Winter 2010

Analysis of Models for Longitudinal and Clustered Binary Data

Weiming Yang
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/mathstat_etds
Part of the Analysis Commons, Applied Statistics Commons, and the Longitudinal Data Analysis and Time Series Commons

Recommended Citation

Yang, Weiming. "Analysis of Models for Longitudinal and Clustered Binary Data" (2010). Doctor of Philosophy (PhD), dissertation, Mathematics and Statistics, Old Dominion University, DOI: 10.25777/69t2-c482
https://digitalcommons.odu.edu/mathstat_etds/74

ANALYSIS OF MODELS FOR LONGITUDINAL AND CLUSTERED BINARY DATA

by
Weiming Yang
M.S. Aug 2005, University of Toledo
M.S. Aug 2009, Old Dominion University

A Dissertation Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirement for the Degree of DOCTOR OF PHILOSOPHY
 MATHEMATICS AND STATISTICS
 OLD DOMINION UNIVERSITY
 December 2010

Approved by:
N. Rao Chaganty (Director)

Davanand Naik/(Member)

Michael Doviak (Mcmber)
tant Filer (Menber)

ABSTRACT
 ANALYSIS OF MODELS FOR LONGITUDINAL AND CLUSTERED BINARY DATA

Weiming Yang
Old Dominion University, 2010
Director: Dr. N. Rao Chaganty

This dissertation deals with modeling and statistical analysis of longitudinal and clustered binary data. Such data consists of observations on a dichotomous response variable generated from multiple time or cluster points, that exhibit either decaying correlation or equi-correlated dependence. The current literature addresses modeling the dependence using an appropriate correlation structure, but ignores the feasible bounds on the correlation parameter imposed by the marginal moans.

The first part of this dissertation deals with two multivariate probability models, the first order Markov chain model and the multivariate probit model, that adhere to the fasible bounds on the correlation. For both the models we obtain maximum likelihood estimates for the regression and correlation parameters, and study both asymptotic and small-sample properties of the estimates. Through simulations we compare the efficiency of the two methods and demonstrate that neither is uniformly superior over the other.

The second part of this dissertation deals with marginal models, an alternative to multivariate probability models. We discuss the generalized estimating cquations and the quadratic inference function methods for estimating the regression parameter in marginal models. Rclative efficiency calculations show these methods when compared to the likelihood estimates could result in significant loss in efficiency for highly correlated data. We also propose a modified quadratic inference function method and demonstrate through efficiency calculations this is an improvement of the original quadratic inference function approach. The final part of this dissertation deals with methods for constructing higher order Markov chain models using copulas.

ACKNOWLEDGMENTS

I would like to thank first and foremost my advisor, Professor N. Rao Chaganty. This would not have been possible without his support. Not only were his encouragement and assistance were essential to both the completion of this work and to my academic career, his persistence for scientific precision influenced my own philosophy on academic investigations. I am forcver grateful and would like to express my deepest gratitude to him.

I would like to thank Professors Dayanand Naik, Michacl Doviak, and Larry Filer for serving on my dissertation commituce. Additionally, I would like to express my gratitude to other statistics faculty, friends, and my fellow students in the Department of Mathematics and Statistics, and to the Chairman Prolessor Dorrepaal, for providing a caring and pleasant learning environment.

I also wish to acknowledge the staff members Barbara Jeffrcy and Sheila Hegwood; for their help during my graduate studies. Finally, I have been very fortmate that the Department of Mathematics and Statistics provided financial support for my graduate studies, and would like to say thank you to the department for giving me this wonderful opportunity.

I dedicate this thesis to my parents and my wife Shu Liao.

TABLE OF CONTENTS

Page
List of Tables x
List of Figures xi
CHAPTERS
I Introduction 1
I. 1 Repeated measurements 1
I. 2 Data examples 3
I.2.1 Six city respiratory infection study 3
I.2.2 Indonesian children's health study 4
I.2.3 Hamilton's depression study 5
I. 3 Overview of methods for the analysis of repeated measurements 6
I.3.1 Marginal models 6
I.3.2 Random-effects models 7
1.3.3 Transition models 7
I. 1 Overview of thesis 8
II Transistion Models For Binary Data 10
II. 1 Introduction 10
II. 2 Survey of transistion models for binary data 10
II. 3 First order autoregressive structure 13
IL.3.1 Conditional linear family 14
IL.3.2 Probability mass function of the conditional linear family 16
II.3.3 Gencralization to Markov structures 18
II.3.4 Maximum likelihood estimation 19
II. 4 Hypothesis testing 24
II.4.1 Likelihood ratio test 24
II.4.2 Wald's test 25
II.4.3 Estimated power of the test statistics 26
II. 5 SAS macro TMMLE 27
II. 6 Multivariate probit model 28
II.6.1 Likelihood function 28
I1.7 Comparison of the transistion and multivariate probit models 29
II.7.1 Maximum likelihood cstimate 33
II. 8 Comparison of asymptotic performance 35
II. 9 Comparison ol small-sample performance 38
II.9.1 Analysis of real data 47
II. 10 Other models for correlated binary variables 51
II.10.1 Generating dependent binary variables using circle plus operabion $5!$
II.10.2 Quadratic exponential family 54
III Marginal Models 56
III. 1 Introduction 56
III. 2 Gencralizod estimating equation 57
III.2.1 Comparison of asymptotic performance 58
III.2.2 An example 62
Ill. 3 Quadratic inference functions 66
III.3.1 Choice of basis matrices 67
III.3.2 Extended score function 68
III.3.3 Parameter estimation 70
III.3.4 Asymptotic variance 74
III. 4 Comparison of asymptotic performance 75
III. 5 Comparison of small-sample performance 81
III. 6 A robust variance estimator in QIF 85
IIT. 7 Performance of modified QIF 86
III.7.1 Small-sample performance with AR(I) structure 86
III.7.2 Small-sample performance with equicorrelated structure 88
III. 8 Misspecification of correlation structure 90
III 9 Real data examples 92
IV High order Markov chain models 96
IV. 1 Introduction 96
IV. 2 Introduction of copulas 96
IV. 3 Examples of bivariate copulas 97
IV. 4 Markov chain based on copulas 101
IV.4.1 A feasible family of copula 102
V Discussion 104
REFERENCES 105
APPENDIX
SAS programs 108
A.l SAS Macro TMMLE 108
VITA 116

LIST OF TABLES

Table Page
1.1 General layout for longitudinal data 2
1.2 Six-cily dala 3
1.3 Indoncsian children's health data 4
1.4 Hamilton's depression data 5
2.1 Mass function generated from transition model and multivariate probit model 30
2.2 Asymptotic variance and ARE with one covariate, $t=3$ 36
2.3 Asymptotic variance and ARE with two covariates, $t=3$ 37
2.4 Asymptotic variance and ARE with one covariate, $t=4$ 38
2.5 Asymptotic variance and ARE with two covariates, $t=4$ 39
2.6 Asymptotic variance and ARE wilh one covariate, $t=5$ 39
2.7 Asymptotic variance and ARE with two covariates, $\ell=5$ 40
2.8 MSE ard efficiencies of MC and MP estimate, $t=3$ 43
2.9 MSE and efficiencies of MC and MP estimate, $t=4$ 45
2.10 MSE and efficiencies of MC and MP estimate, $t=5$ 47
2.11 Parameter estimates for the Six-city data 48
2.12 Model selection based on AIC and BIC 49
2.13 Parameter estimates for Indonesian children data 50
2.14 Parameter estimates for Ham-D data 51
3.1 Asymptotic variance and ARE of CEE, $l=4$ 60
3.2 Asymptotic variance and ARE of GEE, $l=4$ 61
3.3 Asymptotic variance and ARE of GEE, $\iota=8$ 62
3.4 Asymptotic variance and ARE of GEE, $t=8$ 63
3.5 Analysis of parameter estimates for Ham-D data 64
3.6 Asymptotic variance and ARE of QIF, $t=4$ 76
3.7 Asymptotic variance of QIF and ARE, $t=6$ 78
3.8 Asymplotic variance of QIF and ARE, $t=8$ 78
3.9 MSE and RE of QIF and MC with one covariate, $t=4$ 82
3.10 MSE and RE of QIF and MC with one covariate, $t=8$ 82
3.11 MSE and RE of QLF with both covariates, $t=4$ 83
3.12 MSE and RE of QIF' with both covariates, $t=8$ 84
3.13 MSE and RE of QIF with both covariates, $t=8$ 84
3.14 MSE and RE of mQF and MC with one covariate: $t=4$ 87
3.15 MSE and RE of mQIF and MC with one covariate, $t=8$ 87
3.16 MSF and RE of mQIF with both covariates, $t=4$ 88
3.17 MSE and RE of QIF with both covariatcs, $t=8$ 89
3.18 MSE and RE, of QIF with both covariatcs, $l=8$ 89
3.19 MSE and RE of QIF and MQIF with one covariate, $t=4$ 90
3.20 MSE and RE of QIF and mQIF with one covariate, $l=8$ 91
3.21 MSE and RE of mQIF with both covariates, $t=4$ 91
3.22 MSE and RE of mQIF with both covariates, $t=8$ 92
3.23 MSE and RE of QIF and mQIF with one covariate, $t=8$ 93
3.24 MSE and RE of mQiF with both covariates, $l-8$ 93
3.25 Analysis of parameter estimates for Six-city data 94
3.26 Analysis of parameter estimates for Ham-D data 95
4.1 Trivariate joint probability using copula 101

LIST OF FIGURES

Figure Page
2.1 Estimated power for IRT and Wald test 27
2.2 Plot of efficiency of β_{0} 41
2.3 Plot of efficiency of β_{1} 42
2.4 Plot of efficiency of β_{2} 42
2.5 Plot of efficiency of β_{0} 43
2.6 Plot of efficiency of β_{1} 44
2.7 Plot of efficiency of β_{2} 44
2.8 Plot of efficiency of β_{0} 45
2.9 Plot of efficiency of β_{1} 46
2.10 Plot of efficiency of β_{2} 46
3.1 Plot of estinate of B_{T} 64
3.2 Plot of standard error of β_{T} 65
3.3 Plot of p-value of β_{T} 65
3.4 The surface plot of $Q_{n}(\beta)$ where a global minimum exists. 71
3.5 The surface plot of $Q_{n}(\beta)$ where no global minimum exists. 72
3.6 ARE of QIF and MC methods wilh binary data 77
3.7 ARE of QIF and MC methods with binary data 79
3.8 ARE for QIF and MC methods with binary data 80
4.1 Density function of bivariate Gaussian copula 98
4.2 Density function of Frank copula 99
4.3 Density function of Gumbel copula 99

CHAPTER I

INTRODUCTION

I. 1 Repeated measurements

Many practical research arcas utilize regression analysis of correlated longitudinal data. In particular, longitudinal data is frequently encountered in many subjectmatter arcas such as biology, medicine and public health, and social sciences. Longitudinal data is essentially data observed sequentially over time. It may be collected cither from a designed experiment or an observational study, where the outcome variables are related to a sequence of events or responses recorded at certain time points during a study period. In essence, longitudinal data may be regarded as a collection of many short time scrics, one for each subject.

Some research areas are focused on correlated clustered data. Clustered data refers to a set of measurements collected from subjects that are organized in groups, where a group of related subjects constitutes a cluster. An example of cluster or group is a genetically related members from a family pedigree. Obviously, situations where clustered data arise can be independent of time. Longitudinal data may be thought of as a special kind of clustered data by treating a subject as a cluster, so cach subject's time series forms a set of correlated observations. This perspective is mainly for technical convenience, because similar tools can be applied to analyze longitudinal data or clustered data with different modeling of dependence structures. In longitudinal data analysis, serial correlation is common, whereas in clustered data analysis exchangcable pairwise within-cluster correlation model is popular.

Although there are many approaches for the analysis of continuous longitudinal data, the development of the methods for categorical longitudinal data has received less attention, and the methodology is not ncarly as well-developed as for continuous data. In this dissertation, we will study likelihood and some other alternative methods for analyzing longitudinal binary data.

Table 1.1 shows the gencral layout for longitudinal data that will be used in this

[^0]dissertation. Let $y_{i j}$ be the response at time point j on subject , where $j=1, \cdots, t_{i}$ and $i=1, \cdots, n$. We assume that the n subjects are independent. The data are said to be balanced if $t_{i}=t$ for $1 \leq i \leq n$. Let k be the number of covariates, and $x_{i j}=\left(x_{i j 1}, \cdots, x_{i j k}\right)^{\prime}$ be the corresponding covariate vector associated with $y_{i, j}$. In general, $x_{i j}$'s are time-dependent, the values of $x_{i j}$ vary at different time points. Some real life binary longitudinal data examples are given in next section.

Table 1.1: General layout for longitudinal data

I. 2 Data examples

To motivate both methodological and theoretical developments in the subsequent chapters, a few real world data sets with binary outcomes will be used for illustration in this dissertation.

1.2.1 Six city respiratory infection study

Table 1.2: Six-city data

No maternal smokingAge 7 8 9 Count					Maternal smoking				
0	0	0	0	237	0	0	0	0	118
0	0	0	1	10	0	0	0	1	6
0	0	1	0	15	0	0	1	0	8
0	0	1	1	4	0	0	1	1	2
0	1	0	0	16	0	1	0	0	11
0	1	0	1	2	0	1	0	1	1
0	1	1	0	7	0	1	1	0	6
0	1	1	1	3	0	1	1	1	4
1	0	0	0	24	1	0	0	0	7
1	0	0	1	3	1	0	0	1	3
1	0	1	0	3	1	0	1	0	3
1	0	1	1	2	1	0	1	1	1
1	1	0	0	6	1	1	0	0	4
1	1	0	1	2	1	1	0	1	2
1	1.	1	0	5	1	1	1	0	1
1	1	1	1	11	1	1	1	1	7

Table 1.2 shows a longitudinal data set from a Harvard University technical report by N. M. Laird, G. J. Beek and J. H. Ware. These data are part of a sludy of the respiratory health effects of indoor and ontdoor air pollution in six C.S. cities.

The main research interest is the effect of maternal smoking on children's respiratory illness. The serial response variable for children from 7 to 10 is rccorded as a binary ontcome denoting the absence (0) and presence (1) of respiratory illness. The maternal smoking is also a dichotomous variable with 0 as an indicator of smoking and 1 indicates non-smoker. This is a time-independent covariate. i.e. it does not change during the time of the study for each subject. The data includes only those children who had all four responses at ages $7,8,9$ and 10 , and therefore balanced.

I.2.2 Indonesian children's health study

'lable 1.3: Indonesian children's health data

		Age								
	Xerophthalmia	RI	1	2	3	4	5	6		
7										
Nos	No	90	236	330	176	143	65	5		
	Yes	8	36	39	9	7	1	0		
	No	0	2	18	15	8	4	1		
	Yes	0	0	7	0	0	0	0		

Sommer et al. (1984) reported a study in West, Java, Indonesia to determine the causes and effect of vitamin A deficiency in preschool children. Wore tham 3000 children were medically examined quarterly for up to six visits to assess whether they suffered from respiratory or diarrheal infection (RI) and xerophthalmia, an ocular manifestation of vitamin A deficiency. Weight and height were also measured. The data on 275 children are summarized in Table 1.3. This longitudinal data is recorded at equally spaced time points where the binary response variable $y_{i j}$ is equal to 1 if the child i had RI at time point j and 0 otherwise. The main covariate of interest is Xerophthalmia which is represented as a binary variable with 1 for presence and 0 for the absence of the Xerophthalmia symptom.

The main objective of this study was to asscss the increase in risk for RI among kids who were vitamin A deficient, which was measured indirectly via Xerophthalmia. It was also of interest to evaluate the degree of heterogeneity in the risk of disease
among the kids.

1.2.3 Hamilton's depression study

The data for this example were taken from a double-blind, European, multi-center, placebo and active treatment controlled, randomized, 5 arm parallel group, 7 week dose-finding study to evaluate selcty and cfficacy for three fixed doses of a new drug in patients with major depressive disorder. The dependent variable in this study is a binary function of a patient's average score on the Hamilton's Depression Scale (Ham-D), taking the value 1 if the Ham-D value at time $i-1, \cdots, 8$ is less than or equal to 80% of the baseline value, and 0 otherwise. The baseline Ham-D values for all subjects are greater than 18 , implying that all subjects are initially diagnosed as severely depressed with a dichotomous baseline value of 0 . The assessment was made each week on the patients, starting from the beginning of the first weck (baselinc) and continuing for the next seven weeks, for a total of 8 measurements. The primary objective is the change in Ham-D rating from baseline to the final visit (the subject might left the study early). The main covariates wo will use in our analysis are the Treatment (active or placebo) and Time (in number of weeks from the baseline measurement). Table 1.4 shows the observation of all 8 visits of the first patient.

Table 1.4: Hamilton's depression data

ID	Time	Ham-D	COUNTRY	Age	Gender	Treatment	Baseline	Y	
1	1	24	BULGARIA	42	M	1	22	0	
1	2	22	BULGARIA	42	M	1	22	0	
1	3	21	BULGARIA	42	M	1	22	0	
1	4	14	BULGARIA	42	M	1	22	1	
1	5	12	BULGARIA	42	M	1	22	1	
1	6	10	BULGARIA	42	M	1	22	1	
1	7	7	BULGARIA	42	M	1	22	1	
1	8	8	BULGARIA	42	M	1	22	1	
\vdots		\vdots	\vdots						

I. 3 Overview of methods for the analysis of repeated measurements

Stalistical researchers have developed several related types of extensions of gencralized linear models and quasi-likelihood methods for the analysis of repeated measurements. These methods are useful for both discrete and continuous response variables, including normal, Poisson, binary, and gamma responses. Three general types of extensions of gencralized linear models methodology to the analysis of repeated measurements are

- Marginal models;
- Random-effects models:
- Transition models.

We will discuss next these models briefly.

I.3.1 Marginal models

In marginal models, the marginal expectation $\mu_{i j}=\mathrm{E}\left(y_{i j}\right)$ is modeled as a function of explanatory variables. The marginal expectation is the average response over the subpopulation that shares a common value of the covariate vector. Associations among repeated obscrvations are modeled separately from the marginal mean and variance of the response vector.

The assumptions can be outlined as follows:

1. The marginal expectation $\mu_{i j}$ is related to the covariates through a known link function h :

$$
\mu_{i j}=h\left(x_{i j}^{\prime} \beta\right),
$$

where β is a $k \times 1$ vector of regression parameters.
2. The marginal variance of $\psi_{k j}$ is related to the marginal expectation $\mu_{i j}$ via

$$
\operatorname{Var}\left(y_{i j}\right)=\phi \mathrm{V}\left(\mu_{i j}\right)
$$

where V is a known variance function and ϕ is a dispersion scale parameter.
3. The covariance between $y_{i j}$ and $y_{i k}$ is a known function of $\mu_{i j}$ and $\mu_{i k}$, and a vector α of unknown parameters.

I.3.2 Random-effects models

In random-effects models, heterogeneity between individuals arising from unmeasured variables is accounted for by including subject-specific random effects in the model. These random effects are assumed to account for all of the within-subject correlation present in the data. Conditional on the values of the random effects, the responses are assumed to be independent.

The assumptions in the random-offects models are as follows:

1. Given a vector b_{i} of subject-specific effects for the i th subject, the conditional mean of $y_{v j}$ satisfies the model

$$
h\left(\mathrm{E}\left(y_{u_{j}} \mid b_{i}\right)\right)=x_{i j}^{\prime} \beta+z_{i j}^{\prime} b_{i},
$$

where h is a known link function and $z_{i j}$ is a vector of covariates for subject i at time j.
2. Outcomes $y_{i 1}, \cdots, y_{i t_{2}}$ are independent given b_{i} for each $i=1, \cdots, n$.
3. Random effects b_{1}, \cdots, b_{n} are independent and identically distributed.

I.3.3 Transition models

Transition models account for heterogeneity by tracing the development of a dependent variable over time and they represent the distribution of its current value as a function of its history. In transition models, for the analysis of repeated measurements, the observations $y_{i 1}, \cdots, y_{i t_{i}}$ from subject i are correlated because $y_{i j}$ is explicitly influcnced by the past values $y_{i 1}, \cdots, y_{i j-1}$. Suppose h_{j} is the history of the subject up to time point j. With this information, we can calculate the probability of observing $y_{i}=\left(y_{i 1}, \cdots, y_{i t}\right)$ as

$$
\pi\left(y_{i}\right)=p\left(y_{i 1}\right) \prod_{j=2}^{t} p\left(y_{i j} \mid h_{j}\right)
$$

where $p\left(y_{i t}\right)$ is the marginal probability of the first observation and $p\left(y_{i j} \mid h_{j}\right)$ is the conditional probability of $y_{i j}$ given its history. Specifically, if the transition form $y_{i j-1}$ to $y_{i j}$ only depends on the values of $y_{i j-1}$, this transition model is known as the first order Markov chain model.

I. 4 Overview of thesis

This dissertation is organized as follows. In Chapter II, we introduce a conditional lincar family of multivariate binary distributions due to Qaqish (2003). We show that, this family results in a first order Markov chain model when the correlation structure is the first-order antoregressive model. We derive the maximum likelihood estimates and the Fisher information matrix for the regression and correlation parameters in this model. We also develop test of hypothesis. Next, we study the multivariate probit probability model and show that these two models generate different probability mass functions. We makc large and small sample efficiency comparisons between the two likelihood models and show that no one model is uniformly superior over the other. Real life data examples are presented to contrast parameter estimates lor both the models.

In Chapter III, we discuss marginal models. As the name indicates these models specify only the marginal distributions and correlation structure but not the joint distribution. A popular method of estimation for the marginal regression parameter is the generalized estimating equations. We briefly describe the GEE and outline some theoretical drawbacks with the method. An alternative to the GEE is the quadratic inference function (QIF) approach due to Qu et al. (2000). This method uses basis matrices in lieu of the working correlation parameter and bypasses estimating the correlation parameter. We give explicit expression for the asymptotic variance of the QIF regression parameter estimator. Through large and small sample simulations we show that the QIF method is inefficient for estimating the regression parameter for highly correlated data when compared with the maximum likelihood estimator from the Markov chain model. We also propose a modified QIF (mQIF) method using a correlation estimator that pools information from all the subjects. We show that mQIF is an improvement over the QIF method. We also study performance of the MC and mQIF when the correlation model is misspecified.

In Chapter IV, we give a short introduction and discuss possible methods of constructing higher order Markov chain models using copulas. The dissertation ends with a discussion in Chapter V and an appendix containing the SAS macro TMMLE that we developed for fitting the first order Markov chain model for real data.

CHAPTER II TRANSISTION MODELS FOR BINARY DATA

II. 1 Introduction

Binary longitudinal data are often collected in clinical trials and genetic studies where interest is on assessing the effect of a treatment over time. A canonical problem is to determine a regression relationship between the measured responses and a set of time dependent/independent covariates. The longitudinal binary data can be viewed as a short discrete time series. Unlike Gaussian time scrics, modeling discrete variate time series is very challenging and difficuht. Ared the statistical methods are not well developed for discrete variate time series. The fact that variate values are integer renders most traditional representations of dependence cither impossible or impractical. There have been a number of efforts to develop a suitable class of time scrics models for binary data. In this chapter we first briefly review the literature and then introduce a fully specified transistion model for the analysis of longitudinal binary data.

II. 2 Survey of transistion models for binary data

Longitudinal binary data consists of a sequence of binaty variables, which can be thought as a sequence of states of a two-state stochastic process. A natural way to model the joint distribution of a two-state stochastic process is by a probability model which describes the transition from one state to another. Several researchers have developed transition models for the analysis of longitudinal binary data. Here we will briefly survey some of these models. Muenz and Rubinstcin (1985) introduced a two-state Markov chain for a discrete-time binary sequence. Their motivation was a study of the impact of mastectomy which measured the binary response of "distress" or "no distress" for five groups of women who had surgery for different breast discase. The transition matrix of the chain is given by

$$
M=\left(\begin{array}{cc}
p_{00} & 1 \cdots p_{00} \\
p_{10} & 1-p_{10}
\end{array}\right)
$$

where p_{00} is the $0 \rightarrow 0$ transition probability and p_{10} is the $1 \rightarrow 0$ transition probability. It was assumed that the process is stationary and thus the transition matrix M remains the same at different time points. Muenz and Rubinstem (1985) modeled the transition probabilities p_{00} and p_{10} by logistic regressions with a covariate vector \mathbf{x} and two different regression parameters β and γ as follows

$$
\begin{equation*}
p_{00}(\beta)=\frac{\exp \left(\mathbf{x}^{\prime} \beta\right)}{1+\exp \left(\mathbf{x}^{\prime} \beta\right)} \text { and } p_{\mathrm{tn}}(\gamma)=\frac{\exp \left(\mathbf{x}^{\prime} \gamma\right)}{1+\exp \left(\mathbf{x}^{\prime} \gamma\right)} \tag{2.2.1}
\end{equation*}
$$

The likelihood function corresponding to model (2.2.1) is then given by

$$
\begin{align*}
L(\beta, \gamma) & =\prod_{i=1}^{n} p_{00}(\beta)^{n_{i 00}}\left(1-p_{00}(\beta)\right)^{n_{i t 1}} p_{10}(\gamma)^{n_{i 10}}\left(1-p_{10}(\gamma)\right)^{n_{i 11}} \\
& =\prod_{i=1}^{n} p_{00}(\beta)^{n_{2101}}\left(1-p_{00}(\beta)\right)^{n_{i 01}} \prod_{v=1}^{n} p_{10}(\gamma)^{n_{i+1}}\left(1-p_{10}(\gamma)\right)^{n_{i+1}} \tag{2.2.2}
\end{align*}
$$

where $n_{i 00}, n_{i 01}, n_{i 10}$ and $n_{i 11}$ are the number of $0 \rightarrow 0,0 \rightarrow 1,1 \rightarrow 0$ and $1 \rightarrow$ 1 transitions observed on the i th subject. Clcarly the likelihood funciion (2.2.2) depends only on $p_{00}(\beta)$ and $p_{10}(\gamma)$, so we can get the maximum likelihood estimates of β and γ by maximizing the following two \log-likelihood functions scparatcly

$$
\begin{aligned}
& \ell_{0}(\beta)=\sum_{i=1}^{n}\left\{n_{i 00} \mathbf{x}_{i}^{\prime} \beta-\left(n_{i 00}+n_{i 01}\right) \log \left[1+\exp \left(\mathbf{x}_{i}^{\prime} \beta\right)\right]\right\}, \\
& \ell_{1}(\gamma)=\sum_{i=1}^{n}\left\{n_{i 10} \mathbf{x}_{i}^{\prime} \gamma-\left(n_{210}+n_{i 11}\right) \log \left[1+\exp \left(\mathbf{x}_{i}^{\prime} \gamma\right)\right]\right\} .
\end{aligned}
$$

Albert and Waclawiw (1998) proposed a quasi-likelihood transilional model. They assume the transitional probabilities are random satisfying some moment conditions. Their model can be thought of as a random-effects model. In their model the transition matrix for the $i t \mathrm{th}$ subject takes the form

$$
\left(\begin{array}{cc}
1-P_{i 01} & P_{i 01} \tag{2.2.3}\\
P_{i 00} & 1-P_{i 01}
\end{array}\right),
$$

where $P_{\text {in }}$ and $P_{i 10}$ are random quantities satisfying the moment conditions

$$
E\left[P_{i 01}\right]=\mu_{01}, \quad E\left[P_{i 10}\right]=\mu_{10}
$$

and

$$
\operatorname{var}\left(P_{i 01}\right)=\sigma_{01}^{2}, \quad \operatorname{var}\left(P_{x 10}\right)=\sigma_{10}, \text { and } \operatorname{corr}\left(P_{i 01}, P_{i 10}\right)=\rho
$$

If there are observed covariates, the means μ_{0} and μ_{10} could be modeled as a function of the covariates and the regression parameter. Let $n_{i}=\left(n_{i 00}, n_{i 01}, n_{i 10}\right)^{\prime}$ be a vector of the mumber of $0-0,0-1$ and $1-0$ transitions over t time points for the i th subject. Note that the $1-1$ transitions are determined by the sum of the other transilions. Jet s_{i} be the vector which consists of the squares and cross-products of n_{i} along with $n_{i 11}$, that is,

$$
s_{i}=\left(n_{i 00,}^{2}, n_{i 00} n_{i 01}: n_{i 00} n_{i 10}, n_{i 01}^{2}, n_{i 01} n_{i 10}, n_{i 10}^{2}: n_{i 11} n_{i 00}, n_{i 11} n_{i 01}, n_{i 11} n_{i 10}, n_{i 11}^{2}\right)^{\prime}
$$

Albert and Waclawiw (1998) proposed an estimating equation approach for estimating the means μ_{01}, μ_{10}, variances σ_{01}, σ_{10} and the correlation ρ based on s_{i} 's for $1<i \leq n$. They also provide methods of estimation for the regression parameter in the situations where the means are functions of the covariates and the regression parameter.

Azaalini (1994) introduced another model based on first order Markov chaim to analyze serial correlated binary observations. Instead of using correlation to measure the dependence, he used odds ratio to measure the dependence between two consecutive binary variables. The odds ratio is defmed as

$$
\begin{equation*}
\psi=\frac{p_{1} /\left(1-p_{1}\right)}{p_{0} /\left(1-p_{0}\right)} \tag{2.2.4}
\end{equation*}
$$

where $p_{j}=P\left(Y_{t}=1 \mid Y_{t-1}=j\right)$ for $j=0,1$. A t.chnical reason in favor of using this odds ratio as a measure of dependence as opposed to the correlation is given by Fitzmaurice and Laird (1993). They observed when the association between observations is modeled using y, the estimat.cs of the mean are relatively insensitive to changes of the association parameter. Moreover, the range of feasible values for ψ is independent of the value of $\mu-E\left(Y_{t}\right)$. In the stationary case, given the mean μ and the odds ratio ψ, we can obtain p_{0} and p_{1} by solving the equations (2.2.4) and

$$
\begin{equation*}
\mu=\mu p_{1}+(1-\mu) p_{0} \tag{2.2.5}
\end{equation*}
$$

In the non-stationary case $\mu_{t}(\beta)=E\left(Y_{t}\right)$ varies al different time points and it is related to the covariates x_{t} and the regression parameter β via some link function.

Then equation (2.2.5) is replaced by

$$
\begin{equation*}
\mu_{t}(\beta)=\mu_{t-1}(\beta) p_{1}+\left(1-\mu_{t-1}(\beta)\right) p_{0} \tag{2.2.6}
\end{equation*}
$$

where p_{0} and p_{1} now vary with t and β as well. Solving equations (2.2.4) and (2.2.6), we obtain

$$
p_{j}= \begin{cases}\mu_{t} & \text { for } \psi=1 \tag{2.2.7}\\ \frac{\delta-1+(\dot{\psi}-1)\left(\mu_{t}-\mu_{t-1}\right)}{2(\psi-1)\left(1-\mu_{t-1}\right)}+j \frac{1-\delta+(\psi-1)\left\langle\mu_{t}-\mu_{t-1}-2 \mu_{t} \mu_{t-1}\right)}{2(\psi-1) \mu_{t}\left(1-\mu_{t-1}\right)} & \text { for } \psi \neq 1\end{cases}
$$

where $\delta^{2}=1+(\psi--1)\left[\left(\mu_{t}-\mu_{t-1}\right)^{2} \psi-\left(\mu_{t}+\mu_{t-1}\right)^{2}+2\left(\mu_{t}+\mu_{t-1}\right)\right]$. In the above we suppressed the dependence of p_{j} on t, β and ψ.

Given a sequence of observations $y_{1}, y_{2}, \cdots, y_{t}$, the log-likelihood function for β and ψ is

$$
\begin{equation*}
\ell(\beta, \psi)=\sum_{i=1}^{t} \ell_{i}(\beta, \psi)=\sum_{i=1}^{t}\left[y_{i} \operatorname{logit}\left(p_{y_{i-1}}\right)+\log \left(1-p_{y_{i-1}}\right)\right]_{i} . \tag{2.2.8}
\end{equation*}
$$

This can be summed over all the subjects and maximized to get the maximum likelihood estimates of β and ψ. Even though this approach has desirable features but there are some disadvantages. If the marginal moans depend on time-varying covariates, the assumption of odds ratio being fixed over all possible maxginal probabilitics is unlikely to be so.

In the next section, we discuss a Markov chain model which generates binary random vectors with corrclation structure that is the first order autoregressive.

II. 3 First order autoregressive structure

A reasonable correlation model for a scquence of scrially corrclated binary measurements $y_{1}, y_{2}, \cdots, y_{t}$ is the first order autoregressive (AR(1)) structure with parameter ρ which is given by

$$
R(\rho)=\left[\begin{array}{llll}
1 & \rho & \cdots & \rho^{t} \tag{2.3.1}\\
\rho & 1 & \cdots & \rho^{t-1} \\
\vdots & \vdots & \ddots & \vdots \\
\rho^{t} & \rho^{t-1} & \cdots & 1
\end{array}\right]
$$

In the next two sections we derive the feasible range for the correlation parameter ρ and a method of constructing a joint probability distribution with corrclation structure (2.3.1).

II.3.1 Conditional linear family

Recently, Qaqish (2003) introduced a conditional linear family of binary distributions. The idea behind the construction of this family is that the expected value of the current observation is taken as a linear function of the past obscrvations. That is,

$$
\begin{equation*}
E\left(Y_{i} \mid Y_{j}=y_{j}, 1 \leq j \leq i-1\right)=p_{i}+\sum_{j=1}^{\imath-1} b_{i j}\left(Y_{j}-p_{j}\right) \tag{2.3.2}
\end{equation*}
$$

To find the coefficients $b_{i j}$ we multiply both sides of the above equation by $\left(Y_{j}-p_{j}\right)$, $j=1, \cdots, i-1$. Then taking expectations we get

$$
\begin{aligned}
\operatorname{Cov}\left(Y_{i}, Y_{1}\right) & =b_{i 1} \operatorname{Vav}\left(Y_{1}\right)+b_{i 2} \operatorname{Cov}\left(Y_{1}, Y_{2}\right)+\cdots+b_{i(i, 1)} \operatorname{Cov}\left(Y_{1}, Y_{i-1}\right) \\
\operatorname{Cov}\left(Y_{i}, Y_{2}\right) & =b_{i 1} \operatorname{Cov}\left(Y_{2}, Y_{1}\right)+b_{i 2} \operatorname{Var}\left(Y_{2}\right)+\cdots+b_{i(i-1)} \operatorname{Cov}\left(Y_{2}, Y_{i-1}^{Y}\right) \\
\vdots & \\
\operatorname{Cov}\left(Y_{i}, Y_{i-1}\right) & =b_{i 1} \operatorname{Cov}\left(Y_{i-1}, Y_{1}\right)+b_{i 2} \operatorname{Cov}\left(Y_{i-1}, Y_{2}\right)+\cdots+b_{i(i-1)} \operatorname{Var}\left(Y_{i-1}\right)
\end{aligned}
$$

The above identities can be written in a matrix form as

$$
\left[\begin{array}{c}
\operatorname{Cov}\left(Y_{i}, Y_{1}\right) \\
\operatorname{Cov}\left(Y_{i}, Y_{2}\right) \\
\vdots \\
\operatorname{Cov}\left(Y_{i}, Y_{i-1}\right)
\end{array}\right]=\Sigma_{i-1} \mathrm{~b}
$$

where $\mathbf{b}=\left(b_{i 1}, b_{i 2}, \cdots, b_{i(i-1)}\right)^{\prime}$ and

$$
\Sigma_{i-1}=\left[\begin{array}{cccc}
\operatorname{Var}\left(Y_{1}\right) & \operatorname{Cov}\left(Y_{i}, Y_{2}\right) & \cdots & \operatorname{Cov}\left(Y_{1}, Y_{i-1}\right) \\
\operatorname{Cov}\left(Y_{2}, Y_{1}\right) & \operatorname{Var}\left(Y_{2}\right) & \cdots & \operatorname{Cov}\left(Y_{2}, Y_{i-1}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\operatorname{Com}\left(Y_{i-1}, Y_{1}\right) & \operatorname{Cov}\left(Y_{i-1}, Y_{2}\right) & \cdots & \operatorname{Var}\left(Y_{i-1}\right)
\end{array}\right] .
$$

Thus

$$
\mathbf{b}=\Sigma_{i-1}^{-1}\left[\begin{array}{c}
\operatorname{Cov}\left(Y_{i}, Y_{1}\right) \\
\operatorname{Cov}\left(Y_{i}, Y_{2}\right) \\
\vdots \\
\operatorname{Cov}\left(Y_{i}, Y_{i-1}\right)
\end{array}\right]
$$

In the case the corrclation matrix of $\left(y_{1}, \ldots, y_{i-1}\right)$ is $R(\rho)$, we have

$$
\Sigma_{i-1}-\left[\begin{array}{cccc}
\sigma_{1} & 0 & \cdots & 0 \\
0 & \sigma_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \sigma_{i-1}
\end{array}\right] R(\rho)\left[\begin{array}{cccc}
\sigma_{1} & 0 & \cdots & 0 \\
0 & \sigma_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \sigma_{i-1}
\end{array}\right]
$$

Therefore

$$
\begin{aligned}
\mathbf{b} & =\left[\begin{array}{cccc}
\frac{1}{\sigma_{1}} & 0 & \cdots & 0 \\
0 & \frac{1}{\sigma_{2}} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \frac{1}{\sigma_{\mathrm{L}}-1}
\end{array}\right] R^{-1}(\rho)\left[\begin{array}{cccc}
\frac{1}{\sigma_{1}} & 0 & \cdots & 0 \\
0 & \frac{1}{\sigma_{1}} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \frac{1}{\sigma_{i}-1}
\end{array}\right]\left[\begin{array}{c}
\sigma_{1} \sigma_{i} \rho^{i-1} \\
\sigma_{2} \sigma_{i} \rho^{i-2} \\
\vdots \\
\sigma_{i-1} \sigma_{i} \rho
\end{array}\right] \\
& =\left[\begin{array}{cccc}
\frac{\sigma_{i}}{\sigma_{1}} & 0 & \cdots & 0 \\
0 & \frac{\sigma_{i}}{\sigma_{2}} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \frac{\sigma_{1}}{\sigma_{\mathrm{L}}-1}
\end{array}\right] R^{-1}(\rho)\left[\begin{array}{c}
\rho^{i-1} \\
\rho^{i \cdots 2} \\
\vdots \\
\rho
\end{array}\right] .
\end{aligned}
$$

For the $\mathrm{AR}(1)$ correlation matrix $R(\rho)$, the inverse is given by

$$
\left.R^{-1}(\rho)=\frac{1}{1-\rho^{2}}\left(1+\rho^{2}\right) M_{1}-\rho M_{2}-\rho^{2} M_{3}\right\rfloor
$$

where M_{1} is the identity matrix, M_{2} is a tri-diagonal matrix with ones right above and below the diagonal, zero everywhere else. The matrix M_{2} is a matrix of zeros except the first and last diagonal elements which are equal to 1 . Note that

$$
\begin{aligned}
R^{-1}(\rho)\left[\begin{array}{c}
\rho^{i-1} \\
\rho^{i-2} \\
\vdots \\
\rho^{2} \\
\rho
\end{array}\right] & =\frac{1}{1-\rho^{2}}\left(\left(1+\rho^{2}\right)\left[\begin{array}{c}
\rho^{i-1} \\
\rho^{i-2} \\
\vdots \\
\rho^{2} \\
\rho
\end{array}\right]-\left[\begin{array}{c}
\rho^{i-1} \\
\rho^{i}+\rho^{i-2} \\
\vdots \\
\rho^{1} \\
\rho^{3}
\end{array}\right]-\left[\begin{array}{c}
\rho^{i+1} \\
0 \\
\vdots \\
0 \\
\rho^{3}
\end{array}\right]\right) \\
& =\frac{1}{1-\rho^{2}}\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
\rho-\rho^{3}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
\rho
\end{array}\right] .
\end{aligned}
$$

Therefore

$$
\mathbf{b}-\left[\begin{array}{cccc}
\frac{o_{i}}{\sigma_{1}} & 0 & \cdots & 0 \\
0 & \frac{\sigma_{i}}{\sigma_{2}} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \frac{\sigma_{i}}{\sigma_{i-1}}
\end{array}\right] R^{-1}(\rho)\left[\begin{array}{c}
\rho^{i-1} \\
\rho^{2-2} \\
\vdots \\
\rho
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
\rho \frac{\sigma_{2}}{\sigma_{i-1}}
\end{array}\right] .
$$

Thus for the $\mathrm{AR}(1)$ correlation structure the conditional lincar family of binary distributions satisfy the relation

$$
\begin{align*}
E\left(Y_{i} \mid Y_{j}=y_{j}, 1 \leq j \leq i-1\right) & =\mathrm{P}\left(Y_{i}=1 \mid Y_{j}-y_{j}\right) \tag{2.3.3}\\
& =p_{i}-\rho \frac{\sigma_{i}}{\sigma_{i-1}}\left(y_{i-1}-p_{i-1}\right) .
\end{align*}
$$

This shows that if the correlation structure is $\operatorname{AR}(1)$ then Y_{i} depends only y_{i-1} and is indcpendent of the past observations. Thus the resulting process is a first order Markov chain.

II.3.2 Probability mass function of the conditional linear family

In the previous section we have seen that when the correlation structure is $A R(1)$, the resulting conditional linear family is a first order Markov chain. For this chain, the transition probabilities of moving from y_{i-1} to y_{i} can be written explicitly as follows.

$$
\begin{aligned}
& P_{i 01}=p_{i}-\rho \frac{\sigma_{i}}{\sigma_{i-1}}\left(0-p_{i 1}\right)=p_{i}-\rho \frac{\sigma_{i-1} \sigma_{i}}{q_{i-1}} \\
& P_{i 11}=p_{i}-\rho \frac{\sigma_{i}}{\sigma_{i-1}}\left(1-p_{i-1}\right)=p_{i}+\rho \frac{\sigma_{i-1} \sigma_{i}}{p_{i-1}} \\
& P_{i 00}=1-P_{i 01}=q_{i}+\rho \frac{\sigma_{i 1} \sigma_{i}}{q_{i-1}} \\
& \Gamma_{i 10}=1-P_{i 11}=q_{i}-\rho \frac{\sigma_{i-1} \sigma_{i}}{p_{i-1}} .
\end{aligned}
$$

We require that these four probabilities lie between 0 and 1 for all i. This leads to the bounds on the corrclation parameter ρ as

$$
\begin{equation*}
\max _{2 \leq \leq \leq t} L\left(p_{i-1}, p_{i}\right) \leq \rho \leq \min _{2 \leq i \leq t} U\left(p_{i}, p_{i}\right), \tag{2.3.4}
\end{equation*}
$$

where

$$
\begin{aligned}
& L(a, b)=\max \left\{\cdots \sqrt{\frac{a b}{(1-a)(1-b)}},-\sqrt{\frac{(1-a)(1-b)}{a b}}\right\}, \\
& U(a, b)=\min \left\{\sqrt{\frac{a(1-b)}{(1-a) b}}, \sqrt{\frac{(1-a) b}{a(1-b)}}\right\} .
\end{aligned}
$$

The corrclation bounds (2.3.4) were given in Chaganty and Ioe (2006). For fixed p_{i}, $1 \leq i \leq t$ and ρ satisfying the bounds (2.3.4), the joint probability distribution with $\operatorname{AR}(1)$ structure can be obtained starting with an initial Bernoulli distribution with mean p_{1} and by the first order Markov chain with transition matrix

$$
\begin{align*}
& y_{i} \\
& 0 \\
& H_{(i-1), i}=\left[\begin{array}{ll}
q_{i}+\rho \frac{\sigma_{i-1} \sigma_{i}}{q_{i-1}} & p_{i}-\rho \frac{\sigma_{i-1} \sigma_{i}}{q_{i-1}} \\
q_{i}-\rho \frac{\sigma_{i-1} \sigma_{i}}{p_{i-1}} & p_{i}+\rho \frac{\sigma_{i}, \sigma_{i}}{p_{i-1}}
\end{array}\right] \begin{array}{l}
0 \\
y_{i-1}
\end{array} \tag{2.3.5}
\end{align*}
$$

where $q_{i}=1-p_{i}, \sigma_{2}=\left(p_{i} q_{i}\right)^{1 / 2}: i=1,2, \cdots, t$. The transition matrix $\|_{(i, 1), i}$ gives us the conditional distribution of Y_{i} given the previous state $Y_{i-\mathrm{k}}$. Note that $\mu_{(i-1), i}$ is a function of marginal probabilities p_{i} and p_{i-1} as well as the correlation parameter p. If the marginal distribution of Y_{i-1} is Bernoulli with mean p_{v-1} then the marginal distribution of Y_{i} is again Bernoulli with mean p_{i}, since

$$
\left(q_{i \cdot 1}, p_{i-1}\right) H_{(i-1), i}=\left(q_{i}, p_{i}\right)
$$

Further the transition probability matrix from state y_{i-1} to state y_{j} for $y \geq i$, is given by

$$
\begin{align*}
H_{(z-1), j} & =H_{(i-1), i} I_{i,(i+1)} \cdots I_{(j-1), j} \\
& =\left[\begin{array}{ll}
q_{j}+\rho^{j \cdots i+1} \frac{\sigma_{i-1} \sigma_{j}}{q_{z-1}} & q_{j}-\rho^{j \cdot i+1} \frac{\sigma_{i-1} \sigma_{j}}{p_{i-1}} \\
p_{j}-\rho^{j-i+1} \frac{\sigma_{i} \sigma_{j}}{q_{i} 1} & p_{j}+\rho^{j-i+1} \frac{\sigma_{i-1} \sigma_{j}}{p_{i-1}}
\end{array}\right] . \tag{2.3.6}
\end{align*}
$$

Thus the correlation between Y_{i-1} and Y_{j} for $j \geq i$ is ρ^{j-i+1}. When $p_{1}=p_{2}-\cdots=$ $p_{t}=p$, that is, all the marginal probabilities are the same, the matrix $H_{(i-1) ; i}$ does not depend on i, and the Markov chain is a homogeneous, stationary chain.

For the above first order Markov chain model, the joint probability mass function for $Y=\left(Y_{1}, \cdots, Y_{t}\right)$ is given by

$$
\begin{align*}
\pi(y) & =P(Y=y) \\
& =\nu_{1}^{y_{1}} q_{1}^{1-y_{1}} \prod_{i=2}^{t}\left[p_{i}^{y_{i}} q_{i}^{1-y_{i}}+(-1)^{y_{L-1}+y_{i}} \rho \frac{\sigma_{i-1} \sigma_{i}}{p_{i-1}^{y_{i-1}-1} q_{i-1}^{1-1 j_{i}-1}}\right] . \tag{2.3.7}
\end{align*}
$$

This joint distribution is such that the marginal of Y_{i} is Bernoulli with mean p_{i} and $\operatorname{Corr}\left(Y_{i}, Y_{j}\right)=\rho^{i-j \mid}$ for $1 \leq i \neq j \leq t$ as shown above.

II.3.3 Generalization to Markov structures

The construction of the joint distribution for repeated binary observations with specified means and $\mathrm{AR}(1)$ correlation structure in the previous section can be gencralized readily as follows. Assume that the initial distribution of Y_{1} is Bernoulli with mean p_{1}, and for $i \geq 2$, let the transition from state Y_{i-1} to Y_{i} follow a first order Markov chain with transition matrix given by

$$
H_{(i-1), j}=\left[\begin{array}{cc}
q_{i}+\rho_{i-1} \frac{\sigma_{i-1} \sigma_{i}}{q_{i, 1}} & q_{i}-\rho_{i-1} \frac{\sigma_{i-1} \sigma_{i}}{p_{i-1}} \tag{2.3.8}\\
p_{i}-\rho_{i-1} \frac{\sigma_{i-1} \sigma_{i}}{q_{i-1}} & p_{i}+\rho_{i, 1} \frac{\sigma_{i-1} \sigma_{i}}{p_{i-1}}
\end{array}\right] .
$$

Malrix (2.3.8) is a legitimate transition matrix if $L\left(p_{\{i-1)} ; p_{i}\right) \leq \rho_{i-1} \leq U\left(p_{(i-1)}, p_{i}\right)$. As before, it is easy to see that from the above transilion matrix the marginal distribution of Y_{i} is Bernoulli with mean p_{i} if the marginal distribution of $Y_{\langle i-1)}$ is Bernoulli with mean p_{i-1} and the correlation between $Y_{(i-1)}$ and Y_{2} is $\rho_{i .1}$. For the above transition matrices we have

$$
\begin{aligned}
& H_{(i-1), j}=H_{(i-1), i} H_{i,(i+1)} \cdots H_{(j \cdots 1), j}
\end{aligned}
$$

$T h i s$ is the transition matrix for moving from state $y_{i \ldots 1}$ to y_{j}, for $j \geq i$. Hence $\operatorname{Corr}\left(Y_{(z-1)}, Y_{j}\right)=\left(\prod_{k=(i-1)}^{(j-1)} \rho_{k}\right)$. In particular if the repeated binary observations are taken at time points $e_{1}<e_{2}<\cdots<e_{t}$, we could take $\rho_{k}=\rho^{c_{k-1}-c_{k}}$. Then $\operatorname{Corr}\left(Y_{(i-1)}, Y_{j}\right)$ cquals $\rho^{e_{j}-t_{i-1}}$, that is, the resulting correlation structure is the Markov structure. The Markov structure is an appropriate model for longitudinal data that is collected at different time points for different subjects. Similarly, we could also construct multivariate binary distributions with specified marginals and Generalized Markov structure. However note that for these structures the parametcrs must satisfy stringent bounds which are lot more restrictive than positive definitencss. See Crowder and Hand (1990) and Nunèz-Anton and Woodworth (1994) for a description and use of the Markov and Generalized Markov structures in the analysis of continuous longitudinal data.

II.3.4 Maximum likelihood estimation

Let, $Y_{i}=\left(y_{i 1}, y_{i 2}, \cdots, y_{i t_{i}}\right)^{y}$ be a vector of binary response with marginal means $p_{i}=$ $\left(p_{i 1}, p_{i 2}, \cdots, p_{i t_{i}}\right)^{\prime} \in(0,1)^{t_{i}}$ and let $X_{i j}^{\prime}=\left(x_{i j 1}, x_{i j 2}, \cdots, x_{i j k}\right)$ be the corresponding k-dimensional row vector of covariates measured at time $j=1,2, \cdots, t_{i}$ for subject $i=1,2, \cdots, n$. Assume that the n subjects are independent. Suppose that the responses are related to the covariates as

$$
E\left(y_{i j}\right)=p_{i j}=h\left(X_{i j}^{\prime} \beta\right),
$$

where $h(\cdot)$ is cither the probit or the logit link function and β is the k-dinnensional regression parameter.

Let $\theta-(\beta, \rho)$, then the likelihood for subject i is given by

$$
\begin{align*}
L_{i}(\theta) & =\pi\left(y_{i} ; X_{i}, \theta\right) \\
& =p_{i 1}^{y_{i 1}} q_{i 1}^{1-y_{i 1}} \prod_{j=2}^{t_{i}}\left[p_{i j}^{y_{i j}} q_{i j}^{1-y_{i j}}+(-1)^{y_{i(j-1 j}+y_{i 3}} \rho \frac{\sigma_{i(j-1)} \sigma_{i j}}{p_{i(j-1)}^{y_{2 j}(1)} q_{i(j-1)}^{1-y_{2 j}}}\right] \tag{2.3.10}
\end{align*}
$$

where $y_{i}=\left(y_{i 1}, y_{i 2}, \cdots, y_{i t_{2}}\right)^{\prime}$ and $X_{i}^{\prime}=\left(X_{i 1}, X_{i 2}, \ldots, X_{i t_{i}}\right)$. The maximum likelihood estimate $\widehat{O}_{M L E}$ is obtained by maximizing the likelihood function

$$
L(\theta)=\prod_{i=1}^{n} L_{i}(\theta)=\prod_{i=1}^{n} \pi\left(y_{i} ; X_{i}, \theta\right) .
$$

The log-likelihood function can be writien as

$$
\begin{align*}
& \ell(\theta)=\sum_{i=1}^{n}\left[y_{11} \log \left(p_{i 1}\right)+\left(1-y_{i 1}\right) \log \left(q_{i 1}\right)\right] \\
& +\sum_{i=1}^{n} \sum_{j=2}^{t_{i}} \log \left[p_{i j}^{y_{i j}} q_{i j}^{1-y_{i j}}+(\cdots 1)^{y_{i(j-1)}+y_{i j}} \rho \frac{\sigma_{2, j-1)} \sigma_{i j}}{p_{i, j-1)}^{\left.y_{i(j)}-1\right)} q_{i(j-1)}^{1 y_{i j(j)}}}\right] \\
& =\sum_{i=1}^{n} M_{i 1}+\sum_{i=1}^{n} M_{i 2} \text {. } \tag{2.3.11}
\end{align*}
$$

From the results in Anderson and Goodman (1957) it follows that there exists a consistent solution $\hat{\theta}=(\widehat{\beta}, \widehat{\beta})$ to the likelihood equation

$$
\frac{\partial}{\partial \theta} \ell(\theta)=\sum_{i=1}^{n} \frac{\partial}{\partial \theta} \ell_{i}(\theta)=0 .
$$

We will now derive a simplified expression for $\frac{\partial}{\partial \theta} \ell(\theta)$ and the Hessian matrix that can be used for computational purposes.

The Hessian matrix is the second derivative of likelihood function, and it is of the form

$$
\begin{align*}
H(\theta) & =\frac{\partial^{2} \ell(\theta)}{\partial \theta \partial \theta^{\prime}} \\
& =\sum_{i=1}^{n} \frac{\partial^{2} M_{i j}}{\partial \theta \partial \theta^{\prime}}+\sum_{i=1}^{n} \frac{\partial^{2} M_{i 2}}{\partial \theta \partial \theta^{\prime}} . \tag{2.3.12}
\end{align*}
$$

The first and second derivatives of $M_{i 1}$ are as follows:

$$
\begin{align*}
\frac{\partial M_{i 1}}{\partial \beta}= & \sum_{i=1}^{n}\left[y_{i 1} \frac{1}{p_{i 1}} \frac{\partial p_{i 1}}{\partial \beta}-\left(1-y_{i 1}\right) \frac{1}{q_{i 1}} \frac{\partial p_{i 1}}{\partial \beta}\right] \tag{2.3.13}\\
\frac{\partial^{2} M_{i 1}}{\partial \beta \partial \beta^{\prime}}= & \sum_{i=1}^{n}\left[-y_{i 1} \frac{1}{p_{i 1}^{2}} \frac{\partial p_{i 1}}{\partial \beta} \frac{\partial p_{i 1}}{\partial \beta^{\prime}}+y_{i 1} \frac{1}{p_{i 1}} \frac{\partial^{2} p_{i t}}{\partial \beta \partial \beta^{\prime}}\right. \\
& \left.-\left(1-y_{i 1}\right) \frac{1}{q_{i 1}^{2}} \frac{\partial p_{i 1}}{\partial \beta} \frac{\partial p_{i 1}}{\partial \beta^{\prime}}-\left(1-y_{i 1}\right) \frac{1}{q_{i 1}} \frac{\partial^{2} p_{i 1}}{\partial \beta \partial \beta^{\prime}}\right] \tag{2.3.14}\\
\frac{\partial M_{i 1}}{\partial \rho}= & 0 \tag{2.3.15}
\end{align*}
$$

To get the first and second derivative of $M_{i 2}$ in (2.3.11), let $P_{i j}^{*}$ be the conditional probability of $Y_{i j}=y_{i j}$ given that the previous state equals to $y_{i(j-1)}$, that is,

$$
\begin{aligned}
F_{i j}^{*} & =P\left\{Y_{i j}=y_{i j} \mid Y_{i(j-1)}=y_{i(j-1)}\right\} \\
& =p_{i j}^{i, i_{i j}} q_{i j}^{1-y_{j i j}}+(-1)^{\left.y_{i(j-1)}+y_{i j}\right)} p \frac{\sigma_{i(j-1)} \sigma_{i j}}{p_{\imath(j-1)}^{y_{2(j-1)}} g_{i(j-1)}^{1-y_{i j}(1)}} .
\end{aligned}
$$

The derivative of $M_{i 2}$ is a sum of the derivatives of $\log \left(P_{i j}^{*}\right)$ at, each time points j for cach of the n subjects. Let $G_{i j}=p_{i j}^{z_{i j}} q_{i j}^{1-y_{i j}}$, we then have

$$
\begin{align*}
\frac{\partial G_{i j}}{\partial \beta}= & {\left[y_{i j} p_{i j}^{y_{i j}-1} \frac{\partial p_{i j}}{\partial \beta}\right] q_{i j}^{1-y_{i j}}+p_{i j}^{y_{i j}}\left[\left(1-y_{i j}\right) q_{i j}^{-y_{i j}}\left(-\frac{\partial p_{i j}}{\partial \beta}\right)\right] } \\
= & {\left[y_{i j} p_{i j}^{y_{i j}-1} q_{i j}^{1-y_{i j}}-\left(1-y_{i j}\right) p_{i j}^{y_{i j}} q_{i j}^{-y_{i j}}\right] \frac{\partial p_{i j}}{\partial \beta}: } \tag{2.3.16}\\
\frac{\partial^{2} G_{i j}}{\partial \beta \partial \beta^{\prime}}= & y_{i j}\left(y_{i j}-1\right) p_{i j}^{y_{i j}-2} q_{i j}^{1-y_{i j}} \frac{\partial p_{i j}}{\partial \beta} \frac{\partial p_{i j}}{\partial \beta^{\prime}}+y_{i j} p_{i j}^{y_{i j}-1} q_{i j}^{1-y_{i j}} \frac{\partial^{2} p_{i j}}{\partial \beta \partial \beta^{\prime}} \\
& -2 y_{i j}\left(1-y_{i j}\right) p_{i j}^{y_{i j}-1} q_{i j}^{-y_{i j}} \frac{\partial p_{i j}}{\partial \beta} \frac{\partial p_{i j}}{\partial \beta^{\prime}} \\
& -y_{i j}\left(1-y_{i j}\right) p_{i j}^{y_{i j}} q_{i j}^{-y_{i j}-1} \frac{\partial p_{i j}}{\partial \beta} \frac{\partial p_{i j}}{\partial \beta^{\prime}}-\left(1-y_{i j}\right) p_{i j}^{y_{i j}} q_{i j}^{-y_{i j}} \frac{\partial^{2} p_{i j}}{\partial \beta \partial \beta^{\prime}} . \tag{2.3.17}
\end{align*}
$$

Then

$$
\begin{aligned}
\frac{\partial M_{i 2}}{\partial \beta} & =\sum_{j=2}^{t_{i}} \frac{\partial}{\partial \beta} \log \left(P_{i j}^{*}\right)=\sum_{j=2}^{t_{i}} \frac{1}{P_{i j}^{*}} \frac{\partial P_{i j}^{\left.y_{i j}, 1\right) y_{i j}}}{\partial \beta} \\
& =\sum_{j=2}^{t_{i}} \frac{1}{P_{i j}^{*}}\left[\frac{\partial G_{i j}}{\partial \beta}+(-1)^{y_{i(j-1)}+y_{i j}} \rho \frac{\frac{\partial \sigma_{i j, 1)} \sigma_{i j}}{\partial \beta} G_{2(j-1)}-\sigma_{2(j-1)} \sigma_{i j} \frac{\partial G_{i j, 1]}}{\partial \beta}}{\left(G_{i(j-1)}\right)^{2}}\right],
\end{aligned}
$$

$$
\begin{align*}
& \frac{\partial^{2} M_{i 2}}{\partial \beta \partial \beta^{\prime}}=\sum_{j=2}^{t_{i}}-\frac{1}{\left(P_{i j}^{*}\right)^{2}} \frac{\partial F_{i j}^{*}}{\partial \beta} \frac{\partial \Gamma_{i j}^{*}}{\partial \beta^{\prime}} \\
& +\frac{1}{P_{i j}^{*}}\left[\frac{\partial^{2} G_{i j}}{\partial B \partial B^{\prime}}+(\cdots 1)^{y_{i(j-1)}+y_{i j}} \rho \frac{\frac{\partial}{\partial \tilde{p}^{j 2}}\left(\frac{\partial a_{i(j-1) \sigma_{i j}}}{\partial \beta} G_{i(j-1)}-\sigma_{i(j-1)} \sigma_{i j} \frac{\partial C_{i(j-1)}}{\partial \partial \beta}\right)}{\left(G_{i(j-1)}\right)^{2}}\right. \\
& \left.+(-1)^{\left.y_{i(j}\right)+y_{i j}} 2 \rho \frac{\left(\frac{\partial \sigma_{i(j)} \sigma_{i j}}{\partial \beta} G_{i(j-1)}-\sigma_{i(j-1)} \sigma_{i j} \frac{\partial G_{i(j-1)}}{\partial \beta}\right)}{G_{i(j-l)}^{3}}\right] \text {. } \tag{2.3.18}\\
& \frac{\partial M_{i 2}}{\partial \rho}=\sum_{j=2}^{t_{i}} \frac{1}{\rho_{i j}^{*}}\left[(-1)^{y_{i(j-1)}+y_{i j}} \frac{\sigma_{i(j-1)} \sigma_{i j}}{p_{i(j-1)}^{y_{i(j}(1)} q_{i(j-1)}^{1-y_{i(j)}^{1)}}}\right] ; \tag{2.3.19}\\
& \frac{\partial^{2} M_{i 2}}{\partial \rho^{2}}=\sum_{j-2}^{t_{i}}-\left\{\frac{1}{P_{i j}^{*}}\left[(-1)^{y_{2(j)}+y_{i, j}} \frac{\sigma_{i(j-1)} \sigma_{i j}}{p_{i(j-1)}^{\left.y_{i(j)}-1\right)} l_{i(j-1)}^{1-y_{i(j)}}}\right]\right\}^{2}, \tag{2.3.20}\\
& \frac{\partial^{2} M_{i 2}}{\partial \beta \partial \rho}=\sum_{j=2}^{t_{i}} \frac{1}{P_{i j}^{*}}\left[(-1)^{y_{i(j-1)} \div y_{i j}} \frac{\frac{\partial \sigma_{i(j-1)} \sigma_{i j}}{\partial j_{j}} G_{i(j-1)}-\sigma_{i\{j-1)} \sigma_{i j} \frac{\partial G_{i(j-1)}}{\partial \partial^{3}}}{\left(G_{i(j-1)}\right)^{2}}\right], \tag{2.3.21}
\end{align*}
$$

where

$$
\begin{gathered}
\frac{\partial}{\partial \beta^{\prime}}\left(\frac{\partial \sigma_{i(j-1)} \sigma_{i j}}{\partial \beta} G_{i(j-1)}-\sigma_{i(j-1)} \sigma_{i j} \frac{\partial G_{i(j-1)}}{\partial \beta}\right) \\
=\frac{\partial^{2} \sigma_{i(j-1)} \sigma_{i j}}{\partial \beta \partial \beta^{\prime}} G_{i(j-1)}+\frac{\partial \sigma_{i(j-1)} \sigma_{i j}}{\partial \beta} \frac{\partial G_{i(j-1)}}{\partial \beta^{\prime}}-\frac{\partial G_{i(j-1)}}{\partial \beta} \frac{\partial \sigma_{i(j-1)} \sigma_{i j}}{\partial \beta^{\prime}}+\sigma_{i(j-1)} \sigma_{i j} \frac{\partial^{2} G_{i(j-1)}}{\partial \beta \partial \beta^{\prime}}, \\
\frac{\partial \sigma_{i(j-1)} \sigma_{i j}}{\partial \beta}=\frac{\partial}{\partial \beta} \sqrt{p_{i j} q_{i j} p_{i(j-1)} q_{i(j-1)}} \\
=\frac{1}{2 \sigma_{i(j-1)} \sigma_{i j}}\left[\left(\mathrm{I}-2 p_{i(j-1)}\right) p_{i j} q_{i j} \frac{\partial p_{i(j-1)}}{\partial \beta}+p_{i(j-1) q_{i(j-1)}}\left(1-2 p_{i j}\right) \frac{\partial p_{i j}}{\partial \beta}\right]
\end{gathered}
$$

$$
\begin{aligned}
\frac{\partial^{2} \sigma_{i(j-1)} \sigma_{i j}}{\partial \beta \partial \beta^{\prime}}= & -\frac{1}{\sigma_{i(j-1)} \sigma_{i j}} \frac{\partial \sigma_{i(j-1)} \sigma_{i j}}{\partial \beta} \frac{\partial \sigma_{i(j-1)} \sigma_{i j}}{\partial \beta^{\prime}} \\
& +\frac{1}{2 \sigma_{i(j-1)} \sigma_{i j}}\left[\left(\frac{\partial^{2} p_{i(j-1)}}{\partial \beta \partial \beta^{\prime}}-2 \frac{\partial p_{i(j-1)}}{\partial \beta} \frac{\partial p_{i(j-1)}}{\partial \beta^{\prime}}-2 p_{i(j-1)} \frac{\partial^{2} p_{i(j-1)}}{\partial \beta \partial \beta^{\prime}}\right)\left(p_{i j}-p_{i j}^{2}\right)\right. \\
& +\left(1-2 p_{i(j-1)}\right)\left(1-2 p_{i j}\right) \frac{\partial p_{i(j-1)}}{\partial \beta} \frac{\partial p_{i j}}{\partial \beta^{\prime}}+\left(1-2 p_{i(j-1)}\right)\left(1-2 p_{i j}\right) \frac{\partial p_{i j}}{\partial \beta} \frac{\partial p_{i(j-1)}}{\partial \beta^{\prime}} \\
& \left.+\left(p_{i(j-1)}-p_{i(j-1)}^{2}\right)\left(\frac{\partial^{2} p_{i j}}{\partial \beta \partial \beta^{\prime}}-2 \frac{\partial p_{i j}}{\partial \beta} \frac{\partial p_{i j}}{\partial \beta^{\prime}}-2 p_{k j} \frac{\partial^{2} p_{i j}}{\partial \beta \partial \beta^{\prime}}\right)\right] .
\end{aligned}
$$

Using the above cxpressions we can write the derivative of the log-likelihood function and the Hessian matrix as

$$
\begin{equation*}
\frac{\partial}{\partial \theta} \ell(\theta)=\binom{\sum_{i=1}^{n} \frac{\partial M_{i 1}}{\partial \beta}-\sum_{i=1}^{n} \frac{\partial M_{i 2}}{\partial \beta}}{\sum_{i=1}^{n} \frac{\partial M_{i 2}}{\partial \rho}} \tag{2.3.22}
\end{equation*}
$$

and

$$
H=\left(\begin{array}{cc}
\sum_{i=1}^{n} \frac{\partial^{2} M_{i 1}}{\partial \beta \partial \beta^{\prime}}+\sum_{i=1}^{n} \frac{\partial^{2} M_{i 2}}{\partial \beta \partial \beta^{\prime}} & \sum_{i=1}^{n} \frac{\partial^{2} M_{i 2}}{\partial \beta \partial \rho} \tag{2.3.23}\\
\sum_{i=1}^{n} \frac{\partial^{2} M_{i 2}}{\partial \beta \partial \rho} & \sum_{i=1}^{n} \frac{\partial^{2} M_{i 2}}{\partial \rho^{2}}
\end{array}\right) .
$$

We have used the above expressions (2.3.22) and (2.3.23) to develop a computer program to find the maximum likelihood estimates for the first order Markov chain model.

It is well known that the maximum likelihood estimator $\hat{\theta}_{\text {MLIF }}$ has an asymptotic normal distribution:

$$
\left(\hat{\theta}_{M L E}-\theta\right) \sim \mathcal{N}\left(0, \mathcal{I}^{-1}\right),
$$

where \mathcal{I} is the Fisher information in n subjects, and it can be calculated as

$$
\begin{equation*}
\mathcal{I}=\sum_{i=1}^{n} \mathrm{E}\left[\frac{\partial \ell(\theta)}{\partial \theta} \frac{\partial \ell(\theta)}{\partial \theta^{\prime}}\right]=\sum_{i=1}^{n} \sum_{y_{2}} \pi\left(y_{i} ; X_{i} \cdot \theta\right)\left[\frac{\partial \ell(\theta)}{\partial \theta} \frac{\partial \ell(\theta)}{\partial \theta^{\prime}}\right], \tag{2.3.24}
\end{equation*}
$$

where the inner sum is taken over the $2^{t_{i}}$ possible vectors of y_{i}. The diagonal elements of \mathcal{I}^{-1} are the asymptotic variances of the parameter estimates. We compute the Fisher information matrix in the software that we developed to estimate the standard errors of the maximum likelihood estimates.

II. 4 Hypothesis testing

In this section we develop hypothesis testing procedures for testing the significance of the correlation parameter ρ. We develop hypothesis tests for general functions of the correlation parameters, and then concentrate upon specific examples and compare their performance through simulations.

II.4.1 Likelihood ratio test

Knowledge of the likelihood function allows us to utilize a likelihood ratio test for hypothesis tests regarding the correlation parameters.

Generally, we would like to test a mull hypothesis that the correlation parameter ρ is equal to some constant, or $H_{0}: \rho=\rho 0$. To do this, we take the ratio of the likelihood evaluated with the maximum likelihood estimates under H_{0} (the restricted MLE's) against the likelihood evaluated with the so-called unrestricted maximum likelihood estimates. Let $\widehat{0}_{0}=\left(\widehat{\beta}_{0}, \widehat{\rho}_{0}\right)$ be the restricted and $\widehat{\theta}=(\widehat{\beta}, \widehat{\rho})$ the
unrestricted MLE's, respectively. Then the likelihood ratio test statistic is

$$
\begin{aligned}
& \lambda\left(\widehat{\theta}_{0}, \widehat{\theta}\right)=\frac{\left.\prod_{i=1}^{n} \pi_{2}\left(y_{i}\right) \widehat{\theta}_{0}\right)}{\prod_{i=1}^{n} \pi_{i}\left(y_{i} \mid(\widehat{\theta})\right.}
\end{aligned}
$$

For case of notation wo wrote $p_{i j}$ and $q_{i j}$ in the above for the estimated probabilities that depend on the estimated regression parameter β. The most obvious spocial case is the hypothesis $H_{0}: \rho=0$. Thus, the test statistic beromes

Recall that that $-2 \ln \left(\lambda\left(\hat{\theta}_{0}, \widehat{\theta}\right)\right)$ has an asymptotic chi-square distribution with $d=$ $d_{u r}-d_{r}$ degrees of freedom, where $d_{u r}$ is the number of paraneters in the unrestrjeted model and d_{r} is the number of parameters under the null hypothesis. Since the difference in the number of parameters between $\widehat{\theta}_{0}=\left(\widehat{\beta}_{0}, 0\right)$ and $\widehat{\theta}=(\widehat{\beta}, \hat{\beta})$ is 1, then $-2 \ln \left(\lambda\left(\hat{\theta}_{0}, \widehat{\theta}\right)\right)$ is asymptotically chi-square with one degree of freedom.

II.4.2 Wald's test

Another hypothesis testing procedure based on the maximum likelihood estimates is the Wald's test. Cnder this lest procedure, the maximum likelihood estimate $\hat{\rho}$ of the correlation parameter ρ is compared with the hypothesized value ρ_{0}, with the assumption that the difference between the two will be approximately normal. Typically, the square of the difference is compared to a chi-squared distribution. In the univariate case, the Wald's test statistic is

$$
\frac{\left(\hat{\rho}-\rho_{0}\right)^{2}}{\operatorname{Var}(\widehat{\rho})} .
$$

Alternatively, we could use the test statistic

$$
\frac{\left(\hat{\rho} \cdots \rho_{0}\right)}{\operatorname{SE}(\hat{\rho})},
$$

where $\mathrm{SE}(\hat{\rho})$ is the standard error of the maximum likclihood estimate, and it is estimated by the inverse of the Fisher information for the parameter ρ. This statistic is approximately distributed as standard normal.

II.4.3 Estimated power of the test statistics

To gauge the performance of the likelihood ratio test and the Wald's test, we make use of simulations to estimate the power of these tests. We simulated $n=30$ observations of size $t=4$. For the likelihood ratio test, we calculated both the restricted and unrestricted maximum likelihood estimates, which should be similar as the simulated data reflect the conditions stated in the null hypothesis. For the Wald's tost, we calculated the maximum likelihood estimate and the Fisher information using the simulated data. Since we are simulating data using nonzero value for ρ and the null hypothesis is $H_{0}: \rho=0$, we expect to reject the null hypothesis. Recall that for each l.cst we reject I_{0} if the test statistic is grcalce than a chi-square critical value χ_{1}^{2} for a particular significance level. We chose the significance level to be $\alpha=0.05$. If we repeat these simulations a large number times for a particular value of the non-zero correlation parameter, then the estimated power of the test is the ratio of the number of times we reject the null hypothesis to the total number of repeated simulations. If we then repeat this procedure over a wide range of values for the non-zero correlation parameter, we can get an idea of how the test performs in many scenarios.

The estimated power of the likelihood ratio test (LRT) and the Wald's test are graphed in Figure 2.1. This shows that for testing $I_{0}: \rho=0$, the power functions for both the tests are increasing with ρ, converging to one as ρ moves far away from zcro. The graph of the power functions for both the tests are almost identical. Thus for testing $H_{0}: \rho=0$, the two LRT and Wald's test perform similarly.

Figure 2.1: Estimated power for LRT and Wald test

II. 5 SAS macro TMMLE

To fit the first order Markov chain model for longitudinal binary data, we developed a SAS MACRO called TMMLE. It uses the estimate of the generalized estimating equation (GEE) method from PROC GENMOD as the initial value for nonlincar optimization by Newton-Raphson ridge method. The main calculations concerning the search of the maximum likelihood estimate and an output delivery system are carried out by PROC MML. At each iteration, the macro calculates leasible range of the correlation parameter ρ based on the current estimate of the regression parameter and checks whether the estimated ρ is within the range, if not, we replace the estimated ρ by the midpoint of the fcasible range.

The current version of the macro implements two link functions: logit and probit. The macro can be invoked using the command:

$$
\% \mathrm{tmmle}(\text { data }=, \text { yvar }=, \text { xvar }=, i d=, \text { fun }=\text {, outpar }=\text {, outllf }=) \text { where }
$$

data the SAS data set containing the data to be analyzed
yvar name of the dependent variable
xvar names of the independent variables
id group or cluster id, should be a vector of positive integers.
fun options of link functions
outpar output of the parameter estimator, standard error and p -values
outllf output of the value of \log-likelihood function and $\mathrm{AIC}, \mathrm{BIC}$ valucs

II. 6 Multivariate probit model

Another fully specified model for binary data is the multivariate probit model. Multivariate probit model belongs to the class of latent variable thresholds models for analyzing binary dependent data. The model assumes that the binary response is the indicator of an mobserved latent variable excecding a given threshold. Estimation of the regression and latent correlation parameters can be done in a likelihood framework.

II.6.1 Likelihood function

The multivariate probit model can be described as follows. Let $Y=\left(y_{1}, y_{2}, \cdots ; y_{t}\right)^{\prime}$ be a vector of binary random variables. We assume that there exists a corresponding latent continuous multivariate normal random variable $Z=\left(z_{1}, z_{2}, \cdots, z_{t}\right)^{\prime}$ such that

$$
Y_{j}= \begin{cases}1 & Z_{j}>0 \\ 0 & \text { otherwise }\end{cases}
$$

We assume that $Z_{j}=\mu_{j}+\varepsilon_{j}$, for $j=1,2, \cdots, l$, and

$$
\left(\varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{t}\right)^{\prime} \sim M V N(0, R),
$$

where R is a correlation matrix known as the latent correlation matrix. The marginal mean of y_{j} is given by

$$
\begin{equation*}
E\left(y_{j}\right)=P\left(y_{j}=1\right)=p_{j}=P\left(\mu_{j}+\varepsilon_{j}>0\right)=1-\Phi\left(-\mu_{j}\right)=\Phi\left(\mu_{j}\right) \tag{2.6.1}
\end{equation*}
$$

where Φ is the standard normal cumulative distribution function. Thus the probability mass function of Y can be expressed as

$$
\begin{equation*}
P(y ; \mu, R)=\int_{D,} \cdots \int_{D_{\mathrm{t}}} \frac{1}{(2 \pi)^{t / 2}|R|^{1 / 2}} \exp \left\{-\frac{\varepsilon^{\prime} R^{-1} \varepsilon}{2}\right\} d \varepsilon \tag{2.6.2}
\end{equation*}
$$

where $y=\left(y_{1}, \ldots, y_{t}\right)^{\prime}$ is a binary vector, $\mu=\left(\mu_{1}, \ldots, \mu_{t}\right)^{\prime}$ and

$$
D_{j}= \begin{cases}\left(-\infty, \mu_{j}\right) & \text { if } y_{j}=1 \\ \left(\mu_{j}, \infty\right) & \text { if } y_{j}=0\end{cases}
$$

for $j=1,2, \cdots, t$. Let Φ_{t} be the t-variate normal cumulative distribution function, then the cquation (2.6.2) can also be written as

$$
\begin{equation*}
P(y ; \mu, R)=\Phi_{t}\left[(-1)^{1-y_{1}} \mu_{t}, \cdots,(-1)^{1-y_{t}} \mu_{t} ; 0, C R C^{\prime}\right] \tag{2.6.3}
\end{equation*}
$$

where C is a diagonal matrix with the j th diagonal element is $(-1)^{1-y_{j}}$. Allhough equation (2.6.2) defines a proper probability distribution function for any positive definite matrix R, in order to retain likelihood identifiability R is restricted to be a correlation matrix.

Suppose the corrclation structure of $Y \sim\left(y_{1}, \ldots, y_{l}\right)$ is the first order autoregressive (AR(1)) with parameter ρ, then

$$
\begin{equation*}
\operatorname{Corr}\left(y_{j}, y_{k}\right)=\rho^{|j-k|}=\frac{\Phi_{2}\left(\mu_{j}, \mu_{k} ; r_{j k}\right)-p_{j} p_{k}}{\left[p_{j}\left(1-p_{j}\right) p_{j}\left(1-p_{j}\right)_{j}^{1 / 2}\right.} \tag{2.6.4}
\end{equation*}
$$

Here Φ_{2} is the bivariate normal distribution function with density function

$$
f\left(\varepsilon_{j}, \varepsilon_{k}, r_{j k}\right)=\frac{1}{2 \pi \sqrt{1-r_{j k}^{2}}} \exp \left\{-\frac{\varepsilon_{j}^{2}-2 r_{j k} \varepsilon_{j} \varepsilon_{k}+\varepsilon_{k}^{2}}{2\left(1-r_{j k}^{2}\right)}\right\} .
$$

For any ρ satisfying the range restrictions (2.3.4), equation (2.6.4) can be solved uniquely for $r_{j k}$ for $j, k=1, \cdots, t$ (Emrich and Piedmonte (1991)), using the bisection method. We can then construct a probability distribution with specified mean and $\mathrm{AR}(1)$ corrclation structure with specificd ρ using the multivariate probit model (2.6.1) with correlation matrix $R=\left(r_{j k}\right)$.

II. 7 Comparison of the transistion and multivariate probit models

In this section we shall compare the probability mass functions generated by the transistion and multivariate probit models. Suppose $Y=\left(y_{1}, y_{2}, \ldots, y_{t}\right)$ is a binary

Table 2.1: Mass function generated from transition model and multivariate probit model

	Y				
$P_{\text {PM }}(Y)$	$P_{M P R O B I T}(Y)$				
0	0	0	0	0.0538321	0.0538567
0	0	0	1	0.1643539	0.1654672
0	0	1	0	0.0090897	0.0095023
0	0	1	1	0.3407123	0.3391005
0	1	0	0	0.0005554	0.0004391
0	1	0	1	0.0016957	0.0006700
0	1	1	0	0.0025923	0.0022505
0	1	1	1	0.0971685	0.0987233
1	0	0	0	0.0163028	0.0156603
1	0	0	1	0.0497737	0.0492761
1	0	1	0	0.0027528	0.0029030
1	0	1	1	0.1031828	0.1041499
1	1	0	0	0.0008602	0.0015572
1	1	0	1	0.0026262	0.0030677
1	1	1	0	0.0040148	0.0037775
1	1	1	1	0.1504868	0.1496076

NOTE: Parameters are $\rho=0.35, p=$ ($0.33,0.26,0.71,0.91$). Latent correlations are $r_{12}=0.549, r_{13}=0.216, r_{14}=0.101, r_{23}-$ $0.746, r_{24}=0.350$ and $r_{34}=0.668$.
vector with marginal mean $p=\left(p_{t}, p_{2}, \ldots, p_{t}\right)$ and $\mathrm{AR}(1)$ correlation structure with a parameter ρ. For given p and feasible p, we can find a vector μ and a unique latent corrolation matrix R by solving equation (2.6.4). Then μ and R can be used to generate a probability distribution for Y with mean vector p and $\mathrm{AR}(1)$ correlation structure with parameter ρ.

Table 2.1 shows the mass function generated by Markov chain model and multivariate probit model with marginal probability $p=(0.33,0.26,0.71,0.91)$ and correlation parametcr $\rho=0.35$, which is within the feasible range ($-0.2010,0.3788$). We can see that the values of the two mass functions are very close, but are not exactly the same. For example, when $y=(0,1,0,1)$ the corresponding probabilities generated by two models are 0.00169 and 0.00067 , respectively. It can be shown theorctically that the mass functions gencrated by these two models are different.

Here, we give the proof when $d=3$, similar proof bolds for higher dimensions.

First, it is clear that $\mathrm{P}\left(y_{i}=1\right)=p_{i}=\mathrm{P}\left(Z_{i} \leq z_{i}\right)=\Phi\left(z_{i}\right), i=1,2,3$. Since the latent correlation $r_{i j}$ is obtained by solving equation (2.6.4), we have

$$
\mathrm{P}\left(y_{i}=1, y_{j}-1\right)=p_{i} p_{j}+\rho^{j-i} \sigma_{i} \sigma_{j}-\Phi\left(z_{i}, z_{j} ; r_{i j}\right)=\mathrm{P}\left(Z_{i} \leq z_{i}, Z_{j} \leq z_{j}\right),
$$

for $1 \leq i<j \leq 3$. For the first order Markov chain model, we have

$$
\begin{aligned}
\mathrm{P}\left(y_{\mathrm{I}}=1, y_{2}=1, y_{3}-1\right) & =\mathrm{P}\left(y_{3}=1 \mid y_{2}=1, y_{1}=1\right) \mathrm{P}\left(y_{1}=1, y_{2}=1\right) \\
& =\mathrm{P}\left(y_{3}=1 \mid y_{2}=1\right) \mathrm{P}\left(y_{1}=1, y_{2}=1\right) \\
& =\left[p_{3}+\frac{\sigma_{2} \sigma_{3}}{p_{2}}\right] \mathrm{P}\left(y_{1}=1, y_{2}=1\right) .
\end{aligned}
$$

And for the multivariaie probit model, we have

$$
\begin{aligned}
\mathrm{P}\left(y_{1}=1, y_{2}=1, y_{3}=1\right) & =\mathrm{P}\left(Z_{1} \leq z_{1}, Z_{2} \leq z_{2}, Z_{3} \leq z_{3}\right) \\
& =\mathrm{P}\left(Z_{3} \leq z_{3} \mid Z_{2} \leq z_{2}, Z_{1} \leq z_{1}\right) \mathrm{P}\left(Z_{1} \leq z_{1}, Z_{2} \leq z_{2}\right\} .
\end{aligned}
$$

The two models will generate the same probability distribution if and only if

$$
\begin{equation*}
\mathrm{P}\left(Z_{3} \leq z_{3} \mid Z_{2} \leq z_{2}, Z_{1} \leq z_{1}\right)=p_{3}+\frac{\sigma_{2} \sigma_{3}}{p_{2}} . \tag{2.7.1}
\end{equation*}
$$

Let $I_{i}=I\left(Z_{i} \leq z_{i}\right), i=1,2,3$ be the indicator functions. Then

$$
\begin{align*}
\mathrm{P}\left(Z_{3} \leq z_{3} \mid Z_{2} \leq z_{2}, Z_{1} \leq z_{1}\right) & =\mathrm{P}\left(I_{3}=1 \mid I_{2}=1, I_{1}=1\right) \\
& =\mathrm{E}\left(I_{3}=1 \mid I_{2}=1, I_{1}=1\right) . \tag{2.7.2}
\end{align*}
$$

According to Drezner (1990) and Joe (1995), an approximation to (2.7.2) is given by

$$
\begin{equation*}
\mathrm{E}\left(I_{3}\right)+\Omega_{21} \Omega_{11}^{-1}\binom{1-\mathrm{E}\left(I_{1}\right)}{1-\mathrm{E}\left(I_{2}\right)} \tag{2.7.3}
\end{equation*}
$$

where

$$
\begin{aligned}
& \Omega_{21}=\left(\operatorname{Cov}\left(I_{3}, I_{1}\right), \operatorname{Cov}\left(I_{3}, I_{2}\right)\right), \\
& \Omega_{11}=\left(\begin{array}{cc}
\operatorname{Var}\left(I_{1}\right) & \operatorname{Cov}\left(I_{1}, I_{2}\right) \\
\operatorname{Cov}\left(I_{1}, I_{2}\right) & \operatorname{Var}\left(I_{2}\right)
\end{array}\right) .
\end{aligned}
$$

Notice that

$$
\begin{align*}
\operatorname{Cov}\left(I_{i}, I_{j}\right) & =\mathrm{E}\left(I_{i} I_{j}\right)-\mathrm{E}\left(I_{i}\right) \mathrm{E}\left(I_{j}\right) \\
& =\mathrm{P}\left(Z_{i} \leq z_{i}, Z_{j} \leq z_{j}\right)-p_{i} p_{j} \\
& =p_{i} p_{j}+\rho^{j \cdots i} \sigma_{i} \sigma_{j}-p_{i} p_{j} \\
& =\rho^{j-i} \sigma_{i} \sigma_{j}, \tag{2.7.4}
\end{align*}
$$

for $1 \leq i<j \leq 3$. Thus, we have

$$
\begin{aligned}
& \Omega_{21}=\left(\begin{array}{ll}
\rho^{2} \sigma_{1} \sigma_{3} & \left.\rho \sigma_{2} \sigma_{3}\right)=\rho \sigma_{3}\left(\rho \sigma_{1}\right. \\
\sigma_{2}
\end{array}\right) \\
& \Omega_{11}=\left(\begin{array}{cc}
\sigma_{1}^{2} & \rho \sigma_{1} \sigma_{2} \\
\rho \sigma_{1} \sigma_{2} & \sigma_{2}^{2}
\end{array}\right) \\
&=\left(\begin{array}{cc}
\sigma_{1} & 0 \\
0 & \sigma_{2}
\end{array}\right)\left(\begin{array}{cc}
1 & \rho \\
\rho & 1
\end{array}\right)\left(\begin{array}{cc}
\sigma_{1} & 0 \\
0 & \sigma_{2}
\end{array}\right), \\
& \Omega_{11}^{-1}=\left(\begin{array}{cc}
\frac{1}{\sigma_{1}} & 0 \\
0 & \frac{1}{\sigma_{2}}
\end{array}\right)\left(\begin{array}{cc}
1 & -\rho \\
-\rho & 1
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{\sigma_{1}} & 0 \\
0 & \frac{1}{\sigma_{2}}
\end{array}\right) \frac{1}{1-\rho^{2}}, \\
& \Omega_{21} \Omega_{11}^{-1}=\rho \sigma_{3}\left(\rho \sigma_{1}\right. \\
&\left.\sigma_{2}\right)\left(\begin{array}{cc}
\frac{1}{\sigma_{1}} & 0 \\
0 & \frac{1}{\sigma_{2}}
\end{array}\right)\left(\begin{array}{cc}
1 & -\rho \\
-\rho & 1
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{\sigma_{1}} & 0 \\
0 & \frac{1}{\sigma_{2}}
\end{array}\right) \frac{1}{1-\rho^{2}} \\
&=\rho \sigma_{3}(\rho 1)\left(\begin{array}{cc}
1 & -\rho \\
-\rho & 1
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{\sigma_{1}} & 0 \\
0 & \frac{1}{\sigma_{2}}
\end{array}\right) \frac{1}{1-\rho^{2}} \\
&=\rho \sigma_{3}(0 \\
&\left.1-\rho^{2}\right)\left(\begin{array}{cc}
\frac{1}{\sigma_{1}} & 0 \\
0 & \frac{1}{\sigma_{2}}
\end{array}\right) \frac{1}{1-\rho^{2}} \\
&=\rho \sigma_{3}(0 \quad 1)\left(\begin{array}{cc}
\frac{1}{\sigma_{1}} & 0 \\
0 & \frac{1}{\sigma_{2}}
\end{array}\right) \\
&= \rho \sigma_{3}\left(\begin{array}{ll}
0 & \frac{1}{\sigma_{2}}
\end{array}\right) .
\end{aligned}
$$

Thus, (2.7.3) is equal to

$$
p_{3}+\rho \sigma_{3}\left(\begin{array}{ll}
0 & \frac{1}{\sigma_{2}}
\end{array}\right)\binom{q_{1}}{q_{2}}=p_{3}+\rho \frac{\sigma_{2} \sigma_{3}}{p_{2}}
$$

which is the right hand side of (2.7.1). Thus the first Markov chain model is approximately equal to the multivariate probit model but they are not the same.

Even though equation (2.6.4) can be solved unique for $r_{j^{k}}$ for any ρ satisfying the range restrictions, but the solution does not guarantee that the latent correlation matrix will be a positive definite matrix. And multivariate probit model maty fail to generate a probability distribution of Y if latent correlation matrix is not a positive definite matrix. For example if $p=(0.26,0.36,0.25,0.24)$, the feasible range for ρ is $(-0.3244,0.7698)$. For $\rho=0.7$, solving cquation (2.6.4) we get

$$
R=\left[\begin{array}{llll}
1 & 0.9378 & 0.7511 & 0.5869 \\
0.9378 & 1 & 0.9460 & 0.7657 \\
0.7511 & 0.9460 & 1 & 0.9157 \\
0.5869 & 0.7657 & 0.9157 & 1
\end{array}\right]
$$

But this is not a positive definite matrix.

II.7.1 Maximum likelihood estimate

For the multivariate probit model (2.6.1), suppose that $\mu_{j}=x_{j}^{\prime} \beta$ where x_{j} is the covariate vector and β is the regression parameter. In many application it is reasonable to assume that the latent correlation matrix R is a structured matrix characterized common parametcr α. Then the unknown parameter $\theta=(\beta, \alpha)$ can be estimated using the maximum likelihood estimation. Note that if we have n subjects Y_{1}, \cdots, Y_{n}, and the correlation structures of Y_{i} are $\mathrm{AR}(1)$ with a common parameter ρ, then it is unlikely to have a common latent correlation matrix R for all subjects Y_{i}, since the solution of equation (2.6.4) changes when the marginal means P_{i} are different for different subjects.

Let Y_{i} be a t_{i}-dimensional vector of binary response with marginal means p_{i} and let $X_{i j}^{\prime}$ be the corresponding k-dimensional row vector of covariates measured at
time $j-1,2, \cdots, t_{i}$ for subject $i=1,2, \cdots, n$. Assume that the n subjects are independent. Suppose that the respouses are related to the covariates as

$$
E\left(y_{i j}\right)=p_{i j}-\Phi\left(X_{i j}^{\prime} \beta\right)-\Phi\left(\mu_{i j}\right),
$$

where $\Phi(\cdot)$ is standard normal distribution function and β is the k-dimensional regression parameter.

Then the likelihood for subject, i is given by the form of (2.6.2)

$$
\begin{align*}
L_{i}(\theta) & =P\left(y_{i} ; \theta\right) \\
& =P\left(y_{i} ; \theta\right)=\int_{D_{i t_{i}}} \ldots \int_{D_{i 1}} \frac{1}{(2 \pi)^{t / 2} ;\left.R\right|^{1 / 2}} \exp \left\{-\frac{\varepsilon^{\prime} R^{-1} \varepsilon}{2}\right\} d \varepsilon \tag{2.7.5}
\end{align*}
$$

where $y_{i}=\left(y_{n t}, \ldots, y_{i t_{i}}\right)^{\prime}$ is a binary vector, $\mu_{i}=\left(\mu_{i 1}, \ldots, \mu_{i t_{i}}\right)^{\prime}$ and

$$
J_{i j}= \begin{cases}\left(-\infty, \mu_{i, 2}\right) & \text { if } y_{k j}=1 \\ \left(\mu_{i j}, \infty\right) & \text { if } y_{i j}=0\end{cases}
$$

for $j=1,2, \cdots, t_{i}$.
The maximum likelihood estimate $\widehat{\partial}_{\text {mfre }}$ is obtained by maximizing the loglikelihood function

$$
\ell(\theta)=\sum_{i=1}^{n} \log L_{i}(\theta)=\sum_{i=1}^{n} \log P\left(y_{i} ; \theta\right) .
$$

The \log-likelihood function can be written as

$$
\frac{\partial \ell}{\partial \theta}=\sum_{i=1}^{n} \frac{1}{P\left(y_{i} ; \theta\right)} J_{i}(\theta)^{\prime} \nabla P\left(y_{i} ; \theta\right),
$$

where the jacobian matrix $J_{i}(\theta)=J_{i}$ is independent of θ and it is given by

$$
J_{i}=\left[\begin{array}{cc}
X_{i} & 0 \\
0 & 1
\end{array}\right]
$$

and

$$
\nabla P\left(y_{i} ; \theta\right)=\left[\frac{\partial P\left(y_{i} ; \theta\right)}{\partial \mu_{i}}, \frac{\partial P\left(y_{i} ; \theta\right)}{\partial \alpha}\right]^{\prime} .
$$

The j-th element of $\partial P\left(y_{i} ; \theta\right) / \partial \mu_{i}$ is

$$
\frac{\partial P\left(y_{i} ; \beta\right)}{\partial \mu_{i j}}=(-1)^{1+y_{i j} \phi} \phi\left(\mu_{i j}\right) \mathrm{P}\left(y_{i, j^{\prime}} ; \mu_{i, j^{*}, j}, R_{i, j}{ }^{*} \mid j\right)
$$

where j^{*} is the vector of index that, is complementary to $j, \mu_{i, j^{*} ; j}$ and $R_{i, j{ }^{*} \mid j}$ are the conditional mean and conditional covariance matrix of $Z_{i, j *}$ given $Z_{i j}$.

It is well known that $\hat{\theta}$ is $\operatorname{AMVN}\left(\theta, \mathcal{I}^{-1}(\theta)\right.$) where

$$
\begin{equation*}
\mathcal{I}(\theta)=\sum_{i=1}^{n} J_{i}^{\prime} E\left[\frac{1}{P\left(y_{i} ; \theta\right)} \nabla P\left(y_{i} ; \theta\right) \nabla P\left(y_{i} ; \theta\right)^{\prime}\right] . J_{i} . \tag{2.7.6}
\end{equation*}
$$

II. 8 Comparison of asymptotic performance

The two estimating procedures that we discussed yield consistent estimates of the regression parameters. In this section we study their asymptotic performance via calculating and comparing the asymptotic variance of the regression parameter for both the methods. The asymptotic relative efficiency (AR.E) is calculated using the following formula:

$$
\mathrm{ARE}=\frac{\text { Asymptotic variance of Warkov chain model }}{\text { Asymptotic variance of multivariate probit model }} .
$$

If the above quantity is less than one, we could conclude that the Markov chain model is better than the multivariate probit model and vice versa if the quantity is more than one. In the simulations we used the probit link function and a large sample size $n=500$ so that the simulated variances will approximate the asymptotic variances. We used the following mean function for the repeated binary variables in our efficiency calculations

$$
\begin{equation*}
\Phi^{-1}\left(p_{i t}\right)=\mu_{i t}=\beta_{0}+\beta_{1} x_{i t}^{C}+\beta_{2} x_{i t}^{D} . \tag{2.8.1}
\end{equation*}
$$

To begin with we set the number of repeated moasurements as three. The covariates are chosen as follows: the first covariate $x_{i t}^{C}$ is contimuons and taken as uniform on $(0,1)$, the second covariate $x_{i t}^{D}$ is discrete and takes values $\{-1.5,-0.5,0.5\}$. We fixed the true regression coefficients as $\beta_{0}=1.2, \beta_{1}-0.34, \beta_{2}=-0.15$. With these values we calculated the means and the bounds for the correlation parameter. For different values ρ within the bounds we calculated the Fisher information matrices for the regression parameter for both the transition model and the probit model. Table 2.2 shows the the results for the model that contains only the intercept and the continuous covariate $x_{2 t}^{C}$. The bound of p is at the bottom of the table. For

Table 2.2: Asymptotic variance and ARE with one covariate, $t=3$

	$n V\left(\beta_{0}\right)$					$n V\left(\beta_{1}\right)$			
	MC	MPROBIT	ARE		MC	MPROBIT	ARE		
$\rho=0.0$	3.7432	3.7432	1.000		12.7559	12.7559	1.000		
$\rho=0.1$	3.7832	3.8009	0.995		12.3962	12.5057	0.991		
$\rho=0.2$	3.7614	3.7883	0.993		11.7153	11.9092	0.984		
$\rho=0.3$	3.6967	3.7193	0.994		10.8064	11.0117	0.981		
$\rho=0.4$	3.5915	3.6050	0.996		9.6753	9.8466	0.983		
$\rho=0.5$	3.4444	3.4549	0.997		8.3081	8.4367	0.985		
$\rho=0.6$	3.2472	3.2752	0.991		6.6565	6.7823	0.981		

NOTE: Range of ρ is $(-0.0661,0.7170)$. The parameter values are $\beta_{0}=1.2, \beta_{1}=0.34$ and $n=500$.
different values of ρ within the bounds, the asymptotic variances scaled by n for both the methods as well as the asymptotic relative efficiency (ARE) of the Markov chain model with respect to the multivariate probit model are in Table 2.2. Since the two models are identical when ρ is zero the ARE is one. However, for all positive values of ρ the values of ARE are all less than 1 for both the regression coefficients. Hence in this case for extimating β, the Markov chain model is more efficient than the multivariate probit model.

We considered next the model which includes the discrete covariate $x_{i t}^{D}$ as well. The simulation results are given in Table 2.3. When $\rho=0$, the situation is same as before, the two method are identical and hence the $\Lambda \mathrm{E}$ is equal to 1 . Bui for nonzero values of ρ, the performance of Markov chain model is not uniformly better than the multivariate probit model. Table 2.3 shows that the $A R E$ for B_{0}, is less than one at the beginning and is decreasing as p increases from 0.1 to 0.3 , and then it increases to 1.013 as ρ increases to 0.7 . Thus when there is a high correlation the multivariate probil model is better at estimating the slope. However, the Markov chain model is uniformly better than the multivariate probit model for estimating the slopes β_{1} and β_{2}.

We carried out simulations increasing the number of repeated measurements to four. In this casc, we chose the first covariate $x_{i t}^{C}$ to be the same as beforc; continuous

Table 2.3: Asymptotic variance and ARE with two covariates, $t=3$

	$n V\left(\beta_{0}\right)$	$n V\left(\beta_{1}\right)$	$n V\left(\beta_{2}\right)$
$\rho=0.0$	$3.5750(1.000)$	$9.5811(1.000)$	$1.2192(1.000)$
$\rho=0.1$	$3.6446(0.997)$	$9.4030(0.995)$	$1.2057(0.996)$
$\rho=0.2$	$3.6486(0.994)$	$8.9695(0.987)$	$1.1663(0.992)$
$\rho=0.3$	$3.5972(0.996)$	$8.3081(0.986)$	$1.1026(0.991)$
$\rho=0.4$	$3.4989(1.000)$	$7.4457(0.987)$	$1.0156(0.991)$
$\rho=0.5$	$3.3621(1.007)$	$6.4089(0.989)$	$0.9059(0.993)$
$\rho-0.6$	$3.1948(1.013)$	$5.2226(0.988)$	$0.7728(0.994)$
$\rho=0.7$	$3.0034(1.013)$	$3.9060(0.969)$	$0.6152(0.990)$

NOTE: Range of ρ is $(\cdots 0.1306,0.7941)$. The parameter values $\beta_{0}=1.2, \beta_{1}=0.34, \beta_{2}=-0.15$, and $n=500$; efficiencies are given in parentheses.
uniform on $(0,1)$. The second covariate $x_{i t}^{D}$ to taken to be a discrete covariate taking valucs $\{-1.5,-0.5,0.5,1.5\}$. We fixed the regression parameters as $\beta_{0}=0.8, \beta_{1}=$ $-0.1, \beta_{2}=0.15$. Two simulations were done excluding and including the second covariate $\alpha_{i t}^{D}$. Table 2.4 shows the results of simulation with regression parameter are intercept and $x_{i l}^{C}$. The ARE is one when $\rho=0$ as belore. In this case we can see that roultivariate probit model is more efficient for estimating β_{0} while the first order Markov chain model is more efficient when estimating β_{1} for all vahues of ρ. In the second simulation, we added the discrete covariate $x_{i t}^{D}$ to the model. From Table 2.5, we can see that the Markov chain model is more efficient for estimating both β_{1} and β_{2}. Further the ARE is steadily decreasing as p increases.

When we increase the repeated measurenents to five, in both simulations cxeluding and including the discrete covariate, the first order Markov chain model seems to be doing better than the multivariate probit model. The results are shown in Table 2.6 and Table 2.7. Plcase note that the feasible range of ρ becomes narrow as the number of repeated measurements increases.

In conclusion the asymptotic relative efficiencies are in the range 0.90 and 1.02 and thus both the methods are good for modeling serially correlated repeated binary measurements. But the first order Markov chain model seems to tave a slight edge

Table 2.4: Asymptotic variance and ARE with onc covariate, $l=4$

	$n V\left(\beta_{0}\right)$			$n V\left(\beta_{1}\right)$			
	MC	MPROBIT	ARE		MC	MPROBIT	ARE
$\rho=0.0$	0.5010	0.5010	1.000		0.4015	0.4015	1.000
$\rho=0.1$	0.5792	0.5801	1.001		0.4176	0.4160	0.996
$\rho=0.2$	0.6649	0.6679	1.004		0.4252	0.4213	0.991
$\rho=0.3$	0.7560	0.7661	1.008		0.4233	0.4180	0.988
$\rho=0.4$	0.8665	0.8766	1.011		0.4105	0.4053	0.987
$\rho=0.5$	0.9873	1.0019	1.015		0.3853	0.3813	0.990
$\rho=0.6$	1.1258	1.1454	1.017		0.3460	0.3438	0.994
$\rho=0.7$	1.2870	1.3113	1.019		0.2900	0.2901	0.994
$\rho=0.8$	1.1258	1.1454	1.017		0.3460	0.3438	0.994

NOTE: Range of ρ is $(-0.2255,0.9152)$. The parameter values are $\beta_{0}=0.8, \beta_{1}=-0.1$ and $n=500$.
over the multivariate probit model for cstimating the regression slopes.

II. 9 Comparison of small-sample performance

To evaluate the small-sample performance, we chose the continuous covariate $x_{i t}^{C}$ to be standard normal and the discrete covariate $x_{i t}^{D}$ same as in the large sample simulations. The sample size was fixed as $n=30$. For the number of repeated measurements l we took 3,4 and 5 . For each combination of the parameters we simulated 1000 samples and for each sample we estimated the regression parameters. We then calculated the average squared deviation of the estimated parameter value from the true population valucs, i.e. the mean square error (MSE). The small sample efficiencies are calculated by taking the ratio of the MSE for the two estimating procedures as

$$
R E=\frac{\text { MSE of the Markov chain model estimator }}{\text { MSE of the multivariate probit model estimator }} .
$$

The relative efficiencics, when $t=3$, for the three regression parameters are plotted in Figure 2.2, Figure 2.3 and Figure 2.4. We can see from Figure 2.2, the rclative efficiency for the intercept is greater than 1 and is increasing as p increases.

Table 2.5: Asymptotic variance and ARE with two covariates, $t=4$

	$n V\left(\beta_{0}\right)$	$n V\left(\beta_{1}\right)$	$n V\left(\beta_{2}\right)$
$\rho=0.0$	$0.5051(1.000)$	$0.4013(1.000)$	$1.5253(1.000)$
$\rho=0.1$	$0.5837(1.001)$	$0.4174(0.996)$	$1.4937(0.997)$
$\rho=0.2$	$0.6695(1.004)$	$0.4249(0.991)$	$1.4173(0.992)$
$\rho=0.3$	$0.7647(1.008)$	$0.4230(0.987)$	$1.3013(0.990)$
$\rho=0.4$	$0.8713(1.011)$	$0.4101(0.986)$	$1.1513(0.990)$
$\rho=0.5$	$0.9920(1.015)$	$0.3849(0.985)$	$0.9728(0.990)$
$\rho=0.6$	$1.1303(1.017)$	$0.3455(0.980)$	$0.7693(0.983)$
$\rho=0.7$	$1.1412(1.020)$	$0.3274(0.980)$	$0.5787(0.981)$

NOTE: Range of ρ is $(-0.1726,0.7105)$. The parameter values are $\beta_{0}=0.8, \beta_{1}=-0.1, \beta_{2}=0.15$, and $n=500 ;$ ARE arc given in parentheses.

Table 2.6: Asymptotic variance and ARE with one covariate, $t=5$

	$n V\left(\beta_{0}\right)$		ARE,	$n V\left(\beta_{1}\right)$		ARE
	MC	MPROBIT		MC	MPROBIT	
$\rho=0.0$	1.3162	1.3162	1.000	0.6217	0.6217	1.000
$\rho=0.1$	1.5272	1.5054	0.986	0.6674	0.6541	0.980
$\rho=0.2$	1.7506	1.7037	0.973	0.7004	0.6729	0.961
$p=0.3$	1.9969	1.9264	0.965	0.7205	0.6802	0.944
$\rho=0.4$	2.2754	2.1613	0.950	0.7258	0.6584	0.907

NOTE: Range of ρ is $(-0.0080,0.4373)$. The parameter values are, $\beta_{0}=1.5, \beta_{1}=-0.6$ and $n=500$.

Table 2.7: Asymptotic variance and ARE with two covariates, $t=5$

	$n V\left(\beta_{0}\right)$	$n V\left(\beta_{1}\right)$	$n V\left(\beta_{2}\right)$
$\rho=0.0$	$3.1740(1.000)$	$0.5861(1.000)$	$7.6772(1.000)$
$\rho=0.1$	$3.3390(0.989)$	$0.6296(0.981)$	$7.5164(0.992)$
$\rho=0.2$	$3.4568(0.975)$	$0.6612(0.962)$	$7.1167(0.979)$
$\rho=0.3$	$3.5437(0.953)$	$0.6806(0.945)$	$6.5038(0.947)$

NOTE: Range of ρ is $(-0.0080,0.3890)$. The parameter values are $\beta_{0}=1.5, \beta_{1}=-0.6, \beta_{2}=-0.1$, and $n=500$, ARE are given in parentheses.

This shows that the multivariate probit model is estimating the intercept better than the Markov chain model in small samples, especially when there is a high correlation. Figure 2.3 shows the relative efficiency for the slope $\beta 1$ of the continuous covariate. The plot is above one except in an small interval of ρ, indicating that even in this case the multivariate probit estimator is outperforming the Markov chain model estimator. Note that the figure shows a roughly decreasing trend in the cfficiencics. Undike the previous (wo coefficients, the relative efficiency for β_{2} is less than 1 and is decreasing as the correlation increases, indicating that the Markov chain model is better at estimating the slope for the discrete covariate than the multivariate probit model. The simulated MSE values and the relative efficiencies for different values of ρ are prescnted in Table 2.8.

We now consider the case $t=4$. Figure 2.5 has the plot of the relative efficiency for the intercept β_{0}. The efficiency is more than for almost every value of ρ and is increasing as ρ increases, which shows the multivariate probit model is better than the Markov chain model for estimating β_{0}. The efficiency plots for β_{1} and β_{2} are in Figures $2.6,2.7$ respectively. These two plots show that for highly correlated data the Markov chain model is better than multivariate probit model for estimating the slopes. Table 2.9 contains the MSE's and the efficiencics for the threc regression coefficients in the case $l=4$.

Lastly, Figures 2.8, 2.9 and 2.10, contains the plots of the efficiencics for the three regression coefficients when $t=5$. For all the three regression coefficients the relative

Figure 2.2: Plot of efficiency of β_{0}
efficiency is flat at one for small and moderate values of ρ. However, for the intercept β_{0} and slope β_{1} the relative efficiency is more than one for valucs close to the upper boundary value of ρ, whereas it is less than one for β_{2}. Thus for moderate corrclation both methods perform cqually well and first order multivariate probit model is more efficient for estimating β_{0} and β_{1} for highly correlated data, whereas the Markov chain outperforms estimating β_{2} for highly correlated data. Table 2.10 contains the MSE's and the efficiencics for the three regression coefficients in the case $t=5$.

To summarize, in the small sample case we see that both the models are equally good for small and moderately correlated data especially if the number of repeated measurements is abont five. For highly correlated data, the multivariate probit model is a good choice if the covariates are continuous and the Markov chain model is better for discrete covariates.

Figure 2.3: Rlot of efficiency of β_{1}

Figure 2.4: Plot of efficiency of β_{2}

Table 2.8: MSF and efficiencies of MC and MP estimate, $t=3$

	$n V\left(\beta_{0}\right)$	$n V\left(\beta_{1}\right)$	$n V\left(\beta_{2}\right)$
$\rho=0.00$	$0.0247(1.015)$	$0.0357(1.027)$	$0.0348(0.986)$
$\rho=0.05$	$0.0285(1.019)$	$0.0323(1.014)$	$0.0357(1.007)$
$\rho=0.10$	$0.0274(1.009)$	$0.0352(1.013)$	$0.0349(0.992)$
$\rho=0.15$	$0.0310(1.011)$	$0.0342(1.010)$	$0.0294(1.005)$
$\rho=0.20$	$0.0358(1.025)$	$0.0343(1.012)$	$0.0320(0.986)$
$\rho=0.25$	$0.0360(1.008)$	$0.0308(0.985)$	$0.0280(0.986)$
$\rho=0.30$	$0.0334(1.017)$	$0.0325(0.997)$	$0.0280(1.000)$
$\rho-0.35$	$0.0375(1.030)$	$0.0301(1.010)$	$0.0279(0.984)$
$\rho=0.40$	$0.0418(1.059)$	$0.0324(1.008)$	$0.0276(0.974)$
$\rho=0.45$	$0.0478(1.062)$	$0.0283(1.010)$	$0.0250(0.975)$

NOTE: Range of ρ is $(-0.207,0.4849)$. The parameter valucs are $\beta_{0}=0.8, \beta_{1}=-0.1$.

Figure 2.5: Plot of efficiency of β_{0}

Figure 2.6: Plot of efficiency of β_{1}

Figure 2.7: Plot of efficiency of β_{2}

Table 2.9: MSE and efficiencies of MC and MP' estimate, $t-4$

Method	$n V\left(\beta_{0}\right)$	$n V\left(\beta_{1}\right)$	$n V\left(\beta_{2}\right)$
$\rho=0.00$	$0.0180(1.023)$	$0.0147(1.023)$	$0.0206(0.998)$
$\rho=0.05$	$0.0193(1.025)$	$0.0152(1.020)$	$0.0203(0.998)$
$\rho=0.10$	$0.0210(1.014)$	$0.0151(0.999)$	$0.0191(1.002)$
$\rho=0.15$	$0.0217(1.004)$	$0.0161(1.000)$	$0.0200(0.998)$
$\rho=0.20$	$0.0257(1.018)$	$0.0172(1.002)$	$0.0199(0.994)$
$\rho=0.25$	$0.0224(1.007)$	$0.0153(1.004)$	$0.0173(0.989)$
$\rho=0.30$	$0.0281(1.025)$	$0.0157(0.996)$	$0.0188(0.990)$
$\rho=0.35$	$0.0299(1.021)$	$0.0140(0.978)$	$0.0177(0.985)$
$\rho=0.40$	$0.0320(1.038)$	$0.0150(0.996)$	$0.0162(0.980)$
$\rho=0.45$	$0.0416(1.085)$	$0.0148(0.992)$	$0.0147(0.968)$

NOTE: Range of ρ is $(--0.121,0.498)$. The parameter valucs are $\beta_{0}=0.8, \beta_{1}=-0.1$.

Figure 2.8: Plot of efficiency of β_{0}

Figure 2.9: Plot of efficiency of β_{1}

Figure 2.10: Plot of efficiency of β_{2}

Table 2.10: MSE and efficiencies of MC and MP estimate, $l=5$

Method	$n V\left(\beta_{0}\right)$	$n V\left(\beta_{1}\right)$	$n V\left(\beta_{2}\right)$
$\rho=0.00$	$0.0119(1.008)$	$0.0056(1.004)$	$0.0106(1.006)$
$\rho=0.05$	$0.0122(1.002)$	$0.0065(1.006)$	$0.1201(1.004)$
$\rho=0.10$	$0.0135(0.999)$	$0.0061(1.005)$	$0.0109(1.004)$
$\rho=0.15$	$0.0149(0.994)$	$0.0064(0.999)$	$0.0113(0.990)$
$\rho=0.20$	$0.0158(1.000)$	$0.0068(0.995)$	$0.0103(1.005)$
$\rho=0.25$	$0.0179(1.012)$	$0.0070(1.008)$	$0.0111(1.022)$
$\rho=0.30$	$0.0186(1.007)$	$0.0065(0.989)$	$0.0098(1.001)$
$\rho=0.35$	$0.0198(1.007)$	$0.0070(1.016)$	$0.0093(0.989)$
$\rho=0.40$	$0.0226(1.065)$	$0.0067(0.990)$	$0.0084(0.990)$
$\rho=0.45$	$0.0230(1.064)$	$0.0074(1.042)$	$0.0079(0.980)$
$\rho=0.50$	$0.0302(1.218)$	$0.0072(1.096)$	$0.0080(0.974)$

NOTE: Range of ρ is $(-0.313,0.532)$. The parameter valucs is $\beta_{0}=0.8, \beta_{1}=-0.1$.

II.9.1 Analysis of real data

To illustrate the application of the two likelihood estimation methods, in this section we present the analysis of the three binary longitudinal data that we discussed in Section I. 2.

Example 2.1. Six city data.
For this data the main issue of interest is the effect of maternal smoking on children's respiratory illness. We fit the following regression model to the data:

$$
\Phi^{-1}\left(p_{i t}\right)=\mu_{i t}=\beta_{0}+\beta_{1} x_{i t}^{\mathrm{A} g t}+\beta_{2} x_{i t}^{\mathrm{MS}}+\beta_{3} x_{i t}^{\mathrm{A} g t} x_{i t}^{\mathrm{MS}} ;
$$

where $i=1,2, \cdots, 537$ and $t=1,2,3,4$. The covariates are the age of the child $\left(x_{i t}^{\text {Age }}\right)$, the maternal smoking habit indicator ($\left.x_{i t}^{\text {MS }}\right)$ and their interaction.

Table 2.11: Parameter estimates for the Six-city data

PARAMETER	MC			MPROBIT		
	EST	SE	PVALLE	EST	SE	PVALUE
Intercept	-1.1366	0.0585	0.0000	-1.1368	0.0601	0.0000
Age	-0.0829	0.0699	0.0281	-0.0816	0.0362	0.0282
Smoking	0.1599	0.1708	0.0859	0.1598	0.0972	0.0968
Age \times Smoking	0.0453	0.0620	0.4650	0.0438	0.7061	0.4801
ρ	0.3836	0.0313	0.0000	0.6842^{*}	0.0387*	0.00000

NOTE: Range of f is $(-0.1357,0.9267)$.

Table 2.11 provides point estimates, standard errors and p-values for both the first order Markov chain and the multivariate probit model. The estimates of the regression parameters are very similar for the two models. Note that in the table, the value 0.6842 for multivariate probit model is not the correlation parameter for the binary repeated measurements, it is the value of latent correlation parameter. The p values indicate that the child's age is a significant factor and the regression coefficient, is negative, which means that older children are less likely to get respiratory disease. The main covariate of interest, maternal smoking, is not significant in both the models, even though estimate of the regression coefficient in both models is positive, which indicates that the children are more likely to develop respiratory disease if their mother was a smoker as opposed to a nonsmoker.

The values of model selection criteria, AIC and BIC, based on Markov chain model with various combinations of the covariates are given in Table 2.12. The model with only age as the covariate and the one with both age and smoke as covariates have similar AIC values, but the former model has the smallest. BIC value, so it is the best model for this data set.

Table 2.12: Model selection based on AIC and BIC

Covariates	LF	df	AIC	BIC
Intercept, Age	-815.49	2	1632.97	1637.26
Intercept, Smoke	-816.70	2	1635.39	1639.68
Intercept, Age, Smoke	-814.31	1	1632.62	1641.19
Intercept, Agc, Snoke, Intcraction	-814.01	0	1634.02	1646.88

Example 2.2. Indonesian children's health study
The second longitudinal binary data that we analyzed is the Indonesian children's health study data. 'Table 1.3 displays a subset of this data originally studiod by Sommer et al. (1984). In this study preschool children were examined up to six consecutive quartors for the presence of respiratory infection. There were 1,200 observations in total. The covariates of interest include: (1) age in months (centered at 36): (2) presence/absence of xerophthalmia, an ocular manifcstation of chronic vitamin A deficiency; (3) cosine and sine terms for the annuat cycle; (4) gender; (3) height for age, as a percent of the National Center for Health Statistics (NCHS) standard (centered at 90%) ; and (6) presence of stunting, defined as being below 85% in height for age. The key covariate of interest is the indicator of xerophthalmia symptom. The primary objective of this study was to assess the increase in risk of respiratory infection for kids who were vitamin A deficient, which was measured indirectly via xerophthalmia.

The parameter estimates, standard errors and p-values for the two likelihood methods, Markov chain and multivariate probit, are given in Table 2.13. The estimates and standard errors are very similar for both the methods. The results indicate that respiratory infection is strongly related to age and season. Further, the risk of infection decreascs approximately 4% per month for children between one and five years. The xerophthalmia coefficient is about 0.33 , but the p-value is approximately 0.2 , hence xerophthalmia is not statistically significant factor.

Table 2.13: Parameter estimates for Indonesian children data

	MC					MPROBIT		
	PARAMETER	EST	SE	PVALUE		EST	SE	PVALUE
Intercept	-1.3877	0.0870	0.0000		-1.3914	0.0892	0.0000	
Age	-0.0159	0.0032	0.0000		-0.0167	0.0034	0.0000	
Xcrophthalmi	0.3280	0.2411	0.1736		0.3087	0.0972	0.1997	
Seasonal cosine	-0.2720	0.0808	0.0007		-0.2740	0.0807	0.0007	
Scasonal sine	-0.0827	0.0843	0.3266		-0.0873	0.0828	0.2920	
Sex	-0.1897	0.1143	0.0970		-0.1899	0.1178	0.1068	
Height	-0.0190	0.0122	0.1184		-0.0200	0.0126	0.1120	
Stunted	0.1016	0.2040	0.6186		0.1203	0.2094	0.5657	
ρ	0.0583	0.0446	0.1915		0.2029^{*}	0.1066^{*}	0.0570^{*}	

NOTE: Range of ρ is $(-0.1357,0.9267)$.

Example 2.3. Hamilton's depression study
The third longiludinal binary data we analyze is the Hamilton's depression study data. This data were taken from a randomized double-blind, placebo and active treatment, 7 week study in Europe to evaluate safety and efficacy for three fixed doses of a new drug in palicnts with major depressive disorder. For our analysis, we will study the active treatment and the placebo groups. The dependent variable in this study is a binary function of a patient's average score on the Hamilton's Depression Scale (Ham-D), taking the value 1 if the Ham-D value at time $i=1, \cdots, 8$ is less than or equal to 80% of the baseline value, and 0 otherwise. The covariates used in this study are the treatment, time, gender, age, and baseline measurement and the country where the patient resides.

The results indicate that Treatment, Time, Country and Baseline are significant covariates to prediet effectiveness of the trealment. The coefficient of Treatment is positive, which means that the drug is effective at reducing depression levels. The results are shown in Table 2.14.

Table 2.14: Parameter estimates for Ham-D data

	MC		
PARAMETER	EST	SE	PVALUE
Intercept	-3.1459	0.2691	<0.0001
Treatment	0.3309	0.1048	0.0016
Time	0.5610	0.0257	<0.0001
Age	-0.0322	0.0512	0.5293
Gender	-0.1654	0.1116	0.1386
Counlry	0.0663	0.0239	0.0055
Baseline	0.1296	0.0438	0.0030
ρ	0.3923	0.0304	<0.0001

NOTE: Range of ρ is $(-0.0093,0.3923)$.

II. 10 Other models for correlated binary variables

In this section, we discuss other methods for generating dependent binary variables.

H.10.1 Generating dependent binary variables using circle plus operation

Let $\Omega=\{0,1\}$. Suppose $x, y \in \Omega$. Define the circle phes operation as

$$
x \circ y= \begin{cases}x+y & \text { if } 0 \leq x+y \leq 1 \tag{2.10.1}\\ x+y-1 & \text { if } x \div y>1\end{cases}
$$

Note $x \in y \in \Omega$.

Lemma 2.1. Suppose X_{i} 's are independent and distributed as Binomial $\left(1, p_{i}\right), 1 \leq$ $i \leq t$. Let $Y_{1}=X_{1}$ and $Y_{j}=Y_{j-1} \ominus X_{j}$, for $2 \leq j \leq t$. Then

$$
P\left(Y_{k}=1 \mid Y_{j}=1\right)=P\left(Y_{k}=1 \mid Y_{k-1}=1\right)=1
$$

Proof. By definition of the circle plus operation, we have

$$
Y_{i}= \begin{cases}0 & \text { if }\left(Y_{i-1}, X_{i}\right)=(0,0) \\ 1 & \text { otherwise. }\end{cases}
$$

It is clear that $P\left(Y_{i}=1 \mid Y_{i-1}-1\right)=1$. Thercfore

$$
\begin{aligned}
P\left(Y_{k}=1 \mid Y_{j}=1\right) & =P\left(Y_{k}=1, Y_{j+1}=1 \mid Y_{j}=1\right) \div P\left(Y_{k}=1, Y_{j+1}=0 \mid Y_{j}=1\right) \\
& =P\left(Y_{k}=1, Y_{j+1}=1 \mid Y_{j}=1\right) \\
& =P\left(Y_{k}=1 \mid Y_{j+1}=1, Y_{j}=1\right) P\left(Y_{j+1}=1 \mid Y_{j}=1\right) \\
& =P\left(Y_{k}=1 \mid Y_{j+1}=1, Y_{j}=1\right) \\
& =P\left(Y_{k}=1, Y_{j+2}=1 \mid Y_{j+1}, Y_{j}=1\right)+P\left(Y_{k}=1, Y_{j \div 2}=0 \mid Y_{j+1}, Y_{j}=1\right) \\
& =\cdots \\
& =P\left(Y_{k}=1 \mid Y_{k-1}=1, \cdots, Y_{j}=1\right) \\
& =P\left(Y_{k}=1 \mid Y_{k-1}=1\right) \\
& =1 .
\end{aligned}
$$

This completes the proof of the lemma.
Theorem 2.1. Suppose X_{i} 's are independent and distributed as Binomial $\left(1, p_{i}\right), 1 \leq$ $i \leq t$. Let $Y_{1}=X_{1}$ and $Y_{3}=Y_{j, 1} X_{j}$, for $2 \leq j \leq t$. Then

1. $P\left(Y_{j}=1\right)=p_{j}^{*}=1-\prod_{i=1}^{j} q_{i}$, where $q_{i}=1-p_{k}$.
2. $P\left(Y_{j}=1, Y_{k}=1\right)=p_{j}^{*}$.
3. $\operatorname{Corr}\left(Y_{j}, Y_{k}\right)=\rho_{j k}=\sqrt{\frac{p^{*} q_{k}^{*} q_{k}^{*}}{q_{j}^{*} p_{k}^{p}}}$, for $1 \leq j<k \leq t$.

Proof. The first assertion is proved by induction.

For $i=1$, we have $P\left(Y_{1}=1\right)=P\left(X_{1}=1\right)=p_{1}=1-q_{1}$.

Assume that for $i=j-1$

$$
P\left(Y_{j-1}=1\right)-1-\prod_{i=1}^{j-1} q_{i} .
$$

Note that

$$
\begin{aligned}
P\left(Y_{j}=1\right) & =1-P\left(Y_{j}=0\right) \\
& =1-P\left(Y_{j-1}=0, X_{j}=0\right)
\end{aligned}
$$

Since X_{i} 's are independent and Y_{j-1} depends on X_{j-1}, we have Y_{j-1} is independent of X_{j}. Therefore

$$
\begin{aligned}
P\left(Y_{j}=1\right) & =1-P\left(X_{j}=0\right) P\left(Y_{j-1}=0\right) \\
& =1-q_{j} P\left(Y_{j-1}=0\right) .
\end{aligned}
$$

By the induction hypothesis we get

$$
P\left(Y_{j}=1\right)=1-\prod_{i-1}^{j} q_{i} .
$$

This proves the first part of the theorem.
To prove the second part, let $j<k$. By Lemma 2.1, we have

$$
P\left(Y_{k}=1, Y_{j}=1\right)=P\left(Y_{k}=1 \mid Y_{j}=1\right) P\left(Y_{j}=1\right)=P\left(Y_{j}=1\right)=p_{j}^{*}=1-\prod_{i-1}^{j} q_{i}
$$

Since $P\left(Y_{j}=1\right)=p_{j}^{*}$ we have

$$
\begin{align*}
\operatorname{Corr}\left(Y_{j}, Y_{k}\right)=\rho_{j k} & =\frac{P\left(Y_{k}-1, Y_{j}=1\right)-P\left(Y_{j}=1\right) P\left(Y_{k}=1\right)}{\sqrt{\operatorname{Var}\left(Y_{j}\right) \operatorname{Var}\left(Y_{k}\right)}} \\
& =\frac{p_{j}^{*}-p_{j}^{*} p_{k}^{*}}{\sqrt{p_{j}^{*} q_{j}^{*} p_{k}^{*} q_{k}^{*}}} \\
& =\sqrt{\frac{p_{j}^{*} q_{k}^{*}}{q_{j}^{*} p_{k}^{*}}} . \tag{2.10.2}
\end{align*}
$$

This completes the proof of the theorem.

Note that in Theorem 2.1, the correlation between Y_{j} and Y_{k} is the maximum possible correlation with marginals fixed as p_{j}^{*} and p_{k}^{*}. Thus given p_{1}, \cdots, p_{t}, we can generate a dependent binary random vector $Y^{\prime}=\left(Y_{1}, \ldots, Y_{k}\right)$ such that the correlation between Y_{j} and Y_{k} is the maximum possible with marginals fixed as $p_{j}^{v}-1-\prod_{i=1}^{j} q_{i}$ and $p_{k}^{*}=1-\prod_{i-1}^{k} q_{i}$. Since $p_{k}^{*}=1-q_{k} q_{k-1}^{*}$, we have $q_{k}^{*}=q_{k} q_{k-1}^{*}$ and therefore $q_{k}^{*} \leq q_{k-1}^{*}$,
i.e. $p_{k}^{*} \geq p_{k \cdots 1}^{*}$. Thus the circle plus operation generates binary variables with the ordering $P\left(Y_{1}=1\right) \leq \cdots \leq P\left(Y_{i}=1\right)$, and the maximum possible correlation between any pair.

A special case of this model is when we have $p_{\mathrm{t}}=\cdots=p_{t}=p$. In this casc,

$$
P\left(Y_{j}=1\right)=1-q^{j}
$$

and

$$
\operatorname{Corr}\left(Y_{j}, Y_{k}\right)=\left(\frac{1-q^{j}}{1-q^{k}}\right) q^{|k-j|}
$$

This is similar to the autoregressive structure of order one.

II.10.2 Quadratic exponential family

An alternative model for correlated binary variables is the quadratic exponential family of distributions. The probability mass function for this family is of the form

$$
\begin{equation*}
\pi(y ; \lambda)=\exp \left(\lambda_{1} y_{1}+\cdots+\lambda_{t} y_{t}+\lambda_{12} y_{1} y_{2}+\cdots+\lambda_{t}, t y_{t} \cdot y_{t} y_{t}\right) / k(\lambda) ; \tag{2.10.3}
\end{equation*}
$$

with $y \in\{0,1\}^{t}, \lambda=\left(\lambda_{1}, \cdots, \lambda_{t}, \lambda_{12}, \cdots, \lambda_{t-1, t}\right)$ and $k(\lambda)$ is the normalizing constant. This probability mass function maximizes the entropy function

$$
-\sum_{y} \pi(y) \log (\pi(y))
$$

in the class of multivariate binary distributions $\pi(y)$ which satisfy the moment constraints $\sum_{y} y_{i} \pi(y)=p_{i}$, for $i=1, \cdots, t$, and $\sum_{y} y_{i} y_{j} \pi(y)=p_{i j}$, for $1 \leq i \leq j \leq t$ (see Kapur and Kesavan (1992), Chaganty and Joe (2006)).

Given a vector $\mu=\left(p_{1}, \cdots, p_{t}, p_{12}, \cdots, p_{t-1, t}\right)^{\prime}$ that specifies the univariate and bivariate marginals, if there is a multivariate binary distribution then the distribution that maximizes the entropy, can be obtained solving the equation

$$
\begin{equation*}
\sum_{y} \pi(y ; \lambda) s=\mu \tag{2.10.4}
\end{equation*}
$$

where $s=\left(y_{1}, \cdots, y_{t}, y_{12}, \cdots, y_{t-1, t}\right)^{\prime}$, and λ is a vector of Lagrange multipliers. The above summation is taken over 2^{t} possible binary vectors y.

For a given $p=\left(p_{1}, \cdots, p_{\ell}\right)^{\prime}$, we have checked numerically the quadratic exponential model generalcs the same binary distribution as the Markov chain model if the correlation structure is $\operatorname{AR}(1)$ with parameter ρ satisfying the constraints

$$
\begin{equation*}
\operatorname{mix}_{2 \leq i \leq t} L\left(p_{i}, p_{i}\right) \leq \rho \leq \min _{2 \leq i \leq t} U\left(p_{i-1}, p_{i}\right) . \tag{2.10.5}
\end{equation*}
$$

CHAPTER III

MARGINAL MODELS

III. 1 Introduction

In Chapter II we have studied multivariate likelihoods for modeling and analysing longitudinal and chustered data. We should use likelihood methods whenever possible, because they have strong theoretical underpinnings and maximum likelihood estimation is the optimal estimation procedure. The marginal models are an alternative in situations where the likelihood methods are difficult to construct and prohibilively difficult to implement. Notivated by quasi-likelihood methods, Liang and Zeger (1986) have introduced marginal models and generalized estimating equations (GEE) for estimating the regression coefficients primarily for non-normal repeated observations. The marginal models avoid specification of the joint distribution but model the dependence between the repeated measurements using a working correlation structure, that may not be the true correlation structure. However, under misspecification of the correlation structure the estirnator of the regression parameter can be incficient. Qu et al. (2000) introduced a new method, known as quadratic inference functions (QIF), that does not involve direct estimation of the correlation parameter but produces highly efficient estimate of the regression parameter even if the working correlation structure is misspecified. Instcad of cstimating the nuisance parameter α in the working correfation matrix, their method models the inverse of the working correlation matrix as a linear combination of a class of basis matrices. This gives a sufficiently rich class that accommodates or at least approximates the correlation structures most commonly used. Qu et al. (2000) showed that even if the correlation is misspecified, their method remains optimal within the assumed family, and hence more efficient than Liang and 7eger's GEF regression estimator under misspecification.

The outline of this chapter is as follows. In Scction III. 2 we briefly deseribe the generalized estimating cquations method. In the next Scetion IIL. 3 we introduce quadratic inference functions method, establish asymptotic variances for the estimates, then study their asymptotic relative efficiency. In Section III. 6 we derive
a new estimation for the covariance matrix of the score function and Section IHI. 5 contains the small-sample efficiency comparisons.

III. 2 Generalized estimating equation

In this section, we give a brief introduction to the commonly used estimation method to analyze longitudinal and clustered data, known as the generalized estimating equations (GEE) proposed by Liang and Zeger (1986). The method can be regarded as an extcnsion to the multivariate case the quasi-likelihood methods described in the book McCullagh and Nelder (1989).

The framework of the generalized estimating equations is as follows. Let $Y_{i}=$ $\left(y_{i 1}, \ldots, y_{i t}\right)$ be a vector of correlated observations on the ith subject. Assume that $\mathrm{E}\left(y_{i j}\right)=\mu_{i j}=h\left(x_{i j}^{\prime} \beta\right)$ and $\operatorname{Var}\left(y_{i j}\right)=v_{i j}=v\left(\mu_{i j}\right)$, where β is a k-dimensional regression parameter. The mean and variance functions $h(\cdot)$ and $v(\cdot)$ are assumed to be known. Suppose that $\operatorname{Cov}\left(Y_{i}\right)=\phi W_{i}(\beta, \alpha)$, where α is an nuisance parameter. The GEE francwork assumes that. $W_{i}(\beta ; \alpha)=A_{i}^{1 / 2} R(\alpha) A_{i}^{1 / 2}$, where $A_{i}=\operatorname{diag}\left(v_{i j}\right)$ is the diagonal matrix of variances that depends on β, and $R(\alpha)$ is a working corrclation matrix determined by α. The generalized estimating cquation is given by

$$
\begin{equation*}
\sum_{i=1}^{n}\left(\frac{\partial \mu_{i}}{\partial \beta}\right)^{\prime} W_{i}^{-1}\left(y_{i}-\mu_{i}\right)=0 \tag{3.2.1}
\end{equation*}
$$

where $W_{i}=W_{i}(\beta, \alpha)$. Equation (3.2.1) is an unbiased estimating equation for fixed α. Under some regularily conditions, the estimate of β obtained solving equation (3.2.1) is consistent, with mean equal to β and covariance matrix

$$
\begin{equation*}
\operatorname{Cov}\left(\hat{\beta}_{G E E}\right)=\left(\sum_{i=1}^{n} D_{i}^{\prime} W_{i}^{-1} D_{i}\right)^{-1}\left(\sum_{i=1}^{n} D_{i}^{\prime} W_{i}^{-1} \Sigma_{i} W_{i}^{-1} D_{i}\right)\left(\sum_{i=1}^{n} D_{i}^{\prime} W_{i}^{-1} D_{i}\right)^{-1}(3 . \tag{3.2.2}
\end{equation*}
$$

where $D_{i}=\partial \mu_{i} / \partial \beta$. Clearly, if the working correlation matrix $R(\alpha)$ equals the true correlation structure, then $W_{i}=\Sigma_{i}$ and equation (3.2.1) is the optimal unbiased estimating equation. In this case (3.2.2) reduces to

$$
\begin{equation*}
\operatorname{Cov}\left(\hat{\beta}_{o p t}\right)=\left(\sum_{i=1}^{n} D_{i}^{\prime} \Sigma_{i}^{-1} D_{i}\right)^{1} \tag{3.2.3}
\end{equation*}
$$

GEE method has been very popular for analyzing longitudinal data because it is computational less demanding than the fully specified model. However, GEE method has several theoretical shortcomings due to some critical underlying assumptions. The working correlation, when misspecificd, lacks a proper definition and thus causes a breakdown of the asymptotic properties of the estimator. Further, for binary random variables there is no guarantee that the working correlation parameter α will fall within the feasible bounds, that is the value of α may not compatible with the marginal means, that is, a multivariate binary distribution with specified means and correlation structure may not exist. 'This could course a series problem because the resulting standard errors and p-values could lead to misleading conclusions. Sabo and Chaganty (2010) gave examples where an infeasible correlation cstimatc leads to wrong conclusions. To rectily the problem Sabo and Chaganty (2010) suggested to run GEE with working independent structure, compute the correlation bounds using the estimated marginal means, and then rerun GEE with a correlation value selected within those bounds using some objective criteria. Allernatively, they suggest use of likelihood methods, such as the multivariate probit model, to avoid these infeasibility problems altogether. In the next section we study efficiency of GEE as compared to the Markov chain likelihood procedure.

III.2.1 Comparison of asymptotic performance

The asymptotic relative efficiency comparisons between the multivariate probit model and CEE were done by Chaganty and Joe (2004), where they showed that the multivariate probit model is uniformly superior to the GEE method. In this section, we will study the efficiency of GEE estimates with respect to the maximum likelihood estimator based on the first order Markov chain likelihood model.

For comparisons of efficiency, we used the marginal mean model for the binary observations:

$$
\begin{equation*}
\operatorname{logit}\left(p_{i t}\right)=\beta_{0}+\beta_{1} x_{i t}^{D}+\beta_{2} x_{i t}^{C}, \tag{3.2.4}
\end{equation*}
$$

where $x_{i t}^{D}$ is a discretc covariate taking values $1,2, \cdots, t$ and $x_{z t}^{C}$ is continuous distributed as standard normal. We fixed the values of regression coefficients as $\beta_{0}=1$, $\beta_{1}=0.3$ and $\beta_{2}=-0.1$. We chose a large value for $n(=1000)$, so that the calculated
efficiencies will not depend much on the simulated covariates and they approximate the true asymptotic relative efficiency. To cover most practical situations, we consider four cases: (1) small number of repeated measurements with low value of correlation, (2) suall number of repeated measurements with high value of correlation, (3) large number of repeated measurements with low value of correlation, and (4) large number of repeated measurcments with high value of correlation. Specifically, we choose $t=4$ and 8 and correlation parameter $\rho=0.2$ and 0.7 respectively. These valucs are within the $\mathrm{AR}(1)$ correlation bounds ($-0.118,0.780$).
'Iable 3.1 shows the simulation results for the first case $t=4$ and $\rho=0.2$. The values of the first row are the diagonal elements of the inverse of the Fisher Information matrix given by (2.3.24). These values are the asymptotic variances of the maximmm likelihood estimates of the first order Markov chain model. The second row of the table gives the asymptotic variances of the estimates using the optimal GEE. These values are the diagonal elements of the matrix (3.2.3). The asymptotic relative efficiencies are in parenthesis. We can see that even the optimal GEE is less efficient than the maximum likelihood estimator for the Markov chain model. In the case where GEE uses a working $A R(1)$ structure we present the asymptotic variances computed taking the diagonal elements of the asymptotic covariance matrix (3.2.2) for various parameter values of α in the working correlation matrix. We can see that the relative efficiencies decreases when the value of α gets far from the true valuc 0.2 of the corrclation. The worst case efficiency is when $\alpha=0.9$, for example, the efficiency of the regression coefticient β_{2} is only about 70% of that of maximum likelihood estimator.

Next, we took $\rho=0.7$ but kept $t=4$ same as before. The results are displayed in Table 3.2. The GEE estimator with optimal choice of the working covariance matrix, is still less efficient than the estimator of the Markov chain model. The table also has the asymptotic variances and the relative efficiencies for different values of the working correlation α. Interestingly, the GEE with identity correlation ($\alpha=0$) matrix has the worst cfficiency (0.376) for the regression cocfficient β_{2}. Recall that the true correlation is 0.7 which is far from zero. Thus we see that for highly correlated data, GEE with identity structure is very inefficient.

We now consider the third case where $t=8$ and $\rho=0.2$. The results of the

Table 3.1: Asymplotic variance and ARE of GEE., $\ell=4$

Method	$n V\left(\beta_{0}\right)$	$n V\left(\beta_{1}\right)$	$n V\left(\beta_{2}\right)$
Maximum likelihood	$10.111(1.000)$	$1.366(1.000)$	$4.564(1.000)$
Optimal	$10.220(0.989)$	$1.386(0.986)$	$4.6202(0.988)$
$\alpha=0.0$	$10.293(0.982)$	$1.395(0.979)$	$4.914(0.929)$
$\alpha=0.1$	$10.238(0.988)$	$1.388(0.984)$	$4.692(0.973)$
$\alpha=0.2$	$10.220(0.989)$	$1.386(0.986)$	$4.620(0.988)$
$\alpha=0.3$	$10.238(0.988)$	$1.388(0.984)$	$4.685(0.974)$
$\alpha=0.4$	$10.295(0.982)$	$1.394(0.980)$	$4.859(0.939)$
$\alpha=0.5$	$10.390(0.973)$	$1.402(0.974)$	$5.113(0.892)$
$\alpha=0.6$	$10.528(0.960)$	$1.412(0.968)$	$5.416(0.843)$
$\alpha=0.7$	$10.712(0.944)$	$1.422(0.961)$	$5.740(0.795)$
$\alpha=0.8$	$10.952(0.923)$	$1.432(0.954)$	$6.064(0.753)$
$\alpha=0.9$	$11.245(0.899)$	$1.439(0.949)$	$6.373(0.716)$

NOTE: The true corrclation parameter is $p=0.2$. ARE are given in parentheses.

Table 3.2: Asymptotic variance and ARE of GEE, $t=4$

Method	$n V\left(\beta_{0}\right)$	$n V\left(\beta_{1}\right)$	$n V\left(\beta_{2}\right)$
Maximum likelibood	$9.136(1.000)$	$0.918(1.000)$	$1.862(1.000)$
Optimal	$9.332(0.979)$	$0.955(0.962)$	$2.014(0.924)$
$\alpha=0.0$	$9.646(0.947)$	$0.979(0.938)$	$4.957(0.376)$
$\alpha=0.1$	$9.570(0.955)$	$0.971(0.946)$	$4.010(0.464)$
$\alpha=0.2$	$9.503(0.961)$	$0.965(0.951)$	$3.171(0.569)$
$\alpha=0.3$	$9.446(0.967)$	$0.961(0.956)$	$2.733(0.681)$
$\alpha=0.4$	$9.340(0.972)$	$0.958(0.959)$	$2.370(0.785)$
$\alpha=0.5$	$9.364(0.976)$	$0.956(0.961)$	$2.152(0.865)$
$\alpha=0.6$	$9.341(0.978)$	$0.955(0.962)$	$2.044(0.985)$
$\alpha=0.7$	$9.332(0.979)$	$0.955(0.962)$	$2.014(0.924)$
$\alpha=0.8$	$9.312(0.978)$	$0.955(0.962)$	$2.036(0.914)$
$\alpha=0.9$	$9.375(0.974)$	$0.955(0.961)$	$2.090(0.891)$

NOTE: The true correlation parameter is $\rho=0.7$. ARE are given in parentheses.
simulations are presented in Table 3.3. The results are similar to the case where $t=4$. The GEF estimator is less efficient than the maximum likelihood estimator for all values of working correlation α. Table 3.4 shows the simulation results with $t=8$ with $\rho=0.7$. The GEE estimator is extremely inefficient especially when working correlation is far lrom the true correlation or even out of bounds.

In summary, the simulation results show the GEE estimator even with the optimal choice of the working covariance is less efficient than the maximum likelihood estimate obtained from the Markov chain model. Furthermore, the efficiency is very low when the working correlation parametcr is far from the true cotrelation. The worse choices for α near 0 for strong dependence, and large α near 1 for weak dependence. In particular, the choice of $\alpha=0$ is can lead to very low cfficiency if there is strong dependence. The results are similar for $t=4$ and $t=8$.

Table 3.3: Asymptotic variance and ARE of GEE, $t-8$

Method	$n V\left(\beta_{0}\right)$	$n V\left(\beta_{1}\right)$	$n V\left(\beta_{2}\right)$
Maximum likelihood	$4.979(1.000)$	$0.216(1.000)$	$2.542(1.000)$
Optimal	$5.096(0.977)$	$0.224(0.966)$	$2.585(0.983)$
$\alpha=0.0$	$5.168(0.964)$	$0.227(0.952)$	$2.773(0.917)$
$\alpha=0.1$	$5.116(0.973)$	$0.225(0.962)$	$2.630(0.967)$
$\alpha=0.2$	$5.096(0.977)$	$0.224(0.966)$	$2.585(0.983)$
$\alpha=0.3$	$5.120(0.972)$	$0.225(0.961)$	$2.623(0.969)$
$\alpha=0.4$	$5.205(0.957)$	$0.229(0.945)$	$2.719(0.935)$
$\alpha=0.5$	$5.370(0.927)$	$0.236(0.917)$	$2.847(0.893)$
$\alpha=0.6$	$5.616(0.882)$	$0.247(0.875)$	$2.984(0.852)$
$\alpha=0.7$	$6.066(0.821)$	$0.263(0.822)$	$3.115(0.816)$
$\alpha=0.8$	$6.675(0.746)$	$0.284(0.762)$	$3.230(0.787)$
$\alpha=0.9$	$7.480(0.665)$	$0.308(0.701)$	$3.325(0.765)$

NOTE: The true correlation parameter is $p=0.2$. ARE are given in parentheses.

III.2.2 An example

Through simulations, we have seen in the previous section that if the correlation eslimate used to compute the regression parameter and their standard errors is outside of the feasible range of the correlation determined by the marginal means, the GEE estimator is very inefficient. In this section we are going to present a real data example where violation of the bounds changes the conclusions of the analysis. The data for this example is a subset of the data from Hamilton's depression study discussed example 2.3. For our analysis, we focus on the differences between only two of the arms: the active treatment and placebo. The covariates are the treatment and time.

Since the response is binary, we use GEE with a logit link function and an $\mathrm{AR}(1)$ dependence structure. Performing the GEE analysis on this data, ignoring the correlation bounds, we get the results listed in Part (i) of Table 3.5. Here we see that the time effect is significant, but the p-value for treatment is 0.071 , suggests that the treatment is not effective for reducing depression levels. Note that the working correlation estimatc is 0.404 , which is outside the feasible range $(-0.030,0.361)$. The

Table 3.4: Asymptotic variance and ARE of GEE, $t=8$

Method	$n V\left(\beta_{0}\right)$	$n V\left(\beta_{1}\right)$	$n V\left(\beta_{2}\right)$
Maximum likelihood	$7.160(1.000)$	$0.260(1.000)$	$0.959(1.000)$
Optimal	$7.394(0.968)$	$0.278(0.935)$	$1.042(0.920)$
$\alpha=0.0$	$8.211(0.872)$	$0.309(0.842)$	$2.766(0.347)$
$\alpha=0.1$	$8.060(0.888)$	$0.303(0.859)$	$2.161(0.444)$
$\alpha=0.2$	$7.909(0.905)$	$0.297(0.876)$	$1.707(0.562)$
$\alpha=0.3$	$7.764(0.922)$	$0.291(0.893)$	$1.397(0.687)$
$\alpha=0.4$	$7.629(0.939)$	$0.286(0.909)$	$1.204(0.796)$
$\alpha=0.5$	$7.513(0.953)$	$0.282(0.922)$	$1.100(0.872)$
$\alpha=0.6$	$7.428(0.963)$	$0.279(0.931)$	$1.053(0.912)$
$\alpha=0.7$	$7.394(0.968)$	$0.278(0.935)$	$1.042(0.920)$
$\alpha=0.8$	$7.441(0.962)$	$0.280(0.931)$	$1.049(0.914)$
$\alpha=0.9$	$7.614(0.940)$	$0.283(0.920)$	$1.064(0.901)$

NOTE: The true correlation parameter is $\rho=0.7$. ARE are given in parentheses.
results of the ancalysis of the data using the first order Markov chain model which adheres to the correlation bounds is in Part (ii) of Table 3.5. We now see that the trearment effect has a small p-valuc, providing evidence that the treatment docs reduce depression.

Figure 3.1 shows the plot of regression cosfficient for treatment. $\left(\beta_{T}\right)$ obtained by GEE with different values of working correlation parameter. We can see that the regression coofficiont remeims mostly constant within the correation bounds, but it, changes dramatically when the working corrclation α is outside the bounds. Further, we can see that when α is larger than 0.7 , the sign of the regression cocficient conld change as well. The behavior of the standard errors and p-values is similar as seen in Figures 3.2 and 3.3, respectively.

Table 3.5: Analysis of parameter estimates for Ham-D data

(i) Parameter	Est.	SE	p-valuc	(ii) Parameler	Est.	SE	p-value
Intercept	-4.49	0.237	<0.001	Intercept	-4.49	0.270	<0.001
Treatment	0.38	0.211	0.071	Treatment	0.38	0.188	0.043
Time	1.01	0.058	<0.001	Time	1.02	0.055	<0.001
Est.corr	Correlation bounds	Est.corr	Corrclation bounds				
0.404	$\vdots-0.030 .0 .361]$	0.361		$[0.030 .0 .361]$			

NOTE: (i) Analysis using GEE (ii) Analysis using Markov chain model.

Figure 3.1: Plot of estimate of β_{T}

Figure 3.2: Plot of standard error of β_{T}

Figure 3.3: Plot of p-value of β_{T}

III. 3 Quadratic inference functions

The generalized estimating cquations has been a popular method of estimation for marginal models. However, it has several shortcomings when applied to discrete dataFirst, the GEE treats dependence as a nuisance and estimates the working correlation parameter with moment estimators constructed using sums of squared Pearson residuals. There is no guarantee that these estimates of the working correlation will lie within the admissible range restricted by the marginal means. There could be considerable loss in efficiency for the regression parameter when the correlation estimate violates the correlation bounds. Another practical shortcoming of GEE is the lack of an objective function which could be used for covariate and model selection purposes. Several authors have suggested modifications and improvements of the GEE to overcome these difficultics. Among these irnprovements, noteworthy to mention is the quadratic inference function (Q1F) method proposed by Qu et al. (2000). This method eliminates estimating the working correlation parameter altogether and borrows ideas from the gencralized method of moments estimation procedure due to Hansen (1982). The QIF method also introduces an objective function which is minimized to get the regression parameter estimate. In the next three sections we will present details of the QIF method and study it's efliciency as compared to the likelihood procedures using simulations.

The quadratic infercnce function is derived by observing that the inverse of the working correlation matrix $h(x)$ can be written as a linear combination of some basis matrices $M_{1}, \cdots, M_{m n}$, that is,

$$
\begin{equation*}
R^{-1}(\alpha)=a_{1} M_{1}+a_{2} M_{2}+\cdots+a_{m} M_{m} \tag{3.3.1}
\end{equation*}
$$

where M_{i} are known symmetric matrices and $a_{1}, a_{2}, \cdots, a_{m}$ are unknown constants, which depend on α. In the next section we give examples of the basis matrices.

III.3.1 Choice of basis matrices

Equicorrelated. Suppose the correlation matrix $R(\alpha)$ of dimension thas an equicorrelated structure, that is, all the off-chiagonals are equal to α.

$$
R(\alpha)=\left[\begin{array}{cccc}
1 & \alpha & \cdots & \alpha \\
\alpha & 1 & \cdots & \alpha \\
\vdots & \vdots & \ddots & \vdots \\
\alpha & \alpha & \cdots & 1
\end{array}\right]=(1-\alpha) \mathbf{I}+b \mathbf{J}
$$

where \mathbf{I} is the identity matrix and \mathbf{J} is a matrix of ones. The inverse of $R(\alpha)$ is given by

$$
\begin{equation*}
R^{-1}(\alpha)=\frac{1}{1-\alpha}\left[\mathbf{I}-\frac{\alpha}{1+(l-1) \alpha} \mathbf{J}\right]=a_{1} M_{1}+a_{2} M_{2} \tag{3.3.2}
\end{equation*}
$$

where $a_{1}=\frac{1}{1-\alpha}, a_{2}=\frac{\alpha}{(1-\alpha)(1+(t-1) \alpha)}, M_{1}=\mathbf{I}, M_{2}-\mathbf{J}$. The choice of the M matrices is not unique. For example, we could also take $a_{1}=\frac{1+(k-2) \alpha}{1-\alpha}, a_{2}=\frac{-\alpha}{(1 \cdots \alpha)(1+\langle t| j \alpha)}$, $M_{1}=\mathbf{I}$, and

$$
M_{2}=\left[\begin{array}{cccc}
0 & 1 & \cdots & 1 \\
1 & 0 & \cdots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 1 & \cdots & 0
\end{array}\right]
$$

First-order autoregressive. Suppose $R(\alpha)=\left(\alpha^{\mid i-j}\right)$ is the first-order autoregressive correlation matrix. The inverse of $R(\alpha)$ equals

$$
R^{1}(\alpha)=\frac{1}{1 \cdots \rho^{2}}\left[\begin{array}{cccccc}
1 & -\rho & 0 & \cdots & 0 & 0 \tag{3.3.3}\\
-\rho & 1+\rho^{2} & -\rho & \cdots & 0 & 0 \\
0 & -\rho & 1+\rho^{2} & \cdots & 0 & \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1+\frac{\rho^{2}}{} & -\rho \\
0 & 0 & 0 & \cdots & -\rho & 1
\end{array}\right] .
$$

This can be written as a lincar combination of three basis matrices,
$R^{-1}(\alpha)=a_{1} M_{1}+a_{2} M_{2}+a_{3} M_{3}$

$$
=a_{1}\left[\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{array}\right] \div a_{2}\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
1 & 0 & 1 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 0
\end{array}\right]+a_{3}\left[\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 0 \\
0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{array}\right],
$$

where

$$
a_{1}=\frac{1+\alpha^{2}}{1-\alpha^{2}}, \quad a_{2}=\frac{-\alpha}{1-\alpha^{2}}, \quad a_{3}=\frac{-\alpha^{2}}{1-\alpha^{2}} .
$$

The third term in the above expression captures the edge effect of the auto-regressive process. And the third basis matrix M_{3}, which has only two nonzero valucs, is a minor boundary correction and can be omitted, that is, we can approximate the inverse by $a_{1} M_{1}+a_{2} M_{2}$.

We will mainly consider these two correlation structures for comparisons of cfficiency between QIF and likelihood methods.

III.3.2 Extended score function

Using the representation (3.3.1) for $R^{-1}(\alpha)$, we can rowrite the gencralized estimating equation (3.2.1) as

$$
\begin{equation*}
\sum_{i=1}^{n}\left(\frac{\partial \mu_{i}}{\partial \beta}\right)^{\prime} A_{i}^{-1 / 2}\left(a_{1} M_{1}+a_{2} M_{2}+\cdots \div a_{m} M_{m}\right) A_{i}^{-1 / 2}\left(y_{i}-\mu_{i}(\beta)\right)=0 . \tag{3.3.4}
\end{equation*}
$$

This is equivalent to

$$
\begin{equation*}
\sum_{j=1}^{m} a_{j} \sum_{i=1}^{n}\left(\frac{\partial \mu_{i}}{\partial \beta}\right)^{\prime} A_{i}^{-1 / 2} M_{j} \Lambda_{i}^{-1 / 2}\left(y_{i}-\mu_{i}(\beta)\right)=0 . \tag{3.3.5}
\end{equation*}
$$

Thus we see that this is a linear combination of GEF type of estimating equations ihat involve the basis matrices M_{j} in place of the inverse of the working correlation
matrix. The QIF method bypasses estimating the coefficients a_{j} and considers the "extended score" function $\bar{g}_{n}(\beta)$ given by

$$
\bar{g}_{n}(\beta)=\frac{1}{n} \sum_{i=1}^{n} g_{i}(\beta)=\frac{1}{n} \sum_{i=1}^{n}\left(\begin{array}{c}
\left(\frac{\partial \mu_{i}}{\partial \beta}\right)^{\prime} A_{i}^{-1 / 2} M_{1} A_{i}^{-1 / 2}\left(y_{i}-\mu_{i}\right) \tag{3.3.6}\\
\left(\frac{\partial \mu_{i}}{\partial \beta}\right)^{\prime} A_{i}^{-1 / 2} M_{2} A_{i}^{-1 / 2}\left(y_{i}-\mu_{i}\right) \\
\vdots \\
\left(\frac{\partial \mu_{i}}{\partial \beta}\right)^{\prime} A_{i}^{-1 / 2} M_{m} A_{i}^{-1 / 2}\left(y_{i}-\mu_{i}\right)
\end{array}\right) .
$$

The dimension of $\bar{g}_{n}(\beta)$ is $m k \times 1$, where k is the dimension of the regression parameter β. Therefore (3.3.6) contains more than k equations and hence we cannot obtain a unique estimate of β solving $\bar{g}_{r}(\beta)-0$ directly. The approach of QTF is to estimate β by minimizing the quadratic function $\bar{g}_{r n}^{\prime}(\beta) \mathbf{C}^{-1} \bar{g}_{n}(\beta)$ where \mathbf{C} is the covariance matrix of $g_{i}(\beta)$. A consistent estimate of C is $\bar{C}_{n}=(1 / n) \sum_{i=1}^{n} g_{i}(\beta) g_{i}^{\prime}(\beta)$. The objective function

$$
\begin{equation*}
Q_{n}(\beta)=n \bar{g}_{n}^{\prime}(\beta) \bar{C}_{n}^{-1} \bar{g}_{n}(\beta) \tag{3.3.7}
\end{equation*}
$$

is known as the quadratic infcrence function (Qu et al. (2000)). Thus QIF estimate of B is

$$
\begin{equation*}
\widehat{\beta}=\arg \min _{\beta} Q_{n}(\beta) . \tag{3.3.8}
\end{equation*}
$$

Surface plots of quadratic inference function $Q_{n}(\beta)$ with different parameters are shown in Figure 3.4. To generate these plots we generated binary responses from the model

$$
\begin{equation*}
\operatorname{logit}\left(p_{i l}\right)=\beta_{0}+x_{i t} \beta_{1} \tag{3.3.9}
\end{equation*}
$$

where $i=1, \cdots, 10 ; l=1,2,3,4$. We look $\beta_{0}-0.9$ and $\beta_{1}=-0.3$. The covariates $x_{i t}$'s are generated from standard normal distribution. Correlated binary responses y_{i} are simulated using the entropy maximization method described in Chaganty and Joe (2006).

First, we simulated responses y_{i} where the correlation structure among repeated measurements is equicorrelated, and we calculated the QIF defined in (3.3.7) using
the basis matrices M_{1} and M_{2} designed for equicorrclated structure discussed in Section III.3.1. Next, we simulated data where the correlation structure among repeated measuremonts is $\mathrm{AR}(1)$, and calculated (3.3.7) using the three basis matrices for $\mathrm{AR}(1)$ structure. Figure 3.4 shows the plots for these two cases. It is clear that. the surface has multiple ridges as well as local minima, but $Q_{n}(\beta)$ does have a global mimimum in both cases which ensures the a unique solution $\widehat{\beta}$ for the minimum (3.3.8).

However, there are situations where $Q_{n}(\beta)$ does not have a global minimum. For example, we generated binary response variables from the same mean model (3.3.9) giver above. But instcad of generating $x_{i t}$ from standard normal distribution, we chose $x_{i t}$ as a fixed categorical covariate. The reason we chose a categorical covariate is they appear frequently in longitudinal data analysis, such as the times when the measurements are taken on subjects. For the data generation we considered both equicorrelated and $\mathrm{AR}(1)$ structures. Figure 3.5 shows (wo examples where the surface of QIF is almost flat and thus does not have a global minimum and therefore a unique solution $\widehat{\beta}$ that mimimizes $Q_{n}(\beta)$ docs not exist. This happens because often the matrix \bar{C}_{n} is almost singular, and its inverse plays a dominant role in the value of $Q_{n}(B)$.

III.3.3 Parameter estimation

As we noted before, a unique estimate of β cannot be obtained solving $\bar{g}_{n}(\beta)=0$, since the dimension of $\bar{g}_{n}(\beta)$ is greater than the number of regression coeflicicats. So instead, we minimize the quadratic inference fumetion (3.3.7). It is equivalent to setting the partial derivatives of (3.3.7) with respect to β to zero. This leads to the estimating equation

$$
\begin{equation*}
\nabla Q_{n}(\beta)=0, \tag{3.3.10}
\end{equation*}
$$

where

$$
\begin{align*}
n^{-1} \nabla Q_{n}(\beta) & =2 \nabla \bar{g}_{n}^{\prime} \bar{C}_{n}^{1} \bar{g}_{n}+\bar{g}_{n}^{\prime} \nabla \bar{C}_{n}^{-1} \bar{g}_{n} \\
& =2 \nabla \bar{g}_{n}^{\prime} \bar{C}_{n}^{-1} \bar{g}_{n}-\bar{g}_{n}^{\prime} \bar{C}_{n}^{-1} \nabla \bar{C}_{n}^{\prime} \bar{C}_{n}^{-1} \bar{g}_{n} \tag{3.3.11}
\end{align*}
$$

(a) Equicorrelated with $\rho=0.2$

(b) $\mathrm{AR}(1)$ with $\rho=0.8$

Figure 3.4: The surface plot of $Q_{n}(\beta)$ where a global minimum exists.

(a) Equicorrelated with $\rho=0.05$

(b) $\operatorname{AR}(1)$ with $\rho=0.28$

Figure 3.5: The surface plot of $Q_{n}(\beta)$ where no global minimum cxists.

Note that $\nabla \bar{g}_{m}$ is a $m k \times k$ matrix and $\nabla \bar{C}_{n}$ is a three-dimensional array

$$
\left(\frac{\partial \bar{C}_{n}}{\partial \beta_{1}}, \frac{\partial \bar{C}_{n}}{\partial \beta_{2}}, \cdots, \frac{\partial \bar{C}_{n}}{\partial \beta_{k}}\right)
$$

We can solve equation (3.3.10) mumerically using the Newton-Raphson algorithm, which requires the following second order partial derivatives of $Q_{n}(\beta)$.

$$
\begin{align*}
n^{-1} \nabla^{2} Q_{n}(\beta)= & 2 \nabla \bar{g}_{n}^{\prime} \bar{C}_{n}^{-1} \nabla \bar{g}_{n}+2 \nabla^{2} \bar{g}_{n}^{\prime} \bar{C}_{n}^{-1} \bar{g}_{n} \\
& -4 \nabla \bar{g}_{n}^{\prime} \bar{C}_{n}^{-1} \nabla \bar{C}_{n} \bar{C}_{n}^{-1} \bar{g}_{n}+22 \bar{g}_{n}^{\prime} \bar{C}_{n}^{-1} \nabla \bar{C}_{n} \bar{C}_{n}^{-1} \nabla \bar{C}_{n} \bar{C}_{n}^{-1} \bar{g}_{n} \\
& -\bar{g}_{n}^{\prime} \bar{C}_{n}^{-1} \nabla^{2} \bar{C}_{n}^{\prime 1} \bar{C}_{n}^{-1} \bar{g}_{n} . \tag{3.3.12}
\end{align*}
$$

Here, $\nabla^{2} \bar{C}_{n}$ is a four-dimensional array

$$
\left\{\frac{\partial^{2} \bar{C}_{n}}{\partial B_{i} \partial \beta_{j}}: i, j=1,2, \cdots, k\right\} .
$$

The Newton-Raphson method iterates the equation

$$
\begin{equation*}
\hat{\beta}^{(j+1)}=\hat{\beta}^{(j)}--\left\{\nabla^{2} Q_{n}\left(\beta^{(j)}\right)\right\}^{-1} \nabla Q_{n}\left(\beta^{(j)}\right), \tag{3.3.13}
\end{equation*}
$$

until convergence. To further simplify the iterative algorithon we note that under regularity conditions $\nabla \bar{g}_{n 1}$ and $\nabla \bar{C}_{n}$ have finitc limits as $n \rightarrow \infty$. Hence they are $O_{p}(1)$, but \bar{g}_{n} is $O_{p}\left(n^{-1 / 2}\right)$, so the first term in (3.3.11) is $O_{p}\left(n^{-1 / 2}\right)$, whereas the second term is $O_{p}\left(n^{-1}\right)$ and thus it can be asymptotically negligible. Therefore minimizing Q_{n} is asymptotically equivalent to solving

$$
\begin{equation*}
\nabla \bar{g}_{t u}^{\prime} \bar{C}_{v}^{-1} \bar{g}_{n}=0 \tag{3.3.14}
\end{equation*}
$$

When $\beta=\widehat{\beta}$, all the torms in $\nabla^{2} Q_{n}(\beta)$ involving \bar{g}_{n} are equal to zero except the first term. Therefore we can take

$$
\begin{equation*}
\nabla^{2} Q_{n}(\beta)=2 n \nabla \bar{g}_{n}^{\prime} \bar{C}_{n}^{-1} \nabla \bar{g}_{n}^{\prime} \tag{3.3.15}
\end{equation*}
$$

We can use the above expression in the iterative algorithm (3.3.13) to obtain the cstimate $\widehat{\beta}$. In the next section we will derive an expression for the asymptotic variance of the QIF regression parameter estimate.

III.3.4 Asymptotic variance

The extended score function (3.3.6) car be written in the form of a weighted estimating equation. Lel

$$
\begin{equation*}
\Psi(\beta)=n \overline{\mathscr{Y}}_{n}(\beta)=\sum_{i=1}^{n} \nabla \boldsymbol{\mu}_{i}^{\prime} \mathbf{W}_{i}^{\prime}\left(y_{i}-\mu_{i}\right), \tag{3.3.16}
\end{equation*}
$$

where

$$
\nabla \boldsymbol{\mu}_{2}^{\prime}=\left[\begin{array}{ccc}
\left(\frac{\partial \mu_{i}}{\partial i}\right)^{\prime} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \left(\frac{\partial \mu_{i}}{\partial s}\right)^{\prime}
\end{array}\right]_{m k \times m t} \quad \text { and } \quad \mathbf{W}_{i}^{\prime}=\left[\begin{array}{c}
A_{i}^{-1 / 2} M_{1} A_{i}^{-1 / 2} \\
\vdots \\
A_{i}^{-1 / 2} M_{m} A_{i}^{-1 / 2}
\end{array}\right]_{m t t \times t}
$$

The estimating equation (3.3.16) is cloarly an unbiased estimating equation since $\mathrm{E}\left(y_{i}-\mu_{i}\right)=0$. By the result stated in Chaganty and Joe (2004), if $\hat{\beta}$ is the solution of equation (3.3.16) then $\widehat{\beta}$ is asymptotically normal with mean β and covariance matrix equal to inverse of Godambe information matrix $\mathcal{G}^{-1}(\beta)=\left[\left(-\mathbf{D}_{\Psi}\right)^{\prime} \mathbf{V}_{\Psi}^{-1}\left(-\mathbf{D}_{\Psi}\right)\right]^{-1}$. Here

$$
\begin{aligned}
-\mathbf{D}_{\Psi}=\mathrm{E}\left(\partial \Psi(\beta) / \partial \beta^{\prime}\right) & =\sum_{i=1}^{n} \nabla \boldsymbol{\mu}_{i}^{\prime} \mathbf{W}_{i}^{\prime}\left(\frac{\partial \mu_{i}}{\partial \beta^{\prime}}\right), \\
\mathbf{V}_{\Psi}=\operatorname{Cov}(\Psi(\beta)) & =\sum_{i=1}^{n} \nabla \boldsymbol{\mu}_{i}^{\prime} \mathbf{W}_{i}^{\prime} \Sigma_{i} \mathbf{W}_{i} \nabla \boldsymbol{\mu}_{i} .
\end{aligned}
$$

Using the mairix Cauchy-Schware inequality (Chaganty and Joe (2004)) we can show that the optimal choice for \mathbf{W}_{i} in (3.3.16) is $\mathbf{W}_{i}^{0}=\left(\frac{\Sigma_{i}^{-1}}{k}, \frac{\Sigma_{i}^{-1}}{k}, \ldots \frac{\Sigma_{i}^{-1}}{k}\right)^{\prime}$. In this case the asymptotic covariance matrix $\mathcal{G}{ }^{1}(\beta)$ of $\widehat{\beta}$ reduces to

$$
\left(\sum_{i=1}^{n} \frac{\partial \mu_{i}}{\partial \beta} \Sigma_{i}^{-1} \frac{\partial \mu_{i}}{\partial \beta^{\prime}}\right)^{-1}
$$

Note that optimal choice \mathbf{W}_{i}^{0} depends on the unknown β and on the dependence parameters. But since QIF uses the basis matrices instcad of the truc covariance matrix, it is not expected to produce the most efficicut estimator for the regression parameter.

III. 4 Comparison of asymptotic performance

In this section we compare asymptotic performance of QIF regression estimator and the maximum likelihood estimator of Markov chain (MC) model discussed in Chapter II, by computing the asymptotic relative efficiency (ARE) of QIF mothod with respect to the first order Markov chain proccdure. In our simulations we chose the number of repeated measuremonts as $t=4,6$ and 8 , and a sample size of $n=1000$. The asymptotic relative efficiency (ARE) is calculated as follows

$$
\mathrm{ARE}=\frac{\text { asymptotic variance of } \mathrm{MC}}{\text { asymptotic vatiance of } \mathrm{QIF}}
$$

By varying the correlation parameter ρ over its admissible range, we can see how the efficiency changes when the correlation estimate is far from the true correlation.

In our simulations we gencrated binary responses from the model

$$
\operatorname{logit}\left(p_{i t}\right)=\beta_{0}+\beta_{1} x_{i t}^{D}+\beta_{2} x_{i t}^{C}
$$

where $i=1, \cdots, n=1000 ; x_{i \ell}^{C}$ is a discrete covariate taking values $1,2, \ldots t$ and $x_{i t}^{C}$ is generated from uniform distribution on (0,1).

We start with the case $t=4$. The true value of the regression coefficients are taken as $\beta_{0}-0.8, \beta_{1}=-0.1$ and $\beta_{2}=0.15$. The ARE plots of QIF with respect to the MC procedure for the three regression cocfficients are in Figure 3.6. When $\rho=0$ the ARE is 1, that is, when the repeated measurements are independent OIF is as efficient as the Markov chain model. But the ARE is less than 1 and decreases as ρ increases. However, as seen in Figure 3.6(b), the ARF remains high even when ρ is close to 0.7 , which indicates that QIF' is comparable to the Markov chain model when estimating the coefficient of the discrete covariate. But the ARF for the regression coefficient corresponding to the continuous drops to less than 0.5 as ρ approaches its upper bound of 0.883 as shown in Figure 3.6(c). This shows QIF estimates the regression coefficient corresponding to the continuous covariate very poorly for highly correlated data. Table 3.6 contains the numerical values of the asymptotic relative efficiencies in the case.

We now consider the case $t=6$. The ARE plots for the three regression coefficients are shown in Figure 3.7. The plots clearly show the QIF estimates are

Table 3.6: Asymptotic variance and ARE of QIF, $l=4$

	$n V\left(\beta_{0}\right)$	$n V\left(\beta_{1}\right)$	$n V\left(\beta_{2}\right)$
$\rho=0.0$	$10.005(1.000)$	$0.885(1.000)$	$13.280(1.000)$
$\rho=0.1$	$10.363(0.999)$	$0.922(0.999)$	$13.070(0.999)$
$\rho=0.2$	$10.539(0.997)$	$0.940(0.997)$	$12.479(0.997)$
$\rho=0.3$	$10.527(0.995)$	$0.938(0.995)$	$11.552(0.994)$
$\rho=0.4$	$10.326(0.994)$	$0.912(0.994)$	$10.355(0.989)$
$\rho=0.5$	$9.935(0.992)$	$0.857(0.994)$	$8.960(0.977)$
$\rho=0.6$	$9.353(0.988)$	$0.770(0.994)$	$7.440(0.952)$
$\rho=0.7$	$8.573(0.983)$	$0.647(0.993)$	$5.861(0.902)$
$\rho=0.8$	$7.587(0.974)$	$0.481(0.986)$	$4.276(0.787)$

NOTE: Range of ρ is $(-0.450,0.883)$. The parameter valucs are $\beta_{0}=0.8, \beta_{1}=-0.1, \beta_{2}=0.15$, and $n=1000$; AREs are given in parenthescs.
uniformly less efficient as compared to the VC estimatos for correlated data. In Figures 3.7 (a) and (c) the ARE decrcases as ρ approaches to its upper bound. But in Figure 3.7 (b) we can see the plot of ARE is not monotone, it decreases to 0.935 and increascs back to 0.98 . This is different from the case when the mumber of repeated measurements is $t=4$. Table 3.7 contains the numerical values of the AREs for the three regression coefficients.

Figure 3.8 and Table 3.8 shows the ARE plots and numerical valucs, respectively, in the case $t=8$. The pattern is the same as in the previous two cases. Based on these results, we can conclude that for highly correlated binary data with autoregressive structure, QIF is very inefficient for estimating the regression coefficient for the continuous covariates but rcasonably efficient for discrete covariates. However if the corretation is small it is respectable efficiency compared to the maximum Tikelibood estimator from the Markov chain model.

(b)

(c)

Figure 3.6: ARE of QIF and MC methods with binary data

Table 3.7: Asymptotic variance of QIF and ARE, $t=6$

	$n V\left(\beta_{0}\right)$	$n V\left(\beta_{1}\right)$	$n V\left(\beta_{2}\right)$
$\rho=0.0$	$10.905(1.000)$	$0.540(1.000)$	$18.080(1.000)$
$\rho=0.1$	$11.485(0.990)$	$0.593(0.985)$	$17.772(0.990)$
$\rho=0.2$	$11.885(0.978)$	$0.641(0.963)$	$16.893(0.979)$
$\rho=0.3$	$12.097(0.969)$	$0.681(0.947)$	$15.522(0.972)$
$\rho=0.4$	$12.112(0.965)$	$0.708(0.938)$	$13.770(0.966)$
$\rho=0.5$	$11.909(0.964)$	$0.717(0.936)$	$11.761(0.956)$
$\rho-0.6$	$11.447(0.965)$	$0.670(0.943)$	$9.615(0.933)$
$\rho=0.7$	$10.664(0.962)$	$0.644(0.956)$	$7.432(0.874)$
$\rho=0.8$	$9.473(0.943)$	$0.533(0.973)$	$5.293(0.705)$

NOTE: Range of ρ is $(-0.091,0.862)$. The parameter values arc $\beta_{0}=1.2, \beta_{1}=0.6, \beta_{2}=0.1$, and $n=1000 ;$ AREs. are given in parentheses.

Table 3.8: Asymptotic variance of QIF and ARE, $t=8$

	$n V\left(\beta_{0}\right)$	$n V\left(\beta_{1}\right)$	$n V\left(\beta_{2}\right)$
$\rho=0.0$	$6.509(1.000)$	$0.293(1.000)$	$11.200(1.000)$
$\rho=0.1$	$6.905(0.993)$	$0.333(0.983)$	$10.984(0.995)$
$\rho=0.2$	$7.034(0.985)$	$0.375(0.961)$	$10.400(0.987)$
$\rho=0.3$	$7.398(0.977)$	$0.416(0.943)$	$9.505(0.976)$
$\rho=0.4$	$7.480(0.969)$	$0.455(0.931)$	$8.377(0.953)$
$\rho=0.5$	$7.428(0.958)$	$0.487(0.929)$	$7.097(0.899)$
$\rho=0.6$	$7.193(0.935)$	$0.505(0.940)$	$5.744(0.760)$
$\rho=0.7$	$6.703(0.862)$	$0.497(0.972)$	$4.381(0.300)$

NOTE: Range of ρ is $(-0.027,0.706)$. The parameter values are $\beta_{0}=1.0, \beta_{1}=-0.6, \beta_{2}=-0.1$, and $n=1000$; AREs are given in parentheses.

(b)

(c)

Figure 3.7: ARE of QIF and MC methods wilh binary data

(c)

Figure 3.8: ARE for QIF and MC methods with binary data

III. 5 Comparison of small-sample performance

In this section we compare the small-sample performance of QIF estimator with the maximum likelihood cstimate from the first order Markov chain (MC) model using simulated data. We fixed the sample size as $n=30$. Correlated binary random vectors with $A R$ (1) structure are simulated separately from two models. The first model is

$$
\begin{equation*}
\operatorname{logit}\left(p_{i t}\right)=\beta_{0}+\beta_{1} x_{i t}^{C} \tag{3.5.1}
\end{equation*}
$$

where $x_{i t}^{c}$ are generated from standard normal distribution. The second model is

$$
\begin{equation*}
\operatorname{logit}\left(p_{i t}\right)=\beta_{0}+\beta_{1} x_{i t}^{D}+\beta_{2} x_{i t}^{C} \tag{3.5.2}
\end{equation*}
$$

where $x_{i t}^{D}$ take values $1,2 \ldots, t$. We fixed the true values of the regression coefficients as $\beta_{0}-0.5$ and $\beta_{1}=-0.5$. We considered two cases $t=4$ and $t=8$. Fixing a value of ρ within the correlation bounds we simulated binary data and calculated Q!F and MC estimators for the regression cocfficionts. We then repeated the procedure 1:000 times for each combination of the parameter choices. The mean square errors (MSF) are calculated averaging the squared deviations of the estimate from the true regression parameter valucs. The relative efficioncics (RE) are calculated taking ratios as follows:

$$
R E=\frac{\text { MSE of MC estimate }}{\text { MSE of QIF estimate }} .
$$

Table 3.9 and Table 3.10 shows results from the simulations with $t=4$ and $t=8$ respectively. We can see that the values of RE are less than 1 for all values of ρ within the feasible range ($-0.250,0.465$), indicating that QIF estimator has larger MSE than the MC estimator. Further the RE of $\bar{\beta}_{1}$ is becoming smaller when ρ increases to the upper bound, more specifically, the efficiency is 0.531 when $\rho=0.45$. For $t=8$, the efficicncies of QIF are better than those when $t=4$. The conclusion that we can make from these simulations is that QIF estimates the regression parameter poorly for small samples when there is a high correlation. However, its performance improves when the number of repeated mcasurements increases.

Next, we did similar simulations using model (3.5.2), fixing $\beta_{0}=0.1, \beta_{1}=0.2$ and $\beta_{2}=\cdots 0.5$. Note that there is a discrete covariate $x_{2 t}^{D}$ in this model. The MSEs

Table 3.9: MSE and RE of QIF and MC with one covariate, $t=4$

	$\operatorname{MSE}\left(\widehat{\beta}_{0}\right)$				$\operatorname{MSE}\left(\hat{\beta}_{1}\right)$		
ρ	QIF	MC	RE	QIF	MC	RE	
0.00	0.0464	0.0373	0.805		0.0588	0.0436	0.741
0.05	0.0457	0.0359	0.786		0.0690	0.0522	0.757
0.10	0.0631	0.0515	0.817		0.0494	0.0418	0.846
0.15	0.0652	0.0466	0.715		0.0624	0.0436	0.699
0.20	0.0656	0.0485	0.740		0.0534	0.0417	0.780
0.25	0.0687	0.0541	0.788		0.0464	0.0332	0.715
0.30	0.0678	0.0541	0.798		0.0500	0.0355	0.711
0.35	0.0851	0.0623	0.732		0.0409	0.0284	0.694
0.40	0.0918	0.0637	0.693		0.0466	0.0276	0.591
0.45	0.1019	0.0768	0.753		0.0419	0.0222	0.531
NOTE: Range of ρ is $(-0.250,0.465)$ and $\beta=(0.5,-0.5)^{\prime}$.							

Table 3.10: MSE and RF of QIF and MC with one covariate, $t=8$

	$\operatorname{MSE}\left(\hat{\beta}_{0}\right)$				$\operatorname{MSE}\left(\hat{\beta}_{1}\right)$		
	QIF	MC	RF		QIF	MC	RE
0	0.0202	0.0180	0.891		0.0255	0.0218	0.853
0.05	0.0231	0.0204	0.883		0.0236	0.0203	0.859
0.10	0.0290	0.0250	0.862		0.0255	0.0218	0.853
0.15	0.0261	0.0231	0.885		0.0255	0.0223	0.872
0.20	0.0303	0.0269	0.888		0.0251	0.0210	0.837
0.25	0.0366	0.0300	0.819		0.0201	0.0165	0.823
0.30	0.0399	0.0332	0.833		0.0222	0.0153	0.691
0.35	0.0435	0.0343	0.790		0.0195	0.0114	0.585

NOTE: Range of ρ is $(-0.283,0.385)$ and $\beta=(0.5,-0.5)^{\prime}$.

Table 3.11: MSE and RE of QIF with both covariates, $t=4$

α	$\operatorname{MSE}\left(\hat{\beta}_{0}\right)$	$\operatorname{MSE}\left(\hat{\beta}_{1}\right)$	$\operatorname{MSE}\left(\hat{\beta}_{2}\right)$
0.00	$0.328(0.743)$	$0.048(0.730)$	$0.080(0.573)$
0.05	$0.363(0.687)$	$0.055(0.639)$	$0.086(0.656)$
0.10	$0.324(0.788)$	$0.043(0.765)$	$0.075(0.645)$
0.15	$0.296(0.774)$	$0.044(0.756)$	$0.070(0.623)$
0.20	$0.388(0.654)$	$0.064(0.580)$	$0.094(0.472)$
0.25	$0.374(0.687)$	$0.045(0.699)$	$0.079(0.487)$
0.30	$0.410(0.666)$	$0.055(0.637)$	$0.078(0.494)$
0.35	$0.388(0.679)$	$0.055(0.593)$	$0.070(0.374)$
NOTF:	Range of ρ	is $(-0.162,0.358)$	and $\beta=$
$(0.1,0.2:-0.5)^{\prime}$, REs are given in the parentheses.			

and the AREs are displayed for $t=4$ and $t=8$ in Tables 3.11 and 3.12 , respectively. We can see that in the second model QIF porformance is much worse than in the first model, the relative efficiency fell below 0.35 in some cases.

Changing the true values of the regression coefficients and performing small sample simulations, we found cases where QIF did really a poor job in estimating the regression coeflicionts. The simulations results from one of those cases are shown in Table 3.13. ITere we fixed $\beta_{0}=0.5 \beta_{1}=0.5$ and $\beta_{2}=-0.5$. The true marginal probabilities in this case do not vary much and are in the range 0.7 to 0.8 . In this case the effeiency of QIF has dropped to as low as 0.168.

Table 3.12: MSE and RE of QIF with both covariates, $t=8$

α	$\operatorname{MSE}\left(\hat{\beta}_{0}\right)$	$\operatorname{MSF}\left(\hat{\beta}_{1}\right)$	$\operatorname{MSE}\left(\hat{\beta}_{2}\right)$
0.00	$0.121(0.797)$	$0.006(0.739)$	$0.039(0.743)$
0.05	$0.147(0.819)$	$0.007(0.734)$	$0.041(0.694)$
0.10	$0.155(0.752)$	$0.001(0.714)$	$0.041(0.712)$
0.15	$0.157(0.734)$	$0.009(0.614)$	$0.042(0.658)$
0.20	$0.146(0.812)$	$0.008(0.693)$	$0.032(0.717)$
0.25	$0.165(0.804)$	$0.008(0.691)$	$0.037(0.571)$
0.30	$0.183(0.646)$	$0.009(0.635)$	$0.035(0.481)$
0.35	$0.201(0.749)$	$0.010(0.685)$	$0.037(0.333)$
$N 0 T E:$	Range of ρ	is $(-0.104,0.351)$	and $\beta=$
$(0.1,0.2,-0.5)^{\prime} . \operatorname{REs}$ are given in parentheses.			

Table 3.13: MSE and RE of QIF with both covariatos, $l=8$

α	$\operatorname{MSE}\left(\hat{\beta}_{0}\right)$	$\operatorname{MSE}\left(\hat{\beta}_{1}\right)$	$\operatorname{MSE}\left(\hat{\beta}_{2}\right)$
0.00	$0.334(0.455)$	$0.067(0.273)$	$0.122(0.448)$
0.05	$0.392(0.440)$	$0.109(0.184)$	$0.131(0.416)$
0.10	$0.442(0.510)$	$0.109(0.228)$	$0.127(0.448)$
0.15	$0.519(0.411)$	$0.135(0.179)$	$0.141(0.385)$
0.20	$0.505(0.411)$	$0.117(0.180)$	$0.156(0.377)$
0.25	$0.518(0.378)$	$0.113(0.234)$	$0.146(0.323)$
0.30	$0.500(0.425)$	$0.159(0.152)$	$0.133(0.286)$
0.35	$0.477(0.349)$	$0.119(0.168)$	$0.152(0.287)$

NOTE: Range of ρ is $(-0.1034,0.351)$ and $\beta=$ $(0.5,0.5,-0.5)^{\prime}$. R.Es are given in parentheses.

III. 6 A robust variance estimator in QIF

As stated in Section III.3.2: Qu, et al. (2000) estimated the covariance matrix C by

$$
\begin{align*}
\bar{C}_{n} & =\frac{1}{n} \sum_{i=1}^{n} g_{i}(\beta) g_{i}^{\prime}(\beta) \\
& =\frac{1}{n} \sum_{i=1}^{n}\left[\begin{array}{cccc}
g_{i 1}(\beta) g_{i 1}^{\prime}(\beta) & g_{i 1}(\beta) g_{i 2}^{\prime}(\beta) & \cdots & g_{i 1}(\beta) g_{i n}^{\prime}(\beta) \\
g_{i 2}(\beta) g_{i 1}^{\prime}(\beta) & g_{i 2}(\beta) g_{i 2}^{\prime}(\beta) & \cdots & g_{i 2}(\beta) g_{i m}^{\prime}(\beta) \\
\vdots & \vdots & \ddots & \\
g_{i m}(\beta) g_{i 1}^{\prime}(\beta) & g_{i m}(\beta) g_{i 2}^{\prime}(\beta) & \cdots & g_{i m}(\beta) g_{i m}^{\prime}(\beta)
\end{array}\right], \tag{3.6.1}
\end{align*}
$$

where

$$
\begin{aligned}
g_{i j}(\beta) & =\left(\frac{\partial \mu_{i}}{\partial \beta}\right)^{\prime} A_{i}^{-1 / 2} M_{j} A_{i}^{-1 / 2}\left(y_{i}-\mu_{i}\right)=D_{i j}^{\prime}(B)\left(y_{i}-\mu_{i}\right), \\
g_{i j}(\beta) g_{i k}^{\prime}(\beta) & =\left(\frac{\partial \mu_{i}}{\partial \beta}\right)^{\prime} A_{i}^{-1 / 2} M_{j} A_{i}^{-1 / 2}\left(y_{i}-\mu_{i}\right)\left(y_{i}-\mu_{i}\right)^{\prime} A_{i}^{-1 / 2} M_{k} A_{i}^{-1 / 2}\left(\frac{\partial \mu_{i}}{\partial B}\right) \\
& =D_{i j}^{\prime}(\beta)\left(y_{i}-\mu_{i}\right)\left(y_{i}-\mu_{i}\right)^{\prime} D_{i k}(\beta) .
\end{aligned}
$$

The estimate \bar{C}_{n} is also called an unstructured estimator since it is obtained without any paramctric specification. Recall that the framework of GEE and QIF has the assumption that there is a common correlation structure across all subjects, but they both estimate the covariance for the i th subject using $\left(y_{i}-\mu_{i}\right)\left(y_{i}-\mu_{i}\right)^{\prime}$, that is, using only the i th observation. This is not an optimal estimator for $\operatorname{Cov}\left(y_{i}\right)$, because it is neither consistent nor efficient since it ignores the basic assumption that there is a common correlation for all subjects. Pan (2001) proposed a robust estimator for $\operatorname{Cov}\left(y_{i}\right)$ in the context of GFF. It is obtained by pooling observations across different subjects and it is given by

$$
\begin{equation*}
V_{i}=A_{i}^{1 / 2}\left(\sum_{i=1}^{n} A_{i}^{-1 / 2}\left(y_{i}-\mu_{i}\right)\left(y_{i}-\mu_{i}\right)^{\prime} A_{i}^{-1 / 2}\right) A_{i}^{1 / 2} . \tag{3.6.2}
\end{equation*}
$$

This estimator could also be used to estimate the covariance for the repeated measurcments on the i th subject in QIF as well. Thus our modified estimate of the
covariance matrix of $g_{i}(\beta)$ is

$$
\bar{W}_{n}-\frac{1}{n} \sum_{i=1}^{n}\left[\begin{array}{cccc}
D_{i 1}^{\prime}(\beta) V_{i} D_{i 1}(\beta) & D_{i 1}^{\prime}(\beta) V_{i} D_{i 2}(\beta) & \cdots & D_{i 1}^{\prime}(\beta) V_{i} D_{i m}(\beta) \tag{3.6.3}\\
D_{i 2}^{\prime}(\beta) V_{i} D_{i 1}(\beta) & D_{i 2}^{\prime}(\beta) V_{i} D_{i 2}(\beta) & \cdots & D_{i 2}^{\prime}(\beta) V_{i} D_{i m}(\beta) \\
\vdots & \vdots & \ddots & \\
D_{i m}^{\prime}(\beta) V_{i} D_{i 1}(\beta) & D_{i m 1}^{\prime}(\beta) V_{i} D_{i 2}(\beta) & \cdots & D_{i m}^{\prime}(\beta) V_{i} D_{i m n}(\beta)
\end{array}\right]
$$

Pase (2001) provided a partial justification showing that asymptotically, $\operatorname{Cov}\left(\operatorname{vec}\left(\bar{W}_{n}\right)\right) \leq \operatorname{Cov}\left(\operatorname{vec}\left(\bar{C}_{n}\right)\right)$. Thus, our proposed modification of QIF is

$$
Q_{n}^{*}(\beta)=n \bar{g}_{n}^{\prime}(\beta) \bar{W}_{n}^{-1} \bar{g}_{n}(\beta) .
$$

In the next section we study the performanee of this modified QIF with respect to the original QIF in small samples.

III. 7 Performance of modified QIF

Here we compare the performance of the modified QIF (mQIF) method discusser in Section III. 6 with respect to the maximum likelihood estimate of the Markov chain model using small-sample simulations. We used models (3.5.1) and (3.5.2) and AR(1) and equicorrelated correlation structures. The MSLs were calculated gencrating 1000 samples of size $n=30$ for both the mQIF and MC estimators. The relative efficiency is calculated by the ratio

$$
R E=\frac{\text { MSE of MC estimate }}{\text { MSE of mQIF estimate }} .
$$

III.7.1 Small-sample performance with AR.(1) structure

Tables 3.14 and 3.15 shows the MSEs and relative efficiency of mQIF from model (3.5.1) with $t=4$ and $t=8$, respectively. Comparing these efficiency values with Tables 3.9 and 3.10, we can see that the mQIF estimator is an improvement over QIF estimator. For small values of ρ, mOIF is comparable with MC , specially the RE of $\widehat{\beta}_{2}$ is close to one when ρ is near \%ero. However, for large values of r ho, even the mQIF is less cflicient than MC, though it performs better than the QIF estimator.

Table 3.14: MSE and RE of mQLF and MC with one covariatc, $t=4$

p	$\operatorname{MSE}\left(\widehat{\beta}_{0}\right)$		RE	$\operatorname{MSE}\left(\widehat{\beta}_{1}\right)$		RE
	mQIF	MC		mQIF	MC	
0.00	0.041	0.037	0.913	0.044	0.044	0.995
0.05	0.040	0.036	0.906	0.052	0.052	0.996
0.10	0.057	0.052	0.908	0.042	0.042	0.993
0.15	0.053	0.047	0.887	0.044	0.044	0.989
0.20	0.056	0.049	0.875	0.043	0.042	0.976
0.25	0.060	0.054	0.899	0.035	0.033	0.937
0.30	0.059	0.054	0.918	0.039	0.036	0.919
0.35	0.072	0.062	0.862	0.034	0.028	0.839
0.40	0.079	0.064	0.808	0.037	0.028	0.755
0.45	0.088	0.077	0.869	0.034	0.022	0.651

Table 3.15: MSE and RE of mOIF and MC with one covariate, $t=8$

	$\operatorname{MSE}\left(\widehat{\beta}_{0}\right)$				$\operatorname{MSE}\left(\widehat{\beta}_{1}\right)$		
p	mQIF	MC	RE		mQIF	MC	RE
0.00	0.019	0.018	0.934		0.022	0.022	1.002
0.05	0.021	0.020	0.964		0.020	0.020	1.010
0.10	0.027	0.025	0.915		0.022	0.022	1.001
0.15	0.024	0.023	0.962		0.023	0.022	0.986
0.20	0.029	0.027	0.925		0.021	0.021	0.989
0.25	0.033	0.030	0.909		0.018	0.017	0.922
0.30	0.037	0.033	0.909		0.019	0.015	0.803
0.35	0.040	0.034	0.849		0.017	0.011	0.685

Table 3.16: MSE and RE of mQIF with both covariates, $t=4$

α	$\operatorname{MSE}\left(\hat{\beta}_{0}\right)$	$\operatorname{MSE}\left(\widehat{\beta}_{1}\right)$	$\operatorname{MSE}\left(\widehat{\beta}_{2}\right)$
0.00	$0.284(0.861)$	$0.042(0.835)$	$0.049(0.938)$
0.05	$0.305(0.816)$	$0.044(0.799)$	$0.048(0.983)$
0.10	$0.302(0.846)$	$0.041(0.792)$	$0.050(0.961)$
0.15	$0.275(0.834)$	$0.040(0.828)$	$0.047(0.937)$
0.20	$0.324(0.785)$	$0.048(0.775)$	$0.050(0.898)$
0.25	$0.327(0.784)$	$0.041(0.770)$	$0.048(0.807)$
0.30	$0.346(0.788)$	$0.044(0.787)$	$0.050(0.779)$
0.35	$0.333(0.792)$	$0.046(0.712)$	$0.044(0.593)$
NOTE:	Range of β	is $(-0.162,0.358)$	and β
$(0.1,0.2,-0.5)^{\prime}$.	RE are given in parentheses.		

Next, we compare mQlF estimator with simulating observations from model 3.5.2 that includes a discrete covariate. The results of the simulations are in Tables 3.16 and 3.17. When we compare these numbers with the ones in Tables 3.11 and 3.12 , we can see that even in this case mQIF does better than the QIF estimator. So the mQIF estimator ont performs QIF estimator in all cases.

Finally, we recxamined the cases where QIF did very poorly and checked the efficiency of mQIF in those cases. The results are in Table 3.18. Although mQIF is much less efficient compared to the MC estimator, but it performs better than QIF. We can see that the efficiency of $\widehat{\beta}_{2}$ is twice as high as the corresponding QIF estimator.

III.7.2 Small-sample performance with equicorrelated structure

Now, we compare the performance of mQIF estimator with QIF estimator through simulated small sample data with equicorrelated structure. We kept the two covariates the same in models 3.5.1 and 3.5.2. The observations are gencrated from the multivariate model with equicorrelated structure, and MSEs are calculated for mQIF

Table 3.17: MSE and RE of QIF with both covariates, $t=8$

α	$\operatorname{MSE}\left(\widehat{\beta}_{0}\right)$	$\operatorname{MSE}\left(\widehat{\beta}_{1}\right)$	$\operatorname{MSE}\left(\hat{\beta}_{2}\right)$
0.00	$0.114(0.852)$	$0.006(0.821)$	$0.030(0.966)$
0.05	$0.134(0.894)$	$0.007(0.833)$	$0.030(0.952)$
0.10	$0.137(0.854)$	$0.007(0.792)$	$0.030(0.968)$
0.15	$0.141(0.818)$	$0.008(0.704)$	$0.030(0.915)$
0.20	$0.139(0.853)$	$0.007(0.794)$	$0.025(0.909)$
0.25	$0.159(0.836)$	$0.008(0.771)$	$0.030(0.704)$
0.30	$0.157(0.756)$	$0.008(0.715)$	$0.023(0.723)$
0.35	$0.192(0.784)$	$0.010(0.709)$	$0.024(0.514)$

NOTE: Range of ρ is $(-0.104,0.351)$ and $\beta=$ $(0.1,0.2,-0.5)^{\prime}$. RE are given in parentheses.

Table 3.18: MSE and RE of QIF with both covariates, $l=8$

α	$\operatorname{MSE}\left(\widehat{\beta}_{0}\right)$	$\operatorname{MSE}\left(\widehat{\beta}_{1}\right)$	$\operatorname{MSE}\left(\hat{\beta}_{2}\right)$
0.00	$0.253(0.600)$	$0.041(0.445)$	$0.067(0.816)$
0.05	$0.267(0.646)$	$0.042(0.481)$	$0.060(0.903)$
0.10	$0.317(0.711)$	$0.040(0.617)$	$0.071(0.800)$
0.15	$0.330(0.647)$	$0.045(0.537)$	$0.070(0.774)$
0.20	$0.307(0.677)$	$0.051(0.409)$	$0.075(0.782)$
0.25	$0.317(0.652)$	$0.062(0.429)$	$0.074(0.641)$
0.30	$0.342(0.621)$	$0.065(0.374)$	$0.067(0.571)$
0.35	$0.314(0.530)$	$0.059(0.341)$	$0.074(0.593)$
NOTE:	Range of ρ	is $(-0.008,0.359)$	and $\beta=$
$(0.5,0.5,-0.5)^{\prime}$.	RE are given in parentheses.		

Table 3.19: MSE and RE of QIF and mQIF with one covariate, $t=4$

	$\operatorname{MSE}\left(\beta_{0}\right)$				$\operatorname{MSE}\left(\widehat{\beta}_{1}\right)$		
ρ	QIF	mQIF	RE		QIF	mQIF	RE
0.00	0.046	0.039	0.848		0.176	0.159	0.905
0.05	0.056	0.044	0.779		0.204	0.176	0.863
0.10	0.072	0.050	0.700		0.188	0.174	0.925
0.15	0.068	0.053	0.782		0.217	0.188	0.865
0.20	0.078	0.062	0.790		0.217	0.202	0.931
0.25	0.084	0.066	0.783		0.228	0.206	0.901
0.30	0.092	0.066	0.721		0.230	0.215	0.933
0.35	0.100	0.074	0.733		0.240	0.221	0.921
0.40	0.111	0.084	0.761		0.263	0.249	0.946

NOTE: Upper bound of p is 0.428 and $\beta=(0.5,-0.5)^{\prime}$.
and QIF estimators. The efficiency is calculated as

$$
R E=\frac{\text { MSE of mQIF estimate }}{\text { MSE of QIF estimate }} .
$$

The simulation results can be found in the following tables 3.19, 3.20, 3.21 and 3.22. The message is clear, mQIF is a better estimator than QIF estimator.

III. 8 Misspecification of correlation structure

Qu at el. (2000) showed that if the repeated measurements are continuous and normally distributed, under the correct assumption of working correlation structure, QIF performs as good as GFF. And if the working correlation structure is misspecified, the QIF approach is more efficient than GEE. In this section we examine the performance of the MC method under missperification as opposed to the mQIF estimator under correct specificalion of the correlation structure for binary data.

We generated binary samples of size $n=30$ with repented measurements equal to eight $(t=8)$, and equicorrelated structure, from models 3.5 .1 and 3.5.2. Here modificd QIF estimates are obtained using the basic matrix for equicorrelated structure,

Table 3.20: MSE and RE of QIF and mQIF with one covariate, $t=8$

	$\operatorname{MSE}\left(\hat{\beta}_{0}\right)$				$\operatorname{MSE}\left(\hat{\beta}_{l}\right)$		
ρ	QIF	mQIF	RE		QIF	mQIF	RE
0	0.025	0.022	0.84		0.026	0.021	0.806
0.05	0.033	0.029	0.86		0.029	0.023	0.802
0.10	0.039	0.032	0.84		0.028	0.022	0.774
0.15	0.053	0.044	0.83		0.023	0.019	0.837
0.20	0.068	0.051	0.74		0.026	0.020	0.777
0.25	0.071	0.051	0.73		0.022	0.017	0.779
0.30	0.083	0.065	0.78	0.021	0.017	0.819	

NOTE: Upper bound of β is 0.327 and $\beta=(0.5, \cdots 0.5)^{\prime}$.

Table 3.21: MSE and RE of mQIF with both covariates, $t=4$

α	$\operatorname{MSE}\left(\hat{\beta}_{0}\right)$	$\operatorname{MSE}\left(\hat{\beta}_{1}\right)$	$\operatorname{MSE}\left(\hat{\beta}_{2}\right)$
0.00	$0.608(0.822)$	$0.106(0.733)$	$0.140(0.910)$
0.05	$0.512(0.830)$	$0.098(0.713)$	$0.152(0.896)$
0.10	$0.518(0.802)$	$0.093(0.668)$	$0.154(0.968)$
0.15	$0.511(0.840)$	$0.097(0.700)$	$0.166(0.960)$
0.20	$0.525(0.844)$	$0.101(0.708)$	$0.162(0.945)$
0.25	$0.453(0.859)$	$0.089(0.665)$	$0.181(0.894)$
0.30	$0.491(0.890)$	$0.094(0.738)$	$0.167(0.935)$
0.35	$0.473(0.843)$	$0.099(0.615)$	$0.169(0.963)$

NOTE: Lpper bound of ρ is 0.365 and $\beta=(0.1,0.2,-0.5)^{\prime}$. RE are given in parentheses.

Table 3.22: MSE and RE of mQIF with both covariates, $t=8$

α	$\operatorname{MSE}\left(\hat{\beta}_{0}\right)$	$\operatorname{MSE}\left(\hat{\beta}_{1}\right)$	$\operatorname{MSE}\left(\hat{\beta}_{2}\right)$
0.00	$0.100(0.757)$	$0.005(0.764)$	$0.025(0.668)$
0.05	$0.111(0.764)$	$0.005(0.715)$	$0.029(0.691)$
0.10	$0.111(0.762)$	$0.005(0.759)$	$0.025(0.667)$
0.15	$0.109(0.811)$	$0.005(0.744)$	$0.027(0.680)$
0.20	$0.110(0.751)$	$0.005(0.672)$	$0.024(0.653)$

NOTE: Cpper bound of ρ is 0.232 and $\beta=(0.1,0.2,-0.5)^{\prime}$.
RE are given in parentheses.
which means that there is no model misspecification for mQIF estimator. Since the correlation structure under first order Markov chain model is $\mathrm{AR}(1)$, it is a misspecified model for these simulated data. The mean spuare errors arc calculated repeating the process 1000 times. The relative efficiency is calculated as

$$
R E=\frac{\text { MSE of MC estimate }}{\text { MSE of mQIF estimate }} .
$$

The results are displayed in Tables 3.23 and 3.24 . We can sce from the tables the relative efficiencics are close to 1 , which indicates thet the two approaches are almost equivalent, for different value of p. The results show that MC estimator is quite robust and efficient as the mQIF estimator.

III. 9 Real data examples

In this section, we apply QIF, mQIF, Markov chain and GEE methods of estimation on real data given in Chapter I.

Example 3.1. Six city data.
We applied the MC method first to the six city data and calculated the feasible bounds on the correlation, and found the range to be $(-0.136,0.927)$, which is pretty wide. For this data the GEE estimate of the correlation is 0.40 which is within the feasible range. Recall that QIF and mQIF methods do not give an estimate of the

Table 3.23: MSE and RE of QIF and mQlF with one covariate, $t=8$

	$\operatorname{MSE}\left(\widehat{\beta}_{0}\right)$					$\operatorname{MSE}\left(\widehat{\beta}_{1}\right)$	
	MC	mQIF	RE		MC	mQIF	RE
0	0.021	0.021	0.979		0.022	0.022	0.993
0.05	0.023	0.024	0.955		0.021	0.020	1.003
0.10	0.035	0.036	0.986		0.022	0.022	1.007
0.15	0.040	0.04 l	0.969		0.021	0.022	0.956
0.20	0.047	0.048	0.983		0.019	0.019	0.975
0.25	0.058	0.059	0.985		0.018	0.021	0.860
0.30	0.066	0.065	1.016		0.015	0.017	0.863

NOTE: Upper bound of ρ is 0.313 and $\beta=(0.5,-0.5)^{\prime}$.

Table 3.24: MSE and RE of mQIF with both covariates, $t=8$

α	$\operatorname{MSE}\left(\hat{\beta}_{0}\right)$	$\operatorname{MSE}\left(\hat{\beta}_{1}\right)$	$\operatorname{MSE}\left(\hat{\beta}_{2}\right)$
0.00	$0.094(0.951)$	$0.004(0.943)$	$0.033(0.894)$
0.05	$0.096(0.951)$	$0.004(0.923)$	$0.030(0.814)$
0.10	$0.1 .11(0.948)$	$0.004(0.918)$	$0.033(0.879)$
0.15	$0.101(0.985)$	$0.004(0.953)$	$0.031(0.884)$
0.20	$0.104(0.946)$	$0.004(0.953)$	$0.031(0.830)$

NOTE: Upper bound of ρ is 0.216 and $\beta=(0.1,0.2,-0.5)^{\prime}$. RE are given in parentheses.
correlation parameter. The results for the six city data using the four methods of estimation are shown in Table 3.25. The estimates and standard errors are very similar for the four methods. They all show that the maternal smoking habit is not. a significant factor for children's respiratory illness.

Table 3.25: Analysis of parameter estimates for Six-city dala

(i) Paranncter	Est.	SE	p-value	(ii) Parameter	Est.	SE	p-value
Intercept	-1.917	0.120	<0.001	Intercept.	-1.918	0.116	<0.001
Age	-0.147	0.059	0.0122	Age	-0.147	0.056	0.0084
Smoking	0.287	0.190	0.1316^{*}	Smoking	0.300	0.196	0.1262^{*}
Age \times Smoking	0.078	0.090	0.3840	Age \times Smoking	0.076	0.094	0.4176
(iii) Parameter	Est.	SE	p-value	(iv)Parameter	Est.	SE	p-value
Intercept	-1.921	0.110	<0.001	Intercept	-1.920	0.120	<0.001
Age	-0.152	0.070	0.0292	Age	-0.147	0.059	0.0131
Smoking	0.295	0.171	0.0849^{*}	Smoking	0.295	0.190	0.1201^{*}
Age \times Smoking	0.112	0.058	0.4394	Age \times Smoking	0.082	0.091	0.3688
Est.corr	Feasible range	Est.corr					
0.384	$-0.136,0.927]$	0.400					

NOTE: (i) QIF (ii) mQIF (iii) MC and (iv) GEE

Example 3.2. Hamilton's depression study
We consider next the analysis of the Ham-D data. In the analysis we included only those patients with all 8 measurements so that the data is balanced. The analysis using the four methods is displayed in Table 3.26. For this data, the range of the correlation parameter calculated fitting the MC method is $(-0.043,0.632)$. It is also wide but the interval is not as broad as the six-city data. We can sce from the table that the estimates of correlation parametcr fall within the range for both MC and GEE methods, and both the methods show that treatment is significant. But for QIF and mQIF, the p-valucs are larger than 0.05 indicating that treatment is not a
significant factor, which we believe is an erroneous conclusion.

Table 3.26: Analysis of parameter estimates for Ham-D data

(i) Parameter	Est.	SE	p-value	(ii) Parameter	Est.	SE	p-value
Intercept	-6.919	0.382	<0.001	Intercept	-6.789	0.376	<0.001
Treatment	0.276	0.262	0.2839^{*}	Treatment	0.280	0.261	0.2839^{*}
Time	1.781	0.096	<0.001	Time	1.732	0.097	<0.001
(iii) Parameter	Est.	SE	p-valuc	(iv) Parameter	Est.	SE	p-value
Intercept	-4.164	0.276	<0.001	Intercept	-4.298	0.232	<0.001
Trcalment	0.432	0.204	0.0343^{*}	Trcalment	0.487	0.213	0.0222^{*}
Time	0.917	0.054	<0.001	Time	0.949	0.057	<0.001
Est.corr	Fréchet bounds	Est.corr					
0.499	$[-0.043,0.632]$	0.441					

NOTE: (i) QIF, (ii) mQIF, (iii) MC and (iv) GEE

CHAPTER IV
 HIGH ORDER MARKOV CHAIN MODELS

IV. 1 Introduction

We have discussed inı Chapter II, a first order Markov chain model for dependent binary observations. A potential approach for constructing bigher order Markov chain models is through the use of copulas, which are multivariate distributions with uniform margins. In this chapter we give an introduction to copulas and show how can they be used to construct multivariate binary distributions with specified marginal means and dependence structure.

IV. 2 Introduction of copulas

Constructing multivariate distributions using copulas has become popular in recent years. The motivation for the development of copula nethods is rooted in the atiempt of constructing muluariate distributions with given non-normal marginal distributions. The copula method is based on the idea that the distribution function could be used to convert the marginal distribution to a uniform distribution, and then a joint distribution with specified marginal distribution can be obtained using a multivariate distribution with uniform marginals. There are many families of copulas that differ in the type of dependence they exhibil. In this section we give a brief description of copulas.

Definition 4.1. A t-dimensional copula is a function C from $[0,1]^{t} \rightarrow[0,1]$ with the following properties:

1. $C\left(1,1, \cdots, 1, u_{i}, 1, \cdots, 1\right)=u_{i}$ for all $i=1,2, \cdots$, . .
2. $C\left(u_{1}, \cdots, u_{t}\right)=0$ if at least one $u_{i}=0$ for $i=1,2, \cdots, l$.
3. For oll $u_{i_{1}}<u_{i_{2}}$, where $i=1,2, \cdots, t$,

$$
\sum_{j_{1}=1}^{2} \sum_{j_{2}=1}^{2} \cdots \sum_{j_{l}=1}^{2}(-1)^{j_{1} \cdot j_{2}+\cdots+j} C\left(u_{j_{j_{2}}}, u_{2_{j_{2}}} \cdots, u_{j_{j_{t}}}\right) \geq 0 .
$$

The following theorem duc to Sklar (1959) is fundamental to the development of copulas. Sklar's theorem elucidates the role that copulas play in the relationship between multivariate distribution functions and their univariate margins.

Theorem 4.1. Sklar's Theorem. Let H be a joind cumulative distribution function with margins $F_{1}, F_{2}, \cdots, F_{t}$. Then there exists a t-dimensional copula C such for all $y_{1}, y_{2}, \cdots, y_{t} \in \mathfrak{R}$,

$$
H\left(y_{1}, y_{2}, \cdots, y_{t}\right)=C\left(F_{1}\left(y_{1}\right), F_{2}\left(y_{2}\right), \cdots, F_{t}\left(y_{t}\right)\right)
$$

If $F_{1}, F_{2}, \cdots, F_{t}$ are continuous distribution functions, then C is unique; otherwise C is uniquely determined on range $\left(F_{1}\right) \times$ range $\left(F_{1}\right) \times \cdots \times$ range $\left(F_{t}\right)$.

Lemma 4.1. Fréchet-Hoeffding Bounds. If C is a t-dimensional copula, then for all $u_{i} \in[0,1], i=1,2, \cdots, l$,

$$
C_{L}\left(u_{1}, u_{2}, \cdots, u_{t}\right) \leq C\left(u_{1}, u_{2}, \cdots, u_{t}\right) \leq C_{b}\left(u_{1}, u_{2}, \cdots, u_{t}\right),
$$

where C_{I} and C_{U} are defined as

$$
\begin{aligned}
& C_{L}\left(u_{1}, u_{2}, \cdots, u_{t}\right)=\max \left(0, u_{1} \div u_{2}+\cdots+u_{t}-(t-1)\right), \\
& C_{U}\left(u_{1}, u_{2}, \cdots, u_{t}\right)=\min \left(u_{1}, u_{2}, \cdots, u_{t}\right) .
\end{aligned}
$$

C_{U} is a copula for any t, but C_{L} is a copula only when $t=2$.

IV. 3 Examples of bivariate copulas

In this section, we present some well known bivariate copulas.

Example 4.1. (Independence Copula). The function given by

$$
C(u, v)=u v
$$

is the bivariate Independence copula. Its density is simply $c(u, v)=1$.

Figure 4.1: Density function of bivariate Gaussian copula

Example 4.2. (Bivariate Gaussian copula). For $0 \leq \delta \leq 1, C(u, d ; \bar{\delta})=$ $\Phi_{\delta}\left(\Phi^{-1}(u), \Phi^{-1}(v)\right)$, where Φ is the standard normal distribution function, and $\Phi_{\dot{j}}$ is the bivariate standard normal distribution function with corvelation δ. Let $x=\Phi^{-1}(u)$ and $y=\Phi^{-1}(v)$, the densily function is given by

$$
c(u, v ; \delta)=\left(1-\delta^{2}\right)^{-1 / 2} \exp \left\{-\frac{1}{2}\left(1-\delta^{2}\right)^{-1}\left[x^{2}+y^{2}-2 \delta x y\right]\right\} \exp \left[\frac{1}{2}\left(x^{2}+y^{2}\right)\right]
$$

Example 4.3. (Frank Copula). For $0 \leq \delta \leq \infty, \eta=1-e^{-\eta}$,

$$
C(u, v ; \delta)=-\eta^{-1} \log \left(\left[\eta-\left(1-e^{-\delta u}\right)\left(1-e^{-\delta u \eta}\right)\right] / \eta\right) .
$$

The density is

$$
\left.c(u, v, \delta)=\delta \eta e^{-\delta(u+v)} /\left[\eta-\left(1-e^{-\delta u}\right)\left(1-e^{-\delta v}\right)\right]\right]^{2} .
$$

Example 4.4. (Gumbel Copula). Let $\bar{u}=-\log (u), \tilde{v}=-\log (v)$, for $0 \leq \delta \leq \infty$,

$$
C(u, v ; \delta)-\exp \left\{-\left(\bar{u}^{\delta}-\tilde{v}^{\delta}\right)^{1 / \delta}\right\} .
$$

The density is

$$
c(u, v ; \delta)=C(u, v ; \delta)(u v)^{-1} \frac{(\tilde{u} \tilde{v})^{\delta-1}}{\left(\tilde{u}^{\delta}+\tilde{v}^{\delta}\right)^{2-1 / \delta}}\left[\left(\tilde{u}^{\delta}+\tilde{v}^{\delta}\right)^{1 / \delta} \div \delta-1\right] .
$$

Figure 4.2: Density function of Frank copula

Figure 4.3: Density function of Gumbel copula

In a multivariate copula model, the cumulative distribution function of a random vector $Y-\left(Y_{1}, \cdots, Y_{l}\right)$ is given by

$$
\begin{equation*}
F(y)=C\left(F_{1}\left(y_{1}\right), \cdots, F_{t}\left(y_{t}\right)\right) \tag{4.3.1}
\end{equation*}
$$

where C is a t-dimensional copula and F_{i} is marginal currulative distribution function of Y_{x}. If Y is continuous, then its probability density function is

$$
\begin{equation*}
f(y)=\prod_{i=1}^{1} f_{i}\left(y_{i}\right) c\left(F_{1}\left(y_{1}\right), \cdots, F_{t}\left(y_{t}\right)\right) \tag{4.3.2}
\end{equation*}
$$

where f_{i} is marginal probability density function of Y_{i} and

$$
\begin{equation*}
c\left(F_{1}\left(y_{1}\right), \cdots, F_{t}\left(y_{t}\right)\right)=\frac{\partial^{t} C\left(u_{1} ; \cdots, u_{t}\right)}{\partial u_{1} \cdots \partial u_{t-1}} \tag{4.3.3}
\end{equation*}
$$

is the density of copula C.

For discrete margins the mullivariate probability mass function is given by

$$
\begin{equation*}
P(Y=y)=\sum_{j_{1}=1}^{2} \sum_{j_{2}=1}^{2} \cdots \sum_{j_{t}=1}^{2}(-1)^{\sum_{k-1}^{t} j_{k}} C\left(u_{1_{j_{1}}}\left(y_{1}\right), \cdots, u_{1_{j}}\left(y_{t}\right)\right), \tag{4.3.4}
\end{equation*}
$$

where $u_{i 1}\left(y_{i}\right)=F_{i}\left(y_{i-}\right)$ and $u_{i 2}\left(y_{i}\right)=F_{i}\left(y_{i}\right)$. Here $F_{i}\left(y_{i-}\right)$ is the left-hand limit of F_{i} at y_{i}, which is equal to $F_{i}\left(y_{i}-1\right)$ when the support of F_{i} is the set of integers.

In particular, suppose Y_{i} is a binary variable with $P\left(Y_{i}=1\right)=p_{i}$. The distribution function of Y_{i} is

$$
F_{i}\left(y_{k}\right)- \begin{cases}0 & y_{i}<0 \\ 1-p_{i} & 0 \leq y_{i}<1 \\ 1 & y_{i} \geq 1\end{cases}
$$

If $t=3$, according to (4.3.4), the joint probability function is of the form

$$
\begin{align*}
P\left(Y_{1}=y_{1}, Y_{2}=y_{2}, Y_{3}=y_{3}\right)= & C\left(u_{12}, u_{22}, u_{32}\right)-C\left(u_{12}, u_{22}, u_{32}\right)-C\left(u_{12}, u_{22}, u_{32}\right) \\
& \ldots C\left(u_{12}, u_{22}, u_{32}\right)+C\left(u_{12}, u_{22}, u_{32}\right)+C\left(u_{12}, u_{22}, u_{32}\right) \\
& \div C\left(u_{12}, u_{22}, u_{32}\right)-C\left(u_{12}, u_{22}, u_{32}\right) . \tag{4.3.5}
\end{align*}
$$

The eight probabilities can be written in a table form.

Table 4.1: Trivariate joint probability using copula

$y_{1} y_{2} y_{3}$	$P\left(Y_{1}=y_{1}, Y_{2}=y_{2}: Y_{3}=y_{3}\right)$
$\begin{array}{lll}1 & 1\end{array}$	$\begin{aligned} & p_{1}+p_{2}-p_{3}-2+C\left(1,1-p_{2}, 1-p_{3}\right)+C\left(1-p_{1}, 1,1-p_{3}\right) \\ & +C\left(1-p_{1}, 1-p_{2}, 1\right) \cdots C\left(1-p_{1,1}-p_{2}, 1-p_{3}\right) \end{aligned}$
110	$\begin{aligned} & 1-p_{3}-C\left(1,1-p_{2}, 1-p_{3}\right)-C\left(1-p_{1}, 1,1-p_{3}\right) \\ & +C\left(1-p_{1}, 1-p_{2}, 1-p_{3}\right) \end{aligned}$
101	$\begin{aligned} & 1-p_{2}-C\left(1,1-p_{2}, 1-p_{3}\right)-C\left(1-p_{1}, 1-p_{2}, 1\right) \\ & +C\left(1-p_{1}, 1-p_{2}, 1-p_{3}\right) \end{aligned}$
$\begin{array}{llll}0 & 1 & 1\end{array}$	$\begin{aligned} & 1-p_{1}-C\left(1 \cdots p_{1}, 1,1-p_{3}\right)-C\left(1-p_{1}, 1-p_{2}, 1\right) \\ & +C\left(1-p_{1}, 1-p_{2}, 1-p_{3}\right) \end{aligned}$
100	$C\left(1,1-p_{2}, 1-p_{3}\right)-C\left(1-p_{1}, 1-p_{2}, 1-p_{3}\right)$
${ }_{0} 110$	$C\left(1-p_{1}, 1,1-p_{3}\right)-C\left(1-p_{1}, 1-p_{2}, 1-p_{3}\right)$
$\begin{array}{lll}0 & 0 & 1\end{array}$	$C\left(1-p_{1}, 1-p_{2}, 1\right)-C\left(1-p_{1}, 1-p_{2}, 1-p_{3}\right)$
0) 00	$C\left(1-p_{1} ; 1-p_{2}, 1-p_{3}\right)$

IV. 4 Markov chain based on copulas

A first order Markov chain with given univariatc binary margims car be constructed from a bivariate copula. This is a generalization of the normal $\mathrm{AR}(1)$ time series, since the normal $\mathrm{AR}(1)$ time series can be obtained using the bivariate normal copula and univariate normal margins. A Markov chain of sccond order, can be constructed from a trivariate copula which has the property that the $(1,2)$ and $(2,3)$ bivariate margins are the same. This generalizes the normal $\mathrm{AR}(2)$ time scries. Extensions to Markov chains of higher order require multivariate copulas with constraints on the lower dimensional margins.

The description of a stationary Markov chain with discrete state space based on a bivariate copula $C(u, v)$ is as follows. Suppose that $\left\{Y_{t}, t=1,2, \ldots\right\}$ takes nonnegative integers values. Let $F\left(y_{t}\right)$ and $f\left(y_{t}\right)$ be the cdf and pmf of Y_{t}, respectively.

The transition distribution function from Y_{t-1} to Y_{t} is given by

$$
\begin{aligned}
H\left(y_{t} \mid y_{t-1}\right) & =P\left(Y_{t} \leq y_{t} \mid Y_{t-1}=y_{t-1}\right) \\
& =\left[C\left(F\left(y_{t-1}\right), F\left(y_{t}\right)\right)-C\left(F\left(y_{t-1}-1\right), F\left(y_{t}\right)\right)\right] / f\left(y_{t-1}\right) .
\end{aligned}
$$

Escarela at cl (2009) have discussed a fully parametric first order autoregressive model for longitudinal binary data using bivariate Gaussian copula.

More gencrally, stationary Markov chains of order m-- 1 can be constructed from an m-variate copula C that satisfies the following conditions: (i) the bivariate margins $C_{i j}$ are such that $C_{i, i+l}=\left(C_{1, t-l}, l=1, \cdots, m-2, i=2, \cdots, m-l\right.$; (ii) the higher-dimensional margins are such that $C_{i_{1}, \cdots, i_{k}}=C_{1_{1}, i_{2}-i_{1}+1, \cdots, i_{k}-i_{1}+1}$ for $1 \leq i_{1}<$ $\cdots<i_{k} \leq m, 3 \leq k \leq m-1$; and (iii) C is differentiable in its first $m-1$ arguments. For sccond order Markov chains, these conditions simply become $C_{12}=C_{23}$.

If $F_{1, \cdots, m}-C(F, \cdots, F)$ is an m-variate cdf, such that C is a copula with the above properties, then the transition off of the stationary Markov chain is

$$
\begin{equation*}
H\left(y_{t} \mid y_{t-m+1}, \cdots, y_{t-1}\right)=\frac{a\left(F\left(y_{t-m+1}\right), \cdots, F\left(y_{t}\right)\right)}{b\left(F\left(y_{t-m+1}\right), \cdots, F\left(y_{t}\right)\right)} \tag{4.4.1}
\end{equation*}
$$

where

$$
\begin{equation*}
a\left(F\left(y_{t-m+1}\right), \cdots, F\left(y_{t}\right)\right)=\frac{\partial^{m-1} C}{\partial u_{1} \cdots \partial u_{m_{n}-1}}(u) \tag{4.4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
b\left(F\left(y_{t-m+1}\right), \cdots, F\left(y_{t}\right)\right)=\frac{\partial^{m-1} C_{1 \cdots m_{2}-1}}{\partial u_{1} \cdots \partial u_{m-1}}\left(u_{1}, \cdots, u_{m-1}\right) \tag{4.4.3}
\end{equation*}
$$

with $C_{1 \ldots m \ldots 1}$ be an $(m-1)$-dimensional marginal of C.

IV.4. A feasible family of copula

Herc, we discuss a farmily of copula that can be used to construct higher order Markov chain. Let ψ be a Laplace transformation and $l_{i}=\left(v_{i}+t-1\right)^{-1}$, where v_{i}^{\prime} 's are constants. Consider the copula

$$
\begin{equation*}
C(\mathbf{u})=\psi\left(-\sum_{i<j} \log K_{i j}\left(e^{-t_{i} \psi^{-1}\left(u_{2}\right)}, e^{-I_{j} \psi^{1}\left(u_{j}\right)}\right)+\sum_{i=1}^{t} v_{i} l_{i} \psi^{-1}\left(u_{i}\right)\right) \tag{4.4.4}
\end{equation*}
$$

where $K_{i j}, 1 \leq i<j \leq t$ are bivariate copulas. An interpretation is that the Laplace transformation ψ leads to a minimal level of pairwise dependence, the copulas $K_{i j}$ add some individual pairwise dependence beyond the global dependence, and the parameters v_{i} lead to bivariate and multivariate asymmetry.

A useful special case of (4.4.4) is the following. Let $t=3, K_{1,3}(u, v)=u v$, $v_{1}=v_{3}=-1, v_{2}=0, K_{12}(u, v)=K_{23}(u, v)=K(u, v)$. Then (4.4.4) becomes

$$
\begin{align*}
C(\mathbf{u})= & \psi\left(-\log K\left(e^{-\psi^{\mathrm{I}}\left(u_{1}\right)}, e^{-0.5 \psi^{-1}\left(u_{2}\right)}\right)\right. \\
& \left.-\log K\left(c^{-\psi^{-1}\left\{u_{3}\right\}}: e^{-0.5 \psi^{1}\left\{u_{2}\right)}\right)\right) . \tag{4.4.5}
\end{align*}
$$

Here the (1.2) and (3,2) bivariale margins of (4.4.5) are the same and are more concordant than the (1,3) margin. Hence this model would be appropriate for generating a second order Markov chain. With $j=1,3$, the bivariate margins of $(1,2)$ and $(3,2)$ are

$$
\begin{equation*}
\psi\left(-\log K\left(e^{-\psi^{-1}\left(u_{j}\right)}, e^{-0.5 \psi^{-1}\left(u_{2}\right)}\right)+0.5 \psi^{-1}\left(u_{2}\right)\right) . \tag{4.4.6}
\end{equation*}
$$

We can choose K as the bivariate Gumbel copula with parameter $\delta \geq 1$, and w be $\psi(s)=\operatorname{cxp}\left(-s^{1 / \theta}\right)$ with parameter $\theta \geq 1$. For this ψ, we have $\dot{\psi}^{-1}(s)=(-\log (s))^{\theta}$. Then (4.4.5) can be written as

$$
\begin{equation*}
C(\mathbf{u})=\exp \left\{-\left[\left(z_{1}^{\theta}\right)^{\delta}+\left(0.5 z_{2}^{\theta}\right)^{\delta}\right]^{1 / \delta}-\left[\left(z_{3}^{\theta}\right)^{\delta}+\left(0.5 z_{2}^{\theta}\right)^{\delta}\right]^{1 / \delta}\right\}^{1 / \theta}, \tag{4.4.7}
\end{equation*}
$$

where $z_{i}=-\log \left(u_{i}\right), i=1,2,3$. The bivariate margins are

$$
\begin{equation*}
C_{i 2}\left(u_{i} ; u_{2}\right)=\exp \left\{-\left[\left(z_{i}^{\theta}\right)^{\delta}+\left(0.5 z_{2}^{\theta}\right)^{\delta}\right]^{1 / \delta}+0.5 z_{2}^{\theta}\right\}^{1 / \theta} . \tag{4.4.8}
\end{equation*}
$$

Further research along these lines will be pursued in the future.

CHAPTER V

DISCUSSION

There is a vast litcrature on the analysis of longitudinal and clustcred binary data. Much of it is focused on marginal models, due to the difficulty in constructing proper likelihood models. Our first goal in this dissertation is to study multivariate binary distributions namely the first order Markov chain model and the multivariate probit model. The first order Markov chain model results in first order autorcgressive correlation structure and is appropriate for analyang longitudinal data. The multivariate probit model is useful to analyze both longitudinal and clustered binary data. For both models we studied maximum likelihood estimates and their asymptotic variances computed via Fisher information matrices. Large and small sample simulations show that the estimates are comparable in terms of efficiency and no one model is uniformly superior over the other model. Other multivariate binary models include the quadratic exponential model. We checked numerically that the quadratic exponential family generates the same probability distribution as the Markov chaiu model for the autoregressive correlation structure.

As montioned earlier marginal models do not specify the complete distribution and are motivated by quasi-likelihood idcas. A popular parameter estimation procedure in marginal models is the generalized cstimation equations method. Though popular this method has several drawbacks. We have used simulations to show that the generalized estimation equations method is less efficient wher compared to the maximum likelihood cstimates for the Markov chain model. The efficiency is poor when there is a high correlation in the data. An alternative to the generalized estimating equations is the quadratic inference function (QIF) approach due to Qu et al. (2000). This method bypasses estimating the corrclation parameter. We have shown that this method is also less efficient than the maximum likelihood estimates for the Markov chain model. We also introduced a modified quadratic inference method (mQIF) and showed using simulations this method has better efficiency when compared to the original QIF method.

Finally, we discussed copula models. These models are potential pathways for constructing high order Markov chain models.

REFERENCES

Albert, P. S., and Waclawiw, M. A. (1998), "A two-state Markov chaix for heterogeneous transtional data: A quasi-likelihood approach," Slatistics in Medicine, 17, 1481-1493.

Anderson, T. W., and Goodman, A. (1957), "Statistical inference about Markov chains," The Annals of Mathematical Statistics, 28, 89-110.

Azzalini, A. (1994), "Logistic regression for autocorrelated data with application to repeated measures," Biometrika, 81, 767-75.

Chaganty, N. R., and Joe, H. (2004), "Efficiency of gencratised estimating cquations for binary resoonses," Journal of the Royal Slatistical Society, Ser. B, 66, 851-60.

Chaganty, N. R., and Joe, H. (2006), "Range of correlation matrices for dependent Bernoulli random variables," Biometrika, 93, 197-206.

Crowder, M.J., and Hand, D.J. (1990), Analysis of Repeated Measures, Chapman and Hall, London.

Davis, C. S. (2002), Statistical Methods for the Analysis of Repeated Measurements, Springer-Verlagnm, New York.

Devore, J. L. (1976), "A note on the estimation of parameters in a bernoulli model with dependence". The Annals of Statistics, Vol.4, No.5, 990-992.

Drezner Z. (1990), "Approximations to the multivariate normal intergral," Communications in Statistics: Simulation and Computation, Vol 19, No 2, 527-534.

Emrich, L. J., and Piedmonte, M. R. (1991), "A method for gencrating highdimensional multivatiate binary variates," The American Statistician, Vol.45, No.4, 302-304.

Fitzmaurice, G. M., and Laird, N. M. (1993), "A likelihood-based method for analysing longitudimal binary responses," Biometriku, 80, 141-151.

Frees, E. W. (2004). Longitudinal and panel data. Cambridge University Press.
Hansen, L. P. (1982), "Large sample propertics of generalized method of moment estimators," Econometrica, 50, 1029-1054.

Joe, H. (1995), "Approximations to multivariate normal rectangle probabilites based on conditional expectations," Journal of the American Statistical Association, 90, 957-964.

Joe, 1I. (1997), Multivariate Models and Dependence Concepts; Chapmam \& Hall, London.

Kanter, M. (1975), "Autoregression for discrete processes mod 2," Journal of Applied Probability, 12, 371-375.

Klotz, J.(1973), "Statistical inference in Bernoulli trials with dependence," The Annals of Statistics, Vol.1, No.2, 373-379.

Liang, K. Y., and Zeger, S. L. (1986), "Longitudinal data analysis using generalized linear models," Biometrika, 73, 13-22.

Mucnz, L. R., and Rubinstein, L. V. (1985), "Markov models for covatiate dependence of binary sequences," Piometrics, 41, 91-101.

Nunèz-Anton, V., and Woodworth, G. G. (1994), "Analysis of longitudimal data with uncqually spaced observations and time-dependent correlated errors," Biometrika, 77, 549-555.

Pan, W. (2001), "On the robust variance estimator of generalized estimaling cquations," Biometrika 88, 3, 901-906.

Qaqish, B. F. (2003), "A family of multivariate binary distributions for simulating correlated binary variables with specified marginal means and correlations;" Biometrika 90, 455-63.

Qu, A., Lindsay, B. G., and Li, B. (2000), "Improving generalized estimating equations using quadratic inference functions," Biometrika, 87, 4, 823-836.

Qu, A.: and Song, P.X.-k. (2004), "Assessing robustness of generalised estimating equations and quadratic inference functions," Biometrika, 91, 447-459.

Qu, A., Lee, J. J., and Lindsay, B. G. (2008), "Model diagnostic tests for selecting informative correlation structure in correlated data," Biometrika, 95, 4, 891-905.

Sabo, R. T., and Chaganty, N. R. (2010), "What can go wrong when ignoring correlation bounds in the use of generalized estimating equations," Statistics in Medicine, Vol 29, Issue 24, 2501-2507.

Song, P.X.-k., Jiang, Z., Park, E., and Qu, A. (2009), "Quadratic inference functions in marginal models for longitudinal data," Statistics in Medcine, 28, 3683-3696.

APPENDIX

SAS PROGRAMS

A. 1 SAS Macro TMMLE

\% let ROOT - \% STR(file location);
FILENAME Hession "\&ROOT \backslash Hession.sas";
options $\mathrm{ls}=84$ nodate;
\% macro tmmle(data $=$, yvar=, xvar=, id=, fun=logit, outpar=,outmle=);
\%macro con(x,y,id,func);
\%global yl;
\%global x1;
\%global id1;
\%global Ifun:
\%let $\mathrm{y} 1=\mathrm{y}$;
\%let $\mathrm{x} 1=\mathrm{x}$;
\% let id =id;
\%let lfun=func;
\%mend con;
ods listing;
proc genmod data=\&data descend;
class \&id;
model \&yvar=\&xvar / link $=$ \& lun dist $=$ BIN;
repeated subject -... \&id / type=ar covb corrw;
ods output GEEEmpPEst =. GEEEmpPEst GEEWCorr=GEEWCorr;
run;
ods listing close;
ods listing;
proc iml;
\%include Hession;
use GEEEmpPEst;

```
read all varcstimate into ibeta;
use GEEWCorr;
read all varCol2 into cor;
use \&data:
read all var\&xvar into x ;
read all var\&yvar into \(y\);
read all var\&id into id;
\(\mathrm{k}=\operatorname{ncol}(\mathrm{x})+1\);
\%if \&fun=logit, \%then func='logit';
\%else lunc = 'probit';
\%con(x,y,id,func);
Start U(u, v);
    tomp \(=\operatorname{sqrt}\left((1-u)^{*} v / u /(1-v)\right) \| \operatorname{sqrt}\left(u^{*}(1-v) / v /(1-u)\right) ;\)
    return(min(tcmp));
Finish;
Start. L(u, v);
    \(\operatorname{temp}=\left(-\operatorname{sqrt}\left((1-\mathrm{u})^{*}(1-\mathrm{v}) / \mathrm{u} / \mathrm{v}\right)\right) \|\left(-\operatorname{sqrt}\left(\mathrm{u}^{*} \mathrm{v} /(1-\mathrm{v}) /(1-\mathrm{u})\right)\right) ;\)
    return(max(temp));
Finish;
start arbound (p);
    \(\mathrm{t}=\max (\operatorname{ncol}(\mathrm{p}), \operatorname{nrow}(\mathrm{p})) ;\)
    if \(\mathrm{t}=1\) then bdi--1 1 ;
    else do;
        temp \(=\mathrm{j}(\mathrm{t}-1,2,0) ;\)
        do \(i=1\) io ( \(\mathrm{t}-1\) );
            (. \(\mathrm{cmp}[\mathrm{i}, 1]=\mathrm{L}(\mathrm{p}[\mathrm{i}, \mathrm{p}[\mathrm{i}+1])\);
            temp \([\mathrm{i}, 2]=\mathrm{U}(\mathrm{p}[\mathrm{i}], \mathrm{p}[\mathrm{i}+1])\);
        end;
        bdi \(=\max (\operatorname{temp}[1 ; 1]) \| \min (\operatorname{temp}[, 2]) ;\)
        end;
    return(bdi);
```

finish arbound;
start irhobound(x,beta,nrep) global(\&lfun);

```
xx= j(\operatorname{nrow}(\textrm{x}),1)| x;
    u = xx*beta;
    fun = &lfun;
    if fun = 'logit' then p = exp(u)/(1+\operatorname{exp}(u));
    else p = probnorm(u);
    index = 0;
    n=max(nrow(nrep),ncol(nrep));
    bd = j(n,2,0);
    do i =1 to n;
        ti = nrep[i;
        if ti=1 then pi = p[index+ti];
        else pi=p[(index+1):(index+ti)];
        bdii,]=arbound(pi);
        index =index+ti;
    end;
    L}=\operatorname{max}(\textrm{bd}[,1])
    U}=\textrm{min}(\textrm{bd
    irb = L//U;
    return(irb);
```

firish irhobound;
start betacond (m);
$\mathrm{tomp}_{\mathrm{m}}=\mathrm{j}(\mathrm{L}, \mathrm{ml},.) / / \mathrm{j}(1, \mathrm{~m},$.
return(temp);
finish betacond:
start Lhf(theta) global(\&x1,\&y1,\&id1,\&lfun);
$k=\max ($ ncol(theta), nrow(theta));
beta $=$ thetai $1:(\mathrm{k}-1)]$;
rho $=$ theta $[k]$;
$\mathrm{x}=\& \mathrm{x} 1$;

```
y = &yl;
id :- &idl;
fun = &lfun;
xi =j(nrow(x),1) \cdots---x;
n = nrow(y);
u = xi*beta;
if fum - 'logit' then p = exp(u)/(1-\operatorname{exp}(u));
clse p = probnorm(u);
q}=1-\textrm{p}
s = sqrt(p#(1-p));
nrep=1;
nsub=l;
do i = 2 to m;
    if id[i]=id[i-1- then nrep[nsub]=nrep[nsub]+1;
    else do:
                nrep-mrep// ; ;
                nsub=nsub+1;
    end;
end;
nnn=max(nrow(nrep),ncol(nrep));
bd}=\textrm{j}(mm,2,0)
indexi = 0;
do i =1 to mmm;
    ti = nrep[i];
    if ti=1 then pi }-\textrm{p}[\mathrm{ indexi +til
    else pi = p[(indexi-1):(indexi +.ij)];
    bd[i,]=arbound(pi);
    indexi --indexi+ti;
end;
L}=\operatorname{max}(bd[,1])
U}=\operatorname{min}(\textrm{bd}[,2])
rhoted = L///L;
il(rhobd[1]<= rho & rho<==rhobd[2]) then rho=rho;
```

else rho $=(\mathrm{rhobd}[2]+$ rhobd[1] $) / 2$;

```
        mle = 0;
    index =0;
    do i = 1 to nsub;
    fi =0;
    ti = nrepin;
    yi}=y[(\mathrm{ index+1):(index+ti)];
    pi=p[(index F-1):(index+ti)];
    qi = q[(index+1):(index+ti)];
    si=s[(index+1):(index+ti)];
```



```
    if ti}\wedge=1\mathrm{ then
    do;
        do j = 2 to ti;
            pij - pi[j]**yi[i] *qiij]**(1-yi[j])+
            (-1)**(yi[j]+yi[j-1])*rho*si[i]*sili-1]/(pi[j-1]**yi[j-1]*qgi[j-1]**(1-yi[i-1])):
            fi = fi + log(pij):
        end:
    end;
    else fi =fi;
    mle = mnle + fi;
    index = index - (i;
end;
return(mle);
finish Lhf;
```

start getname;

```
    parameter = j(k\div1,1, char(20));
    parameter[1,1] = "intercept";
    do i=1 to k;
        parameter [i+1,1] = scan("&xvar", i);
```

 end;
 parameter \([\mathrm{k}-1,1]=\) "rho";
 finish:

```
start outdata;
    Test = "MLE";
    \(\mathrm{DF}=\mathrm{df}\);
    Statistic - stat;
    \(\mathrm{AIC}=-2^{*} \mathrm{stat}+2^{*}(\mathrm{k}-1)\);
    \(\mathrm{BIC}=-2^{*} \mathrm{stat}+(\mathrm{k}-1)^{*} \log (\mathrm{nsub}) ;\)
```

 \%if \%length ((
 create \&outmle var Test Statistic DF AIC BIC;
 append:
 \%end;
 \%if \%length (\&outpar) \(>0\) \%then \%do;
 estimate \(=\) ntheta;
 st.derr \(=\) stderror;
 create \&outpar var parameter estimate stderr Z pvalue;
 append:
 \%end;
 finish;
start main:

```
n = nrow(y);
    nrep=1;
    nsub=1;
    df-k-1;
    do i = 2 to n;
        if id[i]-id[i-1] then nrep[nsub]=-nrep[nsub]+1;
```

 else do;
 nrep \(=\) nrep \(/ / 1\);
 nsub \(=n s u b+1\);
 end;
 end;
optrı - $\{1,0\}$:
rhobd $=$ irhobound $(x$, ibeta.nrep $)$;
irh $\omega=(\operatorname{rhobd}[2]-\operatorname{rhobd}[1]) / 2$;
cond $=$. betacond (k).. -rhobd;
itheta=ibeta//irho;
do until(rhobd $[1] i=$ irho \& irhoj= $=$ hhobd $[2]$);
call NLPNRR(rc, ntheta, "LhF", itheta, optn,cond);
ibeta $=$ ntheta $[1: \mathrm{k}]$;
rhobd $=$ irhobound $(x$, ibeta, nrep $)$;
irho $=$ ntheta $[\mathrm{k} \cdot \mathrm{l} \mathrm{l}]$;
itheta $=$ ibeta/ /irho;
cond $=$ betacond (k) ——hobd;
end;
beta $=$ ntheta $[\mathrm{l}: \mathrm{k}]$;
rho $=$ ntheta $[k+1]$;
$\mathrm{xx}=\mathrm{j}(\operatorname{nrow}(\mathrm{x}), 1)-\mathrm{x}$;
$\mathrm{u}=\mathrm{xx}$ *beta;
if func- 'logil' then do;
$\mathrm{p}=\exp (\mathbf{u}) /(1+\exp (\mathbf{u})) ;$
$\mathrm{d} p=\mathrm{p} \#(1-\mathrm{p}) ;$
$\mathrm{d} 2 \mathrm{p}=\left(\exp (\mathrm{u})-\operatorname{cxp}\left(2^{*} \mathrm{u}\right)\right) /(1+\exp (\mathrm{u})) \# \# 3 ;$
end;
else do;
$\mathrm{p}=$ probnorm(1);
$\mathrm{dp}=$ normpdf(u$)$;
$\mathrm{d} 2 \mathrm{p}=$ devnormpdi $(\mathrm{u}) ;$
end;
senddev=0;
scnddevj $=0$;
index $=0$;
do $\mathrm{i}=1$ to nsub;
$\mathrm{i} \mathrm{i}=\operatorname{nrep}[\mathrm{i}] ;$

```
    yi}=y[\mathrm{ index +1:index -t,i];
    xi}=\textrm{xx}[\mathrm{ index | l:index +ti,];
    pi = p[index +1:index +tij;
    dpi=dp[index +1:index+ti]:
    d2pi = d2p[index+1:index+ti];
    senddev = senddev + devP2nd(yi,xi,pi,dpi,d2pi,rho,k);
    index = index + ti;
end;
hess = senddev;
var = -ginv(scnddev);
print hess[label='Hession Matrix'];
primt var[label='Covariance Matrix'];
st.lerror - sqrt(vecdiag(var));
par = t(ntheta);
Z = par/stderror;
pvalue = 2*(1-probnorm(abs(Z))):
print par stderror Z pvalue;
stat = Lhf(ntheta);
rangeofrho=mirhobound(x,beta,nrep);
print rangeolrho;
finish main;
run main;
run getname;
run ouldata:
quit:
ods listing close;
\%mend armle;
```


VITA

Weiming Yang
Department of Mathematics and Stalistics
Old Dominion University
Norfolk, VA 23529

Education

Ph.D. Old Dominion University, Norfolk, VA. (December 2010) Major: Computational and Applied Mathematics (Statistics)
MS Old Dominion University, Norfolk, VA. (Summer 2009) Major: Computational and Applied Mathematics (Statistics)
MS University of Toledo, Toledo, OH. (Summer 2005)
Major: Applied Mathematics
BS Chengdu University of Technology, China. (Summer 2003)
Major: Applied Mathematics

Expericnce

Research Assistant, ISTART Lab (08/2007-08/2008)
Old Dominion I'niversity, Norfolk, VA
Teaching Assistant (08/2006-08/2007 \& 08/2008-12/2010)
Old Dominion University, Norfolk, VA

Publications

Yang, W. and Chaganty, N. R. , "Maximum likclihood cstimation of a transition model for binary longitudinal data", under preparation.
Yang, W. and Chaganty, N. R.. "On the use of Quadratic Inference Function for binary longitudinal data", under preparation.
Case, R. and Yang, W., "A Study to Examine Differences Between In Person and Online Survey Data Collection Methodologies", Sport Management International Journal, Vol. 6, No. 2, 2009, pp. 5-20.
Yan. G, Yang, W., Shaner, E. F. and Rawai, D. , "Intrusion-Tolerant Location Information Services inIntelligent Vehicular Networks", Communications in Computer and Information Science, accepted.

Typesel using $\mathbb{E P T}_{\mathrm{L}} \mathrm{X}$.

[^0]: This disscrtation follows the style of Journal of the American Statistical Association.

