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ABSTRACT 

The primary purpose of this study was to compare the metabolic influence of varying 

work-to-rest ratios during upper body sprint interval training (SIT).  Forty-two recreationally 

trained men were randomized into one of three training groups [10s work bouts with two minutes 

of rest (10:2, n = 11) or four minutes of rest (10:4, n = 11), or 30s work bouts with four minutes 

of rest (30:4, n = 10)] or a control group (CON, n = 10).  Participants underwent six training 

sessions over two weeks with four to six ‘all-out’ sprints.  During pre- and post-intervention 

visits, participants underwent a graded exercise test to determine maximal oxygen consumption 

(V̇O2peak) and peak power output (PPO), four constant-work rate trials to determine critical 

power (CP), anaerobic working capacity (W’), and electromyographic fatigue threshold 

(EMGFT), and an upper body Wingate test to determine peak power (PP), mean power (MP), and 

total work (TW).  Oxygen consumption and blood lactate during the Wingate test generated 

estimates of oxidative, glycolytic, and ATP-PCr energy system provisions.  An analysis of 

covariance was performed on all testing measurements collected at post with the associated pre-

values used as covariates.  V̇O2peak was greater in 30:4 (p = .007) and 10:2 (p = .036) compared 

to CON and PPO was greater in 30:4 than CON (p = .007).  No differences were observed 

between groups in CP (p = .530), W’ (p = .900), EMGFT (p = .692), PP (p = .692), MP (p = .290), 

or TW (p = .291).  Relative energy contribution (p = .026) and energy expenditure (p = .019) of 

the ATP-PCr energy system was greater in 10:4 compared to CON.  SIT protocols with larger 

work-to-rest ratios induce enhanced aerobic adaptions, whereas smaller work-to-rest ratios may 

enhance ATP-PCr utilization in the upper body over a short-term two-week intervention. 
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CHAPTER ONE: INTRODUCTION 

Sprint interval training (SIT) is a popular method of training that incorporates four to six 

brief, but intense, maximal effort bouts of exercise such as repeated 30 s Wingate tests 

(Buchheit, Abbiss, Peiffer, & Laursen, 2012; Burgomaster, Heigenhauser, & Gibala, 2006; 

Franchini, Takito, & Kiss, 2016).  As a form of high intensity interval training (HIIT), SIT has 

led to improvements in aerobic and anaerobic capacity.  This type of high intensity training has 

led to alterations in skeletal muscle oxygenation and deoxygenated hemoglobin/myoglobin 

values along with increased muscle oxidative capacity and V̇O2peak (Burgomaster, Hughes, 

Heigenhauser, Bradwell, & Gibala, 2005; Gillen et al., 2014; Jacobs et al., 2013; Sloth, Sloth, 

Overgaard, & Dalgas, 2013).  In addition, SIT has shown enhanced glycolytic enzyme activity 

and maximum anaerobic power (Burgomaster et al., 2006; MacDougall et al., 1998).  Hazell, 

MacPherson, Gravelle, and Lemon (2010) highlighted the importance of rapid peak power 

attainment as the most likely cause for SIT adaptations during lower body cycling.  In 

comparison to the commonly used traditional SIT protocol incorporating 30 s work bouts, the 

authors observed that 10 s work bouts produced similar increases in V̇O2max and 5-km time trial 

performance (Hazell et al., 2010).  The ability to maintain peak power, rather than maximizing 

total work done, over a series of 10 s work bouts in the modified SIT protocol was likely 

responsible for the similar improvements in a more time efficient manner (Hazell et al., 2010).  

Therefore, the authors concluded that, during lower body cycling, similar aerobic and anaerobic 

performance enhancements might occur with shorter work bouts (i.e. 10 s vs. 30 s) and overall 

less time commitment (Hazell et al., 2010). 
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When training the lower body is not feasible, training the upper limbs can also improve 

aerobic capacity considerably within a short or moderate period of time (Schoenmakers, Reed, 

Van Der Woude, & Hettinga, 2016; Zinner et al., 2016).  Various sports such as judo, wrestling, 

kayaking, and cross-country skiing rely on the upper body musculature during training and 

competition (Garrett & Kirkendall, 2000).  For instance, upper body anaerobic performance 

(mean and peak power) has shown to distinguish between elite and amateur wrestlers (García-

Pallarés, López-Gullón, Muriel, Díaz, & Izquierdo, 2011) and has been associated with 50-m 

freestyle swim performance in males and females (r = .68 - .89) (Hawley & Williams, 1991).  In 

addition to athletes, upper body training may be relevant to individuals undergoing rehabilitation 

and to a variety of special populations (those with limited mobility, spinal cord injuries, 

overweight/obesity, and aging).  Unfortunately, minimal training studies on the upper body 

musculature have been conducted while specifically utilizing SIT (Vandbakk et al., 2017; Zinner 

et al., 2016).  Since the upper body musculature has a smaller diffusion area and larger diffusion 

distance, along with greater type two fiber distribution (Calbet, De Paz, Garatachea, Cabeza de 

Vaca, & Chavarren, 2003; Sanchis‐Moysi et al., 2010; Zinner et al., 2016) than the lower body 

musculature, it has a predisposition to utilize anaerobic resources and therefore, may be more 

susceptible to aerobic training adaptations.  Research is equivocal due to the specificity of energy 

systems (i.e. two versus three) on whether the upper body relies on a greater relative aerobic 

contribution than the lower body during Wingate tests (Harvey, Bousson, McLellan, & Lovell, 

2015; M. Price et al., 2014).  Nonetheless, improvements in aerobic capacity as a result of high-

training may be greater for the upper body than the lower body (Price et al., 2014).  Zinner and 

colleagues (2016) noted that the anaerobic predominance in the arms does not appear to limit 

their ability to increase aerobic capacity in response to SIT.  The authors found that two weeks of 
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SIT increased aerobic energy production more so in the arms then legs via higher V̇O2peak, 

greater oxygen consumption during a Wingate test along with a lower O2 deficit, and improved 

mechanical efficiency (Zinner et al., 2016).  Thus, the efficacy of a modified (<30 s work bouts) 

short duration SIT intervention in the upper body, as employed by Hazell and colleagues (2010) 

in the lower body, is warranted. 

Since the upper body has the potential for aerobic and anaerobic adaptations, parameters 

from the work-time relationship may provide insight into the unique adaptations involved with 

altering the work-to-rest ratio during upper body SIT.  These parameters may be determined 

using multiple high-intensity, exhaustive exercise bouts yielding estimates of critical power 

(CP), defined as the highest attainable intensity that can be maintained without fatigue, and 

anaerobic working capacity (W’), defined as the finite work capacity that can be performed 

above CP (Poole, Ward, Gardner, & Whipp, 1988).  In particular, CP is associated with aerobic 

function (A. M. Jones, Vanhatalo, Burnley, Morton, & Poole, 2010) while W’ is associated with 

anaerobic metabolism and the V̇O2 slow component (Monod & Scherrer, 1965; Vanhatalo, 

Poole, DiMenna, Bailey, & Jones, 2011).  Indeed, endurance training interventions have been 

shown to improve CP (Jenkins & Quigley, 1992; Poole, Ward, & Whipp, 1990) and reduce the 

amplitude of the V̇O2 slow component without any effect on W’ (Jones & Carter, 2000; Poole et 

al., 1990), while high-intensity exercise has shown to improve W’ without any change in CP 

(Jenkins & Quigley, 1993).  While the assessment of work-time relationship in the upper body 

has been evaluated (Belasco Junior, Oliveira, Serafini, & Silva, 2010; Capodaglio & Bazzini, 

1996; Fukuda et al., 2013; Taylor & Batterham, 2002; Yang, Lee, Hsu, & Chan, 2017) and CP 

has been determined to be a valid assessment tool for upper body endurance (Belasco Junior et 

al., 2010), the potential impact of a SIT intervention has yet to be explored. 
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Similar to CP derived from the work-time relationship, the electromyographic fatigue 

threshold (EMGFT) is considered the highest power output that can be achieved without an 

increase in EMG amplitude over time (Moritani, Takaishi, & Matsumoto, 1993).  

Electromyographic fatigue threshold can be been estimated using a similar method of assessment 

as CP (Devries, Moritani, Nagata, & Magnussen, 1982) and may also be used to demarcate 

between exercise intensity domains (Camic et al., 2010; Poole et al., 1988).  Electromyographic 

fatigue threshold occurs when there is a progressive recruitment of additional motor units or an 

increase in firing frequency of previously fatigued motor units in order to compensate for the 

deficit in fatigued motor units (Moritani et al., 1993).  In response to cycling exercise, HIIT can 

cause a delay in neuromuscular fatigue within a short period (3-6 weeks) (Smith et al., 2009).  In 

addition, increases in muscle fiber recruitment [i.e. elevated root mean square (RMS) values] and 

a decrease in mean frequency have been found after four weeks of cycling SIT (Creer, Ricard, 

Conlee, Hoyt, & Parcell, 2004).  Both of these findings would imply greater synchronization and 

force potentiation that can improve efficiency and coordination, thereby delaying fatigue.  While 

a considerable amount of research has focused on EMGFT during lower body cycling, its 

application in the upper body is lacking and may provide insight into the unique adaptations 

resulting from altered work-to-rest ratios during SIT.     

Short-term training and interval sprint training results in rapid blood flow kinetics 

(Laughlin & Roseguini, 2008; Shoemaker, Phillips, Green, & Hughson, 1996) due to the demand 

of oxygenated hemoglobin from working muscle and the recovery of deoxygenated hemoglobin.  

Oxygen uptake kinetics has been shown to be accelerated and associated with greater muscle 

oxygen extraction capacity in response to short-term SIT (Jones, Hamilton, & Cooper, 2015).  At 

the onset of exercise, there is an increase in blood volume to the working muscle carrying 
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oxygenated hemoglobin (Hb) to meet the energy demands of the activity.  As exercise continues 

to intensify, such as a ramp incremental graded exercise protocol, oxygenated hemoglobin tends 

to drop off and deoxygenated Hb tends to rise (Boone, Vandekerckhove, Coomans, Prieur, & 

Bourgois, 2016).  This rise is a natural consequence of oxygen being extracted from the red 

blood cells into the muscle’s mitochondria as per the oxygen-dissociation curve, which continues 

until there is a plateau due to limits imposed by oxygen extraction and utilization (Boone et al., 

2016).  This plateau is synonymous with deoxygenation threshold or break point [HHb]BP which 

delineates the point at which maximal oxygen extraction, by the working muscle, has been 

achieved (Boone et al., 2016).  Continued exercise following [HHb]BP in a ramp protocol elicits 

exhaustion within minutes as the supply cannot keep up with the demand.  Therefore, the 

deoxygenation curve is often represented by a sigmoidal curve with the top portion signifying 

[HHb]BP at the beginning of the plateau (Boone et al., 2016).  This threshold potentially 

represents type I muscle fiber fatigue and, during continued physical exertion, yields subsequent 

reliance on type II muscle fibers, which are much more limited in their energy storage 

capabilities (Boone et al., 2016).  Along with the recruitment of type II muscle fibers, increases 

in lactate and other metabolic by-products (e.g. hydrogen ions, inorganic phosphate) can be 

observed similar to exercise above CP (Burnley & Jones, 2018).  Since [HHb]BP may 

differentiate between oxidative (type I) and glycolytic (type II) fibers, and is strongly related to 

V̇O2max (Boone et al., 2016), a training program used to increase aerobic capacity should allow 

for a rightward shift in the deoxygenated Hb signal allowing for greater deoxygenation at the 

same relative intensity.  Given that SIT has beneficial adaptations to both aerobic and anaerobic 

capacities, there may be a rightward shift in the deoxygenation Hb curve allowing more work to 

be done before fatigue.  In fact, SIT has shown to increase deoxygenated hemoglobin and 
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myoglobin amplitudes, which increases muscle extraction capacity (B. Jones et al., 2015).  

Furthermore, a two-week SIT program stimulated a 15% improvement in capillary density 

within the triceps brachii, showing that oxygen extraction may be the mechanism behind aerobic 

improvements (Zinner et al., 2016).  However, McKay and colleagues (2009) showed that a 

faster rate in muscle O2 utilization was not accompanied by an increase in muscle O2 extraction 

in the vastus lateralis (reported as no change in deoxygenated hemoglobin) in response to high 

intensity training and endurance training despite faster VO2 kinetics.  Therefore, systemic and 

peripheral adaptations underlying the improvements in aerobic capacity need further 

examination. 

Previous research has shown CP and deoxygenated hemoglobin [HHb]BP thresholds are 

interrelated due to their potential physiological equivalence (Keir et al., 2015).  Meanwhile, the 

progressive recruitment of motor units, along with reduced contractile efficiency and the oxygen 

cost of recovering fatigued fibers, is associated with the development of the V̇O2 slow 

component which corresponds to W’ (Vanhatalo et al., 2011).  Despite the limited direct 

comparisons between thresholds, CP, [HHb]BP, and EMGFT tend to theoretically define the same 

boundaries and have been strongly correlated with one another (Boone et al., 2016).  Although 

some investigations have concluded significant differences between them, all breakpoints and 

boundaries appear to occur within a narrow range (~76-88% V̇O2max) of intensities (Boone, 

Barstow, Celie, Prieur, & Bourgois, 2015).  As a result, the breakpoints in oxygenation and 

fatigue thresholds may be interrelated and mechanistically linked (Boone et al., 2015).  

Consequently, the precise order of appearance among boundaries is equivocal within the 

literature.  During a continuous ramp protocol at intensities above CP there will be an increase in 

additional motor units (most likely type II fiber recruitment), stimulated by loss of contractile 
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function, and a need to maintain or increase power output.  In turn, this results in an increased 

RMS amplitude, decreased pH levels and increased pCO2, followed by increased minute 

ventilation leading to a higher oxygen cost of breathing which adds to the amplitude of the V̇O2 

slow component.  Concomitantly respiratory fatigue may ensue compromising blood flow to the 

working muscles and limiting oxygen delivery causing maximal oxygen extraction and 

utilization (Burnley & Jones, 2016). 

 Sprint interval training with work bouts of less than 30 s may alter the oxygen kinetics 

and in turn, relative energy contributions.  Total energy supply derived from the aerobic energy 

system is greater during longer durations of maximal exercise (Gastin, 2001).  For example, the 

estimated relative anaerobic and aerobic contribution for a 10 s maximal sprint is 94% and 6%, 

respectively, versus 73% and 27%, respectively, for a 30 s maximal sprint (Gastin, 2001).  For a 

single Wingate bout, Lovell and colleagues (2013) estimated the relative energy contributions for 

the upper body to be 11.4% oxidative, 60.3% glycolytic, and 28.3% ATP-PCr.  Meanwhile, only 

two studies have compared these contributions within the same group of participants during a 

Wingate bout for both upper and lower body (Harvey et al., 2015; M. Price et al., 2014).  Both 

Harvey and colleagues (2015) and Price and colleagues (2014) show conflicting reports on the 

differences between upper and lower body relative energy provisions which may be explained by 

the differences in Wingate loads utilized for the upper body and the differences in the authors 

breakdown of energy systems (three systems versus two systems).  More recently, Franchini and 

colleagues (2016) reported that the glycolytic system had the greatest drop in energy provision 

over the course of four repeated upper body Wingate bouts in well-trained Judo athletes.  In fact, 

the fourth and last Wingate bout had a greater reliance on the oxidative and ATP-PCr systems 

rather than glycolytic contributions (Franchini et al., 2016).  Regardless of the work bout 
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duration, sprint trained individuals appear to utilize their energy systems differently than 

endurance trained individuals (Gastin, 2001), thus varying work-to-rest ratios may alter the 

specific proportion of energy system contributions following SIT. 

The primary objective of this study was to evaluate the effectiveness of upper body SIT 

protocols with varying work-to-rest ratios on both aerobic and anaerobic performance.  The 

secondary objective was to investigate the changes in metabolic and neuromuscular fatigue 

thresholds from two weeks of SIT in recreationally active men.  The third objective was to 

examine the influence of SIT on energy system utilization during a maximal anaerobic task. 

Purpose 

1. To evaluate the effectiveness of sprint interval training protocols with varying work to 

rest ratios on the upper body in both aerobic and anaerobic performance. 

2. To investigate the changes in metabolic and neuromuscular fatigue thresholds from two 

weeks of sprint interval training in recreationally active men. 

3. To examine the influence of sprint interval training protocols on relative energy system 

utilization. 

Research Questions 

1. Will sprint interval training protocols with varying work to rest ratios increase aerobic 

and anaerobic performance to the same extent?  

2. Will sprint interval training protocols with varying work to rest ratios increase metabolic 

and neuromuscular fatigue thresholds after two weeks of sprint interval training in 

recreationally active men? 
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3. Will sprint interval training protocols with varying work to rest ratios alter the relative 

energy contributions during a 30-second anaerobic task? 

Hypotheses 

1. Both aerobic and anaerobic performance will increase from sprint interval training with 

longer rest periods.   

2. Anaerobic performance will increase to a greater extent than aerobic performance after 

two weeks of sprint interval training. 

3. Both metabolic and neuromuscular thresholds will be delayed after two weeks of sprint 

interval training. 

4. Sprint interval training will lead to an increase in muscle oxygen extraction capacity.  

5. Sprint interval training will lead to a greater efficiency in glycolytic energy provision. 
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CHAPTER TWO: REVIEW OF LITERATURE 

Sprint Interval Training 

Burgomaster, Hughes, Heigenhauser, Bradwell, Gibala, 2005 

Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance 
capacity in humans 

 The aim of this study was to examine the aerobic effects of six sessions of SIT.  Sixteen 

recreationally active individuals were randomly assigned to a sprint interval training intervention 

or a control group that only participated in testing.  Testing was completed before and after the 

two-week, six-session training protocol.  All participants underwent a V̇O2peak test, to determine 

aerobic capacity, and a cycle endurance capacity test (at ~80%VO2peak), to determine time-to-

exhaustion, on a cycle ergometer.  In addition, muscle biopsies from the vastus lateralis were 

taken in the training group only to evaluate muscle oxidative potential [citrate synthase, ATP, 

phosphocreatine (PCr), creatine, and glycogen].  The training protocol consisted of repeated 30 s 

all-out sprints, with four minutes of rest, against a load equivalent to 7.5% of their body weight 

(in kg) three times per week for six sessions across two weeks.  The number of repetitions 

increased from four sprints on day one, to five on day two, to six on days three and four, and to 

seven on day five.  On the last day, participants only performed four sprints.  Peak power, mean 

power, and fatigue index were determined during training.   

 The training group increased 100% during the cycle endurance capacity test, while the 

control group showed no change, however VO2peak did not change in either group.  Peak power 

increased, but so did fatigue index from the first training session to the last training session with 

no change in mean power over the four sprints.  Maximal citrate synthase activity increased by 
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38% and glycogen concentrations increased by 26% in the training group, but no changes were 

observed in ATP, PCr, or creatine.  In summary, this investigation showed that a small training 

volume of intense exercise (~15min) over two weeks positively influenced the metabolic profile 

of skeletal muscle and endurance capacity in recreationally active individuals. 

Burgomaster, Heigenhauser, Gibala, 2006 

Effect of short-term sprint interval training on human skeletal muscle carbohydrate metabolism 
during exercise and time-trial performance 

The purpose of this research was to examine the effects of a two-week sprint interval 

training (SIT) intervention on muscle carbohydrate metabolism during submaximal, time-trial 

exercise.  Sixteen recreationally active men were equally divided into two groups (a training 

group or a control group) for two weeks.  First, participants completed a V̇O2peak test to 

determine aerobic capacity and to prescribe subsequent workloads used during the main 

experimental trials.  Second, participants completed a time trial (10km) exercise test to establish 

time-to-completion and average peak power on a cycle ergometer.  Third, participants underwent 

a Wingate test to determine peak power, mean power, and fatigue index.  Lastly, participants in 

the training group only underwent an invasive metabolism test which included submaximal 

cycling test at 60% and 90% V̇O2peak interspersed with muscle biopsies from the vastus lateralis 

to determine the amount of pyruvate dehydrogenase (PDH), 3-hydroxyacyl-CoA (HAD), and 

citrate synthase (CS) activity along with lactate, ATP, PCr, creatine, and glycogen 

concentrations.  The training intervention consisted of six sessions of SIT over two weeks 

consisting of 30 s all-out efforts with four minutes of recovery.  The number of sprints were 
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increased from four to seven over the first five training sessions until the last day were only four 

sprints were performed.   

Time-trial performance was significantly shorter in the training group as shown by a decrease in 

time-to-completion (9.6%) and an increase in average peak power, whereas the control group 

remained the same.  Likewise, peak (5.4%) and mean power (8.7%) in the Wingate test were also 

significantly increased while the fatigue index was reduced (17.9%) by the training intervention.  

In contrast, the control group had no change.  The training intervention also induced increases in 

maximal activity of CS and PDH, but no change in HAD.  In conjunction, increases in muscle 

glycogen content were noted and net muscle glycogenolysis was reduced post training.  Blood 

lactate was lower and net lactate accumulation was attenuated post training.  There were lower 

contents of creatine and ATP, but unchanged PCr following training.  Aerobic capacity did not 

change from pre to post.  In conclusion, six sessions of SIT reduced muscle glycogenolysis and 

lactate accumulation during submaximal exercise while increasing PDH activity.  As a result, 

time trial performance improved despite no change in V̇O2peak. 

Hazell, MacPherson, Gravelle, Lemon 2010 

10 or 30-s sprint interval training bouts enhance both aerobic and anaerobic performance 

The purpose of this investigation was to examine a traditional sprint interval protocol 

consisting of 30 s of work and 4 min of recovery (30:4) with modified versions consisting of 10 s 

of work and either 4 (10:4) or 2 min (10:2) of recovery.  The investigation recruited 48 

recreationally active young adults that were not involved in a specific training program currently 

or four months prior.  Participants underwent pre and post testing surrounding two weeks of 
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sprint interval training on an electronically braked cycle ergometer.  Testing consisted of body 

composition via BodPod to analyze percent body fat, anaerobic capacity via Wingate test to 

determine peak and mean power, aerobic capacity to determine V̇O2max, and aerobic 

performance via 5-km time trial performance.  The training consisted of six sessions spread over 

two weeks.  Participants were split into one of three training groups of all-out efforts with either 

(30:4), (10:4), (10:2), or a control group.  Their recovery consisted of active unloaded cycling 

rather than the work intensity of 10% of the participant’s body weight (in kg).  Each training 

session was separated by 48-72 hours while training was progressed one repetition every two 

sessions so that the first two sessions included four repetitions, the middle two sessions included 

five repetitions, and the last two sessions included six repetitions.  The authors examined the 

reproducibility of power (peak, mean, and minimum) within each training session relative to 

their highest respective power measure from the training intervention.  Additionally total work 

was calculated during each training session. 

All groups, except for the control group, significantly improved in 5-km time trial 

performance; however, no differences were noted between groups. There were no significant 

differences between groups in V̇O2max values.  The 30:4 group significantly increased 9.3%, the 

10:4 min groups significantly increased 9.2%, while the control group showed no change.  

Although, the 10:2 group increased 3.8% it was not significantly different from pre (p = 0.06).  

There was a significant interaction in relative power output via 30 s Wingate test.  The 30:4 

group significantly increased 9.5%, the 10:4 group increased 8.5%, and the 10:2 improved 4.2% 

while the control group showed no change.  A similar interaction occurred in mean power 

output.  The 30:4 group improved 12.1%, the 10:4 group increased 6.5%, while no change was 

noted in the 10:2 (2.9% improvement) or control group.  In regards to maintaining power during 
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the training sessions, the 10 s:4 min group was able to maintain 96% while the 10 s:2 min group 

was able to maintain 95% of their peak power output, both resulting in significant increases over 

the 30:4 group (89% of their peak power output).  Likewise, there were significant differences in 

the ability to maintain average power output during training sessions.  The 10:4 group and 10:2 

group were able to maintain 84% and 82%, respectively, of their highest mean power output, 

which were both significantly greater than the 30:4 group (58%).   The 10:4 group and 10:2 

group were able to attain a greater minimum power output (73% and 69% of their highest 

minimum power output, respectively), than the 30:4 group (40%).  Lastly, no body composition 

changes were observed and there was significantly greater work performed in the 30 s group 

compared to both 10 s groups, while there was no difference between the 10 s groups.   

The results demonstrated that both modified sprint interval training protocols of 10 s 

work bouts produced similar aerobic improvements compared to the established 30 s work bout.  

The 10 s groups performed ~50% of the work completed in the 30 s group and in 33% of the 

training time, therefore it is a very time efficient protocol.  The peak power output and the mean 

power output obtained were significantly higher in the 10 s group suggesting that the generation 

of peak power is likely responsible for the sprint interval training adaptations. 

Zinner, Morales-Alamo, Ortenblad, Larsen, Schiffer, Willis, Gelaber-Robato, Perez-Valera, 
Bouchel, Calbet, Holmberg, 2016 

The physiological mechanisms of performance enhancement with sprint interval training differ 
between the upper and lower extremities in humans 

The aim of this study was to determine whether the arms and legs adapt differently to the 

same short-term sprint interval training program.  This investigation recruited 16 healthy 
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recreationally trained men.  Participants underwent pre- and post-testing surrounding six training 

sessions of the upper and lower body.  Testing consisted of limb specific aerobic capacity, via 

V̇O2peak, and 30 s Wingate tests with four minutes of recovery to determine mean power output, 

peak power output, and fatigue index, a four by four-minute submaximal incremental exercise 

test to determine work efficiency, and a five-minute all-out time trial.  Additionally, muscle 

biopsies were taken from the vastus lateralis and the triceps brachii six days before training and 

six days after training.  Participants underwent sprint interval training for six training days over 

two weeks.  Each training day consisted of one arm and one leg cycling sessions separated by 

one hour.  Half the participants trained upper body first while the other half trained the lower 

body first.  Both sessions consisted of four to six 30 s all-out sprints (Wingate test with 7.5 

bodyweight in kg) with four minutes of unloaded pedaling recovery.  Progression was 

implemented by increasing one repetition on both sessions every two training days.    

The maximal ventilatory response to leg exercise was 24% greater than the arms, but the 

relative VO2 and VCO2 to VE was similar.  Blood lactate was significantly greater in the legs 

than the arms after the training sessions (14.8 ± 2.4 mmol/L vs. 12.6 ± 2.3 mmol/L, respectfully).  

Training did not have an effect on body composition as determined by DEXA scan.  Aerobic 

capacity was increased in the upper (9.8%) and lower (6.1%) body.  The gross efficiency for the 

arms was significantly lower than the legs as determined by the submaximal incremental 

exercise test, however the arms had a training efficiency improvement of ~9% where the legs did 

not.  A more pronounced peak power, relative V̇O2peak to peak power during the graded 

exercise test, and relative V̇O2peak to limb lean mass were noted for the arms.  Greater 

improvements in mean power output (14.5 vs. 13.9%) and mean VO2 (11.4 vs. 7.9%) were noted 

in the arm as compared to the legs, respectfully.  Likewise, peak (10 vs. 5%) and mean power (7 
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vs. 5%) and output in the Wingate test improved higher for the arms then the legs, respectfully.  

There were no differences in muscle fiber composition between the upper and lower extremities 

and no adaptations occurred post training. The upper body had significantly greater myosin 

heavy chain type II fibers compared to type I, but no changes in the upper body were observed.  

The upper body was able to significantly improve capillary density per fiber, but not alter aerobic 

enzymes or glycogen content.  Although the upper body had greater proportion of type II fibers, 

it did not limit its capacity to increase V̇O2peak in this sprint protocol.  

This was the first investigation examining the impact of sprint interval training on the 

arms.  The arms improved VO2peak to a greater extent than the legs which could be explained by 

an enhancement of oxygen extraction given increased capillarization and no change in blood 

lactate or glycogen content before and after training.  Unfortunately, blood flow and oxygen 

delivery were not measured. 

Nalçakan, Songsorn, Fitzpatrick, Yüzbasioglu, Brick, Metcalfe, Vollaard, 2017 

Decreasing sprint duration from 20 to 10 s during reduced-exertion high-intensity interval 
training (REHIT) attenuates the increase in maximal aerobic capacity but has no effect on 
affective and perceptual responses 

 This study offered a way to achieve the same aerobic capacity benefits of traditional 

sprint interval training (4-6 reps of 10 s or 30 s) with reduced-exertion high-intensity interval 

training.  The authors offer an alternative hypothesis to the unclear investigations that activate a 

series of signaling pathways, but rather increases in V̇O2max stem from relations with rapid 

glycogenolysis.  The aim of the study was to determine how two reduced exertion high intensity 
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training protocols with either 20 s or 10 s sprints affect changes in V̇O2max, ratings of perceived 

exertion, and changes in mood state. 

 Thirty-six sedentary and recreationally active men and women were randomized into two 

groups undergoing either 10 s or 20s sprints for six weeks (three days per week) on a bike with a 

resistance of 7.5% their bodyweight.  Subjects performed graded exercise tests to establish 

V̇O2max before and after their six-week training session of only two sprints per session.  Both 

training groups worked up to 20 s and 10 s intervals over the 18 training sessions with three to 

four minutes of rest in-between sprints.  Ratings of perceived exertion were measured at baseline 

and immediately post-exercise every third session while the mood scale was measured before 

and five minutes after the second sprint for each training session. 

 The 20 s group experienced a greater increase in V̇O2max (+10%) versus the 10 s group 

(+4%) from pre- to post-testing.  Meanwhile there were no significant differences between 

groups or training sessions in ratings of perceived exertion.  In addition, there were no increases 

in negative outlook or mood disturbances directly after exercise between groups.  Therefore, the 

authors suggest the use of 20 s sprints as a time-efficient alternative to the traditional 30 s sprints 

for improving aerobic capacity without influencing perceived exertion, acute negative responses 

or mood states. 
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Critical Power and Upper Body Arm Cranking 

Capodaglio and Bazzini, 1996 

Predicting endurance limits in arm cranking exercise with a subjectively based method 

The purpose of this study was to validate and predict endurance capacity using subjective 

perception of effort during arm cranking at different workloads.  Three trained paraplegic 

subjects performed a maximal incremental test to determine the power output at ratings of 

perceived effort (using the 10-point Borg scale) corresponding to moderate, somewhat heavy, 

and heavy effort.  Those ratings of perceived effort were then utilized to prescribe three different 

workloads for the subjects to perform nine, 15-min endurance tests, which ultimately constructed 

‘iso-perception’ curves.  In addition, subjects performed three time-to-exhaustion trials at 

constant loads (e.g. 50 W, 37.5 W, and 25 W) to determine CP using methods previously 

established.  The subjective measures were validated against the previously established work-

time model.  The CP value in each subject corresponded to the inferior asymptote of the 

hyperbolic power output versus time curve as illustrated by the ‘iso-perception’ curves.  

Therefore, CP could be calculated using the work-time model or by subjective measures using 

the hyperbolic power-duration curve. 

Miura, Sato, Sato, Whipps, Fukuba, 2000 

The effect of glycogen depletion on the curvature constant parameter of the power-duration 
curve for cycle ergometry 

The aim of this investigation was to examine the physiological basis of W’ with the 

manipulation of muscle glycogen states.  Seven healthy men performed an incremental exercise 
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test to determine V̇O2max and four different high-intensity constant load trials to exhaustion 

under both normal (NG) and glycogen depleted (GD) states to determine CP and W’ on a cycle 

ergometer.  Trials were designed to elicit fatigue within two to 10 min.  In order to ensure a 

glycogen depleted state subjects performed cycling the evening prior at 60% V̇O2max for 75 

min, followed by one-minute cycling bouts at 115% V̇O2max until they could no longer maintain 

a pedaling rate above 50 RPM, and then fasted overnight in order to perform a single high 

intensity exercise test the following morning.  On the other hand, the NG group were instructed 

not to perform heavy exercise the day prior.   

There was no significant differences in CP between GD and NG, however W’ was 

significantly reduced in the GD condition.  In response, the mean RER values during the 15-min 

warm-up prior to high-intensity exercise was significantly lower in the GD state than the NG 

state (0.84 ± 0.02 vs. 0.94 ± 0.04, respectfully) showing that glycogen stores were likely reduced 

due to the glycogen depletion protocol.  During high-intensity exercise peak VE and VCO2 were 

significantly reduced in the GD state; however, VO2 and HR were not significantly altered 

between conditions.  This suggests that all participants achieved maximal effort.  As a result, 

muscle glycogen appears to be a significant determinant for W’ in the hyperbolic relationship 

between power and time.   

Taylor and Batterham, 2002  

The reproducibility of estimates of critical power and anaerobic work capacity in upper-body 
exercise 

 The purpose of this investigation was to examine the parameters of CP and AWC and 

their reliability during upper body exercise, using the linear relationship between power and the 
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inverse of time.  Sixteen active men performed two staged incremental exercise test to determine 

VO2peak using a cycle ergometer adapted for upper body use.  Subsequently, participants 

underwent two sets of four constant-power exercise bouts order at 85%, 100%, 105%, and 115% 

of the power output associated with VO2peak in random order on separate days.  A fifth bout was 

administered to evenly spread the times to exhaustion between one and 10 min.  There was no 

significant systematic bias between either set of constant-power trials and time-to-exhaustion, 

predicted AWC, or predicted CP.  Critical power equated to 96 ± 16 W (73 ± 7% PPO) and 94 ± 

17 W (72 ± 8% PPO), in the first and second set of constant-power trials.  Critical power had a 

higher test-retest correlation (r2 = .881) compared with AWC (r2 = .358).  Based on the 95% 

limits of agreement, repeated measures of CP may range from 0.64 to 1.59 times the baseline 

measurement, while AWC may range from 0.57 to 1.67 times the baseline measurement.  

Therefore, despite the absence of systematic bias and high test-retest correlation of CP, the 

potential variation in the parameter estimates of CP and AWC suggest poor reliability under the 

power and inverse of time model. 

Belasco Junior, Oliveira, Serafini, Silva 2010 

Determination of the power-duration relationship in upper-limb exercises 

 The purpose of this investigation was to explore the hyperbolic relationship of critical 

power (CP) in the upper limbs and investigate its relationship with aerobic parameters.  Ten 

physically active men performed a graded exercise test to attain V̇O2peak, ventilatory threshold 

(VT1) and respiratory compensation point (VT2).  Participants then underwent five constant load 

tests, at 70, 80, 90, 95, and 100% of the difference between the load at VT1 and V̇O2peak, to 

determine CP and anaerobic working capacity (W’).  One constant load test was conducted per 
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day and designed to elicit exhaustion between one and 20 minutes.  Lastly, each participant 

performed a constant load trial at CP and at 5% above CP. 

The work-time relationship was found to be hyperbolic and linearized by taking the 

inverse of time in all participants (r = 0.94 – 1.00).  The V̇O2 at CP (2.66 ± 0.62 L/min) was 

significantly greater than the V̇O2 at VT1 (1.62 ± 0.38 L/min) and VT2 (2.36 ± 0.59 L/min), 

however no differences in load between CP (103.0 ± 26.0 W) and VT2 (103.5 ± 30.8 W) were 

noted.  The V̇O2 and load at CP were associated with the corresponding V̇O2 and loads at 

V̇O2max, VT1, and VT2.  All participants fatigued, on average, at 42.9 min during the CP load 

trial, but reached fatigue within ~12 – 16 min in the 5% above CP trial.  The above CP trial 

elicited exhaustion in substantially less than the CP trial illustrating the validity of estimating CP 

in the upper limbs. Additionally, V̇O2 during the CP trial stabilized and corresponded to a 

respiratory exchange ratio value of 0.98 ± 0.02.  Critical Power indicated that it is predominantly 

aerobic in nature by correlating with VT1, VT2, and V̇O2max, whereas W’ did not correlate to 

any of the aerobic parameters suggesting separate metabolic divisions. 

Energy Systems 

Lovell, Kerr, Wiegand, Solomon, Harvey, McLellan, 2013 

The contribution of energy systems during the upper body Wingate anaerobic test 

The purpose of this study was to measure the oxidative, ATP-PCr, and glycolytic energy 

systems during an upper body Wingate test.  Secondarily, it was to assess correlations between 

active musculature and energy contribution.  Fourteen physically active men reported to the lab 

on three separate occasions which included, familiarization, body composition (via DEXA) to 
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determine upper body lean muscle mass, and an upper body Wingate test to determine peak and 

mean power.  Additionally, oxygen consumption was measured five minutes prior through 20 

min post Wingate test and blood lactate was measured at rest, immediately post, and every two 

minutes until 20 min post.  Energy system contribution was measured via VO2 consumed above 

rest (aerobic), an energy equivalent of 3 mL O2·kg-1 for every 1 mmol·L-1 of blood lactate 

accumulation (anaerobic lactic), and the fast component of excess post oxygen consumption 

(EPOC) using a bi-exponential four parameter model (anaerobic lactic).  The anaerobic alactic 

energy system was significantly correlated with peak (r = 0.71) and mean (r = .83) Wingate 

power.  Likewise, whereas the anaerobic lactic energy system was significantly correlated to 

peak (r = 0.56) and mean (r = .61) Wingate power.  No correlations existed with the aerobic 

energy system.  Arm lean muscle mass significantly correlated with peak (r = 0.93) and mean (r 

= .88) Wingate power.  In regards to energy contribution, the anaerobic lactic system contributed 

60.3%, the anaerobic alactic system contributed approximately 28.3%, and the aerobic system 

contributed 11.4%. Arm lean body mass was a significant predictor of peak power accounting for 

84% of the variability, whereas body mass and arm lean body mass were significant predictors of 

mean power accounting for 85% of the variability.  The upper body has a greater reliance on the 

anaerobic lactic system and a lower reliance on the aerobic system than lower body Wingate 

tests reported in previous literature.  The anaerobic lactic system also provided strong 

correlations to peak and mean power. 
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Freese, Gist, Cureton, 2013 

Physiological responses to an acute bout of sprint interval cycling 

The objective of this investigation was to examine the VO2 and cardiorespiratory 

responses during four consecutive 30 s all-out sprints. Twelve recreationally trained men women 

performed two acute bouts of sprint interval cycling approximately one week from each other.  

Each cycling session consisted of four 30 s all-out sprints with four minutes of active recovery.  

Oxygen uptake, heart rate, ventilation, fatigue, and work performed were used to analyze the 

time-efficiency of the training modality.    

Average work significantly decreased and fatigue rate significantly increased across the 

four sprints.  In particular, fatigue rate was significantly increased from sprint two to sprint three.  

Aerobic metabolism significantly increased from sprint one to two due to an increase in VO2, 

however no further increase was observed in the following third or fourth sprint.  The peak 

oxygen consumption and heart rate throughout the session was observed at the end of sprints two 

through four, whereas RER progressively decreased across each sprint and within each sprint.  

The results imply that after the second sprint subsequent sprints are predominantly aerobic.  

Sprint interval cycling proved to be a time-efficient modality to stimulate aerobic adaptations to 

exercise. 

Price, Beckford, Dorricott, Hill, Kershaw, Singh, Thornton, 2014 

Oxygen uptake during upper body and lower body Wingate anaerobic tests 

 The objective of this investigation was to determine the aerobic contribution to an upper 

body and lower body Wingate anaerobic test within the same participants.  Eight recreationally 
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trained men performed an upper body and lower body graded exercise test to determine V̇O2 and 

peak power output.  Subsequently, participants performed two upper body and two lower body 

Wingate anaerobic tests with each test separated by a week.  The first Wingate test for each body 

section served as a familiarization trial.  The resistance used for the lower body Wingate test was 

7.5% of body weight, in kg, whereas the upper body resistance was 4.0% of body weight, in kg.  

During each Wingate test, fatigue index, peak, mean, and minimum power were calculated.  

Oxygen uptake was recorded from five minutes of rest, during the 10 min warm up, during the 

30 s test, and for the first five minutes of recovery.  Blood samples were taken prior to exercise, 

immediately after exercise, and five minutes post exercise to determine pH, blood lactate, and 

bicarbonate (HCO3-) concentration.   

 Except for fatigue index, all performance variables were greater in the lower body.  No 

differences were observed in blood lactate, pH, or HCO3- between upper and lower body 

Wingate tests.  Relative oxygen consumption was greater for upper body (71.1 ± 25.0% 

V̇O2peak) than lower body (63.9 ± 18.8% V̇O2peak) throughout the 30 s Wingate test, but the 

greater consumption was from five seconds into the test to five seconds post exercise (i.e. 5 – 35 

s) for both upper and lower body.  No differences in HR or RPE were noted between upper and 

lower body Wingates.  The oxidative contribution in the upper body (43.5 ± 29.3% and 44.2 ± 

22.4%) was greater than the lower body (29.4 ± 15.8% and 32.1 ± 15.2%) during the Wingate 

test (0 – 30 s) and during the 5 – 35 s segment of collection, respectively.  Alternatively, the 

glycolytic contribution for the lower body (68.3 ± 11.8%) was greater than the upper body (39.3 

± 7.3%).  Thus, the upper body had a greater oxidative contribution, but lower glycolytic 

contribution than the lower body during a single Wingate test when using the same participants. 
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Franchini, Takito, Kiss, 2016 

Performance and energy systems contributions during upper-body sprint interval exercise 

The aim of this study was to investigate the performance and energy systems contribution 

during four upper-body Wingate tests interspersed by 3-min intervals.  Fourteen well-trained 

male Judo athletes performed four Wingate bouts on a cycle ergometer adjusted for the upper 

body using 5% of the athlete’s weight (in kg) as the load.  Oxygen uptake and heart rate were 

measured continuously during exercise and rest intervals including three minutes after the last 

Wingate test, whereas lactate was measured before and one minute after each Wingate test.  

Participants remained seated during each recovery period.  Peak and mean power were recorded 

for each Wingate test.  Energy system contributions were carried out using oxygen uptake, blood 

lactate concentrations, and the fast phase of excess post oxygen consumption.  Energy system 

estimates were calculated using a bi-exponential function and the sum of all energy systems was 

calculated as total metabolic work. 

 Peak and mean power progressively decreased during each Wingate, while blood lactate 

progressively increased after each Wingate test.  V̇O2peak and peak heart rate did not change 

throughout the Wingate tests, but progressively increased during each successive test.  Over the 

course of four Wingate tests, the ATP-PCr and oxidative systems maintained their energy output.  

An interaction for absolute energy expenditure was observed.  There was higher glycolytic 

compared to oxidative and ATP-PCr during the first bout, but a lower glycolytic contribution 

compared to ATP-PCr during the third bout and a lower glycolytic contribution compared to 

oxidative and ATP-PCr during the last bout.  Over the course of four bouts, glycolytic 

contribution was the only energy system to progressively decline with higher contribution in the 
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first two bouts compared to the last two bouts.  An interaction for relative energy expenditure 

was observed.  There was higher glycolytic contribution compared to oxidative contribution 

during the first bout, but lower glycolytic contribution compared to ATP-PCr contribution during 

the third bout.  Also, lower glycolytic contribution compared to oxidative and ATP-PCr 

contributions for the last bout and lower oxidative contribution compared to ATP-PCr 

contribution during the last bout.  Across the bouts, ATP-PCr contribution was greater in the last 

bout than the first bout.  Likewise, the glycolytic contribution progressively decreased with the 

first bout being significantly greater than the third and fourth bouts and higher in the second bout 

than the fourth bout.  The relative percent energy contributions are show below.  

Table 1. Relative energy system contribution across repeated upper body Wingates  

Bout Oxidative Glycolytic ATP-PCr 

1 21 ± 10% 46 ± 12% 34 ± 9% 

2 28 ± 9% 35 ± 8% 37 ± 8% 

3 35 ± 12% 21 ± 6% 44 ± 13% 

4 35 ± 15% 12 ± 6% 53 ± 15% 

 

Lastly, mean power was significantly correlated with glycolytic contribution (r = 0.64) 

and total energy expenditure (r = 0.71), while peak power was significantly correlated to 

absolute glycolytic contribution (r = 0.51) and total energy expenditure (r = 0.62).  Absolute 

oxidative and ATP-PCr contributions remain constant across all bouts; however, there was an 

increase of relative ATP-PCr contribution in the last bout compared to the first bout most likely 

due to the partial PCr resynthesis during recovery periods as opposed to decreased glycolytic 

activity. 
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Fatigue Thresholds 

Vanhatalo, Poole, DiMenna, Bailey, Jones, 2011 

Muscle fiber recruitment and the slow component of O2 uptake: constant work rate vs. all-out 
sprint exercise 

The purpose of this study was to investigate the mechanistic response of the V̇O2 slow 

component during a three-minute all-out cycle exercise test.  Eight habitually active men were 

required to conduct cycling tests over four visits.  The first test was a ramp incremental test to 

assess V̇O2max and gas exchange threshold (GET), two three-minute all-out cycle efforts (one 

being a familiarization trial) to assess critical power (CP) and anaerobic working capacity (W’), 

and one constant work rate (CWR) test with a workload estimated to ensure fatigue in three 

minutes.  Gas exchange, lactate, and neuromuscular activity, via integrated electromyography 

(iEMG), of the vastus lateralis were measured.  Time to attain V̇O2max and the V̇O2 slow 

component were calculated during the all-out CP and CWR tests.  The V̇O2max did not differ in 

the CP and CWR tests, but the slow component development was significantly greater in the CP 

than in the CWR test.  Significant positive correlations were observed in the V̇O2 slow 

component and W’ from the all-out CP test (r = .87) and from the CWR test (r = .83).  The peak 

iEMG during the CP test was observed initially and then steadily declined, whereas the iEMG 

increased throughout the CWR test with the peak occurring at the point of fatigue.  Alternatively, 

the mean iEMG over the initial 30 s of the CP test was greater than in the CWR test.  However, 

the iEMG relative to workload steadily increased in the CWR test whereas the iEMG steadily 

decreased in the CP test.  The authors concluded that a substantial V̇O2 slow component was 

produced during the CP test even with a steady decline in power output and muscle activation.  

Given the same exercise duration, the magnitude of the slow component in the CP test was 
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greater than the CWR test.  The authors concluded that a progressive muscle fiber recruitment is 

not a necessity for the development of the V̇O2 slow component during maximal exercise.  

Instead, the V̇O2 slow component can be generated by the high oxygen cost of fatigued fibers, 

which either do not significantly contribute to power output or do so at a substantially greater 

oxygen cost relative to the work done, thereby reducing the oxygen utilization efficiency of 

muscular work.  In summary, the slow V̇O2 kinetics of initially recruited fibers, reduced 

contractile efficiency due to the accumulation of metabolites, and the recovery processes of the 

fatigued fibers may play a significant role in the V̇O2 slow component during all-out exercise. 

Keir, Fontana, Robertson, Murias, Paterson, Kowalchuk, Pogliaghi, 2015 

Exercise Intensity Thresholds: Identifying the Boundaries of Sustainable Performance 

The aim of this investigation was to first evaluate whether the oxygen consumption at 

CP, respiratory compensation point (RCP), maximum lactate steady state (MLSS), and 

deoxygenated hemoglobin [HHb]BP were equivalent, and, secondly, to represent the demarcation 

between heavy and very heavy exercise domains.  Twelve healthy young men completed a series 

of tests on a cycle ergometer which included a ramp incremental (RI) test to determine V̇O2peak 

and PPO, four to five time-to-exhaustion trials between 60 – 115% PPO to determine CP, and 

two to three 30-minute constant power trials at a fixed cadence to determine the VO2 and power 

output associated with MLSS.  A second RI test to evaluate potential training effects from which 

the V̇O2peak and power output associated with RCP and [HHb]BP were determined.  Oxygen 

consumption and muscle oxygenation/deoxygenation were measured during all tests, and lactate 

was measured at specific intervals during the constant load tests. 
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No training effect was observed as there was no difference between the initial and second 

RI test.  A plateau of VO2 was noted at the PO corresponding to CP and MLSS by the 13th 

minute of exercise during the constant power trials.  No differences were noted in oxygen 

consumption and heart rate between either intensity threshold, however PO differed with RCP 

and [HHb]BP both being greater than the PO at MLSS and CP.  The results indicate that CP, 

MLSS, RCP, and [HHb]BP are not different from each other with regard to VO2, suggesting that 

each may delineate between heavy and very heavy exercise domains.  This also suggests that 

each threshold may be interrelated and may occur because of a common or similar mechanism 

that has yet to be determined. 

Bailey, Wilkerson, DiMenna, Jones, 2009 

Influence of repeated sprint training on pulmonary O2 uptake and muscle deoxygenation kinetics 
in humans 

The purpose of this investigation was to assess the effect of two different work-matched 

training protocol [repeated sprint training (RST) and endurance training (ET)] on the kinetics of 

VO2, HR, and muscle deoxygenation.  Twenty-four recreationally trained individuals (men and 

women) performed pre and post testing incremental ramp tests to determine VO2peak, and GET 

on a cycle ergometer and step tests, split into two moderate intensity bouts and one severe 

intensity bout, to determine VO2 kinetics.  The individuals were randomly placed in RST, ET or 

a control (CON) group.  Both training groups performed six training sessions over a two-week 

period, while CON maintained their normal levels of physical activity.  The RST group 

progressively performed 30 s all-out sprints against a load equivalent to 7.5% of their body 

weight (in kg) with four minutes of recovery in between each sprint.  The progression of 
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repetitions included four in the first session, five in the second session, six in the third and fourth 

sessions, and seven in the fifth and sixth sessions.  On the other hand, the ET group cycled 

continuously for approximately 15 – 25 min, which equated the duration needed to match the 

total work done in the corresponding session of the RST group at 90%GET.   

Each group had similar VO2peak, VO2 at GET, and VO2 kinetics at baseline.  The RST 

significantly improved VO2peak and peak work rate from pre to post, whereas no changes were 

noted in ET and CON.  However, no changes were noted in the VO2 associated with GET in 

either group.  There were significant reductions in the amplitude of VO2 response, mean response 

time for VO2, and oxygen deficit in the RST group only at moderate intensity showing greater 

efficiency of metabolic work.  In addition, only the RST group had a significant reduction in 

blood lactate.  In regards to severe exercise, only the RST group showed significant speeding of 

the V̇O2 response amplitude and mean response time along with a reduction in the rate of 

development for the V̇O2 slow component showing an attenuation of fuel storage depletion 

within the muscle.  In terms of muscle deoxygenation, the RST group showed a significant 

reduction in the deoxygenation time delay, but no differences were noted in the development of 

the V̇O2 slow component between groups or post training at moderate intensity.  Additionally, 

the deoxygenated amplitude response and the change in deoxygenated hemoglobin relative to the 

change in VO2 were significantly increased in the RST group only during moderate and severe 

intensity exercise.  However, the time delay in deoxygenation was unchanged within the RST 

group.  The net result for RST deoxygenated hemoglobin kinetics was generally faster and the 

magnitude of oxygen extraction was greater.  No differences were noted in HR kinetics other 

than a significant decrease in end exercise HR within the RST group only.  Lastly, individuals in 
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the RST group were able to significantly 53% increase their time-to-exhaustion during severe 

intensity exercise, whereas ET resulted in a non-significant increase of 13%.  

Pringle and Jones, 2002 

Maximal lactate steady state, critical power and EMG during cycling 

The aim of this investigation was to compare whether three different fatigue thresholds 

(MLSS, CP, and EMGFT) occur at the same intensity (i.e. power output) during lower body 

cycling.  Secondarily, this investigation examined if exercise above MLSS would result in a 

continued increase in V̇O2, blood lactate, and iEMG over time.  Eight recreationally active 

individuals completed an incremental exercise test to determine V̇O2max and lactate threshold.  

Participants then performed four time-to-exhaustion trials to determine CP, via the linear power 

versus the inverse of time model, at power outputs between 50%Δ (50% of the difference 

between the V̇O2 at lactate threshold and V̇O2max) and 110% V̇O2max.  Participants also 

performed four 30-min constant-load transitions with power outputs between 100% of the V̇O2 at 

lactate threshold and 50%Δ to determine MLSS.  Finally, they performed four two-minute 

square-wave transitions at 75%Δ – 115% V̇O2max with 25 min of recovery between each to 

determine EMGFT.    

 The power output at CP was strongly correlated (r = .95) to, but significantly greater than 

the power output at MLSS (by 20 W on average).  CP occurred at 71 ± 3% V̇O2max whereas 

MLSS occurred at 65 ± 3% V̇O2max.  Comparisons with EMGFT were difficult because half of 

the sample size could not be computed due to an extremely variable response across participants.  

Blood lactate, V̇O2, and V̇E were significantly increased during exercise intensities above MLSS, 
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however steady state V̇O2 was observed at intensities at or below the power output 

corresponding to MLSS. 
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CHAPTER THREE: METHODOLOGY 

Experimental Design and Methodology 

A randomized, repeated measures design was employed to examine the effectiveness of 

traditional and modified SIT protocols on the upper body and the trainability of metabolic and 

neuromuscular fatigue thresholds.  Participants were randomized into one of four groups: 30 s: 4 

min (30:4), 10 s: 4 min (10:4), 10 s: 2 min (10:2), or control (CON).  All participants were asked 

to complete pre- and post-testing consisting of a graded exercise test (GXT) on day one, three 

constant work-rate tests on day two, and a Wingate tests on day three.  Following pre-testing, 

participants were assigned to one of the three training protocols and underwent a two-week 

training intervention while the control group was instructed not to significantly alter their current 

activity level and only perform pre- and post-testing (Figure 1).  All participants were asked to 

maintain their normal caloric intake habits throughout the course of the investigation. 
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Figure 1. Illustration of the study design 

  

• Informed Consent
• Physical Activity Readiness Questionnaire
• Medical and Activity History 

Questionnaire
• Anthropometric Measures
• Familiarization Trial

Initial Visit

• Graded Exercise Testing (Day 1)
• Time-to-Exhaustion Trials (Day 2)
• Wingate Tests (Day 3)

Pre-Testing

• 2-week training period (3 days per week)
• 10 s sprints with 2 min of rest
• 10 s sprints with 4 min of rest
• 30 s sprints with 4 min of rest

Training 
Intervention

• Graded Exercise Testing (Day 1)
• Time-to-Exhaustion Trials (Day 2)
• Wingate Tests (Day 3)Post-Testing
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Participants 

Fifty-one recreationally active men between the ages of 18 and 35 years old were 

recruited by word of mouth and flyers.  Among the recruited participants, nine subjects withdrew 

(seven before training and two during training) due to scheduling conflicts, injuries sustained 

outside of the study, and general non-responsiveness.  Consequently, 42 subjects completed all 

testing and training sessions and were included in the final analysis, except for one participant 

that did not complete post weight and body composition measures.  Testing procedures were 

explained in full before obtaining written informed consent from each participant.  Each 

participant was asked to complete a physical activity readiness questionnaire (PAR-Q+) in order 

to identify any exclusion criteria, including the inability to perform physical exercise and any 

chronic illness that requires continuous medical care.  All participants were habitually active 

completing a minimum of two to three days per week for at least 30 minutes per day.  In an 

attempt to eliminate residual fatigue, the participants were asked to refrain from any strenuous 

physical activity for 48 hours prior to testing. 

Body Composition Measures and Familiarization Trial 

Body composition was estimated using a multi-frequency bioelectrical impedance device 

(Inbody 720, Biospace Co., Ltd.; Seoul, Korea).  Participants were asked to follow the pre-

testing instructions including no exercise the day of testing, no food or drink within four hours of 

testing, no alcohol within 48 hours of testing, avoid large quantities of water within two hours of 

testing, but arrive euhydrated, void bladder immediately before the measurement, and avoid 

lotion or wearing accessories of any kind.  Participants were required to stand on the platform 

with their heels placed on the circular rear sole electrode before the forefoot hit the front sole 
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electrode.  Then the participants grasped the handles and made sure the surface of the hand 

electrode was placed in contact with each of the five fingers.  A familiarization of the GXT was 

provided to each subject with an upper body cycle ergometer (Brachumera sport, Lode, 

Groeningen, Netherlands) before testing sessions took place.  Each subject was seated with the 

crank arm lined up with the center of their glenohumeral joint and positioned so that their arms 

were extended, but not fully locked out during cranking.  The researchers instructed participants 

to crank with minimal upper body rotation, feet planted flat on the floor, and a consistent 

handgrip position.  Any participant that performed extraneous motions while cranking was given 

a warning at first, but if the movements persisted the test terminated. 

Graded Exercise Test 

An incremental test to volitional exhaustion was performed on a cycle ergometer 

(Brachumera sport, Lode, Groeningen, Netherlands) to determine peak power output (PPO) in 

watts (W) and peak oxygen consumption (V̇O2peak) in liters per minute (L/min).  Prior to 

testing, each participant was fitted with a heart rate monitor (Heart Rate Monitor, Garmin Ltd., 

Schaffhausen, Switzerland), to record the participants’ heart rate, and a mask around their mouth 

and nose to collect respiratory gases.  All gas exchange data was collected using a metabolic gas 

analyzer (Quark CPET, Cosmed, Rome, Italy).  Prior to each use, the metabolic gas analyzer was 

calibrated with gases of known concentration (16% O2, 5% CO2, and N2 bal) and calibrated for 

airflow with a three-liter syringe as per the manufacturer’s instruction manual.  Participants 

underwent an incremental ramp protocol that began at an initial workload of 30 W and was 

increased 1 W every six seconds (10 W every minute).  Participants were required to maintain a 

cranking cadence of 50 revolutions per minute (RPM) and continued until the participant was 
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unable to maintain a cadence above 50 RPM for a duration of five seconds despite verbal 

encouragement, or volitional fatigue.  The highest power output achieved was recorded as PPO 

and the highest 10-s average breath-by-breath oxygen consumption rate was recorded as 

V̇O2peak.     

Near Infrared Spectroscopy 

To assess tissue oxygenation during the GXT, a near infrared spectroscopy (NIRS) 

optode (PortaLite, Artinis Medical Systems, Gelderland, the Netherlands) was placed over the 

biceps brachii muscle on the right arm over the muscle belly 8 cm from the elbow crease 

(Lusina, Warburton, Hatfield, & Sheel, 2008).  The NIRS optode, which transmits light and 

records the reflected light within a tissue, was secured using a self-adhering bandage.  The NIRS 

signal was measured continuously and values were averaged into 10 s bins for subsequent 

analysis (Muraki, Tsunawake, & Yamasaki, 2004).  A modified form of the Beer-Lambert Law 

was used to calculate micromolar changes in oxygenated hemoglobin (OHb), deoxygenated 

hemoglobin (HHb), and total hemoglobin (tHb) during the graded exercise test.  Tissue 

saturation index (TSI, expressed as a percent) was then calculated [(OHb/(HHb + tHB)) × 100] 

to determine the balance between oxygen supply and oxygen consumption.  Deoxygenated 

hemoglobin was plotted over time to determine a deoxygenation breakpoint [HHB]BP (van der 

Zwaard et al., 2016).   

Constant Work Rate Test Trials 

Three high-intensity constant-work rate tests, at different power outputs (90%, 100%, and 

120% PPO), were performed.  All constant-work rate tests began with a three to five-minute 
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warm-up at 50 W on the cycle ergometer (Brachumera sport, Lode, Groeningen, Netherlands).  

Exhaustion was determined to the nearest second at the moment of volitional fatigue or failure to 

maintain a cranking cadence above 50 RPM for a duration of five seconds.  The time-to-

exhaustion (TTE; in seconds) and total work (TW; in Joules) were calculated during each trial.  

Linear regression was used to determine the slope of the line from the relationship between TTE 

and TW.  The calculated slope of the work-time relationship was considered CP while the y-

intercept of the regression line was considered W’ from the standard multi-trial CP test (J. C. 

Smith, Stephens, Hall, Jackson, & Earnest, 1998). 

Electromyography (EMG) 

To assess muscle activity during the constant-work rate trials, a bipolar (4.6 cm center-to-

center) surface electrode (Quinton Quick-Prep silver-silver chloride) arrangement was placed 

over the biceps brachii on the right arm.  The surface electrodes were placed over the muscle 

belly between the medial acromion and the fossa cubit at one third the distance proximal to the 

fossa cubit, while the ground electrode was placed on the right wrist.  Inter-electrode impedance 

was kept below 5,000 ohms with shaving, abrasion of the skin, and alcohol cleaning beneath the 

electrodes.  The raw EMG signals were pre-amplified using a differential amplifier (MP150, 

BIOPAC Systems, Inc., Santa Barbara, CA), sampled at 1,000 Hz, and stored on a personal 

computer (Dell Latitude E6530, Dell Inc., Round Rock, TX) for off-line analysis.  Raw EMG 

data was processed through a band-pass Butterworth filter (from 10 to 500 Hz) on a 

computerized software program (AcqKnolwedge 4.2., BIPOAC Systems, Inc., Goleta, GA, 

USA).  Root mean square values were taken in 10s bins and plotted over time for each constant-

work rate trial to obtain the slope of each trial.  The power output for each constant-work rate 
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trial was then plotted over each fatigue slope coefficient to determine the y-intercept, which was 

defined as the electromyographic fatigue threshold (EMGFT) (Devries et al., 1982). 

Wingate test 

Each participant warmed up for 3 - 5 min prior to each testing session.  One Wingate test 

was performed on an upper body cycle ergometer (891E, Monark Upper Body Ergometer, 

Vansbro, Sweden) using 0.05kg·kg-1 of the participants body mass.  Each participant was told to 

accelerate as fast as possible from the command of “GO!” and to sprint maximally for the entire 

30 s duration on each test.  Power output was registered using the Monark software (Monark 

ATS software, Vansbro, Sweden).  Peak power (PP) was recorded as the highest power output 

generated during the test and mean power (MP) was recorded as the average power output over 

the entire test.  Total work completed was also recorded.  

Determination of Energy Systems Contribution 

Estimates of oxidative, glycolytic, and ATP-PCr systems contribution were generated 

through oxygen uptake, blood lactate concentration, and the fast component of excess post-

exercise oxygen consumption, respectively.  During the Wingate test, oxygen uptake was 

recorded, at rest, for five minutes prior to the warm-up and the testing trial with the last 30 s as 

the baseline reference.  Next, total oxygen consumption during exercise was calculated as the 

area under the curve (trapezoidal method).  The aerobic contribution was calculated as the 

oxygen uptake during exercise minus the oxygen uptake at baseline (baseline oxygen uptake was 

then multiplied by the total time of exercise).  The fast (ATP-PCr contribution) and slow 

component of exercise post oxygen consumption was analyzed, for five minutes, by the 
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biexponential or the monoexponential curve (using GEDAE-LaB software) (Bertuzzi et al., 

2016) to see which fits the data best (see equation below) (Beneke, Pollmann, Bleif, Leithäuser, 

& Hütler, 2002).   

V̇O2(t) = Aet/tA + Bet/tB + (V̇O20) 

A = amplitude of fast component 

B = amplitude of slow component 

tA = fast component time constant 

tB = slow component time constant 

V̇O20 = the V̇O2 at rest 

The contribution of each energy system was expressed in absolute terms (kJ), assuming the 

caloric quotient of 20.9 kJ·LO2
-1 (Gastin, 2001) and as a relative percentage of total metabolic 

work. Lastly, each system was summed to calculate total metabolic work (in kJ). 

Blood samples were obtained via ear lobe prior to each Wingate test and three and five 

minutes following each test to determine the peak plasma lactate concentration using a lactate 

analyzer (Lactate Plus, Nova Biomedical, Waltham, MA).  The glycolytic contribution was 

estimated assuming the accumulation of one mmol·L-1 of blood lactate is equivalent to three 

milliliters of oxygen per kilogram of body mass (di Prampero & Ferretti, 1999).  

Exercise Training Protocol 

A SIT program consisting of six training sessions (three sessions per week for two 

weeks) was employed and each session were separated by at least 48 hours.  Each training 
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session began with a five-minute warm-up at 50 W, and then four 30-second or 10-second all-out 

repeated sprints using 0.05kg·kg-1 (or 5%) body mass loading (Franchini et al., 2016) 

interspersed by either two or four minutes of passive recovery (see Table 1).  Training took place 

on a modified cycle ergometer (894E, Monark Cycle Ergometer, Vansbro, Sweden) that was 

placed on adjustable scaffolding for arm cranking.  Subjects were instructed to perform all-out 

sprints trying to reach and maintain the highest power output for every sprint while strong verbal 

encouragement was given throughout.  Training progression increased one repetition every two 

training sessions, thus four repetitions during the first two training sessions, five repetitions 

during the middle two training sessions, and six repetitions for the final two training sessions 

(Hazell et al., 2010).  Peak power (PP, in W), mean power (MP, in W), and total work (TW, in J) 

were recorded.  In addition, participants were asked to provide a perceived readiness rating 

(PRR) within 15 s prior to each sprint.  The PRR is a progressive scale from one to five with one 

stating “Not at all ready to begin” and five stating “Completely ready to begin”.  Exercise 

Density (in J·s-1) was also calculated for each participant by dividing the six session sum of TW 

over the sum of the inter-set recovery, in seconds, over the two-week intervention (Marston, 

Peiffer, Newton, & Scott, 2017). 
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Table 2. Training protocol for each of the three training groups 

30:4 

 

10:4 

 

10:2 

 

Statistical Analysis 

An analysis of covariance (ANCOVA) was performed on all testing measurements 

collected at post-testing to identify differences between groups for aerobic capacity, fatigue 

Training 
Session 

Number of 
Sprints 

Resistance per 
Sprint 

Duration of 
Sprints 

Duration of 
Recovery 

Day 1 and 2 4 5% 30 s 4 min 

Day 3 and 4 5 5% 30 s 4 min 

Day 5 and 6 6 5% 30 s 4 min 

Training 
Session 

Number of 
Sprints 

Resistance per 
Sprint 

Duration of 
Sprints 

Duration of 
Recovery 

Day 1 and 2 4 5% 10 s 4 min 

Day 3 and 4 5 5% 10 s 4 min 

Day 5 and 6 6 5% 10 s 4 min 

Training 
Session 

Number of 
Sprints 

Resistance per 
Sprint 

Duration of 
Sprints 

Duration of 
Recovery 

Day 1 and 2 4 5% 10 s 2 min 

Day 3 and 4 5 5% 10 s 2 min 

Day 5 and 6 6 5% 10 s 2 min 
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thresholds, anaerobic performance, and energy system utilization.  Associated values collected at 

pre were used as covariates to eliminate the possible influence of initial score variances on 

training outcomes.  An analysis of variance (ANOVA) was used to compare average TW, PP, 

MP, and exercise density over the training intervention between training groups, whereas a 

Kruskal-Wallis analysis of variance was used for PRR due its categorical scale and non-

normality.  When appropriate, post hoc Bonferroni pairwise comparisons were used to examine 

the differences among the groups.  Pearson r correlations were conducted between total lean arm 

mass and performance variables, CP and energy system contribution, and W’ and energy system 

contribution; however, Spearman rho correlations were conducted when variables did not display 

normal distributions.  Outliers were removed if they fell outside three times the median absolute 

deviation (MAD) for V̇O2peak, CP, and EMGFT (Leys, Ley, Klein, Bernard, & Licata, 2013).  

With less than 6% of the data missing (Tabachnick & Fidell, 2013), multivariate imputation 

using partial least squares method was performed via JMP Pro 12 (Cary, NC, USA) on energy 

system contribution and training data.  For effect size, the partial eta squared statistic was 

calculated with an interpretation of 0.01, 0.06, and 0.14 as small, medium, and large effect sizes, 

respectively (Cohen, 1988).  Significance was established at an alpha of p < 0.05, whereas a 

trend was noted if p < 0.10.  All data were reported as mean ± SD.  Additionally, post-test 

measures were reported as mean ± 95% confidence intervals to indicate meaningful changes as 

compared with covariate adjusted pre-test values.  Statistical software (IBM SPSS Statistics for 

Windows, Version 23.0; Armonk, NY: IBM Corp) was used for all analyses. 

In addition, typical error (TE) was calculated for V̇O2peak, CP, and EMGFT as the 

standard deviation of the difference scores (post-pre) divided by the square root of two (Hopkins, 

2000).  A responder was defined as a participant that increased or decreased more than two times 
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the TE, whereas a non-responder was defined as a participant that did not increase or decrease 

more than two times TE for each respective variable following training (Bonafiglia et al., 2016). 
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CHAPTER FOUR: RESULTS 

Anthropometric Changes  

Baseline participant characteristics are displayed in Table 3.  Significant differences 

between groups were noted in post-test body mass (F3,36 = 6.248, p = .002, η2 = .342) with an 

adjusted pre-test mean of 79.1 kg (Table 4).  All groups were significantly heavier than 30:4 

(10:2, p = .023; 10:4, p = .015; CON, p = .002).  No significant between-group differences were 

noted between post-test %BF (F3,36 = .165, p = .919, η2 = .014; adjusted pre-test mean = 17.2 %), 

RA lean mass (F3,36 = 1.951, p = .139, η2 = .140; adjusted pre-test mean = 3.8 kg), LA lean mass 

(F3,36 = 1.971, p = .136, η2 = .141; adjusted pre-test mean = 3.8 kg), or total lean arm mass (F3,36 

= 2.050, p = .124, η2 = .146; adjusted pre-test mean = 7.6 kg) (Table 4). 

Table 3. Participant characteristics 

10:2 (n  = 11) 10:4 (n  = 11) 30:4 (n  = 10) CON (n  = 10)
Age (yr) 22.8 ± 3.2 22.4 ± 3.2 23.1 ± 3.2 24.3 ± 3.3
Height (cm) 176.4 ± 6.9 176.2 ± 8.7 172.9 ± 7.1 174.2 ± 4.9
Body Mass (kg) 81.2 ± 9.5 83.6 ± 13.3 73.9 ± 12.1 77.0 ± 11.5
Note.  Data are mean ± standard deviation (SD) and represent baseline 
characteristics of the participants training in the 10 s 2 min group (10:2), 10 s 4 
min group (10:4), 30 s 4 min group (30:4), or control group (CON). n = 
sample size.  

Aerobic Capacity and Fatigue Thresholds 

There were significant differences between groups in absolute V̇O2peak (F3,37 = 5.003, p 

= .005, η2 = .289; adjusted pre-test mean = 2.44 L·min-1) and PPO (F3,37 = 4.291, p = .011, η2 = 

.258; adjusted pre-test mean = 130.9 W).  In regards to V̇O2peak, both 10:2 and 30:4 were 

greater than CON group (p = .036 and p = .007, respectively), while a trend was noted between 

10:4 and CON (p = .056).  In regards to PPO, only 30:4 was greater than CON group (p = .007) 
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(Figure 2 and Table 5).  Due to erratic behavior in the deoxygenated hemoglobin signal (i.e. non-

sigmoidal), the deoxygenation breakpoint could not be established.  Due to outliers (i.e. 

>3MAD), four subjects were removed from EMGFT analysis.  No significant differences were 

found between groups in CP (F3,37 = .748, p = .530, η2 = .057; adjusted pre-test mean = 88.2 W), 

W’ (F3,37 = .193, p = .900, η2 = .015; adjusted pre-test mean = 6.79 kJ), or EMGft (F3,33 = .490, p 

= .692, η2 = .043; adjusted pre-test mean = 99.0 W) (Figure 3 and Table 6).  Responders were 

classified as participants that fell beyond the range of TE×2 (±0.350 L·min-1 for V̇O2peak, ±17.6 

W for CP, and ±45.9 W for EMGFT).  Three participants (one from each training group) 

responded positively in regards to V̇O2peak, whereas five separate participants (three from 30:4 

and two from 10:4) responded positively to CP.  Although, one participant (from 10:4) 

responded negatively in regards to CP.  Two participants (one from 30:4 and one from 10:2) 

responded positively in regards of EMGFT.  Among the responders, only one participant 

overlapped positively in regards to both V̇O2peak and EMGFT. 

Relative to body weight, there was a significant difference between groups in relative 

V̇O2peak (F3,36 = 6.455, p = .001, η2 = .350) with an adjusted mean of 31.1 ml·kg-1·min-1.  The 

30:4 group was greater than CON group (p = .001), but a trend was noted between 10:2 and 

CON group (p = .089).  Significant between group differences were noted between post-test PPO 

(F3,36 = 7.07, p = .001, η2 = .371) with an adjusted mean of 1.68 W·kg-1.  The 30:4 group was 

greater than the CON group (p < .001), and trends were noted in 10:2 (p = .055) and the 10:4 (p 

= .097) groups compared to the CON.  However, no significant differences were observed in CP 

(F3,36 = 2.171, p = .108, η2 = .153; adjusted pre-test mean = 1.14 W·kg-1), W’ (F3,36 = .331, p = 

.803, η2 = .027; adjusted pre-test mean = .09 kJ·kg-1), or EMGFT (F3,32 = 1.880, p = .947, η2 = 

.011; adjusted pre-test mean = 1.26 W·kg-1) relative to body weight. 
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Relative to total lean arm mass, there was a significant difference between groups in 

absolute V̇O2peak (F3,36 = 5.390, p = .004, η2 = .310) with an adjusted mean of .325 L·min-1·kg-1 

and PPO (F3,36 = 6.666, p = .001, η2 = .357) with an adjusted mean of 17.4 W·kg-1.  The 30:4 

group was greater than CON group (p = .002) in absolute V̇O2peak, and greater than the 10:2 (p 

= .007) and CON (p = .001) groups in PPO.  No significant differences were observed for W’ 

(F3,36 = .749, p = .749, η2 = .033; adjusted pre-test mean = .89 kJ·kg-1), or EMGFT (F3,32 = .325, p 

= .807, η2 = .030; adjusted pre-test mean = 13.1 W·kg-1), but a trend was noted in CP (F3,36 = 

2.363, p = .087, η2 = .165; adjusted pre-test mean = 11.8 W·kg-1) relative to total lean arm mass. 

Wingate Performance 

No significant differences were noted between groups in the upper body (UB) 

performance variables: UB PP (F3,37 = 1.114, p = .692, η2 = .043; adjusted pre-test mean = 684.2 

W), UB MP (F3,37 = 1.297, p = .290, η2 = .095; adjusted pre-test mean = 394.4 W), UB TW (F3,37 

= .1.293, p = .291, η2 = .095; adjusted pre-test mean = 11.3 kJ) (Figure 4 and Table 7). 

Relative to total lean arm mass there were no differences between groups in PP (F3,36 = 

1.043, p = .385, η2 = .080; adjusted pre-test mean = 90.2 W·kg-1).  There were significant 

differences between groups in MP (F3,36 = 2.98, p = .044, η2 = .199; adjusted pre-test mean = 

51.9 W·kg-1) and TW (F3,36 = 2.953, p = .045, η2 = .197; adjusted pre-test mean = 1.49 kJ·kg-1).  

In MP, 30:4 was significantly greater than CON (p = .048) and in TW, there was a trend for 

greater work completed in 30:4 compared to CON (p = .061). 
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Energy System Contribution 

There were significant differences between groups in relative energy contribution for the 

ATP-PCr system (F3,37 = 3.393, p = .028, η2 = .216) with an adjusted mean of 43.5%.  The 10:4 

was greater than CON (p = .026).  No significant differences were observed in the oxidative 

(F3,37 = 1.485, p = .235, η2 = .107; adjusted pre-test mean = 9.9 %) or glycolytic (F3,37 = 2.084, p 

= .119, η2 = .145; adjusted pre-test mean = 46.6 %) systems (Figure 5 and Table 8). 

There were significant differences between groups in energy expenditure for the ATP-

PCr system (F3,37 = 3.580, p = .023, η2 = .225) with an adjusted mean of 50.5 kJ.  The 10:4 was 

greater than CON (p = .019).  No significant differences were observed in the oxidative (F3,37 = 

.952, p = .426, η2 = .072; adjusted pre-test mean = 11.2 kJ) or glycolytic (F3,37 = .141, p = .935, 

η2 = .011; adjusted pre-test mean = 53.5 kJ) systems.  No significant differences were observed 

in total metabolic work between groups (F3,37 = 1.275, p = .297, η2 = .094; adjusted pre-test mean 

= 115.3 kJ) (Figure 6 and Table 9). 

Training 

All subjects within the training groups completed 100% of the training session.    

Average PP was significantly different between training groups (F2,31 = 5.35, p = .011) with the 

10:2 (p = .013) and 10:4 (p = .049) groups significantly greater than the 30:4 group.  Average 

MP was significantly different between training groups (F2,31 = 26.637, p < .001) with the 10:2 (p 

< .001) and 10:4 (p < .001) groups significantly greater than the 30:4 group.  Average TW was 

significantly different between training groups (F2,31 = 57.489, p < .001) with the 30:4 group 

greater than both the 10:2 (p < .001) and the 10:4 (p = .002) groups.  There was a significant 

difference in the distribution of ranks between groups in PRR (X2
3 = 7.178, p = .028) with 10:4 
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group (M = 4.77) having a greater median value than 30:4 (M = 4.14, p = .022), but no 

differences with 10:2 (M = 4.25).  There was a significant difference between groups in ED (F2,31 

= 50.925, p < .001) with 10:2 having a greater density than 30:4 (p = .010) and both 10:2 (p < 

.001) and 30:4 (p < .001) having greater densities than 10:4 (Table 10). 

Correlations 

Total lean arm mass was correlated to absolute V̇O2peak (r = .49, p = .001, PPO (r = .56, 

p < .001), CP (r = .39, p = .012), W’ (r = .34, p = .03), EMGFT (r = .65, p < .001), PP (r = .52, p < 

.001), MP (r = .73, p < .001), TW (r = .67, p < .001), absolute (r = .63, p < .001) and relative (r = 

.37, p = .017) ATP-PCr energy, absolute energy from glycolysis (ρ = .31, p = .047), and total 

metabolic work (ρ = .54, p = .047).  W’ was correlated to absolute energy derived from 

glycolysis (ρ = .38, p = .013).  CP was correlated to absolute (r = .55, p < .001) and relative (r = 

.31, p = .045) energy derived from ATP-PCr and absolute energy derived from oxidative (r = .31, 

p = .025). 
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Table 4. Anthropometric measures before (pre) and after (post) training 

Pre Post Pre Post Pre Post Pre Post
Body Mass (kg) 81.2 ± 9.5 82.2 ± 9.4 83.6 ± 13.3 84.7 ± 13.7 73.9 ± 12.1 73.0 ± 11.8 77.0 ± 11.5 78.5 ± 12.2
%BF 15.7 ± 6.2 15.7 ± 6.3 17.8 ± 3.5 18.3 ± 4.7 16.8 ± 5.9 16.7 ± 5.4 19.0 ± 7.3 18.6 ± 6.7
Total lean arm mass (kg) 8.1 ± 1.2 8.2 ± 1.1 8.2 ± 1.7 8.2 ± 1.7 7.0 ± 1.1 7.0 ± 1.2 7.3 ± 1.2 7.5 ± 1.1

10:2 (n = 11) 10:4 (n  = 11) CON (n  = 9)30:4 (n  = 10)

Note.  Data are mean ± standard deviation (SD) representing raw data measured before and after training in the 10 s 2 min group (10:2), 10 s 
4 min group (10:4), 30 s 4 min group (30:4), and control group (CON). n = sample size. %BF = percent body fat.  

Table 5. Graded exercise test variables before (pre) and after (post) training 

Pre Post Pre Post Pre Post Pre Post
VO2peak (L·min-1) 2.58 ± 0.35 2.53 ± 0.38 2.61 ± 0.32 2.58 ± 0.29 2.21 ± 0.30 2.36 ± 0.26 2.56 ± 0.34 2.17 ± 0.34

VO2peak (mL·kg-1·min-1) 31.3 ± 3.6 31.1 ± 4.6 31.5± 3.1 31.0 ± 5.6 30.3 ± 4.4 32.8 ± 5.0 32.2 ± 4.4 28.4 ± 3.1
PPO (W) 142 ± 22 142 ± 20 129 ± 14 136 ± 12 124 ± 14 136 ± 14 135 ± 26 127 ± 22

10:2 (n = 11) 10:4 (n  = 11) 30:4 (n  = 10) CON (n  = 10)

Note.  Data are mean ± standard deviation (SD) representing raw data measured before and after training in the 10 s 2 min group (10:2), 10 s 4 
min group (10:4), 30 s 4 min group (30:4), and control group (CON). n = sample size. VO2peak = peak oxygen consumption; PPO = peak 
power output.  
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Table 6. Constant-work rate trials variables before (pre) and after (post) training 

Pre Post Pre Post Pre Post Pre Post
CP (W) 98.3 ± 18.0 99.2 ± 17.9 86.4 ± 13.9 95.4 ± 14.7 84.9 ± 16.7 94.9 ± 16.2 83.6 ± 15.5 85.5 ± 12.4
W' (kJ) 6.46 ± 1.65 6.78 ± 1.90 6.87± 1.67 6.34 ± 1.61 6.83 ± 2.43 6.95 ± 2.84 7.40 ± 2.79 7.12 ± 3.37

EMGFT (W) 100.7 ± 24.8 113.1 ± 20.8 103.7 ± 13.6 112.1 ± 17.7 96.9 ± 20.1 100.6 ± 16.9 93.4 ± 19.1 104.2 ± 33.4

CON (n  = 10)

Note.  Data are mean ± standard deviation (SD) representing raw data measured before and after training in the 10 s 2 min group 
(10:2), 10 s 4 min group (10:4), 30 s 4 min group (30:4), and control group (CON). n = sample size. CP = critical power;  W' = 
anaerobic working capacity; EMGFT = electromyographic fatigue threshold.

(n  = 10) (n  = 10) (n  = 10) (n  = 8)

10:2 (n = 11) 10:4 (n  = 11) 30:4 (n  = 10)

 

Table 7. Wingate test variables before (pre) and after (post) training 

Pre Post Pre Post Pre Post Pre Post
PP (W) 753 ± 189 905 ± 295 666 ± 189 772 ± 195 630 ± 109 749 ± 159 682 ± 231 716 ± 224
MP (W) 427 ± 71 437 ± 75 396 ± 66 419 ± 65 372 ± 58 409 ± 69 379 ± 78 382 ± 78
TW (kJ) 12.2 ± 1.9 12.3 ± 2.2 11.3± 1.7 11.8 ± 1.7 10.8 ± 1.6 11.8 ± 1.8 10.8 ± 2.3 10.8 ± 2.3
Note.  Data are mean ± standard deviation (SD) representing raw data measured before and after training in the 10 s 2 min 
group (10:2), 10 s 4 min group (10:4), 30 s 4 min group (30:4), and control group (CON). n = sample size. PP = peak 
power;  MP = mean power; TW = total work.

10:2 (n = 11) 10:4 (n  = 11) 30:4 (n  = 10) CON (n  = 10)
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Table 8. Relative energy system contribution before (pre) and after (post) training 

Pre Post Pre Post Pre Post Pre Post
Oxidative (%) 9.7 ± 3.7 8.9 ± 2.0 10.1 ± 2.4 10.0 ± 2.4 9.8 ± 3.3 9.5 ± 2.1 10.2 ± 3.6 10.8 ± 2.3
Glycolytic (%) 46.9 ± 6.6 43.5 ± 6.0 45.1 ± 6.9 40.1 ± 5.7 46.8 ± 6.0 44.7 ± 4.5 47.6 ± 5.7 46.1 ± 5.0
ATP-PCr (%) 43.4 ± 9.7 47.7 ± 6.2 44.8 ± 7.9 49.9 ± 5.1 43.4 ± 6.1 45.8 ± 2.9 42.3 ± 4.7 43.1 ± 5.3

10:2 (n = 11) 10:4 (n  = 11) 30:4 (n  = 10) CON (n  = 10)

Note.  Data are mean ± standard deviation (SD) representing raw data measured before and after training in the 10 s 2 min group 
(10:2), 10 s 4 min group (10:4), 30 s 4 min group (30:4), and control group (CON). n = sample size. 

 

Table 9. Absolute energy system contributions before (pre) and after (post) training 

Pre Post Pre Post Pre Post Pre Post
Oxidative (kJ) 11.6 ± 2.9 11.0 ± 2.5 11.1 ± 2.3 12.2 ± 2.5 10.8 ± 3.0 10.6 ± 2.0 11.3 ± 4.1 11.7 ± 3.3
Glycolytic (kJ) 57.2 ± 8.6 55.4 ± 19.3 50.3 ± 11.1 49.8 ± 12.1 52.5 ± 9.5 51.7 ± 12.9 54.1 ± 14.6 50.1 ± 10.0
ATP-PCr (kJ) 54.8 ± 17.6 59.8 ± 14.9 49.8 ± 11.1 62.1 ± 14.1 49.2 ± 11.7 52.6 ± 10.5 47.8 ± 12.8 47.2 ± 11.1
Note.  Data are mean ± standard deviation (SD) representing raw data measured before and after training in the 10 s 2 min group 
(10:2), 10 s 4 min group (10:4), 30 s 4 min group (30:4), and control group (CON). n = sample size. 

10:2 (n = 11) 10:4 (n  = 11) 30:4 (n  = 10) CON (n  = 10)

 

 



53 
 

Table 10. Performance variables during training 

10:2 (n = 11) 10:4 (n  = 11) 30:4 (n  = 10)
PP (W) 638 ± 147* 611 ± 113* 482 ± 73
MP (W) 495 ± 85* 488± 73* 300 ± 38
TW (kJ) 149 ± 26* 147 ± 21* 248 ± 27
ED (J·s-1) 51.7 ± 8.9*# 25.5± 3.7 43.1 ± 4.6
Note.  Data are mean ± standard deviation (SD) from training in 
the 10 s 2 min group (10:2), 10 s 4 min group (10:4), 30 s 4 min 
group (30:4), and control group (CON). n = sample size. PP = 
average peak power;  MP = average mean power; TW = 
average total work; PRR = perceived readiness rating; ED = 
exercise density. *Significantly different than 30:4 (p<.05). 
#Significantly different than 10:4 (p<.05).  
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Note. Mean values (±95% confidence interval) for posttest adjusted for initial differences in pretest (dashed line) for 10 s 2 min 
group (10:2), 10 s 4 min group (10:4), 30 s 4 min group (30:4), and control group (CON): A. Maximal oxygen uptake (V̇O2peak; 
covariate: adjusted pretest mean = 2.44 L·min-1); B. Maximal oxygen uptake relative to body weight (V̇O2peak; covariate: 
adjusted pretest mean = 31.3 ml·kg-1·min-1); C. Maximal oxygen uptake relative to total lean arm mass (V̇O2peak; covariate: 
adjusted pretest mean = .325 L·kg-1·min-1); D. Peak power output (PPO; covariate: adjusted pretest mean = 130.9 W); E. Peak 
power output relative to body mass (PPO; covariate: adjusted pretest mean = 1.68 W·kg-1); F. Peak power output relative to total 
lean arm mass (PPO; covariate: adjusted pretest mean = 17.4 W·kg-1). *Significantly different from CON (p<.05). #Trend 
compared to CON (p<.10). †Significantly different from 10:2 (p<.05). 

Figure 2. Graded exercise testing variables after 2 weeks of training 
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Note. Mean values (±95% confidence interval) for posttest adjusted for initial differences in pretest (dashed line) for 10 s 2 min 
group (10:2), 10 s 4 min group (10:4), 30 s 4 min group (30:4), and control group (CON): A. Critical power (CP; covariate: 
adjusted pretest mean = 88.2 W); B. Anaerobic working capacity (W’; covariate: adjusted pretest mean = 6.8 kJ); C. 
Electromyography fatigue threshold (EMGFT; covariate: adjusted pretest mean = 99 W) 

Figure 3. Constant-work rate testing variables after 2 weeks of training 
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Note. Mean values (±95% confidence interval) for posttest adjusted for initial differences in pretest (dashed line) for 10 s 2 min 
group (10:2), 10 s 4 min group (10:4), 30 s 4 min group (30:4), and control group (CON): A. Peak Power (PP; covariate: adjusted 
pretest mean = 684.2 W); B. Mean Power (MP; covariate: adjusted pretest mean = 394.4 W); C. Total Work (TW; covariate: 
adjusted pretest mean = 11.3 kJ) 

Figure 4. Wingate testing performance variables after 2 weeks of training
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Note. Mean values (±95% confidence interval) for posttest adjusted for initial differences in 
pretest (dashed line) for 10 s 2 min group (10:2), 10 s 4 min group (10:4), 30 s 4 min group 
(30:4), and control group (CON): A. Relative contribution between energy systems; B. Relative 
energy contribution between groups (Oxidative; covariate: adjusted pretest mean = 9.9 %; 
Glycolytic: covariate: adjusted pretest mean = 46.6 %, ATP-PCr; covariate: adjusted pretest 
mean = 43.5 %). *Significantly different from CON (p<.05) 

Figure 5. Relative energy system contribution 

 

Note. Mean values (±95% confidence interval) for posttest adjusted for initial differences in 
pretest (dashed line) for 10 s 2 min group (10:2), 10 s 4 min group (10:4), 30 s 4 min group 
(30:4), and control group (CON): A. Relative contribution between energy systems; B. Relative 
energy contribution between groups (Oxidative; covariate: adjusted pretest mean = 11.2 kJ; 
Glycolytic: covariate: adjusted pretest mean = 53.5 kJ; ATP-PCr; covariate: adjusted pretest 
mean = 50.5 kJ). *Significantly different from CON (p<.05) 

 

Figure 6. Absolute energy system contribution  
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CHAPTER FIVE: DISCUSSION 

The purpose of this study was to compare different work-to-rest ratios utilized during SIT 

on upper body aerobic capacity and fatigue thresholds, anaerobic performance, and energy 

system contribution.  The major finding of this study was that a two-week period of SIT could be 

effective in enhancing upper body aerobic capacity.  It appears that completing a greater amount 

of total work with at least a moderate level of metabolic stress, quantified via ED, provides a 

more optimal stimulus for upper body aerobic adaptations.  Alternatively, SIT did not bring 

about delays in fatigue thresholds (i.e. CP and EMGFT) or improvements in anaerobic 

performance.  This appears to be the first study to examine changes in energy system utilization 

after upper body SIT.  The novel finding was that individuals undergoing a modified SIT 

protocol utilizing 10 s with four minutes of rest were able to draw a greater amount of energy 

from the ATP-PCr system during a 30-second anaerobic task as compared to a control group.   

In agreement with previous research examining similar work-to-rest ratio SIT protocols, 

aerobic capacity was improved (Gillen et al., 2014; Hazell et al., 2010; Zelt et al., 2014; Zinner 

et al., 2016).  Although the current results of this study indicate that training with a reduced 

duration work bout (i.e. 10 s) does not diminish aerobic adaptations, as observed by Zelt and 

colleagues (2014) and Hazell and colleagues (2010), the duration of rest appears to be influential.  

Both 10:2 and 30:4 resulted in significant improvements in absolute V̇O2peak over CON, 

whereas 10:4 showed a trend towards greater improvement compared to CON.  The 30:4 

protocol elicited a positive response in V̇O2peak and PPO in terms of absolute, relative to body 

weight, and relative to lean arm mass values than CON.  Additionally, 30:4 attained a greater 

PPO relative to lean arm mass than 10:2.  Adaptations from shorter work-to-rest ratios could be 
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due to the greater metabolic demand within the 30:4 and 10:2 groups (Bogdanis, Nevill, Boobis, 

Lakomy, & Nevill, 1995; Buchheit et al., 2012; Glaister, 2005).  The greater metabolic demand 

may be supported by the currently reported lower average feeling of perceived readiness within 

participants from 30:4 as compared to 10:4.  Zinner and colleagues (2016) examined adaptations 

in the arm muscles from two weeks of a combined upper and lower body SIT protocol, however 

their protocol solely consisted of the traditional (30 s sprints) SIT protocol with four minutes of 

rest rather than the modified 10 s protocols used in the current investigation.  Our findings are 

contrary to previous reports employing the same SIT protocols in the lower body by Hazell and 

colleagues (2010) which found 30:4 and 10:4 more beneficial for improvements in V̇O2peak 

compared to CON; however, a trend was noted for improvements in 10:2 compared to CON.  In 

particular, SIT has been shown to increase PGC-1α mRNA expression and protein content 

(Burgomaster et al., 2008; Gibala et al., 2009; Scalzo et al., 2014), which could induce a 

phenotypic expression characteristic of slow-twitch muscle fibers (Lin et al., 2002), and given 

the upper body’s fast-twitch dominance (Sanchis‐Moysi et al., 2010; Zinner et al., 2016) may 

result in a large potential for aerobic adaptation.  It has been shown that SIT can induce a muscle 

fiber transition from either type I or type IIb towards type IIa, thereby increasing the relative 

percentage within the muscle (Parcell et al., 2005; Ross & Leveritt, 2001).  Given the differences 

between the upper and lower body musculature, the upper body may benefit from larger work-to-

rest ratios that provide more work to be accomplished while maintaining a high exercise density.  

A greater exercise density may indirectly limit recovery of severely depleted PCr stores, which 

in turn, will rely heavily on aerobic metabolism to compensate (Bogdanis et al., 1995).  This 

added metabolic cost along with greater exercise densities may distinguish the adaptations 

observed in the 30:4 and 10:2 protocols from the 10:4 protocol.  Further, lower body 
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improvements in V̇O2peak due to SIT may be attributed to increased muscle oxygen extraction 

or capillarization in the active musculature (Vollaard, Metcalfe, & Williams, 2017).  

Additionally, two weeks of lower body SIT and HIT has been shown to increase muscle 

oxidative capacity, resting muscle glycogen levels, muscle buffering capacity, and aerobic and 

anaerobic enzymatic activity (Gibala et al., 2006; Little, Safdar, Wilkin, Tarnopolsky, & Gibala, 

2010; Rodas, Ventura, Cadefau, Cussó, & Parra, 2000).   

This appears to be the first study to examine changes in the work-time relationship before 

and after a two-week SIT protocol in the upper body.  Despite improvements in maximal aerobic 

capacity, two weeks of SIT did not stimulate increases in CP or W’.  In contrast to the current 

findings, Zelt and colleagues (2014) found a main effect for training over four weeks with two 

SIT protocols during lower body cycling.  However, the authors utilized 30 s work bouts with 

longer rest periods (i.e. 4.5 min and 4.75 min) than the current investigation.  Despite the 

relationship between V̇O2max and CP (Jenkins & Quigley, 1993; Moritani, Nagata, deVries, & 

Muro, 1981), reported increases in V̇O2max can occur without changes in CP during lower body 

high-intensity interval training (Graef et al., 2009; Jenkins & Quigley, 1993; Kendall et al., 

2009).  Gaesser and Wilson (1988) suggested that changes in CP are not dependent on changes 

in V̇O2peak, and despite both measures purported to be measures of aerobic function, training-

based improvements are not mutually exclusive.  Since CP is a submaximal parameter of aerobic 

function (Moritani et al., 1981; Poole et al., 1990), and the current investigation found CP to be 

positively correlated with energy derived from the oxidative and ATP-PCr system, the maximal 

nature of SIT may have a greater impact on maximal (i.e.V̇O2peak) rather than submaximal 

measures.   
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Relatively few explorations have determined the influence of high-intensity intermittent 

exercise on W’ derived from the work-time relationship with divergent findings (Jenkins & 

Quigley, 1993; Poole et al., 1990).  Moreover, previous studies demonstrate conflicting reports 

on the relationship between anaerobic performance (TW, PP and MP), from upper and lower 

body Wingate tests, and W’ (Bulbulian, Jeong, & Murphy, 1996; Jenkins & Quigley, 1993; 

Zagatto, Papoti, & Gobatto, 2008).  Hence, some investigations argue the validity of W’ as an 

estimation of anaerobic capacity (Dekerle, Sidney, Hespel, & Pelayo, 2002; Poole, Burnley, 

Vanhatalo, Rossiter, & Jones, 2016).  Although, the current investigation did find significant 

correlations among W’ and anaerobic performance (PP, MP, and TW) with no changes in either 

following SIT.  Only the energy derived from glycolysis was related to W’ demonstrating that 

W’ may be related to fatigue-related metabolites and glycogen stores (Black et al., 2017; Jones, 

Wilkerson, DiMenna, Fulford, & Poole, 2008; Miura, Sato, Sato, hipp, & Fukuba, 2000).  Future 

research is needed to clearly define the components within the work-time relationship for the 

upper body; however, the current findings support that W’ is a representation of anaerobic 

capabilities.  

Sprint interval training and HIIT using the lower body has shown to increase motor unit 

recruitment and delay the onset of neuromuscular fatigue over four and six weeks, respectively  

(Creer et al., 2004; Smith et al., 2009).  An increase in EMGFT may reflect improvements in 

muscle buffering capacity and may be sensitive to central and peripheral adaptions (Moritani et 

al., 1993; O'Leary, Collett, Howells, & Morris, 2017).  In the current study, SIT did not delay 

neuromuscular fatigue in the biceps brachii via EMGFT, which coincides with lack of 

improvements following SIT on any of the other anaerobic parameters measured.  Previous 

studies have reported no training related increases in muscle activation after lower body sprint 
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training (Sleivert, Backus, & Wenger, 1995).  This may be due to the incorporation of many 

muscles, including antagonists, during upper body arm cranking and this load sharing may 

inhibit an adequate activation response from a single muscle (Hug, Nordez, & Guével, 2009; 

Lusina et al., 2008).  Stimulation of the type II fibers are evident above EMGFT, but SIT may not 

induce a greater expression of type I, IIa, or IIx in the upper body after two weeks (Zinner et al., 

2016), which may partially explain the lack of change in the onset of neuromuscular fatigue in 

the current study.  Furthermore, training at the fast speeds (i.e. all-out), such as those utilized in 

the SIT protocols, may not evoke greater motor unit activation at slow speeds (i.e. 50RPM) 

(Cormie, McGuigan, & Newton, 2011), such as those utilized in the constant work-rate trials.  

Lastly, this investigation observed a significant intra-individual variation of EMG response in 

certain subjects, which may also be related to the slow constant-load crank rate (Foss & Hallén, 

2005; Takaishi, Yasuda, Ono, & Moritani, 1996).   

During the investigation, determination of HHBBP was not possible because 

approximately 43% of the trials displayed non-sigmoidal patterns where a plateau could not be 

credibly established.  This may again be due to the slow crank rate during the GXT which can 

exert a greater isometric component of grip force, especially at the higher relative workloads 

during the GXT, and may impede blood flow (Smith, Price, & Doherty, 2001; Tschakovsky, 

Sujirattanawimol, Ruble, Valic, & Joyner, 2002).  Alternatively, a faster crank rate reduces the 

force required to pedal (Hagberg, Mullin, Giese, & Spitznagel, 1981) and may increase blood 

flow in the working muscles (Armstrong & Peterson, 1981; Takaishi et al., 1996).  In addition, 

Price and colleagues (2007) found that arm cranking at slower rates (50 RPM) versus faster rates 

(70 and 90 RPM) elicited lower oxygen consumption, earlier onset of fatigue, and greater range 

of motion from the trunk down.  This may further support the potential variations in the engaged 



63 
 

muscular that may have occurred during the GXT despite attempting to control for any 

extraneous movements.  The authors suggested that a slow crank rate could induce longer and 

more forceful contractions causing a greater force requirement owing to pre-mature exhaustion 

prior to maximal oxygen supply and delivery (Price et al., 2007).   

The variability within individual response to SIT has warranted investigation (Astorino & 

Schubert, 2014; Bonafiglia et al., 2016; Gurd et al., 2016).  It has been shown that higher rates of 

non-responders occur at a frequency below four days per week (Gurd et al., 2016).  In a meta-

analysis by Bacon and colleagues (2013) it was found that longer high-intensity work bouts have 

a more profound positive effect on V̇O2max.  Furthermore, Ross and colleagues (2015) showed 

that increasing the amount of exercise at high intensities reduced the number of non-responders, 

which would increase the amount of work completed and help to explain the increases in 

V̇O2peak and PPO for the 30 s group.  In the current study, most of those classified as responders 

to SIT showed favorable improvements according to changes in either V̇O2peak, CP, or EMGFT; 

however, they were not mutually exclusive.  Similarly, Bonafiglia and colleagues (2016) 

observed individual patterns of response showing increases in V̇O2peak without related increases 

in lactate threshold.  Thus, individuals can be considered responders in one variable, but not in 

another (Bonafiglia et al., 2016; Gurd et al., 2016).  Given the demanding physical exertion of 

SIT, it is susceptible to individual effort and fatigue rates; therefore, it is difficult to ascertain if a 

subject put forth their greatest effort every visit on each sprint (Gurd et al., 2016).  The effect of 

training is influenced by the highly variable amount of metabolic stress during ‘all-out’ exercise 

(Mann, Lamberts, & Lambert, 2014), thereby potentially limiting to the ability to tolerate critical 

values of metabolite accumulation (Foster et al., 2004).  Therefore, individuals may restrain 

themselves during repeated ‘all-out’ efforts to avoid critical metabolic levels as a type of neural 
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control regulator (Foster et al., 2004; Gibson, Lambert, & Noakes, 2001).  Perhaps future studies 

should implement strategies that quantify metabolic stress during training to ensure whether their 

participants are working maximally.  

In contrast to previous investigations on anaerobic performance following lower body 

SIT (Astorino, Allen, Roberson, & Jurancich, 2012; Bayati, Farzad, Gharakhanlou, & Agha-

Alinejad, 2011; Burgomaster et al., 2006; Harmer et al., 2000; Hazell et al., 2010; Zinner et al., 

2016), two-weeks did not elicit improvements in upper body PP, MP, or TW.  Although relative 

to lean arm mass, 30:4 was the only group significantly greater than CON in terms of MP.  For 

example, Zinner and colleagues (2016) found greater PP and MP in the upper body over two-

weeks of combined upper and lower body SIT (30:4) despite no changes in oxidative enzyme 

activity, muscle glycogen content, proportion of muscle fiber types, or cross sectional area of the 

triceps brachii.  Additionally, the authors did not implement a control group to account for a 

training effect and all participants performed upper body SIT alongside lower body SIT (Zinner 

et al., 2016).  Furthermore, Zelt and colleagues (2014) observed a training effect in PP and MP 

for two SIT protocols (30 s vs. 15 s work bouts), but were unable to differentiate between groups 

over a four-week lower body SIT intervention.  Alternatively, previous studies have reported 

increases in V̇O2max and PPO with no increases in anaerobic performance following a two-week 

lower body cycling intervention (Rodas et al., 2000) or minimal increases following a four-week 

running-based SIT intervention (McKie et al., 2017).  Hazell and colleagues (2010) observed 

increases in PP and MP in both 30:4 and 10:4 protocols over two weeks in the lower body, 

whereas our current findings did not find the 10:4 protocol to be beneficial for increasing upper 

body MP.  The authors attributed the initial production of power output to SIT adaptations; 

however, our results concluded that total work completed during training was more crucial for 
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the improvements seen in this investigation.  Interestingly, Hazell and colleagues (2010) 

implemented a load equivalent to 10% of the subject’s body weight (kg) during training, which is 

greater than the traditional 7.5% recommended for a Wingate test.  Astorino and colleagues 

(2012) found significant improvements in PP and MP despite no change in muscular force 

production.  The mechanisms behind positive anaerobic adaptations in the upper body are 

unclear given the lack of changes in muscle morphology (including muscle fiber types and cross 

sectional area), muscle enzymes, or glycogen content (Zinner et al., 2016).  Lastly, perhaps a 

greater resistance during repeated efforts (Forbes, Kennedy, Boule, & Bell, 2014) or a longer SIT 

intervention is needed to further stimulate anaerobic performance in the upper body. 

Energy System Contribution 

This appears to be the first investigation comparing the influence of SIT on energy 

system contribution.  Following the intervention, energy derived from the ATP-PCr system was 

greater in 10:4 than CON; however, glycolytic and oxidative energy was not different.  In 

contrast, SIT did not alter energy expenditure or relative contribution in 10:2 or 30:4 compared 

to CON.   

It has been reported that sprint training can increase resting PCr concentrations (Parra, 

Cadefau, Rodas, Amigo, & Cusso, 2000; Rodas et al., 2000).  During lower body cycling, a 10 s 

sprint can reduce resting PCr concentrations by ~55% (Bogdanis, Nevill, Lakomy, & Boobis, 

1998), whereas a 30 s sprint can reduce PCr concentrations by 55-83% (Bogdanis, Nevill, 

Boobis, & Lakomy, 1996; Parra et al., 2000).  After a 30-s lower body sprint, PCr concentrations 

can be replenished by ~47% in two minutes and ~76% in four minutes of resting values 

(Bogdanis et al., 1996).  In conjunction with a reduction in PCr concentrations, levels of muscle 
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pH can drop considerably after one 30 s sprint with further reductions in subsequent sprints 

(Bogdanis et al., 1996).  In this investigation, 30:4 was perceived as more challenging than the 

10 s protocols via PRR.  Participants within 30:4 had the largest work-to-rest ratio with moderate 

exercise density which likely resulted in greater blood lactate concentrations (Little & Williams, 

2007).  These metabolic conditions were likely the cause of lower average PP, MP, and PRR 

values in 30:4 compared to the two 10 s protocols over the course of training.  Therefore, given 

that 10:4 had the lowest ED, the associated metabolic stress may have allowed for greater 

resynthesis of PCr and greater removal of lactate during training, thereby increasing ATP-PCr 

utilization. 

Chronic training adaptations are suggested to influence the unique energy system profiles 

of sprinters and endurance athletes (Gastin, 2001).  During an ‘all-out’ 10-s sprint in the lower 

body, aerobic energy yield is ~13%, whereas glycolysis may yield within 55 to 75% of the total 

metabolic energy (Bogdanis et al., 1998).  Meanwhile, work-to-rest ratios of ~1:6 have been 

suggested to develop the ATP-PCr system (Bompa & Haff, 2009).  Although the SIT protocols 

used in this study employed work-to-rest ratios smaller than 1:6 [10:4 (1:24), 10:2 (1:12), and 

30:4 (1:8)], the physiological demands of repeated ‘all-out’ sprinting can rapidly induce fatigue 

despite a constant work-to-rest ratio (Abt, Reaburn, Holmes, & Gear, 2003).  In addition, 10:4 

had the lowest ED, while 10:2 had the greatest ED, indicating the least and greatest amount of 

sessional intensity, respectively.  Therefore, based upon performance and intensity metrics, 10:4 

appeared to be the ideal protocol for developing energy yield from the ATP-PCr system. 

There does not appear to be a consensus within the literature on energy yield over the 

course of a 30 s Wingate test in the upper body.  The current investigation calculated on average, 
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~9-11% oxidative, ~40-46% glycolytic, and ~43-50% ATP-PCr.  In contrast, Harvey and 

colleagues (Harvey et al., 2015) reported ~11% oxidative, ~28% glycolytic, and ~60% ATP-PCr 

in the upper body, however the authors recruited sedentary individuals and used an alternative 

method of calculating the energy derived from ATP-PCr.  Previous investigations reported 

oxidative and glycolytic energy contribution to contribute 21% and 46% (Franchini et al., 2016), 

respectively, and ~11% and ~60% (Lovell et al., 2013), respectively, of total metabolic energy in 

a 30 s upper body sprint.  However, discrepancies in relative contribution between our study and 

previous investigations (Franchini et al., 2016; Lovell et al., 2013) may lie within the training 

experience of the recruited participants, sensitivity of the instruments utilized, and mechanical 

versus electromagnetically braked ergometers.  Further research is needed to establish energy 

system requirements within the upper body. 

Conclusions 

This investigation offers a novel examination of the upper body with traditional and 

modified SIT and shows that the traditional protocol (30:4) elicits positive aerobic performance 

in a relatively short-training period.  However, the current findings were unable to support the 

underlying mechanism of aerobic improvement with an examination of local oxygen delivery.  

Despite this limitation, the total amount of active muscle mass during upper body cycling is 

difficult to quantify while taking into consideration the lower limb and trunk stabilization.  In 

order to better account for these discrepancies participants may need to be restrained to avoid 

any undesired movement that can influence the outcome variables.   

In conclusion, larger work-to-rest ratio SIT protocols induce enhanced aerobic adaptions 

in the upper body over a short-term two-week intervention.  However, there was no improvement 



68 
 

in submaximal performance as denoted by fatigue thresholds or anaerobic performance via 

Wingate assessment.  A faster crank rate may have increased blood flow and increased muscle 

efficiency to determine fatigue thresholds more clearly.  This is also the first study to indicate 

that a smaller work-to-rest ratio SIT protocol may enhance ATP-PCr utilization during an 

anaerobic exercise bout.  Perhaps future studies should investigate the progression of larger 

work-to-rest ratios in order to increase ED rather than increasing the number of repetitions. 

Practical Applications 

 Upper body SIT training may provide a time-efficient form of exercise that provides 

similar health benefits as traditional endurance training.  Metabolic health may be maintained 

despite the mode in which SIT is performed (Francois et al., 2017).  In fact, SIT has been shown 

to positively influenced individuals with cardio-metabolic disorders (Gibala, Little, MacDonald, 

& Hawley, 2012; Gillen et al., 2016; Hicks et al., 2003; Maire et al., 2004).  However, the 

intensity and duration may be too stressful for the general and clinical populations (Bayati et al., 

2011); therefore, shorter work bouts may serve as precursors to larger work-to-rest ratios as 

progression ensues.  On the other hand, the performance benefits of SIT may benefit upper body 

dominant athletes (e.g. sailing, kayaking, cross-country skiing, judo, wrestling or paralympic) or 

individuals enduring acute lower body injuries.  Therefore, upper body SIT may be advantageous 

for athletes, or for those who may not be able to partake in more traditional forms of exercise 

training. 
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