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TEACHER’S CORNER

Teacher’s Corner: Evaluating Informative Hypotheses Using the Bayes Factor in
Structural Equation Models
Caspar J. Van Lissa , Xin Gu, Joris Mulder, Yves Rosseel , Camiel Van Zundert, and Herbert Hoijtink

Utrecht University; East China Normal University; Tilburg University; Ghent University; McGill University

ABSTRACT
This Teacher’s Corner paper introduces Bayesian evaluation of informative hypotheses for structural
equation models, using the free open-source R packages bain, for Bayesian informative hypothesis
testing, and lavaan, a widely used SEM package. The introduction provides a brief non-technical
explanation of informative hypotheses, the statistical underpinnings of Bayesian hypothesis evaluation,
and the bain algorithm. Three tutorial examples demonstrate informative hypothesis evaluation in the
context of common types of structural equation models: 1) confirmatory factor analysis, 2) latent
variable regression, and 3) multiple group analysis. We discuss hypothesis formulation, the interpreta-
tion of Bayes factors and posterior model probabilities, and sensitivity analysis.

KEYWORDS
Bain; bayes factor;
informative hypotheses;
structural equation
modeling

Hypotheses play a central role in deductive, theory-driven
research. A hypothesis allows a researcher to draw inferences
about a population, based on data sampled from that popula-
tion. In the context of structural equation modeling, there are
two commonly used approaches to hypothesis evaluation.
Firstly, researchers can construct a set of competing models,
where each model represents several theoretically derived
substantive hypotheses. Researchers can then use information
criteria to select the best model in the set. Commonly used
information criteria include Akaike’s information criterion
(AIC, Akaike, 1974), the Bayesian information criterion
(BIC, Schwarz, 1978), and the deviance information criterion
(DIC, Spiegelhalter et al., 2002). Secondly, hypotheses about
specific parameters within a model can be tested by compar-
ing a null hypothesis against an alternative hypothesis using
the likelihood ratio test (Wilks, 1938) or the Wald test (Buse,
1982).

A third approach is informative hypothesis evaluation
(Hoijtink, 2011). Informative hypotheses are theoretically
derived statements about directional differences and equality
constraints between model parameters of interest. Informative
hypotheses address an important limitation of classical null-
hypothesis significance testing: The null-hypothesis that
a parameter is equal to zero is often a straw man hypothesis.
It holds little credibility and exists purely for the purpose of
being rejected. The researcher’s actual theory, on the other
hand, is subsumed under a very broad alternative hypothesis
and is not directly tested. The paradox inherent in this
approach is that rejecting the straw man null-hypothesis can-
not be interpreted as evidence in support of the researcher’s
theory, but merely as evidence against the null. Informative
hypotheses overcome this counter-intuitive limitation, by
explicitly testing a researcher’s theoretical beliefs.

Evaluating informative hypotheses is particularly straight-
forward from a Bayesian perspective. Bayesian inference is
already widely applied in the context of multivariate normal
linear models (see, for example: Van Well, Kolk, & Klugkist,
2008; Braeken et al., 2015; De Jong et al., 2017; Zondervan–
Zwijnenburg et al., 2019). Methods for Bayesian hypothesis
evaluation within the structural equation modeling frame-
work are also available (Gu Hoijtink, Mulder, & Rosseel,
2019; Van De Schoot et al., 2012). However, they are less
frequently applied (but see Van Lissa et al., 2016). This
might be, in part, because user-friendly software was not
available. In this Teacher’s Corner paper, we show how
Bayesian tests of informative hypotheses about parameters in
structural equation models can easily be conducted in R, using
the bain package (Gu, Hoijtink, Mulder, & van Lissa, 2019, Gu
et al. 2018; Hoijtink et al., 2019; Mulder, 2014) (https://infor
mative-hypotheses.sites.uu.nl/software/bain/). From version
0.2.3 on, the package can evaluate informative hypotheses
about structural equation models estimated with the free,
open-source SEM-package lavaan (Loehlin & Beaujean,
2016; Rosseel, 2012) (www.lavaan.org). For tutorial and tech-
nical details, see Gu, Hoijtink, Mulder, & van Lissa (2019).

Formulating informative hypotheses

Informative hypotheses are formulated in terms of equality
(=) and inequality (<, >) constraints between target para-
meters. For example, one might hypothesize that one regres-
sion coefficient is greater than the another, H1 : β1 > β2, or
that both are equal to a specific value, H2 : ðβ1; β2Þ ¼ 0:6, or
that one is greater than the other, which in turn is equal to
zero, H3 : β1 > β2 ¼ 0. The bain package uses a simple syntax
to specify such hypotheses, which is explained in detail in the
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package vignette. Here, we provide a brief overview of the
syntactical elements that are relevant in the context of struc-
tural equation models:

● s1, …, s6: Refers to the target parameters s1 up to
s6. Substitute these with the names of parameters in
your model.

● s1 = c: An equality constraint, indicating that para-
meter s1 is equal to constant c

● s1 > c: An inequality constraint, indicating that para-
meter s1 is larger than constant c

● s1 = s2 = s3: Three parameters have equal values.
● (s1, s2, s3) > 0: Three parameters, grouped by

parentheses, are greater than zero.
● c1 * s1 + c2 < c3 * s2 + c4: A linear transforma-

tion of s1 (where a constant is added to, or multiplied
with, s1) is smaller than with a linear transformation of
s2.

● … & … : Within one hypothesis, the ampersand connects
two constraints.

● … ; … : The; separates two distinct informative
hypotheses.

When writing informative hypotheses about parameters of
a lavaan model, parameters can be referenced by name.
These names should be (unique abbreviations of) the para-
meter names used by lavaan. For example, lavaan labels
the factor loading of the indicator Ab on the latent variable
A as A = A ~ b. This label, “A = ~Ab”, can be referenced
verbatim in bain syntax, as in “A = ~Ab > .6.”

Note that comparing parameters (usually) makes sense
only if they are on the same scale. For example, imagine
that income is predicted by IQ and SES, where IQ is measured
using a normed test (M ¼ 100, SD ¼ 15), and SES is rated on
a 10-point ordinal scale which we treat as continuous. The
regression coefficients for these predictors are βIQ and βSES,
respectively. Since IQ and SES are measured on different
scales, the hypothesis that βIQ < βSES is meaningless. The
unstandardized coefficients reflect both the strength of the
relation of the predictors with income and the scale with
which the predictors were measured. The hypothesis does
make sense with regard to the standardized model estimates,
however. As a counterexample, if family income is predicted
by maternal and paternal working hours, then the regression
coefficients are on the same scale (dollars per hour of work)
and can be directly compared. These examples illustrate that,
except when comparing predictors measured on the same
scale, or in other exceptional situations, it is usually safer to
apply bain only to standardized model parameters.

Bayesian hypothesis evaluation

One of the key features of the Bayesian approach is that
p-values, common to null-hypothesis significance testing,
are dispensed with. Instead, hypotheses are evaluated using
the Bayes factor (Kass & Raftery, 1995). The Bayes factor
quantifies the relative support provided by the data for two
competing hypotheses. For example, let Hi be an

informative hypothesis that describes some (in)equality con-
straints among model parameters. Let Hu be an uncon-
strained hypothesis that places no constraints on these
model parameters. The Bayes factor BFiu, quantifies the
support in favor of Hi relative to Hu. If this Bayes factor
BFiu is larger than 1, the data provide more support for Hi

than for Hu. If it is smaller than 1, the data provide more
support for Hu than for Hi. A Bayes factor near 1 is inde-
cisive; both hypotheses are equally supported. The Bayes
factor can be inverted to express support in favor of Hu,
relative to Hi. To this end, one can compute BFiu as 1=BFui.
Thus, if BFiu ¼ 8:11, then we can conclude that the data
provide 8.11 times more support for Hi than for Hu.
Conversely, BFui (note that the order of the indices has
changed) would be 1=8:11 ¼ :12.

Since the Bayes factor is a relative measure of support, it
should not be compared to a threshold value. If, for example,
BFiu ¼ 102:75 it is clear that the data provide overwhelming
support for Hi over Hu. With smaller values, such as
BFiu ¼ 7:34, a preference for Hi can still be defended, but
other researchers might debate this preference, and with even
smaller values, such as BFiu ¼ 3, there is a preference for Hi,
but Hu is definitely not disqualified. Thus, the Bayes factor
can, and should, be interpreted on a continuous scale. This
also sets it apart from the dichotomous decision making
imposed by the p-value. It is up to the scientific community
to decide when enough evidence is obtained to completely
rule out a hypothesis. For a more elaborate discussion of
Bayesian hypothesis evaluation using bain, not specific to
structural equation modeling, see the tutorial by (Hoijtink,
Mulder et al., 2019).

Statistical underpinnings

The Bayes factor BFiu can be written as a ratio of two mar-
ginal likelihoods of the hypotheses given the data (m), or
alternatively, as the ratio of fit (fi) and complexity (ci, Gu
et al., 2018):

BFiu ¼ mðHijdataÞ
mðHujdataÞ ¼

fi
ci
:

The notion of fit reflects the extent to which the data is in
agreement with the restrictions specified in the hypothesis,
and its complexity reflects how specific the hypothesis is (Gu
et al., 2018). This ratio of fit and complexity is a concept that
is also reflected in information criteria such as the AIC
(Akaike, 1974) and the DIC (Spiegelhalter et al., 2002).

The bain algorithm estimates fit and complexity based on
normal approximations of the prior and posterior distribu-
tions for the target parameters of the hypothesis. These dis-
tributions have a known mean and covariance matrix (Gu
et al., 2018; Hoijtink et al., 2019). The posterior is defined by
the observed parameter estimate and their asymptotic covar-
iance matrix. For hypotheses with only inequality constraints,
the fit (fi) is then given by the proportion of this posterior
distribution that is in agreement with the hypothesis (Gu
et al., 2018; Hoijtink et al., 2019). For hypotheses with equality
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constraints, the fit is defined in terms of the posterior density
at the constraints.

The prior distribution is constructed to provide an ade-
quate quantification of complexity (see Gu et al., 2018;
Hoijtink et al., 2019). This is achieved by setting the prior
mean along the boundary of the hypotheses under considera-
tion. The prior covariance matrix is a scaling transformation
of the posterior covariance matrix. Scaling increases the var-
iances, leading to a flatter distribution. By default, bain scales
the covariance matrix to be as flat as it would have been if it
were based on the smallest possible sample required to esti-
mate the target parameters. This is based on the concept of
a minimal training sample (Berger & Pericchi, 2004; Mulder,
2014; O’Hagan, 1995). Thus, the prior covariance matrix is
much flatter, and therefore less informative, than the poster-
ior. The complexity (ci) is given by the proportion (for
inequality constrained hypotheses) or density (for equality
constrained hypotheses) for the region of the prior distribu-
tion that is in agreement with the hypothesis.

Evaluating a single informative hypothesis

One way to evaluate a single informative hypothesis is to
compare it with an unconstrained hypothesis, as in the pre-
ceding paragraphs. Let Hi signify any informative hypothesis
that describes some (in)equality constraints among model
parameters, such as Hi : β1 > β2, or Hi : β1 > β2 ¼ 0:6. The
unconstrained hypothesis Hu places no constraints on these
model parameters: Hu : β1; β2. The Bayes factor BFiu then
quantifies the relative support provided by the data in favor
of the informative hypothesis, relative to the unconstrained
hypothesis – or in other words, how likely is it that the
specified parameter constraints are true, relative to any other
ordering of parameters. Throughout this paper, we use the
notation BF:u to refer to Bayes factors of this type in the
general sense, where : signifies any informative hypothesis.

A second way to evaluate support in favor of an informa-
tive hypothesis is to compare it to its complement. The
complement is an alternative hypothesis that covers every
ordering of parameter values that is not in line with the
original hypothesis. If the informative hypothesis Hi expresses
the researcher’s theory, and ! represents logical negation (not),
then the complement Hc : !Hi means not the researcher’s
theory. Comparing against the complement allows researchers
to investigate whether their expectation is, or is not, sup-
ported by the data. Bayes factor of the type BF:c indicate
whether the data provide more support in favor of, or against,
an informative hypothesis. In principle, the complement is
defined by reference to a specific informative hypothesis, such
that the complement of H1 is !H1, and the complement of H2

is !H2. For hypotheses with at least one equality constraint,
however, the unconstrained hypothesis and the complement
are the same. Since version 0.2.4, bain reports both BF:u and
BF:c by default.

It is worth pointing out that alternative, non-Bayesian
methods exist that compare informative hypotheses against
the null-hypothesis (Vanbrabant et al., 2017; Van De Schoot
et al., 2010). When using bain, it is also possible to evaluate

the null-hypothesis by specifying it as an informative hypoth-
esis (i.e., a hypothesis that constrains all parameters to be
equal to zero, or to be equal to one another), and comparing
it with other informative hypotheses using the approach ela-
borated in the next paragraph.

Comparing two informative hypotheses

A second question researchers might want to address, is which
of two informative hypotheses,H1 andH2, is most supported by
the data. The Bayes factor BF12 reflects the amount of support
provided by the data in favor of H1, relative to H2. It is com-
puted by taking a ratio of two other Bayes factors:

BF12 ¼ BF1u
BF2u

This approach is valid because Bayes factors for any two
informative hypotheses can be compared if both have the
same denominator. In the previous section, we explained
that it is not possible to compare Bayes factors of the type
BF:c, because the complement of H1 is not the same as that of
H2. However, Bayes factors of the type BF:u are comparable,
because the unconstrained hypothesis is identical for all infor-
mative hypotheses. Thus, BF12 can be computed to contrast
a pair of user-specified informative hypotheses.

By default, bain will compute Bayes factors to contrast all
informative hypotheses. Thus, given three hypotheses,
H1 : β1 ¼ β2 ¼ β3 ¼ 0, H2 : β1> 0& β2> 0& β3> 0, and
H3 : β1> β2> β3> 0,bain will compute BF12, BF13, and BF23.
These Bayes factors are stored in the $BFmatrix element of the
output.

Comparing more than two hypotheses

Any two informative hypotheses can be straightforwardly com-
pared using the method outlined above. When there are more
than two candidate hypotheses, however, comparing all of their
mutual Bayes factors quickly becomes cumbersome. In this case,
it is easier to compare the so-called posterior model probabil-
ities for each hypothesis Hi, that is, PðHijdataÞ. Each posterior
model probability has a value between 0 and 1, and the posterior
model probabilities for a set of hypotheses sum to 1.0. Under
the assumption that a priori (before observing the data), each
hypothesis is equally likely, the posterior model probabilities
contain the same information as the Bayes factors upon which
they are based. If, for example, BF12 ¼ 3:5, BF13 ¼ 7:0 and
BF23 ¼ 2:0, the corresponding posterior model probabilities
are PðH1jdataÞ ¼ :7, PðH2jdataÞ ¼ :2, and PðH3jdataÞ ¼ :1,

respectively. Note that, BF12 ¼ PðH1jdata Þ
PðH2jdata Þ ¼ :7

:2 ¼ 3:5. Posterior

model probabilities can also be interpreted as Bayesian error
probabilities. If the set of hypotheses under consideration con-
tains H1, H2, and H3, and the corresponding posterior model
probabilities are .7, .2, and .1, respectively, then the Bayesian
error probability associated with a preference for H1 is equal
to .2 + .1 = .3.
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A fail-safe hypothesis

It is important to emphasize that the posterior model prob-
abilities only indicate which of the hypotheses in the set
receives the most support from the data. Consequently, if
all of the hypotheses in the set misrepresent the true rela-
tionship among parameters in the population, then
researchers risk selecting the best of a set of bad hypotheses.
Two approaches can be used to mitigate this risk. The first
approach uses the unconstrained hypothesis Hu as a fail-safe
hypothesis. Recall that Hu places no constraints on the
parameters. If the best hypothesis in the set receives more
support than the unconstrained hypothesis, we are reassured
that it is not just the best of a set of bad hypotheses. This
approach is currently implemented in bain. The second
approach would be to include a hypothesis that is the
complement of the union of all informative hypotheses in
the set. A nice feature of this second approach is that,
whereas Hu overlaps with each of the hypotheses under
consideration, the complement of the union does not.
However, as to yet, this option is not implemented in bain.

Structural equation modeling using lavaan

In this paper, we present a subset of the (multiple group)
structural equation models that can be specified using the
lavaan function sem, and for which informative hypotheses
can be formulated and processed with bain. The interested
reader is advised to visit http://lavaan.org/, where mini-
tutorials and examples are used to explain all the functions
and options available in the lavaan package. For a general
introduction to structural equation modeling, the interested
reader is referred to Loehlin and Beaujean (2016). As will be
elaborated upon in the discussion, it is relatively easy to use
bain for the evaluation of hypotheses for all models that can
be specified in lavaan.

When used in conjunction with lavaan, bain extracts the
(standardized or unstandardized) target parameter estimates
(per group), the covariance matrix of the estimates (per
group) and the sample size (per group) from the lavaan
output object. Target parameters are defined as model para-
meters about which informative hypotheses are formulated.
By contrast, nuisance parameters are parameters not
involved in the hypotheses of interest. Bain is validated for
use with target parameters that are either 1) regression
coefficients, 2) intercepts, or 3) factor loadings. Thus, by
default, all (residual) (co)variances are treated as nuisance
parameters, along with any remaining parameters not
involved in the hypotheses.

A final note regarding assumptions: As explained earlier,
bain constructs a default prior distribution for the target
parameters (per group), and derives a normal approximation
of the posterior. Asymptotically, the posterior distribution is
indeed normal (see, for example, Gelman et al., 2013,
Chapter 4). However, bain should only be used if approximate
normality can be assumed, given the sample size. Rosseel
(2020) provides references that validate the use of structural
equation modeling when the sample size is at least 200. This
approximate prior and posterior form the basis for the

computation of Bayes factors for the informative hypotheses.
A more detailed accessible introduction is presented in Gu,
Hoijtink, Mulder, & van Lissa (2019), and the statistical
underpinnings of the method are substantiated in Gu et al.
(2018) and Hoijtink et al. (2019).

Tutorial examples

We present tutorial examples for three commonly used
types of structural equation models: 1) confirmatory factor
analysis, 2) latent variable regression, and 3) multiple group
analysis. Each example follows a three-step workflow. In
the first step, lavaan is used to estimate the parameters of
a structural equation model. In the second step, one or
more informative hypotheses are formulated. In the third
step, the results of the lavaan analysis and the hypotheses
are fed into bain, which renders a Bayesian evaluation of
the hypotheses, returning Bayes factors and posterior model
probabilities.

All examples use the synthetic data set sesamesim, which
is included with the bain package. These data are generated
to have similar distributional characteristics and covariances
to the Sesame Street data provided by Stevens (2012). These
data concern the effect of watching the tv-series Sesame
Street for 1 year on the knowledge of numbers of 240 chil-
dren aged between 34 and 69 months. We will use the
following variables: Age in months (age), the Peabody test,
which measures the mental age of children (peabody; score
range 15 to 89), and sex, with boys coded as 1, and girls as 2.
Several variables were measured both before- and after
watching Sesame Street for 1 year: Knowledge of numbers
(Bn: before, and An: after); knowledge of body parts (Bb and
Ab, respectively), letters (Bl and Al), forms (Bf and Af),
relationships (Br and Ar), and classifications (Bc and Ac).
Models are fit using lavaan, and Figures are plotted using
tidySEM (Van Lissa, 2020).

Example 1: Confirmatory factor analysis

A two-factor confirmatory factor analysis is specified using
the syntax below, in which the A(fter) measurements of all
subtests load on factor A, and the B(efore) measurements load
on the factor B (see Figure 1).

model1 <- ‘A = ~ Ab + Al + Af + An + Ar + Ac
B = ~ Bb + Bl + Bf + Bn + Br + Bc’

fit1 <- sem (model1, data = sesamesim, std.lv = TRUE)

The argument std.lv = TRUE implies that the model is
identified by standardizing the latent variables B and A. This
allows the formulation of informative hypotheses with respect
to each of the factor loadings, including the first.

Specifying informative hypotheses

One plausible hypothesis for this confirmatory factor analysis
might be that indicators are strongly related to the factors to
which they are assigned. This is reflected by the following
hypothesis, which states that all (standardized) factor loadings
are larger than .6:
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hypotheses1 <- “(A= ~Ab, A= ~Al, A= ~Af, A= ~An, A= ~Ar, A=
~Ac) >.6 &

(B= ~Bb, B= ~Bl, B= ~Bf, B= ~Bn, B= ~Br, B=
~Bc) >.6”

This example consists of one hypothesis about two groups of
parameters, enclosed by parentheses, which are chained by the
ampersand symbol. Note that, although we could group all load-
ings between brackets, before and after are separated for clarity.
In this example, the target parameters are factor loadings, the
sample size isN ¼ 240, and therefore, we assume that the poster-
ior distribution of the target parameters is approximately normal.

Evaluating hypotheses

Now, we will evaluate the informative hypotheses for this
example using bain(). As input to the function, we use
the lavaan output object fit1 and the hypotheses hypoth-
eses1 that were specified above. The argument
standardize = TRUE ensures that the hypotheses are
evaluated in terms of standardized model parameters.

Before calling bain(), we set a seed for the random number
generator using set.seed(). This is necessary to ensure com-
putational replicability, because bain draws random samples from
the prior and posterior distributions of the target parameters. If
another seed is used, a different random sample will be drawn,
which could lead to differences in the resulting Bayes factors and
posterior model probabilities. These differences should be negli-
gible, and it is good practice to conduct a sensitivity analysis for
Monte Carlo error (the variability due to different random seeds)
by changing the seed to ensure that the results are replicated.

set.seed (100)
results1 <- bain (fit1, hypotheses1, standardize = TRUE)
results1

The resulting bain() output is presented in Table 1. The
Bayes factor BF1c, which compares H1 to its complement, is

found on the row for H1, in column BF.c. As can be seen,
BF1c ¼ 93:33, that is, the data offers overwhelming support in
favor of H1. This is not surprising when we examine the
parameter estimates and their 95% central credible intervals
using the summary() function (see Table 2).

summary (results1)

In agreement with H1, all observed standardized loadings
are larger than .6. Note that, a preference for H1 compared to
Hu comes with a Bayesian error probability of .01: A 1%
probability that the choice for H1 is incorrect, conditional
on the set of models (see Table 1).

Example 2: Latent regression

A latent regression model is specified using the code below.
The measurement model for the factors B and A is the same
as in Example 1. In this example, however, the correlation
from the preceding example is replaced by a regression coeffi-
cient. Moreover, age and peabody are included as observed
covariates. This analysis thus allows us to investigate whether

0.50*** 0.34*** 0.30*** 0.18*** 0.51*** 0.24***

0.41*** 0.58*** 0.34*** 0.21*** 0.48*** 0.31***

1.00 1.00

0.71*** 0.81*** 0.84*** 0.91*** 0.70*** 0.87***

0.77*** 0.65*** 0.81*** 0.89*** 0.72*** 0.83***

0.79***A

Ab AcAfAl An Ar

B

Bb BcBfBl Bn Br

Figure 1. Confirmatory factor analysis.

Table 1. Bain output for the confirmatory factor analysis model.

Fit Com BF.u BF.c PMPa PMPb

H1 0.88 0.01 93.33 762.05 1.00 0.99
Hu 0.01

Note. PMP: Posterior model probabilities; PMPa excludes Hu; PMPb includes Hu.

Table 2. Standardized parameter estimates for the confirmatory factor analysis.

Parameter Estimate A CI A Estimate B CI B

b 0.71 [0.64, 0.78] 0.77 [0.71, 0.82]
l 0.81 [0.76, 0.86] 0.65 [0.57, 0.73]
f 0.84 [0.79, 0.88] 0.81 [0.76, 0.86]
n 0.91 [0.88, 0.94] 0.89 [0.85, 0.92]
r 0.70 [0.63, 0.77] 0.72 [0.65, 0.79]
c 0.87 [0.84, 0.91] 0.83 [0.78, 0.87]

Note. CI: Credible interval.
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children’s knowledge after watching Sesame Street for a year
is predicted by their knowledge 1 year before, as well as by
their biological- and mental age.

model2 <- ‘A = ~ Ab + Al + Af + An + Ar + Ac
B = ~ Bb + Bl + Bf + Bn + Br + Bc
A ~ B + age + peabody’

fit2 <- sem (model2, data = sesamesim, std.lv = TRUE)

Specifying informative hypotheses

This example contains three hypotheses, separated by semi-
colons, regarding the relative importance of B, age, and pea-
body when predicting A:

hypotheses2 <- “A~B > A peabody = A~age = 0;
A~B > A ~ peabody > A~age = 0;
A~B > A ~ peabody > A~age > 0”

H1 specifies that the regression coefficient of B on A is greater
than zero, and that the coefficients of age and peabody on A are
equal to zero. H2 specifies that the regression coefficient of B on
A is greater than that of peabody on A, which in turn is bigger
than that of age on A, which is equal to zero.H3 specifies that the
coefficient of B on A is greater than that of peabody on A, which,
in turn, is greater than that of age on A, which is greater than zero.

Evaluating hypotheses

The code below evaluates the hypotheses specified for the
latent regression example:

set.seed (748)
results2 <- bain (fit2, hypotheses2, standardize = TRUE)

The results are reported in Table 3. When H1, H2, and H3 are
compared to their respective complements, there is substantial
support for H1, somewhat less for H2, and substantially less
support for H3. The posterior model probabilities, PMPb, help
determine which of the three informative hypotheses is the best of
the set, and whether the unconstrained hypothesis Hu holds any
credulity. Supported by a posterior model probability of .79, H1

appears to be the best of the set of hypotheses. However, a choice
forH1 implies a Bayesian error probability of .17 + .03 + .01 = .21,
that is, it would be unwise to ignore the possibility that another
hypothesis (especially H2) might also be a good candidate. It is
clear that the regression coefficient of B is larger than zero, but
maybe the regression coefficient of peabody is also larger than

zero. We can see how these findings relate to the model para-
meters by calling summary() on the bain object (see Table 4).

Example 3: Multiple group analysis

This example demonstrates how to evaluate informative hypoth-
eses about freely estimated parameters across groups in a multi-
group structural equation model. It is important to emphasize
that the Bayes factor implemented in bain is only valid for multi-
ple group models without any between-group parameter con-
straints. The reason is that bain requires a separate asymptotic
covariance matrix for the parameters of each group. This is only
possible when no between-group constraints are imposed,
because then (and only then) is the asymptotic covariance matrix
block-diagonal, and can we extract a covariancematrix per group.
For more information, see Hoijtink et al. (2019). A multiple
group model can be estimated by specifying a grouping variable
in the call to sem. The code below runs an analysis in which the
parameters of a regression model are estimated separately for
boys and girls. The model predicts knowledge of numbers after
watching Sesame Street for a year based on prior knowledge of
numbers, and the peabody mental age test (see Figure 2).

model3 <- ‘ postnumb ~ prenumb + peabody ‘
# Assign labels to the groups to be used when formulating
hypotheses
Sesamesim $sex< � factor (sesamesim$sex, labels = c (“boy”,
“girl”))
# Fit the multiple group structural equation model
fit3 <- sem (model3, data = sesamesim, group = “sex”)

Specifying informative hypotheses

For the multiple group (boys versus girls) structural equation
model, we evaluate two hypotheses: That standardized regres-
sion coefficients are equal for boys and girls (H1), or that they
are smaller for boys as compared to girls (H2). In other words,
are number knowledge before and the peabody test better
predictors of number knowledge after for girls than for boys?

hypotheses3 <- “postnumb~prenumb.boy = postnumb~pre-
numb.girl &

postnumb~peabody.boy = postnumb~pea-
body.girl;

postnumb~prenumb.boy < postnumb~pre-
numb.girl &

postnumb~peabody.boy < postnumb~pea-
body.girl”

Evaluating hypotheses

The results, displayed in Table 5, indicate that H1 receives 41.20
times more support from the data than its complement.
Conversely, H2 received 1=:16 ¼ 6:25 times less support than
its complement. These results indicate that the predictability of
postnumb does not depend on gender. This is also reflected by
the posterior model probabilities that show that a decision in
favor ofH1 comes with a Bayesian error probability of only 0.02.

set.seed (235)
results3 <- bain (fit3, hypotheses3, standardize = TRUE)

This conclusion is corroborated by the model coefficients,
obtained by running summary(results3). As seen in

Table 3. Bain output for the latent regression model.

Fit Com BF.u BF.c PMPa PMPb

H1 69.90 0.46 150.87 150.87 0.80 0.79
H2 2.96 0.09 33.16 33.16 0.17 0.17
H3 0.07 0.01 5.64 6.01 0.03 0.03
Hu 0.01

Note. PMP: Posterior model probabilities; PMPa excludes Hu; PMPb includes Hu.

Table 4. Standardized parameter estimates for latent regression.

Parameter Estimate CI

13 A ~ B 0.79 [0.73, 0.85]
14 A~ age 0.00 [−0.09, 0.09]
15 A~ peabody −0.02 [−0.11, 0.08]

Note. CI: Credible interval.
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Table 6, the credible intervals for the regression coefficients
for boys and girls show substantial overlap.

Further extensions

Sensitivity analysis

Bayes factors for hypotheses containing at least one equality
constraint are sensitive to the scaling factor used to construct
the prior distribution. Recall that the default scaling factor in
bain is based on the notion of a minimal training sample; the
smallest sample size required to estimate the target parameters.
This default scaling factor is set by the default argument frac-
tion = 1 in the call to bain(). A default argument does not
need to be specified, but can be changed manually by specifying
a different value. The smallest possible scaling factor is the
default, 1. Larger scaling factors increase confidence in the
prior, making it more concentrated and less spread out. Thus,
specifying fraction = 2 raises the scaling factor to twice the
size of the minimal training sample, and fraction = 3 to
thrice the size.

The reason hypotheses containing at least one equality
constraint are sensitive to the scaling factor is that equality

constraints are represented as a fixed-width slice of the para-
meter space around the constraint value (in technical terms,
the point density at this value). If the width of the prior
changes, the ratio of the fixed-width slice to the overall
width of the prior changes. Hypotheses specified using only
inequality constraints are not sensitive to the scaling factor,
because these constraints divide the parameter space (like
cutting the distribution into two halves). As the width of the
prior changes, the space on both sides of the constraint
decreases commensurately, so their ratio remains the same
(see Hoijtink, Mulder, et al., 2019 for a full explanation).

It is possible to conduct a sensitivity analysis to examine
how sensitive the Bayes factors are to the scaling factor. The
convenience function bain_sensitivity() accepts
a vector argument called fractions = …, and returns
a list of bain objects. The summary() function for this
sensitivity analysis accepts an argument which_stat, that
can be used to request a sensitivity analysis table for a specific
statistic (by default, this is the BF). Below, we demonstrate
how to conduct a sensitivity analysis, based on Example 2:

set.seed (753)
results_sens <- bain_sensitivity (fit2, hypotheses2,
fractions = c (1, 2, 3), standardize = TRUE)
summary (results_sens)

The results are presented in Table 7. It shows that the value
of BF3c is invariant, whereas BF1u and BF2u decrease as the
scaling factor increases. The posterior model probabilities
change accordingly, as can be seen in Table 8.

0.51***

0.53***

0.23**

0.64

peabody

47.46

postnumb

7.95**

prenumb

21.16

0.55***

0.64***

0.06

0.54

peabody

46.18

postnumb

11.70***

prenumb

20.39

boy girl

Figure 2. Multiple group analysis.

Table 5. Bain output for the latent regression model.

Fit Com BF.u BF.c PMPa PMPb

H1 7.79 0.19 41.20 41.20 1.00 0.97
H2 0.02 0.11 0.18 0.16 0.00 0.00
Hu 0.02

Note. PMP: Posterior model probabilities; PMPa excludes Hu; PMPb includes Hu.

Table 6. Parameter estimates for the multiple group model.

Parameter Estimate boy CI boy Estimate girl CI girl

postnumb~prenumb 0.53 [0.38, 0.68] 0.64 [0.52, 0.76]
postnumb~peabody 0.23 [0.07, 0.40] 0.06 [−0.09, 0.22]

Note. CI: Credible interval.

Table 7. Sensitivity analysis for the Bayes factors (BF) of the latent regression
model.

Fraction H1 H2 H3

1.00 150.87 36.69 6.84
2.00 75.44 25.94 6.84
3.00 50.29 21.18 6.84
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summary (results_sens, which_stat = “PMPb”)

The remaining question is how to deal with the sensitivity
of the Bayes factor to the scale factor. There are three poten-
tial courses of action. Firstly, if all hypotheses under consid-
eration are formulated using only inequality constraints, the
Bayes factors are invariant, as can be seen from BF3c in Table
8. Secondly, if the hypotheses contain equality constraints,
researchers can rely on the default scaling factor implemented
in bain. The resulting Bayes factors tend to favor hypotheses
with equality constraints over their complement. This
approach ensures that the evidence in the data has to be
compelling before it is concluded that the constraints do not
hold. When applied to null-hypotheses (i.e., an equality con-
strained hypothesis stating that a parameter is equal to zero),
this conservative approach curtails the false-positive rate. This
is appropriate, especially in the context of the replication crisis
(see, for example, Open Science Collaboration, 2015). Thirdly,
researchers can execute a sensitivity analysis, as in the pre-
ceding example: Empirically investigate the sensitivity of the
Bayes factors to the scaling factor, and report the results. In
our experience, conclusions are usually robust with respect to
different values of the scaling factor. This can also be seen in
Table 7: Although the Bayes factor for H1 decreases from
150.87 to 50.29, the conclusion remains that H1 is substan-
tially more supported than Hc. Furthermore, in terms of
posterior model probabilities, the conclusion remains that
H1 is the best hypothesis, and that H2 cannot be ruled out.

Experimental applications

The examples above all use the standard interface of the bain()
function, which requires two arguments: A model object, and
a hypothesis. This interface accepts all lavaan model objects gen-
erated by the functions cfa, sem, and growth. Within these
models, parameters may be fixed, and data may be categorical,
and hypotheses can be formulated with respect to intercepts,
factor loadings, and regression coefficients. Some situations that
cannot currently be handled by bain include multilevel models
(specified using the cluster argument), and defined parameters,
such as indirect effects in mediationmodels. If a researcher wishes
to circumvent the standard user interface,bain() can be applied
to a named vector of parameters, instead of one of themodel types
for which methods exist. This approach calls the default method
of bain, which is less user-friendly, but more flexible than the
model-specific interface. Section 4.i in the bain package vignette
illustrates this approach and demonstrates how to manually
extract the target parameter estimates and place them in
a named vector, and how to obtain the parameter covariance
matrix and sample size from a lavaan object. This vignette can
be loaded by calling vignette (“bain_introduction”,
package = “bain”). Note that nonstandard applications of

bain that have not yet been validated should be identified as such,
or substantiated with a simulation study.

Discussion

This Teacher’s Corner paper introduced Bayesian hypotheses
evaluation for structural equation models using bain and
lavaan. The combination of both R packages enables the
free, open-source, and user-friendly evaluation of informative
hypotheses for structural equation models. The approach ela-
borated in this paper uses Bayes factors, which are a measure
of relative support for two hypotheses. The interpretation of
Bayes factors is straightforward: It is a ratio of evidence in
favor of one hypothesis, relative to evidence in favor of
another hypothesis. Bayes factors can be indecisive; the closer
Bayes factors get to one, the less differential support was
found for either hypothesis. It is up to the scientific commu-
nity to decide how much evidence is sufficient evidence.

The advocated approach allows users to evaluate support for
a single informative hypothesis, either relative to its complement,
or relative to an unconstrained hypothesis. The Bayes factor BF:c
compares against the complement, and expresses how much evi-
dence the data provide is in favor of the theory, as compared to not
the theory. The Bayes factor BF:u compares against the uncon-
strained hypothesis, and expresses how much evidence the data
provide is in favor of the theory, as compared to any ordering of
parameters. Two informative hypotheses can be compared by
computing their joint Bayes factor, which is a ratio of the two
BF:us for these hypotheses.

When simultaneously evaluating more than two hypotheses, it
is convenient to use the posterior model probabilities. These
quantify the proportion of support for each hypothesis in a set,
conditional on the data. This was illustrated in Example 2.
Bayesian error probabilities additionally quantify the uncertainty
of decisions about hypotheses. The probability that a preference
for one hypothesis in the set is incorrect, is equal to the sum of
posteriormodel probabilities for the other informative hypotheses.
This is a conditional probability, that is, conditional on the avail-
able data and the hypotheses in the set.

Structural equation models are often estimated on data that
contain missing values. Fortunately, the Bayes factor imple-
mented in bain can also be computed if the data contain
missing values (Gu, Hoijtink, Mulder, & Rosseel, 2019;
Hoijtink, Gu, et al., 2019). Users can use multiple imputation
(Van Buuren, 2018) to obtain estimates of the (standardized)
target parameters, their covariance matrix, and the effective
sample size, and once those are available, bain can be used for
the evaluation of informative hypotheses. The interested
reader is referred to the vignette included with the bain
package, which includes an elaborate example.

Several potential limitations remain. One such limitation is
the fact that bain utilizes normal approximations of the prior
and posterior distribution. This could have implications for
quantities whose sampling distribution is known to be non-
normally distributed, such as indirect effects (MacKinnon
et al., 2004). However, this problem is averted by the fact
that users are currently prevented from using the lavaan
interface to bain for derived parameters, which includes

Table 8. Sensitivity analysis for posterior model probabilities (PMPb) of the
multiple group model.

Fraction H1 H2 H3 Hu

1.00 0.77 0.19 0.03 0.01
2.00 0.69 0.24 0.06 0.01
3.00 0.64 0.27 0.08 0.01
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indirect effects. A second limitation is the fact that bain
cannot handle multiple group models with between-group
constraints. Substantial future research is required to over-
come this issue. An implication of this limitation is that it is
not possible to impose measurement invariance in multiple
group latent variable models. One potential solution, that can
already be applied, is to use linear transformations within the
bain hypotheses to ensure that parameters are comparable
across groups. However, this procedure is complicated and
beyond the scope of this tutorial. Pending a future publication
addressing measurement invariance, researchers can contact
the authors to obtain support for such analyses.

In conclusion, bain enables user-friendlyBayesian evaluationof
informative hypotheses for structural equation models estimated
in lavaan. The method has been validated for regression coeffi-
cients, factor loadings, and intercepts, in a range of commonly
specified structural equationmodels, such as factor analyses, latent
regression analyses, multi-group models, and latent growth mod-
els. Its functionalitywill be further expanded in future updates, and
the default method for named vectors offers the freedom to
explore applications not currently covered by the standard
interface.
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