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ABSTRACT

Using extensions of the LeggettWilliams fixed-point theorem, we prove the exis-

tence of solutions for a class of second-order difference equations with Dirichlet

boundary conditions. We present these fixed point theorems and then show what

conditions have to be met in order to satisfy the theorem. Finally, we provide

specific examples to show the hypotheses of the theorems do not contradict one

another.
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Chapter 1

Introduction

For years, fixed point theory has found itself at the center of study of bound-

ary value problems. Many fixed point theorems have provided criteria for the ex-

istence of positive solutions or multiple positive solutions of boundary value prob-

lems. Some of these results can be seen in the works of Guo [12], Krosnosel’skii

[14], Leggett and Williams [15], and Avery et al. [4, 8].

Applications of the aforementioned fixed point theorems have been seen in

works dealing with ordinary differential equations [3, 7, 11] and dynamic equations

on time scales [10, 16, 19]. Most relevant to this research, these theorems have

been utilized for results that involve finite difference equations [6, 9, 13, 18].

In this paper, we give an application of two recent Avery et al. fixed point

theorems to obtain at least one positive solution of the difference equation

∆2u(k) + f(u(k)), k ∈ {0, 1, ..., N}, (1.1)

with boundary conditions

u(0) = u(N + 2) = 0, (1.2)

Here f : R → [0,∞) is any continuous function and ∆2 is the second-difference

operator defined by (∆2u)(k) = u(k + 2)− 2u(k + 1) + u(k).
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The original Leggett-Williams theorem states the following.

Theorem 1.1 (Leggett-Williams [15]). Let K be a cone in a Banach space E and

define the sets

Kε1 := {x ∈ K : ||x|| ≤ ε1}

and

S(β, ε2, ε3) := {x ∈ K : ε2 ≤ β(x) and ||x|| ≤ ε3}

for ε1 > 0 and ε3 > ε2 > 0 and any concave positive functional β defined on the

cone K, with β(x) ≤ ||x||.

Suppose that c ≥ b > a > 0, α is a concave positive functional with α(x) ≤

||x|| and A : Kc → K is a completely continuous operator such that

(i) {x ∈ S(α, a, b) : α(x) > a} 6= ∅, and α(Ax) > a if x ∈ S(α, a, b),

(ii) Ax ∈ Kc if x ∈ S(α, a, c), and

(iii) α(Ax) > a for all x ∈ S(α, a, c) with ||Ax|| > b.

Then A has a fixed point in S(α, a, c).

The Leggett-Williams fixed point theorem has been modified by many [1,

2, 4, 5, 17] in order to generalize the class of boundary value problem the fixed

point theorem can be applied to. In the two fixed point theorems used here, the

conditions involving the norm in the Leggett-Williams fixed point theorem are

replaced by a more general convex positive functional. Also, only subsets of the

cone are required to map inward and outward.

In Chapter 2, we provide some background definitions. In Chapter 3, we

present the first fixed point theorem and show how this fixed point theorem can

be applied to show the existence of a positive symmetric solution of (1.1),(1.2).

A nontrivial example is then provided. In Chapter 4, similar results are obtained

while using a second fixed point theorem.
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Chapter 2

Preliminaries

2.1 Definitions

Definition 2.1. Let E be a real Banach space. A nonempty closed convex set

P ⊂ E is called a cone provided:

(i) u ∈ P , λ ≥ 0 implies λu ∈ P ;

(ii) u ∈ P , −u ∈ P implies u = 0.

Definition 2.2. A map α is said to be a nonnegative continuous concave func-

tional on a cone P of a real Banach space E if

α : P → [0,∞)

is continuous and

α(tu+ (1− t)v) ≥ tα(u) + (1− t)α(v),

for all u, v ∈ P and t ∈ [0, 1].

Definition 2.3. Similarly, the map β is a nonnegative continuous convex func-
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tional on a cone P of a real Banach space E if

β : P → [0,∞)

is continuous and

β(tu+ (1− t)v) ≤ tβ(u) + (1− t)β(v),

for all u, v ∈ P and t ∈ [0, 1].

2.2 The Green’s Function

It is well known that the Green’s function for −∆2u = 0 satisfying the

boundary conditions (1.2) is given by

H(k, l) =
1

N + 2


k(N + 2− l), k ∈ {0, . . . , l},

l(N + 2− k), k ∈ {l + 1, . . . , N + 2},

So u solves (1.1),(1.2) if and only if u(k) =
∑N+1

l=1 H(k, l)f(u(l)). Notice that

H(k, l) ≥ 0.

Lemma 2.1. For (k, l) ∈ {0, . . . , N+2}×{0, . . . , N+2}, H(N+2−k,N+2−l) =

H(k, l).
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Proof. For (k, l) ∈ {0, . . . , N + 2} × {0, . . . , N + 2},

H(N + 2− k,N + 2− l)

=
1

N + 2

 (N + 2− k)(N + 2− (N + 2− l)), 0 ≤ N + 2− k ≤ N + 2− l ≤ N + 1,

(N + 2− l)(N + 2− (N + 2− k)), 1 ≤ N + 2− l ≤ N + 2− k ≤ N + 2,

=
1

N + 2

 l(N + 2− k), 1 ≤ l ≤ k ≤ N + 2,

k(N + 2− l), 0 ≤ k ≤ l ≤ N + 1,

= H(k, l).

Lemma 2.2. H(k, l) has the property that H(y,l)
H(w,l)

≥ y
w

for all l, w, y ∈ {0, . . . , N +

2} with w ≥ y.

Proof. When y ≤ w ≤ l,

H(y, l)

H(w, l)
=

1
N+2

(y(N + 2− l))
1

N+2
(w(N + 2− l))

=
y

w
.

When y ≤ l ≤ w,

H(y, l)

H(w, l)
=

1
N+2

(y(N + 2− l))
1

N+2
(l(N + 2− w))

≥ y(N + 2− w)

w(N + 2− w)
=
y

w
.

When l ≤ y ≤ w,

H(y, l)

H(w, l)
=

1
N+2

(l(N + 2− y))
1

N+2
(l(N + 2− w))

≥ 1 ≥ y

w
.
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Chapter 3

Application of the First Fixed

Point Theorem

3.1 The Fixed Point Theorem

Definition 3.1. Let α and ψ be nonnegative continuous functionals on a cone

P and δ and β be nonnegative continuous convex functionals on P ; then, for

nonnegative real numbers a, b, c, and d we define the sets

A := A(α, β, a, d) = {x ∈ P : a ≤ α(x) and β(x) ≤ d} ,

B := B(α, δ, β, a, b, d) = {x ∈ A : δ(x) ≤ b} ,

and

C := C(α, ψ, β, a, c, d) = {x ∈ A : c ≤ ψ(x)} .

Theorem 3.1 (Anderson, Avery, Henderson [2]). Suppose P is a cone in a real

Banach space E, α and ψ are nonnegative continuous concave functionals on P,

β and δ are nonnegative continuous convex functionals on P, and for nonnegative

real numbers a, b, c, and d, the sets A, B, and C are defined as above. Further-

more, suppose that A is a bounded subset of P, that T : A → P is a completely

continuous operator, and that the following conditions hold:
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(A1) {x ∈ A : c < ψ(x) and δ(x) < b} 6= ∅ and {x ∈ P : α(x) < a and d < β(x)} =

∅;

(A2) α(Tx) ≥ a for all x ∈ B;

(A3) α(Tx) ≥ a for all x ∈ A with δ(Tx) > b;

(A4) β(Tx) ≤ d for all x ∈ C and,

(A5) β(Tx) ≤ d for all x ∈ A with ψ(Tx) < c.

Then T has a fixed point x∗ ∈ A.

3.2 Preliminaries

Define the Banach space E to be

E = {u : {0, . . . , N + 2} → R}

with the norm

||u|| = max
k∈{0,1,...,N+2}

|u(k)|.

Define the cone P ⊂ E by

P := {u ∈ E : u(N + 2− k) = u(k), u is nonnegative and nondecreasing on

{0, 1, . . . , bN+2
2
c}, and wu(y) ≥ yu(w) for w ≥ y with y, w ∈ {0, 1, . . . , bN+2

2
c}
}
.

Define the operator T : E → E by

Tu(k) :=
N+1∑
l=1

H(k, l)f(u(l)),

where H(k, l) is the Green’s function for −∆2u(k) = 0 satisfying the boundary

conditions (1.2). So if u is a fixed point of T , u solves (1.1),(1.2).

Lemma 3.1. The operator T : E → E is completely continuous.
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Proof. We use the Arzelá Ascoli theorem to show that T is a compact operator,

and thus completely continuous. So we must show T is continuous, uniformly

bounded, and equicontinuous. First, note that H(k, l) is bounded, so there exists

a K > 0 such that |H(k, l)| ≤ K for all k, l ∈ {0, . . . , N + 2} × {0, . . . , N + 2}.

Let ε > 0. Let u ∈ E. Since f is continuous, f is uniformly continuous on

[−||u|| − 1, ||u|| + 1]. So there exists a δ > 0 with δ < 1 such that for all x, y ∈

[−||u||−1, ||u||+1], |f(x)−f(y)| < ε/(N+1)K. So for all v ∈ E with ||u−v|| < δ,

u(k), v(k) ∈ [−||u|| − 1, ||u||+ 1] and |u(k)− v(k)| < δ for all k ∈ {0, . . . , N + 2}.

Thus for all k ∈ {0, . . . , N + 2}, |f(u(k)) − f(v(k))| < ε/(N + 1)K. Thus for

k ∈ {0, . . . , N + 2}

|Tu(k)− Tv(k)| ≤
N+1∑
l=1

|H(k, l)||f(u(l))− f(v(l))|

<
N+1∑
l=1

K · ε

(N + 1)K
= ε.

So ||Tu− Tv|| < ε and therefore T is continuous.

Now let {un} be a bounded sequence in E with ||un|| ≤ K0 for all n. Since

f is continuous, there exists a K1 > 0 such that |f(un(k))| ≤ K1 for all k ∈

{0, . . . , N + 2} and for all n. So for k ∈ {0, . . . , N + 2}

|Tun(k)| ≤
N+1∑
l=1

|H(k, l)||f(un(l))|

≤
N+1∑
l=1

KK1 = (N + 1)KK1

for all n. So {Tun} is uniformly bounded.

Lastly, choose δ < 1. So if k1, k2 ∈ {0, . . . , N + 2} with |k1 − k2| < δ,

k1 = k2. Thus for all n, |Tun(k1) − Tun(k2)| = 0 < ε. So if |k1 − k2| < δ,

|Tun(k1) − Tun(k2)| < ε. So T is equicontinuous. Hence by the Arzelá Ascoli

theorem, T is compact, and thus uniformly continuous.

Lemma 3.2. The operator T acting on the set A maps A to P . That is T : A→

8



P.

Proof. Let u ∈ A. We first need to show Tu(N + 2− k) = Tu(k). By Lemma 2.1

H(N + 2− k,N + 2− l) = H(k, l). Now

Tu(N + 2− k) =
N+1∑
l=1

H(N + 2− k, l)f(u(l)).

Substitute r = N + 2− l. So

Tu(N + 2− k) =
N+1∑
r=1

H(N + 2− k,N + 2− r)f(u(N + 2− r))

=
N+1∑
r=1

H(k, r)f(u(r)) = Tu(k).

So Tu(N + 2− k) = Tu(k).

Next we need to show Tu(k) is nonnegative and nondecreasing on

{0, 1, . . . , bN+2
2
c}. Since H(k, l) ≥ 0 for k, l ∈ {0, . . . , N + 2} and f : [0,∞) →

[0,∞), Tu(k) is nonnegative for all k ∈ {0, . . . , N + 2}.

To show that Tu(k) is nondecreasing on {0, 1, . . . , bN+2
2
c}, we show ∆Tu(k)

is nonnegative on {0, 1, . . . , bN+2
2
c}. Now

∆kH(k, l) = H(k + 1, l)−H(k, l) =
1

N + 2


N + 2− l, k ∈ {0, . . . , l},

−l, k ∈ {l, . . . , N + 1}.
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So

∆Tu(k) =
N+1∑
l=1

∆kH(k, l)f(u(l))

=
k−1∑
l=1

−l
N + 2

f(u(l)) +
N+1∑
l=k

N + 2− l
N + 2

f(u(l))

=
k−1∑
l=1

−l
N + 2

f(u(l)) +
N+1∑
l=k

N + 2− l
N + 2

f(u(N + 2− l))

=
k−1∑
l=1

−l
N + 2

f(u(l)) +
N+2−k∑
r=1

r

N + 2
f(u(r))

=
k−1∑
l=1

−l
N + 2

f(u(l)) +
N+2−k∑
l=1

l

N + 2
f(u(l)).

Since k ∈ {0, 1, . . . , bN+2
2
c},

∆Tu(k) =
k−1∑
l=1

−l
N + 2

f(u(l)) +
N+2−k∑
l=1

l

N + 2
f(u(l))

=
N+2−k∑
l=k

l

N + 2
f(u(l)) ≥ 0.

So Tu(k) is nondecreasing.

Lastly, since by Lemma 2.2, H(k, l) has the property that H(y,l)
H(w,l)

≥ y
w

for all

l and for w ≥ y, wTu(y) ≥ yTu(w). Thus T : A→ P .

For u ∈ P , define the concave functionals α and ψ on P by

α(u) := min
k∈{τ,...,bN+2

2
c}
u(k) = u(τ),

ψ(u) := min
k∈{µ,...,bN+2

2
c}
u(k) = u(µ),

and the convex functionals δ and β on P by

δ(u) := max
k∈{0,...,ν}

u(k) = u(ν),

β(u) := max
k∈{0,...,bN+2

2
c}
u(k) = u(bN+2

2
c).

10



3.3 Positive Symmetric Solutions to (1.1),(1.2)

Theorem 3.2. Assume τ, µ, ν ∈ {1, . . . , bN+2
2
c} are fixed with τ ≤ µ < ν, that d

and m are positive real numbers with 0 < m < dµ

bN+2
2
c and f : [0,∞)→ [0,∞) is a

continuous function such that

(i) f(w) ≥ 2(N + 2)d

(ν − τ)(3 + 2N − τ − ν)bN+2
2
c

for w ∈

[
τd

bN+2
2
c
,

νd

bN+2
2
c

]
,

(ii) f(w) is decreasing for w ∈ [0,m] and f(m) ≥ f(w) for w ∈ [m, d], and

(iii) 2
µ∑
l=1

ldN+2
2
e

N + 2
f

(
ml

µ

)
≤ d

−f(m) 1
N+2

(⌈
N+2
2

⌉) (⌊
N+2
2

⌋
− µ

) (
µ+ 1 +

⌊
N+2
2

⌋)
.

Then T has a fixed point x∗ ∈ A. Thus (1.1), (1.2) has at least one positive

symmetric solution u∗ ∈ A(α, β, τd
bN+2

2
c , d).

Proof. Let a = τd
bN+2

2
c , b = νd

bN+2
2
c , c = µd

bN+2
2
c . By Lemma 3.1, T is completely

continuous. By Lemma 3.2, T : A→ P . Let u ∈ A. Then β(u) = u
(
bN+2

2
c
)
≤ d.

But u achieves its maximum at bN+2
2
c, so A is bounded.

First, we show (A1) holds. Let u ∈ P and let β(u) > d. Then

α(u) = u(τ) ≥ τ

bN+2
2
c
u(bN+2

2
c)

=
τ

bN+2
2
c
β(u)

>
τd

bN+2
2
c

= a.

So {u ∈ P : α(u) < a and d < β(u)} = ∅.

Now let K ∈

(
2d(N + 2)

bN+2
2
c(3N + 2− µ)

,
2d(N + 2)

bN+2
2
c(3N + 2− ν)

)
. Define

11



uK(k) = K
N+1∑
l=1

H(k, l) =
Kk

2(N + 2)
(3N + 2− k). Now

α(uk) = uk(τ) =
Kτ

2(N + 2)
(3N + 2− τ)

>
2dτ(3N + 2− τ)

2bN+2
2
c(3N + 2− µ)

≥ τd

bN+2
2
c

= a.

Also,

β(uk) = uk(bN+2
2
c) =

KbN+2
2
c

2(N + 2)
(3N + 2− bN+2

2
c)

<
2bN+2

2
cd(3N + 2− bN+2

2
c)

2bN+2
2
c(3N + 2− ν)

≤
bN+2

2
cd

bN+2
2
c

= d.

So uk ∈ A.

Since

ψ(uk) = uk(µ) =
Kµ

2(N + 2)
(3N + 2− µ)

>
2dµ(3N + 2− µ)

2bN+2
2
c(3N + 2− µ)

=
µd

bN+2
2
c

= c,

and

δ(uk) = uk(ν) =
Kν

2(N + 2)
(3N + 2− ν)

<
2dν(3N + 2− ν)

2bN+2
2
c(3N + 2− ν)

=
νd

bN+2
2
c

= b,

{u ∈ A : c < ψ(u) and δ(u) < b} 6= ∅. Therefore (A1) holds.

12



Next, we show (A2) holds. Let u ∈ B with δ(u) < b. By (i),

α(Tu) =
N+1∑
l=1

H(τ, l)f(u(l))

≥
ν∑

l=τ+1

H(τ, l)f(u(l))

≥ 2(N + 2)d

(ν − τ)(3 + 2N − τ − ν)bN+2
2
c
· τ(ν − τ)(3 + 2N − τ − ν)

2(N + 2)

≥ τd

bN+2
2
c

= a.

So (A2) holds.

We will now show (A3) holds. Let u ∈ A with δ(Tu) > b. Then

α(Tu) =Tu(τ)

=
N+1∑
l=1

H(τ, l)f(u(l))

≥τ
ν

N+1∑
l=1

H(ν, l)f(u(l))

=
τ

ν
δ(Tu)

>
τ

ν
b

=
dτ

bN+2
2
c

= a.

So (A3) holds.

Now we show (A4) holds. Let u ∈ C. By the concavity of u and since

c =
µd

bN+2
2
c

, for all k ∈ {0, 1, . . . , µ},

u(k) ≥ ck

µ
≥ mk

µ
.

13



So, by (ii) and (iii), we have

β(Tu) =
N+1∑
l=1

H
(
bN+2

2
c, l
)
f(u(l))

≤2

bN+2
2
c∑

l=1

l
(
N + 2− bN+2

2
c
)

N + 2
f(u(l))

=2

µ∑
l=1

l
(
dN+2

2
e
)

N + 2
f(u(l)) + 2

bN+2
2
c∑

l=µ+1

l
(
dN+2

2
e
)

N + 2
f(u(l))

≤2

µ∑
l=1

l
(
dN+2

2
e
)

N + 2
f

(
u

(
ml

µ

))
+ 2

bN+2
2
c∑

l=µ+1

l
(
dN+2

2
e
)

N + 2
f(m)

≤d− f(m)
1

N + 2

(⌈
N + 2

2

⌉)(⌊
N + 2

2

⌋
− µ

)(
µ+ 1 +

⌊
N + 2

2

⌋)
+ f(m)

1

N + 2

(⌈
N + 2

2

⌉)(⌊
N + 2

2

⌋
− µ

)(
µ+ 1 +

⌊
N + 2

2

⌋)
=d.

So (A4) is satisfied.

Last, we show (A5) is satisfied. Let u ∈ A with ψ(Tu) < c. So

β(Tu) =
N+1∑
l=1

H(
⌊
N+2
2

⌋
, l)f(u(l))

≤
⌊
N+2
2

⌋
µ

N+1∑
l=1

H(µ, l)f(u(l))

≤
⌊
N+2
2

⌋
µ

ψ(Tu)

<
cbN+2

2
c

µ
= d.

Therefore T has a fixed point and (1.1), (1.2) has at least one positive sym-

metric solution u∗ ∈ A.
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3.4 Example

Example 3.1. Let N = 18, τ = 1, µ = 9, ν = 10, d = 5, and m = 4.4. Notice

that 0 < τ ≤ µ < ν ≤ 10 =
⌊
N+2
2

⌋
, and 0 < m = 4.4 ≤ 4.5 = dµ

bN+2
2 c

. Define a

continuous function f : [0,∞)→ [0,∞) by

f(w) =


45−w
500

, 0 ≤ w ≤ 40

1
100
, w ≥ 40.

Then,

(i) for w ∈ [1
2
, 5], f(w) ≥ f(5) =

2

25
>

5

63
=

2 · 20 · 5
(10− 1) · (3 + 2 · 18− 1− 10)(10)

,

(ii) f(w) is decreasing for w ∈ [0, 4.4] and f(m) ≥ f(w) for w ∈ [4.4, 5], and

(iii) 2
9∑
l=1

10l

20
f

(
4.4l

9

)
=

5657

1500
<

1047

250
= 5− f(4.4)( 1

20
)(10)(10− 9)(9 + 1 + 10).

So the hypotheses of Theorem 3.2 are satisfied. Therefore, the difference equatione

∆2u(k) + f(u(k)), k ∈ {0, 1, ..., 18},

with boundary conditions

u(0) = u(20) = 0,

has a positive symmetric solution u∗ with u(1) ≥ 1

2
and u(10) ≤ 5.
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Chapter 4

Application of the Second Fixed

Point Theorem

4.1 The Fixed Point Theorem

Definition 4.1. Let ψ and δ be nonnegative continuous functionals on a cone P ;

then, for positive real numbers a, and b we define the sets

P (ψ, b) := {x ∈ P : ψ(x) ≤ b},

and

P (ψ, δ, a, b) := {x ∈ P : a ≤ ψ(x) and δ(x) ≤ b}.

Theorem 4.1 (Anderson, Avery, Henderson [4]). Suppose P is a cone in a real

Banach space E, α is a nonnegative continuous concave functional on P, β is a

nonnegative continuous convex functional on P, and T : P → P is a completely

continuous operator. Assume there exist nonnegative numbers a, b, c, and d such

that:

(A1) {x ∈ P : a < α(x) and β(x) < b} 6= ∅;

(A2) if x ∈ P with β(x) = b and α(x) ≥ a, then β(Tx) < b;

16



(A3) if x ∈ P with β(x) = b and α(Tx) < a, then β(Tx) < b;

(A4) {x ∈ P : c < α(x) and β(x) < d} 6= ∅;

(A5) if x ∈ P with α(x) = c and β(x) ≤ d, then α(Tx) > c;

(A6) if x ∈ P with α(x) = c and β(Tx) > d, then α(Tx) > c.

If

(H1) a < c, b < d, {x ∈ P : b < β(x) and α(x) < c} 6= ∅, P(β, b) ⊂ P(α, c), and

P(α, c) is bounded,

then T has a fixed point x∗ in P(β, α, b, c).

If

(H2) c < a, d < b, {x ∈ P : a < α(x) and β(x) < d} 6= ∅, P(α, a) ⊂ P(β, d), and

P(β, d) is bounded,

then T has a fixed point x∗ in P(α, β, a, d).

4.2 Preliminaries

Define the Banach space E to be

E = {u : {0, . . . , N + 2} → R}

with the norm

||u|| = max
k∈{0,1,...,N+2}

|u(k)|.

Define the cone P ⊂ E by

P := {u ∈ E : u(N + 2− k) = u(k), u is nonnegative and nondecreasing on

{0, 1, . . . , bN+2
2
c}, and wu(y) ≥ yu(w) for w ≥ y with y, w ∈ {0, 1, . . . , bN+2

2
c}
}
.

17



Define the operator T : E → E by

Tu(k) :=
N+1∑
l=1

H(k, l)f(u(l)),

where H(k, l) is the Green’s function for −∆2u(k) = 0 satisfying the boundary

conditions (1.2). So if u is a fixed point of T , u solves (1.1),(1.2). By Lemma 3.1,

T is completely continuous

Lemma 4.1. The operator T : P → P.

Proof. The proof of this lemma is very similar to the proof of Lemma 3.2, so it is

omitted.

For u ∈ P , define the concave functional α on P by

α(u) := min
k∈{τ,...,bN+2

2
c}
u(k) = u(τ),

and the convex functional β on P by

β(u) := max
k∈{0,...,bN+2

2
c}
u(k) = u(bN+2

2
c).

4.3 Positive Symmetric Solutions to (1.1),(1.2)

Theorem 4.2. If τ ∈ {1, ..., bN+2
2
c} is fixed, b and c are positive real numbers

with 3b < c, and f : [0,∞)→ [0,∞) is a continuous function such that:

(i) f(w) >
c(N + 2)

τ(N + 1− τ)(bN+2
2
c − τ)

for w ∈

[
c,
cbN+2

2
c

τ

]
,

(ii) f(w) is decreasing for w ∈

[
b

bN+2
2
c
,

bτ

bN+2
2
c

]
with f

(
bτ

bN+2
2
c

)
≥ f(w) for

w ∈

[
bτ

bN+2
2
c
, b

]
,

18



(iii) and 2
τ∑
l=1

l(dN+2
2
e)

N + 2
f

(
bl

2

)
≤ b− f

(
bτ

bN+2
2
c

)
1

N+2
(dN+2

2
e)(bN+2

2
c − τ)(τ + 1 + bN+2

2
c),

then T has a fixed point x∗ in P(β, α, b, c). Thus the discrete right-focal

problem (1.1), (1.2) has at least one positive symmetric solution u∗∗ ∈ P(β, α, b, c).

Proof. Note that by Lemma 4.1, T : P → P . By Lemma 3.1, T is completely

continuous. First, we let a =
bτ

bN+2
2
c

and d =
cbN+2

2
c

τ
. Then, we have a =

bτ

bN+2
2
c
<

cτ

3bN+2
2
c
< c and b <

c

3
=

dτ

3bN+2
2
c
< d.

We proceed to verify properties (A1) and (A4). First, for

K ∈

(
2b(N + 2)

(3N + 2− τ)bN+2
2
c
,

2b(N + 2)

(3N + 2− bN+2
2
c)bN+2

2
c

)
, define the function uL by

uL(k) :=
N+1∑
l=1

LH(k, l) =
Lk

2(N + 2)
(3N + 2− k).

Since

α(uL) = uL(τ) =
Lτ

2(N + 2)
(3N + 2− τ) > a,

and

β(uL) = uL(bN+2
2
c) =

LbN+2
2
c

2(N + 2)
(3N + 2− bN+2

2
c) < b,

uL ∈ {u ∈ P : a < α(u) and β(u) < b}.

Similarly, for J ∈

(
2c(N + 2)

τ(3N + 2− τ)
,

2c(N + 2)

τ(3N + 2− bN+2
2
c)

)
, define the func-

tion uJ by

uJ(k) :=
N+1∑
l=1

JH(k, l) =
Jk

2(N + 2)
(3N + 2− k).

Since

α(uJ) = uJ(τ) =
Jτ

2(N + 2)
(3N + 2− τ) > c,

and

β(uJ) = uJ(bN+2
2
c) =

JbN+2
2
c

2(N + 2)
(3N + 2− bN+2

2
c) <

cbN+2
2
c

τ
= d,
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uJ ∈ {u ∈ P : c < α(u) and β(u) < d}. Hence we have {u ∈ P : a <

α(u) and β(u) < b} 6= ∅ and {u ∈ P : c < α(u) and β(u) < d} 6= ∅. There-

fore conditions (A1) and (A4) hold.

Turning to (A2), let u ∈ P with β(u) = b and α(u) ≥ a. By the concavity

of u, for l ∈ {0, ..., τ}, we have

u(l) ≥
(
u(τ)

τ

)
l ≥ bl

bN+2
2
c
.

and for all l ∈ {τ, ..., bN+2
2
c}, we have

bτ

bN+2
2
c
≤ u(l) ≤ b.

Hence by (ii) and (iii), it follows that

β(Tv) =
N+1∑
l=1

H
(
bN+2

2
c, l
)
f(u(l))

≤2

bN+2
2
c∑

l=1

l(dN+2
2
e)

N + 2
f(u(l))

=2
τ∑
l=1

l(dN+2
2
e)

N + 2
f(u(l)) + 2

bN+2
2
c∑

l=τ+1

l(dN+2
2
e)

N + 2
f(u(l))

≤2
τ∑
l=1

l(dN+2
2
e)

N + 2
f

(
bl

2

)
+ 2

bN+2
2
c∑

l=τ+1

l(dN+2
2
e)

N + 2
f

(
bτ

bN+2
2
c

)

≤b− f

(
bτ

bN+2
2
c

)
1

N + 2
(dN+2

2
e)(bN+2

2
c − τ)(τ + 1 + bN+2

2
c)

+ f

(
bτ

bN+2
2
c

)
1

N + 2
(dN+2

2
e)(bN+2

2
c − τ)(τ + 1 + bN+2

2
c)

=b.

So (A2) is satisfied.

Next, we establish (A3) of theorem 3.1, and so we let u ∈ P with β(u) = b
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and α(Tu) < a. By the properties of H(k, l),

β(Tu) =
N+1∑
l=1

H(bN+2
2
c, l)f(u(l))

≤
bN+2

2
c

τ

N+1∑
l=1

H(τ, l)f(u(l))

=
bN+2

2
c

τ
α(Tu)

<
abN+2

2
c

τ
= b,

so (A3) holds.

In dealing with (A5), let u ∈ P with α(u) = c and β(u) ≤ d. Then for

l ∈ {τ, ..., N + 2}, we have

c ≤ u(l) ≤ d =
cbN+2

2
c

τ
.

Hence by Property (i),

α(Tu) =
N+1∑
l=1

H(τ, l)f(u(l)) ≥
N+1∑
l=τ+1

H(τ, l)f(u(l)) =

=
N+1∑
l=τ+1

τ(bN+2
2
c − τ)

N + 2
f(u(l)) >

N+1∑
l=τ+1

c

N + 1− τ
= c,

and so (A5) is valid.

Now we address (A6). So, let u ∈ P with α(u) = c and β(Tu) > d. Again,

by the properties of H,

α(Tu) =
N+1∑
l=1

H(τ, l)f(u(l)) ≥

≥ τ

bN+2
2
c

N+1∑
l=1

H(bN+2
2
c, l)f(u(l)) =

=
τ

bN+2
2
c
β(Tu) >

τd

bN+2
2
c

= c
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and so (A6) of Theorem 2.3 also holds.

Last, we show (H1) holds. Let K ∈

(
2b

bN+2
2
c
,

2c

3bN+2
2
c

)
. Then define

uK(k) = K

N+1∑
l=1

H(k, l) =
Kk

2(N + 2)
(3N + 2− k).

So

β(uK) =
KbN+2

2
c

2(N + 2)
(3N + 2− bN+2

2
c)

>
b

(N + 2)
(3N + 2− bN+2

2
c) ≥ b,

and

α(uK) =
Kτ

2
(3N + 2− τ)

<
cτ

3(N + 2)bN+2
2
c

(3N + 2− τ) ≤ c.

Thus {u ∈ P : b < β(u) and α(u) < c} 6= ∅.

If u ∈ P(β, b), then

α(u) ≤ β(u) ≤ b < c,

and hence P(β, b) ⊂ P(α, c).

Lastly, if u ∈ P(α, c), then

τ

bN+2
2
c
β(u) ≤ α(u) ≤ c,

and so

||u|| = β(u) ≤
cbN+2

2
c

τ
.

Therefore P(α, c) is bounded. So (H1) holds. Thus T has a fixed point u∗∗ ∈

P(β, α, b, c).
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4.4 Example

Notice the previous example fails for these new conditions. For N = 18 and

τ = 1, by (i),

f(w) >
10c

81
for w ∈ [c, 9c].

If 9c ≤ 40, f(9c) > 10c
81

, implying c < 0.6364. Thus, since 3b < c, b < 0.214. Then

(iii) fails, since b− f

(
bτ

bN+2
2
c

)
1

N+2
(dN+2

2
e)(bN+2

2
c − τ)(τ + 1 + bN+2

2
c) < 0.

If 9c > 40, then for (i) to hold, 1
100

> 10c
81
> 400

81
. Therefore (i) does not hold.

Thus a new example is needed.

Example 4.1. Example: Let N = 10, τ = 2, b = 2, and c = 7. Notice that

3b < c. Define a continuous f : [0,∞)→ [0,∞) by

f(w) =



1−w
6

0 ≤ w < 1

0 1 ≤ w < 2

w − 2 2 ≤ w.

Then,

(i) f(w) > 7·12
2·9·4 = 7/6 for w ∈ [7, 21],

(ii) f(w) is decreasing on [1
3
, 2
3
], and f(2

3
) ≥ f(w) for w ∈ [2

3
, 1], and

(iii)
∑2

l=1 lf(l) = 0 ≤ 1 = 2− f(2
3
) · 1

2
· 4 · 9

Therefore by Theorem 3.1, the right focal boundary value problem,

∆2u(k) + f(u(k)), k ∈ {0, 1, ..., 10},
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with boundary conditions

u(0) = u(12) = 0,

has a positive symmetric solution u∗∗ with u∗∗(6) ≥ 2 and u∗∗(2) ≤ 7.
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