
Eastern Kentucky University
Encompass

Online Theses and Dissertations Student Scholarship

January 2014

Algorithms for Solving the Discrete Logarithm
Problem
Ryan Edward Whaley
Eastern Kentucky University

Follow this and additional works at: https://encompass.eku.edu/etd

Part of the Mathematics Commons

This Open Access Thesis is brought to you for free and open access by the Student Scholarship at Encompass. It has been accepted for inclusion in
Online Theses and Dissertations by an authorized administrator of Encompass. For more information, please contact Linda.Sizemore@eku.edu.

Recommended Citation
Whaley, Ryan Edward, "Algorithms for Solving the Discrete Logarithm Problem" (2014). Online Theses and Dissertations. 235.
https://encompass.eku.edu/etd/235

https://encompass.eku.edu?utm_source=encompass.eku.edu%2Fetd%2F235&utm_medium=PDF&utm_campaign=PDFCoverPages
https://encompass.eku.edu/etd?utm_source=encompass.eku.edu%2Fetd%2F235&utm_medium=PDF&utm_campaign=PDFCoverPages
https://encompass.eku.edu/ss?utm_source=encompass.eku.edu%2Fetd%2F235&utm_medium=PDF&utm_campaign=PDFCoverPages
https://encompass.eku.edu/etd?utm_source=encompass.eku.edu%2Fetd%2F235&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=encompass.eku.edu%2Fetd%2F235&utm_medium=PDF&utm_campaign=PDFCoverPages
https://encompass.eku.edu/etd/235?utm_source=encompass.eku.edu%2Fetd%2F235&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:Linda.Sizemore@eku.edu

Algorithms for Solving the Discrete Logarithm Problem

By

Ryan Whaley

Bachelor of Science
Eastern Kentucky University

Richmond, Kentucky
2012

Submitted to the Faculty of the Graduate School of
Eastern Kentucky University

in partial fulfillment of the requirements
for the degree of

MASTER OF SCIENCE
May, 2014

ii

Copyright © Ryan Whaley, 2014
All rights reserved

iii

DEDICATION

This thesis is dedicated to my fiancée, Kristin Eppinghoff, for always supporting me
through everything that I do.

iv

ACKNOWLEDGMENTS

I would like to give thanks to Dr. Pat Costello for working with me on this thesis, and his

great patience. I would also like to thank the other two committee members, Dr. Jeffrey

Neugebauer and Dr. Mathew Cropper, for their support and opinions. The last of the

people I would like to thank would be all of the wonderful faculty members of the EKU

mathematics and statistics department. I would not be where I am today if it weren't for

them.

v

ABSTRACT

In mathematics, there are often many procedures to solve or prove the same

problem. The discrete logarithm is one of these problems. The baby step, giant step

algorithm and Pollard’s kangaroo algorithm are two algorithms that attempt to solve

discrete logarithm problems. Explanations on what these two algorithms are will be

discussed as well as examples of each algorithm. In addition to these two algorithms, a

modified form of Pollard’s kangaroo algorithm will be provided with results. Throughout

the text, Mathematica programs will be presented that simulate each of the three

algorithms above.

vi

TABLE OF CONTENTS

CHAPTER PAGE

I. Introduction ... 1

 Discrete Logarithm Problem .. 1

 Applications for the DLP .. 3

II. Baby Step, Giant Step .. 5

 Examples of Baby Step, Giant Step .. 6

III. Pollard's Kangaroo Algorithm .. 10

 Examples of the Kangaroo Algorithm .. 11

IV. Comparing Two Algorithms ... 16

V. Modified Algorithm ... 19

 Examples of the Modified Algorithm ... 20

VI. Conclusion ... 24

List of References .. 25

Appendices .. 26

A. Mathematica Commands ... 26

B. Mathematica Example Output... 29

1

Chapter I

INTRODUCTION

In mathematics, there are often many procedures to solve or prove the same

problem. The discrete logarithm problem is one of these problems. Within this paper,

two algorithms will be discussed that solve the discrete logarithm problem. This paper

will also discuss the programs created to simulate these two algorithms. Examples and

comparisons of each algorithm will also be provided. Finally, a comparison between the

two algorithms will be shown as well as a modified version of the second program.

Throughout the text, you will see many examples that do not show all of the output. The

complete output will be in Appendix B at the end of this paper. Also, many Mathematica

commands were used within the programs. Explanations for more uncommon

commands will be in Appendix A.

DISCRETE LOGARITHM PROBLEM

Let 𝑝 be a prime number and let 𝛼,𝛽 ∈ ℤ𝑝×. Let 𝛽 ≡ 𝛼𝑥 (𝑚𝑜𝑑 𝑝). Then the

process of solving for 𝑥 is called the discrete logarithm problem (DLP for short). We

restrict ourselves to 0 ≤ 𝑥 < 𝑛 where n is the smallest positive exponent such that

𝛼𝑥 ≡ 1 (𝑚𝑜𝑑 𝑝). In the case of 𝑝 being prime, 𝑝 − 1 would be the smallest 𝑛.

Otherwise, we could have multiple values for 𝑥 (𝑚𝑜𝑑 𝑝 − 1).

2

The way to restrict 𝑥 between 0 and 𝑛 would be to use a proposition that says if

𝑟 ≡ 𝑠 (𝑚𝑜𝑑 𝑝 − 1), where 𝑟, 𝑠 ∈ ℤ+, then 𝑎𝑟 ≡ 𝑎𝑠 (𝑚𝑜𝑑 𝑝) for all 𝑎 ∈ ℤ. Fermat’s

Little Theorem is used to prove this propostion. Fermat’s Little Theorem says if 𝑝 is

prime, then 𝑎𝑝−1 ≡ 1(𝑚𝑜𝑑 𝑝) for 𝑎 ≥ 1 and where 𝑝 ∤ 𝑎 (Fermat’s Little Theorem,

2014). The proof to the proposition is as follows: Suppose 𝑟 ≡ 𝑠 (𝑚𝑜𝑑 𝑝 − 1). Then

𝑟 = 𝑏(𝑝 − 1) + 𝑠 for some integer 𝑏. Then 𝑎𝑟 = 𝑎𝑏(𝑝−1)+𝑠 = (𝑎𝑝−1)𝑏 ∙ 𝑎𝑠. By Fermat’s

Little Theorem,

 (𝑎𝑝−1)𝑏 ≡ 1𝑏. So, 𝑎𝑟 = (𝑎𝑝−1)𝑏 ∙ 𝑎𝑠 = 1𝑏 ∙ 𝑎𝑠 ≡ 𝑎𝑠(𝑚𝑜𝑑 𝑝). Hence, 𝑎𝑟 ≡

𝑎𝑠 (𝑚𝑜𝑑 𝑝).

Now, the value of 𝛼 in the DLP is usually assigned to be a primitive root so that

there is a solution for every 𝛽 ∈ ℤ𝑝×. An element 𝛼 ∈ 𝐺 is a primitive root, or generator,

of 𝐺 when the powers of 𝛼 result in every non-zero element within the group 𝐺. So in

the DLP, we have a solution for every 𝛽 since 𝛽 is nonzero and a power of 𝛼. If we were

to restrict ourselves to any 𝛼 ∈ ℤ𝑝, there would be no solution to the discrete logarithm

problem for certain 𝛽 (Trappe & Washington, 2006). Within Mathematica, there is a

command called PrimitiveRoot[n] where Mathematica will provide you with the

primitive root for any integer 𝑛, provided a primitive root is defined for that particular 𝑛.

In the examples of the algorithms that will be discussed later, 𝑛 will be prime, which will

always have a primitive root.

3

APPLICATIONS FOR THE DLP

One of the most widely used applications of the discrete logarithm problem is in

the field of public key cryptography. More specifically, we will look at the Diffie-Hellman

key exchange. Say two people want to share a message with each other, but they want

to make sure the message is kept secret. Let us say the encoding key is 𝑧. First, both

people decide on a prime 𝑝 and a primitive root 𝛼 for, in our case, ℤ𝑝×. These two things

are made public. Person A, for some 𝑥 ∈ ℤ+, calculates 𝛼𝑥(𝑚𝑜𝑑 𝑝) ≡ 𝑔 and 𝑔 ∈ ℤ𝑝×

where 𝑥 is not public. Person A then sends the solution 𝑔 to person B. Person B does the

same thing except person B calculates 𝛼𝑦(𝑚𝑜𝑑 𝑝) ≡ ℎ for some 𝑦 ∈ ℤ+ and ℎ ∈

ℤ𝑝× where 𝑦 is not public. Note that 𝑥 and 𝑦 are both large. Person B then sends that

solution ℎ to person A. Now, Person A simply has to calculate ℎ𝑥(𝑚𝑜𝑑 𝑝) ≡ 𝑧 and

person B has to calculate 𝑔𝑦(𝑚𝑜𝑑 𝑝) ≡ 𝑧. This works since ℎ𝑥(𝑚𝑜𝑑 𝑝) ≡ (𝛼𝑦)𝑥 =

(𝛼𝑥)𝑦 ≡ 𝑔𝑦(𝑚𝑜𝑑 𝑝). Hence, both people received the message. How does one on the

outside find the secret message then?

For someone on the outside who does not know the values of 𝑥 and 𝑦, the only way

they could figure out the secret code, 𝑧, is to solve the DLP. They would have to find the

𝑥 such that 𝛼𝑥 ≡ 𝑔 (𝑚𝑜𝑑 𝑝), or they would have to find the 𝑦 such that

𝛼𝑦 ≡ ℎ (𝑚𝑜𝑑 𝑝). Only then will the outside person be able to find the secret message

𝑧 ≡ (𝛼𝑥)𝑦 (𝑚𝑜𝑑 𝑝). When 𝑥 and 𝑦 are very large, the DLP becomes very difficult to

solve (Das, 2013).

4

Other applications for the DLP come into play when you look at elliptic-curves

and extension fields of odd characteristic 𝑝. These will not be discussed in this paper.

5

Chapter II

BABY STEP, GIANT STEP

Let ℤ𝑝× be a finite cyclic group mod 𝑝. Suppose that we wish to solve 𝛼𝑥 ≡

𝛽 (𝑚𝑜𝑑 𝑝) where 𝛼,𝛽 ∈ ℤ𝑝×, 𝑥 ∈ ℤ+, and 𝑥 < 𝑝 − 1. The baby step, giant step

algorithm starts out with choosing an 𝑛 ∈ ℤ such that 𝑛2 ≥ 𝑝 − 1. For all of the

examples of this algorithm, 𝑛 = ��𝑝 − 1� + 1. Next, you make two lists. The first list

contains all 𝑓(𝑗) = 𝛼𝑗 (𝑚𝑜𝑑 𝑝) for 0 ≤ 𝑗 < 𝑛. Once you compute all 𝑓(𝑗), you then

start making the second list. The second list contains all ℎ(𝑘) = 𝛽𝛼−𝑛𝑘 (𝑚𝑜𝑑 𝑝) for

0 ≤ 𝑘 < 𝑛. You only compute values for ℎ(𝑘) until you have found a match when you

compare the ℎ(𝑘) value just computed to each 𝑓(𝑗) in the first list. Once you find a

match, you stop constructing the second list. Suppose you find a match, say 𝛼𝑟 ≡

𝛽𝛼−𝑛𝑠 (𝑚𝑜𝑑 𝑝). Then 𝛼𝑟+𝑛𝑠 ≡ 𝛽. Thus 𝑟 + 𝑛𝑠 = 𝑥, which solves the discrete logarithm

problem (Trappe, 2006). If you exhaust all ℎ(𝑘) with no match to any 𝑓(𝑗), the

algorithm fails.

The baby step, giant step algorithm needs a lot of storage to run. Notice that when you

run this algorithm, you need to store all of the first list so that you can compare the

second list to it. Now, 0 ≤ 𝑗 < 𝑛 which means that for the first list alone, you must store

𝑛 values. This does not include the values you will need to store for other operations

within the algorithm. At the very least, you will have to store 𝑛 values. For large values

6

of 𝑝, this algorithm is very impractical. It is limited based on the storage the computer

has and how long it takes the computer to get through both lists. The following

examples in the next section will demonstrate this idea.

EXAMPLES OF BABY STEP, GIANT STEP

This first example is here to demonstrate how the baby step, giant step

algorithm works. For this particular example, we use the group ℤ7× with primitive root

𝛼 = 3. We will also choose 𝛽 = 5. Then 𝑛 = �√6� + 1 = 3. So, 0 ≤ 𝑗, 𝑘 < 3. We then

start computing the first list. 𝑓(0) = 30(𝑚𝑜𝑑 7) ≡ 1,𝑓(1) = 31(𝑚𝑜𝑑 7) ≡

3, and 𝑓(2) = 32(𝑚𝑜𝑑 7) ≡ 2. Once the first list is made, start the second list.

ℎ(0) = 5 ∗ 3−7∗3∗0(𝑚𝑜𝑑 7) ≡ 5. This one doesn’t match any of the 𝑓(𝑗), so we keep

going. ℎ(1) = 5 ∗ 3−7∗3∗1(𝑚𝑜𝑑 7) ≡ 2. This time, ℎ(1) = 𝑓(2). Hence, 𝑥 = 2 + 3 ∗

1 (𝑚𝑜𝑑 6) ≡ 5. Thus, we stop constructing the second list. To check ourselves, we see

that 𝛼𝑥 = 35 = 243 ≡ 5 (𝑚𝑜𝑑 7), which was our 𝛽. Hence, we found a solution.

The following is a program written in Mathematica to perform the baby step,

giant step algorithm:

7

Baby Step, Giant Step Program

Clear[g, f, a, α, β, j, k, b, c, x, y];
z = DateList[];
g = ;
α = ;
β = ;
n = Floor[Sqrt[g-1]] + 1;
Array[f, n – 1, 0];
Array[h, n – 1, 0];
b = PowerMod[α, – 1, g];
j = 0;
k = 0;
flag = 0;
While[j < n, f[j] = Mod[α ^ j, g]; Print[“f[“, j, “]=”, f[j]]; j++];
While[(k < n) && (flag == 0), h[k] = Mod[β * b^ (n * k), g]; For[j = 0, j < n,
 j++, If[h[k] == f[j], flag = 1; Print[“h[“, k, “]=”, h[k]]; x = j + n *k]]; k++;
y = DateList[];
If[flag == 0, Print[“Did not match”]];
If[flag == 1, Print[“x=”, z]];
Print[“Difference in seconds: “, Last[y] – Last[z]];

The program statements above start out by clearing all the variable assignments

Mathematica might have stored. The two DateList[] commands are in the program to

record the time before the program started to run and the time after the program was

finished running. You start out by filling in what 𝑔 you want to have where 𝑔 is the order

of the group ℤ𝑝×. You then fill in the primitive root 𝛼 and whichever 𝛽 you want to have

where 𝛽 ∈ ℤ𝑝×. The 𝑛 in the program is the same 𝑛 that was discussed in the previous

section. The two arrays create storage space so that while the program is running, it can

store those values it computes for each 𝑓 and ℎ. We start the program at 𝑗,𝑘 = 0. The

heart of the program lies in the while loop commands. The first while loop goes through

8

each 𝑗 < 𝑛 and computes what 𝑓(𝑗) is, prints that 𝑓(𝑗) value, and then stores that value

inside the array. Note that printing the 𝑓(𝑗) could be removed. Once the program

computes all 𝑓, the second while loop starts computing 𝑔’s for the second list. For each

𝑘 < 𝑛, the program then compares each ℎ(𝑘) to all values of 𝑓 to see if there is a

match. If there is a match, the program outputs the answer to the DLP. If no match

occurs, the program proceeds to the next 𝑘. The program keeps doing this until all of

the ℎ(𝑘) are exhausted, or when it has found a match. If there are no matches found,

we have failed to solve the DLP. If a match was found, we have a solution. The last line

of code will tell us how long it took the program to perform the baby step, giant step

algorithm for the particular group, 𝛼, and 𝛽 we chose. This comes into play later.

Now that the program that simulates the baby step, giant step algorithm has

been introduced, we will now go through some examples that involve much larger

groups of prime order that we would not want to do by hand. This example will be from

the cyclic group ℤ1,000,003
× . This group has a primitive root 𝛼 = 2, and we would like to

make 𝛽 = 4,000. Note that I used Mathematica’s NextPrime[] function to get the next

prime above 1,000,000. Then I used Mathematica’s PrimitiveRoot[] function to find the

primitive root of that prime. So, we would like to use the baby step, giant step algorithm

to solve the DLP 2𝑥 ≡ 4,000 (𝑚𝑜𝑑 1,000,003). When I put these values into the

Mathematica program above, it took the baby step, giant step algorithm 43.42 seconds

to compute the value of 𝑥. The program was run on an HP ENVY m6 Notebook with an

Intel Core i5 processor and 8 gigs of RAM. For all other examples, this same computer

will be used to run the programs. The value of 𝑥 that solves the DLP is 877,142.

9

Another example involves a larger group to show how much longer it takes the

baby step, giant step program to compute the value of x. The cyclic group this time is

ℤ10,000,019
× . The primitive root for this group is 6, so 𝛼 = 6. Also, we will assign 𝛽 = 256.

This example will require solving the DLP 6𝑥 ≡ 256 (𝑚𝑜𝑑 10,000,019). This time

around, it took Mathematica 2,165.36 seconds to compute the value of 𝑥. The value

of 𝑥 that solves this DLP is 8,954,372. As you can see, just adding an extra digit has

increased the time to compute a huge amount. This shows the idea that the baby step,

giant step algorithm very well depends on your computer’s memory and running

capability.

10

Chapter III

POLLARD’S KANGAROO ALGORITHM

For Pollard’s kangaroo algorithm, we are going to let ℤ𝑝× be a finite cyclic group

mod 𝑝 just like in the baby step, giant step algorithm. Also, suppose we wish to solve

𝛼𝑥 ≡ 𝛽 (𝑚𝑜𝑑 𝑝) where 𝛼,𝛽 ∈ ℤ𝑝×, 𝑥 ∈ ℤ+, and 𝑥 < 𝑝 − 1. For the sake of comparison

later, we will be choosing the same 𝑛 as we did for the baby step, giant step algorithm.

So, 𝑛 = ��𝑝 − 1� + 1. Within this paper, we will be using an interval {𝑏, … , 𝑐} ⊂ ℤ𝑝𝑋

such that 𝑏 = 0 and 𝑐 = �𝑝
2
�, where 𝛼𝑐 (𝑚𝑜𝑑 𝑝) is where the first list we will calculate

will come from (Galbraith, 2013). Note that we could use the interval {0, … ,𝑝 − 1} but

the point of this algorithm is to try to solve the DLP more efficiently. Increasing this

interval will increase the time it takes for this algorithm to solve the DLP. The downside

to decreasing this interval is that a smaller interval invites more failures to occur when

you use the kangaroo algorithm. The next thing to set up is a pseudorandom walk. This

random walk is what drives the kangaroo algorithm. For each 𝑟 ∈ ℤ𝑝×, you pair a random

integer so that you get a map 𝑓:ℤ𝑝× → 𝑆 where 𝑆 is the set of random integers created.

Now, there are two lists that we start computing. One is called the “tame

kangaroo” and the other is called the “wild kangaroo.” The “tame kangaroo” will be all

𝑥𝑖 such that 𝑖 ∈ {0,1, … ,𝑛 − 1}. The value of 𝑥𝑜 = 𝛼𝑐 and all other 𝑥𝑖+1 = 𝑥𝑖𝛼𝑓(𝑥𝑖).

Note that the first value of the first list starts with the primitive root raised to the middle

11

element of the group we are in. The next thing to compute is 𝑑 = ∑ 𝑓(𝑥𝑖)𝑛−1
𝑖=0 . This adds

up all of the random integers that the original group elements were mapped to with the

pseudorandom mapping. Now that the first list was made, you start constructing a

second list, or the “wild kangaroo.” This time, the first step is 𝑦0 = 𝛽. For every step

afterward, 𝑦𝑖+1 = 𝑦𝑖𝛼𝑓(𝑦𝑖). Just like with the 𝑥𝑖’s, we then form a 𝑑𝑛 = ∑ 𝑓(𝑦𝑖)𝑛−1
𝑖=0

which sums up the random integers used when computing 𝑓(𝑦𝑖) for each 𝑖.

We keep creating 𝑦𝑖’s until one of two conditions are met. The first condition is that the

algorithm finds 𝑦𝑗 = 𝑥𝑛 for some 𝑗. If this happens, we have found a solution to the DLP

and 𝑥 = 𝑐 + 𝑑 − 𝑑𝑗. The second condition to check for would be if 𝑑𝑖 > 𝑐 − 𝑏 + 𝑑. If

this happens, the algorithm fails to find the 𝑥 (“Pollard’s kangaroo algorithm”, 2014).

When this happens, you must rerun the algorithm again with a different pseudorandom

walk to see if the algorithm is successful. Note that unlike the baby step, giant step

algorithm, you only need to store the last step in the first list, 𝑥𝑛. You then compare

every 𝑦𝑖 to that one value. This algorithm is much more efficient in the aspect that very

little storage space is required. Therefore, you don’t have as much of a time or resource

constraint that you did with the previous algorithm with the kangaroo algorithm.

EXAMPLES OF THE KANGAROO ALGORITHM

 An example of the DLP will now be demonstrated that uses the kangaroo

algorithm. This first example will walk you through a simple example that can easily be

12

done by hand. Suppose that we are working in the cyclic group ℤ13× . The primitive root

for this group is 𝛼 = 2 and we choose our 𝛽 = 9. Then 𝑛 = �√12� + 1 = 4. The interval

that is created is [0,6]. The pseudorandom mapping that was created is as follows:

𝑓(1) = 3,𝑓(2) = 8,𝑓(3) = 9,𝑓(4) = 2,𝑓(5) = 11,𝑓(6) = 4,𝑓(7) = 7,𝑓(8) =

12,𝑓(9) = 7,𝑓(10) = 8,𝑓(11) = 1,𝑓(12) = 11. The next thing to do is to create all of

the 𝑥𝑖’s for 𝑖 = 1, … ,𝑛. 𝑥0 = 𝛼𝑏 (𝑚𝑜𝑑 13) = 26 (𝑚𝑜𝑑 13) ≡ 12. Then 𝑥1 = 𝑥0 ∗

𝛼𝑓(𝑥0) (𝑚𝑜𝑑 13) = 12 ∗ 211 (𝑚𝑜𝑑 13) ≡ 6. Continuing the same recursive formula for

the other three 𝑥𝑖’s, we get 𝑥2 = 5, 𝑥3 = 9, and 𝑥4 = 8. We compute the 𝑑 value as

𝑑 = 𝑓(𝑥0) + 𝑓(𝑥1) + 𝑓(𝑥2) + 𝑓(𝑥3) = 11 + 4 + 11 + 7 = 33. Now that these are

computed, we will now compute the 𝑦𝑖’s. Remember, we stop the calculations when

either we find 𝑦𝑖 = 𝑥𝑛 or if 𝑑𝑖 > 𝑏 − 𝑎 + 𝑑 = 6 − 0 + 33 = 39. The beginning value is

𝑦0 = 𝛽 = 9. Then 𝑦1 = 𝑦0 ∗ 𝑎𝑓(𝑦0) (𝑚𝑜𝑑 13) = 9 ∗ 27 (𝑚𝑜𝑑 13) ≡ 8 and 𝑑1 =

𝑓(𝑦0) = 7. We found a match between 𝑦1 and 𝑥4. Thus 𝑥 = 𝑏 + 𝑑 − 𝑑1 = 6 + 33 −

7 = 32 (𝑚𝑜𝑑 12) ≡ 8. Checking ourselves, we see that 𝛼𝑥 = 28 = 256 ≡ 9 (𝑚𝑜𝑑 13).

 As you can see from the example above, there are quite a few calculations that

are involved with this algorithm, and this example was with a small group. Imagine the

amount of calculations one would have to do in order to solve a DLP for a larger group.

That is why I created a program through Mathematica that will simulate Pollard’s

kangaroo algorithm without having to do the calculations by hand. The program is as

follows:

13

Pollard’s Kangaroo Algorithm

Clear[α, β, g, n, b, c, s, y, dt, h, f, a, d];
α = ;
β = ;
g = ;
n = Floor[Sqrt[g – 1]] + 1;
b = 0;
c = Floor[g/2];
f[t_] ≔ RandomInteger[{1,g}];
Do[a[t] = f[t]; Print[“a[“, t, “]=”, a[t]], { t, g }];
h[0] = Mod[α^c, g];
Print[“x_i’s”];
d = 0;
Do[h[j] = Mod[h[j – 1] * α ^ (a[h[j – 1]]), g];
 Print[“h[“ , j, “]=”, h[j]]; d = d + a[h[j – 1]], {j, n}];
Print[“d = “, d];
Clear[r, s, y];
y[0] = β;
flag = 0;
s = 1;
Print[“y_i’s and d_i’s”];
While[(flag == 0) && (y[s – 1] ≠ h[n]),
 s + + ;
 y[s – 1] = Mod[y[s – 2] * α ^ (a[y[s – 2]]), g];
 Print[“y[“, s – 1, “]=”, y[s – 1]];
 dt[s – 1] =∑ 𝑎[𝑦[𝑖]]𝑠−2

𝑖=0 ;
If[dt[s – 1] ≤ (c – d + b), flag = 0, flag = 1];
Print[“dt[“, s – 1, “]=”, dt[s – 1]]];
Print[“value of x”];
If[y[s – 1] == h[n], Print[c + d – dt[s – 1]], Print[“failed”]];

The program starts out by clearing all of the variables so that nothing is stored for those

variables each time you run the program. You then specify the values of 𝛼,𝛽, and 𝑔

where these variables are the same as the variables in the baby step, giant step

program. The value of 𝑛 is then created along with 𝑏 and 𝑐. The function 𝑓 is used to call

upon random integers between 1 and 𝑔. The do loop comes after. This assigns the

14

function 𝑎 to actually be the pseudorandom walk. This creates 𝑎(1), … ,𝑎(𝑔) by using

values of the function 𝑓. Once those are created, we start constructing the lists. The

function ℎ represents the 𝑥𝑖’s that were explained in the kangaroo algorithm in the

previous section. So ℎ[0] = 𝑥0. The program then tells you to print the words “x_i’s”.

The do loop that follows creates the rest of the 𝑥𝑖’s along with printing each one in the

output Mathematica provides. The variable 𝑑 is created next which was defined in the

last section. The print command tells Mathematica to list what 𝑑 is equal to. We then

clear the variables 𝑟, 𝑠, and 𝑦 of any stored values they might have had. 𝑦[0] is the same

as 𝑦0 in the previous section. The while loop that follows 𝑦[0] is the loop that creates

𝑦𝑖’s until one of the two conditions are met. Once the while loop ends, Mathematica

then prints the words “value of x.” Finally, the if statement that follows tells

Mathematica that if it found a 𝑦𝑖 that matches 𝑥𝑛, print 𝑐 + 𝑑 − 𝑑𝑖, which is the value of

𝑥. Otherwise, Mathematica will print “failed”, which means that the algorithm failed to

solve the DLP. The next thing to do is to do more examples of solving the DLP, since we

have a program that simulates the kangaroo algorithm now.

 This first example will be from the cyclic group ℤ1,000,507
× . The primitive root for

this group is 𝛼 = 2. We wish to solve the DLP 2𝑥 ≡ 3,000 (𝑚𝑜𝑑 1,000,507). When first

running the program, the algorithm failed twice due to the fact the second condition of

the algorithm did not get met. The third time running the program resulted in a success.

The program found that 𝑥 = 72,339,521. When reducing this 𝑥 𝑚𝑜𝑑 1,000,506, we

result in 𝑥 = 303,089. Upon checking, 2303,089 ≡ 3,000 (𝑚𝑜𝑑 1,000,507). The run

time of this program for this particular example was only 7.34 seconds. Therefore, even

15

though there were two failures when running the program, the combined time for all

failures and the success was only roughly 22 seconds. That is not bad at all.

 The next example involves the cyclic group ℤ1,500,007
× . The primitive root for this

group is 𝛼 = 3. We wish to solve the DLP 3𝑥 ≡ 1,250 (𝑚𝑜𝑑 1,500,007). This time,

when running the program for the first time, we got a success. The program took only

20.64 seconds to run. The value that we got for 𝑥 was 𝑥 = 137,811,996. Reducing

𝑥 𝑚𝑜𝑑 1,500,007, 𝑥 = 1,311,450. Upon checking, we find 𝛼𝑥 = 31,311,450 ≡

1,250 (𝑚𝑜𝑑 1,500,007).

16

Chapter IV

COMPARING TWO ALGORITHMS

 In this section, we will now compare the baby step, giant step algorithm to the

kangaroo algorithm. The first example that we will be comparing will be one that we

looked at in chapter 2. The group is ℤ1,000,003
× with primitive root 𝛼 = 2. We wish to

solve the DLP 2𝑥 ≡ 4,000 (𝑚𝑜𝑑 1,000,003). When we performed the baby step, giant

step algorithm in chapter 2 for this example, we found that 𝑥 = 877,142. This process

took 43.42 seconds to complete. Now, when I ran the same example through the

kangaroo algorithm program, the time was consistently around 8 to 10.5 seconds to

complete the entire algorithm. These times are a lot better than the times for the baby

step, giant step algorithm. This is due to the fact that the baby step, giant step algorithm

is storage intensive to where the kangaroo algorithm is not. However, I ran this example

through the kangaroo algorithm ten times and got a failure all ten times. In this case,

the baby step, giant step algorithm was able to solve this example to where the

kangaroo algorithm failed multiple times.

 Another example we wish to look at is from the cyclic group ℤ10,000,019
× . Note

that this was the third example we did in chapter 2. When we ran this example in the

program for the baby step, giant step algorithm, the time it took to finish was 2,165.36

seconds. The value of 𝑥 = 8,954,372, which solve the DLP. If you look at the time

though, 2,165.36 seconds is a long time to just solve one DLP. Now we will compare the

17

kangaroo algorithm to the baby step, giant step algorithm using the same example. This

time, when we ran the example through the program for the kangaroo algorithm, the

time it took was only 355.58 seconds. That is way less than 2,156.36 seconds.

Furthermore, it took only one time through the program to solve this example. The

program ended up getting a value of

𝑥 = 688,955,596 ≡ 8,954,372 (𝑚𝑜𝑑 10,000,018). This time, the kangaroo algorithm

was a lot more efficient than the baby step giant step.

 You may be asking why you can’t use the baby step, giant step algorithm all the

time since using an 𝑛 = ��𝑝 − 1� + 1 will give you a success when using this algorithm.

One reason why you should consider using the kangaroo algorithm is because the

kangaroo algorithm isn’t storage intensive. You can solve DLP’s with much higher prime

numbers with the kangaroo algorithm than you ever could with the baby step, giant

step algorithm. Another reason is based on time. Even though the kangaroo algorithm

can fail a lot more often due to the random walk with its algorithm, the time to solve

DLP’s is a lot shorter than the baby step, giant step algorithm’s time to solve.

 Another reason to consider using the kangaroo algorithm is because you do not

need to limit yourself to the size of 𝑛 we have been dealing with. What if we wanted to

decrease the size of 𝑛 so that the amount of storage and time we need decrease? For

example, let 𝑛 = ��𝑝/2�. This will definitely decrease the amount of storage we need

for the baby step, giant step algorithm. Now, let the group we use be ℤ1,000,033
× with

primitive root 𝛼 = 5. We wish to solve the DLP 5𝑥 ≡ 1,500 (𝑚𝑜𝑑 1,000,033) Now, the

18

modification that we have to make to the baby step, giant step program is that we

change what 𝑛 is equal to. Once we change that, we will then put this example in like

usual. The time that it took to run the baby step, giant step algorithm was only 20.59

seconds, but no match was found between the two lists. This means that 𝑥 cannot be

found using the baby step, giant step algorithm with this size 𝑛. This algorithm will

always fail with this example. When we take this example and run it in the program for

the kangaroo algorithm, there were 12 failures at first with times ranging from 9.5 to

10.8 seconds. Upon running the program for the 13th time, a value of 𝑥 was found,

which was 58,769,379 ≡ 767,523 (𝑚𝑜𝑑 1,000,032). Checking this, we get 𝛼𝑥 =

5767,523 ≡ 1,500 (𝑚𝑜𝑑 1,000,033). The 13th time took 9.8 seconds to complete. Even

though there were a lot of failures, eventually the kangaroo algorithm solved the DLP to

where the baby step, giant step did not.

19

Chapter V

MODIFIED ALGORITHM

 There have been some modifications to Pollard’s Kangaroo Algorithm over the

years. The most famous ones involve increasing the number of kangaroos that the

algorithm has, whether it be increasing the number of tame kangaroos or increasing the

number of wild kangaroos the algorithm might have (Galbraith, 2013). Instead of

increasing the number of kangaroos within the algorithm, we decided to keep two

kangaroos, one tame and one wild, and keep the last two steps of the tame kangaroo

instead of just the last step. In other words, the original algorithm states that you are to

keep the last step of the tame kangaroo’s jump. You then compare the 𝑦𝑖’s to that last

step to see if you get a match. Now, we will keep not only the last step but the second

to last step as well. This means that we will be comparing the 𝑦𝑖’s to both of these steps

instead of just the last step. So, instead of explaining the whole process again, the only

additional step in this modified algorithm is to store 𝑥𝑛−1 as well as 𝑥𝑛. Then, every time

you find a 𝑦𝑖, compare it to both of the ℎ values. If you get a match to either one, you

are finished. If not, repeat the process for the next 𝑦𝑖. The algorithm still ends when one

of the two conditions of the original kangaroo algorithm is met.

20

EXAMPLES OF THE MODIFIED ALGORITHM

 For the first example, we are going to use the same example that was in chapter

3 to start out with. The cyclic group is ℤ13× . Recall that the primitive root was 𝛼 = 2 and

we chose our 𝛽 = 9. The value 𝑛 = �√12� + 1 = 4. The interval that we had was [0,6].

The pseudorandom mapping that was created was: 𝑓(1) = 3,𝑓(2) = 8,𝑓(3) =

9, 𝑓(4) = 2, 𝑓(5) = 11,𝑓(6) = 4,𝑓(7) = 7,𝑓(8) = 12,𝑓(9) = 7,𝑓(10) = 8,

 𝑓(11) = 1,𝑓(12) = 11. The next thing we did was create all the 𝑥𝑖’s. We found that

𝑥0 = 12, 𝑥1 = 6, 𝑥2 = 5, 𝑥3 = 9, 𝑥4 = 8. The next thing that is different is the value of 𝑑.

This time, we have a 𝐷1 value which is the 𝑑 value for the 𝑥𝑛−1 step and 𝐷2 is the 𝑑

value for the 𝑥𝑛 step. So, 𝐷1 = 26 and 𝐷2 = 33 Once the first list is computed, we keep

𝑥3 = 9 and 𝑥4 = 8 to compare the 𝑦𝑖’s to. Remember that this time we stop the

calculations of the 𝑦𝑖’s if either 𝑦𝑖 = 𝑥3 or 𝑦𝑖 = 𝑥4 or if 𝑑𝑖 > 𝑐 − 𝑏 + 𝑑 = 39. The

starting value is 𝑦0 = 𝛽 = 9. We can automatically stop there since 𝑦0 = 𝑥3. So

𝑥 = 𝑐 + 𝐷1 − 𝑑0 = 6 + 26 − 0 = 32 ≡ 8 (𝑚𝑜𝑑 12). If there was a match between a 𝑦𝑖

and the last step 𝑥𝑛, we would have used 𝐷2 instead of 𝐷1 when finding 𝑥.

 The Mathematica program that was created for this modified algorithm is almost

exactly the same as the program for the kangaroo algorithm. However, there are a few

minor changes to certain parts of the original program. The program for the modified

algorithm is below.

21

Modified Kangaroo Algorithm

Clear[α, β, g, n, b, c, s, y, dt, h, f, a, d, d1, d2];
α = ;
β = ;
g = ;
n = Floor[Sqrt[g – 1]] + 1;
b = 0;
c = Floor[g/2];
f[t_] ≔ RandomInteger[{1,g}];
Do[a[t] = f[t]; Print[“a[“, t, “]=”, a[t]], { t, g }];
h[0] = Mod[α^c, g];
Print[“x_i’s”];
d = 0;
Do[h[j] = Mod[h[j – 1] * α ^ (a[h[j – 1]]), g];
 Print[“h[“ , j, “]=”, h[j]], {j, n}];
d1 = ∑ 𝑎�ℎ[𝑘]�;𝑘−2

𝑘=0
d2 = ∑ 𝑎�ℎ[𝑘]�;𝑘−1

𝑘=0
Print[“d1 = “, d1];
Print[“d2 = “, d2];
Clear[r, s, y];
y[0] = β;
flag = 0;
s = 1;
Print[“y_i’s and d_i’s”];
While[(flag == 0) && (y[s – 1] ≠ h[n]) && (y[s – 1] ≠ h[n – 1]),
 s + + ;
 y[s – 1] = Mod[y[s – 2] * α ^ (a[y[s – 2]]), g];
 Print[“y[“, s – 1, “]=”, y[s – 1]];
 dt[s – 1] =∑ 𝑎[𝑦[𝑖]]𝑠−2

𝑖=0 ;
If[dt[s – 1] ≤ (c – d + b), flag = 0, flag = 1];
Print[“dt[“, s – 1, “]=”, dt[s – 1]]];
Print[“value of x”];
If[y[s – 1] == h[n], Print[c + d2 – dt[s – 1]]];
If[y[s – 1]== h[n – 1], Print[c + d1 – dt[s – 1]], Print[“failed”]];

This program has the same explanation as the one we gave in chapter 3 until you get

down to the values of 𝐷1 and 𝐷2. The reason we must compute two different 𝑑 values

22

instead of just one is because we are keeping two steps of the tame kangaroo instead of

one now. Once you get past that part of the program, it continues the same way until

you hit the while loop. Since we now have to check to make sure the 𝑦𝑖’s do not match

𝑥𝑛 also, we have to put another && check statement inside the while loop. Finally, the

program continues on as usual until you get to the last two statements. The first

statement tells you that if the 𝑦𝑖 = 𝑥𝑛, print what 𝑥 equals. The second one tells you if

the 𝑦𝑖 = 𝑥𝑛−1, print what 𝑥 equals. Otherwise, the program prints failed.

 Now that the program has been explained, we will run through an example

coming from ℤ1,000,003
× with primitive root 𝛼 = 2. We wish to solve the DLP 2𝑥 ≡

269 (𝑚𝑜𝑑 1,000,003). The first five times of running the modified program resulted in

a failure. The 6th time running it resulted in a success. It took 9.67 seconds for the

program to get an 𝑥 = 279,617,009 ≡ 616,451 (𝑚𝑜𝑑 1,000,003). Checking this, we

get 𝛼𝑥 = 2616,451 ≡ 269 (𝑚𝑜𝑑 1,000,003).

 Now we will revisit the example from chapter 4 where the kangaroo algorithm

failed ten times before we quit trying to find a solution. The group was ℤ1,000,013
× with

primitive root 𝛼 = 2. We wish to solve the DLP 2𝑥 ≡ 4,000 (𝑚𝑜𝑑 1,000,013) by trying

to run this example through the modified algorithm. Again, like the kangaroo algorithm,

the modified algorithm failed to solve this DLP. Note that even though both programs

failed to solve this DLP, theoretically the modified version of the kangaroo algorithm

should solve more problems than the original kangaroo algorithm. This is due to the fact

that not only does the modified algorithm compare each 𝑦𝑖 to the 𝑥𝑛, just like the

original kangaroo algorithm, it also compares each 𝑦𝑖 to the 𝑥𝑛−1. This means that the

23

modified algorithm has twice as many chances to find a solution than the original

algorithm does.

24

Chapter VI

CONCLUSION

 The three algorithms presented within this paper are only some out of many

ways to solve the discrete algorithm problem. Some are more efficient than the ones

discussed, and some are not. It is up to the type of DLP you wish to solve to determine

which method is the most effective and reliable to use when dealing with these

problems. Also, you can certainly take an already existing algorithm and modify it to see

how it affects the effectiveness of the overall process, like we did with the modified

version of the kangaroo algorithm. The ideas are limitless.

25

REFERENCES

1. Das , A. (2013). Computational number theory. (1st ed., p. 347). Boca Raton, FL:

 Chapman and Hall/CRC.

2. Fermat’s Little Theorem. (2014, 02 04). Retrieved from

 http://en.wikipedia.org/wiki/Fermat's_little_theorem

3. Galbraith, S. D., Pollard, J. M., & Ruprai, R. S. (2013). COMPUTING DISCRETE

 LOGARITHMS IN AN INTERVAL. Mathematics Of Computation, 82(282), 1182

 1183.

4. Pollard's kangaroo algorithm. (2014, 02 20). Retrieved from

 http://en.wikipedia.org/wiki/Pollard's_kangaroo_algorithm

5. Trappe, W., & Washington, L. C. (2006). Introduction to cryptography with coding

 theory. (2nd ed., pp. 201-202). Upper Saddle River, NJ: Pearson Education, Inc.

26

APPENDIX A:

Mathematica Commands

27

 This appendix is here to show all of the Mathematica commands used

throughout this paper. In addition this appendix give formats you would have to use in

order to use these commands in Mathematica.

Array[f, n, r]

- This array command generates a list of lenth n using the starting point of r with

elements f[i].

Clear[symbol_1, symbol_2, …]

- Clears all values and definitions for each symbol specified within the Clear[]

command.

DateList[]

- This gives the current local time and date in the form of { year, month, day, hour,

minute, second}.

Do[expression, { i, imin, imax }]

- This tells you to evaluate the expression with variable i from imin to imax.

Floor[n]

- Performs the floor function on n.

If[condition, t, f]

- This gives the output of t if the condition is true and an output of f if the

condition is false.

Mod[m, n]

- This gives the remainder on division of m by n.

28

NextPrime[n]

- This gives the next prime number after the number n specified,

PowerMod[a, – 1 , m]

- This finds the modular inverse of a mod m.

PrimitiveRoot[n]

- This gives the smallest primitive root of the specified n.

Print[]

- Prints whatever you write within the brackets in the output.

RandomInteger[{ imin, imax }]

- This gives a pseudorandom integer in the range specified.

Sqrt[n]

- This gives the square root of n.

While[test, body]

- This loop evaluates whatever is in the test, then the body, repetitively, until the

test first fails to give a true statement.

29

APPENDIX B:

Mathematica Example Output

30

 Appendix B is here to show some of the output that Mathematica printed when

running the examples throughout the paper. An example from each program will be

listed below, along with what Mathematica prints when you run the example with the

program.

Example for the Baby Step, Giant Step Program

- This example is for the group ℤ1,000,013
× where we wished to solve the DLP

2𝑥 ≡ 4,000. When put into the baby step, giant step program, Mathematica

prints the following:

f[0]=1
f[1]=2
f[2]=4
f[3]=8

 .
 .
 .

f[997]=813833
f[998]=627663
f[999]=255323
f[1000]=510646
h[876]=408096
x=877142
Difference in seconds: 44.0754184

31

Example for the Kangaroo Algorithm Program

- This example is for the group ℤ1,000,507
× where we wished to solve the DLP

2𝑥 ≡ 3,000 (𝑚𝑜𝑑 1,000,507). When put into the kangaroo algorithm program,

Mathematica prints the following:

x_i's
h[1]=793966
h[2]=662920
h[3]=27923
.
.
.
h[999]=240407
h[1000]=21551
h[1001]=837242
d= 502131756
y_i's and d_i's
y[1]= 928917
dt[1]= 42256
y[2]= 653373
dt[2]= 448240
.
.
.
y[880]= 21551
dt[880]= 429608346
y[881]= 837242
dt[881]= 430292488
value of x
72339521

32

Example of the Modified Program

- This example is for the group ℤ1,000,003
× where we wished to solve the DLP

2𝑥 ≡ 4,000 (𝑚𝑜𝑑 1,000,003). When put into the modified program,

Mathematica prints the following:

x_i's
h[1]=765027
h[2]=163213
h[3]=399728
 .
 .
 .
h[999]=903447
h[1000]=646019
h[1001]=373658
d1= 496588904
d2= 496742024
y_i's and d_i's
y[1]= 68893
dt[1]= 886604
y[2]= 181220
dt[2]= 1340191
.
.
.
y[540]= 163051
dt[540]= 260521290
y[541]= 57004
dt[541]= 261505971
value of x
failed

	Eastern Kentucky University
	Encompass
	January 2014

	Algorithms for Solving the Discrete Logarithm Problem
	Ryan Edward Whaley
	Recommended Citation

	tmp.1408390230.pdf.1UUQ4

