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ABSTRACT 
The classical models ACE and ADE were used in the 1990s to estimate heredity of a phenotype from data on 
monozygotic and dizygotic twins. These models are extended to a model called ACDE with four parameters 
instead of only three. It is showed how these models can be easily estimated by maximum likelihood. The 
models and methods are extended to two populations in which the heredity is the same in both populations. 
Examples are given to estimate the heredity of BMI using twin data from the UK and Australia.   
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Twin data models 

Models for twin data or other types of family relationships were 
common in the 1980s and 1990s (see, e.g., Neale & Cardon, 1992). 
One has data on Nmz monozygotic (mz) twins and Ndz dizygotic 
(dz) twins. It is assumed that mz twins have all their genes in 
common and dz twins have half of their genes in common. We 
observe a phenotype on each twin, denoted P1 and P2. 
A phenotype may be anything that one can measure or observe 
on each twin, such as symptoms (e.g., allergy), illnesses (e.g., 
cancer, diabetes, asthma), physical measures (e.g., weight, height), 
personality traits (e.g., nervousness), longevity (how long you live), 
etc. Here we assume that P1 and P2 are continuous variables. 

From biometric genetic theory, dating back to theories of 
Galton and experiments of Mendel in the nineteenth century 
(see, e.g., Mather & Jinks, 1971; Neale & Cardon 1992, 
Chapter 3), one can formulate the simplest type of twin design 
as follows. The observed phenotypes P1 and P2 of twin 1 and 
twin 2 in a twin pair are postulated to depend on additive 
genes A1 and A2, common environments C1 and C2 (environ
mental influences shared by twins reared in the same family), 
dominance genetic deviations D1 and D2(dominance effects of 
alleles at multiple loci) and unique environments E1 and E2: 

P1 ¼ μ1 þ h1A1 þ c1C1 þ d1D1 þ E1 ; (1) 

P2 ¼ μ2 þ h2A2 þ c2C2 þ d2D2 þ E2 ; (2) 

where μ1 and μ2 are means and D1, A1, C1, C2, A2, and D2 are 
latent random variables with means zero and the correlation 
matrix 
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where x and y are constants with x ¼ 1 for mz, x ¼ 1
2 for 

dz, y ¼ 1 for mz, y ¼ 1
4 for dz. E1 and E2 are uncorrelated 

random variables, uncorrelated with all the other latent 
variables. Since twin 1 and twin 2 are interchangeable, it is 
assumed that the effects of the latent variables are the 
same for twin 1 and twin 2, so that h1 ¼ h2 ¼ h, 
c1 ¼ c2 ¼ c, and d1 ¼ d2 ¼ d. It is also assumed that the 
variances of E1 and E2 are equal. A path diagram is shown 
in Figure 1, where we combine information for monozy
gotic (mz) and dizygotic (dz) twins. The first to derive the 
correlation between P1 and P2 was Sir Ronald A Fisher 
(1918). 

We consider only the simplest type of models here and 
look at this as a statistical estimation problem. 

From these assumptions, it follows that the model implied 
covariance matrices of P1 and P2 are 

Σmz ¼
h2 þ c2 þ d2 þ e2

h2 þ c2 þ d2 h2 þ c2 þ d2 þ e2

� �

; (4) 

Σdz ¼
h2 þ c2 þ d2 þ e2

1
2 h2 þ c2 þ 1

2 d2 h2 þ c2 þ d2 þ e2

� �

; (5) 

Note that the Σ’s are not functions of h, c, d and e but of their 
squares.1 Equations (4) and (5) can be combined as 
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This represents six equations in four parameters h2, c2, d2, and 
e2. Obviously, only three of the six equations are linearly 
independent. If we retain only the equations that are linearly 
independent we may take 
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For given σðmzÞ
11 ; σðmzÞ

21 ; σðdzÞ
21 ; there are infinitely many solu

tions of (7) in terms of h2; c2; d2; e2. However, e2 is uniquely 
determined as 

e2 ¼ σðmzÞ
11 � σðmzÞ

21 : (8) 

The usual way to resolve resolve this indeterminacy is by 
setting either c2 or d2 to 0. If c2 ¼ 0 the model is called an 
ADE model. If d2 ¼ 0 the model is called an ACE model. 

However, the restrictions of c2 or d2 to 0 are undesirable. If 
we had an additional group of twins that were separated from 
birth, we could assume that c2 ¼ 0 for that group. Lacking 
such information, it seems reasonable to assume that there is 
variation in the common environment in which the twins 
grow up, and hence c2 > 0. 

We propose an alternative model which makes it possible 
to estimate all four parameters. This will be called an ACDE 
model. 

Let A be the matrix in (7) and let A? be 

A? ¼ A
0

ðAA
0

Þ
� 1
: (9) 

Using paper and pencil algebra gives 
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The ACDE model is defined by 
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Heredity H is defined as 

H ¼
h2

h2 þ c2 þ d2 þ e2 ; (12) 

which is the fraction of variance in the phenotype attributable 
to genes alone. 

For the ACE model, an interesting relationship is worth 
noting. Since the covariance matrices of P1 and P2 are 

Σmz ¼
h2 þ c2 þ e2

h2 þ c2 h2 þ c2 þ e2

� �

; (13)   

Σdz ¼
h2 þ c2 þ e2

1
2 h2 þ c2 h2 þ c2 þ e2

� �

; (14) 

the correlation between two mz twins is 

ρmz ¼
h2 þ c2

h2 þ c2 þ e2 (15) 

and the correlation between two dz twins is 

ρdz ¼
1
2 h2 þ c2

h2 þ c2 þ e2 ; (16) 

so that 

H ¼ 2ðρmz � ρdzÞ ; (17) 

suggesting that H could be estimated by 

Ĥ ¼ 2ðrmz � rdzÞ ; (18) 

where the r’s are sample correlations. 
In this paper, we use the parameters α, β, and γ defined by 

α ¼ h2 þ c2 þ d2 þ e2, β ¼ h2 þ c2 þ d2, and γ ¼ xh2 þ yd2þ

c2, so that 

Σmz ¼
α
β α

� �

Σdz ¼
α
γ α

� �

:

For the ACE model, there is a one-to-one relationships 
between α, β, γ and h2, c2, e2: 
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Similarly, for the ADE model, there is a one-to-one relation
ships between α, β, γ and h2, d2, e2: 

Figure 1. Simple twin model with dominance effects, additive genes, common 
and unique environments (x ¼ 1 for mz, x ¼ 1

2 for dz, y ¼ 1 for mz, y ¼ 1
4 for 

dz). 
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For the ACDE model no such one-to-one relationships 
exist, but 
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The matrix in the bottom of (21) is the Moore-Penrose 
inverse of the matrix in the top, also called a right 
inverse, see, for example, Magnus and Neudecker (1999, 
pp. 32). 

It is assumed that 

0< γ � β � α : (22) 

If γ> β, the correlation for dz would be greater than that of 
mz. If β> α, the covariance for mz would be larger than the 
variances for mz. 

It is particularly easy to estimate α, β, and γ and their 
covariance matrix, see Section Estimation. The estimates of 
h2; c2; d2; e2 are obtained as linear combinations of the esti
mates of α, β, and γ, using Equations (19)–(21). From (12), 
one finds that 

H ¼
h2

h2 þ c2 þ d2 þ e2 ¼
pβþ qγ

α
; (23) 

where p and q are constants which vary across models, such 
that p ¼ 2,q ¼ � 2 for ACE, p ¼ � 1,q ¼ 4 for ADE, and 
p ¼ 1

2 ,q ¼ � 2
7 for ACDE. 

Estimation 

To estimate the models, all we need are the two sample 
covariance matrices Smz and Sdz and their sample sizes Nmz 
and Ndz. 

Intuitive simple estimates of α, β, and γ are 

α̂ ¼
1
4
ðsðmzÞ

11 þ sðmzÞ
22 þ sðdzÞ

11 þ sðdzÞ
22 Þ; β̂ ¼ sðmzÞ

21 ;

γ̂ ¼ sðdzÞ
21 :

(24) 

Assuming bivariate normality and ignoring means, the loga
rithm of the likelihood function is 

ln L ¼ �
Nmz

2
fln jΣmzj þ trðSmzΣ� 1

mzÞg

�
Ndz

2
fln jΣdzj þ trðSdzΣ� 1

dz Þg : (25) 

Let 

Smz ¼
a
b c

� �

; Sdz ¼
d
e f

� �

: (26) 

Then maximizing ln L in (25) “boils down” to minimizing the 
function 

f ðα; β; γÞ ¼ k1 lnðα2 � β2Þ þ
ðaþ cÞα � 2bβ

α2 � β2

� �

þ k2 lnðα2 � γ2Þ þ
ðd þ f Þα � 2eγ

α2 � γ2

� � ; (27) 

with respect to α, β, and γ. Here k1 ¼ Nmz=N and 
k2 ¼ Ndz=N, where N ¼ Nmz þ Ndz. 

Using (24) as starting values, the function (27) can be 
minimized numerically using first and second derivatives. At 
the solution, one can obtain an estimate of the asymptotic 
covariance matrix of α̂, β̂, and γ̂ from the information matrix 
Ê which is the inverse of the expected Hessian at the solution 
point. 

Let f̂ be the minimum value of f . Then 

c ¼ N f̂ � k1ð2þ lnðac � b2ÞÞ � k2ð2þ lnðdf � e2ÞÞ
h i

;

(28) 

can be used as a chi-square statistic with three degrees of 
freedom for testing the fit of the model. This test statistic is 
the same as the log likelihood ratio test statistic for testing the 
hypothesis that the variances are equal within and between 
groups. 

ACE model 

For the ACE model, we have 
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with estimated asymptotic covariance matrix 

ACov
ĥ
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ĉ2

ê2
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From the definition of H, the estimate Ĥ is obtained as 

Ĥ ¼
pβ̂þ qγ̂

α̂
: (31) 

Using a Taylor expansion of H around the true values gives Ĥ 
approximately as 

Ĥ � H �
pβþ qγ

α2 ðα̂ � αÞ þ
p
α
ðβ̂ � βÞ þ

q
α
ðγ̂ � γÞ (32) 

So the asymptotic variance of Ĥ is 
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AVarðĤÞ � α� 4 � pβþ qγð Þ pα qαð Þ Ê
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Plugging in the estimates α̂, β̂, γ̂, and using p ¼ 2,q ¼ � 2 we 
obtain the estimate of AVarðĤÞ. 

ADE model 

The ADE model can be estimated in the same way as the 
ACE model. The parameters α, β, and γ need not be 
reestimated. 

For the ADE model, we have 
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with estimated asymptotic covariance matrix 
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To obtain the estimate Ĥ and AVarðĤÞ for the ADE model we 
use (32) and (33) with p ¼ � 1, q ¼ 4. 

ACDE model 

For the ACDE model, we use the matrix A? ¼ A
0

ðAA
0

Þ
� 1 as 

B matrix and obtain the estimates as 
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ê2

0

B
B
@

1

C
C
A ¼

0 1
2 � 2

7
0 � 1

2 1 3
7

0 1 � 1 1
7

1 � 1 0

0

B
B
@

1

C
C
A ¼ B

α̂
β̂
γ̂

0

@

1

A : (36) 

with estimated asymptotic covariance matrix 
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This matrix is singular, positive semidefinite and of 
rank 3. Nevertheless, its diagonal elements can be used 
to obtain the estimated standard errors of ĥ2, ĉ2, d̂2, 
and ê2. 

To obtain the estimate Ĥ and AVarðĤÞ for the ACDE 
model we use (32) and (33) with p ¼ 1

2 ,q ¼ � 2
7 . 

Examples: Estimating the heredity of BMI 

Example 1: The UK data 

We use raw data from the UK twin register maintained by the 
Department of Twin Research and Genetic Epidemiology, 
King’s College, London, UK. The data on BMI were extracted 
in January 2016. There are 1552 twin pairs. The oldest twin 
pair was born 1924 and the youngest twin pair was born 1991. 

Among the 1552 twin pairs, there were 794 mz twins and 758 
dz twins. 

The sample covariance matrices are 

Smz ¼
a
b c

� �

¼
24:366
18:797 23:587

� �

; (38) 

Sdz ¼
d
e f

� �

¼
28:379
12:657 25:751

� �

; (39) 

The value of c in (28) is 6.84. As a chi-square with three 
degrees of freedom it has P-value of 0.08. The estimates α̂, 
β̂, γ̂ and their estimated covariance matrix are given in 
Table 1. 

These estimates satisfy the inequality (22). 
Estimated parameters and their standard errors are given in 

Table 2. 

Is age a biasing factor? 
Age is not included in the UK dataset but the year of birth is. 
So we can use 2016 – birth year as a proxy for age. Figure 2 
shows the age distribution for all 1552 twins. It is seen that 
there are not many young twins but some very old ones. 

Age and sex accounts for less than 3% of the variance 
of BMI. Nevertheless, we will investigate the effect of age 
on the estimates. We do this by estimating the bivariate 
regression of BMI on age under the constraint that the 
regression coefficients are the same for each twin in a twin 
pair. This can be tested with one degree of freedom. Then 
we saved the residual covariance matrix in each regres
sion. The resulting residual covariance matrices are as 
follows. Note that residual variances are only slightly 
smaller than the original variances. 

Smz ¼
a
b c

� �

¼
23:837
18:128 22:782

� �

; (40) 

Sdz ¼
d
e f

� �

¼
27:445
11:892 25:152

� �

; (41) 

Table 1. The UK data: estimates α̂, β̂, γ̂ and their covariance matrix Ê.    

α̂ β̂ γ̂ 

α̂  25.723  0.59465     
β̂  20.499  0.57965  0.63311   
γ̂  11.647  0.44680  0.43561  0.79396  

Table 2. The UK data: parameter estimates (0* indicates a fixed value) and 
standard errors. 

Parameter ACE ADE ACDE 

ĥ2  17.705 (1.491)  26.088 (3.139)  6.922 (0.314) 
ĉ2  2.794 (1.438) 0*  6.389 (1.075) 
d̂2 0*  −5.582 (2.875)  7.189 (0.821) 
ê2  5.224 (0.262)  5.224 (0.262)  5.224 (0.262) 
Ĥ  0.688 (0.057)  1.014 (0.110)  0.269 (0.009) 

Note that the estimate d̂2 is negative but not significant for the ADE model. We could 
set d̂2 ¼ 0 which essentially makes the model an AE model with a very large 
component ĥ2. Note also that the ACE model gives a large value of Ĥ at the expense 
of a small and non-significant value of ĉ2. The results for ACDE seem more reason
able, where all parameter estimates are statistically significant. Heredity is estimated 
at 0.27 indicating that 27% of the variance in the phenotype is due to genes. Note 
that the standard error of Ĥ is very small indicating that this estimate is very precise.  
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The estimate ê2 is the same for all models because 

ê2 ¼ α̂ � β̂ 

for all models. 
Using the residual covariance matrices for analysis, we obtain the 
estimates α̂, β̂, γ̂ and their estimated covariance matrix given in 
Table 3. Estimated parameters and their standard errors are given 
in Table 4. 

Comparing Tabels 2 and 4, it is seen that the differ
ences of the parameter estimates between the analysis 
before and after controlling for age are very small but 
the large differences between models remain. One can 
conclude that age has no effect on heredity which is as it 
should be. 

Example 2: Australian data 

Table 8.1, p. 151 in Neale and Cardon (1992) gives 
means, variances and correlations for mz and dz twins 
categorized by age (young = 30 years or less, and 
old = 31 years or older) and sex (males and females). 
This gives four groups of mz and dz twins. We pooled all 

groups into one group separately for mz and dz twins 
using the formulas 

NT ¼
X

g
Ng ; (42)  

�xT ¼

P
g Ng�xg

NT
; (43)  

SSCPg ¼ NgðSg þ �xg�x
0

gÞ ; (44)  

SSCPT ¼
X

g
SSCPg ; (45) 

ST ¼
SSCPT

NT
� �xT�x

0

T ; (46) 

where �x is a 2� 1 sample mean vector for twin 1 and twin 2, 
S is the corresponding 2� 2 sample covariance matrix and 
SSCP is a 2� 2 matrix of sums of squares and cross-products. 
Subscript g is a group index, g ¼ 1; 2; 3; 4 and T denotes the 
total group. 

The resulting sample covariance matrices are 

Smz ¼
a
b c

� �

¼
9:939
7:594 10:203

� �

; (47) 

Sdz ¼
d
e f

� �

¼
10:002
3:806 11:141

� �

; (48)  

based on Nmz ¼ 1703 and Ndz ¼ 1029.2 

Using the Australian covariance matrices for analysis, we 
obtain the estimates α̂, β̂, γ̂ and their estimated covariance 
matrix shown in Table 5. Estimated parameters and their 
standard errors are given in Table 6. 

The estimates for Australia data are much smaller that 
those of the UK data in absolute sense but taking standard 
error into account they are similar in relative sense. The 
estimate ĉ2 for the ACE model is negative but non- 

Figure 2. The UK data: age distribution. 

Table 3. The UK residual data: estimates α̂, β̂, γ̂ and their covariance matrix Ê.    

α̂ β̂ γ̂ 

α̂  25.003  0.55685     
β̂  19.776  0.54188  0.59542   
γ̂  10.940  0.40898  0.39798  0.75326  

Table 4. The UK residual data: parameter estimates and standard errors. 

Parameter ACE ADE ACDE 

ĥ2  17.673 (1.487)  23.982 (3.076)  6.763 (0.311) 
ĉ2  2.103 (1.430) 0*  5.740 (1.057) 
d̂2 0*  −4.206 (2.840)  7.247 (0.818) 
ê2  5.227 (0.262)  5.227 (0.262)  5.227 (0.262) 
Ĥ  0.707 (0.058)  0.959 (0.112)  0.270 (0.009)  

2Although the means and max/min values given in Table 8.1, p. 151 in Neale and Cardon (1992) are of the same order of magnitude as in the UK data, the 
variances reported are about 40% less than those in the UK data. The reason for this is unknown. 
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significant. Otherwise, all estimates are significant except d̂2 

for the ADE model. The estimate of heredity H is fairly close 
to the same as for the UK data. 

Two populations 

Suppose we have two populations, for example, the UK and 
Australia. For each population, we have two groups of 
twins, one mz group and one dz group as in previous 
sections. 

We regard H as a universal parameter, which is an 
attribute of the phenotype we are measuring, for example, 
BMI. So we wish to test the hypothesis that H is the same 
in both populations. Note that this is not the same as 
testing that h2 is the same in both populations which is 
not likely to hold, since, as already noted, the variances of 
the phenotypes are very different in the UK and 
Australia. 

We estimate α; β; γ separately for each population as 
described in Section Estimation. We save the information 
matrix Ê1 and Ê2 for each population. We also estimate H 
and AVarðĤÞ for each population. 

The hypothesis to be tested is H1 ¼ H2 or from (23) 

0 ¼ H1 � H2 ¼
pβ1 þ qγ1

α1
�

pβ2 þ qγ2
α2

(49)  

where p and q depends on the model, ACE, ADE, or ACDE as 
before. 

To test the hypothesis, H1 ¼ H2 one can use a Wald sta
tistic W which comes out as 

W ¼ Ĥ1 � Ĥ2
� �2α̂� 4

1 � pβ̂1 þ qγ̂1

� �
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� �
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Ê2
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pα̂2

qα̂2

0
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¼ Ĥ1 � Ĥ2
� �2 AVarðĤ1Þ þ AVarðĤ2Þ

� �

If the hypothesis holds, W is asymptotically distributed as 
χ2 with one degree of freedom. 

W is easily calculated from previous results. For the ACDE 
model we have 

ð0:269 � 0:278Þ2ð0:0092 þ 0:0082Þ ¼ 0:000117 : (50) 

Hence, it is obvious that the hypothesis cannot be rejected. 
There is strong evidence that heredity of BMI is the same in 
the UK and Australia. 

Summary and conclusion 

We considered the classical models ACE and ADE for analysis of 
mz and dz twins and suggested an alternative model ACDE which 
has four components of variance: additive genes, dominance 
genetic deviations, common environments, and unique environ
ments. We showed that all three models can be estimated by 
maximum likelihood from linear combinations of the implied 
variances and covariances of the phenotypes. Based on data on 
BMI from both the UK and Australia, it seems that the ACDE 
model works much better than the ACE and ADE model. The 
ACDE model gives stable and significant estimates of all four 
parameters, whereas ACE and ADE often give negative and non- 
significant estimates of one or the other parameter. The heredity of 
BMI is very precisely estimated as 27% in the UK and 28% in 
Australia, whereas ACE and ADE suggest much higher values. We 
also showed how to test the hypothesis that heredity is the same in 
two populations. For the UK and Australia data, there is strong 
evidence that heredity of BMI is the same. 
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Table 5. Australia data: estimates α̂, β̂, γ̂ and their covariance matrix Ê.    

α̂ β̂ γ̂ 

α̂  10.300  0.053181     
β̂ 7.816  0.051216  0.056446   
γ̂  3.636  0.033385  0.032151  0.09161  

Table 6. Australia data: parameter estimates and standard errors. 

Parameter ACE ADE ACDE 

ĥ2  8.358 (0.578)  6.729 (1.127)  2.869 (0.111) 
ĉ2  −0.543 (0.541) 0*  1.287 (0.393) 
d̂2 0*  1.086 (1.082)  3.660 (0.320) 
ê2  2.485 (0.085)  2.485 (0.085)  2.485 (0.085) 
Ĥ  0.811 (0.054)  0.653 (0.105)  0.278 (0.008)  
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