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ABSTRACT 

THE DOUBLY INFLATED POISSON AND RELATED 
REGRESSION MODELS 

Manasi Sheth-Chandra 

Old Dominion University, 2011 

Director: Dr. N. Rao Chaganty 

Most real life count data consists of some values that are more frequent than 

allowed by the common parametric families of distributions. For data consisting 

of only excess zeros, in a seminal paper Lambert (1992) introduced Zero-Inflated 

Poisson (ZIP) model, which is a mixture model that accounts for the inflated ze-

ros. In this thesis, two Doubly Inflated Poisson (DIP) probability models, DIP (p, A) 

and DIP (pi,£>2, A), are discussed for situations where there is another inflated value 

k > 0 besides the inflated zeros. The distributional properties such as identifiabil-

ity, moments, and conditional probabilities are also discussed for both probability 

models. For the data consisting of raw counts as well as grouped frequencies, we 

have considered parameter estimation using maximum likelihood (ML) and method 

of moments techniques. Efficiencies show that the ML estimators perform far better 

than the moment estimators. An application to DIP models is illustrated using data 

on patients' length of stay in a hospital. Parameter estimation of DIP regression 

models using maximum likelihood approach is also discussed using data on dental 

cavities. Finally, we conclude with a brief introduction to two Doubly Inflated Neg-

ative Binomial (DINB) distributions and their related regression models. 
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CHAPTER I 

INTRODUCTION 

1.1 MOTIVATION 

Usually, count data is analyzed using a standard framework of Poisson regression 

models. However, in practice, count data often show more variability compared 

to what one would expect if the response distribution truly was Poisson. That is, 

the observed sample variances are much larger than the sample means (i.e. over-

dispersion), whereas for the Poisson family the variance is identical to the mean. The 

general problem of how to account for over-dispersion has been studied extensively in 

the statistical literature. An excellent summary of approaches to verify and analyze 

over-dispersed count data can be found in Cameron and Trivedi (1998). Usually over-

dispersed count data consists of certain values occurring more frequently than allowed 

by the common parametric families of distributions. Lambert (1992) introduced the 

Zero-Inflated Poisson (ZIP) model in which the poisson mean At is parameterized as 

a log link function of observable vector of covariates Bx and the mixture probability 

p% is parameterized as a logistic function of the observable vector of covariates zt for 

i = 1 , . . . , n. That is, for n independent responses yi,-..,yn, 

y% = 0, with probability p% 

y% ~ Poisson (AJ, with probability 1 — pz, 
(1) 

where 

log(At) = Bif3 

- »-TT2$V (2) 

Here, /3 and 7 are regression parameters. This model (1) accommodates the count 

data consisting of excess zeros, and has received much attention in the literature 

recently. However, there may be real-life instances (see Section 1.2) where observa-

tions may include higher incidences of count zero as well as another count value, say 
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k > 0. In such cases, one can use doubly inflated probability models. The dou-

bly inflated models allow researchers to analyze whether or not the behavior of two 

inflation occurs, and if the behavior does occur, what influences the frequency of 

occurrence of the two peaks. Additionally, doubly inflated models have a statistical 

advantage to standard Poisson and Zero-Inflated Poisson models in that they model 

the preponderance of zeros and k counts as well as the distribution of positive counts 

simultaneously. In fact, ordinary poisson and zero-inflated poisson probability mod-

els are special cases of Doubly Inflated Poisson probability models. Unfortunately, 

there is not a specific frequency or proportions of zero and k counts or ratio of zero 

to nonzero counts and vice versa that can be used to determine if a particular distri-

bution is doubly inflated or not. First, let's consider some real-life examples where 

double inflation of counts may occur. 

1.2 EXAMPLES 

1.2.1 SCHOOL DISCIPLINARY ACTIONS 

In a growing number of schools, student misbehavior exacts a heavy toll on their 

academic achievement and interferes with the education of their classmates. In one 

intermediate/high school with 880 students, there were more than 5,100 office re-

ferrals in a single academic year, and two-thirds of the students had at least one 

referral. The cost associated with the disciplinary process, assuming each referral 

takes approximately 10 minutes to complete and submit, translates into 51,000 ad-

ministrative minutes or 850 hours or 140 school days. Due to the "Zero-tolerance" 

policies, schools have become increasingly willing to suspend or expel students even 

for one minor offense in certain misbehavioral categories. Considering the frequency 

of disciplinary actions per student, we would observe an inflated number of zero's for 

the well-behaved students and an inflated numbers of l's for those receiving imme-

diate suspension or expulsion. Various factors such as school level, socio-economic 

status, gender, ethnicity, location, and student type (i.e., special education or not) 

can also play a significant role in determining students' misbehavior. In such cases, 

one can apply as an alternative to Poisson regression the Doubly Inflated Poisson 

(DIP) regression model. 
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1.2.2 MORTGAGE PAYMENTS 

Mortgage lending is the primary mechanism used in many countries to finance private 

ownership of residential and commercial property. Mortgage loans are generally 

structured as long-term loans with periodic payments that are similar to an annuity 

and calculated according to the time value of money formulae. The most basic 

arrangement would require a fixed monthly payment over a period of ten to thirty 

years. Mortgage payments are usually scheduled on the first day of each month with 

14 day grace period. It is a common knowledge to link one's mortgage payments to 

one's pay day, which is either monthly or bi-weekly. Also, sometimes, paying half 

your mortgage every two weeks instead of a full payment once a month can be done 

with any type of loan but is most common with a 30-year fixed-rate loan. Thus, 

one would notice high numbers of home-owners making their mortgage payments 

either on the 1st of the month or the 15th. This would result in inflated counts for 

O's for those making payments on time and inflated counts of 14's for those making 

payments on the last day of the grace period. Having inflated frequencies for these 

two counts one can apply the estimation methods using Doubly Inflated Poisson 

(DIP) models. 

1.2.3 PATIENTS' LENGTH OF STAY 

The length of stay (LOS) patterns of patients admitted to hospitals has been a 

longstanding concern of clinicians and administrators. It is often used as an indicator 

of how efficient a hospital is at any location, and also used for health planning 

purposes. Inpatient length of stay days are calculated by subtracting day of admission 

from day of discharge. Due to exponential growth and development of clinical and 

pharmaceutical practices, health services provided for patients have led to improved 

outcomes for patients. This leads to a decline in LOS and an increase in prevalence 

of same-day separations. For the patients with longer LOS, there is current belief 

that the type of reimbursement system or health insurance plan now plays a more 

significant role in the patient LOS in hospitals. Hence, there might be another 

increase in prevalence in LOS for patients with acute medical care. We will be 

discussing this application in depth using a sample data set in Chapters II and III. 
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1.2.4 DENTAL EPIDEMIOLOGY 

In dental epidemiology, the DMFT-index is an important indicator and measure 

for the dental status of a person. It is a count number of DECAYED, MISSING, 

and FILLED Teeth. Consider an example data presented in Table 1 on 1013 school 

children of age 7. Only the eight deciduous molars are considered. Thus, the smallest 

possible value of the DMFT-index is 0 and the largest is 8. DMFT was measured at 

the beginning of the study and after a year. Thus, we obtain a count for the change in 

DMFT, 5DMFT= DMFT1 - DMFT2. The zero count corresponds to those children 

showing no improvement and/or consistent dental care. The one count corresponds 

to those children showing improvement in one cavity. In this data, inflated counts of 

0's and l's are observed. The aim of the study is to compare methods of six schools 

of treatments: oral health education, enrichment of the school diet with rice bran, 

mouthwash with 0.2% of NaF solution, oral hygiene, all of the four treatments, and 

control. Other covariates such as gender and ethnicity groups (White, Black, Others 

including predominantly Hispanic) were also considered. See Table 1 for a subset of 

the observations. In Chapter IV, Doubly Inflated Poisson regression models will be 

applied to this data. 

Table 1: Dental Epidemiology Data 

ID 
1 
2 
3 
4 

1012 
1013 

Treatment 
1 
2 
4 
5 

3 
2 

Gender 

m 
f 
f 
f 

m 
m 

Ethnicity 
w 
w 
b 
o 

b 
0 

5DMFT 
0 
1 
2 
0 

3 
0 

NOTE: The treatment groups are: (1) for oral health ed-

ucation, (2) for rice bran diet, (3) for mouthwash rinse, 

(4) for oral hygiene, (5) for all above, and (6) for control. 

Gender is abbreviated as (m) for males and (f) for females. 

Ethnicity groups are: (w) for white, (b) for black, and (o) 

for others who are predominantly hispanic. 
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1.3 ORGANIZATION OF THESIS 

The rest of this dissertation is organized as follows. In the next two chapters, Chap-

ters II and III, we introduce two Doubly Inflated Poisson (DIP) models, DIP (p, A) 

and DIP (pl5 p2, ^), along with a motivating example of hospital's length of stay data. 

For both probability models, we discuss the distributional properties such as identi-

fiability, moments, conditional properties, and Fisher information. We also discuss 

the two parameter estimation techniques, maximum likelihood (ML) and method of 

moments (MOM), for data consisting of raw counts as well as grouped frequencies of 

counts. Asymptotic as well as small sample comparisons show that ML estimators 

are more efficient than the moment estimators. 

In Chapter IV, regression models that mix counts of zeros, counts of fc's, and 

Poisson counts are described in detail using logistic and log-linear link functions. 

Maximum likelihood estimates (MLE)'s for parameters are discussed in length for 

data consisting of raw counts as well as grouped frequencies. Applications to DIP 

regression models are illustrated using sample data on dental cavities. In Chapter V, 

we briefly discuss construction of Doubly Inflated Negative Binomial distributions as 

well as their related regression models. 

In Chapter VI, we summarize the results obtained in this dissertation. Finally, 

the Appendix contains a subset of SAS programs that were used to obtain the results 

presented in this dissertation. 
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CHAPTER II 

THE FIRST DOUBLY INFLATED POISSON MODEL 

Count data with many zeros are common in a wide variety of disciplines including 

econometrics, medicines, road safety, and manufacturing. A fair amount of statistical 

methodology has been developed to deal with such data. One of the most popular 

statistical approaches is due to Lambert (1992) who introduced zero-inflated Poisson 

(ZIP) regression models to accommodate for inflated number of zeros. However, 

there are real life instances as discussed in Section 1.2 where data consists of inflated 

number of zeros as well as inflated number of another count k > 0. In this chapter, 

we introduce a Doubly Inflated Poisson model to deal with count responses with two 

inflated values. 

In Section II. 1, we first begin with a motivating example on hospital stay data 

to illustrate a need for applied and theoretical development of the doubly inflated 

models. In Section II.2, we describe in detail the development of Doubly Inflated 

Poisson model with parameters p and A using a latent variable. We also discuss 

the distributional properties of the probability model including identifiability of the 

parameters, moments, expectation, variance, and Fisher information. Section II.3 

describes estimation techniques for data that consists of raw counts using maximum 

likelihood approach and method of moments. Section II.4 describes parameter esti-

mation methods such as maximum likelihood estimation and moment estimation for 

data consisting of grouped frequencies of count responses. We also compare the two 

estimation approaches using asymptotic relative efficiencies as well as small sample 

efficiency calculations. In Section II.5, we illustrate the use of DIP (p, A) probability 

model on the hospital stay data and compare the results to those using ZIP model. 

II. 1 MOTIVATING EXAMPLE 

To motivate both applied and theoretical development of the doubly inflated models, 

the patients' length of stay data discussed below will be used. The patients' length 

of stay (LOS) is usually used to determine the efficiency of a hospital since it is con-

sidered to be a surrogate measure of costs and the quality of health-care provided to 
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the patients. The example data consists of observations from a group of 261 patients 

and the study is done to analyze their length of stay. The observed frequencies for 

LOS, displayed in Table 2), shows that there are inflated frequencies for LOS = 0 as 

well as for LOS = 3. We observe inflated number of zeros (i.e. LOS = 0) for patients 

receiving outpatient care, i.e. they receive treatment/care without having to stay at 

the hospital. We also observe inflated counts of 3 as a consequence of many patients 

staying three nights at the hospital to receive short-term inpatient care. Generally 

speaking, due to insurance coverage, necessary acute treatment, type of treatment(s), 

and improvements in medical fields, most inpatient care requires patients to stay 3 

days in order for them to get necessary treatment and/or recovery. Lots of public 

health literature have been published to indicate that a 3-day stay is quite common 

for most acute inpatient care. Hence, this data is indicative of the situation-driven 

application for doubly.inflated count models. In the next section, we consider how 

to construct the first Doubly Inflated Poisson Model with parameters p and A. 

Table 2: Observed Data for Patient's Length of Stay 

LOS 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

Frequency 

55 
35 
35 
75 
40 
20 
13 
8 
4 
5 
3 
1 
4 
0 
1 



II.2 DOUBLY INFLATED POISSON (P, A) MODEL 

When large frequencies for count zero and count k are observed, a simple way to 

model the count behavior is by introducing a latent random variable Z which is 

distributed as Binomial (2, p), 0 < p < 1. The probability mass function for Z is 

P(Z = z) = 

p\ ifz = 2; 

2pq, if z = 1; 

if z = 0. 

< 2JH, 

Let Y be a random variable with the following characteristic: Y given Z = 2 is 

degenerate at 0; Y given Z = 1 is degenerate at k; and V given Z — 0 is a Poisson 

distribution with parameter A, where A > 0. That is, the conditional probability for 

Y given Z is 

1, 

P(Y = y\Z = z) = {l, 

exp(-X)Xy 

y 

for z = 2, y = 0; 

for z = l,y = &; 

, for z = 0,y = 0,1,2,, 

Then, the joint distribution of Y and Z is given by 

> , 

P(Z = z,Y = y)={2pq, 

2 ,'exp(-A)A3/ 

2/ 

for z = 2, y = 0; 

for z = l ,y = A;; 

for 2 = 0, y = 0,1,2,. 

The marginal probability mass function of Y is therefore: 

(3) 

P(Y = y) = { 

p2 + q2exp(-X), 

2pq + q2 exp(-X)Xh 

k\ 

for y = 0; 

, for y = k; 

g2 ( expf-AJA^ tav-1,2,...^*. 

(4) 
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Thus, an additional proportion of p2 explains the inflated zero counts and an 

additional proportion of 2pq explains the inflated k counts. We call this distribution 

(4) as Doubly Inflated Poisson (p, A), abbreviated as DIP (p, A). This distribution can 

also be interpreted as a mixture of Poisson distribution and degenerate distributions 

with mass concentrated at count zero and at count k. It is also interesting to note 

that as p —> 0, this model reduces to an ordinary Poisson distribution with mean 

parameter A. We generated the probability mass functions for a known k using 

arbitrary values of the parameters p and A. The plots of these mass functions are as 

shown in Figure 1. Each of the graphs indicate presence of two peaks one at count 0 

and the other at count k. The conditional distribution of Z given Y is as shown in 

Table 3. 

Table 3: P(Z = z\Y = y) of DIP (p, A) 

Y 

Z 0 k l ,2, . . .^fc 

g2exp(-A) g2exp(-A)Afc 

p2 + q2 exp(—A) 2pq(k\) + q2 exp(—A)Afe 

0 2M(fc!) 

2pq(k\) + q2 exp(-A)Afc 

P2 

p2 + g2exp(—A) 

NOTE: The sum of the entries in any column is 1. 

II.2.1 IDENTIFI ABILITY 

The DIP(p, A) model is identifiable. That is, each pair of distinct values of the pa-

rameters p and A lead to a unique probability mass function. To see that this is true, 

suppose (pi, Ai) and (p2, A2) are such that the DIP probability models corresponding 

to these values are the same. Therefore, F(Pl)Al)[y — y] = P(p2M)l^ = v\ f°r au" 
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values of y. Then, for y ^ k, 

2exp(-Ai)A| _ 2exp(-A2)A^ 

y! y! 

A i V gfexp(-A2) 

or equivalently 

X2J qfexp(-Xi)' 

Since the left hand side depends on y and the right hand side does not depend on y, 

the equality holds for all y ^ k if and only if Aly/A2 = 1 or Ai = A2 and hence p\ = pi 

also. Thus, PipuXl)(Y = y) = P{P2,\2){Y = y) for all y, implies (pi,Ai) = (p2,A2). 

Hence, DIP(p, A) model is identifiable. 

II.2.2 MOMENTS, EXPECTATION, AND VARIANCE 

Using the conditional distribution of Y given Z as given in equation (3), we can 

check that the conditional expectation of Y given Z is 

E(Y\Z = z) 

and 

0, if z = 2; 

E(Y2\Z = z) = lk2, iiz = l; 

A2 + A, if 2 = 0. 

Further if E(Yr) = /xr is the marginal rth moment of V, we can easily verify that 

the first four moments are 

Hi = E{Y) = 2pqk + q2X, 

fi2 = E{Y2) = 2pqk2 + q2(X2 + X), 

Hz = E(Y3) = 2pqk3 + q2(X + 3A2 + A3), and 

Ai4 = E{Y4) = 2pqk4 + q2(X + 7X2 + 6A3 + A4). (5) 
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Thus, the expected value fj, — E(Y) and variance a2 = Var(Y) are 

(j, = 2pqk + q2X, 

and a2 = 2pqk2 + q2(\2 + \)-n2 

= li-H2 + q2\2-2pqk{h-l). (6) 

Unlike the Poisson family of distributions where the mean and variance are equal, 

the Doubly Inflated Poisson (p, A) can model data where mean and variance have 

different values. 

II.2.3 FISHER INFORMATION 

Let Y be a random variable with probability mass function p(y) = P(Y = y) given 

in equation (4). The Fisher information matrix for the distribution is given by 

I=(m IM\ 

\l(p, A) /(A) ) ' 

where the elements of the matrix are 

- 2 ^ 1 + exp(-A)) (p2 + q2 exp(-A)) - (2p - 2<?exp(-A))2 

(p2 + <72exp(-A)J 

( 2 w + ^ > * ) (_ 4+2g^M!) _ (2 _ 4p _ 2q°j*tmy 

+ 2 ( l - « p ( - A ) - ! 2 t ^ ) , (8a) 

= -2pgexp(-A) 2g2exp(-A)Afc / _ k\ 

(p2 + ?2exp(-A)) (2pq(k\) + q2exp(-\)\k) \ XJ ' 
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and 

/<A)-sp^2>) 
_ -p2q2exp(-X) q2 ( exp(-A)Afe_1\ 

^ I ) ) + A V " (fc-i)! ) pz + ql exp 
(' 

+ g2exp(-A)Afc
 x((k_X g2e*p(-A)A* 

(2pq(k\) + q2eM-^k) V VA / kl 

-' s a^((i-0 ,-5»- (8C) 

The Cramer-Rao lower bounds for the variances of unbiased estimators of p and A 

can be obtained from the diagonal elements of J - 1 . 

II.3 METHODS OF ESTIMATION FOR RAW COUNTS 

In this section, we will explore parameter estimation methods including maximum 

likelihood estimation and moment estimation for data that consists of independent 

doubly inflated raw counts. 

II.3.1 MAXIMUM LIKELIHOOD ESTIMATION 

Suppose our data consists of independent count responses yt, i = 1 , . . . , n, distributed 

as DIP(p, A) for a known k. With q = 1 — p, the likelihood function can be written 

as 

L(P,\\V)= I I (p2 + <?2exp(-A)A-) J ] (2pg + <Z2eXP(~~fA*) 
{i:i/,=0} b-yt=k} 

,exp(-A)A2/" 

U n (?^^-
yi=Vi r, at—a i 
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And the log-likelihood function is 

t(p,\\y)= Yl log(p2 + 92exP(-A)A^)+ £ log(2pg + <z2eXp( * ) A * ) 

+ Yl
 los 

y%=y. 

Sexp(-A)A* 
(9) 

We differentiate the log-likelihood function (9) with respect to the parameters p and 

A to obtain the following score functions: 

0*(P,A) 

dp = E 
2p-2gexp(-A)A2/l 

7+ E 
(2-4p)(fc!)-2gexp(-A)A* 

r- _m P* + <? exp(-A)A* ' ^ 2pq(yiV) + q2 exp(-A)A* 

-- E i. 
V-y?0,kt 

and 

d£(p, A) _ ^ -g2exp(-A)A^ ^ g2exp(-A)A^ 

dX ~ . ^ . . p2 + g2 exp(-A)A* +
 f . ^ , 2pq(yi\) + q2 exp(-A)A = E 

b-y,=o} 

+ E (* - i ) . 

{i:j/,=fc} 
-\)\y> VA / 

(10) 

To find the maximum likelihood estimates (p, A), we solve for the roots of the above 

score functions. The parameter constraints are 0 < p < 1 and A > 0. Since the 

solutions are not in a closed form, we can use the Newton-Rhapson Algorithm to find 

numerical solutions for the parameter estimates. The Hessian Matrix can be obtained 

by taking the second-order partial derivatives with respect to the parameters p and A. 

H = 

fdH(p,X) 8H{Pl A) \ 

dp2 dXdp 
d2£(p, X) dH(p, A) 

\ dpdX dX2 ' / 

(11) 
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where 

dH(p, A) _ ^ (2 + 2 exp(-A)A») (p2 + g2 exp(-A) A») 

5 p 2 {*«.=<>} (p2 + 9
2exp(-A)A^)2 

(2p-2gexp(-A)A^) 2 ( - 4(&!) + 2exp(-A)A*) 

{i:y,=o} (p2 + g2 exp(-A)A*) {i:̂ =fc} (2pq{yt\) + g2 exp(-A)A^) 

( (2 -4p ) f a ! ) -2gexp( -A)A^) 2
 2 

{i:j,s=fc} (2pg(2/<!) + g2 exp(-A)A*) 
2 g 2 

a2^(p,A) a2£(p,A) 

aA5p dpdX 

= E 
2pgexp(-A)AJ/' 

+ E 

2exp(-A)A^' ^ y^ 

M) 
{**=o> (p2 + g

2exp(-A)A^)2
 {KW,=*} (2pq + q*eM~yXytiy 

and 

d2l(p, A) 
<9A2 

y ^ pVexp(-A)Ay ' 

{*w=o} (p2 + g2 exp(-A) A* J 

,exp(-A)A"« 

+ E 
{i:2/.=fc} 2pg + q2 exp(-A)A* 

X 2pq + q 

((f-D2-!H 
,exp(-A)A2/" /& 

(!-) - E A2' 

Thus, for data that consists of raw counts yz,i = l,...,n, the observed Hessian 

matrix is 

H 

fd2£(P,X) #l(p,\)\ 

dp2 dXdp 
d2£(p, A) d2£(p,X) 

\ dpdX dX2 J 

(13) 
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evaluated at the maximum likelihood estimates (p, A). The observed covariance 

matrix is the inverse of the negative of the observed Hessian matrix given in equation 

(13). The diagonal elements of the covariance matrix are the observed variances <r2(p) 

and cr2(A) of p and A, respectively. Also, the only off-diagonal element is the observed 

covariance between the maximum likelihood estimates p and A. 

II.3.2 MOMENT ESTIMATION 

Suppose our observations include counts t / i , . . . , yn that are independently distributed 

as DIP(p, A). Here, we assume that both p and A are unknown with a pre-determined 

k and we desire moment estimators for both parameters. The first two population 

moments as established in Section II.2.2 are p,\ = E(Y) = 2pqk + q2X and //2 = 

E(Y2) = 2pqk2 + q2 (A + A2). The first two sample moments are yT = i^Ji=iVi)/n 

and yi = (XT=i y2)/n. Equating the first two sample moments to those of the 

population moments yields the two nonlinear equations 

yT = 2pqk + q2X 
(14) 

yi =2pqk2 + q2(X + X2), 

which now must be solved for both p and A. One may use numerical algorithm such 

as Newton-Rhapson Method to find the solution. Thus, we can obtain the moment 

estimators (p, A) for p and A, respectively, where 0 < p < 1 and A > 0. 

Consider D the matrix of the first order partial derivatives of the first two pop-

ulation moments with respect to p and A. That is, 

D = 
dp dX 

dp dX 

( 2k(l-2p)-2qX q2 ^ 

{2k2(l-2p)-2q{X + X2) q2(2X + l)j 

(15) 
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Let £ be the covariance matrix of Y and Y2 given by 

/ Var(Y) Coo(Y,Y*)\ 

\Cov(Y2,Y) Var(Y2) ' 

where, 

Var{Y) = 2pqk2 + q2{X2 + A) - (2pqk + q2X)2 , 

Var(Y2) = 2pqk4 + q2 (A4 + 6A3 + 7A2 + A) - (2pqk2 + q2(X + A2) )*, and 

Cov{Y2,Y) = Cau{Y,Y2) 

= (2pqk3 + q2 (A3 + 3A2 + A) ) - {{2pqk + q2X)(2pqk2 + q2(X + A2) ) ) . 

Then the asymptotic covariance matrix for the moment estimators (p, A) is given by 

the matrix A (see Chaganty and Shi 2004). 

A = - (D)-1 S (£>T)-1 

n 

1 fan ai2 

rz(det(D))2 \a21 a22> 

(17) 

where, 

a n = 2q6X2 + q6X4 - q8X4 + 8pq5k2X2 - 8q5k3pX 

+ 8g5pA;2A - 16p2k2q6X2 - 16k2p2q6X - 8pkq7X3 - Apkq7X2 

+ \6p2k3q6X + Apk2q7X2 + 2pq5k2 - Ap2k2q* - Ak3pq5 

+ 8k3p2q6 + 2q5pk4 - Ap2q6k4, 

a12 = a2i = -Aq4pkX3 + 8q4pkX2 + 12q4pk2X2 - \2q4pkzX2 

+ 12q4pk2X3 + 2q4kX3 - Aq4kX2 + Aq5X3 - Apkq4X4 

- 2k2q4X3 + 2kq4X4 + 2k2q6X3 - 2kq6X4 ~ 12pk2q5X2 

- 2kq6X3 - 8pk3q4X - 8pk2q5X3 + 8pk3q5X + Apk2q4X 

- Apk2q5X + 12pk3q5X2 + Apk4q4X - Apk4q5X, 
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a22 = -112pk2q2X2 - 16pk2q2X + 8pk2q3X2 + 32pk3q2X 

+ 8pk2q3X4 - 16pk4q2X2 + 16p2k4q2X2 - 16pk4q2X 

+ 16q2p2k4X + 28k2q2X2 + Ak2q2X - Ak2q2X2 + 8k3q4X3 

+ Aq5X5 + 8g64A4 + 8pk4q3X2 + 32pkq3X4 + 32pk3q2X3 

- S2p2q2k3X3 + 48pkq3X3 + 96pq2k3X2 - 96p2q2k3X2 

- 32p2q2k3X - 16pk3q3X3 - 16pk3q3X2 - 96pq2k2X3 

+ 96p2q2k2X3 + \\2p2q2k2X2 + Wp2q2k2X - 16k2pq2X4 

+ 16p2q2k2X4 + 8k2q3X3 + 4k4q2X2 + Ak4q2X - 4k4q4X2 

- 16kq3X4 - 8k3q2X3 - 2Akq3X3 - 2Aq2k3X2 - 8k3q2X 

+ 8k3q4X2 + 2Ak2q2X3 - 8k2q4X3 + Ak2q2X4 - Ak2q4X4, 

and 

det(D) = Akq2X - 8pkq2X - 2q3X2 + 2kq2 - Aq2pk - 2p2k2 + Apk2q2. 

The diagonal elements of covariance matrix A are the asymptotic variances <r2{p) 

and <J2(X) of moment estimators pand A, respectively. 

In some cases where p is already known, then A can be estimated by A = 

. Here, yl is calculated by (5Zr=i 2/»)/n- We know that y/n(y — //i) asymp-

totically follows normal distribution with mean zero and variance a2 = Var(Y) = 

2pqk2+q2(X2+X) — (2pqk + q2X) . Then, by delta theorem, yl is normally distributed 

with mean /xi and variance (a2)/n. Thus, A also follows a normal distribution with 

mean A and variance (a2)/n. 

II.4 METHODS OF ESTIMATION FOR GROUPED DATA 

Sometimes, the data is observed as frequencies of counts. That is, instead of observing 

the raw counts, yt, i = l,...,n, we observe frequency, n3, of count (Yt = j), j = 

l,...,m. Thus, n0 is the inflated numbers of O's, n*, is the inflated numbers of 

k's, and n3 is the numbers of j's. In this section, we will explore both methods of 

estimation, the maximum likelihood and the method of moments, for count data that 

is given as grouped frequencies. 
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II.4.1 MAXIMUM LIKELIHOOD ESTIMATION 

Under the assumption that the observations are independently distributed as 

DIP(p, A), the log-likelihood function is 

£(p, X\n3) = nQ log (p2 + q2 exp(-A)) 

+ nk log (2pq + Q2 ~ 

oo 

+ ] T n, (2 logfa) - A + j log(A) - log(j!)). (19) 

3=1 

3?k 

The score functions are 

(2-4p-2aeM-X)Xk 

d£(p,X) (2p-2qexp(-X)) \ P q k\ 
no , o ,—5 7—rrr + "fc dp (p2 + q2exp(-X)) ( 2exp(-A)Afe 

k\ 

d£(p,X) - 9
2 exp( -A) ?2exp(-A)Afc (k , 

and 

<9A u(p2 + g2exp(-A)) (2pq(k\) + q2exp(-X)Xk)\X 

In order to solve for the maximum likelihood estimates of (p, A), we solve for 

the roots of the above score functions. The second order partial derivatives of the 

log-likelihood function in matrix form are 

/d2£(p,X) d2£(p,X)\ 

H= dH(p,X) d2F(pXX) (20) 

V dXdp dX2 } 
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where, 

n0 

dp2 (p2 + q2exp(-X)y 

- ( 2 p - 2 g e x p ( - A ) ) 

(2 + 2 exp(-A)) (p2 + q2 exp(-A)) 

+ 
\2pq + q-

nk 
,exp(-A)Afe\2 

Jfe! 

-4 + 2 
exp(-A)Afc 

it! 
2 - Ap - 2q 

exp(-A)AfcV 

it! J 

*.+^s^) 

+X>(^)' 

and 

dH(p,\) _d2t(pA) 
dXdp dpdX 

2nopqexp(—X) 2nkq 
2exp(-A)Afe 

jfe! 

( p 2 + g 3 e x p ( _ A ) ) 2 + / + g 2eX p (-A ) A f cy 
x 1 

d2^(p, A) _ n 0 p V exp(-A) 

dX2 

(p2 + g2 exp(—A) j 

,exp(-A)Afc 

nkq 

+ 
k\ 

2pq + q2 exp(-A)Afe 

2„ + S<E?tM'} 
A2 

-Q 
exp(-A)Afc\ 

Jfe! ) +XS 
J 7 ^ 

A2 

Thus, for data that consists of frequency n3 for count j , the observed Hessian matrix 

is given by equation (20) evaluated at the maximum likelihood estimates (p, A). And, 

the observed covariance matrix is the inverse of negative of the observed Hessian 

matrix given above. The diagonal elements are the observed asymptotic variances 

<J2(p) and a2{X) of p and A, respectively. 
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II.4.2 METHOD OF MOMENTS ESTIMATION 

Suppose that our data consists of n independent observations of frequencies n3 of 

count j,j = 0 , . . . , TO. We assume that the frequencies no and rik are inflated fre-

quencies of counts 0's and fc's. We can obtain the moment estimates for the parameter 

p and A using the following technique. For the observations consisting of grouped 

frequencies, n3 for count j , the first two sample moments are n{ = (l/n) Y^oU71]) 

and n^ = ( l /n) YlT=o(J2nj)i which are computationally equivalent to the sample mo-

ments for raw counts (see Section II.3.2). Here n is sum of all frequencies, n'^s. We 

know that the population moments are /xi = E(Y) and t̂2 = E(Y2) as in equation 

(5). Equating the population moments to those of sample moments, we obtain a 

similar system of of equations seen previously in Section II.3.2. 

n{ = 2pqk + q2X 

W2 = 2pqk2 + q2(X + A2) (22) 

We solve the above system of equations to obtain the moment estimates of p and A. 

Note that k is known here, and the parameter constraints are 0 < p < 1 and A > 0. 

Let D be the matrix of first order partial derivatives of the first two moments 

with respect to p and A. That is, 

(
dpi dfii 

dp dX 
djH {fa 
dp dX 

where the elements are as given by equation (15). Similarly, let S be the covariance 

matrix as given in equation (16). Then, the asymptotic covariance matrix for the 

method of moments estimates of (p, A) is given by 
A = - (D)-1 S (£>T)_1. (24) 

n 

Matrix A is the inverse Godambe's information matrix. The diagonal elements of 

A are the asymptotic variances <J2(p) and cr2(A) of moment estimators p and A, 

respectively. 

(23) 
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II.4.3 ASYMPTOTIC RELATIVE EFFICIENCY COMPARISONS 

To compare the performance of the two maximum likelihood and method of moment 

estimators, of the parameters p and A, we use a large-sample measure of relative 

efficiency due to Pitman. Pitman's asymptotic relative efficiency (ARE) of moment 

estimators (p, A) with respect to maximum likelihood estimators (p, A) are the ra-

tios of their asymptotic variances e(p, p) = cr2(p)/cr2(p) and e(A, A) = cr2(A)/cr2(A), 

respectively. If ARE is less than 1, we conclude that the maximum likelihood es-

timators are better than the moment estimators and vice versa if ARE is greater 

than 1. 

In Section II.2.3, we found that Fisher information I(p) given by the equation 

- 2 ( 1 + exp(-A)) (p2 + g2 exp(-A)) - (2p - 2g exp(-A))2 

W (p2 + <z2exp(-A)) 

'(W=«) (-4 + 2^) - ( ^ - ^ 

The asymptotic variance cr2(p) of maximum likelihood estimate p has a Cramer-Rao 

lowerbound of 1/I(p) evaluated at p. In Sections II.3.2 and II.4.2, we obtained the 

inverse Godambe's information matrix A whose first diagonal element is the asymp-

totic variance of the moment estimator of p, a2(p). Taking the ratio cr2(p)/o2(j>) we 

obtain the relative efficiency of moment estimator with respect to maximum like-

lihood estimator of p. Table 4 represents efficiencies e(p, p) calculated for various 

values of p and A in the parameter space 0 < p < 1 and 1 < A < 10 for DIP (p, A) 

model with inflated 0's and 3's. Table 5 represents efficiencies e(p, p) calculated for 

various values of p and A for the DIP (p, A) model with inflated 0's and 6's. As we can 

see, the efficiencies e(j>, p) are less than 1 indicating that the moment estimator are 

less efficient than the maximum likelihood estimators of the parameter p. Efficiencies 

were also calculated for models with various values of k, and they show the same 

trend. 

Similarly, we found that Fisher information, /(A), for A which is given by the 
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Table 4: 

P A = 

Relative Efficiencies for DIP 

= 3 X--

e(p,p) 

= 5 A = 7 A = 9 

(P,A) 

A 

Model for Inflated O's 

= 3 

e(A,A) 

A = 5 A = 7 

and 3's 

A = 9 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

0.0766 
0.2926 
0.0819 
0.2594 
0.4475 
0.6106 
0.7427 
0.8478 
0.9319 

0.0859 
0.2592 
0.4404 
0.5853 
0.6953 
0.7808 
0.8499 
0.9075 
0.9569 

0.4343 
0.6384 
0.7524 
0.8205 
0.8659 
0.9007 
0.9297 
0.9551 
0.9784 

0.6629 
0.8174 
0.8854 
0.9223 
0.9454 
0.9614 
0.9735 
0.9835 
0.9921 

0.7709 
0.2930 
0.2784 
0.4875 
0.5946 
0.6555 
0.6938 
0.7197 
0.7384 

0.2219 
0.3895 
0.4869 
0.5419 
0.5746 
0.5951 
0.6086 
0.6180 
0.6248 

0.5807 
0.6172 
0.6215 
0.6089 
0.5892 
0.5678 
0.5469 
0.5276 
0.5101 

0.6988 
0.6973 
0.6712 
0.6302 
0.5829 
0.5352 
0.4907 
0.4495 
0.4132 

NOTE: The efficiencies are calculated for the model with inflated zero's and 3's. e(p,p) is the 

asymptotic relative efficiency of moment estimator of p relative to its maximum likelihood 

estimator. e(A, A) is the asymptotic relative efficiency of moment estimator of A relative to 

its maximum likelihood estimator. 

equation 

J(A) = 

+ 

—pq exp(-A) 

(p2 + g2exp(-A)) ' A 

9exp(-A)Afe 

* w 
X 

+£l l 

2pq + q2 exp(-A)A* 

k\ 

2exp(-A)A f c / /fc 
q k\ \ V A 

exp(—A)A fc-i 

[k-\)\ 

! - > 
,exp(-A)Afc 

k\ 

evaluated at the maximum likelihood estimates of p and A. The asymptotic variance 

cr2(A) of maximum likelihood estimate A has a lower bound 1//(A). In Sections II.3.2 

and II.4.2, we obtained the inverse Godambe information matrix A whose second 

diagonal element is the asymptotic variance of the moment estimator of A, cr2(A). 

Taking the ratio cr2(A)/cr2(A) we obtain the relative efficiency of moment estimator 

with respect to maximum likelihood estimator of p. Table 4 represents efficiencies 

e(A, A) calculated for various values of p and A in the parameter space 0 < p < 1 
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and 1 < A < 10 for the DIP model with inflated O's and 3's. Table 5 represents 

efficiencies e(A, A) calculated for various values of p and A for the DIP model with 

inflated O's and 6's. As we can see, the efficiencies e(A, A) are less than 1 indicating 

that the moment estimator are less efficient than the maximum likelihood estimators 

of the parameter A. 

Table 5: Relative Efficiencies for DIP (p, A) Model for Inflated O's and 6's 

e(p,p) e(A,A) 

p 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

A = 3 

0.1877 
0.3803 
0.5413 
0.6653 
0.7617 
0.8363 
0.8939 
0.9382 
0.9727 

A = 5 

0.0152 
0.0274 
0.1692 
0.3464 
0.5090 
0.6461 
0.7595 
0.8537 
0.9328 

A = 7 

0.0023 
0.1170 
0.2978 
0.4619 
0.5969 
0.7074 
0.7991 
0.8764 

0.9426 

A = 9 

0.1468 
0.3544 
0.5081 
0.6211 
0.7105 
0.7851 
0.8491 
0.9053 
0.9552 

A = 3 

0.3659 
0.5086 
0.4549 
0.3350 
0.2449 

0.1866 
0.1486 
0.1229 
0.1047 

A = 5 

0.6813 
0.6890 
0.6916 
0.6928 
0.6934 
0.6939 
0.6942 
0.6944 

0.6945 

A = 7 

0.0178 
0.3013 
0.4411 
0.5071 
0.5442 
0.5676 
0.5837 
0.5953 
0.6041 

A = 9 

0.3197 
0.4399 
0.4854 
0.5055 
0.5158 
0.5216 
0.5251 
0.5273 
0.5288 

NOTE: The efficiencies are calculated for the model with inflated zero's and 6's. 

II.4.4 TESTING 

Goodness-of-fit statistics help us to check the adequacy of the chosen model fit. In 

order to test the null hypothesis whether DIP(p, A) model is a good fit, we can take the 

observed counts and the expected counts to obtain the Pearson and the likelihood-

ratio goodness-of-fit statistics. For the ith cell, denote the observed count by nt 

and the expected count by /?,. The Pearson and the likelihood-ratio goodness-of-fit 

statistics equal 

2 = V* ("* ~ ^2 

G2 = 2 ] > > l o g ^ 

When the fitted values are not small (exceeding 5), these test statistics have approx-

imate chi-squared distributions. The df equal the number of response cell counts 
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minus the number of model parameter(s). A large test statistics and small p-values 

suggest a poor-model fit. 

For performing significance tests of hypothesis H0: f3 = 0 about parameters in 

the model, we can use the large-sample normality assumption of ML estimates. The 

test statistic z = /3/ASE, where ASE is the asymptotic standard error of /?, has an 

approximate standard normal distribution when /3 = 0. Equivalently, Wald's statistic 

z2, which divides a parameter estimate by its standard error and then squares it, can 

also be used to test the two-sided hypothesis. One may also use the likelihood-ratio 

test statistic, — 2(L0 — Li), where L0 and L\ denoted the maximized log-likelihood 

functions. It has a chi-squared distribution with df = 1. 
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Figure 2: Log-likelihood Graph of LOS data using Doubly Inflated Poisson Model 
with parameters (p, A) 

II.5 ILLUSTRATION OF METHODS 

In this section, we return to our motivating example on hospital stay data and 

illustrate the analysis of that data using the methods discussed in this chapter. In 

our hospital stay data, we have grouped frequencies for the count response of length 
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of stay, LOS (see Table 2). We notice that there are inflated counts of patients 

(no = 55) who receive outpatient treatment and/or care, and inflated counts of 

patients (n3 = 75) who possibly under insurance coverage require 3-day inpatient 

care. We also have 35 patients who stay overnight, 35 patients who stay two nights 

in a row, and so on. 

In this example, we assume that the observations on patients are independent. 

The count response of LOS can be assumed to have DIP(p, A) distribution. For the 

analysis, we obtain the maximum likelihood estimates for the parameters p and A 

using the ZIP and DIP (p, A) probability models. The parameter estimates for p and 

A are as given in Table 14. The asymptotic variances for ML estimates using the 

score function were found to be a2(p) = 0.002 and er2(A) = 0.012, and the asymptotic 

covariance of the two parameter estimates was approximately zero. Using the ML 

estimates for the parameters under both probability models, one can easily compute 

the expected frequencies for the length of stay data. These fitted frequencies along 

with the observed frequencies are plotted in Figure 3. 

At first, the ZIP model accounts quite well for the first inflation at LOS= 0, 

however it fails to account for the second inflated count at LOS = 3. Thus, we 

attempt to fit the observed data using ML estimation for DIP (p, A) model. Figure 2 

plots the log-likelihood values for the observed data using the range of the parameters: 

0 < p < 1 and 0 < A < 12. The plot shows that an optimal solution is attainable at 

the peak where the largest value for negative log-likelihood value is observed. As seen 

from Figure 3, DIP(p, A) accounts fails to account fairly for the first inflation, however 

does begin to account the second inflation and also improves on the estimations for 

LOS > 4. Hence, one needs to seek improvement in the modeling and estimation 

techniques for the second inflation along with modeling and estimation for the first 

inflation. The maximum likelihood estimation was done using PROC IML in SAS 

and results verified using PROC NLP and PROC NLMIXED. 
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CHAPTER III 

THE SECOND DOUBLY INFLATED POISSON MODEL 

In Chapter II, we introduced a Doubly Inflated Poisson model to deal with count 

responses with two peaks. In this chapter, we will study another DIP probability 

that can also be considered as a finite mixture model that accounts for inflated counts 

of zeros as well as inflated counts of fc's. 

In Section III. 1, we describe in detail the development of Doubly Inflated Poisson 

model with three parameters pi, p? and A, using a latent variable. We also discuss 

the distributional properties of the probability model including moments, expecta-

tion, variance, and Fisher information. Section III.2 describes estimation techniques 

for data that consists of raw count responses using maximum likelihood approach 

and method of moments. Section III.3 describes parameter estimation methods such 

as maximum likelihood estimation and moment estimation for data consisting of 

grouped frequencies of count responses. We also compare the two estimation ap-

proaches using relative efficiencies as well as small sample efficiency calculations. In 

Section III.4, we revisit our illustration on the hospital stay data using DIP (pi,P2, A) 

probability model and then compare the analysis to the ZIP and DIP (p, A) models. 

III.l PROBABILITY MODEL 

Another approach to modeling a doubly inflated count response variable where a 

large number of zeros and fc's are observed is by introducing another parameter of 

interest that can explain inflated A;'s. That is, we let Z be a random variable such 

that it has following probability mass function: 

{ 

Pi, if 2 = 0; 

P(Z = z) = < P2, if 2 = 1; 

P3, if z = 2, 

where p\ + p2 + Pz = 1 with Pi,P2,P3 ^ 0. Let Y be a random variable with 

the following characteristic: Y given Z = 0 is degenerate at 0, Y given Z = 1 is 
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degenerate at k, and Y given Z = 2 is Poisson process with parameter A, A > 0. 

That is, the conditional probability function of Y given Z is 

P(Y = y\Z = z)={ 

1, 

1, 
exp(-A)A^ 

for z = 0, y — 0; 

for z = l,y = &; 

, for * = 2,2/ = 0,1,2, . . 

(25) 

Then the joint distribution of Y and Z can be obtained as 

P(Z = z,Y = y)={ 

Pi, ifz = 0,y = 0; 

p2, Xz = l,y = h; 

exp(-A)A» ; , 
P3 

y! 
-, ifz = 2,j/ = 0 , l ,2 , . 

Thus, the probability mass function of Y is as follows: 

Pi + p3 exp(-A), for j / = 0; 

P ( y = y ) = ^ P 2 + P 3 
exp(-A)A* 

k\ 

Ps 
exp(-X)Xy 

yi 

for y = k; 

for y = 1,2,... 7̂  /c. 

(26) 

We call this distribution as Doubly Inflated Poisson (pi,P2,A), abbreviated as 

DIP(pi,p2, A). It is that px replaces p2, p2 replaces 2pq, and p3 replaces q2 of the 

DIP (p, A) probability model. In this probability model, an additional proportion of 

Pi would explain the inflated zero counts and an additional proportion of p2 would 

explain the inflated k counts. It is quite clear to note that as p2 —>• 0, this model 

reduces to the Zero-Inflated Poisson (ZIP) distribution due to Lambert (1992). A 

few of the probability mass distributions are generated for a known k using arbitrary 

values of p\, p2, and A. Similar to the first model as mentioned in Section II.2, the 

probability mass distributions for this model also shows two peaks for each of the 

distributions (see Figure 4). One can also obtain the conditional distribution of Z 

given Y as shown in the Table 6. 
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Figure 4: A Few Doubly Inflated Poisson (pi,P2, A) Distributions for a known k 
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Table 6: P(Z = z\Y = y) of DIP (Pl,p2, A) 

Y 

Z 0 k 1,2,. ..^k 

Pi 

P!+p 3 exp(-A) 

p3exp(-A) 

P2(k\) 

p2(k\) + pzexp(-X)Xk 

p3 exp(-A)Afc 

Pi + p3 exp(-A) p2(A;!) + p3 exp(-A)Afc 

0 

NOTE: The sum of all entries in a column is 1. 

III. 1.1 MOMENTS, EXPECTATION, AND VARIANCE 

Using the conditional distribution of Y given Z as described by equation (25), the 

conditional expectation of Y given Z is 

1°' 
< k. 

when z = 0; 

E(Y\Z = z) = \k, when z = 1; 

A, when 2 = 2. 

and, that of Y2 given Z is 

£(y 2 |Z = *) = 

0, when z = 0; 

fc2, when 2 = 1; 

A2 + A, when z = 2. 



32 

Let /ir be the rth moment of Y which is distributed as DIP(pi,p2, A). Then 

LH = E(Y) = p2k + p3\, 

fi2 = E(Y2)=p2k
2+p3(X

2 + X), 

/i3 = E(Y3) = P2k3 +p3(X + 3A2 + A3), and 

^ = E(Y4) = p2k
4 + p3{X + 7A2 + 6A3 + A4). 

Thus the expected value JJL = E(Y) and the variance a2 = Var(Y) are 

(27) 

E(Y) = p2k + p3A, and 

Var(Y) = j^fe2 + p3(A
2 + A) - /x2 

= /i - n2 + p3A
2 - p2(&

2 - fc). 

(28) 

(29) 

It is clear that the mean and variance of Y are not equal, thereby explaining vari-

ability caused by two inflated counts. 

III.1.2 FISHER INFORMATION 

Suppose Y is distributed as DTP(pi,p2, A) with mass function p(y) = P(Y 

given by (26). Then Fisher information matrix is 

= y) as 

1 = 

( I(Pl) I{Pl,p2) I(puX)^ 

I(Pl,P2) I fa) I{P2,X) 

\l(Pl,X) /(Pa,A) /(A) J 

where 

><»•»--*(*%£*) 

exp(-A)(pi+p 3 ) 
p2exp(-A)A* 

A 

(Pi + P3 exp(-A) J \P2(k\) + pz exp(-A)Afc J 

(30) 
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, v2 /exp(-A)Afc\ 
( l - exp(-A)) [ jy ) 

2 

(P l+p3exp(-A)) L+p3 

1 / , x, exp(-A)Afe 

+ — ( 1 - exp(-A) - FV ; 

exp(-A)A* 

jfc! 

Ps \ k\ 

- exp(-A) (l - exp(-A)) exp(-A)A* ^1 - ^ - ^ J 

(pi + P3 exp(-A)J (pa(fc!) + Pa exp(-A)AfcJ 

1 / . x. exp(-A)Afc\ 

'W--<=8P) 
exp(-2A) V k-

1 exp(-A)A* 

(p1 +p3exp(-A)) L+p3 
exp(-A)A* 

ife! 

^ - P U P ) 
. ( i _ p i ) e x p ( - A ) A f c ^ - l 

- P 1 G X P ( - A ) + ^ ^ - ^ , and 
(p! + p3exp(-A)) (p2(fc!) + p3exp(-A)Afc) 
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/(A) = - ^ | ^ 2 ) ) 

Pip3exp(-X) .P3(, , xx exp(-A)Afc\ 

7 r ^ V + A*~ I 1 " exp(_A) i f c i — ) 
^ 1 + p 3 e x p ( - A ) J A v kl / 

pz exp(-A)Afe 

^p2(k\)+p3exp(-X)Xk^ 

,k V k ( exp(-A)Afc 

P2 T - l ) -To P2+P3 V ' A J A 2 V " " A;! 

Then, the Cramer-Rao lower bounds for the variances of any unbiased estimator 

of the parameters p\, p2, and A are the diagonal elements of the inverse of the 

information matrix. 

III.2 METHODS OF ESTIMATION FOR RAW COUNT DATA 

Suppose our observations include count responses yt, % = 1 , . . . , n. In this section, we 

will explore estimation techniques for the parameters, including maximum likelihood 

estimation and moment estimation for raw counts. 

III.2.1 MAXIMUM LIKELIHOOD ESTIMATION 

Suppose data consists of counts y^i = 1,...,n, where y = 0 and y = k occur more 

frequently in the data. The likelihood function is 

L(Pl,P2,\\y)= I I ( f t+Psexp(-A)A*) J ] (P*+P* yA ) 
{i:yt=0} {ryt=k} 

exp(-A)A^ n (*^«). 
. y*=y i 

ily^0,kl 

Then, the log-likelihood function is given by 

*(Pi,P2,A|y)= J2 l og(p i+Psexp( -A)A^)+ J ] log (p2 + p 3
6 X p ( , " ' ) 

{t:j/,=0} {i:2/t=fc} 

+ J ] ( log(p 3 ) -A + y,lQgA-log(Wi!)). (32) 
Vt=y^ 
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The first-order partial derivatives of the log-likelihood function with respect to 

the parameters pi,p2, and A, are 

d£(Pl,p2,X) = y ( l ~ exp(-A)A^) exp(-A)A* 

dpi {.:v,=o} ( P I + P3 exp(-A)A*) b ,i=fe} (p2(2/J) + p3 exp(-A)A*) 

P3 

^(pi,P2,A) £ exp(-A)A2'' 
- E 

(&! - exp(-A)A^) 

^ 2
 { ,t^o} (ft + P3 exp(-A)A*) { , ~ f c ) (ft%! + ** exp(-A) A*) 

- ^ E x> and 
P3 

Mfo.Pa.A) y . (-ft»exp(-A)A») ^ e x p ( - A ) A ^ ( | - l ) 

9 A {*:*=«>} ( P I + P a exp(-A)J {,.„,=*} (p2(j/*0+P3exp(-A)Aw«J 

To obtain the maximum likelihood estimates for the parameters pi,p2, and A, we 

solve the score functions simultaneously by setting them equal to zero. Here, the 

constraints on the parameter estimates are 

0 < p i , p i < 1, 

Pi+P2< 1, and 

A > 0. (33) 

We can use numerical algorithms such as Newton-Rhapson algorithm to find solutions 

to the parameter estimates, pi,p~2, and A. Taking second order partial derivatives 

will gives us the following Hessian matrix: 

fd2£(Pl,p2,X) d2£(Pl,p2,X) d2£(Pl,p2,X)\ 

H 

dpi2 ir dp2dpi dXdpi 
d2£(pl,p2,X) dH(Pl,p2,X) d2£(Pl,p2,X) 

dpjdp2 dp2
2 dXdp2 

dH(pljP2,X) dH(Pl,p2,X) d2£(Pl,p2,X) 

\ dPldX dp2dX dX2 

(34) 

/ 
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where 

dH _ ^ - ( l - e x p ( - A ) A t t ) exp(-2A)A2^ 

F {f.yt=o} \p1+p3exp(-X)Xy*) {zu=k} {p2(yl\)+P3exp{-X)Xy*} 

- ti) E i. 
I,.

y'
=y\ 

V-yjtO,ki 

d2e(Pl,P2,x) _dPe(p1,p2,\) 

dp2dpi dpxdp2 

( l - exp( -A) )exp( -A)A* 
= ^ 7 \^ 

{*%=<)} (pi+P3exp(-A)A«fcJ 
/ exp(-A)A2'* \ /exp(-A)A3/i \ 

V ^ " ri '{ th
}
- W M V 1 

^ ( exp(-A)A^\2 \p\) Z^ ' 
{«»=*> ( P 2 + P 3 ^ ) ^ { K ^ } 

dH(Pl,P2,X) _dH(Pl,P2,X) 

dXdpi dpidX 
fy% \ exp(-A)A^ 

= V ^ vx-VK-A)*" \pi TP3) _ y ^ 
Vi 

exp(-A)A«"(p1+p3) v - y \X J y, (!-0 
{.:*=<>} (p! + P3 exp(-A)A».) {r:yt=k} L + p^M X)Xy'\ 

2 ' 

/ exp(-A)A*\ 

dH{Pl,p2,X) = y exp(-2A)A* y . V vJ- ) 

2 

i ) E i. 
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d2£(pup2,X) _ dH(Pl,p2,X) 

dXdp2 dp2dX 
fyt \ exp(-A)Aw* 

y^ Plexp(-A)A^ y^ (1 Pl)\x V v*\ 

and 

{..».=o} (px + p3exp(-A)A».) {ryt=k} L + p 3
e x p ( ^XV%\' 

ff^(Pi,P2,A) = _ ^ p1p3exp(-X)Xy* _ y ^ /jfc \ 
<9A2 2-*/ / \2 A^ VA2/ 

{t=ih=o} [pi + P3exp(-A)A»'J {vy^>k} 

exp(-A)Ay» 

j 2 ^ / exp(-A)A-VV ^ A ' 

V ft! 
y. / . exp(-A)A^\\ 

-»V>
+
*—jji—))-

Thus, for n independent observations of raw count data, the observed Hessian matrix 

is obtained by evaluating Hessian matrix (34) at the maximum likelihood estimates. 

The observed covariance matrix is the inverse of the negative Hessian matrix given 

above, where the diagonal elements are the variances cr2(pi), <J2(p2), and cr2(A) of the 

parameters pi, p2, and A, respectively. The off-diagonal elements will give us the 

covariances between the pairs of parameters evaluated at ML estimates. 

III.2.2 M O M E N T ESTIMATION 

Suppose n observations consisting of raw counts that are independently distributed 

as DIP(p!,p2, A). Our goal is to find the moment estimators for the parameters pi, 

p2, and A. As established in Section III.1.1, the first three population moments are 

^ = E(Y) = p2k + p3X, 

fM2 = E(Y2) = p2k
2 +p3(X + A2), and 

A*3 = E(Y3) = p2k
3 +p3(X + 3A2 + A3). 
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Equating the first three population moments to the first three sample moments, 

yi,yi, and yi where, yi = (£* = 1 yt)/n, yi = ( £ " = 1 V
2)/n, and yi = (£r=i&3)/n> we 

obtain the following set of equations: 

yi = p2k + p3X 

yi = p2k
2+p3(X + X2) 

yi = p2k
3+p3(X + 3X2 + X3). (36) 

The set of equations (36) can be solved simultaneously to obtain the moment esti-

mators (pi,P2, X) of the parameters pi,P2, and A for a known k. Here, the parameter 

constraints are the same as those given by equation (33). 

Let D be the matrix of first order partial derivatives of the first three moments 

with respect to the three parameters. Thus, 

/8/j.i dfii dfii\ 

D 

That is, 

D = 

dpi dp2 dX 
d/j,2 dji2 d\X2 

dpi dp2 dX 
d/j,3 dfi3 dtx3 

\dpi dp2 dX) 

( -X k-X p3 ^ 

-A(A + 1) A;2-A(A + 1) fc2-A(A + l) 

V-(A3 + 3A2 + A) A;3 - (A3 + 3A2 + A) p3(3A2 + 6A + l)y 

(37) 

Note p3 = 1 — pi — p2- Let £ be the covariance matrix 

( Var(Y) Cov{Y,Y2) Cav(Y,Y3)^ 

S = Cov(Y2,Y) Var(Y2) Cov(Y2,Y3) 

^Cov{Y3,Y) Cau{Y3,Y2) Var(Y3) j 

(38) 
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where, 

Var(Y) = p2k
2 + p3 (A2 + A) - (p2k + p3X)2 , 

Var(Y2) = p2k
4 + p3 (A4 + 6A3 + 7A2 + A) - (p2k

2 + p3X
2 + p3\)

2 , 

Var(Y3) = p2k
e +p3 (A6 + 15A5 + 65A4 + 90A3 + 31A2 + A) 

- (P2k3 + p3X
3 + 3p3X

2 + p3X)2 , 

Cav(Y,Y2) = Cov{Y2,Y) 

= p2k
3 + p3(A

3 + 3A2 + A) - (p2k + p3X) (p2k
2 + p3X

2 + p3X) 

Cov{Y,Yz) = Cau(Y3,Y) 

= p2k
4 + p3 (A4 + 6A3 + 7A2 + A) 

- [ (P2k + p3X) (p2k
3 + p3X

3 + 3p3X
2 + p3X) ] , and 

Cav(Y2,Y3) = Cav(Y3,Y2) 

= P2k5 +p3 (A5 + 10A4 + 25A3 + 15A2 + A) 

( M 2 + p3A
2 + p3X) (p2k

3 + p3X
3 + 3p3X

2 + p3X) 

The asymptotic covariance matrix of the moments estimators (pi,p2,X) is given 

by the inverse Godambe's information matrix A = — (D)~ S (DJ)~ (Cha-

ganty and Shi 2004). The diagonal elements of covariance matrix A are the asymp-

totic variances of the moment estimators p\, p2, and A, respectively. 

III.3 METHODS OF ESTIMATION FOR GROUPED DATA 

In this section, we consider obtaining parameter estimates using maximum likelihood 

estimation as well as moment estimation techniques for grouped data. As described 

in Section II.4, grouped data consists of frequencies rij of count y; = j , i = 1 , . . . , n, 

and j = 0 , . . . ,m, where counts 0's and fc's are highly abundant. 
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III.3.1 MAXIMUM LIKELIHOOD ESTIMATION 

Under the assumption that n independent observations of frequencies nd of count 

yx = j are distributed as DIP (pi,P2, A), the likelihood function is: 

L(pi,P2,Mn3) = (P l + p3exp(-A))n° (p2 + P3 ^ )"* f[ (** ^ )" ' • 

The log-likelihood function is given by 

&(l>i,P2, A|rij) = n0 log (pi + p3exp(-A)J 

, / exp(-A)Afc\ 
+ nk log (p2 + Pz rj J 

oo 

+ J > , (log(p3) - A + j log(A) - log(j!)). (39) 

The score functions are 

0£_ _ n o ( l - e x p ( - A ) ) nfcexp(-A)Afc _ ^ / 1_ 

a??1 ~ (ft + P3 exp(-A)) (pa(fc!) + p3 exp(-A)A*) ^ " ' U » 

c^ —n0exp(—A) 

A exp(-A)Afc\ exp(-A)Afc\ 

fc! J 
H . ' . / - > . n, — , and 

*» (Pl+P3exp(-A)) ( f t + f l !2 fcW!) J j 

d£ _ -n0p3 exp(-A) nfcp3 exp(-A)Afc /fc _ 

X>U: 

(pi + P3 exp(-A)j [p2 + Pz exp(-A)AfcJ 

i 
A + EM*-1 

In order to solve for the maximum likelihood estimates of pi, p2, and A, we solve 

the score equations by setting them equal to zero, simultaneously with the same 

constraints on parameters as those given by equation (33). Since the equations are 

not of the closed form, one can use Newton-Rhapson algorithm to find ML estimates 

for the parameters. 



The Hessian matrix is 

( dH{Pl,p2,X) dH(Pl,p2,X) dH(Pl,P2,X)\ 

where 

H = 

dp dp2dp dXdpx 
dH(pllP2,X) d2£(Pl,P2,X) d2e(Pl,p2,X) 

dp\dp2 dp2
2 0Xdp2 

d2e(pi,p2,X) d2£(Pl,P2,X) d2e(puP2,X) 

\ dPl8X dp2dX dX2 
J 

dH 

dpi2 
n, 

- n 0 ( l - exp(-A)) ^ exp(-2A)A2fc
 v 

(pi+2>3exp(-A)J {p2(k\)+p3exp(-X)Xk) j=i ^3 

3*0,k 

dH dH 

dp2dpx dpxdp2 

n0 exp(—A) f 1 — exp(—A)) 

[pi+p3exp(-X)j 

exp(-A)A* 

+ 
nk exp(-A)Afc 

k\ 

l(k\) [P2+P3 
exp(-A)Afcx 2 

fc! 

d2e _ d2£ 

dXdpi dpidX 

n0exp(-X)(p1+pz) nkp2exp(-X)Xk 

( P l + p 3 e x p ( - A ) ) (k\)(p2+p3 
exp(-A)A* 

A;! 

^ 

n0 exp(-2A) n* (* ~ exp(-A)Afc) 
2 - E 2 

9P22 ( p i + p 3 e x p ( - A ) ) 2 (p2(fc!)+p3exp(-A)A*=)2 ^ ^ 

1 
,2 ' 
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d2£ _ d2£ 

d\dp2 dp2dX 

n0piexp(-A) nk(l -pi)exp(-A)A fe (k 

(pi+P3exp(-A)) ( A : ! ) L + p 3 
exp(-A)Afc\2 VA 

A;! 

1 ) , and 

dX
2 

-nQpiP3 exp(-A) 
+ 

nfcp3exp(-A)Afc 

(p i+p 3 exp( -A) ) (k\)(p2+p3 

exp(-A)Afe\ ^ 

exp(-A)Afc 

A2 P2+P3-
k\ 

3=1 

k\ 

A2 

x P - i 5 - i 

Thus, for data that consists of n3 frequency for count j , the observed Hessian 

matrix can be obtained by evaluating (40) at the maximum likelihood estimates 

(pi,P2,X). The covariance matrix can be obtained by taking the inverse of observed 

information matrix which is negative of the observed Hessian matrix. The standard 

errors of the ML estimates can be computed from the observed variance matrix. 

III.3.2 MOMENT ESTIMATION 

Suppose that our data consists of n independent observations of frequencies n3 of 

count j , j = 0, . . . , m . We assume that the frequencies n0 and nk are inflated 

frequencies of counts 0's and fc's. Our goal here is to obtain the moment estimates 

for the parameters pi, p2, and A under the assumption that our observations are 

distributed as DIP (pi,P2,X). Since the observations are in grouped form, we first 

compute the sample moments nT, «i, and T13, where nl = (Y^=Q?n3)ln- The sum of 

n3 's is the total number of observations. Equating the sample moments to those of 

the population moments as given by equation (27), we obtain the following 

n{ = p2k + p3X 

W2 = p2k
2 + p3 (X + X2) 

nj = p2k
3+p3(X + 3X2 + X3). (42) 
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To obtain the moment estimators p~\, p2, and A, we solve equation (42) by numer-

ical algorithms since the solution is not in a closed form. The parameter constraints 

are the same as those given by (33). 

Let D be the matrix of first order partial derivatives of the first three moments 

with respect to the three parameters as given by equation (37). And, let £ be the 

covariance matrix as represented in (38). The asymptotic covariance matrix of the 

method of moments estimates of pi,P2, and A is given by the inverse Godambe's 

information matrix, that is A = - • (D)~x £ (D1)'1 (Chaganty and Shi 2004). 

The diagonal elements of A will give us the asymptotic variances for the moment 

estimator of the parameters pi, p2, and A. 

III.3.3 ASYMPTOTIC RELATIVE EFFICIENCY COMPARISONS 

The performance of the two estimators, maximum likelihood and moment, can be 

compared by calculating the asymptotic variance of the estimators. The asymptotic 

relative efficiency (ARE) of moment estimators pi, P2, and A with respect to the max-

imum likelihood estimators p[, p~2, and A are the ratios of their respective asymptotic 

variances. Thus, we calculate e(p~i, pi) by taking the ratio <J2(pi)/cr2(pi), e(p2,P2) 

by taking the ratio <72(p^)/(72(^), and e(A, A) by taking the ratio cr2(A)/a2(A). If the 

efficiencies are less than 1, then we conclude that moment estimates are less efficient 

than the maximum likelihood estimates and vice versa if the efficiencies are greater 

than 1. 

First, we calculated the efficiencies for the DIP (pi,P2, A) model with inflated 0's 

and 3's. Table 7 lists efficiencies e(pi, p[) for the parameter px for various values of 

Pi and p^ with a fixed A = 4. Table 8 lists efficiencies e(p~2,P2) for the parameter p2 

for various values of pi and p2 for a fixed A = 4. Table 9 lists efficiencies e(A, A) for 

the parameter A for various values of p\ and p2 for a fixed A = 4. Figure 5 which 

plots the relative efficiencies e(pi, p\) shows that efficiencies are less than 1. Figure 

6 which plots the relative efficiencies e{^2iV'i) shows that efficiencies are less than 

1. The relative efficiencies for other values of A also show similar results. Next, we 

calculated the efficiencies for the DIP (pi,p2,X) model with inflated 0's and 14's. 

Table 10 lists efficiencies e(pi,pi) for the parameter p\ for various values of p\ and 

p2 with a fixed A = 7. Table 11 lists efficiencies e(p2,P2) for the parameter p2 for 
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various values of pi and p2 for a fixed A = 7. Table 12 lists efficiencies e(A, A) for 

the parameter A for various values of pi and p2 for a fixed A = 7. Figure 7 which 

plots the relative efficiencies e(pi, pi) shows that efficiencies are less than 1. Figure 

8 which plots the relative efficiencies e(p2, §2) shows that efficiencies are less than 1. 

We can conclude that the ML estimators for the parameters are far more efficient 

than the moment estimators since the efficiencies are less than 1. 

Table 7: Relative Efficiencies of pi for DIP (pi,P2, A) Model with A = 4 

A P\ 0.1 0.3 

Vi 

0.5 0.7 0.9 

4 0.1 0.0369 0.0456 0.0593 0.0839 
0.2 0.0738 0.0952 0.1310 0.2012 
0.3 0.1186 0.1588 0.2303 
0.4 0.1740 0.2429 0.3745 
0.5 0.2445 0.3585 
0.6 0.3371 0.5247 
0.7 0.4637 
0.8 0.6469 

0.9 
NOTE: The efficiencies are calculated for DIP (pi,P2,A) 

model with inflated 0's and 3's. 

III.4 ANALYSIS OF LENGTH OF STAY DATA 

The patients' length of stay data, as discussed in Section II. 1, shows that the observa-

tions of 261 patients includes inflated frequencies of counts 0 and inflated frequencies 

of count 3's. Under the assumption that the parameters are not a function of co-

variates, we fit Lambert's zero-inflated Poisson (ZIP) to the observed data. The 

maximum likelihood estimation for the parameters p and A was done using PROC 

IML in SAS and results verified using PROC NLP and PROC NLMIXED. Table 13 

shows the expected frequencies due to ML estimation using ZIP for parameters p and 

A. As one can note, the ZIP model, in this case, accommodates the first inflation at 

LOS= 0 fairly well, however, fails to accommodate the second inflation at LOS= 3. 

Thus, we obtained the maximum likelihood estimates for DIP (p, A) model. Using 



45 

Figure 5: Plot of e(pi,pi) for DIP (pi,P2, A) for A = 4 

Figure 6: Plot of e(p 2 ,^) for DIP (pi,P2, A) for A = 4 
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ARE(p1) 

0 350 ' 

0 10 0 10 

Figure 7: Plot of e(p1,fi) for DIP (pi,p2, A) for A = 7 

Figure 8: Plot of e(p2,P2) for DIP (pi,P2, A) for A = 7 
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Table 8: Relative Efficiencies of p2 for DIP (j>i,P2, A) Model with A = 4 

A Pi 0.1 0.3 

P2 

0.5 0.7 0.9 

4 0.1 0.0015 0.0023 0.0030 0.0034 0.0033 
0.2 0.0017 0.0028 0.0039 0.0050 
0.3 0.0020 0.0035 0.0055 0.0068 
0.4 0.0024 0.0047 0.0089 

0.5 0.0030 0.0070 0.0110 
0.6 0.0041 0.0128 
0.7 0.0062 0.0138 
0.8 0.0124 
0.9 0.0051 

NOTE: The efficiencies are calculated for DIP (pi,P2,ty 

model with inflated 0's and 3's. 

PROC IML in SAS, we get the ML estimates p and A as 0.244 and 3.710, respec-

tively. Using these ML estimates, the expected frequencies can be obtained as seen 

in Table 13. As discussed in Section II.5, the expected frequencies due to DIP (p, A) 

model accounts for the inflation at LOS = 3, but not as well for the LOS = 0. To 

investigate if DIP (pi,P2, A) is an improvement for the observed data, we compute 

the ML estimates for the parameters using this model. The ML estimates p~i,P2, 

and A are 0.166, 0.097, and 3.707, respectively by fitting DIP (pi,P2, A) model to the 

observed data. We note that the expected frequencies due to DIP (pi,P2,A) MLE 

not only accommodates the inflation at zero as well as 3 counts but as fairly for the 

other counts as well. Figure 9 which shows the observed frequencies and the expected 

frequencies due to all three models also indicates that the DIP (pi,p2, A) is a better 

fit. Table 14 summarizes the parameter estimates obtained by ML estimation for all 

the three models. All the parameter estimates are significant at a 0.01 significance 

level. Also, DIP (pi,P2, A) model has a significantly improved log-likelihood value as 

compared to the others. The asymptotic variances for ML estimates using the score 

functions were found to be a^) = 0.004, oHjh) = 0.001 and a2(\) = 0.017, and 

the asymptotic covariance of the two parameter estimates was approximately zero. 

Here, Pearson chi-square and goodness-of-fit tests are unreliable as measures of lack 

of fit since many observed total cell frequency counts are small, several equaling zero. 
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Table 9: Relative Efficiencies of A for DIP (p\,P2, A) Model with A = 4 

A 

4 
Pi 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

0.1 

0.0235 
0.0254 
0.0285 
0.0325 
0.0381 
0.0460 
0.0579 
0.0767 
0.4578 

0.3 

0.0227 
0.0245 
0.0271 
0.0303 
0.0337 
0.0349 
0.0499 

P2 

0.5 

0.0207 
0.0217 
0.0221 
0.0197 
0.0257 

0.7 

0.0158 
0.0126 
0.0156 

0.9 

0.0105 

NOTE: The efficiencies are calculated for DIP (pi,P2,A) 

model with inflated 0's and 3's. 

Table 10: Relative Efficiencies of px for DIP (pi,p2, A) Model with A = 7 

A 

7 
Pi 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

0.1 

0.0280 
0.0577 
0.0893 
0.1229 
0.1583 
0.1948 
0.2307 
0.2601 
0.0144 

0.3 

0.0142 
0.0283 
0.0422 
0.0555 
0.0677 
0.0776 
0.1306 

Pi 

0.5 

0.0087 
0.0171 
0.0249 
0.0318 
0.0493 

0.7 

0.0059 
0.0114 
0.0200 

0.9 

0.0050 

NOTE: The efficiencies are calculated for DIP (pi,P2,A) 

model with inflated 0's and 14's. 
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Table 11: Relative Efficiencies of p2 for DIP (pi,p2, A) Model with A = 7 

A 

7 
Pi 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

0.1 

0.0509 
0.0598 
0.0714 
0.0869 
0.1081 
0.1385 
0.1839 
0.2560 
0.0131 

0.3 

0.0562 
0.0634 
0.0721 
0.0828 
0.0964 
0.1138 
0.1664 

Pi 

0.5 

0.0412 
0.0454 
0.0504 
0.0564 

0.0780 

0.7 

0.0239 
0.0259 
0.0391 

0.9 

0.0155 

NOTE: The efficiencies are calculated for DIP {pi,P2,ty 

model with inflated O's and 14's. 

Table 12: Relative Efficiencies of A for DIP (pi,p2, A) Model with A = 7 

A 

4 
Pi 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

0.1 

0.1250 
0.1312 
0.1373 
0.1432 
0.1477 
0.1485 
0.1424 
0.1080 
0.0318 

0.3 

0.0470 
0.0447 
0.0413 
0.0362 
0.0286 
0.0173 
0.0352 

Pi 

0.5 

0.0192 
0.0160 
0.0119 
0.0068 
0.0780 

0.7 

0.0066 
0.0036 
0.0048 

0.9 

0.0028 

NOTE: The efficiencies are calculated for DIP {pi,P2,ty 

model with inflated O's and 14's. 
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Figure 9: Observed vs Expected Frequencies for LOS Data 
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Table 13: Observed and Expected Frequencies for LOS Data 

Expected Frequencies 
LOS Observed Frequency ZIP DIP 1 DIP 2 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

55 
35 
35 
75 
40 
20 
13 
8 
4 
5 
3 
1 
4 
0 
1 

48 
21 
39 
46 
42 
30 
18 
9 
4 
2 
1 
0 
0 
0 
0 

19 
14 
25 
127 
29 
21 
13 
7 
3 
1 
0 
0 
0 
0 
0 

48 
18 
32 
65 
37 
28 
17 
9 
4 
2 
1 
0 
0 
0 
0 

Table 14: Parameter Estimation for LOS Data 
ZIP DIP Model 1 DIP Model 2 

Parameter Est.(S.E.) p-value Est.(S.E.) p-value Est.(S.E.) p-value 
0.161(0.023) 0.001 0.244(0.025) OOOl 

0.166(0.023) 0.001 
0.097(0.031) 0.002 

3.604(0.126) 0.001 3.710(0.162) 0.001 3.707(0.140) 0.001 
666.000 - 703.955 - 660.524 

P 

Pi 

P2 

X 

NegLL 
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CHAPTER IV 

DOUBLY INFLATED POISSON REGRESSION MODELS 

In statistical methodology, the generalized linear model (GLM) generalizes linear 

regression by allowing the linear model to be related to the response variable via 

link function(s) (McCulloch and Searle 1989). That is, it specifies how the mean of 

the random variable relates to the explanatory variables in the linear predictor. For 

count responses, a common approach is to model a Poisson log-linear model which 

assumes Poisson distribution for count responses and uses the log link function for 

its linear predictors. However, since many real-life count data may not fulfill the 

underlying assumptions for Poisson regression models, many researchers have con-

sidered alternatives to Poisson regression models (Coxe et al. 2009; Bae et al. 2005). 

Lambert (1992) illustrated ZIP regression model using analysis of data consisting of 

incidences of defective manufacturing items. 

Numerous researchers have since then extended ZIP regression models to many 

applications (Bohning et al. 1997; Bohning et al. 1999; Carrivick et al. 2003; 

Hall and Shen 2010; Slymen et al. 2006) as well as to extensions of zero-inflated 

regression models (Hall 2000; Finkelman et al. 2009; Karazsia et al. 2008 

Li et al. 1999; Min and Agresti 2005; Xiang et al. 2007). In this chapter, DIP 

regression models that mix counts of zeros, counts of fc's, and Poisson counts are 

described in detail using logit and log-linear link functions. For binomial responses, 

logistic regression model that assumes binomial distribution for binary responses and 

uses the logit link function is quite common. Another approach is use probit link 

function for binary responses. However, interpretation of logistic regression models 

deems more useful in practice. Maximum likelihood parameter estimation for both 

DIP regression models are discussed in length for data consisting of raw counts as 

well as grouped frequencies. These methods help us investigate effects of explanatory 

variables on doubly inflated count response variables. 

In Section IV. 1, we begin with a description of dental epidemiology data to demon-

strate a need for DIP regression models. Section IV.2 describes Doubly Inflated Pois-

son regression models for data that consists of raw counts using maximum likelihood 

estimation techniques. Section IV.3 describes two DIP regression models for data 
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that consists of grouped frequencies of count responses by maximizing log-likelihood 

function. Section IV.4 discusses inference and testing for model parameters that 

helps us evaluate what factors affect the inflated counts as well as the Poisson mean. 

In Section IV.5, we illustrate the use of DIP regression models on the dental cavi-

ties data. Section IV.6 discusses usage of baseline-category logits for DIP (pi,P2, A) 

regression models. 

IV. 1 ILLUSTRATING EXAMPLE 

We will use dental epidemiology data as a motivating example in this chapter. As 

discussed in Section 1.2.4, DMFT-index is a count response variable measuring the 

dental health of a person. For the n = 1013 children in a sample study, DMFT-index 

was measured at the beginning as well as the end of the study, resulting in the change 

of DMFT-index, 5DMFT. The interested reader is pointed to Bohning et al. 1997 

and Bohning et al. 1999. The line of argument followed in dental epidemiology uses 

the fact that the DMFT-index is a count variable, and argues that typically Poisson 

distributions are used for count data, finally leading to log-linear models to include 

covariates. 

Table 15: Observed and Expected Frequencies for DMFT Data 

Expected Frequencies 
flDMFT Count Observed Frequency ZIP DIP(p,A) DIP (pi,p2, A) 

0 231 231 148 231 
1 379 276 535 379 
2 140 251 106 140 
3 116 151 96 120 

4 70 69 66 77 
5 55 25 36 40 
6 22 8 16 17 
7 0 2 6 6 
8 0 0 2 2 

231 
276 
251 
151 
69 
25 
8 
2 
0 

148 
535 
106 
96 
66 
36 
16 
6 
2 

The first and second columns of Table 15 show us the observed frequencies of the 

£DMFT, the counts for change in DMFT-index. It is evident that DMFT-index has 
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improved for many children. However, we notice an extra spike in proportions of zero 

counts and another spike in proportions of count one. The zero count (5DMFT = 0) 

corresponds to those children showing no improvement and/or having consistent 

dental care. The one count (<5DMFT = 1) corresponds to those children showing 

improvement in one cavity. Applying the maximum likelihood estimation methods 

from Chapters II and III, we can easily obtain the expected frequencies for two DIP 

models, DIP (p, A) and DIP (pi,P2, A) and compare them to the expected frequencies 

using the ML estimates for ZIP Model (see Table 15). The expected frequencies due 

to ML estimates for DIP (pi,P2, A) are quite comparable to the observed frequencies. 

The parameter estimates and log-likelihood value is given in Table 16. 

Table 16: Parameter Estimation for various Poisson Models 
ZIP DIP Model 1 DIP Model 2 

Parameter Est.(S.E.) p-value Est.(S.E.) p-value Est.(S.E.) p-value 

0.186(0.015) 0.001 
0.266(0.020) 0.001 
2.566(0.098) 0.001 

1686.805 

Our goal, however, is to compare the treatments as mentioned in Section 1.2.4 which 

can be accomplished using DIP regression models. Each of the six schools of children 

were given one of the following treatments: oral health education, enrichment of the 

school diet with rice bran, mouthwash with 0.2% of sodium flouride solution, oral hy-

giene, all of the four treatments combined, and a control group. Other covariates such 

as gender and ethnicity groups (White, Black, Others consisting of predominantly 

Hispanic) were also considered. 

IV.2 REGRESSION MODELS FOR RAW DATA 

In this section, we discuss fitting DIP regression models for independent observations 

consisting of raw count responses, yi, for subject i, % = 1 , . . . , n. Table 17 shows the 

general layout for the raw counts that will be used in this section. Let I be the number 

p 0.078(0.019) 0.001 0.344(0.017) 0.001 
Pi -

p2 -

A 1.813(0.055) 0.001 2.727(0.105) 0.001 
NegLL 1749.845 - 1740.673 



Table 17: General Layout of Raw Count Data 

Subject 

1 

2 

n 

Response 

Vi 

V2 

Vn 

Covariates 

Xn . . . xlt 

x2i . . . x2i 

Xn\ . . . Xni 

of covariates, and x% = (xj i , . . . , x%{) be the corresponding covariate vector associated 

with the subject i. Thus, for a particular covariate, x%, our data consists of count 

response y%. Using this data layout, Section IV.2.1 discusses maximum likelihood 

estimation for DIP (p, A) regression, and Section IV.2.2 discusses maximum likelihood 

estimation for DIP (pi,P2, A) regression. 

IV.2.1 DIP (p, A) REGRESSION MODEL 

Assuming that the count responses Yi , . . . , Yn independently distributed as Doubly 

Inflated Poisson with parameters (pu\t),i = 1,... ,n. We model this data using DIP 

(p, A) regression model using logit and log link functions for the parameters. That 

is, the count responses Y = (Yi, . . . , Yn)' are independent and 

0, with probability p\ + q^ exp(—AJ; 

y. k, with probability 2ptq% + q* I — 

y, with probability q2
x ( 6 X P \ ^ A» ), y = 1,2,... ^ 0, k 

y 

Moreover, the parameters p% and Aj satisfy 

logitfe) = Ga and log(A,) = Bzj3 (43) 
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where Gl,Bl are the ith row of design matrices G and B. Also, 7 and /3 are the 

regression parameters. That is, 

K = i + X S r ) a n d A' = exP(B-« <44> 

Since <& = 1 — pt, qt = (1 + exp(Gi7))_1 . Here, PJ and At represent subject-specific 

binomial probability and Poisson mean, respectively. 

The covariates that affect the Poisson mean A? may or may not be the same 

as the covariates that affect the probability p%. If they are same, and if pl and At 

are not related, then DIP (p, A) regression requires twice as many parameters as 

Poisson regression. On the contrary, when the probability p% does not depend on the 

covariates, G% is a column vector of ones, and DIP (p, A) regression requires only one 

more parameter than the Poisson regression. In either case, DIP (p, A) regression 

will require as many parameters as ZIP regression. If the covariates affecting p% and 

\ are the same, then we can think of p% as a function of \ thereby reducing the 

number of parameters required for estimation. But in most real-life data, usually 

prior information on how p% and Aj are related and how the covariates affect pl and 

\ is usually unknown. Our goal, usually is to deduce the effects of covariates on the 

count response variable and to know if they affect the data behavior of two peaks. 

Thus, for data consisting of raw count responses, yi,...,yn, the log-likelihood 

function of DIP (p, A) regression when p% and A4, assumed to be unrelated, is 

*(p.A|y)= J2 l°g(^ + 9,2exp(-A0)+ E log(2p^ + 9rX p (^ ) A") 
{1:^=0} {vyt=k} 

2exp(-Al)Af-
+ E M*531^). <45> V-,1 

,, y*=yx 

which can be further written in terms of the regression parameters 7 and /3 as 
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*(7l /3) = - 2 J2 log (l + exp(G,7)) + ^ log ( exp(2Gj7) + exp(- exp(B^))) 
1=1 {% yr=0] 

exp(A;BJ/3-exp(Bl/3))x 
+ J2 log(2exp(G,7) + A;! 

{i yt=k} 

+ J2 (y.B t/3-exp(B t0)-log(j, t!)). 

The maximum likelihood estimate (7, /3) is the solution to the first-order derivatives 

^ = 0 a n d ^ = 0 ' 

where 

0 % , £ ) _ A G,exp(G,7) ^ 2Glexp(2G,7) 

97 ^ 1 + exp(Gl7) { ^ Q } exp(2G/y) + exp(- exp(Bz/3)) 

2Glexp(G,7) 
+ E 

{»yI=fc}2exp(Gl7) + 
exp(A;Bt/3 - exp(Bt/3))' 

A;! 

and 

d£(l, (3) 
d/3 = E 

{»2/«=0} 

+ E 

-B texp(B t/3-exp(B,/3)) 

exp(2G,7) + exp(- exp(B,/3)) 

(fcBt - Blexp(B,/3)) exp(kBt(3 - exp(Bt/3)) 

exp(fcB,/3-exp(Bt/3))' 
b yl=k} k\ (2exp(Gj7) -I - —J 

+ J2 (y.B,-B texp(B,j9)). 
J/»=»i 1 ut—y x 

The second order partial derivatives of the log-likelihood function are given by the 

following matrix: 
/d2l(7,/3) &t(>y,P)\ 

d~f2 df3dj 
d2£h,/3) dHh,(3) 

V dfd/3 d/32 J 

H = 
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where 

^ ( 7 , P ) = _ 2 y G*exp(Gg) + y 4G2exp(2G,7 - exp(B,/3)) 

1 i=i f l + exp(GVy)) {»y,=o} fexp(2G»7) + exp(-exp(B l/3))j 

2G2 exp(G47) exp(fc-Bt/3 - exp(B,/3)) 
+ E 

{«»'=^ (Jfc!) (2exp(G,7) + 
exp(kBtp-exp{BtP))x2' 

k\ 

a2£(7 , /3)^^(7 , /3) 
^ ^ 7 d7d/3 

^ 2B,G» exp(2G87 + B t/3 - exp(B,/3)) 
2^ / \2 

{t j,,=o} ( exp(2Gl7) + exp(- exp(Bt/3)) J 

E 
2B,G, (k - exp(B,/3)) exp ( G l 7 + kBt/3 - exp(Bt/3)) 

and 

a2£(7, /3) „ -B\ exp(£,/3 - exp(B,/3)) - E 
9(3 U w,=o} ( exp(2G l7) + exp(- exp(Bt/3))) 

x (exp(2G l7) + exp(- exp(B,/3)) - exp(2G47 + B./3)) 

exp(kBt/3 - exp(B4/3)) 
+ t i n f o ^ u exp ( f cB j3 -exp (B j^x2 

i !/t=fc} k\ 12 exp(G,7) H —^ 1 

x (2 exp(G,7) {kB% - Bt exp(B4/3))2 ) 

exp(kBl/3 - exp(Bt/3)) 

{*</>=*:} fc!f 2exp(G,7) H — J 

exp(kBtf3 - exp(Bt/3)) 
x Bf exp(Bt/3) 2exp(G,7) + 

jfc! 

£ (B2exP(B,/3)). 
!/.=!/, 

The covariance matrix can be obtained by taking the inverse of the negative Hessian 

matrix calculated at the ML estimates. In large samples, the MLE's (7, /3) for DIP 



59 

(p, A) regression are approximately normal with means (7, /3) and variances to the 

diagonal elements of the observed covariance matrix. The estimated standard errors 

are the square roots of the asymptotic variances of ML estimates. 

IV.2.2 D I P (pi,j>2,A) REGRESSION MODEL 

For DIP (pi,£>2,A) regression model, assume that count responses Y\,...,Yn are 

independent and 

Yx=< 

0, with probability p\% + p3z exp(—At); 

/exp(-A0Af 
k, with probability p2l + p^ 

V A;! 

/exp(—A )Ay\ 
y, with probability pZl f ^—t- J, y = 1,2,... ^ 0, fc 

Note that the sum of the probabilities pn,P2t, and p3t equals 1. Also, Pu,P2i, and 

Aj, i = 1 , . . . ,n, be subject-specific parameters. Moreover, the probabilities p\% and 

Pii are regressed over set(s) of covariates using their respective logit link functions, 

and the mean parameter \% can be regressed over a set of covariates using log link 

function. That is, 

logit (pit) = A,a, logit (p*) = Gt-y, and log(A,) = J5,/3 

Thus, 

exp(A ta) exp(G,7) 

^ = l + exp(Aa) - ^ = l + e x p ( G , 7 ) ' a n d A* = ^ ^ ( 4 ? ) 

Here, At, Gt, and I?j are the ith. row of design matrices A, G, and B, respectively. 

Also, a, 7, and (3 are regression parameters. 

The covariates that affect the Poisson mean may or may not be the same as the 

covariates affecting the probabilities p\% and p2l- If they are same, and the Poisson 

mean and probabilities are not related, then DIP (pi,P2, A) regression requires thrice 
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as many parameters as an ordinary Poisson regression. On the contrary, if the prob-

abilities are not a function of covariates, then DIP (pi,P2, A) requires only two more 

parameters than Poisson regression. Besides, DIP (pi,P2,A) regression requires one 

more set of covariates as compared to the covariates necessary for DIP (p, A) and ZIP 

regression models. 

Suppose data consists of y\,..., yn indepedently distributed as Doubly Inflated 

Poisson with parameters pu,P2i, and AM i = 1 , . . . , n. Under the assumption that 

the parameters p^, p2i, and Xt are not related, the marginal log-likelihood function 

can be constructed as 

Z(Pii,P2uX\y) = Yl log[pil+P3*exp(-Al)] + J ^ log 
{v.y1=Q} {i yr=k} 

exp( - \ )Af 

P2i+P& 

exp(-A,)Af 

k\ 

+ J2 lo§ 
. vt-y i 

PZi 
Vi 

(48) 

V-y¥=0,ki 

Substituting equations (47), the log-likelihood function is therefore 

£ ( a ) 7 , / 3 ) = Yl l°Z£i+ E l o ^ + E (log 4 + 4 ) + J ] (log 4 +log 4 ) 
b-yt=o} {% yt=k} yt=Vi i=l 

where 

4 = exp(A,a)(l + exp(G,7)) + exp(- exp(Bt/3)) (1 - exp(A4a + Glj)), 

4 = exp(G l 7) (1 + exp(A.*)) + ex^kB^ e x P ( B ^ ) ) ( l _ e x p ( A % O L + G ^ , 
A;! 

4 = 1 - exp(A ta + G,7), 4 = (ytBt(3 - exp(Bt(3)) - log(yt!), 

4 = 1 + exp(Aja), and 4 = 1 + exp(G,7). 

The DIP (pi,P2, A) MLE (a, 7, /3) is the solution to the first-order partial derivatives 
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where 

3l_ 

da 
{^=0} {..„,=*} {lv^vk} i = i 

Note 

{^=0} {ry,=k} { * $ , # } 

{ ^ = 0 } {4:y,=fc} {ry^QVk} 

—± = At [exp(A,a) + exp(A,a + Gri) (l - exp(- exp(Bl/3)))] , 

£ = A,eMA,a + G. 7 ) 1 - "•>(">•/»-«*>(*•/»» 

-—^ = - A , exp(A,a + Ga), 
dot 

= -A 8exp(Aa:) , 

d£i 

d-y 
= G% e x p ( A a + Gl'j) (l - exp(- exp(B^))), 

d£2 
= Gt exp(G,7) + exp(A,a + G,7) 1 -

exp(A;fft/3 - exp(ff,/3)) 

A;! 

07 d-y 1 + exp(G,7) 
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—± = - B t e x p ( B ^ - exp(Bt0))(l - exp(A,a + G l 7)) , 

- | = (fcB, - Btexp(BtP))(l - exp(A,a + G l 7 ) ) 
exp(fcBt/3 - exp(B,/3)) 

fc! 
, and 

^ = ytBt - B% exp(J5,/3). 

The second order partial derivatives of the log-likelihood function are given by the 

following matrix: 

H = 

(dH{an,(3) d2£(an,(3) d2£(an,(3)\ 

da2 d~fda d(3da 
^ ( a , 7 , / 3 ) ^ ( a , 7 , i 9 ) dH{an,f3) 

dad~f d*y2 d(3d~f 
dH(a,j,(3) dH(a,7,(3) ^ ( a , 7 , / 3 ) 

V dad/3 djd/3 d^ ) 

where 

d2£ d = T — 
da2 ^—' da 

{i i,,=0} 

Idh 
£xda + E 

{ i ys=fe} 
5 a £2<9a + E d_ 

da 

\_djk 

£zda\ 

d -T — 
£-*< fin, 

\dh 
i = i 

da L£5day 

d2£ 

d-yda - E d_ 

d~f 

l_d£i 

£xda ] + E 
{% j / ,=0} {i y%=k} 

E
d r l dl5] 

1 = 1 

d_[ld£2 

97 i 2 5 a 

V - d ' 1 ^ 
.4 da 

<9/3da ~ ^ d/3 
^ {1 i/,=o} ^ 

d [l_d£i 
+ E 

{i y,=fc} 
5/3 U2 9 a 

9 
E C 

dp L da 

file:///_djk
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dH 

3 7
2 = E 

{i-y,=0} 

3 1 3 4 

fry L4 d-y 

3 
+ z_> n~ 

{i:yt=k} 

E
d r 1 341 

.=1 ^-rUe^<y\, 

1 ^ 2 1 

^7 U2 37 
A[1^3" 

dH 
E 

{i:?/.=0} 
3/3 L4 37 J 

a 
+ Z ^ f)R 

d 
E U 1 CC6 

,=1 d/3 l-4d7~ 
1 3 4 

{i:j/,=fc} 

1 3 4 l 

3/3U237J 

3 
E C 1 C t 3 

^ 3 ^ 4 3 7 " 
134 

3 2 l 

3/32 

3 r 1 3 4 

^1-43/3-1+
 r ^ 

{i:yr=0} 

_3_rl_34i ^ A l " ! ^ " 
ML4 3^J+ £4 3£ U 3£. 

3 

^ 3/3 L4 3/3 
1 3 4 

dH dH OH OH 

dad(3 d/3da d^df3 3/337 

, and 
dH dH 

dad-y djda 

The large sample estimated covariance matrix for the ML parameter estimates is 

the inverse of the observed information matrix evaluated at the ML estimates. The 

observed information matrix contains the negative Hessian matrix. The estimated 

standard errors are obtained by taking the square root of the diagonal elements of 

the estimated covariance matrix. 

IV.3 REGRESSION MODELS FOR GROUPED DATA 

In practice, sometimes the data collected are in terms of frequencies as shown in 

Table 18. Let u be the number of covariates, and Xi = (xn, • • •, xiu), I = 1 , . . . , s be 

the corresponding vector of covariates. Assume that there are s such distinct sets 

of vectors of covariates. Thus, for a particular Ith covariate, Xi, our data consists of 
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Table 18: General Layout of Grouped Data 

Response 

W o i , n n , . . . , n m l 

™ 0 2 , ™ 1 2 , - - - , « m 2 

^Os ; ^ l s 5 • • • ) T^ms 

Covariates 

x u • 

%2\ • 

xsl . 

2-lu 

X2u 

•%su 

n independent observations of the frequencies noi,nu,..., nmj. Here, n3i represents 

the frequencies of count j,j = 0 , . . . , m, and the sum of n^'s is the total number 

of observations n. That is, n = Yli=iYlT=inji- We will use this layout for the 

grouped data in this section. Section IV.3.1 discusses the ML estimation for DIP 

(p, A) regression models, and Section IV.3.2 discusses the ML estimation for DIP 

(pi,p2,A) regression models. 

IV.3.1 D I P (p,A) REGRESSION MODEL 

Suppose data consists of n observations that are independently distributed as doubly 

inflated Poisson counts with parameters (pi,Xi), I = 1 , . . . , s. The binomial proba-

bility pi and mean A; can be parameterized by using the logit and log link functions 

as follows: 

logit (pi) = Ga and log(Aj) = Bi/3 (51) 

where Gi,Bi are lih. vector of covariates; and 7 and /3 are regression parameters. 

Under the assumption the covariate-specific parameters p\ and A; are not related, the 

log-likelihood function is 

Z(pu\i\n3i)= Yl njl\og(pf + qfexp(-Xl)^+ J^ "J*kg (2P*<ft + 9? fcj ') 
{i 3=0} ' • 

, V^ , / 2exp(-A,)A^ 

{ij=k} 

<'£*> 
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Note that n — YH=i YlT=onji- The log-hkehhood function, written in terms of the 

regression parameters 7 and /3, is thus 

m 

£(7, /3) = - 2 Y, nji lo§ ( l + exp(Q7)) 
13=0 

+ Y nj/log(exp(2G/7) + exp(-exp(Bj)9))J 
{l 3=0} 

+ £ nJll°g(2exp(G,7) +
 eXP '^-eX ' 'W) 

[J J=fc} 
m 

Y n3l (jBtP - exp(B,/3) - logOO) 

{l 3=k} 

m 

+ 

<'£*> 

The ML estimate (7, /3) is the solution to the first-order derivatives 

- ^ O a n d - = 0, 

where 

M(7,/3) = _ 2 A n G,exp(G;7) y - 2G,exp(2Gq) 

^7 A "' ' 1 + exp(Gz7) tf-^n 1 "
J i exp(2Gi7) + exp(- exj 

G; exp(G;7) 
expikBtf - exp(B^)) 

^7 ^ * 1 + exp(Gz7) { ^ 0 }
 J exp(2Gi7) + exp(- exp(J3,/9)) 

, v - 2G;exp(G;7) 

{ij=*} 2exp(Grr) + 
A;! 

^(7,/3) v - B,exp(B,0-exp(B,0)) 

= ~ 2^ n dP {f^0}'"' e x P ( 2 G ^ ) + exp(- exp(B^)) 

(kBt - Bt exp(B^)) expjkBtP - expW)) 

exp(fcB,0-exp(B,0))' +
 { £ > ^ fe!(2exP(G.7) +

 e X P ^ ^ !
e X p ^ ^ ) 

m 

+ J ] n3 ,0B,-B,exp(B,/3)) . 

The second order partial derivatives of the log-hkehhood function are given by the 

following matrix: 

d'i2 d/3d-f 
d2l(7,/3) 32^(7,y9) 

V djdf3 d/32 J 

H 
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where 

d2l(7,/3) 
dj

2 

0 ^ G2 exp(Ga) , 4 E{ , ,=o} n3iG
2 exp(2G i 7 - exp(B,/3)) 

^ ^ ( l + ex P (Q 7 ) ) 2 

+ 

I 3=0 

2E{i3=k}n3iG
2eMGn) 

(exp(2G,7) + exp(- exp(B,/3)))2 

exp(fcB;/3 - exp(B;/3)) 

A;! 

2exp(Gry) + 
expjkBjP - exp(BiP)) 

k\ 

d 2 l ( 7 , /3 )_d 2 l ( 7 , /3 ) 

9/3^7 d7d/3 

_ 2 E{< J = 0 } WjiBtGt exp(2G,7 + Btf - exp(B,/3)) 

(exp(2G i7) + exp(- exp(B,/3)))2 

2 E{* ,=fc} rtyBjG, (fc - exp(B,/3)) exp(G,7 + fcB,^ - exp(B,/3)) 

fc! 2exp(GZ7) + 
exp(fcB;/3 - exp(B;/3)) 

fc! 

, and 

d 2 %, P) v - - B 2 exp(Bz/3 - exp(B,/3)) 

= 2^ n^ a/32 
{z j = 0 } (exp(2G /7) + exp(- exp(B,/3)))2 

x [exp(2Ga) + exp(- exp(B,/3)) - exp(2Gj7 + B,/3)] 

exp(fcB,/3 - exp(B,/3)) 
+ 53 n^ — 

2exp(Gj7) + 
exp(fcB,/3 - exp(Bt0)) 

k\ 

l 2 

x [2exp(Gz7) (fcB, - B,exp(B,/?))2] 

exp(kBt(3 - exp(B,/3)) 

{ij=k} ĵ j 2exp(Gnr) + 
exp{kBij3 - exp(B^)) 

fc! 

x B2exp(B,/3) 2exp(G,7) + 
exp(fcB,/3 - exp(B,/3)) 

fc! 

53 n„(B2exp(B*/3)) 

The estimated covariance matrix can be obtained by taking the inverse of the ob-

served information matrix. The observed information matrix is the negative Hessian 
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matrix evaluated at the ML estimates. The standard errors for the parameter es-

timates are obtained by taking the square roots of the diagonal elements of the 

asymptotic variances of the parameter estimates. 

IV.3.2 DIP (pi,p2,A) REGRESSION MODEL 

Suppose that our observations on n subjects are independently distributed as doubly 

inflated poisson counts with parameters (j>u,P2i, Aj), I = 1, . . . ,s. Assume that the 

covariate-specific probabilities pu and p2i can be parameterized by using the logistic 

regression, and the mean parameter Xi can be parameterized by using the log link 

function. That is, 

\ogit(pu) = At, a, logit(p2j) = Gu 7, and 

log(A,) = B / , A (53) 

where A;, Gi, Bi are the Ith. vector of the design matrices A, G and B. Also, a , 7, 

and (3 are regression parameters. Under the assumption that the covariate-specific 

parameters pi and A/ are not related, the log-likelihood function is given by 

t(Pn,P2i, Mni) = ^2 nJi l o§ \Pu +Psi exp(-A;)j 
{1-3=0} 

+ Y, ^ o g ( p 2 ; + p 3 ;
e x p ( ~ A ' ) A ' ) 

{l:j=k} 

+ En„log(P3,^M), (54) 

which, when written in terms of the regression parameters a , 7, and /3, is as follows: 

m 

£(a ,7 , /3 )= J2 rijilogM^ ^ njllogM2 + J^ n3l (log M3 + M4) 

{1-3=0} {1-3=*} { i : J = l } 

m 

+ ^ MlogM 5 + logM6). 
{1-3=0} 
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Note that n = ]T)f=i YlT=o njh a n d 

Mi = exp(Ajc*)(l + exp(Gr)O) + exp(- exp{Bt0)) (1 - exp(A ;a + Gff)), 

M2 = « p ( G , 7 ) ( l + exp(A,a)) + «"*(**'£ ^exp(i?,/3)) (1 _ ^ ^ + ^ ^ 

M3 = 1 - exp(A,a + G / 7 ) , M4 = jBtp - exp(Bj/3) - log(j!), 

M5 = 1 + exp(Aja:), and M6 = 1 + exp(G*7). 

The maximum likelihood estimate of (a , 7, /3) is the solution to the likelihood equa-

tions 

^ - 0 , ^ = 0 , a n d ^ = 0, 

where 

da 

v ^ 1 dMx v ^ 1 9M2 A 1 <9M3 

E n»u:-7^+ Z, n ^ 7 ^ + Z, n^-DMx d a 
{0=0} {J:j=fc} 

^ > 1 dM5 

+ Z, ^ M ^ ' 
{O=o} 5 

lM2 9 a 
<''*> 

!M3 5 a 

97 

v ^ 1 dM1 ^ 1 dM2 ^ 1 <9M3 

{ly=0} ' {l:j=k} ' {l3 = l} ' 
^kJ 

dp 

+ E ^ M ^ '
 and 

v ^ 1 dM1 v ^ 1 dM2 ^ dM4 

E ^XfT^"+ Z, n*W„lm + Z, n* 'Ma 9/3 
{O=o} M {h=k} 

M2 9/3 ^ Jt (9/3 ' 

Here, 

dot 
= At exp(A ;a) + exp(A;a + G;7)(l - exp(-exp(I?;/3))) 
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8M* - A, exp(A,a + Gn) {1 - °MkB>f> ~ " " ^ 
dot k\ 

9MZ A , A „ S
 9M5 A I A \ 

—— = -Ai exp(A/a + Gn), —— = -At exp(A,a), 

= Gi exp(A*a + Gn) (l - exp(- exp(Bip))), 

dM2 
= Gt exp(Gn) + exp(A ;a + Gn) I 1 -

exp(kBi(3 - exp(flt/3)) 

fc! 

dM* c (A ^n \ dM« -Giexp{Gn) 
= -Gi exp(Aja + Ga), -d*y #7 1 + exp(Ga) ' 

d(3 
= -Bt exp(B,/3 - exp(B,j9))(l - exp(A<a + G a ) ) , 

0M2 

d(3 
= {kBt - Bt exp(Bil3))(l - exp(A,a + Gn)) 

exp(kBj(3 - exp(B;/3)) 
, and 

dM4 

d{3 
jBi-Biexp(Bif3). 

The second order partial derivatives of the log-likelihood function are given by the 

following matrix: 

H = 

fdH(ag,/3) dH(cxg,(3) dH(cxg,(3)\ 

da2 dydot dfidot. 
dH(c*a,0) dH(<xg,(3) <92l(a,7,/3) 

dad-y d~j2 d/3d~f 
d2£(ag,(3) d2£(ag,(3) dH(ag,P) 

V dad(3 djdj3 dp2 J 



dH{an,B) 

da2 
x^ d r 1 dMii v JL 
2^ njl

dalM1~da~\
+
 I-*

 n]l
da {I 3=0} 

+ 22 n*fo[ 
« ' & 

{ij=k} 

d r 1 0M3i ^ 

{l 3=0} 

1 0M2 

M^~da\ 

f 1 dM5-d_ 

da M5 da J: 

02 i(«,7,/3) 
djda = E n •31 

{l 3=0} 

d_ 

07 

1 dMx 

M1 da ] + E " j j 

9 
E C 

< ' ' *> 

07 

{0=*} 

i 0M3-

0 r 1 0M2 

a7Lii^"acr 

M3 0 a 

1 V " c r 1 dM5i 

J + A n j ^ 7 L M 5 5 a J ' 
{0=0} 

d2£(a,j,B) 

dBda 
{O=o} 

3 r 1 0Afi 

a/3 LAfi 0 a 
{i3=k} ^ 

1 0M2] 

, ^ 9 r l 0M3-| ^ 

< ' ' * } 

0/3 LM3 0 a J 
OJ=O} 

M2 0 a J 

0 r 1 0M5" 

0/3 LM5 0 a J' 

^ ( a , 7 , / 3 ) 
07 2 ~ A , ^ 7 LMX 07 J + A " ^ LM2 07 -{0=0} ' ' {/j=fc} 

^ 0 r 1 0M3-
+ 2 ^ n J ' — ' 

<^t> 
07LM3 07 J 

+ E "J'TK 
{O=o} 

0 r 1 0M6 

07 LM6 07 ]• 

02l(<*,7,/3) 
0/307 

V^ 0 [ 1 dMi 

{O=o} 

+ E 
0 

n ̂ ; 

1 0M2i 

{0=fc} 
0/3 LM2 07 

0 r 1 0M3 

E
C J. UiVlQ, ^ — \ 

n'#> 

0 1 0M6i 

{0=0} 
0/3 LM6 07 J' 
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d2 l(g,7,/3) _ v ^ d r 1 dM^ y~, d r 1 dM2 

{i:j=0} 0:j=fe} 

, f - d r 1 aM4] 

<'£*> 
d/3LM4 d/3 J: 

dad/3 d(3da ' <97d/3 d(3dj ' &n 

% 7 , / 3 ) _ % 7 , / 3 ) 
dad~y d^dcx. 

The covariance matrix is obtained by taking the inverse of negative of the Hessian 

matrix calculated at the ML estimates. The standard errors for the parameter esti-

mates are obtained from the diagonal elements of the covariance matrix. 

IV.4 INFERENCE A N D TESTING 

Under the correct specification of the model, we know that the maximum likelihood 

estimates are the most efficient estimates. However, it is important to check for model 

adequacy. A common approach to check for the model adequacy is to compare the 

working model with the most complex model. The likelihood-ratio test statistic 

equals — 2(L0 — Li), where L0 is the maximized log-likelihood under the simpler 

model. The df for the large-sample chi-squared distribution equals the number of 

extra parameters in the more complex model. A small p-value suggests that the more 

general model be used as a new working model (Agresti 2002). 

In DIP regression models, the design matrices contain potentially different sets of 

experimental factors and covariate effects that pertain to the probabilities of count 

zero's and count fc's as well as the Poisson mean, respectively. Therefore, the pa-

rameters have interpretations in terms of a covariate or factor level effect on the 

probabilities of count zero's and count fc's as well as the Poisson mean. For DIP 
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(p, A) regression model, the 7's have interpretations in terms of a covariate or fac-

tor's effect on the binomial probability and the /3's have interpretations in terms of 

a covariate or factor's effect on the Poisson mean of the count responses. For DIP 

(Pi,P2,^) regression model, the a ' s and 7's have interpretations in terms of a co-

variate or factor's effect on the probabilities pi and p2, respectively, and the /3's have 

interpretations in terms of a covariate or factor's effect on the Poisson mean of the 

count responses. In either of the two models, interpretations of parameter estimates 

must be done with care, especially for those relate to the probabilities that lead to 

the additional proportions of inflated counts of zeros and fc's. 

Depending upon the fit of the model, we can make an inference about the model 

parameters using the ML estimates, their estimated standard errors, and their max-

imized log-likelihood function. For the Zth parameter, say $ , a 95% Wald confidence 

interval for the parameter is $±1.96(s.e.($)), where s.e.($ is the estimated standard 

error of j3i, the Zth component of /3. For testing H0: $ = 0, we can use 

A 

s.e.0i) 

or z2, which (under H0) has an asymptotic chi-squared distribution with df = 1. 

IV.4.1 INTERPRETING DIP REGRESSION MODELS 

Consider DIP (p, A) regression model as discussed in Sections IV.2.1, where the pa-

rameters PJ and Aj are parameterized by the logit link and log link function, respec-

tively (see equation (43)). Thus, for the u covariates, the logit of the probability has 

the following linear form: 

logit(p2) = 7 0 + 71^*1+ --- + 7«aJtu 1 i = l,...,N. (57) 

Hence, exp(7j) is the multiplicative effect on the odds of 1-unit increase in the Zth 

covariate for ith subject, xzi, at the fixed levels of the other x,j's, I = 1 , . . . , u. 

Since p4 is the binomial probability, for a significant covariate, ji, the factor 

exp(27;) explains the odds of additional proportions, p2, for the inflated frequencies 
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of zero counts. It is important to note that the probability of Doubly Inflated Pois-

son counts is as given by equation (4). Thus, interpretation and inference of the 

parameter estimates must be done carefully. It is also of importance to notice that 

if any of the variables xti in the above equation (57) are dummy variables for the 

categorical explanatory variables, then exp(7i) describes the conditional odds ratio 

between the response and explanatory variables. That is, the odds of "success" at 

x%\ = 1 is exp(ji) times the odds of "success" at xti = 0. Similar interpretation of the 

parameters can also be done for the data with grouped frequencies, where pi and Xi 

are covariate specific parameter (see Section IV.3). 

Consider now DlP(pi,p2, A) regression model as discussed in Section IV.2.2, where 

the parameters p\% and p2% are parameterized by logistic regression, and Xt by log-

linear regression, respectively (see equation (47)). Thus, for the u covariates, the 

logit of the probabilities have the following linear form: 

logit(pit) = a0 + aixa + . . . + auxlu and 

logit(p2,) = 70 + 7iz*i + • • • + 7uZ.u, i = l,...,N. (58) 

Hence, exp(a;) and exp(7;) are the respective multiplicative effect on the odds of 

1-unit increase in the Zth covariate for the ith subject, xti, at the fixed levels of the 

other xti
,s,l = l,...,u, for the each of the logit link functions. Since pu is probability 

that explains the additional proportions of zero counts, for a significant covariate, aj, 

the odds of additional proportions of zero counts increase multiplicatively by exp(a:j) 

for every one-unit increase in x%i. Similarly, for a significant covariate, 7 ,̂ the odds 

of additional proportions of k counts increase multiplicatively by exp(7;) for every 

one-unit increase in x^-

In DIP (p, A) as well as DIP (pi,P2, A) regression models, where the Poisson mean 

Aj is parameterized by the log link function of the covariates, the log-linear model 

has the following form: 

log(At) = A) + PiXti + ••• + /3uxlu (59) 

for u covariates. Thus, a one-unit increase in x%l has a multiplicative impact of exp($) 

on Aj. If Pi > 0, then the mean At increases as x^ increases. If $ < 0, then the 

Poisson mean A, decreases as xti decreases. Similar interpretation of the parameters 
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can also be done for the data with grouped frequencies, where pi and Aj are covariate 

specific parameter (see Section IV.3). 

IV.5 ILLUSTRATION OF METHODS 

Returning to the DMFT data discussed earlier in the chapter, one of the questions of 

interest is to assess whether any of the treatments are significant in improving dental 

cavities amongst children of different gender and ethnicity. We would also like to 

assess, if possible, which of the treatments and other factors impact the substantial 

increase in count zeros and in count l's. To answer such questions, we consider 

fitting two Doubly Inflated Poisson regression models discussed in this chapter and 

then compare to ZIP regression model. 

Suppose that the response variable, number of faulty teeth, for each child i to 

be independently distributed as doubly inflated Poisson counts with parameters 

(Pi,Aj),i = l , . . . , n for DIP (p,A) as well as ZIP Regression Models. The rela-

tionship between p and A is unknown. Also, there is no evidence that the covariates 

affecting p and A are the same. Thus, we fit DIP (p, A) regression model (see Sec-

tion IV.2.1) and ZIP regression model (Lambert 1992). Since the log-likelihood 

function is not of closed form, we consider finding first-order solutions for ML esti-

mation using the Newton-Rhapson method implemented by SAS NLPNRA routine 

in PROC IML. Table 19 lists the log-likelihood values as well as the parameter esti-

mates for ZIP and DIP(p, A) regression models. Next, we consider that the number of 

faulty teeth to be independently distributed as DIP (pi,P2, A) counts with parameters 

(Pii,P2i, Aj),z = 1, ...,77.. Fitting the regression model as described in Section IV.2.2, 

we can obtain parameter estimates by maximizing the log-likelihood function. Table 

20 lists log-likelihood value as well as the parameter estimates for the DIP (pi,P2, A) 

regression model. 

Comparing two regression models, ZIP and DIP (p, A), one can see that the 

log-likelihood value is a slight improvement. It is also interesting to note that the 

only covariate significant in estimating the binomial probability p for both regression 

models have a different estimate. Also, in DIP (p, A) regression model, the treatment 

group "All" is significant in estimating binomial probability and the treatment group 

"Oral Health Education" is significant in estimating the Poisson mean parameter. 
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Under DIP (pi,p2,\) model, the treatment group "All" and "Rinse" are significant 

in estimating pi, the "Black" ethnicity group is significant in estimating p2, and 

the treatments "AH" and "Oral Health Education" are significant in estimating the 

Poisson mean A. The log-likelihood value has significantly improved in this case. 

All the results have been verified using PROC NLP as well as PROC NLMIXED in 

SAS. The results show that the odds of consistent dental care amongst those who 

rinse with 0.2% sodium flouride solution is exp(—1.041) = 0.35 or approximately 1/3 

to the odds of those who do not. The odds of improvement in one dental cavity is 

exp(—1.078) = 0.34 amongst blacks compared to the others that are predominantly 

Hispanic. Additionally, the treatment of oral health education helps reduce the dental 

cavities amongst children by 30% on an average. All four treatments help reduce the 

dental cavities by 23% on an average. 

One may also consider fitting DIP regression models under the assumption that 

only the Poisson mean is a function of a given set of covariates via log link. That is, 

the probabilities p\ and p2 are a constant function rather than a function of set of 

covariates. Thus, only one set of covariates needs to be estimated using the log-linear 

regression model for the Poisson mean. Results obtained by using above explained 

model for DIP (pi,P2,ty regression show that all variables are significant except 

for diet enriched with rice bran, gender, and white ethnicity group. The negative 

log-likelihood value was found to be 1668.270. The results are as shown in Table 21. 

IV.6 BASELINE-CATEGORY LOGITS FOR DIP (PUP2,X) REGRES

SION MODELS 

Usually, for nominal-level response variables, the standard logits are the baseline-

category logits, also known as the generalized logit models (Agresti 2002). When 

the last category c is the baseline, the baseline-category logits are 

l o g ( ^ ) , j = l , . . . > C - l 

For c = 3, the logit model uses l o g ^ i / ^ ) and log(7r2/7T3). Hence, we model the log 

odds of being at any particular level j as compared to being in the reference class c, 

and this relationship is allowed to be different across the covariates. The difference 
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between the logistic regression model and the generalized logit model is how a re-

searcher prefers to explain the effects of covariates. The logistic regression model 

describes effects within each individual response category, whereas the generalized 

logit model describes effects with the pairs of individual categories and a baseline 

category. 

In order to apply the generalized logit models to DIP (p\,p2, A) regression mod-

els, we can assume the probability of p3 for the reference category that describes 

counts under Poisson distribution, and compare the probabilities of p± and p2 to this 

reference class. Note: p$ = 1 — pi — p2. Thus, for data consisting of raw counts 

as described in Section IV.2, DIP (pi,P2j^) regression model with generalized logit 

links is as follows: 

log (^) = Act, log ( — ) = Gtl, and log(A.) = B%(3 (60) 
"P3l <P3 

The log-likelihood function given by equation (54) can also be expressed as follows 

for the baseline-category logit links: 

e(a,-y,P)= ] T log[exp(A la)+exp(-exp(.B l/3))] 
{» yt=o} 

exp(kBt/3 - exp(Btp)) 

{f.yz=k} 

+ Yl
 los 

i. Vt=yx 

exp(Gt-y) + 
k\ 

'exp(ytBtp - exp(B,/3)) 
+ J2 P* 

b y%=y} 

(61) 

For data consisting of grouped frequencies as described in Section IV.3, DIP 

(pi,P2, A) regression model with generalized logit links is as follows: 

log ( ^ ) = A,a, log (^) = G ; , 7 , andlog(Ai) = Bu(3 (62) 

The log-likelihood function given by equation (54) can also be expressed as follows 
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for DIP (pi,Pz, A) regression using the baseline-category logit links: 

£{<*, 7, P) = 5 Z n3l l o g [P3/ (exp(A,a) + exp(- exp(Bj/3))J j 
{/:j=0} 

+ ^2 wji loS P3i(exp(Gj7) + 
{»y=*} 

exp(fcJ3|/3-exp(B,/3))-

k\ 

+ J2
 nJ'los 

<*S> 
P3J-

exp(jB,/3-exp(B,^))' 
(63) 

Since the log-likelihood functions given by equations (61) and (63) are not in a 

closed form, numerical algorithms such as Newton-Rhapson algorithm can be used 

to find solutions for ML estimates (a, 7, (3). 

Returning to the dental epidemiology data, a researcher may want to explain the 

effects of covariates on the inflated counts of O's and l's in comparison to those of 

Poisson counts. Table 22 shows the results for the dental data obtained by maximiz-

ing log-likelihood function for DIP(pi,p2,X) regression model with Poisson counts 

as reference category. It is interesting to note that the demographical factors such 

as gender and race are significant when comparings the inflated counts to those of 

Poisson counts. For the significant treatments, the interpretation is as follows: The 

odds of consistent dental care is approximately 3.5 times to those with Poisson counts 

amongst the children using the rinsing solution; the odds of improvement in one den-

tal cavity is 3.75 times the odds of Poisson counts for those who received oral health 

education; and, the odds of improvement in one dental cavity is 3.9 times the odds 

of Poisson counts for those who received oral hygiene treatment. 



78 

Table 19: Parameter Estimates for ZIP and DIP Model (p, A) 

Parameter 
Logit Link for p 

Constant 
Treatment: 
Edue 
Enrich 
Rinse 
Hygiene 
All 
Gender: 
Male 
Ethnicity: 
White 
Black 
Log Link for A 
Constant 
Treatment: 
Educ 
Enrich 
Rinse 
Hygiene 
All 
Gender: 
Male 
Ethnicity: 
White 
Black 
NegLL 

ZIP 

Est.(S.E.) 

2.857(1.281) 

0.461(1.684) 
-0.116(1.614) 
-1.001(0.792) 
-0.237(1.275) 
-0.827(0.959) 

0.184(0.627) 

-0.416(1.325) 
12.230(3.191) 

0.713(0.116) 

-0.232(0.108) 
-0.082(0.116) 
-0.214(0.106) 
-0.262(0.137) 
-0.448(0.129) 

0.107(0.074) 

0.134(0.124) 
-0.273(0.111) 

1713.094 

p- value 

0.026 

0.784 
0.943 
0.207 
0.853 
0.388 

0.769 

0.754 
0.001 

0.001 

0.032 
0.518 
0.044 
0.055 
0.001 

0.152 

0.279 
0.014 

DIP Model 

Est.(S.E.) 

1.484(0.677) 

1.161(0.807) 
0.847(0.772) 

-0.928(0.544) 
-0.760(0.572) 
-1.195(0.543) 

0.077(0.236) 

-0.181(0.354) 
-0.766(0.362) 

0.878(0.190) 

-0.451(0.169) 
-0.254(0.180) 
-0.003(0.159) 
-0.041(0.200) 
-0.097(0.167) 

0.113(0.085) 

0.175(0.109) 
0.060(0.137) 

1700.094 

(P,A) 
p- value 

0.029 

0.151 
0.273 
0.088 
0.185 
0.028 

0.774 

0.609 
0.035 

0.001 

0.008 
0.158 
0.983 
0.838 
0.561 

0.184 

0.111 
0.659 
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Table 20: Parameter Estimates for DIP (pi,P2,ty Model 

Logit (pi) Logit (p2) Log(A) 
Parm 

Const 
Trt 

Educ 
Enrich 
Rinse 

Hyg 
All 
Gender 
Male 
F.th 

White 
Black 
NegLL 

Est.(S.E.) 
2.047(0.388) 

0.319(0.634) 
-0.166(0.445) 
-1.041(0.374) 
-0.696(0.404) 
-1.096(0.379) 

0.113(0.213) 

-0.027(0.260) 
-0.114(0.303) 

1648.925 

p- value 

0.001 

0.614 
0.710 
0.005 
0.085 
0.004 

0.595 

0.918 
0.707 

Est.(S.E.) 
1.356(0.372) 

0.306(0.518) 
-0.018(0.380) 
-0.006(0.367) 
-0.517(0.381) 
-0.222(0.379) 

-0.047(0.227) 

0.116(0.303) 
-1.078(0.315) 

p- value 

0.001 

0.555 
0.962 
0.987 
0.175 
0.559 

0.832 

0.703 
0.001 

Est.(S.E.) 

0.930(0.108) 

-0.332(0.128) 
-0.068(0.110) 
-0.096(0.111) 
-0.059(0.141) 
-0.266(0.138) 

0.113(0.074) 

0.105(0.087) 
0.053(0.133) 

p- value 
0.001 

0.009 
0.534 
0.390 
0.673 
0.055 

0.127 

0.231 
0.694 

Table 21: Parameter Estimates for DIP (p\,P2i A) Model with constants pi and p2 

Parameter 

Constant 
Treatment 
Educ 
Enrich 
Rinse 

Hyg 
All 
Gender 
Male 
Ethnicity 
White 
Black 

Est.(S.E.) 

1.012(0.080) 

-0.243(0.090) 
-0.090(0.085) 
-0.256(0.098) 
-0.235(0.114) 
-0.500(0.125) 

0.107(0.061) 

0.112(0.066) 
-0.242(0.106) 

p- value 

0.001 

0.007 
0.292 
0.009 
0.040 
0.081 

0.081 

0.100 
0.023 
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Table 22: Parameter Estimates using Baseline-Category Logit p3 

Parm 
Const 
TW-

Educ 
Enrich 
Rinse 

Hyg 
All 
Gender 
Male 

White 
Black 
NegLL 

Logi t (j?i) 

Est.(S.E.) 
4.337(0.636) 

0.649(0.617) 
0.754(0.602) 
1.277(0.604) 
0.871(0.603) 
1.130(0.597) 

2.073(0.216) 

0.871(0.231) 
2.126(0.296) 

1797.693 

p- value 
0.001 

0.859 
0.106 
0.017 
0.075 
0.083 

0.001 

0.001 
0.001 

Logit (p2) 

Est.(S.E.) 
7.022(1.559) 

1.324(0.545) 
1.279(0.567) 
1.320(1.556) 
1.364(0.556) 
1.332(1.258) 

2.900(0.258) 

1.951(0.208) 
3.719(0.250) 

p- value 
0.001 

0.008 
0.0119 
0.848 
0.007 
0.145 

0.001 

0.001 
0.001 

Log(A) 

Est.(S.E.) 
-1.418(1.191) 

-0.105(0.061) 
-0.074(0.059) 
-0.490(0.059) 
-0.642(0.072) 
-1.145(0.067) 

0.176(0.041) 

-1.039(0.067) 
0.165(0.037) 

p- value 
0.883 

0.043 
0.106 
0.001 
0.001 
0.001 

0.001 

0.001 
0.001 
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CHAPTER V 

FUTURE CONSIDERATIONS 

Since most real-life count data are overdispersed, analysts typically employ alterna-

tives to the Poisson model such as the negative binomial probability model which uses 

an additional parameter in describing overdispersed count responses (Greene 2007; 

Lawless 1987). For count data consisting of excess zeros, zero-inflated negative bino-

mial (ZINB) regression models have been studied extensively (Yau et al. 2003). For 

data consisting of two inflated counts, 0 and k, one may also ask if the overdispersed 

count responses can be explained by the two peaks and/or by the negative binomial 

distribution. This can be accomplished by using Doubly Inflated Negative Binomial 

(DINB) models. In this chapter, we first begin with a review of negative binomial 

distribution in Section V.l. Section V.2 describes two Doubly Inflated Negative 

Binomial (DINB) models with a brief discussion of their distributional properties. 

In Section V.3, we describe the maximum likelihood estimation technique for both 

DINB models. 

V . l NEGATIVE BINOMIAL DISTRIBUTION 

The most commonly used Negative Binomial distribution is the NB2 model, which 

has the following probability mass function: 

where 77 > 0 and y = 0,1,2, The mean and variance of NB2 model are fj, and 

JJ.(1 + rj/j,), respectively. If we replace 77-1 with rf1^ then we get the NB1 model 

which has the following density 

, , , r(y + /.»-') ( r,-1 V" ( 1 V ,.., 
g(y^n) = r t o + i)i>,-') (l+lF) [u^F) ' m 

where r\ > 0 and y = 0,1,2, The mean and variance of NB1 model are \i and 

/x(l + 77), respectively. 
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Cameron and Trivedi (1998) discussed the NBr parameterization where T = 

p^~rrfx and £ = //_1?7, where 1 < r < 2. Thus, if we substitute r — vj~x and 

£ = fir] in equation (64) for NB2 model, and r = ixrfY and £ = 77 in equation (65) 

for NBl model, then we obtain the following Negative Binomial distribution with 

parameters (r, £): 

g(y\T,Z) = 
T(r + y) e 

r(r)v(y + i)(i + 0T+y 
, for y = 0,1,2,, (66) 

where, r is a real positive number and £ > 0. Note that £ = 1/(-K — 1) where 7r is 

a Bernoulli parameter. The mean is /i = r£ and variance is <r2 = r£(l + £)• The 

overdispersion index is (1 + £). One could also consider the generalized NBr model 

where 1 < r < 2 in which case r must be estimated. 

V.2 DOUBLY INFLATED NEGATIVE BINOMIAL DISTRIBUTIONS 

If the observed data is overdispersed then negative binomial may be used for modeling 

purposes as it uses an additional parameter in describing the variance of the count 

response variable as compared to Poisson distribution. However, if the data has 

inflated frequencies of zero's and inflated frequencies another count value k, then a 

Doubly Inflated Negative Binomial (DINB) may also be a good fit. The construction 

of DINB probability model can be paralleled to that of DIP models as discussed 

in Chapters II and III. Let Z be a latent random variable distributed as Binomial 

(2,p), 0 < p < 1. Under the assumptions that Y given Z = 2 is degenerate at 0; 

Y given Z = 1 is degenerate at k; and, Y given Z = 0 is a negative binomial with 

real-valued positive parameters r and £, then one can easily construct the first DINB 

distribution as follows: 

p2 + q2g(0\r,O, fory = 0; 

f(y\p,T,Z)={ 2pq + q2g(k\r,£), for y = k; (67) 

q2g(y\r,0> for y = 1,2,... ^ k. 
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Here, g(y\r, £) is assumed to be negative binomial distribution as described by equa-

tion (66), and p + q = 1. We call this distribution as Doubly Inflated Negative Bino-

mial (p, T, £), abbreviated as DINB (p, r, £). The mean and variance of DINB (p, r, £) 

are E(Y) = 2pqk + q2r£ and Var(Y) = 2pqk2 + q2r£(2 + £)- (2pqk + q2r^)2, respec-

tively. It is clear that as p —> 0, this model reduces to an ordinary Negative Binomial 

distribution with parameters (r, £). Further, since r is a function of n, if n —» 0, it 

will further reduce to an ordinary Poisson distribution. 

Similarly, DINB (pi,P2, T, £) can be constructed by assuming that the latent vari-

able Z taking three values with probabilities pi,P2, and p$ and Y conditional upon 

Z is distributed as described above. Thus, the probability mass function of Doubly 

Inflated Negative Binomial (jp\,P2,T,£) distribution is therefore: 

f 

P I + P 3 0 ( O | T , £ ) , fory = 0; 

f{v\P\,P2,T,£)= {p2+Pzg(k\T,Z), toiy = k; (68) 

P39{y\r,0, fory = l,2,...^k. 

where pi + P2 + P3 = 1- Here, g(y\r,£) is assumed to be negative binomial distri-

bution as described by (66). We call this distribution as Doubly Inflated Negative 

Binomial (pi,P2,T,Q, abbreviated as DINB (pi,P2,T,£). The mean and variance 

of DINB (p1,p2,r,0 are E(Y) = p2k + p3r£ and Var(Y) = p2k
2 + p3r((2 + £)-

(p2k + P3T£)2, respectively. It is also interesting to note that as p2 —> 0, this model 

reduces to a Zero-Inflated Negative Binomial (ZINB) distribution. Further, since r is 

a function of rj, if rj —» 0, this distribution reduces further to a Zero-Inflated Poisson 

(ZIP) distribution. A more detailed discussion of distributional properties for DINB 

models will be covered elsewhere. 

V.3 DINB REGRESSION MODELS 

Here we investigate if the explanatory variables have an effect on the inflated counts 

as well as on the mean parameter of the negative binomial distribution. For both 
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NB1 and NB2 case, the log-likelihood function for DINB (p, r, £) is as follows: 

m 

£ = n0 log (p2 + q2g(0\T,£)) + nk log (2pq + q2g(k\r,£)) + Y^nJ l o§ ( ^ O ' K 0 ) 
3=1 

(69) 

Under the assumption that the mean /it and p% can be parameterized by their respec-

tive log and logit link functions, DINB (p, r, £) regression can be modeled as 

logLt(p,) = ^ /3, and log(/i.) = G* 7 (70) 

where, /i, = %& is the mean of negative binomial distribution. Here, Bi and G* 

are ith vector of covariates and (3 and 7 are regression parameters. Then, the log-

likelihood function for data consisting of grouped frequencies can be written in terms 

of regression parameters is 

£ = n0 log ( exp(2Bi/3) + g(0\rt, &)) + nh log (2 exp(Bi/3) + ^(fc|-rt, &)) 

m m 

+ ^ n3 log (pO'ln, &)) - 2 X ) n, log ( l + e x p ^ / 3 ) ) (71) 

It is interesting to note that for NB1 model, £ does not depend on the set of covariates, 

and for NB2 model, r does not depend on the set of covariates. As mentioned earlier, 

one could also use the generalized NBr model where 1 < r < 2. However, it will add 

an additional parameter that needs to be estimated and will be discussed elsewhere. 

The ML estimates /3, 7 for DINB (p, r, £) model are the solution to the first-order 

derivatives 

9£ n , d£ n -=Q, and - = 0, 

where 

d£ 1 dV-L 1 3V2 A 1 dVz 
= n0—- —— + nk - } n3 , and 

d(3 Vi d/3 V2 d/3 ^ JV3 d/3 
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di 1 dV1 1 dV2 ^ 1 dg{j\Tt,£%) 
= n 077—ET-+ n fc77—^— ~ / ;n3] 

3=1 
$7 V i #7 : V 2 #7 '#(j) #7 

Here, 

y 1 =exp(2B i /3 ) + 5 (0 | r l , ^ ) , 

y 3 = (l + exp(Bi/3)), 
dp 

V2 = 2exp(Bi/3)+0(fc|Tt)&), 

2Bi/3exp(2JBi/3), 

2 2B;/3 exp(Bi/3), ^ - = Bi(3 exp(BiP), 
a/3 5/3 

-£-9\Wt,&), ~^Z7 = -5i:ff(fclr»» w . a n d ^ ~ = °-
^7 #7' $7 c?7' ^7 

i f = 

The second order partial derivatives of the log-likelihood function are given by the 

following matrix: 

/ sn_ OH \ 
d{32 d(3d1 

\d~rdp d0> J 

The covariance matrix is obtained by taking the inverse of negative of the Hessian 

matrix calculated at the ML estimates. Thus, the standard errors for parameter 

estimates (/3,7) can be easily obtained by taking square root of the asymptotic 

variances. Similarly, for both NBl and NB2 case, the log-likelihood function for 

DINB (pi,P2,T,£) is as follows: 

£ = n0log (pj + p3g(0\T, 0 ) + nk log (p2 + Pzg(k\r,f)) + ^n3 log (p3g(y\T,£)) • 
3=1 

J9tk 

(73) 

To fit DINB (PI,P2,T,£) regression model, let 

logit(pit) = Ai a, logit(p2l) = # i P, and log(^) = Gi 7 (74) 

where //, = r,£t is the mean of negative binomial distribution, and Ai,Bi, and Gi 

are ith vector of covariates and a, /?, and 7 are regression parameters. Thus, DINB 

(PI,P2,T,£) regression model can be expressed in terms of regression parameters 

file:///d~rdp
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as follows: 

£ = n0 log ( exp(Aia) + (l - g(Q\rt, &)) e x p ^ a + B</3) + g{0\T%, &) 

+ nk log I exp(Aia) + (l - g(k\rt, &)) exp(A ia + Bi/3) + g(k\ru &) 

+ Y^ n3 l og ( 9(j\T*> &) (1 - exp(Aia + Bi(3)) 

+ J T nj loS ( (1 + exp(Bi/3)) (1 + exp(A*a)) J (75) 

If we let 

E/i = exp(A*a) + (l - g(0\ru &)) e x p ^ a + Bi/3) + 5(0|r t, &), 

C72 = exp(A*a) + (l - g(k\r%, &)) expect + Bi/3) + g(k\rt, &), 

U3 = g(j\rt, &) (1 - exp(Aia + Bi/3)), and 

U4 = (1 + exp(Bi/3)) (1 + exp(Aia)), 

then (75) can simply be written as: 

m m 

t = n0 log Ux + nk log U2 + ^ r^ log J73 + ̂  n̂  log C74. 
j = i j=o 

Thus, the ML estimate (a,/?,7) for DINB (pi,P2,T>0 model, is the solution to the 

first-order derivatives 

^ = 0 , ^ = 0,and ^ = 0 

where 

d£ 1 dUx 1 5C72 v - 1 d£/3 v - l dU* 

^-n°ihW + nki^W + ̂ 1
n3ihd(3 +f^0

njui 3/3' 
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d£ 1 dUx 1 dU2 ^ 1 dU3 ^ 1 dU4 
n ^ — + nk-— + J2n3U--^ + ̂ n J - — , and 

J = l .7=0 

9 a C/i 9 a 

d*y U\ dj 
oe i at/i 1 au2 ^ i ac/3 ^ i ac/4 

= n077— \-nk — — h ) nj — — h } n3 . 

Here, 

dUi 

da 

dU2 

dot 

dU3 

da 
dUx 

d(3 

dU2 

dp 
0U3 

d(3 

dUx 

d*y 

dU2 

dUz 

d*y 

= Ai I exp(Aia) + (l - g(0\rt, &)) exp(A*a + Btp) J, 

= Ai exp(Aia) + (l - g(k\rt, &)) e x p ^ a + BiP) J, 

= -Aig{j\rt, &) exp(Aia + B«/3), 

= Bi(l- 0(O|rt,e,)) exp(A;a + Brf), 

= Bi(l- g(h\Tt,£t)) exp(Aia + Brf), 

= -Big(j\Tt, &) exp(A*a + Bip), 

dU4 

da 
= Ai exp(Aia) (l + exp(Bi/3)), 

dU4 
= Bi exp(BiP) (l + exp(Aia)), 

dg(0K£t) 

dg(fc|Tt,&) 

c?7 

dg(j\Tt,&) 

1 - exp(A*a + BiP) 1, 

1 - exp(A*a + BiP) ) , 

1 — exp(Aia + BiP) J, and 
dU4 

^7 
= 0. 

The second order partial derivatives of the log-likelihood function are given by the 

following matrix: 
/ d2£ d2£ d2£ \ 

H = 

da2 dpda djda 
d2£ d2£ d2£ 

dadp dp2 djdp 
d2£ d2£ d2£ 

\dad-y dpd'y d'i2 J 

file:///dad-y
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The covariance matrix is obtained by taking the inverse of negative of the Hessian 

matrix calculated at the ML estimates. Thus, the standard errors for parameter 

estimates (a , (3,7) can be easily obtained by taking square root of the asymptotic 

variances. One can easily compute the ML estimates for the regression parameters 

using popular software packages. The ML estimation can be done for data consisting 

of raw counts as well as for grouped data. A more detailed discussion as well as 

application to DINB regression models will be pursued elsewhere in future. 
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CHAPTER VI 

CONCLUSIONS 

Traditionally, Poisson regression models have been commonly used for data consist-

ing of count responses. For data consisting of inflated counts of zeros and inflated 

counts of k, we presented an in-depth study of two Doubly Inflated Poisson (DIP) 

models, DIP (p, A) and DIP (pi,P2,ty hi this thesis. These two discrete mixture 

models can accommodate not only the inflated frequencies of count zero, but also 

inflated frequencies of count k. For both probability models, we discussed the distri-

butional properties and two parameters estimation techniques, maximum likelihood 

and method of moments, for data consisting of raw counts as well as grouped fre-

quencies. Efficiency comparisons show that ML estimators perform better than the 

moment estimators for both models. We also discussed DIP regression models using 

logistic and log-linear link functions to investigate the effects of covariates on the two 

inflated counts as well as Poisson counts. Maximum likelihood estimates for regres-

sion parameters were discussed in length for data consisting of raw counts as well 

as grouped frequencies. Applications to DIP models were illustrated using sample 

data on patient's length of stay in a hospital as well as on dental cavities. A brief 

introduction to Doubly Inflated Negative Binomial Distributions (DINB) was also 

presented in this thesis. 
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APPENDIX A 

SELECTED SAS PROGRAMS 

A . l ML ESTIMATION 

/*Loglikelihood Function Module*/; 

s t a r t l l_fn(pr) g lobal (y) ; 

n = nrow(y); p i = p r [ l ] ; p2 = p r [ 2 ] ; p3 = l -p l -p2; lambda = p r [ 3 ] ; 

f3=0.; f=0.; do i = 1 to n; 

poi = (exp(-lambda)) * ( lambda**(i-1)) / ( fact( i -1)) ; 

i f i = 1 then f l = y [ l ] * log(pl + p3*exp(-lambda)); 

e l se if i = 4 then f2 = y[4]*log(p2 + p3*poi); 

e l se f3 = f3 + y[i]*log(p3*poi) ; 

end; f = f l + f2 + f3 ; 

r e t u r n ( f ) ; f in i sh l l_fn; 

/*Jacobian of Loglikelihood function Module*/; 

s t a r t jacobian(pr) g lobal (y) ; 

n = nrow(y); p i = p r [ l ] ; p2 = p r [ 2 ] ; p3=l - pi - p2; lambda=pr[3]; 

*derivative wrt pi; j3 = 0.; j=0; 

do i = 1 to n; 

poi = (exp(-lambda))*(lambda**(i-l))/fact(i-l); 

if i = 1 then j l = y[ l ]*( l -exp(- lambda)) / (p i + p3*exp(-lambda)); 

e lse if i = 4 then j2 = -1 * y[4]*poi/(p2 + p3*poi); 

e lse j 3 = j 3 + ( - l*y [ i ] /p3 ) ; 

end; j p l = j l + j2 + j 3 ; 

*derivative wrt p2; 

j6 = 0 . ; jp2 = 0 . ; 

do i = 1 to n; 

poi = (exp(- lambda))*( lambda**(i - l ) ) / fact ( i - l ) ; 

if i = 1 then j4 = -l*y[l]*exp(-lambda)/(pl + p3*exp(-lambda)); 

else if i = 4 then j5 = y[4]*(l - poi)/(p2 + p3*poi); 

else j6 = j6 + (-l*y[i]/p3); 
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end; jp2 = j4 + j5 + j6; 

•derivative wrt lambda; 

jlambda = 0 ; j9 = 0; 

do i = 1 to n; 

poi = (exp(-lambda))*(lambda**(i-l))/fact(i-l); 

if i = 1 then j7 = -l*y[l]*p3*exp(-lambda)/(pi + p3*exp(-lambda)); 

else if i = 4 then j8 = y[4]*p3*poi*((i-1)/lambda - D/ (p2 + p3*poi); 

e lse j9 = j9 + y [ i ]* ( (i-1)/lambda - 1); 

end; jlambda = j7 + j8 + j 9 ; 

j= jp l / / jp2/ / j lambda; 

r e t u r n ( j ) ; 

finish jacobian; 

/•Hessian Matrix for loglikelihood Module*/ 

start hessian(pr) global(y); 

pi = p r [ l ] ; p2 = pr[2] ; lambda = pr[3] ; p3 = 1 - pi - p2; 

n=nrow(y); 

h l l = j ( n , l , . ) ; 

do i = 1 to n; 

poi = (exp(-lambda)) * ( lambda**( i -1) ) / ( fac t ( i -1) ) ; 

divl= pi + p3*exp(-lambda); 

div2=p2+p3*poi ; 

i f i = 1 then h l l [ l ] = - l * y [ l ] * ( ( l - exp(-lambda))**2)/divl**2; 

e l se if i = 4 then h l l [4 ] = -l*y[4]*poi*poi/(div2**2); 

e l se h l l [ i ] = - l*y[ i ] / (p3**2) ; 

end; 

hl2 = j ( n , l , - ) ; 

do i = 1 to n; 

poi = (exp(-lambda)) * ( lambda**( i -1) ) / ( fac t ( i -1) ) ; 

d iv l = pi + p3*exp(-lambda); 

div2 = p2+p3*poi ; 

if i = 1 then h l2 [ l ] = y[l]*exp(-lambda)*(l - exp(-lambda))/(divl**2); 

e lse if i = 4 then hl2[4] = y[4]*poi*(l - poi)/(div2**2); 

e lse h l2[ i ]=- l*y[ i ] / (p3**2) ; 
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end; 

hl3 = j(n,l,.); 

do i = 1 to n; 

poi = (exp(-lambda)) * (lambda**(i-l))/(fact(i-l)); 

divl= pi + p3*exp(-lambda); 

div2=p2+p3*poi ; 

if i = 1 then hl3[l]=y[l]*exp(-lambda)*(pl + p3)/(divl**2); 

else if i = 4 then hl3[4]=-l*y[4]*p2*((3/lambda) - l)*poi/(div2**2); 

else hl3[i]=0; 

end; 

h21 = j(n,l,.); 

h21 = hl2; 

h22 = j(n,l,.); 

do i = 1 to n; 

poi = (exp(-lambda)) * (lambda**(i-l))/(fact(i-l)); 

divl= pi + p3*exp(-lambda); 

div2=p2+p3*poi ; 

if i = 1 then h22[l]=-l*y[l]*exp(-2*lambda)/(divl**2); 

else if i = 4 then h22[4] = - l*y[4]*(( l -poi)**2)/(div2**2); 

e lse h22[i] = - l*y[ i ] / (p3**2) ; 

end; 

h23 = j ( n , l , . ) ; 

do i = 1 to n; 

poi = (exp(-lambda)) * ( lambda**( i -1) ) / ( fac t ( i -1) ) ; 

divl= pi + p3*exp(-lambda); 

div2=p2+p3*poi ; 

if i = 1 then h23[l]=y[l]*pl*exp(-lambda)/(divl**2); 

else if i = 4 then h23[4]=y[4]*poi*((i-l)/lambda - 1)*(1 

-pl)/(div2**2); 

else h23[i]=0; 

end; 

h31 = j(n,l,.); 

do i = 1 to n; 

poi = (exp(-lambda)) * (lambda**(i-1))/(fact(i-1)); 
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divl= pi + p3*exp(-lambda); 

div2=p2+p3*poi ; 

if i = 1 then h31[l]=y[l]*exp(-lambda)*(pl+p3)/(divl**2); 

else if i = 4 then h31[4]=-l*y[4]*p2*((i-l)/lambda - l)*poi/(div2**2); 

else h31[i]=0; 

end; 

h32=h23; 

h33 = j(n,l,.); 

do i = 1 to n; 

poi = (exp(-lambda)) * (lambda**(i-1))/(fact(i-1)); 

divl= pi + p3*exp(-lambda); 

div2=p2+p3*poi ; 

div3 = ((((i-l)/lambda - l)**2)*p2 - (i-1)* div2/(lambda**2)); 

if i = 1 then h33[l] = -l*y[l]*pl*p3*exp(-lambda); 

else if i = 4 then h33[4] = y[4]*p3*poi*div3/(div2**2); 

else h33[i] = -l*y[i]*(i-l)/(lambda**2); 

end; 

H = ( h l l [ + ] | | h l 2 [ + ] | | h l 3 [ + ] ) / / ( h 2 1 [ + ] | | h 2 2 [ + ] | | h 2 3 W ) / / 

(h3lC+] | |h32[+] | |h33[+]) ; 

return(H); 

finish hessian; 

con = {0.001 0.001 1 . ., 0.999 0.999 . . . , 1 1 . -1 0.5}; 

•constraints on 0=<pl, p2=<l and lambda > 0; 

pr=j(l,3,.); pr[l]=0.1; pr[2]=0.1; pr[3]=l.l; 

optn={l 9}; 

call nlpnra(rc, xr, "ll_fn", pr, optn, con) grd="gradient" 

hes="hessian" ; 

A.2 M O M E N T ESTIMATION 

s t a r t g_mom(theta) global(sample); 

n=nrow(sample); 

pi = t h e t a [ l ] ; p2 = t h e t a [ 2 ] ; p3 = 1 - pi - p2; lambda=theta[3]; 



96 

k = 3; sampletotal = 0; sampletotal2 = 0; sampletotal3 = 0; 

do i = 1 to n; 

sumcount = (i-l)*sample[i] ; sumcount2 = sample[i]*(i - l)*(i-l); 

sumcount3 = sample[i]*(i - l)*(i-l)*(i-l); 

sampletotal = sampletotal + sumcount; sampletotal2 = sampletotal2 

+ sumcount2; 

sampletotal3 = sampletotal3 + sumcount3; 

end; 

nbarl = sampletotal/sample[+]; nbar2 = sampletotal2/sample[+] ; 

nbar3 = sampletotal3/sample[+]; 

•print samplemean sampletotal; 

fl = k*p2 + p3*lambda - nbarl; 

f2 = (k**2)*p2 + p3*lambda*(lambda + 1) - nbar2; 

f3 = (k**3)*p2 + p3*lambda*(lambda**2 + 3*lambda +1) - nbar3; 

gl = 0.5*fl*flc; g2 = 0.5*f2*f2{; g3 = 0.5*f3*f3'; 

g = gl+g2+g3; 

return(g); 

finish g_mom; 

A.3 RELATIVE EFFICIENCY 

\* Relative Efficiencies of MOM vs MLE *\ 

proc iml ; 

k = 14; n = 250; 

create arenew2 var {pi p2 p3 lambda I MLE_Cov 

Det_D M0M_Cov are_pl are_p2 are_lambda}; 

do pi = 0.1 to 0.9 by 0.01; *p2 = 0.2; *lambda = 3.7; 

do p2 = 0.1 to 0.9 by 0.01; 

lambda = 7; *do lambda = 1 to 20 by 0.1; 

p3 = 1 - pi - p2; 

poi = (exp(-lambda)) * (lambda**(k))/(fact(k)); 

denol = pi + p3*exp(-lambda); 

deno2 = p2 + p3*poi; 
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a = 1 - exp(-lambda) - poi; 

b = (p2*((k/lambda)-l)**2) - deno2*k/(lambda**2) ; 

/•Computing Variance Matrix for MLE estimators*/; 

if p3 ~=0 then do; 

I_ll = ((1 - exp(-lambda))**2)/denol + (poi*poi/deno2) + a/p3 ; 

I_12 = -l*exp(-lambda)*(l-exp(-lambda))/denol - (poi*(l-poi)/deno2) 

+ a/p3; 

I_21 = I_12; 

I_13 = (-l*exp(-lambda)*(pl+p3)/denol) + p2*poi*((k/lambda)-l)/deno2; 

I_31 = I_13; 

I_22 = exp(-2*lambda)/denol + ((1 - poi)**2)/deno2 + a /p3; 

I_23 = (-l*pl*exp(-lambda)/denol) + poi*(l-pl)*((k/lambda)-l)/deno2; 

I_32 = I_23; 

I_33 = pl*p3*exp(-lambda)/denol - (p3*poi*b/deno2) + p3*a/(lambda**2); 

I = (I_ll || I_12 II I_13)//(I_21 || I_22 || I_23) 

//(I_31 II I_32 II I_33); 

det_I = det(I); 

if det_I ~=0 then do; MLE.Cov = (l/n)*inv(I); end; 

else print pi p2 lambda Det_I; end; 

Exp_Y = p2*k + p3*lambda; 

Exp_Y2 = p2*(k**2) + p3*(lambda**2 + lambda); 

Exp_Y3 = p2*(k**3) + p3*(lambda**3 + 3*lambda**2 +lambda); 

/•Computing Variance for MOM estimators of p */; 

Det_D = -3*p3*(k**2)*(lambda**2) + 2*p3*k*(lambda**2) 

- 2*p3*(k**2)*(lambda**3)+ p3*(lambda**2)*(k**3) 

+ p3*k*(lambda**4); 

D = j(3,3,.); 

DCl,l]=-l*lambda; 

D[l,2]=k-lambda; 

D[l,3]=p3; 

D[2,l]=-l*(lambda**2 + lambda); 

D[2,2]=(k**2) - (lambda**2+lambda); 
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D [2,3]=2*p3*(lambda+1); 

D[3 J l ]= - l* ( l ambda**3 +3*lambda**2+lambda); 

D[3,2]=(k**3)-( lambda**3 +3*lambda**2+lambda); 

D[3,3]=p3*(3*lambda**2 + 6*lambda+l); 

i f det(D) "= 0 t h e n do; 

Sigma = j ( 3 , 3 , 0 ) ; 

Sigma[1,1] = Exp_Y2 - (Exp_Y**2); 

Sigma[1,2] = p2*(k**3) + p3*(lambda**3 + 3*lambda**2 + lambda) 

- (Exp_Y*Exp_Y2); 

Sigma[1,3]= p2*(k**4) + p3*(lambda**4 + 6*lambda**3 + 7*lambda**2 

+lambda); 

Sigma[2,1] = S igma[1 ,2 ] ; 

Sigma[2,2] = p2*(k**4) + p3*(lambda**4 + 6*lambda**3 + 7*lambda**2 

+lambda) - (Exp_Y2**2) ; 

Sigma[2,3]= p2*(k**5) + p3*(lambda**5 + 10*lambda**4 + 25*lambda**3 

+ 15*lambda**2 +lambda) - (Exp_Y2*Exp_Y3); 

S igma[3 , l ]= Sigma[1,3] ; Sigma[3,2]= Sigma[2,3] ; 

Sigma[3,3]= p2*(k**6) + p3*(lambda**6 + 15*lambda**5 + 65*lambda**4 

+ 90*lambda**3 + 31*lambda**2 + lambda) - (Exp_Y3**2); 

MOM.Cov = j ( 3 , 3 , 0 ) ; MOM.Cov = ( l /n )* inv(D)*Sigma*inv(D ' ) ; 

a r e . p l = MLE_Cov[l,l] / M0M_Cov[l,l]; 

are_p2 = MLE.Cov[2,2]/MOM.Cov[2,2]; 

a re . lambda = MLE_Cov[3,3] / M0M_Cov[3,3]; 

end; e l s e p r i n t p i p2 lambda Det_I ; 

append; 

*if Det_I = 0 then print pi p2 lambda Det_I; 

*if Det_D = 0 then print pi p2 lambda Det_D; 

end; end; quit; run; 

A.4 M L E S T I M A T I O N U S I N G P R O C N L P A N D N L M I X E D 

These are nice programs that were used to verify results obtained 

http://are.pl
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using PROC IML, but can also be used to obtain ML Est for RegModels 

/* DIP 2 with covariates */ 

proc nip data=new2; 

max 11; 

parameters b0=0, bl=0, b2=0, b3 = 0, b4=0, b5=0, b6=0, b7=0, b8=0, 

a0=l, al = 1, a2 = 1, a3 = 1, a4=l, a5=l, a6=l, a7=l, a8=l, 

g0=l, gl = 1, g2 = 1, g3 = 1, g4=l, g5=l, g6=l, g7=l, g8=l; 

linplinfl = aO + al*educ + a2*enrich + a3*rinse + a4*hyg + a5*all 

+ a6*white + a7*black + a8*gender; 

pi = exp(-linplinfl)/(l+exp(-linplinfl)); 

linp2infl = gO + gl*educ + g2*enrich + g3*rinse + g4*hyg + g5*all 

+ g6*white + g7*black + g8*gender; 

p2 = exp(-linp2infl)/(l+exp(-linp2infl)); p3 = 1 - pi - p2; 

lambda = exp(b0 + bl*educ + b2*enrich + b3*rinse + b4*hyg + b5*all 

+ b6*white + b7*black + b8*gender); 

*bounds 0.01 < pi < 0.99, 0.0K p2<0.99, lambda >le-6; 

*lincon pl+p2<=l; 

if ddmft=0 then 11 = log(pl + p3*exp(-lambda)); 

else if ddmft=l then 11 = log(p2 + p3*exp(-lambda)*lambda); 

else 11 = log(p3) - lambda + ddmft*log(lambda) -

lgamma(ddmft + 1); 

run; 

proc nlmixed data=new2 maxiter=10000; 

parameters b0=0, bl=0, b2=0, b3 = 0, b4=0, b5=0, b6=0, b7=0, b8=0, 

a0=l, al = 1, a2 = 1, a3 = 1, a4=l, a5=l, a6=l, a7=l, a8=l, 

g0=l, gl = 1, g2 = 1, g3 = 1, g4=l, g5=l, g6=l, g7=l, g8=l, p3=0.5; 

Aialpha = aO + al*educ + a2*enrich + a3*rinse + a4*hyg + a5*all + 

a6*white + a7*black + a8*gender; 

Gigamma = gO + gl*educ + g2*enrich + g3*rinse + g4*hyg + g5*all + 

g6*white + g7*black + g8*gender; 

Bibeta = bO + bl*educ + b2*enrich + b3*rinse + b4*hyg + b5*all + 

b6*white + b7*black + b8*gender; 
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lambda = exp(bO + bl*educ + b2*enrich + b3*rinse + b4*hyg + b5*all 

+ b6*white + b7*black + b8*gender); 

/* Build the DIP log likelihood */ 

if dmft2=0 then 11 = log(exp(Aialpha) + exp(-lambda)) + log(p3); 

else if dmft2=l 

then 11 = 11 = log(exp(Gigamma) + (l/2)*exp(Bibeta - lambda)) 

+ log(p3); 

else 11 = log((l/lgamma(dmft2+l))*exp(dmft2*Bibeta - lambda)) 

+ log(p3); 

model dmft2 ~ general(11); 

run 



101 

VITA 

Manasi Sheth-Chandra 

Department of Mathematics and Statistics 

Old Dominion University 

Norfolk, VA 23529 

Education/Professional Certifications 

• Ph.D. in Applied and Computational Mathematics (Statistics), Old Dominion 

University, Norfolk, VA (December 2011) 

• M.S. in Statistics, Old Dominion University, Norfolk, VA (May 2010) 

• Master of Science, Mathematics, Loyola University, Chicago, IL (Dec 2003) 

• Bachelor of Science, Mathematics and Biochemistry, Loyola University, 

Chicago, IL (May 2002) 

Experience 

• Teaching Assistant, Old Dominion University, Norfolk, VA (since Aug 2007) 

• Data Analyst, Effective School-wide Discipline, VDOE (since Aug 2009) 

• Mathematics Instructor, University of Wisconsin-Whitewater, WI (Aug 2004 

to May 2007) 

Awards 

• Best Student Paper Presentation Award, Statistics Section, Virginia Academy 

of Sciences Meeting, May 2011 

• Philip R. Wohl Scholarship Award, Department of Mathematics and Statistics, 

Old Dominion University, May 2010 

• Modeling and Simulation Grant, Aug 2008 - June 2011 

Typeset using MgX. 


	Old Dominion University
	ODU Digital Commons
	Winter 2011

	The Doubly Inflated Poisson and Related Regression Models
	Manasi Sheth-Chandra
	Recommended Citation


	ProQuest Dissertations

