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ABSTRACT 

MODELING AND ANALYSIS OF REPEATED ORDINAL 
DATA USING COPULA BASED LIKELIHOODS AND 

ESTIMATING EQUATION METHODS 

Raghavendra Rao Kurada 

Old Dominion University, 2011 

Director: Dr. N. Rao Chaganty 

Repeated or longitudinal ordinal data occur in many fields such as biology, epi-

demiology, and finance. These data normally are analyzed using both likelihood and 

non-likelihood methods. The first part of this dissertation discusses the multivariate 

ordered probit model which is a likelihood method based on latent variables. We 

show that this latent variable model belong to a very general class of Copula models. 

We use the copula representation for the multivariate ordered probit model to obtain 

maximum likelihood estimates of the parameters. We apply the methodology in the 

analysis of real life data examples. 

Though likelihood methods are preferable, there are computational challenges im-

plementing them. Alternatives are the non-likelihood models. These are partially 

specified models, that is, in these models only the functional forms of the marginals 

are known but joint distributions are unknown. In addition, the dependence among 

the observations is modeled using an appropriate correlation structure. The second 

part of the dissertation outlines the estimating equations approach for the analysis of 

longitudinal ordinal data for these non-likelihood models. We study the asymptotic 

properties of the estimates for both likelihood and non-likelihood methods. Com-

parisons based on simulations show that the maximum likelihood estimates arising 

from copula models are more efficient than the estimates obtained from estimating 

equations. 

The third part of this dissertation describes how ordinal data can be viewed as multi-

nomial random vectors and points out the theoretical challenges in finding restrictions 

on the correlation parameters for dependent multinomial random vectors. 
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CHAPTER I 

INTRODUCTION 

1.1 ORDINAL LONGITUDINAL RESPONSES 

One of the main objectives in statistics is to model the expectation of a response 

variable as a function of independent or predictor variables. When the response is 

observed on several occasions on the same subject, then the observed data is known 

as repeated or longitudinal data. Even though some differences between the defi-

nitions of "repeated" and "longitudinal" data exist, we use both terms broadly in 

the sense of observing multiple measurements on the same subject over time and 

therefore they are not statistically independent (Davis, 2002). Therefore, repeated 

measurements models should take into account the dependence of the responses for 

individual subjects. Although statistical tools used to model continuous longitudi-

nal data are well developed (Laird and Ware, 1982; Ware, 1985), there is no unified 

methodology to model all types of non-continuous repeated measurements such as 

binary, count or categorical responses. Multi-category responses are a type of discrete 

responses which can be classified into two cases, nominal and ordinal. This disser-

tation addresses the challenging problems associated with modeling longitudinal or 

repeated ordinal categorical responses. 

We use the following notation to represent longitudinal data in this disserta-

tion. Let Yl3 be a response observed on subject i at time point j and xt] = 

(xy i ,xy2,--- ,xlJP)' be the p x 1 vector of covariates associated with YZJ for i — 

1, 2, • • • , n and j = 1, 2, • • • ,tt. Assume that observations on different subjects are 

independent. A typical longitudinal (or clustered) data representation based on this 

notation is given in Table 1. 

In this dissertation we deal with responses Y%J which takes one of the K- ordered 

categories which can be modeled using a multinomial distribution with K categories. 

For example, pain status of a patient can be expressed as none (1), mild (2), moder-

ate (3), and severe (4). 
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Table 1: Typical longitudinal data structure 

Subject 

1 

Time 

1 

2 

* i 

Response 

i l l 
Y12 

YUl 

xm 

X\2\ 

X\tll 

Covariates 

Z 1 1 2 • • • 

^ 1 2 2 • • • 

X\tl2 • • • 

X\lp 

X\2V 

X\t\p 

i 

1 

2 

U 

Yxl 

Yl2 

Yit, 

%ill 

Xx2\ 

x%u\ 

Xil2 

Xi22 

xiU2 • • • 

Xilp 

X%2p 

xittp 

n 

1 

2 

tn 

Yn\ 

Yn2 

*ntn 

Xnll 

Xn2\ 

xnt„l 

Xnl2 

Xn22 

Xntn2 

Xn\p 

Xn2p 

xntnp 

1.2 EXAMPLES 

We give four real life examples which serve as a motivation for the methods that we 

develop in this dissertation. Later we analyze these example data sets using those 

methods. 

1.2.1 SKIN CONDITION CLINICAL TRIAL DATA 

A clinical trial was conducted to test the efficacy and safety of a new drug for skin 

conditions in six clinics. Each patient was assigned to one of the two treatments, drug 

or placebo, and prior to treatment, a response was recorded to determine the initial 

severity of the skin condition. After the treatment, each patient has three follow-up 

visits and in each visit a response was observed on a 5-point ordinal response scale 

that defines the extent of improvement. The ordinal scale is, 1 = Rapidly Improving, 

2 = Slowly Improving, 3 = Stable, 4 = Slowly Worsening, 5 = Rapidly Worsening. 

These data are provided in Table 1 of Stanish et al. (1978). A subset of data is given 
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in Table 2 below. 

Table 2: Skin condition clinical trial da ta 

Inv 

5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 

Trt 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

Baseline 

3 
3 
4 

3 
3 
4 
4 
4 
5 
3 
4 
4 

Ri 

3 
3 
3 
2 

3 
2 
1 
1 
5 
1 
4 

3 

# 2 

2 
2 
2 
2 
1 
1 
1 

1 
4 
1 

i?3 

3 
2 
2 
1 
2 
3 
1 
1 

1 
4 
1 

Inv 

11 
11 
11 
11 
11 
11 
11 
11 
11 
11 
11 

11 

Trt 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

2 

Baseline 

4 
4 
3 
5 
4 
4 
4 
3 
4 
3 
4 

3 

Ri 

4 
2 
4 
4 
4 
3 
2 
4 
4 
4 
4 

4 

# 2 

3 
2 
4 

3 
3 
3 
2 
3 
4 
4 
3 

3 

Rs 

3 
2 

3 
3 
3 
1 
3 
4 
3 
3 

3 

.Rj = Response at Time i (1: Rapidly Improving; 2: Slowly Improving; 
3: Stable; 4: Slowly Worsening; 5: Rapidly Worsening) 

Inv = Investigator Identification Number (5, 6, 8, 9, 10, 11) 
Trt = Treatment (1 = Test drug, 2 = Placebo) 

Baseline = Initial Stage of Disease (3 = Fair, 4 = Poor, 5 = Exacerbation) 

1.2.2 SIX CITIES LONGITUDINAL DATA 

Ware et al. (1984) studied the respiratory health effects of white children living 

in six cities in the United States, examining the relationship of respiratory illness 

in the children exposed to various levels of indoor and outdoor air pollution and 

other factors, such as parental smoking habits, fuel used for cooking in the child's 

home, among other things. Lipsitz et al. (1994) analyzed a subset of the data set 

by modeling wheezing status as a function of age, smoking status of the mother at 

the particular age of the child, and city of residence for the child. The repeated 

ordered multinomial response is the wheezing status (no wheeze, wheeze with cold, 

wheeze apart from cold) of child at ages 9, 10, 11, and 12 years. The wheezing status 

is modeled as a function of three covariates, namely age (time-varying), smoking 

status of the mother at the particular age of children (time-varying) and city (time-

stationary). These data originally given in Table II in Lipsitz et al. (1994) are 
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reproduced below in Table 3. 

Table 3: Data from six cities 

Case 
1 
2 
3 
4 
5 
6 

327 
328 

City 

Portage 
Kingston 
Kingston 
Kingston 
Portage 
Portage 

Portage 
Kingston 

9 

0 
0 

0 

0 
1 

Maternal 
Smoking 

10 

0 

0 
0 
0 
0 

0 
1 

11 

0 
0 
0 
0 
0 
0 

0 
1 

12 

0 

0 
0 
0 
0 

0 

9 

1 
1 

1 

1 
2 

Wheeze 

10 
1 

1 
1 
3 
1 

1 
1 

11 
1 
1 
1 
1 
2 
1 

1 
3 

12 
1 

1 
1 
2 
1 

1 

The four columns under the maternal smoking and wheeze 
represent the ages 9, 10, 11, 12. 

1.2.3 RESPIRATORY DATA 

A randomized controlled clinical trial tested a new treatment for a respiratory dis-

order is explained in Koch et al. (1989). Each of the 111 patients were randomly 

assigned to one of the two treatments, active and placebo. During the four follow-up 

visits, a response on 5-point ordinal scale (0 = terrible, 1 = poor, 2 = fair, 3 = good, 

4 = excellent) was recorded for each patient. Miller et al. (1993) analyzed the data 

by collapsing the 5-point ordinal scale to 3-point ordinal scale (0-1 = poor, 2-3 = 

good, 4 = excellent). The data are summarized in Table 4. 

1.2.4 INSOMNIA CLINICAL TRIAL DATA 

Agresti and Natarajan (2001) describe a randomized double blind clinical trial in-

volving two dependent multinomial variables. A pharmaceutical firm compares an 

active hypnotic drug with a placebo on patients with insomnia. A response to the 

question "How quickly did you fall asleep after going to bed?" for each patient is 

recorded at the beginning and at the conclusion of a two-week treatment period. 

The response to this question has four categories, < 20 minutes, 20m - 30m, 30m -
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Table 4: Responses of 111 patients at each of four time points 

Visit No. of patients Visit No. of patients 
1 2 3 4 Active Placebo 1 2 3 4 Active Placebo 

p 
p 
p 
p 
p 
p 
g 
g 
g 
g 
g 
g 
g 
g 
g 

p 
p 
p 
g 
g 
g 
p 
p 
p 
g 
g 
g 
g 
g 
g 

p 
g 
g 
p 
g 
e 

P 
P 
g 
P 
P 
g 
g 
g 
e 

P 
P 
g 
P 
g 
e 

P 
g 
g 
P 

g 
P 
g 
e 

g 

1 
1 
0 
1 
0 
1 
0 
0 
1 
1 
2 
4 
8 
2 
1 

6 
0 
2 
0 
2 
0 
4 
1 
2 
2 
2 
1 
12 
2 
0 

g 
g 
g 
g 
g 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 
e 

g 
e 
e 
e 
e 

P 
P 
g 
g 
g 
g 
g 
e 
e 
e 
e 

e 

g 
g 
e 
e 

P 
e 

P 
g 
g 
e 
e 

g 
g 
e 
e 

e 

g 
e 

g 
e 

P 
g 
g 
P 
e 

g 
e 

g 
e 

g 
e 

1 
0 
2 
3 
7 
0 
1 
0 
1 
1 
0 
0 
2 
2 
3 
8 

2 
1 
1 
0 
1 
1 
0 
1 
1 
1 
2 
2 
0 
0 
1 
7 

60m, and > 60m. The data in Table 5 is reproduced from Table 1 in Agresti and 

Natarajan (2001). 

1.3 BACKGROUND 

For modeling the repeated or longitudinal ordinal responses several authors have 

attempted to generalize the methods that are available for repeated binary responses. 

Some other authors constructed a full-likelihood through copulas for the analysis of 

repeated ordinal data. In this section we briefly give a survey of these methods. The 

generalized estimating equation (GEE) approach was applied to polytomous data in 

Miller et al. (1993) and Lipsitz et al. (1994), both of which generalized the GEE 

approach that was used for the binary case in Liang and Zeger (1986) and Prentice 

(1988). To make use of GEE approach for the polytomous data, for each YX] given 

in Table 1, we construct a binary choice vector Y* = (Yvi, YZJ2, • • • , YljK)' such that 

Yljr = 1 if YZj equals the rth category, and 0 otherwise. Since ^2k=1 ^ijk = 1, it 

is not necessary to work with all the K indicator variables. Instead we drop the 



Table 5: Distribution of time to fall asleep 

Treatment 

Active 

Placebo 

Initial 
occasion 

< 20 
20-30 
30-60 
> 60 

< 20 
20-30 
30-60 
> 60 

Follow-up 
< 20 

7 
11 
13 
9 

7 
14 
6 
4 

20-30 

4 
5 
23 
17 

4 
5 
9 
11 

occasion 
30-60 

1 
2 
3 
13 

2 
1 

18 
14 

> 60 

0 
2 
1 
8 

1 
0 
2 
22 

last indicator variable, YtJK, and replace Y* with the binary choice vector Yl3 = 

(Y-tji, YXJ2, • • • , Y13K-\)' of dimension (K — 1). For simplicity of notation we assume 

tz = t for all i. The t binary vectors observed on subject i could be stacked as a 

column vector Yx = (Y^Y^, • • • , Ylt)', which is the complete data vector for the 

ith subject. 

Let pXJT be the probability that Yl3 equals the rth category. That is pljr = P(Yl3 = 

r) = P(Yljr = 1). The expected value of Y x is given by pz = (p^tP^, • • • ,Pit)' where 

Pij = (P13I1P132, • • • ,PijK-i)'- Normally this mean vector is modeled as a function of 

covariates along with an unknown parameter vector j3. In generalized linear models 

theory this relationship is specified through a link function g, that is, g(pt) = X(3. 

Suppose the covariance matrix of Y% is denoted by V% then the elements of Vt 

are given by the following expressions, 

Pijk(l - Pijk) if 3 = / , k = k' 

Cov(Yljk, Ylfk,) = I -pljkPi3k> if j = f, k^k' 

Covv(Yljk, Ylyk>) ol]k alj/k> if j ^ f, for any k, k'. 

where al]k = (pljk{l - Pi3k))1/2 and a%yk> = {ptyk'0- -Pi/k>))l/2- As it can be seen 

from the above expressions, except Corr(Yljk,Yi:)iki) all the quantities depend only 
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on pz]. These between-occasion category-specific correlations can be modeled in sev-

eral ways in terms of an unknown parameter vector A. Notice that if we assume 

the measurements on same subject at different occasions are independent then V\ 

is a block diagonal matrix. On the other hand, the "saturated" model can be ob-

tained by assuming a unique parameter for each between-occasion category-specific 

correlations. Several models can be constructed by assuming different structures for 

Corr(Yyfc, Y^k') that have more number of parameters than the independence model 

but fewer number of parameters than the "saturated" model. The V\ obtained with 

this type of modeling is commonly known as "working" covariance matrix which de-

pends on the parameter vectors A and j3. In the literature several authors suggested 

methods for estimating A using different approaches. 

Based on the above setup for the polytomous data, if A is known (so is Vl), the 

GEE estimator of /3 is obtained solving the estimating equations 

U((3) = '£DlV;1(Yl-pl) = 0, (1) 
1=1 

where D\ — dpJd/3'. Suppose (3 is the solution of equation (1). Then we can show 

that /3 is a consistent estimator of /3 and the asymptotic distribution of *Jn (/3 — (3) 

is normal with mean 0 and covariance Vp given by 

v0 = (J2 D'y^DA r£ &y:x Cov(y,) V^DA f £ D'yAA 

where CovCFj) is true covariance matrix of Yt. 

In general the vector A is unknown and we need to estimate it to construct V\ 

in equation (1). Miller et al. (1993) suggested estimating A using another set of 

equations based on sample correlations. Suppose Zt = Z^/3) is a ((K — l)2t(t — 

l))/2 x 1 vector (referred as "working" correlation estimates) defined as 

Zi(P) = (•£i(ll)(21)(/3),ZI(ll)(22)(/3),--- ,Zl(11)(2(K-l))(P),--- ,Zi{{t-l){K-l)){t{K-l))(P))' 

where 

(Vijk - Kzjk{P)){yij'k' - 7Vfc'(/3)) 
Zi(jk)b'k')(P) — 

>yfc(/3)(l - 7M(/3)K'fc'(/3)(l - TTy^OS)))1^ 



for any j ^ f and k, k' between 1 and K. Note that E(Zl^3ic)(3'k')(/3)) — 

Covr(Yi:jk,Yij'k') = Vi(jk)(j'k')()*•)• Miller et al. (1993) considered correlations f^3k)(3'k') 

induced by Fisher transformation given by the relation 

exp(A fl{3k)(3>k') ~ !) 
Vr{3k){fk'M) - • — . 

e xPVA Ii(]k){]'k') + l) 

To estimate A based on these transformed correlations, Miller et al. (1993) used the 

following second set of equations: 

U(\) = Y,E[W;1(Zl-rll(\)) = 0, (2) 
x=i 

where Et = dr}l(X)/d\, Wz = Cov(Zl) is the covariance matrix that depends on a 

"working" covariance assumption for Zt(f3), and 

WiW = ( ^ ( 1 1 ) ( 2 1 ) ( A ) , 7 7 J ( I I ) ( 2 2 ) ( A ) , - - - ,^( l l )(2(A--l))(A),--- , Vi((t-l)(K-l))(t(K-l)) (A)) ' . 

The estimates of (3 and A are obtained recursively solving equations (1) and (2) until 

convergence. 

Lipsitz et al. (1994) suggested an alternative estimate of A using method of mo-

ments. In their paper they considered several structures for plJ3i, which is the correla-

tion matrix between Yl3 and Y\y. The structures include: (i) compound symmetry, 

which is defined as p , = p for all j ^ j ' , (ii) one-dependence, which is defined as 

PIJ,J+I — P3 for all j = 1, 2, • • • , t — 1, and pl3J, — 0 otherwise, (iii) banded, which is 

defined as p , = pT when \f — j \ = r for r = 1, 2, • • • ,t — l, and (iv) unstructured, 

which is defined as plJ3, = p33,. Lipsitz et al. (1994) gave estimates of the correlations 

for each structure using method of moments. Define the "residual" for Y ^ as 

* ij k Pij k 
°ijk 

{Pijk{l -Pijk)Y/2' 

Then clearly E(el3kel3'k>) = C o n ^ Y y ^ , ! ^ / ) . In vector form the residuals can be 

written as el3 = A~ ' {Yl3 —pl3) where Al3 is a diagonal matrix with Var(Y^j.)'s on 

the main diagonal. Using this notation, for each structure the moment estimators 

given in Lipsitz et al. (1994) are as follows. 
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1. Compound symmetry: For this structure pl3J, = p for all j ^ f, that is 

p = E(el3e[3) for all pairs ij and if. Therefore an estimate of the common 

correlation is given by 

Z ^ = i l~/]>j' ei]eif 
P = er=ij*(*-i))-p 

-̂ —1/2 

where e2J = A (Yl3 — p^) . Recall that p is the number of covariates con-

sidered in the model. 

2. One-dependence: Here p%hJ+\ = P3 for all j = 1,2,--- , t — 1, and p , = 0 

otherwise. Since p3 = E(etJe' +1) for j = 1, 2, • • • , t — 1, the moment estimate 

is given by 

En ^ w 

7 n — p 

3. Banded: Here p , = pT when | j ' — j \ — r for r = 1,2, ••• ,t — 1. Since 

pT = E(el3e' +T), a moment estimate of pT is 

T n(t — r) — p 

for r = 1,2, ••• ,t- 1. 

4. Unstructured: Here p w / = p^/ = E(el3e'ljl), and the moment estimate is 

V ^ 7 . 1 * ^ 1 

JJ n — p 

Lipsitz et al. (1994) used the above moment estimators to update Vl at each 

iteration when solving equation (1) using numerical routines. Lumley (1996) modeled 

the associations between the repeated ordinal measurements for polytomous data 

using cumulative odds ratios, rather than correlations as in the GEE framework. 

Complementing the estimating equations approach, Meester and MacKay (1994) 

outlined a copula-based parametric approach for analyzing repeated-measure ordered 

categorical data featuring compound symmetry dependence. Copula based tech-

niques are at the cutting edge for constructing a joint distribution for a given set of 
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marginal distribution functions. A detailed discussion of copulas is given later in this 

dissertation in Chapter II. In a nutshell as stated in Meester and MacKay (1994), a 

copula, C(.), is a multivariate cumulative distribution function on [0,1]* with uniform 

marginals. Meester and MacKay (1994) discussed the analysis of ordinal data using 

a bivariate copula that belongs to Frank's family of copulas given by, 

Ca(ui,u2) = 4>~l{(f)a{ui) + 4>a{u2)), 0 < iti,u2 < 1, (3) 

where 

Mt) = - a " 1 log[(e"a - l)/(e-at - 1)] (4) 

and — oo < a < oo indexes the family. 

Suppose Yi and Y2 have marginal distribution functions Fi and F2 that depend on 

an unknown parameter vector 0. Then by substituting, U\ = -Fi(yi) and u2 = F2(y2) 

in equation (3) we get a joint cumulative distribution function FY(y\, y2; rf) for Y = 

(Yi, Y2) with marginals F\ and F2. Here TJ = (0',a)' is the parameter vector. The 

bivariate probability mass function of Y is given by 

Pv(
Yi = 3/i> Y2 = 2/2) = FY{yi,y2;rj) - FY{yi - 1,y2;rj) - FY(yi,yi - 1;-q) + 

FY(yi -l,y2-l;ri). 

The above probability mass function could be used to construct a likelihood which 

can be maximized to get an estimate of rj = (6', a)'. The maximization could be 

done via the method of scoring using either the expected or the observed information. 

The initial estimate of 0 for the iterative scoring method can be obtained from an 

independence model (a = 0). Also, an initial estimate of a is obtained from the 

approximate relation, 

ps « (1 - ae-a'2 - e-a)(e-Q/2 - l ) " 2 

where ps is the sample Spearman's correlation. 

Meester and MacKay (1994) have extended their results to the general case where 

there are t > 2 repeated measurements. They used a generalized Frank's copula 
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given by 

C(u) = C{ult u2, • • • , ut) = (J)'1 I ] T 4>a(ui) 1 , u € [0,1]* 

where 0Q(t) is defined in (4). In the next section we give an overview of this disser-

tation. 

1.4 OVERVIEW OF THE DISSERTATION 

In Chapter II, we introduce the multivariate ordered probit model which is a likeli-

hood approach for modeling repeated ordered responses. We show that the ordered 

probit model belongs to a very general class of Multivariate Copula Discrete (MCD) 

models. We provide a brief summary of the theory of copulas and how they are used 

to construct joint distributions with specified marginals, with special emphasis on 

the MCD models. Next we discuss the likelihood estimation for the MCD models, 

and derive the score equations for both the regression and the latent correlation pa-

rameters. These score equations are solved to get the maximum likelihood estimates 

using Quasi-Newton numerical method given as Algorithm 21 in Nash (1979). The 

R code that we developed is used to analyze the four examples discussed earlier in 

this chapter. 

In Chapter III, we introduce Generalized Estimating Equations (GEE) (see Lip-

sitz et al., 1994), a non-likelihood approach for analyzing the repeated ordered re-

sponses. This approach requires only the specification of the link function which 

relates expectation of the responses with predictors and the dependence nature of 

the repeated responses. The method estimates the correlation between the responses 

on the same subject by moment estimators. Despite its simplicity the GEE method 

has several drawbacks, see Sabo and Chaganty (2010). In this chapter we also study 

large sample efficiencies between the multivariate ordered probit and the GEE esti-

mates. The efficiency calculations show that the ML estimates are uniformly more 

efficient than GEE estimates for any choice of dependence parameters when the true 

model is the multivariate ordered probit model. 

In Chapter IV, we study the restrictions on the correlations for dependent or-

dered categorical random variables. First we describe possible correlations that can 
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arise when we view the categorical response as a multinomial random vector. We de-

rive the ranges of these correlations for two dependent multinomial random vectors 

with specified means. Some extensions are given for three correlated multinomial 

random vectors assuming a parsimonious structure. Our results can be viewed as a 

generalization of the results given in Chaganty and Joe (2006). 

Finally we close this dissertation with an Appendix that contains proofs and 

derivatives for the multivariate ordered probit model and an R program that uses 

those derivatives to fit the model for real life data. 
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CHAPTER II 

LIKELIHOOD INFERENCE 

II. 1 LATENT VARIABLE MODELING 

Ashford and Sowden (1970) presented a convenient way of generating an ordinal 

response from a continuous latent random variable. More specifically, given a con-

tinuous random variable Z, we can generate a if-ordered categorical random variable 

Y by categorizing Z using K — 1 thresholds. Thus a probability model for Y can 

be obtained by partitioning the range of the unobserved continuous random variable 

Z using these ordered thresholds. This approach is widely known as latent variable 

modeling. 

II.2 MULTIVARIATE ORDERED PROBIT MODEL 

When the ordinal responses are generated from latent random variables that are 

Gaussian then the resulting distribution for the ordered response Y is known as 

the Ordered Probit Model. Suppose that Z is a latent variable that is normally 

distributed. Let j(k), 1 < k < K — 1, be the ordered thresholds —oo = 7(0) < 

7(1) < 7(2) < • • • < ^{K - 1) < l{K) = 00. Then the ordinal variable Y has the 

stochastic representation, 

' 1 if 7 ( 0 ) < Z < 7 ( 1 ) 

Y = l 2 i f 7 ( l ) < Z < 7 ( 2 ) 

K if 7 ( # - l ) <Z <1{K). 

The thresholds ^(k) = ak + x'(3 are assumed to depend on the covariates x. Here (3 is 

the regression parameter and a^ are level specific unknown parameters. Notice that 

the monotonic increasing nature of the thresholds accounts for the ordered nature of 

observed outcomes. 

Suppose Y = (Yi, y2, • • • 1 Yt)' is a vector of t dependent ordinal response variables. 
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We assume that corresponding to each Y3 there is a underlying latent random variable 

Z3 and ordered thresholds 7,(fc) = ak + a^/3, which are functions of the covariate 

vector Xj that is associated with Yr The Multivariate Ordered Probit Model is 

obtained by assuming that Z = (Zi, Z2, • • • , Zt)' is distributed as multivariate normal 

(MVN) with mean 0 and covariance matrix R. For model identification we assume 

that Z2's have unit variance, that is, R is a correlation matrix. 

II.2.1 LIKELIHOOD CONSTRUCTION 

Based on the assumption that Z follows i-variate normal distribution, the joint 

probability mass function of Y = {Y\, Y2, • • • , Yt)' can be written as 

nt(y,0,R) = P(Y1 = y1,Y2=y2,...,Yt = yt) 

= P(Ti(Vi ~ 1) < zi < 710/i), • • • ,7t(yt -l)<Zt< lt{yt)) 

= / • • • / 4>t(z;0,R)dz (5) 
Juiyi-i) ^72(2/2-1) Jit(yt-i) 

where y = {yx, y2,..., yt)' and <j>t(z; 0, R) is the density function of the multivariate 

normal distribution with mean 0 and correlation matrix R. The correlation matrix 

R is commonly known as the latent correlation matrix, and it could be unstructured 

or a structured matrix such as AR(1), compound symmetry. 

Several authors provided numerical approximations to the multiple integral given 

in equation (5). Two widely used approximations for the multidimensional integral 

(5) are due to Genz (1992, 1993) and Joe (1995). We used Joe (1995)'s approximation 

to numerically compute the probability mass function (5). 

Given ^-dimensional vector of observations y% on n independent subjects, the 

likelihood is 

L(0) = H7rt(yi;0,R), 
i = i 

and the log-likelihood is 



15 

i{0) = iogL(d-Y) = J2l°s{Myl;0,R)) 
1=1 

n fiti(v*i) rii2(yt2) pit{yzt) 

= J>g/ / - / M^,o,R)dzt (6) 

where 6 = (a, /3, p). Here a = (a±,..., a.K-i)' is the vector of threshold intercepts, 

(3 is the regression parameter vector, and p is a parameter vector that characterizes 

the correlation matrix R — R(p). 

11.2.2 ESTIMATION 

Since the likelihood (6) is non-linear, we need a numerical optimization routine to 

obtain the maximum likelihood estimator of 0. A good choice is the quasi-Newton 

(or variable metric) algorithm given in Nash (1979, p. 192). The algorithm can be 

described as follows: 

Step 1. Start with an initial estimate 6mt of 0. 

Step 2. At the zth step compute 0 I+i = 6l—cB(0l)g(0l) where g(6) = dl(0)/dd and 

B(6) is an approximation to the inverse of Hessian matrix, [d2l(6)/d8:id6k\~l, 

and c is a constant. See Algorithm 21 in Nash (1979) for more details. 

Step 3. Repeat Step 2 until 0l+x = 0X and take 0 = 0l+l as the MLE of 0. 

The Mprobit package in R software gives the MLE of 0 for multivariate ordered 

probit model. However, this package uses the numerical derivatives, and not the 

analytical derivatives, to calculate g(0) where g(0) = dl(0)/dO in Step 2 of the 

above quasi-Newton algorithm. 

11.2.3 ALTERNATIVE REPRESENTATION 

The probability mass function 7rt(t/; 0, R) of Y, given in (5) is essentially a rectangle 

probability of the t-variate multivariate normal distribution. This rectangle probabil-

ity can be expressed as a function of the multivariate normal cumulative distribution 
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function. Thus an alternative expression for equation (5) is 

2 2 2 

7rt(y; 0, R) = E E - E ( " 1 ) , 1 + , 2 + + ^( 6 m> &2*2, - ' ^ °> R) (7) 
1 1 = 1 12 = 1 l t = l 

where 6ji = 7-,(?/, — 1) ; 6̂ 2 = IjiVj) an<l ^t is the cumulative distribution function of 

t-variate normal distribution. The equivalence of (5) and (7) can easily be verified, 

for example, when t = 2. The expression (7) is convenient for finding the analytical 

derivatives of the log-likelihood (6). Moreover, we can see that equation (7) is a 

special case of general class of Multivariate Copula Discrete (MCD) models. Before 

presenting a description of MCD models, we give a brief introduction to copula theory 

in the next section. 

II.3 COPULAS 

II.3.1 INTRODUCTION 

One of the modern techniques of constructing joint distributions with specified 

marginal distributions is through copulas, see Joe (1997). Copula is a multivari-

ate distribution with univariate margins that are uniform on the interval [0,1]. The 

basic idea behind the construction of a multivariate distribution using copulas is the 

following. It is well known that for any continuous random variable X with distribu-

tion function F(-), the transformation F(X) follows a uniform distribution on [0, 1]. 

As a result, a joint distribution with specified marginals can be constructed using a 

multivariate distribution with uniform marginals. 

Definition. A ^-dimension copula is a function C : [0,1]' —> [0,1] with the following 

properties. 

1. C(l , • • • , 1, au 1, • • • , 1) = az V i — 1, 2, • • • ,t and at € [0,1]. 

2. C(ai, <22, • • • , at) = 0 if at least one az = 0 for i = 1, 2, • • • , t. 

3. For any a^^a^ G [0,1] with az\ < al2, for i = 1, 2, • • • ,t, 

2 2 2 

E E • • • E(~ 1 ) J 1 + J a + +JtC(ain,a2n, •••, atn) > 0. 
.71 = 1.72=1 J t = l 
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II.3.2 EXAMPLES 

Below are some examples of some well known and widely used copulas. 

Example 1. The Independence Copula is a function given by 

t 

C(a1,a2,--- ,at) = J\ai (8) 

Example 2. The Comonotonicity Copula is a function given by 

C(a1,a2,--- ,at) = mm{a1,a2,-• • ,<k} (9) 

Example 3. When t = 2, the Countermonotonicity Copula is a function given by 

Cifli,a2) = maxjai + a2 — 1, 0} (10) 

Example 4. The Multivariate Normal (Gaussian) Copula with latent correlation 

matrix R is a function given by 

C(ai,a2, ••• ,at;R) = ^t^-\ai), ^ ( a a ) , • • • , ^ ( a , ) ; 0, R) (11) 

where $ is the cumulative distribution function of standard normal distribution and 

$ t(.; /x, E) is the distribution function of a t-variate normal with mean fj, and variance 

covariance matrix E given by 

Qtizi,*, •••>*) = / * - f_l (S^^EI^ 6 ' 1 ^^" 1 ^"^^-^ (12) 

Note that the ^-dimensional normal copula reduces to the Independence copula 

when E = / . We will be using this copula later in Section II.4.2. 

Example 5. Let M be a univariate distribution function of a positive random 

variable. Note that M(0) = 0. Let 

/»oo 

<p(a) = / e~au dM(u), a > 0 
Jo 

be the Laplace transform of M. The ^-dimensional Archimedean Copula is defined 

as 

C(ai, a2, • • • , at) = 0 ( ^ " ' ( a , ) J • (13) 
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This copula is useful to model compound symmetry dependence. 

A fundamental result for copulas is Sklar's theorem given below. 

THEOREM 1. (Sklar's Theorem). Let Yi,Y2,---,Yt be random variables with 

marginal distribution functions Fi, F2, • • • ,Ft and joint cumulative distribution func-

tion F. Then the following hold. 

1. There exists a t-dimensional copula C such that for all y±,y2,--- ,Vt G 

(-oo, oo), 

F(yi,y2, •••,yt) = C(F1(y1),F2(y2), • • • ,Ft(yt)). 

2. IfYi,Y2,---,Yt are continuous random variables defined on real line, then C 

is unique. Otherwise, C is uniquely determined on the t dimensional rectangle 

Range(Fi) x Range(F2) x • • • x Range(Ft). 

A more comprehensive discussion of the theory of copulas is in the classic books 

by Joe (1997), Nelson (2006) and Jaworski et al. (2010). 

II.3.3 MULTIVARIATE PROBABILITY DENSITY FUNCTIONS 

Suppose Fx is a marginal cumulative distribution function ofl^ , % = 1,2,•••,£. 

For a copula model, the cumulative distribution function of a random vector Y = 

(Yi,Y2,--- ,Yt)' is given by 

F{y) = CiFrhn), F2{y2), • • • , Ft(yt)), (14) 

where C is a t-dimensional copula. If Y is continuous then its probability density 

function is 

t 

f(y) = I I ^^(FM, F2(y2), • • • , Ft(yt)), (15) 

where fz(y) = dFz(y)/dy is the marginal probability density function of Y% and 

dtC(a1,a2,--- ,at) 
c{ai,a2, • • • , a*) = ——— 

oaiOa2 • • -oat 
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is the density of copula C. For discrete random variables, the multivariate probability 

mass function of Y is given by 

2 2 2 

P(yi,V2,--- ,yt) = J2Y,---J2(-iyi+32+ +JtC(aln,a2j2,---,atJt), (16) 
.71=1.72=1 Jt=l 

where ali(yl) = F%(y~) and al2{yi) = Fz(y%). Here Ft(y~) is the left hand limit of 

Fx at yx. When the support of Fj is the set of integers then Ft(y~) = Fl{yl — 1). 

Equation (16) is the probability mass function of a Multivariate Copula Discrete 

(MCD) model. 

II.4 MULTIVARIATE COPULA DISCRETE MODELS FOR ORDI-

NAL DATA 

II.4.1 INTRODUCTION 

Suppose Y = (yi,y^, • • • ,Yt)' is a t repeated ordinal response vector with each Y3 

being an ordinal response random variate with K categories. Denote p3^ as the 

probability that Y3 takes the fcth ordered category. Then define, 

f 0 ify3<l 

{ 1 ify3>K 

where \_y3\ means the largest integer less than or equal to y3. If we assume this is a 

distribution function of Y3 then for any given t dimensional copula, C(a,i,a2, • • • ,at), 

C(Gi(di), (^2(02)) • • • , Gt{at)\ 6) is a well defined joint cumulative distribution func-

tion for the ordinal random vector Y. Using this copula based joint distribution, the 

joint probability mass function can be written as, 

2 2 2 

P(yi,V2,- • • ,Vt) = J2lL- • • Y , ^ 1 ^ +HC(alll,a2l2,---,atlt;d). (17) 
11=1 12 = 1 lt = l 

where a3i(yj) = G3(y3 — 1) and aj2(y3) = G3(y3). This method of constructing joint 

probability mass functions for an ordinal response vector is known as Multivariate 

Copula Discrete Model for Ordinal Data. 
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Consider the following re-parametrization for p3^- Let Z3 be a continuous random 

variable with distribution function F3 and define G,(y,) = FjdjiVj))- Then p3k = 

Fj(l](y\ )) ~ FjiljiVj )) where y\ = k. This is equivalent to 

' l if 7,(0) <Z3< 7,(1) 

Yl={ 2 i f 7 j ( l ) < ^ < 7 J ( 2 ) 

if i f 7 , ( i f - l ) < Z J <7j( i f ) 

where —oo = 7,(0) < 7,(1) < • • • < 7, (if — 1) < 7, (if) = oo are constants for all 

j = 1,2, • • • , t. The above is simply a latent variable model for the ordinal response. 

Here 7,(y,) is called the y^th cut off point for the random variable Zy In general, 

IjiVj) — ay3 + x'jP a r e functions of the covariates. This approach gives rise several 

models for the ordinal responses. For example, there are multiple choices for F3 such 

as logistic, normal, extreme value, gamma, lognormal, etc. Similarly, we have several 

choices for the copula such as multivariate normal copula, mixture of max-id copula 

and so on. In the following section we study the multivariate normal copula model. 

II.4.2 MULTIVARIATE NORMAL COPULA MODELS 

Recall that the multivariate normal (or) Gaussian copula is 

C(au a2, • • • , at; R) = ^(^(a,), ^-\a2), • • • , $-x(a t); 0, R) (18) 

where <&_1 is inverse of a univariate standard normal distribution $(.;0,1) and 

<I>t(.;/z, E) is a i-variate normal cumulative distribution function with mean /x and 

variance covariance matrix E. 

In MCD models for ordinal response, if we choose F3 as standard normal cu-

mulative distribution function, then it is equivalent to choosing G3(yj) = $(7,(2/7)). 

Furthermore, if we chose the multivariate normal copula then the joint probability 
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mass function for t repeated ordinal response vector is 
2 2 2 

P(yi,y2,---,yt) = ^ E - - - E ( - 1 ) n + 1 2 + + , (CK,a2 ,2 ,- ,« i l t i0) 
1 1 = 1 1 2 = 1 2f = l 

2 2 2 

= E E - - - E ( - 1 ) n + 2 2 + +HM^-1(alll)^-\a2l2),---^-1(atlt);0,R) 
2 l = l X 2 = l It —I 

(19) 

where a3l(y3) = G3(y3 - 1) = $(7j(% - 1)) and aj2(y3) = G3(y3) = $(7j(%))- With 

this substitution, the joint probability mass function becomes 

2 2 2 

P(yi,V2,--- -!/«) = E E - E ( - 1 ) , 1 + , 2 + +^ i(6 l n ,62 ,2 , . . . ,^;0,JR) (20) 
2 1 = 1 12 = 1 2t = l 

with b3i = ry3(y3 — 1) and b32 = lj(Vj)- Notice that equation (20) is same as equa-

tion (7) which is an alternative representation of the multivariate ordered probit 

model. If we apply an MCD model using a multivariate normal copula and assume 

Z3 is standard normal then the MCD model is equivalent to the multivariate ordered 

probit model. We call this model as Gaussian copula based ordered probit model. 

On the other hand if Z3 is standard logistic then the resulting MCD model is known 

as Gaussian copula based ordered logit model. 

II.4.3 LIKELIHOOD ESTIMATION 

The joint distribution of a t repeated ordered response vector constructed using a 

copula model is useful to construct a likelihood when we have a sample of independent 

observations on n subjects. Recall that we need numerical routines for the maximum 

likelihood estimation. These numerical methods can be run efficiently if there are 

analytical expressions for the first order derivatives of the log-likelihood. One major 

advantage of representing the latent variable models through copulas is that we can 

derive analytical expressions for the derivatives. Here in this section we provide the 

first derivatives of the log-likelihood function for the MCD models based on Gaussian 

copula. Below we provide some notation to obtain the first derivatives of 1(d), with 

respect to 0, that are required by the optimization routines. We introduce some 

notation first. 

For a vector y = (2/1,2/2,-"" ,Vt)', we denote by y the vector obtained after 

leaving out y3, the j th component of y. Similarly Z_3 denotes the latent random 
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vector Z after deleting the j th component Z3. Suppose R is the correlation matrix 

of Z then R^ and R$2 denote the correlation matrices correspond to Z_3 and 

Z3 respectively. Also Rf% denotes the correlation matrix between Z-3 and Z3. If 

Z-jjj denotes the conditional random vector Z^3 given Z3, then the conditional 

mean of Z^3/3 is ^-3/3 = Rf2 (-R22)~XZj a n d the conditional covariance of Z_3j3 is 
D _ pfa) R W / O W V I R W 

rL-j/3 ~ ""-11 -""12 ^-"22 J -"-21 • 

In a similar fashion y-ns) denotes the vector y obtained leaving out the Ith. 

and sth components yi and ys. Also denote y^ — (yi,ys)'- Now R\*' and R^^ 

denote the correlation matrices correspond to -Z"-(/s) and Zys) respectively. Also 

R\2 is the correlation matrix between Z-(js)
 a n d Z{j,sy If we denote Z-^s)/^s) 

the conditional random vector -Z_(js) given -Z^s), then the conditional mean and 

covariance matrix of Z_(/a)/(ia) are A*-(is)/(h) = M ? (-^22°) ^(i«) a n d R-(is)/(is) = 

R^ - R^] ( M ? ) " 1 i*£°, respectively. 

Based on the above notations, we have the following derivatives for the probability 

mass function of the Gaussian copula MCD model, with respect to the regression and 

correlation parameters. 

8 * f 2 

1. --7vt(y;0,R) = J2^i{ ^ ( - l W ^ ; 0,1) n^y^, R$b3h,R_j/3) 

where b3l = j3(y3 - 1) and b]2 = 73(y3). 

r\ t 2 Oi 

2. _7rt(y;o,ii) ^ E ^ - 1 ) " ^ : 0 - 1 ) [^-i(y_,;^%„«-,,,) 
j = i i J = i 

where 

J 1 if (Z = yr — 1 and zr = 1) or (I = yr and ir = 2) 

doci 

0 otherwise. 

0 2 2 
O Z. j-*t(y,0,R) = ^^[(-l)^^2((6hi,6SJJ;0,JR£ )). 
r / s i , = i i s = i 

Kt-2{y-(ls)', M-(Zs)/(Zs), -R-(Zs)/(/s))] 
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where b3\ = 7J(J/J — 1) and bj2 = 7j(%) and 

i = l j = i + l J 

The proofs of the above derivatives are given in Appendix 1. Plackett's identities 

given in Kotz et al. (2000) were used to find the derivatives with respect to correlation 

parameters ris. The score function for the multivariate ordered probit model is 

where -^^(y^, 0, R) — (f^ §g f p ) • We developed an R code to solve the score 

equation and obtain the maximum likelihood estimates for the Gaussian copula based 

ordered probit-logit models using the following algorithm. 

Step 1. Start with an initial estimate &int of 0. 

Step 2. At the ith step compute 0l+1 = 0l—c B(Ol)g(0l) where g(0) = dl(6)/d0 and 

B{6) is an approximation to the inverse of Hessian matrix, [d2l(0)/dOjdOk]-1, 

and c is a constant. See algorithm 21 in Nash (1979) for more details. 

Step 3. Repeat Step 2 until 0l+x = 0t and take 0 = 0l+l as the MLE of 0. 

Note that we use the analytical derivative of log-likelihood function, g(6), in the 

iterative steps of the quasi-Newton algorithm. Even though the theory presented 

here is for balanced data tt = t, the R code that we developed can handle unbalanced 

data, that is, t^s could vary with i. In the following section we provide the analysis 

of real life data using Gaussian copula based ordered probit-logit models. 

II.5 APPLICATIONS 

II.5.1 MODEL INTERPRETATION 

In this section we discuss some interpretations useful for data analysis for the Gaus-

sian copula based ordered probit-logit models. In order to facilitate the discussion let 

pJ>T = P(Yj = r) as before, the probability that the response takes the rth category, 
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and TTJtr = P(Y3 < r) as the cumulative probability. From latent variable modeling 

we have seen that the marginal distribution of Y3 depends on the underlying latent 

random variable Z3s distribution. If we assume that Z3 is distributed as standard 

normal then 

Pj,r = P{l3{r -1)<Z3< 7 j(r)) = *( 7 j(r)) - $ ( 7 j ( r - 1)) 

and 

r r 

ir,,r = P(Y3 <r) = Y,Phi = E (*(-&(')) - *Ml ~ !)) = *(7»)) 
1=1 i=i 

because $(7^(0)) = $(—00) = 0. More precisely the relationship is 

7rJ;T. = <fr(7,(r)) which implies <&_1(7r,)r) = ar + x'fi (21) 

This relationship suggests that if we apply an ordered probit model then we link the 

marginal cumulative probabilities with the independent variables using a probit link 

function. Instead of standard normal if the distribution of Z3 is standard logistic 

distribution, that is, 

FZj(x) = - ^ ; xe (-00,00) (22) 
1 + e x 

then 

TTir = FzSliir)) which implies log I -——— ) = ar + x'J3 (23) 
\l-TThrJ 

This relationship suggests that if we assume that the underlying latent variable is 

distributed as standard logistic distribution then we link the marginal cumulative 

probabilities to the covariates using a logit link function. It is important to note that 

even in this case, the joint distribution of Y = (Yi, Y2, • • • ,Yt)' can be constructed 

using multivariate normal copula. 

II.5.2 ANALYSIS OF SKIN CONDITION CLINICAL TRIAL DATA 

We return to the skin condition clinical trial experiment described in Chapter I. 

The main objective of this experiment is to test the efficacy of a new drug for skin 

conditions. To this data, we apply the Gaussian copula based ordered probit-logit 
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models with AR(1) and compound symmetry (CS) structured latent correlation ma-

trices. As explained in the model interpretation section the links for the cumulative 

probabilities are 

(i) Gaussian copula-logit model: 

log f -—%-&— J = 7„(A;) =ak + Pi x xt]1 + /?2 x xlj2; 

\l-7TljkJ 

(ii) Gaussian copula-probit model: 

•Ktjh = $(lj(k)) = $(ak + PiX xl3l + fo x xtj2) 

for i = 1, 2, • • • , 171, j = 1, 2, 3, and k = 1, 2, 3,4, 5. The independent variables are 

xl3i = 1 if the ith subject was given the new drug and xl3\ = 2 if ith. subject was 

given the placebo. The covariate xtJ2 is time related, that is, x l j2 = j . 

Table 6: Parameter estimates and standard errors for the skin condition 
clinical trial data obtained fitting Gaussian copula models with AR(1) latent 
correlation structure. 

Parameter 

Oil 

Q-2 

as 

a.4 

Treat 
Time 

P 
-loglik 

(i) Ordered Probit 

Estimate 

0.9590 
1.7343 
2.6054 
3.8988 

-1.3946 
0.1413 
0.8724 

463.6943 

SE 

0.2164 
0.2050 
0.2394 
0.2639 
0.1329 
0.0310 
0.0099 

p - value 

< 0.0001 
< 0.0001 
< 0.0001 
< 0.0001 
< 0.0001 
< 0.0001 
< 0.0001 

(ii)l 

Estimate 

0.2354 
1.4639 
2.8882 
4.9852 

-1.4571 
0.2454 
0.8590 

471.0650 

Ordered Logit 

SE 

0.2174 
0.2097 
0.2196 
0.2063 
0.1389 
0.0428 
0.0129 

p - value 

0.2788 
< 0.0001 
< 0.0001 
< 0.0001 
< 0.0001 
< 0.0001 
< 0.0001 

Table 6 contains the parameter estimates along with standard errors and p-values 

for both Gaussian copula models when the latent correlation structure is assumed to 

be AR(1). Similarly Table 7 has the parameter estimates along with standard errors 

and p-values for both Gaussian copula models when the latent correlation structure 

is assumed to be CS. Treatment and time are significant in both the models and 

for both latent correlation structures. Interpretation of parameters for the model 

which assumes AR(1) structure for latent correlation matrix is given below. Similar 

explanations can be given for the other models. 
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Table 7: Parameter estimates and standard errors for the skin condition 
clinical trial data obtained fitting Gaussian copula models with CS latent 
correlation structure. 

(i) Ordered Probit (ii) Ordered Logit 
Parameter 

OL\ 

Ot-2 

" 3 

Q 4 

Treat 
Time 

P 

Estimate 

0.7227 
1.3957 
2.2415 
3.6675 

-1.1470 
0.0973 
0.8485 

SE 

0.2461 
0.2510 
0.2800 
0.3467 
0.1728 
0.0238 
0.0116 

p - value 

0.0033 
< 0.0001 
< 0.0001 
< 0.0001 
< 0.0001 
< 0.0001 
< 0.0001 

Estimate 

0.3250 
1.1250 
1.9829 
3.4545 

-0.8868 
0.1734 
0.9362 

SE 

0.2616 
0.2554 
0.2628 
0.2652 
0.1445 
0.0249 
0.0028 

p - value 

0.2141 
< 0.0001 
< 0.0001 
< 0.0001 
< 0.0001 
< 0.0001 
< 0.0001 

-loglik 474.1160 491.9667 

For the Gaussian copula-ordered logit model, we have 

P(Y < r/xX]1 = 1, xlj2 = c) IP(Y < TJxXJx = 2, xlj2 = c) 

P(Y > r/xl3i = 1, xlj2 = c) I P(Y > r/xtJi = 2, xlj2 = c) 

_ P(Y <r/ActiveDrug) IP(Y <r/Placebo) _ 

" P(Y > r/ActiveDrug) / P(Y > r/Placebo) ~ 6 X P ( A " A ) ~ e x p ^ ^ ^ 

Based on the above equation we can interpret the parameter /?i in terms of the 

odds ratios. Odds of response level r or lesser in the treatment group is exp(—f3\) = 

exp(0.8859) = 2.4252 times odds of response level r or lesser in the placebo group. 

Since the ordering nature of the response variable is improving towards the lower 

direction (1: Rapidly improving, ..., 5: Rapidly worsening) we can draw the following 

conclusions for the treatment group. For any level r, the odds that a treatment group 

patient response is in the improving direction rather than in the worsening direction 

is approximately 2.5 times the odds of placebo group patient. 

II.5.3 ANALYSIS OF SIX CITIES LONGITUDINAL DATA 

Next we analyze the six cities data. The goal of the data is to study the effect of 

the parental smoking on the child's wheezing status. We analyze the data using the 

Gaussian copula both the probit and logit marginals. The covariates used in the 
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model are the city of residence for the child, age of the child and the smoking status 

of the mother at that particular age of the child. The marginal models are 

(i) Gaussian copula-logit model: 

log ( -—*Z*_ ) = itJ(k) =ak + px x xtJi + (32 x xlj2 + P3 x xlj3; 
\l-nljkJ 

(ii) Gaussian copula-probit model: 

Ty* = $(lj{k)) = $(«fc + Pi X Xtjl +P2X Xlj2 + P3 X Xlj3) 

for i = 1,2, ••• ,297, j = 1,2,3,4, and k = 1,2,3. The independent variable rc^i 

indicates the city of residence, xlj2 indicates mothers smoking status, and xlj3 is the 

normalized age. 

Table 8: Parameter estimates and standard errors for the six cities data 
obtained fitting Gaussian copula models with AR(1) latent correlation struc-
ture, 

Parameter 

Oil 

OL2 

City 
Smoke 
Age 

P 
-loglik 

(i) Ordered Probit 

Estimate 
0.6590 
1.1299 

-0.3305 
-0.2576 
0.0317 
0.7361 

482.0618 

SE 
0.3353 
0.3337 
0.1378 
0.0985 
0.0334 
0.0307 

p - value 
0.0494 
0.0007 
0.0165 
0.0089 
0.3420 
0.0000 

(ii)< 

Estimate 
1.3761 
2.1924 

-0.5743 
-0.4550 
0.0243 
0.7517 

485.4908 

Drdered Logit 

SE 
0.2551 
0.2628 
0.1638 
0.1311 
0.0259 
0.0344 

p - value 

< 0.0001 
< 0.0001 

0.0005 
0.0005 
0.3476 

< 0.0001 

Parameter estimates for the six cities data are given in Table 8 and Table 9. The 

results for both the models for both the correlation structures are similar. Age is not a 

significant factor for both the models and since (32 corresponding to mothers smoking 

status (Smoke) is negative and significant, we can conclude that the probability of 

improvement in the wheezing status for smoking mothers' children is less than that 

for the non-smoking mothers' children. 

II.5.4 ANALYSIS OF RESPIRATORY DATA 

Next we analyze the data set taken from a clinical trial to test a new treatment for 

a respiratory disorder. The marginal mean models for this data are as follows. 
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Table 9: Parameter estimates and standard errors for the six cities data 
obtained fitting Gaussian copula models with CS latent correlation structure. 

Parameter 
« i 

Q-2 

City 
Smoke 
Age 

P 

(i) Ordered Probit 

Estimate 
0.8633 
1.3528 

-0.2923 
-0.2069 
0.0102 

0.6750 

SE 
0.3018 
0.3045 
0.1292 
0.1175 
0.0296 
0.0406 

p - value 
0.0042 

< 0.0001 
0.0236 
0.0782 

0.7299 
< 0.0001 

(ii) Ordered Logit 
Estimate 

0.6512 

1.7945 
-0.3900 
-0.3158 
0.1229 
0.7302 

SE 
0.7080 
0.7017 
0.5886 
0.9054 
0.0856 
0.1512 

p - value 
0.3577 
0.0105 
0.5077 
0.7273 
0.1510 

< 0.0001 

-loglik 477.0067 495.2465 

(i) Gaussian copula-logit model: 

log ( z—tJ*— ) = li3{k) =ak + (3lx xl3l + p2 x xlj2; \l-nljkJ 

(ii) Gaussian copula-probit model: 

TTijk = $(7j(*0) = ®(ak + Pi x xvi +ftx xlj2) 

for i = 1, 2, • • • , 111, j = 1,2, 3,4, and k = 1,2,3. The independent variable xl:)i takes 

values 1,2,3,4, corresponding to the visit, and xV2 is an indicator for the treatment 

(1 = active treatment, 0 = placebo). 

Table 10: Parameter estimates and standard errors for the respiratory data 
obtained fitting Gaussian copula models with AR(1) latent correlation struc-
ture. 

Parameter 
« i 

« 2 

Visit 
Treat 

P 

(i) Ordered Probit 

Estimate 
-1.2094 
0.0852 

0.0567 
0.5506 
0.7445 

SE 
0.1860 
0.1581 
0.0221 
0.1961 
0.0315 

p - value 
< 0.0001 

0.5899 
0.0103 
0.0050 

< 0.0001 

(ii) Ordered Logit 

Estimate 

-1.2369 
0.7078 
0.0135 
0.0522 

0.7239 

SE 
0.7843 
0.8604 
1.0968 
1.0067 
0.1916 

p - value 

0.1148 
0.4107 
0.9902 
0.9586 
0.0002 

-loglik 357.0737 363.4830 
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Table 11: Parameter estimates and standard errors for the respiratory data 
obtained fitting Gaussian copula models with CS latent correlation structure. 

Parameter 

Oil 

a2 

Visit 
Treat 

P 

(i) Ordered Probit 

Estimate 
-1.2972 
0.0829 
0.0587 
0.5245 
0.5582 

SE 
0.1756 
0.1396 
0.0272 
0.1750 
0.0569 

p - value 
< 0.0001 

0.5528 
0.0306 
0.0027 

< 0.0001 

(ii) Ordered Logit 

Estimate 
-1.2896 
0.7567 
0.0351 
0.0399 
0.6621 

SE 
1.0806 
0.9531 
0.2054 
0.9935 
0.6919 

p - value 
0.2327 
0.4272 
0.8642 
0.9680 
0.3386 

-loglik 364.3997 367.6742 

Unlike the previous examples, here the results from the two Gaussian copula 

models are not the same. For example, we can see from the results in Table 10 

and Table 11, both visit and treatment are significant in the probit marginal model 

whereas they both are insignificant in the logit marginal model. 

II.5.5 A N A L Y S I S OF I N S O M N I A CLINICAL T R I A L D A T A 

Finally we analyze the data collected on insomnia patients to compare a hypnotic 

drug with placebo. The marginal mean models for this data are as follows. 

(i) Gaussian copula-logit model: 

k g ( z lJ^~ ) = 7y (*0 = ak + Pi X Xljt +P2X Xv2 + Pz X Xl3i * Xxj2\ 

\l-irljkJ 

(ii) Gaussian copula-probit model: 

T^ijk = $(7j(*0) = ®(ak + Pi X Zyl + P2 X Xlj2 I f t x X2jl * Xlj2) 

for i = 1,2, ••• ,239, j = 1,2, and k = 1,2,3,4. The independent variables are 

xXJi which is an indicator for the treatment ( l=hypnotic drug, 0=placebo), and xl]2 

indicates the occasion (1 = follow up occasion, 0 = initial occasion). 

Since each subject is observed only at two time points, there is no difference be-

tween the AR(1) and CS correlations structures. Table 12 provides the parameter 

estimates along with standard errors and the p-values. The interaction term is sig-

nificant in both the marginal probit and the logit model. Note that for the logistic 
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Table 12: Parameter estimates and standard errors for the insomnia data obtained fitting 
Gaussian copula model. 

Parameter 

Oil 

Q-2 

as 

Treat 
Occasion 
Treat* Occasion 

P 
-loglik 

(i) Ordered Probit 
Estimate 

-1.3582 
-0.5812 
0.2452 
0.0108 
0.6272 
0.4430 
0.5263 

594.8495 

SE 
0.1192 
0.1088 
0.1064 
0.1434 

0.1106 
0.1539 
0.0555 

p - value 
< 0.0001 
< 0.0001 

0.0212 

0.9398 
< 0.0001 

0.0040 
< 0.0001 

(ii)( 
Estimate 

-2.1303 
-0.8603 
0.4565 

-0.0731 
0.9662 
0.7685 
0.5518 

596.9802 

Ordered Logit 
SE 

0.1438 
0.1304 
0.1314 
0.1766 
0.1195 
0.1666 
0.0523 

p - value 
< 0.0001 
< 0.0001 

0.0005 
0.6789 

< 0.0001 
< 0.0001 
< 0.0001 

marginal, 

- — - — = exp(afc + Pi Treat + (52 Occasion + /?3 Treat * Occasion) (24) 
1 - T^ijk 

From the above (24) relation we can see that the odds of response level k or lesser 

at the follow-up occasion is exp(/?2 + /%) = exp(0.9662 -f- 0.7685) = 5.67 times odds 

of response level k or lesser at the initial occasion in the treatment group. On the 

other hand, odds of response level k or lesser at the follow-up occasion is exp(/?2) = 

exp(0.9662) = 2.62 times odds of response level k or lesser at the initial occasion in 

the placebo group. 

Similarly, odds of response level k or lesser in the treatment group is exp(/?i+/?3) = 

exp(—0.0731 + 0.7685) = 2.00 times odds of response level k or lesser in the placebo 

group at the follow up occasion. On the other hand, odds of response level k or lesser 

in the treatment group is exp(/?i) = exp(—0.0731) = 0.93 times odds of response level 

k or lesser in the placebo group at the initial occasion. 
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CHAPTER III 

ESTIMATING EQUATIONS 

111.1 INTRODUCTION 

In Chapter II we have discussed modeling repeated or longitudinal ordered categorical 

data based on latent variables. However in the literature there are other models and 

these can be classified broadly into three types: 

1. Marginal Models. 

2. Random Effect Models. 

3. Transitional Models. 

The above three models account for the dependence among the observations on 

the same subject (or in a cluster) in different ways. In marginal models, marginal 

expectation and the dependence among the repeated observations are modeled sep-

arately. Whereas in random effect models, dependence is accounted using subject-

specific random effects. Finally, in transitional models the dependency is measured 

by including the subject's past history into the model. Marginal models are non-

likelihood models, whereas the other two models, random effects and transition are 

likelihood models. The construction of the likelihood is different for each of the two 

likelihood models is different but the parameter estimation is simply the maximum 

likelihood. Marginal models can be viewed as a generalization of generalized lin-

ear models for univariate responses. In this chapter we study marginal models and 

estimating equation techniques for categorical repeated measurements data. 

111.2 UNIVARIATE GENERALIZED LINEAR MODELS 

III.2.1 INTRODUCTION 

McCullagh and Nelder (1989) gave a unified regression approach for the response 

random variables that belong to the exponential family of distributions and is known 
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Table 13: Univariate data structure 

Subject Response Covariates 
1 

2 

i 

n 

Yx 

Y2 

Y2 

Yn 

xn 

X<1\ 

Xi\ 

Xnl 

X\2 • • 

2?22 • • 

Xi2 •• 

Xn2 •• 

X\p 

X2p 

%lp 

•Efip 

as Generalized Linear Models (GLM). These GLM regression models have three 

parts: (i) a response distribution that belongs to the exponential family, (ii) a linear 

combination of independent variables known as linear predictors, and (iii) a link 

function connecting the mean response variable to the linear predictors. Suppose 

data consists of Yu a response on the ith subject and s , a j ) x l vector of covariates 

associated with Yx for i = 1,2, ...,n as given in Table 13. If E{Yi) = Â i then the 

fundamental assumption in GLM regression is given by 

<7(A0 = g(E(Yt)) = 77, = x[(3 (25) 

for some link function #(•). If Y% is a categorical random variable that takes one of 

the K categories, then to apply the GLM regression we need to create for each Y% 

a binary choice vector Y% = (Yli,Yl2, • • • ,YlK-1)' where Y„ = 1 if Y% = r, and 0 

otherwise. The resulting data structure is given in Table 14. 

The binary choice vector Yz is simply a multinomial random vector with one trial 

and K - categories ;i = 1,2, ...,n, that is, Yt ~ Multinomial(l, /^ i , / /^ , •••, HiK-i) 

where //„. is the probability that Yx chooses the rth category. Using this represen-

tation, we can describe the three components of GLM for categorical variables as 

follows. 
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Table 14: Binary choice vector representation 

Subject Response Binary choice vector Covariates 

1 
2 

n 

Y\ (Yn,Y12,--- ,YIK-I)' xn x12 

Y2 (Y2i,Y22,--- ,Y2K-IY x21 x22 

Yx (Y,i,Yl2,--- ,YlK-i)' xtl xl2 

Yn (Yni,Yn2,--- ,YnK-iY xm xn2 

X\p 

X2p 

X. 
ip 

^np 

III .2.2 R E S P O N S E D I S T R I B U T I O N 

Since Yz is a multinomial random vector, we have 

Yt = (y,i, y.2,..., YlK-X) ~ Mult( l , fa, /ul2,..., nlK-i) and 

K K K 

P(Yl = yt) = J J $ £ with Y^Vik = 1 and ^ylk = l 
fc=i fc=i k=l 

where 

, 1 i f K takes the category k 
Ylk={ ' ; k = l,2,...,K-l 

0 otherwise 

Note that E(Ylk) = filk. Because of the restrictions on the Ylks and iilks we have 

YIK = i - ^2 Yik a n d
 VIK = i-^2 Vik-

k=l fc=l 

and only (K — 1) probabilities are independent. Therefore we can rewrite the prob-

ability distribution more explicitly as 

K K-\ 

P(Yl = yx) = ]litf = l[tftiJ&. 
fc=i fc=i 

This probability mass function belongs to the exponential family because 
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K 

K-\ 

k=l 

= exp <̂  ^2 Vv l o § A*»J + I 1 ~ 5Z VlT ) l o g ( 1 ~ 5Z ^ 
Lj=l \ r=l / \ r=l > 

= ( X ~ 5 Z ̂  e XP \ 5 Z ^J lQS ( 1 — ) f 

(K-\ 

= c(Ol)h{y) exp \ J ^ w]{0l)t]{y) 

3=1 

where c(04) = ( l - E f = " i V ) , M*) = 1, " , ( * ) = log ( L ^ . ^ . ^ . J , and 

*j(y) = Vr H e r e ^ = (A**!. Ata, • • •, A*x(A--i))-

III.2.3 LINEAR PREDICTOR 

Since the response variable has K — 1 independent levels, we need to consider X — 1 

linear combinations of the predictors in the regression model. Though not necessary 

but usually the same x% vector of covariates is associated with each level of the 

multinomial responses. The fcth level linear predictor rjlk is given by 

v 

rjlk = x[(3k = Y2 x*iPik 
i=i 

In matrix form the regression parameter for all the levels can be written as 

\ Plpxi P-2pxl ' • • PK-IPX1 ) 

( Pll Pl2 

p21 P22 

PlK-1 

P2K-I 

\ 

\PV1 PP2 ••• PPK-1 J _x 
1) 

Depending on the model assumptions these parameters can have different inter-

pretations. For example, Pn,Pi2, • • • ,PIK-I can be treated as intercepts for each of 

the (K — 1) levels. In addition we can decrease the number of parameters with addi-

tional assumptions. For example we can assume PZJ = P% for all j = 1, 2,..., K—1; i = 

1, 2,3,..., p. In this case, the number of parameters depend only on p and the resulting 

model is known as " Proportional odds model" or "Parallel slopes model". 
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III.2.4 LINK F U N C T I O N S 

In univariate generalized linear models for binary or binomial random variables the 

mean is related to the covariates through a link function. Similarly, for multinomial 

random vectors, the mean filk is related to the linear predictor rjlk through a monotone 

differential link function as 

g(Vik) = Vik or /j,lk = g~l{r)lk). (26) 

Popular choice for g(-) in the case of binary or binomial responses are the logit 

and the probit link functions. These link functions are natural candidates for the 

multinomial responses as well. In the multinomial case we have other possibilities, 

which include linking the cumulative probabilities instead of marginal means. Thus 

the possible link functions are 

1. Multinomial Logits Model (MNL): 

g{^ik) = logit(nlk) = log ( - — — ) =rjlk = ak + x[(3k 

\L — /J,lkJ 

2. Multinomial Probit (MNP): 

g(filk) = $~l(fJ,lk) = r]ik = ak + x[f3k 

3. Cumulative Logit (Odds-Proportional Model): 

g{^ik) = logit(irlk) = log ( -—^— ) =rjlk = ak + x[{3, where 7rtZ = V " \xlk. 

4. Cumulative Probit (Ordered Probit Model): 

1 

g(irlk) = $~1(7rlfc) = rjtk = ak + x[(3, where TTd = J ^ //lfc. 
fc=i 

In all cases ak are the model intercepts. The MNL and the MNP link functions 

could also be used for nominal categorical variables as well. Other link functions, 

which are not studied further in this dissertation, are the complementary log-log and 

cumulative complementary log-log link functions: 
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1. Complementary log-log: 

g{lilk) = l o g ( - log(l - iilk)) = r]lk = x[f3k. 

2. Cumulative Complementary log-log: 

i 

g(irlk) = l o g ( - log(l - 7T,fc)) = rjlk = x[(3k, where 7rti = ^ //lfc. 

fe=i 

A detailed discussion of these link functions can be found in Agresti (2002). 

III.2.5 M A X I M U M L I K E L I H O O D E S T I M A T I O N F O R S I N G L E O B -

SERVATIONS 

In this section we discuss maximum likelihood estimation for ordinal data when we 

have only a single ordinal measurement for each subject (tz = 1). The likelihood 

equations in this case form the basis for developing estimating equations for param-

eter estimation for tt > 1 and when the within subject observations are dependent. 

Let Y% = (yii,yi2, • • • ,y%{K-\))\ 1 < i < n,be independent multinomial random vec-

tors. Assume that E(Yl) = /xx = (/ili,//i2, - • - , ^(K-I))', where /j,lk is a function of 

the covariates and an unknown regression parameter 6 = (a, (3) as given in previous 

section. Then the likelihood function can be written as 

i=i 

L{O)=n 

and the log-likelihood is 

n 

1(d) = log L(d) = Yl 

'K-\ 

n ,,Vik 1 ..VtK 

,*=! 

2 =1 

'K-\ 

^ Vik log fJ.lk + ViK log (llK 

,fc=l 

(27) 

where ylK = 1 - Ylk=i V%k and jilK = 1 - Yl,k=i /J.lk. Taking the derivative of (27) 

with respect to 0 we get the score equation as 

dl_ 

36 
2=1 

V%k d/J-lk , y%K dntK 

ik 

n (K-\ r, 

2 = 1 ^ fc=l 

K-X 

V 
f - f /i tfc <90 ^ <90 

Vik ViK 

Hik HiK. 

= 0 

0. (28) 
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In the above simplification we used the identity 

dfi iK 

oe 

8_ 

80 

K-\ 

1 - J ^ A*,* 
k=\ 

K-\ 

- - E 
J f e = l 

80 ' 

Equation (28), in matrix notation, can be written as 

S(9) = 
dl(0) 

89 
<v, = 5Z"^S*1^_/1») = °P+(K-l)xl 

1=1 
80 

where Yx = ( ^ i , ^ 2 , ...,YtK-i)', Hi = O^i.Ato, —,lhK-\)' and 

(29) 

Cov(y,) = E2 = 

and the inverse is 

-fJ-12/J-il ^ 2 ( 1 - £^2) 

—fJ-il^iK-l 
\ 

L —V-iK-lV-il —fJ-iK-l^i2 • • • fl>iK-l(l — ViK-l) I 

Mil A * J K 

E - 1 ^ 

1 1 

1 

A»tJC 

\ 

1 
fJ-tK 

1 

jsr—1 

where /xlK = 1 - J ^ /z,fc. 
fc=i 

Note that 

sr1^.-/*,) 

J 

( la. _YIK \ 
Mil M i K 

y t2 y , * 

\ tHK-1 HiK / 

The maximum likelihood estimate of 6 is the solution of the score equation S{0) = 0. 

We need to use numerical routines, such as Newton-Raphson method, to solve this 

score equation iteratively as follows: 
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Step 1. Start with a trial value for 6, say 0O-

Step 2. Calculate 01=do- H(do)-1S(90). 

Step 3. Replace 0O by 0X and repeat Step 2. 

Step 4. Stop when 0 r + 1 «s 0 r . 

In the above algorithm H(6), which is the derivative of S(6) with respect to 0, is 

known as the Hessian matrix. If we replace H{0) with 1(0) = —E(H(G)), the Fisher 

information, then the above iterative algorithm is known as Fisher-scoring method. 

In the literature, the Fisher-scoring method is also known as iterated reweighted least 

squares (IRLS). See McCullagh and Nelder (1989). 

III.3 MARGINAL MODELS 

III.3.1 INTRODUCTION 

Suppose on each subject we have repeated measurements that are categorical in 

nature. A simple alternative to the challenging likelihood approach is marginal 

modeling. These models can be regarded as generalization of the univariate GLM 

methodology to the multivariate situation. As we mentioned before, in marginal 

models the within subject correlation is modeled separately from the marginal 

mean. Suppose YZJ is a response observed on the ith subject at the jth time point 

and cc2J = (xlJi,xlJ2, • • • ,xlJP)' is the p x 1 vector of covariates associated with 

YZJ ; i — 1, 2, • • • , n and j = 1, 2, • • • , t. The assumptions for the marginal mod-

els are as follows: 

1. The marginal expectation //y of Y%3 is related to the covariates through a known 

monotone differentiable link function 

where /3 is a p x 1 vector of regression parameters. 

2. The marginal variance and marginal mean of the response variable are related 

through a known function. 

Var(l^) = (f> u{^3) 
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where u(.) is a known function, and <fi > 0 is a scale parameter. 

3. The correlation between yld and yXJi is a function of ^i3,^l3' and a vector of 

unknown parameters A 

Cor r (y y , YtJ>) = p([itJ, fjLl3r, A) 

where p(.) is a known function. 

In marginal models, as we discussed before, the categorical variable Yl3 is replaced 

by a binary choice vector YZJ = {Y%3i,Yi:)2, ••• ,YIJK-I)' where YlJr = 1 if Yl3 = 

r, and 0 otherwise. The data layout for this binary choice vector representation is 

given in Table 15. 

Table 15: Longitudinal data layout with binary choice vector representation 

Subject 

1 

Time 

1 
2 

h 

Response 

Yii 
Y12 

Yltl 

Binary choice vector 

(YU1,Y112,--- ,YUK-i) 

(Yl21,Yi22,-" ,Yi2K-l) 

( ^ l t i l ) ^ l t i 2 ) • •• ,YitlK-l) 

x\u 

X\2\ 

Xlt!l 

Covariates 

xU2 • • • 

xl22 

x\tl2 • • • 

x\\p 

Xl2p 

xlt\p 

I 

1 

2 

U 

Ytl 

Yl2 

Yiti 

(Ytll, Yti2, • • , YiiK-l) 

(Yl21,Y.22, • • • , Yt2K-l) 

(Ytt1i,YLti2,- •• ,YlttK-i) 

Xill 
xx2\ 

xiUl 

%il2 

%i22 

xit%2 • • • 

xilp 

xi2p 

xittp 

n 

1 

2 

tn 

Ynl 

Yn2 

*Tltn 

{Yn\l,Yn\2,--- ,YniK-l) 

(Yn21,Yn22, • " " , Yn2K-l) 

(Ynt„l,Ynt„2, • • • , YntnK-l) 

Xnll 

Xn21 

xntnl 

^nl2 • • • 

Zn22 

xntn2 

xnlp 
xn2p 

xntnp 

III.3.2 CORRELATION MODELS FOR REPEATED MULTINOMIAL 

RESPONSES 

Since Yl3 is a multinomial random vector with one trial with mean /j, = 

(fiiji, Hi32, • • • i HijK-i)') we c a n write the probability mass function as, 
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K K K 

P(YXJ = 3/zj) = I I ^f w i t h J2 Vvk = 1 and J^ 3/y* = 1 
k=l k=\ k=l 

Note that E(Ytjk) = fJ-i3k
 a n d in the marginal model we assume 

g(fhjk) = g{E{Yl]k)) = r)ljk = ak + x'tJ(3. (30) 

Common choices for g(-) are the generalized logit and multinomial probit link func-

tions. Although some authors have used cumulative logit and cumulative probit 

link functions for the cumulative probabilities of the ordinal responses. Next the 

covariance matrix of the multinomial random vector, YtJ is 

Cov(r„) = E„ = 
—Hi]2Hijl ^ 2 ( 1 — /^2) 

\ 

d i a g O J - fjtvfi'tj (31) 

where ntJ = (ihji, lhj2, •• • , /^AT-I ) ' - If Av = diag(E„), the Con(YtJ) = R%0 — 

A~ E y A~ . Finally, we need to model £ w / the covariance between Yv and 

Y l3< for j 7̂  f. More generally we need to model the covariance £ t of Y% = 

(Y'tl, Y'l2, • • • , Y'lt)'. In marginal models this is obtained via a model for the cor-

relation. Let A, = diag(Ai, A2, • • •, Alt). Then Cov(Y\) = E2 = A1/2 R(\) A1/2, 

where R(X) is a structured correlation matrix determined by the parameter vector 

A. The preceding notation is best understood in a simple case. Suppose K = 3 and 

t = 4 for all i. Then 

Cov(I^) E , = 

( Eu 

£%21 

£%31 

\ ^1,41 

£%12 

S J 2 

St>32 

£%42 

£%13 

£%23 

E l3 

£%43 

^i,14 1 

E2,24 

£%34 

El4 / 

(32) 
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EJJ — for j = 1,2,3,4. 

where the matrices on the diagonal are 

The off-diagonal matrices Ew /S for j ^ f are determined by the diagonal matrix At 

given by 

\ f diag(E2i) 

0 

0 

\ o 

0 0 0 

diag(E22) 0 0 

0 diag(El3) 0 

0 0 diag( 

and the correlation matrix R(X) of Y", given by 

/ R%n R12 R13 

R(X) = 

12 

R21 Ri22 R23 

R31 R32 R%33 

\ R41 R42 R43 

Ru \ 

-R24 

-R34 

RiiA ) 

(33) 

The matrices on the diagonal R^JJ = (diag(Eu)) -1/2 El:? (diag(E1:7))_1/2 are the corre-

lation matrices corresponding to E y . Note that Rin is independent of A and depends 

only on [iv But the off-diagonal matrices RJ3> for 1 < j ^ / < 4 are functions of 

the parameter A. Commonly used structures are 

Compound symmetry (CS): R3Ji(X) = [ ) for all j , j ' 

Autoregressive order 1 (AR(1)): R33>(X) = 
A 

\l-l'\ \\]-3'\ A 
\3-3'\ Xb~3' 

for all j,f. 

Unstructured (UN): R3J,(X) = \ JJ'A XjJ''2 | for all j , / . 
AJJ',3 \j'A 

III.3.3 GENERALIZED ESTIMATING EQUATIONS 

A popular methodology for estimating parameters in marginal models is the Gen-

eralized Estimating Equations (GEE) proposed by Liang and Zeger (1986). To 
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understand the construction of the GEE, we first look at the case where the 

Yij's (distributed as Multinomial(1,^)) are independent for all i = 1,2, ...,n and 

j = 1, 2,..., t. In this case the likelihood is 

n t 

iw-nn 
1 = 1 3=1 

K-l 

n V%,k VijK 

k=l 

where fi^ = g 1(a.k + X[3P) for some link function g(-) and 0 = (a,/3). Then the 

log-likelihood is 

1(6) = log L(0) = J2J2 
i=i j = i 

' j r - i 

5 ^ 2/yfc log/4jfe 1 + VijK ^g flljK 

, f c = l 

Differentiating the above with respect to 0, we get the score equation as 

dl{d) 

80 

n t 

= EE 
i=l 3=1 

K-l 

y Vi3k d^ZJk VIJK d^K 

de 
= 0. 

Since 

we have 

80 

8l_ 

80 

8_ 

80 

K-l 

i - 2_̂  /%*; 
fc=i 

/ C - l 

= -E 
fe=i 

80 ' 

EE 
2 = 1 J = l 

A - - 1 

E 
.k=l 

80 

Vijk _ VijK 

Hijk f^ijK 
0. (34) 

In matrix notation equation (34) can be written as 

81(0) _ A 9 ^ , 

i = i 

(35) 

where /xz = (/x^, /^2, • • • , n[t)' and £ , = diag(Eu, El2, • • • , Er t). 

The unbiased estimating equation (35) is known as Independent Estimating Equa-

tion (IEE). It is also the score equation under the assumption of independence of the 

repeated measurements on each subject. The GEE is an extension of IEE for corre-

lated repeated measurements. It is obtained by replacing Bx in (35) with a symmetric 

weight matrix Wt that has the same diagonal block matrices as Bz. Thus the GEE 

is given by 

d»[ 
+ = T,^W71{Yt-,*t) = o (36) 
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In the above equation the weight matrices are constructed using a working correlation 

matrix, -R(A), as = Wl = W^X, 0) = A1J2R{\)A1J2. The correlation matrix R(\) 

can be any structured matrix such as CS, AR(1) or UN determined by an unknown 

parameter A as defined in (33). Since the equations (36) are not linear, the solution 

for 0 can be obtained by an iterative procedure described below. 

Step 1. Initially a solution 0j is obtain by solving IEE's. 

Step 2. Consider 0/ as current estimate of 0 and update the weight matrices and 

0 as, 

0-m+l = 6m + 

Step 3. Iterate until 0m+i = 0m. 

In the above algorithm Am is an estimate of A. For binary data A is a real 

valued parameter and Liang and Zeger (1986) gave methods of estimation for various 

correlation structures by the method of moments. These estimates were extended to 

the multinomial case by Lipsitz et al. (1994). Also as stated in Lipsitz et al. (1994), 

y/n(6 — 0) is asymptotically normal. Statistical software packages SAS, S — Plus 

and R have procedures for fitting the GEE models for binary outcomes but not for 

correlated repeated multinomial outcomes. 

III.3.4 DRAWBACKS OF GEE 

One of the advantages of the GEE methodology is that it requires minimal assump-

tions such as specification of the first two moments. Unlike the computations for 

fully specified models such as latent variable models, GEE computations are rel-

atively easy. Regardless of these advantages, the GEE method has a number of 

theoretical flaws, see Sabo and Chaganty (2010). One major flaw is that the working 

correlation matrix may not correspond to any joint distribution for Yz, that is, there 

may not exist a joint distribution for Yz that has the specified working correlation 

matrix R(X). Secondly, for multinomial random variables there are severe restric-

tions on the parameter A imposed by the marginal means, and the GEE method 

£ 80 
Wt (\m,0m) 

80 

— J. 

1=1 
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ignores these restrictions and thus the method could lead to incorrect inferences. 

We study these restrictions on the parameter A in Chapter IV. In the following sec-

tion, we compare the large sample efficiencies of GEE estimates for several choices 

of R(X) with respect to the maximum likelihood estimates of multivariate ordered 

probit models. 

III.4 EFFICIENCY COMPARISONS 

III.4.1 ASYMPTOTIC VARIANCES 

In Section II.4.3, we have discussed maximum likelihood estimation of the thresh-

old intercepts a, regression parameter (3 and latent correlation parameter p, for the 

MCD model constructed with Gaussian copula. From the general theory of maxi-

mum likelihood estimation, it follows that the asymptotic covariance matrix of the 

maximum likelihood estimates is given by the inverse of the Fisher information ma-

trix. For a known structured latent correlation matrix, R(p), the Fisher information 

matrix for 0 = (a, (3) can be calculated as 

^ ^ g7rf(y,; 0, R(p)) dn^y,; 0, R(p)) 
X=l^l^ QQ Qfp /Myt',0,R{p)) (37) 

z=l y 

where the inner sum is taken over K1 possible vectors of y. On the other hand, if 

6gee = (6tgee, Pgee) is the solution for the weighted estimation equation (36) then the 

asymptotic covariance matrix of &gee is given by V^ = (—D^M^—DT1), where 

Afy = Cov(V>) and D^ = E(dil>/d0'). See Chaganty and Joe (2004) for details. 

Suppose the true covariance matrix of YZl is E2 then 

^ ' w r - l ^ w r - l 9 / * * M* = E^^r^wr1^, (38) 

i=l 

As shown in Chaganty and Joe (2004), the optimal choice for the weight matrix 

W% is £j and for this choice the covariance matrix V^ reduces 
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For efficiency comparisons between the maximum likelihood and the weighted esti-

mating equation we compute the Fisher information (37), the matrix V^ and Vopt. 

The later two matrices require calculation of the true covariance matrix E2 of Yz 

based on multivariate ordered probit model. These calculations are described below. 

Note that the binary choice vector representation of ordinal response Yl3 is Y\3 = 

(YLJIJY^,--- , Kjir-i)' where YlJT = 1 if Yl3 = r and 0 otherwise. According to 

this representation Yl3 is distributed as multinomial with 1-trial and mean / i^ = 

(AM, VIJ2, • • • , VIJK-IY- The covariance matrix of YtJ is E y = diag(/iy) - A^A* -̂

For any j ^ k and r, s 6 {1, 2, • • • , K — 1} we have 

r, , , E(yl]rylks) - E(yljr)E(ylks) 
Corr(yljr,ylks) = — — - — 

(V(yljr)V(ylks)) 

\f^ijr\^- fJ'ijr)fl'iks\i- f-^iks)) 

Using the multivariate ordered probit model we have 

Av = ${ar + x'tJ/3) - $ ( a r - i + x'^/3) 

(41) 

(42) 

and 

E{Yl3TYlks) = P(ytJ = r, ylk = s) 

I J (f)2(zvzk; (0,0), (1,1), pjk) dz3dzk, 

(43) 

where pjk = Corr(Zj, Zk) is the latent correlation. The Cov(YZJ, Ylk) = T,h:)k can be 

calculated using (41), (42) and (43). These matrices can be put together to obtain 

Sji El)i2 Ej_i3 • • • EZ;li 

^ , 2 1 ^ i 2 E l ]23 - ' - £%2t 

SZ>31 E z 32 E j 3 • • • E , 34 Cov(Yr) = E, = 

\ E i ) t i E2 j i2 E j ) t3 Xlt J 
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III.4.2 COMPARISONS 

We computed scaled variances of 0mie, 0opt, and 0gee taking the diagonal elements 

of X - 1 , V'^ and Vopt respectively for different values of 0 = (ex, (3) and p, assuming 

the true model is multivariate ordered probit model. For each set of 0 values, we 

consider several choices for A to compute V^ and Vopt. Also note that the A values 

are chosen such that the correlation matrix -R(A) given in equation (33) is positive 

definite for all subjects. In the model we took two covariates, xl0 = (x u i ,x u 2 ) ' , 

where xl3\ and xZJ2 are taken from uniform random variables in the interval [-1,1] 

and [0,1] respectively. The scaled variances and efficiencies are given in Tables 16, 

17, 18, and 19. In Table 16 we choose t = 3 whereas in Table 17 we consider t = 4 

with CS latent correlation structure. Similarly in Table 18 we took t = 3 whereas in 

Table 19 we choose t = 4 with AR(1) latent correlation structure. The results in the 

four tables show that the GEE method is inefficient when compared to maximum 

likelihood estimates arising from the multivariate ordered probit model. 

Table 16: Scaled diagonal elements of X *, V^, and Vopt with CS correlation 
structures. Efficiencies are given in parenthesis. 

Method 

MLE 
Optimal 

GEE 

Ai 
0.016 
0.093 
0.004 
0.092 
0.072 
0.063 
0.023 
0.054 
0.078 
0.072 

A2 

0.044 
0.084 
0.084 
0.027 
0.040 
0.071 
0.064 
0.081 
0.001 
0.076 

A3 

0.016 
0.044 
0.060 
0.055 
0.092 
0.059 
0.067 
0.035 
0.016 
0.008 

A4 

0.008 
0.064 
0.014 
0.024 
0.011 
0.028 
0.025 
0.022 
0.088 
0.045 

nV(ai) 
1.764(1.000) 
1.948(0.906) 

2.357(0.749) 
2.164(0.815) 
2.343(0.753) 
2.170(0.813) 
2.192(0.805) 
2.212(0.798) 
2.298(0.768) 
2.231(0.791) 
2.217(0.796) 
2.202(0.801) 

nV(ot2) 

1.806(1.000) 
1.979(0.913) 

2.398(0.753) 
2.206(0.819) 
2.381(0.759) 
2.213(0.816) 
2.233(0.809) 
2.252(0.802) 
2.337(0.773) 
2.271(0.795) 
2.260(0.799) 
2.244(0.805) 

nV{fr) 
0.715(1.000) 
0.939(0.761) 

1.365(0.524) 
1.156(0.618) 
1.348(0.530) 
1.168(0.612) 
1.189(0.601) 
1.210(0.591) 
1.301(0.549) 
1.231(0.581) 
1.217(0.587) 
1.200(0.596) 

nV(fo) 
2.803(1.000) 
3.650(0.768) 

5.294(0.529) 
4.489(0.624) 
5.228(0.536) 
4.532(0.618) 
4.616(0.607) 
4.694(0.597) 
5.047(0.555) 
4.775(0.587) 
4.722(0.594) 
4.657(0.602) 

Parameter values are t = 3, p = 0.7, a i = 0, Q2 = 0.42, /?i = 0.25, /?2 = 0.45 and 

n = 5000. 



Cn 
o 
o 
o 

oo 

O 

o 

S 

to 

to 
en 

Cn 

B 

O O O O O O O O O O 
o o o o o 
M >t^ O O I—» 
I D 0 1 o a oo 

O O O o o 
i t . O (O 00 ffi 
ffi Cn 00 rf^ t o 

o o o o o o o o o o 
o o o o o 
a o j i * . oi 
w * . S 00 Ol 

o o o o o 
*^ M Oi oo cn 
W OS ffi ffi if*. 

o o o o o o o o o o 
o o o o o 
CO tf̂  ffi -Q t o 
00 I—i if*, ffi OS 

o o o o o 
cn ^ ffi to o 
Cn a s its* ^ —J 

o o o o o p p p o o 
o o o o o o o o o o 
c n < i o o t o o o ^ H H - g ^ 
W O O O ^ W O H H O J - J 

> 
Q 

H 

> 

V 

t o t o t o t o t o t o t o t o t o t o 
CO t o U CO 
IO 00 CO CO 
h ^ I—> rf^ H-» 

3 3 o 3 
^-j bo ^ j ^ j 
ffi O 0 0 0 0 
hf̂  c n - O 0 0 

CO t o 
IO cn 

CO 
OS OS ffi ffi 

CO O O M H - J 

3 3 3 "3 3 3 
-a oo oo oo 
-<I rf^ CO ^ . i-1 rf^ a s ffi oo o 

t o t o t o t o t o t o t o t o t o t o 

CO CO CO CO 
a s t o - q - q 
co co ^ o 

w to * . to to to 
OS ffi O O CO tf* 
w O ) < i c o i t . H 

O O O O O O O O O O 

S 00 s s 
ffi o oo oo 
1 ^ * i S 0O 

0 0 - O 0 0 0 0 0 0 
(-> - J £>. CO CO 

c o a s oo a s oo 

c o c o c o c o c o t o ^ t j t o t o 
O I M V I S O I C D H O C O M 
O l ^ ^ C O ^ S O M O t O 

3 3 3 3 3 3 3 3 3 3 
a s o s c s a s o s a s o s ~ q - < i - < i 
^ O I U C O W O l H t O O O 
i - ' a s t o i o a s f f i a s c o a s c n 

O l O l O l O l O I O I 0 1 * i | | i ^ 
i M O ^ ili. 
a s - q - q - q 
o a s a s rf^ 

rf^ H-> a s ^ j 
co ~a t o oo 
0O H H 0 0 

ffi ffi 
O *». 
O I-1 

O O O O O O O O O O 
a s a s a s a s 
*^ Cn CO CO 
to s to w 

a s a s a s ~q 
CO - q 1-" t o 
~q o as co 

o o 
- J 00 

£ ^ 

£L 

i—> t—' 

ffi bo 
t o CO 
as - q 

O H^ 

ffi o 
cn o 
CO o 

- • - • — ' 

h-' t—' 

ffi 00 
Cn OS 
ffi oo 

O f-1 

ffi © 
Cn o 
rf^ O 

*•—' -.—̂  

o p 
ffi bo 
- q as 
cn oo 

O h^ 

bo o 
ffi o 
H-1 o 

CO CO 

bo ^ 
as as 

ffi ** 
O I-" 

bo o 
ffi o 
cn o 

*.—s •. ' 

s 
a 

o 
p -

3 
^ 

P 

"" ' 

3 
^ 

0 
to 
s ' 

3 
^ 

Xa 
s—' 

3 
^ 
"Ca 
io^ 
s ' 

GO i_J 

ft P 
& oT 
0 h-> 
^ oo 
CD yr 
CO 

• CO 

H 8 
35 ST 

O P 

as g 
0 

as 

3 
0 

H 
i 

as J > 

V
1
' ~p 

0 
P-

fcf 

> 

to 

o 
o 
l-j 
i-i 

a> 
p " 

o 
0 

8» 

"Cs 

O 
cn 

as 

ffi 
1° 
"CO 

So 

p p p p p p o o o p 
o o o o o o o o o o 
O M c n o i H S t o t o o o c o y 
l ^ O S l D O t O O O O l O l O O ^ 

p o p p p o p o p p 
o o o o o o o o o o 
( O O O l O S O H M P O s y 
o f f i a s a s t o t o r f ^ o f f i H J -

o p o o o o o o o p 
o o o o o o o o o o 
C n c o t o c o c o c o o o o o c n a s 
O O O I O C n S H O O C O S 

p p p p p p o o o p 
o o o o o o o o o o 
asco^jffiffi^toasffii-'i--
c n a s c o o o s a s o s a s o o a s " 

o 
a 

t O M t O t O t O M t O M t O t O 

I O M t O tO H t O 

as as to to cn to 
to £* cn 00 -q CO 

tO tO M H 
0O CO 00 -J 
o to *. 00 

3 3 3 3 3 3 3 3 3 3 oo oo ffi ffi 
00 ffi h-' t o 
O ffi ffi I-1 

00 ffi ffi ffi ffi ffi 
oo t o O O CO o 
- q s t o H o t o 

t o t o t o t o t o t o t o t o t o t o 

it*- CO CO CO CO 
H Ol H H (fl 
to co ffi co as 

to CO CO to CO 
ffi Cn a s ffi Cn 
oo a s H-» a s rf^ 

o o o o o o o o o o 
00 00 ffi ffi 00 
~q ffi O H-> 00 
^ t o ffi t o O 

ffi 0 0 0 0 ffi 0 0 
H t o ffi i—' ffi 
-<i cn co oo as 

J ^ r f ^ C O C O r f ^ C O C O C O C O C O 
C n o C n r f ^ C O t O f f i f f i t O f f i 
H C O O O l t O O O S S O W 

3 3 3 3 3 3 3 3 3 3 
b o b o b o b o b o b o b o b o b o b o 
h - ' C O - J ^ J t O O O l f ^ l t ^ f f i r f ^ 

h - > f f i t o c n t o a s r f i . c o t o c n 
t ^ 

II 

i^ 

a 

Cn 

00 
CO 
ffi 
o 
00 
t—» 
t—1 

* ^ 

cn 
as 
^ ~q 

o 
00 
CO 
ffi 
^̂  

cn 
^ 0^ 
o 
o 
00 
~J 
o 
'~~' 

cn 
J ^ 
h-» 

ffi 
o 
00 
^ 1 
J ^ 

—̂' 

cn 
-<I 
as 
to 
o 
00 

to 
to 
^̂  

Cn 

CO 

cn 
Cn 

O 
00 
(X) 
i£. 

*~—' 

Cn 

as 
I—1 

(» 
o 
oo 
J i . 
CO 

• • — ' 

Cn 

as 
to 
a^ 
o 
00 

a^ 
to 

cn 
CO 

to 
o 
o 
oo 
ffi 
o 

• ^ — ' 

cn 
as 
o 
00 

o 
00 

*». (U. 

' ' 

o g 

£-

to to 
o o 
as o 
O - J 

O j - i 

ffi o 
-<I o 
^ o 

^•^ s—' 

to to 
!—' J-' 
ffi o 
O ffi 

O H-> 

ffi o 
as o 
CO o 

i — 1 i—" 

io i-^ 
to -q 
a s ~ j 

O l-1 

ffi o 
as o 
h-> o 

t ^ t1^ 
co ^ i 
Cn CO 
i—1 as 
o ^ 
ffi o Cn O 
as o * . — ' ^ — y 

£ 

o 
a. 

3 
^ 
R 

S ' 

3 
^ 

'e" to 

^ ' 

3 
^ 

s° 
*~~~^ 

3 
^ 

"ca 
bO^ 

>-f 
0 

o> 
cn 

W 
3? 
o 
CD 
t i 
n 

CD 
cn 

ff> 
cn 
nro 
<-• 

t _ i . 

|-i 

CD 

pi 
r+ 
P^ 
(T> 

cn' 

P 

cr 
0> 

-4 

rn 
a 
CXI 

CD 

O-
P 
TO 
O 
0 
£-
<T> 

CD 

B 
<T> 
0 
c i -

i n 

O 

H 
1-1 

^ 

P 
0 
p-

^ 
•o 

o 
co 
o 
o 

P" 

o' 
0 



48 

Table 19: Scaled diagonal elements of X 1, V^, and Vopt with AR(1) correlation 
structures. Efficiencies are given in parenthesis. 

Method 

MLE 
Optimal 

Ai 
0.028 
0.027 
0.094 
0.027 
0.093 
0.080 
0.032 
0.009 
0.056 
0.073 

A2 

0.088 
0.061 
0.015 
0.094 
0.088 
0.092 
0.075 
0.055 
0.085 
0.095 

As 
0.055 
0.024 
0.062 
0.043 
0.021 
0.047 
0.081 
0.030 
0.069 
0.021 

A4 

0.031 
0.024 
0.047 
0.003 
0.039 
0.048 
0.020 
0.029 
0.016 
0.013 

nV(ai) 
1.947(1.000) 
1.968(0.989) 

2.116(0.920) 
2.113(0.921) 
2.056(0.947) 
2.111(0.922) 
2.062(0.944) 
2.088(0.933) 
2.114(0.921) 
2.137(0.911) 
2.095(0.929) 
2.067(0.942) 

nV(a2) 
2.048(1.000) 
2.084(0.983) 

2.232(0.918) 
2.229(0.919) 
2.174(0.942) 
2.225(0.920) 
2.182(0.939) 
2.210(0.927) 
2.230(0.919) 
2.253(0.909) 
2.212(0.926) 
2.184(0.938) 

nV{fr) 
1.251(1.000) 
1.273(0.983) 

1.415(0.885) 
1.414(0.885) 
1.355(0.923) 
1.411(0.887) 
1.361(0.919) 
1.385(0.904) 
1.412(0.886) 
1.437(0.871) 
1.393(0.898) 
1.367(0.915) 

nV{(32) 

5.000(1.000) 
5.093(0.982) 

5.653(0.885) 
5.647(0.885) 
5.418(0.923) 
5.636(0.887) 
5.442(0.919) 
5.537(0.903) 
5.644(0.886) 
5.742(0.871) 
5.569(0.898) 
5.465(0.915) 

Parameter values are t = 4, p = 0.5, a\ = 0.64, a2 = 0.92, /3i = 0.1, f32 = 0.4 and 

n = 5000. 
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CHAPTER IV 

CORRELATED MULTINOMIAL RANDOM VECTORS 

IV. l INTRODUCTION 

The GEE methodology that we discussed in Chapter III is a non-likelihood method. 

Indeed a joint distribution between two dependent multinomial random vectors with 

specified mean and correlations as in the GEE model assumptions, may or may 

not exist. In this chapter we investigate the conditions on the correlations which 

guarantee the existence of a joint distribution for two or more dependent multinomial 

random vectors. Unlike Gaussian random variables, for binary random variables the 

correlations are restricted by some functions of the marginal means. As a simple 

example consider two binary random variables Y\ and Y2 with means p\ and p2 and 

correlation p. It is well known that the joint distribution for Y\ and Y2 exists if and 

o n l y i f L f a , ^ ) < p < U(Pl,p2), where L(Pl,p2) = max { - y ^ f , ~yf^} and 

U(pi,p2) = min -j * 2131^ /E23i I. These lower and upper limits are known as Frechet 

bounds, see Chaganty and Joe (2006). In this chapter, we study the relationship 

of marginal means and correlation matrix elements between multinomial random 

vectors. In the next section we focus on the correlation bounds for two dependent 

multinomial random vectors, and later we extend these results to three dependent 

multinomial random vectors. 

IV.2 BIVARIATE MULTINOMIAL RANDOM VECTORS 

IV.2.1 INTRODUCTION 

Suppose Y\ and Y2 are two categorical random variables that take values 1,2,... ,K. 

Then as discussed in Chapter III, for each Y% we can associate a binary choice vector 

~y\ = C îi) Y%2, • • • , YtK-i)' as 

YlJ = { for j = 1,2, ...,K-1. 
I 0 otherwise 

Normally we denote Yzx = 1 — J2-,=i ^V Note that Y\ and Y2 are two 
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multinomial random vectors with K categories and one trial, that is, Y % ~ 

Mult(l,pzi,pl2, ...,PIK-I), i = 1,2. By definition, the multinomial random vec-

tor Yz = (YiijYtf, ...JYLK-X)' is a restricted binary vector. For example, when 

K = 3, it can take only three possible values (1,0), (0,1) and (0,0). We need 

some new notation to facilitate further discussion. Let phC% = P(YZ — c2) and 

Pi2,Clc2 = P(Yi = Ci,Y2 = c2) where C\, c2 € {1,2,...,K — 1}. Note that 

phai = P(YlCt = 1) and pi2yClC2 = P(Ylcl = l,Y2c2 = 1). With this notation the 

bivariate distribution of (Yi, Y2) can be expressed as in Table 20 below. 

Table 20: Joint distribution of Y\ and Y2 

Y1\Y2 

1 

2 

K 

1 

Pl2 . l l 

Pl2,21 

Pl2,Kl 

P2,l 

2 

Pl2,12 • • 

Pl2,22 

Pl2,K2 

P2,2 

K 

Pl2,lK 

Pl2,2K 

Pl2,KK 

P2,K 

PlA 
Pl,2 

Pl,K 

1 

IV.2.2 BETWEEN A N D WITHIN CORRELATIONS FOR MULTINO-

MIAL VECTORS 

The correlation concept is well defined for two binary random variables. However for 

two dependent multinomial random vectors there are several correlations to consider. 

We know that the covariance matrix of a multinomial random vector, Yz, is 

P,,l(l-Pi,l) -Pi,lPi,2 ••• ~Pi,lPi,K-l 

-Pi,2Pi,l Pi,2(l-P.,2) • • • ~Pi,2Pi,K-l 

\ -Pi,K-lPi,l -Pi,K-lP%,2 • • • Pi,K-lO- - Pi,K-l) J 

/ 2 \ 
°"i,l CTi2,12 ' • • &n,lK-l 

rr ^-2 _ 

<?u,21 ^ , 2 " " ' aii,2K-l 

2 
y &n,K-ll &n,K-12 • • • °i,K-\ ) 

The above covariance matrix measures the association within levels of the multi-

nomial random vector Y%. Next, the correlation between levels of two multinomial 

/ Y1 ^ 
-* i i 

Cov 
K i2 

\ YlK-i J 

http://Pl2.ll
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random vectors is defined as 

Cov(y lci, Y2C2) E(YlciY2c2) -Pi,ClP2,ca 
Pl2,< 

V(V(Y1C1)V(Y2C2)) ^ i , c ^ 2 , c 2 

= P(YUl = 1,Y2C2 = 1) - Pi,ClP2,ea 

Crl,cicr2,c2 

= Pl2,cic2 ~ Pl,ciP2,ca 

(7l ,ciC2,C2 

(44) 

Using these definitions, we can write the correlation matrix between two multinomial 

random vectors as 

/ y " \ 
Y12 

Corr riK-i 

Y2i 

Y22 

\ Y2K-! / 

( 1 
P11.21 

Pll.K-11 

P12.11 

P12.12 

\ P12.1K-1 

P11.12 

1 

Pll.K-12 

P12.21 

P12.22 

P12.2K-1 

•• Pll.lK-l 

•• P11.2K-1 

1 

P12,K-11 

Pl2,K-12 

•• P12,K-1K-1 

P12.11 

P12.21 

P12.K-11 

1 

P22.21 

P22.K-11 

P12.12 

P12.22 

P12.K-12 

P22.12 

1 

P22.K-12 

P12.1K-1 

P12.2K-1 

•• P12,K-1K-1 

• • P22.1AT-1 

• • P22,2i<:-1 

1 

\ 

/ 

R 11 

R •21 

R 12 

R 
= R 

•22 

(45) 

Note that Ru and R22 are symmetric and R'12 = -^21- Suppose we assume for 

parsimony Pi2,cic2 — P12 = P f° r all Ci,C2, then the correlation matrix (45) becomes 

Corr 

Y12 

Y1K-

Y21 

Y22 

\ Y2K-! ) 

( 1 

Pll.21 

Pll.K-11 

P 

P 

\ P 

P11.12 

1 

Pll.K-12 

P 

P 

P 

Pll.lK-1 

Pll,2K-l 

1 

P 

P 

P 

P 

P 

P 
1 

P22.21 

P22.K-11 

P 

P 

P 

P22.12 

1 

P22.K-12 

P 

P 

P 

P22.1K-1 

P22,2/f-l 

1 

R\\ pJ 

pJ -R22 
R 

\ 

I 

(46) 

where J is a matrix of ones. It can be easily checked that the determinant of RH 

matrix is PI,K/{Y[^-ZIO- ~ Pi,*)) a n c l it is always positive. The following theorem 

provides the range of p for which the determinant of the matrix JR is nonnegative. 



52 

THEOREM 1. Suppose R is a correlation matrix between two multinomial random 

vectors with the assumption that Pi2,Clc2
 = P12 = P for all c\, c2- Then the range of 

p for which the determinant of the matrix R is non negative is 

< 
1 

y/(l'R[^l)(VR^l) 

Proof. First note that 

i ' r > - l | 
"̂22 I 

\R\ — I-R11I I-R22 — P J-^n J| 

= \Ru\ I-R22I |I — P J-^ll J-^22 I 

= |Hn | IJR22I \I-p2ll'Rnll'R2 

= \Rn\ \R*2\ \l-p2{l'R^l){l'R^2
ll)\ 

because |I — AB| = |I — BA| . Since \Rn\ > 0 we have, 

\R\ > 0 ^ 1 - f?(l'K[?l)(l'R£l) > 0 

1 
•& P < 

y/(VR£l){VR£l) 

This completes the proof. 

Remark: The range of p for which the determinant of the matrix R is nonnegative 

is same as the positive semi-definite range for R. We verified this result numerically 

but we do not have a formal proof. 

IV.2.3 BOUNDS ON CORRELATION 

In this section we obtain necessary and sufficient bounds on the parameter p such that 

a joint distribution with correlation structure (46) for the two dependent multinomial 

random vectors Y1 and Y2 exists. 

THEOREM 2. Suppose Y\ and Y2 are two multinomial random vectors with one trial 

and probabilities p1 = (pi,i,Pi,2, • • • ,PI,K)' and p2 = {p2,i,P2,2 • • • ,P2,K)' respectively. 

Suppose that the correlation matrix of Y± and Y2 is 

R = 
Rn pJ 

pJ R22 
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Then the joint distribution for Y\ and Y2 exists if and only if 

max{L 2 i ( p 1 , p 2 ) , L22{pl,p2)} <p< mm{U2i(p1,p2) , U22(p1,p2)}, (47) 

where 

L2l(Pl,P2) 

L22(Pl,P2) 

and 

max 

= max 

^K-l 
-PI,KP2,K - ( E = I PiJ(E,=i P2,i) 

(Ejll1ai,i)iYl*Ji °2,z) ' (E,=ilffi,.)(E2=ilff2,.)J ' 

; 1 < i ^ J < 2, c , Cj G {1, 2,.. . , i T - 1} > , 
K - i 

c r i ,c l12-/c J=l ^J.CjJ 

^ - i 

U2l(Pl,P2) 

U22{Pl,P2) 

= mm 

= mm 

( E , = l Pl,i)P2,K 
*K-1 

( E t = l P2,t)Pl,«-

( E , = l ( T l , x ) ( E J = l ^2,x) ( 2 ^ = 1 c r l , I ) ( E l = l 0-2,t)J 

Pt,CtP3,K 

ai,Ct\2^,Cj=l °3,c]) 

l<i^j<2,Cl,Cje{l,2,...,K-l} 

Proof. We prove the theorem for K = 3. The joint distribution of Y\ and Y2 given in 

Table 20 when K — 3 reduces to the form given in Table 21. The joint distribution 

in this table is completely determined by the probabilities pi2,ii,Pi2,i2,Pi2,2i,Pi2,22 

and Pi,i,Pi,2,P2,i,P2,2, as shown in Table 22. The probability distribution given in 

Table 22 is legitimate if and only if all the nine probabilities listed are greater than 

zero. And these nine restrictions lead to the following inequalities 

Table 21: Joint distribution of Y\ and 
>2 when K = 3 

YX\Y2 

1 

2 
3 

1 

Pl2 . l l 

Pl2,21 

Pl2,31 

P2.1 

2 

Pl2,12 

Pl2,22 

Pl2,32 

P2,2 

3 

P12.13 

Pl2,23 

Pl2,33 

P2,3 

P l , l 

Pl,2 

Pl ,3 

1 

http://Pl2.ll


54 

Table 22: Bivariate probabilities and dependencies 

Yl 

1 

1 

1 

2 

2 

2 

3 

3 

3 

Y2 

1 

2 

3 

1 

2 

3 

1 

2 

3 

Pl2 , l l 

Pl2,12 

P l , l - Pl2,U -

Pl2,21 

Pl2,22 

Pl,2 - Pl2,21 -

P2,l - P l2 , l l -

P2,2 - Pl2,12 " 

1-Pl , l -Pl ,2-

P ( ^ l = 2/1,^2 = ?/2) 

- P12.12 

_ Pl2,22 

- Pl2,21 

~ Pl2,22 

- P 2 ; l - P 2 , 2 + P l 2 , l l + P l 2 , 1 2 + P l 2 , 2 1 + P l 2 , 2 2 

max{0, pi,i + p1>2 + P2.1 + P2,2 ~ 1} < Pl2.ll + P12.12 + Pl2,21 + Pl2,22 < 

min{pi,i + pi )2, P2,i + P2,2> (48) 

0 < Pl2,ll +Pl2,12 < Pl,i; 0 < pi2)21 +Pl2,22 < Pl,2 

0 < Pl2,ll +P12.21 < P2,i; 0 < Pl2,12 + Pl2,22 < P2,2 (49) 

Since pi2,ClC2 = P12, we have p12,cic2 = Pi,ClP2,C2 + P12 (^ . c i^ca ) f o r a11 ci> c2- Hence 

2 2 2 2 

Pl2,ll +P12.12 + Pl2,21 +P12.22 = X ^ ] L P I ^ 2 J
 + P ̂  ^ ^ . ' ^ j -

z=l j = l 1=1 j = l 

It is easy to check that 

2 2 

(Pl,l + Pl,2 + P2,l + P2,2 - 1) - YlY2Pl'lP2^ = _^1.3P2,3 
z = l j = l 

2 2 

( P l , l + P l , 2 ) - ^ 5 Z p i , , P 2 j = (Pl,l+Pl,2)P2,3 
z=l j = l 

2 2 

(P2,l+P2,2)-535^Pl,,P2,j = (P2,l + P2,2)Pl,3 
1=1 J = l 

2 2 

X] H P l ' , P 2 J = (Pl.l +Pl,2)(P2,l +P2.2) 
1=1 j = l 

http://Pl2.ll
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Using the above identities we can rewrite the inequalities (48) as 

max(0,Pi,i +Pi,2 +P2,1 +P2,2 ~ 1) - E L i E L I P I - * P 2 , J ^ 
1 <p 

nrai(p1|]L +Pl,2,P2,l +p2,2) ~ E L l Ej=lPl,»P2,j 
— sr^2 v^2 ' 

2 ^ = 1 l^3=l a\,x°2j 

or simply 

f-(Pl,l+Pl>2)CP2,l+P2,2) -Pl,3P2,3 \ . 
m a x 1 "7 ~V7 T ' 7 77— 7 f - /° 

L (0-1,1 + 0X2X0-2,1 + CT2,2) (cri,l + 0'1,2J(0'2,1 + 0"2,2J J 
. • / (Pl,l+Pl,2)P2,3 (P2,l + P2,2)Pl,3 \ x^x 

< m m < - ! -+ ! r , 7 ; ry-2-^ ! > . (50) 
L (O'l.l + 0X2X02,1 + ^ J (0-1,1 + 0"1,2J(0'2,1 + 0"2,2J J 

Similar simplification of the inequalities (49) gives us 

-Pl,l(P2,l +P2.2) < < Pl,lP2,3 

01,1 (02,1 + 0-2,2) 0Xl(c2,l + 0"2,2) ' 

-Pl,2JP2,l + P2,2) < < Pl,2P2,3 

01,2(02,1 + 02,2) 01,2(02,1 + 02,2) ' 

-P2 , l (P l , l+P l ,2 ) < < P2,lPl,3 

02,l(01,l + 01,2) 02,l(01,l + 01,2) ' 

-P2,2(Pl,l +P1.2) < K P2,2Pl,3 

02,2(01,1 + 01,2) 02,2(01,1 + 0X2) 

which can be written compactly as 

f-Pl,l(P2,l +P2.2) -P1,2(P2,1 +P2,2) ~P2,l(Pl,l +Pl,2) ~P2,2(Pl,l + Pl,2)\ 

I 01,l(02,l+02,2) ' 01,2(02,1+02,2) ' 02,l(01,l +0"1,2) ' 02,2(01,1+01,2) J 

< P < 

. f Pl,lP2,3 Pl,2P2,3 P2,lPl,3 P2,2Pl,3 
mm J 

01,1(02,1 + 02,2)' 01,2(02,1 + 02,2)' 02,1(01,1 + 01,2)' 02,2(01,1 + 01,2) 

(51) 

Equations (50) and (51) together give the necessary and sufficient range for p such 

that the distribution in Table 22 is a proper probability distribution. In general for 

any K, define, 

-(El=T1Pi,l)(EllT
1^2,x) -PI,KP2,K 

^ 2 l ( P i , P 2 ) = m a X 

(Ei=l °XtXE,=l °2,z) (E,=l °X»XE.=1 ^.z) J 

—Pi ^ ( E c =1 Pj c ) 
-22(Pi,P2) = max<j ' ' K - I ^ - ; i ^ J € { 1 , 2 } , c,,Cj G {1,2,. . . , A T - 1 } ^ . 

^,cXEC9=i^cJ 
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and 

TJ (r> r>\ - min / (E^TV>2,X ( E J - L T V I K * 1 

U22(Pl,p2) = min i ^ g g f •i,je{l,2},i^j,clE{l,2,...,K-l}\. 

l<7«,c,(2^=i<W J 

Using the above notation the bounds (50) and (51) can be written as 

max{L2i(Pi,P2) . L22(Pi,P2)} < P < Tomn{U2i(pi,p2) > U22(px,p2)} (52) 

This completes the proof of the theorem when K = 3. 

IV.2.4 CONSTRUCTION OF BIVARIATE MULTINOMIAL DISTRI-

BUTION 

We have seen the feasible range for p such that a joint distribution for Yt and Y2 

exists. Now given a value for p within this feasible range the joint probabilities 

can be calculated using equation (44). For example, let p1 — (0.2, 0.3, 0.4, 0.1) 

and p2 = (0.4, 0.1, 0.2, 0.3) be fixed. The feasible range of the correlation p is 

(—0.0187, 0.0247). A joint distribution with fixed marginals p1: p2 and correlation 

p = —0.0181 is given by 

Y1\Y2 

1 

2 

3 

4 

1 2 3 4 

0.0765 0.0178 0.0371 0.0686 

0.1159 0.0275 0.0567 0.0999 

0.1557 0.0373 0.0765 0.1305 

0.0519 0.0173 0.0297 0.0010 

0.4 0.1 0.2 0.3 

0.2 

0.3 

0.4 

0.1 

1 

For different marginal multinomial distributions, the range of p such that the 

correlation matrix (46) is positive definite and the bounds (47) given in Theorem 2 

are tabulated in Table 23. 

Table 23 clearly shows that the positive definiteness range of p is wider than the 

range of p for which the joint distribution exists. Furthermore, the range of p for 

which the joint distribution exists is a proper sub-interval for which the correlation 

matrix is positive definite. 



Table 23: Positive definite ranges and bounds on correlation p of the matrix 
R for different marginal probabilities 

Marginal Probabilities* 

Pi 
(0.1,0.1,0.8) 
(0.1,0.1,0.8) 
(0.1,0.1,0.8) 
(0.1,0.1,0.8) 
(0.1,0.1,0.8) 
(0.1,0.1,0.8) 
(0.1,0.4,0.5) 
(0.1,0.4,0.5) 
(0.1,0.4,0.5) 
(0.1,0.4,0.5) 
(0.1,0.4,0.5) 
(0.1,0.7,0.2) 
(0.1,0.7,0.2) 
(0.1,0.7,0.2) 
(0.1,0.7,0.2) 
(0.4,0.1,0.5) 
(0.4,0.1,0.5) 
(0.4,0.1,0.5) 
(0.4,0.4,0.2) 
(0.4,0.4,0.2) 
(0.7,0.1,0.2) 

P2 

[0.1,0.1,0.8) 
[0.1,0.4,0.5) 
[0.1,0.7,0.2) 
[0.4,0.1,0.5) 
[0.4,0.4,0.2) 
[0.7,0.1,0.2) 
[0.1,0.4,0.5) 
[0.1,0.7,0.2) 
[0.4,0.1,0.5) 
[0.4,0.4,0.2) 
[0.7,0.1,0.2) 
[0.1,0.7,0.2) 
[0.4,0.1,0.5) 
[0.4,0.4,0.2) 
[0.7,0.1,0.2) 
[0.4,0.1,0.5) 
[0.4,0.4,0.2) 
[0.7,0.1,0.2) 
[0.4,0.4,0.2) 
[0.7,0.1,0.2) 
[0.7,0.1,0.2) 

Bounds on 
Lower 

-0.1111 
-0.1111 
-0.1111 
-0.1111 
-0.2722 
-0.1111 
-0.2110 
-0.1670 
-0.2110 
-0.1292 
-0.1670 
-0.0696 
-0.1670 
-0.0538 
-0.0696 
-0.2110 
-0.1292 
-0.1670 
-0.0417 
-0.0538 
-0.0696 

Upper 

0.4444 
0.2110 
0.0879 
0.2110 
0.0680 
0.0879 
0.2110 
0.0879 
0.2110 
0.0680 
0.0879 
0.0879 
0.0879 
0.0680 
0.0879 
0.2110 
0.0680 
0.0879 
0.1667 
0.0680 
0.0879 

P 
Range 

0.5556 
0.3221 
0.1990 
0.3221 
0.3402 
0.1990 
0.4220 
0.2549 
0.4220 
0.1973 
0.2549 
0.1575 
0.2549 
0.1219 
0.1575 
0.4220 
0.1973 
0.2549 
0.2083 
0.1219 
0.1575 

Positive Definite Range 
Lower 

-0.4444 
-0.4022 
-0.3303 
-0.4022 
-0.2722 
-0.3303 
-0.3639 
-0.2988 
-0.3639 
-0.2463 
-0.2988 
-0.2454 
-0.2988 
-0.2022 
-0.2454 
-0.3639 
-0.2463 
-0.2988 
-0.1667 
-0.2022 
-0.2454 

Upper 

0.4444 
0.4022 
0.3303 
0.4022 
0.2722 
0.3303 
0.3639 
0.2988 
0.3639 
0.2463 
0.2988 
0.2454 
0.2988 
0.2022 
0.2454 
0.3639 
0.2463 
0.2988 
0.1667 
0.2022 
0.2454 

Range 

0.8889 
0.8043 
0.6605 
0.8043 
0.5443 
0.6605 
0.7278 
0.5977 
0.7278 
0.4926 
0.5977 
0.4908 
0.5977 
0.4045 
0.4908 
0.7278 
0.4926 
0.5977 
0.3333 
0.4045 
0.4908 

* Pi = (j>i,i,Pi,2,Pi,3) for i = 1,2,3. 

IV.3 TRIVARIATE MULTINOMIAL RANDOM VECTORS 

IV.3.1 INTRODUCTION 

In the previous subsection we studied bivariate joint distributions for correlated 

multinomial random vectors. Here we extend the results further to trivariate multino-

mial random vectors. Suppose Y\, Y2 and Y3 are three dependent categorical random 

variables that can take one of the K categories. Let Vj , Y2, and Y3 be the binary 

choice vectors corresponding to Y±,Y2 and Y$ respectively. We need some additional 

notation. Let phCk = P(YZ = c%) and Pij^c = P(Yi = Ci-,Y3 = cj) where 1 < i, j < 3 

and cu Cj G {1, 2,..., K - 1}. Further, let Pi23,Clc2c3 = P(Xi = c1: Y2 = c2, Y3 = c3). 
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Similar to the bivariate situation, in the trivariate case, among the 3K joint prob-

abilities only few probabilities are flexible to vary when the marginal and bivariate 

joint probabilities are fixed. The dependent constraints among the probabilities can 

be summarized as follows. 

K-l K-l 

PI,K = 1 - YlPl'u
 P*J.C*

 = P*& ~ X^>c**' 
t=i t=\ 

K-l 

Pl23,cic2K = Pl2,ac2 ~ / ,Pl23,Clc2t, 

t=l 

K-l 

Pl23,ClKc3 = P l 3 , c i c 3
 — / yPl23,cite3i 

t= l 

K-l 

Pl23,Kc2c3 ~ P23,c2c3 ~ / vPl23,ic2c3) 

t=l 

for i, j £ {1, 2,3} and cz G {1,2,..., K — 1}. We focus on the special case K = 3, the 

general case can be handled similarly but the notation is cumbersome. The 33 = 27 

joint probabilities are summarized explicitly in Table 24. 

IV.3.2 POSITIVE DEFINITE RANGES 

When there are three categories (K = 3), the covariance matrix of the multinomial 

random vector is 

Gov ( Y« ) = ( ft'l(1 ~ P^ -*- l f t - 2 ) = ( <* a - 1 2 ] , i = 1,2,3. 
^ 2 / \ ~Pi,2Pi,l Pi,2(l-Pi,2) J \ Vn,21 °\2 

Similar to the bivariate case, denote the correlations between the levels of any 

two multinomial random variables as, 
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Table 24: Trivariate probabilities and dependencies 

Y\ 
1 

1 

1 
1 

1 

1 
1 
1 
1 
2 
2 

2 
2 
2 
2 

2 
2 
2 
3 
3 
3 

3 
3 
3 
3 
3 
3 

Y2 

1 

1 

1 
2 

2 

2 
3 
3 
3 
1 
1 

1 
2 
2 
2 

3 
3 
3 
1 
1 
1 

2 
2 
2 
3 
3 
3 

^3 

1 

2 

3 
1 

2 

3 
1 
2 
3 
1 
2 

3 
1 
2 
3 

1 
2 
3 
1 
2 
3 

1 
2 
3 
1 
2 
3 

P(Y1 

P123.111 

P123.112 

Pl2 , l l — P123.111 — P123.H2 

P123.121 

P123.122 

P12.12 — P123.121 — Pl23,122 

Pl3,H — Pl23, l l l — P123.121 

P13.12 — Pl23,112 — P123.122 

P l , l - P l 2 , l l -P12.12 - P l 3 , l l -

P123.211 

P123.212 

P12.21 — P123.211 — Pl23,212 

P123.221 

Pl23,222 

P12.22 — Pl23,221 ~ P123.222 

Pl3,21 — Pl23,211 — P123.221 

P13.22 — P123.212 ~ Pl23,222 

Pl,2 —Pl2,21 —Pl2,22 —Pl3,21 " 

P23,ll — P123.111 — P123.211 

P23,12 — P123.112 — P123.212 

P2,l —Pl2,ll —Pl2,21 —P23.ll " 

P23.21 — P123.121 — P123.221 

P23.22 — P123.122 — P123.222 

P2,2 —P12.12 —P12.22 ~P23.21 " 

P3.1 —Pl3.ll —P13.21 —P23.ll " 

P3.2 —P13.12 —P13.22 ~ P23.12 " 

1 - P l , l - P l , 2 - P 2 , l - P 2 . 2 -

= 2/1,^2 = 2 / 2 , ^ 3 =2 /3 ) 

_Pl3,12 +P123.111 +P123.121 +P123.112 +P123.122 

-P13.22 +P123.211 +P123.221 +P123.212 +P123.222 

"P23.12 +P123.111 +P123.211 +P123.112 +P123.212 

-P23.22 +P123.121 +P123.221 +P123.122 +P123.222 

-P23.21 +P123.111 +P123.211 +P123.121 +P123.221 

"P23.22 +P123.112 +P123.212 +P123.122 +P123.222 

P3,l - P 3 . 2 +P12.11 +P12.12 +P12.21 +P12.22 + 

Pl3 . l l +P13.12 +P13.21 +P13.22 +P23.11 +P23.12 +P23.21 +P23.22 —Pl23.Hl — 

P123.211 — P123.121 — P123.221 — P123.112 — P123.212 ~ P123.122 ~ P123.222 

http://P23.ll
http://Pl3.ll
http://P23.ll
http://Pl3.ll
http://Pl23.Hl
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PlJjChCj 

Cov(YlCi,Y,Cj) 

y/W(Y^)V(YJCj)] 

_ * H * i c Y J C J ) ~ Pi,^P],cj 

°"i,c,0j,c, 

*\*lCi J-) •*JC} *•) Pl,CtPj,Cj 

ffi&GjyCj 

= for ! , t j . (53) 

Using the above notation the correlation matrix for three multinomial random 

vectors when there are three categories can be written as 

Y12 

Corr 
Y2i 

Y22 

~Yn 

\Y32 J 

( 1 Pll.12 

Pll.21 1 

Pl2,l l P12.21 

Pl2,12 P12.22 

Pl3. l l Pl3,21 

y P13.12 P13.22 

Pl2. l l P12.12 

P12.21 P12.22 

1 P22.12 

P22,21 1 

P23.ll P23.21 

P23.12 P23,22 

Pl3,l l Pl3,12 

P13.21 Pl3,22 

\ 

P23.ll P23.12 

P23.21 P23.22 

1 P33.12 

P33.21 1 

As in the bivariate case, for parsimonious modeling we assume PxJiC%c} = Pij f° r 

all i 7̂  j . This is also known as the unstructured (UN) correlation matrix. We 

can further reduce the number of correlation parameters by considering structured 

correlation matrices such as (i) compound symmetry (CS), pi;t = p for all i ^ j , (ii) 

AR(1), pi2--?! for all i ^ j . When K = 3, these structured matrices take the form 

Rr 

/ 1 Pl l .12 

Pl l .21 1 

P P 

P P 

P P 

V p p 

p p 

p p 

1 P22.12 

P22,21 1 

P P 

P P 

P P 

P P 

P P 

P P 

1 P33.12 

P33.21 1 

\ 

(54) 

" a r l 

/ 1 Pl l .12 

Pll .21 1 

P P 

P P 

P 2 P 2 

\ P 2 P 2 

P P 

P P 

1 P22.12 

P22.21 1 

P P 

P P 

P 2 P 2 

P 2 P 2 

P P 

P P 

1 P33.12 

P33.21 1 

(55) 

http://Pl3.ll
http://Pl2.ll
http://P23.ll
http://P23.ll
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- " f i n 

/ 1 

Pl l .21 

Pi 2 

P12 

P13 

V P13 

Pl l .12 

1 

P12 

P12 

P13 

P13 

P12 

P12 

1 

P22.21 

P23 

P23 

P12 

P12 

P22.12 

1 

P23 

P23 

P13 

P13 

P23 

P23 

1 

P33.21 

P13 \ 

P13 

P23 

P23 

P33,12 

1 / 

(56) 

We will study properties of these correlation matrices in the next few sections. 

Properties of the Correlation matrix Rc 

The correlation matrix (54) can be written in partitioned form compactly as 

- * l T . . < 3 

/ Rn PJ 

pJ R22 

\ pJ pJ 

pJ \ 

PJ 

-R33 / 

(57) 

where J is a matrix of ones. The following theorem provides the range of p for which 

the determinant of the matrix Rcs is positive. 

THEOREM 1. Consider the correlation matrix Rcs defined in (57). The determinant 

of Rcs is positive if and only if the cubic polynomial 

where 

1-Ap2 + Bpz > 0, 

A = (l'R^l)(l'R^l) + (l'R^l)(l'R^l) + (l'R^l)(l'R^l), 

B = 2(l'R[?l){l'R£l)(ltR£l). 
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Proof. From the formula of determinant for partitioned matrix we have 

\Rcs\ = l^] \T3-T'2T^T2 

= i T i l l T a l l l - T ^ T y Z V 1 ! 

= |Ti | |T3 

= |T i | |T 3 l 

= |Ti | |T3 

I - p2[3 : 3}T^ 

I - p2l[l' : l']T^ 

1 ~ p2[l' : l']T^ 

3 

3 

1 

1 

1 

1 

i - i 

IT3-1 

l'Tg"1! 

because |I — AB| = |I — BA| for any two matrices A and B. Since 

= . T11 T12 

1 l rp2\ rri22 

, 2 T D - 1 T \ - I 
\Rn — p J-R22 *J) -PTnJR^ 

-pl\22 J-* -*^22 ~̂~ P -^22 "-* J -R ' 
-1 ' 

22 

we have 

\RCS\ = iTxMTal 1 - p 2 [!':!'] 
r r i l l r r i l 2 

rjil\ rrt22 

1 

1 
( l 'TJ 1 ! ) 

= |Ti | |T3 | [1 - p2{l'Tnl + l'T12l + l 'T 2 1 l + i ' r 2 2 i } ( i ' r 3 xl)] 

= |Tx| |T3 | [1 - p 2 { l ' T n l - ( l 'T n l ) ( l ' J R 2 2
1 l )p - (l ' il2-2

1l)(l /T11l)p 

+(l/fl2-2
1l) + ftl'RaWTUWRami'TZ1!)] 

= |T!| |T3 | [1 - / ( l ' ^ l H l ' T 1 1 ! ^ - p ( l ' J # l ) ] 2 + l ' J ^ l } ] 

(58) 

where 1 is a column vector of ones. Now 
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i ' r u i = l ^ i i u - ^ J i ^ j ) - 1 ! 

= l'iRu-flil'RZl)!')-1! 

= l ' ^ n - p ^ l ' ^ l p ) - 1 ! . 

To simplify, l'Tnl, we use the lemma given in Kenneth (1981) which states that if 

H has rank one, then 

(G + H ) - 1 = G _ 1 — G ^ H G - 1 where g = trace(HG_1). 
v ' 1+g v ' 

In the present proof, we let G = Rn and H = — ̂ (l'R^^i)^- We can easily check 

that rank(H) = 1 and 

g = trace(HG_1) = trace(-p2(l /i222
1l)Ji?^1

1) 

= trace(-p2(l / i^2
1 l)l ' JR^1

1 l) 

= -f?(l'R£l)(l'R[?l). 

We also have 

l ' G ^ H G - 1 ! = l'R^l-p^l'^1)3^^1 

= -f{l'R£W'K[?l)2. 

Using the above results we get 

l ' (G + H ) - 1 ! = l ' ^ l , w r - 1-^(1'R^1)(1'R7H)2] 
v ; n 1-p2 l'Roo1!)(1'R7H L J 

l'Rn1! 

l-p*(l>R£l)(VR[*iy 

Therefore from equation (58) we have 

Rcs\ = [T,] \T3\ [1 - ^ ( l ' T ^ l H l ' T 1 1 ! ! ! - p(l'R£l)]2 + l'R£l}] 

\Ti\ I-R33I 

l - V ( l ' J R ^ l ) 
l'Rn1! + l'R£l - 2p(l /^r1

1l)(l /.R2-2
1l) 

l - ^ C l ' ^ i 1 ! ) ^ ^ 1 ! ) 
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— I^1!| I-R33I 

Using the fact that |Ti | = |i^n | I-R22I [1 - p2{V Riil)(V R^^l)} we get 

I-Res I = I-Kill I-R22I I-R33I 

(1 - ?[(l'K£l)(VK£l) + (l'R^l)(l'R^l) + (l'R£l)(l'R£l)] 

+2p3(l'R^l)(l'R22
1l)(l'R^1l)). 

Thus \RC8\ > 0 if and only if 1 - Ap2 + Bp3 > 0 where 

A = (l'^lXl'R^y + il'^lXl'R^y + il'R^lXl'R^l) and 

B = 2(1'JR-11)(1/
JR22

11)(1/
JR33

11). 

This completes the proof of the theorem. 

Remark: We observed numerically the cubic equation in p in Theorem 1. has one 

root (pi < 0) that is negative always and two positive roots (0 < p2 < P3). Further 

the cubic equation is nonnegative if and only if p\ < p < p2. This range (pi, p2) for 

p is also the range where the correlation matrix Rcs is positive semi-definite. We 

verified this result numerically but were unable to prove this analytically. 

IV.3.3 EXISTENCE OF A JOINT DISTRIBUTION WITH CS STRUC-

TURE 

In this section, we derive the range for the p in the correlation structure (54) such 

that a joint distribution exists for three multinomial random vectors Y"i, Y2 and 

Y3 exists with correlation structure Rcs. The main theorem in this section is the 

following. 

THEOREM 2. Suppose Yi,Y2 and Y3 are three multinomial random vectors with 

one trial and probabilities px = (pi,i,pi]2, • • • ,PI,K-I)', V2 = (^2,1,̂ 2,2, • • • ,P2,K-\)', 

and p% = 0?3,I,P3,2J • • - ,P3,K-I)' respectively. Assume that the correlation matrix 

of the three multinomial vectors is given by Rcs defined in (54)- Then the joint 

distribution for Yi,Y2, and Y3 exists if and only if the parameter p satisfies the 
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inequalities 

max{L31(p1,p2,p3),L32(p1,P2,P3),L33(pl,Pj), 1 < i < 3 < 3} < p < 

mmiminiUzxip^Pj), l<i<j< 3}, ^32(^1,^2,^3)} 

where 

T , x f-(Z)c=lP»,c,)(Z)Cj=lPj,c,) -Pz,KPj,K . 
^3i(p»,Pj) = max . „ A - _ I W ^ A - - I r> /V-A--1 v v - * - i 7 f ' 

t (Ec,=l <VJ(EC j=l 03,01) (Ec,=l ' V . H E c ^ l ° W J 

{~~'Pi c, (Ec =1 Pj c ) 1 

-—' ]^K-I—4" 5i ^ J; e {1> 2> 3}>c* e "t1' •••'K ~x} r ' 

•^33(Pl,P2,P3) 

- { ( E ^ T 1 P I , 0 ( E ^ T 1 P 2 , I ) ( E ^ T 1 P 3 , Z ) + (PI,KP2,XP3,K)} 

(Ez=Tx
 ^ I ,*) (ES=T 1 a2,») + ( E i T 1 ° ' i , i)(EiT1 °3,0 + ( E i T 1 ^ . . X E ^ T 1 °3,.)' 

and 

TT , , . f (ESiPz.cK* ( E ^ J P ^ K * \ 
Usiip^Pj) = mm < x x _ ! -, , „ * • _ ! W V - K - I 7f> 

t (2^c,=i o-x,c)l2^c,=i < W (2^,=i o-x,c)C2^c,=i < W J 

U32{Pl,P2,P3) = m i n S 7W?=1 -•i^3e{l,2,?,},c^{l,...,K-l}}. 

Proof. The theorem can be proved imitating the proof of Theorem 2.. We omit the 

details since the notation is cumbersome. 

IV.3.4 CONSTRUCTION OF TRIVARIATE MULTINOMIAL DIS-

TRIBUTIONS 

We have seen in bivariate case the joint probabilities are determined completely by 

the marginal probabilities and the correlations. However, in dimensions more than 

two, there can be many joint probability with specified marginals and correlations. 

For example, the Table 25 we give three joint probability mass functions (PMF) all 

having the same marginal means p1 = (0.2, 0.3, 0.5), p2= (0.4, 0.1, 0.5), and p3 

= (0.3, 0.1, 0.6) and correlation value p = 0.02, which is within the feasible range 

(-0.1297, 0.1942). 
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Table 25: Trivariate joint probability mass 

functions 

Yi Y2 Y3 PMF - 1 PMF - 2 PMF - 3 

1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
3 
3 
3 
3 

1 
1 
1 
2 
2 
2 
3 
3 
3 
1 
1 
1 
2 
2 
2 
3 
3 
3 
1 
1 
1 
2 
2 
2 
3 
3 
3 

1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 

0.0062 
0.0028 
0.0750 
0.0061 
0.0054 
0.0109 
0.0514 
0.0143 
0.0280 
0.0031 
0.0022 
0.1191 
0.0048 
0.0015 
0.0265 
0.0863 
0.0290 
0.0274 
0.1152 
0.0379 
0.0385 
0.0219 
0.0049 
0.0181 
0.0051 
0.0020 
0.2565 

1.0000 

0.0042 
0.0059 
0.0739 
0.0066 
0.0024 
0.0134 
0.0529 
0.0141 
0.0267 
0.0021 
0.0042 
0.1183 
0.0028 
0.0020 
0.0280 
0.0894 
0.0266 
0.0268 
0.1182 
0.0329 
0.0404 
0.0234 
0.0074 
0.0141 
0.0005 
0.0046 
0.2585 

1.0000 

0.0056 
0.0051 
0.0732 
0.0043 
0.0038 
0.0143 
0.0537 
0.0135 
0.0264 
0.0026 
0.0052 
0.1168 
0.0065 
0.0064 
0.0198 
0.0851 
0.0212 
0.0365 
0.1163 
0.0327 
0.0426 
0.0219 
0.0016 
0.0213 
0.0039 
0.0105 
0.2491 

1.0000 

Table 26 and Table 27 contain positive definite ranges for p given in Theorem 1. 

and feasible ranges given in Theorem 2. for numerous marginal distributions. Note 

that there are many joint distributions even for a specified p within the feasible range. 
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Table 26: Positive definite ranges and bounds on correlation p of the matrix 

Rcs for different marginal probabilities 

Marginal Probabilities* 

Pi P2 PZ 

Bounds on p 

Lower Upper 

Positive Definite 

Range Roots^ 

Pi P2 pz 
(0.1 
(0.1 
(0.1 
(0.1 

(0.1 
(0.1 
(0.1 
(0.1 
(0.1 
(0.1 
(0.1 

(0.1 
(0.1 
(0.1 
(0.1 
(0.1 
(0.1 
(0.1 
(0.1 
(0.1 
(0.1 
(0.1 
(0.1 
(0.1 
(0.1 
(0.1 
(0.1 
(0.1 
(0.1 
(0.1 
(0.1 
(0.1 
(0.1 
(0.1 
(0.1 
(0.1 
(0.1 
(0.1 

0.1,0.8) 
0.1,0.8) 

0.1,0.8) 
0.1,0.8) 
0.1,0.8) 
0.1,0.8) 
0.1,0.8) 
0.1,0.8) 

0.1,0.8) 
0.1,0.8) 
0.1,0.8) 
0.1,0.8) 
0.1,0.8) 
0.1,0.8) 
0.1,0.8) 
0.1,0.8) 
0.1,0.8) 
0.1,0.8) 
0.1,0.8) 
0.1,0.8) 
0.1,0.8) 
0.4,0.5) 
0.4,0.5) 
0.4,0.5) 
0.4,0.5) 
0.4,0.5) 
0.4,0.5) 
0.4,0.5) 
0.4,0.5) 
0.4,0.5) 
0.4,0.5) 
0.4,0.5) 
0.4,0.5) 
0.4,0.5) 
0.4,0.5) 
0.4,0.5) 
0.7,0.2) 
0.7,0.2) 

(0.1,0 
(0.1,0 
(0.1,0 
(0.1,0 
(0.1,0 
(0.1,0 
(0.1,0 
(0.1,0 
(0.1,0 
(0.1,0 
(0.1,0 
(0.1,0 
(0.1,0 
(0.1,0 
(0.1,0. 
(0.4,0. 
(0.4,0. 
(0.4,0. 
(0.4,0. 
(0.4,0. 
(0.7,0. 
(0.1,0. 
(0.1,0. 
(0.1,0. 

(0.1,0. 
(0.1,0. 
(0.1,0. 
(0.1,0. 
(0.1,0. 
(0.1,0. 
(0.4,0. 
(0.4,0. 
(0.4,0. 
(0.4,0. 
(0.4,0. 
(0.7,0 

(0.1,0 
(0.1,0. 

1,0.8 
.1,0.8 
.1,0.8 
.1,0.8 
1,0.8 
1,0.8 
4,0.5 
4,0.5 
.4,0.5 
.4,0.5 
4,0.5 
.7,0.2 
.7,0.2 
.7,0.2 
7,0.2 
1,0.5 
1,0.5 
1,0.5 
4,0.2 
4,0.2 
1,0.2 
4,0.5 
4,0.5 
4,0.5 
4,0.5 
4,0.5 
7,0.2 
7,0.2 
7,0.2 
7,0.2 
1,0.5 
1,0.5 
1,0.5 
4,0.2 
4,0.2 
1,0.2 
7,0.2 
7,0.2 

.1,0.1,0.8 

.1,0.4,0.5 

.1,0.7,0.2 

.4,0.1,0.5 

.4,0.4,0.2 
,7,0.1,0.2 
.1,0.4,0.5 
.1,0.7,0.2 
.4,0.1,0.5 
.4,0.4,0.2 
.7,0.1,0.2 
.1,0.7,0.2 
.4,0.1,0.5 
.4,0.4,0.2 
.7,0.1,0.2 
,4,0.1,0.5 
,4,0.4,0.2 
,7,0.1,0.2 
4,0.4,0.2 
7,0.1,0.2 
7,0.1,0.2 
1,0.4,0.5 
1,0.7,0.2 
4,0.1,0.5 
4,0.4,0.2 
7,0.1,0.2 
1,0.7,0.2 
4,0.1,0.5 
4,0.4,0.2 
7,0.1,0.2 
4,0.1,0.5 
4,0.4,0.2 
7,0.1,0.2 
4,0.4,0.2 
7,0.1,0.2 
7,0.1,0.2 
1,0.7,0.2 
4,0.1,0.5 

-0.111 
-0.111 
-0.111 
-0.111 
-0.104 
-0.111 
-0.111 
-0.105 
-0.111 
-0.087 
-0.105 
-0.070 
-0.105 
-0.054 
-0.070 
-0.111 
-0.087 
-0.105 
-0.042 
-0.054 
-0.070 
-0.134 
-0.137 
-0.134 
-0.115 
-0.137 
-0.070 
-0.137 
-0.054 
-0.070 
-0.134 
-0.115 
-0.137 
-0.042 
-0.054 
-0.070 
-0.070 
-0.070 

0.444 
0.211 
0.088 
0.211 
0.068 
0.088 
0.211 
0.088 
0.211 
0.068 
0.088 
0.088 
0.088 
0.068 
0.088 
0.211 
0.068 
0.088 
0.068 
0.068 
0.088 
0.345 
0.225 
0.345 
0.183 
0.225 
0.157 
0.225 
0.122 
0.157 
0.345 
0.183 
0.225 
0.110 
0.122 
0.157 
0.157 
0.157 

-0.222 
-0.208 
-0.180 
-0.208 
-0.155 
-0.180 
-0.194 
-0.169 
-0.194 
-0.146 
-0.169 
-0.148 
-0.169 
-0.128 
-0.148 
-0.194 
-0.146 
-0.169 
-0.111 
-0.128 
-0.148 
-0.182 
-0.159 
-0.182 
-0.137 
-0.159 
-0.139 
-0.159 
-0.121 
-0.139 
-0.182 
-0.137 
-0.159 
-0.105 
-0.121 
-0.139 
-0.123 
-0.139 

0.444 
0.390 
0.303 
0.390 
0.239 
0.303 
0.364 
0.289 
0.364 
0.228 
0.289 
0.245 
0.289 
0.199 
0.245 
0.364 
0.228 
0.289 
0.167 
0.199 
0.245 
0.364 
0.281 
0.364 
0.221 
0.281 
0.245 
0.281 
0.198 
0.245 
0.364 
0.221 
0.281 
0.167 
0.198 
0.245 
0.245 
0.245 

0.444 
0.444 
0.444 
0.444 
0.444 
0.444 
0.416 
0.407 
0.416 
0.406 
0.407 
0.370 
0.407 
0.357 
0.370 
0.416 
0.406 
0.407 
0.333 
0.357 
0.370 
0.364 
0.364 
0.364 
0.364 
0.364 
0.321 
0.364 
0.311 
0.321 
0.364 
0.364 
0.364 
0.287 
0.311 
0.321 
0.245 
0.321 

t The 

: (Pi,i,Pz,2,Pi,3) for i = 1,2,3. 
range of p for the correlation matrix Rcs is positive semi-definite is p\ < p < p2-
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Table 27: Positive definite ranges and bounds on correlation p of the matrix 
Rcs for different marginal probabilities (Continued.) 

Marginal Probabilities* 

P i 

(0.1,0.7,0.2] 
(0.1,0.7,0.2) 
(0.1,0.7,0.2] 
(0.1,0.7,0.2; 
(0.1,0.7,0.2; 
(0.1,0.7,0.2; 
(0.1,0.7,0.2; 
(0.1,0.7,0.2; 
(0.4,0.1,0.5; 
(0.4,0.1,0.5; 
(0.4,0.1,0.5; 
(0.4,0.1,0.5; 
(0.4,0.1,0.5; 
(0.4,0.1,0.5) 
(0.4,0.4,0.2) 
(0.4,0.4,0.2; 
(0.4,0.4,0.2; 
(0.7,0.1,0.2) 

P2 

(0.1,0.7,0.2) 
(0.1,0.7,0.2) 
(0.4,0.1,0.5) 
(0.4,0.1,0.5) 
(0.4,0.1,0.5) 
(0.4,0.4,0.2) 
(0.4,0.4,0.2) 
(0.7,0.1,0.2) 
(0.4,0.1,0.5) 
(0.4,0.1,0.5) 
(0.4,0.1,0.5) 
(0.4,0.4,0.2) 
(0.4,0.4,0.2) 
(0.7,0.1,0.2) 
(0.4,0.4,0.2) 
(0.4,0.4,0.2) 
(0.7,0.1,0.2) 
(0.7,0.1,0.2) 

P3 

(0.4,0.4,0.2) 
(0.7,0.1,0.2) 
(0.4,0.1,0.5) 
(0.4,0.4,0.2) 
(0.7,0.1,0.2) 
(0.4,0.4,0.2) 
(0.7,0.1,0.2) 
(0.7,0.1,0.2) 
(0.4,0.1,0.5) 
(0.4,0.4,0.2) 
(0.7,0.1,0.2) 
(0.4,0.4,0.2) 
(0.7,0.1,0.2) 
(0.7,0.1,0.2) 
(0.4,0.4,0.2) 
(0.7,0.1,0.2) 
(0.7,0.1,0.2) 
(0.7,0.1,0.2) 

Bounds on p 

Lower 

-0.054 
-0.070 
-0.137 
-0.054 
-0.070 
-0.042 
-0.054 
-0.070 
-0.134 
-0.115 
-0.137 
-0.042 
-0.054 
-0.070 
-0.042 
-0.042 
-0.054 
-0.070 

Upper 

0.122 
0.157 
0.225 
0.122 
0.157 
0.110 
0.122 
0.157 
0.345 
0.183 
0.225 
0.110 
0.122 
0.157 
0.208 
0.110 
0.122 
0.157 

Positive Definite 
Range Roots* 

Pi 

-0.107 
-0.123 
-0.159 
-0.121 
-0.139 
-0.094 
-0.107 
-0.123 
-0.182 
-0.137 
-0.159 
-0.105 
-0.121 
-0.139 
-0.083 
-0.094 
-0.107 
-0.123 

P2 

0.191 
0.245 
0.281 
0.198 
0.245 
0.167 
0.191 
0.245 
0.364 
0.221 

0.281 
0.167 
0.198 
0.245 
0.167 
0.167 
0.191 
0.245 

Pz 
0.245 
0.245 
0.364 
0.311 
0.321 
0.217 
0.245 
0.245 
0.364 
0.364 
0.364 
0.287 
0.311 
0.321 
0.167 
0.217 
0.245 
0.245 

* Pt = (Pi,i,Pi,2,Pz,3) for i = 1,2,3. 

t The range of p for the correlation matrix Rcs is positive semi-definite is p\ < p < p2-
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CHAPTER V 

SUMMARY 

For dependent Gaussian random variables with correlation matrix R, it suffices that 

R be positive definite. This is not the case, however, for discrete random variables. 

There are additional restrictions on the correlation matrix R to guarantee a joint 

distribution for dependent discrete random variables. In Chapter IV we discussed 

these additional restrictions for dependent multinomial vectors. These complexity of 

these restrictions increases as the dimension increases. However, understanding these 

restrictions is necessary when constructing the likelihood for dependent multinomial 

random vectors, even though specification of these restrictions is nearly impossible for 

dimensions greater than 3. The GEE methodology that we discussed in Chapter III 

estimates the correlation parameters ignoring these additional restrictions, and thus 

the methodology provides estimates of the regression parameter which may lack a 

probabilistic basis. An alternative and promising solution which bypasses these dif-

ficulties is the use of latent variables or more generally copula models. These models 

make it possible to construct proper likelihoods for dependent multinomial random 

vectors. We have discussed these likelihoods and maximum likelihood estimation in 

Chapter II of this dissertation. 
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APPENDIX A 

ORDERED PROBIT MODEL DERIVATIVES 

Here we obtain the derivatives for the multivariate ordered probit model that we 

discussed in Section II.2 and Section II.4. 

A . l DERIVATIVES WITH RESPECT TO REGRESSION PARAME-

TERS 

The following notation is needed for the derivatives of the multivariate ordered probit 

model (5) with respect to the regression parameter. For a vector a = (ai,a2, ...,at)', 

we denote the vector deleting the Zth component by a_j = (ai, a2,..., <fy-i, a-i+i-, •••, at)'. 

For a correlation matrix 

R = 

i 1 r12 r1 3 

?"2i 1 r 2 3 r2t 

\ 

1 J \ ni ra rt3 • • 

we denote the matrix obtained by permutating the lih column (and row) with the 

ith column (and row) by 

R® = 

/ 1 

T21 

rd-m 
ra+Di 

ni 

\ rtl 

T\1 

1 

T{1-1)2 •• 

r(l+l)2 • • 

rt2 

rn 

r-i(i-i) 

r 2 ( ( - i ) 

1 

r(i+i)(i-i) 

rt(i-i) 

ri(i-i) 

rKi+i) 
r2(l+l) 

r(i-i)(i+i) • 

1 

rt(i+i) 

ri(i+i) 

ru 

r-it 

• r(i-i)t 

• r(i+i)t 

1 

ru 

ru \ 

T2l 

r(i-i)i 

r{i+i)i 

m 

1 / 

•"-11 -"-12 

p(') D ( 0 
• r L 21 - £ X 22 
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Define 

-"--V — -"-11 — ""-12 I -"-22 J -"-21 — -""11 — -"-12 - " - 2 1 ' 

The following lemma provides the derivative of a multivariate normal cumulative 

distribution function. 

LEMMA 1. Suppose <&i(ai,a2, ...,at;Q,R) denotes a t-variate normal distribution 

function with mean 0 and correlation matrix R. Then the derivative of $ t with 

respect to ai is 

_d_ 

dal 

-$ t(ai, a2,..., at; 0, R) = $ t_!(a_/; /i_, /z, R-i/i) 0(a,; 0,1). 

5 P 

da, 

Proof. Let P = <&t(ai, a2,..., at; 0, R). Then 

P <9 /"ai fa2 fat 

~ = 7T / / - / 0 t (* ;O,#)dz 
fy Oat J-ooJ-oo J-oo 

a /-ai pa.2 rat 

= da~J J "J ^ - i ( z - ' ; ^ 2 ^ - R - V i ) 0 ( ^ ; O , l ) d « 

= da~\fl $t-^a-/; H^' ̂ "'/̂  ^ ; °' ̂  dz') 
= $t-i(a-i; R^Uu R^i/i) 0(az; 0,1) 

= $t-i(a-f, ti_lfl, R„i/i) 0(a,;0,1) • 

The probability mass function irt(y;0,R) of the multivariate ordered probit model 

defined in equation (5) can be written as 2* differences of t-variate normal cumulative 

distribution function as 

2 2 2 

nt(y;0,R) = ^ J ] ... J ] ( - l ) ^ + " +*$t(&ltlJ fe2z2,..., 6iJt; 0, R) (59) 

1 1 = 1 l 2 = l l t = l 

with bji — 7,(yj — 1) ; &j2 = IjiUj)- Recall that the ordered thresholds 7,(fc) = 

Qfc + a^ /3, where /3 is the regression parameter. 
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THEOREM 1. The derivative of 7rt(y;0,R) with respect Pi, the Ith component of {3 

is given by 

d_ 

dpi 
3=1 z , = l 

where bjX = ̂ 3{y3 - 1) and bj2 = l3{v3)-

Proof. Note that from equation (59) we have 

nt(y;0,R) = E E " E ^ 1 ) * ^ +HMhn, b2l2, ...,btlt; 0,R), 
11 = 1 1 2 = 1 It = l 

where b3l 's are functions of the regression parameter (3. For notational convenience 

we write 7rt for irt(y; 0, R). Then the derivative of irt with respect to Pi is 

d-Kt _ dnt dbltl dirt db2l2 dnt dbtlt 

dPt dbln' 8Pi db2l2 dpt 

2 2 2 

11=1 12 = 1 lt = l 

dlhn dpi 

dpi db2l2 

+ --- + 7^Mb-,o,R).~L)(-iyi+l2+ +H 

obtH a Pi 

where b = {b\n, b2l2,..., btlt)''. By Lemma 1 we have 

2 2 2 
chr, 

dPi '' t l = l x 2 = l lt = l ^ ^ 

+ --- + $t_1(6_t;fli36ht,R.t/t) 0 ( ^ t ; O , l ) ^ ) (-l)'i+*+ +* 
a/?, 

which implies 

t 2 

<9A H = E E | H ) - ' * , ^ ) 
j = l l j = 

2 2 2 2 

E- E E •••E^(6-^iX^-^)(-ir~ + l j _ l + J j + l + + l t 

11=1 J j _ l = l l j + l = l Xt = l 

t 2 
06, 

= E E - # ( - 1 ) ^ ^ : ° ' 1 ) x Kt-i(y-3;R\%h,R-3/3) 
3=i i,=\ dP 

(60) 
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Since dbrlr/d(3i = xri for all ir = 1, 2, we get 

2 

d/3i 

This completes the proof. • 

Corollary. The derivative of irt(y; 0, R) with respect to Q/ is 

j. n 

where 

dh rir 

dat 

= < 

1 if (I = yr — 1 & ir — 1) or (I — yr & ir = 2) 

0 otherwise. 

This follows replacing /?/ by a\ in equation (60). 

A.2 DERIVATIVES W I T H R E S P E C T TO LATENT CORRELATIONS 

We need some additional notation to express the derivatives of the multivariate 

ordered probit model (5) with respect to the latent correlations. For a vector a = 

(a-[,a2, ...,at)', we denote the vector obtained deleting the I and 5th components as 

a_{ls) = ( d , a2, • • • , ai-i,al+i, ••• , as^,as+1, ••• , at)' and a{is) = (ah as)'. Assuming 

I < s, the matrix obtained permuting the Ith and sth columns (and rows) with the 

(t — l)th and tth columns (and rows) of the correlation matrix R, is denoted by 

Rm = 

( 1 

Tl\ 

Ttl 

rn 

\ rsl 

rn • 

1 • 

rt2 • 

rn • 

rs2 •• 

• r u 

• r2t 

• 1 

• rn 

• rst 

ru 

r2i 

rti 

1 

rsi 

r » \ 

r2s 

rts 

ris 

1 ) 

r>ils) rf(ls) 
-"-11 -"-12 

Tf(ls) n(ls) 
-"-21 -"22 

Let 

D _ r>ils) T>ils) ( T}ils)\ Tfils). 
-"-(Zs)/(Zs) — ±in — Tt12 I tt22 I -K21 > 

_ r,(ls) ( r»(ls)\ 
^-(Is)/^) — -"-12 ^-""22 J a (Is) 

R (ls)/-(ls) 
Tf(ls) nils) 
-"-22 -"21 

( < » > ) 
- 1 

T>Us). 
- " 1 2 ) 

(Is) 
tX(ls)/-(ls) — -^21 ( < ) " « - (Is) 
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For a multivariate normal random vector Z = (Z±, Z2,..., Zt) with mean 0 and 

correlation matrix R, the above expressions are precisely the variance and mean of 

the conditional random vector Z-^sy^s), which is •ZT-(js) given Z^ is equal to a(/s) 

and the conditional random vector Z(^)/_(/s), which is Z^s) given -Z-(Zs) is equal to 

a_(^s) respectively. The next lemma provides the derivative of a multivariate normal 

cumulative distribution function with respect to the latent correlations. 

LEMMA 1. Suppose <&t(ai,a2, ...,a4;0, JR) denotes a t-variate normal distribution 

function with mean 0 and correlation matrix R. Let ris be the (ls)th element of 

the correlation matrix R. Then the derivative of $ t with respect to ris is 

d 
Q—$t(ai,a2,...,at;0,R) = $ t_2(a_(^);/x_( /s) /( is), R_(lsy(ls)) 02(a( is); 0, R\\V). 

Proof. Let P — $t(ai, a2,..., at; 0, R). Then 

/

ai />a2 rat 

/ ... / <t>t(z;o,R)dz 
•oo J — oo J—oo 

P = 
-oo J —oo 

where 

/

a\ ra2 rat 

/ ••• / <Pt-2{Z-(ls)',0, Rn ) 02(^(/s) ;^s) /-(«s))-R(is) / -( is)) ^ 
oo J—oo J—oo 

= / 0 i -2( -Z-(Zs) ;O, -Rl l i ) ^ > 2 ( a ( Z s ) ; ^ s ) / - ( Z s ) , - R ( i s ) / - ( / s ) ) Gte-(is)) (61) 
J—oo 

/

a-(is) /*"i ff-2 ra,i-i rai+i ra.s-i ras+i rat 

oo J — oo J —oo J—oo J —oo J—oo J—oo J—oo 

M{ls)/_{ls) = i2£fl) (Mi 8 ) ) 'zi , ,) = f ^ I and 

„ _ , 1 ru \ _ ( <5n 5i2 \ _ / 1 - 5n rls - 5l2 

rls I J \ 5U S22 J \ris- 612 1 - S22 

Note that rjz and 5l3 do not depend on r/s. Consider 

$ 2 [(at, as); M{ls)/^{ls), R(lsy_{ls)] = P {Wx < ahW2 < as) 

wherel W> ) ~ JV f f * V ( * " *» * ' " *» 
W"2 / V V % / V r ^ - <*12 1 - <$22 

file:///ris
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After standardizing we get 

$2 {(a-l, «s); Afys)/-(Js)) R(is)/-(ls)) 

Wx -771 < ai -rji W2 -r]2 < as - r]2 

V i - ^11 V i - ^ u ' V i - £22 V i - £22 

= P ( W 7 < a r , W ? < a J ) , 

wz / \V°7 w . 1 
where | J | ~ iV ( I I , ( ^ <s ) | ~iV(0,A, s) 

>*js - $ 1 2 

Vl — $11 Vl — $22 

Therefore, 

gr * \\ " s>i " ' ( . ' s ; / -> , " ; ' ~~KiB)/-(is>/ ar 

fa> fa° d 
= / / •^T<j>2(wl,W2;0,Ala)dwldw2 x 

J_oo J-oo C r ; s 

g|*2(W.O;o,A,s) g 

1 

Vl - $11 Vl - $22 

Using Plackett's identity (Kotz et al. (2000), page 259) we have 

= / / "̂  ^ 02(w?,Wo;O, A/JrfwTdWo. . 

1 

= 02((az*X);O,A,s) 
V I - $11 V l - $22 

= 02 {{d-hOs)', M(is)/-{ls), R(ls)/-{ls)) • 

Using equation (61) we get 

"5 = o / 0 t - 2 ( 2 - ( i s ) ; O , i ? n
S ) ^2{o-{ls)'^{ls)l-{ls),R{ls)l-(ls)) dz_(ls) 

/"a~((s) (is) d 
= I 4>t-2(Z-(ls);0,Ru ) $2(a(Js);-W(/s)/-(is),-R(Js)/-(Zs)) rf-Z-(is) 

J - 0 0 oris 

= / <f>t-2(Z-(ls)',0, Rn ) 4>2{a{ls)] M(ls)/-{ls), R(ls)/-(ls)) dz_(js) 
J —00 
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-(Is) = (f)t [(zi, • • • , zi-i, ah zi+i, • • • , zs_i, aa, zs+1, ••• , zt); 0, R] dz 
J — oo 

= / 0 2 ( a ( / s ) ;O , i l 2 2 ) 0t_2(2-(Js);-^-(«s)/(«s),-R-(Js)/(/s)) dZ-(ls) 
J — oo 

(is) / ' a _ ( ' s ) 

= 02(O(ZS);O,-R22 ) / 0t-2(^-(is);-W-(«s)/(is))-R-(2s)/(is)) ^ - ( i s ) 
./—oo 

= $t-.2(a>-(lay,t*-(is)/(ls),R-(ls)/(ls)) 02(O(ZS);O, J222 )• Q 

Now we are in a position to derive the derivatives of the multivariate probability-

mass function (59) with respect to the latent correlation parameters. 

THEOREM 1. Let nt = 7rt(y;0,R) be probability mass function of the multivariate 

ordered probit model as defined in (59). Then the derivative ofirt with respect to the 

(ls)th element of matrix R is 

JLnt(y;0,R) = ^ ^ ( ( - ^ ^ ^ ( ( ^ . f t O j O , ^ ? ) . 
T l s Z ( = l i * = l 

Kt-2{y-{ls)\ tJ>-(ls)/(ls), R-(ls)/(ls))) 

where b3\ = ^3(y3 — 1) and bj2 = l3{y3)-

Proof. Note that from equation (59) we have 

2 2 2 

7rt(y;0,R) = E E - E ( - 1 ) n + l 2 + +HMbin,b2i2,..,btlt;0,R). 
11 = 1 12 = 1 l t = l 

So the derivative of nt(y; 0, R) with respect to r/s is 

2 2 2 

Is u l Is 1 , 1 , 1 
1 1 = 1 22 = 1 lt = l 

2 2 2 „ 

= EE-D-1) , 1 + I 2 + ^^(^i ,^, . . . ,^^,^) . 
1 1 = 1 22 = 1 l t = l 

By Lemma 2 we have 
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S l l = l 12 = 1 l t = l 

[®t-2(b-(isy, /x_(ja)/(/s), R-(is)/(is)) <p2((bhnbsls);0, R$)j 

= E E - E ((-lYl+lsM(btH, bsls); 0, *£>) 
11 = 1 1 2 = 1 I t = l 

l _ i J q?t-2lO_(/s),/X_(/s)/(is),it_(Zs)/(/s)jJ 
2 2 

= E E ((-ir i+ls02((^,^J;O,i4'2
s)). 7rt_2(y_(ia);/x_(/s)/(Ii),il_(ls)/(ls))) 

l; = l xs = l 

This completes the proof of the theorem. • 
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APPENDIX B 

R PROGRAM 

Here we provide details of the R program that we developed for fitting the multivariate 

ordered probit-logit models. The program consists of several functions. Details of 

these functions are given below. 

1. sigma: Constructs the correlation matrix for a given rho (p), size, and structure 

(only AR(1) and CS structures are allowed). 

2. negloglik: Calculates the negative log-likelihood function for a given theta (0) 

and data values based on given link function. This program requires MProbit 

package in R. 

3. Grad_Anal_beta: Calculates the analytical derivatives of negative log-likelihood 

with respect to regression parameter (/3) for a given theta (0) and data values. 

4. Grad_Anal_R: Calculates the analytical derivatives of negative log-likelihood 

with respect to latent correlation parameters (p) for a given theta (0), data 

values, and correlation structure. 

5. Grad_Anal: Combines the analytical derivatives of negative log-likelihood with 

respect to regression parameters ((3) and latent correlation parameters (p). 

6. QNMin: Minimizes the negative log-likelihood function for a given initial 0 

values using a quasi-Newton algorithm. (See Chapter II, Section II.4.3 for 

details.) 

7. OrdGuasCopula: Main function which uses all of the above functions, inputs 

the data values and other instructions such as correlation structure and link 

function, and outputs the final results. 

Remarks: 

1. The main function OrdGuasCopula takes the data and the initial parameter 

values and makes them global. Thus the data and the initial parameter values 

can be accessed by all the other functions readily. 
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2. The functions Grad_Anal_beta and Grad_Anal_R use negloglik function. The 

QNMin function uses both the negloglik and the Grad_Anal functions. 

3. The data structure for the main program should have Id variable which is 

a subject indicator. Also for the categorical independent variables, dummy 

variables must be created manually. 

library(mprobit) 

# Construct the Correlation matrix for a given rho and size 

sigma <- function(rho) 

{ 

if (struct == "ar") 

•C 

m <- diag(nt) 

sigma <- rho~(abs(row(m)-col(m))) 

} 

if (struct == "cs") 

{ 

sigma <- matrix(rep(rho,nt*nt),nt,nt) 

diag(sigma) <- 1.0 

> 

return(sigma) 

# for a given theta and data values calculates the log-likelihood 

# based on link function 

negloglik <- function(theta) 

-C 

alpha <- theta[l:nc-l] 

alpha <- c(-6,alpha,6) 

beta <- theta[nc:(nc+np-1)] 

rho <- theta[length(theta)] 

if (struct == "ar" || struct == "cs") 

if (rho < 0.0 II rho >= 1.0) return(l.elO) 

value <- 0 

Sig <- sigma(rho) 

en <- cumsum(unlist(lapply(split(id,f=id),length)))#cluster ending points 

st <- c(l,en[-length(en)]+l)#cluster starting points 



for (i in l:nsub) 

{ 

xi <- XCov[st[i] :en[i] ,] 

if (np == 1) 

Mean <- as.vector(xi*beta) 

else 

Mean <- as.vector(xic/0*°/.beta) 

yi <- YRes[st[i]:en[i]] 

Lower <- alpha[yi] + Mean 

Upper <- alpha[yi+1] + Mean 

# probit link is default, Lower = Lower and Upper = Upper. 

if (link == "logit") 

{ 

Lower <- qnorm(exp(Lower)/(1+exp(Lower))) 

Upper <- qnorm(exp(Upper)/(l+exp(Upper))) 

} 

Sigi <- Sig[l:(en[i]-st[i]+l),l:(en[i]-st[i]+l)] 

if(length(yi) > 1) 

•C 

TempObj <- mvnapp(Lower,Upper,rep(0,length(Lower)),Sigi,eps=l.e-03) 

if (TempObj$ifail > 0) 

returnd .elO) 

JointProbi <- TempObj$pr 

} 

else 

JointProbi <- (pnorm(Upper[1]) - pnorm(Lower [1])) 

if (is.nan(JointProbi)) returnd.e9) 

if (JointProbi <= -1) returnd .elO) 

if (JointProbi <= 0) JointProbi = 1.0e-15 

value <- value + log(JointProbi) 

} 

return(-value) 



# for a given theta and data values calculates analytical derivatives 

# with respect to regression parameters and cutoff points 

Grad_Anal_beta <- function(theta) 

{ 

alpha <- t h e t a [ 1 : n c - l ] 

alpha <- c ( - 6 , a l p h a , 6 ) 

be ta <- the ta[nc : (nc+np-1)] 

rho <- t h e t a [ l e n g t h ( t h e t a ) ] 

i f ( s t r u c t == "ar" | | s t r u c t == "cs") 

i f (rho < 0.0 II rho >= 1.0) r e tu rn (0 ) 

Deriv <- 0 

Sig <- sigma(rho) 

en <- cumsum(unlist(lapply(split(id,f=id).length))) #cluster ending 

st <- c(l,en[-length(en)]+l) # cluster starting points 

for (i in l:nsub) 

-C 

if ((en[i]-st[i]+l) > 1) 

xi <- XCov[st[i] : en [ i ] ,] 

e l s e 

x i <- m a t r i x ( X C o v [ s t [ i ] : e n [ i ] , ] , 1 , l e n g t h ( X C o v [ s t [ i ] : e n [ i ] , ] ) ) 

i f (np == 1) 

Mean <- as.vector(xi*beta) 

else 

Mean <- as.vector(xi70*°/0beta) 

yi <- YRes[st[i] :en[i]] 

Lower <- alpha[yi] + Mean 

Upper <- alpha[yi+1] + Mean 

# probit link is default, Lower = Lower and Upper = Upper. 

if (link == "logit") 

i 

Lower <- qnorm(exp(Lower)/(1+exp(Lower))) 

Upper <- qnorm(exp(Upper)/(l+exp(Upper))) 

} 

Sigi <- Sig[l: (en[i]-st[i]+l),l:(en[i]-st[i]+l)] 
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if(length(yi) > 1) 

{ 

TempObj <- mvnapp(Lower.Upper,rep(0,length(Lower)),Sigi,eps=l.e-03) 

if (is.nan(TempObj$pr)){next} 

if (TempObj$ifail > 0){next} 

if(TempObj$pr > l){next} 

if(TempObj$pr == 0){next} 

JointProbi <- TempObj$pr 

} 

else 

Jo in tProbi <- (pnorm(Upper[1]) - pnorm(Lower[l])) 

a lpha_deriv_i <- rep(O.nc- l ) 

be ta_der iv_ i <- rep(O.np) 

for ( j in 1:(length(Lower))) 

{ 

i f ( l e n g t h ( y i ) > 1) 

•c 
CondRj <- S i g i [ - j , - j ] - ( S i g i [ - j . j]°/.*'/.t(Sigi[j , - j ] ) ) 

CondMujl <- S i g i [ - j , j ] * U p p e r [ j ] 

CondMuj2 <- S ig i [ - j , j ]*Lower [ j ] 

} 

i f ( l e n g t h ( y i ) > 2) 

-c 
TempObj <- mvnapp(Lower[-j],Upper[-j],CondMujl,CondRj,eps=l.e-03) 

if (TempObj$ifail > 0){TempObj$pr <- 0} 

if (is.nan(TempObj$pr)) -[TempObj$pr <- 0} 

if(TempObj$pr > 1){TempObj$pr <- 0} 

terml <- dnorm(Upper[j],0,l)*TempObj$pr 

if (is.nan(terml)) {terml <- 0} 

TempObj <- mvnapp(Lower[-j],Upper[-j],CondMuj2,CondRj,eps=l.e-03) 

if (TempObj$ifail > 0){TempObj$pr <- 0} 

if (is.nan(TempObj$pr)) {TempObj$pr <- 0} 

if(TempObj$pr > 1){TempObj$pr <- 0} 

term2 <- dnorm(Lower [j] ,0, D*TempObj$pr 

if (is.nan(term2)) {term2 <- 0} 

> 



else if (length(yi) == 2) 

•C 

terml <- dnorm(Upper[j],0,l)*(pnorm(Upper[-j],CondMuj1,CondRj) 

- pnorm(Lower[-j],CondMuj1,CondRj)) 

term2 <- dnorm(Lower[j],0,1)*(pnorm(Upper[-j],CondMuj2,CondRj) 

- pnorm(Lower[-j],CondMuj2,CondRj)) 

} 

else if (length(yi) == 1) 

{ 
terml <- dnorm(Upper[j] ,0,1) 

term2 <- dnorm(Lower[j],0,1) 

} 

if (np == 1) 

be ta_der iv_i <- be ta_der iv_i + (x i [ j ]* ( t e rml - t e rm2) ) 

e l s e 

be ta_der iv_i <- be ta_der iv_i + (x i [ j , ] * ( t e rml - t e rm2) ) 

for (k in l : ( n c - l ) ) 

{ 

i f ( y i [ j ] == k) {alpha_deriv_i[k] = a lpha_der iv_i[k] + terml} 

e l s e i f ( ( y i [ j ] - 1) == k) {alpha_deriv_i[k] = alpha_deriv_i[k] -

} 

} 

de r iv_ i <- c (a lpha_der iv_ i ,be ta_der iv_ i ) 

Deriv <- Deriv + (de r iv_ i / Jo in tP rob i ) 

> 

re tu rn( -Der iv) 

} 

# for a given theta and data values calculates analytical derivatives 

#with respect to R 

Grad_Anal_R <- function(theta) 

•C 

alpha <- t h e t a [ l : n c - l ] 

alpha <- c ( -6 , a lpha ,6 ) 

be ta <- the ta[nc: (nc+np-1)] 

rho <- t h e t a [ l e n g t h ( t h e t a ) ] 

i f ( s t r u c t == "ar" | | s t r u c t == "cs") 

if (rho < 0.0 M rho >= 1.0) return(O) 

DerivR <- 0 
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Sig <- sigma(rho) 

en <- cumsum(unlist(lapply(split(id,f=id).length))) #cluster ending points 

st <- c(l,en[-length(en)]+l) # cluster starting points 

for (i in l:nsub) 

•C 

if ((en[i]-st[i]+l) > 1) 

xi <- XCov[st[i] :en[i] ,] 

else 

xi <- matrix(XCov[st[i]:en[i],] ,1,length(XCov[st[i]:en[i],])) 

if (np == 1) 

Mean <- as .vector(xi*beta) 

else 

Mean <- as.vector(xi%*%beta) 

yi <- YRes[st[i] :en[i]] 

Lower <- alpha[yi] + Mean 

Upper <- alpha[yi+1] + Mean 

# probit link is default, Lower = Lower and Upper = Upper. 

if (link == "logit") 

{ 

Lower <- qnorm(exp(Lower)/(1+exp(Lower))) 

Upper <- qnorm(exp(Upper)/(l+exp(Upper))) 

} 

Sigi <- Sig[l:(en[i]-st[i]+l),l:(en[i]-st[i]+l)] 

if(length(yi) > 1) 

•C 

TempObj <- mvnapp(Lower,Upper,rep(0,length(Lower)),Sigi,eps=l.e-03) 

if (is.naxt(TempObj$pr))-[next} 

if (TempObj$ifail > 0){next} 

if(TempObj$pr > l){next} 

if(TempObj$pr == 0){next} 

JointProbi <- TempObj$pr 

> 

else 

JointProbi <- (pnorm(Upper [1]) - pnorm(Lower[1])) 
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r_jk_deriv_i <- c(0) 

for (j in 1:(length(Lower)-l)) 

i 

for(k in (j+1):(length(Lower))) 

{ 

if(length(yi) > 1) 

R22 <- Sigi[c(j,k),c(j,k)] 

if(length(yi) > 2) 

{ 

CondRj <- Sigi[-c(j,k),-c(j,k)] - (Sigi[-c(j,k),c(j,k)] 

%*%ginv(Sigi[c(j,k),c(j,k)]),/.*%Sigi[c(j,k),-c(j,k)]) 

CondMujl <- Sigi[-c(j,k),c(j,k)]%*7„ginv(Sigi[c(j,k),c(j)k)]) 

°/,*0/,matrix(c (Lower [j] ,Lower [k] ) ,2,1) 

CondMuj2 <- Sigi[-c(j,k),c(j,k)]7.*,/.ginv(Sigi[c(j,k),c(j,k)]) 

'/,*'/niatrix(c(Lower[j] ,Upper[k]) ,2,1) 

CondMuj3 <- Sigi [-c(j ,k) ,c(j ,k)]°/„*%ginv(Sigi [c(j ,k) ,c(j ,k)]) 

%*°/.matrix (c (Upper [j] ,Lower [k] ) , 2,1) 

CondMuj4 <- Sigi[-c(j ,k) ,c(j ,k)]%*7„ginv(Sigi [c(j ,k) ,c(j ,k)]) 

7„*%matrix(c(Upper [j] .Upper [k] ) ,2,1) 

if (length(yi) == 3) 

{ 

TempObj <- (pnorm(Upper[-c(j,k)],CondMujl,CondRj) 

- pnorm(Lower[-c(j,k)],CondMuj1,CondRj)) 

terml <- (dmvnorm(c(Lower[j],Lower[k]), rep(0,2), R22, 

log=FALSE))*TempObj 

TempObj <- (pnorm(Upper[-c(j,k)],CondMuj2,CondRj) 

- pnorm(Lower [-c(j,k)],CondMuj2,CondRj)) 

term2 <- (dmvnorm(c(Lower[j].Upper[k]), rep(0,2), R22, 

log=FALSE))*TempObj 

TempObj <- (pnorm(Upper[-c(j,k)],CondMuj3,CondRj) 

- pnorm(Lower [-c(j,k)],CondMuj3,CondRj)) 

term3 <- (dmvnorm(c(Upper[j],Lower[k]), rep(0,2), R22, 

log=FALSE))*TempObj 

TempObj <- (pnorm(Upper[-c(j,k)],CondMuj4,CondRj) 

- pnorm(Lower [~c(j,k)],CondMuj4.CondRj)) 

term4 <- (dmvnorm(c(Upper[j].Upper[k]), rep(0,2), R22, 

log=FALSE))*TempObj 

} 



else 

{ 

TempObj <- mvnapp(Lower[-c(j,k)].Upper[-c(j,k)].CondMujl, 

CondRj,eps=l.e-03) 

if (is.nan(TempObj$pr)) {TempObj$pr <- 0} 

if (TempObj$ifail > 0){TempObj$pr <- 0} 

if(TempObj$pr > 1){TempObj$pr <- 0} 

terml <- (dmvnorm(c(Lower[j].Lower[k]), rep(0,2), R22, 

log=FALSE))*TempObj $pr 

TempObj <- mvnapp(Lower[-c(j,k)].Upper[-c(j,k)],CondMuj2, 

CondRj,eps=l.e-03) 

if (is.nan(TempObj$pr)) {TempObj$pr <- 0} 

if (TempObj$ifail > 0){TempObj$pr <- 0} 

if(TempObj$pr > 1){TempObj$pr <- 0} 

term2 <- (dmvnorm(c(Lower[j].Upper[k]), rep(0,2), R22, 

log=FALSE))*TempObj$pr 

TempObj <- mvnapp(Lower[-c(j,k)].Upper[-c(j,k)],CondMuj3, 

CondRj,eps=l.e-03) 

if (is.nan(TempObj$pr)) {TempObj$pr <- 0} 

if (TempObj$ifail > 0){TempObj$pr <- 0} 

if(TempObj$pr > 1){TempObj$pr <- 0} 

term3 <- (dmvnorm(c(Upper[j].Lower[k]), rep(0,2), R22, 

log=FALSE))*TempObj $pr 

TempObj <- mvnapp(Lower[-c(j,k)].Upper[-c(j,k)],CondMuj4, 

CondRj,eps=l.e-03) 

if (is.nan(TempObj$pr)) {TempObj$pr <- 0} 

if (TempObj$ifail > 0){TempObj$pr <- 0} 

if(TempObj$pr > 1){TempObj$pr <- 0} 

term4 <- (dmvnorm(c(Upper[j].Upper[k]), rep(0,2), R22, 

log=FALSE))*TempObj $pr 

} 

} 

if(length(yi) == 2) 

{ 

terml <- dmvnorm(c(Lower[j].Lower[k]), r e p ( 0 , 2 ) , R22, log=FALSE) 

term2 <- dmvnorm(c(Lower[j].Upper[k]), r e p ( 0 , 2 ) , R22, log=FALSE) 

term3 <- dmvnorm(c(Upper[j].Lower[k]), r e p ( 0 , 2 ) , R22, log=FALSE) 

term4 <- dmvnorm(c(Upper[j].Upper[k]), r e p ( 0 , 2 ) , R22, log=FALSE) 
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if(length(yi) < 2) 

•C 

terml <- term2 <- term3 <- term4 <- 0 

} 

if (struct == "ar") 

r_jk_deriv_i <- r_jk_deriv_i + ((k-j)*(rho~(k-j-l))) 

*(terml-term2-term3+term4) 

else if (struct == "cs") 

r_jk_deriv_i <- r_jk_deriv_i + (terml-term2-term3+term4) 

if (is.nan(r_jk_deriv_i)) return(O) 

} 

> 

DerivR <- DerivR + (r_jk_deriv_i/JointProbi) 

} 

return(-DerivR) 

} 

# Combines the derivative (w.r.t beta and R) vectors 

Grad_Anal <- function(theta) 

{ 

Deriv_beta <- Grad_Anal_beta(theta) 

Deriv_R <- Grad_Anal_R(theta) 

return(c(Deriv_beta,Deriv_R)) 

# Quasi-Newton Minimization algorithm 

QNMin <- function(Theta) 

•C 

np <- length(Theta); b <- Theta 

ig <- 1; ifn <- np+1; w <- 0.2; tol <- 0.0001; eps <- 0.00001 

booll <- bool2 <- bool3 <- "T" 

P0 = negloglik(b) 

if (P0 > 0.1e309) 

{ 

Err <- 1 

return(rep(0,np)) 

} 

g <- Grad_Anal(b) 

1 = 0 
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while (booll == "T") 

{ 

1 <- 1 + 1 

i f (bool2 == "T") 

-C 

H <- diag(np) 

bool2 <- "FM 

} 

x <- b ; c <- g 

t l <- (-l)*H%*°/.g 

Dl <- (-i)'/.*°/.t(gU*%tl 

sn <- t( t l) ' / .* ' / . t l 

i f (Dl < 0) 

•C 

bool2 <- "T" 

next 

} 

sn <- 0 . 5 / s q r t ( s n ) 

k <- c ( l ) 

if (sn < k) 

k <- sn 

bool3 <- "T" 

while (bool3 == "T") 

-c 
cnt <- 0 

f o r ( i in l :np) 

{ 

b [ i ] <- x [ i ] + k * t l [ i ] 

i f ( abs (b[ i ] - x [ i ] ) < eps) 

cnt <- cnt + 1 

} 

i f (cnt == np) 

r e t u r n ( l i s t ( b = b,H = H,P0 = P0)) 

e l se 

{ 

PI <- neglogl ik(b) 

i fn <- i fn + 1 

} 
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i f (PI >= PO - Dl*k*tol) 

{ 

k <- k*w 

next 

} 

e l s e 

bool3 <- "F" 

> 

PO <- PI 

g <- Grad_Anal(b); 

ig <- ig + 1; i fn <- i fn + np 

t l <- k [ l ] * t l ; c <- g - c; Dl <- c%*°/„tl 

i f (Dl <= 0) 

•C 

bool2 <- "T" 

next 

} 

e l s e 

{ 

x <- H°/,*°/„c 

D2 <- t(x)%*7„c 

} 

D2 <- 1+(D2/D1) 

f o r ( r in l :np) 

f o r ( s in l :np) 

H[r , s ] = H[r , s ] - ( ( t l [ r ]*x[s] + x [ r ] * t l [ s ] - D2*t l [ r ] * t l [s] ) /Dl) 

y # main while u n t i l loop; 

# Main function s t a r t s here 

OrdGuasCopulao f u n c t i o n ( y , x , i d , s t r u c t , l i n k ) 

{ 

nc <- max(y) # no.of categories of y 

np <- ncol(x) #no.of parameters 

nt <- max(unlist(lapply(split(id,f=id).length))) 

# no.of time points (maximum cluster size) 

nrec <- length(y) # Total no.of records 

nsub <- length(unlist(lapply(split(id,f=id).length))) # no.of subjects 
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#Global variables decleration 

assignC'XCov", x, envir = .GlobalEnv) 

assignC'YRes", y, envir = .GlobalEnv) 

assignC'Id", id, envir = .GlobalEnv) 

assignC'nc", nc, envir = .GlobalEnv) 

assignC'np", np, envir = .GlobalEnv) 

assignC'nt", nt, envir = .GlobalEnv) 

assignC'nsub", nsub, envir = .GlobalEnv) 

assign("struct", struct, envir = .GlobalEnv) 

assignC'link", link, envir = .GlobalEnv) 

if(nc == 2) #for Initial values when the response has only 2 - categories 

•C 

ybin <- 2-y 

xx <- cbind(rep(l,nrec),x) 

names(xx) [1] <- "intcpt" 

th <- glm.fit(xx,ybin,family=binomial(link="probit"))$coef 

Initial <- c(th,.4) 

} 

else #for Initial values when the response more than 2 - categories 

•C 

cum <- (1:(nc-1)) 

cut <- rep(0,nc-1) 

for(k in cum) 

•C 

pr=sum(y<=k) 

if (pr==0) pr=l 

cut[k]=qnorm(pr/nrec) 

} 

Initial <- c(cut,rep(0,np),.4) 

} 

source(paste(CodeDir,"QNMin_Deriv.r",sep="")) 

result <- QNMin(Initial) 

if(link == "logit") 

Marginal <- "Logistic marginal distribution used with Gaussian Copula" 

else 

Marginal <- "Normal marginal distribution used with Gaussian Copula" 
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if(struct == "ar") 

CorrStr <- "Autoregression(l) correlation structure" 

else if (struct == "cs") 

CorrStr <- "Compound Symmetry correlation structure" 

Est <- result$b 

Hess <- result$H 

NegLogLik <- result$PO 

SE <- sqrt(diag(Hess)) 

PVal <- 2*(l-pnorm(abs(Est),mean=0,sd=SE)) 

ParEstTable <- round(cbind(Est, SE, PVal),8) 

return(list(Marginal = Marginal, CorrStr = CorrStr, Initial = Initial, 

NegLogLik = NegLogLik, ParEstTable = ParEstTable)) 

} 

# An illustrative example how to use the above program to fit the gaussian 

# copula based ordered probit-logit models. 

DataDir <- "H:/Research/Programs/DataSets/" 

CodeDir <- "H:/Research/Programs/Ordered Probit/" 

source(paste(CodeDir,"Deriv.r",sep="")) 

library(mprobit) 

Ex <- read.table(paste(DataDir,"Sixcities_Mult.csv",sep=""),header=T, sep=",") 

attach(Ex) 

y <- Y 

SMOKE[whi ch(SMOKE>0)]=1 

x <- cbind(CITY,SMOKE,TIME+8) 

id <- ID 

detach(Ex) 

ProbitOutputExl <- OrdGuasCopula(y,x,id,"ar","probit") 

print(ProbitOutputExl) 

LogitOutputExl <- OrdGuasCopula(y,x,id,"ar","logit") 

print(LogitOutputExl) 

Probit0utputEx2 <- OrdGuasCopula(y,x,id,"cs","probit") 

print(Probit0utputEx2) 

Logit0utputEx2 <- OrdGuasCopula(y,x,id,"cs","logit") 

print(Logit0utputEx2) 
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