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ABSTRACT 

 
Low ratios of the length of the second finger to the length of the fourth finger in the right (right 

2D:4D) and the left hand (left 2D:4D) have been linked to high prenatal testosterone concentrations. Low 

R-L 2D:4D (subtracting left 2D:4D from right 2D:4D) has been associated with high androgen sensitivity 

as indicated by low numbers of cytosine-adenine-guanine (CAG) triplet repeats on exon-1 of the androgen 

receptor gene. Endurance training has led to higher increases in maximal oxygen uptake capacity  V O₂max) 

in men with relatively low numbers of CAG triplet repeats, suggesting a relationship between R-L 2D:4D 

and V O₂max. Moreover, Low right and left 2D:4D are associated with superior performances in sports such 

as fencing, rugby, soccer, basketball, and sumo wrestling. The strongest associations, however, have been 

found between right 2D:4D and endurance running performance (r² = 0.25). An inverse relationship 

between R-L 2D:4D and V O₂max, running velocity at V O₂max, and peak lactate concentration in pubertal 

boys has been reported. 

The purpose of the present investigation was to examine the relationships between measures of 

digit ratios and performance variables (V O₂max, maximal respiratory exchange ratio (RERmax), absolute 

running economy (REabs), relative running economy (RErel), and total time on the treadmill (ToT)) in post-

pubertal sedentary populations and in trained endurance runners. The relationship between digit ratios and 

endurance running performance in the form of personal records (PRs) over different race distances in the 

trained runners was also examined in order to explore which performance variable moderates the 

relationship between prenatal testosterone and/or testosterone sensitivity and endurance running 

performance. A significant negative relationship between left 2D:4D and V O₂max (r = 0.49) was found only 

in the female sedentary group after removing the effects of weight using first order partial correlation 

analyses. In both the male and female trained runners, measures of digit ratio and V O₂max showed a trend to 

be positively related. REabs related negatively to digit ratios in the male and female sedentary groups, while 

RErel was negatively related to digit ratios in only the male sedentary group. All other relationships between 

digit ratios and performance variables were highly inconsistent across groups and often within groups. We 

found fairly consistent and moderately strong positive relationships between digit ratios and PRs which do 

not seem to be moderated by V O₂max. However, The associations between 2D:4D and endurance running 

performance seemed be mediated by RERmax in male endurance runners, indicating that the capacity to 

buffer and/or clear lactic acid moderates the relationship between prenatal testosterone stimulation and 

endurance running capabilities. We recommend the investigation of the relationships among lactate 

threshold, endurance running performance and 2D:4D. 
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CHAPTER 1 

 

INTRODUCTION 

 

Prenatal Testosterone and Sexual Dimorphism 

 
 A mounting body of evidence suggests that prenatal testosterone exerts a permanent 

organizational effect on sexually dimorphic traits and characteristics. It determines to what degree a person 

possesses male or female characteristics. Pre-natal testosterone has organizational effects on a person‟s 

anatomy and physiology, masculinizing behavior, appearance, and physical ability (Cohen-Bendahan, 

Buitelaar, Van Goozen, Orlebeke, & Cohen-Kettenis, 2005; Hönekopp, Manning, & Müller, 2006). Sex 

differences upon birth seem to be caused by differences in testosterone concentrations and not estrogen 

concentrations as estrogen levels between male and female fetuses were found to be equal (McIntyre, 

2006). Evidence exists that the degree of masculinization is a correlate of prenatal androgen levels as the 

absence of fetal testosterone leads to female phenotypical development (Zitzmann & Nieschlag, 2003). 

Research conducted with non-human animals has shown that the artificial elevation of prenatal testosterone 

levels leads to the masculinization of a variety of characteristics. Ethical concerns prohibit such 

experimentation with human fetuses; therefore investigators are limited to correlational studies to explore 

the relationships between early androgen stimulation and proxies thereof and adult characteristics in 

humans (Breedlove, 2010). 

 

2D:4D and Sex Steroid Stimulation 

The ratio of the length of the second digit to the length of the fourth digit (2D:4D) on the human 

hand is a sexually dimorphic trait, whereas men have lower 2D:4D than women (Hönekopp & Watson, 

2010). The amount of testosterone the fetus produces between the 12
th

 and 24
th

 week, as measured by 

analysis of amniotic fluid (amniocentesis), negatively correlates with 2D:4D (Lutchmaya, Baron-Cohen, 

Raggatt, Knickmeyer, & Manning, 2004). This means that greater testosterone production by the gonads of 

the fetus leads to a shorter index finger relative to the ring finger of the same hand (Lutchmaya et al., 

2004). Besides amniocentesis other methods of establishing the link between in utero testosterone and digit 

ratios have been employed. These include the comparison of 2D:4D between females with congenital 

adrenal hyperplasia (CAH) and healthy controls (e.g. Buck, Williams, Hughes, & Acerini, 2003), the 

comparison of 2D:4D in dizygotic twins of the same and opposite sex (e.g. Anders, Vernon, & Wilbur, 

2005), the comparison of 2D:4D between women with polycystic ovary syndrome and healthy controls 
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(e.g. Cattrall, Vollenhoven, & Weston, 2005), and the comparison of 2D:4D between men with 

Klinefelter‟s syndrome  KS) and healthy controls (Manning, Kilduff, & Trivers, 2013). 

Typically, the index finger is slightly shorter than the ring finger, which causes the value of 2D:4D 

to be below 1.0 in most individuals. The sex differences in 2D:4D are more pronounced in the right hand 

(Hönekopp & Watson, 2010) and it seems that the fourth or ring finger is equipped with more androgen and 

estrogen receptors than the second or index finger especially in the right hand (Zheng & Cohn, 2011). 

Estrogen stimulates metaphyseal tissue to calcify while testosterone promotes bone growth (Weise et al., 

2001). Evidence also suggests that testosterone sensitivity governed by the androgen receptor gene 

influences the development of sexually dimorphic traits (Breedlove, 2010). The ability of androgen 

receptor genes to transcribe the testosterone stimulus depends on their number of cytosine-adenine-guanine 

(CAG) triplet repeats (Chamberlain, Driver, & Miesfeld, 1994; Kazemi-Esfarjani, Trifiro, & Pinski, 1995). 

The higher the number of CAG triplet repeats the more inhibited the transcription process is (La Spada, 

Wilson, Lubahn, Harding, & Fishbeck, 1991). CAG triplet repeat length has been shown to positively 

correlate with 2D:4D and with difference between right and left 2D:4D (R-L 2D:4D) (Manning, Bundred, 

Newton, & Flanagan, 2003). Breedlove (2010) thus concludes that 2D:4D reflects total androgen 

stimulation which is proportionate to the concentration of and sensitivity to androgens. 2D:4D has been 

commonly used as a putative measure of in utero testosterone concentration and as an indicator of 

testosterone sensitivity. 

 

Athletic Performance and 2D:4D 

 
It has been shown that athletic performances, which are influenced by the sexually dimorphic 

traits such as muscular strength, muscular endurance, speed, and cardiovascular endurance, have a negative 

correlation with 2D:4D and R-L 2D:4D and thus a positive correlation with prenatal testosterone levels 

(Bennett, Manning, Cook, & Kilduff, 2010; Manning, 2002a; Manning, Morris, & Caswell, 2007; Tamiya, 

Lee, & Ohtake, 2011). Researchers found that a longer ring finger relative to the index finger in either hand 

predicts better performances in fencing (Voracek, Reimer, Ertl, & Dressler, 2006), skiing (Manning, 

2002b), soccer (Manning & Taylor, 2001), field-based fitness tests (Hönekopp et al., 2006), sumo wrestling 

(Tamiya, Lee, & Ohtake, 2011), basketball (Tester & Campell, 2007), 50m dash (Manning & Hill, 2009), a 

hand-grip strength test (Fink, Thanzami, Seydel, & Manning, 2006), and 2,000m ergometer rowing 

(Longman, Stock, & Wells, 2011). The effect size of the relationship between 2D:4D of the right hand and 

athletic prowess (r = -0.26) is highly significant (Hönekopp & Schuster, 2010). The relationship between 

left 2D:4D and athletic prowess shows a similar and also significant effect size (r = -0.24). It seems that 

neither hand is a better predictor of athletic performance. The correlation between 2D:4D and endurance 

running performance measured in finishing position or time ranged from r = 0.30 to r = 0.51. The average 
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variance in athletic performance accounted for by 2D:4D ranges from 1% to 16% (Hönekopp & Schuster, 

2010). The variance in endurance running performance explained by 2D:4D is 25% (Manning et al., 2007). 

Therefore, it seems that prenatal testosterone exerts greater effects on the function of the cardiovascular 

system than on other physiological variables, as endurance running is an activity that requires greater 

aerobic efficiency than many of the aforementioned activities (Manning et al., 2007). 

 

Adult Testosterone Levels and Cardiovascular Health Components 

 
While prenatal testosterone exposure seems to have beneficial effects on cardiovascular fitness, 

i.e. it makes one a better endurance runner, the effects of postnatal testosterone stimulation on 

cardiovascular health should also be discussed as digit ratio relates to adult testosterone sensitivity 

(Manning et al., 2003). Therefore, digit ratio may reflect not only prenatal testosterone stimulation but also, 

to some degree, adult testosterone stimulation. The effects of exercise on serum testosterone concentrations 

and the influence of serum testosterone levels on physiological variables in adults have been studied. 

Strength training and endurance training led to significant increases in serum testosterone, peaking 

approximately 20 minutes after commencement of training (Jensen et al., 1991; Vogel, Books, Ketchum, 

Zauner, & Murray, 1985). Elevations in serum testosterone levels have been shown to stimulate 

erythropoiesis, elevations in serum hemoglobin concentrations, Type I muscle fiber growth, growth of the 

myocardium, reductions in serum low-density lipoprotein levels, and elevations in serum high-density 

lipoprotein levels (Hartgens & Kuipers, 2004; Rebuffe-Scrive et al., 1991; Vermeulen et al., 1999; 

Zitzmann & Nieschlag, 2007). Testosterone supplementation has also caused decreases in diastolic and 

systolic blood pressure as well as resting heart rates (Zitzmann & Nieschlag, 2007). However, it has been 

shown that very high endurance training volumes led to chronic depressions in serum testosterone levels 

(Häkkinen, Pakarinen, Alén, Kauhanen, & Komi, 1988; MacConnie et al., 1986). The physiology of 

endurance athletes is characterized by most if not all of the benefits provided by elevated serum 

testosterone levels. It seems counterintuitive that endurance athletes would have depressed resting serum 

testosterone levels. Endurance athletes may thus be a very useful population when studying the effects of 

prenatal testosterone levels on human physiology as their depressed resting serum testosterone levels 

should cause less of the inter-individual variation in physiological parameters and thus making variation 

due to prenatal testosterone stimulation more easily detectable. Moreover, the elevation in serum 

testosterone associated with the repeated testosterone stimulus provided by endurance training could be 

reflected in 2D:4D as Kilduff, Cook, Bennett, Crewther, Bracken, and Manning (2012) found a significant 

negative correlation between R-L 2D:4D and free salivary testosterone in rugby players following a 

physical challenge. Therefore, testosterone sensitivity, with R-L 2D:4D as a postnatal proxy, and elevations 
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in serum testosterone associated with exercise could be the mediating variable between testosterone stimuli 

and physiological performance variables. 

Evidence also suggests that cardiovascular risk factors and certain diseases are less prevalent in 

individuals with low 2D:4D (Abbott, Dumesic, & Franks, 2002; Fink, Manning, & Neave, 2006; Manning 

& Bundred, 2001; Manning, Taylor, & Bundred, 2003; Rebuffe-Scrive, Marin, & Bjorntrop, 1991; Singh, 

1994; Vermeulen, Goemaere, & Kaufman, 1999). These findings seem to point towards beneficial effects 

of prenatal testosterone on cardiovascular health  and fitness components (English, Mandour, Steeds, Diver, 

Jones, & Channer, 2000). The validation of 2D:4D as a biomarker of in utero androgen concentrations as 

well as sensitivity is important to provide for opportunities of quick and inexpensive studies and 

examinations of the genetic predisposition for health risk factors because direct measures of in utero 

androgen concentrations are not practical when studying their relationship to cardiovascular risk factors in 

adulthood. 

 

Right and Left 2D:4D and Maximal Oxygen Uptake 

 
The physiological measure that is widely accepted as the best measure of cardiovascular fitness is 

the maximal oxygen uptake or V O₂max (ACSM, 2010. Bassett & Howley, 1999. Mitchel & Blomqvist, 

1971). V O₂max is the maximum amount of oxygen an individual can consume for energy production during 

vigorous exercise (Mitchel & Blomqvist, 1971). V O₂max can reflect poor cardiovascular fitness and 

inactivity, established as primary risk factors for cardiovascular heart disease (Blair & Kohl, 1989). Hill, 

Simpson, Manning, and Kilduff (2012) explored the relationship between digit ratios and V O₂max, running 

velocity at V O₂max (v- V O₂max), and peak lactate concentration (LAmax) in young athletic teenage boys (age: 

13.9 ± 1.3 years) during an incremental treadmill test. All of these variables have been shown to be 

sexually dimorphic, whereas men display consistently higher values than women (Bouchard et al., 1998; 

Daniels & Daniels, 1991; Esbjörnsson-Liljedahl, Sundberg, Norman, & Jansson, 1999). Therefore, a 

significant negative relationship between 2D:4D and these variables was expected. However, Hill and 

colleagues (2012) did not find a significant relationship between right or left hand 2D:4D and V O₂max, v- 

V O₂max, or LAmax. These findings are somewhat surprising as Manning and colleagues (2007) found that 

right and left hand 2D:4D correlated significantly with endurance running performance. As lower right and 

left hand 2D:4D is associated with higher prenatal testosterone concentrations, these findings do not 

support strong favorable organizational effects conducive to cardiovascular health and fitness of prenatal 

testosterone on the human physiology. The lack of a significant correlation between 2D:4D and V O₂max in 

Hill‟s and colleagues  2012) study could be explained by the inclusion of a variety of sports, including 

soccer, squash, table tennis, and athletics (track and field), which the participants played. These sports 

require different amounts of running and movement which elicit varying acute cardiovascular responses 
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and therefore varying chronic adaptations of the cardiovascular and neuromuscular systems. For example, 

table tennis might not elicit heart rates as high as other athletic activities (e.g. track & field, soccer, etc.) 

and it certainly does not involve a comparable amount of locomotion in the sagittal plane (running). 

Therefore, table tennis players with low 2D:4D might have a low V O₂max compared to track & field runners 

with greater 2D:4D. The pre-pubertal and pubertal age of Hill‟s at al.  2012) sample presents further 

possible confounders because of the heterogeneity in age at the onset of puberty, the continuous elevation 

of testosterone levels, and the acceleration of growth and maturation during puberty (Mantzoros, Flier, & 

Rogol, 1997). 

Attempts of synthesizing Manning‟s et al.  2007) and Hill‟s et al.  2012) reports to explain the 

influence of in-utero testosterone concentrations on determinants of endurance running performance bears 

only limited value because of significant methodological differences between those two studies. The 

participants in the study of Hill and colleagues (2012) were Middle-Eastern boys with a mean age of 13.9 ± 

1.3 years who played a variety of sports and whose digit length was measured from photocopies of their 

hands. Manning and colleagues‟  2007) sample consisted of trained Caucasian male and female distance 

runners with mean ages ranging from 24.04 ± 8.82 to 33.58 ± 9.25 years whose digit lengths were 

measured directly with steel vernier calipers. Further research is needed controlling for age to explore a 

possible influence of fetal testosterone stimulation on V O₂max related training effects. 

 

R–L 2D:4D and Maximal Oxygen Uptake 

 
Interestingly, in the same study by Hill and colleagues (2012), significant negative correlations 

were found between R-L 2D:4D and V O₂max (b = -0.33), v- V O₂max (b = -0.47), and LAmax (b = -0.50). As 

mentioned, low R-L 2D:4D, more strongly than right or left 2D:4D, has been associated with low numbers 

of cytosine-adenine-guanine triplet repeats, which in turn are associated with high testosterone sensitivity 

(Manning et al., 2007). Men with relatively few cytosine-adenine-guanine triplet repeats in exon 1 of the 

androgen receptor gene have reacted with larger increases in V O₂max than those with relatively large 

numbers of cytosine-adenine-guanine triplet repeats in response to 30-day hypoxic training (Wang et al., 

2010). An increase in hematocrit has also been reported in males with relatively few cytosine-adenine-

guanine triplet repeats in response to an elevation in testosterone levels caused by exercise or the 

administration of testosterone (Wang et al., 2010; Zitzmann & Nieschlag, 2007). These findings suggest 

that low R-L 2D:4D indicates a heightened sensitivity to elevations in postnatal testosterone levels which 

causes favorable changes in the human physiology  training effects). Hill‟s et al.  2012) findings could be 

explained by this sensitivity theory, despite the variety of sports which the boys played. High sensitivity to 

testosterone and pubertal elevations in serum testosterone might outweigh the effects of different types of 

training. For instance, a table tennis player with high testosterone sensitivity might have a higher V O₂max 
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than a soccer player with low testosterone sensitivity. It is also possible that the boys with low  -L 2 :4  

gravitated towards the sports that elicit large changes in and require high values of V O₂max for success.  

However, a similar study examining the influence of the relationship between 2 :4  and V O₂max on the 

relationship between 2 :4  and endurance running while controlling for training effects and fluctuations in 

serum testosterone levels is warranted. The gender differences in the relationship of digit ratios to V O₂max 

are also unknown. 

 

Purpose of this Investigation 

 
In summary, a commonly used putative measure of prenatal testosterone stimulation (2D:4D) did 

explain 25% of the variance in endurance running performances in trained runners (Manning et al., 2007). 

However, right or left 2D:4D did not explain differences in V O₂max whereas  -L 2 :4  did  Hill et al., 

2012). The samples in previous studies were diverse, the evidence about the organizational effects of 

prenatal testosterone concentrations on the human physiology, in particular V O₂max, are inconclusive, and 

the effects of long-term high volumes of endurance training on the relationship of maximal oxygen uptake 

to digit ratio are largely unknown. Therefore, the purpose of this investigation was to examine the influence 

of in-utero testosterone stimulation via 2D:4D on V O₂max and the effects of long-term endurance running 

training on this relationship by controlling for age and training. Due to the association of right and left 

2D:4D with endurance running performance but the lack of association of right and left 2D:4D with 

V O₂max, we also included an analysis of the relationship of 2 :4  with running economy    ).    is the 

volume of oxygen  V O₂) consumed at a certain constant running speed. For instance, runner one 

consuming 30 ml*kg
-1

*min
-1

 of O₂ is more economical in absolute terms (REabs) than runner two 

consuming 34 ml*kg
-1

*min
-1

 of O₂ if both runners are running at the same speed and incline on two 

identical treadmills   aniels    aniels, 1992). However, if runner one has a V O₂max of 40 ml*kg
-1

*min
-1 

and runner two has a V O₂max of 68 ml*kg
-1

*min
-1

, it means that runner two displays better relative RE 

(RErel) running at 50  of his her V O₂max than runner one running at 75  of his her V O₂max (Daniels & 

Daniels, 1992). RE has been demonstrated to be a reliable predictor of endurance running performance 

among trained runners and it is also a sexually dimorphic trait, whereas men generally exhibit better RErel 

than women (Daniels & Daniels, 1992). Moreover, RE is dependent on a number of sexually dimorphic 

traits including body composition, height, weight, leg mass, and flexibility (Pate, Macera, Bailey, Bartoli, 

& Powell, 1992; Saunders, Pyne, Telford, & Hawley, 2004). This makes RE a potential correlate of digit 

ratio. Maximal respiratory exchange ratio (RERmax) will also be included as a dependent variable because 

of the association of  -L 2 :4  and maximal lactate concentrations in Hill‟s et al.  2012) investigation. 

While digit ratio is the independent variable, V O₂max, RERmax, REabs, RErel, total time on the treadmill 

(ToT),  and endurance running performance are the dependent variables that were manipulated through the 



 

 

 

7 

 

 

quasi-experimental (or categorical) variable of endurance running training. It is assumed based on past 

research that right and left 2D:4D reflect variations in prenatal testosterone levels while R-L 2D:4D is a 

stronger biomarker of testosterone sensitivity. Hence, we assumed that a negative correlation between 

measures of 2D:4D and V O₂max is moderated by prenatal testosterone and testosterone sensitivity. The 

investigation of the relationships between measures of 2 :4 , V O₂max, RE, RERmax, and running 

performance within the same population allowed for a more direct comparison between the association of 

2 :4  to V O₂max, RE, and RERmax and the association of 2 :4  to endurance running performance.  or 

this purpose, partial correlation analysis was used to explore which performance variable  V O₂max, REabs, 

RErel, or RERmax) moderates the relationship between 2D:4D and endurance running performance. 

 

Population 

 
For this purpose, two different college aged post-pubertal populations were recruited: Highly 

endurance trained and sedentary. The highly trained population consisted of 26 (13 female) individuals 

presently involved in competitive collegiate athletics (cross country and track & field) while the sedentary 

population (n = 28; 15 female), serving as the control group in terms of long term endurance training, was 

recruited from the general student population. Both groups included males and females. All participants 

were between 18 and 25 years of age to control for pubertal changes in testosterone levels as testosterone 

levels tend to level off after age 14 (Crabbe, Christiansen, Rødbro, & Transbøl, 1979). 

 

Hypotheses 

 
We expected to find a negative correlation between right, left, and  -L 2 :4  and V O₂max in all 

samples.  requent training stimuli may cause changes in V O₂max independent of training induced 

testosterone or prenatal testosterone stimulation due to other exercise induced hormonal changes and 

enzymatic activities. However, there should be a detectable negative relationship between 2 :4  and 

V O₂max in the highly trained runners as the physiological effects of serum testosterone spikes seem to be 

moderated by testosterone sensitivity (Wang et al., 2010) which is reflected in 2D:4D. Variations in V O₂max 

in the sedentary population, however, should be largely attributable to genetic variation such as prenatal 

testosterone exposure and testosterone sensitivity. In accordance with the previous report of a significant 

correlation between 2D:4D and endurance running performance (Manning et al., 2007), we expected to find 

a positive relationship of similar strength between measures of digit ratio and personal records in terms of 

time per race distance (PRs). In comparison, the relationship between V O₂max and 2D:4D was expected to 

be weaker due to other determinants of endurance running performance such as the lactate threshold, RE, 

as well as neuromuscular and biomechanical factors which could also be affected by prenatal testosterone 
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and/or testosterone sensitivity   assett   Howley, 2000; Kyr l inen,  elli,   Komi, 2001; Nummela et al., 

2006).  ue to these variables and because Hill et al.  2012) found a stronger association between 2 :4  

and peak running velocity than between 2 :4  and V O₂max, we expected to find a stronger relationship 

between 2 :4  and ToT compared to 2 :4  and V O₂max or   . In accordance with Hill‟s et al.  2012) 

report of a negative relationship between R-L 2D:4D and LAmax, we also expected digit ratios to correlate 

negatively to RERmax. At equal running velocities, men generally exhibit greater oxygen consumption per 

kilogram of body weight  V O₂) than women (REabs). Thus, we anticipated negative correlations between 

measures of 2D:4D and REabs and positive correlations between measures of 2D:4D and RErel, as RErel and 

V O₂max are inversely related. In summary, we expected negative correlations between measures of digit 

ratio  right 2 :4 , left 2 :4 ,  -L 2 :4 ) and V O₂max, REabs, RERmax, and ToT, and positive correlations 

between digit ratios, RErel, and PRs. 

 

Limitations 

 
The intercollegiate runners have been subjected to the selective process of recruitment which is 

likely to eliminate those with poor genetic predispositions. This might cause the polymorphism of 2D:4D in 

the runners to be relatively small. However, the 2D:4D polymorphism in the sedentary population could be 

comparably small as well, as they might have poor genetic predispositions in common which might be a 

reason for their relative inactivity. This potential lack of relative variation may make it hard to detect 

associations between digit ratios and dependent variables. Another limitation is that highly trained 

endurance runners tend to have fairly homogenous V O₂max values (Daniels & Daniels, 1992). This 

decreased diversity in V O₂max values makes it less likely to detect differences and to correlate them with 

potentially small differences in 2D:4D. The sampling of female collegiate distance runners from one mid-

sized southeastern university and one small southeastern college presents a limitation as the training stimuli 

between the runners from these two institutions are not equal. The male runners were all recruited from one 

mid-sized southeastern university. Furthermore, the years of exposure to college level training was diverse 

among the runners as their status varied from first year college students to fourth year college students. 

This difference in training status could cause difference in V O₂max which would not be explainable by 

2D:4D. Moreover, we will not measure peak lactate concentrations or any other lactate variable. In depth 

analyses of the relationship between 2D:4D and blood lactate concentrations during and after exercise are 

warranted as Hill et al. (2012) found the strongest correlation to be between R-L 2D:4D and LAmax. 
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Delimitations 

 
Delimitations in this study include homogenous groups of participants in regard to age (18-25 

years), the limitation of training modalities to running, and the limitation of runners to intercollegiate 

runners. This allows age and training status to be fairly controlled because age and years of training have 

been demonstrated to influence V O₂max   vans,  avy, Stevenson,   Seals, 1995;  ranch, Madsen, 

 jurhuus,   Pedersen, 1998; Jones, 1998; Ogawa et al., 1992).  espite the large differences in 

cardiovascular fitness between groups, the V O₂max of all participants will be measured with the  ruce 

treadmill protocol to allow comparison of V O₂max, REmax, REabs, RErel, and ToT between groups. Digit 

length will be measured directly with a digital offset steel vernier caliper to reduce the distortion of soft 

tissue in the fingers which is often associated with measures obtained from photocopies of the ventral 

surface of the hand due to the pressure of the hand exerted against the glass of the photocopy machine. In 

order to control possible extraneous variables in the form of biochemical substances and physical fatigue, 

participants will be asked not to change their training routines, not to exercise the day before or the day of 

testing, not take any new medications or discontinue the use of routine medication unless the doctor told 

them to do so, and not to consume any alcohol, nicotine, or caffeine during the 24 hours prior to testing. 

Those who use performance enhancing drugs will also be excluded.  
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CHAPTER 2 
 

LITERATURE REVIEW 

 

2D:4D – A Sexually Dimorphic Trait 

Dr. John T. Manning is known as the pioneer of research employing digit ratios as a putative 

measure of prenatal sex steriods. The likelihood of a predictive relationship between digit ratio and prenatal 

sex steroids seemed promising due to the chronological overlap in digit and urino-genital system 

development and the control of the development of both types of tissue by the same group of Hox genes 

(Kondo et al., 1997; McIntyre, 2006; Peichel, Prabhakaran, & Voght, 1997). In 1998, Manning, Scutt, 

Wilson, and Lewis-Jones were the first to explore the relationship between the second to fourth digit length 

ratio (2D:4D) and prenatal testosterone as well as estrogen among other measures. For the first part of this 

1998 study, the length of the second  (2D) and fourth digit (4D) from the basal crease proximal to the palm 

to the tip of the finger on both hands was measured in 340 male and 340 female participants whose 

numbers were equally distributed between the ages of two years to 18 years. In addition, 60 male and 60 

female participants between the ages of 19 and 25 were included. These researchers reported a 2D:4D of 

0.98 ± 0.002 (Mean ± SD) for men and a 2D:4D of 1.00 ± 0.002 for women in the right hand. Similar 

results were found for the left hand. An unpaired t-test revealed that the difference in 2D:4D between men 

and women is highly significant. These results have been supported by numerous studies since (Hönekopp 

& Watson, 2010). Hence, this ratio is well established as a sexually dimorphic trait with men tending to 

have a shorter index finger relative to the ring finger of the same hand compared to women. This data 

indicates that digit ratios, specifically 2D:4D, are stable after two years of age. However, a long term study 

was needed to provide evidence for the stability of digit ratio after birth. Data from the Fels Longitudinal 

Study supports the relative stability of digit ratios from age one through 18 in 52 female and 59 male 

participants (McIntyre, Ellison, Lieberman, Demerath, & Towne, 2005). Sex differences in digit ratio in 

children correlate to sex differences after puberty (r² = 0.20) indicating that digit ratios remain stable 

throughout puberty (McIntyre et al., 2005). Further evidence for the postnatal stability of digit ratios is 

provided by Trivers, Manning, and Jacobson (2006). The digit ratios of 54 Afro-Caribbean girls and 54 

Afro-Caribbean boys aged 9.68 ± 1.39 years were compared to their digit ratios four years later. Their 

2D:4D was sexually dimorphic and average 2D:4D decreased a little over the four years. Right 2D:4D (r = 

0.78) and left 2D:4D (r = 0.79) remained stable from the first to the second measurement (Trivers et al., 

2006). Therefore, digit ratio seems to be determined in utero and/or within the first year after birth and 

remains stable throughout puberty. In fact, digit ratios have been shown to be sexually dimorphic in utero 



 

 

 

11 

 

 

(Malas, Dogan, Evcil, & Desdicioglu, 2006). Malas et al. (2006) demonstrated the stability of 2D:4D from 

week 9 through week 40 of gestation in 161 human fetuses (78 female) and they found significantly greater 

2D:4D in the female fetuses than the male fetuses. 

The digit lengths of 69 men and 62 women were analyzed for the second part of Manning‟s and 

his colleagues‟  1998) study.  lood samples of 58 men and 40 women were used to assay testosterone 

concentration in men and luteinizing hormone (LH), follicle stimulating hormone (FSH), estrogen, and 

prolactin in both genders. The results indicate that testosterone concentration in men significantly and 

negatively correlates with 2D:4D. Thus, low 2D:4D seems to predict high serum testosterone 

concentrations in adult men. LH, estrogen, and prolactin significantly and positively correlated with 2D:4D 

across both genders.  ased on Jamison and colleagues‟  1993) theory that fetal testosterone concentrations 

positively correlate with adult concentrations, Manning et al. (1998) argues that men with low 2D:4D must 

have had high fetal gonadal activity, meaning high in utero testosterone production relates to low 2D:4D. 

However, a more in depth discussion of the relationship between 2D:4D and adult testosterone levels 

follows later. 

In 2010, Hönekopp and Watson published a meta-analysis summarizing the differences in male 

and female 2D:4D of 116 reports. 107 of those studies compared right 2D:4D in a total of 12,507 females 

and 11,017 males while 99 studies compared left 2D:4D in a total of 11,610 females and 10,125 males. The 

authors found that the effect size for the sex differences in the right hand is d = 0.35 and d = 0.28 for the 

left hand when direct digit measurement methods (steel Vernier caliper measurements) were used, whereas 

men have lower 2D:4D values than women. Indirect measurement methods (photocopies, photographs, or 

scans of the ventral hand surface) yielded an effect size that is 0.13 higher in both hands. These are 

relatively weak effect sizes. The standard deviation for the sex difference in the right hand was 0.13 larger 

than in the left hand and statistically significant. It seems that greater gender differences can be found in 

right 2D:4D than in left 2D:4D as proposed by Manning and colleagues in 1998. This bilateral effect of 

fetal testosterone is supported by Geschwind and Galaburda (1985) who suggested that the growth of the 

left hemisphere of the brain may be slowed by high testosterone concentrations and that the growth of the 

right hemisphere may be accelerated by testosterone. However, despite the low effect sizes of gender 

differences in digit ratio, Hönekopp and Watson (2010) suggest that the comparison of 2D:4D correlation 

values across different variables is useful as stronger correlations do suggest a stronger influence of 

prenatal testosterone on the variable. However, this does not exclude the influence of a non-testosterone 

related variable on digit ratio. For example, estrogen plays a role in the 2D:4D (Manning et al., 1998) and it 

could also affect psychological as well as physiological measures. 

The early research by Manning and his colleagues (1998) begged the question whether prenatal 

testosterone does indeed influence digit ratio development or if other moderating mechanisms are involved. 

Linking low 2D:4D to high adult testosterone concentrations, while presuming a positive relationship 
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between adult and fetal testosterone concentrations, did not suffice as evidence for the role of prenatal 

androgen concentrations in digit development. However, digit ratio remains undisputedly a sexually 

dimorphic trait. 

 

Links between Prenatal Sex Steroid Concentrations and Digit Ratios 

Experimental studies done on rats show that an artificial increase in prenatal testosterone reduces 

2D:4D (Talarovicová, Krsková & Blazeková, 2009). Experiments done on mice also provide powerful 

evidence for the influence of sex steroid activation in utero on digit development (Zheng & Cohn, 2011). 

Zheng and Cohn (2011) found that the inactivation of androgen receptor genes leads to shortened 4D length 

while the inactivation of estrogen receptor genes results in lengthened 4D. The artificial elevation of in 

utero testosterone levels also led to longer 4D, while the artificial elevation of estrogen caused shortened 

4D. Thus, both the inhibition of estrogen receptor genes and the elevation of in utero testosterone levels 

resulted in lower 2D:4D, independently. Both the inhibition of androgen receptor genes and the elevation of 

in utero estrogen levels resulted in higher 2D:4D. Thus, Zheng and Cohn (2011) have shown that 2D:4D is 

regulated by both androgen and estrogen stimulation and that sex steroid receptor genes are more active in 

the fourth digit than the second digit. Keeping the results of H nekopp‟s and Watson‟s  2010) meta-

analysis in mind, the finding by Zheng and Cohn (2011) that the sexual dimorphism of 2D:4D in mice was 

stronger in the right than the left paw increases the applicability of experimental data from rodents to 

humans. 

As mentioned in the introduction, experimental manipulation of in utero sex steroid stimulation to 

examine their effects on digit development and digit ratios is unethical in humans. However, as researchers 

have employed more powerful methods to study the effects of prenatal testosterone on 2D:4D and as more 

and more evidence on the effects of prenatal sex steroids on digit development emerges, confidence in the 

validity of 2D:4D as a putative measure of prenatal sex steroid action grows. Five methods have typically 

been used to produce indirect yet overall convincing evidence of the influence of prenatal sex steroids on 

2D:4D. These methods include amniocentesis (analysis of the amniotic fluid), the comparison of 2D:4D 

between females with congenital adrenal hyperplasia (CAH) and healthy controls, the comparison of 

2D:4D between dizygotic twins of the same and opposite sex, the comparison of 2D:4D between women 

with polycystic ovary syndrome and healthy controls, and the comparison of 2D:4D between men with 

Klinefelter‟s syndrome  KS) and healthy controls. 

Evidence for the influence of in utero testosterone and estrogen on digit ratios via amniocentesis is 

provided by Lutchmaya, Baron-Cohen, Raggatt, Knickmeyer, and Manning (2004). A sample of amniotic 

fluid of 18 male and 15 female fetuses was extracted during the second trimester of pregnancy; a time of 

peak fetal testosterone during gestation (McIntyre, 2006). The fluid was analyzed for its testosterone and 
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estradiol, a major estrogen, content. The digit lengths were recoded from the basal crease to the tip of the 

finger when the children were two years old. Significantly higher testosterone concentrations were found 

for the male children, while no differences in estrogen between the genders was found. Males presented 

non-significantly smaller 2D:4D than females. Associations between fetal testosterone or fetal estrogen and 

2D:4D were not significant but were in the predicted direction. Higher testosterone concentrations 

coincided with smaller 2D:4D and higher estradiol concentrations coincided with larger 2D:4D. However, 

the relationship between the ratio of fetal testosterone to fetal estrogen and 2D:4D was significant and 

negative for both genders combined and separated. Interestingly, 2D:4D of the right hand showed stronger 

associations with fetal testosterone and estrogen than left 2D:4D. It is evident from these results that 

estrogen and androgen both are likely to play a role in the determination of digit ratio and that the right 

hand is more sensitive to testosterone stimulation. 

H nekopp‟s and Watson‟s  2010) meta-analysis of sex differences in 2D:4D included the analysis 

of three reports, including the one discussed above, on the relationship between sex steroids in the amniotic 

fluid and digit ratio. It revealed that the effect size of sex differences in amniotic testosterone is much larger 

(d = 1.4) than the effect size of sex differences in 2D:4D (d = 0.35). Moreover, differences in testosterone 

concentrations between weeks 11 and 18 of gestation have been found to be at least three standard 

deviations greater between genders than within genders. However, the between gender variation in 2D:4D 

is only about 0.48 standard deviations as reported by Forstmeier, Mueller, and Kempenaers (2010). A 

plausible explanation for these findings is that factors other than prenatal testosterone play a significant role 

in digit development. 

Buck, Williams, Hughes, and Acerini (2003) examined 2D:4D of the left hand of 69 female 

controls, 77 male controls, and 66 females with CAH. Female fetuses with CAH have hyperactive adrenal 

glands which secret testosterone above normal levels and they often display masculinized external 

genitalia. The authors therefore hypothesized that females with CAH have lower 2D:4D than their control 

females. It was found that left 2D:4D was significantly lower in males than in the healthy females and 

females with CAH. CAH females did not have significantly lower 2D:4D than control females. These 

findings could be due to the X-ray method used to measure digit lengths. Usually digit lengths are either 

measured directly with steel Vernier calipers or they are determined from photo copies of the ventral 

surface of the hands. For example, Manning, Trivers, Thornhill, and Singh (2000) found sexual dimorphic 

2D:4D in Jamacian children when determining digit length via photocopies but not via X-rays. Buck et al. 

(2003) also argue that estrogen influences bone development because osteoclast and osteoblasts have been 

shown to possess estrogen receptors. Furthermore, estrogens regulate the expression of Hox genes which 

are responsible for bone development (Taylor, Igarashi, Olive, and Arici, 1999). The development of 

2D:4D of the left hand in females with CAH may thus be controlled by the estrogen concentration which 
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seems unaltered by the condition. The results of this study also indicate that prenatal testosterone has only 

minimal influence on left 2D:4D. 

Brown, Hines, Fane, and Breedlove (2002) examined 2D:4D of both hands in 13 females and 16 

males with CAH as well as 44 control females and 28 control males. Photocopies of the ventral surfaces of 

the hands were used for this study in order to determine 2D:4D. CAH females showed significantly lower 

2D:4D compared to the control females only in the right hand while CAH males showed significantly 

lower 2D:4D compared to the control males only in the left hand. As mentioned, this finding supports the 

theory that prenatal androgen exerts stronger effects on the right hand than the left hand in women. The 

lack of significant difference in right 2D:4D among the male samples suggests that androgen levels within 

the normal range saturate androgen receptors (Zitzmann & Nieschlag, 2003). Thus, testosterone levels 

above normal would not lead to increased masculinization with androgen sensitivity being equal. It may 

also be possible that the feedback loop of the fetuses with CAH causes decreased androgen secretion by the 

gonads in response to high androgen levels caused by the adrenal cortex. Brown et al. (2002) also point out 

the possibility that increased concentrations of adrenocorticotropic hormone or decreased concentrations of 

corticosteroids caused decreased 2D:4D in people with CAH. Overall, participants with CAH displayed 

lower 2D:4D in both hands across both genders. This finding is supported by Ökten, Kalyoncu, and Yris 

(2002) who found that girls with CAH (n = 17) have lower right and left 2D:4D than control girls (n = 34) 

but not control boys (n = 34). Additionally, boys with CAH (n = 9) had significantly lower right 2D:4D 

than control girls (n = 18) and control boys (n = 18) and they had significant lower left 2D:4D than the 

control girls but not the control boys. 

A meta-analysis of five studies (including the two previously discussed) examining 2D:4D 

differences between participants with CAH and healthy controls revealed that individuals with CAH 

display 2D:4D that is 0.8 standard deviations lower than the 2D:4D of their gender-matched controls 

(Hönekopp & Watson, 2010). This difference was significant in three out of four studies. As mentioned, 

Hönekopp and Watson (2010) also reported that the overall effect size of the differences in 2D:4D in 

healthy populations, as determined through meta-analysis, is d = 0.35. It is suggested that the difference in 

amniotic testosterone concentration between subjects with CAH and healthy controls is larger than the 

difference in amniotic testosterone levels between men and women. Indeed, amniotic testosterone 

concentrations for men are roughly twice as high as those for women (Auyeung et al., 2009; Knickmeyer et 

al., 2005; Lutchmaya et al., 2004), while the amniotic concentrations of testosterone in CAH females was 

five times as high compared to control females (Pang et al., 1980). 

Anders, Vernon, and Wilbur (2005) conducted a study with dizygotic twins to find evidence for 

the effect of prenatal testosterone on digit ratios. These investigators based their hypothesis that females 

with an opposite-sex (OS) twin will have lower 2D:4D than females with a same-sex  SS) twin on Miller‟s 

(1994) theory that hormones transfer between OS twins during gestation. This theory finds support in a 
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study done on rats (Clemens, Gladue, & Coniglio, 1978). Anders et al. (2005) used (humans) 16 SS 

females, nine OS females, 22 SS males, and nine OS males between the ages of four and 15 years. All 

subjects combined, males had lower 2D:4D than females only in the left hand. Considering previously 

discussed findings and the small sample size of this study, it remains that prenatal testosterone exerts its 

effect mostly on the right hand. Assuming that the hormone transfer between OS twins led to a 

masculinization of the right hand digits in the OS females, this could potentially leave 40 participants (nine 

OS females + nine OS males + 22 SS males) of which nine are female with masculinized right 2D:4D 

versus only 16 females with feminine 2D:4D. Thus, the difference in right 2D:4D between the genders is 

non-significant. The significant gender difference in left 2D:4D could be due to the greater number of male 

controls (22) versus female controls (16) or a weaker effect of estrogen (if transferred to the male twin at 

all) on left 2D:4D in males than testosterone on right 2D:4D in females. The latter speculation is supported 

by the finding of no significant difference in left 2D:4D between OS and SS males. Interestingly, left 

2D:4D was significantly lower in OS females compared to SS females but not right 2D:4D. This finding is 

consistent with the overall sex difference in left 2D:4D but it stands in opposition to the theory that prenatal 

testosterone exerts stronger effects on the right hand than the left hand. Moreover, OS females displayed 

2D:4D that was similar to that of OS males which stands in support of the hormonal transfer theory and the 

organizational effect of in utero sex steroids on digit ratio. This evidence is supported by the finding that 

OS females showed lower left 2D:4D than the female average of other studies. The SS males differed from 

the SS females only in left 2 :4  which also weakens the laterality theory of prenatal testosterone‟s 

influence on digit ratio. Possible methodological explanations for these unusual findings include the 

relatively small sample size and the fact that some photocopies of the participants‟ hands were obtained by 

one of the investigators with a portable photocopier while other photocopies were done and mailed in by 

the participants themselves. 

Based on their findings, Anders et al. (2005) suggest that fetal androgen concentrations are high in 

males at the same time when female digit development is taking place. This strengthens the argument for 

the influence of in utero androgen on digit ratio. Considering the latter argument and the masculinization of 

genitalia in females with CAH, it seems likely that 2D:4D can be used to predict other measures that 

developed during periods of high fetal androgen concentrations. For instance, brain structure, rough play, 

and other male-typical behaviors are influenced by prenatal androgen concentrations in animals (Breedlove, 

1994; Goy & Phoenix, 1972). However, McIntyre (2006) also suggests that postnatal testosterone levels 

have a strong organizational effect. During infancy, the testes undergo a period of rapid growth. In 

summary, there is a high probability of development of the testes and digits occurring at the same time of 

gestational peaks of testosterone levels. Additionally, the tested undergo a growth spurt during infancy. The 

lack of evidence about the stability of digit ratios before two years of age affords the possibility that finger 

ratio continues to change during infancy chronologically corresponding to the growth of the testes. This 
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hypothesis is supported by evidence for the influence of the same pair of genes, Hoxa and Hoxd, on genital 

as well as digit development (Peichel, Prabhakaran, & Voght, 1997). 

To further investigate the link of prenatal testosterone to 2D:4D, investigators have examined 

women with polycystic ovary syndrome. One such study reported that women with polycystic ovary 

syndrome tend to have higher prenatal and adult testosterone levels and lower 2D:4D in comparison to 

healthy controls (Cattrall, Vollenhoven, & Weston, 2005). In addition to supporting the relationship 

between 2D:4D and prenatal testosterone concentrations, this is also evidence in support of a positive 

relationship between in utero and adult testosterone levels. 

Men with KS have an additional X-sex-chromosome (XXY). Fetuses and infants with KS have 

testosterone levels typical of their female counterparts (Künzig, Meyer, Schmitz-Roeckerath, & Broer, 

1977). Adolescents with KS also have below average testosterone concentrations (Forti, Corona, Vignozzi, 

Krausz, & Maggi, 2010). Manning, Kilduff, and Trivers (2013) found that their sample of 51 individuals 

with KS had significantly greater right 2D:4D than their fathers (d = 1.43) and male controls (d = 0.74). 

They also had significantly greater left 2D:4D than their fathers (d = 1.03), their mothers (d = 0.72), and 

male controls (d = 0.85). There were no significant differences in R-L 2D:4D across the groups. 

McIntyre (2006) also points out that the role of estrogen in bone development through estrogen 

receptors in the metaphyseal tissue (growth plates) is better understood than the role of testosterone. It is 

understood that the fusion of growth plates is accelerated by the stimulation of estrogen receptors (Weise et 

al., 2001) providing evidence for the growth-inhibiting effects of estrogen. Thus, extended growth after 

sexual maturation and above average heights have been reported in men with estrogen receptor deficiency 

or aromatase deficiency (Rochira, Balesrieri, Madeo, Spaggiari, & Carani, 2002). It seems that either bones 

of different fingers have different ratios of androgen and estrogen receptor genes or that bones have similar 

ratios of sex steroid receptor genes but different temporal growth patterns (McIntyre, 2006). Zheng and 

Cohn (2011) provide evidence through research on mice that the fourth digit possesses higher numbers of 

both androgen and estrogen receptor genes. 

While the production of and sensitivity to hormones is governed by genes, other genetic factors 

that influence digit development and that could possibly undermine the role of sex steroids as the cause for 

the sexual dimorphism in 2D:4D have been pointed out. Winchester (1976) proposed that a skeletal 

structure gene which is recessive in men and dominant in women might be responsible for the relatively 

longer index finger in women. The Y-chromosome may also play a part in the sexual dimorphism of 2D:4D 

because of its important influence on other sexually dimorphic traits (Arnold, 1996). However, prenatal 

testosterone concentrations as opposed to postnatal testosterone levels seem to be a reliable predictor of 

2D:4D. 
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Association of Digit Ratios with Postnatal Testosterone Concentrations 

 
 ased on Jamison‟s et al.  1993) theory that prenatal testosterone concentrations relate to adult 

serum testosterone concentrations, a discussion of the relationship of 2D:4D to postnatal testosterone levels 

will be included here. H nekopp‟s,  artholdt‟s, Meier‟s, and Liebert‟s  2007) meta-analysis including 17 

samples revealed that there is no association between adult (postnatal) serum testosterone levels and 

2D:4D. The investigations included in the meta-analysis analyzed the relationship between digit ratios and 

either bioavailable testosterone or total testosterone. Among all possible combinations of the forms of 

testosterone, digit ratios, and gender, correlations ranged from r = 0.09 to r = -0.20. Only, the correlation 

between total testosterone and R-L 2D:4D in men reached statistical significance. However, one of the 

three samples included in the analysis of the relationship between total testosterone and R-L 2D:4D in men 

was from a clinical population. The effect size of this relationship did not reach statistical significance upon 

removal of this sample from the meta-analysis (Hönekopp et al., 2007). Folland, Cauley, Phypers, Hansen, 

and Mastana (2012) found no association between right or left 2D:4D and free or total testosterone in 77 

men (all r < 0.12, p > 0.34). Additionally, there was no relationship between right 2D:4D (r = -0.01), left 

2D:4D (r = -0.14), or R-L 2D:4D (r = -0.09) and free salivary testosterone concentrations at rest in 54 

professional rugby players (Kilduff et al., 2012). Thus, 2D:4D does not seem to be related to adult serum 

testosterone concentrations at rest. 

However, there is evidence that 2D:4D relates to rises in serum testosterone associated with 

exercise. Kilduff et al. (2012) examined the relationship of digit ratios with levels of free salivary 

testosterone in 25 professional male rugby players immediately preceding, five minutes after, and 20 

minutes after completion of a repeated sprint agility test. R-L 2D:4D related significantly to testosterone 

concentrations at all three times (prior: r = -0.50; 5 min post: r = -0.54; 20 min post: r = -0.40) and to the 

average testosterone concentrations across all three time (r = -0.49). The relationship of R-L 2D:4D was 

mainly mediated by positive and significant correlations between left 2 :4  and free testosterone  0.48 ≤ 

0.41) and a flat relationship between right 2 :4  and free testosterone  0.15 ≤ 0.05) across all three 

measurements (Kilduff et al., 2012). 

 

Androgen Sensitivity and Digit Ratios 

The fetal development of digits is not only dependent on in utero androgen concentrations but also 

on the androgen sensitivity of receptor genes. To a degree, these two factors act independently on the 

development of digit ratios (Manning, Bundred, Newton, & Flanagan, 2003). It has been proposed that 

digit ratios are regulated by posterior Hox genes and their transcription in the metaphyseal tissue of the 

digits. The transcriptional activity of these Hox genes is in turn regulated by androgen and estrogen 
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receptors whose level of activity depends on the plasma concentration of these hormones (Forstmeier, 

Mueller, & Kempenaers, 2010). Evidence of the link between high 2D:4D and androgen insensitivity 

represents strong support for the association between low 2D:4D and high prenatal androgen stimulation, as 

 

digit ratios appear stable early after birth. Thus, digit ratios could serve as indicators of adult traits provided 

that those traits are influenced by prenatal sex steroid concentrations (Figure B-1*). 

A study of people with complete androgen insensitivity syndrome (CAIS) provides such evidence 

(Berenbaum, Bryk, Nowak, Quigley, & Moffat, 2009). People with CAIS do produce testosterone but due 

to absent or dysfunctional androgen receptors, there is no effective exposure to androgens prenatally and 

postnatally. Such individuals have female external genitalia, undergo aromatization of sex steroids at 

puberty (Grumbach, Hughes, & Conte, 2003), and have female gender identity and psychological 

characteristics (Hines, Ahmed, & Hughes, 2003; Mazur, 2005). Consequently, they are considered female. 

Berenbaum et al. (2009) used 16 women with CAIS, 90 control women, and 66 control men and found that 

CAIS women had significantly greater 2D:4D in both hands than men but not control women. The 

differences in digit ratio were more pronounced in the right hand than the left hand (Table A-1**). 

 These findings support the validity of 2D:4D as a proxy for androgen exposure and sensitivity and 

they also support the theory that androgens play a greater role in the development of the digits of the right 

hand than the left hand. However, the importance of the role of androgens in the development of the digits 

is diminished by the moderate difference (d = 0.48) in 2D:4D of both hands between CAIS women and 

control men and the lack of significant difference in 2D:4D between CAIS women and control women, as 

healthy women with functional androgen receptor genes are exposed to testosterone in utero (Berenbaum et 

al., 2009).  

Forstmeier and colleagues (2010) studied polymorphism in an estrogen receptor gene in zebra 

finches, Taeniopygia guttata, on the grounds that animals and humans share “molecular mechanisms” that 

are more than 300 million years old because relationship between digit ratios and sex steroids similar to 

those in humans have also been found in mammals, birds, reptiles, and amphibians. The polymorphism of 

an estrogen receptor gene explained 11.3 % of the variation in digit ratio of 1156 birds. Polymorphism of 

an androgen receptor gene did not explain any variation in digit ratio. These results emphasize the influence 

of estrogen and receptor response on digit ratio. While the importance of the overall role of sex steroids in 

digit development is strengthened by this report, inferences about the proportionate roles of either estrogen 

or androgen in mammals, specifically humans, is not possible. 

The number of CAG triplet repeats in the androgen receptor gene of humans has been shown to 

negatively correlate with testosterone sensitivity. The ability of testosterone to bind to the receptor gene is 

not influenced by the receptor gene‟s number of its CAG triplet repeats, but the ability of the androgen 

receptor gene to bind to DNA is inversely related to the number of CAG triplet repeats. Eleven to 30 triplet 
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repeats is considered a normal range, the average is around 20 to 22 repeats (Chamberlain, Driver, & 

Miesfeld, 1994; Kazemi-Esfarjani, Trifiro, & Pinski, 1995), and a number of more than 40 triplet repeats is 

 

* all figures appear in Appendix B; ** all tables appear in Appendix A 

associated with testosterone insensitivity (La Spada, Wilson, Lubahn, Harding, & Fishbeck, 1991). An 

association among more than 38 triplet repeats, spinal and bulbar muscular atrophy, defective 

spermatogenesis, and undervirilization has been reported (Dejager et al., 2002). Manning, Bundred, 

Newton, and Flanagan (2003) hypothesized that there is a positive correlation between right 2D:4D and the 

number of CAG triplet repeats as well as a positive correlation between R-L 2D:4D. The latter relationship 

is based on the stronger association between 2D:4D and prenatal testosterone in the right hand compared to 

the left hand. As the androgen receptor gene is found in the X-sex-chromosome and men have only one X-

sex-chromosome unlike women, Manning et al. (2003) limited their study to 50 male participants to 

eliminate uncertainty about which X-chromosome was activated. Digit length was measured with steel 

Vernier calipers to the nearest 0.05 mm and 5 ml of blood was drawn from each participant for the analysis 

of CAG triplet repeats in the DNA. A significant positive correlation was found between the number of 

CAG triplet repeats and right 2D:4D (r = 0.29; P = 0.02, r² = 0.09) as well as between the number CAG 

triplet repeats and R-L 2D:4D (r = 0.36, P = 0.005, r² = 0.13). No relationship was found between the 

number of CAG triplet repeats and left 2D:4D. These results indicate that R-L 2D:4D is a slightly better 

proxy of testosterone sensitivity than right 2D:4D.  

An investigation by Folland et al. (2012) including 77 male participants does not support right or 

left 2D:4D as a correlate of the number of CAG triplet repeats (all, r < 0.20, p > 0.10). However, the results 

of this investigation do not weaken the theory of R-L 2D:4D as a proxy of testosterone sensitivity as 

Folland et al. (2012) did not include R-L 2D:4D as a variable in their investigation. Manning, Bundred, et 

al. (2003) attribute the relatively low variances in right 2D:4D and R-L 2D:4D explained by the number of 

CAG triplet repeats to four separate factors influencing digit ratio: (1) prenatal testosterone concentration; 

(2) testosterone sensitivity; (3) prenatal estrogen concentration; (4) estrogen sensitivity.  

Moreover, KS is characterized by low testosterone sensitivity as determined by a high number of 

CAG triplet repeats. Specifically, higher numbers of CAG triplet repeats in men with KS have been 

associated with gynecomastia, small testes, and above average height (Zitzmann, Depenbusch, Gromoll, & 

Nieschlag, 2004; Bojesen, Hertz, Gravholt, 2011). As mentioned above, Manning et al. (2013) compared 

measures of digit ratios between 51 men with KS and their fathers, mothers, as well as healthy male 

controls. Men with KS had significantly higher right 2D:4D than their fathers and controls and significantly 

higher left 2D:4D than their fathers, mothers, and controls. No differences between groups were found in 

R-L 2D:4D. These results, based on a clinical sample, support right and left 2D:4D but not R-L 2D:4D as 

proxies of testosterone sensitivity. 
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It is evident that the variation of prenatal testosterone concentrations will only be reflected in 

2D:4D to the extent that the androgen receptor genes are able to translate the androgen levels into bone 

development. Conversely, the extent to which androgen sensitivity is reflected in 2D:4D depends on the 

levels of prenatal testosterone concentrations. For instance, very high in utero testosterone concentrations 

will most likely not result in low 2D:4D if the androgen receptor gene possesses a very high number of 

CAG triplet repeats. Conversely, a low number of triplet repeats in the androgen receptor gene will not be 

evident in 2D:4D if low testosterone levels do not provide sufficient stimulation to the receptors. In 

summary, low R-L 2D:4D seems to be the best biomarker of higher testosterone sensitivity as determined 

by the lower number of CAG triplet repeats contained in the androgen receptor gene. 

 

Athletic Performance and 2D:4D 

Based on evidence presented above linking digit ratio and prenatal testosterone stimulation, 

researchers have used 2D:4D as proxy of prenatal androgen exposure to explore the influence of prenatal 

fluctuations in testosterone on other sexually dimorphic traits. Of course, studies directly linking prenatal 

testosterone variations to sexually dimorphic traits would be preferable, but the longitudinal designs 

required to do so make such investigations very impractical. Digit ratio measures have emerged as the most 

widely accepted and used proxy of prenatal androgen exposure. Digit ratio has been used extensively in 

correlational research on the link between athletic performance, a sexually dimorphic trait, and genetic 

endowment in the form of prenatal androgen stimulation. Predictive relationships between 2D:4D and 

athletic performance would indicate a permanent influence of prenatal sex steroids on components of 

physical fitness. The spectrum of practical ability of 2D:4D would also be broadened if it reliably predicts 

athletic performance and physical fitness. Consistent negative relationships between 2D:4D and athletic 

performances would allow health professionals to gain insight into genetic predispositions for 

cardiovascular risk factors and the benefit related to physiological health components which can be 

expected from training interventions, through the quick and inexpensive field method of determining 

2 :4 . It would also provide coaches with a method of assessing the probability of their athlete‟s athletic 

success and trainability. 

Evidence for the predictive ability of 2D:4D in regards to athletic performance and related 

cardiovascular fitness variables is provided by Manning, Morris, and Caswell (2007). Manning and 

associates (2007) reasoned that 2D:4D should be related to distance running performance because of the 

sexually dimorphic nature of both distance running performance and digit ratio. Manning et al. (2007) 

conducted three separate studies to explore the relationship among endurance running performance, 

training frequency, and 2D:4D. The first study involved 16 male and 11 female endurance runners with a 

mean age of 24.04 ± 8.82 years whose endurance running performance was recorded as finishing position 



 

 

 

21 

 

 

among the training group at the end of bursts during fartlek type runs. The endurance running performance 

of 43 male runners with a mean age of 27.63 ± 10.25 years was determined by their average finishing 

position in a series of five cross country races during the second study. The third study was comprised of 

40 female runners with a mean age of 33.58 ± 9.25 years whose running performance was determined from 

their finishing time in a one mile race. After the effects of age had been removed, study one yielded 

significant positive correlations between right 2D:4D and finishing position and between training frequency 

and finishing position. Moreover, a negative relationship between 2D:4D and training frequency almost 

reached significance. Simply put, those with lower 2D:4D and thus greater testosterone exposure in utero 

and most likely greater testosterone sensitivity tended to train more frequently and run faster than those 

with higher 2D:4D. Study two produced the same results as study one except that the correlations between 

2D:4D and mean finishing position were significant for both hands and the relationship between 2D:4D and 

training frequency reached significance for both hands as well. Study three showed a significant positive 

correlation between right 2D:4D and finishing time in the one mile race. The relationship between training 

frequency and race time was also significant, however, the association of 2D:4D to training frequency was 

less clear in this purely female sample of runners. Combined, 2D:4D explained approximately 25% of the 

variance in endurance running performance. 

These results support the link between prenatal testosterone, endurance running performance, 

physiological determinants of endurance running performance and digit ratio. It should be noted that 2D:4D 

correlated with running performance independent of training frequency, age, or gender. It seems that 

prenatal testosterone has a distinct influence on the structure and function of the cardiovascular system, 

which is the primary system determining endurance performance (Bassett & Howley, 2000). This link 

substantiates testosterone‟s importance for cardiovascular health. 

Manning and Hill (2009) also studied the relationship between 2D:4D and sprinting speed. The 2D 

and 4D digit lengths and 50m sprinting times of 241 Middle-Eastern boys between the ages of 10 and 17 

years were measured. Right 2D:4D showed a significant positive correlation with sprinting times (r = 0.15, 

P = 0.02). The correlation between left 2D:4D and sprinting time failed to reach statistical significance (r = 

0.12, P = 0.06). However, age, BMI, and maturation index also significantly correlated with sprinting time 

and therefore, the authors removed the influence of those variables to re-examine the 2D:4D and sprinting 

speed relationship. The correlation between right 2D:4D and sprinting time remained largely unaltered (r = 

0.14, P = 0.02) and the correlation between left 2D:4D and sprinting times reached statistical significance 

(r = 0.15, P = 0.01). The very low correlation coefficients and relatively large sample size of this 

investigation do not provide conclusive evidence for the influence of prenatal testosterone stimulation on 

sprinting ability. Folland et al. (2012) investigated the association of digit ratio to isometric and isokinetic 

knee extensor strength in 77 men aged 20.1 ± 2.2 years. There was no association between any measure of 

strength and right or left 2D:4D (all, r < 0.12, p > 0.32). 
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It appears that the link between 2D:4D and sports performance is not moderated by maturational 

or anthropometric measures, but by internal physiological variables whose development seems to be 

determined early on in life. The association between 2D:4D and sprinting speed but the lack of association 

between 2D:4D and knee extensor strength do not seem to support the role of prenatal testosterone as a 

determinant of strength, speed, or power. The stronger correlation between 2D:4D and endurance running 

performance (r = 0.25) (Manning et al., 2007) as well as the slightly stronger anabolic influence of 

androgenic-anabolic steroids (AAS) on slow twitch muscle fibers (Type I) than on fast twitch fibers (Type 

II) (Hartgens & Kuipers, 2004), suggest that Type I muscle fibers and the cardiovascular system combined 

are more sensitive to changes in perinatal testosterone levels than Type II muscle fibers. 

Running, however, is not the only type of sport or physical activity that showed an association 

with 2D:4D. Researchers found that right 2D:4D predicts better performances in fencing (Voracek, Reimer, 

Ertl, & Dressler, 2006), skiing (Manning, 2002b), soccer (Manning & Taylor, 2001), field-based fitness 

tests (Hönekopp et al., 2006), sumo wrestling (Tamiya, Lee, & Ohtake, 2011), basketball (Tester & 

Campell, 2007), 50m dash (Manning & Hill, 2009), a hand-grip strength test (Fink, Thanzami, Seydel, & 

Manning, 2006), and 2,000m ergometer rowing (Longman, Stock, & Wells, 2011). Sometimes R-L 2D:4D 

was significantly and negatively correlated with performance (Bennett, Manning, Cook, & Kilduff, 2010; 

Manning, 2002a). These results are not surprising as testosterone seems to moderate a variety of 

physiological variables associated with endurance, strength, and digit ratio, as discussed above. 

In fact, Hönekopp and Schuster (2010) found that 2D:4D is more reliable and powerful predictor 

of athletic performance than other variables such as behavior, health, and morphology. A meta-analysis 

including 24 studies revealed a significant effect size of r = -0.28 for the relationship between right 2D:4D 

and athletic prowess in a variety of sports and measures of athleticism (for details see Hönekopp & 

Schuster, 2010). The effect size for the left hand, based on 22 studies, was also significant (r = -0.26). It 

seems that neither hand is a significantly better predictor of athletic performances than the other. Analyzing 

the results of five studies involving running for distances of 50m, 800m, and longer, Hönekopp and 

Schuster (2010) found that the strength of the correlation between running performance and right 2D:4D 

increased in linear fashion with increasing race distances (Figure B-2). Although the relationship is not as 

linear, similar results were found for the left hand. 

H nekopp‟s and Schuster‟s  2010) meta-analysis reveals that 2D:4D and distance running 

performances show by far the strongest correlations (r = -0.51), whereas 2D:4D and sports requiring mostly 

strength and speed show the weakest correlations (r = -0.32 to r = -0.14). Endurance running shares the 

strongest relationship with 2D:4D compared to other athletic disciplines. The strength of this relationship 

seems to increase with increasing race distances. The average variance in athletic performances explained 

by 2D:4D falls between 1% and 16% (Hönekopp & Schuster, 2012), whereas 2D:4D seems to account for 

approximately 25% of the variance in endurance running performance  Manning et al., 2007). 



 

 

 

23 

 

 

Consequently, it seems plausible that physiological factors determining endurance performance, such as 

V O₂max, lactate threshold, and running economy (Bassett & Howley, 2000), are influenced by in utero 

testosterone levels, testosterone sensitivity, and possibly adult testosterone levels. In Summary, Hönekopp 

& Schuster (2010) found considerable heterogeneity in the relationship between athletic prowess and 

2D:4D. However, age and gender did not contribute to this heterogeneity which diminishes the likelihood 

that adult serum testosterone levels moderate the effects of prenatal testosterone on fitness related 

components (Hönekopp & Schuster, 2010). A factor that seems to significantly add to the heterogeneity of 

the aforementioned relationship is the distances of foot races. However, significant variability was found 

for the predictive power of right 2D:4D and left 2D:4D. It seems that certain activities, settings, and 

populations cause right 2D:4D to be a better predictor of performance than left 2D:4D and vice-versa. 

However, the exact activities, circumstances, and population characteristics remain unclear (Hönekopp & 

Schuster, 2010).  

It is important to note that the relationship between 2D:4D and athletic performances does not 

seem to be moderated by personality variables (Tester & Campbell, 2007). Tester and Campbell (2007) 

tested the relationships between digit ratio and the personality constructs of social potency, achievement, 

control, and harm avoidance which have all been associated with sporting success. These relationships 

were also compared to the rankings of rugby, soccer, and basketball players. The rakings ranged from (1) 

no involvement in sports to (10) national representation. Height, weight, time spent training per week, years 

playing, social potency, and 2D:4D all significantly correlated with ranking. The association between 

2D:4D and ranking (r = -0.35) was of the same magnitude as the association between years playing and 

ranking (r = 0.35). Height, years playing the sport, and social potency also correlated significantly with 

digit ratio. None of personality constructs were associated with 2D:4D. The association between 2D:4D 

and ranking remained significant (r = -0.24) even after the effects of weight, years playing the sport, and 

hours per week training had been entered into the regression equation as random factors. 

Extensive research exploring the relationship between aggression and 2D:4D has also been 

completed (Hönekopp & Watson, 2011). A significant association between 2D:4D and physical aggression 

seemed plausible to many investigators because of the sexually dimorphic nature of physical aggression. 

However, H nekopp‟s and Watson‟s  2011) meta-analysis revealed that 2D:4D is not associated with 

physical aggression in women and the same relationship is very small in men (r ≈ 0.06). Lemieux, 

McKelvie, and Stout (2002) reported that there is no difference in aggression between athletes and non-

athletes. 

Consequently, it seems that physiological variables rather than personality variables establish the 

link between 2D:4D and success in sports (Manning et al., 2007). Interestingly, variables such as years of 

sports participation and training frequency seem to strengthen the link association of 2D:4D to sporting 

success (Tester & Campbell, 2007). Testosterone sensitivity seems responsible for reinforcing this 
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association as it facilitates physiological adaptations to training (see discussion of Wang et al., 2010, 

below) and because it is reflected in digit ratios (Manning et al., 2003). 

 

2D:4D as a Biomarker of Cardiovascular Fitness 

A logical extension of research on the association between digit ratio and athletic prowess was the 

investigation of the relationship between digit ratio and underlying physiological parameters to shed light 

on the permanent organizational effects of prenatal sex steroids on the human physiology. 

Hill, Simpson, Manning, and Kilduff (2012) were the first to investigate the ability of 2D:4D to 

predict cardiovascular fitness as it relates to athletic performance. These investigators expected to find a 

significant negative correlation between 2 :4  and V O₂max given the strong correlation between V O₂max 

and distance running performance (r = -0.95) (Paliczka, Nichols, & Boreham, 1987), the relationship 

between distance running performance and 2D:4D, and the increasingly larger effect size of correlations 

between running speed and 2D:4D with increasing race distances (Hönekopp & Schuster, 2010; Manning et 

al., 2007). Hill et al.  2012) explored the relationship between digit ratios and V O₂max, running velocity at 

V O₂max (v-V O₂max), and peak lactate concentration (LAmax) in 41 young athletic Middle-Eastern teenage 

boys (age: 13.9 ± 1.3 years) during an incremental treadmill test. All of these variables have been shown to 

be sexually dimorphic, whereas men reach consistently higher values than women (Bouchard et al., 1998; 

Daniels & Daniels, 1991; Esbjörnsson-Liljedahl, Sundberg, Norman, & Jansson, 1999). Therefore, as with 

V O₂max, a significant negative relationship between 2 :4  and these variables was expected. However, 

Hill and colleagues  2012) did not find a significant relationship between right or left hand 2 :4  and 

V O₂max, v-V O₂max, or LAmax. These findings are somewhat surprising as Manning and colleagues (2007) 

found that right hand 2D:4D correlated significantly with endurance running performance and that overall 

2D:4D explained 25% of the variance in endurance running performance. As lower right and left hand 

2D:4D is associated with higher prenatal testosterone concentrations, these findings do not support strong 

favorable organizational effects conducive to cardiovascular health and fitness of prenatal testosterone on 

the human physiology. The lack of a significant correlation between 2 :4  and V O₂max in Hill‟s and 

colleagues‟  2012) study could be explained by the variety of sports, including soccer, squash, table tennis, 

and athletics, which the participants played. These sports require different amounts of running and 

movement which elicit varying acute cardiovascular responses and therefore varying chronic adaptations of 

the cardiovascular and neuromuscular systems. For example, table tennis might not elicit heart rates as high 

as athletics (track & field) and it certainly does not involve a comparable amount of locomotion in the 

sagittal plane (running). Therefore, table tennis players with low 2D:4D might have a low V O₂max, as 

measured on the treadmill, compared to track & field runners with greater 2D:4D. Furthermore, keeping in 

mind that postnatal testosterone sensitivity may be reflected in 2D:4D, the difference in testosterone 
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secretion caused by these sports has never been studied in the same sample and is therefore unknown and a 

possible confounder. The age of Hill‟s et al.  2012) sample  13.9 ± 1.3 years) allows the assumption that 

most boys were in the stages of puberty whereas some boys might have matured to post-pubertal stages and 

others might have still been in a pre-pubertal phase (Mantzoros, Flier, & Rogol, 1997). The possibility of 

heterogeneity in terms of pubertal stages and puberty itself present possible confounders due to the 

increasing levels of testosterone and the accelerated growth and maturation during puberty (Mantzoros et 

al., 1997). Testosterone levels do generally not level off until age 14 (Crabbe, Christiansen, Rødbro, & 

Transbøl, 1979). 

However, Hill and colleagues (2012) did find significant negative correlations between R-L 

2D:4D and V O₂max (b = -0.33), v-V O₂max (b = -0.47), and LAmax (b = -0.50). As mentioned, low R-L 2D:4D 

has been associated with low numbers of CAG triplet repeats, which in turn are associated with high 

testosterone sensitivity  Manning et al., 2003). Hill‟s et al.  2012) findings could be explained by the 

significantly greater post-training increases in V O₂max and hematocrit in individuals with fewer CAG triplet 

repeats as reported by other investigators (see section titled Testosterone Sensitivity and Cardiovascular 

Fitness for discussion) (Wang et al., 2010; Zitzmann  & Nieschlag, 2007). Despite the variety of sports 

which the boys played, high sensitivity to testosterone might outweigh the effects of different types of 

training due to the pubertal elevations in serum testosterone. For instance, a table tennis player with high 

testosterone sensitivity might have a higher V O₂max than a soccer player with low testosterone sensitivity. 

This conclusion would support R-L 2D:4D as a marker of testosterone sensitivity. It is also possible that the 

boys with low R-L 2D:4D gravitated towards the sports that elicit large changes in and require high values 

of V O₂max for success.  However, a similar study controlling for training effects and temporary fluctuations 

in testosterone levels is warranted. If V O₂max is influenced by postnatal testosterone levels mediated via 

testosterone sensitivity, then long term fluctuations in serum testosterone levels need to be controlled if a 

more accurate relationship between 2 :4  and maximal oxygen uptake is to be determined. Moreover, 

gender differences in the strength of the 2 :4  to V O₂max relationship are unknown as this relationship has 

not been investigated in women. 

In summary, Hill‟s et al.  2012) report suggests that prenatal testosterone does not play a 

significant role in the development of V O₂max related physiological traits but that postnatal testosterone 

levels mediated by testosterone sensitivity might determine inter-individual differences in V O₂max. There 

seems to be a relationship between  -L 2 :4 , the number CAG triplet repeats, and V O₂max. However, we 

cannot exclude the possibility that factors determining V O₂max were developed prenatally. It is possible that 

differences in V O₂max did not correlate significantly with 2 :4  in Hill‟s et al.  2012) sample because of 

the heterogeneity of the sample in terms of training. Investigations with more homogenous samples in 

regard to confounders such as training status in terms of cardiovascular fitness could shed more light on the 

relationship of digit ratio to the number of CAG triplet repeats. 
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The stronger correlations between R-L 2D:4D and v-V O₂max (b = -0.47) and R-L 2D:4D and 

LAmax (b = -0.50) compared to  -L 2 :4  and V O₂max (b = -0.33) suggest that androgen sensitivity also 

has an influence on physiological factors other than those determining V O₂max. Other determinants of 

endurance running performance include the lactate threshold, running economy, as well as neuromuscular 

and biomechanical factors (Bassett & Howley, 2000; Kyröläinen, Belli, & Komi, 2001; Nummela et al., 

2006). The argument that at least some of these factors are partially controlled through testosterone 

stimulation is also supported by the significant negative correlation between 2D:4D and distance running 

performance (Manning et al., 2007), and the finding that peak running velocity during a V O₂max test is the 

best predictor of race performance (Noakes, Myburgh, & Schall, 1990). 

Additionally, a high ratio of Type IIa muscle fibers might be associated with high testosterone 

concentrations and explain the relatively strong relationship between 2D:4D and LAmax in Hill‟s et al. 

(2012) study. However, this assumption contradicts the hypertrophy and relative increase in number of 

Type I muscle fibers compared to Type II muscle fibers found as a result of AAS use (Hartgens & Kuipers, 

2004). 

In summary, the lack of association between V O₂max and 2 :4  in Hill and colleagues‟  2012) 

investigation is unexpected, as V O₂max has been found to be the best predictor of endurance running 

performance among heterogeneous groups in regard to their V O₂max (Daniels & Daniels, 1992). 

Fink, Neave, and Manning (2003) compared body mass index (BMI), waist-to-hip ratio (WHR), 

and waist-to chest ratio (WCR) to digit ratio. BMI is well established as an indicator of cardiovascular risk 

factors (ACSM, 2010) and very high WHR, independent of total body fat, is associated with diabetes, 

hypertension, heart attack, and stroke among other diseases (Singh, 1993). BMI, WHR, and WCR are all 

sexually dimorphic traits and largely developed during puberty and determined by estrogen and 

testosterone stimulation. In general, men have lower BMI while women have lower WHR and WCR. 

Higher pubertal testosterone levels are associated with more android (masculine) body types while higher 

pubertal estrogen and lower testosterone levels are associated with more gynoid (female) body types (Fink 

et al., 2003). Fink et al. (2003) expected to find positive relationships between 2D:4D and gynoid body 

characteristics and negative relationships between 2D:4D and android body characteristics. These 

hypotheses are supported by the findings that women with high WHR have low 2D:4D and tend to have 

children with low 2 :4   Manning, Trivers, Singh, and Thronhill, 1999). The purpose of  ink‟s et al. 

(2003) investigation was to explore to what degree sexually dimorphic traits determined via testosterone 

and estrogen during puberty (BMI, WHR, and WCR) are associated with sexually dimorphic traits 

determined largely in utero by testosterone and estrogen (2D:4D). 

Using 30 male and 50 female adult participants, Fink et al. (2003) found significantly larger values 

for BMI, WHR, and WCR in males than in females. Men also had significantly lower 2D:4D than women 

on both hands. A significant positive relationship (r = 0.475, p = 0.004) between left 2D:4D and BMI was 



 

 

 

27 

 

 

found for the men. A marginally significant negative relationship was found between right 2D:4D and 

WHR in men, but no further significant relationships between 2D:4D and any of the anthropometric 

measures were found for men. Women, however, presented three significant negative correlations for each 

hand between 2D:4D and anthropometric measures. Correlations for the right and left hand included waist 

circumference, hip circumference, and WCR. The significant positive relationship between 2D:4D and 

BMI in men presents evidence for the positive relationship between prenatal testosterone levels and 

cardiovascular health in adulthood. However, this argument is weakened by the marginally significant 

negative correlation between 2D:4D and WHR which indicates that abdominal adiposity may be more 

likely in individuals who were exposed to more testosterone in utero. The negative relationship between 

2D:4D and WCR in women is in the expected direction as estrogen should be positively associated with 

chest circumference in women (Fink et al., 2003). 

Further evidence for the positive impact of prenatal testosterone on adult cardiovascular health is 

provided by Fink, Manning, and Neave (2006). Fink and associates (2006) compared neck circumference 

(NC) to digit ratio in 117 women and 127 men. NC was previously found to positively correlate with BMI, 

weight, waist circumference, hip circumference, WHR, and systolic and diastolic blood pressure (Ben-

Noun & Laor, 2004; Ben-Noun, Sohar, & Laor, 2001). Thus, NC is deemed a viable field method to assess 

cardiovascular health through the indirect assessment of obesity and the risk of metabolic syndrome (Fink 

et al., 2006). Fink et al. (2006) found right 2D:4D to significantly negatively correlate with WHR in men, 

but NC did not significantly correlate with 2D:4D. Body weight and NC correlated significantly and 

positively in both genders (men: r = 0.709; women: r = 0.648). When controlling for weight, the NC to 

2D:4D correlation for both hands remained positive and reached statistical significance in men. After 

controlling for weight, NC also positively and significantly correlated with WHR in men. None of the 

correlations reached statistical significance in women. These results support the importance of prenatal and 

postnatal testosterone in the formation and maintenance of a healthier body composition and cardiovascular 

system (Fink et al., 2006). It also seems that the cardiovascular system is more sensitive to testosterone 

than estrogen as women, who possess lower testosterone levels than men, did not exhibit significant 

parallel variations in anthropometric measures with 2D:4D. The association between 2D:4D and NC in 

women is likely to be further diminished by the sexually dimorphic nature of body fat distribution 

particularly around the neck, whereas men have larger NC (Fink et al., 2006), which points towards an 

organizational role of testosterone in fat storage. In summary,  ink‟s et al.  2006) results support the 

positive impact of testosterone on cardiovascular health and the validity of 2D:4D as a proxy of 

cardiovascular risk factors. The overall effect of prenatal testosterone stimulation seems to be a 

masculinization of anthropometric measures and parameters of cardiovascular fitness. In terms of BMI and 

NC these effects are favorable for cardiovascular health but in terms of WH  the effects on cardiovascular 

health seem negative. The latter observation is consistent with the masculinizing effects of prenatal 



 

 

 

28 

 

 

testosterone as higher WH s are characteristic of the android body shape. In terms of V O₂max, we should 

expect higher prenatal testosterone levels  lower 2 :4 ) to relate to higher V O₂max values as men typically 

have higher V O₂max values than women. 

 

Influence of Exercise on Serum Testosterone Levels 

 
As 2D:4D relates to prenatal testosterone stimulation and markers of cardiovascular fitness, we are 

interested in the effects of postnatal testosterone stimulation, as a possible confounder, on the relationship 

of 2D:4D to measures of cardiovascular fitness. In order to shed light on this question we must first 

understand the stimuli which induce changes in adult serum testosterone levels. Next, we must find out 

how these changes affect the organization of a cardiovascular parameter. Then, we can attempt to link these 

changes in a measure of cardiovascular fitness brought forth by testosterone stimulation to 2D:4D. Lastly, 

we can compare this manipulated relationship between a measure of cardiovascular fitness and 2D:4D to 

the relationship between the same variables under the „unaltered‟ testosterone condition, whereas we would 

remove the testosterone stimulus to leave the cardiovascular system unchanged in regard to this postnatal 

testosterone stimulus. 

Exercise is a natural, safe, and likely one of the most common stimuli causing changes in serum 

testosterone concentrations. Improvements in cardiovascular fitness are linked to exercise and if 

testosterone is to play a role in the improvements of cardiovascular fitness components, then there must be 

a link connecting serum testosterone levels to exercise. This relationship is well established in the literature.  

Testosterone secretion by the gonads, namely the testes in men and the ovaries in women, is 

regulated by the hypothalamic-pituitary-gonadal axis. Simply put, the hypothalamus periodically releases 

gonadotropin-releasing hormone (GRH) which stimulates LH release by the anterior pituitary gland. LH 

prompts the gonads to produce and secrete testosterone. Increased serum testosterone levels in return have 

inhibitory effects on the hypothalamus and pituitary gland. The factors determining serum testosterone 

levels are thus circulating LH, the number of LH receptors in the testes or ovaries, the availability and 

production of testosterone in the gonads and the rate at which testosterone is cleared from the blood 

(Hackney, 1989). It seems that only five to 10% of all available LH receptors need to be occupied to 

achieve maximal testosterone secretion (Genuth, 1983). Vasoconstriction and vasodilation of the blood 

vessels around the gonads also affects the amount of testosterone that can dissolve into the blood. 

Therefore, catecholamines, such as adrenaline and norepinephrine, contribute to the regulation of serum 

testosterone levels (Eik-Nes, 1964). Most serum testosterone (97%) is combined testosterone which is 

bound to carrier proteins. The remaining 3% of testosterone, called free testosterone, is unbound. Both 

types of testosterone are referred to as total testosterone. As much as 5% of total testosterone can be 

contributed by the adrenal glands (Hackney, 1989).  
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Jensen et al. (1991) compared serum testosterone levels following strength training to the levels 

following endurance training. Strength training consisted of 90 minutes of hard to very hard (6-20 point 

Borg RPE scale) weight training and endurance training consisted of 90 minutes  of hard to very hard cross 

country running. Training sessions occurred at the same time of the day and the weight training consisted 

of nine exercises with three sets of eight repetitions each at 80  of the participant‟s 1-RM and no more 

than two minutes rest between exercises. The running session was performed within ± 5 bpm of the heart 

rate corresponding to 70% of predetermined V O₂max. The participants were all experienced in both exercise 

modalities with average V O₂max values of 66.1 ml*kgˉ ˡ *minˉ ˡ and average bench press 1-RM of 182 lbs. 

All participants performed both types of training sessions separated by seven days to limit interference 

between the tests. Three participants performed the strength training session first and the remaining four 

participants performed the endurance training session first. Blood for testosterone concentration analysis 

was drawn 30 minutes before the start of each training session, immediately following the training session, 

as well as two, four, six, and 16 hours post-training. The seven participants were between 23 and 29 years 

old. A standardized breakfast was administered between 90 to 60 minutes prior to training sessions and 

participants were not allowed to train, consume any nicotine, alcohol, or medication during the 48 hours 

prior to the training sessions. 

Strength training post-exercise testosterone concentration was elevated by 27% over the resting 

values. This increase was significantly larger than the 9.3% increase in serum testosterone during the same 

hours of day during non-exercise days. A mean increase of 37% in serum testosterone levels was observed 

following the endurance exercise treatment. The authors report that there was no significant difference in 

serum testosterone level elevations between post-strength training and post-endurance training. The serum 

levels of testosterone returned to resting values within two hours following both exercise modalities. There 

was no significant difference in pre- or post-exercise resting testosterone levels between the two exercise 

modes. Neither one of the exercise modes led to a chronic change in resting testosterone concentrations. 

Inter-individual differences in testosterone responses to training were large. This observation points 

towards the influence of genetic factors on testosterone production and secretion. Intra-individual responses 

to both exercise modalities showed a very strong correlation (r = 0.98) allowing the conclusion that both 

strength and endurance exercises cause the same acute physiological adaptation responsible for either 

stimulation of testosterone secretion or impaired clearance of serum testosterone. 

A study of 10 sedentary, non-obese men yielded comparable results to the ones discussed above 

(Vogel, Books, Ketchum, Zauner, & Murray, 1985). Vogel et al. (1985) measured serum testosterone levels 

during the 30 minutes preceding exercise, during 45 minutes of ergometer cycling at 49.4% of V O₂max, and 

during the first 30 minutes following exercise. Mean testosterone levels peaked at 18% above resting levels 

at 15 minutes into the exercise bout. There was no significant difference between resting and recovery 

levels of testosterone. Interestingly, no significant relationships were found between peak or resting 
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testosterone levels and V O₂max. This seems intuitive, as sedentary individuals are generally not exposed to 

exercise stimuli that would cause a rise in testosterone levels and lasting changes in V O₂max. In other 

words, those with inherently greater testosterone responses do not exhibit higher V O₂max values because, as 

sedentary individuals, they have not been taking advantage of their relatively strong responses to 

testosterone elevated due to exercise. However, these results do not support the theory that individuals who 

had been exposed to relatively high in utero testosterone concentrations are equipped with better 

cardiovascular efficiency. 

Other studies have reported similar acute increases in serum testosterone levels in response to 

submaximal endurance training (Galbo, Hummer, Petersen, Christensen, & Bie, 1977; Guglielmini, Poalini, 

& Conconi, 1984; Kindermann, Schmitt, Schnabel, Berg, & Biro, 1985; MacConnie, Barkan, Lampman, 

Schork, & Beitins, 1986; Webb, Wallace, Hamill, Hodgson, & Mashaly, 1984; Wilkerson, Horvath, & 

Gutin, 1980). A comparison of serum testosterone levels between trained endurance athletes and sedentary 

individuals during and after submaximal exercise revealed a significant serum testosterone increase only in 

the athletes. The athletes also had significantly greater total and relative increases following exercise (Bunt, 

Bahr, & Bemben, 1987). Remes, Kuoppasalmi, and Adlercreutz (1979) analyzed plasma testosterone levels 

in  innish military recruits before and after six months of boot camp training consisting of up to 40 hours 

per week of moderate to vigorous physical activities. The recruits were separated into to two groups based 

on increases in V O₂max from pre- to post-training. Those with greater increases in V O₂max had greater 

increases in plasma testosterone concentrations (28% vs. 15%). Cumming, Brunsting, Strich, Ries, and 

Rebar (1986) provide evidence that incremental maximal exercise also results in significant increases in 

serum testosterone levels which peak at approximately 20 minutes into the exercise. Experiments 

comparing testosterone responses during maximal exercise of trained endurance athletes to those of 

sedentary controls have shown similar testosterone responses in both groups (Hackney, 1989). 

However, it has been shown that two hours of training twice per day lead to a decrease in resting 

testosterone levels and that male marathon runners have decreased levels of GRH (Häkkinen, Pakarinen, 

Alén, Kauhanen, & Komi, 1988; MacConnie et al., 1986). There seems to be a volume threshold or 

continuum characterized by decreasing testosterone levels with increasing training volumes. Souza, Arce, 

Pescatello, Scherzer, and Luciona (1994) produced evidence in support of the threshold theory by showing 

that high milage runners (108 km per week) have decreased free and total testosterone levels compared to 

moderate milage runners (54 km per week) and sedentary controls, while no difference existed between the 

moderate milage runners and the control group. Endurance athletes consistently present lower resting 

serum testosterone levels and fewer LH secretions per time interval compared to sedentary controls as long 

as they have been training for about five years or longer (for a review see Hackney, 1989). Distance 

runners also have suppressed LH and testosterone secretions respective to exogenous GRH and LH 

administration. The duration of single exercise bouts also seems to influence serum testosterone levels. 
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Submaximal or maximal exercise lasting longer than 90 minutes generally leads to serum testosterone 

concentrations below resting levels (Hackney, 1989). It appears that testosterone levels continue to drop 

after approximately 20 minutes of exercise. Decreased testicular blood flow caused by catecholamines and 

increased absorption of testosterone by skeletal muscle are possible mechanism for the depression in serum 

testosterone levels (Hackney, 1989). Hence, endurance athletes may not be suffering from decreased 

secretion of testosterone at rest provided that serum catechomaline levels return to normal resting levels 

after the cessation of exercise. The depressed serum testosterone levels associated with high milage 

endurance training may be due to an increased absorption of serum testosterone by skeletal muscle. Thus, 

individuals with high testosterone sensitivity (low R-L 2D:4D) may respond to endurance training with 

larger increases in V O₂max (Hill et al., 2012). However, Remes et al. (1979) found increases in serum 

testosterone (21%), androstenedoine (25%), and LH (25%) in 39 military recruits following a six month 

boot camp training program of up to 40 hours of exercise per week. It seems that more than six months of 

consistent high volume endurance training may be required to cause depressions in serum testosterone 

levels. Conversely, the rise in serum testosterone levels in military recruits following boot camp training 

may be in part due to a very competitive environment. 

Besides exercise, genetic factors, as shown by Manning et al. (1998), are also responsible for intra-

individual fluctuations in testosterone concentrations. LH is released in a pulsating fashion, with two to 

four secretions every six to eight hours (Hackney, 1998). Large nocturnal secretions of testosterone, 

regulated by the circadian cycle have also been observed (Bardin, 1978). The amount of LH or testosterone 

secreted during those cycles is most likely genetically regulated. Other factors contributing to serum 

testosterone levels include psychological stress, sleep loss, diet, and weight loss (McGrady, 1984; Opstad 

& Aakvaag, 1983). 

It is apparent that endurance and other types of exercise lead to acute spikes in serum testosterone 

concentrations.  ndurance training may thus lead to increases in V O₂max, if testosterone does indeed have 

favorable effects on V O₂max (see discussion below). In regards to the stimuli causing fluctuations in serum 

testosterone, as discussed above, it can be argued that exercise and sensitivity to testosterone may be the 

most important determinants of V O₂max if the exercise stimulus is frequent, intense, and consistent enough. 

It seems logical that individuals endowed with greater testosterone sensitivity would respond with greater 

increases in V O₂max compared to those with lower sensitivity provided the training stimuli are equal (see 

discussion of Wang et al., 2010, below). As higher testosterone sensitivity is reflected in lower 2D:4D and 

lower  -L 2 :4  it seems plausible that those with lower digit ratios will have greater increase in V O₂max 

values during an exercise intervention program. However, if digit ratio reflects variations in prenatal 

testosterone concentrations more strongly than testosterone sensitivity then variations in digit ratio may be 

reflected more strongly in baseline V O₂max prior to training than in increases in V O₂max post-training. This 

last statement is based on the assumption that other genetic factors also contribute to increases in V O₂max 
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following endurance training. Unfortunately, no investigation to date has included measures of both fetal 

testosterone concentrations and testosterone sensitivity as independent variables and digit ratio as the 

dependent variable. Hence, we do not know which factor explains more of the variation in 2D:4D. 

Moreover, reported effect sizes of prenatal androgen concentrations on digit ratios and effect sizes of 

androgen sensitivity on digit ratios are usually not reported or cannot be compared due to methodological 

differences. All published reports include only one of the various ways to determine variations in prenatal 

androgen concentrations or androgen sensitivity (i.e. amniocentesis, CAH, dizygotic twins, polycystic 

ovary syndrome, CAIS, CAG triplet repeat count, etc.) thus limiting comparability between studies. 

Additionally, some investigators combined female and male participants to investigate the relationship of 

androgen stimulation to 2D:4D, whereas others used participants of only one gender. Overall, there are not 

enough studies with similar methodology and statistical analyses to compare the effects of prenatal 

androgen levels to those of androgen sensitivity on digit ratio. 

 

Postnatal Testosterone’s Influence on Components of Cardiovascular Fitness 

The mid-gestational peak in testosterone concentration is said to be responsible for the sex 

differences at birth (McIntyre, 2006). This evidence for the organizational effects of testosterone on the 

human body suggests the possibility that high postnatal testosterone concentrations exert measurable 

effects on the human physiology if testosterone sensitivity affords it. Of particular interest is the 

relationship between postnatal testosterone levels and the physiological determinants of maximal oxygen 

uptake (V O₂max). Cardiovascular fitness, as estimated either by V O₂max or the time to exhaustion on graded 

treadmill exercise tests, is well established as an independent risk factor for cardiovascular disease, 

coronary heart disease, and all-cause mortality (Blair & Kohl, 1989;  lair, Kohl,    arlow, 1995;  lair, 

Kohl,   Paffenbarger, 1989), whereas all-cause mortality refers to all causes of mortality combined into 

one statistic. V O₂max is widely accepted as the best measure of cardiovascular fitness  ACSM, 2010;  assett 

  Howley, 2000; Mitchel    lomqvist, 1971). V O₂max refers to the maximum amount of oxygen an 

individual can consume for energy production during vigorous exercise (Mitchel & Blomqvist, 1971) and is 

thus a measure of the ability of the cardiovascular system to deliver oxygen to exercising muscle tissue and 

the ability of the muscle tissue to consume oxygen. The limiting factors of V O₂max are pulmonary diffusion 

capacity, cardiac output, oxygen carrying capacity of blood, peripheral diffusion gradients, mitochondrial 

enzyme concentrations, and capillary density in muscle tissue (Bassett & Howley, 2000). Higher 

percentages of Type I muscle fibers allow for higher relative V O₂max values as oxygen consumption by 

muscle tissue depends largely on mitochondrial enzyme activity which is elevated in Type I compared to 

Type II fibers (Ivy, Withers, Van Handel, Elger, & Costill, 1980). Relative V O₂max values and percentages 
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of body fat also share an inverse relationship because adipose tissue has much lower oxygen consumption 

capacities than skeletal muscle (Czajkowska, Lutosławska, Mazurek, Keska, & Zmijewski, 2009).  

As mentioned, one of testosterone‟s functions is the development of secondary sex characteristics 

including the development of more lean tissue mass in men compared to women. Testosterone has an 

anabolic function promoting lean tissue growth. Hartgens and Kuipers (2004) published a review about the 

effects of androgenic-anabolic steroids (AAS) on the human body. AAS are synthetic a version of 

testosterone. Some versions have stronger androgenic (masculinizing) effects while other versions have 

stronger anabolic effects depending on the particular steroid‟s affinity to bind to androgen receptors. The 

anabolic effects of AAS consistently produced 2-5 kg increases in body mass as a result of administration 

periods of less than 10 weeks in non-exercising adults. This increase is largely attributed to increases in 

lean body mass while fat mass tends to stay the same and the percentage of body fat decreases (Hartgens & 

Kuipers, 2004). Age shares a negative relationship with serum testosterone concentrations and lean body 

weight while total abdominal fat increases with age (Fink et al., 2003). Lean body mass has been shown to 

increase and WHR has been shown to decrease in elderly and healthy eugonadal men as a result of 

testosterone administration (Rebuffe-Scrive et al., 1991; Vermeulen et al., 1999), signifying a decrease in 

abdominal adipose tissue and healthier body composition. The decrease in WHR in elderly men is 

considered beneficial as total abdominal fat increases with age. It seems that testosterone might play an 

active and positive role in the development cardiovascular health, as higher percentages of fat free weight 

and lower percentages of fat weight are associated with improved cardiovascular health. This argument is 

supported by the regression to pre-intervention body composition values within three months after 

cessation of AAS administration. 

The positive effects of testosterone supplementation on cardiovascular health are also supported 

by Zitzmann and Nieschlag (2007), who found decreased low-density lipoprotein (LDL) serum levels, 

increased high-density lipoprotein (HDL) serum levels, lower resting diastolic and systolic blood pressure, 

and lower resting heart rates in 66 hypogonadal men who were treated with a longitudinal intramuscular 

testosterone undeccanoate therapy (TU). Hypogonadism is a condition characterized by insufficient 

testosterone production of the gonads and TU is a newer form of testosterone replacement therapy causing 

fewer or different side effects and more favorable physiological changes than traditional testosterone 

substitutes (Zitzmann & Nieschlag, 2007). 

Increases in muscle mass in a variety of leg, trunk, shoulder, and arm muscles were observed 

directly in a number of experimental studies involving the administration of androgenic steroids. These 

increases were observed in non-exercising and strength training participants, while the strength training 

participants exhibited larger increases. Interestingly, Type I (slow-twitch) muscle fibers exhibit greater 

hypertrophy and increases in number than Type II muscle fibers as a result of the use of AAS in some 

studies (Hartgens & Kuipers, 2004). Consequently, elevated serum testosterone levels might yield 
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beneficial effects for endurance athletes who largely rely on Type I muscle fibers. Type I muscle fibers 

have higher oxidative capacities than Type II fibers. This characteristic makes them an important 

contributor to cardiovascular fitness and maximal oxygen consumption capabilities. However, the use of 

different types of AAS, the small number of studies, and the somewhat mixed results do not allow a firm 

conclusion regarding the influence of natural testosterone on cardiovascular efficiency through its effect on 

the different muscle fiber types. 

The anabolic effects are not limited to skeletal muscle but include hematopoiesis as well as 

glycogen synthesis and storage (Hackney, 1989). Testosterone‟s influence on hematopoiesis points towards 

beneficial effects of testosterone on cardiovascular fitness. Long-term administration of AAS has been 

shown to increase serum hemoglobin concentrations (Hartgens & Kuipers, 2004), a protein responsible for 

the transport of 99% of serum oxygen. Therefore, AAS are registered for the treatment of different types of 

anemia. However, only one investigation involving athletes found a significant increase in hemoglobin 

levels. Changes in the amount of erythrocytes have not been reported, although the anabolic trait of AAS is 

said to stimulate direct erythropoiesis, erythropoietin synthesis in the kidneys, the differentiation of stem 

cells into erythropoietic cells, and sensitization of erythroid progenitors. The majority of studies have failed 

to show improvements in endurance performance paralleling AAS treatment. Curiously, two studies 

involving strength athletes found improvements in aerobic capacity following AAS administration 

(Hartgens & Kuipers, 2004). Additionally, Zitzmann and Nieschlag (2007) found their long-term treatment 

of hypogonadal men with TU to stimulate erythropoiesis. 

A number of researchers detected increased left ventricular wall thickness in AAS users, but only 

two cross-sectional investigations and one longitudinal investigation yielded increased left ventricular end-

diastolic diameters. No decreases in any echocardiographic measures are associated with AAS use. Overall, 

AAS do not seem to benefit users in terms of altered heart function and structure (Hartgens & Kuipers, 

2004). However, natural elevations in serum testosterone have been associated with an increased efficiency 

of the heart. Remes et al. (1979) found the increases in predicted V O₂max following boot camp training to be 

larger in those military recruits with greater increases in serum testosterone levels following boot camp 

compared to pre-camp levels. The investigators labeled those with larger increases in predicted V O₂max (n = 

19) “well-conditioned” and those with smaller increases in predicted V O₂max  n = 20) “poorly conditioned”. 

The “well-conditioned” recruits had a mean increase in serum testosterone levels of 28 , whereas the 

“poorly-conditioned” group showed an increase of 15 . In fact, the 10 “best-conditioned” recruits had an 

elevation in serum testosterone of 43 , compared to 13  in “worst-conditioned” group. Predicted V O₂max 

values were based on heart rate responses to submaximal ergometer tests (Remes et al., 1979). Hence, it 

seems that elevations in serum testosterone levels relate positively to increased stroke volume and most 

likely improved V O₂max values. 
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In the interest of cautioning the reader, it should be mentioned that the abuse of AAS can have 

severe and fatal side effects, including cardiomyopathy, atrial fibrillation, and myocardial infarction. The 

cause of these side effects is unclear. However, the suppression of the hypothalamic-pituitary-gonadal axis 

by the exogenous administration of derived testosterone (AAS), leads to the inhibition of hypothalamic and 

pituitary activity which causes decreased secretion of LH and FSH (Hartgens & Kuipers, 2004). These 

hormones are vital for healthy reproductive function. Further discussion of the negative side effects of AAS 

is irrelevant to this investigation because research involving digit ratios is limited to natural elevations in 

testosterone which do not have reported harmful side effects. However, the investigations involving AAS 

provide insight into the possible influence of testosterone on components of the cardiovascular system. 

It seems that postnatal testosterone stimulation has a favorable effect on the physiological 

determinants of V O₂max. A negative correlation between digit ratio and V O₂max can be as digit ratio 

probably reflects postnatal testosterone sensitivity. Equal training stimuli across a sample should not 

change this relationship as the spikes in serum testosterone will be translated into greater increases in 

V O₂max in those with greater testosterone sensitivity as indicated by lower 2D:4D. 

 

Testosterone Sensitivity and Cardiovascular Fitness 

McIntyre (2006) pointed out that in utero peaks of testosterone concentrations rise to the level of 

concentrations in male adults. Given the physiological organizational effects of in utero testosterone 

mediated by androgen sensitivity, it seems likely that the serum level of testosterone in adults is responsible 

for organizational effects as longs as androgen sensitivity is adequate. Evidence for the effects of androgen 

sensitivity coupled with frequent and consistent spikes in serum testosterone concentrations due to training 

on cardiovascular fitness is provided by Wang et al. (2010). CAG triplet repeat length was used as an 

indicator of testosterone sensitivity and V O₂max was the measure of choice for cardiovascular fitness. Sixty-

five healthy men underwent a 30-day training consisting of 30 minutes of hypoxic exercise at 75  of 

V O₂max (simulating 2,500m altitude) three times a week interspersed by routine sea-level training. The 

participants also slept in hypoxic conditions (simulating 2,800-3,000m altitude). When dividing the number 

of participants equally into a group with few CAG triplet repeats  ≤ 22) and into a group with more CAG 

triplet repeats  > 22), then the increase in absolute V O₂max of the ≤ 22 group was 5.6 greater than the 

increase in V O₂max of the > 22 group. This increase in V O₂max can best be explained by increases in 

hematocrit and hemoglobin count due to the exercise induced spikes in serum testosterone levels (Hartgens 

& Kuipers, 2004; Zitzmann & Nieschlag, 2007). High altitude has also been shown to cause elevations in 

hematocrit and increases in hemoglobin concentrations (Stray-Gundersen, Chapman, & Levine, 2001). It 

seems that the effects of hypoxic conditions on erythropoiesis are mediated by testosterone as those 

individuals with higher testosterone sensitivity responded with larger elevations V O₂max. Surprisingly, 
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baseline absolute V O₂max values were significantly higher for those with > 22 CAG triplet repeats than 

those ≤ 22 CAG triplet repeats. This could be explained by the significantly higher body weight of those 

with > 22 CAG triplet repeats than those with ≤ 22 CAG triplet repeats. However,  MI did not differ 

between those groups. This means that men with less CAG triplet repeats must have been shorter than those 

with more CAG triplet repeats, as BMI is a measure of the body weight divided by the square of the height. 

This result stands in contrast to the findings that androgen sensitivity promotes bone development and that 

estrogen insensitivity results in continued growth after puberty (Rochira, Balesrieri, Madeo, Spaggiari, & 

Carani, 2002; Zheng & Cohn, 2011), but it is supported by the positive correlation between the number of 

CAG repeats and fat free mass found by Walsh et al. (2005). However, as the fusion of growth plates 

coincides with the stimulation of estrogen receptors (Weise et al., 2001), it is possible that those men with 

fewer CAG triplet repeats also had greater estrogen sensitivity and/or serum concentrations. The heavier 

weight of those with > 22, but similar  MI to those with ≤ 22 CAG triplet repeats could also be explained 

by higher percentages of body fat in those with > 22 CAG triplet repeats. Positive correlations between 

CAG repeat length and BMI as well as body fat content, obesity, waist circumference, and leptin in men 

with type 2 diabetes have been reported (Stanworth, Kapoor, Channer, & Jones, 2008; Zitzmann, Gromoll, 

von Eckardstein, & Nieschlag, 2003). Nielsen et al. (2010), examining 783 men aged 20-29 years, found a 

negative relationship between CAG triplet repeat length in the androgen receptor gene and absolute muscle 

mass in the thigh (r = -0.108) and lower trunk (r = -0.132) as well as relative muscle mass in the thigh (r = -

0.128), lower trunk (r = -0.126) and relative lean tissue mass in the lower extremities (r = -0.108) and 

whole body (r = -0.082). Additionally, CAG repeat polymorphism related positively to relative 

subcutaneous fat mass in the thigh (r = 0.137) and lower trunk (r = 0.188) as well as relative fat mass in the 

lower extremities (r = 0.107) and whole body (r = 0.082). However, a strong negative correlation has also 

been found between the number of CAG triplet repeats and central obesity in post-menopausal women and 

older adults (Gustafson, Wen, & Koppanati, 2003). It seems that cardiovascular disease risk associated with 

unusually long or short CAG triplet repeat chains is most likely mediated by cofactors (Zitzmann et al., 

2003). 

Zitzmann and Nieschlag (2007) found increases in hematocrit to levels approaching 54% during 

long-term TU treatment in hypogonadal men with low CAG repeat length. Hematocrit concentration 

increased in a non-linear fashion with increases in serum testosterone concentrations and decreases in CAG 

triplet repeat length. The increase in hematocrit is due to increased erythropoiesis, which is the reason for 

testosterone supplementation in hypogonadal patients who typically suffer from anemia and accompanying 

symptoms of weakness and fatigue (Zitzmann & Nieschlag, 2007). 

Testosterone sensitivity seems to play an important part in the development and maintenance of 

cardiovascular health, especially those factors determining maximal oxygen uptake including the blood‟s 
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capacity for oxygen transport. Consequently, digit ratios could prove to be a useful biomarker of 

predispositions for cardiovascular risk factors and trainability of the cardiovascular system. 

 

Conclusion 

Digit ratio as a biomarker of prenatal testosterone stimulation is associated with athletic 

performance, whereas low digit ratios indicating higher prenatal testosterone stimulation relate to better 

athletic performances. This relationship is strongest in endurance running. The most widely used 

physiological correlate of endurance running performance is V O₂max. However, conclusive evidence 

linking lower digit ratios to higher V O₂max values does not exist. Confounders in Hill‟s et al.  2012) 

investigation on 2 :4  and V O₂max include the pubertal age of the participants and the diverse range of 

sports which the participants played. These are argued to be confounders because prenatal testosterone 

levels may relate positively to postnatal testosterone levels  Cattrall, Vollenhoven,   Weston, 2005) and 

fluctuations in postnatal testosterone levels have been shown to influence physiological parameters which 

determine V O₂max. However, 2D:4D has not been established as a biomarker of postnatal testosterone 

levels at rest (Hönekopp et al., 2007). Conversely, R-L 2D:4D does seem to correlate negatively to rises in 

free testosterone levels associate with physical challenges (Kilduff et al., 2012). This investigation sought 

to examine the relationship between right, left, and R-L 2D:4D and V O₂max, RERmax, RE, and endurance 

running performance in female and male healthy, sedentary individuals and highly trained endurance 

runners aged 18 to 25. The aim was to control for fluctuations in adult serum testosterone concentrations 

caused by puberty and differences in training stimuli. The exercise stimuli in the sedentary population were 

assumed to be too infrequent and not intense enough for significant alterations in V O₂max values. The 

endurance runners were recruited from intercollegiate track & field teams which served to ensure 

consistency in terms of training stimuli. The post-pubertal age of all participants ensured stable resting 

serum testosterone concentrations (Crabbe, Christiansen, Rødbro, & Transbøl, 1979). Hence, the main 

purpose of this investigation was to examine the relationship of total prenatal testosterone stimulation via 

2D:4D to V O₂max, RERmax, REabs, RErel, and ToT, as well as the effects of long-term endurance running 

training on these relationships. The relationship between 2 :4  and V O₂max in the trained runners was 

expected to be negative as Wang et al. (2010) found significant increase in V O₂max in those with high 

androgen sensitivity compared to those with lower androgen sensitivity and because 2D:4D is an indicator 

of testosterone sensitivity (Manning et al., 2003). The investigation of the relationships between measures 

of 2 :4 , V O₂max, RE, RERmax, and running performance in the form of PRs within the same population 

allowed for a more direct comparison between the association of 2 :4  to V O₂max, RE, and RERmax and 

the association of 2D:4D to endurance running performance.  or this purpose, partial correlation analysis 
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was used to explore which performance variable  V O₂max, REabs, RErel, or RERmax) moderates the 

relationship between 2D:4D and endurance running performance. 
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CHAPTER 3 
 

METHODS 
 

Introduction 

 
 These methods were employed to examine the relationships between measures of 2 :4  and 

performance variables  V O₂max, RERmax, REabs, RErel, and ToT), and to examine the influence of the 

relationships of 2D:4D to performance variables on the relationship between 2D:4D and endurance running 

performance, while controlling for a number of potential confounders such as age and weight. The 

relationship between 2D:4D and endurance running in itself will also be examined. The age of the 

participants will be early adulthood age, homogeneous, and post-pubertal to limit age associated 

fluctuations in testosterone levels. The influence of endurance running training on the relationship of 

2D:4D to V O₂max will also be explored by comparing highly trained endurance runners to sedentary 

individuals based on this relationship. Thus, the training modality will be restricted to one, namely 

endurance running. The training experience is also controlled by the recruitment of distance runners from 

intercollegiate track and field cross country teams.  or the first time, the relationship of 2 :4  to V O₂max 

in women will be explored. 

 

Participants 

 
Thirteen male intercollegiate cross country and/or track and field runners were recruited from a 

mid-sized southeastern university in the USA. Seven female intercollegiate cross country and/or track and 

field runners were recruited from the mid-sized southeastern university and six female intercollegiate 

runners were recruited from a small southeastern college. In total, 13 female intercollegiate long distance 

runners participated in this study. Additionally, 13 male and 15 female sedentary college students were 

recruited from the general student population of the southeastern university. All participants were between 

the age of 18 and 25 years. General exclusion criteria included:  1)  responding “Y S” to one or more 

questions on the Physical Activity Readiness Questionnaire (PAR-Q & YOU) (Appendix D) or the Pre-

Test Questionnaire (Appendix E) which includes general exclusion criteria 2-4 as well as questions to 

determine adherence to the pre-test instructions; (2) knowingly or possibly pregnant, or knowingly 

pregnant within the previous six months; (3) knowingly taking any ergogenic or performance enhancing 

drugs;  4) smoking;  5) being younger than 18 years or older than 25 years;  6)  ody Mass Index of ≥ 30 

kg*mˉ²  ACSM, 2010);  7) systolic blood pressure of ≥ 140 mm Hg or diastolic blood pressure of  ≥ 90 mm 
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Hg (ACSM, 2010); (8) not having followed the pre-test instructions (Appendix F). The pretest instructions 

asked the participants not to consume any alcohol, caffeine, or nicotine during the 24 hours prior to testing, 

not to exercise the day before and the day of the testing session, not change their exercise regimen, not to 

change their medication regimen unless recommended by a doctor, and not to eat anything 2.5 hours prior 

to testing. Additional exclusion criteria for the sedentary individuals included meeting the minimal physical 

activity recommendations from the U.S. Surgeon General‟s  eport, which amount to two hours or more per 

week of moderate to vigorous physical activity (ACSM, 2010; U.S. Department of Health and Human 

Services, 1996). Exclusion criteria particular to the runners included any injury within the last two months 

that has resulted in a reduction of training quantity, intensity, or frequency for more than two weeks. 

 

Instruments and Apparatuses 

 
 The participants were asked to fill out a brief demographics questionnaire (Appendix G). The 

runners also answered questions about their personal records on the track, years of training, and average 

mileage run per week on the demographics questionnaire. Using a stainless steel offset LCD digital Vernier 

caliper, Model K01-101 (Kbd Tools Co., Ltd., Jiangsu, China), the length of the second (index) and the 

fourth (ring) finger on both hands were measured twice to the nearest 0.01 mm by an investigator. Body 

composition was assessed using a Tanita SC-331S Body Composition Analyzer  Tanita Corporation of 

America, Inc., Arlington Heights, Illinois). V O₂max was measured using the  ruce Protocol for the treadmill 

 see Pilot Study below; ACSM, 2010). Prior to the commencement of the V O₂max test the investigator read 

the V O₂max test instructional script to the participant. A Desmo HP Woodway treadmill (Woodway, 

Waukesha, WI), a Physio-Dyne, MAX-1 model, computerized gas analyzer with Physio-Dyne Metabolic 

System software (Physio-Dyne Instruments Corp., Quogue, NY), and a Polar Monitor System (Polar 

Electro Inc., Woodbury, NY) to measure heart rate were used during this test. 

 

Reliability and Validity of Apparatuses 

 
 Using 30 male and 30 female subjects, Allaway, Bloski, Pierson, & Lujan (2009) analyzed 

intratester and intertester reliability of four different techniques commonly used to determine digit ratio. 

These techniques included (1) physical measurements, (2) photocopies, (3) printed and scanned images, 

and (4) computer-based image analysis. Three experienced testers made two different measurements of 

each participant‟s fingers using all four techniques. Interobserver reliability was highest for the computer 

assisted technique (r = 0.892), second highest for the photocopies (r = 0.858), third highest for the physical 

measurements (r = 0.795), and lowest for the printed scans (r = 0.761). Intraobserver reliability was also 

highest for computer assisted measurements (r = 0.957), second highest for the photocopies (r = 0.939), 
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third highest for the physical measurements (r = 0.925), and lowest for the printed scans (r = 0.842). Thus, 

physical digit length measurements are associated with satisfactory reliability. Allaway et al. (2009) as well 

as Manning, Fink, Neave, and Caswell (2005) found that physical measurements consistently produce 

higher 2D:4D values compared to other measurement techniques, especially photocopies. Manning et al. 

(2005) attributed these differences to the distortion of soft tissue in the fingers when the hands are placed 

on the glass panel of photocopy machines. Manning et al. (2005) thus recommend using physical 

measurement techniques. Cattrall et al. (2005) reported intraclass correlation coefficients (ICC) for 

repeated measurements of the same digit by the same investigator taking physical digit measurements with 

a steel Vernier caliper. The ICC for right 2D and 4D were both 0.99 and between participant variation was 

greater than within participant variation. Voracek and Dressler (2007) used a digital vernier caliper to 

measure digit lengths from printed scans of the ventral surface of participants‟ hands. The intraobserver 

repeatability ranged from ICC = 0.997 for right 2D to ICC = 0.995 for left 4D. 

 Digit measurements in the present study will be taken by the same investigator to remove 

interobserver error. The investigator will be blind to participants‟ V O₂max values as, chronologically, digit 

measurements will be taken before the V O₂max test will be conducted. During the pilot study, the second 

and fourth finger of both hands of five female and four male participants were measured twice for a total of 

72 measurements by the investigator who will measure the digit lengths for the present study. The ICC was 

high (r = 0.99, df = 7, P < 0.0005) indicating that the observer is able to obtain reliable digit length 

measures.  

 Rutherford, Diemer, & Scott (2011) found that foot-to-foot bioelectrical impedance (BIA) 

measurements shared a r = 0.63 correlation with hydrodensitometry and tended to overestimate body fat 

percentages compared to hydrodensitometry, sum of three skinfold method, sum of seven skinfold method, 

and hand held bioelectrical impedance measurements in college populations. However, Rutherford et al. 

(2011) used the Tanita Body Fat Monitor, Model TBF-315, for foot to foot measurements, whereas we will 

use the Tanita SC-331S Body Composition Analyzer. The TBF-315 model is not in production anymore, 

while the SC-331S model is one of the newest body composition analyzers from Tanita. The manufacturer 

does not report any measures of reliability or validity. Other investigators compared the Tanita TBF 305 

foot to foot analyzer to a hand to foot BIA analyzer and hydrodensitometry (Dias, Veiga, da Silva, & 

Monteiro, 2001). No significant difference was found between the two BIA analyzers but both 

overestimated body fat percentages compared to hydrostatic weighing. One study used the Tanita SC-331S 

model to assess body composition (Wang, Reed, Goli, & Goswami, 2011), but validational work has not 

been performed with this model. 

A study comparing the Physio-Dyne MAX-1 metabolic cart to the gold standard  ouglas bag 

method across four different work rates yielded no significant difference between the systems in regard to 

V O₂, V CO₂, FEO₂, or FECO₂ (Cullum, Welch, & Yates, 1999). However, the average V O₂ value produced 
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by the Physio-Dyne MAX-1 systems was 87 ml/min less than the values produced by the Douglas bag 

system. When tested for repeatability, the Physio-Dyne system produced a relative error of 3.2% in V O₂ 

measurements which was only slightly greater than that of the Douglas bag system (2.5%). Another 

investigation found that the Physio-Dyne MAX-1 cart non-significantly underestimated V O₂ values with an 

error of 3.1 to 6.1% depending on the flow rate (Yates & Cullum, 2001). Overall, the Phsyio-Dyne MAX-1 

system provides accurate and reliable measurements of oxygen consumption. 

 

Procedures 

Testing consisted of one session lasting approximately 50 minutes. Upon arrival at the exercise 

physiology laboratory eligibility for participation was determined through the PAR-Q & YOU 

questionnaire and the Pre-Test Questionnaire. The eligible participant then filled out the demographics 

questionnaire. Personal records (PRs) per race distance were self-reported by the runners on the 

demographics questionnaire. Next, the participant‟s blood pressure was measured with a standard 

sphygmomanometer and stethoscope. The participant‟s height was measured and the body composition and 

body mass index were assessed by the TANITA Body Composition Analyzer. The participant stepped on 

the body composition analyzer barefoot wearing the clothes to be worn for the treadmill test and his or her 

gender, age, height, and level of physical activity were entered. One half to one pound were entered into the 

body composition analyzer for the weight of the clothes depending on the participant‟s size and type of 

clothing. Then, an investigator measured and recorded the lengths of the second and fourth digit on both 

hands by measuring all four fingers in no particular order once, followed by a second measurement of all 

four fingers. The Vernier caliper was calibrated before each measurement. Participants were asked to 

remove rings and jewelry on all fingers as it could interfere with the measurements and they were then 

instructed to place the dorsal surface of their hand on a table while stretching their fingers and spreading 

them slightly as well as aligning the direction in which forearm and middle finger were pointing. The lower 

tip of the caliper was placed in the center of the basal crease proximal to the palm of the hand on the ventral 

surface. The caliper was then extended and the upper arm of the caliper was placed against the soft tissue 

tip of the finger without the exertion of pressure as described by Manning et al. (1998) (Figure B-3). 

Participants with injuries to any of the second or fourth fingers were excluded. 

Then the principal investigator orally provided the participant with the standardized instructions 

for the incremental treadmill test (Appendix H). After the participant‟s questions had been answered, he or 

she was fitted with a heart rate monitor and a face mask and asked to step on the treadmill for the 

commencement of the test. The metabolic cart was calibrated before each testing session according to the 

manufacturer‟s guidelines. The participant‟s data including weight and height as well as the ambient 

temperature and atmospheric pressure were entered into the Physio-Dyne MAX-1 software. 
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The incremental treadmill test was terminated at the point of voluntary exhaustion of the 

participant. The criteria for V O₂max achievement included  1) a plateau in V O₂ signified by a failure of V O₂ 

to increase despite increases in work rate or an increase in V O₂ of  x – 2S  or less between the last two 

measurements, whereas  x is the average increase in V O₂ from measurement to measurement and S  is the 

standard deviation of increases in V O₂ (Taylor, Buskirk, & Henschel, 1955), (2) a respiratory exchange 

ratio     ) of ≥ 1.15  Issekutz, Birckhead, & Rodahl, 1962; Issekutz & Rodahl, 1961), (3) a heart rate 

within 95% of the age adjusted maximal as determined through the following formula: 208 – 0.70*age 

(Tanaka, Monahan, Douglas, & Seals, 2001) and a maximal rating of 9 or 10 on the OMNI Rating of 

Perceived Exertion Scale (Utter et al., 2004). Breath by breath gas samples were automatically averaged 

over 30 seconds by the computerized metabolic cart. V O₂max was recorded as the highest 30s average V O₂ 

and expressed in ml*kgˉ¹*minˉ¹. Two out of four criteria had to be satisfied for the achievement of V O₂max. 

Absolute RE (REabs) was determined as the average of two V O₂ (ml*kgˉ¹*minˉ¹) measurements 

with one measurement immediately prior to and one measurement immediately after the 8:00 minute mark 

during the treadmill test. V O₂ measurements were automatically averaged over 30 seconds by the 

computerized metabolic cart. RErel was expressed as the percentage of REabs in relation to the V O₂max. The 

RER was calculated from measurements of VO₂ and VCO₂. The highest RER value recorded was 

considered the RERmax. 

 

Statistical Analyses 

 
Statistical analyses were performed with the Statistical Package for the Social Sciences v.19.0 

(SPSS, Inc., Chicago, IL). One-way ANOVA and Tukey‟s post-hoc tests were used to test for differences 

between groups in all variables. Linear contrasting was performed to test for gender differences in 

measures of digit ratio. Pearson‟s r correlation coefficient was used to examine relationships between 

variables by group. First order partial correlation analyses were used to remove the effects of a third 

variable from the relationships between measures of digit ratio and dependent variables. Results were 

accepted as significant at p ≤ 0.05. 

 

Pilot Study 

The purpose of this pilot work was to explore the relationship between digit ratio and maximal 

oxygen uptake in a sample of college aged male and female individuals and to determine intra-tester 

reliability in regard to digit length measurements. Three college aged women and four college aged men 

from a mid-sized southeastern university participated in this study. Using a stainless steel LCD digital 

Vernier caliper, the length of the second (index) and the fourth (ring) finger on both hands were measured 
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twice to the nearest 0.01 mm. V O₂max was assessed using the following treadmill protocol: Stage 1: 3 min 

at 3 mph and 0 % grade; Stage 2: 3 min at 5 mph and 0 % grade; Stage 3 and all subsequent stages were 2 

minutes long at 5 mph with 3 % increase in grade at the beginning of each stage. Two out of three criteria 

had to be satisfied in order to achieve V O₂max. These criteria included  1) a plateau in V O₂max signified by a 

failure of V O₂ to increase despite increases in work rate, (2) a RER of at least 1.15, and (3) a heart rate 

within 95% of the age adjusted maximal as determined through the following formula: 208 – 0.70*age 

(Tanaka, Monahan, Douglas, & Seals, 2001). The same apparatuses as described above were used for this 

pilot investigation. 

The age of the participants was 24.11 ± 2.09 years (Mean ± SD). An independent samples t-test 

revealed no significant difference between male right 2D:4D (0.963 ± 0.049) and female right 2D:4D 

(0.987 ± 0.026) although men presented with lower right 2D:4D than women, as expected. Men also had 

non-significantly lower left 2 :4   0.947 ± 0.042) and  -L 2 :4   0.016 ± 0.033) than women  0.967 ± 

0.019, 0.020 ± 0.013 respectively). The mean relative V O₂max of the participants was 42.3 ± 13.7 

ml*minˉ¹*kgˉ¹. Using Pearson‟s r correlation coefficient, V O₂max was significantly negatively correlated to 

right 2D:4D (r = -0.69, d.f. = 5, p < 0.05). Negative correlations were also found between VO₂max and left 

2D:4D (r = -0.52, d.f. = 5, p > 0.05) as well as R-L 2D:4D (r = -0.42, d.f. = 5, p > 0.05). These relationships 

are stronger than those found by Hill et al. (2012), however the sample size of this pilot work was very 

small and both genders were combined into one group. 
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CHAPTER 4 
 

MANUSCRIPT 
 

 

Introduction 

The ratio of the length of the second finger to the length of the fourth finger (2D:4D) is firmly 

established as a sexually dimorphic trait, whereas men generally have smaller ratios than women 

(Hönekopp & Watson, 2010; Manning, Scutt, Wilson, & Lewis-Jones, 1998). This ratio seems to be 

determined in utero by prenatal testosterone levels (Lutchmaya, Baron-Cohen, Raggatt, Knickmeyer, & 

Manning, 2004; Manning et al., 1998) and by testosterone sensitivity (Manning, Bundred, Newton, & 

Flanagan, 2003), whereas higher prenatal testosterone levels and greater testosterone sensitivity are 

associated with lower 2D:4D (Manning et al., 2003).  

Usually, clinical populations with altered prenatal testosterone levels, including samples with 

congenital adrenal hyperplasia (i.e. Brown, Hines, Frane, & Breedlove, 2002), polycystic ovary syndrome 

 Cattrall, Vollenhoven,   Weston, 2005), and Klinefelter‟s syndrome (Manning, Kilduff, & Trivers, 2013) 

have been used to demonstrate that greater androgen exposure is associated with lower 2D:4D. 

Amniocentesis, the analysis of hormone concentrations in the amniotic fluid, has also been employed to 

link higher prenatal testosterone levels to lower digit ratios (Lutchmaya et al., 2004). 

Cytosine-adenine-guanine (CAG) triplet repeat length in exon 1 of the androgen receptor gene 

(AR) located on the X-sex-chromosome is a determinant of androgen sensitivity (Chamberlain, Driver, & 

Miesfeld, 1994). CAG polymorphism is inversely related to sensitivity to testosterone and thus positively 

related to 2D:4D (Manning et al., 2003). Significant positive correlations between right 2D:4D (r = 0.29; p 

= 0.02) as well as R-L 2D:4D (subtracting left 2D:4D from right 2D:4D) (r = 0.36, p = 0.005) and CAG 

repeat polymorphism have been reported in 50 healthy men (Manning et al., 2003). Individuals with 

complete androgen insensitivity syndrome, characterized by absent or dysfunctional androgen receptors, 

presented with greater 2D:4D then men but not women. These differences were more pronounced in the 

right hand than the left hand (Berenbaum, Bryk, Nowak, Quigley, & Moffat, 2009). 

Besides digit ratio, many other gender differences are determined in utero by prenatal testosterone 

(Cohen-Bendahan, Buitelaar, Van Goozen, Orlebeke, & Cohen-Kettenis, 2005; Hönekopp, Manning, & 

Müller, 2006). 2D:4D is a practical biomarker of prenatal testosterone when investigating the relationship 

of prenatal testosterone levels to sexually dimorphic traits in adults. One such family of sexually dimorphic 

traits seems to be athletic prowess (Hönekopp & Schuster, 2010). Lower 2D:4D has been associated with 

superior performances in fencing (Voracek, Reimer, Ertl, & Dressler, 2006), skiing (Manning, 2002b), 
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soccer (Manning & Taylor, 2001), field-based fitness tests (Hönekopp et al., 2006), sumo wrestling 

(Tamiya, Lee, & Ohtake, 2011), basketball (Tester & Campell, 2007), 50m dash (Manning & Hill, 2009), a 

hand-grip strength test (Fink, Thanzami, Seydel, & Manning, 2006), and 2,000m ergometer rowing 

(Longman, Stock, & Wells, 2011). The strongest reported association has been found between 2D:4D and 

endurance running performance, whereas the strength of the association between 2D:4D and endurance 

running performance increases as race distance increases. The average variance in sports performance 

explained by 2D:4D falls between 1% and 16%, the shared variance between 2D:4D and 50m dash times 

was reported to be 2%, and the variance in foot races of one to four miles shared with 2D:4D reached 25% 

(Hönekopp & Schuster, 2010; Manning, Morris, & Caswell, 2007). A meta-analysis of 24 studies revealed 

an effect size of r = -0.28 for the relationship between right 2D:4D and athletic prowess in a variety of 

sports and measures of athleticism while an analysis of 22 studies revealed an effect size of r = -0.26 for the 

relationship of left 2D:4D with measures of athletic prowess. Hence, the strength of association between 

athletic performances and digit ratios is not significantly different between hands (Hönekopp & Schuster, 

2010). 

Maximal oxygen uptake  V O₂max) correlates strongly to endurance running performance (Bassett 

& Howley, 2000; Paliczka, Nichols, & Boreham, 1987) and is a sexually dimorphic trait with higher values 

displayed by men as compared to women (Bouchard et al., 1998). Hence, Hill, Simpson, Manning, and 

Kilduff (2012) investigated the relationship between 2 :4  and V O₂max and found a significant 

relationship only between  -L 2 :4  and V O₂max (b = -0.33). In the same study, significant relationships 

were also found between running velocity at V O₂max (b = -0.47) as well as maximal lactate concentrations 

(b = -0.50) and R-L 2 :4 . A potential confounder in Hill‟s et al.  2012) investigation is the pubertal age 

(13.9 ± 1.3 years) of the 41 boys tested. During puberty, testosterone levels rise and do not level off until 

after the age of 14 years in boys (Crabbe, Christiansen, Rødbro, & Transbøl, 1979). During this time, 

accelerated growth and maturation of the skeletal, nervous, and cardiovascular system takes place 

(Mantzoros, Flier, & Rogol, 1997). Moreover, the onset and end of puberty is not chronologically 

synchronous between individuals, which means that some boys might have matured to post-pubertal stages 

and others might have still been in a pre-pubertal phase at the time of data collection (Mantzoros et al., 

1997). Thus, the association between 2 :4 , a biomarker of prenatal testosterone, and V O₂max, which is 

subject to change during puberty, may be weakened during puberty. The association between 2 :4  and 

V O₂max may thus be stronger in post-pubertal populations. Furthermore, the participants in Hill‟s et al. 

(2012) investigation were involved in a variety of sports, including table tennis, squash, soccer, and track 

and field. The diverse training stimuli associated with these sports likely led to differing cardiovascular and 

muscular adaptations. Hence, the V O₂max adaptations were dependent on the sport, which confounds the 

influence of prenatal testosterone on V O₂max. Consequently, the nature of the relationship of 2 :4  to 
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V O₂max in post-pubertal populations with homogeneous training stimuli or relative lack of training stimuli 

remains unclear. 

 ue to the association of right and left 2 :4  with endurance running performance but the lack of 

association of right and left 2 :4  with V O₂max, it is warranted to conduct an analysis of the relationship of 

2D:4D with running economy (RE), as RE is a sexually dimorphic trait dependent on a number of sex-

specific traits including body composition, height, weight, leg mass, and flexibility (Pate, Macera, Bailey, 

Bartoli, & Powell, 1992; Saunders, Pyne, Telford,   Hawley, 2004).    refers to the amount of oxygen 

consumed per kilogram of body weight  V O₂) at a certain running velocity. At equal running velocities, 

men generally exhibit a higher V O₂ than women (REabs). However, men typically perform at a lower 

percentage of their V O₂max (RErel) (Daniels & Daniels, 1992). Moreover, maximal respiratory exchange 

ratio (RERmax), an indicator of buffered lactic acid, may also be a moderator of the relationship between 

digit ratios and endurance running due to the association of R-L 2D:4D and maximal lactate concentrations 

in Hill‟s et al.  2012) investigation. 

Superior increases in V O₂max following endurance training under hypoxic and normoxic 

conditions in men with relatively short CAG triplet repeat chains has been reported (Wang et al., 2010). 

Hence, testosterone sensitivity relates to increases in V O₂max following training. Additionally, Remes, 

Kuoppasalmi, and Adlercreutz (1979) found that those with larger increases in serum testosterone after six 

months of military boot camp training also had larger increases in V O₂max compared to those with smaller 

increases in serum testosterone. As CAG repeat polymorphism is positively associated with 2D:4D it can 

be hypothesized that 2D:4D relates negatively to V O₂max in cohorts exposed to frequent, consistent, and 

equal endurance training stimuli. 

First of all, the purpose of this investigation was to examine the influence of in-utero testosterone 

stimulation (concentration of and sensitivity to testosterone) via 2 :4  on V O₂max, REabs, RErel, RERmax, 

and total time on the treadmill (ToT) during an incremental treadmill test as well as the effects of long-term 

endurance running training on these relationship by controlling for age and training in a quasi-experimental 

study design. Secondly, we explored which performance variable (V O₂max, REabs, RErel, or RERmax) is the 

most likely moderator of the relationship between 2D:4D and endurance running performance. The term 

„performance variables‟ will be used interchangeably with V O₂max, RERmax, REabs, RErel, and ToT 

collectively. 

Negative correlations between measures of digit ratio  right 2 :4 , left 2 :4 ,  -L 2 :4 ) and 

V O₂max, REabs, RERmax, and ToT were expected. Positive correlations between digit ratios, RErel, and 

endurance running performance measured as personal record time (PR) per race distance were also 

anticipated. 
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Methods 

 

Participants 

Thirteen male (MR) and 13 female (FR) intercollegiate cross country and/or track and field 

runners along with 13 male (MC) and 15 female (FC) sedentary college students from the general student 

population were recruited from a mid-sized southeastern university and college in the USA. At the time of 

data collection all runners were in the competitive phase of their cross country and/or track & field seasons. 

Exclusion criteria particular to the runners included any injury within the last two months that has resulted 

in a reduction of training quantity, intensity, or frequency for more than two weeks. To control for training 

effects in the control group, sedentary participants were excluded if they met or exceeded the minimal 

physical activity recommendations by the U.S. Surgeon General‟s  eport  ACSM, 2010; U.S.  epartment 

of Health and Human Services, 1996). The recommendations amount to moderate to vigorous physical 

activity for a total of two or more hours per week. All participants were between the age of 18 and 25 years. 

The university‟s institutional review board approved the study and all participants provided written 

informed consent to participate prior to the start of any testing procedures. 

Finger Length Measurements 

All testing was completed in one session lasting approximately 50 minutes and all sessions took 

place between 13:00 and 17:00 hours.  irst, participants‟ second and fourth finger lengths were measured 

twice on the ventral surface of each hand by the principal investigator. Direct finger measurements were 

taken with a stainless steel digital Vernier offset caliper with a reported accuracy of 0.01mm (Model K01-

101, Kbd Tools Co., Ltd., Jiangsu, China). Finger lengths were measured from the most proximal basal 

crease of each finger to the soft tissue tip of the finger. Minimal pressure was exerted with the caliper 

against the soft tissue of the fingertip in order to avoid distortion of the soft tissue (Manning et al., 1998). 

Measurement of Performance Variables and PRs 

The MR and FR groups self-reported personal records (PR) for the 800m, 1.5km, 1.6km, 3km, 

5km, and 10km race distances. Body composition was assessed using a Tanita SC-331S Body Composition 

Analyzer (Tanita Corporation of America, Inc., Arlington Heights, Illinois). V O₂max, RERmax, and ToT 

were determined with the Bruce Protocol (ACSM, 2010) on a Desmo HP Woodway treadmill (Woodway, 

Waukesha, WI). A Physio-Dyne, MAX-1 model, computerized gas analyzer with Physio-Dyne Metabolic 

System software (Physio-Dyne Instruments Corp., Quogue, NY) was used for the gas analysis and the 

system was calibrated before each testing session according to the manufacturer‟s guidelines. Two out of 

four criteria had to be satisfied for the achievement of V O₂max. These criteria included (1) a plateau in 
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V O₂max signified by a failure of V O₂ to increase despite increases in work rate or an increase in V O₂ of  x – 

2S  or less between the last two measurements, whereas  x is the average increase in V O₂ from 

measurement to measurement and S  is the standard deviation of increases in V O₂ (Taylor, Buskirk, & 

Henschel, 1955),  2) a respiratory exchange ratio     ) of ≥ 1.15  Issekutz, Birckhead, & Rodahl, 1962; 

Issekutz & Rodahl, 1961), (3) a heart rate within 95% of the age adjusted maximal heart rate as determined 

through the following formula: 208 – 0.70*age (Tanaka, Monahan, Douglas, & Seals, 2001), and (4) a 

maximal rating of 9 or 10 on the OMNI Rating of Perceived Exertion Scale (Utter et. al., 2004).  The 

treadmill test ended at the point of voluntary exhaustion of the participant. Breath by breath gas samples 

were automatically averaged over 30 seconds by the computerized metabolic cart. V O₂max was recorded as 

the highest 30s average V O₂ and expressed in ml*kgˉ¹*minˉ¹. The     was calculated from measurements 

of V O₂ and V CO₂. The highest RER value recorded was considered the RERmax. REabs was determined as 

the average of two V O₂ (ml*kgˉ¹*minˉ¹) measurements with one measurement immediately prior to and 

one measurement immediately after the 8:00 minute mark during the treadmill test. RErel was expressed as 

the percentage of REabs in relation to the V O₂max. 

Statistical Analyses 

 
Statistical analyses were performed with the Statistical Package for the Social Sciences v.19.0 

(SPSS, Inc., Chicago, IL). One-way ANOVA and Tukey‟s post-hoc tests were used to test for differences 

between groups in all variables. Linear contrasting was performed to test for gender differences in 

measures of digit ratio. Pearson‟s r correlation coefficient was used to examine relationships between 

variables by group. First order partial correlation analyses were performed individually by group to remove 

the effects of a third variable from the relationships between measures of digit ratio and dependent 

variables. The variable correlating most strongly to digit ratios and the dependent variable was chosen as 

the control variable. Results were accepted as significant at p ≤ 0.05. 

 

Results 

 

Intraobserver Reliability of Finger Length Measurements and 2D:4D Descriptive 

Statistics 

 
The intraclass correlation coefficient (ICC) between all first and second finger length 

measurements of all participants combined was 0.996 (d.f.(1) = 215, d.f.(2) = 215; p ≤ 0.001). This 

intraobserver reliability score is consistent with the literature (Voracek & Dressler, 2007) and we concluded 

that differences in finger lengths are not attributable to measurement error. Thus, the average of the first 
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and second finger length measurements was used in the calculation of digit ratios. The descriptive statistics 

for digit ratios by group and total sample are summarized in Table A-2. 

One-way ANOVA revealed no differences between the groups in right 2D:4D (F(3, 50) = 0.56, p 

= 0.645), left 2D:4D (F(3, 50) = 1.01, p = 0.396), or R-L 2D:4D (F(3, 50) = 0.83, p = 0.487). No overall 

gender difference in right 2D:4D (t(50) = 1.27, p = 0.208), left 2D:4D (t(50) = 1.16, p = 0.252), or R-L 

2D:4D (t(50) = 0.55, p = 0.583) was found using linear contrasting. However, digit ratios differed in the 

expected with males having lower values than females. Runners had the same or higher right and R-L 

2D:4D but lower left 2D:4D than their gender-matched sedentary counterparts. 

 

Other Descriptive Statistics and Group Differences 

 
The descriptive statistics of age, height, weight, body mass index (BMI), percentage of body fat 

(%BF), ToT, V O₂max, RERmax, REabs, and RErel by group and total sample are summarized in Table A-3. 

One-way ANOVA revealed no difference between the groups in terms of age (F(3, 50) = 2.61, p = 0.062), 

REabs (F(3, 50) = 1.98, p = 0.129), and RERmax (F(3, 50) = 2.54, p = 0.067). There were anticipated 

significant differences between groups in height (F(3, 50) = 12.24, p < 0.001), weight (F(3, 50) = 11.21, p 

< 0.001), %BF (F(3, 50) = 41.78, p < 0.001), BMI (F(3, 50) = 5.96, p = 0.001), ToT (F(3, 50) = 122.50, p < 

0.001), V O₂max (F(3, 50) = 29.94, p < 0.001), and RErel (F(3, 50) = 49.39, p < 0.001). 

Tukey‟s post-hoc tests revealed the following: There was a difference in height between male 

groups and female groups (all p ≤ 0.004). Sedentary men were significantly heavier than all other 

participants (all p ≤ 0.001). There were no differences in weight between M ,   , and  C  p = 0.808). The 

percentage of body fat (%BF) was significantly lower in MR than in all other groups (p ≤ 0.001), and  C 

had significantly higher %BF than all other groups (p = ≤ 0.016).     did not differ between MC and    

(p = 0.496). MC showed a higher BMI than MR (p = 0.001) and FR (p = 0.032). There was no difference in 

BMI between FC and all other groups (p ≥ 0.156). ToT of M  was significantly greater than ToT of FR (p 

< 0.001), ToT of FR was significantly greater than ToT of MC (p < 0.001), and ToT of MC was 

significantly greater than ToT of FC (p = 0.009). M  achieved greater V O₂max values than all others (p < 

0.001) while    achieved greater V O₂max values than FC (p = 0.003). V O₂max values of MC were not 

different from V O₂max values of FR (p = 0.304) and FC (p = 0.264). MR displayed the lowest RErel, 

followed by FR (p < 0.001), which were followed by MC (p = 0.002), while FC displayed the highest RErel 

(p = 0.014). MR presented with significantly lower RERmax than FR (p = 0.049). No other group 

differences were present in RERmax (p ≥ 0.249). 

The descriptive statistics for PRs by race distance and group are summarized in Table A-4. As 

expected, the male runners had consistently faster PRs than the female runners (800m, F(1, 22) = 54.77, p ≤ 
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0.001; 1.5km, F(1, 18) = 62.12, p ≤ 0.001; 1.6km, F(1, 16) = 61.05, p ≤ 0.001; 3km, F(1, 17) = 69.02, p ≤ 

0.001; 5km, F(1, 22) = 76.85, p ≤ 0.001; 10km, F(1, 14) = 63.98, p ≤ 0.001). 

 

 

Correlations for MC 

 
Table A-5 shows the correlations between digit ratios, height, weight, and age, and performance 

variables in MC. There was no association between digit ratios and V O₂max. Right and left 2D:4D related 

negatively to REabs with the same trend in R-L 2D:4D. Right and R-L 2D:4D related negatively to RErel 

with the same trend in left 2D:4D. Contrary to our hypotheses, RERmax and ToT showed a trend to be 

positively related to right and left 2D:4D. Weight showed a trend to be negatively related to V O₂max, 

RERmax, and ToT, and positively to RErel. Age and RErel showed a negative association with the same trend 

between age and REabs. Age also shared positive relationships (sig. 2-tailed) with right 2D:4D (r = 0.55, p = 

0.052), left 2D:4D (r = 0.29, p = 0.329), and R-L 2D:4D (r = 0.49, p = 0.087). We used first order partial 

correlation analyses to remove the effects of age on the relationships between digit ratios and measures of 

running economy. The relationships between right 2D:4D and REabs (r = -0.45, p = 0.071) as well as right 

2D:4D and RErel (r = -0.42, p = 0.086) did not remain significant. The relationship between left 2D:4D and 

REabs (r = -0.42, p = 0.085) as well as RErel (r = -0.28, p = 0.192) and the relationship between R-L 2D:4D 

and RErel (r = -0.25, p = 0.215) were also weakened. 

 

Correlations for FC 

 
Table A-6 shows the correlations between digit ratios, height, weight, and age, and performance 

variables in  C. There was no association between digit ratios and V O₂max. Height and weight showed a 

trend to be negatively associated to V O₂max. Consistent with the trend in MC, there was a positive 

correlation between left 2D:4D and RERmax. The relationship between left 2D:4D and RErel was positive 

and marginally significant. There was also a strong trend for height and weight to share a negative 

relationship with REabs and ToT. Age did not show a strong trend to be related to any of the performance 

variables. Weight showed a stronger association (sig. 2-tailed) with right 2D:4D (r = -0.30, p = 0.284) and 

left 2D:4D (r = -0.40, p = 0.136) than height did (right 2D:4D, r = -0.15, p = 0.588; left 2D:4D, r = -0.14, p 

= 0.623). Therefore, we used first order partial correlation analyses to remove the effects of weight on the 

relationships between digit ratios and performance variables (Table A-7). 

After controlling for weight, right and left 2 :4  had become more strongly inversely related to 

V O₂max, REabs, and ToT. Right and left 2D:4D and RERmax as well as RErel were more strongly positively 

related. The correlations between left 2 :4  and V O₂max, RERmax, REabs, and RErel reached statistical 

significance. The correlations between R-L 2D:4D and performance variables were unchanged. The 
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correlations between right and left 2D:4D and performance variables were in the expected direction except 

for the correlations between right and left 2D:4D and RERmax. 

 

Correlations for MR 

 
Table A-8 shows the correlations between digit ratios, height, weight, and age, and performance 

variables in MR. Slight positive associations between measures of digit ratio and V O₂max emerged. There 

was a strong trend for negative correlations between right and left 2D:4D and RERmax. R-L 2D:4D also 

seemed to be inversely related to RERmax. R-L 2D:4D shared weak negative correlations with REabs and 

RErel. The same trend also appeared between right and left 2D:4D and RErel. There were also weak negative 

relationships between right and left 2D:4D and ToT. Age and RERmax showed a trend towards a positive 

relationship. Height and weight shared a significant positive relationship with V O₂max and REabs. Weight 

was also positively associated with ToT, while the association between height and ToT displayed the same 

trend. Height and weight also appeared to be negatively associated to RERmax and RErel. However, height 

(sig. 2-tailed: right 2D:4D, r = 0.10, p = 0.743; left 2D:4D, r = 0.07, p = 0.826; R-L 2D:4D, r = 0.11, p = 

0.710) and weight (sig. 2-tailed: right 2D:4D, r = 0.05, p = 0.875; left 2D:4D, r = -0.01, p = 0.980; R-L 

2D:4D, r = 0.13, p = 0.667) were not associated with digit ratios. 

Table A-9 shows the correlations between digit ratios, performance variables, and age, and PRs in 

MR. There are consistent positive relationships between measures of digit ratio and PRs except for the 

relationships between left 2D:4D and 1.5km PRs as well as  -L 2 :4  and 10km P s. The following 

relationships were statistically significant:  ight and  -L 2 :4  with 800m P s,  -L 2 :4  with 1.5km 

P s, and right and left 2 :4  with 5km P s. The relationships between V O₂max and 1.5km, 1.6km, and 

3km PRs were negative but did not reach significance. RERmax generally showed a strong negative 

association to PRs with the association between RERmax and 5km PRs being significant. Relationships 

between REabs and PRs showed a weak tendency to be negative, however, the association of REabs with 

10km PRs was significant and positive. Age seemed to be negatively related to PRs while reaching 

statistical significance when correlated with 3km and 5km PRs. Additionally, age showed trends to related 

negatively to right 2D:4D (sig. 2-tailed, r = -0.22, p = 0.467) and left 2D:4D (sig. 2-tailed, r = -0.27, p = 

0.377). We used first order partial correlation analyses to remove the effects of age, and found an average 

change of r = -0.02 (range: -0.12 ≤ r ≤ 0.08) in the strength of the relationships between all measures of 

digit ratios and PRs combined. The correlations (sig. 1-tailed) between right 2D:4D and 5km PRs (r = 0.53, 

p = 0.040), R-L 2D:4D and 800m PRs (r = 0.67, p = 0.009) as well as 1.5km PRs (r = 0.75, p = 0.010) 

remained significant. Thus, age did not seem to moderate the relationship between digit ratios and 

endurance running performance. However, RERmax showed consistent trends to be negatively related to 

measures of digit ratios and PRs across all distances. First order partial correlation analyses were used to 
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remove the effects of RERmax on the relationship between digit ratios and PRs and we found that the 

directions of the relationships between digit ratios and PRs were generally reversed. Except for the 

relationships (sig. 1-tailed) between left 2D:4D and 800m PRs (r = 0.01, p = 0.486) as well as R-L 2D:4D 

and 10km PRs (r = 0.60, p = 0.059), all relationships between digit ratios and PRs ranged between r = -0.05 

and r = -0.71. The relationship between right 2D:4D and 1.6km PRs (r = 0.71, p = 0.016) reached statistical 

significance. 

  

Correlations for FR 

  
Table A-10 shows the correlations between digit ratios, height, weight, and age, and performance 

variables in FR. Consistent with our findings in MR and contrary to our hypotheses, all measures of digit 

ratios showed a trend to relate positively to V O₂max. Also consistent with MR, we found a trend for 

negative relationships between measures of digit ratios and RERmax as well as RErel. Digit ratios seemed to 

relate positively to REabs and ToT. In general, all relationships between weight and performance variables 

where reversed in    compared to M . Whereas weight was positively related to V O₂max in MR, the trend 

between these variables was negative in FR. Weight and RERmax shared a significant positive relationship 

and weight and REabs shared a significant negative relationship in   . Moreover, V O₂max and ToT seemed 

to relate negatively to weight. There were weak trends for right 2D:4D (sig. 2-tailed, r = -0.22, p = 0.481) 

and left 2D:4D (sig. 2-tailed, r = -0.31, p = 0.298) to relate negatively to weight. There was no relationship 

between R-L 2D:4D and weight (r = 0.08, p = 0.794). We used first order partial correlation analyses to 

remove the effects of weight on the relationships between right and left 2D:4D and performance variables. 

The relationships between right and left 2D:4D and performance variables were weakened after controlling 

for weight except for the relationships between right and left 2D:4D and RErel, which did not change. The 

relationships between right and left 2 :4  and V O₂max changed by r = -0.06 and r = -0.10, respectively. 

The relationships between right and left 2D:4D and RERmax changed by r = 0.11 and r = 0.18, respectively. 

The relationships between right and left 2D:4D and REabs changed by r = -0.05 and r = -0.16, respectively, 

and the relationships between right and left 2D:4D and ToT changed r = -0.09 and r = -0.16, respectively. 

Table A-11 shows the correlations between digit ratios, performance variables, and age, and PRs 

in FR. The relationships between all measures of digit ratios and PRs were highly inconsistent, with nine 

relationships being positive and nine relationships being negative. The relationship between R-L 2D:4D 

and 10km PRs was, contrary to our hypothesis, negative and the only one which reached statistical 

significance. Interestingly, the relationship between R-L 2D:4D and 10km PRs was also one of only two 

negative relationships among all relationships between digit ratios and PRs in M . In   , V O₂max showed 

strong negative relationships with PRs in all distances, which failed to reach statistical significance only in 

3km and 10km PRs. Strong trends in terms of positive relationships between RERmax and PRs were also 
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present. The relationship between RERmax and 1.6km PRs was highly significant. REabs was negatively 

associated with PRs, reaching marginal significance in 800m, 1.6km, and 5km PRs. RErel and PRs across 

all distances shared positive relationships which failed to reach significance only in 3km and 10km PRs. 

ToT was significantly and negatively correlated to PRs in all distances. The latter were the strongest and 

most consistent correlations found in this study. As indicated above, V O₂max and REabs showed the 

strongest associations to measures of digit ratio. Moreover, V O₂max and REabs shared 83% of variance (r = 

0.91, r < 0.001) in this sample. Hence, we used first order partial correlation analyses to remove the effects 

of V O₂max only from the relationship of digit ratios to PRs (Table A-12). 

After controlling for V O₂max, all relationship between digit ratios and PRs changed in the positive 

direction, except for the correlation between R-L 2D:4D and 10km PRs, which became a stronger negative 

relationship reaching statistical significance. The positive correlations between right and left 2D:4D and 

1.5km PRs and the relationship between left 2D:4D and 5km PRs reached significance. 

 

Discussion 

 
Comparison of group differences in 2D:4D digit ratios in this investigation supports 2D:4D as a 

sexually dimorphic trait, however, the data do not indicate that endurance runners have lower ratios than 

their gender-matched sedentary counterparts. 

We interpret our results in terms of the associations of right and left 2D:4D with prenatal 

testosterone concentrations and R-L 2D:4D with testosterone sensitivity. Unless otherwise indicated, the 

interpretations of these results are based on the correlations which are uncontrolled for a third variable. In 

the sedentary samples, right and left 2 :4  showed very weak trends, at best, to be negatively related to 

V O₂max. After controlling for weight, the negative correlation between left 2 :4  and V O₂max reached 

significance in FC. In MR and especially in   , right and left 2 :4  showed a slightly stronger trend but 

towards a positive relationship with V O₂max. It appears that total body weight plays a mediating role in 

these positive relationships in FR as they were weakened after weight was controlled for.  -L 2 :4  and 

V O₂max shared a weak positive relationship across all samples. In summary, we cannot support the theory 

that prenatal testosterone or testosterone sensitivity exert organizational effects on the human physiology 

favoring V O₂max. Our results stand in contrast to Hill‟s et al.  2012) results who found a negative 

relationship between  -L 2 :4  and V O₂max. Hill et al. (2012), concluded that testosterone sensitivity, 

specifically CAG repeat polymorphism of the AR, may be the mediating factor between low  -L 2 :4  

and V O₂max in conjunction with training as the testosterone stimulus. As the relationship of right and left 

2 :4  with V O₂max was in the hypothesized direction in FC but not in MR and FR, and because the 

relationship between R-L 2D:4  and V O₂max was in the positive direction across all samples, it seems that 
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endurance training causes changes in V O₂max through pathways more powerful than CAG triplet repeat 

polymorphism provided the number of CAG triplet repeats is in the normal range. The reversal in the 

direction of the relationship of right and left 2D:4D to V O₂max from the sedentary population to the runners 

seems to indicate that training effects outweigh the effects of prenatal testosterone concentrations on the 

cardiovascular system. 

RERmax related negatively to right, left, and R-L 2D:4D in the runners and negatively to R-L 

2D:4D in the sedentary college students. Right and left 2D:4D showed a weak positive and somewhat 

inconsistent relationship to RERmax in the sedentary participants. After controlling for weight, the positive 

correlation between left 2D:4D and RERmax in FC reached statistical significance. The negative correlations 

between R-L 2D:4D and RERmax are consistent with Hill‟s et al.  2012) report of a negative relationship 

between maximal lactate concentrations and R-L 2D:4D, as RERmax is an indicator of the amount of 

buffered lactic acid. The underlying mediators of the relationship between R-L 2D:4D and peak lactate 

concentrations as well as lactic acid buffering capacity remain elusive. Testosterone sensitivity, specifically 

CAG triplet repeat length of which  -L 2 :4  seems to be a biomarker, has been linked to improvements 

in V O₂max  Wang et al., 2010) and improvements in V O₂max are linked to increased capillarisation of 

skeletal muscle and increased ratios of Type I muscle fibers both of which facilitate the clearance of lactic 

acid and lead to lower lactate thresholds (Bassett & Howley, 2000; Ivy, Withers, Van Handel, Elger, & 

Costill, 1980). Additionally, endurance training has been shown to increase the ratio of Type I to Type II 

muscle fibers (Howald, Hoppeler, Claassen, Mathieu, & Straub, 1985). Thus, lower R-L 2D:4D should be 

associated with lower RERmax and maximal lactate concentrations. Hence, the negative association between 

R-L 2D:4D and RERmax in endurance runners is somewhat counterintuitive. It seems that the factors 

controlling lactate accumulation respond to testosterone stimulation independently of the factors causing 

improvements in oxygen uptake capacities. Moreover, the relationships between right and left 2D:4D and 

RERmax seemed to be reversed by endurance training, whereas these relationships are in the expected 

direction in relative long term inactivity. 

There was a trend in women for all measures of digit ratios, except for left 2D:4D in FC, to relate 

positively to REabs. In men, digit ratios, except for left 2D:4D in MR, generally related negatively to REabs 

with significant relationships between right and left 2D:4D and REabs in MC. Thus, the associations 

between measures of digit ratios and REabs were somewhat inconsistent in MR and FC. There were strong 

associations between REabs and V O₂max (MR, r = 0.72, p = 0.003; MC, r = 0.48, p = 0.051; FR, r = 0.91, p 

< 0.001; FC, r = 0.93, p < 0.001). Hence, the relationships between digit ratios and REabs should be similar 

to the relationships between digit ratios and V O₂max with stronger similarities in women compared to men. 

Indeed, in FC and FR the relationships between measures of digit ratio and REabs were in the same direction 

and generally stronger compared with the relationships between measures of 2 :4  and V O₂max. The 
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relationships between measures of 2D:4D and REabs were in the expected direction in MC and in the 

opposite direction in MR. It appears that prenatal testosterone is associated with higher submaximal oxygen 

consumption in sedentary men but not women, and that prenatal testosterone is not associated with 

submaximal oxygen consumption in male runners. Age, however, seems to partially mediate this 

relationship in MC, whereas younger ages seem to be associated with lower 2D:4D and poor running 

economy (higher REabs and RErel). In female runners, prenatal testosterone seems to be associated with 

lower submaximal oxygen consumption. This finding is contrary to our hypothesis, as total muscle mass 

should mediate this relationship as it is positively associated with testosterone stimulation (Hartgens & 

Kuipers, 2004) and submaximal oxygen consumption (Morgan, Tseh, Caputo, Graig, Keefer, & Martin, 

1999). This theory is supported by the positive relationship among V O₂max, REabs, and weight in MR as 

their low average %BF suggests that differences in weight are attributable to differences in lean body mass 

and height.  

The trends of the relationships between digit ratios and RErel were similar to the trends between 

digit ratios and REabs, whereas more negative and stronger relationships were found in men. In MC, right 

and R-L 2D:4D correlated significantly and negatively with RErel. These same relationships were second 

strongest among MR. FR also displayed weak negative associations between digit ratios and RErel. The 

relationship between digit ratios and RErel were trending in a positive direction only in right and left 2D:4D 

of FC, whereas the correlation between left 2D:4D and RErel reach statistical significance after controlling 

for weight. It appears that lower digit ratios and thus higher prenatal testosterone levels are associated with 

higher submaximal oxygen consumption relative to V O₂max. This finding is in agreement with the positive 

correlations found between digit ratios and V O₂max in the runners as lower RErel partially depends on high 

V O₂max values. However, these results are another contraindicator of the positive influence of prenatal 

testosterone on the aerobic fitness of the cardiovascular system. 

We found a trend for positive relationships between digit ratios and ToT in MC and FR. In FC and 

MR, there was a very weak trend for negative relationships between these variables. The relationship 

between digit ratios and ToT are not consistent with Hill et al.  2012), as they found a negative relationship 

between  -L 2 :4  and running velocity at V O₂max. However, we found very small positive correlations 

between these variables in FR and MC and a weak negative correlation in FC and MR. Thus, the influence 

of prenatal testosterone and testosterone sensitivity on cardiovascular fitness may be highly gender and 

training specific. 

Consistent with past reports, we found positive relationships between measures of digit ratios and 

PRs in 800m through 10km in MR. In fact, partial correlations analyses controlling for RERmax indicated 

that RERmax may be a physiological factor mediating the relationship between digit ratios and endurance 

running performance in male endurance runners. While 2D:4D seemed to be more strongly associated with 
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PRs than performance variables in MR, the opposite was true in FR. Moreover, the relationship between 

performance variables and PRs in FR were all in the expected direction and consistent with the literature 

(Daniels & Daniels, 1992). After controlling for V O₂max, correlations between digit ratios and P s, became 

more positive in    indicating that V O₂max is a potential confounder of positive relationships between digit 

ratios and PRs. This finding does not support the positive effects of prenatal testosterone and testosterone 

sensitivity on maximal oxygen uptake capacity as the mediator of the relationship between prenatal 

testosterone stimulation and endurance running performance. It seems that positive associations between 

digit ratios and endurance running performance are mediated by other factors such as lactic acid buffering 

capacity. However, R-L 2D:4D and 10km PRs shared a negative relationship especially in FR, even after 

controlling for V O₂max, indicating that higher R-L 2D:4D and thus lower testosterone sensitivity are 

associated with better endurance running performance as race distance increases. Overall, these findings, in 

part, support Manning‟s et al.  2007) report of a positive influence of prenatal testosterone on endurance 

running performance. It appears possible that prenatal testosterone exerts its positive effects on endurance 

performance by increasing the tolerance for lactate accumulation and not by increasing maximal aerobic 

capacities. Moreover, these relationships may be confounded or reversed when considering proxies of 

testosterone sensitivity (R-L 2D:4D) and longer race distances as indicated by the negative relationships 

between R-L 2D:4D and 10km PRs. 

In the present investigation, all measures of digit ratio relate to endurance running performance, 

whereas lower ratios are associated with better performance. In female endurance runners, however, this 

only seems true after controlling for the relatively weak relationship of V O₂max to digit ratio and the strong 

relationship of V O₂max to race performance. Thus the relatively strong relationship between V O₂max and 

endurance running performance in FR masks the relationship of digit ratios to endurance running 

performance. This finding also underlines possible weaknesses of the associations between digit ratios and 

endurance running performance as well as digit ratios and V O₂max in female runners. It appears that 

prenatal testosterone does not have beneficial effects on adult maximal oxygen uptake capacities and, in 

contrast to previous reports  i.e. Wang et al, 2010) increases in V O₂max following training do not seem to be 

mediated by effects of testosterone sensitivity which means that endurance training further weakens the 

relationship between digit ratios and V O₂max. 

It seems also plausible that anthropometric measures which are correlates of RE might explain part 

of the relationship of 2D:4D to endurance running performance. Bone development in lower extremities 

may be predetermined by prenatal testosterone because of the effects of prenatal testosterone on finger 

bones. 

It should be noted that controlling for age in MC weakened the relationships between digit ratios 

and performance variables, indicating that age may moderate those relationships to some degree. In MR, 
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controlling for age had no effect on these relationships. However, we recommend that future investigations 

of the relationships between digit ratios and physiological, anthropometric, or athletic performance 

measures limit the age of participants to a window of less than seven years as digit ratios and the 

aforementioned measures seem to change with age. Controlling for weight in FC strengthened the 

relationships between digit ratios and performance variables, indicating that total body weight may 

confound these relationships in inactive women. In contrast, body weight, to a small degree, seems to 

mediate these same relationships in female runners. 

The generalizability of our results is limited due to sample sizes which were too small to allow for 

more consistent and significant relationships between measures of digit ratio, performance variables, and 

P s. It is also possible that differences in training status between first year and fourth year collegiate 

runners accounted for more variance in V O₂max and PRs than digit ratios. Moreover, some runners were 

tested towards the beginning, some towards the middle, and some towards the end of their respective 

competitive season. Thus, differences in training status increase the error variance in performance 

variables. Additionally, the sampling of female collegiate distance runners from one mid-sized southeastern 

university and one small southeastern college presents a limitation as the training stimuli between the 

runners from these two institutions are not equal. 

 

Conclusion 

 
It seems that digit ratios and V O₂max may be inversely related only in sedentary populations, while 

this relationship may be confounded by total body weight in sedentary women.  ndurance training may 

change the direction of relationship between digit ratios and V O₂max. We found that R-L 2D:4D is 

negatively associated with RERmax. However, the mechanisms moderating the association of testosterone 

sensitivity to lactate accumulation and buffering capacity remain unclear. Prenatal testosterone seems to be 

associated with lower submaximal oxygen consumption in female runners and sedentary counterparts while 

it is associated with higher submaximal oxygen consumption in sedentary men. There is no apparent 

relationship between these relationships in male runners. Except in sedentary women, prenatal testosterone 

appears to relate to higher submaximal oxygen consumption relative to V O₂max indicating poorer 

cardiovascular fitness. ToT related positively to R-L 2D:4D in all groups except in sedentary women. Thus, 

testosterone sensitivity does not seem to have positive effects on physiological determinants of 

cardiovascular endurance. 

The consistent and moderately strong relationships between digit ratios and endurance running 

performance do not seem to be mediated by V O₂max in female runners. Running economy, although related 

to V O₂max, appears to be more strongly associated to digit ratios. However, the direction of the relationship 

seems to depend on gender and training status. We found stronger evidence for a relationship of lactate 
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accumulation and buffering capacity to digit ratios. The association between 2D:4D and endurance running 

performance may be mediated by the capacity to buffer and/or clear lactic acid in male runners. We 

recommend the investigation of the relationships among lactate threshold, endurance running performance 

and 2D:4D. Weight and age seem to partially mediate or confound the relationships between digit ratios 

and performance variables depending on gender and training status and may thus need to be controlled for 

when comparing the relationships between digit ratios and physiological performance variables among 

groups of differing body weights and ages. 

We cannot support prenatal testosterone and testosterone sensitivity as a correlate of good 

cardiovascular fitness in terms of V O₂max and ToT except in sedentary women after controlling for weight. 

In highly trained runners, however, prenatal testosterone and testosterone sensitivity do relate to improved 

endurance running capabilities, however, this association does not seem to be moderated by absolute 

aerobic capacities  V O₂max) but rather by lactate accumulation and the capacity to buffer it. 
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Table A-1. 2D:4D in Individuals With CAIS and Controls 

(Mean ± SD). 

  
CAIS 

(n = 16) 

Control Women 

(n = 90) 

Control Men 

(n = 66) 

Right 2D:4D 0.972 ± 0.032 0.969 ± 0.037 0.952 ± 0.033 

Left 2D:4D 0.972 ± 0.041 0.972 ± 0.037 0.960 ± 0.033 

Source: Berenbaum et al. (2009). Fingers as a marker of prenatal androgen exposure. Endocrinology, 150, 

5119-5124. 

 

 

 

Table A-2. Descriptive Statistics of Digit Ratios by Group and Total Sample (Mean 

± SD). 

  
MC 

(n = 13) 

FC 

(n = 15) 

MR 

(n = 13) 

FR 

(n = 13) 

Total 

(n = 54) 

Right 2D:4D 0.972 ± 0.034 0.986 ± 0.030 0.973 ± 0.039 0.984 ± 0.038 0.979 ± 0.035 

Left 2D:4D 0.975 ± 0.028 0.985 ± 0.024 0.966 ± 0.031 0.974 ± 0.032 0.975 ± 0.029  

R-L 2D:4D -0.002 ± 0.022 0.001 ± 0.025 0.007 ± 0.016 0.010 ± 0.022 0.004 ± 0.022 

 

 

Table A-3. Descriptive Statistics of Age, Height, Weight, Body Mass Index (BMI), 

Percentage of Body Fat (%BF), and Performance Variables by Group and Total Sample 

(Mean ± SD). 

  
MC 

(n = 13) 

FC 

(n = 15) 

MR 

(n = 13) 

FR 

(n = 13) 

Total 

(n = 54) 

Age [years] 20.2 ± 2.8 18.7 ± 1.0 20.5 ± 1.6 20.2 ± 1.6 19.9 ± 1.9 

Height [cm] 176.8 ± 8.1 165.6 ± 6.3 174.5 ± 6.7 164.3 ± 4.7 170.1 ± 8.3 

Weight [kg] 76.5 ± 14.6 59.9 ± 8.9 60.5 ± 5.6 57.2 ± 6.2 63.4 ± 11.9 

BMI 24.3 ± 3.7 22.0 ± 3.3 19.8 ± 1.1 21.2 ± 2.1 21.8 ± 3.1 

%BF 16.4 ± 6.2 25.1 ± 6.6 4.1 ± 1.7 19.2 ± 3.8 16.5 ± 9.2 

ToT [sec] 704.8 ± 65.2 596.4 ± 71.8 1183.6 ± 99.8 914.3 ± 103.1 839.9 ± 242.5 

V O₂max 39.0 ± 5.1 33.0 ± 6.2 62.5 ± 11.2 44.9 ± 10.4 44.4 ± 13.9 

RERmax 1.39 ± 0.16 1.34 ± 0.15 1.23 ± 0.13 1.45 ± 0.34 1.35 ± 0.22 

REabs 30.2 ± 3.7 29.1 ± 3.3 32.3 ± 4.0 29.2 ± 4.4 30.2 ± 4.0 

RErel [%] 78.2 ± 10.4 87.9 ± 7.1 52.5 ± 6.4 66.3 ± 7.5 71.5 ± 15.5 
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Table A-4. Descriptive Statistics of PRs by Race Distance and Group (Mean [min:sec] ± SD 

[sec]). 

  800m 1.5km 1.6km 3km 5km 10km 

MR 1:58.3 ± 4.5 3:54.6 ± 7.6 4:19.4 ± 11.3 8:27.6 ± 25.7 14:48.1 ± 48.9 31:04.7 ± 101.4 

FR 2:28.3 ± 13.8 5:03.3 ± 26.5 5:30.8 ± 26.2 10:22 ± 34.2 19:10.2 ± 94.1 40:13.4 ± 171.9 

 

 

Table A-5. Relationships (r, d.f. = 11) Between Right 2D:4D, Left 2D:4D, R-L 2D:4D, Height, 

Weight, and Age, and Performance Variables in Male Sedentary College Students (MC). 

 
V O₂max RERmax REabs RErel ToT 

        r p      r     p      r p     r p    r p 

Right 2D:4D* 0.03 0.452 0.21 0.245 -0.60 0.014 -0.62 0.012 0.34 0.126 

Left 2D:4D* -0.11 0.360 0.36 0.116 -0.50 0.041 -0.39 0.093 0.25 0.201 

R-L 2D:4D* 0.20 0.255 -0.12 0.346 -0.32 0.145 -0.48 0.048 0.22 0.237 

Height** 0.09 0.389 0.06 0.424 -0.06 0.842 -0.14 0.648 0.08 0.788 

Weight** -0.28 0.178 -0.22 0.235 0.04 0.898 0.34 0.264 -0.34 0.261 

Age** 0.13 0.678 0.21 0.498 -0.51 0.073 -0.64 0.019 0.34 0.256 

*sig. 1-tailed; **sig. 2-tailed; significant correlations  p ≤ 0.05) in bold italics 

 

 

Table A-6. Relationships (r, d.f. = 13) Between Right 2D:4D, Left 2D:4D, R-L 2D:4D, Height, 

Weight, and Age, and Performance Variables in Female Sedentary College Students (FC). 

 
V O₂max RERmax REabs RErel ToT 

       r p     r p      r p    r p  r p 

Right 2D:4D* -0.05 0.437 0.16 0.290 0.06 0.418 0.23 0.216 -0.13 0.323 

Left 2D:4D* -0.22 0.220 0.45 0.048 -0.31 0.140 0.46 0.051 0.03 0.455 

R-L 2D:4D* 0.15 0.295 -0.24 0.197 0.36 0.103 -0.12 0.339 -0.19 0.255 

Height** -0.39 0.153 -0.08 0.777 -0.51 0.065 0.25 0.388 -0.46 0.082 

Weight** -0.46 0.088 0.12 0.665 -0.43 0.124 0.18 0.546 -0.41 0.127 

Age** -0.20 0.482 0.24 0.388 -0.15 0.621 -0.21 0.479 -0.21 0.447 

*sig. 1-tailed; **sig. 2-tailed; significant correlations  p ≤ 0.05) in bold italics 
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Table A-7. First Order Partial Correlations Between Right 2D:4D, Left 2D:4D, and R-L 

2D:4D, and Performance Variables Controlled for Weight in Female Sedentary College 

Students (FC). 

 
V O₂max RERmax REabs RErel ToT 

       r p     r p      r p    r p  r p 

Right 2D:4D* -0.21 0.234 0.20 0.244 -0.08 0.401 0.30 0.161 -0.29 0.158 

Left 2D:4D* -0.49 0.037 0.55 0.022 -0.59 0.018 0.59 0.018 -0.16 0.292 

R-L 2D:4D* 0.19 0.263 -0.24 0.201 0.41 0.080 -0.13 0.337 -0.19 0.258 

*sig. 1-tailed; significant correlations  p ≤ 0.05) in bold italics 

 

 

Table A-8. Relationships (r, d.f. = 11) Between Right 2D:4D, Left 2D:4D, R-L 2D:4D, Height, 

Weight, and Age, and Performance Variables in Male Intercollegiate Long Distance Runners 

(MR). 

 
V O₂max RERmax REabs RErel ToT 

       r p    r p      r    p r       p   r    p 

Right 2D:4D* 0.14 0.322 -0.36 0.110 -0.09 0.386 -0.30 0.156 -0.22 0.239 

Left 2D:4D* 0.15 0.310 -0.37 0.109 0.06 0.417 -0.18 0.277 -0.28 0.176 

R-L 2D:4D* 0.05 0.433 -0.18 0.279 -0.34 0.129 -0.39 0.094 0.02 0.479 

Height** 0.61 0.027 -0.37 0.212 0.56 0.049 -0.35 0.236 0.45 0.126 

Weight** 0.74 0.004 -0.51 0.077 0.66 0.014 -0.45 0.126 0.56 0.046 

Age** -0.05 0.862 0.41 0.168 0.05 0.880 0.14 0.650 -0.05 0.868 

*sig. 1-tailed; **sig. 2-tailed; significant correlations  p ≤ 0.05) in bold italics 
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Table A-9. Relationships Between Right 2D:4D, Left 2D:4D, R-L 2D:4D, Performance Variables, and 

Age, and PRs in Male Intercollegiate Long Distance Runners (MR). 

 
800m (d.f. = 11) 1.5km (d.f. = 8) 1.6km (d.f. = 8) 3km (d.f. = 10) 5km (d.f. = 11) 10km (d.f. = 7) 

      r p     r p     r p     r p     r p  r p 

Right 2D:4D* 0.52 0.034 0.24 0.255 0.44 0.104 0.43 0.084 0.54 0.028 0.42 0.129 

Left 2D:4D* 0.35 0.120 -0.26 0.235 0.51 0.067 0.29 0.179 0.51 0.037 0.45 0.113 

R-L 2D:4D* 0.59 0.017 0.75 0.006 0.08 0.413 0.24 0.225 0.33 0.136 -0.08 0.419 

V O₂max* -0.06 0.418 -0.19 0.304 -0.25 0.240 -0.18 0.285 -0.02 0.470 0.15 0.349 

RERmax* -0.33 0.137 -0.09 0.398 -0.50 0.073 -0.47 0.060 -0.49 0.043 -0.52 0.075 

REabs* -0.28 0.181 -0.22 0.270 0.00 0.499 -0.12 0.350 -0.06 0.418 0.65 0.030 

RErel* -0.17 0.294 0.14 0.350 0.35 0.161 0.16 0.306 -0.03 0.467 0.23 0.277 

ToT* 0.07 0.413 -0.14 0.349 -0.30 0.204 -0.13 0.349 -0.16 0.300 -0.21 0.291 

Age** -0.51 0.074 -0.05 0.888 -0.60 0.068 -0.59 0.042 -0.61 0.026 -0.37 0.324 

*sig. 1-tailed; **sig. 2-tailed; significant correlations  p ≤ 0.05) in bold italics 

   

 

Table A-10. Relationships (r, d.f. = 11) Between Right 2D:4D, Left 2D:4D, R-L 2D:4D, 

Height, Weight, and Age, and Performance Variables in Female Intercollegiate Long 

Distance Runners (FR). 

 
V O₂max RERmax REabs RErel ToT 

      r p     r p     r p     r p     r p 

Right 2D:4D* 0.35 0.123 -0.20 0.259 0.38 0.098 -0.15 0.316 0.16 0.296 

Left 2D:4D* 0.27 0.183 -0.20 0.257 0.32 0.146 -0.13 0.338 0.11 0.364 

R-L 2D:4D* 0.21 0.251 -0.06 0.430 0.21 0.247 -0.07 0.411 0.13 0.334 

Height** -0.04 0.899 0.23 0.446 -0.17 0.582 -0.19 0.539 0.13 0.672 

Weight** -0.41 0.161 0.60 0.032 -0.65 0.017 0.00 0.995 -0.48 0.098 

Age** 0.30 0.322 -0.11 0.725 0.12 0.703 -0.33 0.275 0.00 0.993 

*sig. 1-tailed; **sig. 2-tailed; significant correlations  p ≤ 0.05) in bold italics 
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Table A-11. Relationships Between Right 2D:4D, Left 2D:4D, R-L 2D:4D, Performance Variables, and 

Age, and PRs in Female Intercollegiate Long Distance Runners (FR). 

 
800m (d.f. = 9) 1.5km (d.f. = 8) 1.6km (d.f. = 6) 3km (d.f. = 5) 5km (d.f. = 9) 10km (d.f. = 5) 

  r p r p r p r p r p r p 

Right 2D:4D* -0.18 0.300 0.23 0.260 0.12 0.387 -0.03 0.473 0.03 0.463 -0.18 0.346 

Left 2D:4D* -0.28 0.205 0.34 0.170 -0.02 0.483 0.17 0.356 0.31 0.177 0.22 0.320 

R-L 2D:4D* 0.04 0.449 -0.11 0.378 0.24 0.286 -0.54 0.107 -0.38 0.128 -0.74 0.028 

V O₂max* -0.56 0.038 -0.61 0.032 -0.73 0.019 -0.52 0.116 -0.70 0.009 -0.67 0.052 

RERmax* 0.47 0.075 0.55 0.051 0.82 0.007 0.20 0.332 0.43 0.093 0.65 0.059 

REabs* -0.44 0.086 -0.38 0.142 -0.56 0.075 -0.36 0.213 -0.49 0.063 -0.54 0.107 

RErel* 0.65 0.015 0.78 0.004 0.86 0.003 0.59 0.081 0.75 0.004 0.61 0.071 

ToT* -0.75 0.004 -0.86 0.001 -0.93 0.000 -0.93 0.001 -0.90 0.000 -0.70 0.040 

Age** -0.10 0.760 0.20 0.585 -0.20 0.640 0.15 0.743 -0.09 0.785 -0.60 0.151 

*sig. 1-tailed; **sig. 2-tailed; significant correlations  p ≤ 0.05) in bold italics 

   

 

Table A-12. First Order Partial Correlations Between Right 2D:4D, Left 2D:4D, and R-L 2D:4D, and 

PRs Controlled for V O₂max in Female Intercollegiate Long Distance Runners (FR). 

 
800m (d.f. = 9) 1.5km (d.f. = 8) 1.6km (d.f. = 6) 3km (d.f. = 5) 5km (d.f. = 9) 10km (d.f. = 5) 

  r p r p r p r p r p r p 

Right 2D:4D* 0.02 0.480 0.59 0.047 0.59 0.082 0.19 0.363 0.40 0.123 0.07 0.451 

Left 2D:4D* -0.16 0.334 0.66 0.027 0.28 0.272 0.38 0.227 0.72 0.009 0.56 0.126 

R-L 2D:4D* 0.20 0.295 0.01 0.486 0.58 0.085 -0.52 0.148 -0.33 0.176 -0.83 0.020 

*sig. 1-tailed; significant correlations  p ≤ 0.05) in bold italics 
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Figure B-1. Sex steroid receptors as link between 2D:4D and postnatal traits. 

Adapted from: Forstmeier, W., Müller, J. C., & Kempenaers, B. (2010). A polymorphism in the oestrogen 

receptor gene explains covariance between digit ratio and mating behavior. Proceedings of the Royal 

Society B, 277, 3353-3361. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B-2. Standardized correlations of right-hand (A) and left-hand (B) 2D:4D with running performance 

by distance. 

Source: Hönekopp, J. & Schuster, M. (2010). A meta-analysis on 2D:4D and athletic prowess: Substantial 

relationships but neither hand outpredicts the other. Personality and Individual Differences, 1, 4–10. 
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Figure B-3. A schematic representation of the determination of digit ratios. The length of the second digit 

(2D) and the fourth digit (4D) are measured from the basal crease of the digit to the soft tissue tip. The 

2D:4D ratio is calculated by dividing the length of the second digit by that of the fourth 

Source: Kallai, J., Csathó, Á., Kövér, F., Makány, T., Nemes, J., Horváth, K., Kovács, N., Manning, J. T., 

Nadel, L., & Nagy, F. (2005). MRI-assessed volume of left and right hippocampi in females correlates with 

the relative length of the second and fourth fingers (the 2D:4D ratio). Psychiatry Research: Neuroimaging, 

140(2), 199-210.
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Eastern Kentucky University 

Department of Exercise and Sports Science 

223 Moberly Building 

521 Lancaster Avenue, Richmond, KY 40475 

Digit Ratio (2D:4D) and VO₂max Research Study 

 
Pre-Test Instructions 

 
NOTE: These pre-test instructions must be strictly adhered to. If you do not follow these instructions 

we must exclude you from the study. The purpose of these instructions is to minimize variables that would 

otherwise render the research results useless. 

We ask that you: 

1) Do not exercise the day before and the day of the testing session until the testing has been 

concluded 

2) Do not change your exercising routine or usual amount of physical activity from now until the 

testing session has been concluded 

3) Continue taking any medication that you take on a regular basis unless your doctor tells you to 

stop taking it 

4) Do not take any new medication that you have not been taking on a regular basis prior to the 

testing unless your doctor tells you to do so 

5) Do not consume any caffeine, nicotine, or alcohol during the 24 hours prior to the testing session 

6) Do not eat anything 2½ hours prior to the testing session 

7) Clip the nails of your index and ring fingers on both hands so that the nails do not extend beyond 

the fleshy part of your fingers 

8) Wear comfortable sports apparel such as athletic or running shorts, a t-shirt, and gym shoes or 

preferably running shoes for the testing session 

9) Arrive at Moberly 223 on  _____________________________ at ___________________ for the 

testing session 

 

You may withdraw from the study at any time for any reason without penalty or any negative consequences. 

If you have any concerns or questions or you would like to withdraw from the study, please contact Simon 

Holzapfel at simon_holzapfel@mymail.eku.edu or 423-329-3038. 

 

Thank you for your cooperation and willingness to participate in this study! 
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Eastern Kentucky University 

Department of Exercise and Sports Science 

223 Moberly Building 

521 Lancaster Avenue, Richmond, KY 40475 

Digit Ratio (2D:4D) and VO₂max Research Study 

 
Pre-Test Instructions 

 
NOTE: These pre-test instructions must be strictly adhered to. If you do not follow these instructions 

we must exclude you from the study. The purpose of these instructions is to minimize variables that would 

otherwise render the research results useless. 

We ask that you: 

1) Do not exercise and/or run the day before and the day of the testing session until the testing has 

been concluded 

2) Run no more than 5 miles at an easy, conversational pace 2 days prior to the testing session 

3) Continue taking any medication that you take on a regular basis unless your doctor tells you to 

stop taking it 

4) Do not take any new medication that you have not been taking on a regular basis prior to the 

testing unless your doctor tells you to do so 

5) Do not consume any caffeine, nicotine, or alcohol during the 24 hours prior to the testing session 

6) Do not eat anything 2½ hours prior to the testing session 

7) Clip the nails of your index and ring fingers on both hands so that the nails do not extend beyond 

the fleshy part of your fingers 

8) Wear comfortable sports apparel such as athletic or running shorts, a t-shirt, and gym shoes or 

preferably running shoes for the testing session 

9) Arrive at Moberly 223 on  _____________________________ at ___________________ for the 

testing session 

 

You may withdraw from the study at any time for any reason without penalty or any negative consequences. 

If you have any concerns or questions or you would like to withdraw from the study, please contact Simon 

Holzapfel at simon_holzapfel@mymail.eku.edu or 423-329-3038. 

 

Thank you for your cooperation and willingness to participate in this study! 
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Eastern Kentucky University 

Department of Exercise and Sports Science 

223 Moberly Building 

521 Lancaster Avenue, Richmond, KY 40475 

Digit Ratio (2D:4D) and VO₂max Research Study 

 
Pre-Test Instructions 

 
NOTE: These pre-test instructions must be strictly adhered to. If you do not follow these instructions 

we must exclude you from the study. The purpose of these instructions is to minimize variables that would 

otherwise render the research results useless. 

We ask that you: 

1) Do not exercise and/or run the day before and the day of the testing session until the testing has 

been concluded 

2) Run no more than 4 miles at an easy, conversational pace 2 days prior to the testing session 

3) Continue taking any medication that you take on a regular basis unless your doctor tells you to 

stop taking it 

4) Do not take any new medication that you have not been taking on a regular basis prior to the 

testing unless your doctor tells you to do so 

5) Do not consume any caffeine, nicotine, or alcohol during the 24 hours prior to the testing session 

6) Do not eat anything 2½ hours prior to the testing session 

7) Clip the nails of your index and ring fingers on both hands so that the nails do not extend beyond 

the fleshy part of your fingers 

8) Wear comfortable sports apparel such as athletic or running shorts, a t-shirt, and gym shoes or 

preferably running shoes for the testing session 

9) Arrive at Moberly 223 on  _____________________________ at ___________________ for the 

testing session 

 

You may withdraw from the study at any time for any reason without penalty or any negative consequences. 

If you have any concerns or questions or you would like to withdraw from the study, please contact Simon 

Holzapfel at simon_holzapfel@mymail.eku.edu or 423-329-3038. 

 

Thank you for your cooperation and willingness to participate in this study!
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APPENDIX D: 

Informed Consent Form 



 

 

 

85 

 

 

  



 

 

 

86 

 

 

  



 

 

 

87 

 

 

  



 

 

 

88 

 

 

  



 

 

 

89 

 

 

  



 

 

 

90 

 

 

  



 

 

 

91 

 

 

  



 

 

 

92 

 

 

  



 

 

 

93 

 

 

  



 

 

 

94 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX E: 

PAR-Q & YOU 
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APPENDIX F: 

Pre-Test Questionnaires 
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APPENDIX G: 

Demographics Questionnaires 
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APPENDIX H: 

Treadmill Test Instructions 
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Standardized Instructions for the Treadmill Test 

 “We want you to do the best that you can on this test by going as long as possible on the 

treadmill until you are too tired to continue. After a short warm-up where you‟ll be walking on a 

level treadmill, the actual test will begin. At this point, the elevation will increase to 10% and the 

speed will be set to 1.7 mph.  It‟s important that you face forward, and keep your feet as close to 

the top of the treadmill as you can, and someone will let you know if you are not in correct 

position.   very three minutes you‟ll notice the speed and incline of the treadmill has increased.  

Try to give your best effort by going as long as you can on the treadmill.  When you are too tired 

to continue, or if at any point you experience shortness of breath, chest discomfort, or feel ill, 

push the stop button on the treadmill (show) and grab the bars in front of you (show).   It‟s 

important to remember that during this time the speed and incline will decrease right away, but 

you have to keep moving on the treadmill until it has stopped entirely. You will then walk on the 

treadmill at no incline for 3 minutes in order to cool down. This is a scale for rating perceived 

exertion. Perceived exertion is the overall effort or distress of your body during exercise. The 

number 0 represents no perceived exertion or leg discomfort and the number 10 represents the 

greatest amount of exertion you have ever experienced. After the first minute of the test you will 

point to a number, which indicates your rating of perceived exertion at that time. One of the 

investigators will say the number out loud in order to make sure that we understand your 

selection. If the number the investigator called out is too low, point up with your index finger. 

Then the investigator will call out the next highest number. If the number the investigator called 

out is too high, then point down with your index finger. Show a “thumbs up” when the 

investigator has called out the correct number. For every subsequent minute, the investigator will 

ask if you are still at the same number you indicated last or if you have gone up. If you have gone 

up, point your index finger up until the investigator has called out the correct number at which 

point you will show a “thumbs up”.  o you have any questions?”
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APPENDIX I: 

OMNI RPE Scale 
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Rating of Perceived Exertion Scale 

10 Maximum Effort 

9 Extremely Hard 

8 Very Hard 

7 Hard 

6 Somewhat Hard 

5  

4 Moderate 

3  

2 Light 

1 Very Light 

0 Very, Very Light 
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APPENDIX J: 

Bruce Protocol for the Treadmill 
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Bruce Exercise Test Protocol for the Treadmill 

 

Stage # MPH GRADE 

Stage 1 1.7 10 % 

Stage 2 2.5 12 % 

Stage 3 3.4 14 % 

Stage 4 4.2 16 % 

Stage 5 5.0 18 % 

Stage 6 5.5 20 % 

Stage 7 6.0 22 % 

Each stage lasts 3 minutes 

 

American College of Sports Medicine (2000). ACSM’s Guidelines for Exercise Testing and 

Prescription (6th ed.). Philadelphia PA: Lippincott Williams & Wilkins. 
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APPENDIX K: 

Data Collection Form 
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Eastern Kentucky University 

Department of Exercise and Sports Science 

223 Moberly Building 

521 Lancaster Avenue, Richmond, KY 40475 

Data Collection Form 

ID:__________________                                                                         Date: _______________ 

Gender: ______ (M/F)       Age: _______ 

 

Blood Pressure: 

Systolic: ___________ mmHg Diastolic: ___________ mmHg 

 

 

Anthropometric Measures 

Height: 

_________________ 

Weight: 

_________________ 

% Body Fat: 

_________________ 

Bod Mass Index: 

_______________ 

 

Age-Adjusted Maximum Heart Rate: 

208 - 0.7 x _________ = _________ bpm 

          Age (yrs.) 

Digit Length 

Measurements 

Investigator Name: 

______________________ 

Investigator Name: 

______________________ 
Average: 

Right 2D: 
   

Right 4D: 
   

Left 2D: 
   

Left 4D: 
   

Right – Left 2D:4D:  
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End of 

minute: 

Heart Rate 

(bpm) 

Rating of 

Perceived 

Exertion 

End of 

minute: 

Heart Rate 

(bpm) 

Rating of 

Perceived 

Exertion 

1   17   

2   18   

3   19   

4   20   

5   21   

6   22   

7   23   

8   24   

9   25   

10   26   

11   27   

12   28   

13   29   

14   30   

15   
Immediate 

post-test: 
  

16      

Time on Treadmill: _________________ (min:sec) 
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