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ABSTRACT

A SOLUTION OF THE HEAT EQUATION WITH THE
DISCONTINUOUS GALERKIN METHOD USING A
MULTILEVEL CALCULATION METHOD THAT
UTILIZES A MULTIRESOLUTION WAVELET BASIS

Robert Gregory Brown
Old Dominion University, 2010
Director: Dr. Richard Noren

A numerical method to solve the parabolic problem is developed that utilizes the Dis-
continnous Galerkin Method for space and time discretization. A multilevel method
is emploved in the space variable. It is shown that use of this process yields the
same level of accuracy as the standard Discontinuous Galerkin Methed for the heat
equation, but with cheaper computational cost. The results arc demonstrated using

a standard one-dimensional homogeneous heat problem.
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CHAPTER I
INTRODUCTION

Many excellent discrete schemes for the parabolic problem, such as the standard
Galerkin method, are derived by first discretizing in the spatial variable using the
finite element method, which produces a system of ordinary diffcrential equations
with respect to the time variable, and then applying one of the many finite difference
time stepping methods to this system, resulting in a fully discrete system and the
resulting solution. One characteristic of these schemes is that it can be enmbersome
to alter the size of the time steps in the middle of the process; also there may be
stability issues as well, depending on the choice of finite difference method used for
the time discretization. A method to circumvent these difficulties is to apply the
Galerkin finite element method in both spatial and time variables, and one such
scheme that utilizes this strategy is known as the Discontinuous Galerkin Method.
This method treats the space and time variables in a similar way, and allows the
spatial grid mesh as well as the time steps to be varied as necessary. Such a scheme
is advantageous for parabolic problems as it allows small time steps in transients
and then larger time steps as the exact solution becomes smoother. This will allow
more efficient computation. The approximate solution sought will be a piecewise
polynomial in the space variable which will not be required to be continuous at the
nodes of the time partition.

The Discontinuous Galerkin Method was introduced in 1981 for ordinary differ-
ential equations by M. Delfour, W. Hager, and F. Trochu [8]. Application to partial
differential equations appeared iﬂ works such as [9] by P. Jamet. Major contributors
in the area of parabolic problems are Kenneth Eriksson and Claes Johnson, whose
works are too numerous to mention; see [7] as a good example of their work. Eriks-
son and Johnson are especially noteworthy as one of the error estimates found in [7]
served as motivation for the cssential error estimates of this thesis. Another major
contributor is Vidar Thomee, see [4] and references therein. This source provides not
only an extremely comprchensive analysis of the Discontinuous Galerkin Method,
but a very complete description of parabolic problem solutions by Galerkin finitc
element methods. It provided miuch of the background material for this thesis. Two
additional works that also deserve mention are [11] by Beatrice Riviare and [12] by

Jan 8. Hesthaven and Tim Warburton.



Since the Discontinuous Galerkin Method requires solution of large scale linear
systems, a multilevel augmentation method will provide a way to ease the computa-
tional cost. This method is based on direct sum decompositions of the range space
of the operator and the solution space of the operator equation, along with a ma-
trix splitting scheme. The net effect will be to reduce the task of solving a large
linear systemn to that of solving several linear systems of smaller sizes, thus cutting
computation costs, and it is demonstrated in this thesis. The papers [1], [2], and [3]
by Zhongying Chen, Bin Wi, Yuesheng Xu, and Charles Micchelli were essential in
this area, providing much of the framework for the multilevel method utilized in this
thesis.

However, for the multilevel method to function correctly, we need a good, mul-
tiresolutional basis, and that is the role of the multiscale orthonormal wavelet bascs
in Sobolev spaces. Further, these bases will produce sparsec matrices in the irnple-
mentations. Again, the various papers such as [2], and [3] by Zhongying Chen, Bin
Wu, and Yuesheng Xu, provide excellent analysis as well as efficient notation for the
kind of wavclet bases used in this work. _

This thesis provides a numerical scheme for approximating the solution of the
parabolic problem using a coarse grid, rather than a fine grid, at a lower computa-
tional cost, while at the same time preserving the accuracy of the traditional fine
grid, higher cost Discontinuous Galerkin Method. It does this by combining the Dis-
continuous Galerkin Method with Multilevel Augmentation Method to produce what
in effect is an approximate solution to the approximate solution of the problem. We
prove the convergence rate of the multilevel Discontinuous Galerkin Method solution
is exactly the same as the conventional Discontinuous Galerkin Method solution.
We also prove the computational costs are considerably less with this method. Fi-
nally, we demonstrate these features with several numerical examples. While these
demonstrations are performed using simple one-dimensional problems, the methods
introduced in this paper should be able to be generalized in the future to higher
dimensions through the use of higher dimensional wavelet bases, and thus become
applicable to regions that are thin bodies, such as the wing panels of an airplane, or
the hull panels of a spacecraft.

As many actual applications present solutions with weak singularities, special
time and spatial discretization schemes are needed to obtain good numerical solu-

tions, and various contributors to this arca of study include [6] by Hideaki Kaneko,



Kim 8. Bey, and Gene J. W. Hou, [7] by Kenneth Eriksson, and Claes Johnson, and
[10] by Dominik Schotzau and Christoph Schwab. The capacity of the Discontinu-
ous Galerkin Method to alter time and space grid resolutions in midstream is quite
beneficial here, allowing us to use fine grids during transients, and coarse grids when
the solutions have smoothed, altering them as needed from time step to time step.
We introduce a new error estimate which is essentially a multilevel version of the
time step and grid mesh sizing crror estimate detailed by Kaneko, Bey, and Hou in
[6]. It shows the accuracy of the error estimate of [6] remains the same when the
multilevel method is used to enhance the computational efficiency. As before, we
provide numerical demonstrations of these results.

This paper is organized into seven parts, including Chapter I, the introduction.
In Chapter II, the parabolic problem and the Discoutinuous Galerkin Method are
developed, along with a multilevel augmentation method. In conjunction with the
multilevel method, a multiscale orthonomal wavelet basis is discussed, and the specific
basis used in the implementations is constructed. In Chapter IlI, these various
notions are then blended together as one method, and applied to the basic parabolic
problem. New convergence results and error estimates, refined and enhanced from
existing multilevel convergence and error results, are then developed in Chapter IV.
Further, the main result of Chaf)ter IV, Theorem 4.2, is shown to apply under two
different sets of hypotheses. One set, based on the results of (3] by Chen, Wu, and
Xu, requires the operator equation to have a uniformly bounded inverse. The other
set of hypotheses, imtroduced in this thesis, allows the norm of the same inverse to
go to infinity, which is an intractable situation for the requirements of [3]. Thus, to
provide versatility to the method developed here as well as extend the result of [3], we
prove both versions of the theorem. Special time and spatial discretizations from 6],
designed to treat difficult initial conditions, are described in Chapter V, along with
a new error cstimate in the form of Theorem 5.5. As before, we show this new result
applies under the same two different sets of hypotheses used to prove Theorem 4.2.
These concepts are implemented in Chapter VI, where various numerical experiments
are outlined and the results tabulated. Finally, some concluding remarks, potential

generalizations and possible future projects are discussed in Chapter VIL.



CHAPTER I1

PRELIMINARIES

1II.1 THE PARABOLIC PROBLEM
We consider solving the standard parabolic problem of finding % such that
u{z,t) — Aul(z,t) = flz,t), z€Q, (>0, (1)
u(z,t) =0, €I, t>0,

w(x,0) = upg(x), z €9,

where Q is a domain in R? with smooth boundary 89, wu, denotes du/dt, A =
):le &?/0x? is the Laplacian, and the functions f and wo are given data. For
the spatial discretization of this problem with respect to the space variable z =
(1,40, -, xq), let L be the class of all finite element discretizations (b, T, .5) satis-

fving the following conditions:

1. h is a positive function in CY{§2) such that |VA{z) < ) for all z € Q and for
some A > 0. '

2. T = {Qg} is a set of closed triangular subdomains of 2 defining a partition of

 into triangular elements 2, of diameter iy such that
Qr
for all Q € T, and associated with the function A through
Cgh,K S h(I) S hK (3)
for all z € Qx, g € T where ¢; > 0,0 > 0 are positive constants.

3. § is the set of all continuonus functions on £ which are polynomials of order »

in x for x € Qg for each Q) € T and vanish on 0.

We assume the triangulation is such that the intersection of any two closed tri-
angular elements is either empty, 2 common face, or a common vertex of the two.
Next, we discuss the Discontinuous Galerkin Method, which will be used for the

time discretization of (1).



1.2 THE DISCONTINUOUS GALERKIN METHOD

To introduce the Discontinuous Galerkin Method we utilize much of the discussion
in [4], First, we will write the parabolic problem (1} in its weak form by multiplying
both sides of {1) by a function w € HJ(Q), that is, the functions w with Vw = grad w

in Ly(0) and which vanish on 89, and integrate over  to obtain

where
(u,w) == / uw da.
Q

Using Green’s Formula, given by

/Q(Au)w de = /aQ(Vu)w -n ds — ‘/Q(V*u.- -Vw) de,

with [5o{Vu)w - n ds = 0 due to the specified boundary conditions, we obtain the

weak form
(g, w) + (Vu, Vi) = (f,w) for w € HF(S),

where
du dw
(Vu, Vur) = f
Z da; 6353
Next we integrate both sides of the last equation with respect to time t over a

fixed interval [0, {x] to obtain the equation

f:w{(utaw) + (Vu,Vw)} dt = /utN(f,w) di

Note that the exact solution of the parabolic problem satisfies this last equation as

well. Now, integration of the first term of the last equation by parts gives us
¢ £y
/ N{—(u;wt) + (Vu, V) } dt = (ug, w(0)) + A " (f,w) dt, (4)
0

where the assumption w(#y) = 0 is made so the term (u”w(ty)) in the integration
by parts will vanish, per the procedure in [4], due to the eventual decay of w(z,t) as
t — oo. We discretize in time by partitioning the time interval in ¢ not necessarily
uniform fashion as

D=ty <t <l < - <IN

and let
In = (tn—lstn]: kn 1=ty — tn1



for m =1,---, N. Further, let k := max{ky, ks,---,kn}. For a given positive integer
g, we will be looking for an approximate solution to the weak form (4} of the parabolic
problem (1) which reduces to a polynomial of degree at most ¢ in t on each subinterval

I, with coefficients in Hg(€2), or equivalently, a polynomial in the space
Sp:={v:[0,00) — Hy();v|p, € B(L,), n=1,---,N}

where
P{1,} = {u(t) th}jtj v € HO(Q j=0,---,g}

Note that these functions are allowed to he discontinuous at the nodal points £, but
will be taken to be continuous from the left there. Further, note that ©(0) has to be
specified separately for ¢ € S since 0 is not in [y, and we write S7 for the restrictions
to I, of the functions in S;.

For notational convenience, we write

w” = wlt,), wh = hm+ w(t), W™= Jim_w(t)

for any function w.
Now, replace u in the weak formulation (4) by a function U/ € Sy and integrate
by parts on each subinterval I, to obtain for the first term of the left side of {4), with

v* = u(t,) and v =0,
—/(:N(U,vt) at = ”E{( e f(Ur v) di}
_ / (U, t)dt—kZ( L) (U ), ve S (5)

Here [U/],, :== U™* —U™ denotes the jump of U/ at ¢,, and U, is the piecewise polynomial
of degree n — 1 which agrees with dU//dt on each subinterval I,,. In particular, for
the case g = 0), we have [/; = (), so the integrand vanishes.

With the first term of the left side of the weak formulation thus modified, the
Discontinuous Galerkin Method is defined as follows: Find U7 € 5} such that

/otm{(Uz,v)wL(Vu,Vv)}dt+NZ_1([U]na’Un’ 00 = (004 [0
(6)

for all v € 5;.
Since a function v in Sy is not required to be continuous at ¢, we may choose

its values on the the different time intervals independently, and so by choosing v to



vanish outside the the time interval I,, we reduce (6) to one equation for each time
interval [, as in [4]. This results in the the following problem: For n =1,2,--- /N,
find U™ € S such that

‘/In{(UglaU)-i-(VU;Vu)} dH([U]nml’Un_H):/fn(f"”) @

for all v € S7, where U° := uq since ¢y is not in /3. This shows that the discrete
solution is independent of the choice of the final nodal point {x. Further, it can be
shown that the exact solution of (1) also satisfies (7}.

For the spatial discretization, that is, discretization in the space Hj(Q), let M &
{0,1,2,---} and zp, m = 0,1,---,2¥ denote the spatial knots. We will use linear
splines on £, although splines of any order may be employed. At each time step we

will approximate u(x,t,) by

o

bm(T) = U(:B? t'n) = Zg:l(t)(f)!(i'), n=12--- :i\r'
i=0

For simplicity of notation, we write U™ ;= U"(x) = U(x,1,). Next, let Xps be the
finite dimensional subspacc of H3(f?) spanned by these splines. Equation (7) may

now be stated as follows: Forn =1,2,..-, N, given /"1~ find U" € 8%, where
St i ={v:[0,00) = Xpsvlr, € Pug(dy), n=1,-+ N}

with .
PMQ(IR) = {’L‘(t) = Z vj-tj LUy E.XM, _}' = U? L ?Q}

=0
such that

/; {(U, v) + (VU, Vo)) dt + (U0t o bty = / (f,v) dt + (U1 o™ 1) (8)

ddn

for all v € Pry(ly), where U™ = ug.

For the discretization of the space JI}{Q) with = [0,1], denote by ¢, (z) the
spline over Q,,, = [Tm_1, Zpmpr] for m = 1,2, -+ 2Y —1. Also, denote by ¢o(x), ¢on ()
the splines over [zg, x1] and [zem_q, Ty, respectively. Lét Xar be the space of these
piccewise lincar splines on 2 = (0,1) with breakpoints 0 = 2o < x3 < - < Zom =1
and Ay, = mMaXjcpcom [Cme1 — Tl It follows that X, is a finite dimensional
subspace of Hg(Q).



From [7] we have the following a priori estimate for the Discontinuous Galerkin
Method. Much of the following discussion is paraphrased from [6]. We will utilize
this estimate in Chapter [V for the proof of Theorem 4.2.

Theorem 2.1. {Eriksson and Johnson [7]). Let v be the solution of (1} and U,
that of (8). Assume that X, ) C X, for all positive integers m and k, < ~kyy for
all n and for some v > (0. Then there exists a constant C depending only on ¢; and
¢a from (2) and (8), respectively from above, such that forg =0,1, and N = 1,2, - -,
we have

s~ Unnllz < CLiv s Eongn ()

where
tw 1
Ly = UOg(?{:—) + 1)2
)‘\r
and
. : ( ] v
Enn(w) = min Kl 15, + [F2,, D%,
with uf") = uy, w¥ = uy and ||uls, = maxer, [u ()]
The term

. i g
Jin k3]l

describes the error associated with the time discretization. If ||ul ! |z, is bounded for
each n and § = 1,2, then the Discontinuous Galerkin Method is jth order accurate
in time.
The term
152, D%l

describes the spatial discretization error and has second order due to the use of linear
splines defining the space X,,. From before, we have h;, := max, ¢pm<on {Lin—1 — T,
but since the spatial grid mesh may be varied from time step to time step when the
time steps are not uniformly spaced, we use of the double subscript on h,,, to dencte
this fact.

Next we look at some specific forms of equation (8). We will use the notation

[a'-éj Jmxn

to indicate the matrix consisting of m rows and n columns with individual entries

aij,forlﬁigm,lgjgn.



For the case ¢ = 0, where v(t) is plecewise constant in time, with
Puol(n) := {v(t) = v : vo € Xu},

we have £U =0 and U = U™ = U* " 50 (8) reduces to the modified backward
Euler Method

(U ) + k(YU Vo) = [ (f)dt+ (U™ 0), v € Puoll), ()

or
U" — b, AU = U +/j £() dt

as in [4], page 183. The f™ = f(t,) occurring in the standard backward Euler

Method, as detailed in [4], page 166, has been replaced by an average of [ over

the time interval I,,, resultlng,, in the modified version. With U” = 22)‘05"@1( ) for
scalars £F, i = 0,1,2,---,2% and n = 1,2,-- -, N, equation {9) takes the form

oM

Zsﬂ 606+ ko VO = | i)+ g 6nd)  (10)

for j =0,1,2,---,2¥, where €' is known. This system of equations may be written
in matrix form as
ATy = Ty
where
Ar = agles iy xevt,
ai; = ($s, &) + kn (Vs Vi),

Wy = [E?](‘ZM+1)><1?

n .
7M = [fj](‘z”+1)x17
oi

y= [ (et a7 w08,)
For the case of ¢ = 1, where v(f) is plecewise linear in time, with
PMI( = {v(f)—vg-i-vlt: Yo, Vi E)(M},

we have

- t—tp_1-m
Ulp, =¢" (=) + 9" ()



10

on the interval /,,, and obtain the following system from (8):

(8" ,0) + k(VF, V0) + (@0) 4 SkalVF, 0 = (U0 + [ (o,

Fe Lo o) S (v vy = L e "
3 (V' V) £ 507 0) 4 gk(VE. V) = o [ (6= 6)(f. )t

for v,w € Py (1,). With

2\-1’

oM
Z&“’”@(m), Vie) = & dilw),

for scalars f;_f””: 5?‘”, where i = 0,1,2,-++,2M n=1,2--- N, and

bt =g, e Yt
_the last system takes the form
M 1
Z&f,ﬂ [((351 (rf)_,f) (VGE' véj + Z éw,n un ‘f)‘;) + §kn(v¢t~ vé‘;)]
i=0

oM

= [ (00t + TIE™ 6" 6ugs)y 5=0,100,2

gid L

Zg“ kn(Vi, V) +Z£"”" (61,05) + fmn(Vég V)]
=0

= k_/r (t — to)(f{0), @5)dt, §=0,1,.--,2M

This may be written in matrix form as

—fn

ARI&W + By fM = fu

Cnfw + Dy M _QE}

or oo =
—dn n
l W B || € :FM]
Cu D ?ﬁ;ﬁ Ty
where

Aly = laglovenycesi gy, @ = (@, 85) + ka(Vigy, V),
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1 . .
BE{ = [bij](2M+l)><(2M+l}r bt'j = ((fﬁﬁ': @j) + §k‘?l(v@-’:! v@})*

" 1
CM = [Cij](QM—i-l)x{ZM-i-l)a Cij = §kn(v<.'5ia v¢j)a

n 1 1
Dy = [di)amepiyn@iny,  dij = 5(@, $;) + gkn(vfbn Vs,
S én o —r¥n W,
f Mo E? :| E g M = |i§:‘ n] »
(28 +1}x1 (2M 41y 1

2 M

Foi= Blawanm, f= [ (Foddt+ X [+ (06,
» =0

" 1 .
?JM = [93'](2"‘”+1)x11 g4y = k‘_ [I (t - tﬂ-—l)(f? G)j')dt

' -
One advantage of the Discontinuous Galerkin Method is that the size of the time
steps may be arbitrarily determined with no significant changes to the method, except
possibly for a time-dependent change in the spatial mesh. This will be discussed later
in Chapter V, when we look at parabolic problems with initial conditions that are
incompatible with the prescribed homogeneous boundary conditions.
Next we discuss the multilevel calculation method, which is another essential part

of this thesis. Most of the following information is taken from [3].

II.3 THE MULTILEVEL METHOD

I1.3.1 Basics

To describe the general setup of the multilevel calculation method, we consider the

basic operator equation

Au=f (11)
where X and Y are Banach spaces, A: X — Y is a bounded linear opcrator, f € YV
is assumed, and u € X is the assumed unique solution that is to be determined.

We need two sequences {X,,} and {¥,,}, m € My = {0,1,2,---} of nested, finite

dimensional subspaces of X and Y, respectivcly, with

Xm(;Xm-i-l} m C MU: U Xm__’Xr

me J'L’fO

}r'm. g Ym+13 m E JIlf[):l U Y:«n. = Y

e My
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The nesting of these spaces implies there exists subspaces W,y of X, 41 and Zinp

of ¥,.+1, respectively, such that
K1 = Xin @ Wit1, Yma1 = Yoo @ Zn1, m € M.

Further, we need d,, := dim(X,,) = dim(Yy,.), m € {0,1,2,---}. Now, assume the

equation (11} has the approximate operator equation

Apily, = fm (12)

where A, 1 X — Y I8 an approximate operator of 4, w,, € X,, is the sclution
to (12} from X,,, and f,, € Y,, is an approximation of f. We identify the vector
lgo, 1] € X ® Wintq with the sum go+g; € X, & Wiayp. Likewise, we identify the
vector {go, ¢1]T € Y, ® Z,,41 with the sum go+ g1 € Vi & Z,qq. With this notation,
we describe the multilevel method for solving the operator equation (12) as a special
case of the procedure detailed in [3]. With m = & + 1, the last equation takes the
form

A1+ = Jupi- (13)

We write the solution us, € Xj4) to this equation as
Upyl = Upy + Uk (14)

for ugg € Xy and v € Wyyy. Note that ugyy is identified with ux(1) := [ugo, ve1]”,
per the notation of {3]. We refer to the solution of equation (13) as the (k + 1) level
solution. The basic idea of the multilevel method is to obtain an approximation of
the {k + 1) level solution from the kfh level solution in X3 and a correction from
Wist.

Now, define the operators Frpi1 @ Wip1 — Yi, Grrix © X — Zpgp1, and

Hivr gy @ Wi — Zk+1,' so the operator A, is identified as the matrix of op-

A ::[ A Fon ] (15)

Gk.+1._k ‘(fk-i-],k-i-l

erators

Equation (13) is now equivalent to

Agaui(l) = frer. (16)

Now we split the operator A, into the sum of two operators By : Xj — Yea

and Ck,l : X1 — Yia, that is,

Apr = B+ Crp (17)
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where
A F;
Bk,l o k k.k+1 (18)
0 Hipiah1
and
: 0 0
Ck,l = ' (19)
Grrrpe O
such that
Ayr Fr. Ay E, 0 0
Ak,l _ k ko k41 _ k kh4L + _ Bk,l + O.R:_.l‘
Grrie Hipipa 0 Hppipen Grtie
Thus cquation (16) becomes
Brau(l) = frorr — Crrun(1). . (20)

Rather than solving equation (20} directly, we use the multilevel method detailed
in the algorithm below to approximate the solution of (20). That is, we find an
approximation w1 to the approximate solution ug4q.

Next we describe the algorithm for the multilevel method.
Multilevel Algorithm

Step 1 Solve the equation
Ak = fo (21)
exactly, obtaining the kth level solution uy, € Xj.

Step 2 Augment ug by setting

- Uk
#,1 0

and calculate the matrices Fi a1, Gry1p, and Hippr i1

Step 3 Solve uy 1 € Xg4y where

Uk 0
Ug =
Vk,1

Bravgy = fra1r — Cratiea. (22)

from the equation
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To be more specific, given the known solution uy of Agur = fi, we solve the

matrix equation

A Fepn ko | _ e | 0 0 U

0 Hk+1,k+1 Uk gr Gk+1,k 0 0
for [TLk,o,t’k?l]T, where fr41 1= [fk,gle. In practical terms, this means we first solve
the system

Hip1xn1k1 = gk — Grp i (23)

for v 1, then use this solution to solve the system
Artko = fo — Fuper1vea (24)

for ugo. Then we set ug) 1= Uip + Uk, 50 Up41 = Uk
The multilevel method is basically a one step predictor-correction method to
calculate an approximation to ug41, Using ury = ko + vk, as the approximation to

Upt-1-

I1.3.2 Error Estimate of the Multilevel Method

In this scction we examine an error estimate for the multilevel method from [3].
Most of this discussion is paraphrased from [3]. For m = 0,1,2,---, let E,; denotc

the approximation error in the space X, for u € X, namely,
Epi=inf{|lu—v|l v e Xn}.

A sequence of nonnegative numbers ~,, m = 0,1,2,---, is called a majorization
sequence of E,, if v, > F,, m = 0,1,2,---, and there exists a positive integer My
and a positive constant o such that for m > Ay, "f:—?:l > 0.

The following theorem from [3] gives an error estimate for the multilevel method.
Theorem 2.2. (Chen, Wu and Xu [3]). Suppose

1. There exists a posstive integer My and a positive constant a such that for m >
My,
A <ot

T

2. The limit

lim ||Cppall =0
—00

holds uniformiy for m=1.2,---.
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3. There exists a positive integer My and a positive constant p such that for m >

My and for the solution ., of equation {12), we have

|t — th || < pEm.

Let uw € X be the solution of equation (11) and v, m = 0,1,2,--- a majorization

sequence of . Then there exists a positive integer M such that for m > M,
lt = il < (2 + LYot
where b, 1 18 the solution of (22).

Theorem 2.2 shows that under the assumptions listed, the multilevel solution w,

approximates the exact solution « at an order comparable to 1.

11.3.3 Cost Advantages

The advantage of the multilevel method is the cheaper computational cost incurred
in solving several smallcr size systems rather than a single system of a larger size.
Specifically, to solve the system (13), we must solve a system of size dr,1 at an
approximate cost of O(d3,,). Rather than do this, the multilevel method solves the
system (21} of size di, obtaining the coarse level solution #;. Then, using wuyg, it
solves the system (23) of size dg41 — di, obtaining vi;. Finally, using vy, it solves
the system (24) of size di, obtaining uxg. Then it uses uy, 1= iy + vk1 as an
approximation to the approximate solution ug.;. The cost of solving these systems
is approximately O(d}) + O((dr11 — di)®)- Even with more systems to solve, the
smaller size of the systems will save computational time and effort, especially for
high resolution level approximations.

We will discuss the specific savings in more detail in the application section,
and then demonstrate these savings with the various numerical experiments in the
implementation section.

For this method to work and provide good convergence characteristics, we need
bases for X3, Vi, Zk,. and Wy, with multiresolutional capability, and for this we

employ what we call the wavelet basis, which will be described next.
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I1.4 THE MULTISCALE ORTHONORMAL WAVELET BASIS

I1.4.1 Generalities

Most of this section is paraphrased from [2|. Here we assemble the basic facts and
structure of multiscale orthonormal wavelet bases for the Sobolev space HZ(0,1) of

functions u that satisfy the homogeneous boundary conditions
W(0) =1 =0, je€Z (25)

where Z4:={0,1,2,---,d — 1} for a fixed positive integer d.

First, the given boundary conditions enable us to define the inner product as

1
(1, v)g = f u D ()P (2) de, w,v e HE0,1)
]

and norm

[vlg =/ {v,v)e, v € HE0,1)

asin [2]. Let k£ > 2d and g > 1 be fixed positive integers. For m =0,1,2, .-, denote

by X.. the subspace of HZ(0,1) whose elements are piecewise polynomials of order
k with knots j/pu™, for j — 1 € Z,m_;. We have the property of nestedness of the
subspaces, that is,

Xm—l C Xm

for m = 1,2, --. The dimension of X,, is
dim X,, = (k — d)u™ — d.

Note that Xj is the subspace of polynomials of order & satisfying the homogeneous
boundary conditions {25}, and when k = 2d, we have Xo = {0}. When k > 2d, we
have

Xo = span{z**(1 —z)*: j € Zy_2a}-

Next, we will look at the orthogonal decomposition of the space X, in the sense
of the inner product {-,-},4. For notation, we let 5y © Sy denote the direct sum of S;
and Sy with the property that for any v € 51, v € 5, we have {(u,v)y = 0. Since
X1 C X, for each m, let W,,, be the orthogonal complement of X, ; in X,,, that
is,

Xm = Am_1 D va-
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This leads to
Xm :X0® Vl’jl G)"VQ@WSEB@I’V,H

The dimension of W,, is given by
w(m) := dim W, = dim X,, — dim Xp,_1 = (k — d)}{pe — ™.

Once W is determined, the spaces W, can be constructed in a recursive fashion. To
describe the construction, we use the family of affine mappings ©,, := {¢. 1 e € Z,}
with

delz) == al : 8, e € Z,.

These mappings subdivide {0, 1] into the necessary subintervals associated with each

space X,;. Associated with these afline mappings we define the family of operators
T.: L*[0,1] — L?[0,1], e € Z,,, by '

d

1 ;
Tev:i=p2 vo ¢;1X¢2{0>”7 e € Zy.

Next is the first of several lemmas from [2] wlhich will help develop the structure of
these bascs. The first lemma shows the operators T, e € Z,, to be isometric from
HE(0,1) to HE0,1).

Lemma 2.3. (Chen, Wu, and Xu [2]).

(i) Fore € Z,,T. maps H§(0,1} into H(0,1).
(ii) If e, ¢’ € Z,, then for all u,v € HE(0,1),

(ITeus Te"”)d = 56_.6’ (uﬂ U>d"

Repeated differentiation of T.v results in the first statement. For the second result,
when e #£ ¢, the intersection of the support of Teu and that of T.v has measure zero,
so (Tou, Tew)g = 0. For e = €', using the definition of the operator and the fact that

&, is affine, we have, with a change of variable,
T Tha = @ [ (o 67) @) 0 97)(a) dr

= [1 w9 (x)o'D(x) dz = (u, v)q.

0

The above lemma provides a useful tool which we will utilize later as we set up the

stiffness matrix in the application. As it will be neccssary to compose the mapping



18

¢. and the operator T, for e € Z,, repeatedly, wc need the composition mapping
which we define next. For @ := (co,e1, -+ emi) € Z7, we define the composite
map ¢ to be

Pz 1= Peg © ey O e, © 0 O Py

and the composite operator 73 as

Tp =Tyo0T,0-- 0T,

fm—1"

One can show, using successive compositions of the operators 7,,, i € Z,, that for
v e L2[0,1],

Tov = Nm(%-—d)

ve ¢§X¢_€’ 0]

It is the repeated composing of the operator T, that will produce the required res-
olution for the problem at hand.

Integration by parts and Hermite inﬁerpola.tory polynomials result in the next

lemma.

Lemma 2.4. (Chen, Wu, and Xu [2]). Ifi and j are positive integers with ¢ < j,
wE Wy, €€ Z), andv € X,, then {(w,vodp)a=0.

By the definition of the operator T and the fact that
(wo 675 = pu® o 1,
we have, using a change of variable, the next lemma.

Lemma 2.5. (Chen, Wu, and Xu [2]}).  Ifi is a positive integer, € € Z},
w € Wy, andv € X;, then (Tpw,v)q = 0. '

Now, it is absolutely critical that a precise yet simple notational system be used
to denote these various wavelets on the various resolution levels, and [2] provides the
perfect system for describing the multiscale orthonormal bases for the spaces W,. To
describe this process of recursive construction, we start with the basis w, ¢, I € Z;,,

where W) is given. For i > 1 and & € Z;‘l, we set

—

,U,( € ) = ,ui_zeo T+ e Gz T+ €2,
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Let 7 := w(l) = dim W,. For i > 1, j € Z,;, there exists the unique factorization
=+t ez ez,

and we define

why 7 = T—gwl 1.
To better understand this notational system, we will set up notation for the multiscale
wavelet basis of the Sobolev space H3(0, 1) with & = 4, and & = 2. We have X = {0},
w(i} = dim W; = 2%, ¢ > 0, and the orthonormal basis for W; will be {w g, 1}

from [2] where

2L_x?(3 — 4x) when 0 <z < 1,
wy oz) = { 2‘,/5 3 1 2

wy 1(x) = %xz(l — 2x) when 0 <z < %,
s(1—2)*(1—2z) whenj<z<L

The specifics of just how such a basis is constructed will be detailed at the end of
this section. QOur purpose here is the familiarize the reader with the notation system
being utilized.

With this set of basis functions, the affine maps

1

1 . 1
dolz) = 5?" d1(z) = 5:1:—1— 5

and the operator

Tev = u? "¢ Xy, €= 0,1,

we can recursively constriuct an orthogonal basis for whatever resolution level m we

desire, using the formula
Xm:XnEBW16W2${’V3€B‘”$Wm.

Now for some specifics concerning the orthonormal basis {wsg, w1}, where & = 4,

p =2, r = 2. To construct the wavelets for W;, we need to use ¢ = 2. We have
T ezt =2 = (e ep € Z3} = {0.1},

and

—_

u(E) = 1 %e0 = eo.
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For notational convenience, let ©¢ = 0 and &, = 1 so p(€q) = 0 and u(€,) = 1.
We have

G=u(®) 241, Le Z,={0,1},

Wy = T?ku,'l i
For € =0, u(€0) = p(0) =0, I =0, we have j = 02+ 0 = 0 which implics
wz 0 = Towi o
For € =0, u{€y) =u(0)=0,{=1, we have j = 0-2 + 1 = 1 which implies
g 1 = Tpuny 1.
For €, =1, u{(@1) = (1) = 1,1 =0, we have j = 1-2+ 0 = 2 which implies
wy o = Tywy o-
For &, =1, u(e)=p(1)=1,1=1, we have j =1-2+ 1 = 3 which implies
wy 3 = Tyuy 1.
To construct the wavelets for W5, we need to use ¢ = 3. We have
€ ez =27 ={{en,e1) 10,1 € Zo} = {(0,0),(0,1),(1,0), (1, 1) }.
Let & = (0,0), €, = (0,1}, €2 = (1,0), and €5 = (1,1). We have

p(®) = Peg + u' P = peg + ey =265+ €,

50
(o) =2:04+0=0, p(@)=2-0+1=1,

p()=2-140=2, p(es)=2-1+1=3.

Also, for j = 0,1,2, we have
_}':;_L(-E?k)?"i‘g, ?k GZ-ZZ.J IEZQ;'.":Z and Wiy :T—?kwl I
This leads to the following subscript calculations:

0=0-24+0, T.US[]:'T?OUM 0
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1=0-2+1, TU31:T?OW11;
2“—:12+0, sz 2 :T?l’r'ﬂl s
3=1-2+41, wss=Tp w1,
4=2-24+10, 'w3,1:T§"2'w1(!:
5:2-2—!.-1, w3 s = Tp w11,
6=3-240, wgﬁzT?Swl 0.
7::324'1, 1U37:T?31U11.

Next we construct the wavelets for Wy, where ¢ = 4. Note that we continue to

use ¢+ = 2 and r = 2, so this time we have
Zw{i} = Zw{4) = Z4 = {0~ 1‘123}

as well as Z,, = Z, = {0,1}. We use Z3 = {(eq, e1,€2) : € € Za, k = 0,1,2}, which

when written out, becomes -
Z3 = {{0,0,0),(0,0,1),(0,1,0),(0,1,1),(1,0,0), (1,0, 1), (1, 1,0), (1,1, 1}}.
For convenience of notations and subscripts, we define
€ =(0,0,0), € =(0,0,1), €2=(0,1,0), €3=1(0,1,1),

?4 = (15070)5 _‘?:}5 = (15031)1 ?6 = (1‘10) ?? = (1 111)

Since
() = 120 + 3 + e = pleg + pey 4 ex = deg + 26 + 5
we have, by the careful choice of subscripts,
p(€0) =0, u(e1) =1, p(€2)=2, u(es) =3,

p(€s) =4, p(€s) =5 (€ =96, pu(e:) ="

Now, for j =0,1,2,3, u{€x) =k, £=0,1,---,7, and r = 2, where
}Iﬂ(?k)?"—Fz, ?kezg' te Za,r =2, and wij:T'é"kwl I
we have the following subscript calculations:

0=0:-240, 1.940:'_3“?01010,
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1=0-2+1, w“:T?Ow]l;
2=1-2+0, wya=Tp wio,
3=1-2+41, w..lng?lwl 1
4=2-2440, 'w44=T—§>2w10,
h=2-24+1, 1045:'1"?211}11,
6=3-2+0, wis=Tp w0,
T=3-24+1, w47=T§>3w1L
8§=4-240, wyg= T_e’ﬂ”l 0,
9=4-2+1, wio=Tp w1y,
10=5-240, uy 10=T~é—b5w10,
11=5-241 wy 1 =T w1,
12=6-2+10, T_U4123T?6?.U]03
13=6-24+1, wiis=Tp w1,
14=7-240, uy 14:T—é»7w1 0
15=T7-241, uy 15=T—g>7w1 1.
One then may continue this process, progressively increasing the size of the index %,

until the desired resolution level M is reached, and thus obtain the following spaces:

W, = span{w; o,y 1},

Wo = span{ws g, s 1,Ws 2,40 3},

W; = SP&ﬂ{wa 0, W3 1, W3 2,W3 3, W3 4, W3 5, W3 5, W3 7}:

Ws = sp'a,n{w4 0:W4q 1, Wy 2, Wy 3, Wy 4, Wq 5, WY 6, Wy 7,72, UWY 15},
Wy = span{ws o, ws 1,Ws 2, **,Ws 31}

and so on. In double subscripting system, the first subscript indicates the resolution
level of that particular wavelet and the second subscript indicates which particular
wavelet on that level. For instance, the double subscript 4 14 denotes the fifteenth

wavelet on the fourth resolution level.
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Hence we have

Xo = {0}=

Xy = X W,
X, = X\ ®W,,
X3 = Xoob W,
Xy = Xz W,
Xy = Xy W

X’m = Xm—-léBH[m-

Note in each case we have dim X, = (k — p)u™ — p, where k = 4, p = 2, and
po=2
The following theorem shows that the functions wj; as defined above form an

orthonormal basis for the space W;. The proof is detailed in [2].

Theorem 2.6. (Chen, Wu, and Xu {2|). Let wy;, j € Z,, be an orthonormal
hasis of W1. Then for any 1 > 1, the functions wy;, § € Zyu) form an orthonormal

basis for W; and

HOoN=X oW aW, o .

We will now give describe an algorithm for the construction of an orthonormal
hasis for the space W,. Let I, be the space of polynomials of order k on the interval
[0,1]. We will need the following lemma from [2].

Lemma 2.7 (Chen, Wu, and Xu [2]). For any v € Wy, v is orthogonal to the

space I1.

The following theorem gives an algorithm for the generation of the basis of W.

Again; the proof is detailed in [2].
Theorem 2.8. (Chen, Wi, and Xu [2]). A function v € W) if and only if

(i) v is a piecewise polynomial of degree less than k with knots {f; cj—1le Z, 4},
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(ii) v, i € Zy are continuous at the knots {ﬁ j—1€Z,a},
(iii) v®(0) = v®(1) = 0, i€ Zy,
(iv) For pj(z) := 2/, (0D pda=0, 7€ Zi_a\Za

Theorem 2.8 gives us the following method for generating the basis of W;. By
condition (i), any function v € Wj has a representation of the form
i+1 1

» b ?EZJ.
I ;f-) ‘

k-1
U(il?) pes Z a?;j:z:j? t e [
=0

Conditions (ii}-(iv) impose k& + d(p — 1) restrictions on the coefficients a;, thus we
obtain a homogeneous linear system of equations consisting of & +d( — 1) equations
with kp unknowns ay, i € Z,,, 7 € Z. The dimension of the solution space is not
less than (k —d){z — 1). Note that dim{W,) = (k —d){¢z — 1}, thus the solution space
has exact dimension (k — d) (,u —1). Accordingly, an orthonormal basis of W, can be
obtained from a solution of the linear system by orthogonalization and normalization.

Next we detail an important example of this process, which will be utilized later

in this thesis,

I1.4.2 A Linear Spatial Basis

In this section we discuss a linear basis of the space H;(0,1). We choose k£ = 2, and
¢ = 2. Here the space Xy = {0} because there is no nontrivial linear polynomial
which vanishes at both 0 and 1. Further, dim W; = 2¢71, for ¢ > 0. The basis of W,
is given by

T WheHUS;’E<'§,

wy ofx) = 1

1—z when3<z<1.

We will call w) ¢ the mother wavelet. Figure 1 shows the plot of this mother wavelet.

The mother wavelet then produces two wavelets ws g, s | via the operators

wp o =Tpwy g, up1= Ty 0;

where
1 I
ﬁQI whenUSﬂ:< 1
wy olz) = %(1—2:1:) When% <x< %,
0 otherwise,
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Graph of the wavelet w,
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FIG. 1: The Mother Wavelet

ﬁ(?:ﬂ—l) when § <z < 3,
wy 1{) = %(2 —2z) when 3 <z <1,
0 otherwise.

The graphs of these two wavelets are shown together in Figure 2. For simplicity, only
the nonzero parts of each wavelet are plotted.
Thus we have

Wy := span{ws o, w2 1}.

Next the mother wavelet produces four wavelets ws o, w3 1, w3 2, w3 3 by calculat-

ing
Wag= T(o,o)w1 0; W31 = T(m;‘w] 0, Wiz = T(l,,n)wl 0, W33 = T(l,l)’iih 0;
where S
%4&? when 0 < z < é_,
wyofx) =4 (1 —4x) when i <z <3,
| 0 otherwise,
1 . i . 3
5(4r — 1) when <& < g,
wg 1(z) = { 1(2—4z) when § <u <1,

0 otherwise,
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FIG. 2: Two Wavclets
[ 1{4r — 2) when % <z < %,
wyo(xr) =< $(3—4z) when 2 <z <?
0 otherwise,
[ 1 _ . 3 . 7
2(4:1: 3) when 1<r <y,
wy 3(z) = { 1(4 — 4z) when % <z <,
0 otherwise.

The graphs of these four wavelets are shown together in Figure 3.
Thus we have
Wy := span{ws o, w3 1, w3 2, w3 3}
Next the mother wavelet produces eight wavelets,
Wq oy, Wy, Wy2, Weg, Wya, Wes, We U7,
by calculating
Wy g = T(D,D,O)wl 6, Wa 1 = T(n,,u,ljwl 0, Wi = 7-'(0,1,0)TU1 D, Wqas= T(n,1,1ﬂb‘1 0,

wa g = Tpowe o, wWas = Tronw oo wae =T 10w 0o We 7 = Thnn o

where
1 . 1
m&?‘? when 0 < z < 3,
wa o(z) = 2—3/3(1 —8¢) when {z <z < g,

0 otherwise,
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c>|°‘

otherwise,
. 3 Z
when 2 < T <5,
il 1
when 1z <z < 3,

otherwise,

whenl<9;< 3.

when—<1,<5

= 8)
otherwise,
when 2 <z < 3,
When < < %
otherwme,

13
when <z <,
when | T 3 < g < 7

otherwise,
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0.35
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.25

Uy 7(5{?)

Graph of the wevelets w, . w, . v,

r- B

LB 7) when<o<
- ﬁ(g—&c) wheni—f’gigl
0 otherwise,

The graphs of these eight wavelets are shown in Figure 4.

Thus we have

Wy == span{twy o,y 1,4 2, Wy 3,4 4, W4 5,4 6,Ws 7}

Next the mother wavelet produces sixteen, wavelets

ws 0, W5 1,Ws 2, W5 3, Ws 4, W5 5, Ws 6, Ws 7,

Wy g, W;

by calculating

9, W5 10, Ws5 11, Ws 12, Ws 13. W5 14, W5 15,

28

ws o = Lopom 6, Ws 1 = Two00,1%1 0, ws 2 = Tio010)1 0. Ws 3 = Loy o

ws 4 = Tio100%1 0, s 5 = Tro,1.0W1 0, Ws 6 = To11,0w1 0. ws 7= Tig,1.1)W1 0,

Wy g = T(l,o,o,o)'wl 0y Wsg = T(I,U,D,l)wl 0, W10 — T{l,o,l,o)wl 0, Ws 11 = T(l_.o,l,l)wl 0

ws 12 = T(L,L00W 0, Ws 13 = Ti,0,0W1 0, Ws 14 = Ti10,0%1 00 W5 15 = T ,nr o,



where

w; o(x) = ¢
wy 1{x) = <
ws o{x) = 4
ws 3(w) =
ws 4(z) =

1
1
15— 162)
0

ws 5(z) =
ws () = <
ws 7{x) = ¢
ws 5(z) =
ws o(x) =

16x
(1 —16x)

[ JECN TS T4

(162 — 1)
(2 — 16z)

el i

—

(16 — 2)
(3 — 16x)

L N N

1(16x —3)
1(4 — 16z)
0

(165 — 4)

16z — 5)
1(6 — 16z)
0

1(16z — 6)
L(7 — 161)
0

(16x — 7)
(8 — 16)

an JETNTEREN P

= (16x — 8)
(9 — 16x)

=

(16x — 9)

e B N e N

when(}§$<31—2,

1 1
when o <z < 3,

otherwise,

When <1<§-2-,
: 3 1
when o <x < g3,

otherwise,

when 1 <z <

5 = 7R
3
when = 3—2 <z < 45,
otherwise,
when & <z < L
N 1g = 32
' il 1
when 55 <x < g,
otherwise,

when § <z < 39—2,
when 9 <r< 156,

otherwme .

when < T < 3

Ot-herw ise,

when 2y < 32,

7
when _<_ z < 3

Otherw ise,

bo | o

7
when 16

15
32

otherwise,

(FARPFAN
B
A A
(\EU—A 00]'—'

when

when - 3 <z < E
w hen < < 55
otherw ise,

9<T<l‘-J

when %

otherwise,

32
: 19 5
(10 —16x) when 5; <z < 3,
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[T

Uls

wWs

Wy q

Uy

10(:1:) =

nfr) =

12(7)

-

.

216z ~ 10)
(11 - 16x)
0
1(162 — 11)
1(12 — 16z)
0
$(16z — 12)
(13 — 167)
0
$(16z — 13}
1(14 — 16x)
0
1 (162 — 14)
{15 - 16)
0
{162 — 15)
(16 — 16z)
0

5 oo o 21
when 3 <z < 5,

1

2 o
when & <z < g7,

otherwise,

b

when o <z <

when % <z<

otherwise,

&l
(&1

=

25
3z’

when & <z < 4,

when % <z <

otherwise,

when ?

[Fa
Goi-1 galt
P B

x
T

q
A
VAN

when =

otherwise,

20

32>
15
16°

whern % Lr<
29 .

when & <z <

otherwise,

15 31
16 32
when % <z <l

otherwise.

when 2 < x <

The graphs of these sixteen wavelets are shown in Figure 5.

Thus we have

VVS = span{w5 0,Ws 1,Ws 2, Ws 3,Ws ¢, Ws 5,Ws §, Ws 7,

Figure 6 shows the nonzero parts-of all 31 of these wavelets plotted together.

W5 &, Ws 9, Ws 10, W5 11, W5 12, W5 13, W5 14, W5 15}‘

30

One may continue this procedure until the desired resolution level is obtained,

and ultimately obtain, for any m € M,

Xpn=XoW oW, o.---oW,,_{DW,,.

By Theorem 2.6, we have

Hg(oal) =Xob W, oW, O -



0s

0.45

0.4

0.35

0.3

.25

0z

0.15

Graph f the wavelets W g W o o W e

F1G. 5: Sixteen Wavelets

31
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CHAPTER III

APPLICATION TO THE PROBLEM

IIT.1 SETUP OF THE CONSTANT IN TIME CASE

In this section we detail the multilevel method and the wavelet basis functions as they
apply to the constant in time case of the Discontinuous Galerkin Method. The linear
in time case is considerably more complicated and involved, and it will be detailed
later in the implementation section. For basis functions, we use the linear wavelet
basis for H}{0,1) from [2] as constructed in the previous section with Xy = {0} and

W, = spanf{w; ¢}. Further, we will usc the notations

1 v g d
(?ﬂ,;j?’if,’yj!) I:fé 'wij(m)w.yj?(:c) dl‘, a(wt-j}wifj;) = o aww(m)awﬁ»(x) dx.

Recall now that we are solving a system of the form ‘

where
A}} = [ﬂf‘.ﬂj’](2M—1)x(2M—1):
Qijirge == (’wl‘j, T.Ufj') + kna(wij, w?;;j»),
Wy = [f?j*](zM—L)xla
?, = [fz"j’](zM—nxb
M (2M-1_1)
fop = 20 &7 (wigwey) + f (f, wiry)dt.
e fn
if=1 10
for

i7=10,20,21,30,---,33,40,---,47,---, M 0,--., M (21 _ 1),

4 =10,20,21,30,--,33,40,---, 47« MO,--- M (241 _1),

and

X :Spa‘n{u"ij rij = 10,2[),2130,,33}40,47.JWO,,J!‘H (Qﬂd_l_l)}-
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For M =1 we have
Xy = Xy & W, =W, = spanf{w, o}-

The system will have the form

where
A? = [a'z'jz"j’] 1x1:
WY = [ )ik,
T1= sl

for iy =10, and ¢ = 1 0. There is no multilevel decomposition for this resolution

level; decomposition begins on the second level,
For M = 2 we have ’
Xy = Xo P W1 & Wy = W, @ Wy = span{wy o, w2 0,15 1}

and the system will have the form

where

AL = [aigiry]axa,

Uy = (67 Jaxt,

?2 = [fvi’j’]tixl:
forij=10,20,21,and V5’ =10,20,2 1.

For M =3 we have
X3 = Xo @1 Wi b1 Wo @y Wa = W) &) Wy &) Wy = span{w;; }

and the system will have the form

where

A;" = [%f*j*]?xn



Wy = (€0,
-
Is=[foylra,

35

forij=10,20,21,30,31,32,33, and ¢/ =10,20,21,30,31,32,3 3.

For M = 4 we have

Ky=Xye Wiy Wep W, Wy=W, 0 Wos Way Wy = span{w;; }

and the system will have the form

where
AL = [aijig]isx1ss
Ty = (Gexa,
Fa= orhsa,
for
tj=10,20,21,30,31,32,33,40,41,42,43,44,45,46,47,
and

7 =10,2021,30,31,32,33,40,41,42,43,444546,47.

To generalize for the level M, we have

Xy =Xo @, Wy By --- 0y Wy = W, @y -+ - @1 Way = spanfwy;}

and the system will have the form

no—rh
Ay wy = TM

where
Al = [@igirgr )M —nyxev 1)
Wy = [53;*](2”—1)x1,
TM = [Ta”j’](?‘f—l]xl;
for

ij=10,20,21,30,---,33,40,---,47,50,---

(26)



e MOMIL M2, M (21\:)&1_1)J

and
iy =10,20,21,30,---,33,40,---,47,50,---,515,.+-

o MOMLM2 MM ),
To generalize for the level M+1, we write
Xpyp=XeSi Wi & Wy =W, o ®1 Wi = span{w;; }
and the system will have the form

7 —h, _
A1 W = ?Mf+1

where
Alrar = [Bagrjr)@seionyxiamisy),
UWhpy = [‘gf?l}j’](?”“—l}xln
F e = [fergl a1 1y,
for
ij=10,20,21,30,---,33,40,---,47,50,---,515,--
e (MADOMA D) LM 412, (M4 1) (2Y =1,
and

#5'=10,20,21,30,---,33,40,---,47,50,---,5 15, -
o M DOMED LM+ 2, (M 1) (2M - 1),

For the multilevel decomposition on the M+1 level we have
Xy =span{wy}, ij=10,---,MO0,--- M2 -1),

Warpr = span{uw;;}, é=(M+1)0.-- (M +1) (QM — 1),

with
Xarer = Xpg 81 Warga.

We decompose the matrix A%, as

n T
A% Fia

" n
GM—H,JW HM’+1,.M+1



where the matrices A%y, Fiy as11, Ghgyg a0, and Hiy oy ary are defined as

L J—
Ay = [&iﬁ'y](zﬂf-1)x(2M—1)}

for 3.? = 10: t ':ﬂ'f(g_M_l - 1)} ifjf = 1[] T M(QM_I - l):

In e g -
FM,MH = [G'%Jt'j'](ZZM—Ux(QM):

for ij = 10, -, M2M7L 1), i'§ = (M + )0, -+, (M + 1)(2¥ — 1),

(L] —_
Gy = @i idemyx@v—1),

for i = (M + 1)0,- -+, (M +1)(2¥ — 1), i'5 = 10,-- -, M(2¥-1 — 1}, and

T . ey
HM+1,n-f+1 = [“m’;’](z“)x(z-’\f)a

for i = (M +1)0,--- (M +1)(2M™ - 1), i'§ = (M + 1)0,--- (M + 1)(2¥ - 1).

- oy e
Next we decompose Uy, as

—_—lt
—+1 _ U M0
M+l T | a

&

Vi

where

Wﬁf,o = [‘5;}3"](2M—I)x1:

?r{Jl = [W?;*]z” %1

Also we have 7 M4 WIitten as

——)
7? _ l fM
M+l =
?M
where
— )
fM = Us"j'](?”—]}xl:
?M = [gt"j"]?Mxls
with
M (M 1_1) (M+1) (2M-1)

fi"j’ = Z &1‘;‘—1(1""3‘1‘ u:!-;j;) -+ Z n&ﬂl(wi.j’ u:t-;j,«) —+ /I (f wifjr)dt,

- ig=10 iF=(M+1) 0

37
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for i'5'=10,---, M (2M~1 1) and

M (aM-L_)y (M+1) (2M 1)
Girgt 1= > f;}_l(wu,wi*j') + Z ??E_l(wa'j:wfj*) +/ (f; wyey ),
i3=10 i=(M+1) 0 In

for i'j" = (M +1) 0,-, (M +1) (2% - 1).

With these various arrays now defined, the system

Pr— . ?
MAL ¥ ar1 = T
becomes the system
A%y ‘F}U,M—H Uamo | _ M
L T -
Gl Hir mm VA T ar
which may be written as
= i —n .
My Waro+ Frpms Vaa = ?M:
£y —=1 23 —3n =
GM+|,M UpotHyiun Vg = Gu

To obtain the multilevel approximation @7, of the M+1 level numerical solution

U pr41, we first solve the coarse grid problem
n —n
Ay Wy = TM

obtaining the Mth level solution @,

Next we solve the gystem

1 [ J— —i
HM+1,M+1UM,1 - ?M - GM+1,M t ag

obtaining
??4,1 = (H:{f-i-l,:‘vf-i-l)ul(?ﬂ»f - GM+1.ME>21’)'
With 7%, , now known, we solve the system

T

n —M _ Tt -7
Aut Mo = Fum— FM,M+1 Vs

obtaining

1, .
u nM,O = (A}y) l(f M FM,MH?ELD)-
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Finally, we set

—T
- _ | Ywmo
sl = |

PR

Using @73y, as an approximation to # ar41, that is,
—7 s
Uoprye1 ™ UWpsn-
where

U M1 =

—n (fg‘lj’)(2M—l)x1
('n-?j‘)EMxl

we form the linear combination

A (M-l (M+1) (2M—1)
2,7 PR i n Y. T o
qu_i_l ~ u-_,w‘l .— Z giij:u’?"_j’ + Z ?}i(jrwtfjﬂ'. (27)
#§ =10 Pi=(M+1} 0

II1.2 COMPUTATIONAL COSTS

I11.2.1 Constant in Time Case

Now some specifics as to the advantages of using the multilevel method to approxi-

mate the solution of the linear system

Al Wi = farg, (28)

when the approximating functions are constant, in time.

Direct calculation of this system would require us to solve a linear system con-
sisting of 2Y+1 — 1 equations and 2¥*! — 1 unknowns resulting of a computational
cost of O({23M+3),

Approzimating the solution of this systemn via the multilevel method requires
solving two systems consisting of 2% — 1 equations with 2 — 1 unknowns, at a cost
of O(2°¥), and solving one system consisting of (2M+1 — 1) — (2M _ 1) cquations
with (2M+1 — 1) — (2™ — 1) unknowns at a cost of O(23¥), It will be shown in the
implementation section that the multilevel method, despite having more systems to
solve, provides a considerable gain in computational efficiencies. This is due to the
fact that these systems are of smaller dimensions than the single system of larger
dimension used for the computation of the direct method. This gain becomes much

more pronounced as the grid resolution M is increased to higher levels.
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I11.2.2 Linear in Time Case

For the the linear in time case, all of the systems have twice the size of the constant
in time case so direct calculation of the system (28) results in a cost of approximately
O(23M+4), The cost of using the multilevel method to solve (28) will be approximately
O(2*M+1) which we will demonstrate to be substantially less in the implementation

scction.

In the next chapter, we show that the Multilevel Method provides the same degree
of accuracy as the standard Discontinuous Galerkin Method. Much of the following

discussion, and many of the results are based on information which is taken from [3].
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CHAPTER IV

ERROR ANALYSIS AND ESTIMATE

In this section we will lock at the the conditions which will allow the multilevel

method to be accurate. We will need either the two hypotheses

4y
B—l

m1 €X1sts,

ey

B, Cry is uniformly bounded,

e, L

or the two hypotheses

(II1) There exists a positive integer My and a positive constant « such that for
m 2 My,

¥

4] < o

(IV)
ling [|Coall = O.
0 N

The reason for each pair of hypotheses is that the main result of this section,
Theorem 4.2, can be proven using either hypotheses (I} and (IT}, or hypotheses (III)
and {IV). The advantage to using hypotheses (I} and (II) is that, unlike hypotheses
(1T} and {IV), the operator Al is not required to be uniformly bounded, and in
fact, may even have a norm that approaches infinity. This in fact occurs in Section
VI1.4. Further, for the version of the proof that utilizes hypotheses (IIT} and (IV), we
need the following lemma from [3], which we state and prove next with additional

details provided.

Lemma 4.1. (Chen, Wu, and Xu [3]). Suppose that hypotheses (IIl) and (IV)
are satisfied. Then there exists a positive integer M > My such that for m > M, the
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equation

Bm,lum,l = f‘m+l - Cm,lﬁ'm,l
has a unique solution tpmy € Xpt1.

Proof. By (17), we have
Am,l = Bm,l + Cm-_la

50

Bm,l = A’m,l - Cm,.l‘

Using hypothesis (I1I), if m > My, then for x € X411,

| Bzl = (A1 — Cop)z|
Z | Amuzl| = [[Crazll
> allzl| = [[Coalllfzl
= (a— [|CoalDll=l-
Thus, for y € Yiny1, we have
[yl = (@ = |Crna DI Byl

50

1
B yll € ———|lvl.
I| ,ly” o — ||Cm,1 ” ||y||
Therefore 1
Bl € ———r—. 29
” m,l” ~ a-— ”Cm,l” ( )

But by hypothesis (IV), there exists a positive intcger M > My such that for m > M,

we have || Cp1 || < @/2. Combining this inequality with the inequality
[ Binzll = (0 = [[Con, 1 D2
from above, we find that for m > M we have
a Q
Bzl = (o — '2‘)||~?'3|| = §||37||

5lall < [1Bua

for £ € X1, which implies
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1Bl < 207"

Thus for all m > M, the equation
. -
Bm,lum._.l = fm-i—l - Cm,lum,l
has a unique solution.

The next theorem, Theorem 4.2, is our main result. It shows that our method
provides the same degree of accuracy as the conventional Discontinuous Galerkin
Method. Although there are many similarities to Theorem 2.2, there are also several
key differences. Omne of the most apparent is that, unlike Theorem 2.2, our result
helds under two somewhat different sets of hypotheses. Further, the error bound of
our result is based on the error bound provided by Theorem 2.1 for the Discontinuous
Galerkin Method, rather than on the approximation error E,, in the space X, that
is used for Theoremn 2.2. Throughout the calculations we use ' to denote generic
constants whose values change as they appear. Further, as stated, we prove both
versions of the theorem, cach written in an independent manncr that does not rely

on the other version for any steps or details.

Theorem 4.2, Suppose that hypotheses (1) and (II) or (IIT} and (IV) are sat-
isfled. Let w € X be the solution of equation (1), and 1 € Xy be the solution
of equation (22) with X, = span{w;} where {w,;} is the wavelet basis described
e Section 114, Then there exists g positive integer M such that for m > M and

n=12--- N, we have

e = s < OL i, B n)

where
t
Ly = (log(;=) + 1),
En
Enmn(u) = poin 30"l + |55, Dl
fGT‘ ugl) = Uy, HEQ) = Uy, HU'HIN = MaXieiy ||U,(i)||2. and hm,n = MaXjemaad [Tm-1 —
Ty | with

2 _ =22
h‘m-{-]._n = § h"m,n

due to the use of the wavelet basis.
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Proof (Version One). Assume hypothesis (1) and (II} are satisfied. We prove
this theorem by establishing an estimate on ||y, 1 — Uy |ls,. For this purpose, we
subtract (20)

Bm,.]um(l) = fm-l—l - Cm,lum(l)

from (22},

Bm‘lum,l = .fm+1 - Cm,lﬁm,ll

to obtaln

Bm,l(um,l - U\rn,—|—1) = (jm,l(brm—l—l - ﬁrm,l)

where Upqq is identified with 6,,(1) = [0, vm1]7, per the notation of [3], up, is

the solution of (22}, and
_ Un,
Um,1 = s
!1 0

as in Section I1.3. Since hypothescs (I) is assumed, we have
(um,l - Um-i—l) = Bw;z._llcm,l(Um-H - ﬁm,l)A

Hypotheses (II} now implies

||u'm,l - D—m+l| I S C||Um+l - ﬁ'm‘lnfn- (30)

Sinee tpy,p := U, we have

||um,0 - U—m—!—U”In =0.

Now using the definition of @, 1, Theorem 2.1, and the triangle inequality, we obtain

Wit — @malln, < WWmsr — ull, + |22 = Umsollz, + |Umto — 4mpolls,

< CL, 123%%\-‘ Epitgn{u) +CL, max Emgn(u) +0
= CL, 12}%}?\-' Em—i—l,qn(u) +CL, 122& Em._qn(u)
S CL‘H lg}:ﬂé\; Em+1._qn(u)- (31)

Note that since we are using the wavelet bases for the subspaces X, and X,,11, we

have p2h2, ;. = hZ,,, which implies

L, max E u) < CL, max FE 7
ngn‘EN m,qn( )_ -1 1SN m+1,qﬂ( )
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for some constant C. Substituting the estimate (31) into the right hand side of equa-
tion (30), we get

“um,l - {){l’n-‘rl “ I S CLn 1215’%‘\' Em+l,r,;rn(u]-

Now using Theorem 2.1 and the last inequality, there exists a positive integer M

such that form > M, and n=1,2,---, N, we have

LA

e =t 1)l2,, |l = Upsalls, + NUmga = tmalls,

< L x F x FE
< CLn max Boiagn() + CLy max By ga(u)

< (:"Ln 12[}33;‘%{ Em—',—'l,qn(u)
which completes the proof of this version of the theorem .

Proof (Version Two). Assume hypotheses (II1) and (IV} arc satisfied. This
version, like the first, is done by establishing an estimate on ||up1 — Upegallr,. For

this purpose, we subtract (20},
B‘m,lum(l) = fm+1 - Cm,lu'm(l)

from (22),

B’m,llum,l = fm-i—'l - C‘m,lﬁm,l

to obtain

Bm,l (u'm,l — Um-‘rl) - Om_.l (L'Tm-i-l - ﬁmﬂ)

as we did in the proof of Version One above. Since hypotheses (III) and (IV) are

assumed, Lemma 4.1 applies, so
(tin1 — Urpr) = B;}'lcm,l(Um+l — Tm1)

Thus from the previous equation and the inequality (29),

1
B! Lo
” m,,1]|fn = — |Cm‘]||.fﬂ
from the proof of Lemma 4.1, we have
. Cralls, _
[tmy — Upsalls, < EJEH(E?—']THU”‘“ ~ m,1|l 1, - (32)
m.‘ Tt

Since 0 1= Uy, we have
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[tm,0 = Uintollr, = 0.

Now using the definition of %, ;, Theorem 2.1, and the triangle inequality, we obtain

I + |||"-)T'rn-“l‘U - u"ﬂ’l,[]HIn.

||Um+l - 17:m,l |L. < HUm+l - u”fn + “u - Um+0

IA

C Ly, lg}fxﬁxN B gn(te) + CLy, lg}f}_{x\f Emgn(u)+0

It

CL'n. 12}1{2{.{’\" Em-i—],_qn(u) + CL‘.I’I lgzaghf Em,qn (U)

CL, 12}1""—%}% By an (U) (33)

V4N

Note that since we are using the wavelet bases for the subspaces X,,, and X,,;1, we

have p?h2, 1, = h%,,, which implies

7

L, max E u) < CL, max F, U
) 1<n<N m‘gm( )_ ) 1ZneN m—!—l_.qn( )

for some constant C. Substituting the estimate (33) inte the right hand side of equa-
tion (32), we get

C n
foma ~ Uil < Al L e B ),
T, ” — "=

Now, employing hypothesis (IV), there exists a positive integer M such that for

m > M, we have

434
5"

Coall <

Thus for m > M, we have

”Cm,l ”fn < %

O e T -1
a—|[Crall, — a— by

80
.
”um-_l - U-m+1||1n <ClLy 12}%}% Emwl—l,t?ﬂ-(u)-
Now using Theorem 2.1 and the last inequality, there exists a positive integer M

such that form > M, and n=1,2,---, N, we have

||’-'.L - 'TJE'ml,l”Iﬂ < ||'”' - Um-i—l”j’n + ||Um+1 — Ugp 1 “In

[

L, max E w)+ CL, max FE i
nlSnSN m+l,rm( ) nlSnSN m+1,gm( )

< CLn max Epg1,gn(1t)
which completes the proof.

In the next chapter, we examine special time and space discretizations to treat

problems with difficult initial conditions.
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CHAPTER V

INCOMPATIBLE INITIAL CONDITIONS

V.1 THE DIFFICULTY

In this chapter, most of which is from {6], we consider the case where the initial
condition of the parabolic problem is incompatible with the prescribed boundary
conditions. For convenience, we follow [6] and use the same notation.

As an example of the above mentioned problem, consider finding « such that
ue(z, ) — Uz, t) =0, z€Q, >0,

u(0,t) =u(l,1) =0, t>0,
u(x}[]) = “0(:‘5): x €8,

where ug{z) = 1 — z and © = (0,1). Here the actual solution is found, after some

work with Fourier Series, to be
u(z, t) =) uge_ft sin(jnz),
i=1
where the coefficients u? are given by
1 2 (1 1 1
0 N s
=2-/ 1- s11 dé& = — e | IO -~ 1].
=2 [ - gsingmerde = 2 {3 - s} = 0 (3)
In the following discussion, we will let (' denote a constant that changes as it

appears. For the solution w(z, ¢) to the above problem, we have
FedE = oy = 3O = 35 Lot = L $5 gomar
¢ 2 1 Lg(n,l) o - = dt dt = H
due to the uniform convergence in t of the series $°%; Ce~%°t, Since [i° e~ d( < oo,
using the change of variable y = j/2t, we obtain
ﬂ i Oe—i&j?t — iCt—lﬁ
dt £ dt ?

which implies
e (1)[|2 = O(/%).



48

Note that as t — 07, we have |||/, — o0, which will cause difficulty when approx-
imating u(x,t).

A similar situation will also arise when ug{z) = min(z, 1—z) in the above problem.
Here we have ||uy(f)]|o = Ot1/4).

Both these situations can be treated with the following time/space partitioning

scheme from [6].

V.2 THE TIME DISCRETIZATION SCHEME
We will consider the one-dimensional parabolic problem of finding u(z,t) such that
(@, 8) — uge(z, £) =0, 2€Q, t>0, (34)

u(0,8) = u(l,t) =0, t>0,

w(x,0) = up(x), =€

where the initial condition ug{z) is incompatible with the prescribed boundary con-

ditions. As with this previous section, we follow [6]. Assume
flue{tHllz = O™)

where 0 < o < 1. Let ¢ be a nonnegative integer. We define an index of singularity

as Q.= —ff—; For T' > 0 and a positive integer N, let

Q
* LG r
tn:(ﬁ) , n=0,1,2,--- /N,

and

by = 2T, (35)

As before, we define I, = (t,,—1,t,] for n =1,2,--- | N with &k, = t,, — t,,_; denoting

the length of the time subinterval I,. Hence, we have

ny@ n—1y%
(Y T, n=12---,N.
b= () - () | mee

By the Mean Value Theorem from calculus,

n1@-1 1
b<Q] FT
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The solution of the parabolic problem (34) is then approximated in the time variable

t over each time subinterval I, by a polynomial of degree 4. For example, in the case
of g = 1, let Pjw be the linear interpolatory projection in time of w € JZ{{2) onto

S where

Sg = {v:[0,0c) — Hg(Q);vhn € P(I,),n=1,.--,N},
. « |
Py(L,) = {v(t) = Evit“ v € Hy (),
=0

HYQ) = {v: DV € Ly(Q), §=0,1,2; v=0o0nd0}.

That is, we have

tn — 1t
ki

bt
w(®, by} + ——-w—lw(:r,t.n)

Pw(z,t) = A

for each t € I,,. Note that P;, when seen as an operator on HZ((}), is bounded with

respect to the norm ||w(t) ooz, where

llw (D)l ooz, = maxser, [|w(t) || 2. io)-

Since 2 is assumed to be a bounded domain, we have P; bounded with respect to
the norm || - ||;, as well. If w(xz,t) = wp(x), that is, constant in time, then we have

ly, — 1 t—t,_
n Tj}o(ﬂ:) + n—1

T T

Pow(e,t) = wolx) = wolx).

If wix, t} = wole) + fun (z), that is, linear in time, then we have

t,—t t—1t,_
Piw(z,ty = "k wlz,t,_1) + kﬂ Lw(a, )
fp—t L t—t,
= i [LU[](Q,) —+ tn_l'w; (3‘)] + ——k-‘"——[’wg(lﬁ) -+ anw] (L)]

= ’U.Jo(.’l.') -+ f;’wl(l‘)‘

Thus, P cquals the identity on either constant or linear polynomials. If we write the
Taylor serics in the time variable { about the peint £, to the first or second order,

respectively we obtain, for each n=1,2,--- | N,

= Prls, < [ fue®)l dt,
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and
|22 — 1’ ’iLH,rn < Ck?””tt”fn

For higher values of ¢, writing the Taylor expansion to the order ¢, the best

possible estimate for the projection P, : HZ(Q?) — S} is given by

——u } X (36)
I

Since we are intercsted in cases where {|u,(f)|lz = O(t™®) for 0 < o < 1, the next

s+l

[[e — Ppulls, < mln{/ [[eee (£ M2 dt, CkIT poyees)

lemma will be quite useful.

Lemma 5.1. (Kaneko, Bey, and Hou [6]). Let 0 < o < 1, ¢ o nonnegative integer
and T > 0. Also, assume t,,, n=1,2,--- N are defined by (35). Then

o 1
fInS d&SCW,

where (' is o constant independent of N and forn > 1,

. —ir
ma:r,lgng\rf ds < C e
TE

where C s a constant independent of N.

Proof. For n = 1, we have

Ca (F)°T 1 1\ 1 1\ 7+
fras= s ds—l_a[(ﬁ) T] -'O((F) )

For 1 < n < N, we have

_ Q -
f 5 %ds < j [(n 1) T] ds as 5% is decreasing over I,,
In In
o f/n—1 n\? /n-—1
(") [(F) (5]
n—1y ¢ Clyn n-1
<c(*v) @ G-

_ C(l)Q_QQ n%! ( )“ @—1—-00
er (ﬂ.- - ].)OQ 'r\'l "’+1 ?’l

n? . Ve 1

=

{l

Netl = 7 Netl — U N
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Using Lemma 3.1 with n = 1 and ¢ = 1 will lead to f; [Jus(t)||dt = O(3),
assuming [l {t)]lz = O *) for 0 < @ < 1 and ¢ € I;. Since we assume ||wy|s, is

|| UHIR (N‘Z) b 3 ]2:“..7 .

The next lemma guarantees the stability of the Discontinucus Galerkin Method

by showing (1 + log %)% to be uniformly bounded.

Lemma 5.2. (Kaneko, Bey, and Hou [6]). Assume £, and k, are defined by (35).

Then, for any positive integer N, we have

(l—i-log,%n')E < V2, for each n=0,1,2,---,N.

Proof. We use the fact that for 0 < x < 1, we have log(l — z) < —z for = < 1.
Now,

1

(RS S R (R )%
ks "=l 3)°

It
o~
—
|
—_
=]
3
P R
-
|
PN
=
|

i
e
f—t
|
—

o

=
o~
[
|
PN
[ R 2
< |
[
S
&
e
—
b

IA
[a—
P

=
z| |
[
P
&£
e

A
=)

The following theorem is a modification of Theorem 2.1. Minor changes to the

proof of this theorem in (7] serve as the proof of this result.

Theorem 5.3. (Kaneko, Bey, and Hou [6]). Assume there is a constant
such that the time steps k, satisfy k, < vkpp1, n = 1,2, ,N = 1, and let U™
be the solution of (7) approzimating u at {,. Let u" denote the value of u at t,.

Here u is approzimated by a polynomial of degree ¢ > 0 over each I, for cach n =
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1,2,-++, N — 1. Then there s a constant C depending only on v and a constant 3,
where px > Bhy and px is the diameter of the cirele inscribed in K for all K € T,
such that forn=1,2,--- N,

1
th\2 .
lu® — Ul < C (1 + log ,{_1) {ma:rjgﬂuu — Ppullr, + || by D%;”;n} :

The current time and space discretization schemes allow us to use Theorem 5.3 for
the following reasons. First, by the construction, the time steps k,,. n = 1,2,---, N
are increasing in size, so the condition k, < ~k,,; is satisfied for v = 1. Second,
for the one-dimensional problem (34), we have hx = px = |Qk| so that ££ =1 for
all . Lemma 3.2 implies the uniformly bounded property of (1 + log ;,—';)]5, which
results in the stability of the Discontinuous Galerkin Method.

For any nonuegative iuteger ¢, by using equation (36) and Lemma 5.1, we have

fu =Pl =0 (557

for some 0 < o < 1, assuming |ju,(£)[}. = O™).
By assuming || D?u(t)||r, is bounded for n = 1,2, -- -, ¥ and employiug the graded
time partitions discussed in Lemma 5.1, Theorem 5.3 can be modified to the following

result.

Theorem 5.4. (Kancko, Bey, and Hou [6]) For the parabolic problem (1),
assume the tnitial value uo(z) is defined in such o way that |[w(f)]| = OUE™™), for
0 < o < 1. Also, assume ||D*u(t)||;, is bounded for each n = 1,2,---, N, and
(0.1) is divided into 2™ subintervals each of equal length. Denote by UZ, the solution
of {7} approzimating v at t, and let u* denote the value of u at t,. Lel the time
discretization {t,} be defined by (35). If ¢ denotes the degree of the approzimating
polynomials to u in the time variable t, then for eachn=1,2,--- | N,

N 1 1
" = Uil = O (< + o) -

The next theorem is a new result that is similar in many ways to that of Theorem
4.2. It is essentially Theorem 5.4 enhanced with the multilevel calculation method,

and shows that the accuracy of Theorem 5.4 is preserved when the multilevel solution
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u%y 1 is used to approximate the Discontinuous Galerkin Method solution U5, . The
strategy for the proof is similar to that used for proving Theorem 4.2, in that it
is proven as two cases, one case using Hypotheses (I) and (II) and the other case,
Hypothesces (111} and (IV).

Theorem 5.5. Suppose hypotheses (I} and (II}) or (III) and (IV} from Chapter
IV are satisfied. Let u € X be the solution of equation (1} where = (0,1), and
WUm € X be the multilevel solution of equation (22) with X, = span{w} where
{wi;} 1s the wavelet basis described in Section I14. Let the time discretization {t,}
be defined by (35), | D*u(t)||s, bounded forn = 1,2,--- N, and |[u(t)]2 = O ™)
for 0 < o < 1. If ¢ denotes the degree of the approvimating polynomials fo u in the
time variable £, then for each n = 1,2,--- | N, there exists a positive integer My such
that for M > My, with the interval (0,1} subdivided into 2% subintervals each of

equal length, we have

n . 1 1
1o = u3sallin = O (Nq+1 + 22(M+1])

1, = maxer, [[u(t)]z.

where ||u

Proof (Version One)}. Assume hypotheses (I} and (II} are satisfied. The proof
of this theorem is similar to the proof of Theorem 4.2, employing the same operators
and notation. As before, we first establish an estimate on |u},; — Ufy |1, For this
purpose, we subtract

Buaum (1) = farer — Carpuar(l)
from
Bariuag = farer — Crraigr
to obtain

Bata (W — Ufpn) = Cana (U — @y )-

Since hypotheses (I) is assumed, we have
(u:{ff,l —Ulyy1) = BJ;II,ICM,I(UEI-H - ﬁ?ﬁm)-
Hypothesis (IT} now implies
||uff{f‘1 ~ Uz, € CllUka — 83l (37)

Since uf; o = Uy, we have

HUEJ,D - UE;'-&-OH"n ={).
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Using the definition of @}; ; and Theorem 5.4, there exists a positive integer My such
that M > M, implies

”U:’i}-i-l - ﬂ"i"f_.l ”Iu S ”E:f;;}-i—l - vn” In + ”uﬂ' - 1HW+0 “"n- + ”U;Z{-FU - ug”f,f]”[n
1 1 1 1
= Oz * ) + O (o + ) 40

1 1
= 0 (Nq+1 + 22(M+1]) '

where the last equality is justified by the fact that

1
YA +1

1
2 M

_ - | _ a-1
= h-M+1,n =M hM,n =2

from the use of the wavelet basis. Substituting this estimate into the right hand side

of equation {37), there exists a positive integer My such that M > M; implies

. 1 1
lwhey = Uballee = © (T{'rm + W) '
Now, using Theorem 5.4 and the above reasoning, for each n = 1,2,..+, NV, there

exists a positive integer My such that for M > My with the interval (0,1) subdivided

into 2M+1 gubintervals each of equal length, we have

i

o ~ il <l = Ugpalle + 105 — uigalln

1 1
= 0 (Nqﬂ + 22{M+1})

which completes the proof of this version of the theorem.

Proof (Version Two). Assume hypotheses (III) and (IV) are satisfied. Again,
the proof of this theorem is similar to the proof of Theorem 4.2, employing the same
operators and notation. As before, we first establish an estimate on {u}s; —Ufyy ||z,

For this purpose, we subtract

Buaua(l) = farpr — Cagtne(1)

from

Baraua = farpn — CaraTia
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5]

to obtaln

n

BM,I(U?J,] - M+1) = CM,I(UJ?JH - ﬂ":ﬁl;f,l)‘

Since hypotheses (III} and (IV) are assumed, Lemma 4.1 applies, so there exists a

positive integer M such that M > M, implies
n n -1 n o
(qul - UM+1) = BM,lCM'J(UM’+1 — Uppa )

Thus from the previous equation and the inequality

1

Byills, £ ——=——
I M1 Iz, a—||Cuali.

from the proof of Lemma 4.1, there cxists a positive integer M; such that M > M,

implics
“Cﬁ'f.ll[fn || ;‘1 o Eiﬂ‘ |
|CM'_.1||In A+ M1

b, <

Io- (38)

||'U'Rf‘1 - E}H

@ —
Since uf; o = Uy, we have

lluhz0 — USryoltes = 0.
Using the definition of 43, ; and Theorem 5.4, there exists a positive integer M; such
that M > M; implies

Lo+ e = Uy yolle, +

Urso — “‘RLO 1.

1 1 1 1
= 0 (Nq+1 + 22(M+1)) +0 (Nq+1 + QQM) +0

1 1
=0 (Nq+1 T 22(M+1))

NUhr — @l < Uf —

where the last equality is justified by the fact that

! -1 4 1
W = hM’"’L” = hM‘n =2 2?4-'

from the use of the wavelet basis. Substituting this estimate into the right hand side

of equation (38), there exists a positive integer M; such that M > M; implies

Mo(_{_ : ).

ey — Uil < i
L s T

Natl | 92(M+1)

Employing hypothesis (IV), there exists a positive integer M, such that for M > M,



we have

o

Cnmallz, < 5

2

Thus for M > M, we have
[Casa 2, iy
a—[[Cuallr, — a—3%
S0
i) — Uy, = O (i 4 =
ﬂ"Jf,l J‘/f+l In, - _f\.“?‘"l 22(M+1} *

Now, using Theorem 5.4 and the above reasoning, for each n = 1,2,--- N, there

exists a positive integer My = max{ M, M;} such that for M > M with the interval

(0,1) subdivided into 2! subintervals each of equal length, we have

le” —wlylln < o = Upagllin + (U4 — Wil

1 1
= 0 (Nq+1 + 22[M+l])

which completes the proof.

Practical constraints of many applications may force one to abandon the assump-
tion the || D?u(#)| s, is bounded for each n and ¢, e.g. the two problems in the last
section. In this next section, we examine a space grid partitioning scheme designed

to deal with this situation.

V.3 THE SPACE DISCRETIZATION SCHEME

In [6], if || (2)]] = O(t™), then we select a set of spatial grid points {z,,(t,)} which
are dependent on the immediate choice of time step ¢,. This is done by sclecting a

spatial increment k,, based on the size of [|u(t)|l r,. Let
hlt) = Mty cppeon [@m(6) = T (1]
for each ¢ € (0,T]. Then A(t) is determined from the condition that
()™ = O(t?), as t— OF.
In terms of NV, we require that

(h())2t = O (%) ‘
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1
Fort =1, = (1;)%3”, n=12,--,N, we have , for a constant C > 0,

(htn))? [({-) Fa T] L CT\%

If we solve this last equation for A(t,), using C = 1 for convenience, we obtain

1
hita) = [ﬁ?—-w] |
N2+al
With this done, we select a resolution level M(n) such that
L
h(t,)
for each time level t,, n = 1,2,---N where L denotes the length of the one-

21”(?‘1) ~

(39)

dimensional spatial interval and M{n) denotes the fact that the grid resolution M is
dependent on the time step £,. The spatial partition points are defined by

T(ty) = 2—% m=1,2-,2M -1,
Since the space discretization is dependent on the time discretization in this scheme,
we have the following theorem which provides an error estimate for the Discontinuous
Galerkin Method in both the time and space variables, using the desired number of

time steps V.

Theorem 5.6. (Kaneko, Bey, and Hou [6]) For the parabolic problem (1), assume
the initial value uo(x) is defined in such a way that ||u(£}]| = O™®), for 0 < a < 1.
Denote by Uy, the solution of (7) approzimating v at ¢, and let u™ denote the value of
u ot t,. Let the time discretization {t,} be defined by (35). Assume (0,1} is divided
into 2MW) sybintervals each of equal length, where M(n) is defined by (39). If ¢
denotes the degree of the approximating polynomials to u in the time variable ¢, then
foreachn=1,2--- N,

" " 1 1
4" — Ukrmll2 = O (W{ + ﬁ) -

The above scheme allows us to use fewer spatial grid points as n — N, thus
lowering the computational effort and expense.

In the next section, we detail an actual one-dimensional implementation of the
Discontinuous Galerkin Method, coupled with the Multilevel Augmentation Mcthod

described earlier.



CHAPTER VI

IMPLEMENTATION

V1.1 SETUP

For implementation of this method, the linear wavelet basis of the Sobolev space

H}(0, 1), as constructed in Section 11.4.2, is chosen, with the basic notation of Chap-

ter 111 employed. Note that with this choice of basis, the dimension of each subspace

X will be dyy = 2 — 1. An arbitrary grid resolution M + 1 is chosen, an ap-

propriate mimber of time steps N selected, and the various matrices constructed by

augmentation. As before, we have

1
(iUij,'wfjf) 1:/0 w,',;j-(x)wij(:x:) diL'-,

d d L d

d _
(E?}.’i‘j, ﬁng:) = A ﬁw,;j(mjﬁwwf (x) dx = 8y

where

1 wheni=14, j=j,
ey 1= ‘
¢ otherwise,

First, the matrix A} is defined as

Al = [ (w10, wio) + kn ]

ar

A= Ltk

From there the matrices

42 1

- =+k

n _ | v2 2 o 6d oo | 48 T

=g Z]. ’2,1—[ﬂ]= Hy, = ;
B4

are constructed, then augmentation of A} gives

0
15+ Fn

|



1 V2 V2
n n, 12 \j‘_;””- 64 64
[ ) _ 2 I :
AY, = nHp, = o i T ke 0
14 * 2 1
e 1 ke
This process is then continued, constructing the matrices
1 V2
13 3 1 256 256
256 256 D236 256 B3 M2
n | v2 ¥3 g5 (m. | 256 256
2,3 256 256 v 132 3 g 2|7
0 0 %/i % 256 256
i) ; 1 0 \/2_
266 256
1 .
793 + Kn 0 0
. 0 o3tk 0
II33 .= 1 k 4
0 foz T Fn 0
0 0 s+ ko
then augmenting A% to obtain
Ti F?L
no_ 2 2.3
Az L= I: (] [
732 {133
or
[ 1 V2 V2 1 3 3 1]
12 T fn 64 64 256 256 256 256
V2 1 V2 V2
a @ the 0 266 256 \Or 0
2 5 2 V2
81 0 a8 T Fn 0 0 256 256
oo 1 +2 1 :
21 = 555 X5 0 55 T Fn 0 0 0
3 V3 i
556 36 5)F s T kn 0 0
3 2 1 :
355G 0 ? 0 s T k., 0
1 2 1
| 0 258 0 0 0 Taz + K |

where A7 := A7 |. One then continues this process until the desired grid resolution

level M is obtained. In general, for m = 2,3,---, M, assuming A%, := A%,_,, has
been obtained, one computes the matrices Iy oy 11, Ghriq o and Hipyy a,q, then

constructs the matrix
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n T
n Al I
M1 T n "
Gl Hiypiaa

As for the actual matrices, the construction of A%, has been described above. The
matrix Fij ., presents the most computation. Matrix G7,y; 4 is the transpose
of Fiyarq1- Matrix Hiy o, 4y is a simple diagonal matrix, with the main diagonal

entries based on the spatial index m and the time step size k,,.

As we did before, we decompose 'y, as

kit

—7y _ u M0
Ypr1 = | _p
Y
where
—n . 1 1
Yo T [gf*jﬂj(zM—l)xla
—*TL . i
v M’,l T [n‘g"j’]2‘w><]-'

These will be the scalars we eventually find.

For the constant in time case, we have ? M1 Written as

?M—H = zM

g
where
_.—)
Fu = [ft’j’](z“—l)xla
Tu = [geglpna
with
M (2M-1_1 {(M41) (2M_1)
_ -1
fuge = Z 5:; l(’wij;wa"j') + Z T}?j ('wt,j,'wt’j’)‘i‘f (S, wyye)de,
=10 G=(M+1) 0 In

for ¥4’ =10,---, M (2¥71 — 1), and

M (QM—J.__]_) (1) (2‘”—])

Gry = > .3_1(1“@;,'10?;’;") + > 'n:}_l(wij;wi’j’) +f; (f, wey)de,

ij=10 ij=(M+1} 0
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for ' = (M +1) 0, (M +1) 27 —1).
With these various arrays now defined, the system

k)
M1 U M+1 - ?M’+l

becomes the system

(13 ¥l -7
Ay FM,M-I»I Yo | TM
7 i rral)
GM+1,M -HM+1,M+1 Va1 Y
or
‘Ii, —)‘ﬂ- —
U o+ FM M4l v 141 = TMa
. —=T i3 —-;)'ll _ —
GM+1,M Uprg + HM+1,M+1 Vil = Ium

To obtain the multilevel approximation u},; of the M+1 level numerical solntion

Uy 41, We first solve the coarse grid problem
n—n _ 7
Ay = fu

obtaining the Mth level solution @,.

Next we solve the system

n —n = 4 e}
HM+1,M+1 Vg = 9m— Gar1,0 Uy

obtaining

?Rﬂ’,l = (‘U;:f+l,j\ff+l)

— Tl
(9 — Gurm W iy)-
With 77}, , now known, we solve the system

—it

Ti —*H _ Ty —n
Ay MO = Jar— FM,M—i—l Voas1s

obtaining
Whio = (Aﬁ)_l(?fw = Faran 0 o)

Finally, wec set

o = T‘??}1',!:! o (&%jf )(QM—l]xT
M1 = =
??4,1 (7??3'*)21\4 ®1

then form the linear combination
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M (M-l (M1} (2M 1)
Unpqp uj{'f,l = Z f;}j—‘wz"j’ + Z ng}j—'u}i’j" (40)
i3 =10 it =(M+1) 0

To write the codes for the implementation, some changes of notation are made

to simplify the computer codes. To do this, we first define the matrix

Ap = [(wig, wirgr)) a3 -1)x (@ 1))

11 . .
whete (wy;, wiy) = fy Wiywe, de. Also, we define

Fy = [(wig, wey)|ear—1yxom
Co = (g, wis oo ase
HM = [(’w@-j, ?.Uifjf)]pf POYER
Further, let
Am + k= Ay, Far=Fgary Guo=Ghpan Hu v Ral = Hyp g 40,

where the matrices f in Ay + &, and T in Hyr + k.1 are identity matrices with the

same dimensions as Ay and Hyy, respectively. The dimension of I is clear from the

context. Thus

it —
M+1 —

Am + ko Fuy
Gum Huy + kol .

Also, we need

Fu= Urn(f" wz”j')dt}

Finally, we index the "wavelets™ used in the codes with single subscripts rather than

(2M—1}x1

double subscripts for simplicity. Thesc notational changes simplify the coding for
the implementation.
Next we detail this multilevel procedure as it applies to the implementation of

the constant in time case of the Discontinucus Galerkin Method.
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V1.2 CONSTANT IN TIME CASE

For the constant in time case, equation (10) on the M + 1 spatial resolution level

becomes

— it —r—1
(Apr + b)) E gy = Asrar Eprn + 7M+1 (41)

and the M + 1 level solution is calculated as

— ik —n—1

v = (Anrn + kD) Anr € apps + F agad)

where

—TE n

5 M4l T [Ej:[(gm+]_]}><]_
and

?M’+l = [LL (f, “"j)dt}

The numerical solution on the M + 1 level is written as

(2M+1-1)x1

QA'LfH—]._l

U§4+1($:t) = Z E;wm(x)'
m=1

For the multilevel method, we replace Ay, with

A M F M
Gy

such that

Aprpr + kpl =

Apg + k1 Fyy
G:M HM’ + k'n.I .

Also, we write

where

—7

§m= E:;](Q‘“—l)xl SRS [ngr.](z-“f)xl

Taa=| 1]

LY

and
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for

?M = {ffn(fj wﬁ')dt} . Tu= [ﬁn(f wj)dtLMXl-

{(2M—1)x1

The system {41) becomes the system

—n ” —n—1
(A + kD Epy + Fu T = An & iy +FM7?M1+?M
—n—1

G,.w?zf—l-(HM-‘-knf)ﬁ} =Gmé&y +H‘»I7}’M + T

which may be written as
_m . —n—1 -1
Ex=(An+ kD) MAsEy +FuTy + TM — Py ul

—=+n—1 s . —on
Thr=(Hy + k)G € +HuTh '+ Tar — Gur € -

The numerical solution is written as

2M—1 M)
W—f—i T t) - Z 5 Wer -B) + Z ?;:lwm(m).
m=2M

To determine the initial values for the scalars, note that on the M + 1 level, we

have
oM _q 2(M+1)_1
U= Y Sual@)+ Y mhwal).
m=1 m=2M

The hasic algorithm for the multilevel method that was used is as follows.

VI.2.1 Multilevel Algorithm-Constant in Time Case

0
Step 1. Calculate Ay, Fiar, G, Hag, ? A G ar, determine the initial values __E)M and
=0
s
n—1 0
Step 2. Set Ty = €p W' = Wor
Step 3. Main Loop For n =1 to N:

1. Choosc k.

2. Calculate Mth Level Solution.

i —n—1
-g,n:f = (Aps + ko) AN E 5y + TM


file:///-JIn

65
3. Calculate Multilevel Solution.
\ n-1 . =
T = (Hu + kD) Gar € + 1T + T o — Gar € i)

— i _ —re—1 n— n
Ep = (A + k) A €y + FuTi 't + ?M ~ Fay 7 34

4. Define
—*T
Um‘ ] _ ‘E A
M+l ™ Y = | o, |
LY
bl _q 2[M+].}_l
e) — g T _ 71 anfb
M1 = Upp = Z EmtWin(z) + Z T Wen ()
=1 m=2M
—n—1 _
5. Update £ ,, and 7% .
—rn—1 —
_ —n—1 _ —it
a =& Ty =Tu
6. Update n.
n=n+1

End Main Loop

Next we detail the implementation of the multilevel procedure as it applies to the

cohstant in time case of the Discontinucus Galerkin Method.

VI.3 LINEAR IN TIME CASE

The linear in time casc is more complex, although the basic plan is simnilar. The

numerical solution on the M + 1 level is given by

_ t—f, 11—
Ulpn(et) = 6a(0) + —=8,(x)

T

gM+1_1 PR aM+1_q

- _
- e e 52 T )
=1 1 m=1
where

oh4+1_

Pnlz) = D] &wnl(z),
=1
oh4+1_q
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The scalars ﬁﬁj“ and E"’ "omo=1,2,.+, 2% — | are determined from the system

o

—)-qp,n 1 —Hp,n 1

—dn i —P.n
(Anyr + ko T) € gy + (Aprs + §knf) §Sarrr =1 F A (€ prpn + Earen )

— 1 1 — 0
anff M4+l +( AM—i—I + gk 1 M+1 - ‘L”n TH-H

with

Taen = | [ (0. w5)at]

(2M+1_1)x1

?LH = [/In (t — t,_1){f(£), u,‘j)dt-

JaMa1_1yx1

—rhm —n Fn

)TE )
S =[] o Ein= (8

using the same definitions for Apr and I as before. This may be written in matrix

LzMﬂ_l)xl

form as

!AM+1+kn1 AM+1+%an] L

1 i 1 —Fi,
aknl gAM1 + ghal £ M+1
—>$,n— —w.ln 1
T+ A (€ + Earna )
=1
""‘n A1
with the solution of this system being
—sdn
5 AM+1
—
M+

——>¢,n -1 —>$,n— 1

~1
Apprr +kad  Anr + %knl f Myl T AM+1( Enmrr T & )

11 1 11
skl 5 AMar gl kT ha
where
—'PGJ:
—n _ g At+1
Uarel1 = | Ln ,

M+1



using

— M

For the multilevel method, we replace Ay, with
Ay Fu
Gy
such that

Ay + &, 1 F;
Anor+kd =Y M } ,

Gar Hy + kpd

Ay + %knj Fa
Cat Hy + Lk,1 |7

1
Ay + §an =

Lk, I
and
-1;/-1 n -l-k' 7= %AM + %knf %FM
9 Af 1 3 nd — 1(1 lH +lk}' )
3 T Af 2 A 3
We write
-—)a'n,
. € ar
= en g:
—n o E M+1 _ ?;}an
Yatil = | pn | ¥
M1 £ u
- Esn
M
where
—dan 5,-n:| —n |: [ n]
> M T |&3 s I =7 :
Su {éj {(2M ~1)x1 Y 7 s e onpa

= g‘n = 1‘-_{)"“} .
g M+1 |:§3 :][2M+1_1)X1 ' 5 M+l [EJ (2M+1—1)x1
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.

o=l "
= g [ .
£ M Iié-‘j [(2M+1_])_{2M__1)]x1

Also, we have

LZM—-I}XI,

e = ﬁ T } T = [ T ] |

. M
where
Tu=|f V@]
Ty = {ffn(f(t)fwj)dt] 2451
Th= [_/In (t — ta1)(f(2), wj)dt] @M -1)x1
and

T = {[ (t— 5n~1)(f(t),wj)d£}

In 2M %1

After some basic calculation the system becomes a new systemn consisting of the two

matrix equations

—

[AM+IGHJ Ay + Skad } £

1 1 1 WPrn
kol Ay AT || ET

—)’q_b,n=1 51,”_1

--—>$._n-— 1 — . _,'n k)
?ﬁf+AAf(5,ﬁrf + & I+ Fu(Ty ‘tﬁnﬁ} N = Pl + TN
b T = AR

and

Hy+ k. Iy + -gl"knf
1k LHuy + 3kl

7]
7h

—r—1 —ahn-1 Aan—l Bn—1 . T
Tu+Ou(€y  + &y )+ Hu(TY +TN ) Gu(T3 + T
KV — 3GuT

for which the solution is given by
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5?, —
E’; Apr+ kT A+ 3kad
—y?:;;n %kﬂf %AM + %‘kn‘?

——)¢n 1 m—1 — ai—1 L7 —af,
Tu+ M€ +Ea )+ Fu(T ﬁf LY - P8+ T
k;_fl f M T 5 ﬁ):{fn

and

-1
[ﬁ’%«” } _ {Hmm Has + 3kal } |

= 1 1 1
M Ekﬂf EHAM + Eknl

_n 1 —sapm—1 F.n—1 1 ' —->c__.t-._n —>E,n
QM+G\4’(£M + &y )+HM(W§4” +?Eﬁ‘n )= Gul( &y + &p )
k_l —n —yn

n 911“‘—GM§W

The numerical sclution is written as

aM_1 9(M+1)_q
Ugpya{z, 1) = Z 0w (z)+ Y S wn(z)
m=2"
t_t aM_q 2LA+1}_ g _
+ © Z gwnwm(.r)—k Z -,?;il{nwm(x)
T m= m=2M

The basic algorithm for the multilevel method that was used is ag follows.

VI.3.1 Multilevel Algorithm-Linear in Time Case

. o 30 —¥0
Step 1 Calculate A, Far, G, Iy, determine the initial values _g‘ , 5; and
0 ¥
ﬁ*?ﬂ H ﬁ)}fvf
Step 2 Set.
—¢n—l  e0  ¥a-l e Fn—1 .0 -] 7,0
£ ar :5M- £ m = & pr s T :Hﬁﬁf; ?K{n :Wtiu-

Step 3 Main Loop: For n =1 to N:

1. Calculate ‘}‘}M, fars G s G gy and choose ky,.



2. Calculate Mth Level Solution.

—rg,n

Ear || Autkad Ayt ko B
—>ji;n %knf %Aﬂ,}' =+ %knf

3. Calculate Multilevel Solution.

—)@,n—]

+&m )

—dn—1

+ Am (€ 5

177"
‘I"n f M

Tu

7| [ Mt bad Hy+kal |7

T Ykol Lyt Lkl
— —rpn-1 —gn—1 —Fn1 Bl Sm o
TrutGu(€y + &y VTHu(WYW  +T4 ) —Gu(€y + &y )

n R
k1 g - 5Gm €
n 1
E}i} o AM’ + an AM’ + éknf
?ﬁ%ﬂ %knj %AM’ -+ %k‘n[
—pin—1  —pn—1 o T e o =

Tt Au(E + T4 )+ R (W0 A 70T — (TR + T

—17" Ly —dm
ky M~ §FM " oar
4. Define B
i —r i
_ S A
e —>q_é.n.
7" et — fM+1 o T
Myl WA T | G = o%a |
M+1 flar
—ynn
s
21\{_1 _ -2(_M+])_1 _
¢4 — _ -3 b,
L’ﬂ’f-{-l = Uppy = Z I T,Um(.’f) + Z T u"m(x)
m=1 m=2M
¢ + arf 1 (M4 _y
— iu—l W, v
el D IR RIS DI GOl B
i m=1 m=20
Shn—l — 1 —n-l —»E,ﬂ—1
5. Update {3 T & Em and 7
—gn—1 —dn G- | — 0 i1 —0,n —ya—t —an
£ n =&n. Tum =Tu, M M T =Ny
6. Update 7.
n=n+1

End Main Loop
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VI.4 ERROR ESTIMATE

Next we show that Theorem 4.2 applics to this scheme, Recall from Chapter IV
hypotheses (I} and (II):

(I) B4 exists.
(I} B;,5Con, is uniformly bounded.

We will show hypotheses (I) and (II) are satisfied. Also, we use the linear wavelet.
basis functions for H}(0,1) developed in Section I1.4.2. First, by the definitions of
B and Cpp,y given by (18) and (19), respectively, we have

Bml e [ A; F‘i’??.,ﬂi‘*‘l ]
0 H:111+],m+1

0 0
(-?m,l =
G;-!-l,m 0

n
Gm+l,m

wherc the matrices A}, F

n .

U ,and HE ., ., are defined as
i

Az = [aieglem—nxem-n,

forig=10,---,m (2" 1 —1), {5 =10,---,m (271 - 1),

11 _ s
ol = [Gigirgr]@m—1)x(am)y

foriz=10,---,m (2™ -1, Vi =(m+1)0,---,(m+ 1} (2™ - 1),
G'ﬂ,

bLm = (Gt (@m)x @mo1)s

forij=(m+1)0,---,(m+1){(2™=1), i =10,--,m (2" = 1), and

1t = @il @myxiamy,

forij={m+10,---,(m+1) (2" -1}, ¢/ =(m+1)0,--- , (m+1) 2™ —1).

To show B;l]l exists, we need only show

det By, 1 # 0,
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since By, is a (27 — 1) by (2% — 1) matrix. Using a well known property of
matrix determinants, we have
An o Fm

M
CRURS J =det Ay, det H) 1,01

det By, 1 = det [ _
0 H:’L-}-l,m--i-l

Since the Discontinuous Galerkin Method has a unique solution by the discussion on
page 183 of [4], we must have
det A7 # 0.

Using the linear wavelet basis, we have

(%)i—-l(?i—lx — ) when 4 < r < 4 + 4,
wij(@) =4 (J5V 7' (G+1-2""2) when 7l + % <z < &5,
0 otherwise.
Thus,
ity 1 i »
(g, wyy) = /—"Lr ’ [(ﬁF M2~ )] de
+f;+1 [(E)H@ +1 =27 da
=T T5 ]
16
T 3\4
SO

" 1 1 m+1
Hm+1,m+l = (5 (f_l) + kn) L.

det Hy s 70

This implies

hence
det, Bm,l # 0.

Thus hypothesis (I) is satisfied.

Now we look at the second requirement. Using blockwise inversion on By, 1, we

have
-1
g | A Bl } :_[(A:;)-] ~(AR) et (H )™
1 0 H::1+I,-m+l 0 (H':l-{-l._m—i-l)_'l




73

50
Bo\Cos = [ (A7 (A0 et (i)™ } [ 0 0 }
0 (f{i?z—i—l,m-{"l)_l T;+1,m 0
— [ _(A?) IF'r‘I:. m+1(H-::a+1,vn.+l)_1G:'L—i-l,.m U ]
(Hm-}-l,m-i-l)_]G;_—i—l,m
Because
n 1 /1™
Htim1 = (g (i) + k-n> 1,
we have (4m+)
3 41’}1
1! -1 _
Ulima )™ = T3,
(")
3(4™
11 =1
”(H i1 ‘m.-f—].) ” - l+ 3(4m+1) ‘ *
Further, since |Gy, ot = (FR )il = 1E5 il and the maximum row sum of
F7, snya 18 the first row sum, we have
IGEall = || et |
-2_1
= Z (wro, wiy)
i=0
2% - Tt 1— 1 ?. -
= 2 Z [/2 : ’“1(2‘_13: — jx dx
i—*—‘r T 1
_{_/2.:_ i—1 +1_2§—1 ,.d”
MG e o)o di]
! 27 TSI B ST 21' (et
= 2272 J_Z;J ( 3 )|ng M e 7% )|{23+1z i
_ QQ—%;
" 16
Therefore

a+1 m+1) 1” ”Cm-H m”

Ik
(1 +3‘§:;3)k ) (£2 ‘m)
(1( T (%)

knz%m

||(If::1,+1,m+1) lGn+lml| S

[
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If we let £, = 2_%’“? we have

“(Hm—i-l 'm+1) LG::H—I m” S 1

so the block (H?

m+1l,m+1
Next we look at the uniform bounding of the other black of B;l]l(?m,l, namely

)—lcn

+lm 18 uniformly bounded.

_(An) IF;E ym+1 (}{n +1, m+1) 1G?m+l RN
We have
” (A” )_ i, m+1(H::n+1,m+1)_1G?n+1 m”
< = (AR T I FR et M 1 ) Gl

<= (AR I maa €

- [ 1 -1 - H
for some constant C, since (H}, ; ..1) 'GP | ,, was shown to be uniformly bounded.

Further, since

ﬂz—%m = ‘/5( L )m (42)

1P meall = sl = 2747 = T2 22

we have ||F2 .| — 0 as m — oo.

We now proceed via induction on m to bound (A%)7L. Let,

(3"

be fixed for some fixed g > 0 and let

=2 >0,
. my—1 {mp+1}—1 o
For my = my + 1, we have ¢,,,, = V2 =2 = /27 > 0 and for values

of my used in practice it can been shown by straightforward calculation that

AR ) TH < B2+ €m, (43)

TH]

80 the assertion holds for m, = mg + 1. We do this in our implementation.

Assume, for a fixed &, = (\/l—,ﬁ)mo, mg > (), that there exists m > mg + 1 and
I \/§m_1 > (} such that

AR < k' + e (44)


file:///-lf-m
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We will show
||(A +1) 1” < k + Cm+1-

By the definition of A7, we have

At = Amptkad
[ An R Foo
G':'z-#l m Hm-l-l,'m-!-] + }"nj
_ ‘47'1 + k 1 FT??, m+1
(F'r?a m+1)r r ( T + k’n)j
Let
. A, + kT 0
St =
0 (Bum + k)1

Using blockwise inversion, we get

I— (Sw?i+l)—lAgz+1 = [-
{mm+@nﬂ 0 }

Am+ bl F2 o) }

0 (hon 4 k) T || (PR )T (o R
= I~ [ T (A + k)™ 1F;?am+]
(ho + k) HEFR )T I

— 0 ~(Am + k)T
- |V (P + kn )™ l( mm+1)T 0 }
= [ 0 —(AL)F, et } ‘

~(hm + k)~ (F 1m+1) ]

Then
1= (Spen) ™ A} H[ 0 —(AT) T }H
—(ho + kn) U (F m-H) 0
< (k' +en)l|F m—H”

and

(A1) [(5”+1) S — A I (S )™

M8 nMR

[ - (S::wl)ﬂ] A?n+1]k(52¢+1)_1-

k=0
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Thus for m > mg + 1 and ¢,,,; > 0, we have

”Am+1 l“ = 5'2+1 1An+1] (5m+1)_lJ
= (Smt) T AL )] (ST H
1
< , —T
TN = (S g N5
< k7l e )
B 1- (kr ! + Em) ‘ mm-i—lH
_ k;l ( kn T Em _k;l)
1— U%Il + Em) Hszrlr,,m+1H
n—1
= k' + 't} -V2"
L =1 7
(V2 VT2 (L)
m—1
— k_l—l-( \/-rn+\/_ - l_m—\/imo)
- (VB VR
\/§m0 + \@m—l Mo
_ -1 _
- Rt (1 {(Voymeti-m \/in
16 16
\/—1 +\/—m 1
_ -l _
- kﬂ + (_g, (vf_)mg-f—l m 2
1 16
V2™ 4 am o
_ —1 _
S +(l§ v V2
1 16 2
i -1
< k‘;]‘ + ('\/5"15—“ \/1§m _ ‘\/Em.u)
6~ 16

= k' gﬁ’m + gx/im_l N
= k14 —1?4/?0 + g\@m_l

< kb oV SV

< k7'+ %\/5 + gx/im

= k7 +V2"

—1
= kn +€m+1-
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Thus we now have the norm of the block

(A P (g1 ) G

m+1lm
bounded as m — oc. Therefore the matrix
-1
Bm,lcm{l

is uniformly bounded for these choices of € and k,, thus satisfying hypothesis (II).
With these two hypotheses having been satisfied, Theorem 4.2 implies there exists

a positive integer M such that for m > M we have

" = upall < CLy max Bt gn(v)

where u" is the exact solution at the time step ¢, for n =1,2,-.. | N, and
{m-+1)}(2m—1)
no.__ .0 R T
u’m,l T um,{) + Lm,l T Z u%,?wu
ij=10

is the multilevel solution, using u;; to denote the scaler entries of the column vector

Um,1, and the wy; are the wavelet basis functions.

V1.5 NUMERICAL EXPERIMENTS

VI.5.1 A Conventional Example

We use the following one-dimensional heat problem: Find u such that
ulz, 8} —ug(z,8) =0, O<z<l, O<it<.b,

uw(0,t) =wu(l,t) =0, 0<f<.5,
u(z,0) =sin(ax), O0<z<l.

The standard Discontimious Galerkin Method solution and the Multilevel Method
solution of the above problem were calenlated so a comparison of accuracies and
efficiencies could be made. Grid resolutions of M = 2.3,.,.,10 were chosen, with
the number of time steps N chosen as N = 2M~1,

As stated in Section VI.5, we need to check that (43) holds. Since N = 2! and

ty = .5, we have

pootv_ 5o 1Ly 1N
TN 9M-1 T g9.9M-1" oM~ \9 - \/§
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thus
mp=2M, mi=mp+1=2M+4+1, M= 2,3?4} 5,6,7,8,9,10.

We find by straightforward caleulation using Matlab 7, for M = 2, 3,4, 5, that
(AR )T < byt ey

for k, = (ﬁ)mu and €,,, = (v/2)™ "1, thus insuring the induction base step and the

analysis of Section VI.5 apply for M = 2,3, 4, 5. The results of these calculations are

shown in Table 1.

TABLE 1: Induction Base Step Norms and Bounds
M mo || (A:'q)_l |kt + &
2 5 4.3321 8.0000
3 7 9.5217 16.0000
4 B 21.3440 32.0000
5 11 48.3825 64.0000

Although computing memory limnitations prevented similar calculations for M =
6,7,8, 9,10, implementation results were calculated for these resolution levels, and
tabulated along with the results for the lower resolution levels. [t is believed that
the induction basc steps are still valid for the higher resclution levels, although there
is no direct verification of this.

As stated above, the multiscale lincar in space and constant in time basis func-
tions were used, and the results caleulated and compiled using Matlab 7. To calculate
the error, the actual differences of the exact solution « and the numerical solutions
uprt1 and wpy were calculated at each grid point, then [|u” ~uj, || and [[u™ —f ||
calculated for each time step n using both the infnorm and the 2-norm. Finally,
for each resolution level, the maximums of each of the inf-norms and 2-norms were
selected and tabulated. Table 2 provides the results when the approximating func-
tions are constant in time, while Table 3 provides the results when the approximating
functions are linear in time. Further, ¢pu timings in seconds were taken for both the
Discontinuous Galerkin Method and the Multilevel Method loops on each resolution
level, and these tabulated as wcll. In the lower resolutions some ¢pu clapsed times
were too small to be significant, no doubt due to the use of single-precision arithinetic
in the Matlab 7.0 software used for the calculations. Further, while successive cpu

timings for the same resolution level were not absolutely consistent, they did not vary
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by significant amounts. The use of single-precision arithmetic also affected the error
values at the higher resolutions of Table 3. It is not believed that these error values
are actually zero, rather, these zero values can be attributed again to the limitations
of single-precision arithmetic.

Comparison of the norm values at the various resolution levels for both the con-
stant in time and linear in time versions shows comparable values in both the inf-
norm and the 2-norm measurements of error. There were very slight differences in
the norms at low resolution levels, but at higher resolutions, the norm values for the

errors were identical.

TABLE 2: Error and Timing results for DGM and ML Methods (Constant in Time)

M DG oc-normm DG 2-norm ML oo-norm ML 2-norm DG time ML time

2 0.1932 0.2733 0.1929 0.2745 0 0

3 0.1533 (.3066 0.1532 0.3069 0 0

4 0.0904 0.2556 0.0904 0.2557 (0.0313 0

5 0.0498 0.1990 0.0498 0.1990 (0.0313 0

6 0.0266 0.1505 0.0266 0.1505 0.0469 0.0156
7 0.0137 (.1098 0.0137 (0.1098 0.4063 0.1250
8 0.0070 0.0789 0.0070 0.0789 4.5313 1.0313
9 0.0035 0.0563 0.0035 0.0563 54,8281  11.5469
10 0.0018 0.0399 . 0.0018 0.0399 803.4063 144.5625

Figure 7 shows the cpu timings of the resolution levels M of 7, 8, 9, and 10 for the
methods when the approximating functions are constant in time. The cpu timings
of the lower levels were considered too insignificant to measure so they were not
included in the plot. Comparison of the computational times for each method shows
substantial saving with the multilevel method, requiring less than half the time to
cmﬁpute while providing the same degree of accuracy as the straight Discontinuous
Galerkin Method. Further, the computational costs for each method closely followed
the predicted costs, as shown by the plot.

Figure 8 shows the cpu timings of the resolution levels M of 7, 8, 9, and 10 for
the methods when the approximating functions are linear in time. Again, the cpu
timings of the lower resolution levels, while significantly longer than the constant in
time version, were still considered too insignificant to plot. The basic costs of the
higher resolution levels were again substantially lower for the multilevel method. As

befere, the computational costs for each method closely followed the predicted costs.
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TABLE 3: Error and Timing results for DGM and ML Mecthods (Linear in Time)

M DG oco-norm DG 2-norm ML oo-norm ML 2-norm DG time ML time

2 0.0499 0.0706 0.0470 0.0706 0.0156 (0.0156
3 0.0125 0.0250 0.0122 0.0245 0.0156 0.0156
4 0.0022 (0.0062 0.0022 0.0061 0.0156 0.0156
5 0.0004 0.0017 0.0004 0.0017 (1.0156 0.0156
6 0.0001 0.0005 0.0001 0.0005 0.0938 0.0781
7 0.0000 0.0002 0.0000 0.0002 0.9375 (0.5938
8 0.0000 0.0001 0.0000 (.0001 12.3281 5.2344
9 (.000G 0.0060 (0.00600 0.0000 165.4844  80.1094
10 0.0000 0.0000 0.0000 0.000G 2264.9000 948.9060

In short, these results suggests that the Multilevel Method version of the Discon-
tinuous Galerkin Method provides a cheaper alternative to the traditional straight
Discontinuous Galerkin Method, while preserving accuracy of the traditional Discon-

tinuous Galerkin Method.

VI.5.2 An Example with an Incompatible Initial Condition

We use the following onc-dimensional heat problem: Find u such that
w2, 1) — tpe{2,8) =0, O<a<l, 0<it<T,
u(0,t) =u(1,4) =0, 0<t<.5,

w(z,0}=1—-2, O<z<l

The initial condition is incompatible with the prescribed boundary conditions, so this
problem requires the special time and corresponding spatial discretization scheme

outlined in Chapter V. Recall that the exact solution is
> 2
0 3% oo
u(z, £} = > ule™ tsin(jrz),
=1
where the coefficients n? are given by

W =2 [ (L= sin(jme)d = 25 — - sinljm)} = O(1/3)

and so we have [|u,(t)]. = O(t_%]. Thus o = 2, and so the index of singularity is

Q = i“f—; = 4 when g = 0, that is, the approximating polynomials arc constant in
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time. The initial spatial resolution level is M = 9. The same linear wavelet basis from
before was used, as well as the same computing package, Matlab 7.0. Cpu timings
were taken in seconds for each time step loop for the two methods. At times, several
computations were necessary to obtain meaningful cpu times for lower resolution
levels, as these tended to be quite small and were not always detected using single-
precision arithmetic. The results of these experiments are shown in Table 4 for the
case of ¢ = 0. As before, the error of the Multilevel Method matched the error of
the Discontinuous Galerkin Method for each specified grid size. Error tended to be
greater in carly transients and less in late steps, even with the coarser grids used in
the late steps, due to the fact that the actual solution becomes smoother as the time
steps progress, The size of the error {for the first time step was disappointing, no
doubt due once again to the single-precision arithmetic.

Although codes were written to calculate the solution for the case of ¢ = 1, when
the approximating polynornials are linear in time, this was not actually implemented
due to the limitations of the available computing equiprent, which lacked sufficient,
memory for spatial grids with resolution levels above M = 10. The first time step
calculation requires a grid resclution of M=14, far in excess of this limitation.

As before, the multilevel version of the Discontinuous Galerkin Method proved
to be more efficient in the higher resolution levels required for the first time steps.
Also, at low spatial resolution levels such as those used in the final time steps, there

was a less appreciable cost advantage to using the multilevel method.

TABLE 4: Time Step Results for DG and ML Methods (Constant in Time)
M DG 2norm DG ocnorm ML 2norm ML ocnorm  DGtime  MLtime

=
—_

1 9 0.2311 0.1172 0.2314 0.1176 0.3594  0.1719
2 8 0.4135 0.1053 0.4135 0.1053 0.3438  0.1363
3 7 0.3420 0.0811 0.3417 0.0810 0.0781  0.0469
4 6 0.2614 0.0652 0.2608 0.0651 0.0781 0.0313
a 6 0.1933 0.0543 0.1922 0.0540 0.0313  0.0156
6 5 0.1976 0.0467 0.1975 0.0466 0.0313  0.0156
7 5 0.1568 0.0431 0.1556 0.0428 0.0156  0.0156
g 5 0.1875 0.0421 0.1670 0.0420 0.0156  0.0156
9 4 0.1275 0.031%8 0.1272 0.0318 (1.0156 0

10 4 0.0466 0.0165 0.0461 0.0163 0.0156 0
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CHAPTER VII

CONCLUSIONS AND FUTURE PROJECTS

In this thesis, we have shown that the Discontimious Galerkin Method can be en-
hanced with a multilevel calculation method to produce a new method that offers
the same level of accuracy as the existing Discontinuous Galerkin Method, but with
considerably lower computational costs. Further we have demonstrated that the spe-
cial time and space discretization schemes of [6] remain valid when enhanced with
the multilevel method.

Future projects include a generalization to the cases where the spatial region is
taken in R*? and R®. Also, an enhancement of the multilevel method that requires
us to only solve the linear system corresponding to an initial a coarse level m, then
moving from a coarse level m + k, where k is any positive integer, to a finer level
m + k + 1, will be examined. Use of quadratic and cubic wavelet bases will also be

considered, along with possible extensions of the methed to nonlinear cases.
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