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ABSTRACT

In this paper I will be giving an introduction to an interesting kind of equation

called elliptic curves, and how they can be used to protect our national security

through Cryptology. We will explore the unique operation for adding points on

elliptic curves and the group structure that it creates, as well as the ECC method,

which stands among the RSA and AES methods as one of the modern day’s

most secure systems of cryptography. In addition, I will also introduce several

algorithms and methods that are useful for working with ECC such as Schoof’s

Algorithm, and I will also provide examples of working with these algorithms. At

the end of this paper, I will also demonstrate the ECC encryption and decryption

process.
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Chapter 1

Introduction

Simply put, an elliptic curve is represented by an equation where y2 is set

equal to a cubic polynomial in x. One example of a practical application is given

in the introduction of Lawrence E. Washington’s Elliptic Curves: Number Theory

and Cryptography, such as the pyramid of cannonballs problem. The pyramid of

cannonballs problem asks: if we have a collection of cannonballs piled in the shape

of a square pyramid with x layers, where the number of cannonballs on the ith

layer from the top is i2, is it possible to rearrange the balls into a square array if

the pyramid were to collapse? [4, 1] Figure 1.1 shows an example of a pyramid of

cannoballs with a 4x4 base.

Figure 1.1: Pyramid of Cannonballs
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Using an inductive proof, we can show that, for a square pyramid of height

n, the total number of cannonballs can be found with the equality

12 + 22 + · · ·+ x2 =
x(x+ 1)(2x+ 1)

6
.

Proof. The case where x = 1 is easy to see, since the fraction on the right becomes

1(1 + 1)(2 + 1)

6
=

6

6
= 1,

and 12 = 1.

Now we suppose that the equality holds for a pyramid of height x. Starting

on the left side of the equality,

12 + 22 + · · ·+ x2 + (x+ 1)2 =
x(x+ 1)(2x+ 1)

6
+ (x+ 1)2

by the inductive hypothesis. Multiplying (x+ 1)2 by 6

6
, we now have

x(x+ 1)(2x+ 1)

6
+ (x+ 1)2 =

x(x+ 1)(2x+ 1) + 6(x+ 1)2

6
.

Multiplying everything out gives us

2x3 + 9x2 + 13x+ 6

6
,

which factors into

(x+ 1)((x+ 1) + 1)(2(x+ 1) + 1)

6
.

Therefore,

12 + 22 + · · ·+ x2 =
x(x+ 1)(2x+ 1)

6

by mathematical induction.
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Once this pyramid collapses, we want to be able to arrange it into a perfect

square, so the total number of cannonballs must be a perfect square. This gives

us the equation

y2 =
x(x+ 1)(2x+ 1)

6
.

This equation matches the type described at the start of this introduction,

so we are dealing with an elliptic curve.

When used in cryptology, we often define these elliptic curves over finite fields

and focus on the integral points; points where the x and y coordinates are both

integers. Finite fields, as the name suggests, are fields of finite order. An inter-

esting fact that will be relevant throughout this paper is that any finite field has

order equal to a prime-power. Further, there is only one unique field for each

prime-power order up to isomorphism. [4, 408] This paper will focus on fields

of prime order, since they tend to behave more nicely when used in cryptosys-

tems. Graphically, elliptic curves look like the following image. Depending on the

function, the shape can vary, but ultimately they share the same major qualities:

symmetry about the x-axis, and y approaches ∞ as x approaches ∞. An example

of an elliptic curve graphed on a cartesian coordinate plane is given in Figure 1.2.

Figure 1.2: Sample Elliptic Curve
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There are two common forms of elliptic curve equations. The first and sim-

pler of the two is the Weierstrauss equation for an elliptic curve,

y2 = x3 + Ax+B,

where A and B are constants from the field over which the elliptic curve is defined.

The other form is the Generalized Weierstrauss equation for an elliptic curve,

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

The generalized equation is more flexible and is more efficient for use in fields of

characteristic 2 or 3. For fields of any other characteristic, we can simply complete

the square and perform a change of variables to switch from the generalized equa-

tion to the standard Weierstrauss equation. [2, 179-182] Fields of characteristic 2

or 3 aren’t very useful for building cryptosystems, so we won’t spend much time

working with them. As a result, we won’t need to worry about the generalized

equation.

The last important detail to note is that, in addition to all of the points on the

curve, we also include an extra point at (∞,∞), which will be denoted simply

as ∞ for the sake of convenience. [1, 55] ∞ exists at the very top of the y-axis,

but it also exists at the bottom, both of them being the same point. To imagine

this, picture the coordinate plane drawn on the face of a globe where the y-axis

is the Prime Meridian and the x-axis is the Equator. The y-axis and all other

vertical lines travel up through the North Pole, loop around the other side of the

globe, through the South Pole, and back up to their point of origin. ∞, rather

than being at one or both of the poles, is somewhere on the opposite side of the

globe from the observer. A line will pass through the point at ∞ if and only if

it is a vertical line. Once we start working with finite fields, there may not be a

meaningful ordering to the points on the curve, so the placement of ∞ becomes
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irrelevant. The point at ∞ serves as a formal symbol and will have several useful

implications in the sections to come.

5



Chapter 2

Working With Elliptic Curves

2.1 Adding Points on Elliptic Curves

As stated in the previous section, we will focus on working with the inte-

gral points on elliptic curves as defined over finite fields. To do this, we perform

addition with integer moduli, but first we need to define how exactly we will be

adding these points together. This addition is very nonstandard, but it will give

us a very nice Abelian group structure to work with. A visual aid can help when

dealing with a general elliptic curve, but once we start working with a modulus,

attempting to create a visual interpretation proves to be futile. [4, 15]

First, we define our two points, P1 = (x1, y1), and P2 = (x2, y2). For this

first case, we suppose that x1 6= x2. We draw the line that connects these two

points, and our goal is to find the third point where this line intersects the elliptic

curve. To do this, we need to calculate the slope of the line,

m =
y2 − y1
x2 − x1

.

Writing the equation of the line in point-slope form gives

y = m(x− x1) + y1.

6



Figure 2.1: Adding Two Different Points on an Elliptic Curve

To find the point of intersection, we substitute the equation of this line into our

elliptic curve equation for y,

(m(x− x1) + y1)
2 = x3 + Ax+B

Which can be rewritten as

0 = x3 −m2x2 + · · · .

Solving for the roots of this cubic would be extremely difficult, but we already

have two roots, x1 and x2, and a very helpful equation. For a cubic polynomial

x3 + ax2 + bx+ c with roots r,s,t,

x3 + ax2 + bx+ c = (x− r)(x− s)(x− t) = x3 − (r + s+ t)x2 + · · · .

This tells us that for any cubic polynomial of the form x3 + ax2 + bx+ c,

r + s+ t = −a.

Given the roots r and s, we can find t = −a− r− s. From the above expansion of

our elliptic curve equation, a = −m2, and we already have two roots, so we can
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find our third root, x3,

x3 = m2 − x1 − x2,

And the corresponding y-value,

y = m(x3 − x1) + y1.

We add one final step to our addition by reflecting the point across the x-axis,

giving us the point P3 = (x3, y3), where

x3 = m2 − x1 − x2, y3 = m(x1 − x3)− y1.

This last step may seem strange, but that reflection has an important implication:

it causes this addition of points to have a group structure, which will be demon-

strated in the next section. [3, 13]

So what about the case where x1 = x2? Since the x-coordinates are the same, the

line connecting the two points is a vertical line. As defined previously, all vertical

lines pass through the point at ∞. Since ∞ is at the top and bottom of the y-axis

simultaneously, reflecting ∞ across the x-axis yields ∞. So for P1 = (x, y1) and

P2 = (x, y2), P1 + P2 = ∞.

When P1 = P2, the line passing through them is the line tangent to the ellip-

tic curve at point P1.

Using implicit differentiation on y2 = x3 + Ax+B, we get

2y ∗ dy
dx

= 3x2 + A,

and

m =
dy

dx
=

3x2 + A

2y
.

8



Figure 2.2: Doubling a Point on an Elliptic Curve

When y = 0, the tangent line is vertical, so P1 + P2, or 2P = ∞. Otherwise, we

use point slope form to write the equation of the tangent line as

y = m(x− x1) + y1.

Like in the earlier case, when we plug this into our elliptic curve equation we have

a cubic polynomial that can be rearranged into the form

0 = x3 −m2x2 + · · · .

Using the fact that the sum of the roots is equal to m2 like in the earlier case, and

the fact that the root x1 is a double root, we can calculate

x3 = m2 − 2x1, y3 = m(x1 − x3)− y1.

Notice that we negate the y-coordinate, just like in the other case. [4, 13]

Lastly, consider the case where P = (x, y), and we want to calculate P + ∞.

Only vertical lines pass through the point at infinity, so the line connecting the

two points is vertical and goes straight up through ∞, loops back around from the

bottom, and intercepts the elliptic curve at (x,−y). Reflecting across the x-axis
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brings us back to P . So for all P on the elliptic curve,

P +∞ = P.

Now that we have defined our operation, we can show that it forms an Abelian

group, which has some interesting applications both in and out of

Cryptography.

In summary, addition of points on an elliptic curve E defined by y2 = x3+Ax2+B,

where P1 = (x1, y1), P2 = (x2, y2), and P3 = P1+P2 = (x3, y3) is defined as follows.

1. If x1 6= x2, then

x3 = m2 − x1 − x2, y3 = m(x1 − x3)− y1,

where

m =
y2 − y1
x2 − x1

.

2. If x1 = x2, but y1 6= y2, then P1 + P2 = ∞.

3. If P1 = P2, and y1 6= 0, then

x3 = m2 − 2x1, y3 = m(x1 − x3)− y1,

where

m =
3x21 + A

2y1
.

4. If P1 = P2 and y1 = 0, then P1 + P2 = ∞.

5. P +∞ = P for all P on E.

Given an integer k and point P , kP = P + P + · · · + P , where there are k P s in

the sum.
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Example: Suppose that we are working with the curve y2 = x3 + 3x+ 2 mod 11,

P1 = (2, 4), and P2 = (3, 7). Since P1 6= P2 and x1 6= x2, we calculate P1 + P2

using method 1. from the above list.

m =
y2 − y1
x2 − x1

=
7− 4

3− 2
= 3.

x3 = m2 − x1 − x2 = 9− 2− 3 = 4.

y3 = −(m(x1−x3)−y1) = −(3(2−4)−4) = −(3(−2)−4) = −(−6−4) = −(−10) = 10.

So P1 + P2 = (4, 10).

2.2 The Group Axioms

Let E be an elliptic curve over a finite field F plus the point at ∞, where the

characteristic of F is greater than 2. We denote E(F ) as the group of all points

on E over F . Because of the way addition of points on elliptic curves is defined,

the following group axioms are satisfied in E(F ):

1. (Closure) If P1 and P2 are on E, then P1 + P2 is also on E.

2. (Additive Identity) P +∞ = P for all P on E.

3. (Additive Inverses) If P is on E, then there exists a −P on E with P +

(−P ) = ∞.

4. (Associativity) For all P1,P2, and P3 on E, (P1 +P2) +P3 = P1 + (P2 +P3).

5. (Commutivity) For all P1 and P2 on E, P1 + P2 = P2 + P1. [3, 15]

For the case where x1 = x2, it is clear that P1 + P2 = ∞ is an element

of E(F ) since we appended ∞ to E, and by extension E(F ). Similarly, when

doubling P and when y = 0, 2P = ∞ is also an element of E(F ). When both P1

and P2 are not ∞, then P1 + P2 = (x3, y3), where x3 = m2 − x1 − x2. This works
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for the case where P1 = P2, and the case where P1 6= P2 and x1 6= x2. Since the

coordinates x1, x2,y1,y2 are elements of F , m = y2−y1
x2−x1

is an element of F . When

P1 = P2, m =
3x2

1
+A

2y1
is still an element of F since A is also an element of F . Thus

m2 − x1 − x2 is an element of F , therefore x3 is also an element of F . Since x3

is an element of F , it follows that y3 = m(x1 − x3) − y1 is also an element of F .

Since x3 and y3 are both in F and (x3, y3) is on E as demonstrated in the previous

section, it follows that P1+P2 is an element of E(F ), and so E(F ) is closed under

this addition.

Since we defined P + ∞ = P for all P in E(F ), it is clear that the additive

identity holds.

If P = (x, y), let −P = (x,−y). By the definition of our addition, P +(−P ) = ∞,

so the property of additive inverses holds.

The proof of commutivity is a bit cumbersome for this paper and can be found in

Lawrence Washington’s book on elliptic curves. [4, 31-32]

Since the addition satisfies all of these axioms, E(F ) is a group. To be an Abelian

group, if P1,P2 are in E(F ), then P1 + P2 = P2 + P1, which should be clear if we

look at E rather than narrowing our focus to the finite field we want to define

it over. Notice that the line through P1 and P2 is the same as the line through

P2 and P1, all of the calculations will still work out the same regardless of order-

ing. Therefore, E(F ) is an Abelian group under the addition of points on elliptic

curves. An important theorem about the structure of the E(F ) states that, no

matter what E or F may be, E(F ) will always be either cyclic, or the direct

product of a cyclic group and Z2. [2, 194]
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2.3 A Note About the j-Invariant

There is a whole lot that could be said about twists and the concept of the

j-invariant, but they are not very important for this paper. The j-invariant of E

is defined as

j = j(E) = 1728
4A3

4A3 + 27B2
. [4, 42]

All we need to take from this for this paper is that, given an elliptic curve y2 =

x3 + Ax+B over a finite field modulo a prime p, if

4A3 + 27B2 ≡ 0 mod p,

the set created by the points on the curve does not necessarily behave according

to our Abelian group structure, since the denominator of the j-invariant would be

0. To get around this, we simply avoid elliptic curves that satisfy this condition

for the entirety of this paper.
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Chapter 3

Application to Cryptology

3.1 Hasse’s Theorem

AES, RSA, and El Gamal are some of the bigger commercial cryptosystems

currently in use, but elliptic curves can be used as an effective basis for encryp-

tion as well. To set this system up, we need an elliptic curve E and a finite field

F where the group E(F ) has many points. Finding such a curve is much more

complicated than it might sound, especially when working with finite fields of very

large order. For this paper, we will focus on fields of the form Zp, where p is a

prime.

So how do we find an elliptic curve that has many points with coordinates in

a given finite field? Hasse’s Theorem gives us one method.

Theorem 3.1 (Hasse’s theorem
¯

). Let E be an elliptic curve over the finite field

Zp. Then the order of E(Zp) satisfies

|p+ 1−#E(Zp)| ≤ 2
√
p,

where #E(Zp) is the order of E(Zp). [2, 197]

14



Hasse’s Theorem gives us a range of 4
√
p that the order of E(Zp) can fall

within. This method also requires that we know a point in E(Zp) with order

greater than 4
√
p. By a corollary to Lagrange’s theorem, we know that the order

of any element in a group must divide the order of the group. If the order of this

point is greater than 4
√
q, then there will be exactly one multiple of that element’s

order within the range given by Hasse’s theorem. That multiple must be the order

of E(Zp). This is important when applied to Cryptology since, in order to build

a secure cryptosystem based on an elliptic curve E over Zp, E(Zp) must have a

very large order, and we can use Hasse’s theorem to filter out groups that have

insufficient order.

Now we have a way to find #E(Zp), but another question has arisen: how can we

accurately find the order of an element in the first place? One effective method is

the Baby Step, Giant Step algorithm, which will be discussed in section 3.3.

3.2 Using Schoof’s Algorithm to Find #E(F )

Another method that we can use to find #E(F ) is Schoof’s Algorithm.

Schoof created this method in 1985, and its speed was unmatched for elliptic

curves over large fields Zp. [3] The algorithm proved too difficult for us to repli-

cate using available programming, so instead we have provided an example that

illustrates the processes used in the algorithm.

Consider the elliptic curve E to be defined as y2 = x3 + 3x+ 9 mod 23. Thanks

to Hasse’s Theorem, we know that

#E(Z23) = 23 + 1− a,

where |a| ≤ 2
√
p. Ultimately, our goal is to find this mystery number a. For

the first step of Schoof’s algorithm, we want to choose a set of primes S = {li}

15



where Πi∈Sli > 4
√
p, and li 6= p for all i. For this example, we let S = {2, 3, 11}.

2∗3∗11 = 66 > 4
√
23, so this set is acceptable. Ultimately, our goal is to use these

primes as moduli in the Chinese Remainder Theorem in order to solve for a. Since

the focus of this paper is going to be on a cryptological application of Schoof’s

algorithm rather than the nitty gritty details of the algorithm itself, explanations

of many of the algorithm’s more technical aspects will be omitted for the sake of

brevity. The interested reader can find a very thorough and detailed breakdown

in Washington’s book. [4, 113-118]

For l = 2, we do a different procedure from the one we use on the other primes in

S. Since we are working mod 2, there are only two possible values for a: 0 and

1. To figure out which one it is, we check to see whether or not x3 + 3x + 9 has

a root e in Fp. If e ∈ Zp, then (e, 0) ∈ E(Zp) and (e, 0) has even order, meaning

that E(Zp) has even order. This means that p + 1− a ≡ 0 mod 2, so a must be

even. If x3 + 3x+ 9 does not have a root in Zp, then there are no points of order

2, therefore a must be odd. [4, 114]

To determine whether or not this root exists, we use a fact from Washington’s

work stating that the roots of xp − x are exactly the elements of Zp. [3, 114] This

means that, in our example if gcd(x3 +3x+9, x23 − x) = 1, then x3 +3x+9 does

not have any roots in Z23. We could easily calculate this gcd with Mathematica,

but we can also make x23 more functional and easier to work with by computing

x23 ≡ x23 mod x3+3x+9. This is even easier to compute with Mathematica, and

we can use this form for the other primes in the algorithm. Using Mathematica,

PolynomialMod[x23 − x, x3 + 3x+ 9,Modulus− > 23] = x+ 21.

Therefore, x3 + 3x+ 9 has a root in Z23, so a ≡ 0 mod 2.

16



Now we move on to the next prime in S, which in this example is 3. The

following procedure is used on the remaining primes in S. We compute q3 ≡ 23

mod 3, and the result is q3 ≡ 2 mod 3. Next, we compute the x-coordinate x′ of

(x′, y′) = (xp
2

, yp
2

) + ql(x, y) mod ψl,

where ψl is the lth division polynomial. This paper will not go into the details on

division polynomials, but Washington’s book has an entire section dedicated to

them for the interested reader. [4, 76-81] 232 = 529, so the equation for this case

would be

(x′, y′) = (x529, y529) + 2(x, y) mod ψ3.

Using the fact that 2 ≡ −1 mod 3, we can compute −(x, y) = (x,−y) instead of

doubling the point. Using the formula for adding points on an elliptic curve, we

calculate x′,

x′ = (
y529 + y

x529 − x
)2 − x529 − x.

Using the fact that y2 = x3 + 3x+ 9, we can rewrite the above equation as

x′ = (x3 + 3x+ 9)(
(x3 + 3x+ 9)264 + 1

x529 − x
)2 − x529 − x.

This would be an extremely difficult mess of polynomials to simplify, but Wash-

ington provides us with an interesting trick for dealing with it. We know that

ψ3 = 3x4 + 6Ax2 + 12Bx − A2 = 3x4 + 18x2 + 108x − 9 which reduces to

3x4 + 18x2 + 16x + 14 mod 23, so with the help of Mathematica we can com-

pute gcd(x529 − x, ψ3) = ψ3. Factoring ψ3, we can see that x = 6 is a root of ψ3,

and our program for computing k multiples of P verifies that the points (6, 6) and

(6, 17) in E(Z23) have order 3, so
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#E(Z23) = 23 + 1− a ≡ 0 mod 3,

therefore a ≡ 0 mod 3.

The last prime in our list S is 11. First, we compute q11 ≡ 23 mod 11 ≡ 1

mod 11. As in the previous case, our goal is to compute the x-coordinate of

(x′, y′) = (x529, y529) + ql(x, y) mod ψl = (x529, y529) + (x, y) mod ψ11.

Using the formula for adding points on elliptic curves,

x′ = (
y529 − y

x529 − x
)2 − x529 − x.

Again, we have an extremely nasty polynomial on our hands, and gcd(x529 −

x, ψ11) = 1, so we cannot use the same trick that we used during the last step.

However, for this example we can get away with avoiding working with 11 all

together.

We know that a ≡ 0 mod 2 and a ≡ 0 mod 3, therefore, a ≡ 0 mod 6. This

means that a could be any multiple of 6, but we also know that |a| ≤ 2
√
23 = 9.59

approximately. −6 and 6 are the only possible values of a that satisfy this condi-

tion, so it must be true that a = 6 or a = −6. This means that the order of the

group is either 18 or 30. If we can find an element of order 9, then the order of

the group must be 18 and a = 6, and if we can find an element of order 10, then

the order of the group must be 30 and a = −6. Using the program provided by

Kyle Martin at Wolfram, we can compute the 10th division polynomial in Math-

ematica. Through Mathematica, we also find that x = 1 is a root of ψ10. Using

our second program for computing 2P through kP , we can verify that the points
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(1, 6) and (1, 17) in E(Z23) have order 10, so #E(Z23) = 30, so a = −6. With the

help of our first program, we can verify that #E(Z23) is in fact 30.

Schoof’s Algorithm has a few more technical intricacies that did not come up

due to the simplicity of this example, but this was only meant to serve as a tes-

tament to what the algorithm is capable of. Due to the level of complexity in the

program, Schoof’s Algorithm is not very effective at finding the orders of curves

large enough for commercial use, but it is nevertheless a powerful procedure if

properly programmed. Unfortunately, at my current level of programming expe-

rience and with my current resources, we were unable to build a functional replica

of the algorithm. The interested reader can find more information in just about

all of the resources cited in this paper.

3.3 Baby Step, Giant Step

Let P be a point in E(Zp), and we want to know the order of P. First, we

find any integer k such that kP = ∞. Let #E(Zp) = N . By Lagrange’s theorem,

NP = ∞. By Hasse’s theorem, we know that p + 1 − 2
√
p ≤ N ≤ p + 1 + 2

√
p.

The algorithm goes as follows.

1. Compute Q = (p+ 1)P .

2. Choose an integer m with m > p
1

4 . Compute and store the points jP for

j = 1, 2, · · · ,m.

3. Compute the points Q + k(2mP ) for k = −m,−(m − 1), · · · ,m until Q +

k(2mP ) = ±jP for one of the jP s on the stored list.

4. Since Q+ k(2mP ) = ±jP , Q+ k(2mP )∓ jP = ∞, which can be rewritten

as (p+ 1 + 2mk ∓ j)P = ∞. Let M = p+ 1 + 2mk ∓ j.

5. Factor M . Let p1,p2,· · · ,pr be the distinct prime factors of M .
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6. Compute (M
pi
)P for i = 1,· · · ,r. If (M

pi
)P = ∞ for some i, replace M with

(M
pi
) and go back to step 5. If (M

pi
) 6= ∞ for all i, then M is the order of P .

[2, 348]

So to find #E(Zp), first we use Hasse’s theorem to find the range that #E(Zp)

could fall within. Next, we choose points that we know are in E(Zp) and use the

Baby Step, Giant Step algorithm to compute their orders, until we find a point

with order greater than 4
√
p. Finally, we find the multiple of that order that falls

within the range given by Hasse’s theorem, and that number is #E(Zp).

Example: Suppose that we are working with the elliptic curve y2 = x3 + 25x+ 25

mod 53, and we want to know the order of the point (0, 5). Note that all of the

computations in this example were done using one of our programs, which will be

detailed later in this paper. First, we compute (p + 1)P = 54P , which can be

shown to equal (46, 39).

Next, we choose an m > 53
1

4 = 2.698, so for simplicity we can just use m = 3.

Now we have to compute jP for j = 1 to j = 3. P = (0, 5), and it can be shown

that 2P = (46, 39) and 3P = (36, 26).

For the next step, we compute Q + k(2mP ) for k = −m,−(m − 1), · · · ,m until

we get one of the jP ’s computed in the previous step. As you may have noticed

already, 2P = 54P = (46, 39), so let us just cut to the chase and use k = 0. This

means that (p+1+2mk− j)P = (53+1+0−2)P = 52P = ∞, so we letM = 52,

which factors into 22 ∗ 13.

Next we calculate M
pi
P for i = 1, 2, where the pi are the unique prime factors

of M = 52. It can be shown that 26P = (18, 0) and 4P = (42, 50). Since 26P and

4P are not the identity, M = 52 must be the order of P = (0, 5).
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The Baby Step, Giant Step algorithm could also be used to find #E(Zp). To

do this, run through the algorithm with random points in E(Zp) until the least

common multiple of the orders of those points only divides one number within our

4
√
q range, and that number will be the order of E(Zp). [3, 103]
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Chapter 4

Our Algorithms

4.1 Elliptic Curve Generation Algorithm

We have come up with Mathematica programs for carrying out several es-

sential operations for Elliptic Curve Cryptography.

The first program enables us to find the order of groups generated by elliptic

curves over finite fields of a given prime order, and it also lists all of the points

in the groups. This program can run through several elliptic curves at once for

a given field, but it is admittedly inefficient. It is nowhere near fast enough to

handle the numbers needed for commercial use, but it has been useful as a source

of examples and basic data for us to use and check for patterns. Also included is

a sample output from the algorithm.

cnts= {};

p = 11 ;

For[a = 3, a < 4 , a++,

For[b = 2, b < 3 , b++,

If[Unequal[Mod[4a3 + 27b2, p], 0],

Print[”curve is y2 = x3+”,a,”x+ ”,b,” MOD ”, p];
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cnt= 0;

For[x = 0, x < p, x++,

z =Mod[x3 + ax+ b, p];

For[y = 0, y < p, y ++,

If[Mod[y2 − z, p] == 0, cnt++;

Print[”point is x = ”,x,” y = ”,y]]]];

Print[”# of points =”, cnt+1];

AppendTo[cnts, cnt +1]]];

Print[Max[cnts]]]

Curve is y2 + x3 + 3x+ 2 mod 11.

point is x = 2 y = 4

point is x = 2 y = 7

point is x = 3 y = 4

point is x = 3 y = 7

point is x = 4 y = 1

point is x = 4 y = 10

point is x = 6 y = 4

point is x = 6 y = 7

point is x = 7 y = 5

point is x = 7 y = 6

point is x = 10 y = 3

point is x = 10 y = 8

# of points = 13

13

First we define a prime p to serve as the order of the finite field we are defining the

elliptic curves over. The first two For loops are where we define the coefficients A

and B (from the Weierstrauss equation y2 = x3 + Ax + B), and this is where we
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set how many curves we want the program to check by setting an upper bound for

A and B. The first If loop is where the algorithm filters out any curves where we

would run into issues with the j-invariant (4a3+27b2 ≡ 0 mod p). After deciding

that an equation will not be filtered out, the algorithm prints the equation for

the sake of organization, and then the next three loops check for pairs of x and y

values that satisfy the equation with the given modulus and then prints the points

one-by-one. One final step was added on to state the order of the group, adding

one to the total number of points found in order to account for the point at ∞.

4.2 P Through kP Algorithm

We built the second program to calculate kP for some starting point P and

some integer k. This algorithm is not as efficient as our third program for calcu-

lating a specific high-value kP , but what this addition program has over our other

addition program is that it also prints all intermediate values between P and kP .

This is useful because it can easily be used to determine whether or not P is a

generator for E(Zp) and it allows us to find the exact order of the point without

having to resort to trial and error with the other algorithm. The sample output

here is the output used to find the multiples of P = (0, 5) in the example of the

Baby Step, Giant Step algorithm earlier in this paper.

x = 0 ;

y = 5 ;

p = 53 ;

a = 25 ;

b = 25 ;

Print[”curve is y2 = x3+”, a ,”x+”, b ,” MOD ”,p];

c =Mod[−2 ∗ x+ ((3 ∗ x2 + a)∗PowerMod[2y, −1, p])2, p] ;

d =Mod[−y + ((3 ∗ x2 + a)∗PowerMod[2y, −1, p]) ∗ (x− c), p] ;
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Print[”2P = (”,c , ”, ”,d ,”)”];

For[k = 3, k ≤ 52 , k ++, If[c == x, Print[k, ”P = ∞”],

g =Mod[((y−d)∗PowerMod[x−c, −1, p])2−c−x, p]; h =Mod[(y−d)∗PowerMod[x−

c, −1, p] ∗ (c− g)− d, p] ; Print[k, ”P = (”, g ,”,”, h ,”)”];

c = g;

d = h;]]

curve is y2 = x3 + 25x+ 25 mod 53 2P = (46, 39)

3P = (36, 26)

4P = (42, 50)

5P = (40, 43)

6P = (9, 5)

7P = (44, 48)

8P = (5, 13)

9P = (23, 43)

10P = (17, 13)

11P = (21, 35)

12P = (7, 38)

13P = (52, 30)

14P = (43, 10)

15P = (50, 20)

16P = (28, 29)

17P = (16, 4)

18P = (31, 40)

19P = (38, 41)

20P = (25, 2)

21P = (32, 37)

22P = (22, 26)

23P = (41, 45)
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24P = (29, 21)

25P = (48, 27)

26P = (18, 0)

27P = (48, 26)

28P = (29, 32)

29P = (41, 8)

30P = (22, 27)

31P = (32, 16)

32P = (25, 51)

33P = (38, 12)

34P = (31, 13)

35P = (16, 49)

36P = (28, 24)

37P = (50, 33)

38P = (43, 43)

39P = (52, 23)

40P = (7, 15)

41P = (21, 18)

42P = (17, 40)

43P = (23, 10)

44P = (5, 40)

45P = (44, 5)

46P = (9, 48)

47P = (40, 10)

48P = (42, 3)

49P = (36, 27)

50P = (46, 14)

51P = (0, 48)

52P = ∞
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In the above program, x and y are the coordinates of P , p is the modulus for the

finite field E is defined over, and a and b are the coefficients in the equation for E.

First, the program prints the equation for E for the sake of organization. Since

this program calculates repeated addition of P , we had to add a few preliminary

steps for calculating 2P (remember that the addition works differently when we

are adding two different points and when we are doubling a single point). Values

c and d are the x and y coordinates of 2P . From there the program moves into

a For loop, where we start at k = 3 (3P ), and then the program calculates all

values of kP up to a specified upper bound. If we know the order of E(Zp), then

we can set the upper bound to be the order of the group. The If loop is there

to check if the x-coordinates of two consecutive points are equal. If they are, the

program returns ∞ for the next k-value, and for every k-value thereafter. Finally,

g and h are the x and y values of kP for the kth iteration of the loop, and the

program prints them as an ordered pair. The program then redefines c and d,

and then begins the process all over again to find the next point in the sequence.

This program was mostly useful for working with individual points in E(Zp) once

we had figured out the group’s order and were ready to start applying them to

cryptosystems.

4.3 kP Algorithm

Our third program is somewhat of a shortcut for the previous program.

Where that program calculated and printed kP and every intermediate value, this

program uses a variation on the square-multiply method of modular exponentia-

tion to calculate kP much more quickly. It doesn’t help us find the order of P , but

once we get into the next sections, it should become clear that the second program

will be much too slow for finding specific multiples of P that will be practically

useful. An important note is that this program will return an error if kP is greater

than or equal to the order of P . This felt like poor programming, but it did not
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seem worth fixing since this program was not meant to find the order of P , but

to quickly find kP for large values of k. If we wanted to find the order of P with

this program, we could always try different values of k until an error occured, and

then try (k − 1)P . If (k − 1)P yields an ordered pair, then k is the order of P .

If the program returns an error again, then we could try (k − 2)P , skip down a

few values of k at a time until we get an actual result and then increment k until

we run into an error. At that point, however, it would probably be much quicker

to just use the second program. As an example, I provided a sample output for

when k = 26 and P = (0, 5) on the elliptic curve y2 = x3+25x+25 mod 53. The

first few lines of the output are the enumerated binary digits of k, but the last

two lines are the only important ones. The second to last line of the output gives

the x-coordinate of kP , and the last line of the output gives the y-coordinate of kP .

k = 26;

intstr = IntegerString[k, 2];

len = StringLength[intstr];

list = Characters[intstr];

For[i = 1, i ≤ len, i++, Print[i, ” ”, list[[i]]]];

x = 0 ;

y = 5 ;

p = 53 ;

a = 25 ;

b = 25 ;

c = x;

d = y;

For[i = 2, i ≤ len, i++,

f =Mod[((3 ∗ c2 + a)∗PowerMod[2 ∗ d, −1, p])2 − 2 ∗ c, p];

g =Mod[(3 ∗ c2 + a)∗PowerMod[2 ∗ d, −1, p] ∗ (c− f)− d, p];

If[list[[i]] ==”1”,
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m =Mod[((y − g)∗PowerMod[x− f , −1, p])2 − f − x, p];

n =Mod[(((y − g)∗PowerMod[x− f , −1, p]) ∗ (f −m))− g, p];

c = m;

d = n,

c = f ;

d = g]];

Print[”P = (”,x, ”,”, y, ”)”];

Print[k ”P = (”, c, ”,”,d, ”)”]

1 1

2 1

3 0

4 1

5 0

P = (0, 5)

26P = (18, 0)

The intstr command converts our integer k into a string of binary digits. The

program saves the length of this string as len as a reference for how many times

the for loop needs to run. For the last part of the initial step, the program saves

the string as a list of individual digits, again to be used as a reference during the

for loop. For the definitions, x and y are the coordinates of P , p is the prime order

of the field over which the elliptic curve is defined, a is the coefficent on x in the

Weierstrauss form of our elliptic curve, b is the constant term, and c and d are the

x and y coordinates of kP at each step during the calculation.

As opposed to squaring and multiplying numbers like in modular exponentia-

tion, this program doubles and adds under elliptic curve addition. Each time

through the loop, the program doubles the point (c, d). If the ith element of the
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list generated by our binary string is 1, the program performs an additional step

by adding (x, y) to (c, d). Note that the program starts on the second digit of the

binary string, ignoring the leading 1, so technically the ith element of the list is ref-

erenced on the (i−1)th loop, but for the sake of clarity let us avoid that distinction.

Suppose, for example, we wanted to calculate 5P . 5 can be represented in bi-

nary as 101. Ignoring the leading 1, we are left with 01. The first time through

the loop, the program doubles P . Since the binary digit for this loop is 0, we do

not add P , so the first loop is complete. The next digit is a 1, so for the second

loop, we double the result from the first loop, and then add P to that result. After

the first loop, we have 2P . The second loop doubles that result, yielding 4P , and

then adds P , yielding 5P , our desired value.
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Chapter 5

Elliptic Curve Cryptography

5.1 Koblitz Method

So far we have taken elliptic curves E defined over finite fields Zp, and built

groups of points E(Zp). We have a reliable way to check the order of E(Zp)

and the order of individual points. Before we can start building cryptosystems

though, there is still one key component that we need: how to translate messages

into points on our elliptic curve.

We cannot just pick random x-values and find the y-value that goes with them.

The likelihood of a particular x-value giving a point on the curve is no more than

a 50/50 chance. [3, 355-356] To remedy this, we use the Koblitz Method, created

by Neal Koblitz. Note that, like the programs we have built, the Koblitz method

deals with finite fields limited to prime order.

To start, we let E be defined y2 = x3 + ax + b mod p for some prime p and

we represent the message to be encrypted as an integer m. Next, we pick a large

integer k, supposing that (m+ 1)k < p. For j = 0 to k − 1,
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Compute x = mk + j.

Compute z = x3 + ax+ b mod p.

If z has a square root mod p, say y, then use the ordered pair (x, y) to rep-

resent m. If z does not have a square root mod p, move on to the next j [3,

355-356]. An example of this method will be provided in 5.3 where we will actually

use it to encode a message.

5.2 The ECC System

Now that we have a way to reliably find elliptic curve and finite field pairings

where E(Zp) has a large number of points and to calculate the order of individual

points in a reasonable time, as well as a way to convert messages to points in

E(Zp), we are finally able to build a cryptosystem.

Elliptic Curve Cryptography (ECC) was discovered by Neal Koblitz and Victor

Miller. It functions similarly to the El Gamal cryptosystem, but uses multiplica-

tion (repeated addition) of points on elliptic curves as opposed to exponentiation.

Elliptic curve variations of other cryptosystems can increase security and poten-

tially save on processing hardware due to the difficulty of the discrete log problem

and differences in key operations. (If ax ≡ b mod p, it is very difficult to solve

for x.) [3, 363]

Like RSA and AES, ECC is a public key system, meaning that the informa-

tion required to send an encrypted message to a person is available in a public

file that anyone can access. Each person in the system is assigned four pieces of

information in the public file:
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1. A suitably large prime p.

2. An elliptic curve Ep that has a large number of points mod p.

3. A point α on Ep with a large order.

4. A point β = ∆α, where ∆ is a large secret key known only to the individual

person.

To encode a message, the sender looks up the receiver’s entry (p, Ep, α, β) in the

public file. They then choose an integer K such that p−1

2
< K < p− 2. Next, the

sender converts their text message to a number of equal- sized numerical blocks.

Using Koblitz method, they convert these numerical blocks to points Mi on Ep.

Lastly, the sender computes Kα and M +Kβ and sends those two points to the

receiver. Once the recipient has been given Kα andM+Kβ, they use their secret

key ∆ to compute

∆ ∗ (Kα) = K ∗ (∆α) = Kβ.

Next they compute −Kβ and add it to M + Kβ, which yields M as the result.

Finally the recipient takes this point M and converts it back to the text message.

An important thing to note is that, even though α and ∆α are available in the

public file, finding κ is no easy task due to the difficulty of the discrete log problem.

5.3 Sample Encryption and Decryption

Now, the moment you have been waiting for, we have used our programs to

find a fairly large prime and an elliptic curve that, together, create a group E(Zp)

with many points and our friend Bob is ready to encrypt a message to send to

Alice. As described earlier in the section on ECC, Alice’s entry in the public file

would look like

(p, Ep, α, β),
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where p is his chosen prime, Ep is an elliptic curve with many points mod p, α

is a point with very large order, and β = ∆α, where ∆ is a very large secret key.

For this example, Alice’s entry in the public file will be

(3001, x3 + 31x+ 94, (2, 769), (2897, 2434)).

Bob has written his message and decomposed it into numerical values (A= 00, B=

01, · · · , Z= 25, = 26) resulting in the following string of numbers: 190704260104181

9261907041808182603040504131804260818260007141403261 9070418081826140505

0413180427.

Next, Bob breaks the message up into evenly sized blocks, two digits each in

this example, and then he uses Koblitz Method with k = 11 to convert those

blocks into points in E(Z3001). He sends k = 11 to Alice, and then converts his

message to the series of points

(211, 672), (81, 1035), (46, 747), (286, 1384), (11, 1380), (46, 747), (200, 714), (211, 672),

(286, 1384), (211, 672), (81, 1035), (46, 747), (200, 714), (88, 1136), (200, 714), (286, 1384)

(33, 698), (46, 747), (55, 920), (46, 747), (143, 895), (200, 714), (46, 747), (286, 1384)

(88, 1136), (200, 714), (286, 1384), (2, 769), (286, 1384), (67, 94), (157, 689), (157, 689)

(33, 698), (286, 1384), (211, 672), (81, 1035), (46, 747), (200, 714), (88, 1136), (200, 714)

(286, 1384), (157, 689), (55, 920), (55, 920), (46, 747), (143, 895), (200, 714), (46, 747).

Bob chooses K = 2000, and then computes the points 2000α and Mi + 2000β for

each block Mi.

Kα = 2000(2, 769) = (1458, 2332),
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Kβ = 2000(2897, 2434) = (1843, 2164).

For M1 = (211, 672), we use elliptic curve addition to find

M1 +Kβ = (211, 672) + (1843, 2164) = (394, 595).

Using that same procedure, Bob encodes the rest of the points in his message and

sends them to Alice, as well as the points Kα and Kβ. Alice now has the following

points:

(394, 595), (1755, 1544), (2648, 755), (2994, 1758), (943, 1078), (2648, 755), (1540, 1393),

(394, 595), (2994, 1758), (394, 595), (1755, 1544), (2648, 755), (1540, 1393), (746, 2273),

(1540, 1393), (2994, 1758), (1778, 2929), (2648, 755), (2727, 1276), (2648, 755), (821, 862),

(1540, 1393), (2648, 755), (2994, 1758), (746, 2273), (1540, 1393), (2994, 1758), (1884, 2348),

(2994, 1758), (1759, 1381), (261, 1299), (261, 1299), (1778, 2929), (2994, 1758), (394, 595),

(1755, 1544), (2648, 755), (1540, 1393), (746, 2273), (1540, 1393), (2994, 1758), (261, 1299),

(2727, 1276), (2727, 1276), (2648, 755), (821, 862), (1540, 1393), (2648, 755),

as well as the points Kα = (1458, 2332) and Kβ = (1843, 2164). An important

thing to note here is that while using Koblitz Method to generate the Mi in this

example, Bob used the same value j every time the same pair of digits appeared

in the message. He could, however, use a different j value each time if more than

one gave a point in E(Z3001), that way one letter could encrypt to a different point

each time, thus thwarting frequency counting.

Now that Alice has Kα, Kβ, and all of the Mi, the first thing she does is apply

her secret key, which is 3009, to Kα. Remember that ∆ ∗Kα = K ∗ (∆α) = Kβ.
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She computes

∆ ∗Kα = 3009(1, 2332) = (1843, 2164).

Alice then computes

−Kβ = −(1843, 2164) = (1843,−2164) = (1843, 837).

For the next step, Alice adds −Kβ to Mi +Kβ for each block of M . For M1 =

(394, 595),

M1 +Kβ + (−Kβ) = (394, 595) + (1843, 837) = (211, 672),

To convert the decrypted point back to the original message, Alice divides the

x−coordinate fromM1 by the k that Bob used during the Koblitz Method, in this

case 11, and keeps the integer part of the result. The result is 19, which is ’T’.

Decrypting the rest of the Mi, Alice gets the original message, which is

THE BEST THESIS DEFENSE IS A GOOD THESIS OFFENSE
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