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ABSTRACT 

Fledglings of some aerial insectivores experience pre-fledgling mass recession, 

possibly to achieve an optimum wing loading by the time of fledging. However, studies 

of aerial insectivores to date have been limited to two species of swifts (Apodidae), and 

additional studies of species of aerial insectivores are needed to determine if factors 

contributing to pre-fledging mass recession vary among species. Thus, my objective was 

to examine factors contributing to pre-fledging mass recession by nestling Tree 

Swallows (Tachycineta bicolor). My study was conducted during the 2015 breeding 

season at the Blue Grass Army Depot in Madison County, Kentucky. Nestling Tree 

Swallows (n = 127) in 29 broods were divided into half-weighted (n = 32), full-weighted 

(n = 36), and control (n = 59) treatment groups. Lead weights weighing 2.5% (0.6 g) or 

5% (1.2 g) of the nestling’s mass were glued to the back feathers of half-weighted and 

full-weighted nestlings, respectively, between 9 and 11 days post-hatching. Video 

recordings were used to monitor parental provisioning behavior and nestling begging 

behavior. I found no differences among treatment groups in mass at fledging, amount of 

mass lost, or wing loading at fledging. In addition, adult provisioning rates and the 

proportion of time spent begging by nestlings did not vary during the period from day 

11 to day 19 post-hatching. These results suggest that mass loss by nestling Tree 

Swallows prior to fledging is not due to changes in either parental or nestling behavior, 

but, rather, is likely a physiological process resulting from the loss of water from 

maturing feathers and other tissues. In contrast, the results of studies of two species of 
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swifts (Apodidae) suggest that changes in nestling behavior influenced the extent of pre-

fledging mass recession such that weighted nestlings lost more mass than control 

nestlings, apparently to optimize wing loading at fledging. This difference between 

swifts and Tree Swallows in the apparent cause of pre-fledging mass recession may be 

due to differences in the duration of nestling periods (several days longer for swifts) and 

wing loading (higher in swifts than Tree Swallows). With greater wing loading, optimum 

mass as fledging may be more critical for swifts than for Tree Swallows.   
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CHAPTER 1 

INTRODUCTION 

The mass of nestlings in some species of birds increases with increasing age, 

peaks several days prior to fledging, and then decreases until the day of fledging 

(Ricklefs 1968, Morbey et al. 1999, Gray and Hamer 2001, Sprague and Breuner 2010). 

Such mass recession has been documented in several taxa, including seabirds (such as 

Procellariidae and Sulidae), swifts (Apodidae), and swallows (Hirundinidae; Ricklefs 

1968, Gray and Hamer 2001). One possible function of such pre-fledging mass recession 

may be to induce fledging, i.e., nestlings lose mass because parents reduce provisioning 

rates to induce fledging when it is no longer beneficial for young to remain in the nest 

(Morbey et al. 1999). Another possible function of pre-fledging mass recession is that it 

helps optimize wing loading for newly fledged young (i.e. wing-loading hypothesis; 

Ricklefs 1968, Martins 1997, Shultz and Sydeman 1997, Morbey et al. 1999). Among 

aerial insectivores, such as swifts and swallows, newly fledged young must be able to 

catch insects in flight (Michaud and Leonard 2000, Wright et al. 2006) and may also 

need to evade predators after fledging. This is especially important for species who 

receive little, if any, post-fledging care (Fischer 1958, Martins 1997, Winkler et al. 2011). 

For such species, mass recession prior to fledging may result in wing loading that will 

permit greater maneuverability and agility in flight and conserve energy (Witter and 

Cuthill 1993, Sprague and Breuner 2010, Goodpaster and Ritchison 2014). Thus, pre-

fledging mass recession could enhance the foraging success and likelihood of survival of 
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young aerial insectivores. However, this hypothesis has been rejected in other cases 

(Morbey et al. 1999).  

The factors contributing to pre-fledging mass recession appear to vary among 

species. For example, the results of studies of Barn Swallows (Hirundo rustica) and 

Common Swifts (Apus apus) suggest that mass recession is physiological, caused by 

water and lipid loss from maturing tissues, drying of feathers, or use of lipid stores 

(Ricklefs 1968, Martins 1997). However, the results of studies of several species of 

seabirds and Chimney Swifts (Chaetura pelagica) suggest that mass recession is nestling-

driven and potentially results from increased levels of nestling activity (e.g., wing 

flapping; Sealy 1968, Goodpaster and Ritchison 2014), behavioral anorexia (Mauck and 

Ricklefs 2005), or less begging (Wright et al. 2006). Morbey et al. (1999) hypothesized 

that parent Cassin’s Auklets (Ptychoramphus aleuticus) caused mass recession by 

reducing their provisioning rates. Gray and Hamer (2001) suggested that pre-fledging 

mass recession by nestling Manx Shearwaters (Puffinus puffinus) could result from 

changes in the behavior of both parents and nestlings, with a reduction in parental 

provisioning rates possibly caused by a decrease in solicitation by nestlings.  

Wright et al. (2006: 1895-1896) proposed two hypotheses to address the 

possibilities that pre-fledging mass recession is caused either physiologically or 

behaviorally. The inflexible growth schedule hypothesis posits that “. . . pre-fledging 

mass recession [is] physiologically pre-programmed to match each nestling’s body size . . 

.” The facultative mass adjustment growth hypothesis states that “. . . individual 

nestlings assess changes in their body mass and wing length and facultatively adjust 
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their personal rate of mass loss. . .”  Possible facultative responses include reducing 

begging intensity (Gray and Hamer 2001, Wright et al. 2006) or increasing levels of 

activity such as wing flapping (Sealy 1968, Wright et al. 2006, Goodpaster and Ritchison 

2014). In addition, a reduction in parental provisioning rates could contribute to mass 

loss by nestlings (Morbey et al. 1999, Gray and Hamer 2001). 

Several investigators have examined the growth and development of nestling 

Tree Swallows (Tachycineta bicolor; Quinney et al. 1986, Clotfelter et al. 2000, Michaud 

and Leonard 2000, McCarty 2001, Ardia 2006). These studies have revealed that nestling 

mass peaks at about 22 g between days 11 to 13 post-hatching (Zach and Mayoh 1982, 

McCarty 2001), then declines until fledging sometime between days 20 to 24 post-

hatching (Zach and Mayoh 1982, Quinney et al. 1986, Michaud and Leonard 2000, 

McCarty 2001). In addition, investigators have studied the begging behavior of nestling 

Tree Swallows (Leech and Leonard 1996; Leonard and Horn 1998, 2001, 2006) and adult 

provisioning behavior (Leonard and Horn 1996, 2001; Leonard et al. 2009). However, no 

one to date has examined how possible changes in these behaviors might contribute to 

pre-fledging mass recession and, therefore, wing loading at fledgling.  

 The objective of my study was to examine the behavior of nestling and adult 

Tree Swallows during the period of nestling mass recession to determine if changes in 

their behavior contributed to nestling mass recession. More specifically, by examining 

the behavior of nestlings, I sought to determine if either the inflexible growth schedule 

hypothesis or facultative mass adjustment growth hypothesis could explain mass 

recession by nestling Tree Swallows. To do so, weights were attached to some nestlings 
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to manipulate their apparent mass (Wright et al. 2006, Goodpaster and Ritchison 2014). 

The inflexible growth schedule hypothesis would be supported if I found no changes in 

nestling behavior and weighted nestlings and non-weighted (control) nestlings lost 

similar amounts of mass. The facultative mass adjustment growth hypothesis would be 

supported if weighted nestlings lost more mass as a result of reduced food intake, 

increased activity levels, or both, and had similar wing-loading and fledging mass as 

control nestlings (Wright et al. 2006, Goodpaster and Ritchison 2014). If changes in 

parental provisioning behavior appeared to be the primary cause of nestling mass 

recession, neither hypothesis would be supported.  
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CHAPTER 2 

MATERIALS AND METHODS 

Study Area 

My study was conducted from March through July 2015 at the Blue Grass Army 

Depot (BGAD) in Madison County, Kentucky. Tree Swallows begin arriving in Kentucky as 

early as mid-March, and most adults arrive by 1 April (Palmer-Ball 1996). The BGAD is 

approximately 6,070 ha and contains woodlots, open fields, and ponds and reservoirs 

that provide suitable nesting and foraging habitat for Tree Swallows (Palmer-Ball 1996, 

Winkler et al. 2011). Nest boxes (N = 73) were already present in the study area 

(Ritchison, pers. comm.).  

 

Sample Size 

Use of nesting Tree Swallows was approved by the Institutional Animal Care Use 

Committee (IACUC) prior to the beginning of the experiment (IACUC protocol number 

04-2015). Fifty-six Tree Swallow clutches consisting of 306 eggs were initiated from 

March-July 2015 at the BGAD. Of those, 51 broods consisting of 262 nestlings inhabited 

nest boxes. Nestlings in were lost during the experiment due to predation, bird mite 

infestation, inclement weather, and abandonment (n = 117), and 18 nestlings whose the 

fate is unknown were removed from the experiment due to brood reduction. This left 

29 broods consisting of 127 nestlings that survived to fledging and were included in 

analyses.  
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Nest Box Monitoring and Individual Identification 

Nest boxes were checked at least twice weekly beginning on 20 March to 

determine which boxes were being used by Tree Swallows. Nest boxes containing 

swallow nests were then checked every other day to determine dates of egg laying, 

clutch sizes, and when females began incubation. The incubation period of Tree 

Swallows is typically 13 or 14 days (Winkler et al. 2011), so nests were checked daily 

after about 10 days of incubation to determine when eggs hatch.  

The day a nestling Tree Swallow was discovered in the nest was considered its 

hatch day (hatch day = day 1 post-hatching). Individual nestlings (n = 127) were 

identified by different colored thread tied around their tarsi or colored felt-tip marker 

on the tarsi until about 10 days old when each received uniquely colored leg bands. The 

identification color and associated number a nestling received was based on hatching 

order, i.e. the eldest nestling was red, followed by orange, yellow, green, blue, purple, 

then either black or white consecutively. In the event that two or more nestlings 

hatched on the same day, the larger of the two was considered to be the older, or if 

there was no size difference, then color was assigned arbitrarily. A random number 

sequence generator was used to determine which colors/numbers would receive 

treatment to account for the different growth trends experienced by earlier hatched 

and later hatched nestlings (Zach 1982).  

Nestling Tree Swallows were handled daily from hatching to fledging. McCarty 

(2001) indicated that nestling Tree Swallows may fledge early if handled after day 15 

post-hatching so, after nestlings were returned to nests on days 16, 17, or 18 days post-
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hatching, I placed a wadded paper towel in the nest-box entrance for 1 – 2 min to help 

ensure that the nestlings were no longer agitated and less likely to leave nest boxes 

prematurely. After quietly removing the paper towel and walking about 10 m away, nest 

boxes were watched for 5 min to make sure that all nestlings remained inside.  

 

Manipulations 

I used the experimental mass manipulation procedure described by Wright et al. 

(2006) to test the hypotheses. Beginning between days 9 to 12 post-hatching, nestlings 

were weighed daily using a digital scale (± 0.1 gm; hatch day = day 1; McCarty 2001) 

when members of the brood received treatment. Nestlings with experimentally 

manipulated mass (hereafter weighted nestlings) had either half-weights (2.5% of peak 

nestling mass = 0.6 g; n = 32) or full-weights (5% of peak nestling mass = 1.2 g; n = 36) 

attached to their back feathers using cyanoacrylate glue. The nestlings varied in the rate 

at which the back feathers grew, causing variation in the age at which treatment was 

applied and the first mass measurement. Lead weights were attached between days 9 

and 12 post-hatching (mean = 10.7 ± 0.1 [SE] days post-hatching), prior to attainment of 

peak mass of nestling Tree Swallow (Zach and Mayoh 1982, Quinney et al. 1986, 

McCarty 2001). In broods of three to five nestlings, one nestling was randomly selected 

per brood for each treatment, and in broods of six to seven, two nestlings were assigned 

to each treatment group. Any remaining nestlings in each brood were assigned to the 

control group (n = 59). A random sequence generator was used to determine which 

nestlings received treatments. In broods of 3 -5, the first number in the sequence would 
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receive the full-weight, the second number received half-weight, and the remaining 

nestlings were controls. In broods of 6 or 7, the first two numbers received full-weights, 

the next two numbers received half-weights, and the remaining nestlings were controls. 

On days when weights are added or removed from weighted nestlings, control nestlings 

were handled and touched on the back as if they were receiving treatment. If a brood 

was reduced due to death to one or two nestlings more than two days prior to fledging, 

the remaining nestlings were removed from the experiment. Weights were removed 

when the primaries and secondaries had little or no remaining sheath, and prior to days 

20 or 21 post-hatching when Tree Swallows typically fledge (Michaud and Leonard 2000, 

McCarty 2001).  

 

Wing loading  

The right wing of each nestling was traced on paper on the day weights were 

removed to calculate an average wing surface area (cm2) for each individual. A 

cardboard cutout was used to create a boundary arch on the leading edge of the wing 

so that wings were extended a consistent amount for all tracings. Pins were used to 

secure the feathers on a cardboard surface to prevent the feathers from moving from 

their natural position during tracing. The outline of the wing was traced, and the outline 

was scanned into the program Image J (National Institutes of Health, Bethesda, 

Maryland). Each wing outline was traced in random order on the program three times 

(scale: 119 pixels = 1 cm) and the wing surface area from these were averaged. The 

average wing surface area was then doubled to calculate a total average wing surface 
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area for that individual. Nestling mass on the day wings were traced was divided by wing 

surface area to calculate wing loading (g/cm2).  

 

Video recordings 

After eggs hatched and before nestlings were 8 days old, a section of the back of 

each nest box was removed, a wire screen was attached to keep nestlings in the nest 

box, and a plastic container (23 cm wide x 32 cm long x 15 cm high) was attached to 

permit video-recording. A ‘fake’ camcorder (made of cardboard and the same size as the 

actual camcorder) was placed in the plastic container at least two days prior to video-

recording and was left in the box whenever video recording was not taking place to 

allow nestlings and adults to habituate to its presence. 

Nests were video-recorded almost daily for at least two hours from the time 

treatments were applied until the last nestling in the brood fledged to determine 

parental provisioning rates and percent time spent begging. Nests were not video-

recorded on days when it rained and, on some days, the number of nests recorded was 

limited by the number of available camcorders. The first hour of each recording was not 

used in my analyses because visits to nests to place camcorders in the plastic containers 

and begin recording may alter parental provisioning behavior (Murphy et al. 2015). All 

video recordings (n = 211) took place between approximately 08:00 and 11:00 to 

minimize the possible effect of daily variation in adult provisioning rates.  
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Statistical analyses 

 To determine the possible effect of the lead weights on nestling mass, I 

compared the daily mass of nestlings with and without weights from day 11 post-

hatching until the day weights were removed (mean = 18. 3 ± 0.1 [SE] days post-

hatching; range = day 17 – day 21 post-hatching). I also compared the mass and wing 

loading of control and weighted nestlings on the day weights were removed. The 

surface area of wings of nestlings in the three treatments was also compared to ensure 

that any differences in wing loading would only be due to differences in mass. These 

analyses were conducted using a general linear model (GLM) with nest ID as a random 

effect to account for the non-independence of nestlings in the same nest. All analyses 

were conducted using the Statistical Analysis System (SAS Enterprise Guide 6.1, SAS 

Institute Inc., Cary, NC).  

I also examined possible variation in parental provisioning rates and the 

proportion of time spent begging by nestlings throughout the experimental period using 

the video recordings. Begging time was defined as proportion of time nestlings uttered 

begging calls (Goodpaster and Ritchison 2014). Nestlings were considered begging as 

long as one or more nestlings could be heard uttering begging calls in video-recordings 

and not begging during any period of two or more seconds when no calls could be heard 

(McCarty 1996, Brzęk and Konarzewski 2014). Parental provisioning rates were 

measured as the number of times adults (males and females combined) fed nestlings 

per hour per nestling. Begging data were normally distributed. However, provisioning 

data were not normally distributed so were square-root transformed prior to analysis to 
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normalize the data. Analysis of both provisioning data and begging data were conducted 

using repeated measures ANOVA with nestling age as a main effect and nest ID as a 

random effect to account for non-independence of provisioning by adults at the same 

nest. All analyses were conducted using the Statistical Analysis System (SAS Enterprise 

Guide 6.1, SAS Institute Inc., Cary, NC). Values are presented as means ± SE. 
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CHAPTER 3 

RESULTS 

Effect of manipulation of nestling mass 

The mean age of nestlings when wings were traced and fledging mass was 

measured did not differ among treatments (F2,49  = 0.7, P = 0.51; control = 18.5 ± 0.1 

days, half-weighted = 18.2 ± 0.2, and full-weighted = 18.3 ± 0.1 days). Nestlings reached 

an average peak mass of 21.6 ± 0.2 g (range = 16.9 - 26.1 g) at a mean age of 15.4 ± 0.2 

days post-hatching, with mass then declining until they were weighed a final time 

before fledging (between days 17 and 21 post-hatching). The amount of mass lost by 

nestling Tree Swallows prior to fledging did not differ among treatments (F2,50 = 0.8, p = 

0.48), with a mean of 2.3 ± 0.2 g (range = 0 – 4.9 g) lost for control nestlings,  2.7 ± 0.2 g 

(range = 0.8 – 5.3 g) for half-weighted nestlings, and 2.5 ± 0.3 g (range = 0 – 5.8 g) for 

full-weighted nestlings. Similarly, the mean mass of nestlings when wings were traced 

did not differ among treatments, either with weights still attached (F2,44 =  0.3, p = 0.72) 

or removed (F2,44 = 2.0, P = 0.16). 

Including the weight of the lead weights, nestling mass differed among 

treatments from days 11 to 18 post-hatching (all P < 0.011; Table 11, Figure 12).  

Specifically, half-weighted nestlings had greater mass than control nestlings on days 13, 

15, and 16 post-hatching (P < 0.0072). Full-weighted nestlings had greater mass than 

control nestlings on days 11-18 post-hatching (P < 0.011). Full-weighted nestlings had 

                                                           
1 Refer to Appendix: Tables for all tables 
2 Refer to Appendix: Figures for all figures 



 

13 
 

greater mass than half-weighted nestlings on day 11 (P = 0.0005). However, the added 

mass of the weights accounts for these difference. Excluding the added weight of the 

lead weights, I found no differences among treatment groups in nestling mass from day 

11 to day 21 post-hatching (all P > 0.063; Table 2, Figure 2).  

 

Effect of manipulations on wing loading 

Nestling Tree Swallows that fledged from days 17 to 21 post-hatching were 

included in the wing loading analyses, and the interaction between treatment and age 

was not significant (F3,44 = 2.2, P = 0.10). Mean surface area of the wings of nestlings did 

not differ among treatments (F2,49 = 0.4, P = 0.67), with means of 60.8 ± 0.7 cm2 for 

control nestlings, 61.5 ± 0.9 cm2 for half-weighted nestlings, and 61.3 ± 0.8 cm2 for full-

weighted nestlings. Including the weights, mean wing loading did not differ among 

treatments (F2,48 = 0.4, P = 0.67), with means of 0.328 ± 0.005 g/cm2 for control 

nestlings, 0.332 ± 0.006 g/cm2 for half-weighted nestlings, and 0.334 ± 0.006 g/cm2 for 

full-weighted nestlings. Similarly, with weights removed, I found no difference among 

treatments (F2,48 = 0.8, P = 0.45) in mean wing loading among control (0.328 ± 0.005 

g/cm2), half-weighted (0.323 ± 0.005 g/cm2), and full-weighted (0.315 ± 0.006 g/cm2) 

nestlings. 

 

 

 

 



 

14 
 

Begging behavior and provisioning rates 

For the period from day 11 to day 19 post-hatching, I found no differences in 

either proportion of time spent begging by nestlings (F8,118 =  1.5, P = 0.18; Figure 3) or 

the parental provisioning rates (F8,188 = 0.9, P = 0.55; Figure 4).  
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CHAPTER 4 

DISCUSSION 

Peak mass, mass recession, and wing loading 

  The variation in mass of nestling Tree Swallows during the nestling period in my 

study was similar to that reported in previous studies, with peak mass achieved several 

days before fledging followed by mass recession until fledging (Paynter 1954, Zach and 

Mayoh 1982, Quinney et al. 1986, McCarty 2001). Loss of mass in the days prior to 

fledging appears to be common among species in the family Hirundinidae, with pre-

fledging loss of mass reported in Violet-green Swallows (Tachycineta thalassina; Edson 

1943), Tumbes Swallows (Tachycineta stolzmanni; Stager et al. 2012), Hispaniolan 

Golden Swallows (Tachycineta euchrysea sclateri; Proctor 2016), Barn Swallows (Hirundo 

rustica; Ricklefs 1968), Pacific Swallows (Hirundo tahitica; Bryant and Hails 1983), Bank 

Swallows (Riparia riparia; Petersen 1955), Cliff Swallows (Petrochelidon pyrrhonota; 

Stoner 1945), Southern Rough-winged Swallows (Stelgidopteryx ruficollis; Lunk 1962), 

House Martins (Delichon urbica; Bryant and Gardiner 1979), and Asian House Martins 

(Delichon dasypus; Zhou et al. 2012). 

  Small differences in the mass of nestling Tree Swallows in my study (i.e., 

attaching 0.6 and 1.2 g weights) did not affect the amount of mass lost prior to fledging, 

providing support for the inflexible growth schedule hypothesis. The loss of mass by 

nestling Tree Swallows prior to fledging in my study was not due to changes in the 

behavior of either parents or nestlings, with no changes in either adult provisioning 

rates or the proportion of time spent begging by nestlings during the period from day 11 
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to day 19 post-hatching. Other investigators have also found that provisioning rates of 

adult Tree Swallows and the begging behavior of nestlings did not change during the 

period just prior to and during nestling mass recession (Leonard and Horn 1996, 

McCarty 1996, Michaud and Leonard 2000). With no changes in adult or nestling 

behavior, one possible explanation for mass recession prior to fledging by nestling Tree 

Swallows is a reduction in the water content of maturing tissue. In nestling Barn 

Swallows (Hirundo rustica), Ricklefs (1968) found that a reduction in the water content 

of maturing tissues, particularly feathers, skin, and the liver, was the primary cause of 

mass recession prior to fledging, with little change in lean dry mass or lipid content after 

day 14 post-hatching. Mass recession prior to fledging was also found to result primarily 

from loss of water content in maturing tissues in Pacific Swallows (Bryant and Hails 

1983) and House Martins (Bryant and Gardiner 1979).  

  In contrast to my results, the results of similar studies of nestling Common Swifts 

(Apus apus; Wright et al. 2006) and Chimney Swifts (Chaetura pelagica; Goodpaster and 

Ritchison 2014) supported the facultative mass adjustment hypothesis, with weighted 

nestlings losing more mass prior to fledging than control nestlings. Wright et al. (2006) 

suggested that nestling Common Swifts lost mass before fledging by begging less and, 

therefore, being fed less by adults. In addition, young Chimney Swifts are known to 

leave their nests and cling to the walls of chimneys or other nesting structures as long as 

two weeks prior to fledging (i.e., flying from nest sites; Fischer 1958). During that period, 

young swifts climb and flap their wings, perhaps allowing them to gauge their wing 

loading (Fischer 1958, Steeves et al. 2014, Goodpaster and Ritchison 2014). Energy 
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expended during these activities may also contribute to pre-fledging mass recession in 

swifts (Wright et al. 2006, Goodpaster and Ritchison 2014). Nestling Tree Swallows, in 

contrast, may be more limited in their opportunity to flap their wings and gauge wing 

loading in small cavity nests. 

  Optimum wing loading at fledging is likely important for swifts because they are 

not fed by parents after leaving nest sites (Steeves et al. 2014) and so, as aerial 

insectivores, must be sufficiently fast and maneuverable in flight to be able to capture 

their insect prey (Witter and Cuthill 1993, Warrick 1998). The extent to which young 

Tree Swallows may be fed by parents after fledging is unclear. Some investigators have 

reported that parents feed fledgling Tree Swallows for as much as several days after 

leaving nests (Kuerzi 1941, Winkler et al. 2011). Others, however, have reported that 

young Tree Swallows fly well after leaving nests and feed themselves (Winkler et al. 

2011). The flying ability and extent to which fledgling Tree Swallows feed themselves 

likely depends on their age and wing length at fledging (Michaud and Leonard 2000, 

Winkler et al. 2011). However, regardless of fledging age, Tree Swallows have a 

relatively short post-fledging period during which fledglings are at best fed progressively 

less food by parents (Michaud and Leonard 2000). As such, fledgling Tree Swallows must 

be able to forage efficiently at, or shortly after, the time of fledging (Michaud and 

Leonard 2000) and, therefore, optimum wing loading at or shortly after fledging is 

important. McCarty (2001) found that Tree Swallows that fledged with longer wings 

were more likely to be recaptured the following year, suggesting that longer wings, and 
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perhaps correspondingly lower wing loading, improves the likelihood of fledglings 

surviving their first year of life.   

  For both swifts and Tree Swallows, and likely other hirundines as well, optimum 

or near optimum wing loading at fledging may be important (Martins 1997, Wright et al. 

2006, Goodpaster and Ritchison 2014). However, my results suggest that, in contrast to 

Common and Chimney swifts (Wright et al. 2006, Goodpaster and Ritchison 2014), mass 

loss by nestling Tree Swallows prior to fledging results from natural physiological 

processes rather than via a facultative mechanism. At least two factors may contribute 

to this difference between swifts and Tree Swallows. First, the nestling periods of 

Common and Chimney swifts average about 31 days and 28 to 30 days, respectively 

(Wright et al. 2006, Steeves et al. 2014), and peak mass is achieved a week or even two 

before fledging (Wright et al. 2006, Steeves et al. 2014). In contrast, the nestling period 

for Tree Swallows ranges from 18 to 22 days (mean = 20 days; Michaud and Leonard 

2000), with peak mass typically attained sometime between days 12 and 16 post-

hatching (Zach and Mayoh 1982, Quinney et al. 1986, McCarty 2001, Winkler et al. 2011, 

this study). In my study, mean age at fledging was 20.9 ± 0.2 (range = 18 – 22 days post-

hatching) days post-hatching and the mean age at peak mass was 15.4 ± 0.2 days post-

hatching (n = 127 nestlings, range = 11 – 20 days post-hatching), a mean difference of 

5.5 days. On average, therefore, nestling Tree Swallows would have less time than swifts 

to gauge their wing loading. In addition, wing length continues to increase until and 

even after fledging for young Tree Swallows (McCarty 2001, Winkler et al. 2011). With 

mass declining and wings growth during the days prior to fledging, wing loading of 
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nestling Tree Swallows even a few days before fledging will likely not match that at 

fledging, possibly making any facultative adjustment of mass more difficult.        

  A second difference between Common and Chimney swifts and Tree Swallows is 

their typical wing loading values. Wing loading values for nestling Tree Swallows in my 

study averaged about 0.32 g cm-2 (or 3.2 mg mm-2) whereas wing loading values for 

young Chimney Swifts just prior to fledging averaged about 0.4 g cm-2 (or 4.0 mg mm-2; 

Goodpaster and Ritchison 2014). For young Common Swifts, wing loading values at 

fledging average about 0.4 – 0.45 g cm-2 (or 4.0 – 4.5 mg mm-2; Martins 1997). With 

greater wing loading plus the absence of parental care after fledging, optimum mass 

and wing loading at fledging may be more critical for swifts than for Tree Swallows. In 

support of this hypothesis, adult female Tree Swallows were found to lose as average of 

4 gm (about 20% of their body mass) during the period between early incubation and 

the late nestling period (Boyle et al. 2012). This loss of mass increases flight efficiency 

and reduces the energetic cost of feeding nestlings (Boyle et al. 2012). However, these 

results also suggest that adult Tree Swallows can forage efficiently even with a 20% 

change in body mass (and, therefore, wing loading). Similarly, for fledgling Tree 

Swallows, limited variation in mass and wing loading may not strongly impact their flying 

ability. If so, mass and optimum wing loading at fledging may be less critical for young 

Tree Swallows than for young Chimney or Common swifts, possible favoring a strategy 

of inflexible growth rather than facultative mass adjustment.      
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Conclusions 

Nestling Tree Swallows with experimentally added weights did not differ from 

control nestlings in either the amount of mass lost prior to fledging or wing loading at 

fledging, providing support for the inflexible growth schedule hypothesis (Wright et al. 

2006, Goodpaster and Ritchison 2014). Nestlings do not appear to control the amount 

of mass loss by decreasing the amount of time spent begging. Rather, mass loss prior to 

fledging is likely due to loss of water as tissues mature (Ricklefs 1968). Differences 

between Common and Chimney swifts and Tree Swallows, and perhaps other 

hirundines, in how mass recession occurs prior to fledging may be due to differences in 

the duration of nestling periods and wing loading. With greater wing loading, optimum 

mass as fledging may be more critical for swifts than for Tree Swallows and other 

hirundines.   
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Table 1. Mean daily mass (± SE) of nestling Tree Swallows in the three treatment groups 

(including added mass of lead weights) from day 9 to day 21 post-hatching at the Blue 

Grass Army Depot in Madison County, Kentucky, in 2015. Numbers in parentheses are 

the sample sizes. 

 
Days 
post-

hatching 

Treatment Statistics 

Control Half-weightedA Full-weightedB F df P 

11 18.9 ± 0.3 (48) 19.4 ± 0.4 (28) 20.6 ± 0.3 (29) 9.2 2,42 0.0005 

12 19.6 ± 0.3 (58) 20.4 ± 0.4 (32) 21.4 ± 0.3 (36) 8.9 2,50 0.0005 

13 20.0 ± 0.3 (58) 21.0 ± 0.4 (32) 21.6 ± 0.4 (36) 7.2 2,50 0.0018 

14 20.5 ± 0.3 (58) 21.2 ± 0.3 (32) 21.7 ± 0.4 (36) 5.8 2,50 0.0056 

15 20.8 ± 0.3 (58) 21.6 ± 0.3 (32) 21.9 ± 0.4 (36) 5.9 2,50 0.005 

16 20.7 ± 0.2 (58) 21.4 ± 0.3 (32) 21.7 ± 0.4 (36) 5.5 2,50 0.0072 

17 20.5 ± 0.2 (58) 21.0 ± 0.3 (32) 21.3 ± 0.3 (36) 5 2,50 0.011 

18 19.9 ± 0.3 (58) 20.5 ± 0.3 (32) 20.8 ± 0.3 (35) 5.3 2,49 0.0082 

19 19.8 ± 0.2 (52) 19.9 ± 0.3 (26) 19.8 ± 0.3 (30) 0.8 2,41 0.46 

20 19.1 ± 0.3 (34) 19.3 ± 0.4 (21) 19.0 ± 0.4 (23) 0.4 2,30 0.67 

21 18.5 ± 0.4 (18)    18.7 ± 0.5 (9) 18.4 ± 0.7 (10) 0.6 2,12 0.59 
A Half-weighted = lead weight equal to 2.5% of peak mass (0.6 g) attached to back feathers 
B Full-weighted = lead weight equal to 5% of peak mass (1.2 g) attached to back feathers 
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Table 2. Mean daily mass (± SE) of nestling Tree Swallows (not including the mass of 

experimentally added weights) in the three treatment groups from day 9 to day 21 post-

hatching at the Blue Grass Army Depot in Madison County, Kentucky, in 2015. Numbers 

in parentheses are the sample sizes. 

 Treatment Statistics 

Days 
post-

hatching 

 
Control 

 
Half-weighted 

 
Full-weighted 

 
F 

 
df 

 
P 

11 18.9 ± 0.3 (48) 18.8 ± 0.4 (28) 19.4 ± 0.3 (29) 3 2,41 0.063 

12 19.6 ± 0.3 (58) 19.8 ± 0.4 (32) 20.2 ± 0.3 (36) 1.9 2,50 0.16 

13 20.0 ± 0.3 (58) 20.4 ± 0.4 (32) 20.4 ± 0.4 (36) 0.5 2,50 0.64 

14 20.5 ± 0.3 (58) 20.6 ± 0.3 (32) 20.5 ± 0.4 (36) 0.8 2,50 0.47 

15 20.8 ± 0.3 (58) 21.0 ± 0.3 (32) 20.7 ± 0.4 (36) 0.1 2,50 0.94 

16 20.7 ± 0.2 (58) 20.8 ± 0.3 (32) 20.5 ± 0.4 (36) 0.1 2,50 0.98 

17 20.5 ± 0.2 (58) 20.4 ± 0.3 (32) 20.5 ± 0.3 (36) 0.2 2,50 0.84 

18 19.9 ± 0.2 (58) 19.9 ± 0.3 (32) 19.6 ± 0.3 (36) 0.1 2,49 0.92 

19 19.8 ± 0.2 (52) 19.7 ± 0.3 (26) 19.2 ± 0.3 (30) 1.2 2,41 0.32 

20 19.1 ± 0.3 (34) 19.3 ± 0.4 (21) 18.8 ± 0.4 (23) 0.1 2,30 0.99 

21 18.5 ± 0.4 (18)     18.6 ± 0.5 (9) 18.1 ± 0.7 (10) 0.2 2,12 0.81 
A Half-weighted = lead weight equal to 2.5% of peak mass (0.6 g) attached to back feathers 
B Full-weighted = lead weight equal to 5% of peak mass (1.2 g) attached to back feathers 
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Figure 1. Mean daily mass (± SE) of nestling Tree Swallows in the three treatment groups 

including added mass of lead weights from day 9 to day 21 post-hatching (hatch day = 

day 1) at the Blue Grass Army Depot in Madison County, Kentucky, in 2015. Half-

weighted nestlings had lead weight equal to 2.5% of peak mass (0.6 g) attached to back 

feathers, and full-weighted nestlings had lead weights equal to 5% of peak mass (1.2 g) 

attached to back feathers. 
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Figure 2. Mean daily mass (± SE) of nestling Tree Swallows in the three treatment groups 

without the added mass of experimentally added weights from day 9 to day 21 post-

hatching (hatch day = day 1) at the Blue Grass Army Depot in Madison County, 

Kentucky, in 2015. Half-weighted nestlings had lead weight equal to 2.5% of peak mass 

(0.6 g) attached to back feathers, and full-weighted nestlings had lead weights equal to 

5% of peak mass (1.2 g) attached to back feathers. 
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Figure 3. Mean daily proportion of time spent begging per hour (± SE) by nestling Tree 

Swallows from day 11 to day 19 post-hatching (hatch day = day 1) at the Blue Grass 

Army Depot in Madison County, Kentucky, in 2015.  
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Figure 4.  Mean provisioning rates (± SE) of adult Tree Swallows (males and females 

combined) from day 11 to day 19 post-hatching (hatch day = day 1) at the Blue Grass 

Army Depot in Madison County, Kentucky, in 2015.  
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