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ABSTRACT

It is known that image comparison can prove cumbersome in both computational

complexity and runtime, due to factors such as the rotation, scaling, and translation

of the object in question. Due to the locality of Krawtchouk polynomials, relatively

few descriptors are necessary to describe a given image, and this can be achieved

with minimal memory usage. Using this method, not only can images be described

efficiently as a whole, but specific regions of images can be described as well without

cropping. Due to this property, queries can be found within a single large image,

or collection of large images, which serve as a database for search. Krawtchouk

descriptors can also describe collections of patches of 3D objects, which is explored in

this paper, as well as a theoretical methodology of describing nD hyperobjects. Test

results for an implementation of 3D Krawtchouk descriptors in GNU Octave, as well

as statistics regarding effectiveness and runtime, are included, and the code used for

testing will be published open source in the near future.
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1 INTRODUCTION: MOMENT-BASED PATTERN RECOGNITION

Computer vision and pattern recognition are growing fields of research within

both mathematics and computer science, with a plethora of applications including

astronomy, robotics, automotive engineering, medical research, and even Google’s

visual search engine, Google Vision. Automation of visual inspection and comparison

of objects is invaluable to research in numerous fields, and as technology progresses,

will continue to remain in high demand[10].

Among the more popular methodologies for pattern recognition is the use of mo-

ments of various polynomials. Although most mathematics used in pattern recogni-

tion were devised in the early to mid 20th century, recent advancements in technology

have enabled to use of these concepts in computer vision and machine learning. This

process can be summarized as the interpretation of an image or object as a discrete

function, which is then integrated alongside an orthogonal polynomial, and results in

an image descriptor, which is later compared to other image descriptors to assess the

similarity of images. It is crucial that the polynomials used are orthogonal so that

the process can be reversed, thus rendering the descriptor meaningful. The particular

nuances of this process are discussed in chapters 2-4, each pertaining to the dimen-

sion of the object being described. This general methodology was developed by Hu[7],

although instead of incorporating polynomials, Hu descriptors were composed of Hu

invariants, which were simply sums and products of high order geometric moments

of the original function.

With this general methodology in mind, there are a number of viable polynomials

suited to the task, each with different properties that impact their potential. For

instance, Zernike polynomials are orthogonal on the unit disc, and thus can be used for

moment-based pattern recognition; however, since they are continuous, they must first

be discretized for compatibility with the data at hand, causing a degree of machine
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error, and the image or object function must also be mapped to the unit disk or ball

in R
2 or R

3 respectively, which is both cumbersome and prone to further machine

error. Nonetheless, Zernike polynomials have resulted in function pattern recognition

software due their rotational invariance by design[14]. Most orthogonal polynomials

will have similar caveats, hence their diversity in the literature.

Some other popular polynomials for moment-based pattern recognition include

Legendre polynomials, Gaussian-Hermite polynomials, Chebyshev (sometimes spelled

Tchebichef, see [17]) polynomials, and Krawtchouk polynomials.

Legendre polynomials, developed in the late 18th century, are orthogonal over the

real interval [−1, 1], and have been used quite successfully in moment-based pattern

recognition. However, like Zernike polynomials, they are continuous, and are orthog-

onal in a specific, continuous domain, and thus will need to be discretized prior to

use, and the image will need to be translated, resulting in machine error[1]. However,

Legendre moments seem proficient in discerning patterns within blurred and distorted

images [19].

Gaussian-Hermite polynomials, while still continuous by definition, are minimally

impacted by discretization in comparison to other continuous orthogonal polynomials,

and perform better on images with noise due to the smoothness of their basis functions

[15]. Since they are orthogonal over R in continuous form once weighted by a Gaussian

function, and orthogonal over a square [0 ≤ i, j ≤ K− 1] when discretized, the image

need not be translated, which further reduces potential for machine error. Hermite

polynomials were initially developed by Laplace in the 19th century. Also see [16]. It is

worth noting that once this weight function is applied, they are no longer polynomials,

and are merely functions.

Weighted Krawtchouk polynomials are discrete, local, and orthogonal by design

over {0, . . . , S} for any finite S, similar to discretized Gaussian-Hermite polynomials,

and have been growing in popularity for moment-based pattern recognition. Pio-
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neered by Ukrainian mathematician M. P. Krawtchouk (sometimes spelled Kravchuk)

in the early 20th century, they emerged in part from the discrete, orthogonal polyno-

mials developed by Chebyshev for military applications, but now have applications

in both computer vision and coding theory, alongside Krawtchouk matrices [5][8][11].

Since they are discrete by design, and orthogonal over the previously specified set,

machine error is minimized since discretization and continution translation are unnec-

essary. However, the primary interest in Krawtchouk polynomials, in this context, is

their natural locality once weighted. Locality allows moment-based Krawtchouk de-

scriptors to describe specific regions of an image or object without cropping or recom-

puting polynomials, which both accelerates computation via precomputing these val-

ues, and minimizes the loss of information along edges when cropping. Like Gaussian-

Hermite polynomials, they cease to be polynomials once weighted.

Say, for instance, one needs to locate a specific cell formation within an image of

a tissue sample- by cropping the image, the cell formation may never be found if it

appears along an edge where the image is cropped, and a method is needed which can

locate it without the potentially removing the target. Local Krawtchouk descriptors

could be computed for the query subimage, and then for a grid of points across the

image, and so long as the grid sufficiently covers the image, the query will be found

in the main image, since no cropping or manipulation of the main image will take

place. This concept has been implemented in [3] and [12].

Although this feature is not unique, Krawtchouk polynomials can also be com-

puted in n dimensions, and thus this methodology can be extended to for regional

pattern recognition in n dimensional data, which is explored throughout this thesis.

Since 2D and 3D examples exist in literature, these are explored first, with example

code for 3D along with testing and results, followed by a theoretical outline of an nD

extension of the same methodology.
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2 TWO-DIMENSIONAL KRAWTCHOUK DESCRIPTORS

2.1 Krawtchouk Polynomials and Other Definitions

Krawtchouk polynomials are first defined in a single dimension.

Definition 1. Krawtchouk polynomials of degree n are defined as

Kn(x; p, S) =
n

∑

k=0

ak,n,p,S x
k = 2F1(−n,−x;−S,

1

p
), (2.1)

where x, n = 0, . . . , S, S > 0, p ∈ (0, 1), and 2F1 is the hypergeometric function

defined as

2F1(a, b; c, z) =
∞
∑

k=0

(a)k(b)kz
k

(c)kk!
, (2.2)

and (a)k is the Pochhammer symbol defined as

(a)k = a(a+ 1) . . . (a+ k − 1) =
Γ(a+ k)

Γ(a)
. (2.3)

It is important to note that the domain of Kn is both discrete, and subject to S.

In order to get our desired properties of locality and orthogonality, we supplement

these with a weight function:

Definition 2. The weight function is given by

w(x; p, S) =

(

S

x

)

px(1− p)S−x. (2.4)

This gives us the desired result

S
∑

x=0

w(x; p, S)Kn(x; p, S)Km(x; p, S) = ρ(n; p, S)δnm, (2.5)

where n,m = 0, . . . , S, δ is the Kronecker Delta function, and ρ is the norm. For ρ,
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we have

ρ(n; p, S) = (−1)n
(

1− p

p

)n
n!

(−S)n
(2.6)

We can compute Krawtchouk polynomials using the following recursive formula:

Kn(x; p, S) =
Sp− 2np+ n− x

p(S − n)
Kn−1(x; p, S)

−
1− p

p

n

S − n
Kn−2(x; p, S).

(2.7)

Krawtchouk polynomials up to K2 which are easily computed by hand:

K0(x; p, S) = 1

K1(x; p, S) = 1−

(

1

Sp

)

x

and

K2(x; p, S) = 1−

(

2

Sp
+

1

S(S − 1)p2

)

x+

(

1

S(S − 1)p2

)

x2

However, as mentioned previously, we need these weighted in order to achieve or-

thonormality, and thus we create weighted Krawtchouk polynomials using the afore-

mentioned w and ρ functions, and denote them K̄n:

Definition 3. The weighted Krawtchouk function is defined as

K̄n(x; p,N) = Kn(x; p,N)

√

w(x; p,N)

ρ(n; p,N)
. (2.8)

These weighted Krawtchouk polynomials give us the necessary local property

needed for regional pattern recognition. The weight function produces a Gaussian

smear centered at p, which enables local description and orthogonality, and, like the

Krawtchouk polynomials themselves, can be extended into n dimensions as needed

5



[12]. With K̄n, we also now have a simpler expression of orthonormality than before:

S
∑

x=0

K̄n(x; p, S)K̄n′(x; p, S) = δnn′ . (2.9)

In Section 2.4, these definitions are drastically simplified- due to the precomputation

of w, we will fix p = 0.5, S will always be the length or width of the square region

of 2D image, and due to the later discrete integration of these functions to produce

Krawtchouk moments, we are only interested in the coefficients of Kn. With w and S

fixed, the computation of Kn is the only symbolic calculation necessary, and all else

is easily automated. Specifics on computation are addressed later in Section 2.4.

Let A = {0, . . . , S}×{0, . . . , S}, and define a function f : A → N∪{0}, which we

will call our image. In practice, the image to be described is the image of f . This, now

in two dimensions, preserves our orthonormality condition like so for n,m, n′,m′ ∈

{0, . . . , S}:

S
∑

x=0

S
∑

y=0

K̄n(x; px, S)K̄m(y; py, S) · K̄n′(x; px, S)K̄m′(y; py, S) = δnn′δmm′ . (2.10)

It is worth noting that the methodology up to this point will work for rectangular

images of size N ×M with

N
∑

x=0

M
∑

y=0

K̄n(x; px, N)K̄m(y; py,M) · K̄n′(x; px, N)K̄m′(y; py,M) = δnn′δmm′ , (2.11)

but accuracy of results is suboptimal due to the consequent distortion of w, shown in

Fig. 1. Implementation on non-symmetric images is discussed in Section 2.4.

Definition 4. The 2D weight function is given by

w(x, y; , px, py) =
√

w(x; px, S)w(y; py, S). (2.12)

6



The 2D weight function, while a circular Gaussian smear at (0.5, 0.5), begins to

distort as it is moved near the boundaries of the domain. Methods for circumventing

this phenomenon are discussed in Section 2.4.

(px, py) = (0.5, 0.5) (px, py) = (0.5, 0.9) (px, py) = (0.7, 0.9)

Figure 1: The 2D weight function plotted at various points.

The orthonormality is crucial to this methodology, as it can be reversed like so:

Q̄nm =
S
∑

x=0

S
∑

y=0

K̄n(x; px, S)K̄m(y; py, S)f(x, y) (2.13)

f(x, y) =
S
∑

n=0

S
∑

m=0

K̄n(x; px, S)K̄m(y; py, S)Q̄nm (2.14)

and thus one can produce Krawtchouk moments of f through this methodology, as

well as reconstruct the original image f , so we can later denote these moments as

“descriptors” of the image. We will call the approximate reconstruction f̂(x, y) if

insufficient moments are produced for a full reconstruction, which will often be the

case.

f̂(x, y) =
Ŝ
∑

n=0

Ŝ
∑

m=0

K̄n(x; px, S)K̄m(y; py, S)Q̄nm (2.15)

Unlike other similar methods, these weighted Krawtchouk polynomials are local,

and thus specific regions can be both described and reconstructed independent of the

rest of the domain. Visually, this weight function is a Gaussian smear, as shown in

7



Fig. 1, but in practice, it darkens all but the region of interest, and produces increasing

clarity approaching the precise px, py values with maximum clarity at precisely px, py.

Using this methodology, along with Krawtchouk moments of various orders, the

classic cameraman.jpg image can be reconstructed like so, as demonstrated in [12].

See Fig. 2.

Reconstructions

Original image (p
x
,p

y
)

Ŝ = 5 Ŝ = 20 Ŝ = 50 Ŝ = 100

(0
.4
5,
0.
75

)
(0
.1
0,
0.
10

)
(0
.6
8,
0
.4
8)

Figure 2: Examples of 2D gray-scale images and their reconstructions using 2D weighted Krawtchouk polynomials

for Ŝ = 5, 20, 50, and 100, and different (px, py) pairs. The pixel size for the cameraman image (first row) is 300×300.
The pixel size for the tissue microarray image (second row) is 1024 × 1024. (px, py) pair here plays the critical role
in determining the center of local region-of-interest in an image. (px, py) is set to (0.45, 0.75) and (0.68, 0.48) for the
cameraman and the tissue microarray image, respectively. Image credits – cameraman: Massachusetts Institute of
Technology, tissue image: Stanford Tissue Microarray Database [9].

Our intention, however, is not to compress the image into descriptors for later

reconstruction, but to produce a minimal set of regional descriptors for an image to

compare, and assess the similarity of specific regions of matrices via their correspond-

ing descriptors. Perfect image reconstruction is both unfeasible and unnecessary to

this process, so long as the order of moments used sufficient for the intended appli-

cation.

As demonstrated visually, locality is lost with high orders of moments, rendering

8



them unfeasible for regional image comparison, as well as computationally inefficient,

as the descriptors will consist of more values that the original image. The number

of descriptors for a given region is given by the order of Krawtchouk moments used,

resulting in a vector of length Υ such that

Υ =
(υ + 1)(υ + 2)

2!
(2.16)

where υ is the order of moments used. More detail on moments is provided in Sec-

tion 2.2.

2.2 Invariance

The mere comparison of Krawtchouk moments is insufficient for true pattern

recognition, as this is simply an efficient pixel by pixel comparison of the images.

Queried patterns may not appear in another image precisely as they appear in the

query, and hence these weighted Krawtchouk moments must be further modified to

account for unforeseen circumstances. For instance, a given pattern may differ in

scale, position, rotation, or a combination thereof. Using geometric moments, and

the rotation matrix of the region of interest, we produce descriptors which are scale,

translation, and rotation invariant as follows.

To begin, we define the weighted 2D function f̃ , then geometric moments and in-

variants, beginning in a manner similar to that of [7]. Note that ˜ denotes calculations

impacted by the weighted f function.

Definition 5. The 2D weighted image function is defined as

f̃(x, y) = w(x, y; px, py)f(x, y) (2.17)

The geometric moments of f̃(x, y) are defined as follows.

9



Definition 6. 2D Geometric Moments:

M̃ij =
S
∑

x=0

S
∑

y=0

xiyj f̃(x, y) (2.18)

Note that M̃00 is merely the mass of the function, and thus of the range of f from

the previous Section 2.1, and so we can use this to create central moments which are

translation invariant:

µ̃ij =
S
∑

x=0

S
∑

y=0

(x− x̃)i(y − ỹ)j f̃(x, y) (2.19)

where x̄ = M̃10/M̃00, and ỹ = M̃01/M̃00, which are called the centroids of the density.

We can further use the mass of the function to produce scale invariance:

η̃ij =
µ̃ij

(M̃00)
i+j
2

+1
(2.20)

For rotational invariance, we will introduce trigonometry. Note that this methodology

will change drastically in higher dimensions, instead relying on the eigenvectors of a

rotation matrix.

Definition 7. 2D Rotation, Scale, and Translation Invariant Geometric Moments:

ν̃ij = (M̃00)
−

i+j
2

−1

S
∑

x=0

S
∑

y=0

{f̃(x, y) · [(x− x̃) cos θ̃ + (y − ỹ) sin θ̃]i

· [−(x− x̃) sin θ̃ + (y − ỹ) cos θ̃]j}

(2.21)

where

tan 2θ̃ =
2µ̃11

µ̃20 − µ̃02

(2.22)

with −π
4
≤ θ̃ ≤ π

4
.

Instead of applying ν̃ij directly, these invariants will be incorporated into the later

10



defined λ̃ij, which will be integrated into the final descriptors.

2.3 2D Krawtchouk Descriptors

Having established scale, translation, and rotational invariance in 2D, we can now

form 2D Krawtchouk descriptors. We will encompass these invariants in λ̃ij, and

using λ̃ij, our descriptors.

λ̃ij = (M̃00)
−

n+m
2

−1

S
∑

x=0

S
∑

y=0

{ f̃(x, y)

· [[(x− x̃) cos θ̃ + (y − ỹ) sin θ̃]/(M̃00)
1

2 + Spx)]
i

· [[−(x− x̃) sin θ̃ + (y − ỹ) cos θ̃]/(M̃00)
1

2 + Spy)]
j }

(2.23)

Definition 8. 2D Krawtchouk descriptors are then given by

Q̃nm = [ρ(n; px, S)ρ(m; py, S)]
−

1

2

n
∑

i=0

m
∑

j=0

ai,n,px,Saj,m,py ,Sλ̃ij (2.24)

where ai,n,p,S denotes the coefficient of the ith degree term in Kn(x; p, S).

2.4 Workflow

In practice, implementation of this methodology flows similarly to the outline of

this paper, although several minor adjustments are made to facilitate computation.

Due to high values in the choose function, computing w for every ordered pair px, py

can prove quite strenuous, and if this methodology is implemented verbatim from

[12], will account for the majority of runtime. Alternatively, w can be precomputed

at px, py = 0.5, 0.5 and then translated about its center to the px, py value for every

region of interest in an image. This also mitigates the distortion of the Gaussian

smear when computing at extreme points, which further enhances accuracy. Due

to the locality of weighted Krawtchouk functions, and the separation of ρ and w in

11



the final form of descriptors given in the previous Section 2.3, the coefficients of the

Krawtchouk polynomials, as well as ρ, can be precomputed as well. In languages

capable of symbolic computation, the coefficients of the Krawtchouk polynomials can

be computed quickly using the recursive formula from 2.1 [18].

Following the precomputations outlined above, in some languages, particularly

Matlab/Octave and Python’s NumPy/SciPy, reshaping the image matrix from S×S

to 1× S2, then using a single summation in place of a double summation can reduce

runtime. See Fig. 3 for a general outline of workflow.

2DKD information

Query image

Point-of-interest

2DKD computation

Subimage locations

Indexed images

DB

Similarity measure 

(Euclidean distance)
Report best k matches

Figure 3: A flowchart of the workflow of 2D Krawtchouk descriptors in implementation. 2DKD denotes 2D
Krawtchouk Descriptors, and DB denotes the database in which to search for the queried subimage [3].

To search for a subimage within a large image, or series of large images, one can

simply compute the Krawtchouk descriptor of the query, then create a grid of points

covering each of the larger images within the database, compute the Krawtchouk

descriptors for each point in the grid, and store them as an array which describes

the image as a whole. As mentioned following equation 2.9, the larger images need

not be square, but to avoid the distortion of w, and machine error when computing

large choose functions of w, it is ideal to temporarily crop the image into reasonably

sized squares about the point of interest. Due to the locality of weighted Krawtchouk

polynomials, this will not affect the descriptors, and no information will be lost along

the boundary of cropping since the square will be re-cropped for every point on

the grid while computing its respective descriptor. In Matlab/Octave, the n choose k

function does not experience a high degree of error until n > 600, so it is recommended
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A

B C D

Figure 4: A. A section of a projection image of GroEL protein complexes in vitreous ice cap-
tured using Cryo-EM. B. Averaged top view of GroEL. C. Averaged side view of GroEL. D.

An end-on view of the 3D atomic structure of GroEL complex. Image credits – A: Vossman,
https://commons.wikimedia.org/wiki/File:Cryoem groel.jpg, B, C: Electron Microscopy Data Bank
(EMD-8750), D: Protein Data Bank (PDB ID: 5W0S).

to make the square roughly this size, and, as previously mentioned, precompute w for

this size, then translate within the square, moving it along the image as necessary.

Once this database is created, the likelihood of match, or degree of similarity is

quantified by the Euclidean distance between Krawtchouk descriptors, with 0 denot-

ing a theoretical perfect match. Since these are strictly non-negative by definition,

it is easy to order them, and produce a set of results ranked by similarity. Depend-

ing on the speed of hardware, size of the image, and order of moments used, this

can take some time. Using a database of 39 roughly 1000 × 1000 images with 5th

order Krawtchouk moments, promising results returned in a matter of hours with an

ordinary laptop [3].
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2.5 Example

In [3], a cryo-EM 2D projection of several identical protein structures with severe

noise is used as a single-image database, in which the query is one of these structures.

In particular, these are several instances of the molecular chaperonin GroEL (see

Fig. 4). Since the query was taken directly from the database, the top result is an

exact copy of the query, but the following ranked results still appear quite similar,

with only the 4th and 14th results appearing questionable to the human eye (see

Fig. 5).

Query 1st 2nd 3rd 4th 5th

(565, 780) (565, 780) (900, 945) (790, 95) (845, 640) (545, 855)

6th 7th 8th 9th 10th

(175, 735) (710, 280) (745, 510) (575, 970) (900, 675)

11th 12th 13th 14th 15th

(945, 895) (25, 185) (115, 115) (865, 760) (260, 910)

Figure 5: An example query of the top view of GroEL and top 15 retrieval results using 2DKD.
The pixel size for the local subimages is 40×40. The (x, y) centers of the query and retrieval results
in the 1024× 1024 global image are provided under each subimage.
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3 THREE-DIMENSIONAL KRAWTCHOUK DESCRIPTORS

3.1 3D Krawtchouk Moments

Using the same initial definition of weighted Krawtchouk polynomials, orthonor-

mal 3D Krawtchouk moments can be created as well. Let A now denote {0, . . . , S}×

{0, . . . , S} × {0, . . . , S}, with function f : A → N ∪ {0}, where we wish to describe

the image of f .

Definition 9. 3D Krawtchouk Moments are defined by

Q̄nml =
S
∑

x=0

S
∑

y=0

S
∑

z=0

K̄n(x; px, S)K̄m(y; py, S)K̄l(z; pz, S)f(x, y, z) (3.1)

Like before, these give us the orthonormality condition

S
∑

x=0

S
∑

y=0

S
∑

z=0

K̄n(x; px, S)K̄m(y; py, S)K̄l(z; pz, S)

· K̄n′(x; px, S)K̄m′(y; py, S)K̄l′(z; pz, S) = δnn′δmm′δll′

(3.2)

and can be reversed via

f(x, y, z) =
S
∑

n=0

S
∑

m=0

S
∑

l=0

Q̄nmlK̄n(x; px, S)K̄m(y; py, S)K̄l(z; pz, S) (3.3)

or reversed approximately via

f̂(x, y, z) =
Ŝ
∑

n=0

Ŝ
∑

m=0

Ŝ
∑

l=0

Q̄nmlK̄n(x; px, S)K̄m(y; py, S)K̄l(z; pz, S) (3.4)

As was the case in 2D, these moments can be transformed into Krawtchouk descriptors

which are scale, translation, and rotation invariant. The specifics of incorporating

these invariants are discussed in Section 3.2.
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3.2 3D Geometric Moments

To produce invariants for Krawtchouk descriptors in three dimensions, the geo-

metric moments discussed in Section 2.2 must be redefined to account for the z axis

[13]. We begin with the 3D weighted image function f̃ .

Definition 10. Using a now 3D function, f̃ is defined as

f̃(x, y, z) = f(x, y, z)
√

w(x; px, S)w(y; py, S)w(z; , pz, S). (3.5)

Like before, ˜ denotes values computed using the weighted function f̃ .

Definition 11. 3D geometric moments are now defined as

M̃ijk =
S
∑

x=0

S
∑

y=0

S
∑

z=0

xiyjzkf̃(x, y, z) (3.6)

As before, M̃000 yields the mass of the function f̃(x, y, z), and can be used to produce

the centroids x̃ = M̃100/M̃000, ỹ = M̃010/M̃000, z̃ = M̃001/M̃000, which can be used to

produce the translation invariant moments

µ̃ijk =
S
∑

x=0

S
∑

y=0

S
∑

z=0

(x− x̃)i(y − ỹ)j(z − z̃)kf̃(x, y, z) (3.7)

and we obtain the scale and translation invariant value η̃ijk via

η̃ijk =
µ̃ijk

(M̃000)
i+j+k

3 + 1
(3.8)

Rotational invariance is where the our methodology will differ from the 2D case.

In lieu of straightforward trigonometry, we will will rotate the image of f̃(x, y, z) to

align its principle axes with the x, y, and z axes respectively. With our function

positioned at the origin, the principle axes of f̃(x, y, z) are defined as the eigenvectors
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of the inertia matrix [6].

Definition 12. Inertia Matrix

Ĩ =













Ĩxx Ĩxy Ĩxz

Ĩyx Ĩyy Ĩyz

Ĩzx Ĩzy Ĩzz













(3.9)

where

Ĩxx = µ̃020 + µ̃002

Ĩyy = µ̃200 + µ̃002

Ĩzz = µ̃200 + µ̃020

Ĩxy = Ĩyx = −µ̃110

Ĩxz = Ĩzx = −µ̃101

Ĩyz = Ĩzy = −µ̃011

Note that Ĩ is a symmetric matrix, and has real eigenvalues {λ1, λ2, λ3}, and

orthogonal eigenvectors {u1, u2, u3}, with the condition

Ĩui = λiui (3.10)

for i = 1, 2, 3. These eigenvectors will ultimately serve as the columns of the rota-

tion matrix which rotates f̃(x, y, z) to the x, y, and z axes as described previously;

however, for all i, ui and −ui both remain valid eigenvectors, and thus there are 8

possible rotation matrices to choose from, each corresponding to an octant of R3. We

will choose the rotation matrix which corresponds to the all-negative octant using

the provided surface normal vector to the point (px, py, pz) where the Krawtchouk

descriptor is being generated.
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This should place our region of interest in the all positive octant to facilitate later

calculations. For each ui, if the dot product of ui and the surface normal vector is

negative, then choose −ui for the ith column of the rotation matrix R̃. Otherwise,

choose ui. This then produces the rotation matrix R̃ used in Section 3.3 to ensure

rotational invariance of the Krawtchouk descriptor.

3.3 3D Krawtchouk Descriptors

Having obtained all necessary invariants, the translation, scale, and rotation in-

variant 3D Krawtchouk Descriptors can now be computed with the following variables.

λ̃ijk =(M̃000)
−1

S
∑

x=0

S
∑

y=0

S
∑

z=0

f̃(x, y, z)

· (φ̃1(x, y, z)/(M̃000)
1/3 + S/2)i

· (φ̃2(x, y, z)/(M̃000)
1/3 + S/2)j

· (φ̃3(x, y, z)/(M̃000)
1/3 + S/2)k

(3.11)

where

φ̃1(x, y, z) = R̃11(x− x̃) + R̃12(y − ỹ) + R̃13(z − z̃)

φ̃2(x, y, z) = R̃21(x− x̃) + R̃22(y − ỹ) + R̃23(z − z̃)

φ̃3(x, y, z) = R̃31(x− x̃) + R̃32(y − ỹ) + R̃33(z − z̃)

We will use this as a factor to encompass these invariants in the final descriptor.

Definition 13. 3D Krawtchouk Descriptor

Q̃nml = [Ω(n,m, l; p∗,S)]−1/2

n
∑

i=0

m
∑

j=0

l
∑

k=0

ai,n,px,S aj,m,py ,S ak,l,pz ,S λ̃ijk (3.12)
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where ai,n,p,S denotes the ith coefficient of Kn(x; p, S), and

Ω(n,m, l, p∗,S) = ρ(n; px, S)ρ(m; py, S)ρ(l; pz, S)

For simple computation, we assume px = py = pz = 0.5, which is discussed further

in Section 3.4.

3.4 Workflow

Similar to the 2D implementation, the overall process consists of generating de-

scriptors are various points about the object, creating a database of them, and then

comparing them to a query descriptor via Euclidean distance; however, due to the

more specialized data used in application, the selection of points is more specific than

a general grid, and some additional precomputations must take place.

The testing done for 3D Krawtchouk descriptors in [13] assumes the 3D object is

a shell with 1s on the surface of the object, and 0s elsewhere, which would make a

grid approach impractical because the majority of points would be trivial descriptions

of empty space, and instead, a set of surface points were selected by LZerD software

at Kihara Lab [4] from a triangulated surface mesh of the shell. The surface normal

vectors were computed from the tangent plane to a given point on this triangulated

surface, which are necessary to producing rotational invariance, as mentioned in sec-

tion 3.2. These are further discussed in Section 4.2, when surface normal vectors are

computed for a theoretical nD surface.

Also similar to the 2D implementation, the Krawtchouk polynomial coefficients

are precomputed via a recurrence relation, and weight function is precomputed at

px, py, pz = 0.5 and translated to the needed px, py, pz, and the now 3D object array is

reshaped from S×S×S to 1×S3 to facilitate computation. Since runtime is drastically

increased for 3D objects, these precomputations are all the more important, and in

testing, small arrays were used. In 2D, test images were roughly 1000× 1000, and in
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the following test, images were 170 × 170 × 170. Although this methodology could

work for objects other than a shell, perhaps accounting for density, the runtimes

would be unfeasible with the hardware available for this work.

Lastly, in addition to reshaping the 3D object array, the φ values used in λ can

also be altered into 2D objects to drastically reduce runtime, using the following

methodology from [13]:

First, we rewrite our ε values like so:

(φ̃1(x, y, z))
r =

r
∑

ε1=0

(

r

ε1

)

(Ã1(x, y))
r−ε1 (D̃1(z))

ε1 , (3.13)

(φ̃2(x, y, z))
s =

s
∑

ε2=0

(

s

ε2

)

(Ã2(x, y))
s−ε2 (D̃2(z))

ε2 , (3.14)

(φ̃3(x, y, z))
t =

t
∑

ε3=0

(

t

ε3

)

(Ã3(x, y))
t−ε3 (D̃3(z))

ε3 , (3.15)

where Ãτ (x, y) = R̃τ1(x− x̃) + R̃τ2(y − ỹ) and D̃τ (z) = R̃τ3(z − z̃) with τ = 1, 2, 3.

1. Compute the auxiliary image f̃(x, y, z), via

f̃(x, y, z) = f(x, y, z)
√

w(x; px, S)w(y; py, S)w(z; pz, S). (3.16)

2. Compute

T̃ (x, y; ε1, ε2, ε3) =
S
∑

z=0

f̃(x, y, z)(D̃1(z))
ε1(D̃2(z))

ε2(D̃3(z))
ε3 (3.17)

for 0 ≤ ε1 + ε2 + ε3 ≤ 5. With z eliminated, the computation is now in just 2

dimensions.
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3. Compute

T̃3(x, y; ε1, ε2, t) =
t

∑

ε3=0

(

t

ε3

)

(Ã3(x, y))
t−ε3 T̃ (x, y; ε1, ε2, ε3) (3.18)

for 0 ≤ ε1 + ε2 + t ≤ 5.

4. Compute

T̃2(x, y; ε1, s, t) =
s

∑

ε2=0

(

s

ε2

)

(Ã2(x, y))
s−ε2 T̃3(x, y; ε1, ε2, t) (3.19)

for 0 ≤ ε1 + s+ t ≤ 5.

5. Compute

T̃1(x, y; r, s, t) =
r

∑

ε1=0

(

r

ε1

)

(Ã1(x, y))
r−ε1 T̃2(x, y; ε1, s, t) (3.20)

for 0 ≤ r + s+ t ≤ 5.

6. Compute

ν̃rst =(M̃000)
−

r+s+t
3

−1

S
∑

x=0

S
∑

y=0

T̃1(x, y; r, s, t) (3.21)

for 0 ≤ r + s+ t ≤ 5.

7. Compute λ̃ijk in for 0 ≤ i+ j + k ≤ 5 like so using our results thus far:

λ̃ijk =
i

∑

r=0

j
∑

s=0

k
∑

t=0

(

i

r

)(

j

s

)(

k

t

)

·
ν̃rst S

2

i+j+k−r−s−t

(3.22)
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8. Compute Q̃nml for 0 ≤ n+m+ l ≤ 5 using λ̃ijk as follows:

Qnml = [Ω(n,m, l; p∗,S)]−1/2

n
∑

i=0

m
∑

j=0

l
∑

k=0

ai,n,0.5,S aj,m,0.5,S ak,l,0.5,S λ̃ijk (3.23)

where ai,n,p,S denotes the ith coefficient of Kn(x; p, S), and

Ω(n,m, l, p∗,S) = ρ(n; 0.5, S)ρ(m; 0.5, S)ρ(l; 0.5, S)

3.5 Rotation Test

Using efficient implementation of 3D Krawtchouk Descriptors with Krawtchouk

moments of order 5, and thus descriptors consisting of 56 elements, the same object

was described at a selection of 1,608 points before an after a series of 3 rotations to

test the translation and rotational invariance of the descriptors, in addition to their

general consistency. The particular object is a 170×170×170 array depicting the pro-

tein 1gco, a crystal structure of glucose dehydrogenase (GlcDH), which is represented

by values of 1 along the surface points, and 0 elsewhere. This was also supplied with

a set of surface normal vectors about these preselected points to enable the computa-

tion of the rotation matrix R, as outlined in Section 3.2. All computation beyond the

supplied data was done in GNU Octave 4.2.2 on a PC running Linux Fedora 29 vir-

tualized in Windows 10 on an Intel core i7-7700k overclocked to 4.6GHz, with 16GB

DDR4 RAM at 2400MHz, 8GB of which was allotted to the virtual machine. Also

note that the computations were not parallelized or multithreaded on this machine.

The RCSB Protein Data Bank currently has 46,602 distinct protein sequences, which,

at this rate on this machine, would take about 15 minutes to search with this method-

ology, assuming the sorting process runs in a similar time-frame, and the proteins have

been described with the same methodology with a similar number of surface points

[2].
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Table 1: Rotation Test: Points Correctly Identified by Minimum Euclidean Distance
of Krawtchouk Descriptors

Correct Region Found: Rotation 1: Rotation 2: Rotation 3:

As Top Result 92.70% 88.37% 88.50%

Within Top 5 97.76% 96.39% 97.01%

Within Top 10 97.75% 97.02% 97.26%

Average Runtime per Descriptor 0.422s 0.426s 0.426s

Total Runtime for Object Description 678.02s 685.03s 684.92s

Average Runtime per Search .018s .018s .018s

These results are aimed to compare to those of [13], although accuracy came out

lower due to a difference in data. In [13], numerous points for removed to ensure

clear distinction between regions, whereas in the results shown in Fig. 1, no points

were removed. Given the high accuracy and low runtimes with more points, many

of which were near each other and thus described similar regions, these results are

promising for later implementation.

Figure 6: Query protein surface (1gco.pdb, left) and three target surfaces obtained from the query protein by
rotating it using different rotation matrices. The vertex normals on each surface are also demonstrated. Each protein
surface is placed in a voxel grid of size 1703.
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4 n-DIMENSIONAL KRAWTCHOUK DESCRIPTORS

4.1 n-Dimensional Krawtchouk Moments

Hypothetically, a slightly modified implementation of this Krawtchouk descrip-

tor methodology could be implemented in n dimensions. Recall the definition of

Krawtchouk moments from Section 2.1. K̄s(x; p, S) is computed for a single vari-

able, and thus single dimension at a time, and thus the Krawtchouk polynomi-

als need not change for n dimensional Krawtchouk moments, and we can simply

compute K̄s(xi; p, Si) for i = 0, . . . , n. Considering A = {0, . . . , S}, we then have

An = A × A × . . . × A. We then define f(~x) : An → N ∪ {0} as an n dimensional

hyperobject, this will produce Krawtchouk moments in n dimensions.

Definition 14. nD Krawtchouk polynomial can be constructed like so

K~s(~x; ~p, S) = K̄s1(x1; p1, S) · . . . · K̄sn(xn; pn, S) =
n
∏

i=1

K̄si(xi; pi, S), (4.1)

where ~x,~s ∈ An and ~p = (p1, p2, . . . , pn).

The moments of these polynomials will then give us weighted Krawtchouk mo-

ments Q̄~s.

Definition 15. nD Krawtchouk moments are created from nD as follows

Q̄~s =
∑

~x∈An

f(~x) K~s(~x; ~p, S)

These descriptors, like in the 2D and 3D cases, can be used to reconstruct f

generally like so:

f(~x) =
∑

~s∈An

Q̄~s K~s(~x; ~p, S)
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Alternatively, these weighted Krawtchouk moments can also reconstruct a local

approximation via

f̂(~x) =
∑

~s∈ Ân

Q̄~s K~s(~x; ~p, S),

where Â = {0, . . . , Ŝ} with 0 ≤ Ŝ ≤ S, and Ân = Â× Â× · · · × Â. Up to this point,

the dimension of A has little impact on the process of generating general Krawtchouk

descriptors, and reconstructing f .

4.2 nD Geometric Moments

Invariance, on the other hand, becomes arduous in n dimensions. To begin, since

scale invariance is simply a scalar constant appended to all Krawtchouk moments via

multiplication, we will establish scale invariance using the same method as before,

adjusted for n dimensions. However, we must first redefine geometric moments more

generally.

Definition 16. Geometric moments in n dimensions are as follows:

M~s =
∑

~x∈An

(
n
∏

i=1

xsi
i )f(~x) (4.2)

µ~s =
∑

~x∈An

(
n
∏

i=1

(xi − x̄i)
si)f(~x) (4.3)

where ~e1 = (1, 0, . . . , 0), ~e2 = (0, 1, 0, . . . , 0), . . . , ~en = (0, 0, . . . , 1), and the center of

mass is (x̄1, x̄2, . . . , x̄n) where x̄i =
M~ei

M~0

With these, we can then define the scale and translation invariant geometric mo-

ments like so:

η~s =
µ~s

(M~0)
1

n
(
∑n

i=0
si)+1

, (4.4)
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Unfortunately, rotational invariance proves far more difficult to obtain in n dimen-

sions. Setting aside the practical concerns such as what a rotation in n dimensions

denotes, the methodology implemented thus far for obtaining the rotation matrix

of f relies on surface normal vectors distributed across the surface of the object in

question, which are difficult to obtain.

In 3D, we utilize outside software, as mentioned, which utilizes a trianguated

surface mesh to obtain the surface normal vector. In nD, in lieu of an approximate

tangent plane to a given point on the surface, or the cross product of vectors in

the triangulated closed surface mesh, we choose the nearest 3 vectors, extend them

through the chosen vertex, then average the set of them to obtain an approximate

surface normal vector.

Choose point x(0) from the simplex mesh of an nD hypersurface. Choose the

nearest n vertices in the mesh, and call them x(1), x(2), . . . , x(n). We can then average

them, and obtain our surface normal vector approximation via

v(0) =
n

∑

j=1

x(0) − x(j)

n
. (4.5)

However, v(0) may not point outward from the hyperobject, as this portion of the

simplex mesh could be concave or convex, and this remains an open problem. We

compute −v(0) as a vector in the opposite direction of v(0) with respect to x(0) as a

second option. Here, we will assume the hypersurface is convex, so we can assume

the proper vector choice is v(0).

Upon acquiring this normal vector, rotational invariance can be achieved in nD

using the same method used in 3D, now generalized. To begin, form the inertia matrix

I from the aforementioned geometric moments.
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Definition 17. Inertia Matrix:

I =



















IE1
Ie1,e2 Ie1,e3 . . . Ie1,en

Ie2,e1 IE2
Ie2,e3 . . . Ie2,en

...
...

...
...

...

Ien,e1 Ien,e2 Ien,e3 . . . IEn



















(4.6)

where Iei,ej = −µei+ej , and IEi
= µEi

with Ei = [
n

∑

k=1

ek]− ei.

Notice that the matrix is both symmetric and real, and will have real eigen-

values {λ1, . . . , λn} with corresponding orthogonal eigenvectors {u1, . . . , un}. Upon

obtaining this matrix, we then compute these eigenvectors. From these, we obtain 2n

possible rotation matrices with {±u1, . . . ,±un} as possible columns. Each of these

rotation matrices will send the previously computed normal vector to a corresponding

region of Rn. In R
2, there are 4 rotation matrices corresponding to the 4 quadrants,

in R
3, there are 8 rotation matrices corresponding to 8 quadrants, and generally, Rn

will yield 2n possible rotations. In order to achieve rotational invariance, we must

choose a single rotation matrix corresponding to a single region.

In lieu of assessing the rotation matrix as a whole, we instead assess the eigenvec-

tors individually to determine the proper rotation matrix one column at a time. For

every ui, if the dot product of ui and the surface normal vector is negative, return

−ui to the rotation matrix. Otherwise, return ui. Conceptually, this ensures that the

surface normal vector is sent to the all-positive region of Rn, which in turn will place

the portion of the surface in question to the all-negative region of Rn. This ensures

we establish a convention, so the surface will always be rotated to the same position.
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4.3 nD Krawtchouk Descriptors

Upon computing the rotation matrix, the invariant descriptors can be computed

like so:

λ~x = (M~0)
−1

∑

~x∈An

n
∏

i=1

φi(~x)f(~x) (4.7)

where

φi(~x) =
n

∑

j=1

R(ei+ej)(xj − x̄j) (4.8)

With these computed, we obtain our final set of descriptors, Q:

Q~s =

[

n
∏

i=0

ρ(si; pi, S)

]

−
1

2 ~s
∑

~σ=~0

[

n
∏

i=0

aσi,si,pi,S

]

λ~σ, (4.9)

where aσi,si,pi,S denotes the coefficient of the σi degree term in Ksi(xi; pi, S).

This nD methodology, while theoretically possible given a convex hyperobject, is

not currently aimed and any specific application, and would have daunting runtimes in

practice. The concepts of machine vision and image processing are lost when assessing

higher dimensional data, and this would instead serve merely as a pattern recognition

within datasets with high dimensions. The concept of rotational invariance is less than

intuitive in higher dimensions as well, and given the insurance of rotational invariance

is solely responsible for the convexity requirement, scale and translation invariance

alone may prove more feasible in practice, should demand for higher dimensional

pattern recognition in this manner emerge.

While the processing power and memory necessary for this calculation are im-

mense, the length of the descriptors could also grow unfeasible sizes, even with rela-

tively low orders of Krawtchouk moments as the dimension of the data grows large.

To see this, we generalize the formula for length of descriptors from Section 2.1 for
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nD:

Υ =

∏n
i=0(υ + i)

n!
, (4.10)

where υ is the order of moments used. Included is a brief table of descriptor lengths

for varying υ and n (Table 2).

Table 2: Length of Krawtchouk Descriptors in Varying Dimension and Order

Dimension υ = 5 υ = 6 υ = 7 υ = 10
4 126 200 330 1001
5 252 462 792 3003
6 462 924 1716 8008
10 3003 8008 19448 184756
100 9.66 · 107 1.71 · 109 2.61 · 1010 4.69 · 1013
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