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A B ST R A C T

ON TH E USE OF QUASI-NEWTON METHODS FOR THE 
MINIMIZATION OF CONVEX QUADRATIC SPLINES

William Howard Thomas II 
Old Dominion University, 2007 
Director: Dr. John J. Swetits

In reformulating a strictly convex quadratic program with simple bound constraints 

as the unconstrained minimization of a strictly convex quadratic spline, established 

algorithms can be implemented w ith relaxed differentiability conditions. In this 

work, the positive definite secant update method of Broyden, Fletcher, Goldfarb, 

and Shanno (BFGS) is investigated as a tool to solve the unconstrained mini

mization problem. It is shown th a t there is a linear convergence rate  and, for 

nondegenerate problems, the process term inates in a finite number of iterations. 

Numerical examples are provided.
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1

IN T R O D U C T IO N

B ack g ro u n d *

A very common m athem atical problem involves finding an extremum (i.e., 

maximum or minimum) of a given objective function. Since we can recast maxi

mization problems as minimization problems, we will focus on minimization prob

lems w ithout loss of generality.

In simplest form, a quadratic programming problem takes the form

where A  E R nXn (i.e., A  is an n  x n real matrix) and b,x E R "  (real vectors of 

n components). We adopt the convention th a t a vector £ is a column vector and 

x T denotes a row vector. W hen A  is symmetric and positive semidefinite, then the 

objective function \ x T A x  — bT x  is convex. For A  symmetric and positive definite, 

the objective function is strictly convex.

At this point, there are no restrictions or constraints on the independent vari

able. These problems are called unconstrained minimization problems. We make 

this distinction because the introduction of constraints on the independent variable 

often has a significant im pact on our ability to  solve the problem. For example, a 

con stra in ed  q u ad ratic  p rogram m ing prob lem  m ay take th e  form

min | ^ £ TAx — bTx |  subject to  i  <  M x  < u

* The model journal for this dissertation is S IA M  Journal on Optimization.
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2

where A  G R n xn  is a symmetric positive definite matrix; M  G R mXn; b,x  € R n ; 

and £, u G R m.

There are many techniques for solving the unconstrained problem. M ethods for 

solving the general quadratic programming problem have been broadly classified as 

finite or iterative (see [28,24] and references therein). Among the finite methods, 

i.e., those th a t term inate using a finite number of arithm etic operations, Pang 

[28] identified four families of algorithms including methods based on simplicial 

pivoting, active set methods, simplicial decomposition methods, and methods based 

on shrinking ellipsoids.

In a later survey, Lin and Pang [24] focused on iterative methods which gen

erate an infinite sequence converging to a limit point solution. S tarting from Hil

d re th ’s procedure [17], the survey describes the evolution of iterative methods 

including the successive overrelaxation methods, m atrix splitting techniques, and 

a Lagrangian relaxation algorithm presented in [6]. More recently, W right [36] 

and Nesterov [27] addressed interior-point methods which generated a great deal 

of activity beginning with K arm arkar’s paper [18].

By reformulating a constrained problem as an unconstrained problem, the task 

of solving the constrained problem is only as difficult as solving the corresponding 

unconstrained problem and, if necessary, interpreting the solution in term s of the 

original problem. For certain classes of constrained problems, techniques have 

been developed th a t yield unconstrained minimization problems having additional
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structure th a t can be exploited. We will examine one of these classes under a 

particularly elegant reformulation.

Specifically, we are interested in quadratic programming problems of the form

where A  is an n  x n  positive definite symmetric matrix; x,b are n-dimensional real 

vectors; and £,u are n-dimensional real vectors w ith l i  <Ui.  Some components of 

£ or u may be ± 00.

This is a constrained minimization problem when £ or u have any finite compo

nents. The transform ation referenced above is based on the Karush-Kuhn-Tucker 

optim ality conditions. The result is fascinating in th a t the constrained problem 

(1.1) becomes an unconstrained problem with a richly structured objective func

tion, namely, a quadratic spline. A function $  on R n is a quadratic spline if and 

only if $  is differentiable and there are finitely many convex polyhedral subsets 

{Wi }ri=1 such th a t U[=iW* =  and $  is a quadratic function on each Wj. We 

will address these polyhedral subsets a t some length in the next section.

Not only can we apply iterative solution techniques to this unconstrained prob

lem, but we can customize the algorithm to  exploit the structure of the spline itself. 

T h is is th e  essen ce  of work d on e by Li and S w etits  [22,23]. In tu rn in g  their attention 

to  this new problem

mm

subject to  £ < x < u ( 1 . 1)

min{$(a:)} ( 1 .2 )
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where $(&) is a quadratic spline, Li and Swetits developed an algorithm using 

Newton’s m ethod to find the minimizer. A subsequent paper by Li [21] uses an 

algorithm based on the conjugate gradient method. The present work investigates 

the use of the positive definite secant update (BFGS) m ethod independently derived 

by Broyden [3], Fletcher [12], Goldfarb [16], and Shanno [32] to solve (1.2) . 

Sim ply Bound Q uadratic Program s

We now tu rn  to some of the details of reformulating a quadratic program 

with simply bound constraints into an unconstrained minimization problem of a 

quadratic spline. Throughout this work let || • || denote the £2  vector norm or its 

induced m atrix  norm unless otherwise specified.

Li and Swetits dem onstrated in [22] and [23] th a t the reformulation of the 

quadratic program (1.1) stems from the Karush-Kuhn-Tucker conditions. As out

lined in [21], x* is a solution of (1.1) if and only if there exists w* £ R n satisfying

w* =  Ax*  — b,

x \  — l i  for w* > 0,

x* — Ui for w* < 0,

£i < x* < Ui for w* = 0.

We will also adopt the definition of nondegeneracy given in [21]. Specifically, 

a solution x* of (1.1) is said to  be nondegenerate if and only if

x* — ti  for {Ax* — b)i >  0,

x* — Ui for {Ax* — b)i < 0, (1.3)

l i  < x* < Ui for {Ax* — 6)i =  0.
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Based on these conditions, [23] shows th a t x* is a solution of (1.1) if and only

if

x* — (x* — aw*)™ (1.4)

where w* =  Ax* — b, a  is any positive constant, and (v)™ is the vector whose i-th

component is max{min{uj, rq}, h}.  For our purposes, we substitute for w* directly

into (1.4) obtaining

x* — (x * — a(Ax* — b))™ = ((I  — aA)x* + ab)™.

Letting E  :=  I  -  a A  and h := ab, then x* is a solution to  (1.1) if and only if x*

satisfies the piecewise linear equation

x  = (E x  +  h)™. (1.5)

Restricting a  to  the interval 0 < a  < 1 / j(^4||, where ||^4|| is the spectral radius

of A,  then [21] and [23] give the explicit forms w ith which we will work. Namely, 

tha t

V $ (x ) =  E ( x  -  (E x  +  h)™) (1.6)

is the gradient of the following strictly convex quadratic spline

$ ( x ) =  \ x t ( E  -  E 2) x  -  x TE h  +  \ \ \ ( l  -  (Ex  + h ))+ ||2 
z z

+  \ \ \ ( ( E x  +  h ) - u ) + f .  ( 1 .7 )

Here (u)+ is the vector whose i-th  component is max{wj, 0}. S trict convexity follows 

from the positive definiteness of A.  This restriction on a  also guarantees th a t the
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eigenvalues of the symmetric positive definite m atrix E  are contained in the interval 

(0,1]. W ith this explicit representation of $ , we can directly address the closed 

convex polyhedral subsets {Wt}[=1 mentioned earlier.

The polyhedral subsets arise from the final term s \\(£ — (E x  + h ) ) + \\2 and 

||( (Ex  +  h) — u )+ ||2 in (1.7). By definition,

[ ( £ -  (E x  + f i ) ) J  . =  (E x  + h ))n lf (E x  + h))i > °; (L 8)
L y/+J»  ̂0, otherwise

and

[ « * * + * ) - . , + ] , - I f * *  * > - “ ><■ a . . )

As x  changes, (E x  +  h)i changes, and so the corresponding components (1.8)

and (1.9) will change as x  moves across the hyperplanes defined by

( £ - ( E x  + h))i =  0 (1.10)

or

( (Ex  +  h) — 11)1 =  0. (1-11)

These hyperplanes are the boundaries of the polyhedrons formed by the intersection 

of the associated half-spaces. Thus, the polyhedrons are convex sets. Letting Ei 

denote the i th row of the m atrix  E,  we can rewrite (1.10) as

EiX = £i — hi. (1-12)

Similarly, we can rewrite (1.11) as

EiX — Ui — hi. (1-13)
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Here, E{ is the normal vector to the hyperplane. Since E  is positive definite, 

the rows of E  are linearly independent. Thus R n =  sp a n { £ i , . . .  , E n}. Prom this 

we can conclude th a t for —oo <  £t < u t < 00, (1.12) and (1.13) give two distinct 

and parallel hyperplanes. In the dimension represented by Ei,  the space R n is 

partitioned into three subsets.

If for each i =  1 , . . . ,  n, we have —00 < £i < < 00, then (1.12) and (1.13)

give n  pairs of distinct parallel hyperplanes. It follows th a t the maximum number 

of polyhedrons defined by these hyperplanes is 3n .

If, for some 1 <  i < n, one component of the pair £i,Ui is infinite (i.e., £i — —00

or Ui =  00) and the other is finite, then only one of the hyperplanes (1.12) or

(1.13) will partition  R n into two subsets. Essentially, the hyperplane associated 

with the infinite component exists at 00. For m  such pairs, the maximum number 

of polyhedrons defined is s n~m 2 m .

W hen £i = — 00 and Ui =  00 for some 1 < i < n, then there is no partitioning 

of R n in the dimension represented by E^. For p such pairs, the maximum number 

of polyhedrons is 3n~m-P2m.

Finally, when £i — Ui for some 1 < i < n, we note th a t this component of

the solution vector x* is fixed and the minimization problem exists in R n_1. In

this sense, it is not unreasonable to require th a t £i ^  Ui. W ith this condition, each 

of the polyhedrons has a nonempty interior. A constructive argument is provided 

below.
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Suppose th a t —oo < li  <  iq <  oo for i — 1 , . . . ,  n. Since the hyperplanes (1.12) 

and (1.13) are distinct and parallel, we can define three new parallel and distinct 

hyperplanes, EiX — Ui — hi +  1, EiX — \  (uj +  l i ) — h i , and E^x — li — E  — 1. Each 

of these new hyperplanes exists entirely w ithin a subset of R n as partitioned by 

(1.12) and (1.13) . Letting i range from 1 to n, we obtain 3" systems of equations 

in the form

E x  = v (1-14)

where Vi 6 {u* — hi +  1 ,1  (uj +  li ) — h i , l i  — hi — 1}. Since E  is symmetric positive

definite, then E  is invertible. Thus x — E ~ xv generates 3n points, each of which

3nlies in the interior of some { W i } i=1.

At this point, we note th a t V 2d>(.'r) does not exist uniquely for all points 

on the quadratic spline <f>. In the collection of closed convex polyhedral subsets 

{W l } ri=1 described earlier, <h(x) is a quadratic function on each Wt and V 2$(x) 

exists uniquely for each x  in the interior of ITj. In fact, the explicit form of V 2$(a;) 

is straightforward when it exists.

From (1.6) we have

V $ (s )  = E x  -  E { E x  + h)z- (1.15)

By definition,

[{Ex +  /i)“] . = { { E x  + h ) ., if +{ E x ^ h ) - <  (1.16)
[ Ui, if {Ex  + h)i > Ui.

Since the polyhdral boundaries emerge from the relationship between {Ex  +  h)i 

and l i  or {Ex  +  h)i and Uj, we will find it convenient to keep track of where
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(Ex  +  h)i lies in relation to  l i  and u^. This will allow us to detect movement

across polyhedral boundaries. Thus, we define the vector

( - 1 ,  if (E x  +  h)i < li]
£i(x) := < 0, ii ^  < ( E x +  h)i < u i ] ( l- l? )

\  1, if ( E x  +  h)i > Ui.

The constant components of (Ex  +  h contribute nothing to  V 25>(:r), so we define

au(x)

and

1, if l i  < (E x  +  h)i < uf,
0, if (E x  +  /i)^ < l i  or (E x  +  > Ui

a(x)  =  diag (<Tu(x))

(1.18)

(1.19)

Then

V 2$ (z )  =  E  -  E a (x )E . ( 1 .20 )

However, for x  on the boundary of Wi,  i.e., when (E x  + h)m — l m or (E x  +  h)m = 

um for some m,  then x  is also on the boundary of Wj  where i ^  j .  Thus, V 2$ (x ) 

may not exist because it is not uniquely defined for x  on the boundary of Wi. 

E x a m p le

A relatively simple example in R 2 will help to  clarify the previous discussion. 

Consider the following simply bound quadratic programming problem in the form 

of (1.1):

.1
min { - x T A x  — bT x \  

2 J

subject to I  <  x  <  u ( 1 .21 )

where

A  = 4 2 
2 5 ,b , t  =

2
- 1 , and u

The surface F ( x  1, ^ 2) =  \ x TA x  — bT x  is plotted in Figure 1.
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and states of materials. In 1963, spectrochemical analysis o f surfaces using lasers was 

first presented, followed by the observation of optical induced breakdown in a gas in 

1964. Then, during the 1970s, development continued in several directions. In 1972, 

Felske et al. described the analysis o f steel by means o f a Q-switched laser. In the early 

1980s, there was a renewed interest in spectrochemical applications o f LIBS, driven by 

its unique advantages and applications in different media. Important applications were the 

detection o f hazardous gases and vapors in air and small amounts o f beryllium in air or 

on filters. A repetitively pulsed Nd:YAG laser at 1.06 pm was used to excite effluent 

gases from an experimental fixed-bed coal gasifier. Although alkalis at the parts per 

billion levels were not detected, the major constituents, including sulfur, were easily seen 

and quantified. Liquids were analyzed either by excitation at the surface or in the volume. 

Solutions o f ten different elements were analyzed and atomic and ionic uranium spectra 

were seen by exciting a flowing solution o f uranium in nitric acid. Uranium could not be 

detected by focusing into the liquid, only through focusing on the liquid-air interface. As 

a progressing technique, LIBS was used by Poulain and Alexander [64] to measure the 

salt concentration in seawater aerosol droplets. Then, Aguilera [65] applied LIBS to 

determine carbon content in molten and solid steel, while the elemental analysis o f  

aluminum alloy targets was studied by Sabsabi and Cielo. [66]. During the 1990s, the 

applications turned to very practical problems, such as monitoring environmental 

contamination, control o f materials processing, and sorting o f materials to put them in 

proper scrap bins. More concentrated work was directed to develop a rugged, moveable 

instrumentation. Optical fibers were built into LIBS systems, primarily for carrying the 

spark light to the spectrometer and occasionally for the delivery of the laser pulse as well.
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convex polyhedral subsets into which R 2 is partitioned. Namely,

W i = { x  G R 2 : E \ x  + h \ >  Ui} fl {x  G R 2 : E^x  +  h,2 > U2 } 

W 2 = {x  G R 2 : E \ x  + hi > 11} fl {a: G R 2 : E \ x  + hi  < U i} fl

i g R 2 : E2X +  h 2 >  u 2}

x  G R 2 : EiX + hi < I !} fl {x  G R 2 : E 2 X +  h.2 > U2 }

G R 2 : E i X  +  h i  >  U i } fl { x  G R 2 : E 2X +  ^2  >  ^ } n  

x  G R 2 : E 2x  +  h 2 <  U2}

x  G R 2 : E i x  + hi  > i i }  fl {x  G R 2 : E i x  + hi < Ui}fl 

x  G R 2 : E 2x + h2 > ^2} H {x G R 2 : E 2 X +  ^2 <  U2 } 

x  G R 2 ■ E i x  +  hi  fC ^1} D {x G R 2 i E 2x +  h.2 ^  ^2}^ 

x G R 2 : E 2x  +  h 2 <  ^2}

x G R 2 : Fax  +  hi > u i } fl {x G R 2 : E 2 X +  ^2 < 12 } 

x G R 2 : E i x  +  hi > £1} fl {x G R 2 : E i x  + hi < Ui}fl 

G R 2 : E 2x  +  h-2 <  ^2} 

x  G R 2 : F ix  +  hi < t i )  fl {x G R 2 : E 2x + h 2 < ^2}

Figure 2 shows the bounding hyperplanes (i.e., lines) and Figure 3 shows the 

suiting polyhedral subsets.

x  G

w 3 = x  G

w 4 = x  G

x  G

w 5 = x G

x  G

w 6 = x  G

x  G

w 7 = X G

w 8 = X G

x  G

vf9 = X G

11

re-
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tool for instantaneous, multi-elemental analysis of any kind of sample, solid, liquid, or 

gas.

1.2 Advantages and disadvantages of LIBS

Comparing the spectroscopic techniques in terms o f their analytical figure of 

merits, simplicity, cost, and applications, we conclude some of the distinguishing 

advantages o f LIBS such as:

1. Minimum or no sample preparation results in a reduction of time-consuming 

procedures.

2. Both conducting and non-conducting materials can be tested.

3. Very small amounts o f sample (0. 1 pg to 0. 1 mg) are vaporized.

4. Hard materials that can be difficult to get into solution can be analyzed (e.g. 

ceramics, glasses, and superconductors).

5. Multiple elements can be determined simultaneously.

6. The direct determination of aerosols or ambient air is possible.

7. The analysis is simple, rapid and produces no waste.

8. Remote sensing is possible with the use of fiber optics.

9. Samples can be analyzed in a hostile environment.

10. Underwater analysis is possible.

In addition, LIBS has some drawbacks such as:

1. Current systems are expensive and complex.

2. Obtaining suitable matrix-matched standards is difficult.

3. Interference (matrix) effects can be large.
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O btaining the 32 corresponding interior points from (1.14) involves solving the 

following systems of equations:

E i x  4  hi = ui  4  1

E 2x  +  h2 = u 2 4  1

E \ x  4- h\ — — (£i +  Ui) 

k E 2x  +  h 2 = u 2 +  1 

E\X  -f- hi = £i — 1
 ^

„ E 2x  4  h2 = u 2 4  1 

E\X  4  h\  =  Ui 4  1

E 2x  4  h2 — -  ( l 2 4  u2)

E i x  4  hi  — -  (ti  4  iti) 

E 2x  4  h 2 = — ( l 2 4  ^ 2) 

i?ia; 4  hi — £1  — 1

-£2® 4  h2 — -  (̂ 2 4  ^ 2)

E i x  4  hi  — rq 4  1 

„ E 2x  4  h2 = l 2 — 1

4  hi =  2 (̂ 1 +  u i)

 ̂E 2x  +  h2 =  €2 — 1 

E i x  4  hi — £1 — 1
=4

E 2x  4  h 2 =  l 2 — 1

29
2 X l  "  4 X2 =

X l  4  -22

8
— V Xl '1 3 3 /8 '

23 .X2 _ .  75/ 4 .

1
X '

171 
2 X
1 3

■4Xl +  8 Xa =  T

8
— s. Xl '97/8 '

23 x 2 63/4 _ e w 2

2 s1 '  4 X2 =  8
5
8
231 3

- 4 S l +  8 " 2 8
1 1 
2 Xl "  4 X2 =  
1 3

- f 1 +  f 2 =

Xl '6 1 /8 '

. x 2 . 5i/4_ e ^ 3

29

1
2 3
1

T
1
2 '

1

1r
3

8 a
1

'  r

-xi  4  - X 2

8 =t>
3

Xl
x 2 _

=
'9 3 /8 '
35/4 € W4

8
17
~8 =$■
3

Xl
x 2

=
'5 7 /8 '
_23/4_ e

8
5
8 =4
3

X 1

x 2
= 2 1 /8 '

11/4 G W6

- - 7^1 4  ~ x 2 =

8 -iv x i '5 3 / 8 '
17 .X2 _ _-5/4_ £ W 7

Xl

r0
0

r-H

1

_ x 2 —17/4_ e  W8

2 Xl “  4 X2
1 3

- 4 Xl +  8 X a=  8

8 __x Xi —19/8"
17 x 2 -2 9 /4 € Wg.
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For this example, $ (x ) can be given explicitly. On W\,

1 2 1 3 2 .3 3 3

On W 2,

On W 3,

On W4,

On W 5,

On W6,

On W 7,

On W8,

O n W a

$ (* ) =  4 * 1  -  1*1X2 +  ^ * 2  -  *1 +  -64

* / x 1 2 1 5 2 5 21 225
* ( * )  =  g * .  -  2 * 1 * 2  +  ^ * 2  +  j g * !  -  - X 2  +  — .

x 1 2 1 3 2 1 1 197
$ ( * )  =  4 * 1  -  4 * 1 * 2  +  J g * 2  -  2 ^ 1  -  4 * 2  +  - 6 4  •

7 2 5 15 2 47 45 441
<P(x) =  — x 7 -------XiX2 H x% Xi H x 2 H .

v '  32 1 32 2 128 2 32 64 128

 ̂ 3 2 1 11 2 5 3
$ (I )  =  M *1 -  S2XlX2 +  m l2 “ 32*‘ +  6412'

_  . 7 2 5 15 2 31 29 169
= 321' “  M 1112 + m 12 “ S2Xl +  6 i12 +  128-

, , , 1  ,  1 3 , 7  9 261
« ( * )  =  l * i  ~ 1*1*2 +  ^ * 2  ~ 2*1 +  2*2  +  - 5 4  ■

, , 1 2 1 5 2 7 15 81
«>(*) =  1 * 1  -  8 * 1*2 +  ^ * 2  -  S *1 +  22*2 +

, , , 1 , 1  3 , 5  7 125
* ( * )  =  2*1 ~  4 * 1*2 +  ^ * 2  -  2*1 +  2*2  +  ~ & -

Figure 4 shows a contour plot of 3>(x) overlaid w ith the bounding hyperplanes.
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ALGORITHM  

N ew ton M ethods

To properly understand quasi-Newton methods, we should first understand 

Newton’s m ethod for minimizing a function of several variables. Following the 

development of Bazaraa, Sherali, and Shetty [1, p. 308], let /  : R n —>■ R  be 

a continuously twice-differentiable function w ith a local minimum at x* £ R n. 

Consider the Taylor’s series representation of /  in the vicinity of a point x k € R n

/ ( X) =  f ( x k) +  V f ( x k)T (x -  Xk) +  -  Xk)T V 2 f ( x k)(x ~ X k) + 0  (||X -  £fc||2)

where V f ( x k) is the gradient of /  evaluated a t x k and V2 f ( x k) is the Hessian of 

/  evaluated at x k . A quadratic model of /  in the vicinity of x k can be extracted 

from the Taylor’s series as

f m ( x ) =  f ( x k) +  V/(Xfc)T (x -  Xk) +  ~{X -  Xk)T V 2 f ( x k){x -  X k ) .

In searching for the minimizer of / ,  it seems reasonable to  begin w ith x  £ R n, 

the minimizer of / m, where necessarily V f m(x) =  0. Thus

V /( x fe) +  V 2/ ( x fc)(x -  x k) =  0.

If th e  inverse ( V 2/(x fc ) )  1 ex is ts , th en  a  b it of a lgebra  y ie ld s

x  = x k — (V 2/(x fc))_1V/(xfe). (2.1)
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The point x  th a t minimizes f m should better approximate x* than  x k• Repeating 

this process, we generate a sequence of iterates th a t converge to  x*. Thus, as a 

recursion formula, we write (2.1) as

Xk+i -  Xk -  { y 2 f { x k)) l V f { x k). (2.2)

If V /(x* ) =  0 and th a t V 2/(x * ) is positive definite, the sequence is well-defined 

for x k close enough to  x*.

For a general function / ,  close enough is defined as the neighborhood about 

x* for which the Hessian m atrix is positive definite when evaluated at a point in 

the neighborhood. If V 2 f ( x k) is singular a t some point x k then the process cannot 

generate x k+\- 

Q uasi-N ew ton M ethods

In moving from x k to x k+i in (2.2), the direction of movement is a deflec

tion of the steepest descent direction, —V f ( x k), by ( y 2 f ( x k)) If instead we 

deflect the steepest descent direction by a symmetric positive definite m atrix  D k 

approxim ating (V 2 f ( x k)) 1 in each step, then the procedure is generally classified 

as a quasi-Newton method. Requiring each D k to be positive definite ensures th a t 

the resulting search direction sk = —D kV f ( x k) is a descent direction whenever 

V f ( x k) +  0.
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An im portant part of any quasi-Newton algorithm is the generation of a sym

metric positive definite m atrix D k as an approxim ation to the inverse of the Hessian 

m atrix. Prom the original D FP m ethod presented by Davidon [8] and later refined 

by Fletcher and Powell [13], quasi-Newton algorithms evolved until the BFGS al

gorithm was independently derived in 1970 by Broyden [3], Fletcher [12], Goldfarb 

[16], and Shanno [32]. Subsequent study has placed the BFGS method as a special 

case of the Broyden family of param eterized updating schemes [1, p. 325]. 

Im plem entation

Recall th a t we began this discussion assuming /  to be continuously twice- 

differentiable. From the problem definition leading to (1.2), we know th a t we 

cannot make this assumption for the strictly convex quadratic spline d>. While $  is 

continuously twice-differentiable on the interior of each polyhedron, the algorithm 

must be able to accommodate changes in the Hessian as the search moves into 

other polyhedrons. Our im plem entation of the BFGS algorithm includes a restart

ing mechanism for polyhedron changes. This is necessary for the proof of linear 

convergence and finite term ination.

We begin w ith an initial point x \  and an initial symmetric positive definite 

m atrix B\  =  I.  For k > 1,

Solve B kSk = - V $ ( x fc) for sk . (2.3)

Solve sk V $ ( x k +  AfcSfc) =  0 for \ k > 0. (2.4)

Set x k-̂ -i :— x k -|- Aks k and u k .— Aksk . (2.5)
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Set y k := V ® ( x k+1) -  V $ ( s fc). (2.6)

If x k+i belongs to  the same polyhedral set as x k then we update B k to  B k+1 

according to

.  t> i VkVk B ku ku k B k
B k+ l  ■— B k + --------------------------  , (2.7)

yk u k iifc B ku k

otherwise,we restart by setting

B k+i :=  I-

Here B k is approxim ating V 2$(xfe) in each step. Recalling (1.17), we can detect 

whether or not x k+i and x k are in the same polyhedral subset by comparing £(ajfc+ i) 

to £(xk).

On a given polyhedron, the Hessian V 2<f> is unique and constant. The update 

(2.7) should generate a better approxim ation to this Hessian in each subsequent 

iteration. However, when the search for the minimizer moves into a new polyhe

dron, the Hessian may change. As mentioned in the previous section, if the search 

moves to a boundary, i.e., (E x k +  h)i = 4  or =  Ui for some i =  1, . . . ,  n, then 

x k belongs to two or more polyhedrons. Thus V 2$(£*,) may not exist because of 

a lack of uniqueness. W ith  the restart feature of (2.7) this presents no difficulty. 

In moving to  this boundary, the i-th  component of i { x k) will differ from th a t of 

£(a;fc_i) triggering a restart, B k+i =  I.  If k =  1, then having set B \  — I  creates 

the same scenario. In either case, the search direction sk as determined in (2.3) 

becomes a steepest descent step, sk =  —V<fi(xk)- Since the gradient is continuous, 

this direction will be the same regardless of which polyhedral representation of the 

gradient is used.
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C O N V ER G EN C E

In this section, we establish the global convergence of the BFGS algorithm 

acting on a strictly convex quadratic spline. Since the spline is strictly convex, it 

is coercive and bounded below. Consequently, by the Frank-Wolfe theorem [7, p. 

114, 14], the quadratic spline has and attains a unique minimizer. In order to show 

linear convergence to  the spline minimizer, we will need a theorem due to Wolfe as 

given in Dennis and Schnabel [11, p. 121 Copyright ©  1996 Society for Industrial 

and Applied M athem atics. Reprinted w ith permission].

T h e o r e m  3.1 (Wolfe [35]) Let  f  : R n ->  R be continuously differentiable on 

R n, and assume there exists 7  > 0 such that

l \ V f ( z ) - V f ( x ) H 2 < ^\\z — x \\2

for every x, z E  R". Then, given any xq e  R n, either f  is unbounded below, or 

there exists a sequence {27}, k  =  0, 1, . . . ,  obeying

f ( x k + Asfc) < f ( x k) +  a X s l V f ( x k) for a  E  (0,1), A >  0, (3.1)

sk V f ( x k + AfcSfc) > f i s l V /( x fc) for f3 E {a, 1), (3.2)

where sk is the descent direction, and either

V f ( x kf s k < 0, (3.3)

or

V /(x fc) =  0 and sk =  0 , (3.4)

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



2 1

for each k > 0, where

s k .— Xk-\-i Xk- (3-5)

Furthermore, for any such sequence, either

V/(ccfc) =  0 for some k > 0, or

lim f { x k) =  -o o , or
k—+OQ

lim v ^ £ i = 0

fc-*oo ||Sfc||2

In applying this theorem to the quadratic spline, we address first the conditions 

on The spline $  : R n —> R  is continuously differentiable since the gradient, V<E>, 

as given in (1.6), is continuous. Dennis and Schnabel [11, p. 123] note th a t while 

the theorem assumes th a t $  is Lipschitz on all R n , this condition is necessary only 

in a neighborhood of the solution x*. The convexity of $  guarantees this as shown 

in [31].

Conditions (3.1) and (3.2) are imposed to  ensure the adequacy of an inexact 

line search. Since our im plem entation of the BFGS algorithm uses an exact line 

search, these conditions are satisfied in every iteration.
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It is well known [11, pp. 199-201] th a t if the initial approxim ating m atrix 

is positive definite, then the sequence of matrices {Bk}  generated by the BFGS 

m ethod are positive definite. As noted in the previous section, the BFGS algorithm 

generates search directions, Sk, from

BkSk = - V $ ( x fc) (3.6)

where Bk  approxim ates the Hessian in each iteration. Hence, (3.6) implies

0 <  s l Bk Sk  =  -Sfc V $ (x fc)

which gives

S k V $ ( x k) < 0

confirming Sk as a descent direction and satisfying (3.3).

We say th a t a m atrix  A  dominates a m atrix  G if A  — G is symmetric positive 

semidefinite, i.e., z T (A — G)z > 0 for all z  € R n.

L e m m a  3.2 Let  A  € R n xn be a  sym m etric positive definite m atrix. Let G €  

Rnxn ke a  sym m etric positive definite m atrix with eigenvalues 0 < A® < . . .  < 

oo. I f  A  dominates G, then z T A z  > z T \ ^ z  for all z e R n.

Proof. If A  dominates G, then z T (A — G)z > 0 for all 2 6 R n. Thus z T A z  > 

z t G z  > z T \% z.

L e m m a  3.3 On any given polyhedron with Hessian V2$ , le t  B \ b e  th e  in itia l  

approximation o f the Hessian on that subregion. I f  B \ dominates V 2<L, then each 

o f the matrices Bk for k > 1 generated by the BFG S m ethod dominates V 2<f>.
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Proof. Let V 2$  be the Hessian on a given polyhedron. Then V 2$  is an n  x n  

symmetric positive definite m atrix and the gradient VT has the form V$(a;) =  

(V 2$ )x  -  b. Let B i  € R nXri be symmetric positive definite and let x \  be some 

point in R n.

From (2.4) we have

0 =  s f V $ ( x k +  Afcs fc)

=  s i  [(V 2$ ) ( s fc +  AfeSfe) -  b}

=  s i  [(V 2$ ) x k -  b] +  Aks l  (V 2$ ) sk 

= s i 'V $  (xfc) +  Aks l  (V 2$ ) sk .

Thus

- 4 V $  (xk) = Xks l  (V 2$ ) s k

which by (2.3) becomes

s l B ksk =  Aks l  (V2# ) s k

or, equivalently, by (2.5)

u k B ku k =  Aku l  (V 2$ ) u k. (3.7)

The collection { i t i , . . . ,  u k} is V 2$-conjugate. Since V 24> is positive definite, 

we can extend to  a V 2<J>-conjugate basis { iq , . . . ,  u k, . . . ,  un }.
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On the given polyhedron,

Uk =  (rcfc+i) -  V4> ( x k )

=  (V 24>) x fe+1 -  (V 2$ )

=  (V 2$ ) (xk + 1  -  x k)

=  (V 2$ ) uk 

so th a t (2.7) can be w ritten as

(V 2$ )u fc ^ (V 2$ ) B kuku \ B k
B w  = B t +   S p i T T  (3'8)

giving

-Bfc+i'Ufc =  (V2$)nfc.

Therefore, for i ^  k,

u f  B k+1u k =  0 =  u f ( V 2$ )itfc. (3.9)

Let z e  R " . Then z =  Cjitj =  ro +  CfcUfc and by (3.9) wT B k+iuk =  0 and 

^ T(V 2$)ixfc =  0. This allows us to write 

2:TRfc+i^ =ioTjBfc+iu; +  cluk Bk+iuk

(3-10)

=u;T (Bk -  V 2$ ) w -  ^  ^ fcr l? V ^  ^  +  *T (V 2$)*.
^ k ^ k
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Now suppose th a t B k — V 2$  is positive semi-definite. Then

UI  {B k ~  V 2$ ) u k > 0

so tha t

^k BkUk ^  j
u l  (V2$ ) uk

We conclude from (3.7) th a t Xk >  1. By the Cauchy-Schwarz inequality and (3.7), 

(wT (B k -  V 2$ ) Uk) 2 < {wT (Bk -  V 2$>) w) «  (Bk  -  V 2$ ) Mfc)
u^BkUk ~  u^BkUk

K  (S fc -  V 2$ ) w) ((Afc -  l ) u £ ( V 2$ )u fc) 
A ^ [ ( V 2$ )U,

 ̂ (u;r  (Bk — V 2$ ) w)
Xk

<wT (Bk — V 2$ ) w.

Thus from (3.10),

zr B k+iz > z T { V 2 $)z.

G etting an acceptable upper bound is easier. For this part there is no need to 

assume B k —V 2$  is positive semi-definite. Since a quasi-Newton method term inates

in at most n  +  1 iterations on a quadratic function, we have

„ T  ( z T \ / 2 ^ u u ) 2 ( z t B u u u ?
z Bk+iz  = z l B kz  +

u J V ^ U k  uTk B kUk

t
<z B kz +

{zT V 2 $ u k ) 2

u

= z TB kz +  z T { V 2$ ) z

<zT B 1z + k z T ( V 2^ ) z  

<zT (Bi  + n V 2$ ) 2:.

This completes the proof.
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We now dem onstrate th a t the sequence of minimal eigenvalues is bounded 

away from zero and th a t the sequence of maximal eigenvalues is bounded above.

Lemma 3.4 Let  x \  e  R n be given and let B \ =  I .  Let {Bk}  be the sequence o f 

matrices generated by the BFGS algorithm as given in (2.3) -  (2.7). Then  {/i*,}, 

the set o f smallest eigenvalues o f {Bk},  is bounded below away from zero, and { u ^ ,  

the set o f  largest eigenvalues o f {Bk},  is bounded above.

Proof. For each polyhedron W i, the Hessian is given by (1.20). Recall th a t 

the m atrix  E  was given as E  = I  — a A  where 0 < a  < 1/||A ||. Let £n <  • ■ • < £i 

be the n  real positive eigenvalues of A. Then

0 <  f,nx Tx  < x T A x  < £ , \ x t x

0 < a£nx T x  <  x T a A x  < a £ \ x Tx < x Tx

—x Tx  < —a£ i xTx  < —x T a A x  < —a£nx T x < 0

0 <  (1 — a£ i ) xTx < x T (I  — aA)  x  < (1 — a£n) xTx < x Tx

0 < x T E x  < x Tx,

so the eigenvalues of E  are contained in the interval (0,1). By similar argument, 

the eigenvalues of V 2$ (x ) =  E ( I  — cr(x)E) are also contained in the interval (0,1). 

Therefore, B \  — I  dominates V 24> on W i , and by Lemma 3.3, each of the matrices 

Bk  generated by the algorithm dominates V 2<f> for Xk remaining in W t . Thus for 

k > 1,

x T BkX > x T (V 2<&) x  >  Xlnx T x  (3.11)

for every x  € Wi where \ ln is the smallest eigenvalue of V 2$ . Therefore \ ln is a 

lower bound for {/J.k} generated on the polyhedron W{.
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By Lemma 3.3,

x T BkX < x T (j3i +  n V 2$ ) x  <  (rq +  nA^) x T x  (3.12)

for every a; € W) where Â  is the largest eigenvalue of V 2$ . Therefore +  n \ \  =  

1 +  n \ \  is an upper bound for {v^} generated on the polyhedron Wt .

Recall th a t the algorithm restarts by setting the initial approxim ating m atrix 

to  the identity whenever x  moves into a different polyhedron. Thus (3.11) and 

(3.12) establish lower and upper bounds on each Wj. Since there are a finite number 

of convex polyhedral subsets then yU :=  mini<.y<r {A)t} is a uniform lower

bound for the sequence {/ifc}- Since /i is the smallest eigenvalue for the Hessian of 

some Wi,  then f i >  0. Likewise v  :=  m axi<j<r {l +  nA^} is a uniform upper bound 

for the sequence Vk- From this we can conclude th a t the condition numbers of {Bk}  

are bounded above. This completes the proof.

Lemma 3.5 For k > 1 and V$(x/c) ^  0, the quantity V $ ( x k )  Sfc is bounded 

away from zero.

Proof. Suppose th a t Bk as defined in Lemma 3.4 has eigenvalues < . . .  < 

which are bounded as so th a t

P — £n 5: • • • ^  IA

Then B ff1 has eigenvalues < .. . < which are bounded by
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Rewriting (3.6) as

sk =  - B ^ V Q i x k ) ,

we have

V $ ( x k)T sk = - V $ ( x kf  (B - 1) V $ (x fc).

M ultiplying through by —1 gives

- V $ ( x k)T sk =  V $ ( x k) B ^  1 V ^(a5fc)

so tha t

z^iiv^xfc )!!2 < er1nv$(xfc)n2 < - v $ ( x fc)T5fc

and, therefore,

V$(a:fc)TSA: <  —*'- 1||V$(:Efc)||2 < 0.

This completes the proof.

Lemma 3.6 I f  limfc-,oo *h = 0, then lim ^ o o  ||V $ (x fc)|| =  0.

Proof. Suppose th a t limfc-^oo V$y^||"",fc~ — 0. From Lemma 3.5 we have

V $ ( x kf s k <  -* /- 1||V $(B fc)||2 < 0.

Dividing through by ||sfe|| gives

.  IIV Q fa )!!2 , n

I M I  ^llsjfell

Now sk =  —5 ĵ 1V$(xfc) allows us to write

IMI =  \\B^v<s>(xk)\\ <  ||Bfc <  c ' l iv ^ ^ fc ) ! !  < z^-11|v^(^fe)||.
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Therefore

1 >  M
M l  “  l | v * M | |

so tha t

IIV$(xfc)||2 >  /i ||V $ (x fc) ||!
\\8 k \\ -  ||V $ (x fc)||

which becomes

_ i v ^ < _ i d M !  =  _ M j | v t w l | < 0 .
z/||sfc|| i/ ||V $ (x fc)|| v

Thus

^ % p i < - f i | V * ( * t ) | | < 0  (3.13)
llSfc|l V

and by the Sandwich theorem

lim ||V $ (x fc) | |= 0 .
AC—> 0 0

This completes the proof.

T h e o r e m  3 .7  The BFG S algorithm is globally convergent to  V $  =  0.

Proof. The spline $  is continuously differentiable since the gradient V $  is 

continuous. The convexity of $  guarantees th a t $  is Lipschitz in a neighborhood

r p

of the minimizer and th a t $  is bounded below. Since V$(&fc) Sk <  0, then by 

Theorem 3.1, we conclude th a t there exists a sequence {xk},  k = 1 ,2 , . . .  obeying

+  Xsk) < $(xfe) +  aAs^ V$(xfc) for a  e  (0, 1), A > 0

and

s i V $ (x fe +  Afcs fe) > ( 3 s l V $ ( x k) for /? <E (a , 1).
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For this sequence, either V$(xfc) =  0 for some k > 1 or lim*,-,,*, V$|^ j |   =  0. By

Lemma 3.6, the la tte r implies limfc-xx, ||V$(xfc)|| =  0. Thus either V$(xfc) =  0 for 

some k > 1 or {V$(cc/C)} ^ l1 —+ 0. This completes the proof.

To show th a t the sequence of iterates {xfc} converges linearly to the unique

solution of (1), we will need the following lemma from [20].

L e m m a  3.8 (L i [20, Corollary 2.8]) Let X  be a convex polyhedral subset o f 

R n and <L(x) a convex piecewise quadratic function on X . Suppose tha t X* := 

{x £ X  : 3>(x) =  $ min}, where $ m;n := m in^gx $ (x ) > —oo. Then there exists a

positive constant 7 (depending only on <l>(x) and X ) such that

dist(x, X *) < 7 ($ (x )  -  $ min +  y / $ (x )  -  $ min)  , for x  £ X.

T h e o r e m  3 .9  Let e :=  m in { /r ,  i / - 1 } a s  defined in Lem ma 3.4 and let {xk} be 

the sequence o f iterates generated by the BFG S algorithm. Then there exist two 

positive constants 8 =  <5($, e) and 7 =  7 ($) such that

dist(x fc,X *) < 7 ($ i +  a /^ i )  ~  ^  for k >  1 (3.14)

where $1 :=  $ (x i)  — $ min) and $ min := inf^gRn $ (x ), and X *  :=  {x* £ R n : 

$ ( * * )  =  $ m in }-

Proof. For $  a convex quadratic spline, Li and Swetits [23, Lemma 3.1] proved 

th a t there exists a positive constant a  (depending only on 4>) such th a t

< cc($(x) — $ (x  +  As))

whenever sTV $ (x ) < 0 and sTV3»(x +  As) =  0.

s V $ (x

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



31

Having previously established th a t the search directions generated were de

scent directions and having noted th a t we are using exact line searches in each 

iteration, we can conclude th a t

Sfc )  < a($(zfc) -  +  Aksk)) = a ( $ ( x k) -  $(a;fc+i)).

From (3.13), we have

5* V $(arfc) ^  \x

Thus,

SO

2 /  oT

l | v * (* ‘ ) “J 5  ( ? )  ( S‘ W ^ )  - “ ( z r )  (* ( l t )  “  * ( l ‘ + i)) '

By Theorem 2.1 of [19], there exists 8  > 0 depending only on $ , /i, and v  such

tha t

$ (x fc) -  $ min < $1 (1  -   ---------- 2 ^  for k > 1. (3.15)
V ( l  +  ^ i )  J

By Lemma 3.8, there exists a positive constant 7 (depending only on <$) such

tha t

d is t(z fc,X *) < 7 ($ (a:fe) -  $ min +  \ / $ { x k) -  (3.16)

B y  (3 .15 ) ,  we have
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Therefore, from (3.15)-(3.17), we have the estim ate

completing the proof.

T h e o r e m  3.10 Let  {x)~} be the sequence o f iterates generated by the BFGS  

algorithm (2.4) - (2.7) applied to the strictly  convex quadratic spline <f>. Then  

{xk \  converges linearly to the m inim izer o f and converges finitely.

Proof. For a strictly convex quadratic spline $ , the set X* of Lemma 3.8 is 

a singleton set containing the unique minimizer x*. Linear convergence of {%k} 

follows from Theorem 3.9.

It is well known th a t the BFGS algorithm uses conjugate directions and there

fore exhibits finite term ination on a quadratic function (cf. Theorem 8.8.6 in [1]). 

For nondegenerate problems of the form (1.2), x* exists in the interior of polyhe

dron W*  =  Wi  for some i — 1 , . . .  , r  and $  is a quadratic function on W*.

For x E Wj  ^  W*,  we know th a t Vd>(:r) ^  0 so the descent direction s*, 

generated for any E Wj  will force the sequence {xk}  from W r  Since there are a 

finite number of polyhedrons, {xk}  must eventually move into W*  for some k > 1. 

Let ko be the smallest k  for which Xk € W*.  Then the algorithm term inates in a t 

most k0 4- n  +  1 iterations. This completes the proof.

d ist(x fe, X *) < q ($ i  +  v 'iT )  f
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N U M ER IC A L TESTIN G  

Exam ple Problem  R evisited

To visualize the behavior of the BFGS algorithm, we can examine the trajec

tory to the known solution of our example problem (1.21) from a variety of starting  

points. This problem was well behaved over the entire selection of starting  points 

including points a t the intersection of the bounding lines, points on the bounding 

lines, and points in the interior of each polyhedral subregion of the spline. Sample 

trajectories are shown in Figures 5 through 7.

0 2 4 6 8 10 12 14
x i

Figure 5. Trajectory From Point of Intersection
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procedure deteriorates. The picture changes completely if a laser pulse with duration of 

approximately 100 fs or shorter is used. Now the laser interacts only with the electrons of 

a material. Before the material undergoes any changes in thermodynamic state, the laser 

pulse is over and most of the energy is deposited into the sample. Material removal 

occurs after the laser pulse. From this brief discussion it can be concluded that an fs-laser 

with pulse duration of approximately 100-200 fs and shorter should be closer to an 

optimal laser system than other systems. However, the importance o f the leading edge 

rise time o f the laser pulse has been studied [25]. The author showed that it should be fast 

enough to remove material layer at a speed equal to the heat conduction moving to the 

bulk. Lasers with different pulse duration have been applied to LIBS, for instance, 

Chichkov et al. studied laser ablation o f solid targets by 0.2-5000 ps Ti: Sapphire laser 

pulses and introduced theoretical models and qualitative explanations o f their 

experimental results [26]. They presented the advantages o f femtosecond lasers for 

precise material processing, well defined patterns, and its pure ablation o f metal targets in 

vacuum, which insures its ability as a promising tool for applications in precise material 

processing. However, Rieger et al. investigated the emission o f laser-produced silicon and 

aluminum plasmas in the energy range from 0.1 to 100 pJ (0.5-500 J/cm ) using 10 ns 

and 50 ps KrF laser pulses focused to a 5-pm diameter spot [27]. They showed that there 

is a little difference between 50 ps and 10 ns pulses in the plasma emission both in terms 

of the intensity o f the emission lines and in terms of lifetime o f the emission, while 

differences become important only at very low fluences approaching the plasma 

formation threshold. The effect o f laser pulses of different durations has been compared 

mainly in terms o f the amount o f ablated material. Recently, studies have also compared
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Unfortunately, (1.21) is so well behaved th a t none of the many starting  points 

produced any erratic behavior th a t would help to  explain later results. Shewchuk’s 

analysis [33] of the M ethod of Steepest Descent sheds some light on our example 

problem. In Figure 8, we plot the quadratic form from Page 14 for W 2 over R 2 

and overlay the boundaries for W 2 w ith dashed lines (see Figure 3). The solid 

lines represent worst case starting  points for Steepest Descent. A similar plot is 

rendered for W 7 and W e in Figures 9 and 10, respectively.

X2 0

-10

-15

-20
5-20 -15 -10 0 105 15 20 25

Xi

Figure 8. Worst case starting  points in W 2
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-10

-15

-20
-20 0 25-15 -10 5 5 10 15 20

X \

Figure 9. W orst case starting  points in W7

-10

-15

-20
25200 10 155 5-15 -10-20

Xl

Figure 10. Worst case starting  points in W 6
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Because our first BFGS step is actually a Steepest Descent step, the patholo

gies of th a t m ethod apply for each restart. In particular, when starting  from a 

point on either worst case line, the next iterate falls on the other line. For Steepest 

Descent, the sequence of iterates bounces back and forth between the two lines 

making very slow progress toward the solution.

W ith the quadratic spline, this behavior is m itigated because starting  from a 

worst case line in any region, except We,  the next iterate lands in a new region. 

Because the worst case lines are different for each region, the restarted  BFGS 

algorithm will not be restarting from a worst case point and performance improves 

as compared to  Steepest Descent.

In We,  both  worst case lines exist in the region and a starting  point on one line 

places the next iterate on the other line. At this stage, the BFGS m ethod updates, 

because no restart is required, and we are no longer in the Steepest Descent model. 

Figure 11 plots a trajectory  of this case.
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1.5 2.5 3 3.5 41 2
®i

Figure 11. Trajectory from a Worst Case Starting Point in W%

Test Problem  Generation

The test problems are generated as simply bound quadratics of the form

- x t A x  — b T  x  
2

subject to — 1 <  x  < 1 

according to the method described in More and Toraldo [26] and presented in Li and 

Swetits [23]. Copyright © 1997 Society for Industrial and Applied Mathematics. 

Reprinted with permission. The condition number of the m atrix A , the degree of 

degeneracy of the solution, and the number of active constraints in the solution are 

the input param eters ncond, ndeg , and nax  to the routine. Random numbers are 

generated using the RAN2 function defined in Press, Teukolsky, Vetterling, and 

Flannery [30].
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The positive definite m atrix A  is constructed from a randomly generated or

thogonal Householder m atrix  Y  and a diagonal m atrix  D  where the ith  diagonal 

component d{ is given by

for i =  1 , . . .  ,n.  The m atrix A  is then formed as A  =  Y D Y  and has condition 

number io ncond, listed in Tables 1-15 as “Condition” .

The exact solution x* is randomly generated with \xi\ <  1 for i = 1 , . . . ,  n. To 

provide the required number of active constraints, we randomly generate a subset J  

of size nax  from the set { 1 , . . . ,  n).  For this active set J,  we generate the Lagrange 

multiplier y  using the input param eter ndeg according to

where /q is generated randomly in the interval (0,1). The value 10~nde9 is a 

measure of the numerical degeneracy of the problem and is listed in Tables 1-15 

under “Degeneracy” .

Having randomly generated A , a;*, y, and the active set J ,  we finish construct

ing the test problem by setting b = Ax*  — y. Bounds are set by defining l .L =  —1, 

Ui — 1, and yi =  0 for i £ J . W hen i £ J , we define

ncond

\y .\ =  1 Q - H i - n d e g  for j g J

£i  =  x £ and  iq  =  1 for y i  >  0

or

£i =  —1 and iq =  x* for y* < 0.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



40

N u m e ric a l R e s u lts

Results of testing are given in Tables 1-12. The “R estart” column reflects 

the use of the restarting strategy given in (2.7). The “No R estart” column shows 

results w ith the restart completely suppressed. The “Accuracy” is measured in 

the t?oo norm by ||x — where x  is a solution generated by the BFGS al

gorithm. The number of iterations required to obtain x  is reported under “Itera

tions” . The number of variables and active constraints for each test set of problems 

is given a t the top of the associated table. Algorithm term ination criteria was set 

to  ||V4?(a;fc)|| <  0.5 ( l0 ~ 16) for Tables 1-9. The term ination criteria was relaxed 

to  ||V $ (x fc)|| < 0.5 (10~13) for Tables 10- 12.
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T a b l e  1. Results for 2 Variables, 0 Constraints with Tight Tolerance

2 Variables

0 Active Constraints

Characteristics Iterations Accuracy

Condition Degeneracy R estart No R estart Restart No R estart

103 10~3 4 3 0.13E-13 0.14E-13
103 10~6 4 6 0.33E-14 0.71E-14
103 10~9 4 4 0.22E-13 0.89E-14
103 i o - 12 7 14 0.20E-13 0.14E-13
106 10~3 5 4 0.22E-10 0.39E-10
106 10~6 5 6 0.13E-10 0.53E-10
106 10~9 5 3 0.34E-10 0.15E-10
106 IO" 12 6 6 0.27E-11 0.12E-10
109 10-3 11 5 0.23E-07 0.13E-07
109 10~6 20 7 0.83E-08 0.22E-09
109 10~9 6 4 0.49E-08 0.48E-10
109 1 0 -12 8 5 0.17E-07 0.32E-07
1012 H T 3 50 9 0.48E-06 0.39E-05
1012 IO-6 39 10 0.21E-04 0.33E-05
1012 l t r 9 16 8 0.34E-05 0.18E-04
1012 i o - 12 10 4 0.12E-04 0.18E-04
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T a b l e  2. Results for 2 Variables, 1 Constraint with Tight Tolerance

2 Variables

1 Active Constraint

Characteristics Iterations Accuracy

Condition Degeneracy Restart No Restart Restart No Restart

103 10~3 7 5 0.00E+00 0.28E-16
103 10~6 4 4 0.00E+00 0.11E-15
103 10“9 8 6 0.10E-15 0.56E-16
103 1CT12 7 11 0.17E-15 0.56E-16
106 10~3 6 8 0.33E-15 0.17E-14
106 10~6 4 3 0.00E+00 0.28E-16
106 IO"9 5 5 0.26E-14 0.30E-14
106 1 0 -12 5 4 0.22E-15 0.11E-15
109 10~3 4 8 0.31E-14 0.56E-14
109 10~6 8 8 0.00E+00 0.00E+00
109 10~9 11 5 0.22E-15 0.22E-15
109 1 0 -12 10 6 0.00E+00 0.00E+00
1012 10~3 9 8 0.14E-16 0.00E+00
1012 ic r 6 4 3 0.22E-15 0.67E-15
1012 10~9 8 9 0.00E+00 0.00E+00
1012 IO"12 4 3 0.00E+00 0.00E+00
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T a b l e  3. Results for 2 Variables, 2 Constraints with Tight Tolerance

2 Variables

2 Active Constraints

Characteristics Iterations Accuracy

Condition Degeneracy R estart No R estart R estart No R estart

103 1(T3 7 3 0.00E+00 0.00E+00
103

CO1Or*H 9 6 0.00E+00 0.43E-18
103 10~9 6 6 0.00E+00 0.28E-16
103 i o - 12 9 7 0.00E+00 0.00E+00
106 1(T3 6 3 0.00E+00 0.00E+00
106 1(T6 4 3 0.00E+00 0.00E+00
106 10~9 7 6 0.00E+00 0.00E+00
106 i o - 12 12 12 0.00E+00 0.00E+00
109 i c r 3 5 6 0.00E+00 0.00E+00
109 1(T6 8 7 0.00E+00 0.00E+00
109 l t r 9 15 11 0.00E+00 0.00E+00
109 i o - 12 5 9 0.00E+00 0.00E+00
1012 10~3 4 3 0.00E+00 0.00E+00
1012

CO1O
4 3 0.00E+00 0.00E+00

1012 1(T9 13 7 0.00E+00 O.OOE+OO
1012 i o - 12 8 7 0.00E+00 0.00E+00
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T a b l e  4. Results for 10 Variables, 1 Constraint with Tight Tolerance

10 Variables

1 Active Constraint

Characteristics Iterations Accuracy

Condition Degeneracy R estart No R estart R estart No R estart

103 IO-3 52 27 0.28E-13 0.56E-13
103 10~6 90 83 0.95E-13 0.13E-13
103 IO-9 137 214 0.13E-13 0.24E-13
103 i o - 12 60 136 0.35E-13 0.58E-13
106 10~3 129 141 0.18E-10 0.26E-11
106 10~6 114 545 0.66E-10 0.53E-10
106 IO"9 68 53 0.90E-11 0.60E-11
106 i o - 12 168 105 0.23E-11 0.17E-11
109 10~3 215 318 0.44E-08 0.21E-08
109 10“6 202 107 0.62E-10 0.27E-09
109 10~9 348 186 0.22E-08 0.23E-08
109 1 0 -12 300 138 0.13E-08 0.56E-09
1012 10~3 5001 5001 0.72E+00 0.72E+00
1012 l 0-e 1408 800 0.47E-05 0.46E-05
1012 i o - 9 884 553 0.30E-06 0.21E-06
1012 i o - 12 5001 5001 0.52E+00 0.52E+00
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T a b l e  5. Results for 10 Variables, 5 Constraints with Tight Tolerance

10 Variables

5 Active Constraints

Characteristics Iterations Accuracy

Condition Degeneracy R estart No R estart R estart No R estart

103 IO-3 17 35 0.22E-14 0.15E-14
103 IO" 6 28 25 0.27E-13 0.45E-13
103 io ~ 9 50 34 0.14E-13 0.12E-13
103 IO" 12 48 31 0.63E-14 0.84E-14
106 10“3 40 32 0.11E-12 0.14E-12

106 io ~ 6 55 78 0.67E-11 0.48E-11

106 IO" 9 42 43 0.22E-12 0.93E-13
106 i o - 12 85 51 0.16E-10 0.31E-10
109 10~3 72 79 0.11E-08 0.10E-08
109 1 0 -6 48 78 0.12E-07 0.14E-07
109 10~9 57 55 0.10E-10 0.27E-11
109 1 0 -12 69 223 0.25E-10 0.17E-11
1012 10“3 5001 5001 0.79E+00 0.79E+00
1012 n r 6 33 41 0.31E-10 0.25E-10
1012 10~9 130 106 0.24E-09 0.38E-08
1012 i o - 12 171 275 0.36E-06 0.21E-06
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T a b l e  6. Results for 10 Variables, 9 Constraints w ith Tight Tolerance

10 Variables

9 Active Constraints

Characteristics Iterations Accuracy

Condition Degeneracy R estart No R estart R estart No R estart

103 10“ 3 36 31 0.89E-15 0.21E-14
103 10~6 45 40 0.56E-15 0.44E-15

t—
i O C
O

10~9 89 140 0.11E-15 0.11E-15
103 io -12 176 153 0.00E+00 0.33E-15
106 10~3 31 30 0.46E-14 0.72E-14
106 10“ 6 25 19 0.33E-15 0.11E-15
106 10~9 81 62 0.11E-14 0.13E-14
106 IO" 12 378 368 0.31E-15 0.36E-15
109 10"3 26 19 0.56E-16 0.11E-15
109 10“ 6 66 72 0.33E-15 0.14E-14
109 10~9 1097 51 0.56E-15 0.61E-15
109 10-12 5001 5001 0.10E-02 0.10E-02
1012 10~3 37 35 0.33E-15 0.27E-14
1012 10~6 50 53 0.22E-15 0.56E-16
1012 10-9 96 118 0.22E-13 0.33E-14
1012 10-12 67 118 0.26E-14 0.43E-14
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T a b l e  7. Results for 100 Variables, 10 Constraints with Tight Tolerance

100 Variables

10 Active Constraints

Characteristics Iterations Accuracy

Condition Degeneracy R estart No R estart Restart No R estart

103 10“ 3 5001 5001 0.17E-12 0.17E-12
103 10~6 5001 5001 0.26E-12 0.26E-12
103 10~9 5001 5001 0.61E-04 0.61E-04
103 IO" 12 5001 5001 0.35E-12 0.35E-12
106 10“ 3 5001 5001 0.20E+00 0.20E+00
106 10~6 5001 5001 0.31E-01 0.31E-01
106 10~9 5001 5001 0.42E+00 0.42E+00
106 i o - 12 5001 5001 0.19E+00 0.19E+00
109 10~3 5001 5001 0.77E+00 0.77E+00
109 10~6 5001 5001 0.90E+00 0.90E+00
109 10“ 9 5001 5001 0.11E+01 0.11E+01
109 10-12 5001 5001 0.97E+00 0.97E+00
1012 10-3 5001 5001 0.97E+00 0.97E+00
1012 IO" 6 5001 5001 0.11E+01 0.11E+01
1012 10-9 5001 5001 0.96E+00 0.96E+00
1012 10-12 5001 5001 0.11E+01 0.11E+01
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T a b l e  8. Results for 100 Variables, 50 Constraints with Tight Tolerance

100 Variables

50 Active Constraints

Characteristics Iterations Accuracy

Condition Degeneracy R estart No R estart Restart No R estart

103 10“ 3 5001 5001 0.13E-12 0.13E-12
103 10~6 5001 5001 0.95E-13 0.95E-13
103 10“ 9 5001 5001 0.27E-12 0.27E-12
103 io - 12 5001 5001 0.13E-12 0.13E-12
106 io~3 5001 5001 0.42E+00 0.42E+00
106 10~6 5001 5001 0.10E-01 0.10E-01
106 10“ 9 5001 5001 0.87E-01 0.87E-01
106 io - 12 5001 5001 0.37E+00 0.37E+00
109 10~3 5001 5001 0.10E+01 0.10E+01
109 io - 6 5001 5001 0.84E+00 0.84E+00
109 10~9 5001 5001 0.90E+00 0.90E+00
109 10-12 5001 5001 0.75E+00 0.75E+00
1012 10“ 3 5001 5001 0.95E+00 0.95E+00
1012 10~6 5001 5001 0.98E+00 0.98E+00
1012 10~9 5001 5001 0.90E+00 0.90E+00
1012 10-12 5001 5001 0.92E+00 0.92E+00
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T a b l e  9. Results for 100 Variables, 90 Constraints with Tight Tolerance

100 Variables

90 Active Constraints

Characteristics Iterations Accuracy

Condition Degeneracy R estart No R estart Restart No R estart

103 10~3 144 112 0.47E-14 0.25E-13
103 10~6 313 272 0.14E-12 0.23E-12
103 10“ 9 5001 5001 0.95E-04 0.95E-04
103 io -12 5001 5001 0.64E-04 0.64E-04
106 10“3 993 1772 0.57E-10 0.51E-10
106 10~6 5001 5001 0.77E-02 0.77E-02
106 io~9 5001 5001 0.51E+00 0.51E+00
106 io~12 5001 5001 0.69E+00 0.69E+00
109 10~3 5001 5001 0.18E+00 0.18E+00
109 10~6 5001 5001 0.39E+00 0.39E+00
109 10~9 5001 5001 0.83E+00 0.83E+00
109 10-12 5001 5001 0.92E+00 0.92E+00
1012 10~3 5001 5001 0.65E+00 0.65E+00
1012 l 0-e 5001 5001 0.91E+00 0.91E+00
1012 io~9 5001 5001 0.98E+00 0.98E+00
1012 IO" 12 5001 5001 0.10E+01 0.10E+01
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T a b l e  10. Results for 100 Variables, 10 Constraints with Relaxed Tolerance

100 Variables

10 Active Constraints

Characteristics Iterations Accuracy

Condition Degeneracy R estart No R estart R estart No R estart

103 10“ 3 377 205 0.22E-09 0.37E-09
103 10~6 428 1774 0.54E-09 0.20E-09
103 10~9 698 529 0.15E-09 0.15E-09
103 IO" 12 394 138 0.26E-09 0.75E-10
106 i o - 3 5001 5001 0.20E+00 0.20E+00
106 io ~6 5001 5001 0.31E-01 0.31E-01
106 10~9 5001 5001 0.42E+00 0.42E+00
106 io - 12 5001 5001 0.19E+00 0.19E+00
109 10“ 3 5001 5001 0.77E+00 0.77E+00
109 io - 6 5001 5001 0.90E+00 0.90E+00
109 10-9 5001 5001 0.11E+01 0.11E+01
109 10-12 5001 5001 0.97E+00 0.97E+00
1012 R T 3 5001 5001 0.97E+00 0.97E+00
1012

to1oT~*l 5001 5001 0.11E+01 0.11E+01
1012 10-9 5001 5001 0.96E+00 0.96E+00
1012 10~12 5001 5001 0.11E+01 0.11E+01
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T a b l e  11. Results for 100 Variables, 50 Constraints with Relaxed Tolerance

100 Variables

50 Active Constraints

Characteristics Iterations Accuracy

Condition Degeneracy R estart No R estart R estart No R estart

103 IO" 3 1226 338 0.41E-09 0.16E-11
103 10~6 519 310 0.32E-09 0.11E-09
103 10“ 9 379 181 0.52E-09 0.21E-12
103 io - 12 560 477 0.17E-09 0.45E-10
106 10“ 3 5001 538 0.42E+00 0.52E-07
106 io - 6 5001 5001 0.10E-01 0.10E-01
106 10“ 9 3814 3814 0.68E-10 0.68E-10
106 io - 12 5001 5001 0.37E+00 0.37E+00
109 IO-3 5001 5001 0.10E+01 0.10E+01
109 10~6 5001 5001 0.84E+00 0.84E+00
109 10“ 9 5001 5001 0.90E+00 0.90E+00
109 10-12 5001 5001 0.75E+00 0.75E+00
1012 10“ 3 5001 5001 0.95E+00 0.95E+00
1012 10~6 5001 5001 0.98E+00 0.98E+00
1012 10“ 9 5001 5001 0.90E+00 0.90E+00
1012 10-12 5001 5001 0.92E+00 0.92E+00
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T a b l e  12. Results for 100 Variables, 90 Constraints with Relaxed Tolerance

100 Variables

90 Active Constraints

Characteristics Iterations Accuracy

Condition Degeneracy R estart No R estart R estart No R estart

103 10“ 3 122 105 0.14E-12 0.92E-13
103 IO-6 296 258 0.21E-11 0.21E-11
103 H-* o 1 co 5001 5001 0.95E-04 0.95E-04
103 io -12 5001 5001 0.64E-04 0.64E-04
106 10~3 789 224 0.74E-10 0.22E-08
106 10~6 3949 3949 0.21E-09 0.21E-09
106 10-9 5001 5001 0.51E+00 0.51E+00
106 10-12 5001 5001 0.69E+00 0.69E+00
109 IO-3 5001 5001 0.18E+00 0.18E+00
109 10~6 5001 5001 0.39E+00 0.39E+00
109 10~9 5001 5001 0.83E+00 0.83E+00
109 10-12 5001 5001 0.92E+00 0.92E+00
1012 10~3 5001 5001 0.65E+00 0.65E+00
1012 IO" 6 5001 5001 0.91E+00 0.91E+00
1012 IO" 9 5001 5001 0.98E+00 0.98E+00
1012 10-12 5001 5001 0.10E+01 0.10E+01
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Tables 13-15 show the results of an experiment in handing off a solution from 

the BFGS m ethod to  a Newton method. The BFGS method routinely delivers 

gradients less than  5.0(10“ 4). Using this value as a handoff tolerance, the Newton 

method then completes the search in ju st a few additional iterations. In every 

instance, the handoff technique was able to  converge to a satisfactory solution in 

fewer iterations than  using the Newton m ethod alone.

T a b l e  13. Results for 100 Variables, 10 Constraints with Handoff to  Newton M ethod

100 Variables

10 Active Constraints

Characteristics Iterations Accuracy

Condition Degeneracy R estart Newton R estart Newton

103 10~3 121 2 0.93E-02 0.76E-13
103 10“ 6 124 2 0.16E-01 0.67E-13
103 10~9 149 5 0.27E-01 0.28E-12
103 10“ 12 140 3 0.74E-02 0.19E-12
106 10-3 303 2 0.15E+01 0.23E-10
106 10~6 359 2 0.18E+01 0.38E-10
106 10-9 286 5 0.18E+01 0.11E-09
106 IO" 12 451 2 0.12E+01 0.36E-10
109 10“ 3 318 2 0.18E+01 0.14E-07
109 10~6 396 4 0.19E+01 0.40E-08
109 10~9 342 5 0.20E+01 0.72E-07
109 10-12 353 6 0.20E+01 0.61E-07
1012 10~3 204 3 0.19E+01 0.65E-04
1012 10-6 171 4 0.20E+01 0.49E-04
1012 10~9 228 5 0.19E+01 0.75E-05
1012 10-12 231 4 0.19E+01 0.29E-04
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T a b l e  14. Results for 100 Variables, 50 Constraints w ith Handoff to  Newton M ethod

100 Variables

50 Active Constraints

Characteristics Iterations Accuracy

Condition Degeneracy R estart Newton R estart Newton

l—
i o C
O

IO-3 129 9 0.14E-01 0.24E-12
103 10~6 178 9 0.28E-01 0.34E-12
103 10“ 9 293 7 0.71E-01 0.21E-12
103 io - 12 172 7 0.14E-01 0.19E-12
106 10~3 368 10 0.12E+01 0.22E-09
106 io ~6 330 13 0.12E+01 0.59E-10
106 10~9 414 12 0.14E+01 0.88E-10
106 io - 12 434 11 0.19E+01 0.96E-10
109 10~3 229 11 0.20E+01 0.11E-06
109 10“ 6 246 15 0.18E+01 0.12E-06
109 10~9 594 14 0.18E+01 0.63E-07
109 10-12 748 22 0.17E+01 0.75E-08
1012 10~3 147 13 0.19E+01 0.32E-04

I
o

,
i-H 10-6 265 15 0.16E+01 0.90E-05

1012 10“ 9 330 20 0.19E+01 0.49E-04
1012 10-12 646 18 0.18E+01 0.11E-03
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T a b l e  15. Results for 100 Variables, 90 Constraints w ith Handoff to  Newton M ethod

100 Variables

90 Active Constraints

Characteristics Iterations Accuracy

Condition Degeneracy R estart Newton R estart Newton

103 10~3 99 8 0.62E-02 0.45E-13
103 IO-6 382 9 0.32E-01 0.77E-13
103 10“ 9 132 12 0.75E-01 0.11E-12
103 IO" 12 127 11 0.57E-01 0.11E-12
106 10~3 117 14 0.16E+01 0.11E-09
106 10~6 200 15 0.16E+01 0.19E-09
106 io -9 722 11 0.90E+00 0.23E-11
106 io -12 920 17 0.15E+01 0.24E-10
109 10~3 87 20 0.10E+01 0.23E-08
109 10~6 697 21 0.19E+01 0.77E-07
109 10~9 965 18 0.16E+01 0.74E-07
109 10-12 199 24 0.20E+01 0.66E-07
1012 10“ 3 87 28 0.15E+01 0.17E-06
1012 l 0-e 1512 36 0.18E+01 0.97E-04
1012 10~9 812 31 0.18E+01 0.88E-04
1012 10-12 411 31 0.17E+01 0.22E-06
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C O NCLUSIO NS

The results of testing the BFGS algorithm with both the restarting and non

restarting strategies were rather disappointing. In the m ajority of the instances of 

failed convergence, the algorithm degenerated to a steepest descent behavior with 

the iterates alternating back and forth between two polyhedral regions. While 

(3.14) hints th a t a judicious choice of x \  may improve the overall rate of conver

gence, the testing did not bear this out. Among a variety of initialization routines 

there was no significant difference in algorithm performance.

On the positive side, the numerical evidence lends strong support to the con

jecture th a t the BFGS algorithm w ithout restarting converges a t least linearly on 

a strictly convex quadratic spline. Inspection of Tables 1-3 shows th a t the “No 

R estart” version was able to obtain a satisfactory solution in every case as the 

version w ith “R estart” and usually required fewer iterations.

The tight tolerance term ination threshold turned out to be particularly im

portant. While the initial testing of the algorithm showed a great deal of promise 

with reasonable rates of convergence, the final point generated as a solution almost 

always turned out to be infeasible. The combination of strigent feasibility testing 

and tight tolerance thresholds resulted in excellent accuracy when the algorithm 

converged. A s ev id en ced  in  T ab les 7 — 12, th e  a lgorith m  perform ed p o o r ly  w ith  

larger sized problems.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



57

D irections o f Future Research

In this study, we have explored a narrow slice of a broad field. Several ideas 

for future study emerged from both  tangential investigations to  resolve nagging 

questions and recommendations from other people exposed to  the work. A few of 

these ideas are presented below in no particular order.

Handoff M ethods and Criteria

Upon examining the behavior of the algorithm when it s tarts  to slow down, 

we found th a t it is relatively close to a solution in all cases. For problems up to 

and including 100 variables, the BFGS algorithm was able to obtain estim ates to 

the actual solution as close as IO-4 . In these cases, handing the estim ate off to a 

Newton m ethod resulted in accurate and feasible solutions in every problem set. 

Tables 1 3 - 1 5  show the same 100 variable problem sets previously used w ith a 

column for the lowest m agnitude gradient obtainable by the BFGS algorithm and 

a column giving the number of Newton iterations required to find an acceptable 

solution.

The handoff tolerance of 5.0(10~4) was a hueristic determined from examining 

the results of the BFGS performance. Additional work is required to  determine 

proper switching criteria.

Improved Perform ance of the BFG S Algorithm

W hile several subroutines would immediately benefit from modifications to 

the underlying d a ta  structures or transfers of da ta  between the structures, these
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changes would make the algorithm faster but not necessarily more accurate. Addi

tional research into the failure modes of the BFGS algorithm is needed to find ways 

to  improve the performance of the algorithm. For example, an exam ination of the 

search direction vector revealed th a t several failures were related to  the extremely 

small m agnitude of the search vector and the correspondingly large m agnitude step 

size required to compensate.

Pathology of a Com m on Failure M ode

One of the most common failure modes for the BFGS algorithm was a condition 

where the sequence of iterates alternated between two neighboring regions. In these 

cases, the restarting criteria introduced some aspects of the M ethod of Steepest 

Descent. W ith the extensive literature analyzing Steepest Descent as a starting 

point, a more complete analysis of this failure mode would be useful.

Large Sparse Problem s

An improved BFGS algorithm may be most useful in large sparse problems. In 

these cases, a Newton m ethod may be difficult to apply because the calculation of 

the m atrix inverse results in a fully populated matrix. The BFGS m ethod does not 

compute the inverse directly and could realize some efficiencies in both  performance 

and storage by taking advantage of the sparsity.

R estarting

As noted above, the BFGS algorithm  appears to  work well w ithout restarting. 

A proof of convergence w ithout restarting is needed.
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G enetic A lgorithm s

In some cases, the BFGS algorithm dem onstrated a sensitivity to  initial s ta rt

ing values. Using concepts from the study of genetic algorithms, several starting  

values could be used to initiate the search for a minimizer. Fitness functions th a t 

use the resulting gradients a t each iteration would guide the algorithm by drop

ping the worst performing approaches. In addition, better avenues may result from 

the combination of the better performing approach vectors according to the basic 

operations of reproduction, crossover, and m utation as described in Goldberg [15].
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A P P E N D IX  

CODE

PROGRAM BFGS
IMPLICIT DOUBLE PRECISION(A-H,0-Z) 
PARAMETER(N=100)
COMMON/INVERSE/GRD(N,N) ,ERR(N) ,ISIGN (N) ,ISNOLD(N) 
COMMON/HESSIAN/BFGS(N,N),Q(N)
COMMON/OTHER/ GAM(2*N) 
COMMON/DATA/A(N,N),SOL(N),B(N),R(N) 
COMMON/UNKNOWN/X(N) ,Y(N) 
COM M ON/BOUND/BL(N),UB(N),C(N)

ICOUNT =  0 
ITMAX =  20000 
TOL =  0.5D-12

DO 2100 NAX =  N /10,(9*N )/10,(4*N )/10  
DO 2000 NCOND =  3,12,3 
DO 1900 NDEG =  3,12,3

ICOUNT =  ICOUNT +  1 
IDUM =  -ICOUNT

Generate the problem data

CALL PRBGEN(N,NCOND,NDEG,NAX,A,B,BL,SOL,UB, 
R,C,Y,ISIGN,X,IDUM)

Estim ate the norm o f A

ALP =  0.0D0 
DO 200 I =  1,N 

S =  0.0D0 
DO 100 J =  1,N 

S =  S +  DABS(A(I,J))
100 CONTINUE

ALP =  DMAX1 (ALP,S)
200 CONTINUE
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ALP -  l.ODO /  ALP
DO 400 I =  1,N 

DO 300 J -  1,N 
GRD(I,J) =  A (I,J)

300 CONTINUE
ERR(I) =  0.0D0 
ISIGN(I) -  o 

400 CONTINUE

Set GRD = I  - A L P  * A and C = A L P  * B

DO 600 I =  1,N 
DO 500 J =  1,N 

GRD(I,J) =  -ALP * A(I,J)
500 CONTINUE

GRD(I,I) =  l.ODO +  GRD (1,1)
C(I) =  ALP * B(I)

600 CONTINUE

IRESET =  1

Initialize x, the starting point, and the matrix

CALL RESTART 
700 DO 800 I =  1,N 

X(I) =  l.ODO 
800 CONTINUE 
900 ERR1 =  l.ODO

This is where the algorithm proper starts

Compute the ERRO R, X -(G R D *X + C )(SU B  L, SU PER U)

ITER  =  1
CALL ERR0R(ERR1,IFLA G ,ITER)

1000 CONTINUE

I f  the maximum number of iterations is exceeded, then quit

IF (ITER. GT .ITM AX) GO TO  1600
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IF(ITER.EQ .(ITM A X  /  5)) THEN 
DO 1100 I =  1,N 

X(I) =  -l.ODO 
1100 CONTINUE

CALL RESTART 
END IF

IF(ITER .EQ .(2 * ITMAX /  5)) THEN 
DO 1200 I =  1,N 

X(I) =  (-1.0D0)**N 
1200 CONTINUE

CALL RESTART 
END IF

IF(ITER .EQ .(3 * ITMAX /  5)) THEN 
DO 1300 I -  1,N 

X(I) -  0.0D0 
1300 CONTINUE

CALL RESTART 
END IF

IF(ITER .EQ .(4 * ITMAX /  5)) THEN 
DO 1400 I =  1,N 

X(I) =  (BL(I) +  UB(I)) /  2.0D0 
1400 CONTINUE

CALL RESTART 
END IF

I f  the E R R O R  is sufficiently small, then quit

IF(ER R l.LT.TO L) THEN 
DO 1500 I =  1,N 

IF(X(I).LT.BL(I)) X(I) =  BL(I) 
IF(X (I).G T.U B(I)) X(I) =  UB(I)

1500 CONTINUE 
END IF

CALL ERRO R(ERRl,IFLA G ,ITER) 

IF(ER R l.LT.TO L) GO TO 1600
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IF((IRESET.EQ.l).AND.(IFLAG.NE.O)) CALL RESTART

Compute the descent direction, Q

CALL SEARCH

Prepare fo r  line minimization

A1 =  O.ODO 
B1 =  O.ODO
CALL LINEFUNCT(A1,B1)

Do line m inim ization

T  =  O.ODO 
IRES =  1
CALL UNIM IN(A1,B1,T,IRES,ITER)

Update BFG S and X  to X-T*Q

CALL UPD ATE(T,ERR1,ITER)

Start another iteration

ITER  =  ITER  +  1 
GO TO 1000
Exit calculations

1600 CONTINUE

DO 1700 I -  1,N 
IF(X(I).LT.BL(I))X(I) =  BL(I)
IF(X (I).G T.U B(I))X (I) =  UB(I)

1700 CONTINUE

CALL ERR0R(ERR1,IFLA G ,ITER)
ERRM AX =  O.ODO 
ERRM =  O.ODO

DO 1800 I =  1,N 
ERRM =  DABS(X(I) - SOL(I))
ERRM AX =  DM AX1 (ERRM AX,ERRM)

1800 CONTINUE
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IF(IR E SE T .E Q .l) THEN 
ITERRS =  ITER  
RSERMX =  ERRMAX 
IRESET =  0 
GO TO 700 

END IF

1900 CONTINUE 
2000 CONTINUE 
2100 CONTINUE 

STOP 
END

INCLUDE ’prbgen.f’ 
INCLUDE ’ran2.f’

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



69

SUBROUTINE ERRO R(ERRl,IFLA G ,ITER)
IM PLICIT DOUBLE PRECISION(A-H,0-Z) 
PARAM ETER(N=100)
COM M ON/INVERSE/GRD(N,N),ERR(N),ISIGN(N),ISNOLD(N) 
COM M ON/HESSIAN/BFGS(N,N),Q(N) 
COM M ON/BOUND/BL(N),UB(N),C(N)
COM M ON/UNKNOW N/X(N) ,Y(N)
COM M ON/OTHER/GAM (2*N)

IFLAG =  0 
ERR1 =  0.0D0

DO 100 I =  1,N 
ISNOLD(I) =  ISIGN(I)

100 CONTINUE

DO 300 I =  1,N 
GAM(I) =  C(I)
DO 200 J =  1,N 

GAM(I) =  GAM(I) +  GRD(I,J) * X(J)
200 CONTINUE

IF(GAM (I).GE.BL(I).AND.GAM (I).LE.UB(I))THEN 
ISIGN(I) =  0 
ERR(I) -  -GAM(I)

END IF
IF(GAM (I).LT.BL(I))THEN 

ISIGN(I) =  -1 
ERR(I) =  -BL(I)

END IF
IF(G A M (I).G T.U B(I))TH EN  

ISIGN(I) =  1 
ERR(I) =  -UB(I)

END IF
ERR(I) =  X(I) +  ERR(I)

300 CONTINUE

DO 400 I =  1,N 
ERR1 =  ERR1 +  ERR(I) * ERR(I)

400 CONTINUE

ERR1 =  D SQ RT(ERRl)
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DO 500 I =  1,N 
IF(ISIGN(I).NE.ISNOLD(I)) IFLAG =  1 

500 CONTINUE

RETURN
END
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SUBROUTINE LINEFUNCT(A1,B1)
IM PLICIT DOUBLE PRECISION(A-H,0-Z) 
PARAM ETER(N=100)
COM M ON/INVERSE/GRD(N,N),ERR(N),ISIGN(N),ISNOLD(N) 
COM M ON/HESSIAN/BFGS(N,N) ,Q(N)
COM M ON/UNKNOW N/X(N),Y(N) 
COM M ON/OTHER/GAM (2*N)

DO 100 I =  1,N 
Y(I) =  0.0D0 
DO 100 J =  1,N 

Y(I) =  Y(I) +  GRD(I,J) * Q (J)
100 CONTINUE

DO 200 I =  1,N 
A l =  A1 - X(I) * Y(I) +  Y(I) * GAM(I)

200 CONTINUE

DO 300 I =  1,N 
B1 =  B1 +  Y(I) * Q(I) - Y(I) * Y(I)

300 CONTINUE

RETURN
END
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SUBROUTINE UNIMIN(A 1 ,B 1 ,T,IRES,ITER) 
IM PLICIT DOUBLE PRECISION(A-H,0-Z) 
PARAM ETER(N=100)
COM M ON/OTHER/GAM (2*N) 
COM M ON/DATA/A(N,N),SOL(N),B(N),R(N) 
COM M ON/UNKNOW N/X(N),Y(N) 
COM M ON/BOUND/BL(N),UB(N),C(N) 
COM M ON/HESSIAN/BFGS(N,N),Q(N) 
DIMENSION W(2*N)

NO -  0 
Z =  1.0D-08 
ZZZ =  1.0D-14

DO 100 I =  1,N 
W (I) =  Y(I)
GAM(I) =  BL(I) - GAM(I)
R(I) =  BL(I) - UB(I)

100 CONTINUE

DO 200 I =  1,N 
IF(DA BS(W (I)).G T.Z)TH EN  

NO =  N0+1 
GAM(NO) =  GAM(I)
W(N0) =  W(I)
R(N0) =  R(I)

END IF 
200 CONTINUE

DO 300 I =  1,N0 
W (N0 +  I) =  -W(I)
GAM(N0 +  I) =  R(I) - GAM(I)

300 CONTINUE

NO =  2 * NO

400 CONTINUE

IF(N0.EQ.0)GO TO 700

IF (IRES. G E . 2) THEN 
J =  (NO - 1) /  2 +  1 
T  -  -GAM (J) /  W (J)

END IF
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F =  A1 +  B1 * T

DO 500 I =  1,N0 
TEM P =  GAM(I) +  W (I) * T 
IF(IRES.G T.2.A ND.I.EQ.J) TEM P =  0.0D0 
IF(TEM P.GT.0.0D0)THEN 

F =  F +  W (I) * TEM P 
END IF 

500 CONTINUE

IF(F.G T.0.0D 0)THEN  
SIGN =  1.0D0 

ELSE 
SIGN =  -1.0D0 

END IF

JJ  =  0

DO 600 I =  1,N0 
TEM  =  SIGN *(T +  GAM(I) /  W (I))
IF(I.EQ .J.AND .IRES.GT.2) TEM  =  0.0D0 
TEM P =  SIGN * W(I)
IF(TEM P.LT.0.0D0.AND.TEM .LE.0.0D0)THEN 

A1 =  A1 +  W (I) * GAM(I)
B1 =  B1 +  W (I) * W(I)

ELSE
IF(TEM P.LT.0.0D0.OR.(TEM P.GT.0.0D0.AND.TEM .GT.0.0D0))THEN 

J J  =  JJ  +  1 
G AM (JJ) =  GAM(I)
W (JJ) -  W(I)

END IF 
END IF 

600 CONTINUE

N 0= JJ
IRES=IR ES+1 

GO TO 400
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700 CONTINUE

IF(DABS(B1).GT.ZZZ)THEN 
T  =  -A l/B l 

ELSE 
T  =  -1.0D0 

END IF

IF(T.LE.O.ODO) T  =  1.0D0

800 CONTINUE

RETURN
END
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SUBROUTINE UPDATE(STEP,ERR1,ITER)
Adapted from  Algorithm A9.4-2 (BFGSFAC) [11].
Copyright ©  1996 Society fo r  Industrial and Applied Mathematics. 
Reprinted with permission.
IM PLICIT DOUBLE PREC ISI0N (A -H ,0-Z)
PA R A M ETE R (N =100)
COM M ON/INVERSE/GRD(N,N),ERR(N),ISIGN(N),ISNOLD(N)
COM M ON/HESSIAN/BFGS(N,N),Q(N)
COM M ON/UNKNOW N/X(N) ,Y(N)
COMMON /  O T H E R / GAM(2*N)
COM M ON/BOUND/BL(N) ,UB(N) ,C(N)
DIMENSION P(N),S(N),ERRO LD (N),GC(N),G N (N),T(N) 
DIMENSION U(N),XOLD(N)

TOL =  5.0D-15 
PNORM  =  0.0D0 
SNORM =  0.0D0

DO 100 I =  1,N 
ERROLD(I) =  ERR(I)
P(I) =  -STEP*Q(I)
XOLD(I) =  X(I)
PNORM  =  PNORM  +  P(I) * P(I) 
x(i) =  X(I) +  P(I)

100 CONTINUE

PNORM  =  DSQRT (PNORM)
CALL ER R O R (ER R l ,IFLAG ,ITER)

IF(IFLAG.NE.0)THEN 
CALL RESTART 
GO TO  1500 

END IF

DO 300 1=1,N 
GC(I) =  0.0D0 
GN(I) =  0.0D0 
DO 200 J=1,N  

GC(I) =  GC(I) +  GRD(I,J)*ERROLD(J)
GN(I) =  GN(I) +  G RD (I,J)*ERR(J)
S(I) =  GN(I) - GC(I)

200 CONTINUE
SNORM =  SNORM +  S(I)*S(I)

300 CONTINUE
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SNORM =  DSQRT(SNORM)
GNNORM =  0.0D0 
GCNORM =  0.0D0 
QNORM =  0.0D0 
PGN =  0.0D0 
QGN =  0.0D0

DO 400 I =  1,N 
GNNORM =  GNNORM +  GN(I) * GN(I) 
GCNORM =  GCNORM +  GC(I) * GC(I) 
QNORM =  QNORM +  Q(I) * Q(I)
PGN =  PGN +  P(I) * GN(I)
QGN =  QGN +  Q(I) * GN(I)

400 CONTINUE

GNNORM =  DSQRT(GNNORM)
GCNORM =  DSQRT(GCNORM)
QNORM =  DSQRT(QNORM)
T E M PI =  0.0D0

DO 600 I =  1,N 
T E M P I =  T E M P I +  S(I) * P(I)
T(I) =  0.0D0 
DO 500 J =  I,N 

T(I) =  T(I) +  BFGS(J,I) * P (J)
500 CONTINUE 
600 CONTINUE

IF(T E M P1.L T .(T 0L  * PNORM  * SNORM ))THEN 
GO TO 1500 

END IF

TEM P2 =  0.0D0

DO 700 I =  1,N 
TEM P2 =  TEM P2 +  T(I) * T(I)

700 CONTINUE

ALPHA =  DSQRT(TEM P1 /  TEM P2)
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DO 900 I =  1,N 
TEM P3 =  0.0D0 
DO 800 J =  1,1 

TEM P3 =  TEM P3 +  BFGS(I,J) * T (J)
800 CONTINUE

GC(I) =  DABS(GC(I))
GN(I) =  DABS(GN(I))
IF(DABS(S(I) - TEM P3).LT.(TOL * D M AX1(GC(I),GN(I))))THEN 

GO TO 1500 
END IF
U(I) =  S(I) - ALPHA * TEM P3 

900 CONTINUE

IF((DSQRT(TEM P1 * TEMP2)).EQ.O.ODO)GO TO 1500

TEM P3 =  1.0D0 /  (DSQRT(TEM P1 * TEM P2))

DO 1000 I =  1,N 
T(I) =  TEM P3 * T(I)

1000 CONTINUE

DO 1200 I =  2,N 
DO 1100 J =  1,1-1 

BFG S(J,I) =  BFGS(I,J)
1100 CONTINUE 
1200 CONTINUE

CALL QRUPDATE(T,U)

DO 1400 I =  2,N 
DO 1300 J =  1,1-1 

BFGS(I,J) =  BFGS(J,I)
1300 CONTINUE 
1400 CONTINUE

1500 RETURN 
END
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SUBROUTINE QRUPDATE(T,U)
Adapted from  Algorithm A S .4-1 (QRUPDATE) [11],
Copyright (c) 1996 Society fo r  Industrial and Applied Mathematics. 
Reprinted with permission.
IM PLICIT DOUBLE PRECISION (A-H.O-Z) 
PARAM ETER(N=100)
COM M ON/INVERSE/GRD(N,N),ERR(N),ISIGN(N),ISNOLD(N)
COM M ON/HESSIAN/BFGS(N,N),Q(N)
DIMENSION T(N),U(N)

DO 100 1=2,N 
BFGS(I,I-1) =  0.0D0 

100 CONTINUE

K =  N
200 IF((T(K ).N E.0.0D 0).O R .(K .LE .l)) GO TO 300 

K =  K - 1 
GO TO 200

300 DO 400 I =  K-1,1,-1
CALL JA C R O T A T E (I,T (I),-T (I+ l))
IF(T(I).EQ.0.0D0) THEN 

T (I) =  DABS(T(I+1))
ELSE

T(I) =  DSQRT(T(I)**2 +  T(I+1)**2)
END IF 

400 CONTINUE

DO 500 J =  1,N 
BFGS(1,J) =  BFGS(1,J) +  T (l)  * U(J)

500 CONTINUE

DO 600 I =  1,K-1 
CALL JACR OTA TE(I,BFG S(I,I),-BFG S(I+l,I))

600 CONTINUE

RETURN
END
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SUBROUTINE JACROTATE(I,A,B)
Adapted from  Algorithm A S .4-la  (JAC RO TATE) [11].
Copyright (c) 1996 Society fo r  Industrial and Applied Mathematics. 
Reprinted with permission.
IM PLICIT DOUBLE PRECISION (A-H.O-Z) 
PARAM ETER(N=100)
COM M ON/INVERSE/GRD(N,N),ERR(N),ISIGN(N),ISNOLD(N)
COM M ON/HESSIAN/BFGS(N,N),Q(N)

IF(A.EQ.0.0D0)THEN 
C =  0.0D0 
S =  1.0D0 
S =  DSIGN(S,B)

ELSE
DEN =  DSQRT(A**2 +  B**2)
C =  A /D EN  
S =  B /D EN  

END IF

DO 100 J =  I,N 
Y =  BFGS(I,J)
W  -  BFG S(I+1,J)
BFGS(I,J) =  C * Y - S * W  
B FG S(I+1,J) =  S * Y +  C * W 

100 CONTINUE

RETURN
END
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SUBROUTINE RESTART
IM PLICIT DOUBLE PREC ISI0N (A -H ,0-Z)
PARAM ETER(N=100)
COM M ON/INVERSE/GRD(N,N),ERR(N),ISIGN(N),ISNOLD(N) 
COM M ON/HESSIAN/BFGS(N,N) ,Q(N)

DO 200 I =  1,N 
DO 100 J =  1,N 

IF(I.EQ .J)TH EN  
BFG S(I,J) =  1.0D0 
ELSE
BFGS(I,J) =  0.0D0 

END IF 
100 CONTINUE 
200 CONTINUE

RETURN
END
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SUBROUTINE SEARCH
IM PLICIT DOUBLE PRECISION (A-H.O-Z)
PARAM ETER(N=100)
COM M ON/INVERSE/GRD(N,N),ERR(N),ISIGN(N),ISNOLD(N)
COM M ON/HESSIAN/BFGS(N,N) ,Q(N)
DIMENSION GRDERR(N),Y(N)

DO 200 1=1,N 
GRDERR(I) =  0.0D0 
DO 100 J=1,N  

GRDERR(I) =  GRDERR(I) +  GRD(I,J) * ERR(J)
100 CONTINUE 
200 CONTINUE

Solve BFGS*Y =  G RDERR for Y

DO 400 I =  1,N 
SUM =  0.0D0 
DO 300 J =  1,1-1 

SUM =  SUM +  BFGS(I,J) * Y (J)
300 CONTINUE

Y(I) =  (GRDERR(I) - SUM) /  BFGS(I,I)
400 CONTINUE

Solve BFGS (transpose) * Q =  Y for Q

Q(N) =  Y(N) /  BFGS(N,N)
DO 600 I =  N-1,1,-1 

SUM =  0.0D0 
DO 500 J =  1+1,N 

SUM =  SUM +  BFGS(J,I) * Q(J)
500 CONTINUE

Q(I) =  (Y(I) - SUM) /  BFGS(I,I)
600 CONTINUE

RETURN
END
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SUBROUTINE PRBGEN(N,NCOND,NDEG,NAX,A,B, 
BL,SOL,UB,R,C,Y,ISIGN,X,IDUM)

IM PLICIT DOUBLE PRECISION(A-H,0-Z)
DIMENSION A(N,N),B(N),BL(N),SOL(N),UB(N),

Y(N) ,R(N) ,X(N),C(N) ,ISIGN(N)
IN TEG ER N,NCOND,NDEG,NAX,IDUM 
REAL XRAY,RAN2

This subroutine generates test problems fo r  algorithms that 
solve strictly convex quadratic programming problems with 
simple bound constraints. The Hessian is the matrix A,
BL and UB are the lower and upper bounds, X S  is the solution, 
ISIG N  is the set of indices o f active constraints, XO is the 
initial guess, NCOND is the condition number o f A,
NDEG is a measure of the degeneracy in the problem,
N A X  is the number of active constraints at the solution, and 
NAO  is the number o f ’’active” constraints in XO.

The objective function is (X T )*A *X /2 -(X T )*B .
The constraints are BL  /=  X  /=  UB.
See More and Toraldo, Numer. Math. 55(1989),
377-400, especially pages 390-400.

A has the form  M DM  where M  is an orthogonal Householder 
m atrix generated by the vector Y  and D is a diagonal matrix 
with L O G (C (I))= (I-l) *N C O N D /(N -l).
The components o f Y  are random elements in (-1,1).

DN =  DBLE(N -l)
DC =  DBLE(NCOND)

DO 100 I =  1,N 
DI =  D BLE(I-l)
C(I) =  DI * DC /  DN 
C(I) =  10.0D0**(-C(I))
XRAY =  RAN2(IDUM)
DL =  DBLE(XRAY)
LI =  IDNINT(DN * DL)
LL =  LI - 2 * (LI /  2)
IF(LL.EQ.O) LL =  -1 
Y(I) =  DBLE(LL) * DL 

100 CONTINUE
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YNORM =  0.0D0

DO 200 I =  1,N 
YNORM =  YNORM +  Y(I) * Y(I)

200 CONTINUE

YNORM =  DSQRT(YNORM)

DO 300 I =  1,N 
Y(I) -  Y(I) /  YNORM 

300 CONTINUE

DO 400 L =  1,N 
DO 400 M =  1,N 

A(M,L) =  0.0D0 
400 CONTINUE

Z =  0.0D0

DO 700 L =  1,N 
DO 600 M =  1,N 

DO 500 J =  1,N
Z =  1.0D0 - 2.0D0 * Y (J) * Y (J) 
IF(J.EQ .L.A N D .J.EQ .M )TH EN  
A(M,L) =  A(M,L) +  Z * C(J) * Z 
END IF
IF(J.EQ.L.A ND .J.NE.M )TH EN
A(M,L) =  A(M,L) - 2.0D0 * Y(M) * Y(J) * C(J) * Z
END IF
IF(J.EQ.M .AND .J.N E.L)TH EN
A(M,L) =  A(M,L) - 2.0D0 * Y(L) * Y (J) * C(J) * Z
END IF
IF(J.NE.L.AND .J.NE.M )THEN
A(M,L) =  A(M,L) +  4.0D0 * Y(M) * Y (J) * C(J) * Y (J) * Y(L) 
END IF 

500 CONTINUE 
600 CONTINUE 
700 CONTINUE

DO 800 M =  1,N-1 
DO 800 L =  M +1,N 

A(M,L) =  A(L,M)
800 CONTINUE
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DO 900 I =  1,N 
XRAY =  RAN2(IDUM)
DL =  DBLE(XRAY)
LI =  IDNINT(DN * DL)
LL =  LI - 2 * (LI /  2)
IF(LL.EQ.O) LL =  -1 
SOL(I) =  DBLE(LL) * DL 

900 CONTINUE

Generate the active constraints and upper and 
lower bounds

DNA =  DBLE(NAX)
Z =  0.0D0
DUMMY =  DNA /  DN 
DNDEG =  DBLE(NDEG)
KOW NT =  0

DO 1000 I =  1,N 
XRAY =  RAN2(IDUM)
DL =  DBLE(XRAY)
IF(KOW NT.EQ.NAX) DL =  DL +  DUMMY 
IF(NAX - KOW NT.EQ.N - I +  1) DL =  -DL 
IF(DL.LE.DUM M Y)THEN 

DL =  DABS(DL)
KOW NT =  KOW NT +  1 
ISIGN(I) =  I
R(I) =  10.0D0**(-DL * DNDEG)
LI =  IDNINT(DN * DL)
LL =  LI - 2 * (LI /  2)
IF(LL.EQ.O) LL =  -1 
R(I) =  DBLE(LL) * R(I)
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IF(LL.LT.O)THEN 
BL(I) =  -l.ODO 
UB(I) =  SOL(I)

ELSE 
BL(I) =  SOL(I)
UB(I) =  l.ODO 

END IF 
ELSE 

R(I) =  0.0D0 
ISIGN(I) =  0 
BL(I) =  -l.ODO 
UB(I) =  l.ODO 

END IF 
1000 CONTINUE

Generate the initial guess

DO 1100 I =  1,N 
X(I) -  (BL(I) +  UB(I)) /  2.0D0 

1100 CONTINUE

Guarantee that X S  is the solution by setting
B  = A * X S  - R.

DO 1300 I -  1,N 
B(I) =  -R(I)
DO 1200 J =  1,N 

B(I) =  B(I) +  A (I,J) * SOL(J)
1200 CONTINUE 
1300 CONTINUE

RETURN
END
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