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ABSTRACT 

 

In mathematics, there are often many procedures to solve or prove the same 

problem. The discrete logarithm is one of these problems. The baby step, giant step 

algorithm and Pollard’s kangaroo algorithm are two algorithms that attempt to solve 

discrete logarithm problems. Explanations on what these two algorithms are will be 

discussed as well as examples of each algorithm. In addition to these two algorithms, a 

modified form of Pollard’s kangaroo algorithm will be provided with results. Throughout 

the text, Mathematica programs will be presented that simulate each of the three 

algorithms above. 
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Chapter I 

 

INTRODUCTION 

 

In mathematics, there are often many procedures to solve or prove the same 

problem. The discrete logarithm problem is one of these problems. Within this paper, 

two algorithms will be discussed that solve the discrete logarithm problem. This paper 

will also discuss the programs created to simulate these two algorithms. Examples and 

comparisons of each algorithm will also be provided. Finally, a comparison between the 

two algorithms will be shown as well as a modified version of the second program. 

Throughout the text, you will see many examples that do not show all of the output. The 

complete output will be in Appendix B at the end of this paper. Also, many Mathematica 

commands were used within the programs. Explanations for more uncommon 

commands will be in Appendix A.  

 

DISCRETE LOGARITHM PROBLEM 

 

Let 𝑝 be a prime number and let 𝛼,𝛽 ∈  ℤ𝑝×. Let 𝛽 ≡ 𝛼𝑥 (𝑚𝑜𝑑 𝑝). Then the 

process of solving for 𝑥 is called the discrete logarithm problem (DLP for short). We 

restrict ourselves to 0 ≤ 𝑥 < 𝑛 where n is the smallest positive exponent such that 

𝛼𝑥 ≡ 1 (𝑚𝑜𝑑 𝑝). In the case of 𝑝 being prime, 𝑝 − 1 would be the smallest 𝑛. 

Otherwise, we could have multiple values for 𝑥 (𝑚𝑜𝑑 𝑝 − 1).  
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The way to restrict 𝑥 between 0 and 𝑛 would be to use a proposition that says if 

𝑟 ≡ 𝑠 (𝑚𝑜𝑑 𝑝 − 1), where 𝑟, 𝑠 ∈ ℤ+, then 𝑎𝑟 ≡ 𝑎𝑠  (𝑚𝑜𝑑 𝑝) for all 𝑎 ∈ ℤ. Fermat’s 

Little Theorem is used to prove this propostion. Fermat’s Little Theorem says if 𝑝 is 

prime, then 𝑎𝑝−1 ≡ 1(𝑚𝑜𝑑 𝑝) for 𝑎 ≥ 1 and where 𝑝 ∤ 𝑎 (Fermat’s Little Theorem, 

2014). The proof to the proposition is as follows: Suppose 𝑟 ≡ 𝑠 (𝑚𝑜𝑑 𝑝 − 1). Then 

𝑟 = 𝑏(𝑝 − 1) + 𝑠 for some integer 𝑏. Then 𝑎𝑟 = 𝑎𝑏(𝑝−1)+𝑠 = (𝑎𝑝−1)𝑏 ∙ 𝑎𝑠. By Fermat’s 

Little Theorem, 

 (𝑎𝑝−1)𝑏 ≡ 1𝑏. So, 𝑎𝑟 = (𝑎𝑝−1)𝑏 ∙ 𝑎𝑠 = 1𝑏 ∙ 𝑎𝑠 ≡ 𝑎𝑠(𝑚𝑜𝑑 𝑝). Hence, 𝑎𝑟 ≡

𝑎𝑠 (𝑚𝑜𝑑 𝑝). 

Now, the value of 𝛼 in the DLP is usually assigned to be a primitive root so that 

there is a solution for every 𝛽 ∈ ℤ𝑝×. An element 𝛼 ∈ 𝐺 is a primitive root, or generator, 

of 𝐺 when the powers of 𝛼 result in every non-zero element within the group 𝐺. So in 

the DLP, we have a solution for every 𝛽 since 𝛽 is nonzero and a power of 𝛼. If we were 

to restrict ourselves to any 𝛼 ∈ ℤ𝑝, there would be no solution to the discrete logarithm 

problem for certain 𝛽 (Trappe & Washington, 2006). Within Mathematica, there is a 

command called PrimitiveRoot[n] where Mathematica will provide you with the 

primitive root for any integer 𝑛, provided a primitive root is defined for that particular 𝑛. 

In the examples of the algorithms that will be discussed later, 𝑛 will be prime, which will 

always have a primitive root.  
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APPLICATIONS FOR THE DLP 

 

One of the most widely used applications of the discrete logarithm problem is in 

the field of public key cryptography. More specifically, we will look at the Diffie-Hellman 

key exchange. Say two people want to share a message with each other, but they want 

to make sure the message is kept secret. Let us say the encoding key is 𝑧. First, both 

people decide on a prime 𝑝 and a primitive root 𝛼 for, in our case, ℤ𝑝×. These two things 

are made public. Person A, for some 𝑥 ∈ ℤ+, calculates  𝛼𝑥(𝑚𝑜𝑑 𝑝) ≡ 𝑔 and 𝑔 ∈ ℤ𝑝× 

where 𝑥 is not public. Person A then sends the solution 𝑔 to person B. Person B does the 

same thing except person B calculates 𝛼𝑦(𝑚𝑜𝑑 𝑝) ≡ ℎ for some 𝑦 ∈ ℤ+ and ℎ ∈

ℤ𝑝× where 𝑦 is not public. Note that 𝑥 and 𝑦 are both large. Person B then sends that 

solution ℎ to person A. Now, Person A simply has to calculate ℎ𝑥(𝑚𝑜𝑑 𝑝) ≡ 𝑧 and 

person B has to calculate 𝑔𝑦(𝑚𝑜𝑑 𝑝) ≡ 𝑧. This works since ℎ𝑥(𝑚𝑜𝑑 𝑝) ≡ (𝛼𝑦)𝑥 =

(𝛼𝑥)𝑦 ≡ 𝑔𝑦(𝑚𝑜𝑑 𝑝). Hence, both people received the message. How does one on the 

outside find the secret message then? 

For someone on the outside who does not know the values of 𝑥 and 𝑦, the only way 

they could figure out the secret code, 𝑧, is to solve the DLP. They would have to find the 

𝑥 such that 𝛼𝑥 ≡ 𝑔 (𝑚𝑜𝑑 𝑝), or they would have to find the 𝑦 such that  

𝛼𝑦 ≡ ℎ (𝑚𝑜𝑑 𝑝). Only then will the outside person be able to find the secret message 

𝑧 ≡ (𝛼𝑥)𝑦 (𝑚𝑜𝑑 𝑝). When 𝑥 and 𝑦 are very large, the DLP becomes very difficult to 

solve (Das, 2013).  



4 

 

Other applications for the DLP come into play when you look at elliptic-curves 

and extension fields of odd characteristic 𝑝. These will not be discussed in this paper.  
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Chapter II 

 

BABY STEP, GIANT STEP 

 

Let ℤ𝑝× be a finite cyclic group mod 𝑝.  Suppose that we wish to solve 𝛼𝑥 ≡

𝛽 (𝑚𝑜𝑑 𝑝) where 𝛼,𝛽 ∈ ℤ𝑝×, 𝑥 ∈  ℤ+, and 𝑥 < 𝑝 − 1. The baby step, giant step 

algorithm starts out with choosing an 𝑛 ∈  ℤ such that 𝑛2 ≥ 𝑝 − 1. For all of the 

examples of this algorithm, 𝑛 = ��𝑝 − 1� + 1. Next, you make two lists. The first list 

contains all 𝑓(𝑗) = 𝛼𝑗   (𝑚𝑜𝑑 𝑝) for 0 ≤ 𝑗 < 𝑛. Once you compute all 𝑓(𝑗), you then 

start making the second list. The second list contains all ℎ(𝑘) = 𝛽𝛼−𝑛𝑘 (𝑚𝑜𝑑 𝑝) for 

0 ≤ 𝑘 < 𝑛. You only compute values for ℎ(𝑘) until you have found a match when you 

compare the ℎ(𝑘) value just computed to each 𝑓(𝑗) in the first list. Once you find a 

match, you stop constructing the second list. Suppose you find a match, say 𝛼𝑟 ≡

𝛽𝛼−𝑛𝑠 (𝑚𝑜𝑑 𝑝). Then 𝛼𝑟+𝑛𝑠 ≡ 𝛽. Thus 𝑟 + 𝑛𝑠 = 𝑥, which solves the discrete logarithm 

problem (Trappe, 2006). If you exhaust all ℎ(𝑘) with no match to any 𝑓(𝑗), the 

algorithm fails. 

The baby step, giant step algorithm needs a lot of storage to run. Notice that when you 

run this algorithm, you need to store all of the first list so that you can compare the 

second list to it. Now, 0 ≤ 𝑗 < 𝑛 which means that for the first list alone, you must store 

𝑛 values. This does not include the values you will need to store for other operations 

within the algorithm. At the very least, you will have to store 𝑛 values. For large values 
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of 𝑝, this algorithm is very impractical. It is limited based on the storage the computer 

has and how long it takes the computer to get through both lists. The following 

examples in the next section will demonstrate this idea.  

 

EXAMPLES OF BABY STEP, GIANT STEP 

 

This first example is here to demonstrate how the baby step, giant step 

algorithm works. For this particular example, we use the group ℤ7× with primitive root 

𝛼 = 3. We will also choose 𝛽 = 5. Then 𝑛 = �√6� + 1 = 3. So, 0 ≤ 𝑗, 𝑘 < 3. We then 

start computing the first list. 𝑓(0) = 30(𝑚𝑜𝑑 7) ≡ 1,𝑓(1) = 31(𝑚𝑜𝑑 7) ≡

3, and 𝑓(2) = 32(𝑚𝑜𝑑 7) ≡ 2. Once the first list is made, start the second list. 

ℎ(0) = 5 ∗ 3−7∗3∗0(𝑚𝑜𝑑 7) ≡ 5. This one doesn’t match any of the 𝑓(𝑗), so we keep 

going. ℎ(1) = 5 ∗ 3−7∗3∗1(𝑚𝑜𝑑 7) ≡ 2. This time, ℎ(1) = 𝑓(2). Hence, 𝑥 = 2 + 3 ∗

1 (𝑚𝑜𝑑 6) ≡ 5. Thus, we stop constructing the second list. To check ourselves, we see 

that 𝛼𝑥 = 35 = 243 ≡ 5 (𝑚𝑜𝑑 7), which was our 𝛽. Hence, we found a solution. 

The following is a program written in Mathematica to perform the baby step, 

giant step algorithm: 
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Baby Step, Giant Step Program 

Clear[g, f, a, α, β, j, k, b, c, x, y]; 
z = DateList[   ]; 
g =    ; 
α =    ; 
β =    ; 
n = Floor[ Sqrt[ g-1 ] ] + 1; 
Array[f, n – 1, 0]; 
Array[h, n – 1, 0]; 
b = PowerMod[ α, – 1, g]; 
j = 0; 
k = 0;  
flag = 0; 
While[ j < n, f[ j ] = Mod[ α ^ j, g ]; Print[ “f[“, j, “]=”, f[ j ]]; j++]; 
While[ (k < n) && (flag == 0), h[ k ] = Mod[ β * b^ ( n * k ), g ]; For[ j = 0, j < n, 
     j++, If[ h[ k ] == f[ j ], flag = 1; Print[“h[“, k, “]=”, h[k]]; x = j + n *k ]]; k++; 
y = DateList[   ]; 
If[ flag == 0, Print[ “Did not match” ]]; 
If[ flag == 1, Print[ “x=”, z ]]; 
Print[ “Difference in seconds:  “, Last[ y ] – Last[ z ] ]; 

 

The program statements above start out by clearing all the variable assignments 

Mathematica might have stored. The two DateList[] commands are in the program to 

record the time before the program started to run and the time after the program was 

finished running. You start out by filling in what 𝑔 you want to have where 𝑔 is the order 

of the group ℤ𝑝×. You then fill in the primitive root 𝛼 and whichever 𝛽 you want to have 

where 𝛽 ∈ ℤ𝑝×. The 𝑛 in the program is the same 𝑛 that was discussed in the previous 

section. The two arrays create storage space so that while the program is running, it can 

store those values it computes for each 𝑓 and ℎ. We start the program at 𝑗,𝑘 = 0. The 

heart of the program lies in the while loop commands. The first while loop goes through 
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each 𝑗 < 𝑛 and computes what 𝑓(𝑗) is, prints that 𝑓(𝑗) value, and then stores that value 

inside the array. Note that printing the 𝑓(𝑗) could be removed. Once the program 

computes all 𝑓, the second while loop starts computing 𝑔’s for the second list. For each 

𝑘 < 𝑛, the program then compares each ℎ(𝑘) to all values of 𝑓 to see if there is a 

match. If there is a match, the program outputs the answer to the DLP. If no match 

occurs, the program proceeds to the next 𝑘. The program keeps doing this until all of 

the ℎ(𝑘) are exhausted, or when it has found a match. If there are no matches found, 

we have failed to solve the DLP. If a match was found, we have a solution. The last line 

of code will tell us how long it took the program to perform the baby step, giant step 

algorithm for the particular group, 𝛼, and 𝛽 we chose. This comes into play later. 

Now that the program that simulates the baby step, giant step algorithm has 

been introduced, we will now go through some examples that involve much larger 

groups of prime order that we would not want to do by hand. This example will be from 

the cyclic group ℤ1,000,003
× . This group has a primitive root 𝛼 = 2, and we would like to 

make 𝛽 = 4,000. Note that I used Mathematica’s NextPrime[] function to get the next 

prime above 1,000,000. Then I used Mathematica’s PrimitiveRoot[] function to find the 

primitive root of that prime. So, we would like to use the baby step, giant step algorithm 

to solve the DLP 2𝑥 ≡ 4,000 (𝑚𝑜𝑑 1,000,003). When I put these values into the 

Mathematica program above, it took the baby step, giant step algorithm 43.42 seconds 

to compute the value of 𝑥. The program was run on an HP ENVY m6 Notebook with an 

Intel Core i5 processor and 8 gigs of RAM. For all other examples, this same computer 

will be used to run the programs. The value of 𝑥 that solves the DLP is 877,142.  
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Another example involves a larger group to show how much longer it takes the 

baby step, giant step program to compute the value of x. The cyclic group this time is 

ℤ10,000,019
× . The primitive root for this group is 6, so 𝛼 = 6. Also, we will assign 𝛽 = 256. 

This example will require solving the DLP 6𝑥 ≡ 256 (𝑚𝑜𝑑 10,000,019). This time 

around, it took Mathematica 2,165.36 seconds to compute the value of 𝑥. The value 

of 𝑥 that solves this DLP is 8,954,372. As you can see, just adding an extra digit has 

increased the time to compute a huge amount. This shows the idea that the baby step, 

giant step algorithm very well depends on your computer’s memory and running 

capability. 
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Chapter III 

 

POLLARD’S KANGAROO ALGORITHM 

 

For Pollard’s kangaroo algorithm, we are going to let ℤ𝑝× be a finite cyclic group 

mod 𝑝 just like in the baby step, giant step algorithm. Also, suppose we wish to solve 

𝛼𝑥 ≡ 𝛽 (𝑚𝑜𝑑 𝑝) where 𝛼,𝛽 ∈ ℤ𝑝×, 𝑥 ∈ ℤ+, and 𝑥 < 𝑝 − 1. For the sake of comparison 

later, we will be choosing the same 𝑛 as we did for the baby step, giant step algorithm. 

So, 𝑛 = ��𝑝 − 1� + 1. Within this paper, we will be using an interval {𝑏, … , 𝑐} ⊂ ℤ𝑝𝑋 

such that 𝑏 = 0 and 𝑐 = �𝑝
2
�, where 𝛼𝑐 (𝑚𝑜𝑑 𝑝) is where the first list we will calculate 

will come from (Galbraith, 2013). Note that we could use the interval {0, … ,𝑝 − 1} but 

the point of this algorithm is to try to solve the DLP more efficiently. Increasing this 

interval will increase the time it takes for this algorithm to solve the DLP. The downside 

to decreasing this interval is that a smaller interval invites more failures to occur when 

you use the kangaroo algorithm. The next thing to set up is a pseudorandom walk. This 

random walk is what drives the kangaroo algorithm. For each 𝑟 ∈ ℤ𝑝×, you pair a random 

integer so that you get a map 𝑓:ℤ𝑝× → 𝑆 where 𝑆 is the set of random integers created.  

Now, there are two lists that we start computing. One is called the “tame 

kangaroo” and the other is called the “wild kangaroo.” The “tame kangaroo” will be all 

𝑥𝑖  such that 𝑖 ∈ {0,1, … ,𝑛 − 1}. The value of 𝑥𝑜 = 𝛼𝑐 and all other 𝑥𝑖+1 = 𝑥𝑖𝛼𝑓(𝑥𝑖). 

Note that the first value of the first list starts with the primitive root raised to the middle 



11 

 

element of the group we are in. The next thing to compute is 𝑑 = ∑ 𝑓(𝑥𝑖)𝑛−1
𝑖=0 . This adds 

up all of the random integers that the original group elements were mapped to with the 

pseudorandom mapping. Now that the first list was made, you start constructing a 

second list, or the “wild kangaroo.” This time, the first step is 𝑦0 = 𝛽. For every step 

afterward, 𝑦𝑖+1 = 𝑦𝑖𝛼𝑓(𝑦𝑖). Just like with the 𝑥𝑖’s, we then form a 𝑑𝑛 = ∑ 𝑓(𝑦𝑖)𝑛−1
𝑖=0  

which sums up the random integers used when computing 𝑓(𝑦𝑖) for each 𝑖.  

We keep creating 𝑦𝑖’s until one of two conditions are met. The first condition is that the 

algorithm finds 𝑦𝑗 = 𝑥𝑛 for some 𝑗. If this happens, we have found a solution to the DLP 

and 𝑥 = 𝑐 + 𝑑 − 𝑑𝑗. The second condition to check for would be if 𝑑𝑖 > 𝑐 − 𝑏 + 𝑑. If 

this happens, the algorithm fails to find the 𝑥 (“Pollard’s kangaroo algorithm”, 2014). 

When this happens, you must rerun the algorithm again with a different pseudorandom 

walk to see if the algorithm is successful. Note that unlike the baby step, giant step 

algorithm, you only need to store the last step in the first list, 𝑥𝑛. You then compare 

every 𝑦𝑖 to that one value. This algorithm is much more efficient in the aspect that very 

little storage space is required. Therefore, you don’t have as much of a time or resource 

constraint that you did with the previous algorithm with the kangaroo algorithm.  

 

EXAMPLES OF THE KANGAROO ALGORITHM 

 

 An example of the DLP will now be demonstrated that uses the kangaroo 

algorithm. This first example will walk you through a simple example that can easily be 
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done by hand. Suppose that we are working in the cyclic group ℤ13× . The primitive root 

for this group is 𝛼 = 2 and we choose our 𝛽 = 9. Then 𝑛 = �√12� + 1 = 4. The interval 

that is created is [0,6]. The pseudorandom mapping that was created is as follows: 

𝑓(1) = 3,𝑓(2) = 8,𝑓(3) = 9,𝑓(4) = 2,𝑓(5) = 11,𝑓(6) = 4,𝑓(7) = 7,𝑓(8) =

12,𝑓(9) = 7,𝑓(10) = 8,𝑓(11) = 1,𝑓(12) = 11. The next thing to do is to create all of 

the 𝑥𝑖’s for 𝑖 = 1, … ,𝑛. 𝑥0 = 𝛼𝑏 (𝑚𝑜𝑑 13) = 26 (𝑚𝑜𝑑 13) ≡ 12. Then 𝑥1 = 𝑥0 ∗

𝛼𝑓(𝑥0) (𝑚𝑜𝑑 13) = 12 ∗ 211 (𝑚𝑜𝑑 13) ≡ 6. Continuing the same recursive formula for 

the other three 𝑥𝑖’s, we get 𝑥2 = 5, 𝑥3 = 9, and 𝑥4 = 8. We compute the 𝑑 value as  

𝑑 = 𝑓(𝑥0) + 𝑓(𝑥1) + 𝑓(𝑥2) + 𝑓(𝑥3) = 11 + 4 + 11 + 7 = 33. Now that these are 

computed, we will now compute the 𝑦𝑖’s. Remember, we stop the calculations when 

either we find 𝑦𝑖 = 𝑥𝑛 or if 𝑑𝑖 > 𝑏 − 𝑎 + 𝑑 = 6 − 0 + 33 = 39. The beginning value is 

𝑦0 = 𝛽 = 9. Then 𝑦1 = 𝑦0 ∗ 𝑎𝑓(𝑦0) (𝑚𝑜𝑑 13) = 9 ∗ 27 (𝑚𝑜𝑑 13) ≡ 8 and 𝑑1 =

𝑓(𝑦0) = 7. We found a match between 𝑦1 and 𝑥4. Thus 𝑥 = 𝑏 + 𝑑 − 𝑑1 = 6 + 33 −

7 = 32 (𝑚𝑜𝑑 12) ≡ 8. Checking ourselves, we see that 𝛼𝑥 = 28 = 256 ≡ 9 (𝑚𝑜𝑑 13).  

 As you can see from the example above, there are quite a few calculations that 

are involved with this algorithm, and this example was with a small group. Imagine the 

amount of calculations one would have to do in order to solve a DLP for a larger group. 

That is why I created a program through Mathematica that will simulate Pollard’s 

kangaroo algorithm without having to do the calculations by hand. The program is as 

follows: 
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Pollard’s Kangaroo Algorithm 

Clear[ α, β, g, n, b, c, s, y, dt, h, f, a, d]; 
α =   ; 
β =   ; 
g =   ; 
n = Floor[ Sqrt[ g – 1 ] ] + 1; 
b = 0; 
c = Floor[ g/2 ]; 
f[t_] ≔ RandomInteger[ {1,g} ]; 
Do[ a[ t ] = f[ t ]; Print[ “a[“, t, “]=”, a[ t ] ], { t, g } ]; 
h[ 0 ] = Mod[ α^c, g ]; 
Print[“x_i’s” ]; 
d = 0; 
Do[ h[ j ] = Mod[ h[ j – 1 ] * α ^ ( a[ h[ j – 1 ] ] ), g ]; 
     Print[ “h[“ , j, “]=”, h[ j ] ]; d = d + a[h[ j – 1 ] ], {j, n} ]; 
Print[ “d = “, d ]; 
Clear[ r, s, y ]; 
y[ 0 ] = β; 
flag = 0; 
s = 1;  
Print[ “y_i’s and d_i’s” ];  
While[ ( flag == 0 ) && ( y[ s – 1 ] ≠ h[ n ] ), 
     s + + ; 
     y[ s – 1 ] = Mod[ y[ s – 2 ] * α ^ ( a[ y[ s – 2 ] ] ), g]; 
     Print[ “y[“, s – 1, “]=”, y[s – 1] ]; 
     dt[ s – 1 ] =∑ 𝑎[𝑦[𝑖]]𝑠−2

𝑖=0 ; 
If[ dt[ s – 1 ] ≤ ( c – d + b ), flag = 0, flag = 1 ]; 
Print[ “dt[“, s – 1, “]=”, dt[ s – 1 ] ] ]; 
Print[ “value of x” ]; 
If[ y[ s – 1 ] == h[ n ], Print[ c + d – dt[ s – 1 ] ], Print[ “failed” ] ];  
 
  
The program starts out by clearing all of the variables so that nothing is stored for those 

variables each time you run the program. You then specify the values of 𝛼,𝛽, and 𝑔 

where these variables are the same as the variables in the baby step, giant step 

program. The value of 𝑛 is then created along with 𝑏 and 𝑐. The function 𝑓 is used to call 

upon random integers between 1 and 𝑔. The do loop comes after. This assigns the 
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function 𝑎 to actually be the pseudorandom walk. This creates 𝑎(1), … ,𝑎(𝑔) by using 

values of the function 𝑓. Once those are created, we start constructing the lists. The 

function ℎ represents the 𝑥𝑖’s that were explained in the kangaroo algorithm in the 

previous section. So ℎ[0] = 𝑥0. The program then tells you to print the words “x_i’s”. 

The do loop that follows creates the rest of the 𝑥𝑖’s along with printing each one in the 

output Mathematica provides. The variable 𝑑 is created next which was defined in the 

last section. The print command tells Mathematica to list what 𝑑 is equal to. We then 

clear the variables 𝑟, 𝑠, and 𝑦 of any stored values they might have had. 𝑦[0] is the same 

as 𝑦0 in the previous section. The while loop that follows 𝑦[0] is the loop that creates 

𝑦𝑖’s until one of the two conditions are met. Once the while loop ends, Mathematica 

then prints the words “value of x.” Finally, the if statement that follows tells 

Mathematica that if it found a 𝑦𝑖 that matches 𝑥𝑛, print 𝑐 + 𝑑 − 𝑑𝑖, which is the value of 

𝑥. Otherwise, Mathematica will print “failed”, which means that the algorithm failed to 

solve the DLP. The next thing to do is to do more examples of solving the DLP, since we 

have a program that simulates the kangaroo algorithm now. 

 This first example will be from the cyclic group ℤ1,000,507
× . The primitive root for 

this group is 𝛼 = 2. We wish to solve the DLP 2𝑥 ≡ 3,000 (𝑚𝑜𝑑 1,000,507). When first 

running the program, the algorithm failed twice due to the fact the second condition of 

the algorithm did not get met. The third time running the program resulted in a success. 

The program found that 𝑥 = 72,339,521. When reducing this 𝑥 𝑚𝑜𝑑 1,000,506, we 

result in 𝑥 = 303,089. Upon checking, 2303,089 ≡ 3,000 (𝑚𝑜𝑑 1,000,507). The run 

time of this program for this particular example was only 7.34 seconds. Therefore, even 
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though there were two failures when running the program, the combined time for all 

failures and the success was only roughly 22 seconds. That is not bad at all. 

 The next example involves the cyclic group ℤ1,500,007
× . The primitive root for this 

group is 𝛼 = 3. We wish to solve the DLP 3𝑥 ≡ 1,250 (𝑚𝑜𝑑 1,500,007). This time, 

when running the program for the first time, we got a success. The program took only 

20.64 seconds to run. The value that we got for 𝑥 was 𝑥 = 137,811,996. Reducing 

𝑥 𝑚𝑜𝑑 1,500,007, 𝑥 = 1,311,450. Upon checking, we find 𝛼𝑥 = 31,311,450 ≡

1,250 (𝑚𝑜𝑑 1,500,007). 
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Chapter IV 

 

COMPARING TWO ALGORITHMS 

  

 In this section, we will now compare the baby step, giant step algorithm to the 

kangaroo algorithm. The first example that we will be comparing will be one that we 

looked at in chapter 2. The group is ℤ1,000,003
×  with primitive root 𝛼 = 2. We wish to 

solve the DLP 2𝑥 ≡ 4,000 (𝑚𝑜𝑑 1,000,003). When we performed the baby step, giant 

step algorithm in chapter 2 for this example, we found that 𝑥 = 877,142. This process 

took 43.42 seconds to complete. Now, when I ran the same example through the 

kangaroo algorithm program, the time was consistently around 8 to 10.5 seconds to 

complete the entire algorithm. These times are a lot better than the times for the baby 

step, giant step algorithm. This is due to the fact that the baby step, giant step algorithm 

is storage intensive to where the kangaroo algorithm is not. However, I ran this example 

through the kangaroo algorithm ten times and got a failure all ten times. In this case, 

the baby step, giant step algorithm was able to solve this example to where the 

kangaroo algorithm failed multiple times.  

 Another example we wish to look at is from the cyclic group ℤ10,000,019
× . Note 

that this was the third example we did in chapter 2. When we ran this example in the 

program for the baby step, giant step algorithm, the time it took to finish was 2,165.36 

seconds. The value of 𝑥 = 8,954,372, which solve the DLP. If you look at the time 

though, 2,165.36 seconds is a long time to just solve one DLP. Now we will compare the 
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kangaroo algorithm to the baby step, giant step algorithm using the same example. This 

time, when we ran the example through the program for the kangaroo algorithm, the 

time it took was only 355.58 seconds. That is way less than 2,156.36 seconds. 

Furthermore, it took only one time through the program to solve this example. The 

program ended up getting a value of 

𝑥 = 688,955,596 ≡ 8,954,372 (𝑚𝑜𝑑 10,000,018). This time, the kangaroo algorithm 

was a lot more efficient than the baby step giant step.  

 You may be asking why you can’t use the baby step, giant step algorithm all the 

time since using an 𝑛 = ��𝑝 − 1� + 1 will give you a success when using this algorithm. 

One reason why you should consider using the kangaroo algorithm is because the 

kangaroo algorithm isn’t storage intensive. You can solve DLP’s with much higher prime 

numbers with the kangaroo algorithm than you ever could with the baby step, giant 

step algorithm. Another reason is based on time. Even though the kangaroo algorithm 

can fail a lot more often due to the random walk with its algorithm, the time to solve 

DLP’s is a lot shorter than the baby step, giant step algorithm’s time to solve. 

 Another reason to consider using the kangaroo algorithm is because you do not 

need to limit yourself to the size of 𝑛 we have been dealing with. What if we wanted to 

decrease the size of 𝑛 so that the amount of storage and time we need decrease? For 

example, let 𝑛 = ��𝑝/2�. This will definitely decrease the amount of storage we need 

for the baby step, giant step algorithm. Now, let the group we use be ℤ1,000,033
×  with 

primitive root 𝛼 = 5. We wish to solve the DLP 5𝑥 ≡ 1,500 (𝑚𝑜𝑑 1,000,033) Now, the 
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modification that we have to make to the baby step, giant step program is that we 

change what 𝑛 is equal to. Once we change that, we will then put this example in like 

usual. The time that it took to run the baby step, giant step algorithm was only 20.59 

seconds, but no match was found between the two lists. This means that 𝑥 cannot be 

found using the baby step, giant step algorithm with this size 𝑛. This algorithm will 

always fail with this example. When we take this example and run it in the program for 

the kangaroo algorithm, there were 12 failures at first with times ranging from 9.5 to 

10.8 seconds. Upon running the program for the 13th time, a value of 𝑥 was found, 

which was 58,769,379 ≡ 767,523 (𝑚𝑜𝑑 1,000,032). Checking this, we get 𝛼𝑥 =

5767,523 ≡ 1,500 (𝑚𝑜𝑑 1,000,033). The 13th time took 9.8 seconds to complete. Even 

though there were a lot of failures, eventually the kangaroo algorithm solved the DLP to 

where the baby step, giant step did not.  

  



19 

 

Chapter V 

 

MODIFIED ALGORITHM 

 

 There have been some modifications to Pollard’s Kangaroo Algorithm over the 

years. The most famous ones involve increasing the number of kangaroos that the 

algorithm has, whether it be increasing the number of tame kangaroos or increasing the 

number of wild kangaroos the algorithm might have (Galbraith, 2013). Instead of 

increasing the number of kangaroos within the algorithm, we decided to keep two 

kangaroos, one tame and one wild, and keep the last two steps of the tame kangaroo 

instead of just the last step. In other words, the original algorithm states that you are to 

keep the last step of the tame kangaroo’s jump. You then compare the 𝑦𝑖’s to that last 

step to see if you get a match. Now, we will keep not only the last step but the second 

to last step as well. This means that we will be comparing the 𝑦𝑖’s to both of these steps 

instead of just the last step. So, instead of explaining the whole process again, the only 

additional step in this modified algorithm is to store 𝑥𝑛−1 as well as 𝑥𝑛. Then, every time 

you find a 𝑦𝑖, compare it to both of the ℎ values. If you get a match to either one, you 

are finished. If not, repeat the process for the next 𝑦𝑖. The algorithm still ends when one 

of the two conditions of the original kangaroo algorithm is met. 
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EXAMPLES OF THE MODIFIED ALGORITHM 

 

 For the first example, we are going to use the same example that was in chapter 

3 to start out with. The cyclic group is ℤ13× . Recall that the primitive root was 𝛼 = 2 and 

we chose our 𝛽 = 9. The value 𝑛 = �√12� + 1 = 4. The interval that we had was [0,6]. 

The pseudorandom mapping that was created was: 𝑓(1) = 3,𝑓(2) = 8,𝑓(3) =

9, 𝑓(4) = 2, 𝑓(5) = 11,𝑓(6) = 4,𝑓(7) = 7,𝑓(8) = 12,𝑓(9) = 7,𝑓(10) = 8, 

 𝑓(11) = 1,𝑓(12) = 11. The next thing we did was create all the 𝑥𝑖’s. We found that 

𝑥0 = 12, 𝑥1 = 6, 𝑥2 = 5, 𝑥3 = 9, 𝑥4 = 8. The next thing that is different is the value of 𝑑. 

This time, we have a 𝐷1 value which is the 𝑑 value for the 𝑥𝑛−1 step and 𝐷2 is the 𝑑 

value for the 𝑥𝑛 step. So, 𝐷1 = 26 and 𝐷2 = 33 Once the first list is computed, we keep 

𝑥3 = 9 and 𝑥4 = 8 to compare the 𝑦𝑖’s to. Remember that this time we stop the 

calculations of the 𝑦𝑖’s if either 𝑦𝑖 = 𝑥3 or 𝑦𝑖 = 𝑥4 or if 𝑑𝑖 > 𝑐 − 𝑏 + 𝑑 = 39. The 

starting value is 𝑦0 = 𝛽 = 9. We can automatically stop there since 𝑦0 = 𝑥3. So 

𝑥 = 𝑐 + 𝐷1 − 𝑑0 = 6 + 26 − 0 = 32 ≡ 8 (𝑚𝑜𝑑 12). If there was a match between a 𝑦𝑖 

and the last step 𝑥𝑛, we would have used 𝐷2 instead of 𝐷1 when finding 𝑥.  

 The Mathematica program that was created for this modified algorithm is almost 

exactly the same as the program for the kangaroo algorithm. However, there are a few 

minor changes to certain parts of the original program. The program for the modified 

algorithm is below. 
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Modified Kangaroo Algorithm 

Clear[ α, β, g, n, b, c, s, y, dt, h, f, a, d, d1, d2]; 
α =   ; 
β =   ; 
g =   ; 
n = Floor[ Sqrt[ g – 1 ] ] + 1; 
b = 0; 
c = Floor[ g/2 ]; 
f[t_] ≔ RandomInteger[ {1,g} ]; 
Do[ a[ t ] = f[ t ]; Print[ “a[“, t, “]=”, a[ t ] ], { t, g } ]; 
h[ 0 ] = Mod[ α^c, g ]; 
Print[“x_i’s” ]; 
d = 0; 
Do[ h[ j ] = Mod[ h[ j – 1 ] * α ^ ( a[ h[ j – 1 ] ] ), g ]; 
     Print[ “h[“ , j, “]=”, h[ j ] ], {j, n} ]; 
d1 = ∑ 𝑎�ℎ[𝑘]�;𝑘−2

𝑘=0  
d2 = ∑ 𝑎�ℎ[𝑘]�;𝑘−1

𝑘=0  
Print[ “d1 = “, d1 ]; 
Print[ “d2 = “, d2 ]; 
Clear[ r, s, y ]; 
y[ 0 ] = β; 
flag = 0; 
s = 1;  
Print[ “y_i’s and d_i’s” ];  
While[ ( flag == 0 ) && ( y[ s – 1 ] ≠ h[ n ] ) && ( y[ s – 1 ] ≠ h[ n – 1] ), 
     s + + ; 
     y[ s – 1 ] = Mod[ y[ s – 2 ] * α ^ ( a[ y[ s – 2 ] ] ), g]; 
    Print[ “y[“, s – 1, “]=”, y[s – 1] ]; 
    dt[ s – 1 ] =∑ 𝑎[𝑦[𝑖]]𝑠−2

𝑖=0 ; 
If[ dt[ s – 1 ] ≤ ( c – d + b ), flag = 0, flag = 1 ]; 
Print[ “dt[“, s – 1, “]=”, dt[ s – 1 ] ] ]; 
Print[ “value of x” ]; 
If[ y[ s – 1 ] == h[ n ], Print[ c + d2 – dt[ s – 1 ] ] ]; 
If[ y[ s – 1 ]== h[ n – 1 ], Print[ c + d1 – dt[ s – 1 ] ], Print[“failed”] ]; 

 

This program has the same explanation as the one we gave in chapter 3 until you get 

down to the values of 𝐷1 and 𝐷2. The reason we must compute two different 𝑑 values 
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instead of just one is because we are keeping two steps of the tame kangaroo instead of 

one now. Once you get past that part of the program, it continues the same way until 

you hit the while loop. Since we now have to check to make sure the 𝑦𝑖’s do not match 

𝑥𝑛 also, we have to put another && check statement inside the while loop. Finally, the 

program continues on as usual until you get to the last two statements. The first 

statement tells you that if the 𝑦𝑖 = 𝑥𝑛, print what 𝑥 equals. The second one tells you if 

the 𝑦𝑖 = 𝑥𝑛−1, print what 𝑥 equals. Otherwise, the program prints failed. 

 Now that the program has been explained, we will run through an example 

coming from ℤ1,000,003
×  with primitive root 𝛼 = 2. We wish to solve the DLP 2𝑥 ≡

269 (𝑚𝑜𝑑 1,000,003). The first five times of running the modified program resulted in 

a failure. The 6th time running it resulted in a success. It took 9.67 seconds for the 

program to get an 𝑥 = 279,617,009 ≡ 616,451 (𝑚𝑜𝑑 1,000,003). Checking this, we 

get 𝛼𝑥 = 2616,451 ≡ 269 (𝑚𝑜𝑑 1,000,003).  

 Now we will revisit the example from chapter 4 where the kangaroo algorithm 

failed ten times before we quit trying to find a solution. The group was ℤ1,000,013
×  with 

primitive root 𝛼 = 2. We wish to solve the DLP 2𝑥 ≡ 4,000 (𝑚𝑜𝑑 1,000,013) by trying 

to run this example through the modified algorithm. Again, like the kangaroo algorithm, 

the modified algorithm failed to solve this DLP. Note that even though both programs 

failed to solve this DLP, theoretically the modified version of the kangaroo algorithm 

should solve more problems than the original kangaroo algorithm. This is due to the fact 

that not only does the modified algorithm compare each 𝑦𝑖 to the 𝑥𝑛, just like the 

original kangaroo algorithm, it also compares each 𝑦𝑖 to the 𝑥𝑛−1. This means that the 
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modified algorithm has twice as many chances to find a solution than the original 

algorithm does.  
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Chapter VI 

 

CONCLUSION 

 

 The three algorithms presented within this paper are only some out of many 

ways to solve the discrete algorithm problem. Some are more efficient than the ones 

discussed, and some are not. It is up to the type of DLP you wish to solve to determine 

which method is the most effective and reliable to use when dealing with these 

problems. Also, you can certainly take an already existing algorithm and modify it to see 

how it affects the effectiveness of the overall process, like we did with the modified 

version of the kangaroo algorithm. The ideas are limitless.  
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 This appendix is here to show all of the Mathematica commands used 

throughout this paper. In addition this appendix give formats you would have to use in 

order to use these commands in Mathematica.  

Array[ f, n, r ]  

- This array command generates a list of lenth n using the starting point of r with 

elements f[i]. 

Clear[ symbol_1, symbol_2, … ] 

- Clears all values and definitions for each symbol specified within the Clear[] 

command. 

DateList[] 

- This gives the current local time and date in the form of { year, month, day, hour, 

minute, second}. 

Do[ expression, { i, imin, imax } ] 

- This tells you to evaluate the expression with variable i from imin to imax.  

Floor[n] 

- Performs the floor function on n. 

If[ condition, t, f ] 

- This gives the output of t if the condition is true and an output of f if the 

condition is false. 

Mod[ m, n ] 

- This gives the remainder on division of m by n. 
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NextPrime[n] 

- This gives the next prime number after the number n specified, 

PowerMod[ a, – 1 , m ] 

- This finds the modular inverse of a mod m. 

PrimitiveRoot[n] 

- This gives the smallest primitive root of the specified n. 

Print[] 

- Prints whatever you write within the brackets in the output. 

RandomInteger[ { imin, imax } ] 

- This gives a pseudorandom integer in the range specified. 

Sqrt[n] 

- This gives the square root of n. 

While[ test, body ] 

- This loop evaluates whatever is in the test, then the body, repetitively, until the 

test first fails to give a true statement. 
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 Appendix B is here to show some of the output that Mathematica printed when 

running the examples throughout the paper. An example from each program will be 

listed below, along with what Mathematica prints when you run the example with the 

program. 

Example for the Baby Step, Giant Step Program 

- This example is for the group ℤ1,000,013
×  where we wished to solve the DLP 

2𝑥 ≡ 4,000. When put into the baby step, giant step program, Mathematica 

prints the following: 

f[0]=1 
f[1]=2 
f[2]=4 
f[3]=8 

 . 
 . 
 . 

f[997]=813833 
f[998]=627663 
f[999]=255323 
f[1000]=510646 
h[876]=408096 
x=877142 
Difference in seconds: 44.0754184 
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Example for the Kangaroo Algorithm Program 
 

- This example is for the group ℤ1,000,507
×  where we wished to solve the DLP 

2𝑥 ≡ 3,000 (𝑚𝑜𝑑 1,000,507). When put into the kangaroo algorithm program, 

Mathematica prints the following: 

x_i's 
h[1]=793966 
h[2]=662920 
h[3]=27923 
. 
. 
. 
h[999]=240407 
h[1000]=21551 
h[1001]=837242 
d= 502131756 
y_i's and d_i's 
y[1]= 928917 
dt[1]= 42256 
y[2]= 653373 
dt[2]= 448240 
. 
. 
. 
y[880]= 21551 
dt[880]= 429608346 
y[881]= 837242 
dt[881]= 430292488 
value of x 
72339521 
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Example of the Modified Program 

- This example is for the group ℤ1,000,003
×  where we wished to solve the DLP 

2𝑥 ≡ 4,000 (𝑚𝑜𝑑 1,000,003). When put into the modified program, 

Mathematica prints the following: 

x_i's 
h[1]=765027 
h[2]=163213 
h[3]=399728 
 . 
 . 
 .  
h[999]=903447 
h[1000]=646019 
h[1001]=373658 
d1= 496588904 
d2= 496742024 
y_i's and d_i's 
y[1]= 68893 
dt[1]= 886604 
y[2]= 181220 
dt[2]= 1340191 
. 
. 
. 
y[540]= 163051 
dt[540]= 260521290 
y[541]= 57004 
dt[541]= 261505971 
value of x 
failed 
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