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ABSTRACT

ANALYSIS OF MODELS FOR LONGITUDINAL AND

CLUSTERED BINARY DATA

Weiming Yang
Old Dominion University, 2010
Director: Dr. N. Rao Chaganty

This dissertation deals with modeling and statistical analysis of longitudinal and
clustered binary dala. Such data consists of observations on a dichotomous response
variable generated from nmltiple time or cluster poinis, that exhibit either decaying
correlation or equi-correlated dependence. The current literature addresses modeling
the dependence using an appropriate correlation structure, but ignores the feasible

bhounds on the correlation paramcler impoged by the marginal means.

The first part of this dissertation deals with two multivariate probability models,
the first order Markov chain model and the multivariate probit model, that adhere
to the feasible bounds on the correlation. For hoth the models we obtain maximum
likelihood estimates for the regression and correlation parameters, and study both
asymptotic and small-sample properties of the estimates. Through simulations we
comparc the efficiency of the two methods and demonstrate that neither is uniformly

superior over the other.

The second part of this dissertation deals with marginal models, an alternative to
multivariate probability models. We discuss the generalized estimating cquations
and the quadratic inference function methods for estimating the regression param-
eter in marginal models. Rclalive efficiency calculations show these methods when
compared to the likelihood estimates could result in significant loss in ciliciency for
highly corretated data. We also propose a modified quadratic inference function
method and demonstrate through cfficiency calculations this is an improvement of
the original quadratic inference [unction approach. The final part of this dissertation

deals with methods for constructing higher order Markov chain models using copulas.
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CHAPTER I

INTRODUCTION

I.1 Repeated measurements

Many practical research arcas utilize regression analysis of correlated longiudinal
data. In particular, longitudinal data is frequently encountered in many subject-
matter arcas such as biology, medicine and public health. and social sciences. Longi-
ludinal data is essentially data observed sequentially over time. It may be collected
cither from a designed experiment or an observational study, wherc the outcome
variables are related to a sequence of events or responses recorded at certain fime
points during a study period. In essence, longitudinal data may be regarded as a

collection of many short time scries, onc for each subject.

Some research areas are focused on correlated clustered data. Clustered data
refers 1o o set of measurements collected from subjects that are organized in groups,
where a group of related subjects counstitutes a cluster. An example of cluster or
group is a genetically relaied members from a family pedigree. Obvicusly, situations
where clustered dala arise can be independent of time. Longiludinal data may be
thought of as a special kind of clustered data by Lrcating a subjeet as a cluster, so
cach subject’s time series forms a set of corrclated observations. This perspective
is mainly for technical convenicnce, because similar tools can be applied Lo analyse
longitudinal data or clustered data with different modeling of dependence structures.
In longitudinal data analysis, serial correlation is commeon, whereas in clustered data

analysis exchangeable pairwise within-cluster correlation model is popular.

Although there are many approaches for the analysis of continuous longitudinal
data, the development. of the methods for categorical longitudinal data has received
less attention, and the methodology is not ncarly as well-developed as for continu-
ous data. In this dissertation, we will study likelihood and some other alternative

methods for analyzing longitudinal binary data.

Table 1.1 shows the gencral fayout for longitudinal data that will be nsed in this

This dissertation follows the style of Jouwrnel of the American Statistical Association.



dissertation. Let y;; be the response at time point j on subject 4. where j =1,--- 1,
and 2 = 1,--- ,n. We assume that the n subjects are independent. The data are
said to be balanced if t; = t for T < ¢ < n. Let k be the number of covariates,
and 2y = (w1, - . %) be the corresponding covariate vector associated with y;,.
In general, x;;'s are time-dependent, the values of a5 vary at different time points.

Some real lile binary longitudinal data examples are given in next section.

Table 1.1: General layout for longitudinal data

Subject.  Time Response Covariates
1 1 it T - Tk
] i L1 0 Tk
f1 Yieq Tint - Link
1 l i1 i 0 Tk
J My Ligl 7 Tk
t; Ui, Tl T Bk
1 1 Uni Znll o Zalk
i Unj Loyl 0 gk

tn Yntn Lot e Lntok




1.2 Data examples

To motivate both methodological and theoretical developments i the subsequent

chapters, a few rcal world data sets with binary outcomes will be used for illustration

in this disscertation.

1.2.1 Six city respiratory infection study

Table 1.2: Six-city data,

No maternal smoking

Maternal smoking

Age Apge
Count  ———— Count

T8 9 10 i 4
0 0 0 237 0 0 0 0 118
0 0 I 10 O 0 0 1
00 1 0 15 0ot 0 8

0 1 1 0 1 2
n 1 0 0 6 0 1 80 0 11
0 1 0 1 01 0 1 1
01 1 0 01 1 0 6
01 1 1 3 0 1 1 4
1 0 0 9 24 1 ¢ 6 0 7
1 0 0 1 3 1 0 0 1 3
1 01 0 3 1 01 0 3
1 0 1 1 2 1 01 1 |
11 0 0 6 1 1 0 0 4
11 0 1 2 1 1 0 1 2
1 1 1 ¢ 5 1 1 1 0 1
1 1 1 1 11 111 7

Table 1.2 shows a longitudinal data set from a Harvard University techunical report

by N. M. Laird, G. J. Beck and J. H. Ware. These data are part of a study of the

respiratory health effects of indoor and ontdoor air pollution in six U.S. citles.
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The main research interest is the effect of maternal smoking on children’s respi-
ratory illness. The serial response variable for children from 7 to 10 is recorded as a
binary ontcome denoting the absence (0) and presence (1} of respiratory illness. The
maternal smoking is also a dichotomous variable with 0 as an indicaior ol smoking
and 1 indicates non-smoker. This is a time-independent covariate, i.e. it does not
change during the time of the study for each subject. The data includes only those

children who had all four responses at ages 7, 8, 9 and 10, aud therefore balanced.

[.2.2 Indonesian children’s health study

Table 1.3: Indonesian chaldren’s health data

Age
Xerophthalmia RI ‘ 1 2 3 4 5 6 7
No No 80 236 330 176 143 65 b5
Yes & 36 39 9 1 0
Yes No 0 2 18 15 8 4 1
Yes 0 O 7 { 0 0 0

Sommer et al. (1984} reported a study in West Java, Indonesia to determine the
causes and cffect of vitamin A deficiency in preschool children. More than 3000
children were medically examined quarierly for up 1o six visits to assess whether they
suffered from respiratory or diarrheal infection (RI} and xerophthalmia, an ocular
manifestation of vitamin A deficiency. Weight and height were also measured. The
data on 275 children are summarized in Table 1.3. This longitudinal data is recorded
al equally spaced time points where the binary response variable y;; is equal to 1 if
the child 1 had RI at time point j and 0 oltherwise. The main covariate of interest is
Xerophthalmia which is represented as a binary variable with 1 for presence and 0

for the absence of the Xerophthalmia symptom.

The main objective of this study was to assess the increase in risk for RI among
kids who were vitamin A deficient, which was measured indirectly via Xerophthalmia.

It was also of interest Lo evaluate the degree of heterogeneity in the risk of disease



among the kids.

1.2.3 Hamilton’s depression study

The data for this example were taken from a double-blind, European, multi-center,
placebo and active treatment controlled, randomized, 5 arm parallel group, 7 week
dose-finding study to evaluate salety and cfficacy for three fixed doses of a new drug
in patients with major depressive disorder. The dependent variable in this study is
a binary function of & patient's average score on the Hamilton’s Depression Scale
(Ham-D}, taking the vahie 1 if the Ham-D value at time ¢ — 1, -+ , 8 18 less than or
cqual to 80% of the baseline value, and 0 otherwise. The baseline Ham-D values for
all subjects arc greater than 18, implying that all subjects are initially diagnoscd as
severely depressed with a dichotomous baseline value of 0. The assessment was made
cach week on the patients, starting from the beginning of the first weck (baseline)
and continuing for the next seven weeks, (or a total of 8 measurements. The primary
objective 15 the change in Ham-D rating from baseline to the final visit (the subject
might left the study early). The main covariales we will use in our analysis are
the Treatment {active or placebo) and Time (in number of weeks [rom the bascline

measurement). Table 1.4 shows the observation of all 8 visits of the firsi patient.

Table 1.4: Hamilton’s depression data

ID Time Ham-D COUNTRY Age Gender Treatment Baseline Y

1 1 24 BULGARIA 42 M 1 22 0
1 2 22 BUGLCARIA 42 M 1 22 (
1 3 21 BULGARIA 42 M b 22 0
1 4 14 BULGARIA 42 M 1 22 1
\ ) 12 BULGARIA 42 M 1 22 1
1 6 10 BULGARIA 42 M 1 22 1
1 7 BULGARIA 42 M 1 22 1
1 8 BULGARIA 42 M 1 22 1




1.3 Overview of methods for the analysis of repeated measurements

Statistical researchers have developed several related types of extensions of gener-
alized linear models and quasi-likelihood methods for the analysis of repeated mea-
surcinents. These methods are useful for both diserete and continuous response vari-
ables, including normal, Poisson, binary, and gamma respounses. Three general types
of extensions of gencralized lincar models methodology to the analysis of repeated

ICASUrenicnts are

e Marginal models;
¢ Random-effects models:

s Transition models.

We will discuss next these models briefly.

L.3.1 Marginal models

In marginal models, the marginal expectation g;; = [{y;;) 15 modeled as a function
of explanatory variables. The marginal expectation is the average response over the
subpopulation that shares a common value of the covariate vector. Associations
among repeated obscrvations are modeled separately from the marginal mean and

variance of the response vector.
The assumptlions can be outlined as follows:
1. The marginal expectation p; is related to the covariates through a known link
function h:
!
pi; = h{z,,8),

where 8 is a k& x 1 vector of regression parameters.
2. The marginal variance of 1;; is related to the marginal expectation ju;; via
Var(y;;) = OV (pi;).

where V is a known variance function and ¢ is a dispersion scale parameter.



3. The covariance between y;; and i, is a known function of y;; and s, and a

vector ¢ of unknown parameters.

[.3.2 Random-effects madels

In random-effects models, heterogeneity between individuals arising from unmea-
sured variables is accounted for by including subject-specific random effects in the
model. These random effects are assumed to account for all of the within-subject
correlation present in the data. Conditional on the values of the random effcets, the

responses are assumced to be independent.

The assumptions in the random-cfects models are as follows:

1. Given a vector b; of subject-specific effects for the #fh subject, the conditional

mean of y,; satisfies the modcl
A(E(y,ib)) = 2, 8+ =, b,

where A is a known link function and z; is a vector of covariates for subject ¢

at time 3.
2. Outcomes ;1. - - , yy, are independent given b; for each ¢ =1,.-- . n.
3. Random cffects by, -- - | b, are independent and identically distribuled.

[.3.3 Transition models

Transition models account for heterogeneity by tracing the development of a depen-
dent variable over time and they represent the distribution of its current value as
a function of ils history. In transition models, for the analysis of repeated mea-
surements, the observations y;(,- - , ¥, from subject ¢ are correlated because y;; 1s
explicitly influcnced by the past values g, - - ) . Yiy—1. Suppose ky is the history ol the
subject up to time potnt j. With this information, we can calculate the probability

of observing 1 = (ua, -~ , ) 65

L
ﬁ(. """ 'I-)r'el Hp UU|h'J
i=2



where p(y:1) is the marginal probability of the first observation and p(y;|f;) is the
conditional probability of y;; given its history. Specifically, if the transition form
Yij—1 to ¥; only depends on the values of ¢, .1, this transition model is known as

the first order Markov chain model.

1.4 Owverview of thesis

This dissertation is organized as follows. In Chapter I, we introduce a conditional
lincar family of multivariate binary distributions due to Qagish {2003). We show that
this family results in a first order Markov chain model when the correlation structure
18 the first-order antoregressive model. We derive the maximum likelihood estimates
and the Fisher information matrix for the regression and correlation parameters in
this model. We also develop test of hypothesis. Next, we study the multivanale pro-
bit probability maodel and show that these two models generate different probability
mass functions. We make large and small sample efficiency comparisons between
the two likelihood models and show that no one wmodel 1s uniformly superior over
the other. Real life data examples are presented to contrast parameter estimates [or

both the models.

In Chapter III, we discuss marginal models. As the name indicates these models
specify only the marginal distributions and correlation structure but not the joint
distribution. A popular method of estimation for the marginal vegression parameter is
the generalized estimating equations. We briefly describe the GEE and outline some
theoretical drawbacks with the method. An alternative to the GEE is the quadratic
inference function (QIF) approach due to Qu et al. (2000). This method uses basis
matrices in lien of the working correlation parameter and bypasses estimating the
correlation parameter. We give explicit expression for the agymptotic vartance of the
QI regression parameter estimator. Through large and small sample simulations we
show that the QI method is inefRcient for estimating the regression parameter for
highly correlated data when compared with the maximum likelihood estimator from
the Markov chain model. We also propose a modified QIF (mQIF) method using
a correlation estimator that pools information from all the subjects. We show that
mQIF is an improvement over the QIT method. We also study performance of the

MC and mQIF when the correlation model is misspecified.



In Chapter IV, we give a short introduction and discuss possible methods of
constructing higher order Markov chain models using copulas. The dissertation ends
with a discussion in Chapter V and an appendix containing the SAS macro TMMLE

that we developed for fitting the Arst order Markov chain model for real data.
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CHAPTER I1

TRANSISTION MODELS FOR BINARY DATA

I1.1 Introduction

Binary longitudinal data are often collecled in clinical trials and genetic studies where
interest is on agsessing the effect of a treatment over time. A canonieal problem s
to delermine a tegression relationship between the measured responses and a set
ol time dependent/independent covariates. The longitudinal binary data can be
viewed as a short discrete time series. Unlike Gaussian time serics, modeling discrete
variate time series is verv challenging and difficutt. And the statistical methods are
not well developed for discrete variate time series. The fact that variate values are
integer renders most traditional representations of dependence cither impossible or
impractical. There have been a number of cfforts to develop a suitable class of time
serics models for binary data. [un this chapter we first. briefly review the literature
and then introduce a fully specified transistion model for the analysis of longitudinal

binary data.

[[.2 Survey of transistion models for binary data

Longitudinal binary data consists of a sequence of binary variables, which can be
thonght as a sequence of states of a two-state stochastic process. A natural way to
model the joint distribution of a two-state stochastic process is by a probability model
which deseribes the transition from one state to another. Several researchers have
developed transition models for the analysis of longitudinal hinary data. Here we
will briefly survey some of these models. Muenz and Rubinstein (1985) introduced a
two-stale Markov chain for a discrete-time binary sequence. Their motivation was a
study of the impact of mastectomy which measured the binary response of “distress”
or “no distress” for five groups of women who had surgery for different breast discase.
The transition matrix of the chain is given by

1 -~
A= Poo Poo ?

Do 1 —puw
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where pop 1s the 0 — 0 transition probability and pyy & the 1 — 0 transition proba-
bility. It was assumed that the process is stationary and thus the transition matrix
M remains the same at different time points. Muens and Rubinstein {1983) modeled
the transition probabilities pag and pig by logistic regressions with a covariale veclor

x and two different regression parameters 3 and v as follows

exp(x’'8) and puo(?) = _exp(x'y)

1+ exp(x’'3) 1+ exp(x’y)’

Poo(B) = (2.21)

The likclihood function corresponding to model {2.2.1} is then given by

Hpnn(ﬁ)mo(l — pool )Y pro(v) (1 — proly))™ 0

=1

= JTro(@m @ —po@))e [ [ ool (1 = pu()y™, (222)
i=1 =l

L(3, )

where 7,00, 01, Moo and ngq are the nomber of 0 =+ 6,0 = 1, 1 - 0 and 1 —
1 transitions observed on the ith subject. Clearly the likelihood funciion (2.2.2)
depends only on pen(8) and p1p(y), so we can get the maximum likelihood estimates

of # and v by maximizing the following two log-likelihood funclions separatcely

Z{Timuxi 8 — {00 + 7501) log[l + EXP(XE .5)}}7

i=1

£o(8)

&{)

Il

mn
Z{ﬂnnx; ¥ = (o + nanplog[l + exp(x;y) |-
2=

Albert and Waclawiw (1998) proposed a guasi-likelihood transitional model.
They assume the transitional probabilities are random satisfying some moment con-
ditions. Their model can he thought of as a random-effects model. In their model

the transition matrix for the ith subject Lakes the form

( 1 — P Fim ) (2.2.3)

Pio 1-Fn

where Py, and g are random quantities satisfying the moment conditions

E[P:m] = Hol, E[};;l{}] = Hlo



and

var{Po) = 0y, var{Pag) = ow, and corr( P, Pao) = p.

If there are observed covariates, the means pgy and pyg could be modeled as a
function of the covariates and the regression paramcter. Lol r; = (nap0. 701, 410) be
a vector of the number of 0 —0, 0 —1 and 1 —0 transitions over ¢ time points for the
ith subject. Note that the 1 — 1 transitions are determined by the sum of the other
transitions. Tet s; be the vector which consists of the squares and cross-products of

n; along with iy, that is,
N _ 2 ) _ R IR
S (”'-,10[)1 Flipn ol - Thon?a0s Pypys Taor 100 Fiy1n- 1178500 Ry o1, 71T, n-,;n) .
Albert and Waclawiw (1998) proposed an estimating equation approach for estimat-
ing the means poy, pig, variances oy, oip and the correlation p based on s;'s for
1 < ¢ < n. They also provide methods of estimation for the regression parameter
in the situations where the means arc functions of the covariates and the regression

parameoeter.

Azzalini (1994) introduced another model based on first order Markov chain to
analyze serial correlated binary observations. Instcad of using correlation to mea-
sure the dependence, he used odds ratio wo measurc the dependence between two
consecutive binary variables. The odds ratio is debined as

Lo m/l—p)
Copo/(1 —py)

where p; = P(Y, = 1|Y,—, — 7} lor 4 = 0,1. A 1cchnical reason in favor of nsing

(2.2.4)

this odds ratio as a measure of dependence as opposed to the correlation is given
by Fitzmaurice and Laird ({1993). They observed when the association between
observations is modeled using v, the estimates of the mean are relatively ingensitive
to changes of the association parameter. Moreover, the range of feasible values for ¢
is independent of the value of p = F(Y]). Iu the stationary case, given the mean p

and the odds ralio %, we can obtain pg and p, by solving the equations (2.2.4) and

#=ppr + (1 — ye)po. (2.2.5)

In the non-stationary case ,(3) = E(Y;) varies al different time points and it is

rclated to the covariates x; and the regression parameter § via some link function.
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Then equation {2.2.5) is replaced by

m(.ﬁ) = Ht---l(_ﬁ) M+ (1 - 11‘-:—1(3))1’)[}: (22‘6)

where py and p; now vary with ¢ and 8 as well. Solving equations (2.2.4) and (2.2.6),

we chtain

i for =1 .
b= =1+ {1 —ptr—1) 4 L —{ap—Ep g —pre—1 —2pmp e 1) for % % 1 (22")
STy ey B A T sl ) :

where 8% = 1+ (3 — D) [{pte — pe- 1070 — (s + pe—1)° + 2(ps + j22-1)]. In the above we

suppressed Lhe dependence of p; on #, 3 and .

(Given a sequence of observations ¥, ys, - -, %, the log-likelihood function for 3
and ¢ is
t
ZF (8,4) = Z yilogit(py, ) +log(l — py,_, ). (2.2.8)
i=1

This can be summed over all the subjeels and maximised (o get the maximum hke-
lihood estimates of 8 and . Even though this approach has desirable features but
there are some disadvantages. If the marginal means depend on time-varying covari-
ates, the assumption of odds ratio being fixed over all possible marginal probabilitics

15 unlikelv Lo be so.
In the next section, we discuss a Markov chain model which generates binary

random vectors with correlation structure that is the fivst order autoregressive.

I1.3 First order autoregressive structure

A reasonable correlation model for a sequence of serially corrclaled binary measure-
ments yy, ¥z, - -+, 4 15 the first order autoregressive (AR(1}) structure with paramerter

2 which is given by

1 p I
1 .. il
R(p) — “’ S ':O _ (2.3.1)
] pt pt—l 1 ]




i4

In the next two sections we derive the feasible range for the correlation parame-
ter p and a method of constructing a joint probability distribution with correlation

structure (2.3.1).

II.3.1 Conditional linear family

Recently, Qaqish (2003) introduced a conditional linear family of binary distributions.
The idea behind the construction of this family is that the expected value of the

current abservation is taken as a linear function of the past obscrvations. That is,
eI

BV, =y, 1<i<i—D=p+> by(¥; —p,). (2.3.2)

j=1
To find the coefficients &;; we multiply both sides of the above equation by (¥; —p;),
3=1,--,¢— 1. Then taking expectations we get
Cov(Yy, Y1) = baVar(Y1) + b Cou(Yy, Ya) + - + by .1y Coue(¥1, Yiy)
Cov(Y;, Y2} = by Cov(Yo, Y1) + b Var{Ya) + - + byory Cov(¥a, Yio)

Cov(Y;,Via) = by Cov(YVio . Y1) + b Cov(Yio,Ya) 4 - b by Var(Yioy)

The above identities can be writien in a matrix form as

Con(Y;, Y1)
Cov(Y,.Y:
Ol(_ . 2) =X br
Cov(Y, Y1)
where b = (b1, bia. - - bys—1y) and
[ Var(Yl)  Coo(WiYs) - Cou(Yi.Yio)) |
- Cov(Yy, Y1) Var(Y,) <o Covl(Ya, Yi_))
Lagal — N N .
Cou(Yio, Vi) Cou(Y,Ys) -+ Var(Y; )
Thus
Cov(Y;, Y1)

" Cou(Y;, Ys)
b=¥7 .

Cou(Y;,Yio1)



In the case the corrclation matrix of (11, ..., %-1) 18 B(p). we have
[, 0 .. 0 g1 0 <o 0
PR ELEECHRENL I S I
Thercfore
% 0 0| i 0 i 0 ] et ]
b= | E T k| D e
-:_: 0 0 | =
- 0 — E] R | 7
S

For the AR(1) correlation matrix R{p}. the inverse is given by
1, ,
H_l(,{)) = e (]. + ,Og)ﬂ'ifl — pﬂfg - pz J»'Ilj!

where A is the identity matrix, Me is a tri-diagonal matrix with onies right above
and below the diagonal, zero everywhere else. The matrix My is a matrix of zeros

except the first and last diagonal elements which are equal to 1. Note that

i o1 Pt Pt Fas 7

pi—2 p‘i—ﬂ p?i +pi—2 0

I e Ehaa] NN o I

I p* o 0
| p 72 R - S I

1—p?
0 {
=] Le]




Therefore

0

Thus for the AR(1} corrclation siructure

o

a2

0

145
Ti—t ]

distributions satisfy the relation

g

0

<1}

pﬂx—1 B

EYY; =y, l<5<c-1) = PY=1Y; =y)

Ty

= P pa(yi—l - IU«;—1)-

i6

the conditional lincar family of binary

(2.3.3)

This shows that if the correlation structure is AR(1} then ¥; depends only w1 and

it independent of the past observations. Thus the resulting process is a first order

Markov chain.

I1.3.2 Probability mass function of the conditional linear family

In the previous section we have seen that when the correlation structure is AR(1),

the resulling conditional linear family is a first order Markov chain. For this chain,

the transition probabilities of moving from y,_; to 3 can be written explicitly as

follows.
Piox
Finy
Ping

]
2l

Pi—p

Ti—1

Ty
pi—p—(l—pi)=ptp
Ti-1

1-FPp=g-+p

1-Fn=aq—p

(O—pi)=pi—p

T, 104

fi-1
O 104

Fi-1

Ti-104

-1

Ti- 10

Pi-1

We require that these four probabilities lie between (b and 1 for all 4. This leads to

the bounds on the corrclation parameter p as

?gf% F{pi 1, p0)

< p << min Ulp; 1,
__;:__g;ggtﬁ(ﬁh 1. Pibs

(2.3.4)



where

o ab _ {1 —a)(l—1)
Lla,b) = md){{ =) =1) \/ },

. a(ll—06) [(1—a)b
Ula,b) = mm{\/m’\/ﬁl—h)}‘

The corrclation bounds (2.3.4) were given in Chaganty and Joe {2006). For fixed p;,

I <¢ < ¢ and p satisfying the bounds (2.3.4), the joint probability distribution with
AR(1) structure can be obtained starting with an initial Bernoutli distribution with

mean py and by the first order Markov chain with transition matrix

Wi
0 1
q.i + i1 ; — Fi—17 ﬂ
Hmye = = P Yi1 (2.3.5)
4 — Pap—_lT pitp g;,a-_fi L

where ¢ = 1-pi, 0, = (pg )42 = 1,2, -+ ¢, The transition matrix /1;; ), gives us
the conditional distribution of ¥ given the previous state Yi_;. Note that Ny, is
a function of marginal probabilities p; and p;_| as well us the correlation parameter
p. If the marginal distribution of Y;_y 13 Bernoulli with mean p, j then the marginal

distribution of ¥; is again Bernoulli with mean p;, since

(g1, pi1) Huona = (a0, i)

Further the transition probability matrix from state y,_; to state y; for j > 4, is given

by
H{*_l}.—.j - }j[i—l),i-{fi,(i-fl) s 1’!{3_1)‘_}
R e a7
qj_}_p)--1+l =1 f]j_,{'):"“'l i—19;
-1 P

L 1O T T

L —i4+1 7t 4o -1t b

p; - ¢ P+ 7 S
G4 1 Pi-1

p = p, that is; all the marginal probabilities are the same, (he matrix Hi_1y4 does

not depend on ¢, and the Markov chain is a homogeneous, stationary chain.
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For the above first order Markov chain model, the joint probability mass function

lor Y = (Y7,--- . ¥,) is given by
T(y) = PY =y}

t
I TR 5! yi b= Y1 Fi_10y
= % I l [}”«;"?-i + (=1 P ST P |

P i
i=2 bl

(2.3.7)

This joint distribution is such that the marginal of Y; is Bernoulli with mean p;

and Corr(Ys, Vi) = piIlfor 1 < i+ j <t asshown above.

I1.3.3 Generalization to Markov structures

The construction of the joint distribution for repeated binary observations with speci-
fied means and AR(1) correlation structure in the previous section can be generalized
readily as follows. Assume that the mitial distribution of ¥1 is Bernoulli with mean
p1, and for 7 > 2, let the transition from state Y;_y to Y] follow a first order Markov

chain with transition matrix given by

i T5.-10% i1
i T Pi1 G = P
i B i1 Pi-1 (2.3.8)
= = Ti-16F4 } a1 | o
Pi = Pt Pt P
i1 i

Malrix {2.3.8) is a legitimate transition matrix if L{pg_1y, i) < picr < Ulpu—1). pi)-
Asg before, it is easy to see that from the above transilion matrix the marginal dis-
tribution of Y; is Bernoulli with mean p; if the marginal distribution of Y,y is
Bernoulli with mean p;_; and the correlation between Y,_yy and Y, is p;.,. Tor the

above transition matrices we have

Hu-vg = Ha-naHigry o Hye, ]
(i-1 (-1
9+ H pr | g — H ol
E=fi-1 Ex(1—1 ;
- o o - (239)
pi=| 11 o] 222 pi+ 1 I o) 222
k=(i-1) k=(i-1) |
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This is the transition matrix lor moving from stale y;., to y;, for 7 > 4. Hence
Corr(Yi—n, Yj) = (HE:(:)_I) ﬁk). In particular if the repeated binary observations
are taken at time points e} < ey < -+ < gy, we could take pp = p—7%. Then
Corr(Yi-u. Y;) cquals p% 7%=t that is, the resulting correlation structurce is the
Markov structure. The Markov structure is an appropriate model for longitudinal
data that is collected at different time points for diffcrent subjects. Similarly, we
could also construct multivariate binary distributions with specilied marginals and
Generalized Markov structure. However note that for these structures the parameters
must satisfy stringent bounds which are lot more restrictive than positive definite-
ness. See Crowder and Hand (1980) and Nunéz-Anton and Woodworth (1994) for a
description and uge of the Markov and Generalized Markov structures in the analysis

of continuous lengitudinal data.

I11.3.4 Maximum likelihood estimation

Let ¥; = (ya, ¥z, -+, wit,)” be a vector of binary response with marginal means p; =
(P iz, i) € (0,10 and let X[; = (341,752, -+ . Zy) be the corresponding
h-dimensional row vector of covariales measured at time 5 —= 1,2, - L ¢ for subject
i = 1,2, n. Assume thal the n subjects are independent.  Supposc that the
responses are related to the covariates as

Elyy) = py = (X, B),

where (-} 18 cither the probit or the logil link funciion and 8 is the k-dimcensional

regression parameter.

Let 8 —= (8, p), then the likehihood for subject 7 is given by

Li(8) = w(y; X, 6)

£
iy l—w Yo 1— -1} \ 2 i1 J
= pign H (pijj 5 T4 (=1 ALl T 1(;} )—yi:_? O
=2 Pig-1 4-n
(2.3.10}
where ¥ = (i1, in, - b, ) and X = (X, X, ..., Xig,). The maximum likelihood

estimate Oy g is obtained by maximizing the likelihood function

Lty = [ £:8) = [] nlws; X.,6).
i=1 i=1



The log-likelihood function can be writien as

™
=1

T t
. vii 1=y G- LT Fe(-1)T4)
+ E E log {pij Gy A (1O p e

i1 =2 wp-1y Jig -0

— i M + i M. (2.3.11)
i=1l i=1

From the results in Anderson and Goodman (1957) it follows that there exists a

consistent solution § = [ﬁ p) to the likelihood equation

5 L
70 = L @) =0

We will now derive a simaplified expression for -é,‘—s‘éf(ﬁ) and the Hessian matrix that

can be used for computational purposes.

The Hessian matrix is the second derivative of likelihood function, and it is of the

lormn
528
H{#Y =
) AN
" 321'1(1’3] ) i 82:'1:'{59 o e
C 0000 9009 (2.3.12)
The first. and second derivatives of M, are as follows:
(r)i"'/f“ = 1 (‘)}J“l 1 c')pﬂ
— L ] g — . 2.3.13
i')zﬂfu . . __?_ i_apil ('}pﬂ Sy i E}gpi!.
9803 — = | Mpn 08 0p "V pu 080p
1 3py Opa 1 #pa R
aM,
i _ (2.3.15)



To get the first and second derivative of Af;p in (2.3.11), let. I} be the conditional

probability of Yi; = yi; given that the previous state equals to yi;_1), that is,

P:; = P {} = Ug}|y_f 1y = Yy— I}}

Tii- 11T
M1y TTWhap-o1)
2(5-1) Tea-1)

F—y Lo
= J Hip g1ty
— plj 7'." + ( ]_) CF-11THY g

The derivative of My 18 a sum ol the derivatives of log(P%) at each time points

j lor cach of the n subjects. Let Gy = pf;“*"qelj ¥4 we then have

80* Ui 1()1)," I—y; 'yt} —¥n ap*
0_,31 = [Uz_;PUJ dﬁj} G; P (1 —y«;j)fhj I (‘3,{3}

g -1 1- 33 ij TG 8-!-“1 BT
= [Ju By gy = (= ol 4 } 55 (2.3.16)
PGy —9 1-y, Y055 Opy 11—y, pi
¢ — s —1 Vi, L= 3y U U Yipmi 1THy T b L J
A LA R v i L e Y

7 -1 - i3 0p30p3
—2ys (L —wlply 0" 2 o

2
) Mip o TH 8 plj
R A R TET

—ye—1 D45 Op,
—iil1 = 1 Yij "Wy 15-——-3-2-“—22 —
Y Yis )P i3 Y an ap (

(2.3.17)
Then
Ty 1 i ¥y 1Yo
dﬂ'jﬂ _ Z 8 ()D*) _ Z 1 d"DvJ
98 > 55" Py o8
G=2 j=2
i [ dcl-\ 3 137 S ¥
. 1 d(-Tg'j 1 Wiri 1y P _H—J?)—G.t(i—l) e O’-,,(J-__!_}O—;j """‘J—_]—v..l,
=2 5] TE{j—1}



. t ;- ,
P M, B 1 ()Pg; or o
BRI Y2 O 3
a8388 g {F; j) a8 ap
& (-0 g0
1 | & g ( an Gigi-1) = Ciz-1) 735 ag

g ( _,1)ysu—1)+?ﬁjp

ry | 0808

(Gig-y)?

Ba,; 1304 BG‘;U_1
1%t 0+ ( (.3-'3) Gig-1) ~ 9=y a4 )) o
po{=1)%0 2p 5 (2.3.18}
Ti{i-1}
aJUrQ fi 1 ’ . Tirso11F4
* — - — 1 Y-ty LY kPl S . 2319
Op ; £5 - ph Dt (2319
3 Hj—1) Hi(z-1)
[ 2
52;'\{{1-: L\ 1 il 11y
D I = [ = A (2:3.20)
£ i—2 i Pigi-1y Uigi-)
207, L Yy GGy
i}iﬁ{ = Z 1. (~1)wo-nvs 20 10_11} JL‘?_IJ% %
ad()p e I::j ((Ii(j ...1))2
(2.3.21)
where
a C)O', - g, SG.,: P
oF (4%3) “Gig-1y = Ui(j—!)gz',a'i@{‘;; J)
_ Py 9060y 8Gimy G-y 9oy o G
apopg Y a8 o a8 a8 ARV ET
agifj—l}o’t'j a
— a5 '53\/pijqijpzu---l)gi[_g— 1)
1 i) Ip,j

= (1 = 2 g D L g (1 = 2 )|
I { Piti—1)) i T b Pig— 1y - Pij) o8 |
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Pognoy 1 90610 09y
8,{?!’3;‘3’ N Tif - 13745 0,‘3 L;iﬁf
; Ppii-y Opig-n -y o, O*pi-) o — 1)
204;-10i; L\ 0808 Y W gpep ) T

Opigj-1) Opy Api; Opi—1)

Fpi; Oy Opi; & py;
2 G5 OPyOPy . ij
+-0 o) (g0~ 250 e~ P )|

Using the above cxpressions we can write the derivative of the log-likelihood

function and the Hessian matrix as

- M - IM
a8 ; BYE

& i=1
55 N 2.3.22
tels) (@ L ; (2.3.22)
=
and
P agas i - aﬂaﬁ; - ER, 8,0
o . {2.3.23)

z": O My
ABAp

=1

Z 2 M
3,2
p ap

We have used the above expressions {2.3.22) and (2.3.23) to develop a computer
program to find the maximum likelihood estimates for the first order Markov chain

moelel.

It is well known that the maxinum likelihood estimator 83477 has an asymptotic

normal distribution:

(Arire — 0) ~ N(0,.27Y),
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where 7 is the Fisher information in n subjcels, and it can be caleulated as

oe(0) H2(6) 8e(0) HE(0) o
7= Z [ae (w} ZZ (yi; X,.0) { 0 d&,], (2.3.24)

i=1

where the inner sum is taken over the 2 possible vectors of ;. The diagonal elements
of 7! are the asymptotic variances of the parameter estimates. We compute the
Fisher information matrix in the software thal we developed to estimate the standard

errors ol the maximum likelihood estimates.

I[1.4 Hypothesis testing

In this section we develop hypothesis testing procedures for testing the significance of
the correlation parameter p. We devclop hypothesis tests for general functions of the
correlation paramecters, and then concentrate upon specific examples and compare

their performance through simulations.

II.4.1 Likclihood ratio test

Knowledge of the likelihood function allows us to utilize a likelihood ratio test for

hypothesis tests regarding the correlation paramerters.

Generally, we would like Lo lest a mull hypolhesis that the corrclalion param-
eter p i equal to some constant, or Hy : p = py. To do this, we take the ratio
of the likelihood evaluated with the maximum lkelihood estimates under Hy (the
resiricted MLE's) against the likelihood evaluated with the so-called unrestricled

maximum likelihood estimates. Let 0y = (E@, 7o) be the restricted and 0 = (E p} the



unrestricted MLIYs, respectively. Then the likelihood ratio test stalisiic is
S H;e-_T ?Tz(yxiﬁu)
[T 7l 0)

Yi1, 1 =1 Yiy LW NG Fifi-11Te2
it qal HJ 2 |:p1,_jl q“b.? +( l) -1 JJJOO Wig 1y TR o1

Pii-n %G oo

th L=l iy 7WG ) v ywhg—ntwg o Tigy 1155
P q*l HJ =2 [ptj Y (Lot p Yig-v T nG-D

Pigi—1y Figg-1)

Hig “Wis Wity Lytwii o Fil5-11T;
fi |:p¢3r q“ +( 1) o ;0 ?;,,(J 1) 1—!s’fU 1

i1y L

. 1- Ui PTRPIN T T T_\o"j
=2 i {1 [ I ¢ LY o~ B
4 |:J”U Tij ; ( 1) T p Vil Lr TR

paf} 1] q!fJ 1

For casc of notation we wrote py; and ¢; in the above for the estimated probabilities
that depend on the estimated regression parameter 5. The most obvious special case

18 Lhe hypothesis Hy @ g — 0. Thus, the test statistic becomes

fi Uy 1,
p:j qzj
/\(00 'r) H e;U I—'rhJ ] ) Fu Tirgo1y i
: p - (_ )yv[_';—l) L I(_}#
j=2 : }"au 1, e 1
jJ'a('} 1] ‘lt(} 13

Becall that that —2 1n()~(§'0., 5}) has an asvrptotic chi-square distribution with d —
d,.— d, degrees of freedom, where d,,, is the munber of parameters in the unrestricted
model and d, is the munber of parameters under the null hypoihesis. Since the
difference in the number of parameters between 8y = (Hy,0) and 8 = (8,7) is 1, then

-2 ln()\(gg, Ef)) is asymptotically chi-square with one degree of freedom.

I1.4.2 Wald’s test

Another hypothesis testing procedure based on the maximum likelihood estimates
is the Wald’s test. Under this test procedure, the maximum likelihood estimate g
of the correlation parameter p is compared with the hypothesized value py, with
the assumption that the difference between the two will be approximately normead.
Typically, the squarc of the difference is cormpared to a chi-squared distribution. In
the univariate casc, the Wald’s test statistic is

(P — m)?
Var(p)
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Alternatively, we could use the test statistic

(5 - )

SE(p) 7
where SE(z) is the standard error of the maximum likclihood estimate, and it is
estimated by the inverse of the Fisher information for the parameter p. This statistic

is approximately distributed as standard normal.

IT.4.3 Estimated power of the test statistics

To gauge the performance of the likelihood ratio test and the Wald’s Lest, we make use
of simulations to estimate the power of these tests. We simulated n = 30 observations
of size £ = 4. Tor the likelihood ratio test, we calculated both the restricted and
unrestricted maximnurn likelihood estimates, which should be similar as the simulated
data reflect the conditions stated in the null hypothesis. For the Wald's test, we
calculated the maximum likelihood estimale and the Fisher information using the
simulated data. Since we are simulating data using nonzero value for g and the null
hypothesis is Hyy : p = 0, we expect to reject the null hvpothesis. Recall (hat for each
test we reject Hy if the test statistic is grealer than a chi-square eritical value y? for
a parlicular significance level. We chose the siguificance level to be a = 0.05. [f we
repeat these sirmulations a lurge mumber times for a particular value of the non-zero
correlation parameter, then the estimated power of the test is the ratio of the mumber
ol times we reject the null hypothcesis to the total number of repeated simulations. If
we then repeat this procedure over a wide range of values for the non-zero correlation

parameter, we can get an idea of how the test performs in many scenarios.

The estimated powor of the likelihood ratio test (LRT) and the Wald's test are
graphed in Figure 2.1. This shows that for testing Iy : p = 0, the power [unctions
for both the tests are increasing with p, converging 1o one as p moves far away from
zero. The graph of the power lunctions for both the tests are almosi, identical. Thus

for testing Ho : p = 0, the two LRT and Wald's test perform similarly.
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Figure 2.1: Estimated power for LRT and Wald test

I1.5 SAS macro TMMLE

To fit the first order Markov chain model for longitudinal binary data, we developed
a SAS MACRO called TMMLLE. It uses the estimate of the generalized estimating
equation {GEE} method from PROC GENMOD as the initial value for nonlincar
optimization by Newton-Raphson ridge method. The main caleulations concerning
the search of the maximum likelihood estimate and an output delivery system are
carried out by PROC IML. At each iteration, the macro calculates feasible range of
the correlation parameter p based on the current estimate of the regression param-
eter and checks whether the estimated p is within the range, if nol, we replace the

estimated p by the midpoinl of the [casible rangce.

The current version of the macro implements two link humctions: logit and probit.

The macro can be invoked using the command:

Ftmmle(data=, yvar=, xvar=, id=, fun=, outpar=, outllf=) where
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data the SAS data set containing the dala to be analyzed

yuar name of the dependent variable

TUar names of the independent variables

id oroup or clusler id, should be a vector of positive integers.
Jun options of link functions

outpar outpul of the parameter estimator, standard error and p-values

outllf  ouiput of the value of log-likelihood {unction and AIC,BIC valuces

1.6 Multivariate probit model

Another fully specified maodel for binary data is the multivariate probit model. Mul-
tivariate probit model belongs to the class of latent variable thresholds models for
analyzing binary dependent data. The model assumes that the binary response is
the indicator of an unobserved latent variable excecding a given threshold. Estima-
tion of the regression and latent correlation parameters can be done in a likelihood

framework.

I11.6.1 Likelihood function

f

The multivariate probit model can be described as follows. Let YV = (v, 40, - 1 1)
be a vector of binary random variables. We assune that there exists a corresponding

latent continuous multivariate normal random variable Z = (z;, 20, - -+, 2} such that

, 1 Z; >0
Y; =
0 otherwisce.

We assume that Z; = p; + 5, for 7 = 1.2,--- |1, and
(21,82, ,51) ~ MV N(0, R),

where 7 is a correlation mattix known as the latent correlation matrix. The marginal

mean of y; 1s given by

E(y) = Ply; =1) =p; = Pl +2; > 0} =1 = (p;) = py). (261
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where ¢ 18 the standard normal cumulative distribution function. Thus the proba-

bility mass [unction of ¥ can be expressed as
¥ p

1 gR'
* L

where y = (g, ..., %) is a binary vector, g = (g3, ..., 4} and

b, — ) (moo) ity =1
’ (pjoc)  ily; =0
for 1 =1,2,---,%. Let &; be the f-variate normal cumulative distribution [unciion,

then the cquaiion (2.6.2) can also be written as

Plys s R) = & [(—1) gy, ---

A=D1 0, CRCY, (2.6.3)

where (7 is a diagonal matrix with the jth diagonal clement is (—1)'"%. Although
equation (2.6.2) defines a proper probability distribution function for any positive
definite matrix 17, in order to retain likelihood identifiability £ is restricted to be a

correlation malrix.

Supposce the correlation structure of Y = (yy, ..., y) is the first order antoregres-
sive (AR(1)) with parameter p, then
Li—kl _ Dol phy, tai Tie) ~ Dibx
2 (1 = py)pi(1 — p; ) 17*

Here @ 12 Lthe bivariate normal distribution function with density function

Corr{y;, yx) = p (2.6.4)

“J

1 g2 — Qraesey + 22
f(g_}} .’."-‘ka T.Jk‘) = : Cxp — 2 ljk J _;b k .
Il — frjk (1—r%)

For any p satisfying the runge restrictions (2.3.4}, equation (2.6.4) can be solved

uniquely for rj for 7, & =1, -+ , ¢ (Emrich and Piedmonte (1991)), using the bisection
method. We can then construct a prohability distribution with specified mean and
AR(1} correlation structure with specified p using the multivariate probit model

(2.6.1) with correlation matrix R = (rj,).

II.7 Comparison of the transistion and multivariate probit models

In this section we shall comparc the probability mass functions generated by the

transistion and multivariate probit models. Suppose ¥ = (4. y2,..., %} is a binary
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Table 2.1: Mags function generated from tran-
sition model and multivariate probit model

Y Pra(Y) PyprogirlY)
00 0 0 (0.0538321 0.0538567
00 0t 0.1643539 0.1654672
0 0 0.0080897 0.0095023
00 11 0.3407123 0.3391005
01 0 0 0.0005554 0.0004391
0 1 0 1 0.0016957 (0.0006700
0 1 0 0.0025923 0.0022505
0ot 11 0.0971685 0.0987233
10 0 0 0.0163028 0.0156603
I 0 01 0.0497737 0.0492761
101 0 0.0027528 0.0029030
I 011 0.1031828 0.1041499
11 0 0 0.0008602 0.0015572
11 01 0.0026262 0.0030677
I 1 L 0 0.0040145% 0.0037775
11 1 1 ).1504868 0.1496076
NOTE: Parameters are p = 035, p =

(0.33,0.26,0.71,0.91). Latent correlations are
e = 0549, T3 = 0216 g4 = UlUl Fag —
0.746, rog = 0.350 and 7y, = 0.668.

vector with marginal mean p = (p, p2,.... ) and AR(1l) correlation structure with
a parameter p. For given p and leasible p, we can find a vector ¢ and a unique latent
correlation matrix R by solving equation (2.6.4). Then g and R can be used to
generate a probabilily distribution for ¥ with mean vector p and AR(1} correlation

structure with parameter p.

Table 2.1 shows the mass function generated by Markov chain model and mul-
tivariate probit model with marginal probability p = (0.33,0.26,0.71,0.91) and cor-
relation parameter p = 0.35, which is within the feasible range {(—0.2010,0.3788).
We can sce that the values of the two mass functions are very closc, bul are not
exaclly the same. For example, when y = {0,1,0.1) the corresponding probabilities
generated by two models are 0.00169 and 0.00087, respcctively. It can be shown

theorctically that the mass functions generated by these two models are different.
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Here, we give Lthe proof when d = 3, similar proof holds for higher dimensions.
First, it is clear that Py, = 1) = p, = P(Z; < z) = @(z;), + = 1,2,3. Since the
latent correlation ry; is obtained by solving equation (2.6.4), we have
Pl = Ly, = 1)y =paps + 9 005 — Oz, z5miy) = P24 < 2. Z; < 25),
for 1 <1 < 7 < 3. For the first order Markov chain madel, we have
Plyy=1lpm=liya=1) = Plm=Up=1Lyn=1PHn="1p=1)
= Plys =1 =1Ply =130 =1)

gm} Py =1, =1).

{103 +

And for the multivariaie probit model, we have

Plypm=1yp=1y=1) = P21 <n,% <z, ;< z)

= P{Zy <3022 < 29,2, < 2 )P(Z1 < 1. 73 < 53).

The two models will generate the same probability distribution if and only if

P(Zs < 2|7y <29, 70 S 21) = p3 + 72 (2.7.1)
iy
Let 1, = 1{Z; < z), 1 = 1,2,3 be the indicator functions. Then
P(Zs <m|Zy S Z1 <) = Plh=1L=15L=1)
= E(ly=1h=11 =1). (2.7.2)

According to Drezner (1990) and Joe (1993), an approximation to (2.7.2) is given
by

‘ o | L EM
E(I3) + Qa2 ( | E(L) ) ; (2.7.3)

where

le = (COV([g_._!rl),COV(."rg? }rg)),

f

{1 =

( Var(ly)  Cov(l, 1) )

ov(f, Is)  Var(ly)



Notiee that

for 1 <7< j <3

Qo

Cov(l,, L) = E(LL) - E(L)E(/;)
= P(Z; < 5. Z; < ) — pip;
= pipj+ ¢ tooy — pip,
= p o0,

Thus, we have

= (/)25103 pooaas) = pas(poy da),

(2.7.4)

ot pooy
Qn = ( ! 19
PO1T03 25
B a0 1 p gy 0
0 oy g 1 O oy "

1
Bl . Bl .
Ql_ll — T 1 boo=p ¥l 1 _l_w
- - 1 0o — |l1-¢

1 1
— 0 N[ = 0 )
Q' = poslpor o) | T ' 1
1 0 i _p J_ 0 L 1_‘{)‘2
T2 T2
1
~ 0 _
o —p _ 1
= pazlp 1 o1 -
pas(p )(—,; . ) o L 1=
2]
1
2 P 1
= po3(0 1—p5 | 7 :
0 1 1-p°
74
1
— 0
= po3(0 1) | L 4
0 —
2

= P73 (U —I—) .
o)
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Thus, (2.7.3) is equal to

1 f T200
3+ pos (0 —") ( o ) =p3tp 2 :
2 2 P2

which is the right hand side of (2.7.1). Thus the first Markov chain model is approsx-

imately equal to the multivariate probit model but they are not the same.

Even though equation (2.6.4) can be solved unique for r; for any p satisfying
the range restrictions, but the solution does not guarantee that the latent correlation
matrix will be a positive definite matrix. And multivariate probit model way fail to
generate a probability distribution of ¥ if latent correlation matrix is not a positive
definite matrix. For example if p = (0.26,0.36,0.25,0.24), the feasible range for p is
{~0.3244,0.7698). Tor p = 0.7, solving cquation {2.6.4} we get

1 0.9378 0.75311 0.5864
R - 0.9378 1 08460 0.7657
o 0.7511 09460 1 0.9157

(1.5869 0.7657 09157 1

But this 15 not a positive definite matrix.

I1.7.1 Maximum likelihood estimate

For the mullivariate probit model (2.6.1), suppose that p; = x| 2 where z; is the co-
variate vector and £ is the regression parameter. In many application it is reasonable
to assume that the latent correlation matnix K is a structured malrix characterized
comroon parameter . Then the nnknown parameter = (3, &) can be estimated us-
ing the maximum likelihood estimation. Note that if we have n subjects Y7, -+ | Y,
and the corrclation structures of ¥; are AR(1) with a common parameter p, then it
is unlikely to have a common latent correlation matrix B for all subjects Y, since
the solution of equation (2.6.4) changes when the marginal means F; are different for

different subjects.

Let Y; be a {;-dimensional vector of binary response with marginal means p, and

let X, be the corresponding k-dimensional row vector of covariates measured at
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time 7 —= 1.2,--- 4 for subject { = 1.2,--- .n. Assume thal the n subjecis are

independent. Suppose that the respouses are related Lo the covariates as
E(yy) = py = ©(X}; 8) = $(p),

where ®(-} is standard normal distribution function and 7 is the k-dimensional re-

gression parameter.

Then the likelihood for subject ¢ is given by the form of {2.6.2}

Rl
Ty - - E 27.5
U jm / g;z H|1fz CXP{ 9 } ( o)

where y; = (M, ..., %, ) 18 & binary vector, g, = (g, - -, i, ) and

Di; = (—o0, thiy) if. Y, =1
(fij;00) iy =0

L’i(ﬁ) = P(

for y =1,2,-

The maximum likelihood estimate Oz 5 18 obtained by maximizing the log-

likehhood unetion

0) = log L;(6) = > log P(y::6).
i=1 =1

The log-likelihood function can be written as

it
D R

where the jacobian malrix J;(6) = J; is independent ol @ and il is given by

X, 0
J-';_ -

OP(yi8) Py 0]
du; o '

and

VP(y:0) = [
The j-th element of P (y; 8)/du; 18

OP(y:; 8)

Em = (_1)lJr"‘M(f)(ﬁfﬂij)P(y«;,j‘ g e Rigeg),
]
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where j* is the vector of index that is complementary to . g 5« ; and R; j.|; are the

conditional mean and conditional covariance matrix of Z; . given Z,;.

Tt is well known that & is AMVN(8, Z-1(8)} where

I~z
=1
o
g

N 1 ,
Z6) =2 NE | gy V@i )V P(ui ) | i (2.7,
i=1 i

11.8 Comparison of asymptotic performance

The two estimating procedures that we discussed yield consistent estimates of the
regression parameters. In this section we study their asymptotic performance via
caleculating and comparing the asvmptolic variance of the regression parameter for
both the methods. The asvmptotic relative efficiency (ARE) is calenlated using the

following formula:

ARE Asymplolic vartance of Markov chain model
AR —

Asymplotic variance ol mullivariale probit model’

If the above quantity is less than one, we could conclude that the Markov chain
meodel 13 better than the mullivariate probit model and viee versa il the quantity
is more than one. In the simulations we used the probit link (unction and a large
sample size n = 500 so that the simulated variances will approximate the asymptotic
varignces. We used the following mean function for the repeated binary variables in

our cfficiency calculations

O Hpa) = pa = Ho + Bal, + Bo]. (2.8.1)

To begin with we sct. the number ol repeated measurements as three. The covari-
ates are chosen as follows: the first covariate z§ is continnous and taken as uniform
on (0,1), the second covariate xZ is discrete and takes values {—1.5,—0.5,0.5}. We
fixed the true regression cocflicients as 8y = 1.2, 5 — 0.34, 3, = —0.15. With Lhese
values we calculated the means and the hounds for the correlation parameter. For
different values p within the hounds we calculated the Fisher information matrices
[or the regression parameter for both the transition model and the probit model.
Table 2.2 shows the the results for the model that contains only the intercept and

the continuous covariate x5. The bound of p is at the bottom of the table. Tor



36

Table 2.2: Asymplotic variance and ARLS with one covariate, £ =3

nV{(3) nV{(8:)
MC MPROBIT ARE MC MPROBIT ARL

p=0.0 3.7432 3.7432 1.000 12.7559 12.7559 1.000
p=01 37832 3.8009 0.995 12.3962 12,5057 0.99%
p=02 37614 3.7883 (3.993 11.7153 11.9092 0.934
p=03 3.6067 3.7193 0.994 10.8064 11.0117  (.981
p=04 35915 3.6050 0.996 5.6703 9.8466 0.983
p=05 34444 3.4549 0.997 3.3081 8.4367 0.985
p=006 32472 3.2752 0.991 6.6565 6.7823 0.981

NOTE: Range of p is (--0.0661,0.7170). The parametcer valucs are
By = 1.2, 51 = 034 and n = 300.

different. values ol p within the bounds, the asvmptotic variances scaled by n for
hoth the methods as well as the asymptotic relative efficiency (ARE) of the Markov
chaln model with respeet Lo the multivariate probit model are in Table 2.2, Since
the two models are identical when p is zero the ARE is one. However, for all positive
values of p the values of ARE are all less than 1 for hoth the regression coefficients.
Hence in this case for estimating 3, the Markov chain model is more cfficient than

the multivariate probit model.

We considered next the model which includes the discrete covariate x5 as well.
The simulation results are given in Table 2.3. When p = (), the situation is same
as before, the two method are identical and hence the AE s equal Lo 1. Bul for
nonzero values of p, the performance of Markov chain model is not uniformly better
than the multivariate probit model. Table 2.3 shows that the ARE lor &, 15 less
than one at the beginning and is decreasing as p increases [rom 0.1 to 0.3, and then
it increases to 1.013 as p inecreases to 0.7, Thus when there is a high correlation the
multivatiate probil model is belter at estimaling the slope. However, the Markov
chain model is uniformly better than the multivariate probit model for estimating

the slopes / and 8.

We carried cut simulations increasing the mumber of repeated measurenments to

four. In this case, we chose the first covariate 2§ to be the same as before; continuous
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Table 2.3: Asymptotic variance and ARE with two covariates, { = 3

nV{8) nV{3) nV ()

p=00 35750 (1.000) 9.5811
p=01 36446 ()99() 9.4030
p=02 36486 (0.994) 8.9695

( 1.000) 1.2192 (1.000
(
(
p=03 35972 (0.996) 8.3081
(
(
(
(

0.995} 1.2057 (0.996
0.987) 1.1663 {0.992
0.986) 1.1026 (0.991
0.987) 1.0156 (0.991)

(

(

(

\.___/x__/\..__/\___/

p=04  3.4989 (1.000) 7.4457
p=035 33621 (1.007) 64089
p— 06 31948 (1.013) 52226
p=07  3.0034 (1.013) 3.9060

0.989) n 9059 (0.993)
0.988)  0.7728 (0.994)
0.990)

o g g e e e—

0.969) n 61"

NOTE: Range of pis (- 0.1306, 0.7941). The parameter values
So=12 4, =034, 3, = —0.15, and n = 500; efficiencies are
given in parentheses.

uniform on (0,1). The second covariale zf) Lo laken to be a discrete covariale taking
values {—1.5,—0.5,0.5, 1.5}, We fixed the regression parameters as fy = 0.8, §; =
—0.1, 3; = 0.15. Two simulations were done excluding and including the second
covariate L. Table 2.4 shows the results of simulation with regression parameter
are intercept and z5. The ARE is one when p = 0 as before. In this case we can sce
thal roultivariate probit model 1s more cfficient for estimating 8y white the first order
Markov chain model is more efficient when estimating f; for all values of p. In the
second simulation, we aclded the discrete covariate zZ to the model. From Table 2.5,
we can see that the Markov chain model is more efficient for estimating both 5 and

s, Further the ARE is steadily decreasing as p increases.

When we increase the repeated measurernents to five, in both simulations exclud-
g and including the discrete covariate, the first order Markov chain model seems
to be doing better than the multivariate probit model. The results are shown in
Table 2.6 and Table 2.7. Plcase note that the feasible range of p becomes narrow as

the number of repeated measurements increases.

In conclusion the asymptotic relative efficiencies are in the range 0.90 and 1.02
and thus both the methods are good for modeling serially correlated repeated binary

measurements. Bul the first order Markov chiain model scans to have a slight edge
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Table 2.4: Asymptotic variance and ARE wilh one covariate, { == 4

nV () nV (5
MC MPROBIT ARE MC  MPROBIT ARE

p=0.0 0.5010 0.5010 1.000 0.4015 0.4015 1.000
p=0.1 .5792 0.5801 1.001 0.4176 0.4160 0.996
p=02 0.6649 0.6679 1.004 (.4252 0.4213 (.961
p =03 {.7360 0.7661 1.008 0.4233 0.4180 0.988
p=104 0.8665 0.8766 1.011 0.4105 0.4053 0.987
p=105 (.9873 1.0019 1.015 0.3853 0.3813 0.990
p =056 1.1258 1.1454 1.017 (1.3460 0.3438 (.994
p=107 1.25870 1.3113 1.019 0.2600 0.2001 0.994
p =408 1.1258 1.1454 1.017 (1.3460 ().3433 0.994

NOTE: Range of p is {—0.2255.0.9152). The parameter values are
gy = 0.8, 5 = —0.1 and »n — 500.

over the multivariale probit model for estimating the regression slopes.

1.9 Comparison of small-sample performance

To evaluate the small-sample performance, we chose the continuous covariate x§
to be standard normal and the disercte covariale =) same as in the large sample
simulations. The sample size was fixed as n = 30. For the number ol repeated
measurements { we took 3.4 and 5. For each combination of the parameters we
simmlated 1000 samples and for each sample we estimated the regression parameters.
Woe then caleulated the average squared deviation of the estimated parameter value
from the true population values, i.c. the mean square error (MSE). The small sample
efficiencies arc calculated by taking the ratio of the MSE for the two estimating
procedures as

MSE of the Markov chain model estimator

RE

~ MSE of the multivariate probit model estimator’

The relative efficiencies, when ¢ = 3, for the three regression parameters are
plotted in Figure 2.2, Figure 2.3 and Figure 2.4. We can see from Tigure 2.2, the

relative efficiency for the intercept is greater than 1 and is increasing as p increases.



Table 2.5

b Asymptotic variance and ARE with two covariates, ¢ = 4

nV () V(3 nV{)
p=0.0 05051 (1.000) 0.4013 (1.000) 1.5253 (1.000)
p=01 05837 (LOOL) D0.4174 (0.996) 1.4937 (0.997)
p=02  0.6695 (1.004) 0.4249 (0.991) 14173 (0.992)
p=03  (.7647 (LOOR) 0.4230 (0.987) 1.3013 (0.990)
p— 04 0.8713 (1.011) 0.4101 (0.986) 1.1513 (0.990)
p=05 09920 (L.015) 0.3849 (0.985) 0.9728 (0.990)
p=08 11303 (1.017) 0.3455 (0.980) 0.7603 (0.983)
=07 L1412 (1.020) 0.3274 (0.980) 0.5787 (0.981)

NOTE: Range of p1s {(—0.1726,0.7105). The parameter values
are By = 0.8, 31 = —0.1, B = 0.15, and n = 500; ARE arc

given in parentheses.

Table 2.6: Asymptotic variance and ARLS with one covariate, ¥ =5

1V {(5) nV{(5)
MC  MPROBIT ARE MC MPROBIT ARE
p =00 1.3162 1.3162 1.000 0.6217 0.6217 1.000
p=01 1.5272 1.5054 (.986 £).6674 0.6541 0.980
p =02 1.7506 1.7037 0.973 0.7004 0.6729 0.961
p=03 1.9968 1.9264 0.965 0.7205 0.6802 0.944
p =04 2.2754 2.1613 (3.950 0.7258 0.6581 0.907

NOTE: Range of p is {~0.0080,0.4373).
Iigg = 13, ,1'.‘}1 = —0.6 and n = 500.

The parameter values are,
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Table 2.7: Asvmptotic varance and ARE with two covariates, £ = 3

nV(8s) nV{3) nV{(3)

p=00  3.1740 (1000} 0.5861
p=01  3.3390 (0.989) 0.6296
p=02  3.4568 (0. 375) 0.6612
p=03 35437 (0.953) 0.6806

1.000) 7. rm (1.000)
0.981) 64 (0.992)
0.962) 7116; (0.979)
0.945) 6.5038 (0.947)

o

NOTE: Range of p is (—0.0080,0.3890). The parameter values
are Op = 1.5, 3, = —06, 4, = —0.1, and n = 300; ARE are

given in parentheses.

This shows that the multivariate probit model is estimating the intercept better than
the Markov chain model in small samples, especially when there is 4 high correlation.
Figurce 2.3 shows the relative efficiency [or the slope 31 of the conlinuous covariale.
The plot is above one except in an small interval of p, indicating that even in this
case the multivariate probit estimator is outperforming the Markov chain model
cstimator. Note that the figure shows a roughly deercasing trend in the cfficiencies.
Unlike the previous lwo coefficients, the relative efficiency for J9 s less than 1 and
is decreasing as the correlation increases, indicating that the Markov chain model is
better at estimating the slope for the discrete covariate than the multivariate probit
model. The simulated MSE values and the relative efficiencies for different values of

p arve presculed in Table 2.8.

We now consider the case t = 4. Figure 2.5 has the plot of the relative efficiency
lor the intereept By, The efficiency is more than for almost every value of p and is
increasing as p increases, which shows the multivariate probit model is hetter than
the Markov chain model for estirnating 3;. The efficlency plots for 3y and 3; are in
Figures 2.6, 2.7 respectively. These two plots show thal for highly corrclated data
the Markov chain model is better than multivariate probit model for estimating the
slopes. Table 2.9 contains the MSE's and the efficiencics for the three regression

coefficients in the case £ = 4.

Lastly, Figures 2.8, 2.9 and 2.10, contains the plots of the efficiencies for the three

regression coefficients when ¢ = 5. For all the three regression coetlicients the relative



41

1.09 e ' ' r ; ——
108k R R B
T S

106
SOBL
1.04
103
Toola o

1 . i . i
a 0.05 0.4 015 02 025 03 035 04 045

Figure 2.2: Plot of efficiency of 3,

efficiency is flat at one for small and woderate values of p. However, for the intercept
Fy and slope 3, the relative efficiency is more than one {or values close to the upper
boundary valuc of p, whereas it is less than one for 3,. Thus for moderate correlation
both methods perform equally well and first order multivariate probit maodel is more
efficient for estimating 53 and #; for highly correlated data, whereas the Markov
chain outperforms estimating 3, for highly correlaled data. Table 2.10 contains the

MSE’s and the efficiencies for the three regression coefficients in the case ¢ = 5.

To sumnmarize, in the small sample case we see that. both the medels are equally
good for small and moderately correlated data especially if the number of repeated
measurements is about five. For highly correlated data, the multivariate probit model
is a good choice if the covariates are continuous and the Markov chain model is better

for discrete covariates.
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Table 2.8: MSE and efficiencies of MC and MP estimatc, t = 3

nV (5} nV(3) nV{3)
p=0.00 0.0247 (1.015) 0.03537 (1.027) 0.0348 (0.986}
p =005 0.0285 (1.019) 0.0323 (1.014} 0.0357 (1.007)
p=0.10 0.0274 (1.009) 0.0352 (1.013) 0.0349 (0.992}
p=015 0.0310 (1.011) 0.0342 (1 010)  0.0291 (1.005)
p =020 0.0338 (1.025) 0.0343 (1.012) 0.0320 (0.986}
p =025 0.0360 (1.008) 0.0308 (0.985) 0.0280 (0.986)
p =030 0.0334 (1.017) 0.0325 (0.997) 0.0280 (1.000}
p—0.35 0.0375 (1.030) (.0301 (1.010) 0.0279 (0.984)
p =049 0.0418 (1.059) 0.0324 (1.008) 0.0276 (0.974)
p =045 0.0478 (1.062) 0.0283 (1.010) 0.0250 (0.975}
NOTE: Range of p is {-0.207,0.4849). The parameter values

are :8(] = 08 _,."3’1 =

—0.1.
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Table 2.9: MSE and efliciencies of MC and MI” estimate, t — 4

Method nV (5} nV{3) nV ()

p=0.00 0.0180(1.023) 0.0147(1.023} 0.0206(0.998)
5 =005 00193(1.025) 0.0152(1.020) 0.0203(0.998)
p =010 0.0210(1.014) 0.0151(0.999) 0.0191(1.002)
p=0.15 00217(1.004) 0.0161(1.000) 0.0200(0.998)
p=020 0.0257(1018) 0.0172(1.002) 0.0199(0.994)
0 =025 00224(1.007) 0.0153(1.004) 0.0173(0.989)
p=030 0.0281(1.025) 0.0157(0.996) 0.0188(0.990)
0= 035 0.0209(1.021) 0.0140(0.978) 0.0177(0.985)
o= 040 0.0320(1.038) 0.0150(0.996) 0.0162(0.980)
p =045 0.0416(1.085) 0.0148(0.992) 0.0147(0.968)

NOTE: Range of p is {--0.121,0.498}. The puarameter val-

ues are Gy =08, 5, =-01.
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Tuble 2.10: MSE and efliciencies of MC and MP estimate, { = 5

Method nV () nV{(3) nV{(3)

p =000 0.0119(1.008} 0.0056{1.004) 0.0106(1.006)
p =005 0.0122(1.002} 0.0065(1.006) 0.1201{1.004)
p=010 0.0135(0.999) 0.0061{1.005) 0.0109(1.004)
p =015 0.0149(0.991} 0.0064(0.999) 0.0113(0.990)
p =020 0.0158(1.000} 0.0068((.995) 0.0103{1.005)
p =025 0.017%(1.012} 0.0070(1.008) 0.0111(1.022)
p =030 0.0186(1.007) 0.0065(0.989) 0.0098(1.001)
p =035 0.0198(1.007) 0.0070(1.016) 0.0093(0.989)
p— 040 0.0226(1.065) 0.0067(0. )90) 0.0084(0.990)
p=045 0.0230{1.061} 0.0074(1.042) 0.0079(0.980)
p =050 0.0302(1.218) 0.0072(1.096) 0.0080(0.974)

NOTE: Range of pis (—0.313,0.532). The parameter val-
ucs 15 .B(J = US .Bl = —01.

IT1.9.1 Analysis of real data

To itlustrate the apphcation of the two likelihood estimation methods, in this section
wa present the analysis of the three binary longitudinal dala that we discussed in See-

tion 1.2.
Example 2.1. Six city data.

For this data the main wsue of interest s the effect of maternal singking on

children’s respiratory illness. We fit the following regression model to the data:

MS Ahe MS

<I>_1(g)ﬁ) =puy =0+ Hh 'r:;ge + Goay + Gy

where i = 1,2,--- ,537 and { = 1,2,3,4. The covariates are Lhe age of the child

(:r‘?g ), the maternal smoking habit indicator (#31°) and their interaction.



48

Table 2.11: Parameter estimates for the Six-city data

MC MPROBIT

PARAMETER  EST SE PVALUE EST e O PVALUL

Intercept. -1.1366  0.0585  0.0000 -1.1368  0.0601 0.0000
Age -0.0829  0.0699  0.0281 -(0L0816  0.0362 0.0282
bmoking 0.1599 0.1708  0.0859 0.1398  0.0972 0.0968
AgexSmoking  0.0453 0.0620  0.4650 0.0138 7061 0.4801
p (0.3836  0.0313  0.0000 0.6842*  (.0387*  0.0000

NOTLE: Range of p is (-0.1357, 0.9267).

Table 2.11 provides point estimates, standard errors and p-valies for hoth the
tirst order Markov chain and the multivariate probit model. The estimates of the
regression parameters are very similar for the two models. Note that 1 the table, the
value 0.6842 for multivariate probit model is not the correlation parameter for the
binary repeated measurements, it is the value of latent correlation parameter. The p-
values indicate that the child’s age is a significant factor and the regression coefficient
is negative, which means that older children are less likely to get respiratory disease.
The main covariate of interest, maternal smoking, is not significant 1o both the
models, even though estimate of the regression coefficient in hoth models is positive,
which indicates that the children arc more likely to develop respiratory disease if

their mother was a smoker as opposed Lo a nonsmoker.

The values of maodel sclection eriteria, ATC and BIC, based on Markov chain
model with various combinations of the covariates are given in Table 2.12. The model
with only age as the covariate and the one with both age and smoke as covariates
have similar AIC values, but the former model has the smallest BIC valne, so it is

the hest model for this data set.
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Table 2.12: Model selection based on AIC and BIC

Covariates LF df AIC BIC
Intercept, Age -815.49 2 1683297 1637.26
Intercept, Smoke -816.70 2 1635.3% 1639.68

—

1632.62 1641.19
Intercept, Age, Smoke, Interaction -814.01 0 1634.02  1646.88

Intercept, Age, Smoke -814.31

Example 2.2. [ndonesian children’s health study

The second longitudinal binary data that we analyzed is the Indonesian chil-
dren’s health study data. Table 1.3 displays a subset of this data originally studied
by Sommer et al. (1984). In this study prescheol children were examined up to six
consecutive guarters for the presence of respiratory infection. There were 1,200 ob-
servations in total. The covariates of interest include: (1) age in months (centered
at 36): (2} presence/absence of xerophthalmia, an ocular manifestation of chronic
vitamin A deficiency; (3) cosine and sine terms {or the annual cycle; (4} gender; {3)
height for age, as a percent of the National Center for Health Statistics (NCHS)
standard (centered af 90%); and (6) presence of stunting, defined as being below
85% in height for age. The key covariate of interest is the indicator of xerophihalmia
symptom. The primary objective of this study was Lo assess the increase in risk
of respivatory infection for kids who were vitamin A deficient, which was measured

indirectly via xerophthalmia.

The parameter estimates, standard errors and p-values for the two likelihood
methods, Markov chain and multivariate probit, are given in Table 2.13. The esti-
mates and standard errors are very similar for both the methods. The results indicate
that respiratory infection is strongly related to age and season. Further, the risk of
infeclion decreases approximalely 4% per monlh for children between one and five
vears. The xeraphthalmia coefficient is about 0.33, but the p-value is approximately

0.2, hence xerophthalmia is not statistically significant factor.



Table 2.13: Parameter estimates for Indonesian children data

MC MPROBIT

PARAMETER  EST sE  PVALUL EST SE PVALUE

Intercept -1.3877 0.0870  0.0000 -1.3914  0.0892 0.0000
Age -0.0159 0.0032  0.0000 -0.0167  0.0034 0.0000
Xerophthalmi 0.3280 02411  0.1736 0.3087  0.0972 (0.1997
seasonal cosine -0.2720 0.0808  0.0007 -0.2740  0.0807 0.0007
Scasonal sine -0.0827 0.0843  0.3266 -0.0873  0.0828 0.2920
Sex -0.1897  0.1143  0.0970 -0.1899  0.1178 0.1068
Height -0.0190 0.0122  0.1184 -0.0200  0.0126 0.1120
Stunted 0.1016 0.2040  0.6186 0.1203  0.2094 (0.5657
P 0.05683 0.0446  0.1915 0.2020% 0.1066*  0.0570F

NOTE: Range of p i3 (-0.1357, 0.9267).

Example 2.3. Hamilton's depression study

The third longitudinal binary data we analyze is the Hamilton'’s depression study
data. This data were taken [rom a randemized double-blind, placebo and active
treatment, 7 weel study in Enrope to evaluate safety and efficacy for three fixed doses
of a new drug in palients with major depressive disorder. For our analysis, we will
studv the active treatment and the placeho groups. The dependent variable in this
study is o binary function of a patient’s average score on the Hamilton’s Depression
Scale (Ham-Dj}, taking the value 1 il the Ham-T) value at time £ = 1,--- |8 is less
than or equal to 80% of the baseline value, and 0 otherwise. The covariates used in
this study are the treatment, time, gender, age, and baseline measurement and the

country where the patient resides.

The results indicate that Treatment, Time, Country and Baseline are significant
covarlates to predict effectivencss of the trealment. The coefficient of Treatmuent is
positive, which means that the drug s cllective at reducing depression levels. The

resulis are shown in Table 2,14,
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Table 2.14: Parameter estimates for Ham-1D data

MC

PARAMETER  EST S PVALUE

[ntercept -3.1458  0.2691  «<0.0001
Treatmicnt 0.3309  0.1048  0.0016
Time (0.5610 0.0257 <0.0001
Age -(h0322  0.0512  0.5293
Gender -0.1654  0.1116  0.1386
Counlry 0.0663 0.0239  0.0055
Baseline (0.1296 0.0438  0.0030
o 0.3923  0.0304  <0.0001

NOTE: Range of p is (-0.0093, (.3923).

I1.10 Other models for correlated binary variables

[11 this section, we discuss other methods for generating dependent bipary variables.

[1.10.1 Generating dependent binary variables using circle plus opera-

tion
Let §2 = {0,1}. Supposc x,y € £2. Define the cirele plns operation as

(2.10.1)

2K

X

{:c+y fO0<zty<l
y:

a4+y—1 if r+y>1

Note x ¢y € £

Lemma 2.1. Suppose X;'s are independent and distributed as Binomial(l, p;), 1 <
i<t LetVi=X,and Y, =Y, 10X, for2<j <1t Then

PVi=1Y;=1)= PV = 1Y, = 1) =1,



Proof. By definition of the circle plus operation, we have
¢ i (Y X)) =(0,0)
}/; f—
1 otherwise.

It is clear that P(Y; = 1|¥;_y = 1} = 1. Thercforc

Py =1Y;=1) = P
! )/k; = 1,}354_1 = 1|Y:: = 1)

Yi=1Y;n=1
(

= PYV=1Yn=L1Y,=DPY,u=1Y,=1)
(
{

¥, = 1)+ P(Yi=1,Y;;, = 0]Y; = 1)

Il
"T-
=

= PYa—= 1Y =LY, =1)
= PVi=1Yn =1V YVi=1)+ P =1Y..=0Y,. ¥, =1)

= PYy=1Yy=1---.Y,=1)
= 1

This completes the proof of the lemma. 1

Theorem 2.1. Suppose X, s are independent and distribuled as Binomial(1,p,), 1 <
i<t LetYi=X,andY, =Y, 1 OX,, for2<j7 <t Then

3. Corr(Y;, Yi) = pjx = \/31%’ for 1 <4<k <t
, TR
Proof. The first assertion is proved by mduction.
Fori=1,we have P(Yi =1} = P(X; =1} =p; =1~ q,.

Assume that fori = 7 —1

i-1

PY;a=1)=1- Hfh‘,

=1
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Note that

P(Y;=1) = 1-P(¥;=0)
= 1- PV, =0,X,=0).

Since X;'s are independent and Y;_, depends ou X;_;, we have Y;_; is independent

ol X;. Therefore

= 1=g; (¥, =0)

By the induetion hypothesis we get
;
P, =1 =1-]]a
i—=1
This proves the first part of the theorem.

To prove the second part, let § < k. By Lemma 2.1, we have

;
PY=1Y, =1 =P =1Y,=0PY,=1)=PY¥, = =p=1-[]a
—1

Since P(Y; = 1} = p} we have

PV = LY, = 1) = P(Y, = YP( = 1)

Corr(Y;, Ye) = pjn =
(Y5, Ye) = ps Var(Y;)Var(Vy)

p; — PiPL

V' P;9;PLar

= B (2.10.2)

This completes the proof of the theorem. 0

Note that in Theorem 2.1, the correlation between Y; and Y}, is the maximum possible
correlation with marginals fixed as p} and p;. Thus given py, -+, p;, we can generate &
dependent binary random vector ¥ = (¥7,....,Y%) such that the correlation between
Y; and Y is the maximum possible with marginals fixed as pj = 1 — [T_, % and

pp=1— Hf_\l gi- Since pp = 1 —qugi_q. we have ¢f = geg;_; and therefore g < q;_,,



ie. pp = pr,. Thus the circle plus operation generates binary variables with the
ordering P(Y; = 1) < - < P{Y, = 1), and the maximum possible correlation

between any pair.

A special ease of this model is when we have py = --- = p, = p. In this case,
PY;=1)=1—¢

and 1 |
o .
(,*r}?‘r(}:;, Vi) = (_._q> qlk—_}l'

1—g*

This is similar to the autorcgressive structure of order one.

I11.10.2 Quadratic exponential family

An alternative model for correlaled binary variables is the quadratic exponential

farily of distribuiions. The probability mass function for this family i of the form
aly; Ay = explhign + -+ My F Ay b A Ly 1) (A, (2.10.3)

with y € {0, 1}, A = (A1, A, Arg, - - Aay) and k(X)) is the normalizing cou-

stant. This probability mass function maximizes the entropy [unction
=3 " {y) log(m(y))
y

in the class of multivariate binary distributions w{y) which satisfy the moment con-
straints 30, yir(y) = py, for i = 1,--- ¢, and 30 yym(y) = py, for 1 <0 < 7 <t
(see Kapur and Kesavan (1992}, Chaganty and Joe (2006)).

Given a vector g = (p1.--- .Pr, P12, -+ - P1—1,) that specifies the univariate and
bivariate marginals, if there is & multivariate binary distribution then the distribution

that maximizes the entropy, can be oblained solving the equation
Zfr(y; Ms = p, (2.10.4)
¥

where s = {41, - .4, w12, - L th—14)» and A is a vector of Lugrange multipliers. The

above summation is taken over 2' possible binary vectors y.
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For a given p = {p1,--- .m), we have checked numerically the quadratic expo-
nential model generales the same binary distribution as the Markov chain model if

the correlation structure is AR(1} with parameter p satisfying the constrainis

max Lip; 1,p) < o< in Ulp,_y.pi). (2.10.5)
34t Inint



CHAPTER 111

MARGINAL MODELS

II1.1 Introduction

In Chapter II we have studied multivariate likelihoods for modeling and analysing
longitudinal and clustered data. We should use likelihood methods whenever pos-
sible, becanse they have strong theoretical underpinnings and meaxdmum likelihood
estination is the optimal estimation procedure. The marginal models are an alter-
native in situations where the likelihood methods are difficult to construct and pro-
hibitively diflicult to implement. Motivated by quasi-likelihood methods, Liang and
Zeger (1986) have introduced marginal moclels and generalized estimating equations
(GEE) for estimating the regression coefficients primarily for non-normal repeated
observations. The marginal models avoid specification of the joint distribution but
model the dependence between the repeated measurements using a working corre-
lation structure, that may not be the true correlation structure. However, under
misspecification of the correlation structure the estimator of the regression parame-
ter can be incflicient. Qu et al. (2000) introduced a new method, known as quadratic
inference functions (QIF), that does not involve direct estimation of the correlation
parameter but produces highly efficient estimate of the regression parameter even if
the working correlation structure is misspecified. Instead of cstimnating the nuisance
parameter o in the working correlation matrix, their method models the inverse of
the working correlation matrix as a linear combination of a clags of basis matrices.
Thiz gives a sufficiently rich ¢lass that accommodates or al least approximates the
correlation structures most commonly used. Qu et al. (2000) showed that even if the
correlation is misspecified, their method remains optimal within the assumed family,
and hence more efficient than Liang and Zeger’s GEER regression estimator under

misspecification.

The outline of this chapter is as follows. In Section I11.2 we briefly deseribe
the generalized estimating equalions method. In the next Scetion 1113 we intro-
duce quadratic inference functions method, establish asymptotic variances for the

estintates,; then study their asymptotic relative efficiency. In Section 1.6 we derive
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=1

a new estimation for the covariance matrix of the score function and Section TIL5

contains the small-sample efficiency comparisons.

II1.2 Generalized estimating equation

Inn this section, we give a brief introduction to the commonly used estimation method
to analvze longitudinal and clustered data, known as the generalized cstimating equa-
tions (GEL) proposed by Liang and Zeger {1986). The method can be regarded as
an extension to the multivariate case the guasi-likelihood methods described in the

book McCullagh and Nelder (1989).

The framework of the generalized estimating equations is as follows. Lol ¥ =
(51, .+ . . ya) be a vector of correlated observations on the ith subject. Assume that
By} = wy = h(w);8) and Var(y;) = v; = v(py), where § is @ k-dimensional
regression parameter. The mean and variance functions h(-) and v(-) arc assumed
to be known. Suppose that Cov(Y;) = ¢W,(3. o}, where e is an nuisance parameter.
The GEE framework assumes that, Wi(8, o) = A R(a) A}, where 4, = diag(w, ) s
the diagonal matrix of variances that depends on 8, and R(a) is a working corrclation

matrix determined by «. The generalized estimating cquation is given by

i 8 . !
Z ( a;af;) IVi_l(yi - I-*'-i) = 0, (321)
=1 !

where W; = W, (8, o). Equation (3.2.1) is an unbiasced estimating equation for fixed
er. Under some regularily conditions, the estimate of 3 obtained solving equation

(3.2.1} is consistent with mean equal to J and covartance matrix

1 Te
Couvlfgrr) = (Z DiW- ID) (Z D.’;i-l-";‘E.,;I-i-";‘D.‘-) (Z D'W -m) (3.2.2)

i=1
where D; = 9, /3 8. Clearly, if the working correlation matrix A(a) equals the true
correlation structure, then W, = 3, and equation (3.2.1) is the optimal unbiased
estimating equation. In this case (3.2.2) reduces to

L

Cov{Bo) = (Z DT 1{)) . (3.2.3)



GEE method has been very popular for analvzing longitudinal data hecause it is
computational less demanding than the fully specified model. However, GEE method
has several theoretical shortecomings due to some eritical underlying assumptions.
The working correlation; when misspecified, lacks a proper definition and thus causes
a breakdown of the asymptotic properties of the estimator. Further, for binary
randorm variables there is no guarantee that the working correlation parameter o will
fall within the feasible bounds, that 15 the value of & may not compatible with the
marginal means, that is, a multivariate binary distribution with specificd means and
cotrelation structure may not exist. This conld course a series problem hecause the
resulting standard errors and p-values could lead to misleading conelusions. Sabo
and Chaganty (2010} gave examples where an mleasible correlation estimate leads Lo
wrong conclusions. To rectily the problem Sabo and Chaganty (2010) suggested to
run GEL with working independent structure, compute the correlation bounds using
the estimated marginal means, and then rerun GEE with a correlation value selected
within those bounds using some objective criteria. Allernatively, they suggest use of
likelihood methods, such as the multivariate probit niodel, to avoid these infeasibility
problems altogether. In the next section we study efficiency of GEE as compared to

the Markov chain hkeltheod procedure.

111.2.1 Comparison of asymptotic performance

The asymptotic relative efficiency comparisons between the multivariate probit model
and GEE were done by Chaganty and Joe {2004), where they showed thal the mul-
tivariate probit model is uniformly superior to the GEL method. In this section, we
will study the efficiency of GEE estimates with respect to the maximum likelihood

estimator based on the first order Markov chain likelihood model.

For comparisons of efficiency, we used the marginal mean model for the binary

obscrvallons:
logit(pi) = Bo + Sz + or. (3.2.4)

where xf is a discrele covariale taking values 1,2, ¢t and £ is continuous dis-
tributed as standard normal. We fixed the values of regression cocflicients as 3 = 1,

£ =03 and 8, = —0.1. We chose a large value for n {(=1000}, so that the calculated
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efficiencies will not depend much on the simulated covariates and they approximate
the true asymptotic relative efficiency. To cover most practical situations, we consider
four cases: (1) small number of repeated measurcments with low value of correlation,
(2} small number of repeated measurements with high valuc of correlation, (3) large
number of repeated measurements with low value of correlation, and (4) large num-
ber of repeated measurcments with high value of correlation. Specifically, we choose
t =4 and 8 and correlation parameier p = 0.2 and 0.7 respectively. These values are
within the AR(1) correlation bounds (-0.118. 0.780).

Table 3.1 shows the simulation results for the first case t = 4 and p = 0.2.
The values of the first row are the diagonal elements of the inverse of the Fisher
Information matrix given by (2.3.24). These values are the asymptotic variances of
the maximum likelibhood estimates of the first order Markov chain model. The second
row of the table gives the asymptotic vartances of the estimates using the oplimal
(GEE. These values are the diagonal clements of the matrix {3.2.3). The asymplotic
relative efliciencies are In parenthesis. We can see that even the optimal GEE is less
efficient than the maximum likelihood estimator for the Markov chain model. In the
case where GEE uses a working AR(1} structure we present the asymptotic variances
computed taking the diagonal elements of the asymptotic covariance matrix (3.2.2)
for various parameter valiues of o in the working correlation marrix. We can see
that the relative efficiencies decreases when the value of @ gets far from the true
valuc 0.2 of the corrclation. The worst case efficiency is when o — 0.9, for example,
the efficiency of the regression coeflicient 4, is only about, 70% of that of maximum

likelihood estimator.

Next, we took p = 0.7 bul kept £ = 4 same as before. The results are displayed
in Fable 3.2. The GEE estimator with optimal choice of the working covariance
matrix, is still less efficient than the estimator of the Markov chain model. The table
also has the asvmptotic variances and the relative efficiencies for different values of
the working correlation «. Interestingly, the GEL with identity correlation (o = 0)
matrix has the worst efficiency {0.376) for the regression cocfficient 3. Recall that the
true correlation is 0.7 which is far from zero. Thus we see that for highly correlated

data, GEE with identity structure is very ineflicient.

We now consider the third case where t = 8 and p = 0.2. The resulls of the



Table 3.1: Asvmplolic vartance and ARE of GEE, { =4

fi V ( .Bl ] )

nV ()

ny (_i?g)

Maximum likelihood

Method
Optimal
a=0.0
a=01
a =102
a=0.3
a=04
a=05
a=1056
a =107
a=028
a=09

10.111 {1.000)
10.220 (0.989)
10.292 (0.982)
10.238 (0.988)
10.220 (0.980)
10.238 (0.988)
10.295 (0.982)
10.390 (0.973)
10.528 {0.960}
10.712 (0.944)
10.952 (0.923)
11.245 (0.899)

1.366

1,386 (0.986)

(
(1.000)

(0
1.395 (0.979)
1.388 (0.984)
1.386 (0.986)
1.388 (0.984)
1.394 (0.980)
1.402 (0.974)
1.412 (0.968)
1422 (0.961)
1.432 (0.934)
(

1.439 (0.949)

4.564 (1.000)
4.6202 (0.988)
4.914 {0.929)
1.692 (0.973)
4.620 (0.988)
4.685 (0.974)
4.859 (0.939)
5.113 (0.892)
5416 (0.843)
5.740 (0.795)
6.064 (0.753)
6.373 (0.716)

e e g e am e

NOTE: The true corrclation parameter 15 p = 0.2. ARE are given in
parentheses.
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Table 3.2: Asymptotic variance and ARFE of GEE, ¢t =4

61

Method nV{(35) nV{(31) nV{5)

Maximum likelibood  9.136 (1.000) 0.918 (1.000} 1.862 (1.000)
Optimal 0.332 (0.979)  0.955 (0.962) 2.014 (0.924)
a=0.0 9.646 (0.947) 0.979 (0.938) 4.957 (0.376)
a=01 0.570 (0.955) 0.971 (0.946) 4.010 (0.464)
o =02 0.503 (0.961) 0.965 (0.951) 3.171 (0.569)
a =03 9.446 (0.967) 0.961 (0.956) 2.733 (0.681)
a=0.4 9.340 (}9?,3) 0.958 (0.959) 2.370 (0.785)
x=05 9.364 (0.976) 0.956 (0.961) 2.152 (0.865)
= 0.6 9.341 (0 9:8) 0.955 (0.962) 2.044 (0.985)
a=07 0.332 (0.979) 0.955 (0.962) 2.014 (0.924)
a=08 0.312 (0.978) 0.955 (0.962) 2.036 (0.914)
a=09 9.375 (0.974) U 955 (0.961) 2.090 (0.891)

NOTE: The true correlation parameter is p = 0.7. ARE are given in
parenthescs.

simmulations arce presented in Table 3.3. The resulbts are similar to the case where
t = 4. The GEE estimator is less efficient than the maximmm likelihood estimator
for all values of working correlation «. Table 3.4 shows the sinnlation results with
t = 8 with p = 0.7. The GEE estimator is extremely inefficient cspecially when

working correlation s far [rom (he true correlation or even oul of bounds.

In summary, the simulation results show the GEE estimator even with the optimal
choiee ol the working covariance 1s less efficient than the maximum likelihood estimarte
obtained from the Markov chain model. Furthermore, the efficiency is very low when
the working correlation parameter is {ar from the true cotrelation. The worse choices
for o near 0 for strong dependence, and large o near 1 for weak dependence. In
particular, the choice of @ = 0 is can lead to very low cfficiency if there is strong

dependence. The results are similar for { =4 and [ = 8.
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Table 3.3: Asyvmptotic variance and ARE of GEE, t — 8

Method nV (5o) nV{5) nV ()

Maximumn likelihood  4.979 (1.000) 0.216 {1.000} 2.542 (1.000)
Optimal 5.096 (0.977) 0.224 (0.966) 2.5385 (0.983)
a =00 5168 (0.964) 0.227 (0.952) 2.773 (0.917)
a=01 5116 (0.973)  0.225 (0.962) 2.630 (0.967)
a=02 5.096 (0.977) 0.224 (0.966) 2.585 {0.983)
a=03 5.120 (0.972) 0.225 (0.961) 2.623 (0.969)
a=04 5.205 (0.957) 0.229 (0.945) 2.719 (0.935)
a=05 5.370 (0.927) 0.236 (0.917) 2.847 (0.893)
a =08 5.616 (0.882) 0.247 (0.875) 2.984 (0.852)
o =07 G.066 (0.821) 0.263 (0.822) 3.115 (0.816)
a=08 6.675 (0.746) 0.284 (0.762) 3.230 {0.787)
a=09 7.480 (0.665) 0.308 (0.701) 3.325 (0.765)

NOTE: The true correlation parameter is p = (.2, ARE are given in
parenthoescs.

I11.2.2 An example

Through simulations, we have seen in the previous section that if the correlation es-
tirmate used to compute the regression parameter and their standard errors is outside
of the leasible range of the correlation determined by the marginal means, the GEE
estimator is very inefficient. In this section we are going to present a real data exam-
ple where violation of the bounds changes the conclusions of the analysis. The data
for this example is a snbset of the data from Hamilton’s depression study discussed
example 2.3. For our analysis, we focus on the differences hetween only two of the

arms: the active treatment and placebo. The covariates are the treatment and time.

Since the response is binary, we use GEE with a logit link function and an AR(1}
dependence structure. Performing the GEE analvsis on this data, ignoring the cor-
relation bounds, we get the results listed 1n Part (1) of Table 3.5. Here we see that
the time effect is significant, but the p-value lor treatment is 0.071, suggests that
the treatment is not effective for reducing depression levels. Note that the working

correlation estimate is 0.404, which is outside the feasible range (-0.030,0.361}). The



Table 3.4: Asymptotic variance and ARE of G, t =8
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Method nV{(3) nV{(%) nV{(8s)

Maximum likeihood 7.160 (1.000} 0.260 (1.000} 0.959 {1.000)
Optimal 7.304 (0.968) 0.278 (0.935) 1.042 (0.920)
o =00 8.211 (0.872) 0.300 (0.842) 2.766 (0.347)
a=101 60 (0.888)  0.303 (0.859) 2.161 (0.444)
o =0.2 909 (0.905) 0.297 (0.876) 1.707 (0.562)
@ =03 7.764 (0.922) 0.291 (0.893} 1.397 (0.687)
o =04 7.629 (0.939) 0.286 (0.909) 1.204 (0.796)
=105 7.513 (0.953) 0.282 (0.922} 1.100 {0.872)
a =06 7428 (0.963) 0.279 (0.931) 1.053 (0.912)
a@=07 7.304 (0.968) 0.278 (0.933) 1.042 (0.920)
a=08 7441 (0.962) 0.280 (0.931) 1.049 (0.914)
a =09 7.614 (0.940) 0.283 (0.920) 1.064 (0.901)

NOTE: The truc correlation parameter is p = (1.7, ARE arc given in
parentheses.

resulls of the analysis of the dara using the first order Markov chain model which
adheres to the correlation bounds is in Part (3i) of Table 3.5. We now see that the
trearment effect has a small p-value, providing evidence that the treatment does

reduce depression.

Figure 3.1

GEE with different values of working correlation parameter.

shows the plot of regression cocfficient for treatment {O7) obtained by
We can see that the
regression cocfficient remains mostly constant within the corrclation bounds, but it
changes dramatically when the working correlation ¢ is outside the bounds. Iurther,
we can sce that when o is larger than 0.7, the sign of the regression coctlicient, conld
change as well. The behavior of the standard errors and p-values is similar as seen

in Figures 3.2 and 3.3, respectively.
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Table 3.5: Analysis of parameter estimates for Ham-D datla

(1) Parameter [st. SE  p-value (ii} Parameter  Est.  SE  p-valuc

Intercept -4.49  0.237 <0.001 Intercept -4.49  0.270  «<0.001
Treatment 0.38 0.211 0.071 Treatment 0.38 D188 0.043
Time 1.01 0.058 <0.00] Time 1.02 0.035  <0.001
Est.corr Correlation bounds Est.corr Corrclation bounds
0.404 -0.030.0.361] (0.361 -0.030.0.361]

NOTIL: (i) Analysis using GEE (ii} Analysis using Markov chain modcl.
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Figure 3.1: Plot of estimate of 3p
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I11.3 Quadratic inference functions

The generalized estimating cquations has been a popular method of estimation for
marginal models. However, it has several shortcomings when applied to discrete data.
Firat, the GEE treats dependence as a nuigance and estimates the working correla-
tion parameter with morment estimarors constructed using sums of squared Pearson
residuals. There is no guarantee that these estimates of the working correlation will
lie within the admissible range restricted by the marginal means. There could be
considerable loss in efficiency for the regression parameter when the correlation esti-
mate violates the correlation bounds. Ancther practical shortcoming of GEE is the
fack of an objective function which could be used for covariate and model sclection
purposes.  Several authors have suggested modifications and improvements of the
GEE to overcome these difficulties. Among these improvements, noteworthy to men-
tion is the quadratic inference function (QIE) method proposed by Qu et al. (2000).
Thig method eliminates estimating the working correlation paramcicr altogether and
horrows ideas from the gencralised method of moments estimation procedure due
to Hansen (1982). The QIF method also introduces an objective function which 1s
minimized to get the regression parameter estimate, In the next three seclions we
will present details of the QIF method and study it’s efliciency as compared to the

likelihood procedures using simulations.

The quadratic inferenee function is derived by observing that the inverse of the
working corrclation matrix R{a} can be written as a linear combination of some basis

matrices My, --- |, M,,, that is,
H"'I(r'y_) =ay My Fas My 40 bty M {3.3.1)

where M, are known symmetric matrices and ay, az. - -+ , @, are unknown constants,

which depend on «. In the next section we give examples of the basis matrices.
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ITE.3.1 <Choice of basis matrices

Equicorrelated. Suppose the correlation matrix R{«) of dimension ¢ has an eguicor-

related structure, that is, all the off-diagonals arc equal to .

. . .
a 1 - G

Rl{a) = L i =1—-a)I+5],
a o 1

wherce I 15 the identity matrix and J is a matrix of ones. The inverse of R{«) is given
by
1 x

o) = I- Jl =a M o M- 3.32.9
R (ﬂ’) 1 --a 1 '5"({-—1)(}; :I tty M) + aq Mg, (33 )

where o = 5, a2 = 2y, M1 =1, My = J. The choice of the M matrices

14+ (l—2)ex — e

is not unique. For example, we could also lake 3 = —G——, @ = goma ma

M, =1, and

01 1]

10 1
f'\-ifg:

11 0

First-order autoregressive. Supposc R{a) = (al™) is the first-order autoregres-

sive corrclation matrix. The inverse ol R{e) equals

1 —p 0 0 ]
—p 14+ —p 0
1 6 —p lip? - 0
R0 = ozl O R L)
¢ 0 0 1002 —p
0 o 0 p 1
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This can be written as a lincar combination of three basis matrices,

R Ya) = ap My +ag My 1 ag My

100 -0 010 --- 0] 1060 -0

10 - 0 101 -~ 0 O 00 --- 0

= g1 001 -- |01 0 -~ Ol 4a37 000 -+ 0
000 - 1 1060 - 0 000 -1

where

14 o _ —a —-a’

G = e gy = — = ———.
1 — a2’ 1 —n? 1-¢a?

The third term in the above expression captures the edge effect of the auto-regressive
process. And the third basis matrix My, which has only two nonzero values, 18 a minor
boundary correction and can be omitted, that is, we can approximate the inverse by

a7 1"1"1-1 + 2] ,"1:'12.

We will mainly consider these two correlation structures for comparisons of offi-

cicney belween QUF and likelihood methods.

I11.3.2 Extended score function

Using the representation (3.3.1} for R™!{a), we can rewrite the generalized estimaring

equation (3.2.1) as

mn 8 . ; i o
Z (%) A, 1;_(&! M+ agMy 4+ = an MYAT 2 (g — (3)) = 0.
o [ F
(3.3.4)
This is equivalent to
Opts .
Z Z (% ) S M AT = D) = 0
a8
(3.3.5)

Thus we see that this is a linear combination ol GEE type of estimating equalions

ihat involve the basis matrices Af; in place of the inverse of the working correlation




6Y

matrix. The QIF method bypasses estimating the cocfficients a; and considers the

“extended score’ function g, (83} given by

A\’ y
/ (:‘5%) "1«;_“21'1"31/‘1;—]”{1}1—J”-z') \
1 i 1 n (8“%‘)! 1—1.-"2!1(1{ 1—'[*"2( )
- : 57 ) T MeAy T —
7.(8) = = (8) =~ ag ) o T
7,.(8) ,n__;m(, )= ;: _
A .
\ ( ;;,) ATVAL AT s — 1) )

(3.3.6)

The dimension of g,(8) is mk x 1, where & is the dimension of the regression
parameter 3. Therefore (3.3.6) contains more than & equations and hence we cannot
obtain a unique estimate of 3 solving §,{3) — 0 directly. The approach of QIF is
to estimatce 2 by minimizing the quadratic function 7,(3) C~'5,(3) where C is the
covariance matrix of ¢;(3). A consistent estimate of Cis ', = (1/n) Y., :(8)4i(8).

The objective function
Qu(B) = n(8)T, 5.(8) (3.3.7)

is known as the quadratic inlerence function {Qu el al. (2000)}. Thus QII" estimate
of 5 is

4 =arg m_}n Gal(5). (3.3.8)

Surface plots of quadratic inference function @, (5} with different parameters are
shown in Figure 3.4. To generate these plots we generated binary responsces from the

model
logit(_p“) = o+ xi B, (339)

where ¢ =1,---  10; 1 =1,2,3,4. We ook 8y — 0.9 and 3; = ~0.3. The covariates
xy's are generated from standard normal distribution. Correlated binary responses
y; are sitnulated using the entropy maximization method described in Chaganty and

Joe (2006).

First, we simulated responses y; where the corrclation structure among repeated

measurements is equicorrelated, and we calenlated the QTF defined in (3.3.7) using
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the basis matrices M, and Ay designed for equicorrelated structure discussed in
Section 1I1.3.1. Next, we simulated data where the correlation structure among
repeated measurements is AR(1}, and calculated (3.3.7) using the three basis matrices
for AR{1) structure. Figure 3.4 shows the plots for these two cases. I 1s clear that
the surface has multiple ridges as well as local minima, but @, (3} does have a global
minimunl in both cascs which ensures the o unique solution f# for the minimum

(3.3.8).

However, there are situations where (0,,(5) does not have a global minirmum. For
example, we generated binary responsc variables from the same mean model (3.3.9)
given above. But insiead of generating uxy; from standard normal distribution. we
chose x4 as a fixed categorical covariate. The reason we chosc a categorical covariate
is they appear frequently in longitudinal data analysis, such s the times when the
measurements are taken on subjects. For the data generation we considercd both
equicorrclated and AR(1) structures. Figure 3.5 shows two cxamples where the
surface of QIF is almost flat and thus does not have a global minimum and theretore
a unigue solution 3 that minimizes On(3) does not exist. This happens because often
the matrix (7, is almost singular, and its inverse plays a dominant role in the value

of (,(8).

I11.3.3 Parameter estimation

As we noted before, a unique estimaie of 8 cannot be obtained solving §,(5} = 0,
since the dimension of g,(4) is greater than the number of regression coeflicients.
So instead, we minimize Lhe quadratic inference function (3.3.7). It is equivalent to
sctting the partial derivatives of {3.3.7) with respect to 8 to zero. This lcads to the

estimating equation
V.(3) =190, (3.3.10)
where

nTWVQ.(B) = 2V3,C, 3, +7,VC, 3,
= 2Vg,C, 7,- 7.0, VC.C, g, (83.11)
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(b) AR(1) with p = 0.8

Figure 3.4: The surface plot of Q,(5) where a global minimum exists.



(b} AR(1} with p = 0.28

Figure 3.5: The surface plot of Q,(3) where no global minimum exists.



Neote that Vg, is a m& x & matric and V', is a three-dimensional array

ac, ac, ac,
At 88y To8 )

We can solve equation (3.3.10) numerically using the Newton-Raphson algorithm,

which requires the following second order partial derivatives ol Q, ().

WIVEQ.(8) = 2V, T, Vg, +2V%5,C, g,
-4vg, G, VT, C,' 5, +29.C, VC,C, VT, g,
~7,C, V¥, C, G, (3.3.12)

B e . . . .
Here, V-, is a four-dimensional arcay

&C
i dj=1,2, ko
{saas =120 k)

The Newton-Raphson method iterates the equation

FUHN = BU) 1920, (8N IV, (89, (3.3.13)

until convergence. To further simplify the iterative algorithm we note that under
regularity conditions Vg, and VC,, have finite limits as n — 0. Hence they are
(1), but g, is O,(n~12), so the first term in (3.3.11) is Op{n~12), whereas the
second term is O,{n"1} and thus it can be asymptotically negligible. Therefore

minimizing @, is asymptotically equivalent to solving

ve.C.'G, = 0. (3.3.14)

L3

When 4 = E, all the terms in 72Q),. () involving g, are equal to zero except the

first term. Therefore we can take
FQu(8) = 27,0, VT (3.3.15)

We can use the above expression in the iterative algorithm (3.3.13) to obtain the
cstimale 4. In the next section we will derive an expression for the asymptotic

variance of the QLF regression parameter estimate.



111.3.4 Asymptotic variance

The extended score funciion {3.3.6) can be written in the form of a weighted esti-

mating equation. Let

V(B) = nga(8) =D v, Wiy ~ ), (3.3.16)
i=1
where
ipa; d - —1/3 —1/9
( ,-3{5 ) o 0 A, i M A, Y
Vi, = : o : and W= :

o (%) AT |
i wek ¥ mt tht

The estimating equation (3.3.16) is clearly an unbiased estimaling equalion since
E{y; — 4} = 0. By the result stated in Chaganty and Joe (2004), if # is the solution of
equation (3.3.16) then 5 18 asyuptotically normal with mean 5 and covarlance matrix
equal Lo inverse of Godambe information matrix G=1(8) = [(-Dg) V' (—D.;,)]_'t.

Here

—Dy = E(0¥(8}/88) = 732, W -,

Tt

Vy = Cov(¥(8)) = ) Vi WIDW, v p,.

i=1

Using the matrix Cauchy-Schwarz inequality {Chaganly and Joc (2004)} we can show
that the optimal choice for W, in (3.3.16) is W? = (

r
i i) 3
TR k:).lnt.hlscase

-l el "
lae n:

the asymptatic covariance matrix G () of # reduces to

—1
"~ B 1 O
‘= 05 ey '

Note that optimal choice WY depends on the unknown 3 and on the dependence

partamclers. But since QIT vses the basis malrices instead ol the truc covariance
matrix, it is not expected to produce the most efficient estimator for the regression

parameter.



[1i.4 Comparison of asymptotic performance

In this section we compare asymptolic performance of QIF regression estimator and
the maximum likelihood estimator of Markov chain (MC}) model discussed in Chap-
ter II, by computing the asymptotic relative efficiency (ARE) of QIF mecthod with
respect to the first order Markov chain procedure. In our simulations we chose the
number of repeated measuremcents as = 4,06 and 8, and a sample size of n = 1000.

The asymptotic relative cfficiency (ARE) is calculated as follows

asyinptolic variance of MC

ARE = : : .
asymplotic variance of QIF

By varying the correlation parameter p over its adimissible range, we can see how the

efficiency changes when the correlation estimate is far from the true correlation.

In our simulations we gencrated binary responses from the model
. N B«
logit(py) = By + Bixy; + oy,

where 4 = 1, ,n = 1000; 2§ is a discrete covariate taking values 1,2,..., ¢ and z§

is generated from uniform distribution on (0. 1).

We start with the case { = 4. The true value of the regression coefficients arc
taken as 5, — 0.8, 91 = —0.1 and 3 = 0.15. The ARE plots of QIF with respect to
the MC procedure for the three regression cocflicients are in Figure 3.6 When p =10
the ARY is 1, that is, when the repealed measurements are independent QI is as
efficient as the Markov chain model. But the ARE is less than 1 and decreases as p
increases. However, as seen in Figure 3.6(h}, the ARE remains high even when p is
closc to 0.7, which indicates that QIF is comparable to the Markov chain model when
estimating the coefficient of the discrete covariate. But the ARE for the regression
coefficient corresponding to the continuous drops to less than 0.5 as p approaches
its upper bound of 0.883 as shown in Figure 3.6{c¢). This shows QIF cstimates the
regrassion coefficient corresponding to the continuous covariaie very poorly for highly
correlated data. Table 3.6 contains the numerical values of the asymptotic rclative

efficiencies in the case.

We now consider the case t = 6. The ARE plots for the three regression co-

efficients are shown in Figure 3.7. The plots clearly show the QIF estimates are



Table 3.6: Asymptotic variance and ARE of QIF, { = 4

nV(Fo) nV{(5;) nV (3}

(8
p =00 10.005 (1.000) 0885 (1.000) 13280 (1.000)
p=0.1 10.363 (0.009) 0.922 (0.999) 13.070 (0.999)
p=02 10539 (0.997) 0.940 (0.997) 12.479 (0.997)
p =03 10527 (0.995) 0.938 (0.995) 11.552 (0.994)
p=04 10.326 (0.994) 0.912 (0.994) 10.355 (0.989)
(
(
(

p=05 0035(0.992) 0857 (0.994) &960 (0.977)
p=06 0.353(0.988) 0.770 (0.994) 7.440 (0.952)
p=07 8.573(0.983) 0.647(0.993) 5.861 (0.902)
p—=08 T7.587(0.974) 0.481 (0.986) 4.276 (0.787)

NOTE: Range of pis (—0.450, 0.883). The parameter val-
ues are fy = 0.8, 4y = —0.1, 8 = 0.15, and n = 1000;
ARESs are given in parcotheses.

uniformiv less efficient as compared to the MC estimates for correlated data. In Fige
ures 3.7(a) and {¢) thc ARE decreases as p approaches to its upper bound. But in
[igure 3.7(b) we can sec the plot of ARE is not monotone, it decreases to 0.935 and
increases back to 0.88. This is different from the case when the number of repeated
measurements is + = 4. Table 3.7 contains the numerical values of the AREs for the

three regression coefficients.

Figure 3.8 and Table 3.8 shows the ARIL plots and numerical values, respectively,
in the case t = 8 The pattern is the same as in the previous two cases. DBased on
these tesults, we can conclude that [or highly correlated binary data with autoregres-
sive striucture, QIF is very inefficient for estimating the regression coefficient for the
continuous covariates but rcasonably efficient for discrete covariates. However if the
corrclalion is small it & respectable efficiency compared to the maximum likelihood

estimator from the Markov chain model.
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Table 3.7 Asyvmiptotic variance of QIF and ARE, { =6

nV (%) nV {4 nV {3}
p—00 10.905 (1.000) 0.540 (1.000) 18.080 (1.000)
p— 01 11.485 (0.990) 0.508 (0.985) 17.772 (0.990)
p=0.2 11.885 (0.978) 0.641 (0.963) 16.893 (0.979)
p=03 12.097 (0.969) 0.681 (0.947) 15.522 (0.972)
p=04 12112 (0.965) 0.708 (0.938) 13.770 (0.966)
p=05 11900 (0.964) 0.717 (0.936) 11.761 (0.956)
p— 0.6 11.447 (0.965) D0.670 (0.943) 9.615 (0.933)
p=0.7 10664 (0.962) 0.644 (0.956) 7.432 (0.874)
p=08 9473 (0.043) 0.533 (0.973) 5.293 (0.705)

NOTE: Range of g is (—0.091,0.862). The parameter val-
ues are Gy = 1.2, 8, = 0.6, 55 =0.1, and n = 1000; AREs
are given in parentheses.

Table 3.8: Asymptotic variance of QIF and ARE, ¢ = 8

T 'V] (,80 )

nV ()

nV{Hs)

p =100
p=101
p =02
p=103
p =101
p=10.5
p=06
p=07

6.509 (1.000)
6.905 (0.993)
7.034 (0.985)
7.39% (0.977)
7.480 (0.969)
7.42% (0.958)
7.193 (0.935)
6.703 (0.862)

ﬁﬁﬂﬁﬁﬁ

0.293 (1.000)
0.333 (0.983)
0.375 (0.961)
0.416 (0.943)

55 (0.931)
U 487 (0.929)
0.505 {0.940)
0.497 (0.972)

11.200 (1.000}
10.984 (0.995)
10.400 (0.987)
9.505 (0. C}TF)
8.377 (0.9

7.097 (0. 899)
5.744 (0.760)
4.381 (0.300)

NOTE: Range of pis (—0.027,0.706}. The parameter val-

ues are 4y = 1.0, 4, = —06, 8, =

AREs arc given in parentheses.

—0.1,

and n = 1000;
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III.5 Comparison of small-sample performance
In this section we compare the small-sample performance of QIF estimator with the
maxinmm likelihood estimate from the first order Markov chain (MC) model using
simulated data. We fixed the sample size as » = 30. Correlated binary random

vectors with AR(1) structure are simulated separately from two models. The frst

model is
logit(p;,) = Bo + Sz, (3.5.1)

where 2§ are generated from standard normal distribution. The second model 1s

logit(p,) = &y + ;’5’1:1;5 + ,BQ;rg._ {3.5.2)
where x5 take values 1,2.. .., . We fixed the true values of the regression coefficients
as 8y — 0.5 and 3, = —0.5. We considered wwo cases £ = 4 and ¢ = 8. Fixing a value

ol p within the correlation bounds we simulated binary data and calculated QIF
and MC estimators (or the regression cocficients. We then repeated the procedure
1,000 times for each combination of the parameter choices. The mean square errors
(MSE) are calculated averaging the squared deviations of the estimate from the iruc
regression parameter values. The relative efficicncies (RE) are caleulated laking

ratios as follows:
VSE of MC estimate

= MSE of QIF estimate’

RE

Table 3.9 and Table 3.10 shows tesults from the simulations with t =4 and £ = 8
respectively. We can see that the values of RE are less than 1 for all values of p within
the feasible range (—0.250, 0.465), indicating that QIF estimator has larger MSIE than
the MC estimator. Further the RE of 3 is hecoming smaller when p increases Lo
the npper bound, more specifically, the efficiency is 0.531 when p — 0.45. For { = 8,
the efficiencies of QIF are better than those when t = 4. The conclusion that we
can make from these simulations is that QIF estimates the regression paramcter
poorly for small samples when there is a high correlation. However, its performance

improves when the number of repeated measurements increases.

Next, we did similar simulations using model (3.5.2}, fixing % = 0.1, 5, = 0.2

and fy = 0.5, Note that there is a discrete covariate «)] in this modcl. The MSEs



Table 3.9: MSE and RE of QIF and MC with one covanate, =1

MSE(5) MSE(3;)
p QIF MC RE QIF  MC  RE
0.00 0.0464 0.0373 0805  0.0588 0.0436 0.741
0.05 00457 00359 0.786  0.0690 0.0522 0.757
0.10 0.0631 00515 0817  0.0404 0.0118 0.846
0.15 0.0652 0.0466 0715  0.0624 0.0436 0.699
0.20 00656 0.0485 0.740  0.0534 0.0417 0.780
0.25 0.0687 00541 0.788  0.0464 0.0332 0.715
(.30 0.0678 0.0541 0.798  0.0500 0.0355 0.711
0.35 00851 0.0623 0.732  0.0409 0.0284 0.694
040 0.0918 0.0637 0.693  0.0466 0.0276 0.591
045 0.1019 0.0768 0.753  0.0419 0.0222 0.531

NOTE: Range of pis {(—0.250,0.465) and 4 = (0.5, —0.5).

Table 3.10: MSE and RE of QIF and MC with one covariate, t = 8

MSE( &) MSE(3)

p  QIF MC RE QIF MC RE
0 00202 00180 0.891  0.0255 0.0218 0.853
C.0b 0.0231 0.0204 0.883 0.0236 0.0203 0.859
G.10 0.0290 0.0250 0.862 0.0255 0.0218 0.853
.15 0.0261 0.0231 0.885H 0.0235H 0.0223 0.872
0.20 0.0303 00269 0888  0.0251 0.0210 0.837
0.25 0.0366 00300 0.819 0.0201 00165 0.823
0.30 0.0399 0.0332 0.833 0.0222 0.0153 0.691
0.35 0.0435 0.0343 0790  0.0195 0.0114 0.585

NOTE: Range of p is (—0.283,0.385) and 3 = (0.5, —0.3)".



Table 3.11: MSIE and RE of QIF with hoth covariates, { = 4

r MSE(3,) MSE(5;) MSE(3:)
0.00  0.328 (0.743)  0.048 (0.730)  0.080 (0.573)
0.05  0.363 (0.68 7) 0.055 (0.638)  0.086 (0.556)
010 0.324 (0.788) 0043 (0.765)  0.075 (0.645)
0.15  0.296 (0.774)  0.044 (0.756)  0.070 (0.623)
0.20 0388 (D.654)  0.064 (0.580)  0.094 (0.472)
0.25  0.374 (0.687)  0.045 (0.699)  0.079 (0.487)
0.30 0410 (0.666)  0.035 (0.637)  0.078 (0.494)
0.35 0388 (0679) 0055 (0.593)  0.070 (0.374)

&3

NOTE: Range of p s (-0.162,0.358) and 8 =
{0.1,0.2, ~0.5). REs arc given in the parentheses.

and the AREs are displayed for ¢ = 4 and ¢ = 8 in Tables 3.11 and 3.12, respectively.
We can sce that in the second model QIF performance is much worse than in the

first model, the relative efficiency fell below 0.35 in some cases.

Changing the true values of the regression coeflicicuts and perforining small sam-
ple simulations, we found cascs where QIF did really a poor job in estimating the
regression cocflicients. The simualations results from one of those cases are shown in
Table 3.13. Ilere we fixed 8y = 0.3 5 = 0.5 and F; = —0.5. The true marginal
probabilities in this case do not vary much and are in the range 0.7 to 0.8, Tn this

case the efficiency of QIF has dropped to as low as 0.168.



Table 3.12: MSE and RE of QIF with both covariates, t =8

o MSE(5) MSF(3,) MSE(3,)
0.00 0121 (0.797)  0.006 (0.739)  0.039 (0.743)
005  0.147 (0.819)  0.007 (0. ;54) 0.041 (0.694)
0.10  0.155 (0.752)  0.001 (0.714)  0.041 (0.712)
0.15 0157 (0.734)  0.009 (0.614)  0.042 (0.658)
020 0.146 (0.812)  0.008 (0.693)  0.032 (0.717)
0.25  0.165 (0.804)  0.008 (0.601)  0.037 (0.571)
030 0.183 (0.646)  0.000 (0.635)  0.035 (0.481)
0.35  0.201 (0.749)  0.010 (0.685)  0.037 (0.333)

NOTE: Range of p is (—=0.104,0.351) and 75 =

(0.1,0.2,—0.5Y. REs are given in parentheses.

Table 3.13: MSE and RE of QIF with both covanales, L =8

o MSE(3) MSE(31) MSE(8:)
0.00  0.332 (0455}  0.067 (0.273)  0.122 (0.448)
0.05  0.302 (0.440)  0.100 (0.184)  0.131 (0.416)
0.10 0442 (0.510)  0.109 (0.228)  0.127 (0.448)
0.15 0510 (0.411)  0.135 (0.179)  0.141 (0.385)
0.20 0505 (0.411)  0.117 (0.180)  0.156 (0.377)
0.25 0548 (0.378)  (.113 (o 234)  0.146 (0.323)
0.30  0.500 (0.425) 59 (0.152)  0.133 (0.286)
035  0.477 {0.349) 0.119 (0.168)  0.152 (0.287)

NOTE: Range of p is (—0.1034,0.351} and 4 =

(0.5,0.5,

—0.5)". REs are given in parentheses.

&4
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III.6 A robust variance estimator in QIF

As stated in Section ITL3.2, Qu, et al. (2000 estimated the covariance matrix C hy

_ b — e
G n Z 9:{8)g:{8)

9a(8)9n(8)  ga(Ble(B) - 91(B)g{58)
1< gia (35 (8 2(3)gL(8) - g2(8)¢..(8
S gial, )Ql(_ ) gial )gz( ) 92(8)9n(8) (3:6.1)

n < : : .

L glm(ﬁ)g:l(ﬁ) yaan(*?)g:z(ﬁ) gtm(ﬁ)g:m(ﬁ)

where
- Oy ’ a—b/2 4—172 gy
gi8) = ah ATUMAT - phe) = Dij(-ﬁ)(yé — jt:h,

oy [ :,”'a' ’ 4172, -1/2 —1/2 5, -1 dpl@
.(Jr'ilJ.(.-‘lj)giR:(."'j) = ( (I}G) Ai ! z‘&;'rjA'a. . (y‘t - H‘f)(yg' - #"i)l"/l-i TIQ‘I‘I&"‘]‘?‘ s ((’jf;{)

= DL — ) (e — 1u) Dun{B).

The estimate C,, 1s also called an unstructured estimator since it is obtained without
any paramclric specification. Recall that the framework of GEE and QIF has the
assumption that there is a common correlation structure across all subjects, but they
hoth estimate the covariance for the ith subject using (y; — p;: My — ), that is, using
only the sth observation. This 15 not an optimal estimator for Cov{(y;}, because it
s neither consistent nor efficient since it ignores the basic assumption thal there is
a common correlation for all subjects. Pan {2001} proposed a robust estimator for
Cov(y;) m the context of GEFE. Tt is obtained by pooling observations across different

subjects and it is given by

V= A (Z ATV (g — (s — mﬂ«) A (36.2)
i=1

This estimator could also be used to estimate Lhe covariance for the repeated mea-

surcinents on the ¢th subject in QIF as well. Thus our modified estimate ol the
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covariance matrix of ¢;(8) is

DLBWV,Da(B) DL(BWViDe(8) - DL(8)ViDy(3)

W = lzn: DOViDa(8)  DR(BViDe(8y - Dh(@ViDi(8)
" n : : .

D (B)Viba(B) 1,(BViDp(8) - D (8)ViDumi5)

(3.6.3)

Pan (200]) provided a partial justification showing that asymptotically,

Cov(vec(WW,)) < Cov(vec(C',)). Thus, our proposed modification of QIF is

P Tl S
It the next section we study the performance of this modified QIF with respeet to

the original QII" in small samples.

III.7 Performance of modified QIF

Here we compare the performance of the modified QIF (mQIF) method discussed in
Section II1.6 with respect to the maximum likelihood estimate of the Markov chain
mode] using small-sample simulations. We used models (3.5.1) and (3.5.2) and AR(1)
and equicorrelated correlation structures. The MSLs were caleulated gencrating 1000
samples of size n = 30 for both the mQTF and MC estimators. The relative efficiency
ig calculated by Lhe ratio

MSE of MC estimate

RE = : :
MSE of mQIF estimate

I1.7.1 Small-sample performance with AR(1) structure

Tables 3.14 and 3.15 shows the MSFs and relative efficiency of mQIF from
model (3.5.1) with { = 4 and t = 8, respectively. Comparing these efficiency values
with Tables 3.9 and 3.10, we can sce that the mQIF estimator is an improvernent
over QIF estimator. For small values ol p, mQIF is comparable with MC, specially
the RE of Eg is close to one when p is near zero. However, for large values of rho,
even the mQIF is less cflicient than MC, though it performs betler than the QIF

cstimator.



Table 3.14: MSE and RE of mQIF and MC with one covariate, ¢ = 4

MSE(7) MSE(3,)
s mQIF MC RE mQIF MC RE
000 0.041 0.037 0913  0.044 0.044 0.995
005 0.040 0.036 0906  0.052 0.052 0.996
0.0 0.057 0.052 0908 0042 0.042 0.993
0.15 0.053 0.047 0887  0.044 0.044 0989
020 0056 0.049 0875  0.043 0.042 0.976
025 0.060 0.054 0899  0.035 0033 0.937
0.30 0059 0054 0918  0.039 0036 0519
0.35 0072 0.062 0.862  0.034 0.028 0.839
040 0.079 0.064 0.808  0.037 0.028 0.755
0.45 0088 0.077 0.869 0034 0022 0651

Table 3.15: MSE and RE of mQIF and MC with one covariate, £ =8

MSE(By) MSE(5))
p mQIF MC RE mQIF MC RE
0.00 0.019 0018 0834 0022 0022 1.002
0.05 0.021 0.020 0964 0020 0020 1.010
010 0.027 0.025 0915  0.022 0022 1.001
0.15 0.024 0.023 0962 0023 0022 0.9%6
0.20 0.029 0.027 0926 0021 0021 0.989
025 0.033 0.030 0909  0.018 0.017 0922
.30 0.037 0.033 0909  0.019 0015 0.803
0.35 0.040 0.034 0.849 0017 0011 0.685

NOTE: Range of pis (—0.283.0.385) and 8 = (0.3, —0.5)".



Table 3.16: MSE and RE of mQIF with both covariates, t =4

o0

o0

" MSE(5s) MSE(3)) MSE(3,)
0.00  0.284 (0.861)  0.042 (0.835)  0.049 (0.938)
0.05  0.305 (0.816)  0.044 (0.799)  0.048 (0.983)
0.10  0.302 (0.846)  0.041 (0.792)  0.050 (0.961)
0.15  0.275(0.834)  0.040 (0.828)  0.047 (0.987)
0.20 0324 (0.785)  0.048 (0.775)  0.050 (0.898)
0.25  0.327 (0.784)  0.041 (0.770)  0.048 (0.807)
0.30  0.346 (0.788)  0.044 (0. 787) 0.050 {(0.779)
0.35  0.333 (0.792)  0.046 {0.712)  0.044 (0.593)

NOTE: Range of p is (—0162,0.358) and 8 =

(0.1,0.2, ~0.5)". RE arc given in parentheses.

Next, we compare mQIF estimator with simulating observations [rom model 3.5.2
that includes a discrete covariate. The resulis of the simulations are in Tables 3.16
and 3.17. When we compare these numbers with the ones i Tables 3.11 and 3.12,
we can see that even in this case mQIT does better than the QIF estimator. So the

mQIE estimator out performs QIF estimalor in all cases.

Finally, we reexamined the cases where QIF did very poorly and checked the
The results are in Table 3.18. Although mQIF

is much less efficient compared to the MC cstimaior, but it performs better than

efficiency of mQIF in those cases.

QIF. We can sce that the eficiency of By is twice as high as the corresponding QIF

estimator.

111.7.2 Small-sample performance with equicorrelated structure

Now, we compare the performance of mQIF cstimater with QIF estimator through
simulated small sample data with equicorrelated structure. We kept the two covari-
ales the same in models 3.5.1 and 3.5.2. The ohservations are gencraled from the

multivariate model with equicorrelated structure, and MSEs arc calculated for mQIF



Table 3.17: MSE and RE of QIF with bolh covariates, t =8

a MSE(f,) MSE(3,) MSE(3:)
0.00  0.114 (0.852)  0.006 (0.821)  0.030 (0.966)
0.05  0.134 (0.894)  0.007 (0.833)  0.030 (0.952)
010 0.137 (0.854)  0.007 (0.792)  0.030 (0.968)
0.15  0.141 (0.318)  0.008 (0.704)  0.030 (0.915)
020 0.139 (0.853)  0.007 (0.794)  0.025 (0.900)
025  0.159 (0.836)  0.008 (0.771)  0.030 (0.704)
0.30  0.157 (0.756)  0.008 (0.715)  0.023 (0.723)
0.35 (0.192 {(0.784) 0.010 (0.709) 0.024 (0.514)

NOTE: Range of p is (—0.104,0351) and 3 =

(0.1,0.2,-0.5)". RE are given in parentheses.

Table 3.18: MSE and RE of QIF with both covariates, { = 8

o MSE(5) MSE(H) MSE(5,)
0.00 0253 (0.600)  0.041 (0.445)  0.067 (0.816)
0.05  0.267 (0.646)  0.042 (0.481)  0.060 (0.903)
0.10 0.317 (0.711) 0.040 (0.617) 0.071 (0.800)
0.15  0.330 (0.647)  0.045 (0.587)  0.070 (0.774)
0.20  0.307 (0.677)  0.051 (0.409)  0.075 (0.782)
(0.2 (.317 (0.652) 0.062 (0.429) 0.074 (0.641)
030  0.342 (0.621)  0.065 (0.374)  0.067 (0.571)
035 0314 (0.530)  0.059 (0.341)  0.074 (0.593)

NOTE: Range of p (—0.008,0.359) and 3 =
(0.5,0.5, —0.5Y. RE are given in parentheses.
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Tahle 3.1%: MSE and RE of QIF and mQIF with one covariate, { = 4

MSE( /i) MSE(5,)
p QIF mQIF RE QIF mQIF RE
000 0.046 0.03% 0848 0176 0.159 0.905
0.05 0056 0044 0779 0204 0.176 0.863
0.10 0072 0050 0700 0188 0.174 0.925
0.15 0.068 0.053 0.782 0217 0.183 0.865
020 0.07% 0062 0790 0217 0202 0931
0.25 0.084 0066 0783 0228 0206 0.901
0.30 0092 0.066 0721 0230 0215 0.933
0.35 0100 0074 0.733 0240 0221 0921
040 0.111 0.084 0761 0263 0249 0.946

NOTE: Upper bound of g is 0.428 aud 8 = (0.5, —0.5)".

and QIF estiimators. The efficiency is calculated as

MSE of mQII” estimate
MSE of QIF estimate =

RE =

The simulation results can be found in the following tables 3.19, 3.20, 3.21 and

3.22. The message is clear, mQIF is a better estimator than QIF estimator.

ITI1.8 Misspecification of correlation structure

Qu at el. {2000) showed that if the repeated measurements are continuous and nor-
mally distributed, nnder the correct assumption of working correlation structure, QIIF
performs as good as GFE. And if the working correlation structure is misspecified,
the QIF approach is more efficient than GEE. In this section we exariine the perfor-
mance of the MC method under misspecification as opposed to the mQIF estimator

under correct specificalion of the correlation structure for binary data.

We generated binary samples of size n = 30 with repeated measurements equal to
eight (t = 8), and equicorrelated structure, from models 3.5.1 and 3.5.2. Here modi-

ficd QIF csiimales are obtained using the basic matrix for equicorrelated structure,



Table 3.20: MSE and RE of QIF and mQIF with onc covariate, t = 8

MSE(5y) MSE(5)
p  QIF mQIF RE QIF mQIF RE
0 0025 0022 0.8 0026 0021 0.806
0.05 0033 0020 0.8 0020 0.023 0.802
0.10 0039 0.032 084 0022 0022 0.774
0.15 0053 0.044 083 0023 0.019 0837
0.20 0.068 0.051 0.74 0026 0020 0.777
0.25 0071 0051 0.73 0022 0.017 0.779
0.30 0.083 0.065 0.78 0021 0.017 0.819

NOTE: Upper bound of p is 0.327 and 3 = (0.5, -0.5).

Table 3.21: MSE and RE of mQIF wiith both covariates, t = 4

@ MSE(3) MSE(£)) MSE(3:)

0.00 0608 (0.822)  0.106 (0.733)  0.140 (0.910)
0.05 0512 (0.830)  0.098 (0.713)  0.152 (0.806)
0.10 0518 (0.802)  0.093 (0.668)  0.154 (0.968)
0.15 0511 (0.840)  0.097 (0.700)  0.166 (0.960)
020 0. 521" (0.844)  0.101 {0.708)  0.162 (0.945)
0.25 3 (0.859)  0.089 (0.665)  0.181 (0.894)

( (0.738)

( (0.615)

.30 0 491 (1.890) 0.094 (0.738 0.167 {0.935)

0.35 0.473 (0.843) 0.099 (0.615 0.169 {0.963)

NOTE: Upper bound of p is 0.365 and 8 = (0.1, 0.2, -0.5)".

RE are given in parentheses.



Table 3.22: MSE and RE of mQIF with both covariates, t =8

MSE(5))

o SE(5)) MSE(3)
0.00 0100 (0.757)  0.005 (0.764)  0.025 (0.668)
0.05 (0.111 (0.764) 0.005 (0.715) 0.029 (0.691}
(1.10 0.111 (0.762) 0.005 (0.759) 0.025 (0.667)
0.15 0109 (0.811)  0.005 (0.744)  0.027 (0.680)
020  0.110 (0.751)  0.005 (0.672)  0.024 (0.653)

NOTE: Upper bound of p is 0.232 and 3 = (0.1,0.2, -0.5)".

RE are given in parentheses.

which means that there is no model misspecification for mQIF estimator. Since the
correlation structure under first. order Markov chain model 1s AR(1}, it is a misspeci-
fied model for these simulated data. The mean square errors are calculaled repeating
the process 1000 times. The relative efficiency is caleulated as

MSE of MC estimate
MSE of mQIT estimate’

R =

The resuits are displayed in Tables 3.23 and 3.24. We can sce from the tables
the relative cfficiencics are close to 1, which indicates that the two approaches are
almost equivalent for different value of p. The results show that MC cstimator s

quite robust and efficient as the mQIF estimator.

III.9 Real data examples

In this section, we apply QIF, mQIF, Markov chain and GEE methods of estimation

on real data given in Chapter L
Example 3.1. Six city data.

We applied the MC methad first to the six city data and calculated the feasible
bounds on the correlation, and found the range to be (-0.136, 0.927), which is pretty
wide. For this data the GEE estimate ol the correlation is 0.40 which is within the

feasible range. Recall that QIF and mQIF methods do not give an cstimate of the



Table 3.23: MSE and RE of QIF and mQIF with one covariale, £ =8

MSE(8,) MSE(3))
o MC mQIF RE MC mQIF RE
0 0.021 0021 0979  0.022 0022 0993
005 0023 0.024 0955 0021 0.020 1.003
0.10 0035 0.036 098 0022 0022 1.007
0.15 0040 0.041 0969 0021 0022 0956
0.20 0.047 0.048 0983  0.019 0019 0.975
025 0058 0.059 0985  0.018 0.021 0.860
0.30 0.066 0.065 1016  0.015 0.017 0.863

NOTE: Upper bound of p is 0.313 and 8 = (0.5, —0.5Y.

Table 3.24: MSE and BRI of mQIF with bolh covariates, £ =8

a MSE(fo) MSE(3)) MSE(53)

0.00  0.094 (0.951)  0.004 (0.943)  0.033 (0.894
0.05  0.096 (0.951)  0.004 (0.923)  0.030 (0.814
0.10  0.111 (0.948)  0.004 (0.918)  0.033 (0.879
0.15  0.101 (0.985)  0.004 (0.953)  0.031 (0.884
020 0.104 (0.946)  0.004 (0.953)  0.031 (0.830

e

P e B i T i
LSRN

!

NOTE: Upper bound of p is 0.216 and 8 = {0.1,0.2, —0.5)".
RE are given in parentheses.

L
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correlation parameter. The results for the six city data using the four methods of
estimation are shown in Table 3.25. The estimates and standard errors are very
similar for the four methods. They all show that the maternal smoking habit is not

a significant factor for children’s respiratory illness.

Table 3.25: Analysis of parameter estimates for Six-city dala

(i} Paramcter Est. SE  p-value (ii) Parameter Est. SE  p-value
Intercept -1.917  0.120 <0601 Intercept 1918 0116 <0.001
Age -0.147  0.059  (.0122  Age -0.147  0.056  0.0084
Sroking 0.287  0.190 0.1316* Smoking 0.300  0.196 0.1262*
AgoxSmoking  0.078  0.090  0.3840 AgexSmoking 0.076 0094 0.4176
(iii) Parameter  Est. SE  p-value (iv)]”arameter. Est. SE  p-value
Intercept -1.921 0.110 <0.001 Intercept -1820 0120 <0.001
Age -0.132 0.070  0.0292  Age -(L147  0.059 0.0134
Smoking 0.295 0171 0.0849* Smoking 0.295  0.190 0.1201*

AgexSmoking  0.112  0.058 (.4394 AgexSmoking 0.082 0.091 0.3688

st .corr Feasible range Est.corr
0.384 -0.136,0.927] 0.400

NOTE: (i) QIF (i) mQIF (iii} MC and (iv) GEE

Example 3.2. Hamilton's depression study

We consider next the analysis of the Ham-D data. In the analysis we included onty
those patients with all 8 measurements so that the data is balanced. The analysis
using the four methods is displayed in Table 3.26. For this data, the range of the
correlation parameter calculated fitting the MC mecthod s (-0.043, 0.632). It is also
wide but the interval is not as broad as the six-city data. We can sce [rom the table
that the estimates of correlation parameter [all within the range for both MC and
GEE methods, and both the methods show that treatment is significant. But for

QIF and mQIF, the p-values are larger than 0.05 indicating that treatment is not a



significant, factor, which we believe i3 an erroneous conclusion.

Table 3.26: Analysis of parameter estimates for Ham-D data

(i} Parameter Est. SE  p-valne (ii) Parameter  Lst. SE  p-valuc
Intercept -6.919 0.382 <0.001 Intercept -6.789  0.376  <0.001
Treatment 0.276 0.262 0.2839* Treatment 0.280 0261 0.2839*
Time 1781 0.096 <0.001 Time 1.732  0.097 <0.001
(iti} Parameter  Est. SE  p-value {iv) Parameter  Est. SE  p-value
Intercept -4.164 0.276 <0.001 Intercept -4.298  0.232  <0.001
Treaiment (0432 0.204 0.0343* Treatment 0.487  0.213  0.0222*
Time (0.917 0.054 <0.001 Time 0.949 0.057 <0.001
Est.corr Fréchet bounds Est.corr

0.499 [-0.043,0.632] (.441

NOTE: (i) QIF, (i) mQIF. (iii) MC and (iv) GEE
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CHAPTER IV

HIGH ORDER MARKOV CHAIN MODELS

IV.1l Introduction

We have discussed in Chapter II, a Arst order Markov chain model for dependent
binary observalions. A potential approach for constructing bhigher order Markov
chain models is throngh the use of copulas, which are multivariate distributions
with uniform marging. In this chapter we give an introduction to copulas and show
how can they be used to construct multivariate binary distributions with specified

marginal means and dependence structure.

1V.2 Introduction of copulas

Constructing multivariate distributions using copulas has become popular in recent
years. The motivation for the development of copula methods is rooted in the attempt
of constructing multivariate distributions with given non-normal marginal distribu-
tions. The copula method is based on the idea that the distribution function could be
used to convert the marginal distribution to a uniform distribution, and then a joinl
distribution with specified marginal distribution can be obtained using a multivariate
distribution with uniform marginals. There are many families of copulas that differ
in the type of dependence they exhibil. In this section we give a brief description of

copulas.
Definition 4.1. A i-dimensional copula is a function C from [0,1] — [0, 1] with the
following propertics:

Lo e Dy = foralli =120 L

2. Clup, - ,ue) =0 4f at least one uw, =0 fori=1,2,--- L

3. For all u; < uy,, where 21 =1,2,--- 1,

2 2 2

Z Z e Z(—l‘)jy;jﬁ"'ﬂ’ Cluy,  ugy,, - uy,) 2 0.

Ji==tgz=l =l



a7

The following theorem duc to Sklar (1959] iz fundamental to the development
of copulas. Sklar’s theorem elucidates the role that copulas play in the relationship

hetween multivariate distribution functions and their univariate margins.

Theorem 4.1. Sklar's Theorem. Let H be o joind cumnulative dislribution funclion
with marging F1, Fy - Fi. Then there exists a t-dimensional copula C such for all

e, ;?}’fem:
H{yi,ya, - ) — CUI (). Falw). - Bilw))-

If By, 1y, - | F, are continuous distribution functions, then C is unigue; otherwise

C is uniquely determined on range(Fy) x range(Fy) x -+ x range(Fy).

Lemma 4.1. Fréchet-Hoeflding Bounds. If C'is a t-dimensional copula, then for il
w, €0, 1], =12 4,
Criuy, s, up b < Clup,ug, - tg) < Culug, ug, -, ),
where Cr, and Cy are defined as
Crluy,ug, -+, w) = max(0,uy —ug+ -+ u — (£ — 1)),

Culuy, g, - 1) = min{ug, g, -0, ).

Cy is a copula for any £, but (' is a copula only when t = 2.

I1V.3 Examples of bivariate copulas

In this section, we present some well known bivartate copulas.

Example 4.1. (Independence Copula). The function given by
Clu.v) = wv

18 the bivariele Independence copule. Iis density is simply e{u, v) = 1.
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Tigure 4.1: Density function of bivariate Ganssian copula

Example 4.2. (Bivariale Gaussian copula). For 0 < § < 1, Clu.ud) =
Gs(D7(u), DY), where © is the standard normal distribution function, and
$; w5 the bivariate standard normal distribution function with corvelution 5. Lel

x =& Yu) and y = &), the densily function is given by

(=% ™).

SR

. 91/ 1 2 9
elu, v:6) = (1 — §)7 17 exp{-—-é(l — 57 e + o — 20z} exp]

Example 4.3. (Frank Copula). For0 < d <oc.,p=1—-¢77,
Clu,v;6) = = Hlog([n — (1 — )1 - ™| /).
The dens-ity 15

c{u, 13 8) = Ene 00 fln - (1 — 7)1 — )2

Example 4.4. (Gumbel Copula). Let & = —log(u), # = —log{v}, for 0 <4 < 0,
Clu, v;8) = exp{—(&* + °)4°}.

The densiy s

(@g)’ .

e(u, v;8) = Clu, v d)(u) ™ CEO R

(78 4 7)Y g — 1.
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In a multivariate copula model, the cumulative distribution function of a random

vector Y — (Y1,--- . Y} is given by
Flyy = C(F(m), -, Frlge)). (4.3.1)

where ' is a t-dimensional copula and £} is marginal cunnmlative distribution function

of ¥,. If' Y is continuous, then its probability density function is

fly) = H Lyl Py, Flwd)s (4.3.2)

where f, is marginal probability density function of ¥; and

AClug, -+ )

e Fi{wa), - Fiw)) = By - Oy

(4.3.3)
is the density of copula C.

For discrete margins the nllivariate probability mass function is given by

POY =gy =3 3 o S (=1 Clu, (), g (w)). (43.4)

J1=1jz=1 Jr=1

where u;1(y;) = Fi(y—) and waly:) = Fi(y). Here Fi(y,—) is the lelt-hand limit of F}

at y;, which is equal to Fy(y; — 1} when the support of I; is the set of integers.

In particular, suppose ¥; is a binary variable with P{Y; = 1} = p;. The distribu-

tion function of ¥ is

0 Wi < ()
Fly)—¢ 1—p 0<y <1

If ¢ = 3, according to (1.3.4), the joint probability function is of the form

P(Yi=y,Ya=u,Ya = y3) = Clonaz, ma, 1) — Clure, s, wa) — Clunz, vgz, us2)
C“(ulg1 Uag, 'U,;ﬂ) + (-'*('”'12: oz, ?.r.gg) + C'('U,lg; o, ’u.gg)

-:—C’(?ng: oy, ?L32) - C’(u;g, thag, 'u3g). (435)

The eight probabilities can be written in a table form.
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Tauble 4.1: Trivariate joint probability using copula

ey | PV =110 = 1. Y3 = y5)

1 1 1|prdp+p3—2+CL1—p2.1—pg)+C{1~p, 11— ps)
+C{1—pr. 1 = p2, 1)~ C(1 = p1. 1 — o, 1 — pa)

11 0f1-ps—C{1.1=pa.l—ps)—C{1—1,.1,1-ps)
+C(1—pi,1 —p2. 1 —p3)

1 0 1| 1-p-CL.l=p21—p3)—C{l—p1.1—p2.1}

+C(1 —p1, L —ps, 1 — ps)

0 1 1]1—pi—C{l-p, 1,1 —ps)—C(l—p.1—pa,1)
+O(1~py, 1 —po L — py)

0 01 C(,1L—p2,1—p3)— Cl-—pll—pgl—pd)

(lupl:j- l_pd)_ (1_371:1_}}21_17{}
0 1 C(l _pTJ - P2, ) - C’( - pl‘Jl - P2 1 _1{}3)
0 0 07C(—p,1—po,1—ps)

IV.4 Markov chain based on copulas

A first order Markov chain with given univariate binary margins can be constructed
from a bivariate copula. This is a generalization of the normal AR(1) time series,
since the normal AR(1) thme scries can be obtained using the bivariate normal copula
and univariatc normal margins. A Markov chain ol sccond order, can be constructed
from a trivariate copula which has the property that the (1,2) and (2,3) bivariate
margins are the same. This generalizes the normal AR(2) time series. Extensions to
Markov chains of higher order require multivariale copulas with constraints on the

lower dimensional niargins.

The description of a stationary Markov chain with discrele state space based on
a bivariate copula C'(n, v) is as follows. Suppose that {Y;.t = 1,2,. ..} takes non-

negative integers values. Lol F(y) and f(y;) be the cdf and pmf of Y, respectively.
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The transition distribution function from ¥,_; to Y] is given by

Hyelm-1) = PV <wlYe 0 =w)
o [C(F(!’)’t—ll Fly)) — C(F(yt—l - 1)_‘ F('y:.))]/f(yr.—z)-

Escarela at cl. {2009} have discussed a fully parametric first order antoregressive

model for longitudinal binary data using bivariate Gaussian copula.

More gencrally, stationary Markov chains of order m - 1 can be constructed
from an m-variate copula C that satisfies the following condirions: (i) the hivariate
marging Cy; are such that Cj,qy = Crpg, =1, yom—24=2,-- m—§ {i1) the
higher-dimensional margins are such that Cy, .. i, = Clig—i41, gt Tor 1 <4 <
- <, 3 < k< m— 1 and {(iil) ' iz differentiable in its first m — 1 argunents.

For second order Markov chaing, these conditions simply become Cp = Cos.

If Fiow = C{F,--- . F} is an m-variate cdf, such that 15 a copula with the

above properties, then the transition edf of the stationary Markov chain is

o P Fu) »
H{pl g, 1) = B F 1) Fly)) (4.4.1)

where
am—lc )
W F{ Yo m - F ) ————— (), 442
a(F(Y-m 1), (v:)) EI Y (1), (4.4.2)
and
iy G .
b(F‘(y‘t—mﬂ-l)! U F(?Jt)) = 841];(‘“11 T :um—l)w (443)

Uy a"”--m—l

with €' ;.1 be an (m — 1)-dimensional marginal of C.

IV.4.1 A feasible family of copula

Here, we discuss a family of copula that can be used 1o construct higher order Markov
chain. Let ¥ be a Laplace transformation and I, = (v; + 1 —~ 1)7", where »;'s are

constants. Consider the copula

t
(I(u) - T.IL'I" (_ Z }.Og I\f‘ij(e—fiﬁ;_l[us),e_ s L{BJ-]') + Z'E-!ilit’_]-{ui)) : (4‘4_1_)
i1

i<j
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where K5, 1 <4 < j < { are bivariate copulas. An interpretation is that the Laplace
translormation ¢ leads to a minimal level of pairwise dependence, the copulas K
add some individual pairwise dependence beyond the global dependence, and the

parameters v; lead to bivariate and multivarialc asymmetry.

A useful special case of (4.4.4) is the following. Let ¢ = 3, K|, v) = ur,

v = vy = —1,1 =0, Kig(u,v) = Kps{u, v} = K{u, v). Then (4.4.4) becomes

Cln)y = ?;'.-'(~]0g K{e¥ 1{'”‘),6_0'5?"”_1('12))

— log K(¢77109) 038ty (145)

Here the (1.2) and (3,2) bivariale margins of (4.4.5) are the same and are more con-
cordant than the (1,3) margin. Heuce this model would be appropriate lor generating
a sccond order Markov chain. With § = 1,3, the bivariate margins of (1.2) and (3,2)

are
4 (— log K (g% ) ¢-05% ”1{“2)) +0.5¢ ! (112)) : (4.4.6)
We can choose K as the bivariate Gumbel copula with parameter § > 1, and 1 be

¥(s) = exp(—s'?) with parameter # > 1. For this ©. we have ¢ 1(s) = {— log(s))?.

Then (4.4.5) can be written as

C(u) = exp { {()° + (0520)Y° = [(£)° + (058167 (1.4.7)
where z; = —log{u;), i = 1,2, 3. The bivariate margins are
Clo{urs, un) = exp { —[(0)° + (0.520)°)% + 052017 (4.4.8)

Further research along thesc lines will be pursued in the future.
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CHAPTER V

DISCUSSION

There is a vast literalure on the analysis of longitudinal and clustered binary data.
Much of it is focused on marginal models, due to the difficulty in constructing proper
likelihood models. Our first goal in this dissertation is to study multivariate binary
distribulions namely the first order Markov chain model and the multivariate pro-
bit model. The first order Markov chain model results n first order antoregressive
correlation structure and is appropriate for analyzing longitudinal data. The mul-
tivariate probit model is useful to analyze both longitudinal and clustered binary
data. For both models we studied maximm likelihood estimates and their asymp-
totic variances computed via Fisher informalion matrices. Large and small sample
simulations show that the esthimates are comparable in terms of efficiency and no one
maodel is uniformnly superior over the other model. Other multivariate binary models -
inclide the quadratic exponential model. We checked numerically that the quadratic
exponential family generates the same probability distribution as the Markov chain

model for the autoregressive correlation structure.

As mentioned earlier marginal models do not specify the complete distribution
and are motivated by quasi-likelthood ideas. A popular parameter estimation pro-
cedure in marginal models is the generalized estimation equations method. Though
popular this method has several drawbacks. We have used simulations to show that
the generalized estimation equations method is less efficient when compared to the
maximum likelihood cstimates for the Markov chain model. The efficiency is poor
when Lhere is a high correlation in the data. An alternative Lo the generalized esti-
mating equations is the quadratic inference [unction {QIF) approach duc to Qu et
al. (2000). This method bypasses estimating the corrclation parameter. We have
shown that this method is also less efficient than the maximum likelihood estimates
for the Markov chain model. We also introduced a modified quadratic inference
method (nQIF) and showed using simulations this method has better efficiency when

compared Lo the original QIF method.

Iinally, we discussed copula models. These models are potential pathways (or

constructing high order Markov chain models.
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APPENDIX

SAS PROGRAMS

A.1 SAS Macro TMMLE

% let ROOT — % STR(file location};
FILENAME Hession “&ROOT Y\, Hession.sas™;
options Is = 84 nodate;
% macro tmmle(data=, yvar=, xvar=, id=, fun=logit, outpar=,outmle=);
Ytmacro con{x,y,id,{une):

Yoglobal v1;

elobal x1;

“%global 1dl;

Yglobal 1fun;

%let yl=y;

Tlet x1=x;

Ylet jd1=id;

Yelet 1fun=func;

“mend con;

ods listing;
proc genmod data=&data descend;

clags &id;

model &yvar=&xvar / link—=&fun dist=BIN;

repeated subject = &id / type=ar covb corrw;

ods output GEEEmpPEst = GEEEmpPLEst GEEWCorr=GEEWCorr;
Tun;

ods listing closc;

ods listing;

proc iml;

Tinchide Hession;
nse GEEEmpPEst;



read all varcstimate into ibeta;

use GELWCorr;

read all varCol2 into cor;

use &data;

read all var&xvar into x;

read all var&yvar into v;

read all vardzid into id;

k = ncol{x}+1;

%if &fun=logit Y%then func="logit’;
eelse [une = ‘probit’;

Yecon{x,y,id.func);

Start Ufu, v);
temp = sqrt({(1-u)*v/u/(1-v)) || sqre(u*(1-v)/v/(1-u));
return{in{temp)};

Finish;

Start L{u, v);

temp = {-sqri({1-ny*(1-v)/u/v)) || {- sqri{u*v/{1-v)/(1-u)));

return{masx{temp});

Finish;

start arbound(p};
t = max{ncol(p), nrow{p)};
il t=1 then hdi—=-1 1;
else do;
temp = j{t-1,2,0);
do i=1 io (t-1);
templi,1!=L(p[lpli+1]);
templ|i,2]=U{p[il,p[i4-1]);
end;
bdi = max(temp},1]}|| min{temp[,2]};
encl;

return(bdi);

109
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finish arbound;

start, irhobound{x.beta.nrep) global(&lfun);
xx= j{nrow(x),1}| x;
u = xx*beta;
fun = &lfun;
if fun = ‘logit’ then p = exp(u)/{14+exp(u));
else p = probnorm{u);
index = ()
n = max(nrow(nrep),ncol{nrep));
hd = j{n.2,0);
doil=1ton:
ti = nrepli;
if ti=1 then pi = p[index+ti|;
else pi = p[(index+1):{index+ti)];
bdii,|J=arbound(pi);
index =index+1i;
end;
L=max{bd[,1]};
U=min(bd ,2]);
irh = L//U;
return{irb};

finish irhobound;

start betacond(m);
temp = (L.} //j{1m,.);
return(temp);

finish betacond:

start Lhf(theta} global(&x1 &v1,&id]1 . &lfun};
k = max{ncol{theta),nrow(theta});
beta = theta:1:(k-1}];
rho = thetalk];
x = &x1;



y =&yl

id = &idl;

fun = &lfun;

xi = j{orow(x),l) ——x;

n = nrow(y);

u = xi*bheta;

if fun — "logit’ then p = exp(u)/{1—exp(n}});
clse p = probnorm(u);

q=1-p:

s = sqrt(p#(1-p}):

nrep=1;

nsub=1;

doi=2tou;

clae do;
urep—nrep/ /1
nsub=nsub+1;
end;

end;

nnn = max{nrow{nrep),ncol(nrep}};
bd = j{nun,2,0);
indexi = O
do 1 =1 to nnu;
ti = nrepl[i;
if ti=1 then pi — p[iedexi4ti’;
else pi = p[{indexi—1}:(indexi+-t1}];
bdli,|=arbound(pi};
indexi =indexi+ti;
end;
L=max(bd[.1]);
U=min{bd[,2]}:
rhobd = L//U:

if{rhobd[1]<=rho & rho<=rhobd[2]} then rho=rho;

111
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mle = 0;
index =0;
do i = 1 to nsuby

fi =0

ti = nrep:l;

vi = v|(index+1):{index+ti)];

pi = p|(index I-1):(index+ti}];

qi = q[{index+1):(index+ti};

si = s[(index+1):(index +1i)];

i = yi[1]¥log(pi[l]} + (1-¥i{1]) log(1-pilL)):

if tin=1 then

do;

do j = 2 to ti;
pij — pili**yilil *alii]** (Lyili])+
(1] il 1) Frio®sifi iU (pili-L il (il 1)
i = fi + log(pij):
end;

end;

else fi—1fi;

mle = mle + fi;

index = index - L1;

end;
return{imle);
finish Lhf;

start getname;
parameter = j(k+1,1,char(20)):
parameter(l,1] = "intercept”;
do i=1 Lo k:
parameter[i+1,1] = scan{”&xvar”, i};
end;

pi!.rameter[k~.;_1}l] — ‘}I‘h()”;



finish;

start outdata;
Test, = "MLE",
DF = df;
Statistic —= slat;
AIC = 2*%stat+2%(k-1);
BIC = -2*stat+ (k- 1)*log{nsub);

%if Yhlength(&oulinle) >0 Zthen %do;
create &outmle var Test Statistic DEF AIC BIC;
append;

“tend,

%if Tlength{&outpar)>0 %then %do;
estimale = ntheta;
stderr = stderror;
create &outpar var parameter estimate stderr Z pvalue;
append;
Yeend;

finish;

start mairn;
n = nrow(y);
nrep=1;
nsub=1;
df=k-1;
doi=2ton;
if id[il=id{i-1] then nrep[nsub]=nrep[nsub!+1;
else do;
nrep=nrep//1;
nsub=nsub+1;

end;
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end:

optn — {1,0};

rhobd = irhobound({x,ibeta.nrep);
irho=(rhobd[2]-rhobd[1])/2;

cond = betacond(k) - --rhobd;
itheta=ibeta/ /irho;

do until(rhobd[l]j=itho & irhoj=rhobd[2]}:

call NLPNRR(re, ntheta, "Lhf”, itheta, optn,cond});

ibeta = utheta[l:Xk];
rhobd = irhobound{x ibeta,nrep);
irho = nthetajk1-1];

itheta = ibeta//irho;

cond = betacond(k)

rhobd;
end;
beta = nthetall:k];

rho = nthetalk+1):

xx = j(nrow(x),1) X;
n=xx*heta;
if func—"logil’ theu do;
p = exp(u)/(1+explu));
dp = p#{1-p);
d2p = (exp{u)-exp(2*u})}/(1+exp(u})##3:
end;
clse do:
p = probnorm{u);
dp = normpdf(u};
d2p = devnormpdi{u};
end;
senddev=(};
scnddevi=0;
index = 0;
doi= 1 to nsub;

i1 = nrep[i;
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vi = ylindex+1:index ~ii;

xi = xx[index |-L:index-+ti)];

pi = plindex+Lindex-tij;

dpi = dplindex + L:index-tij;
d2pi = d2plindex+1:index+ti];

senddev = senddev -+ devP2nd(vi,xi,pi,dpi.d2pirho.k);

index = index + ti;
end;
hess = senddoev;
var = -ginv(senddev);
print hess[label="Hession Matrix’];
print. var[label="Covariance Matrix'];
stderror — sqri(vecdiag(var));
par = t{ntheta);
Z = par/stderror,
pvalue = 2*(1l-probnorm{abs(Z})):
print par stderror Z pvaluc;
slat = Lhf(ntheta);
rangeofrho=mirhobound(x,beta,nrep);

print rangeolrho;

finish main:

run rain;

run getnamc;
run ouldata;
Guit;

ods listing close;

Yemend armle;

=)
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