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ABSTRACT 

Recreational areas represent a significant source of human-wildlife interaction, which can 

have an especially negative effect on organisms, like snakes, that are generally perceived 

as dangerous by the public. Considering the projected increase in recreation rates in the 

United States, the threat to this already vulnerable group of organisms deserves attention. 

While habitat factors associated with recreational areas—fragmentation, decreased 

canopy cover, altered vegetation composition—have been shown to affect snake 

thermoregulatory behavior and abundance, detailed studies of wild snake behavior are 

uncommon due to their cryptic nature. The goal of this study was to reduce human-

wildlife conflict at a recreational site in Kentucky where copperhead snakes (Agkistrodon 

contortrix) are known to aggregate and forage. Capture-recapture data were used to 1) 

describe the demographic structure of the population and 2) construct models that 

quantify the probability of apparent survival (S) and recapture (p) as it related to snake 

sex and weight. In addition, copperhead foraging behavior was closely observed in order 

to 1) quantify individual behaviors, 2) calculate movement rates, and 3) describe the 

copperhead’s general foraging strategy at the site. From 2015 to 2018, 84 individual 

copperheads (male = 46; female = 38) were captured, weighed, and PIT-tagged. The 

average number of snakes caught each year ranged from 18 to 45, and the total number of 

captures (including recaptures) was 261. The probability of apparent survival varied 5–

49%, and the probability of recapture varied 0–15%, depending on the sampling year. 

The greatest difference in apparent survival attributable to sex was 3% and the greatest 

difference in recapture was 1%. Apparent survival varied as a function of mass, 9–20% 

for both males and females. Recapture did not vary as a function of mass for males or 
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females. In 2018, 72 nightly surveys were conducted to assess copperhead behavior at the 

study site. Individuals were observed using visual and vomeronasal cues to forage for 

newly emerged annual cicadas (Tibicen spp.) on the ground and in patches of vegetation 

and small trees. On average, snakes were non-mobile for 61.00 ± 8.44 min (59%) and 

mobile for 42.69 ± 7.51 min (41%). The average distance traveled during a single 

foraging event was 30.20 ± 6.98 m, at an average speed of 0.40 ± 0.11 m/min. The 

number of directional changes during a foraging event ranged from 0 to 24 with a mean 

of 6 ± 1 changes, and the average amount of time individuals spent climbing was 13.1 ± 

4.80 min. The number of cicadas eaten per individual ranged from 0 to 3 and the average 

handling time was 3.17 ± 0.60 min. Based on the importance of human safety and snake 

conservation at the study site, these data will be used to 1) inform educational programs 

and resources that facilitate public understanding of copperhead ecology, and 2) reinforce 

copperhead conservation by implementing management techniques that reduce 

copperhead occupancy and allow future monitoring at the study site. 
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CHAPTER I 

INTRODUCTION 

 

One of the most fundamental threats to wildlife is their interaction with humans 

(Treves et al. 2006; Dickman 2010; Sullivan et al. 2014); recreational areas represent a 

significant source of this interaction (Losos et al. 1995; Papouchis et al. 2001; Taylor 

and Knight 2003; Reed and Merenlender 2008; Marzano and Dandy 2012). 

Paradoxically, recreational areas also serve as a useful tool for wildlife-related public 

outreach, education, and conservation, while simultaneously increasing the probability 

of human-wildlife interactions (Sorice et al. 2003). Interactions with humans can have 

an especially negative effect on organisms, like snakes, that are generally perceived as 

dangerous by the public (Kellert et al. 2003; Shine and Koenig 2001; Dickman 2010). 

In light of the projected increases in recreation in the United States (Bowker et al. 

2012), the threat to this already vulnerable group of organisms deserves attention 

(Gibbons et al. 2000; Gardner et al. 2007; Bohm et al. 2013; Meiri and Chapple 2016).  

Predicting the spatial distributions and habitat associations of organisms is a 

central theme in ecological studies (Arthur et al. 1996; Boyce et al. 2003; Johnson et al. 

2006; Beyer et al. 2010), and an important component of conservation planning and 

wildlife management programs (Aldridge and Boyce 2007; Sullivan et al. 2014; Allen 

and Singh 2016). While it is generally accepted that snakes select habitats at multiple 

scales (Reinert 1993; Moore and Gillingham 2006; Sutton et al. 2017; Buchanan et al. 

2017), their life history is seldom studied according to this paradigm (McGarigal et al. 

2016). Further, while landscape-level data can provide important insights related to 

coarse spatial patterns and general habitat associations (Steen et al. 2012), these patterns 
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should not be generalized to explain finer-scale ecological processes (Tischendorf 

2001). This concept is especially important in cases where organisms, like viperid 

snakes, rely heavily on microhabitats (Harvey and Weatherhead 2006). Consequently, 

studies with conservation or management objectives should carefully examine habitat 

use as a dynamic network of interrelated life history functions (Johnson 1980; Reinert 

1993) that vary across spatial and temporal scales (Boyce et al. 2003; Semlitsch et al. 

2017). 

Habitat use in snakes is directly related to physiological constraints imposed by 

their ambient environment (Arnold and Bennett 1984; Huey 1991). Structural variation 

in a habitat provides an environmental gradient that allows individuals to regulate their 

physiological and behavioral state (Webb and Shine 1998; Beaupre 2002). For example, 

fragmentation can increase the thermoregulatory potential of a site (Blouin-Demers and 

Weatherhead 2002), as well as the quantity and availability of prey (Blouin-Demers and 

Weatherhead 2001). Similarly, canopy gaps in forested habitats can affect snake 

thermoregulatory behavior (Pringle et al. 2003; Webb et al. 2005) and overall 

abundance (Carter et al. 2014). Changes in vegetative composition and structure due to 

fire can affect the relative abundance of forest-dwelling snakes (Howey et al. 2016). 

Changes in habitat composition can also increase exposure to predators (Blouin-Demers 

and Weatherhead 2002; Shoemaker and Gibbs 2010; Steen et al. 2014), which may 

cause an individual to alter its foraging behavior (Rugiero et al. 2013; DeGregorio et al. 

2015). While habitat disturbance has been shown to significantly affect snakes at 

different spatial scales, behavioral responses to habitat change over time are less well 

known (Reinert et al. 2011).  



3 

Copperhead snakes (Agkistrodon contortrix) are a widely distributed viperid 

endemic to eastern North America. Although they are notably more docile than the 

other North American viperids, they are historically no less feared by humans (Garman 

1883). Copperheads are ambush predators and feed mainly on small mammals, 

occasionally eating amphibians, birds, and insects (Fitch 1960; Garton and Dimmick 

1969). Although copperheads have been observed throughout their range to forage in 

considerable numbers for newly emerged cicadas (Surface 1906; Heinze 1934; Fitch 

1960; Barbour 1962), this behavior has never been formally studied. These snakes 

inhabit rocky hillsides, areas with woody debris and leafy ground cover, and interfaces 

between forested and open areas (Fitch 1960). For this reason, copperheads are often 

encountered by humans at recreational sites near hiking trails, picnic areas, scenic 

overlooks, and campgrounds (Fitch 1960; Barbour 1962, Carter et al. 2014; Sutton et al. 

2017). Their leaf-like skin pattern provides excellent camouflage, making them even 

more susceptible to accidental encounters with humans (Fitch 1960). As a consequence, 

copperhead bites are the second most commonly reported envenomation in the United 

States (Walker and Morrison 2011).  

The overall objective of this study was to reduce conflict at a recreational site in 

Kentucky where copperheads are known to aggregate and forage. Capture-recapture 

data were used to 1) describe the demographic structure of the population and 2) 

quantify the probability of survival and recapture as it related to snake sex and weight. 

In addition, copperhead foraging behavior was closely observed in order to 1) quantify 

behaviors, 2) calculate movement rates, and 3) describe the copperhead’s general 

foraging strategy at the site. These data will be used to 1) inform educational programs 
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and resources that facilitate public understanding of copperhead ecology and 2) 

reinforce copperhead conservation by implementing management techniques that 

reduce copperhead occupancy at the study site and facilitate future data collection. 
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CHAPTER II 

METHODS 

Study Site 

The study site is located near the southern edge of the Red River Gorge in the 

Daniel Boone National Forest. The Red River Gorge is managed by the United States 

Forest Service (USFS) and designated as a national geological area. The study area is 

located within Mixed Mesophytic Forest Region (Jones 2005) and is composed mainly 

of mixed oak and oak-pine forest (Woods et al. 2002). The site is within the 

Cumberland Plateau Physiographic Region (Jones 2005) and has a complex topology of 

ridges, valleys, and cliff-faces. The extent of the study area (~0.6 km2) is based on 

opportunistic radiotracking data gathered in 2015, 2017, and 2018 (Figure 1). The study 

site is ca. 1000 m2 and lies adjacent to a southwest-facing slope, just below the top of a 

ridge (elevation 366 m). The site is characterized by patches of mowed grass, several 

patches of small vegetation and trees, and several gravel trails and gravel tent pads. The 

site is used for recreational purposes from March to September and receives daily use 

during the summer months. 

 

Visual Encounter Surveys 

Copperheads were located, beginning at dusk, by conducting visual surveys of 

the study site (Dodd 2016). A complete search of the site was conducted wherein one 

person searched a 3 m portion along the edge while another person simultaneously 

searched the inner portion of the site. Surveys were repeated until three consecutive 

searches of the campground produced no new captures. Copperheads were captured  
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using tongs (Midwest Tongs, tongs.com) and placed in 26.5 L buckets lined with a 

snake bag. A knot was tied in the snake bag after a locking lid was placed on the bucket. 

Environmental conditions were recorded before and after each survey; relative humidity 

was determined using a Kestrel 3000 wind meter (KestrelMeters, Minneapolis, MN), 

ground surface temperature using an HDE infrared laser thermometer, and soil 

temperature using a soil thermometer left in the ground throughout the survey. Air and 

ground temperatures were also recorded at a randomly selected location in the forest 

approximately 5m from the edge of the site. 

 

Service Layer Credits: Kentucky DGI,

KyFromAbove Partners

Kentucky Division of Geographic Information (DGI)
0 0.15 0.3 0.45

Kilometers

- 

Figure 1. Map illustrating the spatial and topological context of the study area 

(larger rectangle) and study site (smaller rectangle). The study site is shown in 

the top right. 
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Capture-recapture procedure 

Individual copperheads and bags containing snakes were handled with tongs and 

tubes during the measuring and marking process. Bags containing individuals were 

grasped with tongs and transported to a digital scale to determine the weight of the 

individual, corrected for the weight of the bag. After weighing, the snake was 

transported in the bag to a 190 L plastic bin, and tongs used to release the snake into the 

bin. Individuals were guided into clear polycarbonate tubes (Midwest Tongs, 

tongs.com) to be immobilized. Individuals were measured [total length (TL), snout-vent 

length (SVL)] and their sex determined using a lubricated cloacal probe (Dodd, 2016). 

A Passive Integrated Transponder (PIT) tag was implanted after measurements were 

taken. PIT tags (BioMark HPT12) were injected using a 12-gauge N125 Injector Needle 

(Biomark, Boise, ID) and an MK10 Implanter (Biomark, Boise, ID), following the 

procedure outlined in Dodd (2016). Recaptured individuals were scanned and identified 

using a BioMark HPR Reader (BioMark, Boise, ID). Capture-recapture surveys were 

conducted 3–5 times each season (May–September) in 2015 and 2016. In 2017–2018, 

sampling was more intensive— 12 surveys in 2017 and continuous monitoring from 2 

June to 18 August in 2018.  

 

Behavioral observations  

In 2018, the focal sampling method (Altmann 1974) was employed to document 

the foraging behavior of 24 individual copperheads throughout the season (June–

September). To ensure non-interference with behaviors, headlamps were used on a dim 

setting and the observer always remained 3–4 m away from the individual. Using a 
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stopwatch, the total amount of time individuals were mobile, non-mobile, climbing, 

eating, observed in combat, and reproducing was recorded. Mobile behavior was 

defined as sustained movement for at least 10 seconds. Non-mobile behavior was 

defined as remaining immobile for at least 10 seconds. Climbing was defined as parallel 

contact and/or movement along any structure with height, including branches of trees. 

Eating was defined as the amount of time from initial contact with a prey item until the 

snake’s mouth was able to fully close. Combat was defined as contact with an 

individual of the same sex, wherein the individuals intertwined the anterior portions of 

their bodies (Fitch 1960). Reproduction was defined as contact with an individual of the 

opposite sex, wherein the posterior portions of the individuals are intertwined (Fitch 

1960). The sampling frame for an individual foraging event was defined as the time an 

individual was seen entering the site to the time it either moved out of the site or 

remained in a coiled position with its head down for a minimum of 30 minutes. In order 

to quantify the spatial component of individual foraging events, all locations where a 

behavior or movement direction changed were recorded. Behavioral points of interest 

(POI) were defined as the location of a change in either behavior or direction. 

 

Data Analysis 

In order to determine the effect of sex and mass as it relates to population 

demography and site utilization by copperheads, capture-recapture models were 

constructed to estimate the probability of survival and recapture within a Robust Model 

framework (Pollock 1982), using Huggins parameterization for initial and subsequent 

capture probabilities (Huggins 1989). Data were analyzed from 4 primary sampling 
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occasions (i.e. 2015–2018), and 27 secondary (within-year) occasions (i.e. 3, 5, 12, 7, 

respectively) (Figure 2). To account for the continuous sampling structure during the 

last year of the study, secondary occasions for that year (n = 49) were evenly binned by 

week. Discretizing sampling occasions may result in low-biased estimates of survival 

and recapture in some models (Barbour et al. 2013), as well as confound various time-

dependent and movement parameters (Kendall and Bjorkland 2001). As a result of the 

copperhead’s relatively slow-moving, ‘migratory’ foraging behavior (Smith et al. 2009), 

movement parameters (temporary emigration and immigration) are unlikely to be 

confounded with apparent survival and recapture during secondary occasions. 

Additionally, the nature of the copperhead’s active foraging behavior at the study site 

increases the probability of overall capture during a secondary occasion, thus also 

decreasing potential bias as a result of non-instantaneous capture intervals. The effect of 

sex on survival and recapture probabilities may remain biased due to the tendency of 

females to be more sedentary and hidden during the breeding season (Smith et al. 2009).  
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Figure 2. Robust design model structure (adapted from Kendall 2009) 

illustrating open and closed population assumptions and associated 

parameters (Si, pi) derived from primary and secondary sampling periods. 
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Three general models with different movement parameters were evaluated– ‘No 

Movement’, ‘Random (classical) Movement’, and ‘Markovian Movement’ (see Lukacs 

2009)– and compared based upon Akaike Information Criteria (AIC) corrected for 

small sample size (AICc)(Hurvich and Tsai 1989). Both the ‘Markovian Movement’ and 

‘Random Movement’ models lacked numerical convergence, resulting in several 

inestimable parameters and confidence bounds. Because standard parameter constraints 

(Lukacs 2009) were imposed to eliminate structural confounding, the lack of 

convergence is most likely a combinative effect of data sparseness and model 

complexity. Alternatively, the ‘No Movement’ model resulted in numerical 

convergence for all parameters and error terms. A median ĉ goodness of fit test 

(Kendall et al. 2013) for this model structure indicated no overdispersion; therefore, the 

‘No Movement’ model was chosen as a general model. The ‘No Movement’ design is a 

constrained version of Markovian movement that fixes γ’’ = 0 and γ’ = 1, effectively 

eliminating the movement parameters from the model. In the absence of these 

movement parameters, survival estimates are ‘apparent’, meaning they are confounded 

with temporary movement to and from the study site. Based upon previous observations 

and scarcity of vegetational cover within the site, movement ‘on’ and ‘off’ the site is 

highly probable and may result in low-biased estimates of survival and recapture.  

For the Huggins parameterization, the probability of initial capture (pi) and 

subsequent capture (ci) are confounded; therefore, one parameter must be constrained to 

be a function of the other (Lukacs 2009). Based upon a priori reasoning and previous 

observations, a time-varying recapture structure was used, constraining pt = ct (for 

model notations see Otis et al. 1978; Lebreton et al. 1992) (Table 1). Applying 
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knowledge of copperhead biology and foraging ecology to this general model, a priori 

hypotheses were developed and time-dependent models were constructed to estimate 

the effect of time, sex, and mass on the probability of survival and recapture. All  

 

Table 1. Definitions of parameters used in constructing capture-recapture models. 

 

analyses were performed using Program MARK version 9.0 (White and Burnham 

1999). 

Basic demographic statistics (sex ratio, size and length distributions, frequency 

of captures) were calculated from 2015 to 2018. For individuals captured in 2018, the 

average amount of time individuals were observed in different behavioral states was 

determined and compared across snake sex and size. Individual demographic effects on 

foraging behavior were assessed by comparing the amount of time individuals of a 

certain sex and size class were mobile and non-mobile, as well as the rate of foraging 

and total distance traveled during a single foraging event. Individuals that remained 

non-mobile for 30 min upon sighting were excluded from behavioral analyses. The 

effect of mass on foraging distance and mobile behavior was determined using simple 

linear regression models. Information from individuals with multiple observations over 

Parameter Definition 

Si 
Probability of an individual being marked, released, and surviving from session 

i to i +1. 

γ'' Probability of an individual being unavailable during session i, given that the 

individual was available during session i-1. 

γ' Probability of an individual being unavailable during session i, given that the 

individual was unavailable during session i-1. 

pi 
Probability that an individual is encountered, conditional on survival and 

availability within the superpopulation. 

ci 
Probability that an individual is encountered, conditional on survival, 

availability, and having been previously encountered. 
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time was averaged in order to avoid pseudoreplication. A Shapiro-Wilk test was used to 

test the normality assumption. For individuals that were observed eating, the average 

handling time was determined. A t-test was used to compare the seasonal air and ground 

temperatures in the study site and forest.  
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CHAPTER III 

RESULTS 

 

From 2015 to 2018, 84 individual copperheads were captured, weighed, and 

PIT-tagged. The average number of snakes caught each year ranged from 18 to 43 ± 10 

snakes (Table 2), and the total number of captures (including recaptures) was 261.  

 

 

Table 2. Recapture array for copperheads surveyed at the Cumberland  

Ranger District, Daniel Boone National Forest, KY, 2015–2018. 

 

 

 

 

 

The overall sex ratio of the population was 1.2:1 (nmale = 46; nfemale = 38). The weight 

range for male copperheads was 141.7–196.2g, with an average weight of 156.2 ± 

11.3g; the female weight range was 110.8–147.7g, with an average weight of 115.8 ± 

6.4g (Appendix A). The average SVL of a male during the study ranged from 56.5 to 

62.5cm, and the average SVL of a female ranged from 50.9 to 56cm (Appendix B). 

Results of model comparisons of the a priori copperhead capture-recapture models 

revealed appreciable support for several models (Appendix C); therefore, model 

averaging was used to determine the average parameter estimates for each sampling 

period (Burnham and Anderson, 2002). Model-averaged parameter estimates supported 

the hypothesis that survival and recapture are dependent on the sampling period (Table 

3).  

Release year 
Number 

released (Ri) 

Number recaptured (mhi) in year i 

2016 2017 2018 Total 

2015 18 10 5 0 15 

2016 29  22 0 22 

2017 43   15 15 

2018 30       0 



14 

Table 3. List of a priori capture-recapture models for copperheads surveyed at the Cumberland 

Ranger District, Daniel Boone National Forest, KY, 2015–2018. 

 

To detect the effect of the sex covariate, model-averaged values of apparent 

survival and recapture were calculated for males and females. The sex effect size is the 

difference between the model-averaged estimates for males and females. Although 

males consistently had a higher probability of survival and recapture, the size of the 

effect and associated standard error suggests that the probability of survival and 

recapture is not sex-dependent in this case (Appendix D; Figure 3). Model-averaged 

estimates were also used to determine the effect of mass on survival and recapture. 

Mass did not have a significant effect on either apparent survival or recapture during 

any sampling period (Figure 4; Figure 5). There were no sex-specific differences in 

apparent survival or recapture (Appendix E; Appendix F). In 2018, 72 nightly surveys 

for copperheads were conducted from 2 June to 18 August. There were 51 captures and 

180 total recaptures (Appendix G). Overall captures were highest from 8 July to 26 

July, when the average air temperature was 23.6 ± 0.4°C. The recapture frequency was 

23.8% for males and 21.5% for females. The mean nightly air temperature was 22.3 ± 

0.3°C at the study site and 22.1 ± 0.3°C in the forest; these differences were not 

significantly different (T82 = 0.64; p = 0.526). The average nightly ground temperature  

Model k AICc ∆ AICc wi -2log(L) 

S(t+mass), G" = 0, G' = 1, p(t)  8 1190.00 0.00 0.210 1173.43 

S(t), G" = 0, G' = 1, p(t) 7 1190.50 0.50 0.163 1176.06 

S(t+mass), G" = 0, G' = 1, p(t+sex) 9 1191.10 1.10 0.121 1172.39 

S(t), G" = 0, G' = 1, p(t+sex) 8 1191.48 1.47 0.101 1174.90 

S(t+sex), G" = 0, G' = 1, p(t) 8 1191.58 1.58 0.095 1175.01 

S(t+sex+mass), G" = 0, G' = 1, p(t)  9 1191.93 1.93 0.080 1173.22 

S(t+mass), G" = 0, G' = 1, p(t+mass) 9 1192.14 2.13 0.072 1173.42 

S(t), G" = 0, G' = 1, p(t+mass) 8 1192.63 2.63 0.056 1176.06 

S(t+sex), G" = 0, G' = 1, p(t+sex)  9 1192.79 2.79 0.052 1174.07 

S(t+mass), G" = 0, G' = 1, p(t+mass)  9 1193.73 3.73 0.033 1175.01 

S(t+mass+sex), G" = 0, G' = 1, p(t+mass+sex)  11 1195.06 5.06 0.017 1172.00 
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a b 

Figure 3. Model-averaged estimates of apparent survival (a) and recapture (b) for a 

population of copperheads utilizing a recreational site at the Cumberland Ranger District, 

Daniel Boone National Forest, KY, 2015–2018. 
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at the site (21.8 ± 0.3°C) was significantly higher than the forest ground temperature 

(20.7 ± 0.3°C) (T85 = 2.81; p = 0.006) (Table 4; Figure 6). The nightly soil temperature 

and relative humidity at the study site was 25.4 ± 0.2°C and 85.03 ± 1.92%, 

respectively.  

 

Table 4. Average temperatures (T) and relative humidity (%RH) of the study site and 

surrounding forest on nights that behavorial surveys were conducted at the Cumberland 

Ranger District, Daniel Boone National Forest, KY, 2018. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The total amount of time copperheads were observed foraging in the field was 

26.16 hours, which consisted of 20 observations of 13 individual copperheads (5 male; 

6 female; 2 unknown). The total proportion of time individuals spent non-mobile (59%) 

was greater than the time spent mobile (41%) (Figure 7). On average, males were  

Location Tair Tground Tsoil % RH 

Site 22.3 ± 0.3 21.8 ± 0.3 25.4 ± 0.2 85.0 ± 1.9 

Forest 22.1 ± 0.3 20.7 ± 0.3     

Figure 6. Average daily air (Tair) and ground (Tground) temperature profiles during 

copperhead visual encounter surveys conducted at the Cumberland Ranger District, 

Daniel Boone National Forest, KY, 2018. 
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mobile for 33.63 ± 9.21 min and non-mobile for 42.40 ± 8.11 min; females were mobile 

for 39.17 ± 13.61 min and non-mobile for 50.04 ± 18.47 min (Table 5; Figure 7). 

Although individuals spent more time non-mobile on average, this result is likely biased 

by an observation of a female individual that remained non-mobile for 152 min (Figure 

7).  Mass was not a good predictor of either distance traveled (T9 = 0.72; p = 0.488; r2 = 

0.055) or amount of time spent moving (T9 = 0.497; p = 0.433; r2 = 0.070) (Figure 8). 

To avoid pseudoreplication, observations of the same individual over time were 

averaged. The average distance traveled was 32.16 ± 10.27 m for males, 27.18 ± 8.76 m 

for females, and 30.20 ± 6.98 for all individuals (Figure 9). The average speed for all 

individuals was 0.40 ± 0.11 m/min. The number of directional changes during a  
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Figure 7. Averages (red lines) of mobile and non-mobile behavior 

during a single foraging event for male and female copperheads (a), 

and the total proportion of time observed mobile and non-mobile for 

all copperheads (b) surveyed at the Cumberland Ranger District, 

Daniel Boone National Forest, KY, 2015–2018.  
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foraging event ranged from 0 to 24 with a mean of 6 ± 1 changes. The average amount 

of time individuals spent climbing was 13.1 ± 4.8 min. Reproduction was not observed 

in the field. Active combat was not observed, although there was one instance of 

passive combat behavior, wherein a larger male made contact with a smaller male and 

the smaller male ‘writhed’ on the ground for ca. 20 seconds (see Schuett 1997). Cicadas 

were the only prey item observed to be eaten. The number of cicadas eaten per 

individual ranged from 0 to 3 and the average handling time was 3.17 ± 0.60 min. 

 

 

 

 

 

a b 

Figure 8. Simple linear regression models used to predict the effect of mass on (a) total 

distance traveled (t9 = 0.72; p = 0.488) and (b) duration of mobile foraging (t9 = 0.82; p = 

0.433) by copperheads surveyed at the Cumberland Ranger District, Daniel Boone National 

Forest, KY, 2015–2018. 
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a b 

Figure 9. Individual observations and averages (red lines) of total distance 

traveled during a single foraging event for male and female copperheads 

(a), and the average total distance traveled for all individuals (b) surveyed 

at the Cumberland Ranger District, Daniel Boone National Forest, KY, 

2015–2018. 
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CHAPTER IV 

DISCUSSION 

 

During this study, copperheads were captured (2015–2018) and observed (2018) 

at a small recreational area in eastern Kentucky in order to investigate demographic 

structure and foraging behavior.  Apparent survival was significantly lower for the last 

sampling interval and the probability of recapture differed between sampling occasions. 

Capture-recapture models show that mass predicts apparent survival, with a variable 

effect over time (Appendix E; Appendix F). Apparent survival varied as a function of 

mass by 8–11% during the first two sampling intervals and varied by 21% during the 

third sampling interval (Figure 4). Because true survival and site fidelity are 

confounded here, these differences could be attributable to variation in fitness (survival) 

or foraging mode (site fidelity). The greatest sex-specific difference in apparent survival 

as a function of mass was 3%, which is most likely not a biologically significant result. 

These results suggest that larger individuals may be more likely to survive 

overwintering and movement to summer foraging grounds. Additionally, the presence 

of relatively small individuals at the study site and the relatively lower probability of 

apparent survival for smaller individuals may be an interesting consequence of 

individual learning and conspecific trailing behavior (Ford 1986; Gibbons et al. 2005). 

Because copperheads utilized the study site strictly for foraging and individuals were 

only captured at the study site, estimates of recapture are directly related to foraging 

mode. Dependent upon survival and movement to foraging grounds, active foraging for 

cicadas does not seem to be a function of sex (Appendix D; Figure 3) or size (Appendix 

E; Appendix F; Figure 5).  
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Behavioral observations support these results by illustrating that mass may not 

be as important of a factor for active-foraging copperheads (Figure 8), and males and 

females displayed the same general foraging strategy (Figure 7; Figure 8). Copperheads 

in this study were observed using visual and vomeronasal cues to actively forage for 

emergent cicadas. Individuals spent a significant proportion of time (41%) moving 

between and within patches of small trees and vegetation. Due to their relatively small 

size, copperheads were generally not able to climb trees greater than 60 cm in 

circumference, although some smaller snakes were observed using the long ridges and 

furrows in the bark of large Eastern white pine (Pinus strobus) trees to climb vertically 

(Mullin and Cooper 2002). Because studies of snake behavior are mostly experimental 

(Mullin and Gutzke 1999), these results provide important insights into the dynamics of 

an active-foraging copperhead population and can serve as a model for joining elements 

of demographic structure and wild snake behavior.  

Chemical trailing behavior is an important aspect of snake reproduction (Greene 

et al. 2001; Greenbaum 2004; Smith et al. 2008), defense (Miller and Gutzke 1999), and 

foraging (Ford 1986; Stiles et al. 2002). Although insects produce pheromones capable 

of rapid diffusion, signal reception is dependent upon the physiological, behavioral, and 

environmental state of the signaler and the receiver (Futrelle 1984). Many studies have 

experimentally examined snake responses to chemical signals from prey items such as 

fish (Teather 1991), amphibians (Mushinsky and Lots 1980), snakes and lizards 

(Cooper et al. 2000), mammals (Burger 1991), birds (Cooper et al. 2000), lepidopterans 

(Greenbaum 2004), and earthworms (Burghardt and Denny 1983; Zuri and Halpern 

2003); but the reception of volatile chemical signals for locating prey in a natural setting 
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is not as well-studied (Cowles and Phelan 1958; Shivik and Clark 1997; Shine and 

Mason 2011). Mullin et al. (1998) observed a hierarchical foraging process where 

Pantherophis spiloides (gray rat snake) located active bird nests initially via volatile 

chemicals and subsequently from visual cues of avian nest. In this study, cicada 

breeding behavior and emergence at high local densities may facilitate the diffusion and 

strength of local pheromone signals for predators (Sueur and Aubin 2004). 

Additionally, some squamates are thought to have more vomeronasal specificity as a 

result of active foraging behavior (Cooper 1995; Baeckens et al. 2017), although 

vomeronasal specificity for cicadas has not been studied in snakes.  

Visual cues play an important role in prey detection and location for actively-

foraging snakes (Drummond 1985; Teather 1991; Shivik and Clark 1997; Cooper et al. 

2000). Sparse ground vegetation at the study site may have allowed copperheads to 

better utilize their vision in order to locate and move between groves of small trees 

(Mullin and Cooper 2000). Periscoping behavior (Shine et al. 2005), wherein a non-

mobile individual raises its head ca. 5–10 cm from the ground at a 45–90° angle, was 

almost always observed before a copperhead moved to a different vegetation patch. The 

frequency of periscoping behavior observed in this study suggests the importance of 

visual cues for patch location within a foraging site. Mullin and Gutzke (1999) found 

that habitat structural complexity did not affect the foraging ability of P. spiloides, 

which is adapted to foraging in a variety of habitat types.  In contrast, a sit-and-wait 

forager like the copperhead is predicted to be better adapted to foraging in a complex 

forested habitat where there is a relatively decreased probability of predation due to 

sedentary behavior and cryptic morphology (Huey and Pianka 1981). Additionally, 
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physiological constraints such as lower metabolic rates and higher specific dynamic 

action support this behavioral prediction for sit-and-wait-foragers (Beaupre and 

Montgomery 2007).   

Although copperheads are generally regarded as sit-and-wait predators (Fitch 

1960), foraging mode is a dynamic process and can vary under certain conditions 

(Beaupre and Montgomery 2007). High local densities of annual cicadas, as well as 

their spatial and temporal predictability, make them a reliable food source that can yield 

high energy returns (Huey and Pianka 1981; Beaupre and Roberts 2001). Prey 

reliability can also lead to faster growth, earlier maturation, and higher fecundity in 

snakes (Bronikowski and Arnold 1999). Additionally, to maintain an active foraging 

mode, energy gain must be balanced with the associated increase in energy expenditure 

(Huey and Pianka 1981). Reptiles may manage these trade-offs by operating at levels of 

sub-optimal activity (Hertz et al. 1988). Although the ground temperature in the forest 

and the study site was only marginally different, higher site temperatures may help 

maintain the balance between optimal body temperature and energy expenditure 

associated with active foraging (Blouin-Demers and Weatherhead 2001). It should be 

noted that while foraging mode varies across a continuous spectrum, some snake 

behaviors, such as philopatry, may be less plastic (Reinert 1993). Burger and Zappalorti 

(1992) observed nesting site fidelity in female Pituophis melanoleucus (Pinesnake) even 

after the site was excavated. This idea seems to be supported by observations of 

copperhead site fidelity to hibernacula and summer foraging areas (Fitch 1960; Smith et 

al. 2009). Active foraging in an open area also increases the risk of predation by avian 

predators, which may be an important driver of foraging mode for diurnally foraging 
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snakes (Sparkman et al. 2013). Kingsnakes can regulate copperhead populations 

through predation (Steen et al. 2014), although the dynamics of this relationship are 

unknown. By foraging at night, individuals not only avoid high daytime temperatures in 

the summer (Sanders and Jacob 1981; Smith et al. 2009; Putman and Clark 2017; 

DeGregorio et al. 2018), but may also lower their risk of predation (DeGregorio et al. 

2015; Gaynor et al. 2018). Because body pigmentation is strongly correlated to foraging 

mode and predator avoidance in reptiles (Halperin et al. 2017), active-foraging at a 

visually homogeneous site may be a result of low predation risk. The risk of predation 

may be even lower in a human-use area where visually-oriented avian predators are less 

likely to forage (Potier et al. 2018).  

There was no observable difference in copperhead apparent survival attributable 

to sex or mass, but small sample size (n = 20) and temporary emigration are likely to 

have affected these estimates. Although the data were insufficient to model temporary 

movement on and off the study site, temporary emigration was probable during the 

breeding season as a potential result of decreased female foraging activity (Brown and 

Weatherhead 1997; Smith et al. 2009) and increased male reproductive activity (Smith 

et al. 2009). The proportion of recaptures in this study declined over time, suggesting 

that many copperheads did not return to the study site over the course of the project. 

Because several individuals were only caught once during the study, estimation of 

transient individual recapture probabilities may help to decrease recapture biases 

(Pradel et al. 2005). Low survival estimates are commonly a result of low detection in 

cryptic species (Willson et al. 2008; Durso et al. 2011); however, low detection in this 

study is unlikely, due to the active nature of copperhead foraging and favorable 
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observation conditions due to habitat structure. Variable sampling effort among years 

can contribute to negatively biased survival estimates (Barbour et al. 2013; Kordjazi et 

al. 2016). Therefore, the probability of apparent survival may be higher merely as a 

result of increased effort and relatively fewer marked individuals from the previous 

year. Decreased seasonal rainfall resulting in low cicada abundance (Moriyama and 

Numata 2006) and decreased foraging at the study site likely affected estimates of 

apparent survival (Sperry and Weatherhead 2008). Environmental factors may be 

significant drivers of population structure and function, yet are generally 

underestimated compared to demographic factors (Kalyuzhny et al. 2014). Therefore, 

time-dependent environmental covariates should be included in models of copperhead 

population structure and function when possible. Because opportunistic data collection 

is often necessary in studies of rare or cryptic species, researchers should aim to 

decrease overall parameter bias by using ‘joint’ model structures that incorporate all 

available data (Sandercock 2006). Models that incorporate estimates of immigration and 

emigration can be even more useful, especially when managers are interested in 

predicting the effect of covariates on site use dynamics over time.  

Integrating ecological and human concerns is an important aspect of a successful 

management strategy (Kellert et al. 1996). It is important that foraging behavior is 

considered when developing a management strategy to reduce human-wildlife conflict 

and promote copperhead conservation. Within this project’s study area, management 

activities should include decreasing the number of accessible cicadas by removing 

climbable saplings and small trees and filling in any natural or created cavities or holes 

that can be used as retreat sites. Because tree removal can facilitate the growth of 
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understory shrubs and create habitat for snakes (Bonnet et al. 2015), the study site 

should be consistently mowed and weeded. A simple drift fence could act as an 

effective barrier between copperheads and humans, as well as an effective tool for 

continual site monitoring (Greenberg et al. 1994; Todd et al. 2007). Although snake 

translocation often results in high mortality, short-distance translocation to suitable 

habitat may be a viable strategy (Nowak et al. 2002) for decreasing human-copperhead 

interactions. If possible, survival of translocated snakes should be monitored via radio 

telemetry (Nowak et al. 2002). Artificial canopy gaps (Carter et al. 2014; Sutton et al. 

2017) could also be used to ‘intercept’ snakes on their way from overwintering sites to 

the summer foraging ground at the study site. The effectiveness of forest gaps could be 

improved by providing coarse woody debris cover (Cross and Peterson 2001; Sutton et 

al. 2017), leaf litter cover with a depth of 6–10 cm (Sutton et al. 2017), and rock cover 

(Reinert 1984). It may be an effective strategy to combine short-distance translocation 

with artificial forest gaps, although continual monitoring would be needed to assess the 

success of this strategy over time (see Reinert et al. 2011). In this case, a multi-state 

capture-recapture model would be a useful method for monitoring survival, recapture, 

and site transition probabilities over time (Sandercock 2006).  
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APPENDIX A: 

Weight distribution of copperheads captured at the Cumberland Ranger District, Daniel 

Boone National Forest, KY, 2015–2018. Sex-specific sample sizes for each year are 

specified below the year. 
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Length (SVL) distribution of copperheads captured at the Cumberland Ranger 

District, Daniel Boone National Forest, KY, 2015–2018. Sample sizes for each year 

are specified below the year. 
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APPENDIX B: 

Length (SVL) distribution of copperheads captured at the Cumberland Ranger District, 

Daniel Boone National Forest, KY, 2015–2018. Sample sizes for each year are 

specified below the year. 
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Length (SVL) distribution of copperheads captured at the Cumberland Ranger 

District, Daniel Boone National Forest, KY, 2015–2018. Sample sizes for each 

year are specified below the year. 
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APPENDIX C: 

List of a priori capture-recapture models for copperheads surveyed at the Cumberland 

Ranger District, Daniel Boone National Forest, KY, 2015–2018. 
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APPENDIX D: 

Sex-specific model averaged estimates of survival and recapture for copperheads 

surveyed at the Cumberland Ranger District, Daniel Boone National Forest, KY, 2015–
2018. 
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  Male   Female 

Parameter Estimate SE   Estimate SE 

S1 0.8684 0.0948   0.8569 0.1011 

S2 0.8147 0.0771  0.7988 0.0872 

S3 0.3804 0.0866  0.3577 0.0905 
      

p1 0.1534 0.0777  0.1467 0.0752 

p2 0.2995 0.0407  0.2885 0.0419 

p3 0.2167 0.0208  0.2079 0.0229 

p4 0.2994 0.0367   0.2885 0.0391 

Sex-specific model averaged estimates of survival and 

recapture for copperheads surveyed at the Cumberland Ranger 

District, Daniel Boone National Forest, KY, 2015–2018. 
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APPENDIX E: 

Model averaged estimates of survival and recapture for small, average, and large† male 
copperheads surveyed at the Cumberland Ranger District, Daniel Boone National 

Forest, KY, 2015–2018. 
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Parameter Small SE Average SE Large SE 

S1 0.8309 0.1329 0.8862 0.0855 0.9147 0.0826 

S2 0.7679 0.1164 0.8381 0.0743 0.8770 0.0882 

S3 0.3249 0.1154 0.4211 0.1006 0.5250 0.2011 
       

p1 0.1536 0.0782 0.1533 0.0777 0.1530 0.0784 

p2 0.2997 0.0423 0.2993 0.0409 0.2989 0.0455 

p3 0.2169 0.0227 0.2165 0.0212 0.2162 0.0266 

p4 0.2996 0.0384 0.2992 0.0369 0.2988 0.0418 

† Small = 59g; Average = 189g; Large = 320 

Model averaged estimates of survival and recapture for small, average, and large† 
male copperheads surveyed at the Cumberland Ranger District, Daniel Boone 

National Forest, KY, 2015–2018. 
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APPENDIX F: 

Model averaged estimates of survival and recapture for small, average, and large† male 
copperheads surveyed at the Cumberland Ranger District, Daniel Boone National 

Forest, KY, 2015–2018. 
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Parameter   Small SE   Average SE   Large SE 

S1  0.8163 0.1356  0.8733 0.0952  0.9029 0.0953 

S2  0.7482 0.1190  0.8201 0.0898  0.8604 0.1064 

S3  0.2992 0.1066  0.3941 0.1128  0.4983 0.2197 
          

p1  0.1468 0.0756  0.1466 0.0751  0.1464 0.0759 

p2  0.2888 0.0431  0.2884 0.0423  0.2880 0.0469 

p3  0.2081 0.0242  0.2078 0.0234  0.2075 0.0286 

p4   0.2887 0.0404   0.2883 0.0394   0.2879 0.0443 

† Small = 59g; Average = 189g; Large = 320g 

Model averaged estimates of survival and recapture for small, average, and large† 
male copperheads surveyed at the Cumberland Ranger District, Daniel Boone 

National Forest, KY, 2015–2018. 
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APPENDIX G: 

History of copperhead captures for each sampling day in 2018 at the Cumberland 

Ranger District, Daniel Boone National Forest, KY. Captures are classified by sex and 

whether the individual was a new capture or a recapture for the year. The air (Ta), 

ground (Tg), and soil (Ts) temperature for each survey day is also shown. 
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