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ABSTRACT
The present article provides a didactic presentation and extension of selected features of Pearl’s DAG-based 
approach to causal inference for researchers familiar with structural equation modeling. We illustrate key 
concepts using a cross-lagged panel design. We distinguish between (a) forecasts of the value of an 
outcome variable after an intervention and (b) predictions of future values of an outcome variable. We 
consider the mean level and variance of the outcome variable as well as the probability that the outcome 
will fall within an acceptable range. We extend this basic approach to include additive random effects, 
allowing us to distinguish between average effects of interventions and person-specific effects of interven-
tions. We derive optimal person-specific treatment levels and show that optimal treatment levels may differ 
across individuals. We present worked examples using simulated data based on the results of a prior 
empirical study of the relationship between blood insulin and glucose levels.
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Introduction

Psychologists have long distinguished between experimental 
designs in which participants are randomly assigned to an 
active treatment or a control treatment and passive observa-
tional designs (i.e., non-experimental designs without 
a manipulation) in which the responses of participants are 
simply observed (e.g., Cronbach, 1957, 1975). Given randomi-
zation and manipulation of the treatment conditions, experi-
mental designs permit strong causal inferences when their 
assumptions are met (Shadish et al., 2002; West & 
Thoemmes, 2010). A traditional view is that longitudinal pas-
sive observational designs only permit prediction of partici-
pants’ scores on the criterion variable at future time points and 
do not allow for causal conclusions.

In this paper, we present an approach that shows that 
under certain conditions longitudinal passive observational 
designs contain information that allows researchers to fore-
cast the causal effect of a hypothetical treatment, even if 
that treatment has not yet been carried out. We consider 
the commonly used cross-lagged panel design in which two 
variables X and Y are each measured at a set of equally 
spaced measurement waves. Throughout we make a clear 
distinction between (a) the forecast of the causal effect of 
a (hypothetical) intervention on an outcome at a future 
time point and (b) the prediction of the individual’s out-
come at a future time point. The machinery for making 
forecasts of causal effects of interventions is provided by 
Judea Pearl’s (2009) graphical approach to causal inference 
(see also Elwert, 2013). We provide a brief didactic pre-
sentation and illustration of the relevant key ideas of Pearl’s 
approach, showing the links to ideas from traditional path 
analysis familiar to readers of this journal.

Using this approach, we illustrate how to forecast the effect 
of an intervention on the level of an outcome variable at 
a future time point. We also show how to calculate the 
variance of the forecasted value and the probability that the 
outcome variable attains a value within a predefined accepta-
ble range. We initially assume a population of homogeneous 
individuals and later extend the approach to consider poten-
tial individual differences in the mean level of each person’s 
time series data (unobserved heterogeneity). To facilitate 
a clear illustration of these ideas, we use as a running example 
a simple system with two variables measured at T ¼ 4 equally 
spaced time points. We assume that the data are generated in 
a dynamic system in which the value of X at time t, Xt , 
influences the value of Y at time t þ 1, Ytþ1, and likewise Yt 
influences Xtþ1. The system also includes autoregressive 
effects in which Xt influences Xtþ1 and Yt influences Ytþ1. In 
our illustration Xt represents blood insulin levels in non- 
diabetic adults at each of four equally spaced measurement 
waves measured in micro international units per milliliter 
(mcIU/ml). Blood glucose (Yt) is also measured at each mea-
surement wave in milligrams per deciliter (mg/dl). For ease of 
presentation and without loss of generality, we use variables 
centered at the individual mean for each person.

The causal relationships in the system postulated above 
can be plotted using causal diagrams (see Figure 1). Causal 
diagrams are well-defined mathematical objects that consist 
of nodes and edges. Pearl’s approach focuses on causal 
diagrams without feedback or causal loops, that is, without 
directed paths that traverse the same variable more than 
once. These causal diagrams are termed directed acyclic 
graphs (DAG) and represent the researcher’s theory and 
prior (empirical) knowledge about the causal relationships 
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between the variables.1 A key advantage of representing the 
hypothesized causal process as a DAG is that it allows the 
researcher to analyze the causal system using mathematical 
tools from the fields of graph theory and graphical model-
ing (Cowell et al., 1999; Jordan, 1998; Koller & Friedman, 
2009; Pearl, 2009). These mathematical tools allow 
researchers to establish whether specific causal effects can 
be theoretically estimated given observable data (causal 
identification). They also help researchers to recognize the 
key variables needed for covariate adjustment and to find 
the testable implications of the causal system. Some of these 
tools are implemented in the user-friendly program 
DAGitty (Textor et al., 2016). In linear additive models, 
the insights provided by these mathematical tools have 
substantial overlap with the insights available from the 
tracing rules (Loehlin & Beaujean, 2017; Wright, 1934) 
and covariance algebra (Bollen, 1989) traditionally used in 
structural equation modeling. Unlike the tracing rules, the 
mathematical tools from graph theory can be applied to 
nonlinear and nonparametric models.

We initially consider a dynamic system representing 
a single person from a population of homogenous individuals. 
In the section on “Between-Person Heterogeneity” we extend 
the approach to consider potential individual differences in 
the mean level (unobserved heterogeneity). To keep the illus-
tration simple we further assume that the data generating 
mechanism is linear and can be represented by the following 
set of linear structural equations:2 t ¼ 1; 2; . . .;T ¼ 4 

Xtþ1 ¼ cxtþ1xt Xt þ cxtþ1yt Yt þ εxtþ1 (1a) 

Ytþ1 ¼ cytþ1xt Xt þ cytþ1yt Yt þ εytþ1 (1b) 

Error terms (residuals, disturbances) are denoted by ε and 
a subscript indicating the corresponding variable. For example, 
εxtþ1 denotes the error term corresponding to variable Xtþ1. The 
error term εxtþ1 captures those factors that determine the value 
of Xtþ1 that are not explicitly included in the model (omitted 
variables).

Consider the DAG in Figure 1 that represents the causal 
relationships for our simple two variable, four-wave illustra-
tion. Each solid single-headed arrow represents a direct causal 
relationship in this model. For simplicity of presentation, we 
will assume time-stable structural coefficients throughout the 
article. That is, we will assume that the autoregressive coeffi-
cients cxtþ1xt , t � 1, for the X-series and the autoregressive 
coefficients cytþ1yt , t � 1, for the Y-series are constant over 
time. Likewise, we will assume that the cross-lagged coefficients 
from X at time t to Y at time t þ 1, denoted by cytþ1xt , t � 1, and 
the cross-lagged coefficients from Yt to Xtþ1, denoted by cxtþ1yt , 
t � 1, are constant over time. In addition, we will assume that 
the variances of the disturbances corresponding to the X-series, 
denoted by ψxt ;xt

, t � 2, and those corresponding to the Y- 
series, denoted by ψyt ;yt

, t � 2, are constant over time.
Traditionally, error terms are not explicitly drawn in a DAG 

and the following conventions are used: (a) A bidirected edge 
drawn between two variables in the DAG indicates that the 
corresponding error terms covary due to unobserved con-
founding. For example, we assume an unobserved common 
cause of X1 and Y1 that implies a covariance between the 
corresponding error terms εx1 and εy1 , denoted as ψx1;y1

¼

COVðεx1 ; εy1Þ (for interested readers, a detailed discussion of 
the specification of the first measurement occasion is provided 
in the Appendix on Initial Variables). (b) The absence of 
a bidirected edge between two variables reflects the assumption 
that there is no unobserved common cause. For example, we 
assume that there is no unobserved confounder for the X2 !

Y3 relationship. Throughout this article, variances and covar-
iances of disturbances are denoted by ψ and a subscript. For 
example, ψxt ;xt 

denotes the variance of the disturbance εxt , that 
is, ψxt ;xt

¼ VðεxtÞ.
For our illustration, we simulate data from a known data 

generating process. Numerical values have been assigned to 
each parameter in the DAG based on the values from a panel 
data study by Ito et al. (1998). These numerical values are 
displayed in Tables 1 and 5 and will be used to illustrate 
numerical calculations of causal effects later in the paper (see 
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Figure 1. The causal diagram (DAG) of the causal model for the four-wave passive observational study is displayed. The dashed double-headed arrow (bidirected edge) 
represents a correlation between X1 on Y1 due to an unobserved common cause. Traditionally, in DAGs the disturbances denoted by εxt , εyt , t ¼ 1; . . . ; 4 which 
represent other unmeasured influences on each variable are not represented. Solid single-headed arrows (directed edges) are labeled with path coefficients that 
quantify direct causal effects. For example, the cross-lagged coefficient cx2 y1 represents the direct effect of Y1 on X2. The autoregressive coefficient cx4 x3 represents the 
direct effect of X3 on X4. The coefficients cytþ1 xt and cytþ1 yt , t � 1, are defined analogously.

1Sometimes the class of acyclical directed mixed graphs is used. Mixed refers to the fact that graphs in this class contain directed edges as well as bidirected edges (Kang 
& Tian, 2009; Richardson, 2003).

2The complete set of model equations and distributional assumptions are provided in the online supplementary material.
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online supplementary material for a detailed account of the 
data generation). Note that these numerical values yield 
a stable and covariance stationary system (Hamilton, 1994).3 

Based on these values we obtain a standard deviation of blood 
insulin of SDðXtÞ ¼ 11:48 mcIU/ml and a standard deviation 
of blood glucose of SDðYtÞ ¼ 25:16 mg/dl, t � 1.

Figure 2 modifies Figure 1 by introducing a specific form of 
manipulation introduced by Pearl. Historically in psychology, we 
have thought of a manipulation as adding (subtracting) a constant 
to the person’s current level on X. Thus, if a dose of insulin were 
given, the person’s insulin level would be expected to experience 
a fixed increase to a level that reflects both the dose received and 
the person’s baseline insulin level prior to the manipulation. In 
contrast, Pearl (2009) proposed a manipulation that fixes 
a person’s level on X to a constant value x. The latter type of 
manipulation is formalized via the do-operator and has proven to 
be very useful for theoretically defining and quantifying causal 
effects. For example, the do-operator applied to variable Xt is 
denoted by doðXt ¼ xtÞ or equivalently abbreviated as doðxtÞ. 
By definition, the doðxtÞ-operator has the following properties: 
It (a) fixes the level of Xt at xt for each unit in the population, 
where xt is referred to as the interventional level. The interven-
tional level xt is (b) not related to any causally prior variable. 
Finally, the doðxtÞ-operator (c) leaves all other relationships in the 
dynamic system unchanged.

Part (a) reflects the manipulation in a hypothetical experi-
ment in which the level of the treatment variable Xt is set by an 
experimenter. By fixing the level of the variable, each unit will 

have the identical value of Xt following the doðxtÞ- 
manipulation and Xt will have 0 variance under the interven-
tion. In other words, the doðxtÞ-operation reflects 
a hypothetical experiment in which the treatment Xt ¼ xt is 
applied uniformly over the whole population. Part (b) of the 
definition of the doðxtÞ-operator reproduces the feature of 
randomized experiments that all prior covariates are indepen-
dent of the treatment variable. Part (c) of the definition of the 
doðxtÞ-operator, an assumption formally known as autonomy 
or modularity (Pearl, 2009; Peters et al., 2017; Spirtes et al., 
2000), implies that the intervention doðxtÞ only alters the value 
of Xt and does not change the relationships between other 
measured variables not involved in the manipulation.

Figure 2 illustrates the do-operator applied to insulin levels 
at time t ¼ 2, denoted as doðx2Þ. Here, we imagine that each 
person’s insulin level is set to the interventional value X2 ¼

11:48 mcIU/ml, that is, one standard deviation above the 
person’s mean level (which is 0 for each person after mean- 
centering in a homogeneous population). The causal links of 
X2 to its direct predecessors in the causal chain (here: X1 and 
Y1) have been removed, but all other causal relationships in the 
model are maintained as before the doðx2Þ-operation.

Up to this point, we have discussed the data generating 
mechanism but have not yet introduced the statistical model 
we will use for data analysis. Since we use simulated data the 
choice of a statistical model is straightforward: We chose 
a correctly specified statistical model, that is, one that exactly 
captures the data generating process described above. In our 
example, we will use a bivariate linear cross-lagged panel model 
with four measurement waves. This model can be equivalently 
understood as a linear structural equation model. Thus, it can 
be represented by a causal path diagram as commonly used to 
represent linear SEM (Bauer, 2003; Curran, 2003). These causal 
path diagrams are similar to DAGs, as long as we restrict our 
attention to linear models without feedback or causal loops. An 
important difference, however, is that a dashed double-headed 
arrow in a path diagram represents a covariance between vari-
ables (or disturbances) that is not further analyzed. In the 

Table 1. Numeric values of parameters for the homogeneous population.

structural coefficients     variance-covariance parameters

cxx cxy cyx cyy ψx1 x1
ψy1 y1

ψx1 y1
ψxx ψyy

0.05 0.40 −0.60 1.20 131.76 632.94 254.12 20.00 40.00

Note. The numeric values of the structural coefficients correspond to a stationary 
and ergodic bivariate time series for the insulin-glucose dynamics displayed in 
Figures 1 and 2. The variances (ψx1 x1

,ψy1 y1
) and covariance (ψx1 y1

) of the initial 
variables correspond to the long-term equilibrium values of the insulin-glucose 
process.
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Figure 2. The causal diagram (DAG) displayed in Figure 1 is modified to account for the intervention doðx2Þ. The variable X2 has been replaced by doðx2Þ and the solid 
single-headed arrows entering X2 have been removed, indicating that the interventional level doðx2Þ does not depend on X1 or Y1 but is set by an experimenter (in our 
illustrative example we choose doðX2 ¼ 11:48Þ). Note that all other variables and directed edges (causal arrows) remain unchanged as compared to the situation 
without the intervention doðx2Þ as depicted in Figure 1 reflecting the assumption of modularity.

3The two assumptions of homogeneous individuals and stationarity over time allow us to make statements about either a single individual over time or a population of 
homogeneous individuals. Given these two assumptions, the results of between subjects and within subjects analyses of the data are theoretically expected to be 
identical (Molenaar, 2004). Complexity is introduced if the parameters of the model are allowed to vary across individuals, that is, a person is drawn from a population 
of heterogeneous individuals (see section on “Between-Person Heterogeneity”).
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context of DAG-based causal inference, a dashed double- 
headed arrow represents a covariance that stems from an 
unobserved confounder. Throughout this paper, we draw 
DAGs and therefore double-headed arrows always indicate 
the existence of an unobserved confounder. From a statistical 
point of view, the linear bivariate cross-lagged panel model that 
captures the DAG depicted in Figure 1 is globally identified, 
that is, all parameters can theoretically be estimated uniquely 
from observational data (Bollen & Curran, 2004; Hsiao, 2014).

Throughout this paper, we know with certainty that the 
causal assumptions encoded in the DAG in Figure 1 are 
correct since we use simulated data. Note that all our data 
stems from the DAG depicted in Figure 1, that is, we have not 
actually performed an experiment. This non-experimental 
evidence is combined with our assumptions about the data 
generating mechanism to forecast the effect of the (hypothe-
tical) intervention (see Figure 2). In practical applications, 
however, one usually does not know the true data generating 
mechanism and causal assumptions postulated by researchers 
might be wrong. We discuss statistical tests of model assump-
tions and methods to analyze the sensitivity of causal conclu-
sions with respect to violations of assumptions in the section 
on “Current Limitations and Future Directions.”

Given the important distinction between the system follow-
ing the doðx2Þ-operation depicted in Figure 2 and the passive 

observational system in the absence of any intervention 
depicted in Figure 1, we now explore the implications of 
these different situations for (a) forecasting the treatment effect 
of X2 on Y3 and (b) predicting the value of Y3 based on X2 in 
the absence of interventions.

Distinguishing Between Forecasting Effects of 
Interventions and Predicting Future Outcomes

The effect of a treatment is always defined relative to another 
active or control treatment (Holland, 1986). The do-operator 
allows us to represent a specific type of treatment effect by 
comparing the distribution of an outcome variable under the 
intervention doðxtÞ (representing the treatment) to that of 
a second intervention doðx0tÞ (representing the control). The 
upper panel of Figure 3 displays the distribution of Y3 given the 
interventions doðX2 ¼ 11:48Þ (treatment; solid line) and 
doðX2 ¼ 0Þ (control; dotted line).

We define the distribution of the outcome value Ytþk in the 
population given the treatment doðxtÞ as the interventional 
distribution, denoted by PðYtþkjdoðxtÞÞ, where k is the number 
of waves after the intervention when the outcome is measured.4 

In this paper, we restrict our attention to the interventional 
distribution k ¼ 1 wave after the treatment has been applied. 
To compare the outcome variable Ytþ1 given two distinct 
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Figure 3. The upper panel displays the probability density functions (pdf) of the interventional distribution PðY3jdoðx2ÞÞ for two distinct treatment levels, namely 
doðX2 ¼ 11:48Þ (solid line) and doðX2 ¼ 0Þ (dashed line). Means are depicted as solid and dashed vertical line segments. The lower panel displays the pdf of the 
conditional distribution PðY3jX2 ¼ x2Þ for two distinct observed levels of blood insulin at time t ¼ 2, namely X2 ¼ 11:48 (solid line) and X2 ¼ 0 (dashed line). The 
marked interval on the horizontal axes (½� 40; 80�, person mean-centered metric) represents the range of acceptable mean-centered blood glucose levels. The shaded 
areas under the curves (designated by square brackets) represent the probability that blood glucose level at time t ¼ 3 falls in the acceptable range.

4In its most general form, the interventional distribution is the multivariate joint distribution of all variables in the system given the intervention doðxtÞ is applied. For 
example, the joint interventional distribution for the system depicted in Figure 2 is given by PðX1; Y1; X2; Y2; X3; Y3; X4; Y4jdoðx2ÞÞ. In this paper, we restrict our 
attention to the marginal interventional distribution of a single outcome variable, for example, PðY3jdoðx2ÞÞ.
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interventions doðxtÞ and doðx0tÞ, one has to compare the two 
random variables Ytþ1jdoðxtÞ and Ytþ1jdoðx0tÞ. This compari-
son can, for example, be done visually by plotting the prob-
ability density functions (pdf) of the two interventional 
distributions PðYtþ1jdoðxtÞÞ and PðYtþ1jdoðx0tÞÞ, as displayed 
in the upper panel of Figure 3. In our illustration, we compare 
the values of blood glucose at time t ¼ 3 given two distinct 
interventions on blood insulin at t ¼ 2, namely doðX2 ¼

11:48Þ and doðX2 ¼ 0Þ. The latter intervention sets the value 
of blood insulin to the mean value ( ¼ 0 in mean-centered 
metric), the former intervention to one standard deviation 
above the mean. The upper panel of Figure 3 depicts the 
probability density functions of the corresponding interven-
tional distributions PðY3jdoðX2 ¼ 0Þ (dashed line) and 
PðY3jdoðX2 ¼ 11:48Þ (solid line).

Another common way to compare two distributions is to 
examine differences in their means. The difference between the 
interventional means EðY3jdoðxtÞÞ � EðY3jdoðx0tÞÞ is called the 
average treatment effect (ATE) of treatment doðxtÞ relative to 
treatment doðx0tÞ on Ytþ1, abbreviated as the ATE of Xt on Ytþ1 
(Pearl, 2009). In our illustration, we analyze the ATE of treat-
ment doðX2 ¼ 11:48Þ relative to treatment doðX2 ¼ 0Þ on Ytþ1, 
denoted as EðY3jdoðX2 ¼ 11:48ÞÞ�
EðY3jdoðX2 ¼ 0ÞÞ. The interventional means are depicted in 
the upper panel of Figure 3 as the solid and the dashed vertical 
line segments.

The comparison of two distributions is not restricted to 
a comparison of their location (means). Another important 
feature of the interventional distribution is its variance. The 
variances of the outcome distributions under the distinct 
treatments doðxtÞ and doðx0tÞ correspond to the widths of 
the bell-shaped curves in the upper panel of Figure 3. The 
two curves in the upper panel have the same widths, that is, 
the error when forecasting the effect of an intervention on 
X2 on the level of Y3 is the same for doðX2 ¼ 11:48Þ
and doðX2 ¼ 0Þ.

Comparisons that go beyond first- and second-order 
moments (means and variances) may be of importance in 
a number of research situations involving dynamic systems. 
For example, Monnier et al. (2017) propose the frequency of 
hypoglycemia (adversely low levels of blood glucose) as a target 
quantity that should be minimized during treatment. In the 
section titled “Interventional Probabilities versus Conditional 
Probabilities” we will consider the probability that a do- 
operation will lead to glucose levels that fall in an acceptable 
range of values that is specified a priori.

Throughout this article, we will make a clear distinction 
between (a) the forecast of the outcome value Ytþ1 given an 
intervention doðxtÞ, and (b) the prediction of the value of Ytþ1 
given the passive observation that variable X takes the value x 
at time t, denoted by Xt ¼ xt . Returning to our example, in case 
(b) we would like to predict the value of blood glucose at t ¼ 3 
based on the passive observation (e.g., self-measured monitor-
ing of blood insulin) that the insulin level is one standard 
deviation above the mean level at t ¼ 2. We will, therefore, 
use the conditional distribution of Y3, given X2 ¼ 11:48, 
denoted by PðY3jX2 ¼ 11:48Þ, to predict the value of blood 
glucose at t ¼ 3. We use the term predictions (of future values) 

to refer to probabilistic statements that are based on the con-
ditional distribution.

Comparing the two panels of Figure 3 provides a visual 
representation of the differences between (a) forecasts of the 
effects of interventions and (b) predictions of future values. 
Observing X2 ¼ 11:48 yields the conditional distribution 
PðY3jX2 ¼ 11:48Þ represented by the solid line in the lower 
panel, whereas administering the treatment doðX2 ¼ 11:48Þ
yields the interventional distribution PðY3jdoðX2 ¼ 11:48ÞÞ
represented by the solid line in the upper panel. The condi-
tional distribution of the predicted values of blood glucose 
levels is shifted to the right relative to the interventional dis-
tribution of the doðx2Þ-forecast of blood glucose levels.

Given this initial impression of the differences between (a) the 
interventional and (b) the conditional distribution, we now sys-
tematically analyze the differences in mean levels and variances, 
followed by the probabilities of blood glucose levels falling in an 
acceptable range. As part of this systematic comparison, we pre-
sent formulae for interventional distributions and the moments 
thereof (see also Gische & Voelkle, 2020). Formulae for condi-
tional distributions and moments thereof are established results 
for the multivariate normal distribution (e.g., Rao, 1973).

For ease of presentation we will drop the time indices of the 
structural coefficients in the equations. For example, we will 
write cxx instead of cx2x1 , cx3x2 , and cx4x3 for the autoregressive 
coefficients of the X-series, because these coefficients are 
assumed to be stable over time. Analogously, we will write cyy 
for the autoregressive coefficients of the Y-series as well as cxy 
and cyx for the cross-lagged coefficients. Likewise, we will drop 
the time indices of the variance parameters for t � 2. We will 
write ψxx instead of ψx2x2

, ψx3x3
, and ψx4x4 

and ψyy instead of 
ψy2y2

, ψy3y3
, and ψy4y4

. All numeric quantities are calculated 
based on the parameter values displayed in Tables 1 and 5.

A complete presentation of all relevant formulae and details 
regarding the derivation thereof is provided in the online 
supplementary material together with a justification of the 
numerical values based on prior empirical results reported by 
Ito et al. (1998).

Interventional Mean versus Conditional Mean

In this section we systematically compare the mean level of 
blood glucose at t ¼ 3 given (a) a doðx2Þ-intervention has been 
applied on insulin levels at t ¼ 2 and (b) prior observations on 
the levels of X2 are available.

We start with a comparison of the baseline scenarios in 
which (a) no do-treatment is applied (denoted by doð;Þ), and 
(b) no prior observations are available (denoted by the empty 
set ;). In both situations, the best guess of the value of Y3 is 
zero since the data are mean-centered within each person (see 
row 1 of Table 2). Put more formally, in the baseline scenarios 
the interventional mean EðY3jdoð;ÞÞ and the conditional mean 
EðY3j;Þ are both equal to the unconditional mean, that 
is, EðY3jdoð;ÞÞ ¼ EðY3j;Þ ¼ EðY3Þ ¼ 0.

We now turn to a comparison of the scenarios where in case 
(a) the level of blood insulin has been set to doðX2 ¼ 11:48Þ
and in case (b) the value X2 ¼ 11:48 has been observed (see 
row 2 of Table 2).
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In case (a), the intervention doðX2 ¼ 11:48Þ is performed, 
which sets the value of blood insulin to one SD above the mean 
level at time t ¼ 2. Due to the intervention both paths entering 
into X2 are removed (see Figure 2). The formula for the inter-
ventional mean and its numeric evaluation are given by: 

EðY3jdoðx2ÞÞ ¼ cyxx2
EðY3jdoðX2 ¼ 11:48ÞÞ ¼ � 0:6 � 11:48 ¼ � 6:89 (2) 

Thus, the mean forecast of Y3 given the intervention doðX2 ¼

11:48Þ is � 6:89 mg/dl (see also row 2, column 3 of Table 2). 
Recall that the ATE of a treatment is always defined relatively 
to another treatment. Here we analyze the ATE of treatment 
doðX2 ¼ 11:48Þ relative to the treatment doðX2 ¼ 0Þ. Thus, the 
resulting ATE is equal to EðY3jdoðX2 ¼ 11:48ÞÞ�
EðY3jdoðX2 ¼ 0ÞÞ ¼ � 6:89 � 0 ¼ � 6:89. In other words, 

actively changing the level of blood insulin at t ¼ 2 from 0 to 
11:48 ( ¼ one SD above the mean) results in a difference of 
� 6:89 mg/dL in the forecasted blood glucose level at 
time t ¼ 3.

In case (b) observing a blood insulin level of one SD above 
the person’s mean at time t ¼ 2 leads to a predicted value of 
1:71 � 11:48 ¼ 19:63 mg/dl of blood glucose at time t ¼ 3 (see 
row 2, column 6 of Table 2). The coefficient 1:71 is the popula-
tion regression coefficient in a simple linear regression of Y3 on 
X2 and is calculated according to the following formula: 

EðY3jX2 ¼ x2Þ ¼
COVðX2;Y3Þ

VðX2Þ
x2 (3) 

¼ cyxþ
cxxcyxcyyψx1x1

þ cxyc2
yyψy1y1

þ ðcxycyxcyy þ cxxc2
yyÞψx1y1

c2
xxψx1x1

þ c2
xyψy1y1

þ 2cxxcxyψx1y1
þ ψxx

 !

x2 

¼ ð� 0:6þ 2:31Þx2 ¼ 1:71x2 

The last line contains an numeric evaluation based on the 
parameter values displayed in Table 1. The population regres-
sion coefficient represents the sum of the direct causal effect 
and the spurious effects of X2 on Y3. These spurious effects 
correspond to backdoor paths from X2 to Y3 in Pearl’s termi-
nology. One such backdoor path is X2  X1 ! Y2 ! Y3; 
another backdoor path is from X2  Y1 ! Y2 ! Y3 (see 
Figure 1). Observing a mean blood insulin level ( ¼ 0) at 
time t ¼ 2 leads to a predicted value of 1:71 � 0 ¼ 0 mg/dl of 
blood glucose at time t ¼ 3. Thus, based on traditional meth-
ods for prediction (e.g., linear regression), we would obtain 

a difference of 19:63 mg/dL between the predicted values of Y3 
given we observe a change in X2 from 0 to 11:48.

In summary, in case (a) changing the doðx2Þ treatment level by 
plus one SD yields a � 6:89 mg/dL decrease in the forecasted 
value of blood glucose at time t ¼ 3. In case (b) an observed one 
SD increase in blood insulin at wave 2 is predicted to produce a 
19:63 mg/dL increase in blood glucose at time t ¼ 3. Both find-
ings provide useful information that need to be used for distinct 
purposes. In case (a), a physician would correctly forecast 
a negative value ( � 0:6 � 11:48 ¼ � 6:89 mg/dl) of blood glucose 
at time t ¼ 3 after administering the dose doðX2 ¼ 11:48Þ of 
insulin at time t ¼ 2. In case (b), a patient obtaining the insulin 
reading X2 ¼ 11:48 at time t ¼ 2 would correctly predict 
a positive level (1:71 � 11:48 ¼ 19:63 mg/dl) of blood glucose at 
time t ¼ 3.

Incorrect conclusions only arise if the algebraic machinery 
of conditional expectations (case (b)) is used to forecast the 
effects of interventions (case (a)) – or the other way around – 
the interventional mean based on the do-operator (case (a)) is 
used to predict future values of Y in the absence of interven-
tions (case (b)).

We have seen that interventional means (forecasts) and 
conditional expectations (predictions) are different quantities. 
The latter is a purely statistical quantity that can always be 
estimated based on observational data in a correctly specified 
model. The former is a causal quantity that might not be 
identified based on observational data even if the model is 
correctly specified. Pearl (2009) provides DAG-based criteria 
for the identification of specific causal effects, some of which 
are implemented in the computer program DAGitty (Textor 
et al., 2016). For example, to identify the ATE of X2 on Y3 in the 
present example, a graphical rule called the backdoor criterion 
can be used. The backdoor criterion states that observing a set 
of variables which blocks all backdoor paths from X2 to Y3 
provides sufficient information to correctly calculate the ATE 
based on non-experimental data. In the present example, the 
minimal sufficient backdoor adjustment set for the ATE of X2 
on Y3 is fY2g.5 Thus, if Y2 is held constant or statistically 
adjusted for, all backdoor paths are blocked.

Backdoor adjustment in linear models can for example, be 
obtained by linear regression. Thus, the ATE X2 on Y3 can be 
estimated using a linear regression of Y3 on X2 and Y2 (Pearl, 
2009, Theorem 5.3.2). The resulting coefficient of X2 in the 
proposed regression of Y3 on X2 and Y2 is equal to � 0:6 (see 
row 3, column 6 of Table 2) which equals the coefficient in the 
interventional mean expression (see row 2, column 3 of 

Table 2. Mean forecast of effects of interventions vs. mean prediction of future values.

(a) intervention                                         (b) observation

intervention interventional mean numeric observation conditional mean numeric

doð;Þ EðY3jdoð;ÞÞ 0 ; EðY3j;Þ 0
doðx2Þ EðY3jdoðx2ÞÞ � 0:6x2 X2 ¼ x2 EðY3jX2 ¼ x2Þ 1:71x2
doðx2Þ, doðy2Þ EðY3jdoðx2Þ; doðy2ÞÞ � 0:6x2 þ 1:2y2 X2 ¼ x2, Y2 ¼ y2 EðY3jX2 ¼ x2; Y2 ¼ y2Þ � 0:6x2 þ 1:2y2

Note. The left part of Table 2 contains three different interventional means. In row one, no intervention is applied (doð;Þ), in row two an intervention on blood insulin at 
t ¼ 2 is applied (doðx2Þ), and in row three interventions on both blood insulin and blood glucose at t ¼ 2 are applied (doðx2Þ, doðy2Þ). The right part of Table 2 
contains three different conditional means that are used for predictions of future values. In row one, we condition on the empty set ; (no prior observations available), 
in row two on the observation X2 ¼ x2, and in row three on the observations X2 ¼ x2 and Y2 ¼ y2.

5An introduction to DAG-based causal identification written in a didactic style of presentation is provided by Pearl et al. (2016).
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Table 2). Thus, if the backdoor criterion is satisfied in a linear 
model, the interventional mean (causal quantity) can be esti-
mated from observational data using linear regression.

Interventional Variance versus Conditional Variance

This section studies the interventional variance of the outcome 
variable following a do-operation, a feature of the interven-
tional distribution that has received less attention than the 
interventional mean. Using our running example, we focus 
on the variance of blood glucose at t = 3.

In the baseline scenarios in which (a) no do-treatment is 
applied (denoted by doð;Þ), and (b) no prior observations are 
available (denoted by the empty set ;), the interventional var-
iance VðY3jdoð;ÞÞ and the conditional variance VðY3j;Þ are 
both equal to the unconditional variance VðY3Þ. All quantities 
take on the value 632:93, as displayed in row 1 of Table 3.

In the left part of Table 3 (columns below (a) intervention) 
the interventional variances are displayed. For example, the 
interventional variance VðY3jdoðx2ÞÞ can be calculated accord-
ing to the following formula (see online supplementary mate- 
rial for derivation): 

VðY3jdoðx2ÞÞ ¼ c2
yxc2

yyψx1x1
þ c4

yyψy1y1
þ 2cyxc3

yyψx1y1

þ ð1þ c2
yyÞψyy (4) 

Note that the interventional level x2 does not appear on the 
right-hand side of Equation (4). Thus, the interventional var-
iance (in linear models with normally distributed error terms) 
does not depend on the exact level x2 of the do-treatment that is 
applied. This can also be seen in the upper panel of Figure 3: 
The shape of the interventional distributions is the same for 
both treatment levels doðX2 ¼ 0Þ (dashed line) and doðX2 ¼

11:48Þ (solid line). If a patient is treated at time t ¼ 2 and we 
change the treatment dose (e.g., set the insulin level to 11:48 
instead of 0), only the location of the interventional distribu-
tion changes and the forecast variance (width of the bell- 
shaped curves) is not affected by the specific level to which 
blood insulin is set by the experimenter.

In contrast, the interventional variance does change as we 
introduce additional interventions on different variables in the 
model. This can be verified by comparing the value in row 1 with 
the value of row 2 in column 3 of Table 3. These values illustrate 
the case where we administer the treatment doðx2Þ to a formerly 
untreated (doð;Þ) person: the forecast variance increases from 
632:93 to 951:43. An increase in variance might appear counter- 
intuitive at first glance. However, our illustration considers the 
dynamic interplay of blood insulin and blood glucose in 

a population of healthy (non-diabetic) persons. For such 
a population the glucose and insulin levels are governed by 
a self-regulating dynamic system. In our example the external 
intervention temporarily eliminates the ability of the system to 
self-regulate. Consequently, the system becomes temporarily 
destabilized and the variance increases.

In case (b), the conditional variances used for prediction 
decrease (632:93 > 245:71> 40:00) as we successively move 
from row 1 to row 3 in column 6 of Table 3. This result is 
intuitive: As we move from one row to the row below in the 
right part of Table 3, more observational information becomes 
available. Increasing the amount of available observational 
information (that stems from the same data generating 
mechanism) increases the precision of prediction as reflected 
in the sequence of decreasing conditional variances. The con-
ditional variance VðY3jX2 ¼ x2Þ is calculated according to the 
following general formula (Rao, 1973): 

VðY3jX2 ¼ x2Þ ¼ VðY3Þ �
COVðX2;Y3Þ

2

VðX2Þ
(5) 

Note that x2 does not appear on the right-hand side of 
Equation (5). In other words, unlike the conditional expecta-
tions in Table 2, the conditional variance (in linear models with 
normally distributed error terms) does not depend on the exact 
value x2 of the variable on which we condition. This result is 
also depicted in panel (b) of Figure 3, where the shape of the 
conditional distributions is the same for both observations 
X2 ¼ 0 (dashed line) and X2 ¼ 11:48 (solid line). The two 
curves only differ in location but have the same width.

So far, we have seen that the interventional variance and the 
conditional variance are different quantities. The conditional 
variance is a purely statistical quantity used to represent pre-
diction error, whereas the interventional variance is a causal 
quantity used to represent forecast error when assessing the 
effect of a do-type intervention. The interventional variance 
(causal quantity) is identified since the backdoor criterion 
introduced in the section titled “Interventional Mean versus 
Conditional Mean” is not restricted to interventional means 
but applies to the entire interventional distribution (Pearl, 
2009).

Given identification is ensured, the question arises whether 
there is a simple way to estimate the interventional variance of 
Y3 from observational data. In our example, the question is: 
Can we compute the numerical value VðY3jdoðx2ÞÞ ¼ 951:43 
(causal quantity) from the numerical values of the statistical 
quantities in column 6 of Table 3? The answer is yes, but the 
procedure is complex and also requires information from 

Table 3. Variance of forecasts (intervention) vs. variance of predictions (future values).

(a) intervention                                         (b) observation

intervention interventional variance numeric observation conditional variance numeric

doð;Þ VðY3jdoð;ÞÞ 632:93 ; VðY3j;Þ 632:93
doðx2Þ VðY3jdoðx2ÞÞ 951:43 X2 ¼ x2 VðY3jX2 ¼ x2Þ 245:71
doðx2Þ, doðy2Þ VðY3jdoðx2Þ; doðy2ÞÞ 40:00 X2 ¼ x2, Y2 ¼ y2 VðY3jX2 ¼ x2; Y2 ¼ y2Þ 40:00

Note. The left part of Table 3 contains three different interventional variances used when forecasting the value of an outcome variable. In row one no intervention is 
applied (doð;Þ), in row two an intervention on blood insulin at t ¼ 2 is applied (doðx2Þ), and in row three interventions are applied on both blood insulin and blood 
glucose at t ¼ 2 (doðx2Þ, doðy2Þ). The right part of Table 3 contains three different conditional variances that are used for predictions of future values. In row one, we 
condition on the empty set ; (no prior information available), in row two on the observation X2 ¼ x2, and in row three on the observations X2 ¼ x2 and Y2 ¼ y2.

STRUCTURAL EQUATION MODELING: A MULTIDISCIPLINARY JOURNAL 7

https://doi.org/10.1080/10705511.2020.1780598
https://doi.org/10.1080/10705511.2020.1780598


column 6 of Table 2 (Kuroki & Cai, 2007). Unfortunately, the 
standard backdoor adjustment procedure for linear models 
(i.e., linear regression) that is used to estimate the interven-
tional mean cannot be used to estimate interventional 
variances.

This problem can be resolved by using the technique for 
causal identification and estimation in linearly parameter-
ized causal DAG-models suggested by Gische and Voelkle 
(2020). The central idea is that a causal quantity defined via 
the do-operator can be expressed as a function of the 
parameters of the statistical model. This idea can be illu-
strated for the interventional variance as stated in Equation 
(4). The expression on the left-hand side of Equation (4) is 
VðY3jdoðx2ÞÞ which is a causal quantity and contains the 
do-operator. The expression on the right-hand side is 
a polynomial function of the model parameters cyx, cyy, 
ψx1x1

,ψy1y1
, ψx1y1

, ψyy and does not contain the do-operator. 
In our working example all parameters that appear on the 
right-hand-side of Equation (4) (i.e., cyx, cyy, ψx1x1

,ψy1y1
, 

ψx1y1
, ψyy) are identified in the statistical model and can 

be estimated from observational data. Therefore, the inter-
ventional variance VðY3jdoðx2ÞÞ on the left-hand side of 
Equation (4) is also identified and estimates can be 
obtained from observational data.

Interventional Probabilities versus Conditional Probabilities

For some phenomena, it is important that a variable in 
a dynamic system falls within a predefined acceptable 
range. In our running example, the physician’s goal is 
that the patient’s level of blood glucose will be maintained 
in an acceptable range (so-called euglycemic range) after 
a treatment. A patient’s glucose level should not exceed 
a critical level (yupper, upper threshold) where she will 
experience hyperglycemia. Nor should a patient’s glucose 
level fall below a critical level (ylower, lower threshold) 
where she will experience hypoglycemia (Bode et al., 
2005). The thresholds yupper and ylower are defined a priori 
based on medical standards. Each condition outside the 
acceptable range poses a threat to a patient’s health and 
should, therefore, be avoided.

We use the values yupper ¼ 80 mg/dl and ylower ¼ � 40 mg/dl 
in our example. The original upper (180 mg/dl) and lower (60 
mg/dl) thresholds were centered around a global mean of 100 
mg/dl (Cryer, 2003; Danaei et al., 2011; Giugliano et al., 1997). 
Thus, a physician is interested in the event that Y3 falls in the 
acceptable range ½� 40; 80� in the mean-centered metric, given 
the treatment. We refer to the latter event as successful treat-
ment and introduce an indicator variable Y�3 that is equal to 1 
in case of a successful treatment and 0 otherwise. The prob-
ability of a successful treatment is denoted by 
Pð� 40<Y3 < 80jdoðx2ÞÞ or in brief PðY�3 ¼ 1jdoðx2ÞÞ. The 
shaded area under the solid curve in the upper panel of 
Figure 3 represents the probability of a successful treatment 
given the intervention doðx2 ¼ 11:48Þ.

We now turn to a systematic analysis of interventional 
probabilities and contrast them with conditional probabilities. 
In the baseline scenarios in which (a) no do-treatment is 
applied (denoted by doð;Þ), and (b) no prior observations are 
available (denoted by the empty set ;), the probability that 
blood glucose levels fall in the acceptable range at t ¼ 3 is :94 
as displayed in the first row of Table 4.

In case (a), administering doðX2 ¼ 11:48Þ at time t ¼ 2 
yields a probability of blood glucose values within the accep-
table range at time t ¼ 3 equal to :86 (see row 2 column 3 in 
Table 4). The interventional probability of treatment success 
depends on the level of blood insulin that has been adminis-
tered at t ¼ 2 in a nonlinear way that exhibits a unique max-
imum as depicted by the solid line in Figure 4.6

In case (b), where a value of blood insulin equal to one 
standard deviation above the person’s mean level is observed at 
time t ¼ 2, the probability of blood glucose values being within 
the acceptable range at time t ¼ 3 is equal to :9999 (see row 2 
column 6 of Table 4). Again, the conditional probability 
PðY�3 ¼ 1jX2 ¼ x2Þ has a nonlinear relationship to the level of 
blood insulin observed at t ¼ 2 which is depicted as the dashed 
line in Figure 4.

Both curves displayed in Figure 4 have a single unique 
maximum. In case (a) a physician who must choose an inter-
ventional level should apply the treatment doðX2 ¼ � 33:34Þ to 
maximize the probability of treatment success (solid vertical 
line). Recall that we use mean-centered variables with 
SDðX2Þ ¼ 11:48. Thus, the treatment doðX2 ¼ � 33:34Þ

Table 4. Interventional probabilities versus conditional probabilities.

(a) intervention                                        (b) observation

intervention interventional probability numeric observation conditional probability numeric

doð;Þ PðY�3 ¼ 1jdoð;ÞÞ :94 ; PðY�3 ¼ 1j;Þ :94
doðx2Þ PðY�3 ¼ 1jdoðx2ÞÞ :86 X2 ¼ x2 PðY�3 ¼ 1jX2 ¼ x2Þ :9999
doðx2Þ, doðy2Þ PðY�3 ¼ 1jdoðx2Þ; doðy2ÞÞ � 1 X2 ¼ x2, Y2 ¼ y2 PðY�3 ¼ 1jX2 ¼ x2; Y2 ¼ y2Þ � 1

Note. The left part of the Table 4 contains three different interventional probabilities that are used to forecast outcome values after an intervention has been applied. In 
row one, no intervention is applied (doð;Þ), in row two an intervention on blood insulin at t ¼ 2 is applied (doðx2Þ) and in row three an intervention on both blood 
insulin and blood glucose at t ¼ 2 is applied (doðx2Þ, doðy2Þ). The right part of Table 4 contains three different conditional probabilities that are used for predictions. In 
row one, we condition on the empty set ; (no prior information available), in row two on the observation X2 ¼ x2, and in row three on the observations X2 ¼ x2 and 
Y2 ¼ y2. We use the numerical values x2 ¼ 11:48 and y2 ¼ 0 for both interventional levels and observed values. Y�3 is an indicator variables that is equal to 1 if blood 
glucose levels fall within the acceptable range � 40; 80½ � at t ¼ 3, and is equal to 0 otherwise.

6Note that we did not set up an additional model for the probability of treatment success. Instead, we analytically derived the functional form of the population quantity 
PðY�3 ¼ 1jdoðx2ÞÞ for the model depicted in Figure 1 and Figure 2. The complete set of model equations for a homogeneous population and the explicit formula for 
the interventional probability are provided in the online supplementary material.
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corresponds to setting a patient’s insulin level to 2:9 standard 
deviations below the mean level. In case (b) a patient who is 
passively measuring blood insulin levels at t ¼ 2 would hope to 
measure a value of x2 ¼ 11:67, since observing this value max-
imizes the conditional probability of blood glucose levels 
within the acceptable range at t ¼ 3 (dashed vertical line).

If a physician were to erroneously use the conditional dis-
tribution to optimize an intervention and applied the treat-
ment doðX2 ¼ 11:67Þ, this non-optimal intervention would 
result in a 85:5% probability of treatment success. 
A physician who correctly used the interventional distribution 
to choose the optimal treatment would apply 
doðX2 ¼ � 33:34Þ, resulting in a 94:8% probability of treatment 
success. Thus, the consequence of an incorrect decision yields a 
9:3% percentage drop in the probability of treatment success.

In summary, we have seen that conditional probabilities 
(statistical quantity) and the interventional probabilities (cau-
sal quantity) differ. The statistical quantity can always be 
estimated from observational data in a correctly specified 
model, whereas the causal quantity needs to be identified. 
The backdoor criterion ensures causal identification of inter-
ventional probabilities in our example model. The exact for-
mula of the interventional probability PðY�3 ¼ 1jdoðx2ÞÞ is 
complex and the regression-based backdoor adjustment for-
mula for linear models can not be applied to calculate inter-
ventional probabilities. Instead, techniques for causal 
identification and estimation in linearly parameterized causal 
DAG-models suggested by Gische and Voelkle (2020) can be 
applied as explicated in more detail at the end of the section 
titled “Interventional Variance versus Conditional Variance.”

Between-Person Heterogeneity

At the beginning of this article, we assumed that individuals come 
from a homogeneous population. This assumption will often be 
unrealistic in practice. A treatment that would be optimal (e.g., 
the administered dose of insulin maximizes the probability that 
blood glucose realizes within the acceptable range) for an “aver-
age” person is not necessarily optimal for a given patient if the 
population from which the average was calculated consists of 
heterogeneous individuals (Holland, 1986; Molenaar, 2004; 
Sidman, 1960; Voelkle et al., 2018). In this section we incorporate 
person-specific differences in mean levels into our model and 
focus on person-specific effects of interventions, that is, we fore-
cast the effect of an intervention for a single individual drawn 
from a heterogeneous population.

Modeling Between-Person Heterogeneity via Random 
Intercepts

We use a panel data design with a fixed number of time points, 
T ¼ 4, and sample size N as presented in the Introduction. 
Authors from different disciplines have proposed a variety of 
approaches for including person-specific differences into this 
framework (e.g., Hsiao, 2014; Usami et al., 2019; Wooldridge, 
2010; Zyphur et al., 2019).

Here, we adopt the approach of including the latent vari-
ables ηx and ηy as additive random intercepts into the model 
(see Figure 5). The random intercept ηx is a term that includes 
all additive time-invariant factors that affect the level of blood 
insulin of a person; ηy is a term that includes all additive 

x2

pr
ob

ab
ili

ty

−50 −33.34 0 11.67 50

.7
0

.8
0

.9
0

.9
48

.9
99

 interventional probability
 conditional probability

Figure 4. The interventional probability PðY�3 ¼ 1jdoðx2ÞÞ on the vertical axis is depicted as a function of the (mean-centered) interventional level on the 
horizontal axis (solid line). In addition, the conditional probability PðY�3 ¼ 1jX2 ¼ x2Þ on the vertical axis is depicted as a function of the (mean-centered) 
observed level X2 ¼ x2 on the horizontal axis (dashed line). Y�3 ¼ 1 whenever blood glucose level at time t ¼ 3 falls within the acceptable range. A vertical 
dotted line is drawn at the interventional level doðX2 ¼ � 33:34Þ that maximizes the probability of treatment success. Another vertical dotted line is drawn at 
the observed measurement level X2 ¼ 11:67 that maximizes the prediction probability that blood glucose levels will be within the acceptable range at time 
t ¼ 3 (in the absence of an intervention).

STRUCTURAL EQUATION MODELING: A MULTIDISCIPLINARY JOURNAL 9



time-invariant factors that affect the level of blood glucose of 
a person. Thus, random intercepts capture those factors that 
vary across persons but do not change over time. For example, 
the random intercept could capture such factors as sex, marital 
status, and genetic endowment if these factors are constant 
during the study. Without loss of generality, we assume that 
random intercepts have zero means, that 
is, EðηxÞ ¼ EðηyÞ ¼ 0.

Note that these time-invariant variables (e.g., sex, marital 
status, and genetic endowment) are neither explicitly modeled 
nor measured in the study. Instead, the time-invariant vari-
ables are captured in the random intercepts (i.e., they are 
statistically accounted for).7 This approach gives random inter-
cepts the status of latent variables as indicated by the dashed 
circles around ηx and ηy in the DAG representation of the 
model displayed in Figure 5. Since the random intercepts are 
latent we speak of unobserved heterogeneity.

The time-invariant variables collected in the random inter-
cept ηx are assumed to have direct causal effects on the levels of 
blood insulin as indicated by the directed edges from ηx to X1, 
X2, X3, and X4 in Figure 5. For analogous reasons, directed 
edges from ηy to Y1, Y2, Y3, and Y4 are included in the DAG. 
The values of the structural coefficients corresponding to the 
paths from ηx to Xt , t � 2 are restricted to be equal to 1. These 
restrictions (a) assign a scale to the latent random intercept ηx 
and (b) reflect the assumption that the structural coefficients 
from the random intercepts to blood insulin levels Xt , t � 2 do 
not change over time. The same reasoning applies to the paths 

from ηy to Yt , t � 2. The bidirected dashed edge between the 
random intercepts ηx and ηy indicates that time-invariant 
variables that determine blood insulin levels might covary 
with time-invariant variables that determine the level of 
blood glucose due to unobserved confounding. The random 
intercepts are assumed to be uncorrelated with the error terms 
εxt , εyt , t � 1.

Special attention needs to be paid to the initial variables X1 
and Y1 since they differ from the subsequent variables X2, X3, 
and X4 and Y2, Y3, and Y4 in an important way. The levels of Xt 
and Yt are explained in our model by the values of Xt� 1 and 
Yt� 1 when t � 2. In contrast, the initial variables X1 and Y1 are 
exogenous in our model, that is, there are no incoming directed 
edges into X1 and Y1. The dynamics of the insulin–glucose 
relationship, however, were going on in the individuals prior to 
the first measurement wave. Thus, the initial variables some-
how need to account for the past of the process that is not 
explicitly modeled (Figure A1 in the Appendix on Initial 
Variables).

Different approaches for incorporating initial variables into 
the statistical model have been proposed (Browne & Zhang, 
2007; Hamaker et al., 2005; Hsiao, 2014; Molenaar, 1985). 
From a causal inference perspective, we believe the most 
straightforward and interpretable approach is to draw directed 
edges from ηx !

cx1ηx X1 and ηx !
cy1ηx Y1 as well as from ηy !

cx1ηy
X1 

and ηy !
cy1ηy

Y1 (see Figure 5). A detailed justification of this 
modeling strategy is presented in the Appendix on Initial 
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Figure 5. The causal diagram (DAG) displayed in Figure 1 is extended to include random intercepts (i.e., differences in the individual mean levels) that are represented in 
dashed circles, indicating that these variables are latent and therefore not observed. The directed edges from ηx to X1, …, X4 and Y1 indicate that time-invariant factors 
contained in the latent variables ηx have direct causal effects on blood insulin levels and the initial values of blood glucose levels. The directed edges from ηy to Y1, …, Y4 

and X1 indicate that time-invariant factors contained in the latent variables ηy have direct causal effects on blood glucose levels and the initial values of blood insulin 
levels. The effects of the random intercepts on the initial variables are labeled with cx1 ηx

, cx1 ηy
, cy1 ηx 

and cy1 ηy
. The direct effects of ηx on X2, X2, and X4 and of ηy on Y2, Y2, 

and Y4 are assumed to be time-stable and equal to 1. The bidirected dashed edge between the random intercepts ηx and ηy indicate the existence of an unobserved 
confounder.

7In case one or more time-invariant variables (e.g., a person’s sex) are explicitly included as predictors of, say, Xt; t ¼ 1; . . .; T , then ηx collects all other additive time- 
invariant factors that are not explicitly modeled (the omitted factors; e.g., marital status, genetic endowment) that determine the value of Xt .
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Variables where we also refer to viable alternatives. As noted in 
the previous paragraph, the initial variables differ in an impor-
tant way from subsequent measurements. This special status is 
accounted for by not restricting the structural coefficients cx1ηx

, 
cy1ηx

, cx1ηy 
and cy1ηy 

to be equal to one.
A measure of the degree of unobserved heterogeneity in the 

population is the variance of the random intercepts. In the 
following, we assume the numerical values VðηxÞ ¼ 5 and 
VðηyÞ ¼ 10, where the time-invariant factors covary with 
COVðηx; ηyÞ ¼ 2:5. All parameters introduced to model per-
son-specific differences in mean levels via random intercepts 
are collected in Table 5.

A consequence of modeling unobserved heterogeneity via 
random intercepts is an increase in total variance as compared 
to the model for the homogeneous population. For example, 
for t � 2, the standard deviation of blood insulin levels 
increases from SDðXtÞ ¼ 11:48 mcIU/ml in the homogeneous 
model to SDðXtÞ ¼ 26:30 mcIU/ml in the model with random 
intercepts. Similarly, the standard deviation of blood glucose 
levels increases from SDðYtÞ ¼ 25:16 mg/dl to SDðYtÞ ¼ 61:83 

mg/dl. A complete presentation of all relevant formulae and 
details regarding the derivation thereof is provided in the 
online supplementary material.

Figure 5 displays the causal diagram of the data generating 
mechanism. We use the bivariate linear cross-lagged panel 
model (T ¼ 4) with random intercepts for data analysis. Since 
we use simulated data, we know with certainty that the causal 
model is correctly specified and that our statistical model cap-
tures the data generating process. In practical applications, how-
ever, one usually does not know the true data generating 
mechanism and causal assumptions postulated by researchers 
might be wrong. We discuss statistical tests of model assump-
tions and methods to analyze the sensitivity of causal conclu-
sions with respect to violations of assumptions in the section on 
“Current Limitations and Future Directions.” From a statistical 
point of view, we believe that the model is identified (Hisao, 
2014; Oud and Delsing, 2014, Zyphur et al., 2019), that is, all 
model parameters can be estimated from observational data and 
person-specific values of the random intercepts can be 
calculated.

Average Effects versus Person-Specific Effects of 
Interventions

As in the homogeneous model, we are interested in the effects 
of an intervention represented by the do-operator. Since the 
causal diagram of the model with random intercepts still 
belongs to the class of DAGs (see Figure 5), the do-operator 
is well-defined and can be directly applied to the model includ-
ing random intercepts. Figure 6 displays the situation where 
the intervention doðx2Þ is applied.

Table 5. Numeric values of parameters related to random intercepts.

structural coefficients         variance-covariance parameters

cx1 ηx
cy1 ηy

cx1 ηy
cy1 ηx

ψηx ηx
ψηy ηy

ψηx ηy

−4.00 19.00 8 −12 5.00 10.00 2.50

Note. Parameters introduced to model unobserved person-specific differences in 
the mean levels (see Figures 5 and 6). The structural coefficients cx1 ηx

, cy1 ηy
, cx1 ηy 

and cy1 ηx 
correspond to the accumulated long-term effects of the random 

intercepts on insulin and glucose levels, respectively. The parameters ψηx ηx
, 

ψηy ηy
, and ψηx ηy 

represent the variance-covariance structure of the random 
intercepts.

X1 do(x2) X3 X4

Y1 Y2 Y3 Y4

cy
2 x
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3 x
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=
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1 1 1

cx1ηy = 8.0

Figure 6. The causal diagram (DAG) from Figure 5 is modified to account for the intervention doðx2Þ. The variable X2 has been replaced by doðx2Þ and all directed edges 
that formerly entered X2 have been removed, indicating that the interventional level doðx2Þ does not depend on X1, Y1 or ηx but is set by an experimenter (in our 
illustrative example we choose doðX2 ¼ 26:30ÞÞ. Note that all other variables and directed edges (causal arrows) remain unchanged as compared to the situation 
without the intervention doðx2Þ as depicted in Figure 5 reflecting the assumption of modularity.
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The interventional distribution PðY3jdoðx2ÞÞ describes 
blood glucose levels in the entire population of individuals, 
given that the treatment doðx2Þ has been administered. The 
inclusion of random intercepts allows us to define the person- 
specific effects of interventions.

Each individual in the population can be characterized by 
the values zx and zy of his or her time-invariant characteristics 
ηx and ηy. We define the person-specific interventional distri-
bution of Y3 for an individual characterized by ηx ¼ zx and 
ηy ¼ zy as PðY3jdoðx2Þ; ηx ¼ zx; ηy ¼ zyÞ. The person-specific 
interventional distribution describes blood glucose levels at 
time t ¼ 3 for an individual who is characterized by the time- 
invariant characteristics ηx ¼ zx and ηy ¼ zy after the treat-
ment doðx2Þ has been applied. If multiple individuals have the 
same time-invariant characteristics the person-specific inter-
ventional distribution is also the subgroup-specific interven-
tional distribution of this homogeneous group of individuals.

For both the interventional distribution PðY3jdoðx2ÞÞ and 
the person-specific interventional distribution 
PðY3jdoðx2Þ; ηx ¼ zx; ηy ¼ zyÞ, the random intercepts ηx and 
ηy belong to every adjustment set for backdoor identification 
(see Figure 5; Pearl (2009); Shpitser and Pearl (2006)). Thus, to 
apply backdoor adjustment in the model with random inter-
cepts, the values of the latter need to be known. Recall that 
random intercepts are latent variables and thus unobserved 
(i.e., not part of the available data). As a consequence, the 
backdoor adjustment formulae cannot be applied 
straightforwardly.8 Causal identification can be established, 
however, by following the criteria for linear causal DAG- 
models suggested by Gische and Voelkle (2020) as explicated 
in more detail at the end of the section titled “Interventional 
Variance versus Conditional Variance.”

In the first half of the paper, we analyzed a homogeneous 
population and focused on the difference between forecasts of 
effects of interventions and predictions of future values (cells in 
the first row in Figure 7). The introduction of between-person 
heterogeneity in the second half of the paper suggests an addi-
tional distinction: The difference between average values across 
the entire population and person-specific values. In the follow-
ing, we focus on the difference between the average effects of 
interventions versus person-specific effects of interventions 
(cells in the first column in Figure 7). Space limitations pre-
clude a discussion of predictions of future values in the pre-
sence of unobserved heterogeneity in the main text. A formal 
treatment of the differences between forecasts of effects of 
interventions and predictions of future values in the presence 
of unobserved heterogeneity is presented in the online supple 
mentary material.

In the following, we consider three hypothetical individuals 
from the population, namely Amy, Joe, and Sam, who are 
characterized by person-specific characteristics displayed in 
Table 6. We are interested in the blood glucose levels at time t ¼
3 after the intervention doðX2 ¼ 26:30Þ has been applied, where 
26:30 mcIU/ml is the standard deviation of blood insulin levels 
in the model with unobserved heterogeneity (recall that due to 
the inclusion of random intercepts into the model the standard 
deviation of blood insulin increased from 11:48 to 26:30.) In the 
following sections, we compute the person-specific effects of 
interventions for Amy, Joe, and Sam and compare these quan-
tities to the average (unconditional) effect of an intervention in 
the entire population.

Person-Specific Interventional Mean and Variance

The unconditional mean of blood glucose is the best prediction 
of blood glucose level at time t ¼ 3 if no further information is 
available. Since all observable variables are mean-centered and 
the random intercepts ηx and ηy have zero means, the 

average forecast
of effect
of intervention

average across
entire population

forecast of effect
of intervention

average prediction
of future value

prediction of
future value

person-specific
forecast of
effect of intervention

person-specific
person-specific
predicition
of future value

Figure 7. The four cells of the depicted (2� 2) table display all possible combina-
tions that result from the binary distinctions ‘forecast versus prediction’ (columns) 
and ‘average versus person-specific’ (rows).

Table 6. Person-specific characteristics for Amy, Joe, and Sam.

Person zx zy

Amy zAmy
x ¼ � SDðηxÞ ¼ � 2:24 zAmy

y ¼ � SDðηyÞ ¼ � 3:16

Joe zJoe
x ¼ EðηxÞ ¼ 0 zJoe

y ¼ EðηyÞ ¼ 0
Sam zSam

x ¼ SDðηxÞ ¼ 2:24 zSam
y ¼ SDðηyÞ ¼ 3:16

Note. Table 6 displays the person-specific characteristics for three hypothetical 
individuals Amy, Joe, and Sam. Amy’s and Sam’s values are one standard 
deviation below and above the mean, respectively. Joe’s values are equal to 
the mean of the distribution of person-specific characteristics in the population.

Table 7. Interventional means and variances in models with unobserved heterogeneity.

Mean                                               Variance

EðY3Þ EðY3jdoðx2ÞÞ EðY3jdoðx2Þ; ηx ¼ zx ; ηy ¼ zyÞ VðY3Þ VðY3jdoðx2ÞÞ VðY3jdoðx2Þ; ηx ¼ zx ; ηy ¼ zyÞ

0 � 0:6x2 � 0:6x2 � 14:4zx þ 23:8zy 3822:93 5939:03 951:43

Note. The left part of Table 7 contains the unconditional mean (used for prediction of future values) and interventional means (used to forecast outcome values after an 
intervention has been applied). The right part of Table 7 contains the unconditional variance (prediction error) and interventional variances (forecast errors).

8The causal quantities PðY3jdoðx2ÞÞ and PðY3jdoðx2Þ; ηx ¼ zx ; ηy ¼ zyÞ are not identified based on the DAG depicted in Figure 5 in the most general non-parametric 
DAG setup. One way to ensure identification is to impose further assumptions on the functional form of the structural equations (e.g., linearity).
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unconditional mean is equal to zero (see column one of Table 
7). The unconditional variance in the presence of unobserved 
heterogeneity is equal to 3822:93 (see column 4 of Table 7) 
which is the variance of the prediction error when predicting 
Y3 in the absence of additional information.

The interventional mean and variance of Y3 describe the 
distribution of blood glucose levels at t ¼ 3 in the entire popu-
lation after the intervention doðx2Þ has been applied. They are 
given by the following formulae: 

EðY3jdoðx2ÞÞ ¼ cyxx2 (6a) 

VðY3jdoðx2ÞÞ ¼ ðcy1ηx
c2

yy þ cx1ηx
cyxcyyÞ

2ψηxηx
(6b) 

þ ðcy1ηy
c2

yy þ cx1ηy
cyxcyy þ cyy þ 1Þ2ψηyηy 

þ 2ðcy1ηx
c2

yy þ cx1ηx
cyxcyyÞðcy1ηy

c2
yy þ cx1ηy

cyxcyy þ cyy þ 1Þψηxηy 

þ c2
yxc2

yyψx1x1
þ c4

yyψy1y1
þ 2cyxc3

yyψx1y1
þ ðc2

yy þ 1Þψyy 

Equation (6a) reveals that the interventional mean in the pre-
sence of unobserved heterogeneity has the same linear func-
tional form as in the homogeneous model (see Equation [2]). 
The first three lines of Equation (6b) are related to the random 
intercepts, whereas the last line is equal to the interventional 
variance in the homogeneous case (see Equation [4]). The 
value of VðY3jdoðx2ÞÞ in the presence of unobserved hetero-
geneity is equal to 5939:03 (see column 5 of Table 7), which is 
the variance of the forecast error when forecasting blood glu-
cose levels at time t ¼ 3 after the intervention doðx2Þ has been 
applied.

The person-specific interventional moments describe the 
distribution of blood glucose levels at t ¼ 3 for an individual 
who is characterized by the time-invariant features ηx ¼ zx and 
ηy ¼ zy, after the treatment doðx2Þ has been applied. The per-
son-specific interventional mean is given by the following 
formula: 

EðY3jdoðx2Þ; ηx ¼ zx; ηy ¼ zyÞ (7) 

¼ cyxx2 þ ðcy1ηx
c2

yy þ cx1ηx
cyxcyyÞzx

þ ðcy1ηy
c2

yy þ cx1ηy
cyxcyy þ cyy þ 1Þzy 

Equation (7) reveals that the person-specific interventional 
mean is a function of the interventional level x2 and the time- 
invariant characteristics zx and zy of that person. For example, 
the person-specific interventional mean for Sam is computed 
by plugging in Sam’s numeric values zSam

x ¼ 2:24 and zSam
y ¼

3:16 (see row 3 of Table 6) into the equation for the person- 
specific mean as stated in row 3 of Table 7: 

EðY3jdoðX2 ¼ 26:30Þ; ηx ¼ zSam
x ; ηy ¼ zSam

y Þ ¼ (8) 

� 0:6 � 26:30 � 14:4 � 2:24þ 23:8 � 3:16 ¼ 27:17 

Likewise the person-specific interventional means for Amy 
( � 58:73) and Joe ( � 15:78) can be computed. Thus, given 
the same treatment doðX2 ¼ 26:30Þ, different forecasts of 
blood glucose levels at time t ¼ 3 are obtained for different 
individuals, depending on their respective time-invariant 
characteristics.

Note that the linear coefficient of the treatment level x2 is 
constant and equal to cyx ¼ � 0:6 in the equation for the 
person-specific mean (see Equation [7] and column 3 of 
Table 7). As a consequence, the person-specific ATE is inde-
pendent of the time-invariant characteristics of a person and 
constant across individuals. For example, the person-specific 
ATE of X2 on Y3 for Sam is given by: 

EðY3jdoðX2Þ; ηX ¼ zSam
X ; ηy ¼ zSam

y Þ

� EðY3jdoðX
0

2Þ; ηX ¼ zSam
X ; ηy ¼ zSam

y Þ

¼ � 0:6x2 � 14:4zSam
X þ 23:8zSam

y

� ð� 0:6x
0

2 � 14:4zSam
X þ 23:8zSam

y Þ

¼ � 0:6ðx2 � x
0

2Þ

(9) 

Equation (9) reveals that the ATE is independent of Sam’s 
time-invariant characteristics (i.e., zSam

x and zSam
y cancel out), 

a result that also holds for every other individual in the 
population.9 In other words, a change in the treatment level, 
say from doðX2 ¼ x2Þ to doðX2 ¼ x02Þ, will cause the same 
change in forecasted values for each individual.

The difference between the (unconditional) interven-
tional moments and the person-specific interventional 
moments can be illustrated as follows. A physician initially 
forecasts the value EðY3jdoðX2 ¼ 26:30ÞÞ ¼ � 0:6 � 26:30 ¼

Table 8. Probabilities of treatment success in models with unobserved heterogeneity.

(unconditional) probability of treatment success person-specific probabilities of treatment success

PðY�3 ¼ 1jdoðX2 ¼ 26:30Þ; ηx ¼ zAmy
x ; ηy ¼ zAmy

y Þ ¼ :27
PðY�3 ¼ 1jdoðX2 ¼ 26:30ÞÞ ¼ :52 PðY�3 ¼ 1jdoðX2 ¼ 26:30Þ; ηx ¼ zJoe

x ; ηy ¼ zJoe
y Þ ¼ :78

PðY�3 ¼ 1jdoðX2 ¼ 26:30Þ; ηx ¼ zSam
x ; ηy ¼ zSam

y Þ ¼ :94

Note. Y�3 is an indicator variable that is equal to 1 if blood glucose levels at t ¼ 3 fall inside the acceptable range � 40; 80½ � (treatment success), and is equal to 0 
otherwise. The left part of the Table 8 contains the (unconditional) probability of treatment success after the treatment doðX2 ¼ 26:30Þ has been applied. The right 
part of Table 8 contains person-specific probabilities of treatment success for three hypothetical individuals. Amy’s time-invariant values are one standard deviation 
below the mean, Joe’s values are exactly at the mean, and Sam’s values are one standard deviation above the mean.

9This result is a consequence of modeling unobserved heterogeneity via additive random intercepts. To capture heterogeneity in the person-specific ATE we need more 
complex models (e.g., models including product terms).
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� 15:78 for a new patient under treatment of whom the 
person-specific characteristics are yet unknown. After learn-
ing that a patient is Amy, Joe, or Sam (and their respective 
person-specific characteristics) the physician updates his or 
her forecast to � 58:73, � 15:78, or 27:17, respectively. 
Note that by learning the person-specific characteristics of 
a new patient, the variance of the forecast error drops from 
5939:03 to 951:43 (see columns 5 and 6 of Table 7).

Person-Specific Probabilities of Treatment Success

As in the section titled “Interventional Probabilities versus 
Conditional Probabilities” we use the binary variable Y�3 to 
indicate (Y�3 ¼ 1) that blood glucose levels at time t ¼ 3 are 
within an acceptable range ½� 40; 80� (mean-centered metric), an 
event we refer to as treatment success. Recall that Y�3 ¼ 0 indi-
cates the presence of hypo- or hypoglycemia, that is, blood 
glucose levels outside the acceptable range.

In the presence of unobserved heterogeneity, the (uncondi-
tional) probability of treatment success is equal to :52 given the 
treatment doðX2 ¼ 26:30Þ (see column 1 of Table 8). That is, 
a physician would estimate a 52% probability of treatment 
success after the intervention doðX2 ¼ 26:30Þ has been applied 
to a new patient from the heterogeneous population (a patient 
whose person-specific characteristics are yet unknown).

The right column of Table 8 contains the person-specific 
probabilities of treatment success for the three hypothetical 
individuals Amy, Joe, and Sam. After learning that a patient 
is Amy, Joe, or Sam (and their respective person-specific char-
acteristics) the physician would update his or her initial beliefs 
about the probability of treatment success from 52% to 27%, 
78%, or 94%, respectively. The reasons for this update are 
twofold. First, the person-specific means differ across the 
three individuals (see Equations [7] and [8]). Second, the 
amount of uncertainty when forecasting Y3 drops from 

5939:03 to 951:43 after learning the person-specific character-
istics (see columns 5 and 6 of Table 7).

Figure 8 displays the person-specific probabilities of treat-
ment success for Amy (dashed line), Joe (solid line) and Sam 
(dotted line) as a function of the interventional level (popula-
tion mean-centered metric). Each curve has a unique maxi-
mum. Due to the simple nature of the model the three curves 
share the same maximal value of 94:8%.10 Note that the per-
son-specific optimal treatment levels differ across persons: 
doðX2 ¼ � 104:92Þ for Amy, doðX2 ¼ � 33:33Þ for Joe, and 
doðX2 ¼ 38:25Þ for Sam. In other words, if a given person is 
administered his or her individually optimal treatment level, 
the probability of treatment success for that person is 94:8%.

Joe is the average patient, that is, his person-specific char-
acteristics coincide with the respective population means (see 
row 2 of Table 6). The person-specific optimal treatment level 
for Joe is � 33:33 which is also the average optimal treatment 
level in the entire population. If a physician treats a new patient 
from the population for whom the person-specific character-
istics are yet unknown, the optimal treatment decision would 
be doðX2 ¼ � 33:33Þ. If the physician learns that the new 
patient is Joe (i.e., the average patient) the initial treatment 
doðX2 ¼ � 33:33Þ coincides with Joe’s person-specific optimal 
treatment resulting in a 94:8% probability of treatment success. 
On the other hand, if the new patient turns out to be Amy or 
Sam, then the treatment doðX2 ¼ � 33:33Þ is no longer optimal 
(given this new person-specific information) and would result 
in a 71% probability of treatment success in either case. The 
optimal treatment decision after learning that the new patient 
is Amy or Sam would be doðX2 ¼ � 104:92Þ or doðX2 ¼ 38:25Þ, 
respectively, resulting in a 94:8% probability of treatment 
success in either case. Thus, updating an initial population- 
based optimal treatment decision to include Amy’s or Sam’s 
person-specific characteristics, results in an absolute increase 
of 23:8% in the probability of treatment success.
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Figure 8. The person-specific interventional probabilities (vertical axis) are depicted for the three hypothetical individuals Amy (dashed line), Joe (solid line) and Sam 
(dotted line) as a function of the (mean-centered) interventional level (horizontal axis). Vertical-dotted lines are drawn at the interventional levels that maximize the 
respective probabilities of treatment success. For example, the interventional level doðX2 ¼ 38:25Þ maximizes the probability of treatment success for Sam, which is 
94:8%. A dotted horizontal line is drawn at :948 which is the probability of treatment success under optimal treatment. Two more dotted horizontal lines are drawn at 
:71 and :20 which correspond to person-specific probabilities of treatment success under different types of non-optimal treatment (see Table 6).

10More complex models (e.g., models allowing for person-specific differences in error term variances) would be needed to model individual differences in the 
probabilities of treatment success under optimal treatment. We will return to this limitation in the Discussion.

14 GISCHE ET AL.



Discussion

In this article, we focused on the example of a four-wave linear 
cross-lagged panel design to provide a didactic presentation of 
Pearl’s (2009) approach to causal inference for researchers famil-
iar with structural equation modeling.11 Throughout we empha-
sized the important distinction between (a) forecasting the 
future value of a variable following an intervention at a prior 
wave and (b) predicting the future value of a variable following 
measurement of variables at a prior wave. In task (a) a causal 
effect is computed based on the interventional distribution in 
a DAG-based framework. We focus on doðxtÞ-type interventions 
that set each individual’s value on the variable X at time t to 
a fixed constant value. In task (b) the future value of a variable is 
predicted using the conditional distribution (statistical quantity). 
Task (a) requires identification of the interventional distribution 
and its moments (causal quantities). Causal identification in the 
case of a homogeneous population can be established using the 
machinery of Pearl’s (2009) approach to causal inference which 
includes graphical criteria such as the backdoor criterion. Causal 
identification in case of a heterogeneous population can be 
established using a parametric procedure suggested by Gische 
and Voelkle (2020).

Our initial development of the approach assumed that all 
individuals were homogeneous. Later, we relaxed this assump-
tion to account for unobserved heterogeneity (person-specific 
differences in the mean levels of the two variables) by including 
additive random intercepts into the linear cross-lagged panel 
framework. We showed that – even in this simple model – 
a treatment decision that is optimal on average can be 
improved substantially if person-specific characteristics can 
be incorporated into the model. In other words, treating 
a new, unknown patient with a treatment dose that has proven 
to be optimal on average (e.g., based on the results of rando-
mized control trials) will only be optimal for a specific person 
as long as additional person-specific information is not avail-
able (Voelkle et al., 2018). As (a) relevant person-specific infor-
mation becomes available or (b) repeated measures of 
the individual become available that allow us to control for 
time-invariant person characteristics, this information can be 
incorporated to develop a treatment level that more adequately 
matches the optimal level of treatment for the individual.

Pearl’s (2009) approach to DAG-based causal inference was 
developed using a general nonparametric framework. We used 
a linear parameterization of the cross-lagged panel framework 
to simplify the results and show the connection to linear 
structural equation modeling. The linear parameterization 
has weaknesses and strengths. On the one hand, if linear 
relationships represent a serious misspecification of the 
unknown true nonlinear functional form, the models will be 
misspecified and the results will be biased. On the other hand, 
the linear specification permits the inclusion of random inter-
cepts, that is, person-specific differences in the mean levels of 
the time series, which reduces the risk of causal misspecifica-
tion. In linear models with random intercepts additive time- 

invariant unobserved confounders are being statistically 
controlled. This, in turn, allows for the identification of causal 
effects that would not be identified in the most general non- 
parametric setup.12 In the case of linear models with random 
intercepts, we can to use the approach developed by Gische and 
Voelkle (2020) to establish identification of causal effects. The 
latter approach could also be used to obtain estimates of causal 
quantities in the presence of random intercepts.

Current Limitations and Future Directions

The methods presented in this paper permit causal conclusions 
to be reached based on a combination of observational data 
and assumptions about the data generating mechanism. The 
effects of a hypothetical do-intervention were forecasted with-
out performing an experiment or otherwise perturbing the 
dynamic system. For causal conclusions based on observational 
data to be valid, the underlying assumptions need to hold. The 
methods discussed in this paper rely on the correct a priori 
specification of the causal ordering of the variables and the 
assumption of a linear dynamic process that is both stable over 
time and that is not altered by the intervention (modularity, 
autonomy). In the present article, we only allowed for between- 
person differences in the individual mean levels of the vari-
ables. Computing causal forecasts based on models that 
account for between-person differences in the autoregressive 
and cross-lagged effects remains a task for future research.

Statistical tests are available that can detect certain types of 
misspecification. In the present paper the set of possible causal 
orders is limited in part by the cross-lagged panel design (e.g., 
time ordering of variables). Further tests of the causal ordering 
of the variables (e.g., maximum lag of autoregressive effects) can 
be performed using procedures proposed by Chen et al. (2014), 
Shipley (2003), Thoemmes et al. (2018), and Tian and Pearl 
(2002). The assumption of autonomous mechanisms is in prin-
ciple testable, but requires that both observational and experi-
mental data on the process are available. The consequences of 
violations of non-testable assumptions can sometimes be gauged 
via sensitivity analyses and robustness checks (Ding & 
VanderWeele, 2016; Imai et al., 2010; Rosenbaum, 2011). 
Given that our developments were in the context of linear causal 
models, the linearity of the functional relations should be exam-
ined. Graphical checks utilizing lowess fits or splines commonly 
used in regression can be performed (e.g., Cohen et al., 2003; Suk 
et al., 2019). Formal statistical tests of linearity are available both 
for nested and non-nested models (Amemiya, 1985; Lee, 2007; 
Schumacker & Marcoulides, 1998).

In the development of our approach, we did not consider 
measurement error. Cole and Preacher (2014) have highlighted 
the serious bias that can arise from the failure to address 
measurement error in structural equation models. In our insu-
lin-glucose example we would expect this problem to be mini-
mal since instantaneous measures of blood insulin and blood 
glucose both have high precision. In cases in which only 

11Technical details, formal derivations, and R-code for numerical computations are provided in the online supplementary material.
12All models discussed in the paper belong to the class of DAGs. Random intercepts are by definition latent variables and are therefore unobserved. Therefore, many 

standard nonparametric adjustment formulae used to compute causal quantities can no longer be applied in the presence of random intercepts.
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a single measure of each variable is available at each measure-
ment wave, the bias can be reduced by using methods to 
correct the observed variables for measurement error (e.g., 
Fuller, 1987) or structural equation models with latent vari-
ables can be constructed that yield measurement error-free 
estimates. Our proposed approach to cross-lagged panel 
designs can potentially be extended to define, identify, and 
estimate causal effects between latent variables. Again, this is 
a task for future research.

Finally, our example was based on simulated data based on 
empirical findings reported by Ito et al. (1998). To simplify our 
didactic presentation of the approach, we ignored both possible 
contemporaneous correlations among the residuals of the insu-
lin and glucose time-series as well as possible autocorrelations in 
the residuals for the blood insulin and blood glucose series. 
From a causal perspective, this means that we generated the 
data to reflect the absence of time-varying unobserved confoun-
ders in both the autoregressive and the cross-lagged relation-
ships. With a real data example, these assumptions need to be 
checked, for example, by using the methods to detect certain 
types of misspecifications referred to in the second paragraph of 
this section.

In conclusion, the proposed method combines the desirable 
features of cross-lagged panel designs, a sound definition of 
causal quantities based on DAGs, and the flexibility of SEM for 
data analysis. We hope that our presentation facilitates the 
integration of linear SEM and DAG-based causal inference 
and enables researchers to better distinguish between tools 
for predictive and causal research questions.
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Appendix on Initial Variables

In this Appendix, we provide a rationale for our treatment of initial 
variables and briefly discuss alternative approaches. We focus on the 
model depicted in Figure 5 that includes individual heterogeneity. The 
model depicted in Figure 1 can be viewed as a special case.

The initial variables X1 and Y1 in Figure 5 are (a) connected by 
a bidirected dashed edge, (b) have incoming directed edges from the ran-
dom intercepts ηx and ηy, and (c) the values of the structural coefficients 
corresponding to the directed edges are denoted by cx1ηx

, cx1ηy
, cy1ηx 

and 
cy1ηy

. All three choices (a), (b), and (c) rest on the key assumptions depicted 
in Figure A1 that address the dynamics of the insulin–glucose relationship 
prior to the first measurement wave. The DAG depicted in Figure A1 
encodes the assumption, that the causal structure of the insulin glucose 
dynamics is time-stable. In other words, the dynamics prior to the first 
measurement (gray part) contains only autoregressive and cross-lagged 
effects of order one. Note that we do not assume that the values of the 
structural coefficients are necessarily time-stable prior to the first measure-
ment wave as indicated by leaving out labels for the directed edges in the 
gray part of the graph.
Drawing (a) a bidirected edge among the initial variables in Figure 5 
indicates the existence of unobserved confounders. Assuming that 
the dynamics have already been going on before the first measure-
ment wave (as displayed in Figure A1) implies that the X1-Y1 rela-
tionship is confounded by previous insulin and glucose levels. 
Examples for such confounding paths are X1  X0 ! Y1 or 
X1  Y0 ! Y1.

Drawing (b) directed edges from the random intercepts to the 
initial variables can be justified as follows: Directed edges drawn 
from ηx to the insulin levels Xt reflect the assumption that the 
omitted person-specific time-invariant variables have direct causal 
effects on the insulin levels at time t. Since the timing of the first 
measurement wave was determined by factors outside of the system 
(e.g., grant money deadlines, availability of the lab) there is no 
reason to believe that ηx should not have a direct causal effect on 
the initial variable X1 in Figure 5. Including the past of the dynamic 
process prior to the first measurement (gray part in Figure A1) 
reveals that insulin level at time t ¼ 1 does not have a special status 
in the ongoing underlying real-world process. The fact that we treat 
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it differently in our model (e.g., we assign the structural coefficient 
cx1ηx 

to the path ηx ! X1 instead of restricting its value to be equal to 
one) only arises due to the timing of our measurements which is 
determined by factors independent of the insulin-glucose dynamics 
(see Singer & Willett, 2003). The same argument holds true for the 
directed edge from ηy to the glucose level Y1.

The directed edge from ηy to X1 in Figure 5 reflects the assump-
tion that ηy has a direct causal effect on X1 in the depicted model.13 

Note that the model in Figure 5 omits those parts of the insulin 
glucose dynamics that were going on prior to the initial measure-
ment wave. The DAG in depicted in Figure A1 explicitly contains 
the entire past of the insulin-glucose dynamics (gray part). As 
a consequence, ηy has indirect effects on X1 (e.g., ηy ! Y0 ! X1, 

ηy ! Y� 1 ! X0 ! X1) in the model depicted in Figure A1. These 
indirect paths from Figure A1 translate to direct paths in the linear 
cross-lagged panel model with T ¼ 4 measurement waves as depicted 
in Figure 5. The same argument holds true for the directed edge 
from ηx to the insulin levels Y1.

Statement (c) says that the values of the structural coefficients corre-
sponding to the directed edges are denoted by cx1ηx

, cx1ηy
, cy1ηx 

and cy1ηy 

and are therefore not restricted to be equal to one. In practice, we 
recommend estimating the values of these coefficients from the data 
without imposing any restrictions. For our data simulation we used 
a particular set of values, namely cx1ηx

¼ � 4:00, cx1ηy
¼ 8:00, cy1ηx

¼

� 12:00 and cy1ηy
¼ 19:00, as depicted in Figures 5 and 6 (see online 

supplementary material for a derivation of these values).

13Note that the term direct effect is well-defined only with respect to a certain model. Saying that changes in insulin levels X have a direct effect on glucose levels Y 
might be a useful model for practicing physicians and patients suffering from diabetes. At the same time, this model excludes several chains of chemical reactions (i.e., 
molecular processes) that are involved in the transmission of changes in X to changes in the levels of Y. These intermediate chemical processes might be of interest to 
biochemists or pharmacologists who develop a drug for patients suffering from diabetes. Thus, a direct effect of X on Y in the physician’s model will then be an indirect 
effect (i.e., a mediated effect) in the biochemists’ model that explicitly includes chemical reactions as intermediate variables.

X1 X2 X3 X4

Y1 Y2 Y3 Y4

X0X−1· · ·

Y0Y−1· · ·

cxx = .05

c
yx =

-.6

cxx = .05

c
yx

=
-.6

cxx = .05

c
yx

=
-.6

cxy
=

.4

cyy = 1.20

cxy
=

.4

cyy = 1.20

cxy
=

.4

cyy = 1.20

ηx

1 1 1 1

ηy

1 1 1 1

Figure A1. The depicted causal diagram (DAG) extends Figure 5 to account for the fact that the insulin-glucose dynamics were going on in the individuals prior to the 
first measurement wave. The four measurement waves that are observed in our study are drawn in black whereas the unobserved past of the process is drawn in gray. 
The graph in Figure A1 encodes the assumption, that the causal structure of the insulin-glucose dynamics is time-stable. In other words, the dynamics prior to the first 
measurement contain only autoregressive and cross-lagged effects of order one as well as direct effects from ηx to the insulin measures and from ηy to the glucose 
measures. We do not necessarily assume that the values of the structural coefficients are time-stable prior to the first measurement wave as indicated by leaving the 
directed edges in the gray part of Figure A1 unlabeled.
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