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ABSTRACT 

 

The Critical Thermal Maxima (CTMax) is a measure of upper thermal tolerance.  

The physiological response upon reaching CTMax is similar across taxa, making CTMax 

useful in comparative studies.  The CTMax defines the ecological lethal temperature of 

an organism and has been used to predict the effects of global climate change. CTMax 

was determined for adults and first instar nymphs of three species of tropical 

cockroaches: Blaptica dubia, Eublaberus posticus, and Blaberus discoidalis.  Adult 

cockroaches were acclimated to temperatures of 10°C, 15°C, 20°C, 25°C, 31°C and 37°C 

for a period of seven days. Blaptica dubia was the only species to survive the 

acclimation period at temperatures of 10°C and 37°C.  All three species survived at 15°C, 

20°C, 25°C and 31°C and at each temperature there were significant differences in 

CTMax between two or more species. The average CTMax values at 25°C were 

significantly different between all species,  Blaptica dubia (47.82°C ± 0.53°C), Eublaberus 

posticus (45.57°C ± 0.42°C) and Blaberus discoidalis (44.49°C ± 0.44°C). 

Across acclimation temperatures, the response of the CTMax varied within each 

species.   Blaptica dubia exhibited a significantly higher CTMax value at 37°C than all 

other acclimation temperatures (49.18°C ±0.80°C)  and Eublaberus posticus had 

significantly higher CTMax values at 15°C (46.89°C ± 0.35°C) and 31°C (47.27°C ± 0.64°C).  

Blaberus discoidalis did not exhibit any significant changes in CTMax at any acclimation 

temperature.  

  First instar nymphs of each species were acclimated at 25°C.  Eublaberus 

posticus nymphs (44.77°C ± 1.01°C) had significantly different CTMax values than adults.  

No significant differences in CTMax were detected between first instar nymphs and 

adults in Blaptica dubia and Blaberus discoidalis.  

The rate of the acclimation response was tested in Blaptica dubia for roaches 

acclimated at 10°C for a period of seven days then exposed to 37°C. The reverse 

response was also tested.  CTMax values significantly increased when cockroaches 
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acclimated to 10°C (47.06°C ± 0.63°C) were exposed to 37°C for a period of six hours 

(49.18°C ± 1.13°C), after 96 hours (48.38°C ± 0.79°C)  CTMax values returned to those at 

10°C.  Animals acclimated at 37°C and moved to 10°C showed no changes in CTMax 

values. 

The findings of this study suggest that tropical cockroaches are limited in their 

ability to shift their upper thermal tolerance when exposed to novel acclimation 

temperatures.  The CTMax values determined in this study are consistent with previous 

studies of cockroach CTMax and can be applied to future modeling of the effects of 

climate change.   
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I. INTRODUCTION 

 

Temperature has a direct and at times profound influence on virtually all life 

history parameters of insects including;  foraging, habitat selection, reproduction, 

development and movement (Angilletta et al. 2002, Chown and Nicolson 2004, Hanna 

and Cobb 2007, Ribeiro et al. 2012).  Relationships between performance and body 

temperature (Tb ) over a range of temperature exposure are described using an 

asymmetrical function, the thermal performance curve (Figure 1)(Angilletta 2002).  

Maximum performance occurs at an intermediate temperature on the curve, the 

optimum body temperature (To), and performance is limited by the critical thermal 

minima (CTMin) and maxima (CTMax) (Angilletta et al. 2002, Huey and Stevenson 1979).  

Tests of the critical thermal limits provide valuable insight into how climate affects the 

physiology, distribution and overall ecology of an organism (Lutterschmidt and 

Hutchison 1997a). Data from investigations of an organism’s thermal tolerance can also 

be used to determine the scope for an organism’s ability to respond to ongoing climate 

changes and extreme temperature events (Somero 2005). 
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Figure 1:  The Thermal Performance Curve. Source: Angilletta Jr., M.J., Niewiarowski, 

P.H., Navas, C.A.  2002.  The evolution of thermal physiology in ectotherms.  J. 

Therm. Biol. 27, 249-268 

The Critical Thermal Maximum (CTMax) is a widely used index for evaluation of 

the upper thermal requirements of an organism. Despite variation in temperature of 

CTMax, the behavioral response upon reaching CTMax is similar across taxa 

(Lutterschmidt and Hutchison 1997a).  The CTMax was originally defined by Cowles and 

Bogert (1944) as, “The thermal point at which locomotor activity becomes disorganized 

and the animal loses its ability to escape from conditions that will promptly lead to its 

death.” The definition of CTMax has since been modified to include, statistical variation 

(Lowe and Vance 1955), standardized methods and defined endpoints (Hutchison 1961).  

The onset of spasms is the recommended end point for defining CTMax (Lutterschmidt 

and Hutchison 1997b).  The critical thermal limits are the ecologically lethal 

temperatures for an organism.  The critical thermal limits are found using the dynamic 

method of thermal tolerance assessment which increases the temperature to which the 
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organism is exposed at a constant rate until an endpoint is reached (Hutchison 1961, 

Lutterschmidt and Hutchison 1997a).   

Acclimation is a measure of phenotypic plasticity, the ability of an organism to 

exhibit a change in phenotype (physiological, biochemical or anatomical) in response to 

an exposure to a new environmental condition (Chown and Nicolson 2004).   It is 

important to understand the way in which organisms respond to environmental 

variability over short term and long term time scales. Such data are crucial to studies of 

physiology, ecology and conservation in the light of global climate change (Chown and 

Terblanche 2007). The extent of the phenotypic plasticity of thermal tolerance can 

provide insight to an organism’s ability to withstand changes in environmental 

temperatures.  That data can also be used to predict effects of current and future 

climate change (Deutsch et al. 2008).  The ability of ectothermic animals to acclimate to 

varying temperature regimes has received attention in recent publications (Allen et al. 

2012, Arribas et al. 2012, Dulger et al. 2012, Kumlu et al. 2010, Jumbam et al. 2008). The 

known studies of cockroach CTMax did not assess the acclimatory ability of any species 

tested (Appel and Sponsler 1989, Appel et al. 1983, Appel 1991). Despite the usability of 

data regarding acclimatory ability of an organism, the range of taxa investigated is small 

and skewed toward temperate species (Allen et al. 2012, Chown et al. 2002).    

Understanding the rate of the acclimation response is also important in studies 

of thermal tolerance, as it is a better indicator of how phenotypic plasticity of thermal 

limits enables insects to cope with changes in temperature over a daily or rapid time 

frame (Chown and Terblanche 2007, Weldon et al. 2011).   In insects, studies of 

acclimation rate and reversal thereof are lacking and the rate of acclimation has only 

been investigated in 14 species of insects (Allen et al. 2012, Weldon et al. 2011).   The 

rate of acclimation has been assessed for one species of cockroach, Blatta orientalis 

(Blattidae) (Mellanby 1939).  
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The long term success and survivorship of a species over successive generations 

is dependent upon the limits of the least tolerant life stage of the species in question 

(Piyaphongkul et al. 2012), thus when assessing thermal tolerance it is important to 

explore various life stages of the species in question. Piyaphongkul et al. (2012) assessed 

thermal tolerance of Brown Plant hoppers (Nilaparvata lugens), a tropical insect, and 

found significant differences in the CTMax and upper thermal limits (ULL) of first instar 

nymphs compared to adult males and females.   Vorhees and Bradley (2012) 

demonstrated that the larval and pupal stages of the mealworm beetle (Tenebrio 

molitor) had significantly lower CTMax than adult beetles. Other recent publications of 

thermal tolerance in insects have not addressed differences between life stages (Allen 

et al. 2012, Jumbam et al. 2008).  

Studies of thermal tolerance of a species provide data for understanding the 

effects of global climate change across taxa, as heat stress is a significant proximate 

effect of climate change.  Although global climate change is expected to be most 

pronounced in the temperate regions, tropical species may be more at risk (Chown et al. 

2002). Studies indicate that tropical and subtropical ectotherms may currently be living 

closer to their optimum temperature range and may have reduced phenotypic plasticity 

for adapting to shifts in thermal regimes from ongoing climate change (Piyaphongkul et 

al.2012, Sinervo et al. 2010, Somero 2005).  Deutsch et al. (2008) developed a model of 

the impact of climate change on terrestrial ectotherms. The results indicate that the 

warming tolerance of tropical species is an average of one-fifth that of temperate 

insects and may cause a decrease of up to 20% in intrinsic rates of population growth. 

Despite the evidence that climate change may have a greater impact in the tropics, the 

majority of thermal tolerance studies have focused on species of the Holarctic region, 

leaving tropical species underrepresented (Chown et al. 2002) The concept of warming 

tolerance (WT) is an approximation of the amount of warming an ectotherm can 

tolerate before performance drops to fatal levels.  WT is measured as the difference 

between the CTMax and the habitat temperature (Thab), considered as the mean annual 
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surface temperature of the organisms range, (WT= CTMax-Thab) (Deutsch et al. 2008). 

CTMax assessments provide important data to climate change modeling.  

Insects comprise the largest class of Arthropods, constituting the majority of 

terrestrial biodiversity with over 1,000,000 named species (Wilson 1999).  Over 4,500 

insect species are classified in the order Blattodea, the cockroaches (Beccaloni 2007). 

Cockroaches are grouped into six recongnized families: Polyphagidae, Cryptocercidae, 

Nocticolidae, Blattidae, Blattellidae and Blaberidae (Bell et al. 2007). The majority of 

cockroach species live in tropical habitats throughout the old and new world.  

Cockroaches are important decomposers in terrestrial ecosystems, recycling dead 

animals, plants and excrement thus, releasing and returning nutrients to the soil (Bell et 

al. 2007).  

A number of recent studies have been conducted to determine the critical 

thermal maximum of insects including; beetles (Allen et al. 2012, Vorhees and Bradley 

2012), green lynx spiders (Hanna and Cobb 2007), Argentine ants (Jumbam et al. 2008), 

and brown plant hoppers (Piyaphongkul et al. 2012). CTMax has also been extensively 

investigated in vertebrates including, Atlantic stingrays (Fangue and Bennett 2003), 

salientian amphibians (Cupp 1980), and small mammals (Erskine and Hutchison 1982).   

Studies of the critical thermal maxima of cockroaches demonstrated a range of CTMax 

values from 40.9°C for Cryptocercus punctulatus (Cryptocercidae) a primitive cockroach 

(Appel and Sponsler 1989) to 51.4°C for Supella longipalpa (Blattellidae) (Appel et  al. 

1983).  Within the family Blaberidae, observed CTMax values ranged from 43.20°C in 

Diploptera punctata to 49.50°C in Blaberus cranifer (Appel et al. 1983, Appel 1991).   

 Investigations into the Critical Thermal Limits of Cockroach species have been 

limited to less than 20 species (Appel and Sponsler 1981, Appel et al. 1983, Appel 1991). 

Those studies did not look at the ability of the species to acclimate to various 

temperatures regimes.  Nor did the studies investigate the differences in CTMax 

between adult cockroaches and any of the instar stages of a cockroaches incomplete 
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metamorphosis pattern (Borror et al. 1989). The majority of cockroach species occur in 

tropical regions across the globe and are important decomposers in those ecosystems 

(Bell et al. 2007).  It is important to understand how current and future changes in the 

climate will affect species, thermal limits provide one method for researchers to predict 

the effect these changes will have on affected species.  The thermal limits of the  three 

cockroach species used in this study have not yet been determined.  Each species is of 

tropical orgin.  The natural range of Blaptica dubia extends from Argentina to Paraguay 

and Uruguay, where it occurs in terrestrial habitats (Beccaloni 2007).  Eublaberus 

posticus is found throughout Central and South America from Costa Rica into Peru and 

primarily lives in the moist inner sections of caves (Beccaloni 2007, Bell et al. 2007).  

Blaberus discoidalis occurs in terrestrial habitats from Columbia and Venezula, across 

the Carribbean to Florida, USA (Beccaloni, 2007). 

Objectives 

The objective of this study was to investigate the critical thermal maximum of 

new world tropical cockroaches, Blaptica dubia, Eublaberus posticus and Blaberus 

discoidalis (Blaberidae).  The specific objectives for the study are:  

(1.) Determine the Critical Thermal Maxima of adult cockroaches exposed to a 

series of acclimation temperatures  

(2.) Determine the Critical Thermal Maxima of first instar nymphs of each 

cockroach species maintained at 25°C.   

(3.) Determine the rate of acclimation from highest acclimation temperature, 

37°C to lowest acclimation temperature, 10°C, and the reversal thereof for adult 

Blaptica dubia.   
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II. MATERIALS AND METHODS 

 

Study Species 

The species addressed in this study, Blaberus discoidalis, Blaptica dubia and 

Eublaberus posticus are popular feeder insects and pets in the exotic pet trade. They are 

commonly reared in captivity and readily available from online dealers (Greg’s Exotic 

Inverts, Yucca Valley, CA and Aaron Pauling, www.aaronpauling.com ).  All individuals 

used in this study were from colonies maintained with stock from commercial suppliers 

(Greg’s Exotic Inverts, Yucca Valley, CA and Aaron Pauling). 

Acclimation 

 Small, separate colonies of adult roaches of each species were maintained for 

testing purposes.  Colonies were fed rat pellets and carrots ad lib and provided with 

dampened paper towels as a water source.   Colonies of adults of each species were 

acclimated at six test temperatures: 10°C, 15°C 20°C, 25°C, 31°C and 37°C for a period of 

at least seven days before CTMax assessments were conducted.  When possible, CTMax  

was tested for groups of 20 adults at each acclimation temperature. 

To obtain first instar nymphs, adult females were isolated in plastic containers, 

maintained as test colonies and observed daily for presence of nymphs.  Once nymphs 

were present, small colonies of nymphs were held at 25°C, maintained as test colonies 

and CTMax assessed after a period of 7-10 days.  CTMax was assessed for twenty first 

instar nymphs of each species. 

Determination of Critical Thermal Maximum 

 Prior to CTMax testing each cockroach was weighed on a balance to the nearest 

0.1mg (Mettler-Toledo pb3002s). The starting body temperature was then determined 

by gently touching the thermocouple to the membrane between the cockroach’s meso- 
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and metathoracic coxae (Appel and Sponsler 1989).  It was then placed into the upper 

jar of the testing apparatus (Figure 2).  The temperature inside the apparatus at the 

beginning of the test must be within 1°C of the acclimation temperature, for this reason, 

separate testing apparatuses were kept in the acclimation chambers for use in 

respective CTMax tests.  The test temperature began at +/- 1°C of the acclimation 

temperature and increased continuously at a rate of approximately 1°C per minute to 

allow body temperature to follow chamber temperature (Lutterschmidt and Hutchison, 

1997a).  Temperature inside the apparatus and body temperature of the roach was 

monitored using a Type-T thermocouple attached to a digital thermometer (BAT-10, 

Physitemp inc. NJ, USA). 

The critical thermal maximum (CTMax) of individual roaches was determined 

using similar methodologies to Appel (1991).  To determine the CTMax, a 118.29 ml glass 

jar (Ball, USA) was filled with 115ml of water, sealed with metal lid and placed into a 470 

ml glass jar (Ball, USA).  An additional 118.29 ml glass jar, lined with dampened filter 

paper (Lab Nerd), was placed on top of the inner jar and 65 milliliters of water was 

added to the space between the jars. The 470ml jar was sealed with a metal band and 

lid with a 1/4 inch hole drilled for the insertion of a temperature probe.  The entire 

apparatus (Figure 2) was then placed on a hotplate (Thermoscientific, SP131325) set 

such that the temperature inside the upper 118.29ml jar increased at an average rate of 

1°C per minute to avoid heat shock or partial acclimation during the trial (Lutterschmidt 

and Hutchison 1997a, Chown and Terblanche 2007).  
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Figure 2: Critical Thermal Maxima Testing Apparatus 

 

Definition of the endpoint 

CTMax  of adult cockroaches was determined by the inability of the cockroach to 

right its self, followed by the onset of muscular spasms.  The onset of spasms is thought 

to be a more biologically precise and meaningful endpoint for CTMax determination 

(Lutterschmidt and Hutchison 1997b).  Upon the onset of spasms, the test temperature 

was recorded and the cockroach was promptly removed from the test chamber and 

placed into the recovery chamber (22°C).  Recovery of individuals was determined based 

upon the cockroach’s ability to right itself and move about the recovery chamber.  Upon 

recovery, the datum from the CTMax assessment was added to the dataset.  Due to their 
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comparatively small size, CTMax of first instar nymphs was determined to be the 

temperature at which the cockroach was unable to move when mechanically disturbed.  

Acclimation rate 

The rate of acclimation was assessed using only adult Blaptica dubia.  To test the 

rate of acclimation from high to low temperatures, cockroaches acclimated at 37°C for a 

period of seven days were transferred to the 10°C acclimation chamber. To test the 

acclimation rate from low to high temperatures cockroaches acclimated at 10°C for a 

period of seven days were transferred to 37°C.  When possible, ten individual CTMax 

tests were performed at 0, 6, 12, 24, 48, 72, 96, and 120 hours from temperature 

transfer for both low to high and high to low test groups.  CTMax was determined as 

previously described. 

Data Analysis 

Data was analyzed using SPSS (IBM).  Levene’s test was used to determine if data 

were normal.  A one-way analysis of variance (ANOVA) was conducted to determine if 

there were significant differences in CTMax between different acclimation groups and 

between species.  Independent sample t-tests were used to detect significant 

diffecences between adult cockroaches and first instar nymphs.  Tukey’s post-hoc 

comparisons were used to determine which groups differed significantly (Zar 2010). The 

rate of acclimation was assessed using a one-way ANOVA, contingent upon normalcy of 

data. Independent sample T-tests were used to compare first instar nymphs and adults 

of each species.  Statistical analyses were considered significant when p-values are less 

than 0.05.    
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III. RESULTS 

 

Acclimation of the Critical Thermal Maxima of Blaptica dubia, Eublaberus posticus and 

Blaberus discoidalis in response to changes in temperature exposure 

The CTMax of each cockroach species was assessed following an acclimation 

period to test temperatures. 244 total CTMax assessments were conducted including: 

105 Blaptica dubia, 70 Eublaberus posticus and 69 Blaberus discoidalis. The mean CTMax 

value of each species at each acclimation temperature is listed in Table 1.  

Table 1: Mean Critical Thermal Maxima (±95%CI) of Three Species of Cockroaches Across 

Acclimation Temperatures 

Acclimation Temperature (°C) Species 
 
n Average CTMax ± 95% CI 

10°C Blaptica dubia 
 
20 47.06 ± 0.63 

 
Eublaberus posticus  No Survival 

 
Blaberus discoidalis   No Survival 

  
 

 15°C Blaptica dubia 20 47.59 ± 0.52 

 
Eublaberus posticus 19 46.89 ± 0.35 

 
Blaberus discoidalis  20 45.11 ± 0.76 

  
 

 20°C Blaptica dubia 10 47.64 ± 0.80 

 
Eublaberus posticus 17 45.88 ± 0.42 

 
Blaberus discoidalis  14 45.64 ± 0.84 

  
 

 25° Blaptica dubia 19 47.82 ± 0.53 

 
Eublaberus posticus 20 45.57 ± 0.42 

 
Blaberus discoidalis  18 44.49 ± 0.44 

  
 

 31°C Blaptica dubia 18 47.78 ± 0.64 

 
Eublaberus posticus 14 47.27 ± 0.64 

 
Blaberus discoidalis  17 44.86 ± 0.47 

  
 

 37°C Blaptica dubia 18 49.18 ± 0.80 

 
Eublaberus posticus  No Survival 

 
Blaberus discoidalis   No Survival 
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The mean CTMax of Blaptica dubia (Table 1) was significantly different when 

individuals were acclimated to varied temperature regimes, (ANOVA F (5,99) = 4.854, p= 

0.001). Post-hoc Tukey’s HSD tests indicate that mean CTMax remained the same in 

cockroaches acclimated at 10°C to 31°C and cockroaches acclimated at 37°C exhibited a 

significantly higher mean CTMax than other acclimation groups (Figure 3).  

 

 
 

Figure 3: Mean Critical Thermal Maxima of Blaptica dubia across acclimation 

temperatures. Error bars represent 95% confidence interval of the mean.  

 

Eublaberus posticus was unable to survive exposure to 10°C or 37°C acclimation 

temperatures for more than 5 consecutive days, thus, those temperatures were not 

included in tests of CTMax (Table 1).  The remaining acclimation temperature groups 

exhibited significant differences in mean CTMax values (ANOVA, F(3,66)= 12.261, 

p=0.0000018). Post Hoc Tukey’s HSD tests indicate mean CTMax of 15°C and 31°C 
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acclimation groups were significantly higher than CTMax of 20°C and 25°C acclimation 

groups (Figure 4). 

 

 

 

Figure 4: Mean Critical Thermal Maxima of Eublaberus posticus across acclimation 

temperatures.  Error bars represent 95% confidence interval of the mean. 

 

Blaberus discoidalis was unable to survive exposure to 10°C or 37°C acclimation 

temperatures for more than 5 consecutive days, thus those acclimation temperatures 

were not included in tests of CTMax (Table 1).  There was no significant differences in 

mean CTMax between the remaining acclimation groups, (ANOVA F(3,65) = 1.961, 

p=0.129) (Figure 5). 
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Figure 5: Mean Critical Thermal Maxima of Blaberus discoidalis across acclimation 

temperatures.  Error bars represent 95% confidence interval of the mean.  
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Comparison of Critical Thermal Maxima between species at each acclimation 

temperature 

Blaptica dubia was the only species able to survive the seven day acclimation 

period in 10°C and 37°C acclimation temperatures.  Eublaberus posticus and Blaberus 

discoidalis died within 1-5 days of exposure to 10°C and 37°C acclimation chambers.  No 

comparisons between species were conducted at 10°C and 37°C.  

Between the three species of roaches acclimated at 15°C there was a significant 

difference in mean CTMax (ANOVA, F(2,56) = 19.450, p=0.000).  Post Hoc Tukey’s HSD 

tests indicate that mean CTMax of Blaberus discoidalis was significantly lower than the 

mean CTMax of either Eublaberus posticus or Blaptica dubia (Figure 6). 

 

 
 

Figure 6: Mean Critical Thermal Maxima of Cockroaches Acclimated at 15°C.  Error bars 

represent 95% confidence interval of the mean.  
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Cockroaches acclimated at 20°C had significant differences in mean CTMax 
values, (ANOVA F(2,38) = 8.392, p=0.001).  Post Hoc Tukey’s HSD tests indicate that 
mean CTMax of Blaptica dubia was significantly higher than CTMax of Eublaberus posticus 
or Blaberus discoidalis (Figure 7).   

 

 
 

Figure 7: Mean Critical Thermal Maxima of Cockroaches Acclimated at 20°C.  Error bars 

represent 95% confidence interval of the mean.  

 

Cockroaches acclimated at 25°C had significantly different mean CTMax values 

(ANOVA, F (2,54) = 49.298, p=0.000).  Post Hoc Tukey’s HSD tests indicated that each 

species was significantly different from the others (Figure 8), mean CTMax  Blaptica 

dubia (47.82°C ± 0.53°C), Eublaberus posticus (45.57°C ± 0.42°C) and Blaberus discoidalis 

(44.49°C ± 0.44°C). 
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Figure 8: Mean Critical Thermal Maxima of Cockroaches Acclimated at 25°C.  Error bars 

represent 95% confidence interval of the mean.  

 

Cockroaches acclimated at 31°C had significantly different mean CTMax values 

(ANOVA, F (2,46) = 28.364, p=0.000).  Post Hoc Tukey’s HSD tests indicate that Blaberus 

discoidalis had significantly lower mean CTMax values than Eublaberus posticus or 

Blaptica dubia (Figure 9).  
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Figure 9: Mean Critical Thermal Maxima of Cockroaches Acclimated at 31°C.  Error bars 

represent 95% confidence interval of the mean. 
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Comparison of Critical Thermal Maxima of Adult Cockroaches and First Instar Nymphs 

Independent sample t-tests were used to determine if significant differences 

occurred between mean CTMax values of adults and first instar nymphs of each species 

(Table 2).  Mean CTMax values did not significantly differ between Blaptica dubia adults 

and first instar nymphs, (t-= 1.440, df = 36, sig = 0.158). Blaberus discoidalis adults and 

first instar nymphs did not significantly differ in mean CTMax values (t= -1.200, df = 36, 

sig= 0.238). Mean CTMax values were significantly different between adults and first 

instar nymphs of Eublaberus posticus, (t=2.651, df = 39, sig= 0.012).  

 

Table 2: Mean Critical Thermal Maximum (±95%CI) of Adults and First Instar Nymphs 

 

   
 

 Species Life Stage n  Average CTMax ± 95%CI 

   
 

 Blaptica dubia Adult 19  47.82 ± 0.53 

 
Nymph 19  47.36 ± 0.34 

   
 

 Eublaberus posticus Adult 20  45.57 ± 0.42 

 
Nymph 21  44.76 ± 0.43 

   
 

 Blaberus discoidalis  Adult 18  44.49 ± 0.46 

 
Nymph 20  44.91 ± 0.41 
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Rate of Acclimation Response of Blaptica dubia acclimated to 37°C and shifted to 10°C 

A total of 52 adult Blaptica dubia were tested in the assessment of rate of 

acclimation response when shifted from 37°C to 10°C (Table 3).  CTMax for ten individual 

roaches was assessed at removal from 37°C with no exposure to 10°C.  The remaining 

individuals were transferred to the 10°C acclimation chamber and CTMax tested in 

groups of six individuals at 6, 12, 24,48,72,96 and 120 hours post transfer .  The mean 

CTMax values for Blaptica dubia adults acclimated at 37°C did not significantly change at 

anytime following transfer to 10°C (ANOVA F(7,52)= 0.861, p= 0.543) (Figure 10). 

 

Table 3:  Acclimation of CTMax from 37°C to 10°C in Blaptica dubia 

 

Exposure to 10°C (Hours) Mean CTMax ± 95%CI 

0  49.18 ± 1.08 

6  47.62 ± 0.87 

12 48.73 ± 1.59 

24 48.62 ± 1.58 

48 48.80 ± 0.87 

72 48.02 ± 1.34 

96 49.07 ± 1.06 

120 48.65 ± 0.70 
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Figure 10: Rate of Acclimation of CTMax from 37°C to 10°C in Blaptica dubia. Error bars 

represent 95% confidence interval of the mean. 
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Rate of Acclimation Response of Blaptica dubia when acclimated to 10°C and shifted to 

37°C 

A total of 81 adult Blaptica dubia were tested in the assessment of rate of the 

acclimation response when acclimated to 10°C and shifted to 37°C.  CTMax of 20 

individuals was assessed at 10°C with no exposure to 37°C.  The Blaptica dubia were 

transferred to 37°C and CTMax assessed in groups of ten at 6,12,24,48,72,96,and 120 

hours post transfer (Table 4).  The mean CTMax values of Blaptica dubia adults 

acclimated at 10°C was significantly different than the average CTMax of individuals 

exposed to 37°C, (ANOVA F(7,81)= 3.742, p=0.001)(Figure 12).  Post-hoc Tukey’s HSD 

tests indicate that cockroaches acclimated at 10°C had significantly different CTMax 

values than individuals exposed to 37°C for six, twelve, twenty four and 72 hours.   

Mean CTMax values of cockroaches exposed to 37°C for 96 and 120 hours were not 

significantly different from mean CTMax values of the 10°C acclimation group.  

 

Table 4: Acclimation of CTMax from 10°C to 37°C in Blaptica dubia 

 

Exposure to 37°C (Hours) Mean CTMax ± 95%CI 

0 47.06 ± 0.63 

6 49.18 ± 1.13 

12 49.22 ± 1.18 

24 49.14 ± 1.00 

48 48.40 ± 0.65 

72 49.41 ± 0.95 

96 48.38 ± 0.79 

120 48.56 ± 1.14 
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Figure 11: Rate of Acclimation of CTMax from 10°C to 37°C in Blaptica dubia. Error bars 

represent 95% confidence interval of the mean. 
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IV. DISCUSSION 

 

The Critical Thermal Maxima 

The main objective of my study was to determine the CTMax of three species of 

Blaberid cockroaches for which upper thermal limits were previously unexplored, 

Blaptica dubia, Eublaberus posticus and Blaberus discoidalis. The mean CTMax of 

cockroaches acclimated at 25°C is the most appropriate value to use in comparisons 

with previous studies of cockroach CTMax. Other cockroach studies did not focus on 

acclimation responses and maintained laboratory colonies at 25±2°C (Appel et al. 1983, 

Appel 1991).  The mean CTMax values for each species in this study acclimated at 25°C 

were: Blaptica dubia 47.82±0.36°C, Eublaberus posticus 45.57±0.42°C, and Blaberus 

discoidalis 44.49±0.44°C. These mean CTMax values fall within the CTMax range of 

previously investigated species of Blaberid cockroaches, which ranged from 

43.20±0.13°C in Diploptera punetata to 49.5±0.36°C in Blaberus cranifer (Appel et al. 

1983, Appel 1991).   

It would be expected that mean CTMax of Blaberus discoidalis determined in my study 

would be similar to the mean CTMax of Blaberus cranifer determined by Appel et al. 

(1983), because most variation in CTMax occurs above the species level (Addo-Bediako 

et al. 2000) and the two species share similar habitats (Beccaloni 2007).   The 

methodologies used in this study for determining CTMax followed Appel (1991), using a 

nested glass jar and hot plate to obtain a 1°C/min heating rate.  Appel et al. (1983) used 

a different testing methodology and found that the rate of heating was 0.75°C/min.  The 

differences in heating rate could explain the observed difference of 5°C in average 

CTMax of Blaberus discoidalis compared to Blaberus cranifer.   

Response of CTMax to Thermal Acclimation 

 The results of this study indicated different acclimation responses for each 

species addressed.  Blaptica dubia, was acclimated at 10°C, 15°C, 20°C, 25°C, 31°C and 
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37°C and exhibited a significant increase in mean CTMax when acclimated to 37°C 

(49.18±0.80°C).  The mean CTMax of roaches acclimated at all other temperatures did not 

significantly differ between groups. In temperate tadpole species Cupp (1980) observed 

that within a species temperature range, a greater acclimation response occurred in 

higher temperatures than lower temperatures.   Blaptica dubia also exhibited the 

highest overall average CTMax  throughout the study. Blaberus discoidalis, which 

exhibited the lowest overall average CTMax throughout the study, exhibited no 

acclimation response of CTMax.  These findings loosely support the concept 

demonstrated by Calosi et al.(2008) in a study of European diving beetles, Deronectes 

sp., which concluded that the species with the highest upper thermal limits also 

possesses the greatest acclimatory ability within that trait.   

 Eublaberus posticus did not survive the acclimation period at 10°C or 37°C, but 

exhibited significantly lower mean CTMax values when acclimated at 20°C and 25°C 

compared to 15°C and 31°C acclimation groups.  These results are opposite of what 

would be expected in thermal acclimation responses.  The highest thermal tolerance 

should occur at optimum temperature (To) and decrease with decreased performance 

due to exposures outside of the To range as consistent with the thermal performance 

curve (Angilletta et al. 2002, Huey and Stephenson 1979).  Therefore, a peak CTMax 

should have been observed at one acclimation temperature with CTMax dropping as 

acclimation temperatures moved away from optimum temperatures in either direction 

on the curve as observed by Jumbam et al. in a study of the CTMax of argentine ants, 

Linepithema humile, which thrive in Mediterranean type habitats.  The CTMax of 

Linepithema humile was highest at 25°C and dropped after acclimation to temperatures 

higher or lower.  However, the overall acclimation response was typically weak with the 

mean CTMax only shifting 1°C (Jumbam et al. 2008).  Further information regarding the 

natural history of Eublaberus posticus could offer insight into why peak CTMax would 

occur at acclimation temperature extremes. 
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Investigations of the upper thermal limits for tropical species are lacking and the 

majority of studies have focused on species of the Holarctic region (Chown et al. 2002).  

Further investigations into the acclimation response of thermal tolerance in tropical 

species are needed to fully understand the acclimation responses observed in my study.  

Comparisons between Species 

 It has been shown that the majority of variation in physiological traits, including 

thermal tolerance is found in taxonomic groupings above the species level and that in 

studies of CTMax, the highest variation occurs at the genus level (Addo-Bediako et al. 

2000).  This study found significant differences in mean CTMax between at least two of 

the three test species at each acclimation temperature. Within every thermal 

acclimation group, Blaptica dubia had the highest CTMax and Blaberus discoidalis had 

the lowest. At 25°C the mean CTMax of each species was significantly different from the 

others.   

 The statistical differences in the CTMax of the cockroaches tested occur within a 

narrow temperature range.  It is known that the upper thermal limits of organisms have 

less variation than lower thermal limits and that upper thermal limits have little variance 

based on geographic location (Addo-Bediako et. al. 2000).  The differences between 

these species could be attributed to their natural histories.  Eublaberus posticus is 

described as frequently occurring in caves, as is Blaberus discoidalis (Roth and Willis 

1960).  Both species also largely occur in Central America and the Caribbean (Beccaloni 

2007). Blaptica dubia is a terrestrial species, occurring in forested habitats in Paraguay, 

Uruguay and Argentina (Beccaloni 2007).  Blaptica dubia could be better adapted to 

surviving greater temperatures due to its larger, more varied historic habitat and range. 

Comparisons between Adults and Nymphs 

 Previous studies of insect CTMax demonstrated significant differences in thermal 

tolerance between developmental stages. In a study of the Brown Planthopper, 
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Nilaparvata lugens, Piyaphongkul et al. (2012) found that first instar nymphs had 

significantly lower CTMax and ULT50 values than adult males or females.  Vorhees and 

Bradley (2012) found that larval and pupal stages of the meal worm beetle Tenebrio 

molitor had significantly lower CTMax than adult beetles.  This study found that first 

instar nymph Eublaberus posticus had significantly lower mean CTMax than adults. This 

suggests that the least tolerant life stages of a species are the most important in 

determining the long term success of a species when exposed to thermal stress.     

 No significant differences were found between adults and first instar nymphs of 

Blaptica dubia and Blaberus discoidalis.  The similarity of mean CTMax values between 

life stages of these species may be attributed to errors in the assessment of CTMax.  To 

determine CTMax of adult roaches the onset of muscular spasms was observed and that 

temperature point was recorded as the CTMax.  Due to constraints with visibility in the 

testing apparatus and size of the organisms, CTMax of first instar nymphs was 

determined as the cessation of movement when mechanically disturbed.  It is likely that 

this difference in CTMax determination caused an inflation of the actual upper thermal 

limits of first instar nymphs. Significant differences may be determined with additional 

data collection using more precise measuring techniques such as thermolit respirometry 

technique described by Vorhees and Bradley (2012).   

Rate of Acclimation 

 This study tested the rate of the acclimation response in Blaptica dubia. While 

roaches acclimated at 37°C did not exhibit significant shifts in mean CTMax when 

exposed to 10°C acclimation temperatures.  Roaches acclimated at 10°C and 

subsequently exposed to 37°C exhibited significant increases in mean CTMax after only 6 

hours of exposure. Rapid acclimation response to high temperatures is well 

documented.  Mellanby (1939) observed complete acclimation in the cockroach Blatta 

orientalis in less than 20 hours when moved from 15°C to 30°C.  The reverse acclimation 

of Blatta orientalis occurred in 2-3 days.  In a study of Ceratitis flies acclimation was 
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found to be a rapid process, occurring in less than 24 hours (Weldon et al. 2011).  The 

lack of change in CTMax when roaches were acclimated at 37°C and moved to 10°C as 

well as the return of CTMax to 10°C values after 72 hours at 37°C could indicate that the 

roaches were exposed to their temperature extremes.  If high and low acclimation 

temperature were extremes, it is likely that the CTMax values were similar because the 

roaches were under physiological stress at both acclimation temperatures.  

Directions for Future Research 

 The Critical Thermal Maxima is one measure to determine the thermal limits of a 

species and can be used to determine how a species group will respond to global 

climate change.  I recommend investigating the mean annual temperatures across each 

species range and comparing those to the experimentally determined CTMax values, 

using the models described by Deutsch et al. (2008).  Field-collected cockroach 

specimens may give a more accurate measure of the thermal tolerance of the species 

and would determine if slight geographic variance occurred.  Seasonal changes in CTMax 

may also occur and could be investigated.   

 To fully understand how temperature affects a cockroach species, CTMax should 

be assessed for each developmental stages of a cockroach.  Critical differences in CTMax 

may occur at different stages or periods of metamorphosis. In addition, for any study 

which wanted to relate the Critical Thermal Maximum to overall survival, it would be 

essential to conduct a prolonged reproduction and development study to determine the 

temperature at which a cockroach would breed, reproduce, and develop.  

 Recent studies have addressed CTMax using a variety of deviations from the 

standards proposed by Lutterschmidt and Hutchison (1997a).  Future investigations of 

cockroach CTMax could explore the effects of the heating rate and the repeatability of 

the CTMax values through repeated testing on an individual.  Future investigations may 

also choose to use new techniques to assess CTMax using physiological responses such 

as CO2 output which may be more reliable and repeatable.   
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 Additional studies should seek to investigate less common species of cockroach 

than those readily available in the pet trade.  Those species which are easy to maintain 

in a lab culture may be more resistant to environmental stressors overall.  Rare 

cockroach species with specific habitat requirements may be less tolerant to thermal 

stress and therefore more susceptible to future climate changes.  
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