Old Dominion University

ODU Digital Commons

Mathematics & Statistics Theses & Dissertations Mathematics & Statistics

Summer 2011

Pertectly Matched Layer Absorbing Boundary

Conditions for the Discrete Velocity Boltzmann-

BGK Equation

Elena Craig
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/mathstat _etds

b Part of the Acoustics, Dynamics, and Controls Commons, Applied Mathematics Commons, and

the Physics Commons

Recommended Citation

Craig, Elena. "Perfectly Matched Layer Absorbing Boundary Conditions for the Discrete Velocity Boltzmann-BGK Equation” (2011).
Doctor of Philosophy (PhD), dissertation, Mathematics and Statistics, Old Dominion University, DOI: 10.25777/vkxg-ke33
https://digitalcommons.odu.edu/mathstat_etds/19

This Dissertation is brought to you for free and open access by the Mathematics & Statistics at ODU Digital Commons. It has been accepted for
inclusion in Mathematics & Statistics Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please

contact digitalcommons@odu.edu.


https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Fmathstat_etds%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/mathstat_etds?utm_source=digitalcommons.odu.edu%2Fmathstat_etds%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/mathstat?utm_source=digitalcommons.odu.edu%2Fmathstat_etds%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/mathstat_etds?utm_source=digitalcommons.odu.edu%2Fmathstat_etds%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/294?utm_source=digitalcommons.odu.edu%2Fmathstat_etds%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/115?utm_source=digitalcommons.odu.edu%2Fmathstat_etds%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=digitalcommons.odu.edu%2Fmathstat_etds%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/mathstat_etds/19?utm_source=digitalcommons.odu.edu%2Fmathstat_etds%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

PERFECTLY MATCHED LAYER ABSORBING
BOUNDARY CONDITIONS FOR THE DISCRETE
VELOCITY BOLTZMANN-BGK EQUATION

by
Elena Craig

B.5. May 2005, Old Dominion University
M.S. December 2007, Old Dominion University

A Dissertation Submitted to the Faculty of
Old Dominion University in Partial Tulfilliment of the
Requircinent for the Degree of

DOCTOR O PHILOSOPHY
MATHEMATICS AND STATISTICS

OLD DOMINION UNIVERSITY
August 2011

Approved by:

fang Q. Hu (Director)

T L

L
Chester E. Grosch

Richard D. Noren

1
Yan Peng

Hideaki Kaneko



ABSTRACT

PERFECTLY MATCHED LAYER ABSORBING
BOUNDARY CONDITIONS FOR THE DISCRETE
VELOCITY BOLTZMANN-BGK EQUATION

Flena Craig
Old Dominion University, 2011
Director: Dr. Fang Q. Hu

Perfectly Matched Layer (PML) absorbing boundary conditions were firsl proposed
by Berenger in 1994 for the Maxwell's equations of electromagnetics. Since Hu first
applied the method to Euler's equations in 1996, progress made in the application
of PML to Computational Acroacoustics {CAA) incindes linearized Euler equations
with non-uniform mean flow, non-linear Euler equations, flows with an arbitrary
mcan flow direction, and non-linear Navier-Stokes equations. Although Boltzmann-
BGK methods have appeared in the literature and have been shown capable of sim-
ulating aeroacoustics phenomena, very little has been done to develop absorbing
boundary conditions for these methods. The purpose of this work was to extend
the PML methodology to the discrete velocity Boltzmann-BGK equation (DVBE)
for the case of a horizontal mean flow in two and three dimensions. The proposed
extension of the PML has been accomplished in this dissertation. Both split and un-
split PML absorbing boundary conditions arc presented in two and three dimensions.
A [linite difference and a lattice model are considered for the solution of the PML
equations. The lincar stability of the PML cquations is investigated for both models.
The small relaxation timne needed for the discrete velocity Boltzmann-BGK model
to solve the Fuler cquations renders the explicit Runge-Kutta schemes impractical.
Alternatively, implicit-explicit Runge-Kutta (IMEX) scheines are used in the finite
difference model and are implemented explicitly by exploiting the special structure
of the Boltzmanun-BGK equation. This yields a numerically stable solution by the
finite difference schemes, As the lattice model proves to be unstable, a coupled model

consisting of a lattice Boltzmann (LB} mcthod for the interior domain and an IMEX



finite difference method for the PML domains is proposed and investigated. Numer-
ical examples of acoustic and vorticity waves are included to support the validity of
the PML cquations. In each example, accurate solutious are obtained, supporting

the conclusion that PML is an effective absorbing boundary condition.
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CHAPTER 1

INTRODUCTION

Whether used to make the best choice of graft for a heart bypass surgery, to determine
the path of a hurricane, or to design airplanes, Computational Fluid Dynamics (CFD)
simulations are helping us gain insight and make decisions and predictions for a wide
varicty of important real life applications. Traditionally, CFD simulations have been
carried oul by solving the macroscopic governing equations of fluid flow, i.c. the
Navier-Stokes and Euler equations. However, in recent years, methods based on the
Boltzmann-BGK equation of gas kinetic theory have gained in popularity and have
shown to be a good alternative to the Navier-Stokes equations for investigating fluid
behavior. Not only can the macroscopic poverning equations be recovered from the
Boltzmann-BGK equation, but because it describes fluids at the microscopic level,
the Boltzmann-BGK equation retains morc physics of fluids, in particular for non-
equilibriumm flows. Furthermore, the Boltzmann-BGK equation can be solved for
various flows where the macroscopic governing equations arc extremely diffienlt or
impossible to solve, as in the case of inhomogeneous multiphase and multicomponent
Hows.

The continuous Boltzmann equation is based on the gas kinetic theory and gives
a microscopic description of fluids [1,2]. Iustcad of solving for the macroscopic
flow propertics, the Boltzmanu equation computes a particle velocity distribution
function f which describes the probability that a particle with microscopic velocity
£ can be found in location ® at time £, The macroscopic flow properties such as
density, momentum, energy and the stress tensor are given by the moments of the
distribution function f with respect to the particle velocity € The Boltumann-
BGK equation is obtained from the continuous Boltzmann cquation by replacing
the collision operator with the Bhatnagar-Gross-Krook (BGK) collision model which
approximates the tendency of a system to approach equilibrium through a relaxation
process with constant relaxation time A [2,3]. If the infinite velocity space & is
also reduced to a finite number of discrete velocities {&;} such that the ability of the
system to produce accurate Huid dynamics is maintained, then we obtain the discrete
velocity Boltgmanu-BGK equation (DVBE). The 2D 9-velocity (D2Q9) and the 3D

This dissertation follows the style of the ATAA Journal



27-velocity (D3Q27) models are two cxamples of such discrete velocity scts [4].

Numerical solutions of the discrete velocity Boltzmann-BGK equation can be
obtained by finite difference and finite volume methods [5-8] as well as lattice meth-
ods [9-14]. The lattice methods are based on the lattice Boltzinann (LB) equation
which was initially developed as an extension of lattice gas automata [15]. However,
the lattice Boltzmann equation can be derived as a space-time discretization of the
DVBE which ¢can be translated to a simple two-step evolution procedure for the prob-
ability distribution functions { f,} on a discrete lattice [3,4]. The evolution procedure
consists of a local collision step with constant relaxation time and a streaming of the
distribution functions from one lattice point to the next relative to the discrete ve-
locities. This process makes the LB method simple to iimplement, fast in execution,
and well suited for parallel computing, which is why the LB method has become a
widely used numerical tool for investigation and prediclion in practical engineering
applications. Substantial progress has been made in the past two decades inn extend-
ing the capabilities of the LB method to a wide ranpe of CFD problems, including
flows with complex geometrics, turbulent flows, multi-component and multi-phase
flows, thermal flows and other complex physical systems { [9] and rcferences cited
therein).

In recent years, numerical methods based on the discrete velocity Boltzinann-
BGK equation have also been applicd to problems of Computational Aeroacoustics
(CAA) [7,8,11,12,14,16]. Wave propagation problems, such as those arising in CAA,
often involve infinite or very large physical domains which would be either unfeasi-
ble or very expensive to solve numerically. To reduce the computational cost and
time to a level that current resources can handle, the computational domain is often
truncated. Artificially truncating the physical domain creates nimerical boundaries
which have to allow both the aerodynamic disturbances and the acoustic waves to
pass through without reflection in order to maintain an accurate flow solution. The
type of boundary conditions that control spurious wave reflections from the bound-
arics are referred to as non-reflective boundary conditions.

The development of effective non-reflective boundary conditions is a very impor-
tant aspect of simulating flows in unbounded domains and is crucial to Aeroacoustic
problems. Numerous non-reflective boundary conditions have been proposed for the
governing equations used in traditional CEFD and CAA. Among these arc the asymp-

totic boundary conditions {17-22], the characteristic boundary conditions [23-27],



the absorbing layers [28-37|, and the Perfectly Matched Layer [38-44], which ig the
subject of the present work.

Asymptotic boundary conditions are derived from the far-field asymptotic ex-
pansion of the solution of the governing cquation in physical space [45]. To use this
type of boundary condition effectively, the computational domain must be sufficiently
large so that the artificial boundaries are located far enough from the source for the
truncated asymptotic solution to be considered valid. One immediate drawback of
this method is the fact that the far-ficld asymptotic expansion of the solution must
be known. Another drawback is the loss of computational efficiency as it may he
necessary to simulate a larger computational domain than is physically relevant to
satisfy the asymptotic assumptions.

Characteristic boundary conditions are obtained {rom the characteristic wave
analysis of the governing equations. More specifically, the Jacobian matrix of the
governing equations is diagonalized and the sign of the cigenvalues is used to identify
waves as either incoming or outgoing. The boundary conditions are then specified to
take into account the type of wave under consideration. To make surc the problem
is well defined, the boundary conditions for outgoing waves must be extrapolated
from inside the domain and cannot be specified. This type of boundary condition
is very cffcctive when the waves exiting the domain are normal to the boundary,
but produces reflections when the angle of incidence is not zero or when nonlincar
disturbances cross the outflow boundary.

The absorbing layers, also known as “sponge layers,” “exit zones”, or “buffer
zones,” arc obtained by extending the computational domain with regions where
modified equations reduce the amplitude of outgoing waves so reflections are min-
imized. The construction of these houndary conditions can be done in a number
of ways. Some frequently used methods in CFD and CAA include adding artificial
dissipation and damping terms to the governing equations, modifying the character-
istics of the governing equations, grid stretching, and numerical filtering [46]. These
methods can be combined with onc another or with other non-reflective boundary
conditions for better performance. However, if the attenuation of the outgoing waves
is not done in a gradual fashion, reflections can be created within the absorbing layers
themaselves.

The Perfectly Matched Layer (PML) technique is similar to the absorbing layers

as the computational domain is extended with artificial layers where the cutgoing



waves are absorbed exponentially in time. The advantage of using PML over other
types of absorbing zones, is that PML cquations match the governing equations at
the boundary of the computational domain. As a result, the PMIL layers do not need
to be as wide as other absorbing layers to show improved accuracy.

The Perfectly Matched Layer (PML} technique was first derived by Berenger in
1994 by manually constructing the conditions for non-reflective incident waves for
Maxwell’s equations [47]. It was subsequently shown to be equivalent to a more
general approach, referred to as stretched-coordinate PML [48-50]. Recently, the
PML mcthodology has been applied to the governing equations of CE'D and CAA.
In particular, PML has been extended to linearized Euler equations with non-uniform
mean flow [40], to non-linear Euler equations [41,51], to flows with an arbitrary mean
flow direction [44], and to non-linear Navier-Stokes equations [51].

Compared to the extensive studies in the traditional CFD, research on the bound-
ary conditions for numerical methods based on the Boltzmann-BGK equation is
relatively limited. Kam et al. investigated three types of nonrcflecting boundary
conditions for the DVBE: the extrapolation method which is obtained by requiring
that either f or its first gradient be zero in every lattice direction, the C' continuity
mcthod which extrapolates f on the boundary based on at least two known points
inside the domain, and an absorbing boundary condition which ig formed by adding
a damping term to the Boltzmann equation [11]. Najafiyazdi and Mongeau applied
the Perfectly Matched Layer (PMI.} technique to the lattice Boltzmann equation but
their formulation has limited applicability to the field of CAA [52].

The objective of this thesis is to augment the cxisting research of the Per-
fectly Matched Layer as an absorbing boundary condition for the discrete velocity
Boltzmann-BGK cquation with specific application to the field of CAA. Thus far,
the majority of work relating to the application of PML to CAA problems has been
doue for the Euler and Navier-Stokes governing equations. By comparison, very lit-
tle has been done to cxtend the capabilities of the PML to the Boltzmann-BGK
equation [52]. As more models based on the Boltzmann-BGK equation are being de-
veloped for CFD and CAA| there is a nced for robust absorbing boundary conditions
so these models can be used in practical applications.

Of specific inportance in the present work is the derivation of PML equations for
the discrete velocity Boltzmann-BGK equation in cartesian coordinates for the case

of horizontal mean flow. For the aforementioned case, we derive new PML equations
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in split and unsplit variables for two and three dimensions. An examination of the
linear waves supported by a simple Y-velocity discrete Boltzmann-BGK equation
shows that it supports the familiar acoustic and vorticity waves, in addition to other
highly damped wave modes. The dispersion relations of the acoustic and vorticity
waves of the 9-velocity discrete model are found to be similar to those of the Euler
equations. Based on this fact, we are justified in expecting to be able to construct
stable and effective PML equations following the same space-time transformation
used by Hu to derive the PML for the Euler equations [39,40]. The specific steps
taken to derive the PML cquations arc detailed in Chapter 3.

To validate the PML equations, we use discrete velocily models with a small
number of discrete velocities, i.e. the two dimensional 9-velocity model, referred to
as D2Q9, and the three dimensional 19-velocity model known as D3Q19 [15]. We
also consider solutions obtained by both a finite difference and a lattice method and
we limnit. our study to inviscid Hows. In order for the Boltzmann-BGK model to solve
the Euler equations, the relaxation time A has to be very small, or, in other words,
the collision operator is highly stiff. When we seek a finite difference solution to the
PPML equations, the stiffness of the collision term renders the traditional explicit time
integration schemes impractical because the stability restriction on the time step size
is quite severe. On the other hand, use of implicit integration schemes would require
that a linear system be solved at cach time step which would be computationally
cxXpensive.

Alternatively, we consider implicit explicit (IMEX) Runge-Kutta schemes which
have the benefit of an explicit implementation and a larger stability region than
explicit schemes. The stability regions for the second, third, and fourth order IMEX
Runge-Kutta schemes used for the finite diflerence solution of the PML equations
are new to this work. The IMEX Runge-Kutta schemes are specifically designed and
optimized [or the integration of systems that contain both stiff and non-stiff terms.
The implicit scheme is optimized for the integration of stiff terms while the explicit
scheme ig optimized for non-stiff terms so the combination of the two gives a larger
stability region than if either scheme was used to integrate the whole system. Due
to the special properties of the collision term in the Boltzmann-BGK equation, the
imnplicit stages can be treated explicitly [10,53,54]. A description of IMEX schemes
and how they are implemented explicitly in this work is given in Chapter 4.

Also of importance in this work is the coupled method we propose for the use



of the PML absorbing boundary conditions with the lattice Boltzmann equation. In
this coupled model, described in detail in Chapter 5, the PML equations are solved
with the third order IMEX Runge-Kutta finite differcnce scheme while the interior
dotpain solution is obtained by the lattice Boltzmann method. In Chapter 6, we
discuss some of the advantages and disadvantages of the two numerical methods we

used in this work to solve the DVBE and the PML equations.



CHAPTER 2

THE DISCRETE VELOCITY BOLTZMANN-BGK EQUATION

2.1 THE BOLTZMANN EQUATION: RELATING THE MICRO-
SCOPIC AND MACROSCOPIC DESCRIPTIONS

One of the basic hypothesis of statistical mechanics states that all macroscopic prop-
criies of a system that are independent of mass, such as density, pressure, viscosity
and temperature, can be described in terms of the microscopic state of that system.
Given in terms of the spatial coordinate and momentum of each constituent molecule,
the microscopic description requires the use of 3V spatial coordinates {g}, and 3N
conjugate momenta, {p}. where N~ 10% is the number of molecules in the sys-
tem. The 6N dirmensional space, also known as phase space, contains all the possible
states of the system under consideration. If the intermolecular forces are known at a
given time, then theoretically the state of the system can be determined for any later
or earlier time from the Hamilton equations [55]. From a practical point of view,
solving the equations of motion at the microscopic level is impossible to achieve, first
of all, because of the large number of variables involved and, secondly, becausce the
microscopic state of a syster at any given time is impossible to determine.

If a probabilistic approach is taken instcad, then the microscopic state of the
system does not need to be specified. This is done by considering a large collection
of # systems which are equivalent at the microscopic level to the system of interest.
Fach system in this collection, also known as a Gibbs ensemble, can he represented
by a point in the phasc space. As the number of systemns in the enscmble tends to
infinity, the points that represent them become densc in the phase space and their
distribution in the phasc space can be described by a continuous probability density
function.

The probability density function Fy is defined so that Fn({q}, {p},t) TT" | dgsdp;
represents the fraction of phase points found in the incremental volume ]—L\;l dqg;dp;
about the point gq,p at time t [56]. If we know how Fi depends on the phase at
one particular point in time, then from the Hamilton equations we can find Fy at
any past or future time. The time evolution of Fy due to the natural motion of
each ensemblc member in the phase space is governed by Liouville’s equation [56).

It is assumed that in determining the macroscopic properties of a system from its



microscopic state, averages taken over time and averages taken over the statistical
ensemble are the same. Clearly, in attempting to solve Liouvilleds equation, we are
still confronted with a large number of degrees of freedom and the issue of specifying
the dependence of Fy on the phase point for a particular time,

The problem can be reformulated by integrating Fy over part of the variables
to obtain the so called reduced particle density distribution functions [57]. The
contraction of the N-particle systemn governed by Liouville’s equation in terms of
the reduced particle distribution functions leads to the Bogoliubov-Born-Green-
Kirkwood-Yvon (BBGKY) hierarchy of equations for the R-particle system [58]. If
we denote a phase point by y, the R-particle distribution function is defined as:
Frlyr, ¥z2. - ¥Urt) = [ Fn(yr, o Yro oo YN E) dYR11, - dyn. Then Fy(yq,¢) rep-
resents the probability of finding molecule 1 in the incremental volume dyy about
the phase point 4y at time . The R-th equation in the BBGKY hierarchy of equa-
tionus ties the time evolution of the R-particle probability density function Fg to the
evolution of the (R + 1)-particle probability density function Fryq.

In trying to relate the macroscopic and microscopic descriptions through the
BBGKY hicerarchy, the problem of specifying initial conditions for the system and
the large number of degrees of frecdom still remain. In addition, we are confronted
with the fact that the equations in the BBGKY hicrarchy are not self contained.
However, the most relevant macroscopic propertics can he obtained from averages
taken with respect with the first few distribution functions and the BBGKY hierarchy
of equations can be truncated in certain limiting cascs to obtain more tractable
problems,

The BBGKY chain can be truncated at Fy if we make the assumptions consis-
tent with the Boltzmanu gas limit, i.e. the density is low enough to consider only
two-particle collisions, the velocities of colliding particles are not correlated before
collision and are independent of position, and external forces do not influence the
local collision dynamics. The self contained equation for Fy is the well-known Boltz-
mann equation. When he derived his equation in 1872, Boltzmann used a heuristic
approach. The connection of the Bolizmann equation to Liouville’s equation and the
clementary laws of mechanics was only made in 1946 [58-60].

If we define the phase points in torms of spatial coordinate x and velocity &
and let f(x, &,¢) denote the single-particle density distribution function, then the

Boltzmann equation can be written as:



A e vifrarvef =) ()

where Q( f) represents the collision integral and a is the external force on the particle.

At this point we can make the connection to the macroscopic hydrodynamical
description because the macroscopic fluid mass density p, the macroscopic velocity
u, the specific internal energy e, the pressure tensor P and the heat flux € can be
obtained from the moments of the single-particle distribution f with respect to its

velocity argument [56,61]. The first three arc given by the following:

pat) = [ siwgt)de (2)
platulw.t) = [ fla.€ ede (3)

plx, te(z, t) = /f(m,&,t)u

5 48 (4)

The collision operator is an integral that quantifies the effect that particle collisions
have on the evolution of the single particle distribution function over time. Even
when only binary collisions arc considered, the form of §2(f) is rather complex [56].
However, we do not need to know the specific expression for the collision integral in
order to understand some of its propertics, which will be used in Chapter 4 for the
application of IMEX Runge-Kutia schemes to the Boltzmann-BGK equation. Owing
to the fact that hinary collisions conserve mass, momentuin, and cnergy, we can see
that il we multiply the collision operator by 1, €, and &2 and integrate over €, we

obtain:

f Q(f)de = 0 (5)
] f)Ede =0 )
/ Q(f)e?dg = 0 ()

The quantities 1, £, and £2? are known as collisional invariants.
Another important aspect of the Boltzmann equation which can be derived with-
out knowing the specific form of the collisional operator is the H-theorem which

describes how the system approaches cquilibrivm and specifics the equilibrium state,
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The global equilibrium state as given by the H-theorem and verified independently

by equilibrium statistical mechanics is the Maxwellian distribution function [56]:

» N —(&-w)?/2RT
fa1(8) (Q?TR'T)% € (8)

where B is the Boltzmann gas constant and T is the tempcrature.

The macroscopic hydrodynamical equations for the conservation of mass, momen-
tum and energy can he obtained by multiplying the Boltzmann equation successively
by the collisional invariants and integrating over & Duc to the presence of higher
order moments, the conservation cquations are not closed. Various assumptions can
be made to close these equations and obtain macroscopic governing cquations. In the
Chapman-Enskog approximation, this is accomplished by expanding the equations
for the moments of f in a power series in small Knudsen number with the conjecture
that the time dependence of f is determined only through p, 2, and 7' [62]. The first
and second order Chapman-Enskog approximations yield the Euler and Navier-Stokes
equations. Alternatively, Grad obtained a closed system of equations, referred to as
Grad’s 13 moment method, by expanding the single particle distribution function on
the basis of the Hermite orthogonal polynomials in velocity space [63]. However, we
do not need to solve the macroscopic governing equations to obtain the macroscopic
variables of interest because these result directly from f which is obtained by solving

the Boltzmann equation.

2.2 THE BGK MODEL

Due to the complex nature of the collision operator, obtaining solutions fo the Boltz-
mantl equation proves to be a daunting task. More solvable versions, referred to as
model equations, have heen proposed in the literature [2,64-67). These cquations
are obtained by replacing the collisional integral in the Boltzmann equation with a
simplified collision model.

In order for the model equations to be good approximations to the Boltzmann
equation, they should exhibit some of the samc properties. As we mentioned before,
collisional invariants are used to derive the macroscopic hydrodynamical equations
for conservation of mass, momentum and encrgy from the Boltzmann equation. Since
they have a direct effect on the macroscopic behavior of the system, the collisional

invariants must be preserved by the model equation. At the same time, the model



11

equation should have an H-theorem to ensure that the system evolves towards the
Maxwellian equilibrium digtribution function both globally and locally.

A simple model cquation which preserves the collisional invariants and has an
H-theorem is the BGK modcl which was derived by Bhatnagar, Gross and Krook ,
and independently by Welander in 1954 [2,64]. The rationale behind the BGK modcl
is that many of the gritty details of the binary collisions will not have a significant
impact on the macroscopic variables. The effect of collisions on the distribution
function f in the BGK model is proportional to the difference of f from its local
Maxwellian f%9. Absgent of any external force, the Boltzmann-BGK equation can be
written as

g v = (f -1 )
where X is the relaxation time constant.

Because collisions only depend on local information, the BGK model equation
is no longer a nonlinecar integral-differential equation. Howcver, despite its simple
appearance, the BGK model equation is a highly nonlincar equation because the
Maxwellian equilibrium distribution function £ depends locally on density, velocity,
and internal encrgy which are all obtained from the moments of f.

In practice, the Boltzmann-BGK model can be used to obtain qualitatively good
results for a wide variety of flow regimes. This is done by selecting the relaxation
time to match the macroscopic transport coefficients of the flow. One of the greatest
failures of this model is an incorrect prediction for the Prandl number which is defined

as the ratio of kinematic viscosity to thermal diffusivity.

2.3 THE DISCRETE VELOCITY BOLTZMANN-BGK MODELS

The discrete velocity Boltzmann-BGEK models are obtained by discrctizing Iq. (9)
in velocity space using a finite set of velocity vectors {€,}. The discrete velocities
£; are chosen so that the resulting discrete model satisfies the conscrvation laws
and is therefore able to produce accurate macroscopic fluid dynamics [68]. Somc
of the most commonly used discrete velocity modcls can be derived by expanding
the Maxwellian distribution function in a Taylor series in the fuid velocity u. In

the Chapman-Enskog calculation, the functional form of the equilibrium distribution
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Fig. 1. Schematic of D2Q9 discrete velocity set.

function is only used to obtain the low order moments in velocity space. For the Tay-
lor expanded Maxwellian, these moments can be calculated exactly through Hermite-
Gauss quadrature. Moreover, in order to recover the Navier-Stokes equations though
the Chapman-Enskog procedure, only terms up to u” nced to be retained {3]. The
coefficients of the discrete velocity equilibrium distribution function are obtained
by replacing the quadrature computed moments into the Taylor expansion of the
Maxwellilan. For example, a widely used two dimensional velocity discretization of
Eq. (9), referred to as the 2D 9-velocity {D2Q9) model can be obtained in this way.

This model uses the following discrete velocity sct [15]:
£ =c(LO)T &=¢c(0,1)T; &=c(-1,00: £ =c(0,-1)"
£ =c(l, )T, g =c(-1,1)F; & =c(-1,-1)"; & =c(1,-1)"
& = ¢(0,0)" (10)

where ¢ is a reference speed. The equilibrium distribution function for this model is

given by
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(E’ u) 9(5-,.-’&)2_3(%-%)
2cA 2c2

(11)

fi=wp |1+ ——

where p and u are macroscopic density and velocity respectively and w, is the weight

for velocity &, with

W) =we = w3 =wy = 1/%  wy=uwg =wr=wg = 1/36;  wy=4/9 (12)

and speed of sound

cs =/¢/3 (13)

Shan and He showed that using a set of velocities that correspond to the nodes of a
Gauss-Hermite quadrature to discretize the Boltzmmann-BGK equation is equivalent
to truncating the Hermite expansion of the distribution function to the corresponding
order [68]. Because the truncated part of the distribution function does not affect the
lower order moments that appear explicitly in the conservation cquations, higher or-
der approximations to the Boltzmann-BGK can be achieved by using more velocitics
in the quadrature. [n general, a two dimensional discrete velocity Boltzmann-BGK
equation (DVBE) can be written in component form as
af 3f : 3f 1 eq

where f, is the distribution functlon for Velocity £, = (uw,,v,). In discretized velocity

space, the macroscopic density and momentum are given by

hE (15)

] =

1

)

Mz

pu = )‘EJ (16)

LY
—

where N is the number of discrete velocities. If we define f = (f1, fo, ..., fw), We can
write Eq. (14) in matrix form as
1
&f LA of af

g,;ﬂLBa:—;(f—feq) (17)

where A and B are diagona.l matrices such that 4, = v, and B,, = v,.
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2.4 LINEAR ANALYSIS OF THE DISCRETE VELOCITY
BOLTZMANN-BGK EQUATION

We first investigate the lincar waves supported by the discrete velocity Boltzmann-
BGK cquation. Marié et al. carried out a similar study for a three dimensional
discrete velocity Boltzmann-BGK cquation [12]. To perform a linear analysis of
Eq. (14) or Eq. (17), we first separate the distribution function into a uniform mean

flow component and a perturbation component as

F=0"+ 1 (18)

where the overbar and the prime sign denote the mean and the perturbation values,

respectively. Redefining the right side of Eq. (14) as ¢,(f,) and linearizing it yields

£6:4] aq-’. FREe
9.(fy) = o) + 35 (55 + 07 (19)
of,
Noting that
dy, . - 1. af
0,
Ly = -3 (80— -G} £ 20
and that qz()‘_ ) = 0 and plugging back into FEq. (14} gives
af’ 1 d -
e vii= =5 (8- 2 g (21)
The two dimensional forin of the above can be written in matrix form as
N ) ,.
A =_—_(F - y
ot + ox +B oy )\( I f (22)

‘ f’.q . .
where I is the identity matrix, J is defined by J,; = %}h(f;q)’ and matrices A and B
J

are the same as given in (17). We look for plane wave solutions f(x, ) = fetk @t

and we obtain an eigenvalue problem for w with given values of k, and &, as follows:

—wf + ik, Af +ik,Bf = —%(I—J)f (23)

or equivalently

Y- (24)
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The eigenvalue problem in Eq. (24) will be solved numerically with MATLAB.
Using the D2Q9Y model as an cxanple, Figure 2 shows the dispersion relations of
w v.s. K, for all the nine wave modes, with &, = 10, A = (.005 and the mean flow
velocity Uy = 00.5¢,. The nine cigenvalues shown can be divided into two groups. One
group of modes, shown in the left side of Figure 2, consist of three hydrodynamic
waves, namely the two acoustic modes and one vortical mode. The imaginary parts
of the ihree modes are negative, showing a damping effect of the viscosity in the
BGK model. The other group of modes, shown on the right side of Figure 2, have
significantly higher damping rates.

The dispersion relations of the D2Q13 [69,70] model illustrated in Figure 3 have a
similar behavior, with the ten wave modes shown on the right side of the figure having
much higher damping rates than the three hydrodynamic waves shown on the left of
the figure. It has been verified that dispersion relations of the three hydrodynamic

waves, for the real part of w, follow closely the curves given by

Dy(w, ke, ky) = (w — Uoky)® — c3(K2+ k)) =D (25)

for the acoustic waves and

Dy(w, ky by) =w — Upk, =0 (26)

for the vortical wave. These are the dispersion relations for the linearized Euler
equations. These findings are similar to those reported in Ref. [12].

As in the case of Euler equations [39, 40, 71, 72|, the acoustic wave modes of
the DVBE as those shown in Iigures 2 and 3 exhibit inconsistent phase and group
veloeities when the mean velocity &y is not zero. The phase velocity, deflined as
the ratio of frequency to wavenumber (v, = ﬁ)? is positive in quadrants I and 111
and negative in quadrants II and IV. The group velocity, defined as the change in
frequency with respect to the change in wavenumber (v, = (;1—”;), is positive when the
slope of the acoustic curve is positive and negative when the slope is negative. The
symbols in Figure 2 denote the location where the group velocity is zero indicating
that parts of the dispersion curves have inconsistent phase and group vclocities,
namely, a negative phase velocity but a positive group velocity for the waves that le

between the location of the symbol and the vertical axis.
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Because a complex change of vartables is invelved in deriving the PML cqua-
tions [39,47], the numerical stability of the absorbing layers requires that the incon-
sistencies in phase and group velocity be corrected. Otherwise, when the complex
change of variables ig applied, the resulting PML cquations will produce exponen-
tially growing solutions.

However, it has been demonstrated in previous studies that these inconsistencies
in the phase and group velocitics can be corrected by a proper linear space-time

transformation of the form [39,40,71,72]

T=x Y=y, t=t+7x (27)
where /7 is defined by
k*

in which &7 and w* are the roots of

_ 8D,
Do(w* k5, k) =0, and 5Kﬁfﬁ;@)=0 (29)

By Eqs. (25) and (29), we find that, for any k,, w* = [(U§ — ¢2)]/Us]k% which leads
to

- Lr{]
3= (30}
A0
The corresponding transformed wavenumbers and frequency are
fow = k Yoo w k=k, o= 31
Y x‘i‘mw‘: y = Ry, WEW (31)
The updated acoustic and vortical dispersion relations given hy
- 0o (’5 -3 2 2y o 2 2 77 2
Da(wv kﬂ?rkv)_ 3 7 W '(-'s _U{J)kﬁf — k?,r =0 (32)
s = UU
_ 02 .
— & - f
Db(u.), k._[g’ ;Iuy) = _,55—"——(,?02_ W= U(] kx =0 (33)

indicate that the phase and group velocities are now consistent and that the PML
change of variables will not cause instability.
For the sccond group of waves, shown on the right side of Figures 2 and 3, the

inconsistencies of phase and group velocities arc also found but cannot he corrected
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easily. However, with intrinsic high damping rates associated with these modes, the
application of PML change of variables may not causc instability when the PML
absorption cocfficients are not exceedingly large. This is confiried in the stability

analysis done in the next chapter.
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CHAPTER 3

THE PERFECTLY MATCHED LAYER (PML) METHOD

3.1 INTRODUCTION TO PERFECTLY MATCHED LAYERS

Numerous problems that arisc in the physical sciences and have significant techno-
logical implications involve the propagation of waves. Many of these problems, as
those arising in CAA, also involve the propagation of waves in unbounded or very
large domaing. Truncation of the physical domain is then necessary for numerical
simulation because the size of the problem must be reduced to a level that our current.
computational resources can manage [17,73].

The numerical boundaries resulting from the truncation of the physical domain
pose a problem if proper boundary conditions are not specified because waves will
reflect off of them back into the computational domain to invalidate the solution. An
cffective nonreflecting boundary condition will ideally have the same effect on the
interior solution as if no boundaries were present. From a practical point of view, we
would like to reduce reflections on the boundary to within a margin of error. The
Perfeclty Matched Layer (PML) mcthod has alrcady been shown to be an effective
tool for constructing nonreflecting boundary conditions for the Euler and Navier-
Stokes equations [40,41,51,74]. In view of this, the purpose of the present. work
will be to extend the PML methodology to the discrote velocity Boltzmann-BGK
equation for use in the field of CAA.

In essence, the PML method is an analytic continuation of the wave equation
into complex coordinates followed by a coordinate transformation back to real coor-
dinates. This process changes propagating waves into exponentially decaying ones
inside the PML layers. Ag seen in Figure 3.1, artificial regions, called " perfectly
matched layers” are added on the boundaries of the computational domain. In these
regions, new equations are derived to damp outgoing waves so they will not reach
the boundaries and thus will not be able to reflect back. The equations for the PML
regions are specifically designed to match the interior governing equations so that
waves incident on the ML do not reflect at the interface.

As we saw from the analysis of the dispersion relations supported by the dis-
crete velocity Boltzmann-BGK cquation, in the case of flows with not-zero mean

conveetive velocity, there is an inconsistency between the phase and group velocity
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Fig. 4. Diagram of PML domains for a rectangular domain. Dashed lines
indicate the interface between the PML domains and interior.

which can result in unstable PML equations if left uncorrected. This is the same
inconsistency that is found in the dispersion relations of the Fuler equations. A
well chosen space-time transformation has been shown to correct the incousistency
for the Euler equations. Since the dispersion relations for the three hydrodynamic
waves supported by the discrete volocity Boltzmann-BGK equations considered for
the present study arc the same as those supported by the Euler equations, we have
reason to expect that the same space-time transformation will work here as well.
The derivation of the PML equations for the discrete velocily Boltzmann-BGK
equation is a four fold process. The first step in the derivation is to apply the space-
time transformation to the discrete velocity Boltzmann equation. To sec why this is
necessary, consider the change of variables required in deriving the PML equations

for an absorbing layer in the z-direction:

36—>:I:+£/de3: (34)
w T

0

where ¢, is the absorption coefficient defined as a positive function of # in the PML
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domain and zero in the interior domain. When this change of variable is applied to

a linear solution of the form

u(x, 1) = etlkeewh) (35)

we obtaln

iz9:0’---;.‘.‘.,». T
w(m,t) = e <z = gilheren) (36)

In the equation above, the term %’ is the reciprocal of phase velocity so its sign will
he the sign of the phase velocity. Because o, is a positive function of x, the sign of
the integral ]:00,,, dx is determined by the increase or decrcase in z and is related
to the group velocity, A positive group velocity represents a right-going wave and
an increase in «, whereas a negative group velocity represents a left-going wave and
a decrease in z. When the phase and group velocities have the same sign, the sign
ke

w!

negative power resulting in exponentially decaving solutions. On the other hand, if

ar . - . _ kg dr .
of the term f%orw dx i positive and the exponential term e « S0 9% will have a
the phase and group velocities have opposite signs, the exponential term will have
a positive power resulting in exponentially growing solutions and thus an unstable
PMI..
The transformed discrete velocity Boltzmann-BGK equation is then written in

the frequency domain where we apply the PML complex change of variables:

R .
m—>I+i[de$; -y—>y+£/aydy (37)

W, 0 o
where ¢, and ¢, are the ahsorption cocfficients in the x and y-directions respectively.

Upon converting the resulting equations back to the original time and space, the
equations for the PML regions emerge.

Perfectly Matched Layer (PML} absorbing boundary conditions for the lattice
Boltzmann equation have been studied previously by Najafiyazdi and Mongeau [52}.
However, this derivation has limited applicability because the absorption coefficients
are assumed to be equal for the PML cquations to be stable.

The approach we take in deriving the PML equations in the next section is ap-
plicable to any discrete velocity Boltzmann-BGK model, provided that the model
supports accurate hydrodynamics. More specifically, we will derive the IPML equa-

tions in both split and unsplit variables for the discrete velocity Boltzmann-BGK
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equation in two and three dimensions for the casc of horizontal mean fiow.

3.2 PROPOSED TWO-DIMENSIONAL PML EQUATIONS

3.2.1 Derivation of Unsplit PML Equations

To obtain the PML equalions, we first assume a mean flow with velocity Uy and
we decompose the distribution functions into a uniform mean flow component and a

perturbation compouent

f=f+f (38)
where the overbar and the prime sign denote the steady mean and the perturbation
values, respectively, and the function f satisfies the discrete velocity Boltzmann-
BGK cquation (17). We also assume that £ = £ and the mean flow equilibrium

distribution function, f, satisfies the following time-indepedent. equation

c?f df
81, +B ()y

We will now derive the absorhing equation for the perturbation distribution funection

e

=0 (39)

Bf" d(f—f) d(f_f)_ 1 _ gy
E + A 5 +B A (f =5 (40)

The first step in our derivation will be to correct the inconsistency in phase and

group velocity so that we do not obtain unstable PML equations. To accomplish

this, we follow the work of Hu and we apply the space-time transformation [41]

t=t+ O (41)

where § is given in Eq. (30). Equation (40) becomes

af’ of — f) 3(f*f) of - f)
of TPAT e Y "

Writing the above in the frequency domain gives

1 eq
—X(f—f ) (42)

e — e

T N ¢ ) BN ¢ A i
(—iw)f/ + (—iw)BA(f — F) + A o P

1 ,
“}\“(f—f) (43)
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Fig. 5: Illustration of absorption coefficients for PML domains.

At this point, we apply the PMIL. complex change of variables given in Eq. (37) with
absorption coefficients o, and o, as illustrated in Figure 5. After the PML change

of variables, we have

o 18— F)
(i) f + (CRIPAT = P+ AT
S e R P
+Bl+%‘“’ Oy RS "

To write the above in the time-domain, we multiply Eq. (44) by (1 4 ) (1 -+ i:)—”)

to obtain

— —

-~ - — .

(—iw)f' + (oo + o) ' + owoygf' + (—w)FA(f — f) + (op +0,) BA(f — f)

—— e ——

+amoy£,ﬁA(ﬁ)+A (1+ fﬁ) Qg___f)JrB (1+ ﬂ) 3(f‘— F)

ax w
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- (i () 5

We can write the above back in the time domain by introducing auxiliary variables
g, r1. and r» such that
Oq 697‘1 e 8?‘2
_ - 7 R 46

In the original physmal space and tlme, t.he PML absorbing cquation can finally be

written as

of of of oq dq _
E}f+AL§+B(3—J—|— A)T—l— BaJ (ox +0y) (f — )+ 00,9

) . 1 w1 1
+o.7A [(f — f) + Jy(ﬂ = }\ (f i ) (0':.9 + Jy) - X‘Trvgyr2 (4?)

Equations (46) and (47) are the time domain PML equations to be used in the
PML domains. They are given in terms of the distribution functions and auxiliary

variables.

3.2.2 Pormulation of Split PML Equations

To derive the split PML equations, we split Eq. (44) and we introduce auxiliary

variables q,, ¢, and g, which satisfy the following equations in the frequency domain

(—iw)q, + (—é.w),ﬁA(ﬁ) + . +1%1Ad(f8; 5 =1 (48)
VI R i

(—iw) g, + o B G 0 (49)

(—iw)ds = —% (fiﬁF"") (50)

We can recover Eq. (44) for f since £/ = §,+d,+§,. Multiplying Eqs. (48) and (49)
by (1 -+ 1”—31) and (1 + wj") respectively, we obtain

= 5, AP

(—iw)§, + 0.4, + 0 5A(f — f) + (—iw)FA(f — f) 5 =0 (51)
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N . af — -
(—iw)g, + 0,4, + B ('f( 7 =0 (52)
Oy
R 1 ST ~
(—iw)ds = =5 (F= ) (53)
Upon reverting the equations above back to the original time domain, we have
7, - NF—F _
——q-l——f—cr,ql —I—UT*S’A(f—f)—kA—(-'i,—'ﬂ:U (54)
ot gx
8‘12 of — f)
B————— =10 5
o T BT (55)
og; 1 eq

By adding Eqs. (54), (55}, and(56) we obtain the equation for f and a second, split,
PML set of equations

7 af - 1 " _
d{ + A— + Bd_ + 0.9, + L b + O'xUA(f — f) - —X (f - f ._;) (O?)
dq, af—F) _
o +o.q +o 8A(F—FH+ A P 0 (58)
aqg 3(.f - f) . e
Y + 0,9, + B 5 0 (59)
In component form we have
d 1 8 £
d‘i i -d_ o O}i T Ogl T Ty T T, (fa ) = -7 (fs j) (60)
dQu F ; a(f?, - ﬁ) _ "
?T_ + Tl + g:ndu-z(fz - fr) + ity 818 =0 (61)
942, a(f. — ) .
a0 + oy, + ’U-eT ={ (62)

We note that the split formulation does not require additional spatial derivatives.

On the other hand, the unsplit formulation ensures that f = f when & Oq = 0.
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3.2.3 Linear Stability of Two-Dimensional PML Equations

To assess the stability of the absorbing boundary conditions we proposed in the
previous section, we investigate the linear stability of the PML equations. We only
need to consider the stability of the split formulation since the eigen solutions of the
unsplit formulation are equivalent to those of the split formulation. We begin our

analysis by lincarizing the split PML Egs. (57)-(59) to obtain

of’ af’ of’ aapr 1 :
o tAG, TBy, Tt ok tafAf = -5 T-d) " (63)
R Y +Adf —0 (64)
ot Bz
aQ2 of’
5 7O oy, + B D =0 (65)

where A, B, I and J are as previously defined. Now we substitute into the equations

above a solution of the form

f! f
a|l=14 gl et} (66)
q, g,

which can be written in the more compact form

F = Feﬂ:k 2—wt) (67)

where F' is assumed constant. This gives the following system

A 00 B 00 0.3A+ I -J) oI o,
OF OF OF :
——+[A 0 0] —+[0 0 0]+ 0.3A ol 0 [F=0
ot 343 Oy

000 B 0O 0 0 oI

Noting that
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e —wF (69)
aF
OF
o F 1
8_?} ! W (7 )

we can see that the system reduces to

(ke —ew.8)A+kyB—-3s(I~-J) —wo I —w,d
(ke —10,0)A —10, 1 0 P =yF (72)
k,B 0 —0, 1

or simply,

MF = wF (73)

if we let My be the matrix in Eq. (72). For a given discrete velocity set, we can
define the matrices A and B, and for given mean flow Uy, we can compute matrix
J. Then it is not hard to scc that for constant ¢, and oy, Eq. (73) is au eigenvalue
problem for w, for given values of &, and &,;. The occurrence of any eigenvalue w with
a positive imaginary part w, will indicate instability because the wave amplitude will
grow cxponentially in time. On the other hand, if all the eigenvalues have nonpositive
imaginary parts, then the system is dynamically stable.

Using the D2Q9 model as an example, we examinc the eigenvalues generated for

relaxation time A = 0.00011 by the 2, y, and corner layers. Although we would need

to consider the range of wavenumbers |k, |k.| < oo for the continuous equations, the
Nyquist limit for finite difference schemes prescribes only wavenumbers |[ky| < <= so
that truncating the range of wavenumbers to |k,|, |k.| < 20 should be valid for most
practical choices of Az. To examine the stability of the z-laycr, we consider the range
of Mach numbers 0 < M = Us/c, < 0.7 and absorption coefficients 0 < o, < 10.
The upper bound for the Mach number is due to the fact that our applications
arc for low Mach number flows. In Figure 6 we show the highest contour levels of
of maximum imaginary parts, w,, of eigenvalues for the x-layer over varying Mach

)~ or smaller

number M and absorption coefficient &,. All w, are in the order of 1(
and thus practically zero which suggests that the z-layer equations are stable. The

highest level contours of the resulting maximum w, for the y-layer equations arc
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Fig. 6: Highest contour levels of maximum imaginary parts, w;, of eigenval-
ues for the z-layer over varying Mach numbers and absorption coefficient
e 2%

displayed in Figure 7 for varying Mach number 0 < M < (.7, absorption cocfficient
0 < g, <10, and three different ranges of wavenumbers. We can see that as the range
of wavenumbers is increased, the maximum value of w; also increascs but slowly. This
suggests that the large values of w; are caused by the larger wavennmbers. Although
the w; are not small enough to he considered zero, they are small enongh to be easily
overcomne by the intrinsic damping of the numerical schemes used to solve the PML
equations or by numerical filtering. Figure 8 shows the contours for the maximuim
w; for the corner layer for fixed Mach numbers M = .2 and M = (.7, over varying
absorption coefficients ¢, and ,, and varying ranges of wavenumbers. As in the
case of the y—layer, the maximum w; are small cnough that they should be easily
overcome by the damping of the finite difference schemes or by numerical filtering as

will be demonstrated in numerical examples.
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Fig. 9. Diagram of PML domains in three dimensions.

3.3 PROPOSED THREE-DIMENSIONAL PML EQUATIONS

3.3.1 Unsplit PML Formulation

To derive the PML equations in three dimensions, again we assume a mean How with
velocity Uy and we decompose the distribution functions into a uniform mean flow

component and a perturbation component,

f=f+7 (74)
where the overbar and the prime sign denote the steady mean and the perturbation
values, respoctively. We also assume that £ = F° and the mean flow equilibrium
distribution function, f, satisfies the time-indepedent equation

of of of
o dy Jz

We will derive the absorbing equation for the perturbation distribution function f’:

(75)
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af’ of—f) of — 1) oNf-r) 1 eq .
AT FB= S O= = (f ) (1)

To derive the PML equation for f’, a space-time transformation is applied first to

correct the inconsistency in phase and group velocity

t=t+ 0z (77)
where 7 is given in Eq. (30). Equation (76) becomes
0 =D O 0D | 0P

1
_ I £
of TPAT G AT, G ST TRV

Writing the above in the frequency domain gives

T Y. ¢ A ) Y. ¢ e ),
—iw) ! + (~iw) AL — A
(—iw)f" + (—iw)IA(f — F) + R
a(}.‘#jf) _ 1 e e
+C 7 = X(‘f ) (79)
Now we introduce the PML complex change of variables 2/ = (1 + “’—")L Yy =

(1 + ﬂ) iy, 2 = (1 + “’Z) z, where o, 7, and o, are the PML absorption coefficients

as illustrated in Figure 9.

o _ —— 1 a(f - 1 _of ~
(_?_w)fr_|_(_?w)lﬁA(_f—f)+A1+§gl (fam .f)_|_Bl+wJ (f()y .f)

1 G(ﬁ) =
Jr(?'1 I N *X(f — ) (80)

To writc the above in the time-domain, we multiply Eq. (80) by
(14 =) (1 + “’7”) {1+ =) to obtain
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- - 7 n N

(__{"'w).ff + (O'rr. + Ty + Gz) fr+ _‘ (O'ny + T Ty Uyoz) Fr—= L{?"7'z"7'g,r0'rz.f"r

— e—

+ (—w)BA(f — )+ (0, + o, + 0.) BA(F — )

—— ——

. 1 _
+ 5 (O—/::O'y + o0, + O'yﬂ'z) IﬁA(f — f) - ;EG'CJyO-ZﬁA(f . f)

WF—f of —f) 1 9NF — F
-+ ALd’;’_f_) -+ 5 (o'y + (;rz) A(-fT-f_) _ EU@;O}A( (fd?: f)
=5, ofF—F) 1 o —F)
B Oy e (2 +02) B—By_ - agaszB_Ey___
of — f HfF—F 1 o(F _ F )
+ c% + 5 (00 + 0y) c%sf_} - E%%C% —-La

2 1 7 e
+T (9—-:: -+ Ty + O'z) -3 (U-J:(Ty + g0, + UyO'z) - Eo&o@g}) (.f - feq) (81)
W

e P

We can writc the above back in the time domain by introducing auxiliary variables

g, g5, 71, T3, and r3 such that

dq, = Ogqy ary g OT2 ors
Ot _.f fﬂ (rjt = {4y, 5?5 _'f .f ' ot =T, (‘ﬁ =TTz (82)

In the original physical space and time, the unsplit PML absorbing cquations in three

dimensions can finally be written as

& _
gf + (g$ + Ty + Uz) (f - f) + (ga:gy + Ty + O'yo'z) q, + Ty Ty

_ g b, aa.
+ 0, BA(f — F) + (0 + 72)g, + 0,0.05) + A-a—{ + (o, +0.) A—(,—;% + o.yazA—i%
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of oq, dQQ 5.1: d‘h d‘b
B_ 1 z B— z zB o 1 C Tx
8J+(0 +,) 99 + o By az+( Ty) + o0, O
1 ] 1 1
= _X (.f - f ) - X (J:r + Ty + 02) L ')'\' (Jxo—y + 050, + O';e,ro'z) Ty — Xo'xgyazrﬁ
(83)

3.3.2 Derivation of Split PML Equations

To derive the split PML equations in three dimeusions, we start with Eq. (80) and we

introduce auxiliary variables q,, @5, g5, and g, which satisfy the following equations

(~i)dy + (~iw)BA(F — )+ - +1m A - P _y (84)
i L gdF =D _ -
e il (%)

1 0GB .
(—w)ds = =0 (86)
(—iw)qy = —% (fi?'g) (87)

Eq. (80) is recovered where f/ = §, + 4, + 4, + §,- Multiplying Bqs. (84), (85),
and (86) by (1 + =), (1 + %‘h’) and {1+ 2=} respectivcly, we obtain

(—iw)d, + 020G, + 0 BAF — F) + (—iw)BA(F — F) + Aé%;ﬂ =0 (88)
(—iw)dy + oyds + B@ —0 (89)

(—iw)ds + 0245 + C@ =0 (90)

(~iw)dy =~ (£~ 77) (1)

Changine the above back to the original time domain gives
{m) &
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%9 4 g, +ouoals — 7+ a0 (92)
%‘-?Jr y2+Ba(fa;f):o (93)

83—? +0.q; + C?—(fa%ﬂ =0 (94)

Mo -5 (95

ot
If we add Eqs. (92}, (93), (94), and {95) we obtain the equation for f and the set of

split PML equations

((%f ?}f i‘f +C +rr G +0,G,+0.q;+0.8A(f — f) = —% (f — F°9) (96)
%, | o, + oA — )+ Aa—(fﬁﬂ =0 (97)

Od.g? to,q,+ B (fdy f) _9 (98)
%Jrozqﬁcg(f—,d;ﬁ =0 (99)

Given &, = (u,, v, w, ), we can write the split PML equations in component form

%{% +u gf‘ + 1 ‘({)‘jj + 3 +0a«q11 + 0y + 0:qn + 0B f, — f)= —% (fi = 179)
(100)

djh + 0pg1 + 08w f. — f) +“28(f23; ) =0 (101)

83:; + oyqy + v — o, 5y — 1) =0 (102)

agf“ + 0. + W, (fdé £ o (103)

The variations for the absorption coefficients o, , #,, and ¢, are shown in Figure 9.



37
CHAPTER 4

FINITE DIFFERENCES SOLUTION OF PML EQUATIONS

4.1 INTRODUCTION TO IMPLICIT EXPLICIT (IMEX) RUNGE-
KUTTA SCHEMES

For the applications considered in this work, the relaxation parameter in the BGK
operator is very small and the system is considered stiff. When we seek a finite
difference solution to the DVBE coupled with the PML equations derived in the
previous chapter, the stiffncss of the collision operator becomes problematic for the
time discretization. This is not an issue for the lattice solution of the DVBE because
the time step is set by the lattice size, whercas in the case of finite differences, the
time step is an indepcendent numerical paramcter.

Explicit time integration schemes restrict the time step to be in the order of the
relaxation time A for the computation to be stable [13]. Since the relaxation time
is very small, explicit integration schemes are not a practical option for aeroacoustic
problems.

With stability being the dominaut consideration, implicit methods are more ap-
propriatc because they have larger stability regions. However, implicit integration
schemes require the solution of linear systems with added approximations for the
evalnation of Jacobian matrices due to the non-linearily of the collision term [53]. In
addition, the stiffness of the system may also restrict the time step for iterations to
converge. Recently developed implicit explicit (IMEX) Runge-Kutta methods pro-
vide a more efficient alternative to both fully explicit and implicit methods and they
have the added benefit of a fully explicit implementation due to the properties of the
BGK operator,

In designing time integration methods for evolution equations such as the
Boltzmann-BGK or the Navier-Stokes equations, it is useful to consider scparately
the different driving forces that make up the governing equations, such as convec-
tion, diffusion or reaction [75]. This can be done by cmploying partitioned methods
which combine several integration schemes inte one so that the resulting combina-
tion 1s more efficient for the overall system than any of its component schemes alone.
Terms, equations, or cven gridpoints can be the basis for the partitioning of the gov-

crning equations and various techniques can be cmployed for the construction of the
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composite scheme [76].

When the partitioning of the governing equations is done on a term by term basis
the resulting methods are referred to as additive methods [77]. Due to their simple
design and strong theoretical background, the Runge-Kutta schemes are well suited
for the construction of additive schemes. Runge-Kutta schemes are particularly use-
ful becanse they permit direct control of partitioning errors and thus allow for the
construction of stable high-order partitioned methods [75].

The IMEX Runge-Kutta schemcs are a class of additive Runge-Kutta methods
that combine implicit and explicit Runge-Kutta schemes and arc specifically designed
to integrate systems that contain stiff terms [10,53,54]. Morc specifically, the stiff
terms are integrated using an implicit method and the remaining non-stiff terms are
intcgrated by an explicit method. To ensure an explicit evalnation of the non-stiff
terms in the composite IMEX scheme, only diagonally implicit L-stable Runge-Kutta
schemes are considered for the implicit integration of the still term. Strong Stability
Preserving (SSP) schemes are preferred for the explicit integration to prevent oscilla-
tions in the limil toward the conservation equations. General conditions are imposed
so that the scheme is both consistent with the equilibrium system and accurate in
the stiff limit [54].

To apply the IMEX Runge-Kutta scheme to the DVBE we first rewrite the equa-
tion as the sum of its non-stiff and stiff terms as follows:

of 1
O h(f) + Xg(f)

where h{f) denotes symbolically all the non-collision terms and g(f) denotes the
part in the collision term. The IMEX numerical scheme for solution f* at time £,

to advance to 1! at time ¢, + At is

. - gy AT
ntl _ pn ~ (2] b , (1)
"=+ At ;:l wh(fY) + S ;:1 wyg () (104)

where the stage values £ are given by

At .
$O = f 4 Sangl ) (105)

1—1 7
| - e At
FO =4 Ay ah(F9) + 5 > ayg(F9), =23, (106)

g=1
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The coeflicients a,,, w,, ,,, and w, are selected to maximize accuracy and are listed
wgr Wes Uags

in a double Butcher’s tablean as follows:

¢l A el A

a7 w

In the finite difference numerical cxamples, we will compare the solutions obtained
with three IMEX schemes of different orders of accuracy. For the second order
scheme, we will use the stiffly accurate IMEX-SSP2(3,2,2) advanced by Pareschi
and Russo [54]. The explicit compouent of this IMEX scheme maintaing strong
stability at the discrete level and is referred to as Strong Stability Preserving (SSP),
while the implicit component is an L-stable scheme. IMEX-SSP2(3,2,2}) requires the
computation of threc stages before the solution can be advanced to the next time

stop, as cvident from the coefficient fableau below:

0|0 0 0 212 00
0jo 00 0|-%f 1o
11610 10 £ 1%

013 0o 3 i

For the third order IMEX scheme, we will use IMEX-SSP3(4,3,3), also proposed by
Pareschi and Russo, and composed of an SSP explicit scheme and an L-stable implicit
scheme. The third order scheme requires four stages before advancing the solution
to the next time step. If we let o = 0.24169426078821, vy = 0.06042356519705, and

s = 0.1291528696059, we can write the cocfficients for the third order scheme as:

0|0 0 0 0 N
| o 0
0(0 O G O 0 |~ @y
1({0 1 0 0O 1 0 1-—oy an
1 11
510 3 7 O % ¥y Xy %—&2—&‘3*01 S5
03 L 0 1 :
6 A 3

We also use the fourth order IMEX scheme ARK4(3)6L[2]SA proposed by Kenncdy
and Carpenter [75]. In this scheme, the stiff terms arc integrated by an L-stable, stiffly
accurate explicit, singly diagonal implicit Runge-Kutta method (ESDIRK) while the
nonstiff terins arc integrated using a traditional explicit Runge-Kutta method (ERK).
The cocfficients for the explicit scheme ARK4(3)6L[2]SA-ERK are given as



and the coefficients for the implicit scheme ARK4({3)6L[2]SA-ESDIRK arc

4.2

0 0 0 0 0 0
1 1
3 3 0
33 13861 G889 0 0
250 62500 62500
31 —116923316275  —27312184687317 9408016702089 0 0
50 2383684061468 1536R042101831 11113171139209
17 —451086348738  —2682348T92572  12662868775082 3353R179T5965 ]
20 2002428689909 TH1OTYIHE18YT 11960478115383  11060851509271 ;
1 G47845179188 73281519250 5h2539513391 3351512671639 40410 0
3216320057751 8382639484533 3454668386233 B306763024573 17871
82889 0 15625 60875 —2260 1
524802 83664 102672 8211 4

IMEX IMPLEMENTATION

0 0 0 () 0 0 Y]
1 1 1 : :
5 ) 1 0 { () ()
83 8611 —1743 1
250 62500 31250 4 0 0 0
31 5012020 _ 654411 174375 1 0 0
50 34652500 2022500 388108 4
17 | 13267082800  —71443101 730878875 2285305 1 0
30 | 155376265600 120771400 O0Z184768  ROTOD1Z 1
1 $285Y 0 15625 6O8TS  —2260 1
521852 83664 102672 8211 1
BISRY 0 15625 6ORTS —2260 1
524852 83664 102672 g211 4
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For the bencfits mentioned in the previous section, we will use IMEX Runge-Kutta

schemes for the finite difference solution of the discrete velocity Boltzmann-BGK
Eq. (17) and the PML absorbing Eqs. (57)-(59). Although the IMEX Runge-Kutta

schemes have implicit steps, the special structure of the BGK collision opcrator

permits a fully explicit numerical implementation.

Since the local equilibrium state in the BGK collision model minimizes the cntropy

of all the states that produce the same macroscopic properties, at any point in space

and time, the distribution function f and the Maxwellian distribution function f*

produce the same macroscopic density, momentum and internal energy.

pla,t) = / fl@. &.8) dE = / (. £.) de

o, Dulz, 1) = j Fle, 6,16 dE = /lf””(m;&t)wé

(107)

(108)
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pla, ez, t) = /j gtg dE—/f”’:c&’t( 2)&5 (109)

This property follows from an assumption in the Chapman-Enskog approximatijon
which states that integrating the product of a linear combination of collisional invari-
ants with cither the distribution function f or the Maxwellian distribution function
% over the velocity space produces the same results [56]. The cquilibrium distribu-
tion function f*¢ used in the discrete velocity models we consider in this paper also
satisfics this property with respect to the discrete velocities and quadrature weights

prescribed by the model [3].

N N
p:ij :Z.f;q (110)
1=l =1

N N
pu=> €= fr¢ (111)
3=1 1=1

N

1 .
m:g;.ﬁ(ﬁr qu — u)? (112)

where

= [z t) = I’i"}f(:lt,éyt) (113)

U= %, ) = W, f9(x, €, 1) (114)
and W, represent the weight cocfficients in the quadrature. For the purpose of
validating the PML equations, discrete velocity models with a small velocity set
are sufficient. Howcver, higher order discrete velocity models can be obtained by
expanding the equilibrium distribution function in Hermite polynomials to higher
orders and by using higher precision Gauss-Hermite quadratures [68].

These properties of the collision operator allow us to solve the implicit. step for the
stage distribution function f “) in the IMEX scheme explicitly. To demonstrate how
this is accomplished, let us consider the D2Q9 discrete velocity model as an example.
We will begin by taking the moments of the IMEX stage Eqs. (105) and (106) to
obtain the macroscopic density o' and macroscopic velocity ™ as in [53]. The first

stage density value is given by



42

9 9 At g
ZZf;El):Zfﬁ? TZ ang(FM) (115)
k=1 =1 k=1

Remembering that g(f, . )) represents the collision term and is given by

Q( ll]) EG{U )(‘(‘l} (1]6)

and making use of Eq. (110), we can sce that

Y 9 9 9
el eq( ] .
Zaua = a1 Z 1w 151)) = 011 z.ffqm —an Z‘j:@(l} =0 (117)
k=1 k=1 k=1 k=1
s0 the first stage macroscopic density is obtained from the previous function values
as
9
P =" (118)
k=1

Since p is now known, if we make use of Eq. {111) to show that

9 9 9
egll l eqi{l
> eng(fi) = en D_(A - i) = an Z 08— ey fi"e =0
k=1 k=1 k=1
(119)
we can also obtain the macroscopic velocity " from
9 9
pVu® =37 e =Y S (120)
k=1 k=1
Having obtained both gt and u!!, we can now replace them in Eq. (11) to get the

f!{l)

vthbuum distribution functions f, Finally, the first stage distribution functions

jk can be obtained explicitly from Eq. (105) as

§ 1 At
ﬂ) 2 eg(l)
= —V— | fi + —auf, 121
& 1+ an l k }. llf,(., ] ( )

The distribution functions for the Ieln?_mning stages in the IMEX schemc can be
computed subsequently by following the same procedure as for the first stage. More

specifically, the macroscopic density p and velocity 4 can be recovered from

9 9
Z =N Ay Z a,h(f) Z ayg(f)  (122)
k=1

k=1 =1 k=1 3=1
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and

i3

N N
g z 10¢, z e+ ALY Z a8 + 5 Z > sl
k1 g=1

k=1 3=1

(123)
which, due to the identities in Eqs. (110) and (111), reduce to

o o]
:Z +AtZZa”h o (124)

k=1 3=1
amnd . -
F0u® =3 e+ A S S ah(F0)e, (125)
k=1 E=1 5=1

By substituting the macroscopic variables pl) and 2 obtained above into Eq. (11)
we can find the equilibrium distribution functions ff%*, so that the distribution

functions f;f} can bhe cxplicitly obtained from Eq. (106) as

() _
& l+/\u,

AN 1o
f;r+NZ(”uh I+ S() + 5w ;f“)} (126)

Once the procedure described above is completed for all the stages of the IMEX
scheme under consideration, the stage distribution functions can be replaced into

Eq. (104) to advance the solution tc the next time step.

4.3 IMEX STABILITY

The qualitative behavior of dynamical systems can be determined by examining the
local solution in the neighborhood of equilibrium points. As such, we can obtain in-
formation about the stability of a system by studying the stability of its equilibrium
points, more specifically the origin since equilibrium points can always be translated
there. One frequently used way of doing this, outlined by the Poincare-Lyapunov
theorem, is to determine the stability of equilibrium points by examining the eigen-
values of the linear part of the dynamical system. This analysis stipulates that the
origin is an asymptotically stable equilibrium point if all the eigenvalues of the linear

system have negative real parts.
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Correspondingly, we can determine the stability of numerical methods for ordi-
nary differential equations, such as the IMEX Runge-Kutta schemes used in this
paper, by considering the cigenvalues of the linearized system. Specifically, this is

done by applying one step of the numerical scheme to the test problem:

Oy

— = A\y; y(0) =1 127
5 = (0 (127)
where A is an eigenvalue of the lincar system. The application of Runge-Kutta

numerical schemes to the above test problem leads to the following gencral form:
Yurt = RIAT Vg (128)

The function R{Af M) is called the stabulity function of the Runge-Kutta method and
it is a polynomial of At A in the case ol explicit schemes and a rational function of

At A in the case of implicit schemes, The numerical scheme is stable if and only if
R(ALN) = |R(AtA) <1 (129)

for all eipenvalues A. The region where this condition is satisfied is called the stability
regron of the numerical method and it is considered to be one of the most important
factors in determining the performance of numerical methods for the solution of or-
dinary differential equations. Given a set, of eigenvalues, the stability region specifies
the resiriction on the maximum time step Af that can be used so the numerical
method is stable.

To obtain the stability region for the IMEX Runge-Kutta schemes as applied
to the Boltzmann-BGK equation, we assume that the stiff collision operator has
predominantly real eigenvalues, A,, while the convective terms have eigenvalues, Ag,
that arc predominantly purely imaginary. We obtain the following model problem:

%’::)\f’y—l—)\gy (130)
When we apply the numerical scheme to the above model equation,we use the implicit
part of the scheme for the term A,y and the explicit part for the term Apy. The
stability function for the three IMEX Runge-Kutta schemes used in this paper can

be written in terms of the scaled eigenvalues iy = At Ay and g, = At Ay as follows:
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(1 — ayphg + @21 fty)
1 —anpg)(l ~ Gofty)

RMMwﬁ=1+Uw+md%w(

U3 {1 n (Ggapts + agaprg)(1 — arrpg + (Lg],t.sg)] } (131)
1 — agafhy (1 — g ) (1 — anpty)
. (1 —ayptg + anipy)
Rapr, ptg) = 1+ (g5 + 1 '
olids i) (s o+ g) { ’ (L — aripg)(1 — anysy)
tlg _1 4 (&32;1,; + asziﬁg)(l — Q11 ftg + a-zﬂ*‘-g)J
I —agsptg | (1 — aunpeg)(1 — agapug)
iy -1 + 41 fhg (Qaopty + aél?ﬂfg)(l — (11 fbg + U2 ,U»g)
1 —aupy | 1—anpy (1 — ay1p69) (1 — aaniey)
G 2 fh i . 1l ~a >
| Qastly + aafiy (1 + (Gppey + asapg) (1 — ainpeg + aﬂﬂg))J } (132)
1 — aaathy (1 — aupig (1 — ampig)

(L35}

a(pg prg) = 1 Wy ———
Ralpss ) -Hw+%%1+l_%%

(@sapty + asapty) (1 + Gorpts + an fi-g)] P

1 4 Gy fe 21 14
+aspiy + Azijhg + 1 — axpu, I — aguiy

(@aapes + aaaptg) (1 + Ao py + ampsy) n (Gaspir + aazpig)
1 — aoaftiy )~ 33ty

1+ Garpty + Ganprg +

(@satty + Gsopty) (1 + dovpip + azlf--f'g))}

1 pt \ 4
( + Az by + agifey + 1 — asfiy

e Gy gy + s e+
— Gyt 5
T~ asitg AL 1g

(Gsapiy + asafig)(1 + Qo1 iy + ao1fty)
1— Uozlig
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+ s3fty T Ungflg
1 — agsit,

L N1
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n 544t 1Hg
1 — ayqpty

(Gagjty + Ganpig)(1 + ani iy + agity)
L — agopiy

(1 + Qurpty + aapty +
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(133)

In deriving the expressions for the stability function, we only cousidercd the

nonzero cocticients of the schemes. Clearly, as the order of the schemec incrcases and
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Fig. 10: Stability regions for the second, third, and fourth order IMEX schemes.

more stages have to be computed, the analytic expression for the stability function
becomes more and more cumbersome. Rather than simplifying the analytical expres-
sions of the stability [unctions, an casier way to obtain the stability regions is to plot.
the level curves of the function R viewed as a function of b and F, the moduli of A,
and Ay. For example, this can be done in MATLAD using the contourplot cornmand.
In fact, only the level curve B = 1 is necded because this level curve outlines exactly
the boundary of the stability region. In Figure 10 we plot the stability regions for
the three IMEX schemes and, as expected, with each increase in the order of the
scheme, we obtain a larger stability region at the cost of having more intermediary

gtapges to compnte.

4.4 NUMERICAL EXAMPLES

4.4.1 Two-Dimensional PML - Acoustic Wave

We will first test the effectiveness of the two-dimensional unsplit PML Eq. (47) and
split PML Egs. (57)-(59) by simulating an acoustic wave traveling at the speed of

sound relative to the mean flow (U, 0). For this, we consider the physical domain
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[—5, 5] x[—5, 5] with PML layers of width D surrounding the boundaries. The domain
is discretized with a uniform grid Az = Ay = 0.1, The initial conditions for density

p and velocity components » and v are:

2 2
—In2T t¥

p=pytee a6 (134)

u=Mcs;; wv=0 (135)

where pp = 1 is the mean flow density and M = 0.25 is the Mach number defined by

M= (136)

Cs

Compared to the mean flow, acoustic waves generally have considerably smaller am-
plitudes and the error generated by the numerical scheme from the computation of
the mean flow can sometimes be orders of magnitude larger than the sound inten-
sity [78]. Therefore, the choice of numerical schemes for the propagation of acoustic
waves cannot be based on the order of accuracy predicted by the Taylor series trun-
cation alone, but also on a consideration of whether the number of wave modes and
their characteristics supported by the computation scheme arc the same as those of
the original partial differential equations [78]. Since dispersion-relation-preserving
(DRI’) finite difference schemes are both numerically accurate and preserve the wave
mocdes of the original system, they are able to predict the radiation of the acoustic
waves accurately despite the large gap between the error gencrated by the mean flow
computation and the amplitude of the sound waves. For this reason, the spatial
discretization in this example will be done using the seven-point fourth-order DRP
finite difference scheme of Tam and Webb [22]. Because the wave amplitude will
have decreased to zero by the time it reached the end of the PML layers, we can use
periodic boundary conditions for the x and y derivatives. The absorption coefficients

o, and oy arc used in the PML layers as illustrated in Figure 5 and are of the form

[a3 X
T = g Y=Y

D D

where g and yg are the locations of the DVBE-PML interfaces, the parameter o = 2,

Or = Um v Ty =0 (137)

D represents the width of the PML layer; and @, generally satisfying 1 < ¢, Az < 2,
is chosen so that o,, Az = 1 for all the examples presented here. The distribution

functions f, are initialized using the equilibrium values ebtained from the initial
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Fig. 11: Scaled norm of acoustic density p versus time for € = 0.1 showing
the stability value for the ratio At/Axz for the IMEX schemes.

macroscopic variables p and w given in Eqs. (134)-(143) while the PML variables arc
initialized at zero.

The choice of value for the relaxation time A is based on the ability of a discrete
velocity Boltzmann-BGK model to capture the behavior of sound waves accurately.
Marié and Ricot have shown that the error of the D3Q19 discrete velocity mode] for
acoustic dissipation and dispersion is small if the relaxation time is small [14]. They
conclude that in the limit of small A the discretization of velocity space produces
no error in the behavior of sound waves. In order to minimize the error that the
discrete velocity model could introduce in the simulation of sound waves, we choose
the small relaxation time A = 0.00011 for all the numerical examples in this paper.

Unless we are specifically comparing the effect of PML width on the reflection
error, we will be using a PML width of D = 10 Azx, which in this case represents ten
percent of the plysical domain. However, it should be noted that the PML width
is not comntingent on the size of the interior domain. In fact, for a larger interior
domain, the PML width would represent a smaller percentage of it.

Our first cffort will be to compare the stability of the three IMEX schemes for
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different values of time step Af. For this, we plot the time evolution of the density

norm given by
1/2
I7ll = [ZZ(p(m)f] (138)
i 3

and normalized by the mean flow density norm ||pg||. The results given in Figure 11
show that stable solutions are obtained for At = 0.1 Ax for the second order IMEX
scheme, At = 1 Az lor the third order IMEX scheme, and Al = 0.9 Az for the
fourth order IMEX scheme. Although the stability region of the fourth order scheme
is the largest of the three, it has a lowcer stability limit for the time step than the
third order scheme. One possible justification for this inconsisiency may be the fact
that the third order scheme was designed to maintain strong stability at the discrete
level, i.e. it is strong stability preserving (SSP) whereas the fourth order scheine is
not. Also included in the graph is the sclution oblained with the third order IMEX
scheme for the unsplit PML formulation, and we can see that the same stability limit
is obtained as for the split PML formulation.

In Figure 12 we show the contour plots of density at times ¢t = 0, 10, 12 and 16
computed using the third order IMEX scheme. There is no apparent difference in the
contours if the other two IMEX schemes are used to compute the solution instead.
Furthermore, we obtain the same results for both the unsplit and split formulations
of the PML cquations, As it is shown, the acoustic pulse exits the boundaries with
little visible reflection in the interior domain.

We further test the accuracy of the numerical solution by comparing it with the
exact solution. In Figurc 13 we plot the density along the line segment. y = 0 at
times £ = 6 and 12. We can see that the solutions obtained with the three IMEX
schemes are in good agreement with the exact solufion on the scale of the graph.

To cvaluate the reflection error quantitatively, wc will compare the numerical
solution to a reference solution obtained by using a larger computational domain. In
Figurc 14 we plot the maximum difference between the numerical density selution and
the reference density solution along the line scgment defined by the points (4.5,-4.5)
and (4.5,4.5). This difference is normalized by Ag which is the diffcrence between the
peak amplitude of density as it exits the right DVBE-PML interface and the mean
flow density. The normalized maximum density difference is plotted as a function of
time for different values of PML width D. As it is shown in the figurc, when the

width of the PML layer increases from D = 10 Az to D = 20 Az, the reflection error
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is reduced. We can see that a reflection error of less than 0.1 percent is obtained

with a PML width of 10 grid points with D = 10 Az,

4.4.2 Two-Dimensional PML - Vorticity Wave

We also test the two-dimensional unsplit PML Eq. (47) and split PML Eqs. (57)-(59)
by simulating a vorticity wave in a mean flow (U, 0) with Mach number M = 0.25.
Again, we consider the physical domain [—5, 5] x [-5, 5] with PML width D = 10 Az
surrounding the boundaries and a relaxation time A = 0.00011. The domain is
discretized with a uniform grid Az = Ay = 0.1. The initial conditions for density p

and velocity components 4 and v are:

p=1, Uy=Mec,; Vy=0 (139}
w=10U+ Eye_]”ﬂl_;g_ (140)

_ P —lnzﬁ".’—-2
v=Vy—exe T (141)



54

In Figurc 15 we plot the contours of the v—velocity at times ¢ = 5, 30 and 50 for
¢ = 0.001. We can see from the contour plots that the vorticity wave is effectively
absorbed by the PML layer. To confirm the results, in Figure 16 we also compare the
numerical solution along the line segment y = 0 to the exact solution at times £ = 5
and 50. The numerical solution for all three IMEX schemes is in good agreement
with the exact solution at both times. To evaluate the reflection error quantitatively,
again we compare the numerical solution to a reference solution obtained by using a
larger computational domain, In Figure 17 we plol the maximum difference between
the numerical v—velocity solution and the reference v—velocity solution along the line
segment defined by the points (4.5,-4.5) and {4.5,4.5}. This difference is normalized
by Bg which is the peak amplitude of the v—velocity as it exits the right DVBE-PML
interface. As the width of the PML layer incrcases from D = 10 Az 1o D = 20 Az,
the reflection error is reduced. For all three IMEX solutions, a reflection error of
less than 0.2 percent is obtained with a PML width DD = 10 Az. In this example,
unlike the acoustic example before, where the reflection error for split and unsplit
PML formulations was indistingnishable from each other on the scale of the graph,

the unsplit PML equations produce better results.

4.4.3 Three-Dimensional PML - Acoustic Wave

In this example, we test the unsplit PML cquations (83) by simulating an acoustic
wave in a mean flow (U, 8) with Mach number M = 0.25. The physical domain under
consideration is [—2, 2] x [-2, 2] x[-2, 2] with PML width D = 10 Az and a rclaxation
time A = (.00011. The domain is discretized with a uniform grid Az = Ay = 0.1.

The initial conditions for density p and velocity comnponents «, v and w are:

In2 :I:2+‘.t.|"2+z2

p=potee MPom (142)

u=>Mecy; v=0; w=0 (143)

where py = 1.
We first consider the effect of the factor 3 on the stability of the PML equations.

For this, we plot the time evolution of the density norm given by

1/3

loll = [ZZZIP(?AJ}W (144)
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and normalized by the mean flow density norm ||pg|| for various values of § and time
step At = 0.9 Az, which is the limiting time step for stability. The results displayed
in Figure 18 prove that the solution obtained with the value of 3 prescribed by
Eq. (30) is more stable than the solutions obtained with other values of 3.

In Figure 149 we show the contours of density at times £ = 0, 4, 6 and 8 obtained
with a time step At = Ax. The visible reflection is very sinall although the time

step is larger than the time step required for stability.
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Fig. 19: Contours of unsplit PML IMEX 3 density at times ¢t = 0, 4, 6,
and 8 for € = 0.1 showing the acoustic wave exiting the boundaries with
small reflection.
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CHAPTER 5

LATTICE SOLUTION OF PML EQUATIONS

5.1 THE LATTICE BOLTZMANN EQUATION

The lattice Boltzmann (LB} equation was originally derived from its boolean coun-
terpart, the lattice-gas automata (LGA). The first LGA model to simulate the
Navicer-Stokes equations was independently proposed by Frisch et al. and Wollram
in 1986 [79,80]. This model, commonly referred to as the FHP model, is comprised
of a two dimensional triangular lattice and Boolean particles possessing momenta
which allow them to move from one lattice sitc to another in disercte time steps. At
each lattice site theore is either no particle or at most six particles simultaneously, one
for each of its six neighboring sites. The evolution of the Boolean particle numbers
is described by a collision followed by the advection of particles to the next site ac-
cording to their velocities. The collision process describes the possible incoming and
outgoing configurations at each site based on a set of collision rules that ensure the
conscrvation of particle number, momentum, and energy.

Since the hydrodynarmics described by LGA methods are intrinsically noisy due to
large fluctuations in Boolean particle number, they show a lack Galilean invariance,
and conserve spurious quantities due to their simple symmetry, better alternatives
were sought [81]. Omne such alternative was proposed by McNamara and Zanctti
in 1988 in the form of the lattice Boltzmann equation [82]. This LB equation was
obtained by replacing the Boolean number fields in the corresponding LGA with
ensemble averages. It is worth pointing out that the eollision operator was initially
based on its LGA predecessor and only later models used the BGK collision model.
Also, the equilibrium distribution functions were Fermi-Dirac functions and not the
Maxwell-Boltzmann functions of current LB models. More recently, He and Luo were
able to show that the LB equation can be derived as a special discretization of the
continuous Boltzmann cquation [3,4].

An important distinction between the lattice Boltzinann (LB) equation and the
discrete velocity Boltzinann cquation {DVBE) can be found in the procedure used
for the space and time discretizations. In LB models, the velocity set used to dis-
cretize momentum space is chosen in such a way that a lattice structure is obtained

simultancously for space and time [81]. The space and time discretizations of the
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DVBE, on the other hand, are independent of each other. To sce this more clearly,
let us consider one procedure by which the LB equation can be derived. The proce-
dure outlined below involves a space and time discretization of the discrete velocity
Boltzmann cquation followed by a change of variables [83]. We begin by writing the

digcrete velocity Boltzmann-BGK equation in component form

afz . 1 . €]
U (145)

If we integrate Eq. (145) for a time interval At along a characteristic of the form

r(s)={(x+Es,t+3) (146)
we obtain
: At
f;("B + £aAt: t+ Af) - f'&(x! f') = - '): (f?(m + EE_S, t+ S)
0
— [+ €5, 4 5)) ds (147}

An approximation of the above integral by the trapezoid rule with second order

accuracy will results in
A
fle + AL+ AT) — fi(x,t) = — 2—; (fule + € AL L+ AL) — f7x + EAL T+ AL))
At "
- S fat) £, 1) + O(AF) (148)

Since f7(x+ & ,At, t+ At} depends on the set f,{x+ & AL, t+ At), we have a system
of coupled nonlincar algebraic equations for f, at time ¢ 4+ At. If we recast Eq. (148)

in the following form

fla+ €L+ A + 51 (Alm + &AL+ M) ~ [z + &AL L+ A1)

A At ,
_f%(mu t) - 2_; (f?(ma t) - ffq(m! f)) - _Tf (ft(ms f) - f:q(ma t)) (149)
and then apply the change of variables
PY - A 21
fiwt) = w0+ 5y (A, 1) - £, 1) (150)

we obtaln

Fla 1) — 5240 = filw ) + (@0 — e t) — 2,6 (51)
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or equivalently

. A+ 4
filw,t) = £, t) = “5 2 (S, t) — £, 1) (152)
Finally, we obtain the explicit system for ., i.e. the lattice Boltzmann equation as
] F ot oz e "
film + €A%+ AL) — fi(x, 1) = —X:—A_;(fz(ﬁfa t)— [, 1)) (153)
2

As in the case of its LGA predecessors, the lattice Boltzmann equation can be im-

plemented in two steps, a local collision process given by

At 9y i
m(ﬁ(m t) - .fe (:’B: t)) (1‘34)

and a streaming from node to node described by

f,:(:]:,t) = ﬁ(.’Ef) -

file + £ AL+ At) = [, 1) (155)

The fact that only previous neighboring node information is required to advance
the solution to the next time step accounts for some of the aliractive properties of
the LBE method, namecly the straightforward implementation, fast evolution, and
adaptability to parallel architectures. Since the time integration nsed in the above
derivation of the lattice Boltzmann equation is done along a charactcristic line de-
fined in terms of the velocity €, the discretizations of space and time are no longer
independent. of cach other. As we will see in the next section, this affects the stability

of the PML cquations when the LB method is used to solve themm.

52 LINEAR ANALYSIS OF LATTICE PML

The interdependence of the velocity, space, and time discretizations in the LB equa-
tion poses difficulties when we want to solve the PML equations by this method. The
cquations for the PML variables cannot be solved using the collision and streaming
steps as with the LB method, but have to be computed by a finite difference scheme
instead. We propose the following lattice formulation for the PML Eqs. (57), (58),
and (59)
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file+ &AL+ At) — fi(x,t) = -3 it& (fulz. t) — 79 (=, 1)) — Ato,qu(x, )
2
— Ata,gs,(x, 1) — Atoyfu,(flz, 1) — f =, 1)) (156)

Nz, t) — %, t
gr{®, t + At) — qu.{x, 1) = —Atoyg, (@, t) — Atu%( (i )E:’:z:jﬁ (@,1))

— Aoy fu(fil, 1) — £%(z, 1)) (157)

a(fz(ms t) - -](T-z.eq(a:v t))
dy

gulx, t + Al) — qo (2, 1) = —Atoyg(z, 1) — Aty (158)

To investigate the stability of the lattice formulation, again we study the linear
stability of the PML equations. For the lattice formulation, the linear analysis gives

the following ecigenvalue problem

ClI -2 -J)- MoBA| —Mo,C ~bio,C\
[—ik At — Alo,f] A [1— Ato,] 0 F=Fe (150
—ik,AtB 0 [1 - Ato,)

where €' is the diagonal matrix defined as ), = e~ &5 and the matrices I, A, B
and J arc as previously defined.

The eigenvalue analysis proves the existence of eigenvalues with positive imag-
inary parts that cannot be overcome even by filtering, showing that the proposed
lattice formulation will yield unstable PML layers. This fact has also been confirmed
in stmulations. We used various finite difference schemes, including the DRP, but
in all examples, the solution was highly unstable. A combination of a second order
centered low pass filter for the PML domains and a tenth order low pass filter for
the LB domain stabilized the solution somewhat so the acoustic and vorticity waves
could he observed exiting the boundaries. However, compared to the finite differ-
ence solutions presented in the previous chapter, the results are poor as evident from
Figures 20, 21, 22, and 23.
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Fig. 20: Contours of LB density at times £ = 0, 10, 12, and 16 for ¢ = 0.01

showing the reflections generated by the acoustic wave exiting the bound-
ary.
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Fig. 21: Comparison of LB numerical acoustic density solution with exact

solution at times t = 6 and 12 for ¢ = €.01.
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Fig. 22: Contours of LB v—velocity at times ¢ =0, 5, 30, and 50 for
€ = 0.001 showing the reflections generated by the vorticity wave exiting

the boundary.
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Fig. 23: Comparison of LB numerical v—velocity vorticity solution with
exact solution at times £ = 5 and 50 for € = 0.001.
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Fig. 24: Diagram of LB-IMEX 3 coupling for a 5-point finite difference stencil.

5.3 COUPLED SOLUTION

Ag the lattice discretization of the PML equations produces highly unstable results,
in order to use the PML equations in conjunction with the lattice Boltzmann method,
we formulate a mixed LB and [inite difference method to which we will henceforth
refer to as the coupled method. In the coupled method, the unsplit PML equations
are solved by finite differences using the third order IMEX scheme for the time
integration while the interior domain solution is obtained by solving the LB equation.
Since the finite difference solution obtained with the third order IMEX scheme is
stable for a ratio At/Az = 1, the coupling of the two methods at the PML interface
18 fairly straightforward.

To advance the solution to next time step, the finite difference solution in the PML
domains is obtained first. Periodic boundary conditions are used for the outer PML
boundaries while the interior interface solution is obtained using previous interior
LB function values. In order to minimize the grid to grid vscillations at the interior
domain and PML interface, we require that the interface solution be updated from
previous finite difference function values only. This requirement makes it necessary

o obtain the finite differcnce solution for additional interior grid points beside the
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PML. The implementation will vary depending on the finite difference scheme used.

To illustrate how the coupling is implemented, we will consider a five point cen-
tered finite difference scheme. In order to advance the PML solution, represented in
Figure 24 by 85, we need to compute the derivatives of the fourth stage PML solu-
tion in the IMEX scheme. Since only finite difference function values arc permitted,
the interface solution will require that the stage four solution be obtained for two
additional interior grid points. This is due to the fact that the five point stencil at
the interface grid point will use the solution of two interior grid points and two PML
grid points. The stage four PML solution and the solution for the two additional
grid points is represented by S4 in Figurc 24. Similarly, to obtain the stage four
solution, 5S4, we will need the derivatives of stage three values for the PML and an
additional four interior grid points, as represented by S3. Finally, since the stage
three solution will make use of the derivatives of the stage two solution and slage
onc is necessary to obtain the stage two solution, it follows that stages one and two
will have to be computed for the PML domains and an additional six interior grid
points as symbolized by 51,2 in the diagram.

Once the finite difference solution is obtained for the PML domains as outlined
above, the LBM solution is calculated for the interior domain. It should be noted that
the interface finite difference solution becomes the boundary condition for the LB
streaming step. In the numerical examples that follow, again we used the DRP finite
difference scheme which requires nine additional interior prid points for the coupling
of the two solutions. Even so, there will still be oscillations at the grid point near the
interface which may cause instability. Figure 25 shows that this coupling is stable

when a tenth order centered low pass filter is applied to the entire solution.

54 NUMERICAL EXAMPLES

54.1 ACOUSTIC WAVE

To test the LB-IMEX 3 coupled method, we will use the same cxamples and the
same parameters as in Chapter 4 so that we can compare its performance with the
performance of the finite difference model. We plot the density contours for the
acoustic wave at ¢ = (), 10, 12, and 16 for Ar = Ay = A¢{ = 0.1 in Figure 26
and we compare the numecrical solution with the exact solution at + = 6 and 16 in

Figurc 27. As can he ohserved in these figures, the absorption of the acoustic wave
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Fig. 25: Scaled norm of filtered LB-IMEX 3 acoustic density p versus time
for e = 0.1 and Az = Ay = At = 0.1.

is not as good as in the finite difference case but the reflection generated by the
coupling is still very small. For a quantitative evaluation of accuracy, we plot the
maximum difference between the numerical density solution and a relerence solution
along the line segment defined by the points {4.5,-4.5) and (4.5,4.5) for different
values of PML width D. The plotted maximum difference of density is relative to
the amplitude, Ag, of the outgoing wave as it exits the right boundary. As the PML
width is increased from D = 10 Az to D = 20 Az the maximum reflection crror is
constant. This indicates that the error gencrated by the coupling of the LB method
with the IMEX 3 PML is dominating the reflection error. Still, a reflection error of

less than 2 percent is obtained for the range of PML widths considered.

54.2 VORTICITY WAVE

In Figure 29, we plot the contours of the v—velocity at £ = 0, 5, 30, and 50 for
e = 0.001. We can sce from the contour plots that the vorticity wave is effectively
absorbed by the PML layer. The coupled solution compares very well with the exact
solution at £ = 5 and 50, as illustrated in Figure 30. The fact that the vorticity results
are in better agrecement with the exact solution than the acoustic results is consistent

with the reflection coefficient results obtained in Chapter 4 where the unsplit IMEX
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Fig. 26: Contours of LB-IMEX 3 density at times ¢ = 0, 10, 12, and 16
for ¢ = 0.01 showing the acoustic wave exiting the boundary with small
reflection.
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Fig. 28: Maximum difference between LB-IMEX 3 and reference solution
of acoustic density p versus time along the line segment defined by the
points (4.5, —4.5) and (4.5,4.5) for ¢ = 0.01 and varying PML widths D.

3 PML formulation gave the same results as the split IMEX 3 PML formulation in
the acoustic example, but produced better results in the vorticity example. These
similarities are due to the fact that we used the unsplit PML equations for the coupled
method. The maximum difference between the numerical and reference v—velocity
along the line segment defined by the poiuts (4.5,-4.5) and (4.5,4.5} as a function
of time is plotted in Figure 31 for different valucs of PML width D. Again, the
difference is normalized by the peak amplitude, By of the v—velocity as it exits the
right LB-PML interface. A rcflection error of less than one percent is obtained for
all of the PML widths considered, showing that the coupled method can be used

effectively in conjunction with the LB method.
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Fig. 29: Contours of LB-IMEX 3 v—velocity at times ¢ = 0, 5, 30, and 50
for € = 0.001 showing the vorticity wave exiting the boundary with small

reflection.
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CHAPTER 6

CONCLUDING REMARKS

In recent years, methods based on the Boltzmann-BGK equation have been intensely
studied not only as an alternative to the Navier-Stokes cquations, but also for their
applicability in cases where the macroscopic governing equations arc difficult or im-
possible to solve. Instead of having to solve multiple transport cquations as in the
casc of Navier-Stokes or Euler equations, only one transport equation for the distribu-
tion function neceds to be solved for the Bolizmann-BGK models. The flow propertics
arc then obtained by integrating the distribution function over the particle velocity
space. Furthermore, qualitatively good results can be obtained even when the veloc-
ity space is reduced to a very small number of discrete velocities. As more effective
discrete velocity Boltzmann-BGK models are being developed and their capability
is extended to simulate aeroacoustiics phenomena with increasingly better accuracy,
the rescarch and development of accurate numerical boundary conditions becomes
more imperative. For the Euler and Navier-Stokes cquations, the Perfectly Matched
Layer method has been shown to produce highly accurate non-reflective boundary
conditions that preserve well the accuracy of the solution in the interior domain. In
this work, Perfectly Matched Layer absorbing boundary conditions have been derived
for the discrete velocity Boltzmann-BGK equation in two and three dimensions for
the case of horizontal mean flow. Both split and unsplit formulations of the PML
equations have been shown to produce satisfactory numerical results.

There are several benefits to using Perfectly Matched Layers over other non-
rofleetive boundary conditions, the most important of which is its improved accu-
racy. Since the PML equations are perfectly matched to the governing equations at
the boundary of the numecrical domain, the boundary reflection errors are greatly
reduced, and, as a result, the overall error of the numerical solution is decreased.
A reduction in computational cost is another advantage of the Perfectly Matched
Laycr especially when we compare it to asymptotic boundary conditions which re-
quire a large computational domain to maintain the validity of the far field solution.
Because the solution in other buffer zones must be changed in a gradual fashion to
prevent reflections being gencrated inside the zone itself and because these methods
are proue to reflections at the interface of the buffer layer and the computational do-

main, they tend to be larger and less efficient than the PML domains. The accuracy
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of characteristic boundary conditions depends on the angle of incidence with which
waves exit the computational domain. When the waves are normal to the boundaries,
characteristics boundary conditions are very accurate, but as the angle of incidence
is increascd, their accuracy declines. As a result, characteristic boundary conditions
would not be good candidates for further extension o the case of obligue mean flows,

The PML equations presented in this work for the discrete velocity Boltzmann-
BGK equation are morc general than those previously proposed by Najafiyazdi and
Mongeau [52] in the sense that we made no restrictive assumptions in regards to the
absorption coefficients or the numerical schemes used for the spatial derivatives. As
long as the desired level of accuracy is obtained, any finite difference scheme can be
used to solve the PML equations. The choice of finite difference scheme n this work
has been motivated by the fact that DRP schemes preserve the wavemodes of the
original governing equations, and, as a result, they are better than other schemes for
aeroacoustics applications.

As demonstrated in the numerical examples, both the finite difference and the
coupled mcthod for solving the PML equations can produce accurate results. How-
ever, there are some considerations to be made before choosing between the two. [f
accuracy and stability are the main concern, then the finite difference method is by
far the better choice. Since finite differences arc uscd to obtain both the interior do-
main and the PMI. solutions, the two solutions are hetter matched at the interface so
they are stahle and produce more accurate results. If) on the other hand, the 