Consequently, we have the representations 

Zk,m : = ^ ^ \^k,m)i,jWi}j and % „ := ^ ^ \Zk,m)ijWij. 

(i,j)£Uk (i,j)eUk]m 

Algor i thm2: T h e Mult i level A u g m e n t a t i o n Method: 

A Discrete Form 

Let fcbea fixed positive integer. 

S t e p l : Solve the nonlinear system 

(i,j)eUk \ \(i,j)€Uk J J 

for (i',f) € Uk, and for zk := [(>fc)ij : ('*", j ) € £4]T . 

Let Zkfi := z/t and / := 1. 

Step2: Solve the linear system 

< li^,, ^ (zk,ihjwij > = < ti>j>Mf + Kzk,i-i) > . (*' , /) e E/*,i 

(»j')ec/ib,i 

to obtain z£, and define z $ := £ ( i j - ) 6 [ / ( ^ k j W i j . 
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Step3: Solve the nonlinear system 

« *i',y, Y, (zk,i)ij*>i,3 + z"i » = « ti-j; * I / + W Y. (4 , / ) i ,^ i j +"k,i] » . 
(i,j)euk \ \(i,j)euk ) J 

(i',f) € Uk to obtain z£, := [{zl
kl)it3 : ( i , j ) e C4]T. 

Define 

Z/c,( : = 2 ^ (Zk,l)i,jWi,j 

(i,i)euk 

and 

f̂c.i = ZM + zk,i-

Step4: Set I <- I + 1 and go back to Step 2 until I = m. 

Step5: Obtain the approximation solution of un from 

un := f + KzKm. 

In order to solve the nonlinear equation in Step 3, we use the Newton method 

and apply the block truncation strategy described in section IV.2. This establishes 

a fast multilevel augmentation method for Hammerstein equations. 
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The numerical experiments of the multilevel augmentation method to solve the 

Hammerstein equation are presented below. 

Denote 

A = l|u-Ufc,m||o,oo, R'h = lo§2 ( -^r- ) , 

e'fc = ||« - «fc,m||o,oo, K = log2 I 7̂ 

/ i / 2 , 

el ' 

where Ufc.m is the multilevel augmentation solution with fixed k and u'k m is the 

compressed multilevel augmentation solution. 

Example IV.3.4. Consider the equation 

u{t) - / sin(s + t) cos(log(u(s)))c!s = f(t), t G [0,1], 
Jo 

where f(t) is chosen so that the exact solution is u(t) =.exp(t). 

TABLE 20: Computational results of Hammerstein equation for Example IV.3.4. 

f(n) 

16 
32 
64 
128 
256 
512 
1024 

full collocation solution 

en 
2.907214e-4 
7.271394e-5 
1.818057e-5 
4.545257e-6 
1.136307e-6 
2.840621e-7 
7.100113e-8 

Rh 

2.00 
2.00 
2.00 
2.00 
2.00 
2.00 

CT 
0.267 
1.031 
4.219 
16.766 
67.557 
271.659 
1088.084 

compressed collocation solution 

h 
2.907214e-4 
7.271390e-5 
1.818049e-5 
4.545178e-6 
1.136227e-6 
2.839810e-7 
7.394344e-8 

Rh 

2.00 
2.00 
2.00 
2.00 
2.00 
1.94 

CT 

0.290 
0.949 
3.212 
10.453 
34.085 
113.927 
398.177 

Multilevel Augmentation schemes when k — 3 

m 

0 
1 
2 
3 
4 
5 
6 

f(n) 

16 
32 
64 
128 
256 
512 
1024 

full multilevel solution 

e'h 

2.907214e-4 
7.274118e-5 
1.818908e-5 
4.547493e-6 
1.136873e-6 
2.842040e-7 
7.404369e-8 

K 

2.00 
2.00 
2.00 
2.00 
2.00 
1.94 

CT 
0.294 
0.934 
3.334 
12.735 
50.140 
200.264 
800.396 

compressed multilevel solution 

A 
2.907214e-4 
7.274116e-5 
1.818901e-5 
4.547414e-6 
1136792e-6 
2.841229e-7 
7.397767e-8 

K 

2.00 
2.00 
2.00 
2.00 
2.00 
1.94 

CT 

0.301 
0.864 
2.342 
6.240 
16.194 

.41.490 
105.701 



Example IV.3.5. Consider the equation 

u(t)- sm(n(s + t))u2(s)ds = f(t), (£[0 ,1] , 
Jo 

where f(t) is chosen so that the exact solution is u(t) = sin(7r(). 

TABLE 21: Computational results of Hammerstein equation for Example IV,3.5. 

/(n) 

16 
32 
64 
128 
256 
512 
1024 

full collocation solution 

&h 

3.119330e-3 
7.737703e-4 
1.930683e-4 
4.824368e-5 
1.205938e-5 
3.014675e-6 
7.536243e-7 

Rfi 

2.01 
2.00 
2.00 
2.00 
2.00 
2.00 

CT 

0.293 
1.123 
4.492 
17.964 
72.516 
288.766 
1161.637 

compressed collocation solution 

e-h 

3.119330e-3 
7.733855e-4 
1.922919e-4 
4.737521e-5 
1.117841&-5 
2.167331e-6 
4.791776e-7 

Rh 

2.01 
2.01 
2.02 
2.08 
2.37 
2.18 

CT 

0.286 
1.025 
3.536 
11.879 
38.117 
129.749 
457.543 

Multilevel Augmentation schemes when k = 3 

m 

0 
1 
2 
3 
4 
5 
6 

/ (*) 

16 
32 
64 
128 
256 
512 
1024 

full multilevel solution 

< 
3.119330e-3 
7.474600e-4 
1.853357e-4 
4.623852e-5 
1.155368e-5 
2.887972e-6 
7.130420e-7 

K 

2.06 
2.01 
2.00 
2.00 
2.00 
2.02 

CT 
0.310 
1.004 

3.460 
13.016 
51.414 
205.567 
822.314 

compressed multilevel solution 

. e'h 

3.119330e-3 
7.471047e-4 
1.845625e-4 
4.538137e-5 
1.068286e-5 
2.055478e-6 
5.026841e-7 

R'H 

2.06 
2.02 
2.02 
2.09 
2.38 
2.03 

CT 

0.307 
0.894 
2.433 
6.419 
16.655 
42.378 
107.972 

For Example IV.3.4 and IV.3.5, we see that the computing time of the compressed 

multilevel augmentation solutions is less than one-tenth of the computing time of the 

full collocation solutions when solving the nonlinear equation with smooth kernel. It 

is the most efficient numerical method among the ones compared and it also preserves 

the order of accuracy. 
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Example IV.3.6. Consider the equation 

« ( * ) - / log\s-t\u4(s)ds = f(t), <e [0 , l ] , 
Jo 

where f(t) is chosen so that the exact solution is u(t) = y/i. 

TAB LE22: 

f(n) 

16 
32 
64 
128 
256 
512 
1024 

Computational results of Hammerstein equation for Example I\ 
full collocation solution 

e/i 

8.489815e-4 
1.949729e-4 
4.655164e-5 
1.157152e-5 
2.857055e-6 
7.097962e-7 
2.220791e-7 

Rh 

2.12 
2.07 
2.01 
2.02 
2.01 
1.68 

CT 

0.156 
0.619 
2.439 
9.697 
38.861 
155.001 
620.824 

compressed collocation solution 

h 
8.489815e-4 
1.949640e-4 
4.653352e-5 
1.154975e-5 
2.834520e-6 
6.876834e-7 
2.265562e-7 

Rh 

2.12 
2.07 
2.01 
2.03 
2.04 
1.60 

CT 

0.158 
0.588 
2.228 
8.242 
31.851 
123.318 
482.955 

Multilevel Augmentation schemes when k — 3 

m 

0 
1 
2 
3 
4 
5 
6 

f(n) 

16 
32 
64 
128 
256 
512 
1024 

full multilevel solution 

e'n 
8.489815e-4 
1.763337e-4 
4.569981e-5 
1.118496e-5 
2.832751e-6 
6.997331e-7 
2.475609e-7 

K 

2.27 
1.95 
2.03 
1.98 
2.02 
1.50 

CT 

0.157 
0.395 
0.976 
2.948 
10.798 
46.039 
215.279 

compressed multilevel solution 

e'h 

8.489815e-4 
1.763280e-4 
4.568140e-5 
1.116352e-5 
2.810179e-6 
6.776315e-7 
2.415896e-7 

R'H 

2.27 
1.95 
2.03 
1.99 
2.05 
1.49 

CT 

0.152 
0.375 
0.789 
1.765 

. 4.588 
17.527 
90.497 
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Example IV.3.7. Consider the equation 

u(t)- log \s-t\u2{s)ds = f{t), 4 6 [0.1], 
Jo 

where f(t) is chosen so that the exact solution is u(t) = t3?2. 

TAB LE23: 

/ (n) 

16 
32 
64 
128 
256 
512 
1024 

Computational results of Hammerstein equation f 
full collocation solution 

eh 

1.339395e-3 
2.926967e-4 
6.783471e-5 
1.632947e-5 
4.018497e-6 
9.960398e-7 
3.567405e-7 

Rh 

2.19 
2.11 
2.05 
2.02 
2.01 
1.48 

CT 
0.152 
0.600 
2.445 
9.526 
38.435 
154.430 
615.768 

ar Example I\ 
compressed collocation solution 

eh 

1.339395e-3 
2.926941e-4 
6.782715e-5 
1.631710e-5 
4.007189e-6 
9.841026e-7 
3.723903e-7 

Rh 

2.19 
2.11 
2.05 
2.02 
2.02 
1.40 

CT 

0.153 
0.580 
2.253 
8.397 
32.336 
124.945 
491.206 

Multilevel Augmentation schemes when k = 3 

m 

0 
1 
2 
3 
4 
5 
6 

/ ( " ) 

16 
32 
64 
128 
256 
512 
1024 

full multilevel solution 

e'h 

1.339395e-3 
2.411157e-4 
6.724324e-5 
1.531932e-5 
3.953759e-6 
9.808793e-7 
3.797881e-7 

R'h 

2.47 
1.84 
2.13 
1.95 
2.01 
1.37 

CT 

0.157 
0.398 
1.016 
2.992 
10.836 
46.077 
215.179 

compressed multilevel solution 

e'h 

1.339395e-3 
2.411149e-4 
6.723707e-5 
1.530542e-5 
3.942501e-6 
9.689500e-7 
3.738184e-7 

K 

2.47 
1.84 
2.13 
1.96 
2.02 
1.37 

CT 

0.156 
0.382 
0.789 
1.773 
4.580 
17.473 
90.798 

For Example IV.3.6 and IV.3.7, we see that the computing time of the compressed 

multilevel augmentation solutions is less than one-fifth of the computing time of the 

full collocation solutions when solving the nonlinear equation with weakly singu-

lar kernel. Therefore, the multilevel augmentation method is the fastest numerical 

algorithm. 
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CHAPTER V 

CONCLUSIONS AND FUTURE WORK 

In this dissertation, two separately major topics concerning the nonlinear Hammer-

stein equation have been investigated. First, we discussed several acceleration tech-

niques based upon the interpolation and extrapolation of the numerical solution of 

the Hammerstein equation arising out of the projection methods; collocation and 

Galerkin. Numerical examples confirm the validity of the acceleration techniques. 

Most of the acceleration techniques reported in this dissertation provide a means to 

obtain more accurate approximation to the solution of a nonlinear equation without 

increasing the size of nonlinear system. A second topic which we discussed in this 

dissertation is the solution process for the nonlinear Hammerstein equation based 

on the linearization technique along with a class of multiscale wavelets bases. This 

led us to fast wavelet-collocation method of Chapter IV. The fast wavelet-collocation 

method is based upon the block truncation strategy and it was explored in concert 

with the multilevel augmentation method. 

V . l CONCLUSIONS 

TABLE 24 and TABLE 25 recapitulate the superconvergence results in the post-

acceleration techniques described in Chapter III when the technique is applied to a 

collocation solution and a Galerkin solution, respectively, when the kernel is smooth. 

We recall that the last item Extrapolation Scheme corresponds to the global extrap-

olation or the extrapolation of iterated projection solutions. 

TABLE 24: Summary of the collocation techniques. 
Numerical Implementation 

Collocation Scheme 
Iterative Scheme 

Interpolation Scheme 

Extrapolation Scheme 

Numerical Approximation Error 

| |« f c-«||0,oo = 0(hr+1) 

| |4-«||0,oo = O(h^) 

ll/^+V-slkoo = 0(h2r+2) 
\\r2r+3 h _ r.\\ 
\\12h u ul|0,oo, _ Q/;2r+4\ 

Or \\ul{2 ~ U||o,oo 

Note that u is an isolated solution of the Hammerstein equation. 
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TABLE 25: Summary of the Galerkin techniques. 
Numerical Implementation 

Galerkin Scheme 
Iterative Scheme 

Interpolation Scheme 

Extrapolation Scheme 

Numerical Approximation Error 

I K - « | | 0 , 2 = 0(hr+1) 
114-̂ 110,2 = 0(h*+2) 

I | t#2-U| |0 ,2 = O(h^) 

In addition, an acceleration technique based upon the interpolation of weakly 

singular Hammerstein equations has also been presented, see numerical results in 

Example III.2.2 and Example III.2.3. Furthermore, the post-processed interpolation 

techniques was extended to two-dimensional nonlinear integral equations. Similar 

numerical improvement are also found in this case. For more details, see Example 

III.2.4. This brings a number of interesting and important issues of post-processing 

technique via interpolation for the multi-dimensional integral equation. These issues 

will be addressed in the future. Brief comparisons of the post-processing techniques 

discussed in Chapter III are given below. 

First, we found that the iterative method has a higher computational complexity 

than the interpolation method due primarily to the fact that the iterative process 

requires the calculation of the solution under a nonlinear integral term. This must 

be done numerically utilizing efficient quadratures. For an equation with weakly 

singular kernel, a class of graded meshes generated by the singularity of the kernel 

has to be used to approximate the nonlinear integral and this increases greatly the 

complexity of the calculation involved in the iterative methods. 

For methods based upon interpolation, post-processing techniques are designed 

to obtain an approximation by interpolating the existing numerical solution over two 

successive intervals. This method therefore needs only the addition and multipli-

cation of simple closed forms and thus there is no need for numerical quadratures. 

Therefore, even though the interpolation and iterated post-processing methods have 

the same convergence rate, the interpolation technique gives simpler calculation than 

the iterated technique to attain the same accuracy in approximation. Numerical re-

sults for the collocation and Galerkin solutions based upon the interpolation are 

shown in Example III.2.1 and Example III.5.1, respectively. 

Finally, we studied the post-processing technique based upon the extrapolation of 

the projection solution. This approach requires an additional calculation performed 
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on the iterative or on the interpolation solutions. The cost of the additional cal-

culation is minimal. The global extrapolation requires first an interpolation of the 

projection solution over three consecutive intervals. Then a post-processed solution is 

obtained by using the Richardson extrapolation scheme. This extrapolation scheme 

has been derived from Theorem III.3.1. An extrapolation of the iterated solution 

also requires Richardson extrapolation as established from Theorem III.6.1. Compu-

tational complexities of completing various extrapolation schemes were found to be 

dependent on the difficulty of either interpolation or iteration technique associated 

with the extrapolation. In summary, Table 24, Table 25 and the numerical results in 

Chapter III (see Example III.3.2, III.4.1 and III.6.3) reveal that the extrapolation of 

the projection solutions gives the highest order of accuracy. 

In the second half of this dissertation, we addressed the issue pertaining to an effi-

cient solution process of solving numerically for a solution of nonlinear Hammerstein 

equation. When the numerical accuracy must be enhanced, one is required to use 

approximate subspaces of higher dimensions. Thus, it demands a significantly large 

amount of computational effort. Therefore, in order to reduce the computational cost 

of both computing time and computer memory, we established fast algorithms using 

wavelet bases. The multiscale piecewise polynomial wavelets and the correspond-

ing collocation functionals were reviewed in Chapter II. The fast wavelet-collocation 

method was implemented to solve linear as well as nonlinear integral equations. As 

for the linear equation with weakly singular kernel, the sparsity of the corresponding 

matrix occurs when using the block truncation strategy with truncation parameters 

defined by Theorem IV. 1.4. The numerical results show that the collocation method 

and the fast wavelet-collocation method have the same optimal rate of convergence. 

Here we also discovered that computing time varies according to the size of param-

eters a and v in Theorem IV. 1.4 (see Example IV.1.5). Example IV.1.7 shows that 

the fast wavelet-collocation method is much quicker to execute than the traditional 

collocation method. 

In Chapter IV, the wavelet-collocation method for the Hammerstein equation 

was established which uses a linearization technique. The Newton method is used 

to solve the system of nonlinear equations. A block truncation strategy was used in 

building the Jacobian matrix at each iteration of the Newton method. This gives 

each Jacobian matrix a sparse structure which results in a fast wavelet-collocation 

algorithm. Examples IV.2.3 - IV.2.6 exhibit the effectiveness of the algorithm and 
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FIG. 16 shows the structure of this sparsity. When the corresponding nonlinear sys-

tem is much larger, it was shown that the multilevel augmentation scheme reduces 

the problem to a sequence of calculations with smaller scales. In other words, the 

multilevel augmentation technique is to solve the nonlinear system at a lower dimen-

sion with fixed Jacobian matrix and correct the solution by adding a corrected term 

from a higher resolution level. This method leads us to a faster numerical technique 

while still preserving the order of convergence of the approximation. Uniqueness 

and existence of the solution of the wavelet-collocation method and the multilevel 

augmentation method are stated in Theorem IV.2.1 and Lemma IV.3.1, respectively. 

Also, the convergence of the the wavelet-collocation method and the multilevel aug-

mentation method are proved in Theorem IV.2.5 and Theorem IV.3.3, respectively. 

In numerical experiments reported in Examples IV.3.4 - IV.3.7, we see that the pro-

posed fast multilevel augmentation method gives the fastest computing time when 

compared with the traditional collocation method and the multilevel augmentation 

method without the compression strategy. 

All numerical experiments in this dissertation were done with the Matlab program 

and they were run on a personal computer with 2.0GHz CPU and 4 GB memory. 

V.2 F U T U R E W O R K 

We list below several interesting research topics which arose while the author was 

engaged in this dissertation work. These topics will be pursued in the future. 

1. We intend to obtain global extrapolation results for nonlinear Hammerstien 

integral equation with weakly singular kernel. 

2. We intend to implement the post-processing techniques to solve the multi-

dimensional Hammerstein equation. 

3. We intend to extend the wavelet-collocation method, based on the linearization 

technique, to multi-dimensional Hammerstein equations. 

4. We intend to study how to implement the post-processing techniques on wavelet 

collocation solutions. 

5. We intend to apply multiscale wavelets to solving nonlinear integral equations 

by using other numerical schemes such as the degenerate kernel method and 

the Nystrom method. 
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APPENDIX A 

NUMERICAL SCHEMES 

A. l GAUSSIAN QUADRATURE 

A Gaussian quadrature approximates the definite integral of a function. 

In particular, the integral of the form j _ x f(x)dx, can be approximated efficiently 

with the weight function W(x) = 1 and using the Legendre Gaussian quadrature. 

An n-point Legendre Gaussian quadrature formula is obtained as 

when the abscissas or zeros of Legendre polynomials Xi and weight factors Wi are 

listed below. 

TABLE 26: Lagrange Quadrature coefficients for n = 4 to 8. 

n ±Xi Wi 

0.339981043584856 0 

0.861136311594053 0 

0.000000000000000 0 

0.538469310105683 0 

0.906179845938664 0 

0.238619186083197 0 

0.661209386466265 0 

0.932469514203152 0 

0.000000000000000 0 

0.405845151377397 0 

0.741531185599394 0 

0.949107912342759 0 

0.183434642495650 0 

0.525532409916329 0 

0.796666477413627 0 

0.960289856497536 0 

.652145154862546 

347854845137454 

478628670499366 

236926885056189 

.467913934572691 

360761573048139 

171324492379170 

417959183673469 

.381830050505119 

279705391489277 

.129484966168870 

362683783378362 

.313706645877887 

.222381034453374 

.101228536290376 

An integral over an arbitrary interval [a, b] can be computed by Gaussian quadra-

ture by simply transforming the interval [a, b] into [—1,1]. More specifically, 

L f(x)dx = — - / 
a a + b 

— X+—T- dx, 
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and thus 
rb .., . , b- a -^ . fb — a a + 6'\ 

j{x)dx = —^— } ^Wif [ ——Xi H — ) + En, 

with the error term 

X>/(-

^ = ( 2 n + l ) [ ( 2 n ) ! ] 3 / ( 0 ' ^ M ) ' 

Next, to apply Gaussian quadrature to double integral written in the form 

rb rd(x) 

/ / f(x, y)dyda 
Ja J ctx) c(x) 

first requires translating, for each x in [a, b], the interval [c(x), d(x)] to [—1,1] and 

then applying Gaussian quadrature. This results in the formula 

where, as before, the abscissas x^ and coefficients U;J come from TABLE 26. Now 

the interval [a, 6] is translated to [—1,1] and Gaussian quadrature is applied to ap-

proximate the integral on the right side of equation (117). 

A.2 LAGRANGE INTERPOLATION 

The Lagrange interpolation polynomial Pn_i(x) is the polynomial of degree n — 1 

that passes through n prescribed points. Assuming that (x\, y\), (£2,2/2), • • •, {xn, yn) 

are given distinct points, there exists the unique polynomial Fn-i which satisfies 

Pn-i(xj) = f(xj), Vj = 1,2,..., n. 

The formula is given by 
n 

Pn-i(x) = J2yjLj(x) 
3 = 1 

where 

Li{x) = fl±^-

Note that Lj(x) has the property that 

fc=i 
k±3 

I 1 k = j 
Lj(xk) = 5jk = < , VA; = 1 , . . . , n. 

I 0 A;^j 



100 

VITA 

Khomsan Neamprem 

Department of Computational and Applied Mathematics 

Old Dominion University 

Norfolk, VA 23529 

PREVIOUS DEGREES: 

B^S. Applied Mathematics, 2003, KMITNB, Bangkok, Thailand, GPA 3.60 (first-

class honours) 

M.S. Applied Mathematics, 2006, Mahidol University, Bangkok, Thailand, GPA 3.50, 

Thesis: Degenerate kernel method for Hammerstein integral equations : wavelets ap-

plication 

Advisor: Dr. Boriboon Novaprateep 

SCHOLARSHIPS: 

The Commission on Higher Education Staff Development Project, Thailand, 2003-

2005 

The Higher Educational Strategic Scholarships for Frontier Research Network (SFR 

Network), Thailand, 2006-2010 

WORKS: 

Graduated Teaching Assistance, Mahidol University, Thailand, 2005-2006 

Graduated Teaching Assistance, Old Dominion University, USA, 2009-2010 

JOURNAL PUBLICATION: 

Neamprem K. and Kaneko H. (in press), Acceleration Techniques by Post-Processing 

of Numerical Solutions of Hammerstein Equation, Journal of Integral Equations and 

Applications. 

Typeset using WT&L. 


	Old Dominion University
	ODU Digital Commons
	Summer 2010

	Post-Processing Techniques and Wavelet Applications for Hammerstein Integral Equations
	Khomsan Neamprem
	Recommended Citation


	ProQuest Dissertations

