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ABSTRACT 

DGM-FD: A FINITE DIFFERENCE SCHEME BASED ON 

THE DISCONTINUOUS GALERKIN METHOD 

Anne Marguerite Fernando 

Old Dominion University, 2008 

Director: Dr. Fang Q. Hu 

Accurate and efficient numerical wave propagation is important in many areas of 

study such as computational aero-acoustics (CAA). While dissipation and dispersion 

errors influence the accuracy of a method, efficiency can be assessed by convergence 

rates and effective adaptability to different mesh structures. Finite difference and 

finite element methods are commonly used numerical schemes in CAA. Finite differ­

ence methods have the advantages of ease of use as well as high order convergence, 

but often require a uniform grid, and stable boundary closure can be non-trivial. Fi­

nite element methods adapt well to different mesh structures but can become difficult 

to implement as the order of approximation increases. In this research we formulate a 

numerical method that has high-order convergence, with strong accuracy for numeri­

cal wave numbers, and is adaptive to non-uniform grids. Such a method is developed 

based on the Discontinuous Galerkin Method (DGM) applied to the hyperbolic equa­

tion. Finite difference type schemes applicable to non-uniform grids are proposed. 

The schemes will be referred to as DGM-FD schemes. These schemes inherit, natu­

rally, some features of the DGM, such as high-order approximations, applicability to 

non-uniform grids and super-accuracy for wave propagations. Two grid structures 

are studied. In the first structure, a regular, but non-uniform, finite difference type 

grid is assumed. In the second structure, some grid points are double-valued and 

the derivative scheme has a shortened stencil. Fourth-order upwind and third order 

central schemes are presented as examples of the first grid structure. Fifth-order 

upwind schemes are derived for the second structure. For non-linear equations, flux 

finite difference formula are given where no explicit upwind and downwind split of 

the flux is needed. This is in contrast to existing upwind finite difference schemes 

in the literature. Stability of the schemes with boundary closures and the super-

accuracy for wave propagation problems are investigated and validated. The new 

schemes are demonstrated by numerical examples including the linearized acoustic 



waves, the solution of non-linear Burger's equation and the flat-plate boundary layer 

problem. 
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Chapter I 

INTRODUCTION 

As Computational Aeroacoustics (CAA) problems involve wave propagation over 

long time periods, it is important that the numerical schemes used to solve these 

problems have low dissipation and low dispersion errors [41, 12]. High-order finite 

volume schemes and finite difference schemes that are optimized for such properties 

are widely used in these applications. In addition to wave propagation, numerically 

modeling some physical phenomena requires that a wide range of relevant space and 

time scales be accurately represented [30]. Many approaches have been explored such 

as spectral element methods [21], high order discontinuous Galerkin finite element 

methods [15], dispersion relation preserving methods [41] and compact schemes [30]. 

The accuracy in discrete dispersion relation is often used in ranking methods for 

precision in wave propagation [3]. Finite difference methods which demonstrate this 

precision are the compact schemes and dispersion relation preserving (DRP) schemes 

[30, 41]. 

The finite difference schemes usually require a uniform grid. This restriction 

prevents efficient resolution of the solution in sections of the domain for many non­

linear applications. Also, at high orders, due to a wide stencil, construction of 

stable boundary closure schemes for finite difference schemes is often non-trivial 

[10, 23, 4, 22]. 

This research proposes a new finite difference type scheme, based on the Discon­

tinuous Galerkin method (DGM), that has strong numerical to exact wave number 

agreement, high order accuracy with stable boundary closure and adaptability to 

non-uniform grids [19]. DGM is chosen as the foundation of this new scheme for 

many reasons. The discontinuous Galerkin method is a finite element method which 

can be used on non-uniform grids with high-order basis functions and therefore has 

high order accuracy. DG methods are adept for handling complicated geometries 

and require relatively simple treatment of boundary conditions in order to maintain 

high-order accuracy. DG methods can also handle mesh adaptivity adjustments as 

refinements of the grid can be taken into account without concern about maintaining 

This dissertation follows the style of The Journal of Computational Physics. 
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continuity [15]. In this research, finite difference like schemes based on the discon­

tinuous Galerkin method are derived. They will be referred to as the DGM-FD 

schemes. 

The original DG method was introduced by Reed and Hill in 1973 for solving 

the neutron transport equation [39]. A more formal analysis of DG as applied to 

ordinary differential equations was performed by LeSaint and Raviart where, if Ax 

is the grid spacing, they proved a rate of convergence of (Ax)k in one variable de­

fined on Cartesian grids [31]. In 1986 Johnson and Pitkaranta proved a rate of 

convergence of (Ax)k+1^2 [29] for general triangulations. Results were confirmed for 

exact solutions that were assumed to be smooth [40, 32, 33, 18, 37]. On the is­

sue of super-convergence, it was shown that the approximate solution of the DG 

method super-converges at the Gauss-Radau points [8, 2, 35]. Atkins and Shu intro­

duced quadrature-free implementation of the Runge-Kutta Discontinuous Galerkin 

(RKDG) and Local Discontinuous Galerkin (LDG) methods [5]. The extension of 

RKDG methods to general multi-dimensional systems was used in applications to the 

Euler equations of gas dynamics [7, 6], and further in a five paper series by Cockburn 

and Shu for numerically solving hyperbolic conservation laws [17, 13, 14, 16]. Further 

review and discussion of properties of DGM for conservation laws was done by Fla­

herty et. al. [20]. Studies have also shown that discontinuous Galerkin schemes have 

strong super-accuracy with low dissipation and dispersion errors for wave propaga­

tion problems [27, 36]. Fourier analysis of DGM schemes reveals that the numerical 

eigenvalues are accurate to order 2p+2 locally, and therefore 2p+l globally, for the 

decay of the evolution component of the numerical error [25, 27, 3]. DGM also 

performs well on non-uniform stencils, as studies on numerical reflections at a grid 

discontinuity reveal that the reflections are just the non-physical or spurious wave 

mode which dissipate quickly [27]. 

With DGM-FD we look to improve on current methods and, therefore, a brief 

review of traditional Finite Difference Schemes [41], Dispersion Relation Preserving 

[41], Compact Finite Difference Schemes [30, 46], Spectral Volume Schemes [42, 43, 

44, 45, 12], and Spectral Difference Schemes [34] is presented. 

Traditional finite difference schemes are central schemes whose coefficients are 

determined via Taylor series. This method has the limitation of needing a uniform 

grid. While these methods are simple in derivation and implementation, there is no 

attempt to improve the numerical dispersion relation in these numerical methods. 
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Stable boundary closure schemes also become non-trivial as the order of approxima­

tion, and the number of grid points in the stencil, increases. 

The Dispersion Relation Preserving (DRP) scheme is an optimized finite dif­

ference scheme that minimizes the error in the numerical wave numbers [41] while 

consequently reducing the formal order of accuracy. It is simple to use and high-order 

with strong accuracy for numerical wave numbers. It was motivated by applications 

to acoustics with the goal of preserving the dispersion relations inherent in the linear 

Euler equations. The DRP is a marked improvement on standard finite difference 

schemes for resolution of wave numbers, however, its main draw back is that it also 

requires a uniform grid [41]. 

Compact finite difference schemes are high order and preserve numerical wave 

number accuracy well, but are implicit and are therefore computationally more ex­

pensive [30, 46]. Through grid maps, or less desirably, by directly recalculating 

coefficients for different grids, they can be applied to a non-uniform grid, but there 

appears no potential for dynamic grid adaptations without the inefficient or perhaps 

impossible re-calculation of coefficients at each adjustment. 

A high-order compact upwind difference schemes with good spectral resolution 

is recently reported in [46]. With this method finding first derivatives can be as 

inexpensive as with explicit schemes even for non-periodic boundaries. Also, when 

implicit, these methods are less costly than the other compact schemes. Resolution 

optimization is used to enhance the spectral resolution and this produces a scheme 

with very high spectral accuracy. The boundary closures are stable and also have 

spectral accuracy. This method is, however, upwind and therefore wave splitting is 

required. Furthermore, as with the previously mentioned methods, there appears to 

be no adaptivity to non-uniform meshes. 

Spectral (finite) volume methods (SFV) for conservation laws achieve high-order 

accuracy by subdividing each spectral volume into control volumes and using cell-

averaged data from these control volumes to reconstruct a high-order approximation 

[42]. Riemann solvers are used for fluxes at spectral volume boundaries. Total varia­

tional diminishing and bounded limiters are used to remove spurious oscillations near 

discontinuities. The reconstruction is carried out analytically which saves memory 

and CPU time compared to high order finite volume method [42, 43, 44, 45]. While 

these methods are more robust in their handling of discontinuities and non-uniform 

meshes, they are, however, more complicated to implement and use more computer 
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time than most finite difference schemes. 

Spectral difference (SD) schemes are recently developed high-order methods with 

an emphasis on efficiency for conservation laws on unstructured grids. It combines 

structured and unstructured grid methods to obtain computational efficiency, and, 

utilizes discontinuous high order representations to achieve high order conservation. 

It is based on a finite-difference formulation, for simplicity, and reported as easier 

to implement than DGM and spectral volume methods for unstructured grids [34]. 

The spatial accuracy is verified through studies on examples, but it is unknown if the 

accuracy of the numerical wave numbers in DGM found by Hu and Atkins in [27] is 

preserved in this method. 

In this research we turn our attention to combining attractive properties of finite 

element and volume methods with the simplicity and high order accuracy of finite 

difference schemes. The new methods proposed in this work, DGM-FD schemes, 

are explicit and will be shown to possess many of the attractive features of the 

discontinuous Galerkin method including the ease of use on non-uniform grids, high-

order accuracy, and low dissipation and low dispersion errors. 

The derivation starts with the semi-discrete form of the hyperbolic equation from 

which a finite difference formula for the first spatial derivative is constructed. Two 

families of schemes are formed. In the first family, a regular finite difference grid 

is assumed. Construction of finite difference schemes and boundary closures are il­

lustrated through a fourth-order scheme. Both the central and upwind schemes are 

given. A flux difference scheme is derived for non-linear problems and a third order 

scheme is presented. A second family of schemes with an introduction of double 

valued nodes, is derived, discussed and illustrated with a fifth order scheme. Sta­

bility is demonstrated for each variation. The proposed schemes are also applicable 

to the discretization of second order derivative terms such as those found in the 

advection-diffusion equation. All the schemes are illustrated by numerical examples 

including applications on non-uniform grids and use with the linearized Euler equa­

tions. Applications for the flux scheme include the non-linear Burger's equation and 

a flat-plate boundary layer problem with Navier-Stokes governing equations. 
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Chapter II 

FORMULATION OF DERIVATIVE EXPRESSION BASED ON DGM 

II.l INTRODUCTION TO DISCONTINUOUS GALERKIN METHOD 

Discontinuous Galerkin method is a finite element method developed in 1973 for the 

application of solving the neutron transport equation [39]. It follows a formulation 

for continuous Galerkin finite element methods with the exception of requiring the 

basis functions to be continuous over element boundaries. 

Here is a brief overview of DGM in multiple dimensions [25, 16]. Consider a 

conservation equation for a quantity in a region, R 

^ + V-f(u) = 0 (1) 

where f(u) is a flux vector. Let the domain be partitioned into non-overlapping 

sub-domains or elements, Ri. The discontinuous Galerkin method is a finite element 

method in which the functions in the approximation space Vh may be discontinuous 

across element interfaces. The subscript, h, represents the 'size' or measure of element 

Ri. In the semi-discrete formulation, Vh contains spatial functions 

Vh = {v e I a ( I> ) :v | f t 6 P(Ri)}, 

where P(Ri) is a polynomial space defined on Ri. The numerical approximation of 

the solution is then obtained by solving a weak formulation of (1), where the space, 

Vh, is also used as the test space. We now identify a polynomial basis for each R^. 

Let E>i — {v^}^=o)...jvi-i, with each v} defined on R, be a local basis set such that 

Span^Ok = P(Rt), Supp(vj(x)) = Ri, £ = 0,..., Nt - 1 

We can see that Vh = Span(Uv^). We now assume each Ri to have dimension, N 

and that the basis polynomials on each Bt are each degree, N — 1 and require that 

the approximate solution u/j satisfies 

j T | V J ^ + V - f ( u f c ) ^ d x = 0, £ = 0,...,N-l (2) 

on each element Ri. Using Green's formula (or integration by parts in one space 

dimension), (2) is re-written as 
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[ y}^ - Vvf • f(ufc) dx + / v|f(uh) • n ds = 0 £ = 0, ...N - 1 (3) 
JRi Ot JdRi 

where dRi is the boundary of Ri and n denotes the unit outward normal vector. As 

the data are discontinuous across the interface of contiguous domains, two unequal 

values of u^ i.e. uj, inside Ri and u3
h outside Rt are available in the data at the 

interface. As there is not one value of the flux at the interface, a numerical flux inum 

is used to evaluate the interface flux in the surface integral term of (3) 

f(uft) • n|9Ri = fn«m«, u3
h, n). (4) 

The above formulation can be interpreted as a standard Galerkin method in each 

element with a weak boundary condition. 

The accuracy of the method is at least (j>+|) if the basis functions are polynomials 

of degree at most p [29]. On a cartesian grid the order of accuracy is (p + l)th order 

if the basis functions are polynomials of degree at most p [31]. We will stipulate the 

method to be order (p + 1) if the basis functions are polynomials of degree p or less. 

II.2 EXTRACTION OF A FINITE DIFFERENCE FORMULA 

Consider the discontinuous Galerkin method, in one dimensional space, for 

du df(u) _ 

m+-&T-° (5) 

with the spatial domain in x partitioned into elements En—[sn-i,sn], n = 0,1,.. . , N. 

The numerical solution for x e[s„_i,s„] is expanded as: 

un
h(x,t) = J2une(t)<t>m (6) 

e=o 

K(x,t) = itfne(Wm (7) 

where x = | (sn_i + sn) + ^f£, hn = sn — sn_i, and $?(£) are the basis functions with 

order p on element En, in parametric coordinate £, where — 1 < f < 1. 

We note that if <$?(£) are chosen to be the Lagrange polynomials, the expansion 

coefficients will be the same as the nodal values of the numerical solution. This 

has the advantage that no inversion of a system is required to obtain the expansion 
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coefficients. If xni is the iih of the (p+1) collocation points on nth element En we 

have the basis, in terms of x, as 

l\ij4\%nl ~ xni) 

with the property 

By the weak formulation in DGM, it is required that 

for £'=0,1,...p. 

Following an integration by parts and the change of variable given above that 

maps, for each n, En=[sn-i, sn] to [-1, 1], we get 

y L mm^+rMwo) - r(«n-i)^(-i) - /̂  / ^ ^ = o (9) 
for ^'=0,l,...p, where /* denotes the flux at the end points of the element. This is 

necessary as at the interface between two elements, or at element end points sn_i 

and sn, the flux vector /* is not uniquely determined and a flux formula has to be 

supplied to complete the discretization process, see (4). Here, following the work in 

ref [27], the Lax-Friedrichs flux formula 

r = l[f++r-e\x\(u+-u-)} (io) 
will be applied with A = | | ^ | | m a x , the largest eigenvalue of [g£] or the largest, in 

magnitude, eigenvalue of the jacobian of flux, / . The + and ~ refer to the values at 

the right and left of an element boundary, respectively as shown in Figure (1). 

A i - i -Mi 

FIG. 1: A description of the location of / + , /~ on an a grid with element boundary. 



With (10), the semi-discrete expression can then be written explicitly as 

e=o 

+ ̂  E « ( l ) + E/(n+l)J#(-l) - %!»««(£ «(n+l)l#(-l) ~ £ W?(l)) $(1) 

e=o 1 a ? 
(11) 

for ^' = 0,1,...p. In the above, a = |^ and 0, 0 < 0 < 1, is a parameter that controls 

the upwinding effects, with 0 = 0 being a central scheme and 0 = 1 being the fully 

upwinded scheme. 

We also assume that the basis functions are the same for all elements (except 

those next to the boundary), denoted by 

# ( 0 = Pe(0 

and define matrices 

Q = {<?«} = {/_: PtPedt}, Q' = {<&,t} = {_/_i Pt-gfrdZ}, 

BiaJb) = &„} = {Pe(a)Pt(b)} (12) 

and vectors 
Unl 

U. Tip 

r 
JnO 

fnl 

/ , nj> 

Then, as given in [27], the semi-discrete equation ( 1) can be written as 

T Q ? ~ l^-^'1 + £B<u) - \*(-^) ~ Q'l/n + ̂ (lrl,f
+1 

+-\a\max{-B^1}1)u
n-1 + [B ( l i l ) + B (_1,_1)]^" - B ( 1 ,_1 }^+ 1} = 0 
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or 

h Bit"- -4 -
^ Q — + M _ r - 1 + M o / " + M + / " + 1 + 0 | a | m o x { N _ u ™ - 1 + N o 5 " + N + i r + 1 } = 0 (13) 

where it is found that 

M_ = - | B { _ M ) (14) 

Mo = ±B ( l i l ) - ^ B ( _ w ) - Q' (15) 

M + = 1 B ( 1 , _ 1 } (16) 

and 

N_ = ~ B ( _ U ) = M_ (17) 

N 0 = ^ B ( M ) + \^-x,-i) (18) 

N + = - ^ B ( 1 , _ D = - M + (19) 

As Q is not singular because the basis polynomials are linearly independent (with 

h„ respect to standard L2 inner product) we may apply ^-Q 1 to both sides of (13) to 

get: 

— + — { M - r - 1 + M 0 / n + M + f + 1 + OlaU^M-iT-1 + N 0 ^ - M+u"+ 1 )} = 0 

(20) 

where 

M_ = Q-1M_, M + = Q- 1 M + , M 0 = Q_ 1M0 , N 0 = Q _ 1 N 0 

It is at this point that we propose an idea that is the cornerstone for the rest 

of this research and dissertation. By comparing the original PDE | | + ^ = 0 with 

the discretized version in (20) it is clear that we get a discretization formula for the 

spatial derivative of / " as 

^ = A { M - / " - 1 + M 0 f + M + / " + 1 + 8\\a\\max (M.U"-1 + N0w" - M+vn+1)} 

(21) 

In particular, if we let / = au, we get an expression for the derivative of w": 
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diF1 2 f- _ _ \n\ - - - 1 
— = — \ M_«"- 1 + Mou" + M+tT+ 1 + e^iM-i?1-1 + No-u" - M+u"+1) \ 
ox hn { a J 

(22) 

or: 

^ = A ( ( i + ^ M . ^ " 1 + (Mo + ^ N 0 K + (1 - ^ i ) M + t T + 1 l (23) 
aa; hn [ a a a J 

This derivation is general for any choice of basis polynomials and any choice of 

collocation points. As mentioned earlier if the basis polynomials are chosen to be the 

Lagrange interpolating polynomials then the expansion coefficients from (6) and (7), 

UrU'(i) and fnt'(t) are simply the nodal values, u%(xnei,t) and fh{xni',t), which are 

the numerical solutions on element n at collocation point xnt>. The equations from 

this section will be used to develop schemes in the following chapters. 
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Chapter III 

GRID STRUCTURES I, DGM - FINITE DIFFERENCE SCHEME 

The formulation derived in the previous chapter can be applied to any family of 

basis functions, but as noted, when the basis functions <$?(£) are chosen to be the 

Lagrange interpolating polynomials, the expansion coefficients unt become the same 

as the nodal values of the numerical solution at the prescribed nodes. The nodal 

points within element En will be denoted by x„£, £ = 0,1, ...p, where p is the order 

of the basis functions. Various finite-difference-like schemes can be derived by the 

formulas given in (21) and (23) based on particular choices on the distribution of 

nodal points. 

\ | / \ | / \ 1 / \ [ / \ls 
TTs 7l\ 7l\ 7K 7K" 

XjiO ^ 1 Xn2 *r3 xn^ 

* • . . * NI/ N!/ N!/ \ k Nk 
71\ 7K / l \ /K 7t\ 

Ax 

FIG. 2: Schematic of a finite difference grid partitioned into elements of length 
hn = (p+ l)Ax, where Ax is the grid size and p is the order of the basis functions. 

For instance, a uniform grid system, with a given Ax, that is often found in 

finite difference methods, can be broken into elements of length h — (p + l)Ax with 

the element boundary placed at the middle of the two grid points of neighboring 

elements, as shown in Figure (2). In this case, the nodal points on the transformed 

coordinate £ , — ! < £ < ! , are 

6 = 

and the basis functions are 

V 
+ • 

2i 

p + 1 p + 1 
•, i = 0,l,2,...p 

^(0 = 
_ ^i=o,i7te(^ ~ &) , ^ = 0,1,2, ...p 

(24) 

(25) 

Then the finite difference scheme can be derived by substituting (25) into formu­

lation (11) where the matrices are computed according to (12) and (14)-(19). 
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III.l FORMULATION 

III.1.1 Interior Scheme 

A fourth-order (p = 4) scheme is given below as an example. The finite difference 

formula for a set of five grid points, as illustrated in Figure (2), is yielded as 

dx 

Unl 

Un2 

Un3 

_2_ 
l + l M_ 

^ (n - l )O 

U(n-l)l 

U(n-1)2 

U(n-1)3 

« ( n - l ) 4 

2 I- „\a.^T 

+ — I M0 + 0 ^ N O 

UnO 

Un\ 

Un2 

UnZ 

Uni 

+ K 
M + 

where, using (24) and (25), it is found that 

«(n+l)0 

U(n+l)\ 

U(n+\)2 

«(n+l)3 

«(n+l)4 J 

(26) 

M. 

Mn 

-29141 
102400 
22379 
102400 
-525 
4096 

-3941 
102400 
12299 
102400 

-97037 
38400 
-33669 
12800 
1895 
1536 
13693 
38400 
-9479 

N 0 = 

24997 
10240 

-19747 
10240 
2625 
2048 
1309 
10240 
-1631 
2048 

37467 
25600 

-28773 
25600 

675 
1024 
5067 
25600 

-15813 
25600 

38191 
6400 
14153 

-786807 
256000 
604233 
256000 
-2835 
2048 

-106407 
256000 
332073 
256000 

-5007 
1600 
3117 

19200 
-1955 
768 

-2149 
6400 
-8227 

12800 19200 

-7161 
2560 
6207 
2560 

-1125 
512 
339 
512 
-57 
2560 

87423 
25600 

-67137 
25600 
1575 
1024 
11823 
25600 

-36897 
25600 

3200 

0 
-3117 
3200 
5007 
1600 

227367 
128000 

-248913 
128000 

2835 
1024 

-248913 
128000 
227367 _____ 
128000 2560 

8227 
19200 
2149 
6400 
1955 
768 

-14153 
19200 
-38191 
6400 

-57 
2560 
339 
512 

-1125 
512 
6207 
2560 

-7161 

-262269 
102400 
201411 
102400 
-4725 
4096 

-35469 
102400 
110691 
102400 

9479 
12800 

-13693 
38400 
-1895 
1536 
33669 
12800 
97037 
38400 

-1631 
2048 
1309 
10240 
2625 
2048 

-19747 
10240 
24997 
10240 
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M+ = 

-110691 
102400 
35469 
102400 
4725 
4096 

-201411 
102400 
262269 

36897 
25600 

-11823 
25600 
-1575 
1024 

67137 
25600 

-87423 

-332073 
256000 
106407 
256000 
2835 
2048 

-604233 
256000 
786807 

15813 
25600 
-5067 
25600 
-675 
1024 

28773 
25600 

-37467 

-12299 
102400 
3941 
102400 
525 
4096 

-22379 
102400 
29141 

102400 25600 256000 25600 102400 

A central difference scheme is obtained by letting 0 = 0 in (26). On the other 

hand, a choice of 9 = 1 will yield the upwind (a > 0) and downwind (a < 0) schemes. 

III.1.2 Non-uniform grids 

As mentioned in the introduction, a finite difference method which can adapt to 

non-uniform grids while keeping the same scheme coefficients is one of the goals of 

this research. 

~7N 7N 7N 7f\ 7K~ » » « « « \ | / \U \U \j/ sjy 
/K7r\ 7 T \ 7 K 7N 

A x i AXi 

^ - ( A X 1 + A x 2 ) 

FIG. 3: Schematic of a grid structure with nonuniform grids. 

DGM-FD has this property, provided that there is a transition grid between two 

different spacings, as shown in figure (3) above. 

DGM-FD allows grid size to shift in groups of p+1 collocation points (per element) 

with a transition grid inserted where the spacing, A^i, on one element changes to 

another spacing Ax2- As this method is based on an FEM, the changes in grid size 

must be done element by element rather than by grid points. However, as we shall 

see with the insertion of the transitional grid point, the coefficients of the scheme 

stay the same with the change in grid spacing reflected in the value of hn used in 

(26). 

We now proceed to verifying that with the transition grid, the coefficients gener­

ated by in (26) or in particular III . l . l , and in the following section, III.1.3, involving 

boundary closure, will remain the same. 

Recall the matrices defined in (12) as they determine the DGM-FD coefficients. 

As they are dependent solely on the basis polynomials, P, it suffices to show that 

these stay the same with a change of grid spacing. 
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Let x G En=[sn-i,sn]. With the change of variable, x — |(s„_i + s n ) + ^f-£, there 

is a corresponding £. Let £ G [-1, 1] and the basis functions on neighboring elements 

En-i and En+1 be 

m) = ^h¥'f~%t = 0,l,...p (27) 
with spacing Ax2. Let the spacing on En be iS.xi and call the basis functions on En 

p = qu^-eo 

With the transition grid, each collocation point on the elements retains the same 

relative spacing (see figure (3)) as s„_x maps to -1 and sn maps to 1 with nodal 

point xne mapping to & = — ^ + -^-J; where & are the collocation points on En_\ = 

[sn-2, sn-i] a n ( l En+i = [sn, sn+i]. Consequently, ^ = ^ for each % = 0,l,...p and the 

denominators of (27) and (28) are the same. Likewise, as £ is given, the numerators 

are the same. Therefore, Pe(0=Pe(0 f°r au" I *= [_M]- As this is true for each £ = 

0,...p, the basis polynomials are indeed the same. 

As the transition grid insures that the basis polynomials are the same on elements 

of different lengths, we have that the coefficients in (12) remain the same which is 

the property we seek. 

Any element or portion of the domain can be formulated this way, including 

regions that contain the boundary. 

III. 1.3 Boundary closures 

The DGM formulation can also be used to derive the difference schemes for the 

boundary grids. In figures (2) and (3), the nodal points are on the interior of the 

elements, and yet implementation of boundary conditions often require the boundary 

to be on collocation points. To reconcile this, the first and last element structures are 

adjusted so that each begins or ends on a nodal point. As the nodal points for the 

basis functions at the boundary element are adjusted to include the boundary point, 

as shown in Figure (4), the basis polynomials generated by these nodal points are 

different than the ones on the interior elements, and, therefore scheme coefficients are 

re-derived to complete the finite difference method. In addition, the order of basis 
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functions will be lowered for stability of the scheme [22]. The boundary closures for 

p = 4, below, are with one order lower, p = 3. A 4th order scheme that is closed with 

3 r d order will be referred to as p = 3 — 4 — 3. The adjustment of element length with 

the lower order closure is also shown in Figure (4). 

boundary point 

X00 X01 X02 ^03 1 X10 X l l X12 X13 X14 

' l t I + i >K )1( )l( )K )K 

X )[< >|( )|< j + 4 • + + i >1( >l< )l< )l< )1< 

h ^ p - 1/2)4 x h=(p+l)ix 

FIG. 4: Schematic of grids at the boundary, showing adjustment of element sizes. 
p = 4 

Here are the general boundary closures, for any 6, for the first and last two 

elements. 

For the first element: 

d 
dx 

UQO 

UOI 

u02 

. U 0 3 . 

Mo \ a a j 

woo 

W02 

U03 

+ h0 
l - i M+ 

un 

U13 

(29) 

M' 10 

- 4 0 0 0 

- 1 0 0 0 
I 0 0 0 

- I 0 0 0 

,M: 20 

23 
48 

2209 
2352 

59 
2352 

11 
2352 

105 
16 

- 2 3 
16 

- 1 0 9 
112 
171 
112 

- 7 7 
16 
43 
16 

- 4 7 
112 

- 3 8 3 
112 

133 
48 

- 5 9 
48 
631 
336 
463 
336 



No = 

69 
16 
489 
784 
81 
784 
51 
784 

315 
128 
135 
128 
1305 
896 

_ 1845 
896 

21 35 
16 16 
9 15 
16 16 
87 145 
112 112 
123 205 
112 112 

105 -189 
32 64 
-45 81 
32 64 
435 783 
224 448 
615 1107 
224 448 

35 
16 
15 
16 
145 
112 
205 
112 . 

45 
32 

-135 
224 
1305 
1568 
1845 
1568 

-35 
128 
15 
128 
145 
896 
205 
896 

For the second element: 

d_ 

dx 

un 

« 1 2 

^ 1 3 

hi \ a 
Mp 

«oo 

U03 

+ h 
Mt + eW 

+ h 
l - i ivr 

« 2 0 

U21 

U22 

U23 

U24 

M" = 

4163 
6400 
3197 
6400 

75 
256 
563 

6400 
1757 

'6400 

87423 

32000 

29141 

6400 

29141 
32000 
67137 
32000 
315 
256 

C
O

 
O

 

00 
O

 

T-H 
C

O
 

36897 

6400 
22379 
6400 
525 
256 
3941 
6400 
12299 

6400 
22379 
6400 
525 
256 
3941 
6400 
12299 
6400 J 
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M£ 

K = 

97037 
38400 
33669 
12800 
1895 
1536 
13693 
38400 
9479 
12800 

24997 
10240 
19747 
10240 
2625 
2048 
1309 
10240 
1631 
2048 

38191 
6400 
14153 
19200 
1955 
768 
2149 
6400 
8227 
19200 

7161 
2560 
6207 
2560 
1125 
512 
339 
512 
57 
2560 

5007 
1600 
3117 
3200 

0 
3117 
3200 
5007 
1600 

227367 
128000 
248913 
128000 
2835 
1024 

248913 
128000 

227367 
128000 

8227 
19200 

2149 
6400 
1955 
768 

14153 
19200 

38191 
6400 

57 
2560 
339 
512 
1125 
512 
6207 
2560 
7161 
2560 

9479 
12800 

13693 
38400 
1895 
1536 

33669 
12800 
97037 
38400 

1631 
2048 
1309 
10240 
2625 
2048 
19747 
10240 
24997 
10240 

Mr, 

110691 

102400 

36897 332073 15813 

25600 256000 25600 

12299 
102400 
5469 
102400 
4725 
4096 

201411 
102400 

262269 

25600 
11823 
25600 
1575 
1024 
67137 
25600 

87423 

256000 
106407 
256000 

2835 
2048 

604233 
256000 

786807 

25600 
5067 
25600 
675 
1024 
28773 
25600 
37467 

102400 
3941 
102400 
525 
4096 

22379 
102400 

29141 
102400 

For the last two elements we make use of the following relationships. Define W* for 

a matrix as: 

W* 

-i -h -g 

-f -e -d , 

-c —b —a 

where W = 

a b c 

d e f 

g h i 

(31) 

For the (N - l)st element: 

dx 

«(JV-1)1 

W(JV-1)2 

«(JV-1)3 

. U(N-1)4 

^ I + ^ I M ^ 

U(N-2)0 

U(N-2)1 

U(N-2)2 

. M(N-2)3 

fojV-1 a ° 

•"(JV-l)O 

U(N-1)1 

U(N-1)2 

U(N-1)3 

. «(JV-1)4 
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+ 
2 

/ 

( ' -

1 t "N 

_e\A 
a , 

)MJ 

WJVO 

«AT1 

UN2 

_ UN4 

(32) 

where 

ML = (Mj)', M? = (MS)*, N* = (Nj)', Mt = (M?)* 

and for the A''*'1 element: 

_2_ 
l + i M! 

U(N-1)0 

U(N-1)1 

U(N-1)2 

«(JV-1)3 

«(7V-1)4 

where 

a 
dx 

UNO 

UN1 

UN2 

. UN$ . 

UNO 

um 

UN2 

UN3 

(33) 

Note that for ^ ^ 1 the derivative formulas for the grid points within the last two 

elements next to the boundary need to be derived. This is because, as discussed in 

section III.1.2, the change in collocation points on any element changes the basis 

polynomials on this element and therefore the coefficients. As both the first and 

second elements need data from the first element to compute the derivative on the 

first, and second, elements respectively, the coefficients on the first two elements are 

calculated, as per the derivation given above. Likewise, those coefficients on the last 

two elements also need to be calculated. Two special cases are given below, the 

central scheme (6 = 0) and the upwind scheme (6 = 1). 
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Special case, 0 = 0, central scheme 

The boundary difference formula for the central scheme are 

a 
dx 

r -, 
•"oo 

«01 

«02 

. M03 . 

= B' 

«00 

Uoi 

U02 

. U03 . 

+ c 

«10 

«11 

«12 

"13 

. U14 . 

(34) 

where 

and 

d_ 
dx 

«10 

un 

«12 

. U14 . 

= A" 

•"oo 

«01 

•"02 

^03 _ 

+ B" 

™10 

Un 

Ul3 

. "14 . 

+ C" 

•"20 

"21 

^22 

U23 

. "24 . 

B' = - ( M ; + M ; ) 

A" = f Ml B" = f < £< 

(35) 

The derivative formulas for grid points at the right boundary can be obtained 

using above relationships, or, for this special case of 9 = 0 can be calculated from the 

first two elements using anti-symmetry, or W* relationship, (31), in the coefficients. 

Special Case, (9 = 1, upwind scheme 

For the upwind scheme (9 = 1 and a > 0), the derivative formula for the grid 

points within the boundary elements E0, E\ and E^ need to be defined. At the left 

boundary, for elements E0 and E\, we have, 

dx 

woo 

M01 

«02 

. U03 . 

= B'" 

«00 

M01 

^02 

. U03 . 

(36) 
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where 

dx 

""10 

un 

Ul2 

Un 

. uu . 

= AIV 

« 0 0 

"01 

U02 

. " 0 3 . 

+ BIV 

UlO 

un 

Ul2 

Ul3 

. "14 . 

(37) 

BT = ± ((2Mro + M2o)+No) 
h0 

h.-i h.-i \ ' hi" ' h\ 

For the grid points within the last element at the right boundary, EN, the deriva­

tive formula in the upwind scheme will be 

where 

8_ 
dx 

UNO 

UN2 

. UM3 . 

= AV 

U(N-1)0 

U(N-1)1 

"(JV-1)2 

U(N-1)3 

_ U(N-1)4 . 

+ BV 

UNO 

UNI 

UN2 

. UN3 . 

A^ = 2M^, B ^ = A ( M - 0 _ N - ) 

(38) 

III.2 STABILITY AND SUPER-AC CURACY PROPERTIES 

III.2.1 Stability 

To study the stability of the scheme with boundary closure, we perform an eigenvalue 

analysis when the scheme is applied to the wave equation 

du du 
dt dx (39) 

with a given boundary condition at the left boundary. 

Let uh denote the vector that contains all nodal values, including those at the 

boundary, then the semi-discrete equation for (39) can be written as 

duh ^ h — + Du*1 = 0 
at 

(40) 

where D is the global differentiation matrix. 
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For central scheme (6 

be constructed as 

0), the global matrix D will be denoted by Do and can 

Dn 

B' 

A" 

0 

0 

0 

0 

c 
B" 

A 

0 

C" 

B 

0 

0 
0 

0 

0 

C 

A 

0 

0 

B 

C"* 

0 

0 

0 

0 

c 
B"* 

c* 

0 

0 

0 

0 

A"* 

B'* 

(41) 

where the sub-matrices are from section III.1.3, special case, 6=0. The sub-matrices 

with a superscript * are formed by anti-asymmetry, (31), as specified previously in 

the boundary closure section. 

For the upwind scheme (6 = 1 and a > 0), the global matrix D, will be denoted 

by D + , and is of the form 

D, 

B"' 
Aiv 

0 

0 

0 

0 

0 
Biv 

A 

0 

0 

B 

0 

0 

0 

0 

0 

0 

A 

0 

0 

B 

A 

0 

0 

0 

0 

0 

B 

Av 

0 

0 

0 

0 

0 

Bv 

(42) 

where again, the sub-matrices are from section III.1.3 special case 6=1. 

The discretization is stable if all of the eigenvalues of D, where an over tilde 

denotes the matrix without the first row and first column, have positive real parts 

[10]. The eigenvalues for the third-order central scheme, fourth-order upwind scheme, 

with coefficients calculated as described in I I I . l . l and III.1.3 are shown in Figures 

(5) for N = 30. However, the eigenvalues were computed for many values of N, as 

low as N = 5 and as high as N = 200. Stability of the eigenvalues was observed for 

each N chosen. 

III.2.2 Super-convergence for wave propagation 

The Fourier analysis on the numerical wavenumber for the difference formula (26) 

is expected to be similar as those for the general discontinuous Galerkin method 
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a" 

real(X) 

FIG. 5: Left: eigenvalue A of cental scheme Do, p = 3 ; Right: eigenvalue A of upwind 
scheme D + , p — 4. Eigenvalues are computed using N = 30 elements. 

[25, 27, 3]. It has been shown that the numerical wavenumber for DGM is accurate 

to order 2p +1 where p is the order of basis functions. This is often referred to as the 

super-convergency property of DGM and, as stated in the introduction, is a desirable 

property for the proposed finite difference scheme, DGM-FD. 

To demonstrate the strong super-accuracy for wave propagation problems for 

DGM-FD, equation (39) is solved in a domain of 0 < x < 1 with periodic boundary 

condition and an initial condition 

ln(2) / 1\2 

u{x, 0) = e~5^l7nx-2) (43) 

First, using the upwind scheme from III.1.1 with periodic closure, the numerical 

solution is calculated , from t = 0 to t = 51. To demonstrate the super-accuracy for 

propagation errors, the solutions at t = 1 and t = 51 are compared and the L2 norm 

of the error, ||uh(x,51) — uh(x,l)\\2, is shown in Figure (6) as a function of total 

number of grid points in the grid refine study, and tabulated in Table I. We compare 

uh(x, 51) to uh(x, 1) rather than to initial, (43), as one advective period is needed to 

dampen the non-physical mode of the numerical wave [27]. 

Convergence orders close to 5, 7 and 9 are observed even though the order of the 

basis function is p = 2,3,4, respectively, matching the theoretical rate of convergence 

for the propagation error of order 2p + 1. See Table I and Figure (6) for data. 

Next, the numerical wave number accuracy of the method, DGM-FD, is also 

examined and then compared to DRP and compact schemes using the following 

example. First, governing equation (39), is solved in a domain of —50 < x < 450 

0.01 0-015 0.02 0.025 0.03 

real(A.) 
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log(1/N) 

FIG. 6: Left: numerical solution at t = 51 in a domain of [0,1] with periodic boundary 
condition. Right: mesh refinement study on the L2 norm of the difference between 
numerical solutions at t = 1, uh(x, 1), and at t = 51, uh(x, 51). p = 1,2,3,4 as 
indicated. 

TABLE I: Convergence rate data p = 2,3,4 for Grid Structure I 
9=1 

N 
25 
30 
35 
40 
45 
50 
55 
60 

error 

8.4202E-4 
4.7652E-4 
2.8463E-4 
1.7800E-4 
1.1576E-4 

rate 
p = 2 

4.8335 
4.8908 
4.9250 
4.9453 

error 

1.1546E-2 
6.1181E-3 
3.2212E-3 
1.7098E-3 
9.2492E-4 
5.1363E-4 
2.9398E-4 

rate 
p = 3 

4.1199 
4.8040 
5.3779 
5.8315 
6.1708 
6.4133 

error 

3.2675E-4 
7.4374E-5 
1.9982E-5 
6.2433E-6 
1.3989E-6 

rate 
p = 4 

8.1181 
8.5260 
8.7123 
8.7984 
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with periodic boundary condition and initial condition 

l n ( 2 ) , *2 

u(x,0) = e~^{x) (44) 

until a final time, tfinai = 400. 

Then, the Fast Fourier Transform (FFT) function in Matlab is used to obtain the 

difference, k* — k, where k* is the numerical approximation to the wave number k. 

If the FFT of exact solution is uexact(k, t) = e~~%ktUo(k), then the FFT of numerical 

solution can be written in terms of numerical wavenumber k* as ii(k*,t) = e~lk*tuo(k). 

Therefore an estimation of the difference, A;* — k, is 

_ ^ = ln[u(k*,t)/uexact(k,t)] 
it 

Further details can be found in the Appendix. As noted above for convergence rates, 

for DGM [27], after the wave propagates for one time period, the non-physical wave 

mode is eliminated. To estimate the numerical wave number, the initial profile, (44), 

is advanced to uh(x, 1) which is then compared to the numerical solution uh(x,40l). 

First we examine the DGM-FD scheme and study the numerical wave number 

accuracy for the upwind (9 = 1) and central (9 = 0) schemes for varying orders, 

p=2,3,4. Note that in Figure (7), as expected, the numerical solution becomes better 

resolved as the order, p, increases for the upwind scheme. 

0.5 

0.4 

0.3 

0.2 

0.1 

0 

-0.1 

370 380 390 400 410 420 430 

X 

FIG. 7: DGM-FD Gaussian profile Upwind p = 2,3,4. 

(45 
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The numerical wave number accuracy, both for dispersion, Real(fc* — A;), and 

dissipation, Imag(&* — k) follows the same trend. See Figure (8). 
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FIG. 8: DGM-FD Top: Real(fc*-k) upwind, p = 2,3,4; Bottom: Imag(A;*-k) upwind, 
p = 2,3,4. 
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Likewise for the central scheme (0 = 0), we expect the numerical solution to 

appear more accurate as p increases. However, the p = 3 profile appears to have a 

better numerical result than that for p = 4. We will see this same trend with the 

numerical wave number plots that follow. See Figures (9) and (10). 

FIG. 9: Gaussian profile Central p = 2,3,4 
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Now we turn to comparing the performances of DGM-FD, DRP and compact 

schemes on the accuracy of numerical wavenumbers. First, their numerical solutions, 

then the numerical wave number accuracy followed by a log-log plot to show their 

numerical wave number convergence rates. In Figure (11), profiles for DGM-FD of 

p=4, 4th and 6th order compact and DRP are shown. DGM-FD performs similarly 

with 6th order compact scheme and better than both 4th order and DRP. In Figure 

(12) the dispersion properties are examined. For the given tolerance of 10~3, the 

difference between numerical and theoretical wave numbers, k* — k, is comparable 

for DGM-FD, 6*̂  order compact, and DRP, with kAx < 1. Figure (13) shows the 

rate of convergence of the numerical wave number (slope in figure) for DGM-FD as 

higher than 4th, 6th, 8th order compact and DRP for the given range of Real(fcAx). 

FIG. 11: Gaussian profile DGM-FD upwind p = 4, Compact 4th, 6th, DRP 
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We close this section with a recommendation for upwind parameter, 9 for DGM-

FD. With the central scheme (9 = 0), the results in Figure (10) show no dissipation. 

With full upwinding (9 = 1) the results in Figure (8) show better dispersion prop­

erties than for the central scheme, but with more numerical dissipation. We look to 

balance both in Figure (14). Numerical wave number errors for 9 = 0.50,0.75, and 1 

are plotted with 9 = 0.75 recommended as the dispersion and dissipation errors are 

of similar magnitude. 
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III.3 NUMERICAL EXAMPLES 

This section presents numerical examples using the DGM-FD Grid I scheme. The 

fourth-order upwind and third order central finite difference schemes are used. The 

governing equations are the linearized Euler equations 

dU dB OF _ 
dt dx dy 

where 

U = 

P 

u 

V 

V 

E = 

Mxp + u 
Mxu + p 

Mxv 
Mxp + u _ 

F = 

MyP + V 

MyU 

MyV+P 

_ MyP + V _ 

Mx and My are constant mean flow Mach numbers in the x and y direction, respec­

tively. In all examples, Mx = 0.5, My = 0. While optimized time integration schemes 

like Low-Dissipation and Low-Dispersion Runge-Kutta (LDDRK) [24] are available, 

five stage Runge-Kutta with the traditional coefficients is used. 

III.3.1 Linear Acoustic Example I 

The first example is an acoustic pulse in free space. The computational domain is 

[—110,110] x [—110,110] with the PML absorbing condition applied for the ten grid 

points around the boundary [26]. Figure (15) shows the computational domain with 

variable grids. For each axis the grid starts as unrefined, with Ax = 1, then refined 

with a ratio of four elements per one element with Ax = | , then back to unrefined. 

The number of grid points per axis is 250. The initial condition is: 

, (a : -67) 2 +; / 2 

H n W ^ - 6 ^ 2 ) ] p(x, 0) = eHn(2)(H^)l + o . l e H « ( 2 ) ( ^ P M ] ; u{x>o) = 0.04ye 

v(x, 0) = -0.04(x - e t y H ^ ) * * 2 ^ ^ ) ] , P(X> 0) = C H»(2) (^ ) ] 

The numerical solution is simulated until time t=1050. Density contours com­

puted with the upwind scheme are shown in Figure (16) and a comparison with the 

exact solution are shown in Figures (17). For t = 30, 60, 80, 100, very good agreement 

is observed. 
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FIG. 15: Computational domain with variable grid sizes. 
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FIG. 16: Contours of density at t = 30,60,80,100 in the physical domain for upwind, 
p = 3 - 4 - 3 
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The central scheme, p=3, is a lower order than upwind p = 4, and as seen with 

numerical wave number plots, the central p = 3 scheme has a slightly smaller range 

of numerical wave number resolution, consequently the initial condition profiles are 

adjusted as follows: 

2 , . , 2 . 
p{x, 0) = eH^X^)! + O . l e ^ X ^ L ^ ^ Q) = 0 ^ [ - ^ ( i ^ p i ) ] 

v(x, 0) = -0.04(s - 6 7 ) e ^ n ^ ^ ^ l p(x, 0) = e H « ( 2 ) ( ^ ) l 

Density contours are shown in Figure (18) and a comparison with the exact 

solution is shown in Figure (19). Strong agreement is observed with slight noise in 

the central pressure profiles, which cause no instability and disappear as t increases. 

-100 -80 -60 -40 -100 -80 -60 -40 -20 

FIG. 18: Contours of density at t = 30,60,80,100 for central, p = 2 - 3 - 2 with 
larger pulse initial condition. 
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III.3.2 Linear Acoustic Example II 

This example is the reflection of an acoustic pulse with a wall at y = 0. The 

computational domain is [—110,110] x [0,220] with the PML absorbing condition 

applied for the ten grid points on the left and right and twenty grid points on the 

top boundary [26]. The initial condition is the following: 

p(x, 0) = p(x, 0) = eH"(2r2+(25~25)2)l, u(x, 0) = v(x, 0) = 0 

Density contours and a comparison with the exact solution are shown in Figures 

(20) and (21) for upwind scheme p = 4 followed by central scheme p = 3 in Figures 

(22) and (23). Very good agreement is observed for numerical results compared to 

the exact solution at £=30, 60, 100, and 150, see Figures (21) and (23), as well as 

between the two schemes in Figures (20) and (22). The numerical simulation is run 

to £=2000. 
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FIG. 20: Contours of density at t = 30,60,100,150 in the physical domain for upwind, 
p = 3 - 4 - 3 . 
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FIG. 22: Contours of density at t — 30,60,100,150 in the physical domain for central, 
p = 2 - 3 - 2 . 
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Chapter IV 

GRID STRUCTURE I, DGM - FLUX FINITE DIFFERENCE SCHEME 

A finite difference type scheme with upwinding parameter 0 was presented in the pre­

vious chapter. It is derived following the expression given in (21) with the assumption 

of / = au. In order for the scheme presented earlier to be applied to a general flux 

function f(u), wave splitting is required. This would involve linearizing the flux, 

/ , and then finding the eigenvalues and eigenvectors. The positive eigenvalues and 

their corresponding eigenvectors would be acted on by the upwind scheme, and the 

rest, by the downwind scheme. This approach is reasonable for linear problems, as 

presented in the last chapter, but for non-linear problems it is preferable to apply a 

flux scheme where no explicit splitting will be required. This chapter provides this 

general flux formulation, derived from (21), for f(u). 

Recall the discretization formula for the spatial derivative of fn given in (21): 

^ - | - {M_/" - x + M 0 / " + M + f + 1 + e\\a\\max ( M - U " " 1 + No^T - M+xT+1)} 

(46) 

where ||a||maa; is the largest eigenvalue of the jacobian of / . 

In particular, if we let 9 = 0, we get an expression for the central derivative of 

/ " : 

-T^ = Y { M - / " - 1 + M 0 / n + M + / " + 1 } (47) 

We call the term left over in (46) the upwinding term. 

du?,m„ 2 upw {e\\a\\max ( M . i T - 1 + N0£" - M + ^ + 1 ) } (48) 
dx hn 

The upwinding term improves stability and the parameter, 0, can be any number 

between 0 and 1. Reasonable values of 6 are 0.5, or the optimal value with respect to 

minimizing dissipation and dispersion errors shown before in Figure (14) to be about 

0.75. 

Note that if / = au the derivative formulation for the flux together with the 

upwinding term result in the general formulation for ^ - shown before: 

^ - = A ( (1 + ^ M ^ - 1 + (M0 + ^ N o K + (1 - ^ i ) M + ^ + 1 l (49) 
ox hn [ a a a J 
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The general flux scheme coefficients, including those for closure are now presented 

for the p — 3 case. The scheme for p = 4 is also recommended and its derivation is 

similar to what is presented next. 

IV.l FORMULATION 

IV. 1.1 Interior Scheme 

The third-order (p = 3) scheme for interior points is presented. Recall that hn is 

the element length and that for interior elements, hn=(p+ l)Ax. Then by (46), the 

finite difference formula for a set of four grid points is given by 

d 
dx 

JnO 

fnl 

fn2 

fnZ 

^ II max J-V1_ 

U(n-1)0 

W(„-l)l 

W(n-1)2 

. U(n-1)3 _ 

/(n-l)O 

/(n-l)l 

/(n-l)2 

. /(n-l)3 . 

+ r-M0 
nn 

2 II II 
+ T~Q \\a maxNo K 

JnO 

fnl 

fn2 

fn3 

Un0 

Un2 

. U » 3 . 

/(n+l)0 

/(n+l)l 

/(n+l)2 

f(n+l)3 

2 

where, using (24) and (25), it is found that 

«(n+l)0 

U(n+l)l 

U(n+l)2 

"(n+l)3 

(50) 

M _ = 

2865 
8192 

-1685 
8192 

365 
8192 
615 
8192 

-12033 
8192 
7077 
8192 

-1533 
8192 
-2583 
8192 

20055 
8192 

-11795 
8192 

2555 
8192 
4305 
8192 

-20055 
8192 
11795 
8192 
-2555 
8192 
-4305 
8192 

,Mn 

-14051 
12288 
-25337 
12288 

5401 
12288 
2563 
12288 

13257 
4096 
1035 
4096 

-5931 
4096 
4119 
4096 

-4119 -2563 
12288 
-5401 

4096 
5831 
4096 

-1035 
4096 

-13257 
4096 

12288 
25337 
12288 
14051 
12288 J 

N0 = 

1215 
512 
-95 
64 
265 
512 
45 
256 

-273 
128 
833 
512 

-301 
256 
483 
512 

483 
512 

-301 
256 
833 
512 

-273 
128 

45 
256 
265 
512 
-95 
64 

1215 
512 

,M+ = 

4305 
8192 
2555 
8192 

-11795 
8192 
20055 
8192 

-4305 
8192 
-2555 
8192 
11795 
8192 

-20055 
8192 

2583 -615 
8192 8192 
1533 -365 
8192 8192 
7077 1685 

8192 
2865 

8192 
12033 
8192 8192 
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IV. 1.2 Non-uniform grids 

As before, the same scheme is also applicable to a nonuniform grid structure provided 

that, the basis polynomials on each element are the same (as mentioned in the 

formulation section) and that between grids of spacings Aa^ and Aa^, there is a 

transitional grid of length \{Ax\ + Aa^), i.e., the average of the two grid spacings, 

as shown in Figure (24). The scheme remains unchanged as the factor of •£- in (50) 

adjusts for change in element lengths. Any element or portion of the domain can be 

X X X X 4 4 4 1 
Ax 

-̂ —x—x—x-
1 < — > 

l (Axj+Ax 2 ) 

Ax~ 

FIG. 24: Schematic of a grid structure with nonuniform grids p = 3. 

formulated this way, including regions that contain the boundary. 

IV. 1.3 Boundary closures 

The DGM formulation is used to derive the difference schemes for the boundary grids. 

As done before, the nodal points for the basis functions at the boundary element will 

be adjusted to include the boundary point, as shown in Figure (25). In addition, the 

order of basis functions is lowered to p = 2 for stability of the scheme [22]. 

boundary point 

X X X X » 4 4 

X X X 4 4 4 4 X X X X 

> < -5> 
h0=(p-l/2)Ax hj=(p+l)Ax 

FIG. 25: Schematic of grids at the boundary, showing adjustment of element sizes. 
p = 3 
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Here are the general boundary closures for the first and last two elements. 

For the first element: 

d 
dx 

/oo 

/oi 

. f°2 

= ^(Ma
10 + Ma

20) 

/oo 

/oi 

/02 

«00 

woi 

^02 

^ 

/io 

/ l l 

/ l 2 

/ l 3 

-6\\a\ EM 

« i o 

^13 

(51) 

L10 

K 

For the second element: 

= 

81 
32 
51 
160 
21 
160 

9 
4 
3 
20 
3 

. 20 

15 
16 
9 
16 
15 
16 

0 0 

0 0 

0 0 _ 

45 
32 
27 
32 
45 
32 . 

,M20 = 

,M: = 

3 
32 
97 
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105 
64 
63 
64 
105 

. 64 

55 
16 
9 
16 
25 
16 

105 
64 
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64 

65 
32 
47 
32 
15 
32 . 

63 
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64 
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64 
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64 
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d 
dx 
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/n 
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dx 

/JVO 

/JVI 

/iV2 
hN 

f(N-l)0 

/(iV-l)l 

/(iV-l)2 

/(JV-1)3 _ 

+ f (M-0 + M20) 

WM M: 
U(N-1)1 

«(JV-1)2 

«(JV-1)3 

Iff 
^| |a |Ux(No+M"0) 

/JVO 

/JVI 

/jV2 

"JVO 

«JV1 

«JV2 

where 

M- = (M£)*, MT0 = (M?0) *, MS, = (Mi)' , N? = (N«)* 

(54) 

IV.2 APPLICATION EXAMPLES 

In this section the flux scheme is applied to two non-linear examples. The third-order 

flux finite difference scheme developed in this section is used for both examples. 

IV.2.1 Burger 's Equation 

The first example is Burger's Equation. The governing equation is: 

du ld(u2) _ d2u 
dt 2 dx dx2 

where v is taken to be 0.02. 

The computational domain is x E [0, 430] with boundary and initial conditions 

given below. As the wave front changes rapidly over a small region in the domain, 

the grid size changes where Ax is 0.2 in the coarse part of the grid and 0.02 in the 

refined portion [38]. The initial and boundary conditions are: 

x — x 
IC : u(x,0) = 1 — tanh(—-—-), xc = 5 

BC: u(0,t) 

2v 

2, u(oo,i) = 0 
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with exact solution: 

u(x,t) = 1 tanh( — ) 

Here the flux, / = |M2 , and the value of 9 is taken to be 1 for the scheme given in 

(50). The second derivative was evaluated using (D+)(D-) where D+ is the upwind 

scheme from section I I I . l with 9 = 1 and a = 1 and D- the corresponding downwind 

scheme. 

Time integration is five stage Runge-Kutta where dt is 0.025 times the smallest 

dx, 0.02 or dt = 0.0006250. 

Figure (26) shows the numerical and exact solution at t = 30 as well as the 

computational domain with a variable grid that is more refined in the area supporting 

the wave front (see figure (27) for initial condition and grid plots). Note the close up 

of the numerical solution and the good agreement between the numerical and exact 

solutions. 

FIG. 26: left: plot of exact and numerical solution at t=30; right: zoom at t=30 of 
exact and numerical solution. 

In order to verify the accuracy and stability over a longer time period, with tfinai 

420, a moving frame is used. For the adaptive grid, the code checks to see if the 

wave front is moving too far away from the center of the refined region and then, if 

so, refines a unit on the right of the region while coarsening a unit on the left. As 

the wave front is still well within the refined region, this results in refining an area 

of the solution that is constant, through interpolation, and coarsening an area that 

is also constant, through interpolation. In this way the adaptive grid is dynamic. 

The shape of the numerical solution is the same as the exact solution from 0 to 

420 and the numerical solution is stable as shown in Figures (27), (29). Again note 

the strong agreement between numerical and exact solutions. 
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FIG. 27: Top: variable grid with 10:1 refinement, t=0; Bottom: Burger's Equation 
t=0 
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IV.2.2 Flat-plate Boundary Layer Problem 

This example involves the computation of a steady-state boundary layer profile 

formed by uniform flow over a flat plate. The governing equations are the Navier-

Stokes equations [28] 
au dE dF 
dt dx dy 

where 

and flux vectors 

E = 

U 

P 

pu 

pv 

pe 

F = 

with viscous stress terms written as 

. (pe 

. (pe 

pu 

pU2 +p~Txx 

PUV - Txy 

+ p)u - UTXX ~ VTxy 

pv 

pUV - Txy 

pV2+p-Tyy 

+ P)V — UTXy — VTyy 

+ qx. 

+ % . 

Mr 

Re N 

du xfdu dv 
dx dx dy 'yy 

Mx dv xf9u dv 
dy dx dy 

™ — nP'i Txy 
Mx .du dv 
R~e~^^dy~ + fa' 

and heat transfer terms 

a* = -
Mx 

( 7 - l)PrReN dx' 
dT Mx dT 

M-
(7 — \)PrReN dy 
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where viscosity, p, non-dimensionalized by a reference value, p^, is assumed to be 

1. The equation of state and the energy function are 

u2 + v2 p 
IP = pT, e = — - — + ( 7 - l ) p 

In the above, u and v are the velocity components in the x and y directions respec­

tively, p is the pressure, p the density, and T is the temperature, the Prandtl number, 

Pr is 0.708 and 7 the specific heats ratio. The velocity is non-dimensionalized by a 

reference speed of sound, a^, density by p^ and pressure by PooO^o- The Reynolds 

number, Re^, is Poo^oo-^oo/^oo where Uoo is a characteristic flow velocity and L^, a 

length scale. 

This application is shown for two cases, one with Reynolds number 500 and the 

other with 5000. A schematic of the domains for each are shown in Figures (30) and 

(33) respectively. The incoming flow is uniform in the direction of the x-axis with 

Mach number, M=UO0/aoo=Q.l. Numerical calculation starts with an initialization 

of all variables in the physical domain by the uniform incoming flow: 

p(x, 0) = 1, u(x, 0) = 0.1, v(x, 0) = 0.0, p(x, 0) = - , 7 = 1.4 
7 

For Reynolds number 500 the variable grid structure has three distinct regions 

with respect to the x-axis. The first for the coarser portion, then refined near the 

plate leading edge and coarser again away (see Figure (30), top). Here the grid 

spacing in the refined region is in a 2:1 ratio compared to the unrefined. Likewise, 

with respect to the y-axis a 2:1 refinement is shown and there are two regions (Figure 

(30), bottom). Close-up views of the grids are given in Figure (31). 

Extrapolation boundary conditions are used for this Reynolds number where the 

value at 19 points in on each of the three boundaries is extended out to the border 

and the dashed lines in Figure (30), top, indicate the boundary region. 

Figure (32) (top) shows the contours of the w-velocity in the whole computational 

domain including outlines of the extrapolation boundary regions and Figure (32) 

(bottom) shows the normalized stream-wise velocity profile, where the stream-wise 

velocity is plotted as a function of a similarity variable, yJue/(vx), with ^f=500, 

the Reynolds number, at x = 0.35, 0.50, 0.60, and 0.75. Similarity solutions are 

observed. 
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0.2 0.4 

X 

FIG. 30: Top: Schematic of domain including plate. In particular are grid lines where 
dx and dy change and boundary condition locations, with dashed lines for boundary 
region, i?ejv=500; Bottom: grid is, left to right, dx=.0052, .0026, .0052 and, bottom 
to top, dy=.0010, .0021 
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FIG. 32: Top: Boundary layer stream-wise velocity i?e/v=500 t=20.00 with solid 
lines indicating boundary regions.; Bottom: Similarity velocity profile at selected 
locations, x=.35, .50, .60, .75. Horizontal variable is y{ue/{vx))ll2 and ue is the 
exterior stream-wise velocity, 0.1. 
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The higher Reynolds number, 5000, required the variable grid structure to have 

three distinct regions with respect to the y-axis as greater refinement is needed on the 

region closest to the plate (see figure (33), bottom). For the y-axis the refined region 

starts with a 4:1 ratio then transitions to a 2:1 ratio and finally to the non-refined 

portion. Likewise, with respect to the x-axis a 2:1, 12:1 then 2:1 refinement is shown 

and there are five regions here where the third region, 12:1, includes the plate leading 

edge where extra refinements are necessary because of the higher Reynolds number. 

Figures (34) and (35) show close-up views of the refinements. For Reynolds number 

of 5000, PML boundary conditions of [28] are used at the three boundaries where 

the pseudo mean flow re-adjusts to the primitive variables after each Runge-Kutta 

time loop with dashed lines indicating the boundary region in Figure (33), top. 

Figure (36), top, shows the contours of the u-velocity in the whole computational 

domain with borders of PML region and figure (36), bottom, shows the normalized 

stream-wise velocity profile where the stream-wise velocity is plotted as a function of 

a similarity variable, yJue/(ux), with ^f=5000, the Reynolds number, at x = 0.50, 

0.65, 0.75, and 0.90. The similarity solutions, again, show good agreement. 



57 

0.2 

0.15 

0.1 

0.05 

I , 
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FIG. 33: Top: Schematic of domain including plate. In particular are grid lines 
where dx and dy change and boundary condition locations, i?eAr=5000 with dashed 
lines for PML boundaries.; Bottom: grid, left to right, is dx=.0083, .0042, .0007, 
.0042, .0083 and, bottom to top, dy=.0006, .0012, .0024 
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FIG. 34: Top and Bottom: one closer look at grid refinements and transition grid 
points, i?ejv=5000 
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FIG. 36: Top: Boundary layer of stream-wise velocity Z?ejv=5000 at t=20.00 includ­
ing borders of PML region; Bottom: Similarity velocity profile at x=.50, .65, .75, 
.90. Horizontal variable is y{ue/(vx))1/2 and ue is the exterior stream-wise velocity, 
0.1 
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Chapter V 

GRID STRUCTURES II, DGM - FINITE DIFFERENCE SCHEME 

As the spatial derivative formulas given in (21) and (23) are quite general, they can 

be used to construct other high-order schemes other than those given in Chapters III 

and IV. For instance, the nodal points in the element can be chosen to include the 

end points of the element. This will be referred to as Grid Structure II and will be 

studied in this chapter. As noted earlier, when the basis functions </>"(£) are chosen 

to be the Lagrange polynomials, the expansion coefficients un£ become the same as 

the nodal values of the numerical solution at the prescribed nodes. This will result in 

a grid structure with double valued nodes, but a more compact stencil for the spatial 

derivative. 

—I—I—:—I—I—I—1 X X X X X >:< I—I—I—I—:—I 
! ' X n 0 X n 1 X n 2 X n 3 X n 4 ! X(n+1)0 ! 
I I 4. > I . 

AX 

< > 

FIG. 37: Schematic of a finite difference grid partitioned into elements of length 
hn = pAx, where Ax is the grid size and p is the order of the basis functions. 

In Grid Structure II, a uniform grid system that is often found in finite difference 

methods can be broken into elements of length h = pAx, with the element boundary 

coinciding with a collocation point, as shown in Figure (37). In this case, the nodal 

points on the transformed coordinate £, — 1 < £ < 1, are 

2i 
6 = - ! + - , » = 0,l,2,...p 

P 
and the basis functions are 

p /p\ H i=0,#l(s ~ Si) 

Then, the finite difference scheme can be derived by substituting (56) into for­

mulation (11) where the matrices are computed according to (12) and (14)-(19). 

For higher order schemes, or p >7, Chebychev-Lobatto collocation points are to 

be used to avoid the Runge phenomenon [9]. As these points are not uniformly 

(55) 
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distributed, the data from this research is not emphasized as much as that from 

the uniform collocation points. However, it is worth noting that stability, super-

convergence and accuracy for the applications is observed with these points as well. 

V . l FORMULATION 

V . l . l Interior Scheme 

A fifth-order (p = 5) scheme is given below as an example. The finite difference 

formula for a set of five grid points is given by 

d_ 
dx 

«n0 

Unl 

Un2 

Un3 

UnA 

Un5 

2 
K HI)*-

K \ 

" ( n - l ) O 

U(n-l)l 

U(»-l)2 

W(„-l)3 

""(,1-1)4 

« ( n - l ) 5 

ĥ 

K \ 

« ( n + l ) l 

« (n+l )2 

U(n+1)3 

M0 + 0^NO a 

UnO 

Unl 

Un2 

Un3 

Un4 

Unh 

(57) 

or more concisely: 

d 
dx 

UnQ 

Unl 

Un2 

Un3 

Un4 

Un5 

Al l+< M_ 

0 

0 

0 

0 

0 

« ( n - l ) 5 

A (Mo + 0^NO hn \ a 

Un0 

Unl 

Un2 

Un3 

Uni 

Un5 
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^ H T I * 4 * 

where, using (55) and (56), it is found that 

0 

0 

0 

0 

0 

M_ = 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

7611 
6250 
2274 
"3125 
1773 
6250 

57 
3125 

3 
2 

,Mn 

Nn 

7611 
"6250 
2274 
3125 

57 
3125 
_ 3 

2 

9 0 0 0 0 

0 0 0 0 

0 0 0 0 

.1713 0 0 0 0 
6250 u u u u 

0 0 0 0 

0 0 0 0 

_ 3 
2 

57 
"3125 
1773 
"6250 
2274 
3125 
7611 
"6250 

(58) 

79 
24 

5368 
3125 
21317 
25000 
13763 
37500 
2669 
25000 

-2 

VI+ = 

25 
2 
65 
24 
5 
4 
5 
8 
5 
6 
25 
8 

-

-

-

3 
2 

57 
3125 
1773 
6250 
2274 
3125 

7611 
6250 

9 

25 
2 

5 
5 
6 
5 

"2 
5 
2 
25 
3 

0 

0 

0 

0 

0 

0 

25 
3 
5 
2 

5 
2 

5 
6 

-5 
25 
2 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

25 
8 
5 
6 
5 
8 
5 
4 
65 
24 
25 
2 

0 

0 

0 

0 

0 

0 

-

-

0 

0 

0 

0 

0 

0 

2 
2669 
25000 

13763 
37500 
21317 
25000 
5368 
3125 
79 
22 

Note that the choice of 9 = 1 will yield the upwind (a > 0) and downwind (a < 0) 

schemes. 

Coefficients for order p — 9, along with the corresponding Chebychev-Lobatto 

collocation points, are listed in the Appendix. 

As (58) illustrates, the neighboring elements contribute at most one collocation 

point, so another view of the finite-difference like scheme is: 

- rp- = -r[aiU(n-i)p + ^ dikunk + A«(n+i)o] 

or in vector form: 
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d 
dx 

UnO 

Unl 

V>np 

2 
h„ 

a0 dio 

tt\ d20 

dn 

d2i 

dip 

d2p 

Po 

an 
dpo dp\ dpp h'p 

U(n-l)p 

Unl 

*"np 

^(n+ l )0 

U(n-l)p 

UnO 

Unl 

^np 

W(n+1)0 

(59) 

There are patterns in the coefficients for 6 = 1. If a < 0 then a, = 0 and if a > 0 

then Pi = 0 and in each case the coefficients are anti-symmetric for ± a. However, if 

0 ^ 1 then Oj ^ 0 and # ^ 0. 

In particular, if we take 6 = 1 and a > 0, we get an upwind difference operator 

D + as follows: 

0 

0 

0 

0 

0 

0 

-18 
7611 
3125 
4548 
3125 
1773 
3125 
114 
3125 

3 

295 
24 

18347 
6250 
39509 
25000 
24401 
37500 
2213 
25000 

7 
2 

25 
2 
65 
24 
5 
4 
5 
8 
5 
6 
25 
8 

25 
2 

5 
5 
6 
5 
2 
5 
2 
25 
3 

25 
3 
5 
2 
5 
2 
5 
6 

-5 
25 
2 

25 
8 
5 
6 
5 
8 
5 
4 
65 
24 
25 
2 

1 
2 
1 
8 
1 
12 
1 
8 
1 
2 

137 
24 

Unlike Grid Structure I, stability of central schemes (9 — 0) were not observed. 

This may be because of the double values of grid points at element boundaries and 

that DGM allows these values to be unequal. All orders of p tested (to 11 th order) 

yield instability. Therefore, 9 > 0 is recommended for Grid Structure II. 

V.1.2 Non-uniform grids 

As with Grid Structure I, DGM-FD with Grid Structure II adapts to non-uniform 

grids while keeping the same scheme coefficients. 

Grid size may shift in groups of p + 1 collocation points (per element) where grid 

spacings of Axj on one element change to another spacing Ax2 on a neighboring 

element. The coefficients of the scheme stay the same and the change in grid spacing 

is reflected only in t h e value of hn, as used in (58). 

The argument to verify that the coefficients generated by (58) in section V . l . l , 

and in the following section, V.1.3, will remain the same, follows that from section 

III . 1.2 for Grid Structure I. 
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FIG. 38: Schematic of nonuniform grid structure, /i„_1=pA£2, hn=pAx1. 

As in section III.1.2, the matrices defined in (12) are dependent on the basis 

polynomials, P, so it suffices to show that these stay the same with a change of grid 

spacing. As presented earlier, if the relative spacing of collocation points is the same 

on each element, then the basis polynomials are the same. Using the same steps 

presented in III.1.2 applied to these & in (55), this is the case, and note that, as 

seen in Figure (38), unlike Grid Structure I, no transition grid is necessary. 

Recall the block structure of the derivative on each element, as seen in (59) and 

Figure (39), and include the different element lengths in the value of the factor ^- in 

front of each block . Any element or portion of the domain can be formulated this 

way, including regions that contain the boundary. 

D ; 

2 

~1 D+ 

2 

D+ 

"N-1 D+ 

2 
D+" 

D, (p+1)x(p+3) 

D•; D; Cp)x(p+1) 

FIG. 39: Global matrix block structure for nonuniform grids. 
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V.1.3 Boundary closures 

Forming a boundary closure is accomplished by a linear combination of two columns 

of coefficients. Grid points near the boundary are shown in Figure (40) where a 

left boundary is closed one order down, p = 4, for added stability [22]. Using the 

formulation outlined in (59), boundary closure involves adjusting the coefficient for 

the first collocation point, dio, of the first element by adding Q;J and for last collocation 

point, the coefficients $ are added to diP. The interior and boundary coefficients 

follow from the same matrices generated by (12) and (14)-(19) as no adjustment to 

the collocation points on the boundary elements is needed, so the basis polynomials, 

P, on all elements, stay the same. This is another difference between Grid I and 

Grid II structures. 

boundary point 
-D * 0 1 * 0 L . . . . -

>± X X X )l< I 
• I Y 

<-
AX 

h0= (P-1)AX 
-*- h,=pAX 

FIG. 40: Schematic of grids at the boundary, p = 4 

For instance, the general finite difference matrix for 4th order closure, denoted by 

Dg, is a linear combination of the 4th order (interior) coefficients as given below 

Dg = (1 + 9-^)Mc! + (M? + ^ N?) 

D? = (MJ + 
(X CL 

(60) 

(61) 

For the scheme on the 1st element, D°, the first column of M l is multiplied by 

(1+ „ ), and added to the first column of M0 . For the Nth element coefficients, D^ , 

the last column of M _̂ is multiplied by ( 1 - ^ ) and added to the last column of M0 , 

for the coefficient matrices given below 

M"-

_ 2 5 
4 

485 
512 

_ 1 5 
32 

85 
512 
_ 5 

4 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

o" 
0 

0 

0 

0 

,Mo = 

25 
12 
741 
512 
61 
96 

511 
1536 

7 
4 

8 
5 
3 
4 
3 

1 
8 
3 

-6 

3 

0 

-3 

6 

8 
3 

-1 
4 
3 
5 
3 

-8 

7 
4 

511 
1536 
61 
96 
741 
512 
25 
12 
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No 

25 
4 

485 
512 
15 
32 
85 
512 
5 
4 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

5 
4 

85 
512 
15 
32 
485 
512 
25 
4 -

,M* 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

5 
4 

85 
512 

15 
32 

485 
512 

25 
4 

To use the coefficients given above for an interior scheme with (58), rearrange 

the columns of M l to resemble coefficient matrix M_ by moving zero columns to 

the left and sole non-zero coefficients to the right most column. Likewise, columns 

in can be moved as per M + , and these, with M 0 and NQ , complete a 4th order 

interior scheme. 

For the closure scheme, in particular, if we take 9 = 1 and a > 0, we get an 

upwind difference operator D+, with coefficients on the first element: 

D * ^ 

25 
" 6 
_ 1 

2 
1 
6 

_ 1 
6 
1 
2 

-6 

3 

0 

-3 

6 

and the corresponding operator on the last element: 

3 - 6 

D* _2_ 
hN 

25 
3 

613 
256 
53 
48 
383 
768 

3 

0 

-3 

6 

_i 
2 
l 
6 

_1 
6 
1 
2 
25 

_1 
2 
1. 
6 

_1 
6 
1 
2 
25 

The above coefficients are for a single element, so the block structure of the global 

matrix is presented in a diagram form. In Figure (41) if, instead, periodic boundary 

conditions are desired, in place of D+ and D+, the first and last columns of D + 'wrap 

around' the global matrix in the first and last blocks respectively, and the order for 

boundary elements can be kept the same as interior. 

For the uniform scheme, another option for stable boundary closure is to use 

same order coefficients generated from the Chebychev-Lobatto nodal points. In other 

words, p = 6ch — 6 — 6ch where the first and last elements are the 6th order Chebychev-

Lobatto nodal points is a stable scheme. Consequently, the higher order schemes, 

unaltered on boundary elements, are stable . 
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D; 

2 
IT D+ 

2 

D+ 

D+ 

2 
h* 

D+** 

P. 

D* D ** 

(p+1)x(p+3) 

FIG 41: Global matrix block structure for uniform grids with degree lower closure. 

V.2 STABILITY AND SUPER-ACCURACY PROPERTIES 

V.2.1 Stability 

To study the stability of the scheme with boundary closure, we perform an eigenvalue 

analysis when the scheme is applied to the wave equation 

du du 
dt dx (62) 

with a given boundary condition at the left boundary. 

Let uh denote the vector that contains all nodal values, then the semi-discrete 

equation for (62) can be written as 

—- + Du'1 = 0 
dt 

(63) 

where D is the global differentiation matrix. 
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For the upwind scheme {9 = 1 and a > 0), the global matrix denoted by G + , 

where D*+ and D+ are sub-matrices from V.1.3, is of the form (also see Figure (41)) 

G, 

D * 
+ 0 

0 

0 

0 

0 

0 
D+ 

0 

0 

0 

D+ 

0 

0 

0 

0 

0 

0 

0 

0 

0 

D+ 

0 

0 

0 

0 

0 

0 

D+ 

0 

0 

0 

0 

0 

0 
D** 

(64) 

For stability, the eigenvalues of G + , where an over tilde denotes the matrix with­

out the first row and first column, must have positive real parts [10]. The eigenvalues 

for the fifth-order scheme and the boundary closure presented in previous sections 

with iV=30 elements are shown in Figure (42), left. Stability of the eigenvalues is 

observed. The eigenvalue plots for the higher order scheme p=9, with Chebychev-

Lobatto points, show stability in Figure (42), right with 7V=30. This was repeated 

for iV=5 to 200, for each p, where stability was maintained. 

0.2 0.4 0.6 

real(X) 
1 1.2 1.4 0.6 0.7 0.8 0.9 

real(X) 

FIG. 42: Left: eigenvalue A of upwind scheme D + . Eigenvalues are computed using 
N = 30 elements andp = 5. Right: Eigenvalues A of upwind scheme D + . Eigenvalues 
are computed using N = 30 elements, p = 9, and Chebychev-Lobatto grid. 
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V.2.2 Super-convergence for wave propagation 

The Fourier analysis on the numerical wavenumber for the difference formula (58) 

should be the same as those for the general discontinuous Galerkin method [25, 27, 3]. 

As mentioned for Grid Structure I, it has been shown that the numerical wavenumber 

for DGM is accurate to order 2p+1 where p is the order of basis functions, the super-

convergency property of DGM. 

As before, to demonstrate the strong super-accuracy for wave propagation prob­

lems, equation (62) is solved in a domain of 0 < x < 1 with periodic boundary 

condition and an initial condition 

ln(2) / 1\2 

u(x,0) = e~oMSPKx~) (65) 

and numerical solution is calculated using the upwind scheme given in the previous 

sections, from t = 0 to t = 51. To demonstrate the super-accuracy for propagation 

errors, the solutions at t = 1 and t = 51 are compared and the L2 norm of the 

error, Hu^x, 51) — uh(x, 1) J |a, is shown in Figure (43) as a function of total number 

of grid points in the grid refine study. A convergence order close to 11 is observed 

even though the order of the basis function is p = 5, matching the theoretical rate 

of convergence for the propagation error of order 2p + 1. See Table II. While Grid 

Structure II does not have a stable central scheme, (#=0), investigation on values 

of 9, other than 1, is of interest. Note that the super-convergence is present in, for 

example, for 9 = 0.5. The scheme is stable and same parameters are used, see Table 

III. 

TABLE II: Convergence Rate data p = 3,4,5,6 for Grid Structure II 

N 
10 
15 
20 
25 
30 
35 
40 
45 
50 

error 

1.7536E-2 
7.2867E-3 
2.9879E-3 
1.2548E-3 
5.5270E-4 
2.5812E-4 
1.2800E-4 

rate 
p = 3 

3.9357 
4.8897 
5.6280 
6.1402 
6.4644 
6.6575 

9=1 
error 

3.4812E-2 
8.1723E-3 
1.6383E-3 
3.2545E-4 
7.4643E-5 
2.0024E-5 
6.2671E-6 
2.2300E-6 

rate 
p = 4 

3.57420 
5.58650 
7.24280 
8.07610 
8.53570 
8.69908 
8.77340 

error 

1.0882E-2 
9.3403E-4 
7.5280E-5 
7.9646E-6 
1.1685E-6 
2.2870E-7 

rate 
p = 5 

6.05570 
8.75400 
10.0658 
10.5270 
10.5812 
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FIG. 43: Left: numerical solution at t = 51 in a domain of [0,1] with periodic 
boundary condition. Right: mesh refinement study on the L2 norm of the difference 
between numerical solutions at t = 1, uh(x,l), and at t = 51, uh(x, 51). p = 3,4,5 
as indicated. 

TABLE III: Convergence Rate data p = 3,4,5 for Grid Structure II 
0=0.5 

AT 
10 
15 
20 
25 
30 
35 
40 
45 
50 

error 

1.4535E-2 
6.0603E-3 
2.5681E-3 
1.1408E-3 
5.3819E-4 
2.6986E-4 
1.4310E-4 

rate 
p = 3 
— 
— 
— 

3.9204 
4.7088 
5.2637 
5.6264 
5.8614 
6.0206 

error 

4.3915E-2 
1.1566E-2 
2.6231E-3 
5.6223E-4 
1.2564E-4 
3.0320E-5 
8.2640E-6 
2.5775E-6 

rate 
p = 4 

3.2907 
5.1572 
6.9024 
8.2189 
9.2225 
9.7343 
9.8921 

error 

1.2243E-2 
9.5595E-4 
5.5713E-5 
4.5372E-6 
6.9358E-7 

rate 
p — 5 

6.2890 
9.8809 
11.2387 
10.3017 



72 

For Chebychev-Lobatto collocation points, to demonstrate the strong super-

accuracy for wave propagation problems, equation (62) is solved with initial con­

dition 
ln(2) / _1\2 

U(x,0)=e 0.0339602 {X 2) (66) 

All other conditions are the same. As shown in Figure (43), right, the grid refine 

study reveals the expected super-convergence with solution profile for p = 9, Figure 

(43), left. Note that for p = 7,8,9 the rates, numerically, in the tables listed below 

are closer (at their greatest) to 2p, 2p, 2p — 1 respectively rather than 2p + l. This 

drop in rate(s) as N increases is attributed to machine accuracy, not to the properties 

of the scheme. See Table IV. 

TABLE IV: Convergence Rate data p = 7,8,9 for Grid Structure II 

N 
14 
16 
18 
20 
22 
24 
26 
28 
30 
32 

error 

3.0994E-5 
8.3038E-6 
2.3575E-6 
7.1915E-7 
2.3617E-7 
8.3085E-8 
3.1111E-8 
1.2391E-8 

rate 
p = l 

12.5001 
13.2110 
13.6448 
13.9123 
14.0970 
14.2377 
14.2643 

0=1 
error 

5.6981E-5 
1.0179E-5 
1.0916E-6 
3.8915E-7 
8.8807E-8 
2.2632E-8 
6.6544E-9 
2.1057E-9 

rate 
p = 8 

12.8987 
14.2929 
15.0582 
15.5015 
15.7117 
15.6753 
15.1144 

error 

5.6143E-6 
6.9330E-7 
9.7579E-8 
1.6369E-8 
3.3534E-9 

rate 
p = 9 

15.6334 
16.6890 
16.9446 
16.6343 
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FIG. 44: Left: numerical solution at t = 51 in a domain of [0,1] with periodic 
boundary condition, p = 9. Right: mesh refinement study on the L2 norm of the 
difference between numerical solutions at t = 1, uh(x,l), and at t — 51, uh(x, 51). 
p = 7,8,9, Chebychev-Lobatto points, as indicated. 

The numerical wave number accuracy of the method is examined for DGM-FD 

and then compared to DRP and compact schemes on equation (62) with domain 

—50 < x < 450, periodic boundary condition and initial condition 

ln(2) 

u(x, 0) = e 3' (xf (67) 

The Fast Fourier Transform (FFT) function in Matlab is used to obtain the difference, 

k* — k, where k* is the numerical approximation to the wave number k. On double 

valued nodal points, the value from the element on the left is used in FFT. As noted 

for Grid Structure I in section III.2.2, if the FFT of exact solution is uexact(k,t) = 

e~lktiio(k) then the FFT of numerical solution can be written in terms of numerical 

wavenumber k* as u*(k,t) = e~lk*tUo(k). Therefore an estimation of the difference, 

k* — k, is 
ln[u*(k,t)/uexact(k,t)} 

k* -k 
it 

(68) 

First we examine the DGM-FD scheme and study the numerical wave number ac­

curacy for the upwind (6 = 1) schemes for varying orders, p=3,4,5. Note in Figure 

(45) that, as expected, the numerical solution becomes better resolved as the order, 

p, increases for the upwind scheme. 
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FIG. 45: Gaussian profile Upwind p = 3,4,5. 

The numerical wave number accuracy, both for dispersion, Real(fc* — A;), and 

dissipation, Imag(A;* — k), follows the same trend. See Figure (46). 
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FIG. 46: Top: Real(k*-k) upwind, p — 3,4,5; Bottom: Imag(k*-k) upwind, p — 
3,4,5. 
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Now we turn to comparing the performances of DGM-FD, DRP and compact 

schemes. First, their numerical solutions, then the numerical wave number accuracy 

data followed by a log-log plot, to show their numerical wave number convergence 

rates. In Figure (47), profiles for DGM-FD of p=5, 4tft and 6th order compact and 

DRP are shown. DGM-FD performs similarly with Qth order compact scheme and 

better than both 4th order and DRP. In Figure (48), top, the dispersion properties 

are examined. For the given tolerance of 10~3, the difference between numerical and 

theoretical wave numbers, k* — k, is comparable for 6th order compact, and DRP, 

with kAx < 1, DGM-FD has larger range, kAx < 1.3. In Figure (48), bottom, the 

dissipation properties are examined and as DGM-FD is an upwind scheme, it shows 

more dispersion than the other (central) schemes. Figure (49) shows the rate of 

convergence (slope in figure) for DGM-FD as higher than 4 th, 6*̂ , 8th order compact 

and DRP for the given range of Real(fcA:r). 
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X 

FIG. 47: Gaussian profile Upwind p = 3,4,5. 
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FIG. 48: Top: Real(k*-k) Compact, DRP DGM-FD; Bottom: Imag(k*-k). 
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FIG. 49: loglog(real(k*-k)) Compact, DRP, DGM-FD. 
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V.3 NUMERICAL EXAMPLES 

In this section, we show numerical examples of the fifth-order finite difference scheme 

presented in this section. We solve the same linearized Euler equations and governing 

equations as presented in section III.3. 

The mean flow Mach numbers are 0.5 and 0 in the x and y direction, respectively. 

V.3.1 Linear Acoustic Example I 

The first example is an acoustic pulse in free space. The computational domain 

is [—110,110] x [—110,110] with the PML absorbing condition applied for the ten 

grid points around the boundary [26]. Figure (50) shows the computational domain 

with variable grids. For the x-axis the grid starts as unrefined, with Aa î = 1, and 

h=pAx\=5 then Ax2 = \, and h=pA2 = 1.25, then back to the original. The y-

axis is the same. The number of collocation points on each side is 310. The initial 

condition is: 

p(x,0) = e H » P ) ( ¥ ) ] + o . l e H « P ) ( ^ F ) ] u ( X j 0 ) = 0.04yeH"(2)( f c s i^)] 

v(x,0) = -0.04(x - 67)eH»(2>(<==s£±£)]} p ( x , 0 ) = e H « ( 2 ) ( ^ ) l 

Density contours and a comparison with the exact solution for £=30, 60, 80 and 

100 are shown in Figures (51) and (52). They show smooth contours and good 

agreement with the exact solution. The numerical simulation is run to £=1000. 
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FIG. 50: Computational domain with variable grid sizes. 
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FIG. 51: Contours of density at t — 30,60,80,100 in the physical domain. 
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FIG. 52: Comparison of pressure with exact solution along y = 0. 
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V.3.2 Linear Acoustic Example II 

This example is the reflection of an acoustic pulse with a wall at y = 0. The 

computational domain is [—110,110] x [0,220] with the PML absorbing condition 

applied for the ten grid points on the left and right and twenty grid points on the 

top boundary [26]. The initial condition is the following: 

p{x, 0) = p(x, 0) = eH"(2)r2+(*5~
25)2)] j u ( X j o) = v(x, 0) = 0 

Density contours, Figure (53), and a comparison with the exact solution, Figure 

(54), again, shows strong agreement for numerical results for upwind scheme p — 5 

at i=30, 60, 100, and 150. The numerical simulation is run to £=2000. 
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FIG. 53: Contours of density at t — 30,60,100,150 in the physical domain. 
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FIG. 54: Comparison of pressure with exact solution along y = 0. 
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Chapter VI 

CONCLUSIONS 

Numerical schemes for Computational Aeroacoustics problems require low dissipa­

tion and low dispersion errors along with high order accuracy, flexibility with variable 

grid refinements, and then preferably, ease of use. There are many methods that do 

some of these things well, at the expense of others. The method introduced in this 

research, DGM-FD, is an attempt to join those methods as one that achieves some of 

requirements of effective numerical schemes for CAA. DGM-FD is a finite difference 

type method that has high-order convergence with strong accuracy for numerical 

wave numbers and is adaptive to non-uniform grids. Like DGM, these methods re­

tain super-accuracy for wave propagations. Of the two grid structures presented, the 

first has a finite difference type grid with capacity for non-uniform regions as shown 

with the fourth-order upwind and third order central schemes. The second structure 

has a shortened stencil for the derivative scheme, with some grid points double-valued 

and is, again, adaptive to non-uniform grids as the fifth-order upwind scheme shows. 

For non-linear applications a third order flux finite difference formula is presented 

where no explicit upwind and downwind split of the flux is required. The schemes 

achieve stable boundary closures while retaining the formal and wave number super-

accuracy for wave propagation problems. Good results in the numerical examples 

demonstrate the effectiveness of the new schemes and, as the examples show, DGM-

FD makes the case for being a strong contender as a useful method for CAA wave 

propagation applications. It has good numerical wave number and high order accu­

racy, stable closure and, distinct from other finite difference methods currently used, 

is dynamically adaptable to non-uniform grids. As DGM-FD is based on DGM, a 

well known and studied finite element method with many variations presented in the 

literature, DGM-FD, while new, is not without pedigree. This research also presents 

a new way to obtain, via extraction from the semi-discretized wave equation, a finite 

difference method. 

While the fourth order DGM-FD does preserve wave number accuracy as well as 

DRP, it is seemingly more costly as for Grid Structure I, the stencil size is almost 

doubled, and for Grid Structure II, while having a more compact footprint, some 

duplicate grid points are required. DGM-FD has, however, a higher order accuracy 

in numerical wavenumber than DRP. One may consider the fourth order method 
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proposed in Grid Structure I to be comparable, in cost, to a 15 point finite difference 

scheme, which is 14th order. However, closure for such a scheme, in traditional 

finite difference methods, would be prohibitive, and, if possible, would likely reduce 

the formal order of that method. Note that with the use of Chebychev-Lobatto 

collocation points, very high order with stable closure methods are possible with 

DGM-FD. Overall, for an application that requires selective refinement in certain 

portions of the mesh, DGM-FD is a strong candidate. 

The flux formulation provides, perhaps, the best example of what is effective 

about DGM-FD. It handles non-linear applications in conservation form, and, unlike 

traditional high-order finite difference upwind schemes, wave splitting is not needed. 

It provides the strong convergence and wave number accuracy properties we seek with 

an adaptability to non-uniform meshes. Indeed, in order to execute the Burger's 

equation with comparable resolution, as shown in the example in section IV.2.1, 

DRP or compact schemes would require three times as many collocation points as 

DGM-FD needed to provide results presented in this research. 

On the topic of the variable grid properties of DGM-FD, Grid Structure II pro­

vides availablity of a grid variation usually seen only in FEM, that is, where the 

refined area may be limited to a small local region. Grid Structure II also shows 

simplicity in the stencil size as well as boundary closure. Both Structures I and II 

merit further exploration with performance in applications due to their respective 

strengths. 

Future work is in two directions, with the first, to improve the method in terms of 

ease of use, and second, to explore its effectiveness in a wider range of applications. 
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APPENDIX A 

NINTH ORDER COEFFICIENTS FOR GRID STRUCTURE II 

Grid Structure II with p=9 uses Chebychev-Lobatto collocation points on [-1,1]. 

They are 

6 collocation points 

6,10 Tl. 

6,9 T-93969262078590838405 

6,8 T-76604444311897803520 

6,7 T-50000000000000000000 

6,6 T-17364817766693034889 

The general finite difference matrix, D# is the linear combination 

Dfl = (1 + ^ ) M - + (Mo + ^ N 0 ) + (1 - ^ ) M + 

where M_, M0, N 0 and M + are the required coefficient matrices. The distinct 

entries of the scheme are contained in M_ = [m—y] and Mo = [raO^] and are given 

in columns of coefficients below. The patterns, (69) and (70), to recover the other 

coefficients are given for general order, p. Recall, see coefficient matrices of p—h 

scheme from V . l . l , that some matrices are sparse. In (69), the entries of M_, N 0 

and M + that are not specified, are zero. 

M_(t ,p+1) = -M+(p+2-i, 1) = - N 0 ( p + 2 - » , p + l ) = - N 0 ( i , 1) i = 1, ...(p+1). 

(69) 

Also, 

M0(i,j) = -M0(p + 2-i,p + 2-j) i,j = l...(p+l). (70) 
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m-

m-

m-

m-

m-

m-

m-

m-

m-

m-

m-

ij 

~V 

~2j 

~3j 

" 4 j 

~5j 

~ej 

-7j 

Sj 

~ 9 j 

"10j 

J = 10 

-25.000000000000000002 

-2.0549971056719608166 

0.078351094085155344510 

0.39834976196289062497 

-.58977617387944402655 

0.69081456438989187085 

-.76021194458007812500 

0.83146006813753769700 

-.97047036698305506775 

2.5000000000000000002 

m0,. J' = l J = 2 

mOij 

m02j 

m03j 

mOzy 

mOej 

m08j 

mOgj 

mOWj 

-2.166666666666666668 

-6.2358622637096287883 

2.0588069485181022679 

-1.3983497619628906247 

1.1948453302447455690 

-1.1168366121503537072 

1.0935452779134114582 

-1.1145786509954862538 

1.2282431680144959126 

-3.0000000000000000000 

33.163437477526358434 

4.0165432841750743798 

-5.7587704831436335364 

2.2743160852065152257 

-1.3054072893322786049 

0.89819757022257379872 

-.69459271066772139545 

0.58625682771454451228 

-.53208888623795607056 

1.0310912041257633789 

mOf J = 4 J = 5 

mOy 

m02j 

m03j 

m04j 

m05j 

mOej 

mOjj 

m08j 

rnOgj 

mOWj 

-8.5486321704130304526 

5.7587704831436335363 

0.92701972987265452789 

-3.7587704831436335357 

1.6880592574919707140 

-1.0641777724759121408 

0.78986168726939691506 

-.65270364466613930225 

0.58625682771454451210 

-1.1324743314317942274 

4.0000000000000000012 

-2.2743160852065152261 

3.7587704831436335362 

0.33333333333333333309 

-3.0641777724759121419 

1.4844543979371183108 

-1.0000000000000000001 

0.78986168726939691530 

-.69459271066772139547 

1.3333333333333333336 

-2.4202766254612061703 

1.3054072893322786043 

-1.6880592574919707132 

3.0641777724759121402 

0.08952355430241985444 

-2.8793852415718167676 

1.4844543979371183102 

-1.0641777724759121407 

0.89819757022257379838 

-1.7040881910418473459 
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APPENDIX B 

NUMERICAL WAVE NUMBER CALCULATION 

Starting with the definition of the Fourier transform of a continuous function, this 

section derives the formula used in III.2.2 and V.2.2 to obtain [k* — k], the difference 

of discrete numerical wave numbers, via Fast Fourier Transform (FFT) from the 

numerical data. 

Consider the one-dimensional wave equation (5) with an initial condition: 

u(x,0) = f(x) and exact solution U(x,t) = f(x — t) after time t. The Fourier 

transform of f(x) is 

f(k) = ±J^e-ikxf(x)dx (71) 

with inverse 

/
oo 

eikxf(k)dk. (72) 
-00 

Then 

eik{x-t)f{x)dx = e~ikt / eikxf(k)dk. (73) 
-oo J—oo 

Now, the Fourier transform of U(x, t) is 

U(k,t) = -!- j°° e-ikxU(x,t)dx (74) 

dx (75) 

(76) 

= e'iktf(k) (77) 

and because f(x) = f(x — 0) = U(x, 0) we have f(k) = U(x, 0) or 

U(k,t) = e-MU(x,0). (78) 

Now consider the finite difference scheme on a grid of Xj with numerical solu­

tion on these grid points denoted by Uj(t) « u(xj,t). Define the discrete Fourier 

transform: 
A T 

fi(M) = ^ E ^ o o e - * ^ * ) (79) 

and using (73) 

and then (72) 

with (71) we get 

= — / e-ikx \e-lkt / eikxf(k)dk 
lit J-oo L J-oo 

= e~ikt\h!-ooe~ikXf{x) dx 
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with inverse: 

Uj(t) = [*l eikx>u(k,t)dk (80) 

Now apply the relationship in (78) and write u(k,t) to get a relationship involving 

k*, the numerical wave number of the finite difference scheme: 

u{k,t) = e-ikHu(k,0) (81) 

If we call ue(x,t) is the exact solution on the finite difference grid, apply (78) to get 

fie(M) = e-iktu(k,0) (82) 

where k is the exact wave number. Subsequently, we can find the difference between 

the numerical and exact wave numbers, [k* — k] by: 

[*• - k] = _ fa[*(M)M(M)]. (83) 
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