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ABSTRACT

In recent years, researchers in the social sciences have re-embraced data visualization as a tool for

exploring data and communicating results. This development has focused primarily on quantitative

data with continuous variables. In general, there has been little work toward establishing a standard

for categorical data. This paper tackles a small, but important, component of data visualizations

for categorical data: data visualization of contingency tables. The purpose of this paper is to review

visualization techniques used for categorical data to determine which techniques are appropriate

for contingency tables by ensuring the graphics follow the standards that have been established for

continuous data.



1

CHAPTER 1. OVERVIEW

1.1 Introduction

A common strategy employed by social scientists in the study of the relationship between

two categorical variables is the analysis of a contingency table or cross-classification table. A

contingency table is a table of frequencies of observations cross-classified by two or more variables.

Researchers often analyze these tables using log-linear models and almost exclusively report their

results in tabular format. However, I propose that this customary practice be changed. In addition

to tables, social scientists should present data visualizations. Furthermore, these graphical displays

should be used not only to present information for publication purposes but used by the researchers

themselves to develop a better understanding of the data.

There are many definitions of visualization from the simple definition “the presentation of data

in a pictorial or graphical format” (SAS 2016) to the more complex definition “the use of computer-

supported, interactive visual representations of data to amplify cognition” (Card, Mackinlay, &

Shneiderman 1998). A popular definition comes from Edward Tufte who defines data visualization

as “[the visual display of] measured quantities by means of the combined use of points, lines, a

coordinate system, numbers, symbols, words, shading, and color” (2001). In this paper, I use a

combination of Tufte’s definition and Card, Mackinlay, & Shneiderman’s definition. Specifically,

I define data visualization as the visual display of measured quantities by means of the combined

use of points, lines, a coordinate system, numbers, symbols, words, shading, and color to amplify

cognition. This definition captures two key points. First, it captures the idea that data visualization

is a representation of numeric information, and second, it encompasses the purpose of visualization

to facilitate understanding of the numeric information.

In an effort to be viewed as a discipline that observes scientific rigor, sociologists have become

dependent on using numerical tables to represent quantitative data and view visualizations as
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merely pictures rather than as a powerful tool of insight and communication. The information

provided in tables has not been further highlighted with visual displays. In essence, sociologists

have forgotten the purpose of visualization. In a review of data visualization in sociology, Healy

and Moody (2014) provide historical evidence that shows that during the early years of the field,

data visualization was embraced as a way to obtain a better understanding of the data. It is

time that sociologists follow in the footsteps of those researchers and take advantage of what data

visualization has to offer.

Much of the data visualization techniques that exist are designed for continuous variables, and

hence, a well-defined standard of practice has already been established for these type of variables.

Unfortunately, the same is not true for categorical variables. Although, graphical methods have

been developed for categorical variables, a standard has yet to be fully established outlining best

practices for producing insightful visual displays for this type of data. To address this issue, I will

discuss data visualizations designed for categorical data represented in contingency tables. As an

example of the methods, I will present a case study using the visualization techniques to analyze

a mobility table which is a special type of contingency table where the table has an equal number

of categories for each variable. Note the methods that will be discussed can be applied to any

contingency table; I focus on mobility tables to provide a substantive background to the discussion.

This subject matter also provides a great example of the dominance of the tabular format.

Many of the prominent social mobility methodologists present results in tabular format. Over

the years, they have scarcely included data visualizations. This point is evident with a review of

publications that discuss this type of analysis. For instance, in Hauser’s (1980) article, he discusses

models that can be used to analyze mobility table and proceeds with an example using a mobility

table of American sons and fathers. The author does not include any visualizations, but his article

does contain nineteen tables. The tables do contain pertinent information, however, the inclusion

of visualizations may have furthered his arguments without giving his readers table fatigue. Hout’s

(1988) article contains seven rather lengthy tables and two visualizations, which is an improvement.

However, it demonstrates the dominance of tables as the means of delivering analysis results. In



3

1998, Goodman and Hout (1998) published an article that introduced the value of graphical displays

to assist in the analysis and understanding of model fit results. Unfortunately, they use many of

the same type of graphics, and the visualizations may serve better for technical users and not for

the presentation of results to non-technical users. These examples were published when producing

graphically excellent visualizations was not easy to do given the technology available at the time.

Reviewing more recent articles reveals that although graphical displays were introduced, tables are

still the dominate method to present results. This point will be discussed further at the end of this

chapter.

In this paper, I determine which visualizations are most helpful for analyzing data that can be

represented in a contingency table by using theories of data visualizations to obtain guidelines for

creating excellent graphs. The first chapter contains a discussion of contingency tables, their use in

understanding mobility, and how analysis of contingency tables are often reported in sociological

publications. The second chapter concerns data visualization. Specifically, the chapter provides

a brief history of data visualization with special attention given to those innovations important

to the social sciences, theories of data visualizations, and data visualization methods. The third

chapter discusses the data analyzed for the case study on the 1949 Great Britain Occupational

Mobility Table. The last chapter contains the results of the case study and discusses the strengths

and weaknesses of the various visualizations.

1.2 Contingency Tables

Contingency tables are a popular statistical tool used by social scientists because they do not

require strict distributional assumptions, they are relatively simple to implement, interpretation

is fairly straightforward, and the results can provide powerful quantitative insights into complex

interactions. The analysis of categorical data examines relationships or associations among a set

of categorical variables with the purpose of determining if the distribution of one variable changes

the distribution of one or more other variables (Rosenthal 2011). In this section, I will discuss

the terminology, notation, and distribution properties of contingency tables followed by a brief
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discussion of mobility tables to demonstrate the unique characteristics that differentiate mobility

tables from other contingency tables.

Let X and Y denote two categorical variables, X with R categories and Y with C categories.

Classifications of subjects on both variables have RC possible combinations. The cells of the table

represent these possible outcomes. Let {πij} denote the probability that (X,Y) occurs in the cell

in row i and column j. The probability distribution {πij} is the joint distribution of X and Y. The

marginal distributions are the row {πi.} and column {π.j} totals that result from summing the joint

probabilities where the subscript “.” denotes the sum over that index; that is,

πi. =
∑
j

πij and πj. =
∑
i

πij (1.1)

where
∑

i πi. =
∑

j π.j =
∑

i

∑
j πij = 1. Table 1.1 provides an example of such a table.

Table 1.1: R-by-C Contingency Table

Y (Columns)

X (Rows) 1 2 . . . C Total

1 n11 n12 . . . n1C n1.
2 n21 n22 . . . n2C n2.
...

...
... . . .

...
...

R nR1 nR2 . . . nRC nR.

Total n.1 n.2 . . . n.C N

If X and Y are both response variables, the focus of the analysis is their joint distribution. However,

if one of the variables, let’s say, Y, is a response variable and the other variable, X, is an explanatory

variable, the focus of the analysis is the conditional distribution of Y and how it changes as the

categories of X change (Agresti 2013). The row totals (i.e. nR. in Table 1.2) and column totals

(i.e. n.C in Table 1.1) describe the distribution of each variable disregarding the other. Given that

a subject is classified in row i of X, let {πj|i} denote the probability of classification in column j of

Y for all j = 1, . . . , C. Then,

πj|i = πij/πi. (1.2)
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denotes the conditional distribution of Y given the ith level of X. This setup is often how variables

in mobility tables are treated.

1.3 A Special Case of the Contingency Table

Square tables, where the row and column variables have the same number of categories, com-

prise a special case of contingency tables, and describe the unique characteristic of social mobility

tables or intergenerational occupation mobility tables. These type of tables cross-classify people

“according to their occupations at two points in time. The earlier point is usually referred to as

the origin; the later point is known as the destination” (Hout 1988) and are used to study social

stratification.

Social stratification describes the hierarchical ranking of individuals that defines the social

structure within a society (Parsons 1940). There are three key concepts used to understand social

stratification position, status, and strata. Position refers to a person’s place in the social system as

a whole or can be thought of in terms of occupation as the person’s role in an organization. For the

remainder of this paper, I use the later definition of position. Status is defined as ”one’s generalized

position (the sum total of one’s major positions) in the structure” (Davis 1942). Stratum refers

to a group of people in a society that have roughly the same status. For example, Dr. Joe’s

position is doctor in hospital X whose status is classified as professional and who is part of the

upper stratum. Social mobility is an avenue for looking at how individuals move between strata

and can be examined with mobility tables.

Mobility tables allow researchers to gauge the amount of openness present in a society with

the idea being that an open society’s occupational success is independent of an individual’s socio-

economic background (Hout 1988). The examination of a society’s openness is done by relating

the occupational position of parents to their child’s occupational position in adulthood. Some of

the common origin variables are father’s occupation and first occupation, and some of the common

destination variables are current occupation and first occupation. In studies of intergenerational

occupational mobility, father’s occupation serves as the origin and the son’s first or current oc-
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cupation serves as the destination. In the study of intragenerational occupational mobility, the

first occupation of the participant represents the origin while the destination is represented by the

participant’s current occupation. The case study in this paper uses data from a intergenerational

occupational mobility study. The relationship between father’s and son’s occupational status is

specified in the table by treating the father’s occupational status as the origin, or independent vari-

able, and the son’s occupational status as the destination, or dependent variable. The cells of the

table, then, provide the frequency of fathers and sons that share each combination of occupational

classification. The objective is to measure the amount of mobility present in the table.

Early studies of social mobility relied on data collected by national census organizations such as

the UK Office of Population Censuses and Surveys and the US Census Bureau. The classic Great

Britain 1949 mobility table first examined by D.V. Glass came from the United Kingdom’s census

organization’s Labor Mobility Study. In 1962 and 1973, the United States’ census organization

collected mobility data as supplements to the March Current Population Survey. The National

Opinion Research Center’s General Social Survey is a well-known source of mobility data. Recently,

mobility data in the Unites States has come from the Panel Study of Income Dynamics (PSID)

1968-1997, “which contains annual descriptions of occupation and industry affiliation for a panel

of individuals representative of the population of the United States in each year” (Kambourov &

Manovskii 2008).

A dominant part of the methodological research aims to evaluate measures of mobility and/or

discover new ways of measuring mobility. There are many different measures of social mobility

including absolute mobility rates, relative mobility rates, inflow and outflow rates, and mobility

ratios. Absolute mobility rates (also known as total mobility rates or just mobility rates) are defined

as the observed total number of people that move between classes or the number of individuals

in the cells off the main diagonal over the total number. Relative mobility rates are a measure

of the association between father’s occupational status and son’s occupational status. It is taken

as a measure of social fluidity. Inflow rates or inflow percentages are the row percentages taken

from the mobility table, and outflow rates or outflow percentages are the column percentages taken
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from the mobility table. Inflow and outflow percentages reveal information about the flow of labor.

Specifically, inflow percentages represent the labor flowing into the given destination occupation,

and outflow percentages represent the labor flowing out of the given origin occupation. Mobility

ratios are of the observed frequencies and the expected frequencies under the model of statistical

independence also known as the model of perfect mobility. The reason the ratio is appealing is that

“as the ratio of an observed quantity to that expected when there is no association in the table, it

suggests itself as an index of the extent of association” (Hout 1983).

Unfortunately, there are disadvantages to most of these measures of social mobility. A major

disadvantage of using absolute mobility to measure social mobility is that the rate is heavily affected

by the marginal distribution. It is also dependent on how the occupational categories are formed.

Relative mobility rates are calculated using odds ratio which are invariant to proportional changes

in marginal distributions. Mobility ratios are also flawed because mobility data often does not

exhibit patterns of perfect mobility making it an ill choice as an index of association. Inflow and

outflow percentages are only informative at a low level of analysis making them a weak measure

of social mobility. Unsurprisingly, the problems with absolute mobility rates, inflow and outflow

percentages, and mobility ratios has led to the increased use of odds ratio. Most of the statistical

models developed for the analysis of social mobility lead to simple interpretation of the association

parameters in terms of local odds ratios. Such models will be discussed with greater detail in

the methods section of this paper. For now, it is important to note that most researchers use

multiplicative log models to examine the data (Goodman, Hauser, Erikson & Goldenthrope, Xie,

and Hout). However, there have been a few who forgo the use of mobility tables and opt for a

regression analysis such as Mazumder & Acosta or path analysis such as Blau and Duncan. In

addition to different statistical techniques used to examine mobility tables, researchers have also

varied in their focus of study.

There have been many studies where researchers have focused on fathers and sons with no

comparisons made over time or space such as D.V. Glass’ (1954) study of social mobility in the Great

Britain. However, as time as progressed, comparative studies have become much more common.
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Social mobility across different countries has been studied such as Berent’s (Glass 1954) study

of social mobility and marriage in England and Wales, Ziegel and Hall (Glass 1954) comparison

of social mobility in England, Wales, Italy, France and the US, and Grusky and Hauser (1984)

comparison of social mobility in 16 different countries. The key finding across the literature is

that relative social mobility remained constant in industrialized nations. A common feature in

the literature, recently, is to try to explain patterns in mobility by analyzing additional variables

that could contribute to changes in mobility such as education, race, gender, and age. Erikson

& Goldenthrope (2002) found that educational attainment had a major impact on mobility when

considering education in terms of the level of qualification, i.e. vocational vs. academic; Featherman

& Hauser (1974) determined that the differences between whites and nonwhites cannot be attributed

to their low-income origins but rather to their unfavorable patterns of occupational mobility; Hout

(1988) reports that when using unbiased methods those researchers who study the differences in

social mobility between men and women find that there are differences among men and women with

white-collar occupations and between farm and non-farm classes; and Mazumder & Acosta (2015)

find that there exist a life cycle bias where the age of the son or father can mislead the amount of

mobility present in the data. These studies and others have furthered the field to obtain a more

complete understanding of occupational social mobility.

This review demonstrates that the discipline has been diverse in terms of the data and methods

used to study mobility. What has lacked in variety is how the results are presented. The tabular

format continues to be the most popular method for presenting results. I used Web of Science

to identify the thirty most influential articles in the occupational mobility literature to see how

researchers reported their results. I define articles as influential based on the number of times the

article has been cited, and I narrowed the search by eliminating any articles that excluded both

tables and articles since those articles were of a review rather than analysis in nature. I found

that sixteen out of the thirty articles contained only tables in the presentation of results, twelve

out of the thirty contained both tables and graphics, and two of the thirty contained only graphs.

For the researchers who employed both tables and graphs, only two of the articles had the same
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number of graphs as tables and the other ten had more tables than graphs. This point is not to say

that tables should not be used, but to show their dominance and to suggest that more researchers

should include both tables and data visualizations. As Tufte (2006) says, “a deeper understanding

of human behavior may well result from integrating a diversity of evidence”. It should also be noted

that this trend does not exist solely in studies of occupational social mobility. It is prevalent across

the entire field of sociology as described by Healy and Moody (2014) in their extensive analysis of

visualization methods in sociology. They found the lack of visualization is evident in comparison

of natural science journals and sociology journals. Specifically, the authors compare the American

Sociological Review and the American Journal of Sociology, both of which were included in the

meta-analysis, to the Proceedings of the National Academy of Science, Science, and Nature. The

sociological journals are typically filled with tables and few visuals while the natural science journals

centralize articles around a figure. They found that in the early quantitative days of sociology that

visualization methods were relatively common. With the advent of surveys and a trend toward

statistical quantification, qualitative methods, including visualization techniques, fell in disuse.

Healy and Moody also make the point that the relationship between statistics and graphics is

not consistently taught or included in the analysis process which results in a new generation of

sociologists that cannot fully embrace data visualizations and a continuation of articles that do not

include any visual displays. The authors urge sociologists to “think about how visualization could

be more effectively integrated into all stages of our work” (2014).
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CHAPTER 2. REVIEW OF LITERATURE

2.1 Historic Overview of Data Visualization

To obtain a better understanding of the usefulness of data visualization, it helps to learn its

history within the social sciences. Data visualization has progressed as innovations and growth

in technology and statistics have grown. At the beginning, the stars were of most interest to

scientists who created graphs that display the position of the sun, moon, and planets (Friendly

2005). The next development in the field came in the 1600s when demography and statistics

advanced greatly. In 1637, Descartes developed a coordinate system that became critical to the

advancement of statistical graphs, and in 1669, Christiaan Huygens created a graphic of a function

of life expectancy using data from John Graunt’s book National and Political Observations on the

Bills of Mortality (Friendly & Denis 2001). Huygens’ graph marks the first time a graph was used

to enhance the understanding of social scientific data (Friendly 2005). The 1700s and 1800s can be

described as the rise of empirical problem solving initiated by William Playfair.

William “Playfair is credited with producing the first chartbook of social statistics” (Wainer

2001). Around 1785, he invented the statistical bar chart and creates line and bar charts of economic

data. The reason his contributions were so integral to the development of data visualization is that

he popularized the use of statistical graphics when the majority of researchers viewed graphics as

less than valuable. He favored graphics over tables because they provided a more comparative way

to view the data (Tufte, 2001). Playfair continued to advance the field by inventing the pie chart

and circle graph. Essentially, most of the statistical graphic forms used today are due to Playfair.

He was also known for his time series graphs of finance data. Baron Charles Dupin also contributed

to advances in data visualization in the 1800s. He is credited with the use of shading from white

to black to show the distribution of literacy in France. It was “the first unclassed choropleth map,

and perhaps the first modern-style thematic statistical map” (Friendly & Meyer 2016).
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Figure 2.1: John Snow’s Map of Cholera Death in Central London, 1854

All of these innovations in graphics along with advances in statistics contributed to the devel-

opment of official state statistical offices throughout Europe, which translated to a plethora of data

relating to social, industrial, commercial, and transportation planning. “With the usefulness of

graphical displays for understanding complex data and phenomena established, many new graph-

ical forms were invented and extended to new areas of inquiry, particularly in the social realm”

(Friendly & Meyer 2016). One of the first examples of the these innovations came from Dr. John

Snow in his investigation of the spread of cholera in London in 1854. Snow doubted the theory

that the disease was caused by pollution or bad air. To gain a better understanding on how cholera

spread, he plotted the locations of those who died from cholera. His map is shown in Figure 2.1.

He concluded that most of the deceased lived near and/or drank from a water pump on Broad

Street. After removing the handle from the pump, there was a major decline in people afflicted

with cholera (Tufte 2001). His study marked the beginning of epidemiology, and it was a major

event in the history of public health and geography.
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Charles Minard provides more examples of the graphical innovations during this time period.

He established the use of circles and flow lines to visualize different quantitative variables. Often

regarded as the best graphic ever, he produces a tableau graphique illustrating the campaign of

Napoleon against Russia in 1812 shown below in Figure 2.2. The width of the lines are proportional

to the number of surviving soldiers with a beige line showing the path towards Russia and a black

line showing the soldiers’ return (Tufte 2001 & Tufte 2006). It is of such great importance because

Minard was able to communicate the details of what happen during the battle almost entirely

through his visualization. He provides a detailed title that provides his credentials, a summary

of the image, and the type of diagram illustrated. Minard also includes a paragraph explaining

how to interpret the graph and its sources (Tufte 2001 & Tufte 2006). His graphic is exemplary of

graphical excellence and graphical integrity. His work shows how beneficial data visualization can

be to everyone.

The late 1800s is also of historical significance because sociology makes its debut. The American

Journal of Sociology was first published in 1895, and one of the first articles included in the journal

was “Immigration and Crime” by Hastings H. Hart. He used bar charts to show the distribution

of the population in the U.S. and as a comparative tool to illustrate the difference between two

methods of analysis. Antonio Marro incorporates a line graph in his article presented in the

fifth volume of the journal. Additionally,“Du Bois’s (1898 [1967])The Philadelphia Negro is filled

with innovative visualizations, including choropleth maps, table-and-histogram combinations, time

series, and others” (Healy & Moody 2014). His project on the Georgian Negro is also exemplary.

Figure 2.3 shows a hand drawn horizontal stacked bar chart of the income and expenditure of

African-American families in Atlanta, Georgia. Through the choice of color and detailed labelling,

he shows the differences among families of different classes. It is a superb example of how social

stratification can be displayed visually. The visualization was part of a compilation of materials W.

E. B, DuBois displayed at the 1900 Paris Exposition (Smith 1999). He used a series of photographs

and visual displays to show the economic, social, and cultural differences among African Americans

to combat the presumed superiority of whites based on claims of biological race scientists. By using
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a visual technique, he gave viewers direct evidence that the stereotypical views of blacks at the time

were wrong. His exposition showed the power of presenting data visually rather than only using a

table.

The methods of these sociologists should be of no surprise when also considering the history

of sociological research methods during this time. The early years of the discipline consisted of

social scientists who were often members of statistical societies or social reform institutions that

developed statistically-based social studies. Hence, if visualizations were common to statisticians,

they would also be common to sociologists. The substantive topics addressed by these researchers

were not physically tangible like those of the physical sciences, so graphics helped explained those

things that people cannot physically interact with.

Unfortunately, in the early 1900s, there was a lack of interest in graphical innovations possibly

due to a “growth in quantification and formal models” (Friendly & Denis 2001), which was indeed

reflected in sociology. Although, there were a few exceptions (Chapin 1924 and Sletto 1936),

data visualizations pretty much disappeared from publications in the field. Sociologists embraced

tables and suppressed visualizations perhaps to fulfill a sense that the discipline needed to be more

legitimate. Whatever the reason, the discipline lagged behind and although statisticians began to

re-embrace data visualization in the 1960s, sociology did not, at least not to the same extent.

What I consider the two most important reasons for data visualizations popularity are John

W. Tukey’s work on exploratory data analysis and the advent of computers. Tukey recognized

that data visualizations could be used for model diagnostics and to gain a better understanding

of the data before fitting it to a model. He is accredited with the creation of box-and-whisker

plots, stem-and-leaf plots, and rootograms, and he helped establish ways to improve the quality of

graphical displays (Tufte, 2001 & Wainer 2001). Tukey said, “the best single device for suggesting,

and at times answering, questions beyond those originally posed is the graphical display” (Cook,

2015).

The invention of the computer meant that graphics no longer had to be hand drawn, and

the development of software and computer systems allowed for dynamic and interactive visualiza-
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tions that people across all disciplines have come to appreciate. These advancements explain why

graphical displays are starting to again become popular in sociology, but the lack of many articles

that include data visualizations shows that these techniques are not being embraced fully. This

statement does not mean that sociologists do not use data visualizations at all

2.2 Data Visualization Theories and Methods for Contingency Tables

Traditionally, sociologists have communicated the contents of data through the presentation of

tables. However, the amount of information that has become available to sociologists has increased

to the point that the presentation of results only in tabular format is no longer an effective way

of communicating, especially if using a large dataset. The brief history of data visualization shows

that communication through graphs is not new. Today, they are commonplace in a variety of

disciplines, but many graphs are produced poorly. “Modern data graphics can do much more than

simply substitute for small statistical tables. At their best, graphics are instruments for reasoning

about quantitative information. Often the most effective ways to describe, explore, and summarize

a set of numbers - even a very large set - is to look at pictures of those numbers” (Tufte 2001).

Therefore, it is important to understand theories and methods of data visualizations in order to

create graphics that facilitate the analysis of large-scale data and to provide insights that may be

missed with a purely quantitative assessment of the data.

2.2.1 Theories of Data Visualizations

Much like its history, theories of data visualization draw from several disciplines. A theory

that reflects the cross-disciplinary nature of data visualization is the Gestalt theory. Wertheimer

introduced the theory as a way to understand nature, and he developed the theory using his

observations not only from psychology, but from the physical sciences and art. He explains, “There

are contexts in which what is happening in the whole cannot be deduced from the characteristics

of the separate pieces, but conversely; what happened to a part of the whole is, in clear-cut cases,

determined by the laws of the inner structure of its whole” (Wertheimer & Riezler 1944). Essentially,
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the total understanding of a particular item may not be obtained simply from its parts and vice

versa. That is, understanding the whole may or may not give one enough information to understand

its parts. The theory has been elaborated to design principles as they relate to visual perception.

Figure 2.4: Illustration of the Visual Process. Source: Parker 2007

Visual perception has an impact on how human beings interpret information. Therefore, it is

important to have a basic understanding of how people see. The reality of an object and what an

individual sees when looking at that object can differ based on how the image appears to the eyes.

The diagram shown in Figure 2.4 illustrates the visual process. The light rays reflected from an

object passes through the cornea of the eye and after the pupil adjusts to the amount of light, the

now inverted image reaches the lens and enters the retina where it is sent to the brain for processing

(Few 2012). Due to the complexity of this process and the brain, an object may not appear as it

does in the real world. For example, the retina contains three types of cones that detect different

amounts of red, green, and blue light, but if a person is missing a type of cone, the individual

will not be able to make distinctions between all colors meaning the person will be color blind.
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Limitations such as these should be accounted for when creating data visualizations to ensure that

every viewer can interpret the picture in the same way, and to ensure that happens, researchers can

follow various principles including the Gestalt Design Principles. Stephen Few (2006) summarizes

these principles succinctly,

• proximity: objects that are close together are perceived as a group

• similarity: objects that share similar attributes are perceived as a group

• enclosure: objects that appear to have a boundary around them are perceived as a group

• closure: open structures are perceived as closed, complete, and regular, whenever there is a

way that they can be reasonably interpreted as such

• continuity: objects that are aligned together or appear to be a continuation of one another

are perceived as a group

• connection: objects that are connected are perceived as a group

• figure/ground: objects are differentiated from the surrounding area

These concepts are illustrated in Figure 2.5. Each principle explains how human beings perceive

objects in relation to each other. The Gestalt Design Principles do not guarantee graphically

excellent data visualizations. Additional theories are needed that incorporate statistics and design

to achieve that goal.

Graphical excellence is defined as “the efficient communication of complex quantitative ideas”

(Tufte 2001), and it means that data visualizations should be clear, informative, and honest. Graph-

ically excellent data visualizations allow a large quantity of data to be interpreted with ease by

displaying layers of detail that not only provide a broad overview of the data, but also an intricate

view of the data. These types of graphics make viewers think primarily about the substance behind

the image, and they follow the fundamental principles of analytical design:

• display comparisons and differences

• show more than one or two variables

• integrate evidence
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• thoroughly describe the evidence

The last point implies that all data visualizations should include a detailed title that indicates the

author(s) and sponsor(s), cite data sources, include measurement scales, and point out anything

unique or important. Obtaining a graphically excellent visualization is not instantaneous but

requires an iterative process of revising and editing.

2.2.2 Data Visualization Methods

Methodology used for data visualization is dependent on the purpose of the visualization: explo-

ration or presentation. Exploration refers to data visualizations that guide the statistical analysis

by providing summaries of responses, facilitate the creation of new hypotheses, provide support of

previously formed hypotheses, and check the validity of a chosen model (i.e. model diagnostics).

Presentation refers to data visualizations used to communicate characteristics of the data and re-

sults to others, especially to non-technical viewers. In both categories, the value of the graphic

can be determined by ensuring that the visual demonstrates graphical excellence and graphical

integrity. In the case of graphical methods specifically designed for contingency tables, many of the

visualizations can be used for both exploration and presentation needs. In this section, I describe

a wide range of data visualizations and discuss their advantages and disadvantages.

Data visualizations for contingency tables should be able to reveal any trends, patterns or

unexpected properties in the data, help the researcher determine if the data follow a particular

probability distribution, and ascertain possible models that could be used to describe the data.

The list of data visualizations available to accomplish these goals is extensive, so my discussion

highlights just a few of the many options. The graphical displays discussed below are bar plots,

rootograms, tile plots, spineplots, sieve diagrams, association plots, fourfold displays, corrplots, and

mosaic diagrams.

Bar plots visualize the frequency distribution of a dataset, provide an easy way to summarize

a large data set in visual form, and expose trends better than tables. Often, group bar charts and

stacked bar charts are used when there are multiple categories and more than one variable. In a
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grouped bar chart, the bars representing each category are displayed side by side, and in a stacked

bar chart the categories are shown in a single bar with different colors used for each category.

In both types of bar plots, the height of the bars corresponds to the frequency of each category.

Although, bar plots provide a simple way to visualize the data, they do not extend well to more

than one dimension, which makes comparisons across and within groups difficult. Also, they do

not usually match the tabular structure of the data, so they tend to require additional explanation

to make the comparison of the graph to the raw data meaningful. Another disadvantage of bar

charts are that they can be easily manipulated to yield misleading interpretations which violates

the theory of graphical integrity. An example of these type of plots will be displayed in the results

chapter of this paper.

Tukey (1977) defines a rootogram as “a stack of columns whose heights are proportional to

the square root of counts”, so it is classified as a frequency graph in which one axis is scaled by

the square root of the frequencies to emphasize the smaller values. In a rootogram, the observed

frequencies are displayed as bars and the fitted frequencies as a curved line. An extension of a

rootogram is a hanging rootogram where the top of the bars begin at the expected frequency. The

advantage of the hanging rootogram is that it makes it easier for the viewer to judge departures

from independence since the reference line becomes a horizontal line at zero rather than the curve.

Another option is a deviation rootogram where bars are drawn to show the gap between (observed

- expected) and the reference line. In general, a rootogram is best for plotting observed and fitted

frequencies as a way to measure the fit of a particular distribution. A drawback to using rootograms

is that the square-root scale can limit what values can be seen in the graph, and at times it makes

more sense to have graphs on a log-scale. An example of this type of graph is shown in Figure 2.6.
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(a) Example of Hanging Rootogram (b) Example of a Deviation Rootogram

Figure 2.6: Source: Friendly & Meyer 2016

A tile plot is a matrix of tiles. For each tile, either the width, height, area, or squared area is

proportional to the corresponding entry. The design of the plot makes comparisons easy column-

wise, row-wise, and overall. It allows for a direct comparison of the raw data to the plot since

the rectangles representing the table frequencies in the tile plot are arranged in the same tabular

form as the raw data unlike in a bar plot (Friendly & Meyer 2016). Although tile plots offer a

better solution to visualizing contingency tables, they do not reveal much about how variables are

associated, making them better as a first step in the analysis rather than a tool to help identify

explanatory models. An example of these type of plots will be displayed in the results chapter of

this paper.

Spineplots are a special case of mosaic plots and can be considered as a generalization of a

stacked bar plot where the widths, rather than the heights of the bars correspond to the relative

frequency. The heights of the bars then correspond to the conditional relative frequency. These

types of graphs provide a way to visualize row percentages and to gain insight into possible associ-

ations since “departures from independence are shown by failure of alignment” (Cox 2008). They

also offer an excellent way to visualize the difference between observed and expected frequencies.

The problem with spineplots is that they lack color, being displayed exclusively in grayscale. If
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independence is unlikely, as the case with mobility tables, spineplots will not be effective because

of the coloring. Differences in color are also hard to discern if cells have small frequencies, or if

cells have zero frequencies then they are not represented in the graph at all. An example of these

type of plots will be displayed in the results chapter of this paper.

A sieve diagram shows the frequencies in a two-way contingency table in relation to expected

frequencies under independence, and highlights the pattern of association between the row and

column variables. In a sieve diagram, the area of each rectangle is proportional to the expected

frequency, while the observed frequency is shown by the number of squares in each rectangle

(Friendly & Meyer 2016). An advantage of representing the frequencies in these ways is that

interpretation can be determined by the intensity of the shading. Cells whose expected frequency

is greater than the observed frequency appear less intense, than those cells where the observed

frequency is greater than the expected frequency. Deviations from independence can also be easily

determined by color using one for positive deviations and the other for negative deviations. There

are two limitations to a sieve diagram. First, it does not extend well beyond two variables. Second,

the order of the categories has an impact on the pattern of association such that an illogical ordering

of the categories can lead to a different interpretation. An example of these type of plots will be

displayed in the results chapter of this paper.

Association plots visualize the table of Pearson residuals: each cell is represented by a rectangle

that has height proportional to the corresponding Pearson residual rij and width proportional

to the square root of the expected counts. Thus, the area is proportional to the raw residuals.

The rectangles representing each cell in the table are positioned relative to a line representing

independence. Cells with observed frequency greater than expected frequency are shown above

the line and cells with observed frequency less than expected frequency are shown below the line

(Friendly & Meyer 2016). Color is also used to shade the boxes according to the value of the

Pearson residual. Although association plots are great for determining patterns of deviation from

independence, they do not reveal much about possible models and like sieve diagrams, order matters.

An example of these type of plots will be displayed in the results chapter of this paper.
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A fourfold display is a special case of a polar area chart designed for the display of 2 by 2 and

more generally 2 by 2 by k tables. In this graph there are four quadrants representing each cell of a

fourfold table. The radius of the quadrants are proportional to the square root of the cell frequency

so that the area is proportional to the cell count. These types of graphs are used to visualize the

sample odds ratio. Association is present between the variables of interest if diagonally opposite,

same color quadrants differ in size. Confidence rings can be added to the display to visually

test the null hypothesis of independence. If the rings of adjacent quadrants overlap, then the

observed counts are consistent with the null hypothesis (Friendly & Meyer 2016). These graphs are

useful when doing a stratified analysis because a fourfold display can be created for each stratum.

This visualization will allow the viewer to easily detect if the association between two variables is

homogeneous across strata. However, if the goal of the analysis is to determine how the odds ratio

varies within a quantitative strata, the fourfold display is not as useful as just plotting the odds

ratio themselves.

An example of this type of graph is shown in Figure 2.7. Friendly and Meyer use a dataset of

graduate school admissions to the University of California, Berkley to examine if men are actually

admitted more than women. At the aggregate level, men appear to be admitted at a higher rate

than women. The fourfold display shows, however, that by examining admissions rates for each

department, men and women are equally likely to be admitted except for in the case of Department

A. In this department, women are actually more likely to be admitted. At the aggregate level, men

and women are assumed to apply equally to each department, but in fact there is a difference in

what departments men and women apply to and this difference is immediately evident in the visual

display.
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Figure 2.7: Example of fourfold display. Source: Friendly & Meyer, 2016

A corrplot is a graphical display of a correlation matrix that can be generalized to visualize any

matrix. The purpose of the plot is to detect highly correlated variables or to detect patterns of

associations if examining a matrix of log odds ratios. There are different visualization techniques

that may be used in the corrplot. The value in the cells of the matrix can be represented by shape,

text or color. If using the shape method, the shape grows with the size of the correlation. That

is, if using circles, for instance, the larger the circle the larger the correlation. It should be noted

that the shape method allows for emphasis not only by size of the shape but by the color of the

shape, so depending on the color gradient, darker bigger shapes signify a larger correlation than a

small light colored shape. If using the text method, the actual cell value is plotted in the corrplot
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with shading to emphasize different values. The last method differentiates between values in the

matrix through color intensity. If examining correlations, the matrix can be reordered according

to the correlation coefficient, which can help to reveal hidden patterns in the matrix. It can also

be used as a visual test of significance by combining the correlation matrix with the corresponding

p-values to obtain a corrplot where insignificant values are left blank or marked with an X. The

flexibility of the corrplot is what makes it so useful, however, what makes it useful can also limit

its understanding. That is, if a non-sensical color palette is used then differences in values will be

hard to discern.

Mosaic diagrams visualize the frequencies of a table such that the size of each tile is proportional

to the cell frequency. The way mosaic diagrams are crafted is that a unit area is divided into bars

such that the widths of the bars represent the marginal frequencies of one variable. Then, those

bars are sub-divided into tiles so that the height of the tiles represent the conditional probability

of the second variable. Note that this processes can be continued to extend the diagram beyond

only two variables. For cross-classified data, the tiles will align when there is no association among

the variables. “For two or more variables, the levels of sub-division are spaced with larger gaps

at the earlier levels, to allow easier perception of the groupings at various levels, and to provide

for empty cells” (Friendly 2002). If using the mosaic diagram to visualize the structure of a given

loglinear model, the tiles can then be shaded in various ways to reflect the residuals (lack of fit)

of the particular model. The pattern of residuals can then be used to suggest a better model or

understand where a given model fits or does not fit (Friendly 2016). Thus, the reason mosaic

diagrams are extremely useful in data visualizations of contingency tables is that they are multi-

functional. These graphs can be used simply as a way to visualize frequencies or to visualize the

structure of a model. Despite the many strengths of mosaic plots, they are not without their

weaknesses. The mosaic diagram must be arranged side by side along a common baseline in order

to clearly compare the heights of the tiles. Additionally, these plots are sensitive to both the order

of variables used in the sub-division process as well as the order of categories within a variable.

Lastly, the close nature of tiles in a mosaic diagram can make labeling an issue, so axes labels may
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have to be abbreviated to avoid overlapping. Example of these type of plots will be displayed in

the results chapter of this paper.

Data visualizations that are used for the presentation of results require careful consideration of

the possible audiences. Will the data visualizations be viewed in a presentation using slides? Will

the data visualizations be viewed in a journal publication? Will the data visualizations be printed

or copied? The answer to these questions can alter choices made through the analysis process.

A major point to consider is color. Fortunately, there are tools available online and through the

R statistical software that can be used to make informed decisions. Cynthia Brewer and Mark

Harrower (2009) created the website Color Brewer 2.0 that provides advice for coloring maps, and

their scheme has been extended to an R package called RColorBrewer. The setup of Color Brewer

2.0 makes choosing an appropriate color palette easy. It has an option for the number of data classes

or groups to be considered, the nature of the data (i.e. sequential, diverging, and qualitative), and

choice of color scheme (i.e. multi-hue or single hue). In addition, the user can choose to only show

colorblind safe, print friendly safe, and/or photocopy safe colors. RColorBrewer essentially has the

same options, but the options are chosen through R code rather than the point and click method

available to online users.
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Figure 2.3: W.E.B. DuBois’s Bar Chart of the Expenditures of the Georgian Negro. Source:

DuBois, 1900
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Figure 2.5: Illustration of the Gestalt Design Principles. Source: Few, 2006
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CHAPTER 3. CASE STUDY

The focus of this research is to consider how visualization methods can enhance the exploration

and presentation of sociological data. I use a classic sociological dataset, the 1949 Great Britain

Occupational Mobility Table, as a case study to illustrate the utility of these methods. The basics

of contingency tables reveal that they are useful when analyzing the relationship or association of

a variable for each level of another variable. This concept is of interest to researchers who study

social mobility since persons are usually classified by their social class and by the social class of one

of their parents (Hauser, 1980). In these studies, social scientists analyze tables of counts where

subjects have been cross-classified using the same set of categories (e.g. social class). This cross-

classification is another reason why contingency tables are of use to sociologists. To interpret the

counts, one has to view the counts as products of prevalence and interaction effects. Prevalence and

interaction can be analyzed using models whose parameters correspond to those concepts (Hauser,

1980). These models are typically log-linear or extensions of such models.

Table 3.1: Observed Frequencies of the 1949 Great Britain Mobility Table

Son’s Occupation

Father’s Occupation Upper NonManual Lower NonManual Upper Manual Lower Manual Farm

Upper NonManual 50 45 8 18 8

Lower NonManual 28 174 84 154 55

Upper Manual 11 78 110 223 96

Lower Manual 14 150 185 714 447

Farm 0 42 72 320 411

Table 3.1 from Hauser (1978) provides the classic 1949 Great Britain five-by-five son’s by father’s

occupational mobility table. The cells of the table give the counts of persons that share each

combination of occupational category, and the schemes represented by each category are shown

in the list below (Hout 1983). The schemes are constructed by considering class positions to be

designated by employment relations and further dictated by the mode of employment (Erikson
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& Goldenthorpe 2002). In general, there are not inherit hierarchical differences between Lower

NonManual and Upper Manual classes. That is, those employees in the Lower NonManual classes

may have lower average incomes than do those in the Upper Manual classes but employees in

the Lower NonManual classes may have more stable levels of income. However, the employees

considered to be apart of the Upper NonManual category that represents the “salariat”, can be

considered to be advantaged over employees in other classes.

“Members of the salariat are advantaged over members of the working class in that they

experience; i) greater long-term security of income through being less likely to lose their

jobs and to become unemployed; ii) less short-term (week-to-week or month-to-month)

fluctuation of income through being less dependent on piece rates, shift premiums,

overtime payments and less exposed to loss of pay on account of absence or illness; and

iii) better prospects of steadily increasing income over the life course- into their 50s

rather than their 30s- through having employment contracts that are conducive to an

upward-sloping age-earnings profile (Lazear, 1995) with in turn better prospects for the

accumulation of wealth” (Erikson & Goldenthorpe 2002).

The data shown in Table 3.1 originated from the 1949 Labour Mobility Study conducted as

part of a census of Great Britain. The objective of the survey was to determine “the rate of

occupational, industrial, and geographical change in the employed population in Great Britain in

1949, to compare it with the frequency and change in the past and to ascertain the factors associated

with change” (Office of Population Censuses and Surveys 1949). The original researchers obtained

a sample of 4207 men aged eighteen years or older through a systematic random sample. Details

of the sampling procedure are discussed in Glass (1954).

Let i index the rows and j the columns, then mij denotes the number of persons with father’s

occupational category i and son’s occupational category j. The cells in the main diagonal of the

table refer to fathers and sons with the same occupational category, and this group is important

because it measures the total amount of mobility exhibited by the son. The observed frequencies

are used to estimate the expected frequency of each cell of the table under the null model (denoted
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Table 3.2: Five-Category Classification of Occupation

Upper NonManual (UpperNoM)

Professionals, self-employed

Professionals, salaried

Managers

Salespersons, nonretail

Lower NonManual (LowerNoM)

Proprietors

Clerical workers

Salespersons, retail

Upper Manual (UpperM)

Craftsmen, manufacturing

Craftsmen, other

Craftsmen, construction

Lower Manual (LowerM)

Service workers

Operatives, other

Operatives, manufacturing

Laborers, manufacturing

Laborers, other

Farm
Farmers and farm managers

Farm laborers

as Eij) of perfect mobility.

Eij =
(row i total)(col j total)

(table total)
=
ninj
N

(3.1)

Let πij represent the proportion of the population classified into row i column j. Then, the null

hypothesis of the perfect mobility model is defined as H0 : πi.π.j , i.e., H0: row and column classifi-

cations are independent.

3.1 Statistical Tests and Residuals

The Chi-square test statistic compares observed and expected frequencies for all cells in the

table.

X2 =
R∑
i=1

C∑
j=1

(observed - expected)2

expected
(3.2)

=
R∑
i=1

C∑
j=1

(nij − Eij)
2

Eij
(3.3)
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Given a large sample size, under the null hypothesis of no association, this test statistic can be

compared to a central chi-square distribution with (R-1)(C-1) degrees of freedom.

The chi-squared test may be associated with large degrees of freedom and a small p-value that

leads to the rejection of the null hypothesis, but this information does not show how the test fails.

To obtain a better understanding of why the test fails, one can look at the pattern of residuals.

For cell i, j, the raw residual is the difference between the observed and fitted frequencies, i.e.

observed - expected = nij − Eij . (3.4)

The signed contribution to the Pearson χ2 for cell i, j is

rij =
nij −mij√

mij
(3.5)

The deviance residual is defined as

gij = sign(nij − Eij)
√

(2nijlog(
nij
Eij

)− 2(nij − Eij)). (3.6)

Since the residuals for cell with small expected frequencies have a larger sampling variance,

adjusted residuals provide a standardized version of the Pearson and deviance residuals. Dividing

the Pearson and deviance residuals by its estimated standard error gives the adjusted residuals.

Another test statistic that is often computed to evaluate mobility models is the likelihood ratio

statistic.

L2 = 2
R∑
i=1

C∑
j=1

nij log(
nij
mij

) (3.7)

Given a large sample size, under the null hypothesis, this test statistic can also be compared to a

central chi-square distribution with (R-1)(C-1) degrees of freedom. The likelihood ratio statistic is

often preferred over the chi-square test statistic because it can be decomposed into substantively

and statistically interpretable parts (Hout, 1983).

Index of dissimilarity does not test a particular hypothesis but is used as a way to measure the

proportion of cases misclassified by the model.

∆ =
1

2Nij

R∑
i=1

C∑
j=1

|πij −mij | (3.8)
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Association for a two by two table can be measured by the odds ratio.

φ =
ω2

ω2
=
E11E22

E12E21
(3.9)

An odds ratio higher than one means that the second categories of the row and column variables are

positively associated. An odds ratio of one indicates a null relationship between the two variables,

corresponding to statistical independence. For a general two-way table of dimension R by C, there

are (R-1)(J-1) non-redundant odds ratios, from which other odds ratios can be derived.

3.2 Mobility Models

The model selection process for analyzing mobility tables begins with the model of perfect

mobility. The null hypothesis associated with the model of perfect mobility for the data discussed

in the previous chapter is that the son’s occupational status is independent from the father’s

occupational status (i.e. destination is independent from origin). When perfect mobility exists,

each row of outflow percentages is the same (Hout 1983). All other models are tested against the

model of perfect mobility.

3.2.1 Quasi-Independence Model

Often, the model of perfect mobility is rejected because of the prevalence of the diagonal cells.

That is, there are many fathers and sons with the same occupational status. Therefore, the next

question is whether or not independence is achieved by ignoring the diagonal cells. The quasi-

independence model “specifies independence only in the off-diagonal cells” (Friendly & Meyer 2016).

It is expressed as

log(mij) = µ+ λAi + λBj + δiI(i = j) (3.10)

The added parameter, δi, measures the deviation from independence in the diagonal cells. The

model works by assigning a certain number of sons with the same occupational status as their

fathers, and the other sons are given occupational status without regard to their father’s status.
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3.2.2 Quasi-Symmetry, Symmetry, and Marginal Homogeneity Models

Another important model to test is the model of quasi-symmetry, and it is expressed as

log(mij) = µ+ λAi + λBj + λij (3.11)

where λij = λji for all i 6= j, i.e., all interaction effects are symmetric. The parameter λij represents

the idea that sons are just as likely to move from one of their father’s occupations to another. Two

related models are the model of symmetry and the the model of marginal homogeneity. The model

of symmetry requires that the interaction effects and the marginal effects are symmetric. If the

interaction effects are not symmetric, but the marginal effects are equal, then the model of marginal

homogeneity is obtained. It can be shown that the model of symmetry can be decomposed into the

model of quasi-symmetry and the model of marginal homogeniety, i.e., symmetry = quasi-symmetry

+ marginal homogeneity (Friendly & Meyer 2016).

3.2.3 Uniform Association Model

The uniform association model takes into account the ordering of the categories in the table.

Ordered scores are assigned to the categories so that the ordinal nature of the variables is included

in the model. Suppose the row variable is assigned scores, a = (ai), a1 ≤ a2 ≤ ... ≤ aI , and the

column variable is assigned scores, b = (bj), b1 ≤ b2 ≤ ... ≤ bI , then the uniform association model

is defined as

log(mij) = µ+ λAi + λBj + γaibj (3.12)

where γaibj describes the pattern of associations such that deviations from independence increase

linearly with ai and bj in opposite directions towards the corners of the table. The model can be

extended by adding a parameter to fit the main diagonal cells so that these cells are ignored in the

model.
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3.2.4 Row, Column, Row + Column, and Row-and-Column Effects Models

Row and column effect models stem from the uniform association model when only one variable

is assigned an ordered score. In the row effects model, the column variable, B, is assigned ordered

scores and the row variable, A, is treated as nominal. This model is denoted as

log(mij) = µ+ λAi + λBj + αibj , (3.13)

where αi represent the row effects and are constrained so that
∑

i αi = 0. Similarly, in the column

effects model, the row variable, A, is assigned ordered scores and the column variable, B, is treated

as nominal. Thus, the model is expressed as

log(mij) = µ+ λAi + λBj + aiαj , (3.14)

where αj denote the column effects and
∑

j αj = 0. A row plus column effects model is a related

model where the scores for the row and column variables are specified.

A generalization of these models is given when the assigned scores are treated as parameters

and is known as the row-and-column effects model. It is denoted as

log(mij) = µ+ λAi + λBj + γαiβj , (3.15)

and the ordering restriction is no longer assumed since the scores are estimated using the data. The

additional parameters are subjected to the following constraints for identifiability and interpretation

purposes: ∑
i

αi =
∑
j

βj = 0, (3.16)

and ∑
i

α2
i =

∑
j

β2j = 1 (3.17)

3.2.5 Crossings Model

The crossings model “hypothesizes that there are different difficulty parameters for crossing from

one category to the next, and that the associations between categories decreases with their separa-

tion. In the crossings model for an I x I table, there are I - 1 crossings parameters, ν1, ν2, ..., νI−1.
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The association parameters, λAB
ij have the form of the product of the intervening ν parameters”

(Friendly & Meyer 2016). The model is expressed

log(mij) = µ+ λAi + λBj + λAB
ij (3.18)

where

λAB
ij =


∏k=j−1

k=i νk ifi < j∏k=i−1
k=j νk ifi > j

A quasi form of this model can be produced by adding a diagonal term to fit the main diagonal

cells.

3.3 Model Selection

No model will perfectly fit the data. However, model selection techniques can be used to identify

the model with relative little bias, describes the truth well, and provided more accurate estimates

of the quantities of interest (Agresti 2002). These techniques extend beyond significance tests and

judge a model by how close the fitted values are to the true values. Two common criteria are

Akaike Information Criterion (AIC) and Schwarz Bayesian Information Criterion (BIC). AIC is a

criterion that selects the model that best minimizes

AIC = −2L(θ̂) + 2p (3.19)

where L(θ̂) represents the maximum likelihood and p is the total number of model parameters. The

+2k part of AIC is viewed as a penalty for model complexity. BIC is similar to AIC except the

penalty for model complexity is greater and grows with n. It selects the model that best minimizes

BIC = −2L(θ̂) + plog(n) (3.20)

where L(θ̂) represents the maximum likelihood, p is the total number of model parameters, and n is

the sample size. Small values of AIC and BIC are preferred, but a nearly best model is acceptable

if preferred by previous research in the discipline.
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CHAPTER 4. RESULTS AND CONCLUSIONS

Figure 4.1 shows four different visualizations of the observed frequencies of father and son’s

occupational mobility in Great Britain in 1949. Figure 4.1(a) is a stacked bar chart depicting

several bars each subdivided by different colored blocks. The bars represent the occupational

mobility status of the fathers, and the blocks represent the occupational mobility status of the

sons. There are five bars to differentiate between occupational categories of the fathers, and five

different colors for the blocks to differentiate between each occupational category of the sons within

each bar. The height of the bars and blocks are proportional to the observed frequency. This type

of graph provides a way to display the data visually but beyond that the graph is not that useful.

It is hard to read specific values, and it requires effort to compare groups. For instance, in the case

of fathers classified in the Upper NonManual category, it is difficult to determine the number of

son’s classified as farmers.

Figure 4.1(b) is a grouped bar chart. In this visualization, for each category of father’s occu-

pational mobility, a group of bars correspond to each category of the son’s occupational mobility.

It is easier to compare groups within each category in the grouped bar chart versus the stacked

bar chart. Specific values are also easier to read in the grouped bar chart. However, the group-

ing suggests a causal relationship which can be misleading. Both figures 4.1(a) and 4.1(b) have

another disadvantage. Neither graph offers a graphical representation that matches the tabular

data structure which can complicate comparisons with the raw data. Figure 4.1(c), however, does

match the tabular data structure. The table frequencies are represented by the area of rectangles

arranged in the same tabular form as the raw data, facilitating comparisons between tiles across

both variables. Figure 4.1(d) of the spineplot offers another way to display the data in a visual

way. It shows the row percentages of the son’s occupational mobility for each category of the
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father’s occupational mobility, and the widths of each bar is proportional to the overall percentage

of father’s occupational mobility.

(a) Stacked Bar Chart (b) Grouped Bar Chart

(c) Tile Plot (d) Spineplot

Figure 4.2: Options for simple ways to display the frequencies in a mobility table visually

Before fitting any models, it is useful to calculate and plot the observed local log odds ratios to

see the patterns in the data that need to be accounted for. These values are graphed and shown in
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Figure 4.2. Recall, if the log odds ratio is equal to zero, then there is no association between father

and son’s occupational statuses, if the log odds ratio is greater than zero then there is a positive

association between the two variables, and if the log odds ratio is less than zero there is a negative

association. Using this information, we can interpret the patterns displayed in the graphs. The

visualization on the left (Figure 4.2 (a)) is of the observed local log odds ratios in the Great Britain

1949 data. The various occupational categories are depicted with different color lines and different

shaped points to help get a clear distinction of each category. Also, note the solid horizontal line at

zero that signifies local independence. Overall, there appears to be a positive association between

the father and son’s occupational statuses. There are two locations where the log odds ratios dip

below zero. The first location is at the comparison of sons in non-manual categories with fathers

in the manual categories, and the second at the comparison of sons in the manual categories with

fathers in the non-manual categories. These cases may indicate that sons are not likely to be

downwardly mobile. The high log odds ratios of sons in the non-manual and the lowest manual

categories with fathers in the highest non-manual categories may need attention. The graph on

the right (Figure 4.2(b)) is a corrplot of the log odds ratio. This type of plot is typically used to

visualize correlation matrices, but the R function can be generalized to visualize any matrix. The

pattern displayed in the corrplot is essentially the same as for Figure 4.2(a). However, there are

certain aspects that are easier to discern in the corrplot. The points of interest stand out more in

the corrplot because of the distinctive colors than in the line graph, but the colors in the gradient

tend to mix when the log odds ratios are close to zero. Therefore, it is easier to see indications of

negative association in the line graph.
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(a) LOR of Mobility in Great Britain (b) Corrplot of Log Odds Ratios

Figure 4.4: Visual Displays of the Log Odds Ratios

Sieve diagrams are quite useful as a starting point because these type of plots display the

observed frequencies in relation to the expected frequencies. The area of each rectangle in the

diagram is proportional to the expected frequency under independence because it is constructed

such that the widths are proportional to the total frequency in each column and the heights are

proportional to the total frequency in each row. Figure 4.3(a) is a sieve diagram of data from

Hauser (1978). Observed frequencies are shown by the number of squares in each rectangle, and

the difference between observed and expected frequencies is shown through the density of the

shading. The colors represent positive and negative deviations from independence. To preserve

the usefulness of the plot to all viewers, colorblind friendly and black and white printer friendly

colors were chosen. Orange signifies positive deviations from independence, and purple represents

negative deviations from independence. Given this information, an interpretation of the diagram

is simple. There is a high frequency of sons and fathers with the same occupational status, and it

is highly unlikely that a son will have a status higher than that of his father’s.
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Association plots follow a similar scheme to that of sieve diagrams. Association plots display

boxes where area are proportional to the difference between the observed and expected frequency.

Figure 4.3(b) is an association plot for the 1949 Great Britain Occupational Mobility Table. A

dotted line for each row of the table is drawn to symbolize independence, and the boxes are

positioned relative to this line. If a cell within the table has an observed frequency greater than

the expected frequency, the box is shown above the line, and if the opposite is true, the box is

shown below the line. The color is determined by the value of the cell’s Pearson residual. Cells

with residual values greater than four are shaded with the colorblind/printer friendly orange color,

cells with residual values less than negative four are shaded with the colorblind/printer friendly

purple color, and cells with residual values between negative four and positive four are shaded with

a colorblind/printer friendly gray color. The association plot confirms the observations made using

the sieve plot. That is, sons are likely to have the same occupational status as their father, and

they rarely will have an occupational status greater than that of their fathers.

Figure 4.5: Sieve Diagram of Mobility in Great Britain
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Table 4.1: Observed Frequencies of the 1949 Great Britain Mobility Table

Son’s Occupation

Father’s Occupation UpperNoM LowerNoM UpperM LowerM Farm

UpperNoM 50 45 8 18 8

LowerNoM 28 174 84 154 55

UpperM 11 78 110 223 96

LowerM 14 150 185 714 447

Farm 0 42 72 320 411

Figure 4.6: Association Plot of Mobility in Great Britain

Table 4.2: Observed Frequencies of the 1949 Great Britain Mobility Table

Son’s Occupation

Father’s Occupation UpperNoM LowerNoM UpperM LowerM Farm

UpperNoM 50 45 8 18 8

LowerNoM 28 174 84 154 55

UpperM 11 78 110 223 96

LowerM 14 150 185 714 447

Farm 0 42 72 320 411

The mosaic diagrams for father and son’s occupational mobility is shown in Figure 4.4. The

two plots differ in the method used to shade the tiles. Figure 4.4(a) was created using the shad-
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ingFriendly option for the generating function, and Figure 4.4(b) was created using a generating

function I created with colors that are colorblind friendly, printer friendly, and photocopy safe.

Previously, I emphasized the importance of using colors that are interpretable by anyone which is

why I customized the diagram. However, my generating function is limited in how the shading is

implemented. The shadingFriendly function alters line type as well as

(a) Mosaic Diagram Using Default Settings (b) Mosaic Diagram Using Customized Settings

Figure 4.8: Mosaic Diagrams of Mobility in Great Britain in 1949

shading based on the value of the residual, so it adds another layer to the graph to make it easier

to interpret. The user must decide if the difference when using a created function versus a built-in

function is big enough to make a true impact on how the results are interpreted. The graphs can

be interpreted as follows: the area of each tile is proportional to the cell frequency so if father and

son’s occupational statuses are independent, the tiles in each column would align horizontally. It

is clear from both Figure 4.4(a) and Figure 4.4(b) that the tiles do not align horizontally which

means there is an association between the two variables. Additionally, the pattern down the main
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diagonal suggests that models that ignore the effects of the main diagonal values may be of interest

when selecting the appropriate model.

(a) Mosaic Diagram of the Independent Model (b) Mosaic Diagram of Quasi-Independent Model

(c) Mosaic Diagram of Quasi-Symmetric Model (d) Mosaic Diagram of the Uniform Association Model

Figure 4.10: Part 1 Mosaic Diagrams Showing Model Structure
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(a) Mosaic Diagram of the Row Effect Model (b) Mosaic Diagram of the Column Effect Model

(c) Mosaic Diagram of the Row + Column Effect

Model

(d) Mosaic Diagram of the Row and Column Effects

Model

Figure 4.12: Part 2 Mosaic Diagrams Showing Model Structure
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(a) Mosaic Diagram of the Crossings Model (b) Mosaic Diagram of the Crossings Diagonal Model

Figure 4.14: Part 3 Mosaic Diagrams Showing Model Structure

The first model fit to the data is the model of perfect mobility i.e., the independence model,

and the mosaic diagram of Pearson residuals is shown in Figure 4.5 (a). The figure shows the

opposite-corner pattern of signs and magnitudes of the residuals indicating a poor model fit, which

is not surprising given the large frequencies in the main diagonal.. The poor fit is further supported

by the large test statistic, G2 = 268, 868 with 16 degrees of freedom (d.f.). To determine if the

table exhibits independence disregarding the cells in the main diagonal, I fitted the model of quasi-

independence (G2 = 83, 758 with 11 d.f.), and the mosaic display corresponding to this model

is shown in Figure 4.5(b). The residuals on the main sub-diagonal are mostly positive meaning

that when the occupational status of sons and fathers differ, they are most likely to differ by one

category. Additionally, the pattern of residuals is somewhat symmetric. The large frequencies

of the main diagonal cells coupled with symmetry displayed in the mosaic diagram of the quasi-

independence model suggest a test of the quasi-symmetric model. This model asserts that when

fathers and sons do not have the same occupational status, sons are equally likely to fall in the
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adjacent category without assuming the marginal distribution of fathers and sons are the same.

The test statistic of the quasi-symmetric model is G2 = 5340 with 6 degrees of freedom which is a

vast improvement in fit when compared to the other models. The mosaic diagram, shown in Figure

4.5(c), shows a fairly consistent pattern of residuals on the off-diagonals as demonstrated by the

gray tiles indicating an acceptable fit. Although, the quasi-symmetric model is acceptable, I will fit

the other models discussed in the Data and Methods chapter before making a final decision about

the best fitting model. The results of the likelihood ratio statistics for each model is shown in Table

4.1. It provides the AIC, BIC, test statistic, d.f., and p-values. The mosaic diagrams corresponding

to the uniform association model, row effect model, column effect model, row plus column effects

model, row and column effects model, the crossings model, and the crossings diagonal model are

displayed in Figure 4.6 and 4.7, respectively. It is easy to see from the mosaic graphs that none

of these models provide a better fit than the model of quasi-symmetry. Since there are so many

models, a more useful visualization to compare all the models is a model comparison plot that

measures AIC and BIC against degrees of freedom. This plot is shown in Figure 4.8. It is easy to

discern from this graphic that the model of quasi-symmetry provides the best fit when compared to

all other models discussed here in terms of both AIC and BIC values (lower left quadrant of Figure

4.8). Re-observing the mosaic diagram for the quasi-symmetric model, one can see that the only

cells that show a lack of symmetry are those for the Lower Manual (i.e., service workers, operatives,

and laborers) and the Farm (i.e., farmers, farm managers, and farm laborers) categories. At these

cells, the son of a Lower Manual employee is less likely to move to the Farm class than the reverse.

I conclude that there does exist a lack of mobility among sons in Great Britain in 1949, which

means there is not much movement between stratum in that society.
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Table 4.3: Likelihood Summary Table

Model AIC BIC LR χ2 Df P-value

Independence 323.02 335.21 268,868 16 0.000

Quasi-Independence 303.87 322.15 83,758 11 0.000

Quasi- Symmetric 245.05 269.43 5,340 6 0.000

Uniform Association 305.49 318.90 123,097 15 0.000

Column Effects 307.03 324.10 102,981 12 0.000

Row Effects 302.34 319.40 85,344 12 0.000

Row+Column Effects 301.62 322.34 65,228 9 0.000

Row and Column Effects 290.15 310.87 41,230 9 0.000

Crossings 288.41 305.48 48,902 12 0.000

Crossings Diagonal 260.00 280.72 12,344 9 0.000

Figure 4.15: Model Comparison Plot for the models fir to the 1949 Great Britain Mobility Table

In respect to data visualizations, the results show that the first display should be one that

visualizes the table such that it mirrors the structure of the raw data so that comparisons between
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groups can be easily discerned such as in the tile plot. To obtain a view of the local log odds ratio,

the corrplot provides a more graphically excellent visualization because the shading highlights dif-

ferences among the categories better than that of the line plot. Essentially, the patterns important

for model development are seen faster and more clearly in the corrplot. Both the sieve diagram and

association plots hold value for learning about the relationship between the observed and expected

frequencies. The sieve diagram holds more information in one space while the association plot’s

simplicity communicates possible associations in a way that is more straightforward. Since both

have strong advantages, the decision between which to use should be based on what needs to be

communicated to the audience. Mosaic diagrams should definitely be used to visualize the data and

the structure of the model. By doing both, the researcher can acquire knowledge about what model

should be used to describe the data, and it can assist the researcher in selecting the best model and

communicating that choice to the audience. Lastly, when there are more than five models under

consideration, a model comparison plot should be used to rapidly and easily determine the best

model.

4.1 Conclusion

I have advocated for the increase use of visual displays to enhance the analysis of categorical

data in the form of contingency tables through the application of data visualizations of mobility

tables. The notion that visual displays reduce the scientific rigor of the discipline is erroneous as

evident by the popularity of graphics in physical science publications and by the sociologists who

incorporated data visualizations into their research during the early life of the field. Integration

of graphs into the research process has been well established in terms of continuous variables,

and it has been shown that the same is possible for categorical data. There are multiple ways to

show data visually that can inform the analysis such as a bar plot, tile plot, or spineplot. These

types of graphs can give the researcher a general idea of what the data looks like. Sieve diagrams,

rootograms, fourfold displays, association plots, and corrplots are useful research tools for gaining a

greater understanding of possible trends or patterns in the data. Such graphics can be informative
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at multiple stages of the research process, as in the case of mosaic diagrams. These types of

displays can be customized not only to visualize the data, but also to gain a deeper understanding

of the structure of the statistical models. Using a classic dataset from the occupational mobility

literature, I demonstrated how graphs could be presented in place of a massive amount of tables.

The model of quasi-symmetry best fits the data, and sons have not exhibited much more mobility

than their fathers. Although, this conclusion does not differ from other researchers who have

examined this dataset, it does provide a new approach to how the information is presented to

the reader. Graphics enhance the texts by giving readers a tool that summarizes the data rather

than overwhelming the reader with lengthy tables. Unfortunately, this application only tackles a

fraction of the data visualizations available to researchers that study contingency tables. A possible

next step would be to expand data visualization techniques to display comparative studies of social

mobility. For instance, visualizations of social mobility differences across countries using maps

would be a great avenue for displaying information visually. There are many other possibilities.

Therefore, sociologists should consider this paper as a reminder of what visualization can do and

incorporate it into each aspect of their research process.
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