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ABSTRACT

MATHEMATICAL MODELS AND STABILITY
ANALYSIS OF CHOLERA DYNAMICS

Shu Liao
Old Dominion University, 2010
Director: Dr. Jin Wang

In this dissertation, we present a careful mathematical study of several epidemic
cholera models, including the model of Codeco [11] in 2001, that of Hartley, Morris
and Smith [22] in 2006, and that of Mukandavire, Liao, Wang and Gaff et ol. [60] in
2010. We formally derive the basic reproduction number Ry for each model by com-
puting the spectral radius of the next generation matrix. We focus our attention on
the stability analysis at the disease-free equilibrinm which determines the short-term
epidemic behavior, and the endemic equilibrium which determines the long-term dis-
ease dynamics. Particularly, we incorporate the Volterra-Lyapunov matrix theory
into Lyapunov functions to facilitate the analysis of the global endemic stability.
Bascd on the previous cholera models, we propose a new and unified deterministic
moadel which incorporates a general incidence rate and a general formulation of the
pathogen concentration, to improve our understanding of cholera dynamics. In ad-
dition, we briefly discuss the changes of the dynamics for the cholera maodels when

several control measures are incorporated.
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CHAPTER I

INTRODUCTION

Cholera, a water-borne disease caused by the bacterium Vibrio cholerce and spread
by eating or drinking contaminated food or water, remains a significant threat to
public health in developing countries. For example, over 142,000 cholera cases and
over 4,500 deaths were reported in 2002 by 52 nations worldwide [86]. Most of
these countries are in Africa. In addition, many believe the actual infection and
death numbers have been far more than those reported due to poor surveillance and
incomplete records. In some parts of Africa, measurable improvements in sanitation,
hygiene, and infrastructure have occurred during recent years, but the majority of
the population still live in environments without safe drinking water, putting them

at ongoing risk for cholera [59].

A notable example of recent cholera cpidemics is the 2008-2009 cholera outbreak
in Zimbabwe, which was regarded as the worst African cholera epidemic in the last
15 years. In addition to the large number of infections, this cholera outbreak was
also characterized by its wide spread and high fatality rate. It began in August 2008,
swept across the whole country by December 2008, and by July 2009 there had been
over 98,500 reported cases and over 4,200 deaths [84; 85; 86]. The case fatality ratio
(CFR) was about 4.3%, whereas the CFR in most outbreaks around the world was
below 1%. In some remote areas of Zimbabwe which were outside the treatment
facilities, the CFRs were as high as 40% [54; 86].

In order to fight against cholera and to design effective control strategies, we need
to better understand the dynamics of cholera in its initiation, spread and evolution.
Cholera dynamics is complicated by the multiple interactions between the human
host, the pathogen, and the environment [62], which contribute to both direct human-
to-human and indirect environment-to-human transmission pathways. Despite a
large body of clinical, experimental and theoretical studies [L; 31; 57; 62; 64; 79,
the fundamental mechanism of transmission for cholera is not well understood at
present, which has hindered effective prevention and control strategies of the disease.

The difficulty stems from the complex, multiple transmission pathways which include

This dissertation follows the style of PLeS Medicine.
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both direct human-to-human and indirect environment-to-human transmissions, and

which distinct cholera from many cother infecticus diseases.

Mathematical modeling, simulation and analysis provide a promising way to lock
into the nature of the cholera dynamics, and many efforts have been devoted to this
topic. Capasso and Paveri-Fontana [7] introduced a simple deterministic model in
1979 to study a cholera epidemic in the Mediterranean. They considered a pepulation
of bacteria and a population of infected humans, with infectivity modeled under a
saturation condition. Pourabbas et al. published an SIRS cholera model [65] in
2001, representing human-to-human transmission with a time-dependent infectivity
coefficient 3(f) so that the incidence rate was given by 8(¢) I (where I denotes the
infected).

In the classic SIRS model, the population is divided into three disjoint classes
according to disease status: the susceptible, the infected, and the recovered pop-
ulations, respectively. The susceptible class (S) contains the individuals who are
not, infected with the disease yet but can occur the disease. The infected class {I)
contains the individuals who arc currently infected, and the recovered class (R) con-
tains the individuals who can not transmit the disease any more by recovery with
immunity. For simplicity, the total population is assumed to be a constant N, where
N =1+ 5+ R, and the total population must be sufficiently large so that the size
of each class can be considered as a continuous variable. Normally, the models are
named by a sequence of letters which tell the {low of different classes. For example,
in an SIRS model. people are first susceptible, then infectious, then recovered, and
finally susceptible again after they have lost their temporary immunity. Some im-
portant parameters are used frequently in most models: such as the daily contact
rate which is defined by the average number of contacts per infective per day. The
death rate is defined in the model which represents the death from cach class at a
rate proportional to the class size. Based on the death rate, the average lifetime is 1
/ {death rate). The recovery rate is defined as individuals recover and are removed
from the infected class at a rate proportional to the number of infectious [24]. The
incidence rate, is the rate of new cases of a disease in a specified population over a

defined period.

With the progress of research, people found that toxigenic V. chelerae can stay in
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some aquatic environments for a long time [11], suggesting that the aguatic environ-
ment may be a reservoir of toxigenic V. cholerae. However, the mechanism driving
V. cholerae dynamics in water was still unknown. Codeco in 2001 published a model
[11] that explicitly accounted for the environmental component, i.e., the V. cholerae
concentration in the water supply, denoted as B, into a regular SIR epidemiological
model. The incidence was modeled by G.KL_;B where ¢ is the contact rate with con-
taminated water, and K is the half saturation rate (i.e., IDsq, the infectious dose in
water sufficient to produce disease in 50% of those exposed). Fig 1.1 shows Codeco’s

model flow diagram.

3 S = IR SN v I 4

AB) e

Cm e 5]

Figure 1.1: Codeco’s model flow diagram. Note: A(B) = WLB

Ghosh ¢f al. in 2004 published an SIS model [20] which included both the concen-
tration B of vibrios and the density F of environmental discharge that contributes
to the growth of the vibrio population. The model had both human-to-human and
environment-to-human transmission modes with the incidence given by A1 + AB,
where 8 and X are corresponding contact rates. Hartley, Morris and Smith [22] in
2006 extended Codeco’s work to include a hyperinfectious state of the pathogen,
representing the "explosive” infectivity of freshly shed V. cholerae, based on the
laboratory measurements that freshly shed V. cholerge from human intestines out-
competed other V. cholerae by as much as 700-fold for the first few hours in the
environment [1; 57]. Their model is a combination of SIR formulation and two envi-
ronmental variables, which constitute a high-dimensional autonomous system. The
article [22] provided deeper insight into cholera epidemics, though no rigorous dy-
namical analysis was presented in that work with its focus on medical aspects. Fig

1.2 shows Hartley’s medel of cholera transmission.
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Figure 1.2: Hartley’s model of cholera transmission, incorporating a HI state of V. cholera

FEEaN] I?l{}\ ot A LS Ll—l ¥ R
—
us, Be €1 MR
B

Figure 1.3: Mukandavire’s model flow diagram. Susceptible individuals acquire cholera
infection either by ingesting environmental vibrios from contaminated aquatic reservoirs
or through human-to-human transmission resulting from the ingestion of hyperinfectious

I 3
vibrios, at rates A, = }:;i%

and Ay = 81, respectively.

Recently, Mukandavire, Liao, Wang and Gaff ¢t al. [60] proposed a model to
study the 2008-2009 cholera outbreak in Zimbabwe. The model considered both
human-to-human and environment-to-human transmission pathways. This model
treats the hyperinfectious vibrio state as a direct human-te-human transmission,
considering that the lifespan of the hyperinfectious bacterium in the envirenment is
very short. Such a simplification of the cholera model probably does not result in
any loss of mathematical generality [2] and retains the model’s capability to describe
the explosive nature of cholera outbreaks. However, the former approach makes the
interaction between humans and hyperinfectious vibrios more explicit. Fig 1.3 shows

the model flow diagram.
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Finally, we mention a very recent work by Tien and Earn {78] which constructed
a mathematical model for general water-borne diseases where bilinear incidence rates

are uscd to model both environment-to-human and human-to-human transmissions.

All these models have their own strength and weakness. Some of the models
only track the human population dynamics directly and represent the V. cholerae
population in a scparale manner, whereas some other models tend to focus on the
environmental components while neglecting direct human-to-human transmission. In
addition, many of these studies lack rigorous mathematical analysis which accounts
for part of the reason that cholera dynamics has not been well understood so far.
In this dissertation, we focus on the following three models; Codeco [11], Hartley,
Morris and Smith [22] and Mukandavire, Liao, Wang and Gaff et ol [60] to con-
duct mathematical analysis. Also, we notice that two major differences among these
maodels are how the incidence rate is determined and how the environmental vib-
rio concentration is formulated. Hence, we try to propose a unified cholers model
which allows general nonlinear incidence factors and general representation of the
pathogen concentrations. Based on this generalized model, we will conduct a careful
mathematical study to explore the complex cholera dynamics so as to improve our
understanding of the fundamental disease transmission mechanism. We will partic-
ularly investigate the stability property in both the epidemic and endemic dynamics

through equilibrium analysis.

This dissertation is organized into seven chapters as follows. In chapter I, we
introduce necessary theoretical background of the basic reproduction number Hy, the
definition and methods of local stability and global stability which help the reader to
follow the materials in the following chapters. In chapter II1, we give a discussion of
the behavior of dynamical systems which allows us to derive the hasic reproduction
number Ry by using the next-generation matrix approach. Then we conduct local
asymptotic stability analysis to the three important epidemic models. Moreover,
bifurcation diagram and numerical simulation results are presented. In chapter IV,
we construct the generalized model based on the previous work under the necessary
assumptions and conduct a careful mathematical study. In chapter V, we discuss the
global asymptotical stability of three dimensional and four dimensional models. In
the last part of this chapter, we will unify several existing models in the analysis and

simulation. In chapter VI, we modify Codeco’s model [11] and the generalized model

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



introduced in chapter IV by incorporating three particular controls, i.e., vaccination,
antibiotic and water sanitation. Finally, some conclusions, discussion and future

research work will be presented in chapter VIL
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CHAPTER 11

MATHEMATICAL BACKGROUND

I1.1 The basic reproduction number £,

The basic reproduction number, commonly denoted as By, is a crucial quantity in all
eptdemiology models; it is defined as the average number of secondary infections that
occur when one infective 1s introduced into a completely susceptible host population
[23; 80]. Thus the number Ry is considered as the key threshold that determines
whether an infectious disease can invade and persist in a new host population. If is
widely accepted that an epidemic will occur when Ry > 1. The magnitude of Ry
allows public health administrators and policy makers to determine the amount of
effort necessary to prevent or eliminate an epidemic. In particular, the value of Ry
is directly related to the minimum coverage required by various control strategies
such as vaccination and chemotherapy [14]. It is thus important to have an accurate

estimate of Ry for any infectious disease that threatens human health.

There are two common ways to obtain the hasic reproduction number for an
infectious disease: one is to directly evaluate Ry using available data and some sta-
tistical techniques (e.g., [14; 81]), often resulting in simple mathematical formulas,
and this method has to use the initial growth rate and final size of the epidemic
with the data of age-specific prevalence. The other is to determine R, bascd on a
specific mathematical modecl (such as a system of differential equations) targeted at
the given disease (e.g., [11; 80]). The formulas obtained from the first approach could
be more general and applicable to different types of infections diseases, but the result
may be less accurate than that from the second approach when a specific epidemic is
concerned. In this dissertation, we will focus our attention on the second approach
and apply it to the three mathematical models we introduced in the first charter in

order to investigate the cholera outbreak.

While By can be found by computing the eigenvalues of the Jacobian at the
disease free equilibrium, Dickmann [13] follows a different approach based on the next
generation matrix. According to the work of van den Driessche and Watmough [80],

Ry is mathematically defined as the spectral radius of the next generation matrix.
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Let X = [z, %3, .., Z,]" with the first m compartments corresponding to infected

individuals. If we define X, to be the set of all disease frec states, that is
Xs={x>0z; =0,i =1,..m}.

Let F;(X) be the rate of appearance of new infections in compartment z, V;"(x) be
the rate of transfer of individuals intc compartment 4, V; {x) be the rate of transfer
of individuals out compartment . A disease transmission model can he represented
by the following system of equations:

daX

= = R0 - (2.1.1)

where V; = V. — V;". Since each function represents a rate of appearance or transfer

of individuals, they are all nonnegative. We have the following lemma.

Lemma 1. /80] Let xzy be a disease free equilibrium and F,(x) satisfie the following
assumplions:

(A1) if x>0, then F; >0,V 20 and V; >0 fori=1,...,n.

(A2} if z; = 0 then V] = 0. In particular, if x € X, then V] =0 fori=1,..,n.
(A3} Fi =0 if i > n.

(Af) if z € X, then Fi(z) =0 and VI (z) =0 fori=1,...,n.

(A5} if Fi(X) is set to zevo, then all eigenvalues of D f(xy) have negative real parts.
Then the derivatives DF(xq) and DV(xq) are partitioned as

F O vV o0
DF(zy) = , DV(xo) =
0 0 Jy Js

where F and V are the m x m matrices defined by

OF;
BX,

AV y .
F = [ (iBn)} and V= [ETJ(J:D)] with 1 <1, 7 <m.

Further, F is nonnegative, V is a nonsingulor M-matriz and all eigenvolves of Jy

have positive real parts.

Since F is nonnegative, V is a nonsingular M-matrix, V! is nonnegative 4], as
is FV 1. Following [13] and [80], we define F'V'~! the next generation matrix for our

mathematical models and set

RU = p(FV_l)a
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where p(A) denotes the spectral radius of a matrix A. Therefore, based on our math-
ematical models, we will formally derive the basic reproduction number Ry through
the computation of the next generation matrix. Also, the stability of the disease-free
equilibrium leads to the same result for Ry. Based on the cholera models, we will
show that if Ry < 1, the DFE is locally asymptotically stable; if Ry > 1, the DFE
is unstable, but the positive endemic equilibrium exists and is locally asymptotically
stable. In other words, there is a stability exchange at By = 1, and a transcritical

bifurcation takes place.

II.2 Local stability

An equilibrium point for a dynamical system is a point X, such that il X{0) = X,,
then X (f) = Xj for all t. Equilibrium points represent stationary conditions for the

dynamics of a system.

Definition 1. [30] An equilibrium point X* of X = f(X) is
stable if for each ¢ > 0 there is § > 0 (dependent on =) such that

IX(0) = X*|| < & = [[X(t)}) - X"[| <&Vt =0

unstable if it is not stable;

asymptotically stuble if it is stable and & can be chosen such that

1Xo— X" < 6 = Jim X(@) = X*;

globally asymptotically stable if it is stable and

im X(t) = X*,

t—o0

Jor all X.

Now, our main concern is the stability of the dynamics of a system. In order
to investigate the local asymptotic stability of the equilibrium point, we use Routh-
Hurwitz stability criterion [85; 33] which provides necessary and sufficient conditions
to establish the local stability of a dynamical system. We first consider the Jacobian

J(X*) at the endemic equilibrium to obtain the characteristic polynomial, and set

det(M — J(X*)) = 0.
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Table 2.1: General Routh’s array of cocflicients
A ag ay aq g e
X ey a3 asar -
A2 by by byby oo

/\7;—3 4] Cy Oy Ly -

M €1  Eg
I
Aa

We can then to obtain a polynomial as follows:
agA" + @A g A tan =0 (2.2.1)

where ag £ 0 and a, > 0.

The equilibrium is locally asymptotically stable if all roots of equation (2.2.1)
have negative real parts and unstable if equation (2.2.1) has at least one root with
nonnegative real part. Table 2.1 shows how to compute the Routh array, after ar-

ranging the coefficients of the polynomial.

Specifically, we generate coefficients b; until all subsequent coefficients are zero:

f1de — Qpfly 14 — Apis a)dg — Qpiy
bJ_ - 1 52 = 1 b3 = T
aq ai @
Similarly, we can obtain the ¢, d;, ete:
byaz — arbo bias — a1b; biay — arby
6 = ——————, = —"7"—7H———, 3= ——— -
by ’ b ’ b
c1by — bica c1by — b3
d = ———2 dyg=—.
=1 €1

This array above is called the Routh array [33]. It can be shown that a necessary and
sufficient condition for all roots of the equation (2.2.1) to have negative real parts is
that all the a; are positive and all of the coeflicients in the first column of the Routh

array are positive,
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Table 2.2: Routh’s array of a quadratic polynomial
AQ gy dg
)\1 aj 0

)\0 15}

Table 2.3: Routh's array of a cubic polynornial
)\3 ag 3]

2
A 251 [#51

)\1 03a; ~2oay
a1

)\0 255

We will apply Routh-Hurwitz stability criterion [85; 33] o generic quadratic

polynomials, cubic polynomials and guartic polynomials as follows.

Quadratic polynomial.

Consider the quadratic polynomial:
I’LO/\Z + {11)\ + o = U,

where all the g, are positive. The Routh’s array of coefficients becomes the table 2.2.

The condition that all roots have negative real parts is:
CLn)O, 0..1>0, (},2)0.
Cubic polynomial.
Consider the cubic polynomial:
ao X + ay N+ agh 4 a3 =0,

where all the g; are positive. The Routh’s array of coefficients becomes the table 2.3.

The condition that all roots have negative real parts is:

ag >0, a;>0, a >0 a3>0, goja: > apas.
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Table 2.4: Routh’s array of a quartic polynomial

/\4 [y [ Y
pY: a, a; 0O
/\2 i3] aza—laua:; ay 0
A gy~ el 0
20 G4 0 ©

Quartic polynomial.

Consider the quartic polynomial:
4 3 2 _
oA~ + a1A” + aeA” +ash+ag =0,

where all the g; are positive. The Routl’s array of coefficients becomes the table 2.4.

The condition that all roots have negative real parts is:

ap >0, >0, aa>0 a3>0 a4>0,

2
1402
a1dy — oy = 0: g > Sl S .
Gy fla — figlla

I1.3 Global stability analysis

To improve our understanding of the fundamental mechanism in the initiation and
transimission of infectious diseases, careful mathematical analysis is required to study
the dynamics of the model systems. In particular, an important questicn in epi-
demiology is whether an infectious disease, after possible epidemic outbreak, will
persist and stay at a positive infection level over time, and whether this behavior
depends on the initial size of the infection. Mathematically, this is represented by
the global asymptotic stability of the endemic equilibria. An equilibrium point is
globally asymptotically stable if all solutions converge te that equilibrium point, the
proof of which remains open for many important epidemiological models. For two-
dimensional autonomous systems, the classical Poincare-Bendixson theory [21] is a

powerful tool to analyze global stability.
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Theorem 1. [50; 76] If a trajectory ©(t, p), starting from a point p, of the equation,
X(t)y= fX(t), X(t)=p,

is bounded in 2 for t > 0 (the corresponding resulis for t < 0 are also true), then

one of the following three things must happen:

1. there exist a sequence of points on the trajectory asit — oo that approach o critical

point;

2. X(t,p) is a perwodic orbit;

3. wlt) s a periodic orbit, and X(t,p} approaches w(t) spirally as t — oo, where

w(t) is the set such that each pownt of w(t) is a limil of some sequence of points on

the trajectory as t — o0.

In particular, the Dulac criterion can be conveniently used to preclude the exis-

tence of non-constant periodic orbits.

Theorem 2. [50; 76] Let P(x,y), Q(z,y), and B{x,y)} have continuous first portiol
derivatives in o simply connected domain D € R* and assume that i(-é%l + ﬂg? 15

not identicelly zero and does not change sign in any open sel of D. Then the system,

=]
s
o+
e
[

P(z(t), (),
Qz(?), y(t), =y, t € R.

e
—
-
—
|

has no periodic orbit in D).

Note, the Bendixson criterion is a special case when we use B = 1 in Theorem
2. Unfortunately, this [ramework is no longer valid for general dynamical systems
of dimension three or higher. To partially overcome this difficulty, the concept of
monotone flows [42; 44; 73; 74; 75] was introduced for a class of dynamical sys-
tems which possess monotonicity (e.g., competitive systems [27; 42]). For such high-
dimensional systems, the Poincare-Bendixson property is preserved and the existence
of non-constant periodic solutions is ruled out by the orbital asymptotic stability,
thus establishing the global stability of the positive endemic equilibria. However,
mosl. high-dimensional epidemiological models do not possess the nice properties of
monotone systems, which limits the application of this approach. Another method,
the geometric approach, originally proposed by Li and Muldowney [16; 45|, has

gained some popularity in recent years (see, e.g. [6; 39]) as it has less constraints

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



14

on the model systems. The key part of this approach is to check a high-dimensional
Bendixson criterion (derived from the Lozinskii measure [41]) which is robust un-
der C' local perturbations, and based on which the local asymptotic stability leads
to the global stability. The procedure to check this crilerion, however, is highly
nontrivial. Both the methods of monotene flows and geometric approach require
the biologically feasible region to be bounded, convex and contains a compact ab-
sorbing sct, a condition which is usually difficult to validate, and may not even be
satisfied., by many epidemiological models. In addition, both methods cncounter
significant difficulty when dealing with four- or even higher-dimensional systems.
Nonetheless, these two methods have been successfully applied to quite a few epi-
demiological models in the form of regular SEIR, SIRS and SEIRS formulations (see,
e.g., [40; 42; 44; 45; 43; 486; 48; 74; 75; 83]).

Another approach of global stability analysis is based on Lyapunov functions
[30; 52] and has been well known for many decades, though its application to bio-
logical systems has a relatively short history [36]. Lyapunov functions are functions
which can be used to prove the stability of a certain fixed point in a dynamical sys-
tem or autonomous differential equation. We introduce the definition of Lyapunov-

candidate-functions and Lyapunov theorems below.
Definition 2. /85] Let V: R™ — R be a scalar function. Vis a Lyapunov-candidate-
Junciion of it 45 o locally positive-definite function, i.e.
V{0) = 0,
Viz) > 0,YzeU\{0},
with U being a neighborhood region around x = 0.

Theorem 3. [85] Let X* =0 be an equilibrium of the autonomous system

& = f(z),

and let

oV de
bz dt
be the time dertvative of the Lyapunov-candidate-function V.

Viz) = =VV-3=YV- f{z)

o If the Lyapunov-candidote-function V is locally positive definite and the time derive-

tive of the Lyapunov-candidate-function is locally negative semidefinite:

Viz) < 0, Yz € B\ {0}
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for some neighborhood B of 0, then the equilibrium s proven to be stable.
o If the Lyapunov-candidate-function V is locally positive definite and the time derivo-

tive of the Lyopunov-candidate- function s locally negative definile:
V{z) < 0, Vo € B\ {0}

for some neighborhood B of 0, then the equilibrium is proven to be locally asymptoti-
cally stable.

s [f the Lyopunov-candidate-funcltion V is globolly positive definite, radially un-
bounded and the time derivative of the Lyapunov-candidete-function is globally neg-

ative definite:
V(z) < 0, ¥z € R*\ {0}

then the equilibrivm is proven to be globally asymptotically stable.

¢ The Lyapunov-candidate function V{(z) is radially unbounded if

lz|t = =~ = Vi{z) — .

For example, if we consider the following differential equation on R:

The velocity vector points always towards the origin, so the distauce from it decreases
with time and is a natural candidate for a Lyapunov function. Take V'(z) = |z| on
R {0}. Then

Viz) = V'(2)f(z) = sign(z) - (—z) = —|z| < 0.

This correctly shows that the origin is asymptotically stable. This classical method
requires little theoretical background and is straightforward fo implement. The chal-
lenge, however, in the application of this method is that there is no sysiematic way
to construct Lyapunov functions (particularly, the determination of the appropriate
coefficients is often a matter of luck), so that its success largely depends on trial
and error as well as on specific problems. Some recent developments of this method
in the context of epidemiological models include the work of Beretta and Capasso
[3] that derived a necessary condition for the global endemic stability using a skew-

symmetry property of the Jacobian, the work of Rinaldi [69] that obtained global
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stability results for SEIRS models, and the work of Lin and So [49] that investigated
the global dynamics of SIRS multi-group models. We note that all these studies con-
centrated on epidemiclogical models with standard bilinear incidence rates. More
recently, Korobeinikov and Maini {34] proposed a new type of Lyapunov functions
to obtain glohal stability results for models with nonlinear incidence in the form of
greSe.

In this dissertation, we improve the method of Lyapunov [unctions and formu-
late a systematic approach in glebal stability analysis that will effectively overcome
some of the disadvantages of the existing approaches. We incorporate the Volterra-
Lyapunov matrix theory [66; 67; 69| into Lyapunov functions, which completcly
eliminate the need of determing the coefficient values. So one of the key points to

use this technique is to prove that a suitable matrix is Volterra-Lyapunov stable.

Below we introduce necessary concepts and notations that will facilitate our global
stability analysis. We will also present several known results on stable matrices, which
build the theoretical foundation of this work.

Notation 1.  We write a matriz A > 0 { < 0 }if A s symmetric positive (negative)
definite.

The following fundamental result on matrix stability was originally proved by

Lyapunov:

Lemma 2. [52] Let A be an n x n real matriz. Then all the eigenvalues of A have
negative (positive) real parts if and only if there exists a matriz H > 0 such tha!
HA+ATHT <0 (>0) .

Definition 3.  We say ¢ nonsinguler n x n matriz A is Volterra-Lyapunov stable

if there exists a positive diagonal n x n matrizc M such thet MA+ ATMT <0 .

Definition 4.  We say o nonsingulor nxXn mairiz A is diagonally stable {or positive
stable) if there exists a positive diagonal n x n matriz M such that MA+ ATMT > 0.

From Definitions 3 and 4, it is clear that a matrix A is Volterra-Lyapunov stable
if and only if —A is diagonally stable. The following lemma determines all 2 x 2

Volterra-Lyapunov stable matrices.
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dll dl2

dyy  dap
Lyapunov stable if and only if diy < 0, dyy < 0, and det(D) = di1dyy — diaday > 0 .

Lemima 3. [66] Let D =

] be an 2 x 2 matriz. Then D is Volterra-

The characterization of Volterra-Lyapunov stable (or diagonally stable) matri-
ces of higher dimensions, however, is much more difficult. Cross [12] obtained the

following sufficient and necessary conditions for 3 x 3 diagonally stable matrices.

Lemma 4. [12] Let P = {py;} be a 3 x 3 real matriz end Q= (G:;) = det(P)Q be
the adjoint of P, where Q = (q;;) is the inverse of P . Then P is diagonally stable if

and only if all the signed principal minors of — P are positive, and the inequalities
(ps1 + 2p13)” < 4pupssz, (@31 + 2G13)* < 47113332
are satisfied simultaneously.

Notation 2.  For any nx n matriz A, we let A denote the (n— 1) x (n— 1) matriz

obtatned from A by deleting its last row and last column.

Bascd on Lemma 4, the following generalized result was obtained by Redhefter
[66; 67] which will be frequently used in our global stability analysis. For simplicity,

we only state the sufficient condition below.

Lemma 5. [66; 67/ Let D = [dy;] be o nonsingular n x n meiriz (n > 2) and
M = diag{m,,....,m,) be a positive diagonal n X n matriz. Let B = DY . Then,
fdy >0, MD+ (MD)T > 0, and ME + (ME)T > 0, it is possible to choose
My > 0 such that MD + DTM7T > 0.

Here we use a simple example to illustrate the global stability analysis. The

system of a SEIS model is:

d

-dg = —AST+ p—puS+~I, (2.3.1)
‘;—T‘f — ASI-(c+w)E, (2.3.2)
dl

5 = e — (v + p)i, (2.3.3)

where 5, I and E <enote the susceptible, the infected, the exposed populations,

respectively. p is the natural human birth/death rate, + is the recovery rate, and
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ALS 1s the incidence rate. All parameters are positive constants. Note this model

does not consider immunity and there is no R class.

If we write X (¢) = S(t) + E{#), and assume the tolal population is 1, this SEIS

model bhecomes:

dX

= ~E X —eE+ (u+), (2.3.4)
% = AX[1— (X ~E)} - (c+pu+MNE, (2.3.5)
Ity = 1—X(z). (2.3.6)

We let (X™, E*, I") be the nontrivial equilibrium point and consider the glebal sta-
bility in the region:

Fr={(X,E)eR::0<X<1,0<FE <1}

The components of the endemic equilibrium of systern (2.3.4-2.3.5) must satisfy:

Bt

> TS E— 2.3.
E S1=X7) (237)
. (e+p+ 0+
X X 2.3.8
D) 23+ ) (2:35)
From equations (2.3.7) and (2.3.8), we can easily obtain:
(p+vy) > eE", (2.3.9)
(w+7e+u) > (e+up))el
A(X* — E). (2.3.10)

We then translate the equilibrium points (X*, £E*) to the origin by considering
1 =X — X* and xy = F —~ F*. Then (2.3.4-2.3.5) become

;*.:’1 = —(p+7v)r1 — B, {2.3.11)
z, = Apy[l—(z;—2) — (X* — B — AX*zy — z5)
~(g+ p+ Nz, (2.3.12}

We now construct Lyapunov function

2
Ve, z2) = Z Wz
i=1
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where w; > 0 are both constants. And we have

av
E(Il,Ig) = 2'!1.?135'1[—(,{1'. + ’}‘).‘L‘l — E.’i‘?g] + 2102/\331[1 - (35'1 - .',Bg) - (X‘ — E*)]"I?g

—2wq(e + p + Nxs — 2w A X (x1 — 22)T2

= —2wi{p+ y)al — 2uner Ty — 2unf(e + p) + A1 — 21 — X*))x3
+2unA[(l - z; — X*) — (X" — E™)zr2e
= YI(WA+ATWY
where Y = [21, 23], W = diag{wy, ur}, and
—{p+7) —&
A= . (2.3.13)
M=z = XN) = (X = E)] ~lle+p)+2M1—2: — X))

From inequality (2.3.10}, it is easy to see

det A = [(p+ye+p) —eMX ~EDN+(p+y+e)Al—z — X)
> 0. (2.3.14)

Hence A is Volterra-Lyapunov stable by Lemma 3, and we obtain the global

stability of the equilibrium in this example.

Because this simplified SEIS model (2.3.4-2.3.5) is two-dimensional, this conclu-
sion can also be easily obtained based on Theorems 1 and 2 [50; 76|, by setting
B(X, E)=1/F, that is:

a ] o uty AX(1-X)
E_X(BP)+@(BQ)__ 5 — T2 < 0,
where
P = —(p+v)X —eE+ (p+)
Q = MX[1-(X—-FE)]—-(+p+INE.

Hence, there is no periodic solution.

I1.4 Transcritical Bifurcation and diagram

Bifurcation theory [77] is concerned with how solutions of a differential equation
depend on a parameter and can explain how the changes in dynamics, from a resting

state to oscillations, take place. This may be a good way to test a model.
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Normally, we have four different types of bifurcations: Saddle-Node bifurcation,
Transcritical bifurcation, Pitchfork bifurcation and Hopf bifurcation. Moreover, the
parameter values at which they occur are called bifurcation points. In this disserta-
tion, we only consider transcritical bifurcation. Transcritical bifurcation [85; 77] is
characterized by an equilibrium having an eigenvalue whose real part passes through
zero. Both before and after the bifurcation, there is one unstable and one stable fixed
point. However, their stability is exchanged when they collide. So the unstable fixed

point becomes stable and vice versa.

The normal form of a transcritical bifurcation in one dimension is

dx g
e (2.4.1)

The two fixed points (i.e., equilibria) are ¢ = 0 and z = r.

To determine the stability of the fixed points, we let f.(x) = rx — z? be the right
hand side of equation {2.4.1}. Since f, (z) = r — 27, it is easy to see the fixed point
at £ = () is stable if < 0 and is unstable if ¥ > 0. Also, the fixed point at z = r is

stable if » > 0 and is unstable if » < 0.

Stable

Stakle unstable
L0 T

unstable .=~

.

Figure 2.1: The bifurcation diagram of x vs. r which shows a transcritical bifurcation at
v = ). The solid lines represent the stable equilibria, and the dashed lines represent the

unstable equilibria.

The bifurcation diagram corresponding to this equation is shown above. We plot
values of the fixed points versus the bifurcation parameter r. The solid lines represent
the stable equilibria, and the dashed lines represent the unstable equilibria. Clearly

there is an exchange of stability at the bifurcation point (r, z) = (0,0}.
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CHAPTER IIiI

STABILITY ANALYSIS

ITI.1 The disease-free equilibrium and basic reproduction number [

In this section, we use the models of Hartley, Morris and Smith [22] and Mukan-
davire, Liao, Wang and Gaff ¢t al. [60] to discuss the dynamics of the discase-free

equilibrium.

II1.1.1 Hartley’s Model

The deterministic model of Hartley, Morris and Smith [22] consists of the following

ordinary differential equations (ODE)

dS By By

il bN_'BLSnLnLBL —_5ﬂsm - b5, (3.1.1)
= AS—TE 4 ST (4 ), (3.12)
fid_f = ~I — bR, (3.1.3)
% — £]— yBa, (3.1.4)
df; = xBp — 6181, (3.1.5)

where By and By denote the concentrations of the hyperinfectious (HI) and lessin-
fectious (LI) vibrios. The parameters 8z and £y represent the HI and LI ingestion
rates, sy and xr the HI and LI half saturation rates,  the natural human birth/death
rate, x the bacterial transition rate, £ the shedding rate, &, the bacterial death rate,

and -y the recovery rate.

Written in a vector form, the above cquations become

d
=X = F(X), (3.1.6)

with
X = (S, I, R, By, B.). (3.1.7)
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It is straightforward to see that equations {3.1.1-3.1.5) have a unique disease-free
equilibrium (DFE)
Xo= (N, 0,0,0, 0). (3.1.8)

The local stability of the DFE, which is directly related to the disease epidemics
{11; 23], is analyzed as follows.

The Jacobian of the ODE system (3.1.1-3.1.5) is

| Bl - BB b 0 0 —BuS¥hm —BiStiey
Brifie + Bu Bl —(y+h) 0 BuSgiew  ASuiay
0 > —b 0 0
0 ¢ 0 —x 0
I 0 0 0 b% —dy, ]

(3.1.9)

After substituling the values for the DFE: § =N, I = R = By = By =0, the

above matrix becomes

~b 0 0 —BuNL —pNL]

KL

0 ~(y+b 0 BuNg BN

Jg=1 0 “y —b 0 0
0 £ 0 —x 0
0 0 0 b% =

The characteristic polynomial of the matrix Jg is found as

BulN¢

—)

Ky

Det (M — Jg) = [A3+)~2(51+x+’r+b)+/\(xr5;,+751,+7x+b5;,+bx—
BuNEs,  BLNEx )

Ky Kr

+ {vx8p + bxdr, — ] (A +8)2
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The equilibrium (3.1.8) is locally asymptotically stable if and only if all roots of
the above equation have negative real parts. Obviously A = —b is a negative root of
multiplicity 2. To analyze the three roots of the cubic polynomial inside the square

brackets, we set

by = S+ x+y+0,
AV
by = X5L+"/5L+’yx—|—bc$l,+bx_d__i__§,
H
. ByNea NE
by = xy+bydp — §0r _ B é_:x‘
KH K1,

Based on the Routh-Hurwitz criterion [33; 63|, the sufficient and necessary condition
for stability is

bh >0, by >0, byby — by > 0. (3110}

Note that the first inequality is automatically satisfied since all the model parameters

are positive. The second incquality, b3 > 0, holds if and only if

BaNE, | BriNEx
—x(v+ b} + + < 0 3.1.11
[ = x(v+b) . ] Py ( )
which yields
N < S Ebxearl (3.1.12)

E(Buriéy + Brxknm)

In addition, we have

) N
biby — by = (0L+X+7+b)[5L(X+7+b)+X(’Y+b)*g‘%;é]
h{_ JM'-
by — bxbe, + BuaNESL 4 BLNEX
Kir Kr
] N N
= (x+y+DP(r +x+r+b) +x(v+b)— ﬁiH 6] + ﬁLRfX-

It is thus clear to see that &by — b3 > 0 as long as the inequality (3.1.11) or,
equivalently, (3.1.12}, holds. The condition (3.1.12} provides a threshold for the

total population {which is assumed to be completely susceptible initially):

(7 + b)xrurpdy
Brrrdy + Buxrm)

S, = g (3.1.13)

When N is below 5, , the DFE is stable and no epidemicity would occur. In contrast,
if N is above this critical value, the DFE becomes unstable and any infection entering

the population would persist and lead to an epidemic.
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We define the basic reproduction number, Ry, of this model by

N E(Burify + Brxsn)
= - = v, 3.1.14
Bo = 5 = Tt bxrmrats (3.114)

The condition {3.1.12) is then equivalent to
Ro < 1.
Thus, we have established the result below

Theorem 4.  The disease-free equilibrium of the model (5.1.6) is locally asymptot-
ically stable if Ry < 1, and unstable of Ry > 1.

This is one common method to obtain the hasic reproduction number. For com-
parsion, we derive the basic reproduction mumber, given in equation (3.1.14}, using

the next generation matrix analysis {80].

According to the work of van den Driessche and Watmough [80], %y is mathemat-
ically defined as the spectral radius of the next generation matrix. Following their
theoretical framework, we assemble the unknowns in equations (3.1.1-3.1.5) into a

vector

X={(I,Bn, B., 8, R),

where we have arranged the order of the unknowns so that the first three entries of

X are directly related to the infection. We then rewrite the ODE system as
dX

where F denotes the rate of appearance of new infections, and V denotes the rate of

transfer of individuals into or out of each population set. (For details, see Lemma.

1.} These two vectors are given by

BuS o + PuS ey |
0
F = 0 ;
0
L O _

and
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(v + )]
xBp — &1
V= 0. By — x By
B By
ﬁLSn;jI:BL + ﬁHSny—i—Bn + 55 — BN

bR — I

The next generation matrix is defined as FV ™!, where F and V are 3 x 3 Jacobian
matrices given by

Y,
aX;

F= [QE(XD)J and V= [

5% (XO)} with 1 <3, § < 3.

Here X, is the disease-free equilibrium (DFE}, and
Xo=(0,0,0, N, 0)° (3.1.16)

for the cholera model. After some algebra, it is found that

0 £2H &l y+b 0 O

K AL
F=10 0 0 and V= -¢& x 0
0 o0 0 0 —x &

Hence, the next generalion matrix is

B NE A NE AuN LN BN
rp (yHx wr{y+ddL  max krdr  KLOL

FVl= 0 0 0

0 0 0

whose spectral radius can be easily found by p(FV™') = max IA;| where A; denote
the eigenvalues of the next generation matrix. Therefore, we obtain
N
Ro = % (ﬁ” 4P ) (3.1.17)
v+b\kax Kipdp

which exactly matches equation (3.1.14). Hartley et al. [22] oblained the same result

using the next-generation matrix approach, though no derivation was provided in

their work.

To study the global asymptotic stability of the DFE, one common approach is to
construct an appropriate Lyapunov function [36; 42]. We have found, however, that

it is simpler to apply the following result introduced by Castillo-Chavez et al. [9].
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Lemma 6. /9] Consider a model system written in the form

dX,
=P, X
dt ( 1 2)1
(3.1.18)
ax
th = G(X1, X,), G(X,,0) =0

where X) € R™ denotes {tts components) the number of uninfected individuals and
X: € R™ denotes (its components) the number of infected individuals including lafent,

infectious, ete; Xy = (X7, 0) denotes the disease-free equilibrium of the system.

Also assume the conditions (H1) and (H2) below:
(H1) For % = F(Xy, 0), X7 is globally asymptotically stable;
(H2) G(X,, Xa) = AXo — G(Xy, Xo), G(Xy1, Xo) = 0 for (X1, X3) € 0, where
the Jacobian A = 3%, (X:, 0} is an M -matriz {the off diagonal elements of A are
nonnegative) and Q is the region where the model makes biological sense.

Then the DFE X, = (X7, 0) is globally asymptotically stable provided thal Ry <
1.

Theorem 5. The disease-free equilibrium of the model (5.1.6) is globally asymp-
totic stable if Rg < 1.

Proof.  We only need to show that the conditions {H1) and (H2) hold when Ry < 1.
In our ODE system (3.1.1-3.1.5}, X; = (5, R), Xy = ({, By, Br),and X = (N, 0).
We note that the system

ON — bS5

ax,

= F(X,, 0) =
dt (X1, 0)

is linear and its solution can be easily found as
R(t)=R(0)e™ and S{t)=N-(N-5(0))e ™

Clearly, R(t) — 0 and S{) — N ast — oo, regardless of the values of R(0) and
S(0). Thus X7 = (N, 0) is globally asymptotically stable.
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Next, we have

BLSgiis, + BuSphe, — (v +b)I
G(X1, Xo) = §f — xBy

xBuy — 1By

We can then obtain

- +b IBHI\rﬁ ,BLN::LZ

which is clearly an M-matrix. Meanwhile, we find

ﬁHBHn“CH(N - S) + ﬁH_}\«'rB?I + .SLBLHLUV - S) + .BLL?VBE
rg (kg + By) rr{rL + Br) ’

G(X1, X)) = [

Since 0 < 8 < N, it is obvious that G(X:, Xp) > 0. O

II1.1.2 Mukandavire’s Model

Here we introduce Mukandavire’s Model which is proposed by Mukandavire, Liao,
Wang and Gaff et al. [60]. In this section, we use very similar methods as presented in
Section III.1.1 to derive the basic reproduction number Ry, and analyze the stability
of DFE.

This mode! considered both human-to-human and environment-to-human trans-

mission pathways, The model takes the form:

B N Do psious (3.1.19)
= S AST -+, (3.1.20)
% — T — 4R, (3.1.21)
- - (3.1.22)
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where B denotes the concentration of vibrios in contaminated water. The parameters
8. and B3, represent the rates of ingesting vibrios from the contaminated environ-
ment and through human-to-hunman interaction respectively. g is the natural human
birth/death rate, x the concentration of V. choelerae in contaminated water, £ the

shedding rate, § the net death rate of the vibrios, and  the recovery rate.

The disease-free equilibrivm for Mukandavire’s model is given by,

Xy= (N, 0,0, 0). (3.1.23)

We compute the basic reproductive number for the cholera model using the next

generation matrix method. Here, the associated next generation matrices are given

by
N N3, N3.£ Ne
F= NBy, Tk ) V= Y p 0 ’ FV—t = ﬁ T difv+p} b ]
0 o |’ &6 0 0

The expression of the basic reproductive number, is given by
i

Ry= —————
T k(v + )

[éﬁe + 6&;8&] = R. + Ry, (3.1.24)

where, R, and R, are partial reproductive numbers due to environment-to-human
transmisgion and human-to-human transmission respectively. We note that when
B. =0, Ry = Ay, and when Ry = 0, By = R,, suggesting that the two modes of
cholera transmission can independently or together start an epidemic as long as con-
ditions are conducive. Thus we can improve the understanding of Ey that measures
the number of secondary cholera infections generated in a wholly susceptible comnu-
nity, when a sufficient concentration of vibrios contaminates the aquatic environment
and/or when a cholera infected individual is introduced into the community. In R,,
1

Tva 18 the expected time humans will be infected, ;E; is the average amount of V.
1

cholerae shed per infected individual, 5 is the life time of the vibrios in the environ-
ment, and B—: is the number of new cases generated in terms of vibrios per unit time
as measured by the number of 7 D5y concentration. In Ry, fT*‘# is the average amount

of hyperinfectious V. cholerae ingested by an infected individual [60].
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II1.2 Endemic dynamics

The stability at the DFE determines the short-term epidemics of the disease, whereas
its dynamics over & longer period of time is characterized by the stability at the
endemic equilibrium. We find long term behavior has some important epidemiological
implications such as whether an outbreak of a disease may result in an endemic
situation or the infection will die cut. In this section we shall conduct the endemic

analysis.

1I11.2.1 Hartley’s Model

Let us denote the endemic equilibrium of system (3.1.6) by

X* = (8", I, R, By, BL) . (3.2.1)
Its components must satisfy
. 5 Brel Bull” )
= + , 3.2.2
y+b (5LKL+§I* xkn + &1 (3.22)
I*
s = N—(—T-%Q—, (3.2.3)
fI*
R = 7b, (3.2.4)
I)k
B - & (3.2.5)
ds
gl
Bl = ==, 3.26
H . (3.2.6)

We first show the following theorem

Theorem 6.  The positive endemic equilibrium exists and is unigue if and only if
Rn > 1.

Proof. By manipulating equations (3.2.2-3.2.6}, we obtain a cubic equation for /*:

I'A(IN? +BI*+C] =0 (3.2.7)
where
A = v+ b) B+ fu+b),
B = &bN(BL+ Bu) ~ &y +b)(Brxku + Budrks + borky + bxsn),

C = &(Brxrn + Burrdp)(bN — bS.),
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and where S, is defined in equation (3.1.13). The zero root of equation (3.2.7)
corresponds to the DFE. The other two (non-zero} roots, I; and I, of the equation

must satisfy:

hi, = (3.2.8)

| Q)

B

It is obvious that A < 0 since all parameters are positive. When Ry > 1, we have
N > S.and C > 0, so that the right-hand side of equation (3.2.8) is negative. Hence,

there is one and only one positive rcal root for equation (3.2.7).

On the other hand, if By < 1, then ¥ < S, and C < 0, so that the right-hand
side of equation (3.2.8) is positive. Next we show B < 0. We have

Eb(Br + Bu)(y + b)xkurrdy
BPrkrdy + Brxrs

EON (B + Bu) < (3.2.10)

when N < S, (see equation 3.1.13}. Meanwhile,
b(Br. + B )y + V)xrukedr < (v + 0} (Boxrm + Budpkr + bdpky + bxrp)(Burpdy + Br)

which yields

§6(Br + Bu)(y + bxrurioL

~+ b : a bé b .
Brris + Buxrn < E(v+b)(Brxrn + Brdrkr + bdrky + bxku)

(3.2.11)

Combining {3.2.10) and (3.2.11), we obtain B < 0. Hence, the right-hand side of
equation (3.2.9} is negative. In this case we either have two negative real roots, or
two complex conjugate roots with negative real parts, for A(J*)? + BI* + C = 0.
There is no positive endemic equilibrium.
Finally, if Ry = 1, then € = 0 and equation (3.2.7) has only one nonzerc root,
B L :
——, which is negative. ]

A

We have the following result regarding the local stability of the endemic equilib-

rinm.

Theorem 7.  When Ry > 1, the positive endemic equilibrium of system (8.1.6) is
locally asymptotically stable.
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Proof.  Consider the Jacobian {3.1.9) at the endemic equilibrium. To make the

algebralc manipulation simpler, we set

B B3 K KL,
P = e H =BpgS'————, T=45""—".
B P By YT PR By P Ty
(3.2.12)
Note that P, ) and T are all positive. The Jacobian matrix {3.1.9} then becomes
[ —P—b 0 0 —Q T
P —(v+& 0 @ T
Jg = 0 o4 - 0 0
0 £ 0 —x 0
| 0 0 0 x -6z ]

The characteristic polynomial of J3 is
Det (M —J5) = (A+8)[(A+6)(A+P+)(A+y+b)(A+x)
—£QA+B)(A+ 60y — TEX(A + B) ].

Obviously, this equation has a negative root A = —b. we expand the expression in

the square brackets to obtain
a At Fash® + e + M +ag =0 (3.2.13)

where

a4 = 1,

az = 2b+x+é+v+ P,

az = b+ 4P+ 2bx+2b0, +x0p + by +x7 — QE+ 8y +bFP + xP + 6P,

a; = Bx+80,+bxP +b0P + x0LP + xvP + 0pvP + 2bx 61, + by — QbE

+dpy 4 X8y — QoL - TXE,
a0 = U0+ bxlry — QbOLE — Thx& + byd P + x0.vP.

To ensure that all roots of equation (3.2.13) have negative real parts, the Routh-

Hurwitz stability criterion {see Section I1.2) requires

i3 > 0, ay > 0, g = U, (11((1.2(13 — (2.1) e Guag. (3214)
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Among these aa > 0 is obvious. The other three inequalities in (3.2.14) hold when
R > 1; the details are provided below.
First we rewrite ag as
ag = P{y + b)xdr + by + by — b&(xT + 6..Q). (3.2.15)

Substituting equations (3.2.5) and {3.2.6) into (3.2.2) and (3.2.3), we obtain

Bt n Bu )
krép + &I xig + &£ )

v+ b=£5"( (3.2.16)

Using equations (3.2.12) and (3.2.16), we have

8 n B
Kpdr + &I xxp + £
Bropky N Baxryg ]
(e0r + 1) (xrp +E1)

oy B2ED Bl
= Pvy+ b)XéL + bExdrS [(HL5L + 51*)2 + (xku + EI*)?
> 0.

]

ay = P{y+bxdr + bExdr S|

— bEx 08|

]

Next, we rewrite o, into the sum of three parts:

a = (x4 byx — QBE) + (Srxy + Suxb ~ QOLE ~ Txé)
H{bx P + 6P+ 6. P + xyP + 8pyP + bxép + bépy).  (3.2.17)

Note that the last part in equation (3.2.17) is positive. After substitution of equations
(3.2.12) and (3.2.16), the first two parts of a¢; become

. (B Bu__y_ cppygr— "R
Wy + byy — QbE = gbxs(anFLJrff*erﬂHJrEf*) £bBu ("HJF%)Z
B . 13L 5}{ _ /BHH'HX
= xS [h:L(iL—i-ff* +XHH+§P (’{'HX+§[*)2]
I*
_ ngS"‘[ ,BL ,BHg ]

kpdp + €1 (kax +E1*)?
> 0,
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and

drxy +0rxb — Q68 — Tx§

. A, Bir Ki, _ Ke
= &4rxS” - ' - S+ 5 By ——————
xS el v er) T NS ey T S e ]
. B Bu Brrriyg, Brrmx
= £6,xS" + — -
XS e rw & (rnds 1 EPE (rmx + ey
i T I*

(kpdy, +EI7)2  (Rux + &)
> (L

Thus @, > 0 holds.

To prove the last inequality in (3.2.14), i.e., ajaqza; —a} > agoj , it is sufficient to

establish the following two inequalities:

ayasaz > 2a%, (3.2.18)

ajazes > 2an0j. (3.2.19)
To show (3.2.18), we write azaz — 24, into the sum of four parts:

aas — 2ay = (Pxb+ Pxy— PQE+ 0Ch+ Xy — Qx&) + (X0 + x7° + 2byx — @é)
+ (8P + P*b+ Px* + P’x + P&i + P06, + Py* + PPy + bx* + 2
+2b82 4+ 3876, + x0% + x20p + b + 3bPy + 6pvF + 05y + 2b° + 2Pby
+3Pbdy + Pxdp + 4Pby + Pdyv + 2bxdy + by + 366y + xdry
+Q0rE -+ 2TxE).

Note again that the last part in the above expression is positive. After substitution
of equations (3.2.12) and (3.2.16}, the first part becomes

| ) A B \ yp oo RH
Pxb+Pxy—PQ¢ = P [fXS Cose el xmm vl P T BHV}
_ e B B _Purn
= &S [m,&;, el xwn €D (,«;Hwil*)?]
— =l ABL ﬁH&I*
= P&x3 L;La;, + &I + (kux +E1)?
o (3.2.20)

In a similar way, we can prove y2b+x%v — Qx€ > 0 and x5 + xv* + 2byx — Q&€ > 0.
Thus (3.2.18) holds.
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Finally, to show (3.2.19), we write ajas — 2apa; into the sum of many parts as

follows:

a102 — 2apas = (Pbx6} + Pxdiy — TPx8,E — PQS1E) + (x84 + bxdiy — TxSvE — Q63 7€)
+(PiL ~ TPt ~ QxoLvE) + (b*x + bPxv — Qb°¢)
+(B ey + b2 xdLy + B0 xv® + by’ — Qb vE — QbSLyE)
+(PBy + Pby+? + 2P xv — PQB2E — PQbyE)
+(3b%x 28 + 3bx 201y — 3QbxLE) + (2PV P + 2Pbx*~ — 2PQbx£)
+(Px*8} + Px*y* + PxParh — PQxéLe) + (PO + 26°%° + 3b%x ™y — 3Q6°x€)
H(PX?oLv + Px?0rh — TPX*E — PQx3L8) + (2PbxPy — 2Qbx~E)
+(Pxy*6 + Pxbiry — TPXxvE — PQOLvE) + (PPx*y - PQxE)
+(PY’ X8z, + Pbxdry — PQbSLE) + (8]’ + 62x°b — Tx8€ — Qx1E)
+OLY? + X785 + 530 — QxOpyE) + (P2xvdL — PQILyE)
+ P22y + P2026, + P2by? + PPhydy + 2P%bxy + P2b82 + 2P%b6 1y
+ P58 + PPyy? 4 P62~ 4+ PRap~2% + PPy + 2PB36, + 2P0 x4,
+2Pb2xy 4 3Pb262 + 4Pb2opy + Pbx%8y, + 2Pbx 6} + 2Pbxdry + Phx+v
+TPbyé + 4Pbd%y + 2Pbdpy? + P82~% + Qg2 + Q78,67 + TQxe* + b4,
+263x 61 + 26562 + 26301y + 3b%x0% + 23 xdry + 3ThixeE
+36262y + 628172 + 2bx 52y + ThyvE + b2,

Now we prove ajas — 2epa3 > 0 term by term by using some results from (3.2.18},
(3.2.19), and (3.2.20). Some of them can be obtained immediately, while others

require some basic algebra. We have:

Pbxd} + Pxd%y > TPy + PQUIE,

X037 + bxdey > Tdpvé + QaEHe,

P2y281, > PyPou(v + b) > T vE + Qx8.vE,

X + By > QbPE,

Bixv + B0y + by + bxdry® > Qb€ > QbELeE,
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Py + Pby~* + 2Pb*xy > PQbV¢ + PQbyE,

30%x%0p + 3bx 0Ly > 3QbxdLE,

2PV X% + 2Pbx%y > 2PQbx¢,

P8} + PX*y" + Px’orb > PQXOLE,

Png2 + 263)(2 + Sngzf}/ > 30%%? + 30%x %y > 3Qb*xE,

Px28ry + Px20rb > TPY*€ + POxOLE,

P2y > 7%y + 273 7%b > PQxE,

PVyd;, + Pbxdry > PQboLE,

Pxy26. + Pxbéry > TPxvE + PQErAE,

P2x%y > PQx¢,

P¥xdy + Pbxdry > PQbILE,

83 x2y + 8Ex2b > T *6p& + Qxdie,

XE6erE + X2020 + byt > x4+ vbxPeL > Qxdrne,

PPyvbp > PQSL~E.

These vield ayos — 2agas > 0.
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I111.2.2 Mukandavire’s Model

The endemic equilibrium of this cholera model {3.1.19-3.1.22) is given by X~ =
(S*, I, R”, B*) where

g = y_lEml (3.2.21)
I
3:.5* 85
S o o AU 3.2.22
Y+p— GBS €] ( )
R = ”’i : (3.2.23)
B = 5; . (3.2.24)

We establish the following theorem.

Theorem 8. If Ry > 1, a unigue endemic equilibrium exists and is locolly asymp-

totically stable.

Proof. By solving equatious (3.2.21-3.2.24}, we obtain

DA+ BI*+Cy=0 (3.2.25)
where
A = =By +pnl,
B = BaNpé& — (v + p){8.L + Budr + pé),

C = BlulN — (v + p)pds + By Npdss.

From (3.2.25), we have J* = 0 which corresponds to the disease-free equilibrium and

a quadratic equation given by
A+ B+ C=0. (3.2.26)

The roots of this quadratic equation must satisfy,

LI = % (3.2.27)

B
L+ = —. (3.2.28)
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Having,
N

Ry = N+ Oxfn) (3.2.29)

dr(y + p)

and defining

or{y +p)
¢ = T 3.2.30
€. + 67 (3230

gives V > 5, when Ry > 1, and it follows that A < 0 and ' > 0, and the right-hand
side of the equation (3.2.27) is less than zero. Thus the quadratic equation (3.2.26)
has a unique positive root I*. On the other hand, if By < 1 which yields N < 5.,
we can obtain C' < 0 so that the right-hand side of equation (3.2.27) > 0 and the
right-hand side of equation (3.2.28) < 0 if B < 0.

We have (v + 1) > NS for N < 8., thus we obtain (v + p)u€ > NByué which
gives B < 0. In this case, the equation {3.2.26) has two negative roots and the

positive endemic equilibrium does not exist. Hence it’s not biologically {easible.

In order to deduce the local stability of the endemic equilibrium, we use the

Jacobian of the cholera model system (3.1.19-3.1.22). For simplicity we set P =

fig: + I, Q= %, and the Jacobian matrix becomes
[Py —B48 0 —Q|
P BuS—(v+n) 0 @
(}g =
0 y ¢ 0
| 0 £ o § |

The characteristic polynomial of the matrix Jg is given by

Det (M —Jg) = A+ w0+ ) =85 + v+ p)(A+46)
+PA+ v+ )0+ 85— QA+ )] =0 (3.2.31)
Clearly, equation (3.2.31) has a negative root A = —p.
Expanding equation (3.2.31) gives,

A+ WA= BS" + v+ (A +3) + P+ +p)(d+8) - QE( + p)
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which we write as,

apA® + a1 AT + agA + a3 = 0, (3.2.32)

where

g = 1,

a; = P+d+7y+2u~ 8,5

ag = plH P+ Py+ Pu— QE4 5y + 204 v — BnS*8 — BuS* s,
as = op®+ Poy+ Popp — Qué + vy — 5* Brdu.

The Routh-Hurwitz stability criterion (see Section II.2) requires,
a1 > 0,as > 0,a3 > 0, and Qg — agig > 0
as the necessary and sufficient conditions for the local stability.

From equation (3.2.22), we have the expression of {(y+ u) at the positive endemic
equilibrium,

S*B.£8k + S*B.L2T*

- 65",
Gererye O

Y=

Note that Q¢ = %, and we have two conditions that we use to prove the

necessary and sufficient conditions which are,

N4> BRST, (3.2.33)
8{y + u) > Q& + BrS™6. (3.2.34)

First, we prove that a; > 0 using condition (3.2.33) and P > 0. We have
ay=P+8+p+{y+p —8S >0 {3.2.35)
Second, using the two inequalities 6{~ + u) > Q& + BnS*é and p(y+ ) > BnS*y,

it can be shown that a; > 0. In addition, it can also be shown that oz > 0 by using
op(y + p) > Q€p + BrS*op.
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We show a0 — agas > 0 in the following.

(12(}'.1 + 6) - a3 = (52')/ + 52;5 — Q(S(S - S*ﬁhég)
oyt 4 1+ Sy + 8 — 8" Brp® — 57 Brdp)
+ P62 PP 4 5p® 4 8%+ Pop + Py
Using conditions (3.2.33} and (3.2.34), we have
&y + 8% > QA€ + S*B,8% and
v 4 1P S+ S > ST Bt 4 5" Budps.
Thus ax{(gt+8) > az holds. Since ay > {1+ ¢), based on equation (3.2.35), we obtain

1G9 > 03.

Thus, we have shown that when By > 1, a unique endemic equilibrium is locally

asymptotically stable. ]

111.2.3 Bifurcation diagram

In this section, we use a bifurcation diagram to illustrate the stability cxchange at
Ry = 1 in Hartley's model. (If we use Mukandavire’s Model, we have the same bi-
furcation point and sirnilar bilurcation diagram}. Summarizing our stability analysis

results, we have established the following theorem:
Theorem 9. The dynamical system (8.1.1-5.1.5} has o forward transcritical bifur-

cation at R = 1.

A bifurcation diagram [77] of I vs. Rp for system (3.1.1-3.1.5) is given in Fig-
ure 3.1. In sketching the endemic branch of the bifurcation, we write the endemic
quadratic equation A(J*)? + BI* + C = 0 (see equation (3.2.7)) as

A(I"Y* + (DRy — E)I" + F(Ry — 1) = 0 (3.2.36)
where the constant coefficients D, F and F are given by

D = &S+ br),
E = &y +b)(Boxrn + Budrkrn) + bE(y + b)(6rkr + xKm),
F = bch(ﬁLxﬁ;H + ﬁHﬁL(SL)-
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Figure 3.1: The bifurcation diagram of I vs. Rgy. There is a transcritical bifurcation at

Hy=1.

We then obtain
—A(I"V +(F - D)I”

DI*+ F
When I* is small or moderate, equation (3.2.37) represents approximately a straight

(3.2.37)

Ro=1+

line passing the bifurcation point Ry =1, [* =0.

HI.3 A case study: the Zimbabwean cholera outbreak

From the introduction in chapter I, we already have some background ahout Zim-
babwean cholera. The 2008-2009 cholera outbreak in Zimbabwe was regarded as the
worst African cholera epidemic in the last 15 years and received worldwide media
attention [54; 84; 85; 86]. In order o improve our understanding of the development
of this serious cholera outbreak, as well as for possible prediction and control of fu-
ture cholera epidemics, we apply the mathematical model (3.1.1-3.1.5) to study the

Zimbabwean cholera dynamics.

The values of those parameters are listed in the Table 3.1. Note, b= (35yr)™! in
this paper based on the life expectancy in Zimbabwe [85; 86]. However, the values
of 8y and By are less well known. The authors of [22] took 8 = 1.5/wk and Sy as
a variable; thev also stated that these two parameters are particularly “difficult to

estimate”. This suggests that 8; and Sy are sensitive in the ODE model (3.1.1-3.1.5}.
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Table 3.1: Model Parameters and Values in Zimbabwe

Model Parameter Symbol  Value

HI ingestion rate B Variable

LI ingestion rate Br Variable

LI half saturation rate KI 10° cells/ml

HI half saturation rate KIT 1428.6 cells/ml
Natural human birth / death rate b (35 yr)!
Bacterial transilion rate X (5 A1
Shedding rate £ 10 cells/ml-day
Bacterial death rate T3 (30 d)~1
Recovery rate ¥ (5 d)™?

Table 3.2 LHS sensitivity analysis

Parameters | Minimum | Maximum | PRCC valucs
Be 0.01 3 0.245957
P 0.01 3 0.912184

LHS sensitivity analysis for 8y and Sy with respect to the infection
number 1. The sample size is n = 400 . Results show that the infection
is especially sensitive to Sg .

To verify it, we have carried out a sensitivity analysis for these two parameters using
the Latin Hypercube Sampling {LHS) method [5; 53]. The LHS method, which is
one of the most efficienlt ways to analyze sensitivity and uncertainty, calculates the
Partial Rank Correlation Coefficients (PRCC) in the range of {—1, 1] for the model
parameters with respect to outcome measurements. A small PRCC value (close to
0) indicates that changes in the input parameter have little impact on the outcome,
whereas a bigger PRCC value suggests that the outcome is significantly influenced
by, thus sensitive to, the changes of the input parameter. In this study we pick the
total infection, I, as the outcome and present the resulis in Table 3.2 with a sample

sizc n = 400 ; similar patterns are observed for differing samples sizes. The results
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Figure 3.2: The data fitting for the infected population I', where the curve represents the
model prediction and the squares mark the reported Zimbabwean data (normalized by a
factor of 1,200).

confirm the sensitivity of the two parameters 3y and Sy ; in particular, we observe

that the number of the infected people is very sensitive to Sy .

In the work of [22], the ODE model (3.1.1-3.1.5) was introduced and discussed for
a hypothetical community with a total population of N = 10,000. In order to assess
the applicability of this model to the Zimbabwean cholera outbreak, we will first
need to ensure the available Zimbabwean data can be reascnably fitted by the model
results, which necessitates the adjustment of parameter values. The discussion in [22]
and our sensitivity analysis indicate that the parameters 8y, and Sy are sensitive and
possibly vary from country to country. Hence, in what follows we adjust these two

parameters to match the reported inlections in Zimbabwe.

According to the published data by WHO [85; 86], the cholera outbreak started in
the end of August 2008, with 11,735 cases reported by December 1, 2008, 79,613 cases
by February 18, 2009 and 91,164 cases by March 17, 2009; afterwards the situation
had improved significantly due to various control measures and international aids.
Since the total population in Zimbabwe is about 12 million {86}, we scale down this
number by a factor of 1,200 to match the hypothetical population of N = 10,000 in
[22]. Accordingly, we now have 10, 66 and 76 (normalized) cholera infections after 12
weeks, 22.5 weeks and 26.5 weeks, respectively, from the beginning of the outbreak.
By varying the two parameters, we find that when 87 = 0.126 and 8y = 0.0995, the
model prediction for the infected population, 7, can well fit these data (see Figure
3.2).

By substituting the values of 8y , Bz and other parameters into equations (3.1.13)
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and {3.1.14}, we find the basic reproduction number
Ry = 1.222, (3.3.1)

and the population threshold

Se 8183.

&

Thus, the model predicts that the infection would spread and an epidemic would
develop, which is consistent with the reality in Zimbabwe. The fact that Ry > 1
justifies the development of the cholera epidemics. Since the values of 8, and 8y
are much lower in the Zimbabwean cholera outbreak than those used in [22], the
value of Ry ~ 1.22 is much smaller than that obtained in [22] {about 18.2). The
relatively low value of Ry for the Zimbabwean cholera outbreak is attributed to the
fact that although unearly 0.1 million cases have been reported, the overall percentage
of infection with respect to the total population is still pretty low (less than 0.8%).

The Ry estimated here is regarded as a nationally averaged reproduction rate.

The basic reproduction number found in (3.3.1) provides useful guidelines for the
prevention and control strategies on cholera epidemics in Zimbabwe. For example,
consider the use of chemotherapy (including antibiotics) to treat the cholera infection.
Based on the work of Dietz [14], the chemotherapy program has to achieve a minimum
proportional reduction of the susceptible population by

1
a > 1-— T (3.3.2)
for eliminating an epidemic, where a homogeneous population is assumed. Substi-

tuting (3.3.1) into (3.3.2), we obtain
a = 0.1816.

This result can possibly explain that, although the medical resources were very lim-
ited in Zimbabwe and many rural areas were outside the treatment facilities, the
2008-2009 cholera outbreak was still under control and terminated in July 2009, In
contrast, should the value of R be much higher than that in (3.3.1}, say 12.22 in-
stead of 1.222, we would need o > 0.9182 which would bhe impossible tc achieve in
Zimbabwe. In addition, if we use vaccination as a preventive measure against the
cholera outbreak, the minimal vaccination coverage would have to be {14]:
. 1- Ry
T 1-(1-r)1-8)

(3.3.3)
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where r is the fraction of the vaccinated population who are completely immunized
(i.e., with zero susceptibility), and s is the proportional reduction of the susceptibility
for those partially immunized. For a homogeneous population, we may assume v =
0. Meanwhile, s = 0.5 would be a reasonable estimate for Zimbabwean people.

Substituting these numbers and Ry = 1.222 into (3.3.3), we find
¢ > 0.3633,

which requires at least 36.33% of the total population to receive vaccination in order
to prevent future cholera outbreaks. Clearly, this standard has not been met in
Zimbabwe due to collapsed cconomics, broken health system and severe shortage of
primary care facilities [54]. This provides a possible explanation to the fact that

cholera has remained endemic in Zimbabwe for many years [54; 86].

As a means to check the validity of our study, we compare the value of By in
{3.3.1), which is calculated from equation (3.1.17), to those that do not require

specific mathematical models.

One simple and general formula to estimate Ry was given in [81] based on the

final size of the epidemic:
=t

N -1 1
Bo=—¢ > s (3.3.4)

t=5;+1

where Sp and Sy are the numbers of the susceptible at the start and end of the
epidemic, respectively, and C' = 55 — S is the total number of infections. Since

T

Z% =2 Inn,

i=1
when n is large, equation (3.3.4} yields

N-—-1
So— 35,

[lnSg — 1115}} = ﬁ [ID(S{]/I\?) —ln(Sf/N)]

R[;%

Let ug = So/N and ue = S¢/N denote the initial and final proportions of the

susceptible, respectively, in the duration of the epidemic. We then obtain

Ry = _1 [l_nug — Inuco]. (3.3.5)

Un — Uoo

which is asymptotically equivalent to the formula (3.3.4) for large population N .
Equation (3.3.5) was also presented in the work of Dietz [14].
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Based on [85; 86}, we take July 2009 as the termination for the Zimbabwean
cholera outbreak, with a total of 98 592 reported cases. Assuming the total popula-

tion is completely susceptible (i.c., up = 100% ), the formula (3.3.5) yiclds
Ry = 1.004 (3.3.6)

for this cholera epidemic.

In addition, another method of estimating R, was provided in [14], nsing the
initial growth rate of the epidemic:

D1n2
tq

Ry = 1+ : (3.3.7)

where D is the duration of the epidemic and t; is the initial doubling time. The
value of t; can be approximated by

In2

o
7 In (1 + r/100)

where r is the initial growth rate for the infection. Substitute the Zimbabwean data

into equation (3.3.7) and we oblain
Ry ~ 1.2%6. (3.3.8)

The results in (3.3.6) and (3.3.8) are qualitatively consistent with (3.3.1}, the value
obtained from the ODE model.

Meanwhile, we substitute these parameter values into equations (3.2.7) and (3.2.3-

3.2.6), and find the unique positive endemic cquilibrium:
S* = 7666, 7 =0.9157, R* = 2333, By = 1.908, B; =274.7.

Note again that we have scaled down the total population in Zimbabwe by a factor of
1,200 to match the hypothetical population N = 10,000. Thus, the model predicts

that the realistic endemic infection number in Zimbabwe is about 1,099.

To verify the model prediction, we run the numerical simulation for & much
longer period of time (up to 7,000 weeks) and present the results for 7, § and R in
Figures 3.3 and 3.4. The first peak of the infection curve in Figure 3.3 represents
the 2008-2009 cholera outbreak. The infection number (f) starts to decline once
the susceptible population () falls below the threshold, S, = 8183. After this
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Figure 3.3: The infected population vs. time with the initial setting: {0} = 1, 5{0) =
9999, R(0) = By(0) = Br{0) = 0. The curve cxhibits several epidemic oscillations
{outbreaks), then approaches the endemic equilibrium I* = 0.9157 after about 5,000 weeks.

outbreak I drops to almost zero, meaning that the majority of the infected people
have recovered and entered the R class, so that we see a significant increase of
R in Figure 3.4. Then [ stays at the zero level for the next 1,500 wecks or so
(about 30 years). During this pericd R gradually decreases due to natural death of
recovered people, and S increases due to natural birth of new susceptibles. Once
the susceptible population exceeds the threshold S., another cholera outbreak is
triggered but with much lower magnitude. This pattern continues for a few more
outhreaks with decaying magnitudes. After about 5,000 weeks, the infection curve
rests at the endemic value, I* = 0.9157; the § and R curves also converge to their

endemic values,

Figures 3.5 and 3.6 show the results of another numerical run with different ini-
tial conditions: I(0) = 500, S(0) = 8500, R(0) = 1000, By(0) = B(0) = 0. We
observe very similar pattern. In particular, the /, S and R curves all approach their
endemic equilibrinm values after about 5,000 weeks. This paliern is also ohserved
with various other initial conditions, which demonstrates the global asymptotic sta-
bility of the endemic eguilibrium when Ry > 1. Meanwhile, these results also justify
the instability of the disease-free equilibrium, as cholera outbreaks occur whenever
the susceptible population S exceeds the critical value 5,. §* = 7666 and R* = 2333,

respectively.

Finally, to validate the global asymptotical stability of the disease-free equilibrinm
when By < 1, we have conducted many numerical runs with differing population N

and initial conditions, and the results agree with the model prediction. A typical
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Figure 3.4: The susceptible and recovered populations vs. time with the initial setting:
I0) =1, S(0) = 9999, R(0) = Bx(0) = Br(0) = 0. Both curves exhibit several epidemic
oscillations before approaching the endemic equilibrium; 5% = 7666, B* = 2333.
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Figure 3.5: The infected population vs. time with the initial setting: I{0) = 500, S{0) =
8600, R({0) = 1000, By(0) = Br(0) = 0. The curve exhibits several epidemic oscillations
and then approaches the endemic equilibrium over time.
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Figure 3.6: The susceptible and recovered populations vs. time with the initial setting:
I(0} = 500, S(0) = 8500, R(0) ="1000, Br{0) = Br(0) = 0. Both curves exhibit several
epidemic oscillations and then approach the endemic equilibrium over time.
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Figure 3.7: The infected population vs. time with the initial setting: 7{0) = 500, S{0) =
4500, R(0) = By (0} = By{0) = 0. In this case Ry = 0.611 and the disease quickly dies
out {I=10).

numerical result is presented in Figure 3.7, where the total hypothetical population
is set as N = 5,000 (i.e., halving the current Zimbabwean population) so that
Ry = 0.611. Initially [ is 500; then the infection number quickly drops to zero and

stays at zero for all time afterwards.
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CHAPTER IV

GENERALIZED CHOLERA MODEL

Two major differences among all models we mentioned in the fivst three chapters
(for example, the model of Codeco [11], the model of Hartley [22] and the model of
Mukandavire [60]), are how the incidence rate is determined and how the environ-
mental vibrio concentration is forrmulated. Hence, a goal of this chapter is to propose
a unified cholera model which allows general nonlinear incidence factor and general

representation of the pathogen concentrations.

IV.1l Model and notations

‘We construct the following differential equations for the cholera dynamics, based on
the combination of a regular SIR model and an covironmental component:
a5

— = bN —Sf(/,B)-bS, (4.1.1)
% = Sf(I,B)—(y+b), (4.1.2)
dR
— = bR, (4.1.3)
dB
— = hI,B), (4.1.4)

where, as usual, 5, [ and R denote the susceptible, the infected, and the recovered
populations, respectively, and B denotes the concentration of the vibrios in the con-
taminated water. The total population ¥ = § + I + R is assumed to be a constant.
The parameter b represents the natural human birth/death rate, and - represents
the rate of recovery from cholera. In this generalized model, f{I,B) is the inci-
dence function which determines the rate of new infection, and the function A(7, B)

describes the rate of change for the pathogen in the environment.

If we set
X = (S, 1, R B), (4.1.5)

then the above equations can he put in a vector form as
d

X = F(X). (4.1.6)
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Remark 1. We allow B to be erther a scalar or o veclor in this system, to facilitate
more general formulation. For example, if we consider both the hyper-infectious (HI)
and less-infectious (LI) stales of the wibrios, then we may write B = (By, Br]. In

such a case it is understood that

iB 4By hu(l, B)
—_— = , h(l,B) =
dt B ( )
E{L hL(Ia B)
and
) ' 82§ 825 Shy Ok
of 3‘3‘% o° f a8 2BuPB, an ﬁ% @%
= = 5 = — = ete.
7 2 1 3
o8 af B af ii;; 0B Dhy Oy
3BL BBLoBy aB7 By PBL

Remark 2.  We write a vector V = 0 (< 0} if each component of V is 2 0 (< 0).
We write o matriz A > 0 (< 0) if A is positine (negative) semidefinite.

To make biological sense for our model, we assume the two functions f and A

satisfy the following conditions for / >0, B > 0:

(a) £(0,0) =0, h(0,0)=0,

(b) f({,B) 20,

af ok on

af
ar >0 2L > o > <
2f &
FIE aran
(d) f(I,B) is concave; i.e., the matrix D?f £ is negative semidefi-
2 2y
onar oz

nite everywhere.
(d’y h(I, B) is concave; i.e., the matrix D?h is negative semidefinite.

The assumption (a) ensures the existence of a unique disease-free equilibrium
(DFE) for system (4.1.6), i.e.,

Xo = (N, 0,0, 0. (4.1.7)
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The assumption {(b) ensures a positive incidence rate. The first two inequalities
in assumption (c) state that increased infection and pathogen concentration lead to
higher incidence rate (due to higher level of transmission), whereas the third inequal-
ily states that increased infection results in higher growth rate for the pathogen in
the environment {due to higher shedding rate). The last inequality in assumption
(¢} indicates a positive net death rate of the vibrios. The condition {d) is a common
assumption for nonlinear incidence [25; 35; 58]. In our model, this condition regu-
lates f{I, B} as a biclogically realistic incidence based on a consequence of saturation
effects: when the number of the infective, or the environmental pathogen concentra-
tion, is high, the incidence rate will respond more slowly than linearly to the increase
in I and B. The condition (d’) is an additional assumption we introduce for the
regulation of the function A(1, B); it states that at an equilibrium level, the response
of the pathogen growth rate will be slower than linear. Furthermore, we assume
the equation A{I, B) = 0 implicitly defines a function B = g(7}, which satisfies the

following condition:
(e) (I} 20, g"(I)<0, forlz0.

This assumption states that the pathogen concentration increascs with the number
of the infected, while the rate of incrcase will be below linear when the infected

population is high, due to saturation effects.

Based on the assumpticn (b), it is straightforward to see that if any component
of (S, I, R) becomes 0, then the derivative of this component will be non-negative.
Meanwhile, since %(S + I+ R)=0, 5()+ I{t) + R(t) will remain a constant (i.e.,
N) for all ¢ > 0. Hence, the following result can be easily established.

Lemma 7. If S(0) >0, I{0) = 0, R(0) > 0, and S(0) + I{0) + R{0) = N, then

Sity>0,1(t) >0, R(t) >0, and St} + I{#) + R{t) = N, for allt > 0.

Remark 3. Lemma 7 ensures that the solution of the model system (4.1.1-4.1.4)

is biologically feasible for all times. Mathematically speaking, the solution domain
D={(51,R){5>0,I>0,R>0,5+1+R=N}

is ¢ positively invariant set in R3 .

Remark 4. 85/ A positive tnvariant set is a set with the following properties:

Gwven a system 3 = f(x) and trajectory x(t) = xo where xo 1s the instial point. Let
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O £ {z € R* | ¢(x) = 0} where ¢ is a real valued funclion that characterizes Q. The
set O is said to be positively invariant if xo € O implies that z(t,z0) € O VL > 0.

IV.2 Next-generation matrix analysis

We start our analysis by determining the basic reproduction number, [, of our
proposed model. Based on the work of van den Driessche and Watmough [80], and
cur work in chapter I, let’s recall that fy is mathematically defined as the spectral
radins of the next generation matrix. In our system (4.1.1)-(4.1.4}, only [ and B are

directly related to the infection. Following the approach in [80], we write

df
y SFU, B) (y + b1

— — = F-V (4.2.1)
dt

where again, F denotes the rate of appearance of new infections, and V' denotes the

rate of transfer of individuals into or out of each population set.

The next generation matrix is defined as 'V ~!, where I and V are 2x 2 Jacobian

matrixes given by

NZ(0,0) N2L(0,0) vt b 0
F=DF(X,) = ,  V=DV(Xp)=
0 0 ~24(0,0) —24(0,0)

where Xj is the DFE defined in equation (4.1.7). After some algebra, we obtain

-1 0
-1 -1

_7+b

(20,0) 20,0 (20,0) (v+d)

Hence, the next generation matrix is

~N[%0.0) - %0,0(%0.0) 50,0 Nu+(20.0) %00

Fyl = —
Y+ b
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Its spectral radius p(FVq) = 1Lma){ Xl where A; denotes the sth eigenvalue, can

be easily found. Therefore, we obtain the basic reproduction number as

N df of -10h
4.2.2
0 7+b[81(00) a5\ U)( 0.0)) 570.0] (4.2.2)
By our assumption, (I, B) = 0 defines an implicit function B = g(I). Using implicit
differentiation, we cbtain % + % ¢'(I) = 0, which yields
Oh~-10h
I - =" - £
g = (aB) 31 (4.2.3)
for I > (. Substituting equation (4‘2.3) into cquation {4.2.2), we obtain
N 0 f q A phh h
_ or 2 ch 4.2.4

Equation (4.2.4) clearly shows that Ry depends on two factors: one is due to human-
to-human transmission (R§?*) and the other is due to environment-to-human trans-
mission (REY). If $5(0,0) = 0, then Ry = RE"; if 2£(0,0) = 0, then Ry = RA".
In general, both Ri" and RE" contribute to the basic reproduction rate. Biologi-
cally speaking, Hp measures the average number of secondary infections that oc-
cur when one infective is introduced into a completely susceptible host popula-
tion [23; 80; 81]. In equation (4.2.4), the term ﬁ represents the expected time
of the infection a—f([] 0) represents the unit human-to-human transmission rate.
and +b 31 £(0,0) measures the total number of beconddry infections caused by the
human-to-human transmission. Similarly, the product (O, 0) ¢'(0) represents the
unit environment-to-human transmission rate, and be gé (0,0) ¢'(0) measures the
total number of secondary infections caused by the environment-to-human transmis-

ston.

Remark 5. It can be easily verified that this derivation of Eq holds true no matter
B 15 a scalar or vector. In case B is a vector, %(O, 0) is @ matriz (see Remark 1)

and (22(0, 0)) represents its inverse.
Based on the framework in [80], we immediately obtain the result below regarding
the local asymptotical stability of the DFE.

Theorem 10.  Let Ry be defined in equation (4.2.4). The disease-free equilibrium
of the system (4.1.1)-(4.1.4) s locally asymptotically stable if Ry < 1, and unstable
if Bo>1.
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IV.3 DFE global stability

To study the global asymptotic stability of the DFE, we need Lemma, 6 introduced
by Castillo-Chavez et al. [9] which we applied in chapter III, Section I1I.1 to show
the DFE global stability of Hartley's model [22].

Theorem 11. The da’sease—freé equiltbrium of the model ({.1.1}-({.1.4) is globally
asymptotic stable if Ry < 1.

Proof. We adopt the notations in Lemma 6 and verify the conditions (H1) and
(H2) in Lemma 6. In our model, X; = (S, R)T, Xz = (I, B)T, and X} = (N, 0)T.

The uninfected subsystein is

S BN — bS5 — Sf(I,B
4 =F= L, B) , (4.3.1)
dt | R I — bR
and the infected subsystem is
I SfI,BYy—(y+BI
4 oo | SIULB) (v 4 (4.3.2)
dt | B h{I, B)

When I = B =0 (i.e., X; = 0}, the uninfected subsystem (4.3.1} becomes

Ny BN —bS
— = , (4.3.3)
R —bR

R(t) = R(O)e™,  S(t) =N — (N = 5(0)) ™.

Clearly, R(t}) — 0 and S(¢t) — N as t — oo, regardless of the values of R(0)
and S{0}. Hence, X7 = (N, 0) is globally asymptotically stable for the subsystem

dx,
8N Px,, ).
dt (X1, 0)
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Next, we have

oG 5
= —(N WX -G
G 6X2( ,0,0,0) X

NEL0,0)— (v+b) NZ(©0,0) | | I

| 20.0) 20,00 || B

NEL(0,0) + N2L(0,0)B - Sf(1, B)

24(0,0) + 4%(0,0)B — h{I, B)

Obviously A = Z& (N, 0,0,0} is an M-matrix based on the assumption (c). It remains
to show & > 0. The assumption (d) implies that the surface f = f(I, B) is below
its tangent plane at any point (I, Bg) > 0; that is,

FULB) < f(Io, Bo) + 2o B ~ 1)+ 2L 0y Bo)(B—By). (439

Particularly, setting (o, By) = (0,0) and using the assumption {a), we oblain

af af
< 97 (0,0)B 3.
fUI.B) < ZH(0.0)] + 55(0.0) (435).
for all (7, B) > 0. A similar argument leads to, according to the assumption (d’),

. Jh &h
By < == I+ — ] 3.
h{l,B) < 81(0’0) +aB(O,U)B (4.3.6)
Hence,é’ZOforIzO,BzU.

Based on Lemma 6, the DFE X, = (N, 0, 0, 0) is globally asymptotically
stable when Rp < 1. ]

Corollary 1. {f Ry < 1, then tlim X(t) = Xg for any solution X (t) of the system
(4.1.1)-(4.1.4).

IV.4 The endemic equilibrium

Theorem 11 completely determines the global dynamics of our model when Ry < 1.

The epidemiological consequence is that the number of the infected, no matter how
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large initially, will vanish in time so that the disease dies out. In contrast, the disease
will persist when Fy > 1. To investigate the resulted long-term dynamics, we turn

to the endemic analysis in what follows.

The theorem below shows the existence and unigqueness of the endemic equilib-

rigm.

Theorem 12.  For the model system {4.1.1)-(4.1.4), there exists a unique positive
endemic equilibrium if Ry > 1, and there is no positive endemic equilibrium if Ry <
1.

Progf. By our assumption, A({, B) = 0 defines an implicit function B = g({}.
Meanwhile, by setting the right-hand sides of equations (4.1.1) and (4.1.2) to zero,
we obtain

bN Sfi, g{d})

=200 (4.4.1)

S AT 9 (y+ b)

which yields
bN f(I,9(1))
(r+ o)+ f(L (D))

Now the question is whether H(I) has a nontrivial fixed point on {0, 00).

I=H(I £ (4.4.2)

Clearly, H(I}) > 0 for I > 0, and H{0) = 0. Let us denote P(I) = f(I, g(I)).

Then
- BN (b+PU)P'(I) - PHP'(T)
HD = v+b b+ P(I)}?
BN BP(I)
v+ bb+ P{)? (44.3)
where o of
Pl)= g5+ 229() 20, (4.4.4)
due to assumptions (c) and (e). Thus H'(I) > 6 for I > 0. In particular,
F ¥ _ N ; _
H'(0) = 5 (0) = Ry. (4.4.5)
Next, we have
D = N (e PO P —2(P(D)Y] 4as)
ICEDICENLOE -
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where
>Pf o2 20%f  Of
I — oL 2 r I ! Jr 4 4 I
Py = 5+ 2 Dgnp ¥ W) 55 + 559D
#f % 1
317  BIoB af
= [ 1, ¢'(d) ] + a—Bg"(I). (4.4.7)
o2 2
a(ifag’ % g1
2y 3f
g7 dIeE
Based on the assumption (d), the matrix is negative semidefinite.
& f a8y

8108 882
Meanwhile, ¢”(f) < 0 due to the assumption {e}. Thus P"(7) < 0. Consequently,

H”(I) < 0 for all I > 0. Therefore, H(I) is increasing and concave on (0,00} with
H(O) =0.

Clearly, if H'(0) = Ry > 1, there is a unique positive fixed point I* for H (sec
Figure 4.1-a). i H'(0) = Ry < 1, there is no positive fixed point for H (see Figure

4.1-b). 0
¥ v=1 v y=l
Ly =AW
: y = H()
E e
[ i H 0 1
(2) {b)

Figure 4.1: Two typical scenarios for the function H(I) defined in equation (4.4.2): (a)
when H’(0) > 1, the curve ¥ = H(I) has a unique intersection with the line y = I for
I > 0; and {b) when H’(0) < 1, the curve y = H(I) has no interscction with the line
y=1for I >0.

Remark 6. The same result holds in case B is a vector, say, B = [By,By] .
In fact, we can write g(I) = [gu{D), gr(D)]F and ¢'(I) = [giy(D), g (I)]" . It is then
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straightforward to verify that

G .

_9f
T8 8B

-2 (I) > 0

4 af ar
P(I) +1 5850 o2 |
9

which takes the same form as (4.4.4). Meanwhile,

!

a8

L

gu

1
gr.

g
G F 2 -
i _ il 4 G4F
P(I) oz 2 [ BI85, * G136 }
!
gL
a2 f B2 f
8B,  BBn0B. Iy 9u
' ' af af
+[9H19L] +[aBH?@]
a2 a2 I it
5B 8By Es’% 9L 9r
e 9 #F 7 4
a1 3108 8188 1
. B2f 82§ & F af af
= [ 1, g. 91 } 8103y 5B  BBrdBL 9 |t | 385 95
#f i &f ‘
L BI6B. OBudE: apz | L 9L ]

which matches equation (4.4.7).

IV.5 Stability of the endemic equilibrium

IV.5.1 Local stability

Now that we have established the existence of the unique positive endemic equilib-

ritm X*, we proceed to show X* 1is locally asymptotically stable.

The Jacobian matrix of the model system (4.1.1)-(4.1.4) is

[ b f,B) -SA(,B) 0 -S%LU.B)]
f4,B)  S¥UIB)y-(y+b) 0 SgL(IB)
Jg =
0 7 —b 0
i 0 2a(1,B) 0 £4(1,B)
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At the endemic equilibrium X* =
rr =
5 =

R* =
U =

(5*, I, It*, B*), the components satisfy

1 BNJ{I',B*)
(b b+ f(I7, B
by
b+f(f*,B*)’
Yo
p
h(I*, B*).

For the convenience of algebraic manipulation, we denote

F = f(I",B"}, E

dh . .
Q:@(I:B)y T

8-’(. * *
@(I :B ):

i

Of (1 g _
5B, P o=

Oh v e

a9

(4.5.2)
(4.5.3)

(4.5.4)
(4.5.5)

From the assumptions (b) and (¢}, F >0, E> 0, P> 0, T > 0, whereas @ < 0.

Evaluated at X*, the Jacobian matrix (4.5.1} becomes

—F—b
F
Jy =
0
|0

~S'E 0 —S*P
S*E—(y+b) 0 &P
y b 0

T 0oQ |

The characteristic polynomial of J is

Det (A — J3) =

A+0) [(A+DA-SE+~v+b(A—-Q)

FPO A+ v+ bYA= Q) — (A +B)S*PT].

The equilibrium X* is locally asymptotically stable if and only if all roots of the

above polynomial have negative real parts. Obviously A = —b& is a negative root. To

investigate the other three roots, we expand the expression in the square brackets to

obtain a cubic equation

G.(}/\S + (11)\2 + ag)\l + a3 = 0
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with
a4 = 1, (4.5.7)
ag = F—Q+2b+~v—ES", (4.5.8}
ay = b= FQ+Fb+ Fry—2Qb— Qv+ by (4.5.9)
+EQS* — PS™T — ES*b,
ay = —QW —FQb— FQy— Qby+ EQS"h — PS*Th. (4.5.10)

To ensure that all roots of equation {4.5.6) have negative real parts, the Routh-

Hurwitz stability criterion requires
a; >0, az >0, ay >0, ay1dy > Ogfs. (4511)

We shall prove all the four inequalities in {4.5.11). To that end we first establish the

following lemina:
Lemma 8. At the endemic eguilibrium X, we have

b++y—ES* > 0, (4.5.12)
Qb+ = PTS - EQS™. (4.5.13)

Prosf.  Based on our assumption (d), we have known that the inequality (4.3.4}
holds at any given point (I, Bo) > 0. In particular, if we set {[y, By) = (I*, B*),

i.e., the positive endemic equilibrium, we obtain

By < By + L By -y« L By -y (4514
or OB
which helds for all (I, B) > 0. Substitute B = B*, I =0 and (4.5.14) becomes
0< f(0, B) < f(I", B") - %(I’, BTy I (4.5.15)
Using equations (4.5.2)(4.5.3) and inequality (4.5.15), we obtain
b+vy—ES" = (b+7)— %(I*,B*)S*
NI BY) 0 o py N
b+ fI*, BIx a1’ b+ f(I*, B*)
bN ) T
P+ fU B [f(I B af(I B
> 0 (4.5.16)
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which establishes the result in (4.5.12).

Next, based on the assumption (e}, the function k{7, B) is concave at the point
{I*, B*). Thus

h Oh
h(I,B)y < R{I",B™) + %(F,B*)(I -I")+ g—B(I* B*) B - B*). (4517
Note that A(I*, B*) =0, h(0, 0) = 0. Substitute I = B = 0 into equation {4.5.17)
to obtain '
oh Oh
* * - * » * < . 4.[".1
81“ BIOI" + BBU’B)B <0 (4.5.18)
Since %(I*, B7) <0 due to the assumption {c}, the inequality (4.5.18) yields
. @ I-* B-*
B 2 B+ or )r* > 0. (4.5.19)

Sh ([~ Bv)

Now, substitute the point (I, B) = (O, E), which is in the biologically feasible do-

main of our model, into the inequality {4.5.14} tc obtain

af « OF a7 B7)
( LB+ 35 (1", B TB)

Combining the inequality (4.5.20) and the facts: S*f(I*, B*} = (v + b)I",

g—g(f*, B*) < 0, we obtain

0 < f(0,B) < JU"B) — 3

I*. (4.5.20)

oh .
~RU+y) = B+
8f oh of Oh
- * * Y Ok * # * *®
> aB(I B)SI(I B*)S* — (?I(I B 3B ,B*)S
= PTS5" - EQS", {4.5.21)
which establishes the result in (4.5.13). W

Based on Lemma 8, we are now ready to proceed to (4.5.11).

Lemma 9. At the endemic equilibrium X*, all the four inequalities in ({.5.11)
hold.

Proof.  First, using the inequality (4.5.12), we obtain

ay = F-Q+2b+~—ES"
Ed * 8h * Ed af * *
= I BY) = (I B + 24y = (", B)S®

\%

b+ ) — E(I*’ B*)s*
0. (4.5.22)
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Next, using both results in (4.5.12) and (4.5.13}, wc obtain

ay = V¥ —FQ+ Fb+ Fy—2Qb— Qv +by+ EQS* — PS*T — ES*b
= blb+y—~ ES )+ (~Qb— Qy— PST+ EQS*)+ (Fb+ Fy— FQ — Qb)
> 0. (4.5.23)

Similarly, we have

Cas = —QW — FQb— FQy— Oby + EQS*h — PS*Tb
~ B(-Qb— Gy + EQS' — PS*T) + (—FQb — FOv)
> 0. (4.5.24)

Finally, note that a1 = F - Q +2b+ v — ES* > —Q > 0 and that

(—Q)az — ages = (Q°6+ Q% — EQ*S" + PTQS™) + (FQ* + Q%+ PS*Tb) > 0.
(4.5.25)

It is thus clear to see ajas > apas holds. Il

Therefore, hased on the Routh-Hurwitz stability criterion, we have established

the following result:

Theorem 13. When Ry > 1, the endemic equilibrium of system (4.1.1)-({.1.4}
15 locally asymptotically stable.

I1V.5.2 Bifurcation diagram

Our stability analysis of the DFE and the endemic equilibrium shows a forward
bifurcation with respect to the parameter Hy. The results are summarized by the

following theorem:

Theorem 14.  Under the assumptions (a)-(e), the model system (4.1.1)-({.1.4)

has a forward transcritical bifurcation at Ry =1.

Remark 7. Theorem 14 staies thal for biologically feasible incidence and pathogen
functions, our cholera model does not exhibil backward (or subcritical) bifurcation
[10; 15; 68; 72] and the endemic level is continuously depending on Ry. A value of

Ry slightly cbove one will, regarding long-term dynamacs, only lead fo o low endemic
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Srable endemic eguilibrium

unstable DFE

__________________________

Stable DFE

I'igure 4.2: The bifurcation diagram of I vs. Ry which shows a transcritical bifurcation

at Ag=1.

stale. This has important implication on the prevention gnd intervention sirategies
for cholera, as reducing, and keeping, Ry below one would be sufficient to eradicate

the disease tn the long run.

A bifurcation diagram for [ vs. Rp is sketched in Figure 42. At the DFE, I =0

is stable for Ry < 1 and unstable for Ky > 1. At the endemic equilibrium,
I=H(I) = HO) + H(0) + Q) (4.5.26)

where H(I) is defined in equation (4.4.2) and where

QU = i g:;(to) m (4.5.27)
Since H(0) = 0, A’(0) = Ry, we obtain
| IT=RI+Q(), or Ry=1- @ (4.5.28)
H(0)

I (notice H"(0) < 0),

which is approximately a straight line passing the bifurcation point (Ry, ) = (1, 0}.

Based on equation (4.5.28), when [ is small, fHy =1 —

When I — oo, _d_ID — oo 50 that the endemic equilibrivm curve becomes more and

more horizontal.

IV.6 Examples

Our generalized model {4.1.1)-{4.1.4) can unify many existing cholera models {e.g.,
[11; 20; 22; 60; 63]), so that these different models can be studied and applied
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through a single unified framework. Below we briefly discuss three representative

models. {These three models we discussed a lot in the chapter II1.}
The model of Codeco [11}

Codeco’s model [11] consists of the following ordinary differential equations:

ds

_ 85— 4.6.1
5 n(H — 5) aﬁ_’_BS, {4.6.1}
dl B
ar_ ol 4.6.2
a = Yexp Tt (462
% — el — (mb—nb)B. (4.6.3)

The parameter n denotes the natural human birth/death rate, o the rate of exposure
to contaminated water, x the concentration of V. cholerae in water that vields 50%
chance of catching cholera, r the recovery rate, nb/mb the growth/loss rate of V.
cholerae in the aquatic environment, e the rate of each infected person contributing
to the population of V. cholerve in the aquatic environment. In this model, the
incidence is f{7, B) = an_'_iB and the pathogen function is A(f, B} = el — (mb—nb)B.

Omnly the environment-to-human transmission mede is considered in this formulation.

It can be easily verified that the assumptions (a)-(e) all hold for the system (4.6.1-
4.6.3). Hence, all the analytical results presented so far can be applied to this model.

In particular, the basic reproduction number Ry is determined by equation (4.2.4):

_ N rof L2 :
Ry = P 81(0,0)4-88(0,0)9(0)
Nae
gy +b6)(mb—nb)’ (464)

which agrees with the result obtained in [11].
The model of Mukandavire et al. [60]

This mode] has been discussed and the model is given by (3.1.19-3.1.19}. The inci-
denceis f(I, B) = 68;%+6h1, and h(I, B) = ¢1—46B. Both environment-to-hmuman
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and human-to-human transmission modes are included in this model. It is straight-

forward to verify the assumptions (a)-{e}; in particular,

0 0 00
D*f = and D*h =
—26f,
0 {r+B)? 0 @

are both negative semidefinite for all 7, B > 0. Based on equation {4.2.4), the basic
reproduction number 1s
ﬂ}f

N Be € (
ox{y +b)

Ro = =[m+ i) =

N+ b 5 "{'Jﬁh + gﬁe)-

The same result was obtained in (3.1.24).
The model of Hartley et al. [22]

The model is given in equations (3.1.1-3.1.5).

Here B = [By, By], f(I,B) = Buz8h + Bu St

ket 8B !
I-xB
and W(I,B)— | & X% |
xBu — LBy
The assumptions (a)-(e) can be similarly verified. For instance,
af _ [ Brkn Brur .0
aB (kg + Bu)Y* ' (xp+ Bp)? ’
and
- 0
% = XX s, < 0 (negative definite).
Meanwhile,
(0 0 0]
: —28uk
sz =0 {K-Hifif:is 0 !
=28k
X 0 0 (’{L;ijgl}ljs i

and D?h = 0 are both negative semidefinite for all 7 > 0, B > 0. The basic
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reproduction number for this model is

Ro = [ 5r0.0)+ 5£0.050)]
§/x
By f
-l o] ]
§/0r

- ’yj\‘—:—éb (.'%,BHHX + legL),

which exactly matches the result given in (3.1.17).

A quanlilative comparison of these three models is made by applying each of
them to study the epidemic and endemic cholera dynamics in a hypothetical com-
munity with a total population of N = 10,000. The initial condition is set as
Iy=1, 5(0) =N -1, R= B =90; ie, onec infective initially enters the wholly
susceptible community. The parameter values are based on the published cholera
data in Zimbabwe [54; 60; 84; 85; 86]. Figure 4.3 shows the simulation results of the
infection curves for the three models. The first peak in each curve represents the
cholera outbreak triggered by the initial infection. Among the three, the model of
Hartley et al. shows the highest infection number due to its explicit incorporation
of the hyper-infecticus state of the vibrios, whereas the model of Codeco exhibits
the lowest epidemic value since it only considered the environment-to-human trans-
mission pathway with a less-infectious state of the pathogen. After the first cholera
peak, all the three infection curves decline and show several outbreaks with decay-
ing magnitudes, before they finally rest at their endemic equilibria. The model of
Mukandavire ef ol exhibits a few more epidemic oscillations than the other two
models due to its explicit inclusion of both the environment-to-human and human-
to-human transmission modes which lead to longer epidemic dynamics. We found
the endemic infection equilibria are * = (.88, (.75, 0.92 for the model of Codeco,
that of Mukandavire et ol., and that of Hartley et al., respectively, implying relatively
low endemicity. If we scale up these numbers using the realistic population size in
Zimbabwe (about 12 million), we obtain that the endemic infection numbers would

he about 1056, 900, and 1104, respectively, based on these models predictions.
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Figure 4.3: Simulation results for a hypothetical community with a total population of
N = 10,000, using three different cholera models: (a) the model of Codeco [11]; (b} the
model of Mukandavire et al. [B0]; and (c) the model of Hartley et al. [22]. The initial
condition is J{0) =1, S(0}) = N ~ 1, B = B =(. After the major cholera outbreak (i.e.,
the first peak) caused by the initial infection, each infection curve exhibits several small-
scale epidermic oscillations and finally converges to the endemic equilibrium over time. The
endermic values are I* = (.88, 0.75, 0.92 for the three models, respectively.
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CHAPTER V

GLOBAL ENDEMIC STABILITY

V.1 GGlobal stability in two simplified cases

To prove the global asymptotic stability of the endemic equilibrium, the key is to show
the nou-existence of periodic orbits. This is generally difficult for high-dimensional
model systems, as the classical Poincaré-Bendixson framework [21] is no longer valid
in high dimensions. For some special cases, however, our general model (4.1.1)-(4.1.4)
can be reduced to a two-dimensional autonomous system in 5 and I, and classical

dynamical system theory can be applied. We present two simple examples below.

First, we assume that the incidence f(I, B) = C, where C > 0is a constant. Qur

modei is then reduced to a two-dimensional linear system

%i:bw—w+m& (5.1.1)
%ﬁ: CS — (v+ )L (5.1.2)

In such a case, our assumpfion (a) is not valid so that there is no disease-free equi-
librium. The epidemiological implication is that the pathogen concentrations and/or
the infected numbers are at such a high level that the infection is certain to those

exposed. There is a unique positive endemic equilibrium of the system (5.1.1)(5.1.2):

bN bUN
St = —r d r=—— 5.1.3
crs (C +b)(v +b) (5.13)
It is straightforward to observe that
a o
— (BN - (C+b)S)+ = (CS = (y+ b)) =—(v+20+C) < 0
oS of
holds everywhere in the region
D={(S8 N|5>0,I>0,5+I<N}, (5.1.4)

o that no periodic orbit can exist based on Theorem 2 (with B = 1).

Indeed, since the system (5.1.1-5.1.2) is linear, its exact solution can be easily
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found as
bV BN
— T _ ~ (bt
S0 = Frpt (5(0) —C+b)e ,
bON
1 N —{(C+b) : J—(’r+b)£‘
1 Cri)rp e +hze -
with
c BN bON C BN
b= e0me) RO ey e PO )

It is clear to see that S{t) = S* and I — I* as £ — oo, regardless of the initial values
of 5 and I. Hence, the endemic equilibrium (S*, I") is globally asymptotically
stable.

In the second case, we assume f(f, B) = C1, where € > 0 is a constant. The

original system (4.1.1)-(4.1.4) is then reduced to
ds

= = bN-S)-CIS, (5.1.5)
O = aIs— (e, (5.1.6)

which represents a regular SI model with a normal bilinear incidence. The endemic

equilibrium of this simplified model is

. e YD BN b i

Applying Theorem 2 and setting P(5,1} = 1/1 , we obtain
3] o] b

holds everywhere in D). Hence, there is no periodic solution and the endemic equi-

librium {S*, I'*) is globally asymptotically stable.

V.2 A combined model

Let us consider a combined human-environment epidemiological model with an en-

vironmental component, denoted by B, incorporated into an SIR system. We will
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denoted such a model by SIR-B. Specifically, we study « system of differential equa-

tions in the following form:

% = 4= ST~ RS — S, (5.2.1)
S = BST e + BaS e — (r+ ], (52.2)
%‘? = ¢]— 4B, (5.2.3)
together with the equation for R:
% = ~{—ph. (5.2.4)

Here the total population S + I 4+ R = 1 is assumed to be fixed., The environrmental
component B refers to the population density or concentration of the pathogen. We
note that equation (5.2.4) is not needed in the model analysis, and equations (5.2.1-

5.2.3) constitute a three-dimensional autonomous system.

In this system, the paramecter i denotes the natural human hirth or death rate,
~ denotes the rate of recovery from the disease, ¢ represents the rate of human
contribution to the growth of the pathogen, and & represents the net death rate of
the pathogen in the environment. The coefficients §; and J; represent the confact
rates for the human-environment and human-human interactions, respectively. If
51 = 0, then direct environment-to-lhniman transmission mode is not present and the
model is reduced to a regular SIR form; i.e., B is separated. If, instead, 8, = 0,
then direct human-to-human transmission pathway is eliminated, though the model
is still a coupled system with both human and environmental components. Finally,
the constants oy and a» adjust the appropriate form of the incidence which deter-
mines the rate of new infection. If @y = 0, the corresponding incidence is reduced
to the standard bilinear form based on the mass action law, which is most common
in epidemiological models. If o > 0, then the corresponding incidence represents a
consequence of saturation effects: when the infected number is high, the incidence
rate will respond more slowly than linearly to the increase in 7. Similar meanings
stand for a;. With differing values of a;, as and 81, f, various forms of incidence
rates can be represented in modeling those environment-originated diseases, partic-
ularly in the study of cholera. For example, Capasso and Serio'[T] introduced an

&SI

incidence rate in the form of 5% (with human-to-human transmission mode only)

in modeling the cholera outbreak in the Mediterranean in 1973 [7; 8]. Codeco [11]
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ash
x+B

only}. In addition, Mukandavire et al. [60] included both transmission pathways in
the form of ﬁe% + B,S1.

proposed an incidence form of (with environment-to-himman transmission mode

A study of an epidemiological model more general than system (5.2.1-5.2.3) is

performed in chapter IV, based on which the following result can be directly dertved:

Theorem 15. The basic reproduction number of the model (5.2.1-5.2.3) is

3 5
'Y+,U(62 +613) (:.)25)

When Ry < 1, there is o unigue disease-free equilibrium (DFE) Xy = (1, 0, Q) which
is both locally and globally asymptotically stable; when Ry > 1, the DFE becomes

Ro =

unstable, and there is a unique positive endemic equilibrium X* = (5%, I", B*) which

is locally asymptotically stable.

The global stability of the endemic equilibrium, however, has not been resolved for
the system (5.2.1-5.2.3). Below we will combine the method cf Lyapunov functions

and Volterra-Lyapunov stable matrices to answer this gquestion.
The feasible domain of the model (5.2.1-5.2.3) is
A={(S.1,B)|§>0,1>0,S+1<1,B=>0}
It can be easily verified that A is positively invariant for this system.

Note that we do not need the domain to be bounded and convex, as required by
the methods of monotone flows and geometric approach. We denote the interior of
A by A°.

At the endemic equilibrium X* = (5*, I*, B*), we have
B* I

NS S m—— — ST =10 2.
T Ty ! (5.2.6)
B* I*
S ———— e — I"=10 5.2.
B 1+alB*+5281+a21* (7 +w) , (5.2.7)
£I' — 6B* = 0. (5.2.8)
From equation (5.2.7-5.2.8), we can easily obtain
. B157¢ P25%8
Iy O —
(v + 1) 1+ aB* 14 ol
S* S*4
> 1578 + £ : (5.2.9)

{1+O€IB)(1+C¥13*) (1-!-0:21)(1-‘-0.‘21*)
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Now we construct a Lyapunov function in the usual form ol square sums:
V= wi(S — 8 +uwa{d — IV 4+ ws(B ~ B*)%, (5.2.10)

where wq, wy and wa are positive constants. Then

dv as di dB
= 2w lS — S (] — L - ye 5.2.11
— 2w (S — 8 )dt + 2l — T )dt + 2wa(B — B™) o (5 )
Obviously, when X = X7, % = 0. We aim to show that when X # X~ ‘% < 0

holds everywherc in A°.

Substituting equations (5.2.1-5.2.3) and (5.2.6-5.2.7) into (5.2.11), we obtain

dV B Ba 51
— = 2 - 87— — I —puS+ ———-5'p*
dt e T A s L ey
e
— 5 S*
+1+{1’2I* +'u ]
-61 62 |31
Qo (F — T : B ST —{~ [——5n8
2w I)[l—l-o:lBS +l+agf (v + 1) 1+ o, B
B

— 2 S (v + @)} + 2ws(B — BY)[¢] — 6B — €' + 6B,
1+ C}:QI*

To manipulate the algebra, we add (and then subtract) the expression lf;?B +

ﬁ% into the first hracket, so that all thosc terms can be factored out. Similarly,
we insert and compensate the same expression in the second bracket. As a result, we
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SB B S _ 5*B
l1+mB 14+a0B 1+ B

S5*B
l + (,E'lB

2, (S — 57) [ - B

SI g1t S S*I
- - - 4§ - 8
BT T ml 1ral 1ral M )]
] SR 5+ B* 5B S°B
+2w2““”[5‘(1+a18_1+alB*_1+alB L+ mB
SI 57 S+ S*I

+ﬁ2(1+a21*1+&21*_1+a'21 I)_(’Y—F‘U’)(S_S)]

+2wy(B - BY)[(I - I') — 6(B - BY)]

J 1)

BB Bl o B,S"

2u1(1+a18 1+ ol + )5 - 5) le(l—i—agf)(l—i—agf*)

8,5 '

—~ EWI-I" -2 ' 5 -8B -DB

(=80~ 1) — 20y B (5 - 5B - B)
5B a1 . “o 525"
+2u}2(1+a18 1+CQI)(I ! )(S S ) +2w2[(1+ﬂ21)(1+0’2]*)
515"

—(v+p)(I = I")? + 2w,

Tra BT mB*)(I —I"Y(B - B

+2ué(I — I')(B — B*) — 2w3d(B — B*)?
Y(WA+ ATWhYT,

where Y ={§ - 5*, I — I', B - B*|, W = diag(w,, ws, ws), and

_ BB Bl o #aS e ST
14 A Ttaalf H (1+ad}H{1+apl*} {1+, BY{1+a; B*}
— 818 a2t Aa 5  fa - T\
A= 1+a B I+asf {I+aal){14+asi*) (‘(+ ‘U,) {(1+a1 B)(1+c B*)
0 ¢ -5

(5.2.12)

The global asymptotic stability of X* will be established if we can show the
matrix A defined in equation {5.2.12) is Volterra-Lyapunov stable (see Definition 3)
in A\{X*}. To this end, we will make use of Lemma 3 and 5.

From the equation (5.2.12), we can obtain
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I {(v+p)o - (1+Q1g]){51‘-l-mf")
_ pests _ 8¢ _ F25%4 __ HSTye)
o (i) rmB)IvaiB)  (raal)(T+aal’) (e B)ian 57)
, _ .
—_ — 1 2 ] i -
AT = A (725 + 725 (775 + tragr + )0 Tr B35
(—A‘L—HfB + "‘E“—Hi;)f hffs + lfzalgf + #)¢ 15;?8 + %Ts;+ #lr+ )
Ba5" 4
I e
where
detA = -( Az - + 1) |(r + we fs
Vs - ’ -
1+ B 1+asl (1 + o B) {1+ B)
_ PaS*0 ] _ ( /B Bl )
(1+ aal)(1 + azl*) 1+ B 1+l
[ BLS*E X B:25"0 }
I+ @B+ @B (1+ad)(1+ o0zl

Using the inequality (5.2.9}, it is straightforward to see det A < 0. Now we prove the

following lemma.

Lemma 10.

Let D = —A and E = (—~A)7Y, where A is defined in equalion

(5.2.12}). Then there exists a positive 2 x 2 diagonal matriz W = diag(w, we) such
that WD + (WD)T > 0 and WE + (WE)T > 0.

Proof.

Using the inequality {5.2.9) and the fact detA < 0, we clearly see that the

(1, 1), (2, 2) and (2, 1) entries of A™! are all negative, whereas its (1, 2) entry is

positive. Based on Lemma 3, A-lis Volterra-Lyapunov stable. Hence, there exists a

2% 2 positive diagonal matrix 1%

diag(wy, wy) such that W(F)+(Ej YTWT < 0.

Since £ = (—A)™!, we obtain WE + (ﬁ;E)T > 0. Specifically, we have

WE+ (WE)T -

—detAQ’

where the 2 x 2 positive definite matrix @ is given by

r 18 2578 o Bl \_
2un[(y + p)é - (Far B 140187) (l+azfz)(l+azf‘)] wod (13 p + Thesl)
w [ G187¢ G258 ]
H{T & BY(14w: B7) (T+az N1+ i)
Q fr—
5B fal
w26(1+;13 + 1+er)_
B85 8258 cr S8 Baof
L Tul[(l+rx133(l+ale*) (1+a212)(1+o:21*)] 2w (i T Thogr T 1)
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Meanwhile, we have
WD+ (WD) =P,

where the 2 x 2 matrix P is given by

E 4B Gof 328 o 5B B2l
2w1(1+1x1}3 + 1+2crgf + ‘u) Uy (l+rx21)2{l+r:t2f') wQ( 1+LrLB l+a21)
P =
32 8* 5B g2 f _ B2 5"
w1 (1+Q2I)2{1+ﬂ21'} o w2(1+&18 1+agf) 2w2[(r}/ + JU) (1+02f)(1+a21«)]

Below we show P > 0. In fact, since @ > 0, we have det) > 0. Specifically,

5™ 4]
(14 a1 + aul*) H
8B 81 a5 BaS™ 1

—_ 4 1
Tt B 1tool At eI +axl) {1t aal)(E + cal”)
BaS*

det @ = 52{4w1w2(7 + )]

— 2’1.‘.}1?.1’.."2(

2, B Bal
— 2 _ .2 2
WL[(l—i-agI)(l—i-QgI*)I w2(1+alB+1+a21) }
- {2'10 wod( FiB bal b5 + dunwadp Bi57¢
M Y B 14wl T+ mB) 1+ ;BY) PP e BY (1 + o BT

2 B157¢ 2 2 B£157¢ B25"

.. 2
Tl BT ;B T wl(l—i—a]B)(l—i—alB*)(1+agf)(1+agf*)}
= 6*(det P) — T,

where T is obviously positive, and where

BaS*

det P = 4w1w2(7+u)((1 T o) T ol + 1)
— 2wl /B 5234 BaS™ ~ dww BaS*p
Y Y B T T4 ol (14 a1 + 0" YU+ a1+ o)
y* B I .
P g By

(14 aol){(l + a2I") l+a1B 1+l

Hence, the fact det @ > 0 clearly indicates det P > 0. Note also that the (1,1) entry
of P is positive. We thus obtain P > 0. O

Lemma 11.  The matriz A defined in equation (5.2.12) is Volterra- Lyapunov sta-
ble.

Proof. Based on Lemmas 5 and 10, there exists a positive 3 x 3 diagonal matrix
W such that W{~A4)+ (—A)"WT > 0. Therefore, WA + ATWT < 0. O
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Thus we have established the following theorem:

Theorem 16.  When Ry > 1, the endemic equlibrium of system (5.2.1-5.2.3) 1s
globally asympiotically stable wn A°.

Theorem 17. The endemic equilibrium X* of Mukandovire’s Model (3.1.19-
3.1.28) 1s globally asymptotically siable when Ry > 1.

V.3 Hartley’s Model

The model (5.2.1-5.2.3) is a three-dimensional system. We now consider a modi-
fication of the model (5.2.1-5.2.3) to allow the environmental component B to be
a vector. A representative example is the model proposed by Hartley et al. [22],
presented in {3.1.1-3.1.5). In this section, we will focus our attention on the model
of Hartley et al. [22] to illustrate the global stability analysis in four-dimensional
systems. Similar to Theorem 15, the following theorem summarizes the dynamics

already known for system (3.1.1-3.1.5).

Theorem 18. (see chapter I1T)  The basic reproduction number of the model (3.1.1-
3.1.5) is

~ N& r 8n B
Fo = v+ 5(1'611)( i "51’,61,)‘ (5.3.1)

When Ry < 1, there is o unique disease-free equiltbrium (DFE} Xo = (1, 0, 0} which
w5 both locally and globally asymptobically stable; when Ry > 1, the DFE becomes
unstable, and there 1s a unique positive endemic equilibrium X* = (S*, I*, B*} which

1s locally asympioticelly stable.

Below we will concentrate on the gilobal stability analysis of the endemic equilib-
rium. It can be easily seen that the following feasible domain is positively invariant

for system (3.1.1-3.1.5):

A={(S I, B)|S>0,1>0,S+1<1, By >0, B, >0}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



77

At the endemic equilibrium X* = (S*, I*, B*}, we have
By B

h— 88" —E— — S —f__ —p5* =0, 5.3.2
T B n+ B | (5.3.2)
B:k *
1 it Sr———H__ by =0, 5.3.3
&I —xB, =0, (5.3.4}
xB5 — 0B =10, (5.3.5)
from which we can obtain
BrS™€x . BuSTEdr _ Lo £x
byydp = +- > =4 = 5.3.6
(v +b)xde kLt Br  km+DBy P Q (5:3.6)

where P and Q are defined by
ﬁHS*H,H 1 .BLS*KJL 1

(kg + By)(sg + By) P’ (ke +Bi(ko+Br) @

Now we construct the following Lyapunov function:
V =w (S — SV +wo(I — I")? + ws( By — By + wy(Br — B;)?, (5.3.7)

with positive constants w; , we , wz and wy. Performing similar algebra as before,
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we obtain
%j_ = 2w (S - S*)if + 2un(] - I"‘)% + 2w3( By — B}'})% + 2wa (B, — BE)%
- s e 8 on e
_ﬁH[mHSf%H B ﬁf?gﬁ - ﬁ:j’fgn * Kff’fgﬂ) —HS =)
somii- i B SE S s
rpulonn . By S'Bn | 5B,y )

kg +By kg + By sp+ By kp+ By
+2wy(By — By)l€I = I") — x(By — By)]

+2we(By ~ B})[x(Bx — Byy) ~ 6.(Br. — B})]
B STk

T S A S T Bt vy T )
BH N * S*HH * H #
B T T G Byt By PSS
or BL . S*K;L -
T2up(f - 1 ){.BL[m(S ~5%) - (s 7 B (v + BD) (Bj, — Bu)]

BH S*KJH
+Bp|— (S - §%) -
6H["€H + BH( ) (kg + By )(xp + By)
+2w3é(I — I*)(By - Byy) — 2wsx(Br — By

+2uyx(Br — B1)(By — By) — 2unér(Br — B};)2

(B = Bu)| = (y +5)({ - I")}

ﬁLBL 2 .81,8*}{};
WIK’L—’_BL( : wl(’iL—i‘BE)(ﬁL—i—BL)(S S)BL = By)
Bn By 2 BuS*ku
g S -2 S—57)(Bn - B;
i} Ly -+ B_H( ) wh (,‘{H I B;IJ(H,H + BH)( )( H H)
—2w1b(S— S*)2
2 BB Py sy vouy OS5y, oy

kL + Br, (HL+BE)(RL +- BL)

,BHBH EHS*KH
/= = {I—"5-5" 2
.FiH“f'BH( )] )+ Y en + By)(ku + By)

— 2wy + b1 — I")2 + 2ws&(I — I"Y( By — Biy) — 2wsx(By ~ B;},)2
+2wyx(BL — BL)(By — By) — 2ws0, (B — BE)E
= Y(WA+ ATWHYT, (5.3.8)

+2m (I — I*}(Bg — By)
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where Y =[S — §*, I — I*, By — B}, By — B}, W = diag{wy, ws, ws, w,), and

[ 8:Br  BuBy 0 o S ey o 818 kyp 7
k48 ep+8y (rg+B85) ey +Bu) (sp+Bf MrL+5L)
BeBr | ByBy _( + b) S Kir B8k
kL+Br | xp+Ba v (wa+BL)(reg+8a) {(sr+B7 )k +BL)
A=
0 & -X ]
L 0 0 X —(51, i

(5.3.9)

We can then establish the global asymptotic stability of X™ by proving that the
matrix A defined in equation (5.3.9) is Volterra-Lyapunov stable in A°\{X*}. The
procedure is similar to that described in Section V.2, with the only complication that
A in equation (5.3.9) is a 4 x 4 matrix. It is thus best to carry out the procedure by
the following three steps. We will omit many algebraic details (which are similar to

those in Section V.2}, and only present the sketch of the proof in each step.

Step 1. We show that the matrix U = Al s Volterra-Lyapunov stable.

The 3 x 3 matrix I/ can be written as

~[y+bxd - - %] L4 Z (DB +(v+D)R
1 N 5 X
= ~Txdg —(T'+ b)xdL —6(F+ %)
i —T&or, —(T+b)¢é,  —(T+b)(y+b)ir |
(5.3.10)
where
_ BBy + PuBg
kL + By s+ By
and

detA = XéL("(+b)(T+b)+b(%L+ %) > 0.

Based on Lemma 3, it is easy to observe that the 2 x 2 matrix Uis Volterra-Lyapunov

stable. Thus, there exists a 2 x 2 positive diagonal matrix M = diag(m;, mg) such
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that MU + (MU)T < 0. Let D = —U and E = D! = —U"1. We then have
MD + (ﬁﬁ)f > 0, based on which we are able to show ME + (ME)T > 0 as
well. Henee, Lemma 5 guarantees that there exists a 3 x 3 positive diagonal matrix

M = diag(m,, ma, ma) such that
M(=U)+ (-Uy"M" > 0, (5.3.11)

which immediately yields MU + UTM7T < 0. This establishes that U is Volterra-
Lyapunov stable.

Step 2. We show that the same matrix M defined in (5.3.11) satisfies
M(=A)+ (—4)TMT > 0 (5.3.12)
for the matrix A defined in equation {5.3.9).

The key to establish (5.3.12) is to show that the determinant of M(=A) +
(:Z)TM'T is positive; the other requircments are easier to check. In fact, after

some tedious algebra, we find

det{ (det A)[M(~U) + (—~U)" M)}

— [Txag( +b) + b7 [xdr(y + b) — %‘?— - %H det[M(=A) + (—A)TMT)
8z 5 X 25
— 2mym QbZ(P Q [XéL v+ b) —% —%]—lem Tl’)xr)f,(’y—i—b}( PIC;C)
5 §6r,  &x 2 3
— dinymems ThE = (T + b)[xdr(y+b) — B a] — 6mymamsT gX s Ly +b)
- lemzmsTbcfx—L(“r +8) - 2mymamsThe26, (L + Ly
— dmumemsTHEx 5] Q('r 1 b) — dmymymabEoy 5T +?) [xo, v+ b) - % - %}
o2
— 2mimaTXSL(y + b)Y (Q2 + Qég) 8mlmgrr13TEf5L 0 (T + o}~y +b)
x: 26 ]
— 2mima(T + b)(y +b)(Q2 ey )—%_%y

Since M(—U) + (—UYT M7 > 0 and detA > 0, we have

det{(det A)[M(-U) + (-U)"M7"]} > 0.
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Using the inequality (5.3.6), it is then easy to observe that

det[M(—A) + (“A)"MT] > 0.

Step 8. We show that the matrix A defined in equation (5.3.9) is Volterra-Lyapunov
stable.

Based on Lemma 5 and the results in (5.3.11) and (5.3.12), there exists my >
0 such that for W = diag(wl, w2, w3, wd) with w; = m;(1 < 4 < 4), we have
W(—A)+ (—ATWT > 0; e, WA+ ATWT < 0.

Summarizing the above procedure, we have thus established the following result:

Theorem 19.  When By > 1, the endemic equilibrium of system (3.1.1-8.1.5) s
globally asymptotically stable in A°.

V.4 Numerical results

We now present some numerical simulations to verify the global asymptotic stability
of the endemic equilibria for models analyzed in Section V.2-V.3. We first consider
Codeco’s model {4.6.1-4.6.3), that is a typical three-dimensional example. We first
scale up the total population from 1 to 10,000, and use the same parameter values
(for endemic cholera) as in [11], and conduct numerical simulation to this model. We
find Ry = 1.51 in this case, and the unique positive endemic equilibrium is located
at I* a2 16.98, 5* == 6606. Also, we pick another three-dimensional example which
is Mukandavire's model (3.1.19-3.1.22) with the same parameter values ([or endemic
cholera) as in [60]. We scale up the total population from 1 to 13,228, We find
Ry = 1.23 in this case, and the unique positive endemic equilibrium is located at I* =
1.16, §* = 10732. We illustrate the existence of the unique globally asymptotically
stable endemic equilibrium for both Codeco’s model and Mukandavire's model by
using a phase plane portrait which is a useful tocl to understand the behavior of a
dynarmical system, in Figures 5.1 and 5.2. We pick five different initial conditions
with /(0) = 1, 100, 200, 600, 1000, respectively, and plat these five solution curves
by the phase plane portrait of 7 vs. S in Figure 5.1 and 5.2. We clearly see that all
these five orbits converge to the endemic equilibrium, showing the global asymptotic

stability of the endemic equilibrium.
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Figure 5.1: The phase planc portrait of I vs. § for Codeco’s model with five different
initial conditions. The parameter values are taken from [11]. All the curves converge to
the endemic equilibrium with I* = 16.98, §* == 6606.

Infectious Number

0.98 1 1.02 1.04
Susceptible Number x10°

Figure 5.2: The phase plane portrait of I va. § for Mukandavire’s model with five different

initial conditions. The parameter values are taken from [60]. All the curves converge to

the endemic equilibrium with I* ~= 1.16, §* =~ 10732.

Next, we numerically simulate the model of Hartley et ol. presented in equations
(3.1.1-3.1.5}, to illustrate the results for a typical four-dimensional example. The
total population is again set as 10,000 to match the configuration of the original
model in [22]. Based on the parameter values from [22], we find By ~ 18.83, and

the unique endemic equilibrium is * a 4.33, §* = 534. We pick the same five
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initial conditions as before and plot the phase plane portrait of [ vs. S in Figure
5.3. Although these curves appear to closely follow each other and are not clearly
distinguishable, we do observe a similar pattern to that in Figures 5.1 and 5.2: the
endemic equilibrium attracts all the solution orbits, confirming its global asymptotic
stability. We also note that due to the incorporation of the hyperinfectious state, the
infection level produced by the model of Hartley et al. is extremely high; the peak
value of the epidemic is about 3,600, or 36% of the total population. This can be
explained by the unusually high value of Ry (about 18.83) in this case. Thus, under
this setting, almost every people will be infected, and eventually the majority of the
human population is in the recovered class, R. This model thus best suits those
extremely severe and fast-spreading cholera epidemics, whereas Codeco’s model is

better applied to relatively mild or moderate cholera infections.

4000
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o
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=]

2000t

—_—
o
o
o

Infectious Number

0 2000 4000 6000 8000 10000
Susceptible Nmuber

Figure 5.3: The phase plane portrait of [ vs. S for Hartley's model with five different

initial conditions.
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CHAPTER VI
MODELS WITH CONTROLS

Although cholera is a severe infection, due to vaccination, advanced water treatment
and sanitation practices, which shorten the course of the disease and reduce the
severity of the symptoms, cholera is no longer a major health threat in most countries.
In this chapter, we aim to modify the models by adding some key control terms. First
we will use Codeco’s model (4.6.1-4.6.3) to study the local stability of the DFE and
endemic dynamics under controls. Then we will apply the controls to the generalized
cholera model {4.1.1- 4.1.4). Because the approach to decrive the hasic reproduction
number Ry and the local stability are very similarly to the process described in

chapter III, we will omit some algebra, and only present some important results.

VI.1 Codeco’s model with controls

VI.1.1 The disease-free equilibrium

We modify Codeco’s model (4.6.1-4.6.3) by adding three types of controls: vaccina-
tion, antibiotic and water sanitation. Also we assume some newborns take vaccina-
tion already and only a proportion P of individuals entering the total population are

susceptible. To make the equations simpler, we set m = mb — nb. The equations

become:
% ~ PnH-nS— ;iSB s, (6.1.1)
= -l (6.1.2)
%? = (l—PmmH+ (r-n+ull —nR+vS, (6.1.3)
& = - (mtwB, (6.1.4)

where v denotes the rate of vaceination, u denotes the rate of antibiotic treatment,

# denotes the rate of bacterial death due to water sanitation.

Equations (6.1.1-6.1.4) have a unique disease-free equilibrium (DFE)
PnH Hin+v—-FPn

H 1

T
. 6.1.5
n+v . 0) ( )

n+v
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We denote ¥ = r +u, m = m + w. The Jacobian of the ODE system (6.1.1-6.1.4) is

¥ I | aS K
Tkt U 0 O —~&+m2
B = SK
R+B -r 0 (1?+B]2
{(6.1.6}
4] r+u—mn —n 0
L 0 e 0 —m

After substituting the values for the DFE: § = £rfl g — Hloto=Pn) 7 p

w4y ! n+v

0, the above matrix becomes

[ —n-v 0 0 — bt
= afnfH
0 -7 0 Kin+v)
Jp = (6.1.7)
v r+u—n —n 0
| 0 e 0 —m

The characteristic polynomial of the matrix Jg is

aPnHe

Det (M —Jg) = (A+n+0)(d+n)[(A=nA+m) = e |

The equilibrium (6.1.5) is locally asymptotically stable if and only if all roots of the
above polynomial have negative real parts. Obviously A= —n —v and A = —n are
two negative roots. For the quadratic equation inside the brackets,

aPnHe
M4 A(F + ) + [F— m] —
According to the Routh-Hurwitz criterion, the sullicient and necessary condition for
stability is:
aPnHe

- K(n+v) >0,

which yields

FmK(n+v)

H <
al’ne

(6.1.8)
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Also, this inequality {6.1.8) provides a threshold for the total population (which is
assumed to be completely susceptible initially):

Fmi{n + v)

S, =
aPne

(6.1.9)

When H is below S, , the DFE is stable and no epidemicity occurs. In contrast, if
H is above this critical value, the DFE becomes unstable and any infection entering

the population would persist and lead to an epidemic.

We define the basic reproduction number, Ry, of this model by

N aPne

Ry = — =

—_ 6.1.10
S, K (n + v) ( )

Thus, we have established the result below (similar theorems can be seen in chapter
II):

Theorem 20. The discase-free equilibrium of the model (6.1.1-6.1.4) ts locally
asymptotically stable if Ry < 1, ond unstable if Ry > 1.

It can be easily observed that the basic reproduction number defined in (6.1.10)
is lower in value than that defined in {4.6.4) for the original model, showing the effect

of controls.

VI.1.2 Endemic dynamic
We consider the endemic equilibrium of system (6.1.1-6.1.4) by
X = (s, 1", k", B*)". (6.1.11)

Its components must satisfy

aPnHe — Kim(n + v)

I = 6.1.12
Fe(a +n + v) ’ ( )
FIMK + BY)

s 6.1.13
s abB* ' ( )
Pir— S
R o= (1-pg Lontu s (6.1.14)
T

el*
B = ) 6.1.
— (6.1.15)
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From equation (6.1.9}, it is straightforward to see the endemic equilibrium 7* exists
if and only if
Krmin + v)

aPne

That is, Ky > 1, where Ry is defined in (6.1.10).

H >

We have the following result regarding the local stability of the endemic equilib-

rium.
Theorem 21. When Ry > 1, the positive endemic equilibrium of system (6.1.1-

6.1.4) is locally asymptotically stable.

Proof.  Consider the Jacobian (6.1.7) at the endemic equilibrium. Set -‘,—{%%; =T,

rﬁ%“f—)g =, and T, (7 are all positive. We obtain a Jacobian matrix as
[ T —n—v 0 0 Q]
T —7 0
Jp =
o r+u—mn —n 0
L 0 e 0 —m |

The characteristic polynomial of Jg is
Det (AT — J3) = ()\+n)[(/\—|—n+v+T)(/\+:F)(/\+'ﬁz) (At n+v)Qe|.

Obviously A = —n is one negative root. For the cubic equation inside the brackets,

g

we have
ao)® + oA+ aph faz =0 (6.1.16)
where
ag = 1, (6.1.17)
a = F+m+nt+v+T, (6.1.18)
ay = Fm+nf+nnm+oF +um+T7+Tm— Qe, (6.1.19)
ag = nim+ vFm 4+ TFR — nQe — vle. (6.1.20)
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Based on the Routh-Hurwitz criterion, the sufficient and necessary condition for

stability is:
a1 > 0, ag > 0, ag >0, fi1ay — s > 0. (6121)

Note a; > 0 is obvious because all parameters are positive. From equation (6.2.8-

6.2.11), we can easily obtain

- aS*e 0= aS*Km?
- Km+tel’ ~ (Km+el*)?
Thus,
aS*etml*
FeT _ = = . 1.22
Fri — Qe (Km+e1*)2>0 (6.1.22)

Substitute equation (6.1.22) into equations (6.1.19} and (6.1.20}, a2 > 0 and a3 > 0

are easy to see, Also, we write a1a5 — agas as follows

wmay —agay = F(n+v+T)+ (n+v)fm
+HFr+m)n+tv+TYF+2m+T)

“2m — 7Qe) + (Fm? — mQe) + (TFm — TQe). (6.1.23)

-~

+

Using equation (6.1.22)}, we can obtain the last three terms in equation (6.1.23} are

all positive. Therefore, the sufficient and necessary condition (6.1.21) holds. (]

We now present some numerical simulations to compare the cholera epidemics
with controls (weak controls and strong contrels) and without controls. We assume
P = 0.9. To impose strong controls on the model, we set v = 0.5r, v = 0.5n
and w = 0.5m. Under this setting, By = 0.4. In contrast, if we set u = 0.1r,
v = 0.1n and w = 0.1m, we obtain a weak control model with Ry = 1.03. Figure
6.1 shows the cholera epidemics with weak controls, strong controls and without
controls, respectively. The infection curve with strong controls quickly declines to
0 and the disease dies out, due to Ry < 1. The infectious value of the model with
weak controls is much lower than that of the original model, showing the controls do

weaken the cholera outbreak even though they do not eradicate the outbreak.
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Figure 6.1: The infected population vs. time of Codeco’s model. The three curves exhibits

the epidemics with weak controls, strong controls and without contrels, respectively.
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Figure 6.2: The infected population vs. time of Codeco’s model. The two curves exhibits

the epidemics with weak controls and without controls, respectively.

Figure 6.2 shows the numerical simulation for Codeco’s model and the model
with weak controls for a longer period of time { up to 2,000 weeks). The original
Codeco's model shows several oscillations after the first outbreak, whereas the model
with weak controls, after the first outbreak with lower magnitude, drops to almost

the zero level and stays there all time showing no more cutbreaks are triggered.

V1.2 The generalized cholera model with controls
If we put the same controls (vaccination, antibiotic and water sanitation) on Hartley’s

medel [22] and Mukandavire’s model [60], we can achieve similar results. Next, we

consider the generalized cholera model (4.1.1-4.1.4) with three controls: vaccination,
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antibiotic and water sanitation. The equations become:

ds

= = bN - Sf(,B)—bS -5, (6.2.1)
dl

& = SIUIB)~(y+b)-ul, (6.2.2)
f{g = ~yf —bR+vS + ul, (6.2.3)
dB _

- = MLB), (6.2.4)

where h(/, B) = h(I, B) -~ wB. It can be secn that A satisfies the same assumptions

given in Section IV.1.

Equations {6.2.1-6.2.4) have a unique disease-free equilibrium (DFE)

bf\"— vlN

T
nt+v b4 U) ' (6:25)

Xo={(

Following the sare process as in section IV.2, we find the next generation matrix:

*[20.0) - 20,0(£0.0) F0.0] Ht+o+m(E0.0) %0.0

-1 b-.—'u

e —
YH+E+p

0 0

Its spectral radius p{F'V~!) can be easily found. Therefore, we obtain the basic

reproduction number as

19h

bN foo)(g—i(o,m) 270 o}} (6.2.6)

(v+ b4+ p)b+ v} (O 0) -

Rgz

It’s clear that this value is lower than that defined in (4.2.2) for the original model.

Based on the framework in [80], we immediately obtain the result below

Theorem 22. Let I be defined in equation (6.2.6). The discase-free eguilibrium
of the system (6.2.1)-(6.2.4) is locally asymptotically stable if Ro < 1, end unstable

When Ry > 1, meaning that the controls are not strong enough to eradicate the

epidemic, the discase will persist. Thus we consider the endernic equilibrium

X = (s, 1R, B)". (6.2.7)
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Its components must satisfy

I = , 6.2.8
(v +b+p)b+v+ f(I*, B*} ( )
bN
S* = . 6.2.9
b+v+ f(I*, B*) ( )
g = T ”;‘; RGN (6.2.10)
0 = A(I",B*). (6.2.11)
The Jacobian matrix of the model system (6.2.1)-(6.2.4) is
[ —b— f(I,B)—v -S%(1,B) 0 —52L(1,B) |
f{1,B) SY(I,B)~(v+b+u) 0 Sg(l,B)
Jp = (6.2.12)
v v+ —b 0
I 0 % (1, B) 0 21.B)
For the convenience of algebraic manipulation, we denote
af of - Oh _ Oh
ol * * I * = T * :—I*.B* T:"‘—

1 LN f(I*, B")

91

From the assumptions (b) and (¢}, F >0, E>0, P>0, T >0, whercas @ < 0.
Evaluated at X*, the Jacobian matrix (6.2.12) becomes

[ _F—b-v ~SE 0 —&P
F S*E—(y+b+p) 0 S*P
Jp =
V ¥+ p —b 0
I 0 T 0 Q |

The characteristic polynomial of Jf is

Det(A\T—J3) = A+ [(A+b+F+o)(A+v+b+p)(A—Q)
—(A+b+u)(STEA - S EA+ 5 PT)].
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Obviously A = —b is one negative root. For the cubic egquation inside the brackets,
agA* + a1 A FapA +ay =10 (6.2.13)
where
g = 1, (6.2.14)
a = —Q+y+2b+p+F+uv—85F, (6.2.15)
ay = —YQ=2Q —puQ+by+¥ +bp— FQ+ Py + Fb+ Fu— v
+vy+vb+op+ S"EQ - S'PT -~ bS*E —vS*E, (6.2.16)
@ = ~bQ - 6Q — buQ — F1Q ~ FbQ — FuQ — w1 — vbQ — vi)
+bS*EQ — bS*PT +vS*EQ — vS5* PT. (6.217)

Based on the Routh-Hurwitz criterion, the sufficient and necessary condition for
stability is:
ay > 0, as > 0, az >0, ajae — apas > 0. (6.2.18)
We first establish the following lemma:
Lemma 12. At the endemic equilibrium X7, we have
b+ v+pu—EST = 0, (6.2.19)
—Qb+~v+p) > PTS*—EQS*. (6.2.20)

Proof.  Using equations (6.2.8)(6.2.9), we obtain

g
b+~v+p—EBES = {(b+v+up)— a—?(f’“,B*)S*

bN f(I*, B*) _ ﬁ(f* B bN
b+v+ f(I*,B)|I* A ' “b+u+ f(I*, B*)
bN * £ af * * *
N [b+v+f(f*,B*)][*{f(I’B GI(I’B)I
= 0, (6.2.21)
and
~\ aE’ * "
QO+t = —gp (I B+ v +p)
af * rH a'}_?’ * * * ?_:f * * a_}_?’ * * *
= PTS" - EQS5™. (6.2.22)
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a

Lemma 13. Al the endemic equikbrium X~ , aoll the four inegualifies mn (6.2.18)
hold.

Proof.  First, using the inequality (6.2.19), we obtain

a Q4+y+2+u+F+v-SE

ah’ - £l * 1] af * * #
‘@(I,B)+7+2b+u+f(f,3)+v aI(I,B)S
af * * *
b+ + ) = S, B)S
0. (6.2.23)

~
>
Next, using both results in (6.2.19) and (6.2.20), we obtain

ay = —Q—20Q —puQ+by+ bV +bu— FQ+ Fy+ Fb+ Fu—vQ
= (b+v)b+v+u— ES)+(—Qb— Qv — Qu— PS*T + EQS*)
+{(Fb+ Fy+ Fu—vQ - FQ — bQ)
> 0. (6.2.24)

Similarly, we have
ag = —byQ —¥Q —buQ — FHQ — FbQ — FuQ — vyQ — vbQ — v
85 EQ — bS*PT + vS*EQ — vS*PT
= (b+v)(-Qb—Qy— Qu+ EQS" — PS'T) + (-buQ — F4Q — FbQ — FuQ)
) (6.2.25)

Finally, note that a; > —@Q > 0 and that
(—Q)az —asas = (@*b+ Q*y+ Q*u— EQ*S* + PTQS")
F(FQ? + O + (P + 55" PT 4+ vS* PT)
> 0. (6.2.26)

It is thus clear to see ajas > agag holds. (I

Theorem 23. The endemic equilibrium of the systemn (6.2.1-6.2.4) is locally
asymptoticolly stable if Ry > 1, where Ry is defined in (6.2.6).
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Gur results from these preliminary studies show that incorporation ol control
measures weakens the infection, and may also eradicate the disease provided the
control is strong enough. We note, however, from a practical point of view, that the
use of antibiotics is not a recommended course of action for an outbreak as cholera
will become antibiotic resistant extremely quickly. Oral rehydration therapy is a

cheap and standard treatment without other intervention strategies.
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CHAPTER VII

CONCLUSION AND FUTURE WORK

In this dissertation, we have presented an in-depth mathematical study of several
epidemic cholera models. We have presented three basic mathematical cholera mod-
els including Codeco's model {11] in 2001, Hartley, Morris and Smith's model [22]
in 2006 and Mukandavire, Liao, Wang and Gaff's model ef al. [60] in 2010. We
have formally derived the basic reproduction number Fy by computing the spectral
radius of the next generation matrix, and through a stability analysis which directly
relates By to the stability of the disease-free equilibrium, providing important guide-
lines for the prevention and control strategies on cholera epidemics [23; 14]. We
also have studied the stability property at both the disease-free equilibrium (which
determines the short-term epidemic behavior} and the endemic equilibrium (which
determines the long-term disease dynamics). Moreover, although it is difficult to
construct specific Lyvapunov functions to approach the global stability analysis, we
have incorporated the Volterra-Lyapunov matrix theory into Lyapunov functions to
overcome this challenge, and this method can be applied to general epidemic models.
In another key part of this dissertation, we have presented a new and unified deter-
ministic model, which incorporates a general incidence rate and a general formulation
of the pathogen concentration, to analyze the dynamics of cholera. And also, we have
conducted equilibrium analysis to study the complex epidemic and endemic behavior
of the disease. Finally, we have briefly discussed the dynamics of cholera models with

control measures incorporated.

At the beginning of chapter II, we introduced Hartley’s model [22] where a
hyperinfectious state was incorporated. We recall that the next generation matrix
approach is used to derive the basic repreduction number Ry, and a useful theorem is
established: The disease-free equilibrium of the model (3.1.6) is locally asymptotically
stable if Ry < 1, and unstable if Ry > 1 (see Theorem 4). This theorem appears
frequently. Besides, we are also interested in understanding the stability of the
disease-free equilibrium (DFE) that is directly related to the threshold of disease
transmission. We conducted the stability analysis and applied the Lemma introduced
by Castillo-Chavez et al. [9] to verify the local stability and global stability (sce
Theorem 5).
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The middle part of chapter III is about endemic dynamics. In this section, our
main concern is the stability of an endemic state of the model. Endemic state is
a steady state solution of the model for which the number of infected individuals
stays at a positive level. For Hartley's model [22], Theorems 6 and 7 are obtained
to explain the exislence and local stability of endemic equilibrium. In addition, we
analyzed another model which was proposed by Mukandavire, Liao, Wang and Gaff
et al. [60]. Similarly, Theorem 8 is obtained. Next, we focus on the Zimbabwean
cholera outbreak as a real-world application of Hartley’s model. As we mentioned
before, two important parameters 8, and fr arc hard to determine. We adjusted
these two parameters to match the reported infections in Zimbabwe. The data fitting
is shown in Fig 3.2 and more detailed numerical simulation results for & much longer
period of time (up to 7,000 weeks) for 7, S and R are shown in Figs 3.3 and 3.4. The
results for both epidemic and endemic dynamics arc consistent with the analytical
predictions. The findings in chapter 111 have several implications to the real-world
cholera. Not only can the model well fit the Zimbabwean data, our results also
confirm that the hyperinfectious state plays an important role in the transmission
of the disease, especially for the onset of an epidemic. This point was also carefully
discussed in [22].

In chapter IV, we have prescnted a generalized mathematical cholera model (4.1.1
-4.1.4) under five nccessary assnmptions (see assumption a-e) and conducted an anal-
ysis for the epidemic and endemic dynamics. By introducing general incidence and
pathogen functions, our model (4.1.1-4.1.4) can unily several cholera studies into
a single framework of modeling, simulation and analysis. Thus, the complication
of cholera dynamics lies in the coupling between human hosts and environmental
components which leads to a combined human-environment epidermiological model.
Nonetheless, the basic reproduction number was derived by using the next genera-
tion matrix analysis again. The stability analysis in chapter IV (see Section IV.5)
showed that under biologically feasible conditions, a regular (i.e., forward) transcrit-
ical bifurcation occurs at Ry = 1. Specifically, we have established that for By < 1,
there is a unique DFE which is both locally and globally asymptotically stable; this
equilibrium becomes unstable when Ry > 1. Meanwhile, there is a unique positive
endemic equilibrinm which is locally asymptotically stable when By > 1. Theorem
13 is obtained finally.
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We have to note that it is more difficult to show the global stability. We have
conducted global stability analysis of a class of deterministic epidemiclogical mod-
els which involve both human and environmental components (SIR-B}, constituting
high-dimensional nonlinear systems, by using the method of Lyapunov functions
combined with the theory of Volterra-Lyapunov stable matrices. By incorporating
the Volterra-Lyapunov matrix theory, this method essentially transfers the analysis
from differentiable functions to related matrices. Consequently, this method circum-
vents the (long-standing) difficulty of determining specific coefficient values for the
Lyapunov functions, thus advances this classical approach toward wider and more
successful applications in dynamical systems. The disadvantage, however, of this
method lies in the demand of algebraic and matrix manipulation, especially in the
process of proving Volterra-Lyapunov matrix stability. As can be expected, the im-
plementation of this methed will likely be hindered for epidemiological models with
more complex incidence rates, or those with even higher dimensions, though such
difficulty remains the same for all other existing methods in global stability analy-
sis. As far as the current method is concerned, some symbolic computation software
{such as Mathematica, Maple and Matlab} can be possibly used to leverage some
of the algebraic difficulty. Besides, in this dissertation, in chapter IV, we have only
considered Lyapunov functions of the most common form, i.e., square sums. Other
types of Lyapunov functions, such as those proposed in [35], can be constructed as
well when using the Volterra-Lyapunov matrix analysis. This can possibly improve
the efficiency and enable better implementation of this method. Though this method
has been demonstrated in the application to a pretty general class of epidemiologi-
cal models, it is notl clear at present what properties, in precise terms, a dynamical
system needs to have to ensure the success of this method. Thus, like all other ap-
proaches, this method works well for some (or many) types of dynamical systems but
may noct for other types. A general sufficient condition for the applicability of this

method would be worth exploring, and, if found, would provide useful guidelines.

It remains to show the global asymptotic stability for the endemic equilibrium
of our cholera model {4.1.1-4.1.4). This is generally difficult for high-dimensional
nonlinear systems, such as ours in (4.1.1}-(4.1.4) no matter we use the classic
Lyapunov functions or the approach we used in chapter V. Quite a few efforts
[18; 19; 38; 55; T0; 73, 75| have been devoted to extend the classical Poincaré-

Bendixson framework {21] to high-dimensional systems, using theory of monotone
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flows, competitive systems, and Lipschitz manifolds, etc., though such extensions are
in general highly nontrivial. Finally, in a scrics of papers [42; 44; 45; 43], M.Y. Li and
his co-workers analyzed the global stability of high-dimensional endemic equilibria
based on the theory of monotone dynamical systems and geometric approaches. Sim-
ilar work of epidemiclogical global dynamics has also been conducted in [40; 58; 83].
These studies provide useful directions for our future work on the global endemic

stability of the cholera model.

In addition to the analysis, the cholera model (4.1.1-4.1.4} can be applied in a
number of ways. For example, climatic impacts (such as rainfall, monsoon, flood,
drought, and water temperaturc) on cholera epidemics [32; 51] can be studied by in-
corporating seasonally variational factors into the incidence function f. Meanwhile,
scveral recent studies [17; 28; 62] have suggested that cholera dynamics is closely
related to the prevalence of bacteriophages in the environment; the effects of those
vibriophages on cholera can be easily added to the environmental function b in our
model. Furthermore, prevention and intervention strategies, such as vaccination,
water sanitation, hydration therapy and antibiotic treatment, can be naturally rep-
resented by modifying the two functions f and h in our model, so as to seek possible
optimal control strategics [37] against cholera cutbreaks. We note a recent work by
Neilan, Schaefer, Gaff ef al. [62] on the optimal control study of cholera dynamics,

which provides useful direction for cur future study.

All numerical experiments in this dissertation were done with the Matlab program

and they were run on a personal computer with 2.0GHz CPU and 4 GB memory.
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