Eastern Kentucky University

Encompass

Online Theses and Dissertations

Student Scholarship

January 2017

Sample Collection and DNA Extraction Methods for Environmental DNA Metabarcoding in Headwater Streams

Michael Triston Mullins Eastern Kentucky University

Follow this and additional works at: https://encompass.eku.edu/etd

Part of the Biodiversity Commons, and the Terrestrial and Aquatic Ecology Commons

Recommended Citation

Mullins, Michael Triston, "Sample Collection and DNA Extraction Methods for Environmental DNA Metabarcoding in Headwater Streams" (2017). *Online Theses and Dissertations*. 544. https://encompass.eku.edu/etd/544

This Open Access Thesis is brought to you for free and open access by the Student Scholarship at Encompass. It has been accepted for inclusion in Online Theses and Dissertations by an authorized administrator of Encompass. For more information, please contact Linda.Sizemore@eku.edu.

Sample Collection and DNA Extraction Methods for Environmental DNA Metabarcoding in Headwater Streams

By

Michael Triston Mullins

Thesis Approved:

au

Chair, Advisory Committee

Member, Advisory Committee

Member, Advisory Committee

Dean, Graduate School

STATEMENT OF PERMISSION TO USE

In presenting this thesis in partial fulfillment of the requirements for a Master of Science degree at Eastern Kentucky University, I agree that the Library shall make it available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that accurate acknowledgment of the source is made. Permission for extensive quotation from or reproduction of this thesis may be granted by my major professor, or in [his/her] absence, by the Head of Interlibrary Services when, in the opinion of either, the proposed use of the material is for scholarly purposes. Any copying or use of the material in this thesis for financial gain shall not be allowed without my written permission.

Signature Muller

Date _____ 6/14/2017 ____

SAMPLE COLLECTION AND DNA EXTRACTION METHODS FOR ENVIRONMENTAL DNA METABARCODING IN HEADWATER STREAMS

By

MICHAEL TRISTON MULLINS

Bachelor of Science Georgetown College Georgetown, Kentucky 2011

Submitted to the Faculty of the Graduate School of Eastern Kentucky University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August, 2017 Copyright © Michael Triston Mullins, 2017 All rights reserved

DEDICATION

To my parents, Mike and Kathy, for the encouragement to pursue my interests.

To my wife, Jennifer, and our children for inspiring me to go and see what is just around the river bend.

ACKNOWLEDGMENTS

First, I would not be who I am today without the support and encouragement from my parents, my wife, and our children. Thank you to my parents for encouraging me to play and learn in the "cricks" of the "hollers" we called home. My wife, Jennifer, and our children have inspired me to be a man of love and to always seek the adventures that are out there.

Secondly, I would not be the biologist I am today without the guidance from my undergraduate professors, Drs. Rick Kopp and Mark Christensen. Your encouragement for me to learn not only aquatics but also molecular aspects of biology allowed me to think it was possible to pursue a thesis project melding the two disciplines. This led me to seek the help of my graduate advisor, Dr. David M. Hayes, to make such a project a reality. Through our many discussions and your patience, you pushed me in the right direction to attain the "tools in my toolbox" to succeed. I would also like to thank my other committee members, Dr. Amy Braccia and Dr. Sherry Harrel, for their comments and assistance over the past four years. You all have shared a wealth of knowledge with me and have shaped the way I think about biological concepts.

This research project received a grant written by and awarded to Dr. David M. Hayes from the Eastern Kentucky University University-Funded Scholarship Program, which made costly steps of DNA purification and sequencing possible. Without the grant funding and the existing support from the Hayes Lab, the logistics of completing the project would not have been possible. I would also like to thank Dr. Neil Moore, Dr. Mark Farman, and Dr. Jenny Webb at the University of Kentucky for their assistance in sequence generation done at the UKy HealthCare Genomic Core Laboratory and server access for bioinformatics analysis. Additionally, I would like to thank the opportunity to participate in the "2015 Essential Skills for Next Generation Sequencing and Data Analysis Workshop" funded by the Kentucky Biomedical Research Infrastructure Grant.

iv

I would like to thank my peers, Rebecca Roberts, Andrew Stump, and Robert Jackson for their help in field collection and lab work, respectively. I would also like to thank them for sharing in the "suffering" of graduate school and being members of the scientific workforce.

Lastly, I would like to thank Lee Droppelman, Richard Novy, and everyone else at Eco-Tech Consultants. Without your professional support and mentorship, especially Lee's encouragement, the finishing touches on this this project would likely have gone undone.

I would again like to doubly thank the support from all those mentioned above for their unselfish support in completing this project.

ABSTRACT

DNA is found to be free and ubiquitous in the environment where it is no longer associated with the source organism, and is also known as environmental-DNA (eDNA). Methods optimized for specific environments may be able supplement insight to local taxa richness. With the advent of high throughput sequencing and the proliferation of sequence data in public repositories, insights to the biodiversity of communities at the molecular level have been possible. Thus, this study compared commonly used DNA capture (water precipitation and filtration) and extraction (MoBio's PowerWater, Qiagen's DNeasy Blood and Tissue Kit, and a CTAB protocol) methods in their ability to isolate eDNA for the purpose of metabarcoding a section of the ribosomal small subunit 18 S (18s) and the cytochrome oxidase I (COI) gene regions. The 18s sequence data is non-reportable due to lack of sequence quality, and MoBio's PowerWater did not yield DNA suitable concentrations. CTAB and DNeasy extractions yielded successful PCR reactions and high-throughput sequencing (HTS). When combined with their respective replicates, CTAB and DNeasy were determined to have genus richness (α -diversity) of 25 and 24, respectively of benthic macroinvertebrates with 20 taxonomic determinations being shared between the two methods. After conducting Jaccard's dissimilarity index and constructing ordination plots using non-metric multidimensional scaling (NMDS), this study was not able to reveal differences in the amount of taxa richness between CTAB and DNeasy, which implied extraction methods may not be a limiting factor in detected taxa richness.

vi

CHAPTER	PAGE
I. INTRODUCTION	1
II. METHODS	7
Site Selection	7
Lab Quality Control for DNA Capture	7
Sample Collection, Preservation, and Storage	8
DNA Extraction- Overnight Drying Step and Water Sample DNA Pelleted	by
Centrifugation	9
DNA Extraction- CTAB with OneStep PCR Inhibitor Removal Kit, DNeasy	
Blood and Tissue Kit, and PowerWater DNA Isolation Kit	9
DNA Amplification- PCR Optimization for Two 18s Primer Sets	10
18s PCR Amplification and Site Indexer Addition	
COI PCR Amplification and Nextera XT Kit	
Next-Gen Sequencing with Illimina MiSeq Platform	
Bioinformatic Analysis	
Statistical Analyses	16
III. RESULTS	17
IV. DISCUSSION	19
Effect of methods on detection of invertebrate species	19
Conclusions	21
LITERATURE CITED	23
APPENDICES	29
A. Tables	30
B. Figures	35
C. Supplementary Material	40
VITA	59

TABLE OF CONTENTS

LIST OF TABLES

TABLE PAGE
1. Successful DNA capture and extraction methods confirmed by polymerase chain reaction (PCR) gel electrophoresis
2. Gel confirmation of polymerase chain reactions (PCR) with primers LCO1490 and HCO2198 and 563f and 1132r successes of DNA extracted from glass fiber filters using Qiagen DNeasy or CTAB
3. Number of sequences left after each bioinformatic step and number of OTUs found in Qiagen Dneasy and CTAB extractions
4. Genus level taxonomic assignments made from each filter sample replicate with corresponding DNA extraction technique
5. Jaccard dissimilarity index between DNA extraction replicates

LIST OF FIGURES

FIGURE PA	AGE
1. Workflow of processing environmental DNA samples from collection, extraction amplification, and sequencing for targeting COI gene region.	
2. Location Kentucky Division of Water reference site in the watershed of the headwater stream Bucket Branch (38.05474N, longitude -83.31615W), located within the 8-HUC Licking River watershed	. 37
3. Pumping apparatus for filter capture of eDNA. Stream water is drawn through filterhead by pumping the hand-pump, which is measured in the reservoir at the end of the polyethylene tubing connecting the filterhead, hand-pump, and the reservoir.	. 38
4. Non-metric multidimensional scaling (NMDS) using Jaccard method for presend data of taxonomic assignments made from Illumina MiSeq data made to 97% similarity to reference sequences derived from CTAB and DNeasy extractions	
captured by filtration of stream water at Bucket Branch, KY	. 39

CHAPTER I

INTRODUCTION

DNA is found to be free and ubiquitous in the environment (Bohmann et al., 2014), being described as environmental-DNA (eDNA) (Lodge et al., 2012; Bohmann et al., 2014; Barnes & Turner, 2015). Studying the ecology of eDNA and enhancing the methods for eDNA study is relevant to ecologists because "understanding the origin of eDNA... can inform our understanding about the taxa and environments for which eDNA represents and effective conservation and research tool" (Barnes & Turner, 2015). Sources of eDNA may include saliva, scent mark, sloughed/shed skin, exuviae, urine, feces, and other biological material (Beja-Pereira et al., 2009), though little is known about the physiological origins and decay rates of eDNA (Barnes & Turner, 2015). Both abiotic (i.e. conductivity, pH, DO, and light) and biotic (i.e. intra- and extra-cellular enzymes) factors influence the decay rates (Nielsen, et al., 2007). eDNA is often degraded material (\sim 80-250 bp) (Bohmann et al., 2014), and when samples are processed without lysis of cells, the DNA collected is considered extracellular DNA (Taberlet et al., 2012). eDNA may be able to give accurate biodiversity estimates of environments, which would be beneficial for invasive species detection, functional diversity, wildlife and conservation biology (Thomsen et al., 2011; Bohmann et al., 2014; Elbrecht & Leese, 2015). eDNA used as a biological survey tool causes less of a disruption to organisms and their habitat because of the non-invasive nature of sampling. Sample methods include but are not limited to filtering water from the water column (Goldberg et al., 2011; Jerde et

al., 2011; Thomsen et al., 2012), water precipitation (Ficetola et al., 2008), soil cores (Taberlet et al., 2012), and ice cores (Willerslev et al., 2007); all forms of eDNA sampling collect relatively small amounts of source material (<1gram) for laboratory processing (Willerslev et al., 2007; Ficetola et al., 2008; Goldberg et al., 2011; Jerde et al., 2011; Taberlet et al., 2012; Thomsen et al., 2012).

eDNA has been used to survey for specific species (Goldberg et al., 2011; Jerde et al., 2011) or detect many species within a community (Dejean et al., 2011; Kermarrec et al., 2014; Deiner et al., 2015a; Deiner et al., 2015b). eDNA amplified to detectable levels by means of polymerase chain reaction (PCR) has been demonstrated to denote the recent presence of the source species (Ficetola et al., 2008; Dejean et al., 2011; Civade et al., 2016; Souza et al., 2016), and eDNA concentration has also been positively correlated with biomass in the laboratory controlled settings (Elbrecht & Leese, 2015) and in the field (Jane et al., 2014). Detection of eDNA has been found up to 12 km away from the home range and habitat type of a source organism(aquatic systems; waterfleas and mussels) (Deiner & Altermatt, 2014). Thus, water flow velocity has been proposed to be an influential factor on the distance of detection (Civade et al., 2016). Even though eDNA signal detection has been found to be less than probable persistence of eDNA in the site, additional research needs to be conducted on factors influencing persistence and transport in lotic systems (Civade et al., 2016). Limiting the spatial scale of sample points by watershed size in lotic systems would be a prudent experimental design decision to prevent biased comparisons. In addition, PCR inhibiting compounds from decaying litter of leaf fall events have been shown to decrease amplification

and eDNA detection (Jane et al., 2014). PCR may also cause replication bias towards more abundant template DNA, so adequate PCR replication is needed to reduce false absences (Ficetola et al., 2014).

All of the initial processing of eDNA follows the same workflow as "capturing DNA from an environmental sample, followed by the extraction and purification of eDNA" (Deiner et al., 2015) with capture being defined as the concentration of cellular and extracellular DNA (Pilliod et al., 2013). Aquatic eDNA is commonly captured by either water filtration or water precipitation (Deiner & Altermatt, 2014), and eDNA extraction may be processed with a range of methods including but not limited to DNA lysis and precipitation using cetyl trimethyl ammonium bromide (CTAB) (Saghai-Maroof et al., 1984), a CTAB extraction protocol with ONESTEP PCR Inhibitor Removal Kit (Turner, Uy, & Everhart, 2015), Qiagen's DNeasy Blood and Tissue Kit (DNeasy) (Amberg et al., 2015), and MoBio's Powerwater DNA Isolation Kit (PowerWater) (Goldberg et al., 2011; Amberg et al., 2015). Studies have found different extraction protocols provide varying levels of biodiversity (Goldberg et al., 2011; Amberg et al., 2015; Deiner et al., 2015), and the lack of experimental replication amongst extraction treatments in previous freshwater studies has been addressed (Deiner et al., 2015). The only study with appropriate replication of habitat of study was the outflow of a lentic system (Deiner et al., 2015). Few studies have tried to optimize eDNA metabarcoding in natural aquatic environments, especially headwater streams (Thomsen et al., 2012 Deiner, et al., 2015; Miya et al., 2015; Civade et al., 2016; Valentini et al., 2016).

With the advent of high throughput sequencing (also known as next generation sequencing), such as Illumina MiSeq (Bálint el al., 2014) and pyrosequencing (Chariton et al., 2010), and the proliferation of sequence data in public repositories, such as non-curated GenBank and GreenTrees and curated Barcode of Life and SILVA, insights to the biodiversity of communities at the molecular level have been possible (Hajibabaei et al., 2007; Chariton et al., 2010; Dejean et al., 2011 Baird & Hajibabaei, 2012; Bohmann et al., 2014; Cristescu, 2014; Hugerth et al., 2014; Kermarrec et al., 2014; Mächler et al, 2014). DNA reference libraries are used to make taxonomic assignments from eDNA sequences, which allows for community level analysis, also known as metabarcoding (Barnes & Turner, 2015). Metabarcoding may make use of whole organisms, particularly microorganisms (Chariton et al., 2010; Zhan et al., 2014) or environmental DNA (Taberlet et al., 2012; Deiner et al., 2015a). In cases when sequences are analyzed before being assigned to taxonomies or when sequences may not be taxonomically identified because of insufficient DNA reference sequence, taxa may be reported as Molecular Operational Taxonomic Units (MOTUs) (Smith & Peay, 2014; Deiner, Walser, et al., 2015b). When working in new model systems or with new primers, newly discovered MOTUs may provide indication of species presence where it was not seen using physical detection (Yu et al., 2012; Kermarrec et al., 2014; Zhan et al., 2014). Metabarcording also has provided insights to community level comparisons with water quality (Chariton et al., 2010; Yu et al., 2012; Kermarrec et al., 2014; Mächler et al., 2014; Zimmermann et al., 2014).

PCR is currently a limiting factor for species detection when metabarcoding eDNA because of the need to anneal and amplify target DNA templates with DNA primers (Zhan et al., 2014). Aquatic macroinvertebrates have been found extensively associated with the commonly used gene region Cytochrome c oxidase subunit one (COI), a mitochondrial region of DNA (Folmer et al., 1994; Zhan et al., 2014; Deiner et al., 2015b). Nuclear regions of DNA, may also give the breadth of sequence diversity needed for community level analysis at the order and family taxonomic levels (Fonseca et al., 2010; Wu et al., 2015), but with less confidence in species level resolution (Hugerth et al., 2014; Zhan et al., 2014).

Metabarcoding has been used for understanding eukaryotic community diversity in relation to ecosystem health (Chariton et al., 2010), which may suggest metabarcoding of eDNA may be complimentary to water-quality of streams. If strong associations have been found between detected presence of species using metabarcoding of eDNA and those species found in traditional bioassessments (Chariton et al., 2010; Civade et al., 2016), then this method has the potential value to provide supplementary data to what monitoring agencies report on water quality. Community level surveys analyzing metabarcoded eDNA have been paired with ecoregions (Smith & Peay, 2014), biodiversity estimates (Kermarrec et al., 2014), bioindicators (Mächler et al., 2014), and impacted streams (Chariton et al., 2010). With eDNA methods exhibiting such promise as a survey tool, studies should focus on refining the implementation of methods for capture and extraction.

To date, relatively few studies have tried to compare and assess the performance of eDNA capture and extraction methods. This study has tried to

bridge this knowledge gap by assessing eDNA capture and extraction methods in a headwater stream. This study has two main objectives: (1) compare eDNA capture methods water precipitation (Ficetola et al., 2008) and water filtration (Goldberg et al., 2011; Amberg et al., 2015), and (2) compare three eDNA extraction methods, which are MoBio's PowerWater DNA Isolation Kit, Qiagen's DNeasy Blood and Tissue Kit, and a CTAB based DNA precipitation extraction ¹(Saghai-Maroof et al., 1984; Figure 1).

¹All tables, figures, and supplementary material are presented in the appendices at the end of thesis

CHAPTER II

METHODS

Site Selection

Filter and water eDNA capture samples were collected at the headwater stream, Bucket Branch in Morgan county, Kentucky (latitude 38.05474N, longitude -83.31615W) about 50 m above its confluence. Bucket Branch is an intermittent stream located within the Licking River basin with a 4.22 km² catchment area. The Bucket Branch site has been sampled for benthic macoinvertebrates (Supplementary Material A, and Roberts pers comm.), and used as a reference site by the Kentucky Division of Water (KDOW).

Lab Quality Control for DNA Capture

Filters, gloves, forceps, and pipettes were UV sanitized for 15 minutes and then placed in polyethylene bags until use. Filters were placed in Whirl-Paks rather than polyethylene bags. Filter sampling apparatus components were soaked in 10% Sodium hypochlorite aqueous solution, and then rinsed with deionized water. Lab benches were all wiped down with 33% Sodium hypochlorite aqueous solution the night prior to all work done. The filter sampling apparatus was assembled (Figure 3), rinsed with deionized water, the filter head was disassembled, and a new glass fiber filter (47mm, 0.7µm) was placed on the filter head with flame-sanitized forceps (Goldberg et al., 2011). The filter was reassembled, and 2L of deionized water was filtered in the lab. The filter was then placed in 10mL of 95% ethanol, and stored at -20° C (Goldberg et al., 2011). The filter sampling apparatus was disassembled and placed in new, UV sanitized polyethylene bags. For lab controls of water samples, new 50mL centrifuge tubes were filled with 15mL of deionized water, and preserved with 33 mL of 95% ethanol and 1.5mL of Sodium acetate 3M (Ficetola et al., 2008). Samples were immediately put into -20° C storage until future use. For PCR samples, the PCR box was UV sanitized for 35 minutes and filtered pipette tips were used.

Sample Collection, Preservation, and Storage

Sampling was performed on May 26, 2015 between 10:00 AM and 12:30 PM. Before entering the site, chest waders were soaked in 15% Sodium hypochlorite solution for 10 minutes. Once at the site, a new 55 gallon trash bag was inverted and placed on the ground to provide a work area. Filter apparatus was assembled, and then primed with 2L of stream water from site (Goldberg et al., 2011). Water used for pump priming was from upstream of the work area from the middle of the water column and the center point of the stream. Using flame-sanitized forceps, a new glass fiber filter was placed on the filter head, and 2L of sample was filtered upstream of the work area from the middle of the water column and the center point of the stream. The filter was rolled on the filter-head using forceps, and then placed in 15mL centrifuge tubes with 10mL of ethanol (Goldberg et al., 2011). Field samples were placed on ice until the samples could be placed in -20° C storage within 6 hours.

Measuring with a graduated conical vial, 15mL of stream water was collected from a point proximately the same as water filtration in new 50 mL centrifuge tubes, and preserved with 33 mL of 95% ethanol and 1.5mL of Sodium acetate 3M (Ficetola et al., 2008). All samples were placed on ice, and frozen within 6 hours.

DNA Extraction- Overnight Drying Step and Water Sample DNA Pelleted by Centrifugation

Per filter extraction method, three stream filter samples and one lab control filter were placed on UV sanitized aluminum pans using flame-sanitized forceps. A UV sanitized aluminum pan was placed askew overtop of the filter containing aluminum pan, and allowed to dry overnight (Goldberg et al., 2011). For water eDNA capture, three stream water samples and one lab control water sample were each centrifuged at 5500 x g, 6° C, 35 minutes (Ficetola et al., 2008). The supernatant was decanted, and the remaining pellet was allowed to dry overnight with the tubes inverted.

DNA Extraction- CTAB with OneStep PCR Inhibitor Removal Kit, DNeasy Blood and Tissue Kit, and PowerWater DNA Isolation Kit

One quad from three individual filters was assigned a DNA extraction with the remaining quad archived. Each filter quad was sliced into smaller pieces (about the size of a matchhead) and placed in the initial vessel for each extraction. The first DNA extraction chosen was PowerWater DNA Isolation Kit, in which the manufacture's protocol was followed except for the modifications made by Amberg et al. (2015) and using 1.25mL of PW1 for the cell lysis step. The second extraction was Qiagen's DNeasy Blood and Tissue Kit (Qiagen GmbH, Hilden, Germany), in which the manufacture's protocol was followed except for the modifications made by Amberg et al. (2015). The elution step for DNeasy and PowerWater was conducted 25µl of nuclease-free water for 2 minutes, and centrifuged for 1 minute at \geq 13,000 x rpm. The elution step was repeated with 25µl of nuclease-free water for 2 minutes and centrifuged at \geq 13,000 x rpm for increased yield. The samples assigned to the CTAB protocol followed the instructions by Saghai-Maroof et al. (1984), with the exception the DNA was precipitated with 1mL of water and 0.2mL of each CTAB extraction replicate was cleaned with OneStep PCR Inhibitor Removal Kit (Zymo Research Irvine, CA, USA) (Turner et al., 2015). Samples were stored at -20° C until polymerase chain reaction.

DNA Amplification- PCR Optimization for Two 18s Primer Sets

Using eDNA positive controls (10 ng/µl), annealing temperatures for 18s primer sets 563f (5'-GCCAGCAVCYGCGGTAAY-3') and 1132r (5'-CCGTCAATTHCTTYAART-3') (Hugerth et al. 2014), 574*f (5'-CGGTAAYTCCAGCTCYV-3') and 1132r (5'-CCGTCAATTHCTTYAART-3') (Hugerth et al., 2014) were optimized for PCR by having a thermal-cycling regime of 98° C for 1 minute, followed by 30 cycles of 98° C for 1 second, and an annealing gradient of 45.0° C, 46.2° C, 48.2° C, 51.5° C, 55.4° C, 58.4° C, 60.6, or 62.0° C for 5 seconds, and 72° C for 15 seconds. The final extension was 72° C for 1 minute and then a hold at 4° C. A Nanodrop spectrophotometer was used to quantify the amount of DNA for each extraction sample, which was all standardized to $\leq 10 \text{ ng/}\mu$ l. Aliquots of 10 µl from filter samples were composited into 2 ml microcentrifuge tubes to make 40 µl of composited eDNA per filter.

18s PCR Amplification and Site Indexer Addition

For 18s metabarcodes, PCR was conducted in 20 μl reactions consisting of 10 μl of Thermo Scientific 2x Phusion Flash PCR Master Mix, 1 μl of UT_563f at 10 μM, 1 μl of UT_1132r at 10 μM, 6 μl of Qiagen nuclease-free H₂O, and 2 μl of template eDNA. The thermal-cycling regime was 98° C for 1 minute, followed by 30 cycles of 98° C for 1 second, 51.5° C for 5 seconds, and 72° C for 15 seconds. The final extension was 72° C for 1 minute and then a hold at 4° C. Each DNA capture sample of composited filter quad extractions and water extractions had eight PCR replicates (Ficetola et al. 2014). The PCR product confirmation with gel electrophoresis happened within 20 minutes of completion of PCR.

Gels were made with ~125 ml of 1% agarose with 2 μ l of Ethidium bromide per 100 mL of agarose gel. All of the PCR reaction was loaded into gel wells with 4 μ l of loading dye. Gel electrophoresis was conducted at 100 Volts and 400 mAmps max. Gel extraction was followed and modified from QIAquick Gel Extraction Kit (Qiagen 2001). PCR product (~550-650 bp) was excised using flame sanitized scalpel and forceps, and was placed in 2 ml microcentrifuge tubes. A 3:1 ratio of 300 μ l of QG buffer per 100 mg of PCR product in agarose was added and incubated at 50° C for 20 minutes, vortexing briefly every 3 minutes. Dissolved agarose and QG buffer solution was loaded onto QIAquick spin column in a 2 ml collection tube in 650 µl increments, and centrifuged at $\geq 10,000 \times g$ for 1 minute. The flow through was discarded, and the dissolved agarose and QG buffer solution was loaded and centrifuged until all of the solution was had been put through the QIAquick spin column. The QIAquick spin column was rinsed with 500 µl by centrifuging for 1 minute at $\geq 10,000 \times g$. The QIAquick spin column was rinsed with 750 µl of PE buffer by centrifuging for 1 minute at $\geq 10,000 \times g$. PE buffer flow through was discarded, and the QIAquick spin column was dried by centrifuging for 2 minutes at $\geq 10,000 \times g$. The spin filter basket was placed in a new 1.5 ml microcentrifuge tube, and DNA was eluted by adding 25 µl of nuclease-free water (Qiagen). The QIAquick spin column stood for 3 minutes, and was centrifuged for 1 minute at $\geq 10,000 \times g$.

Each DNA capture sample of composited filter quad extractions and water extractions were dual-indexed for bioinformatic identification using universal tail primers (Carew et al., 2013). Each dual site-indexer was unique to DNA sample (Kozich et al., 2013). MiSeq adapters and dual site-indexer addition was conducted in 20 µl reactions consisting of 10 µl of Thermo Scientific 2x Phusion Flash PCR Master Mix, 1 µl of forward site-indexer primer at 10 µM, 1 µl of corresponding reverse site indexer primer at 10 µM, 6 µl of Qiagen nuclease-free H₂O, and 2 µl of template eDNA. The thermal-cycling regime was 98° C for 1 minute, followed by 30 cycles of 98° C for 1 second, 51.5° C for 5 seconds, and 72° C for 15 seconds. The final extension was 72° C for 1 minute and then a hold at 4° C. The PCR product confirmation with gel electrophoresis happened within 20 minutes of PCR completion.

Gels were made with \sim 125 ml of 1% agarose stained with 2 µl of Ethidium bromide. All of the PCR reaction was loaded into gel wells with 4 μ l of loading dye. Gel electrophoresis was conducted at 100 Volts and 400 mAmps max. Gel extraction was followed and modified from QIAquick Gel Extraction Kit (Qiagen 2001). PCR product (\sim 650-750 bp) was excised using flame sanitized scalpel and forceps, and was placed in 2 ml microcentrifuge tubes. A 3:1 ratio of 300 µl of QG buffer per 100 mg of PCR product in agarose was added and incubated at 50° C for 20 minutes. vortexing briefly every 3 minutes. Dissolved agarose and QG buffer solution was loaded onto QIAquick spin column in a 2 ml collection tube in 650 µl increments, and centrifuged at $\geq 10,000 \text{ x g}$ for 1 minute. The flow through was discarded, and the dissolved agarose and QG buffer solution was continued to be loaded and centrifuged until all of the solution had been put through the QIAquick spin column. The QIAquick spin column was rinsed with 500 µl by centrifuging for 1 minute at \geq 10,000 x g. The QIAquick spin column was rinsed with 750 µl of PE buffer by centrifuging for 1 minute at \geq 10,000 x g. PE buffer flow through was discarded, and the QIAquick spin column was dried by centrifuging for 2 minutes at $\geq 10,000 \text{ xg}$. The spin filter basket was placed in a new 1.5 ml microcentrifuge tube, and DNA was eluted by adding 25 μ l of nuclease-free water (Qiagen). The QIAquick spin column stood for 3 minutes, and was centrifuged for 1 minute at $\geq 10,000 \text{ xg}$. Elution step was repeated again to make 50 µl of DNA solution.

COI PCR Amplification and Nextera XT Kit

For COI metabarcodes, primers LCO1490 (5'-

GGTCAACAAATCATAAAGATATTGG-3') and HCO2198 (5'-

TAAACTTCAGGGTGACCAAAAAATCA-3') (Folmer et al., 1994) were used, and PCR was conducted in 20 µl reactions consisting of 10 µl of Thermo Scientific 2x Phusion Flash PCR Master Mix, 1 µl of LCO1490 at 10 µM, 1 µl of HCO2198 at 10 µM, 6 µl of Qiagen nuclease-free H₂O, and 2 µl of template eDNA. The thermal-cycling regime was 98° C for 1 minute, followed by 30 cycles of 98° C for 1 second, 45° C for 5 seconds, and 72° C for 15 seconds. The final extension was 72° C for 1 minute and then a hold at 4° C. Each eDNA capture and extraction replicate had eight PCR replicates (Ficetola et al., 2014). The PCR product confirmation with gel electrophoresis happened within 20 minutes of PCR completion.

Gels were made with ~125 ml of 1% agarose stained with 2 μl of Ethidium bromide. 5 μl of the PCR reaction was loaded into gel wells with 1 μl of loading dye. Gel electrophoresis was conducted at 100 Volts and 400 mAmps max. Samples with confirmed PCR amplification were composited with corresponding replicates. Composited samples underwent post-PCR cleanup with AMPure XP beads following recommended manufacturer's protocol except 0.6 x bead concentration was used for the COI 710 bp fragment size (p. 31, Nextera XT DNA 96 kit, Illumina, Inc., San Diego, CA, USA) and sequencing preparation with the Nextera XT DNA 96 Kit (Illumina, Inc., San Diego, CA, USA) (Deiner et al., 2015a).

Next-Gen Sequencing with Illimina MiSeq Platform

Amplicons of the 18s gene region (Hugerth et al., 2014) and the COI region (Folmer et al., 1994) were sequenced using the MiSeq Illumina platform (Illumina, San Diego, CA) at the UKy HealthCare Genomic Core Laboratory. DNA was quantified using the Qubit fluorometer (ThermoFisher Scientific) and qPCR to test for sample quality prior to high-throughput sequencing.

Bioinformatic Analysis

A data request was completed for all aquatic invertebrates sampled and morphologically identified by Kentucky Division of Water (KDOW) biologists for the Kentucky macroinvertebrate bioassessment index (MBI) completed for the bucket branch site (Supplementary Material A). A species search was performed in GenBank using the taxa lists KDOW, and the first ten sequences in the COI target region (Folmer et al., 1994) of each taxon were used to make a reference database (Supplementary Material B). Sequenced community data was processed using a bioinformatics pipeline in QIIME (Caporaso et al., 2010). Paired end sequence reads were joined with 50 bp overlaps and 90% similarity threshold using the join_paired_ends.py command (Aronesty, 2011). The resulting FASTQ files and validated mapping files (validate_mapping_file.py) were quality filtered with the split_libraries_fastq.py command using default parameters with a quality score threshold of 30 allowing for 0-5 low quality base calls and a singleton reads were removed. OTU picking and reference based taxonomic assignments were made performing the pick closed reference otus.py command using default parameters

(Caporaso et al., 2010) and the reference database in FASTA format (Supplementary Material B).

Statistical Analyses

Taxa assignments from CTAB and DNeasy filter extractions were analyzed by calculating alpha-diversity using the alpha_diversity.py command (Caporaso et al., 2010). Additional statistical computations performed were Jaccard's dissimilarity index and by means of the package VEGAN in R (Oksanen et al., 2016; R Core Team, 2016). In order conduct the Jaccard dissimilarity index, each extraction replicate was recorded as having a taxa present or absent, then the dissimilarity was compared across extraction replicates individually. The data was visualized in ordinal plots using non-metric multidimensional scaling (NMDS) by means of the package VEGAN in R (Oksanen et al., 2016; R Core Team, 2016).

CHAPTER III

RESULTS

When using gel electrophoresis for confirmation of successful PCR for DNA capture (precipitation from water or filtration) combined with type of DNA extraction (MoBio Power Water, Qiagen DNeasy, or CTAB), banding in the 550-650 bp (18s) or ~710 bp (COI) ranges were deemed successful (Table 1). PowerWater samples of all types were deemed unsuccessful and were not carried forward with the study. With each DNA extraction (Qiagen DNeasy or CTAB) of filter samples eight PCR replicates for each primer combination were carried out, and reactions with gel banding were deemed acceptable to be ran on the Illumina MiSeq (Illumina, Inc., San Diego, CA, USA) after the AMPure XP bead cleanup (Illumina, Inc., San Diego, CA, USA)(Table 2). DNA concentrations were recorded for both pre-PCR and post-PCR ¹(Table 3). Lab and negative controls did not yield bands with gel electrophoresis confirmation or after AMPure XP bead cleanup, and so were not ran on the Illumina MiSeq. Based upon low FASTQC sequence quality scores, the 18s dataset was deemed non-reportable, and so was not analyzed further.

The FASTQ files of the raw paired end reads for the COI data were received and after being subjected to the bioinformatics pipeline discussed above, CTAB and DNeasy extractions when combined with the respective replicates were found to yield a genus richness (*a*-diversity) of n=25 and n=24, respectively (Table 3), with taxonomic assignments made at 97% similarity to corresponding reference sequences (Table 4). Twenty taxa were shared between CTAB and DNeasy extractions, with five taxa only being found by CTAB and four taxa only being found by DNeasy. Jaccard's dissimilarity analysis was used to compare the relationship of species identified between all replicates without regard to extraction type (Table 5). NMDS plots did not reveal differences in the amount of taxa richness between the two methodologies (Non-metric fit, $R^2 = 0.986$, stress=0.1199294, two dimensions, Figure 4), which demonstrated a lack of dissimilarity between DNA of genera captured between CTAB and Qiagen DNeasy extractions (*B*-diversity).

CHAPTER IV

DISCUSSION

Effect of methods on detection of invertebrate species

The data from this study supports the current literature in that sampling capture of eDNA is most effective using filtration methods over DNA precipitation from water samples (Barnes & Turner, 2015; Deiner et al., 2015b; Table 2). This is possibly due to filtration has 2L of the water column pass through the filter versus DNA precipitation from water, which only uses 15 mL of stream water. However, other research has predicted water filtration to be more advantageous than water precipitation in estimating eukaryotic diversity with capture COI eDNA when the two methods are estimated to have even capture volume (Deiner et al., 2015b).

This study's data also supports research demonstrating PowerWater is less effective in capturing eDNA than DNeasy and CTAB (Deiner et al., 2015b; Table 2), though my data does suggest that when comparing DNeasy and CTAB, the community diversity estimates are similar. The CTAB extraction did display an advantage over DNeasy in successful PCR attempts (Table 3), which may be due to individual extraction protocols handling of PCR inhibition removal or low eDNA concentrations.

This study did not try to make relative abundance or population size assumptions based upon number of sequencing reads or eDNA concentration, due to the variability and heterogeneity of eDNA in streams (Pilliod et al., 2013; Klymus, et al., 2015; Turner et al., 2015; Civade et al., 2016; Souza et al., 2016), but instead

focused on detecting the presence of species previously found at the sample site through taxonomic assignment of eDNA recovered at the site. OTU picking was made via a closed reference database with only species found to be recently present at the site (Supplementary Material A), which limited the likelihood of spurious identifications of species. By limiting reference database and lowering the chances of detecting spatially distance species with the sample site being located in a headwater stream, the likelihood of making false presence errors was limited (Deiner & Altermatt, 2014; Rees et al., 2014; Roussel et al., 2015; Franklin, 2016).

The downside to limiting the bioinformatics analyses to a close-reference library limited the species detected to only those species sampled and identified through traditional netting and morphological identification with sequences in Genbank. An example of this, would be that only one Dytiscidae sequence was used in the reference library, which gives only a family level resolution for "the largest family of water beetles in North America" with 50 genera, 503 species (Thorp & Covich, 2010). This leads to the possibility of missed eDNA detection of species with DNA sequences input for OTU picking. This study was only able to determine 29 species (Table 5) of 93 reference taxa (Supplementary Material B), which were derived from the 95 taxonomic determinations made by KDOW ¹(Supplementary Material A).

More species with records in surrounding watersheds could have possibly been detected if the species had their COI sequences DNA barcoded and shared in a public DNA repository. More work needs to be completed in adding and curating

DNA sequences to public reference libraries in order to make using local reference libraries a powerful tool in eDNA studies and future monitoring programs.

Conclusions

This study was unable to determine differences in detected *β*-diversity of taxonomically assigned COI sequences found between CTAB and DNeasy extraction methods (Table 6; Figure 4). CTAB protocols are relatively cheap and may be modified to suit an investigator's needs (Turner et al., 2015, Mullins unpublished data), and so it is this study's recommendation CTAB be used over DNeasy when budgetary constraints are a factor in designing eDNA studies, though DNeasy may be more time efficient since it lacks overnight steps.

Environmental DNA practices are still being refined and will continue to do so as capture and molecular technologies advance. This study compared commonly used extraction protocols, and found relatively little difference between the effect of CTAB and DNeasy DNA extractions on species detection. Factors, which were not assessed in this study, that should be studied in the future are the sampling of streams between different sub-habitats in the reach scale and the different geomorphology and physiochemical processes associated with those sample points and their effects on extraction types. In order for eDNA to be considered a viable monitoring tool put into common use, method results must be validated and give insights that would otherwise be missed. Metabarcoding of eDNA from natural aquatic environments shows promise to aid in ecological management programs (Civade et al., 2016), but more research needs to completed to account for eDNA

performance in a variety of chemical, physical, and fluvial conditions to make the use of this tool a reality.

LITERATURE CITED

- Amberg, J. J., Grace McCalla, S., Monroe, E., Lance, R., Baerwaldt, K., & Gaikowski, M. P. (2015). Improving efficiency and reliability of environmental DNA analysis for silver carp. *Journal of Great Lakes Research*, 41(2), 367–373. https://doi.org/10.1016/j.jglr.2015.02.009
- Aronesty, E. (2011). ea-utils : "Command-line tools for processing biological sequencing data."
- Baird, D. J., & Hajibabaei, M. (2012). Biomonitoring 2.0: a new paradigm in ecosystem assessment made possible by next-generation DNA sequencing. *Molecular Ecology*, 21(8), 2039–44. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/22590728
- Bálint, M., Schmidt, P. A., Sharma, R., Thines, M., & Schmitt, I. (2014). An Illumina metabarcoding pipeline for fungi. *Ecology and Evolution*, 4(13), 2642–2653. https://doi.org/10.1002/ece3.1107
- Barnes, M. A., & Turner, C. R. (2015). The ecology of environmental DNA and implications for conservation genetics. *Conservation Genetics*, *17*(1), 1–17. https://doi.org/10.1007/s10592-015-0775-4
- Beja-Pereira, A., Oliveira, R., Alves, P. C., Schwartz, M. K., & Luikart, G. (2009). Advancing ecological understandings through technological transformations in noninvasive genetics. *Molecular Ecology Resources*, 9(5), 1279–1301. https://doi.org/10.1111/j.1755-0998.2009.02699.x
- Bohmann, K., Evans, A., Gilbert, M. T. P., Carvalho, G. R., Creer, S., Knapp, M., & Yu, D.
 W., de Bruyn, M. (2014). Environmental DNA for wildlife biology and biodiversity monitoring. *Trends in Ecology & Evolution*, 29(6), 358–367. https://doi.org/http://dx.doi.org/10.1016/j.tree.2014.04.003
- Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., Fierer, N., Peña, A. G., Goodrich, J. K., Gordon, J. I., Huttley, G. A., Kelley, S. T., Knights, D., Koenig, J. E., Ley, R. E., Lozupone, C. A., McDonald, D., Muegge, B. D., Pirrung, J., Sevinsky, J. R., Turnbaugh, P. J., Walter, W. A., Widmann, J., Yatsunenko, T., Zaneveld J., & Knight, R. (2010). QIIME allows analysis of high-throughput community sequencing data. *Nature Methods*, 7(5), 335–336. https://doi.org/10.1038/nmeth.f.303
- Carew, M. E., Pettigrove, V. J., Metzeling, L., & Hoffmann, A. a. (2013). Environmental monitoring using next generation sequencing: rapid identification of macroinvertebrate bioindicator species. *Frontiers in Zoology*, 10(1), 45. https://doi.org/10.1186/1742-9994-10-45

- Chariton, A. a., Court, L. N., Hartley, D. M., Colloff, M. J., & Hardy, C. M. (2010). Ecological assessment of estuarine sediments by pyrosequencing eukaryotic ribosomal DNA. *Frontiers in Ecology and the Environment*, 8(5), 233–238. https://doi.org/10.1890/090115
- Civade, R., Dejean, T., Valentini, A., Roset, N., Raymond, J. C., Bonin, A., Taberlet, P., & Pont, D. (2016). Spatial Representativeness of Environmental DNA Metabarcoding Signal for Fish Biodiversity Assessment in a Natural Freshwater System. *PLoS ONE*, *11*(6), 1–19. https://doi.org/10.1371/journal.pone.0157366
- Cristescu, M. E. (2014). From barcoding single individuals to metabarcoding biological communities: towards an integrative approach to the study of global biodiversity. *Trends in Ecology & Evolution*, 29(10), 566–71. https://doi.org/10.1016/j.tree.2014.08.001
- Deiner, K., & Altermatt, F. (2014). Transport distance of invertebrate environmental DNA in a natural river. *PloS One*, *9*(2), e88786. https://doi.org/10.1371/journal.pone.0088786
- Deiner, K., Fronhofer, E. A., Mächler, E., & Altermatt, F. (2015a). Environmental DNA reveals that rivers are conveyer belts of biodiversity information. *bioRxiv*, *41*(0), http://dx.doi.org/10.1101/020800. https://doi.org/10.1101/020800
- Deiner, K., Walser, J.-C., Mächler, E., & Altermatt, F. (2015b). Choice of capture and extraction methods affect detection of freshwater biodiversity from environmental DNA. *Biological Conservation*, 183(0), 53–63. https://doi.org/http://dx.doi.org/10.1016/j.biocon.2014.11.018
- Dejean, T., Valentini, A., Duparc, A., Pellier-Cuit, S., Pompanon, F., Taberlet, P., & Miaud, C. (2011). Persistence of environmental DNA in freshwater ecosystems. *PloS ONE*, 6(8), e23398. https://doi.org/10.1371/journal.pone.0023398
- Elbrecht, V., & Leese, F. (2015). Can DNA-based ecosystem assessments quantify species abundance? Testing primer bias and biomass-sequence relationships with an innovative metabarcoding protocol. *PLoS ONE*, *10*(7), 1–16. https://doi.org/10.1371/journal.pone.0130324
- Ficetola, G. F., Miaud, C., Pompanon, F., & Taberlet, P. (2008). Species detection using environmental DNA from water samples. *Biology Letters*, *4*(4), 423–5. https://doi.org/10.1098/rsbl.2008.0118
- Ficetola, G. F., Pansu, J., Bonin, A., Coissac, E., Giguet-Covex, C., De Barba, M., Gielly, L., Lopes, C. M., Boyer, F., Pompanon, F., Rayé, G., & Taberlet, P. (2014). Replication levels, false presences, and the estimation of presence / absence from eDNA metabarcoding data. *Molecular Ecology Resources*, 15(3), n/a-n/a. https://doi.org/10.1111/1755-0998.12338

- Folmer, O., Black, M., Hoeh, W., Lutz, R., & Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. *Molecular Marine Biology and Biotechnology*, 3(5), 294–299. https://doi.org/10.1371/journal.pone.0013102
- Fonseca, V. G., Carvalho, G. R., Sung, W., Johnson, H. F., Power, D. M., Neill, S. P., Packer, M., Blaxter, M. L., Lampshead, J. D., Thomas, K.W., & Creer, S. (2010). Second-generation environmental sequencing unmasks marine metazoan biodiversity. *Nature Communications*, 1(7), 98. https://doi.org/10.1038/ncomms1095
- Franklin, T. W. (2016). Estimates of Eastern Hellbender (Cryptobranchus Aalleganiensis Alleganiensis) Occupancy and Detection Using Two Sampling Methods. Appalachian State University.
- Goldberg, C. S., Pilliod, D. S., Arkle, R. S., & Waits, L. P. (2011). Molecular detection of vertebrates in stream water: a demonstration using Rocky Mountain tailed frogs and Idaho giant salamanders. *PloS One*, 6(7), e22746. https://doi.org/10.1371/journal.pone.0022746
- Hajibabaei, M., Singer, G. A. C., Hebert, P. D. N., & Hickey, D. A. (2007). DNA barcoding: how it complements taxonomy, molecular phylogenetics and population genetics. *TRENDS in Genetics*, 23(4), 167–172. https://doi.org/10.1016/j.tig.2007.02.001
- Hugerth, L. W., Muller, E. E. L., Hu, Y. O. O., Lebrun, L. A. M., Roume, H., Lundin, D., Wilmes, P., & Andersson, A. F. (2014). Systematic design of 18S rRNA gene primers for determining eukaryotic diversity in microbial consortia. *PloS One*, 9(4), e95567. https://doi.org/10.1371/journal.pone.0095567
- Jane, S. F., Wilcox, T. M., Mckelvey, K. S., Young, M. K., Schwartz, M. K., Lowe, W. H., Lectcher, B. H., & Whiteley, A. R. (2014). Distance, flow and PCR inhibition: EDNA dynamics in two headwater streams. *Molecular Ecology Resources*, 15(1), 216–227. https://doi.org/10.1111/1755-0998.12285
- Jerde, C. L., Mahon, A. R., Chadderton, W. L., & Lodge, D. M. (2011). "Sight-unseen" detection of rare aquatic species using environmental DNA. *Conservation Letters*, 4(2), 150–157. https://doi.org/10.1111/j.1755-263X.2010.00158.x
- Kermarrec, L., Franc, A., Rimet, F., Chaumeil, P., Humbert, J., & Bouchez, A. (2014). Molecular Approaches in Freshwater Ecology: A next-generation sequencing approach to river biomonitoring using benthic diatoms. *Freshwater Science*, 33(1), 349–363. https://doi.org/10.1086/675079.

- Klymus, K. E., Richter, C. A., Chapman, D. C., & Paukert, C. (2015). Quantification of eDNA shedding rates from invasive bighead carp Hypophthalmichthys nobilis and silver carp Hypophthalmichthys molitrix. *Biological Conservation*, 183, 77– 84. https://doi.org/10.1016/j.biocon.2014.11.020
- Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K., & Schloss, P. D. (2013). Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the miseq illumina sequencing platform. *Applied and Environmental Microbiology*, 79(17), 5112–5120. https://doi.org/10.1128/AEM.01043-13
- Lodge, D. M., Turner, C. R., Jerde, C. L., Barnes, M. a, Chadderton, L., Egan, S. P., Feder, L., Mahon, A. R., &Pfrender, M. E. (2012). Conservation in a cup of water: estimating biodiversity and population abundance from environmental DNA. *Molecular Ecology*, 21(11), 2555–8. https://doi.org/10.1111/j.1365-294X.2012.05600.x
- Mächler, E., Deiner, K., Steinmann, P., & Altermatt, F. (2014). Utility of environmental DNA for monitoring rare and indicator macroinvertebrate species. *Freshwater Science*, 33(April), 1174–1183. https://doi.org/10.1086/678128.
- Miya, M., Sato, Y., Fukunaga, T., Sado, T., Poulsen, J. Y., Sato, K., Minamoto, T.,
 Yamamoto, S., Yamanaka, H., Araki, H., Kondoh, M., & Iwasaki, W. (2015).
 MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species. *Royal Society Open Science*, 2(7), 150088. https://doi.org/10.1098/rsos.150088
- Nielsen, K. M., Johnsen, P. J., Bensasson, D., & Daffonchio, D. (2007). Release and persistence of extracellular DNA in the environment. *Environmental Biosafety Research*, 6(1–2), 37–53. https://doi.org/10.1051/ebr:2007031
- Oksanen, A. J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., Mcglinn, D., Minchin, P. R., O'Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. M., Szoecs, E., & Wagner, H. (2016). vegan: Community Ecology Package.
- Pilliod, D. S., Goldberg, C. S., Arkle, R. S., Waits, L. P., & Richardson, J. (2013). Estimating occupancy and abundance of stream amphibians using environmental DNA from filtered water samples. *Canadian Journal of Fisheries* and Aquatic Sciences, 70(8), 1123–1130. https://doi.org/10.1139/cjfas-2013-0047
- R Core Team. (2016). R: A language and environment for statistical computing. *Vienna, Austria: R Foundation for Statistical Computing*. Vienna, Austria: R Foundation for Statistical Computing.

- Rees, H. C., Maddison, B. C., Middleditch, D. J., Patmore, J. R. M., & Gough, K. C. (2014). The detection of aquatic animal species using environmental DNA – a review of eDNA as a survey tool in ecology, 1450–1459. https://doi.org/10.1111/1365-2664.12306
- Roussel, J., Paillisson, J., Treguir, A., & Petit, E. (2015). The downside of eDNA as a survey tool in water bodies. *Journal of Applied Ecology*, *52*, 823–826. https://doi.org/10.1111/1365-2664.12428
- Saghai-Maroof, M. a, Soliman, K. M., Jorgensen, R. a, & Allard, R. W. (1984). Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. *Proceedings of the National Academy of Sciences of the United States of America*, 81(24), 8014– 8018. https://doi.org/10.1073/pnas.81.24.8014
- Smith, D. P., & Peay, K. G. (2014). Sequence depth, not PCR replication, improves ecological inference from next generation DNA sequencing. *PloS One*, 9(2), e90234. https://doi.org/10.1371/journal.pone.0090234
- Souza, L. S. De, Godwin, J. C., Renshaw, M. A., & Larson, E. (2016). Environmental DNA (eDNA) Detection Probability Is Influenced by Seasonal Activity of Organisms, 1–15. https://doi.org/10.1371/journal.pone.0165273
- Taberlet, P., Prud'Homme, S. M., Campione, E., Roy, J., Miquel, C., Shehzad, W., Gielly, L., Rioux, D., Choler, P., Clement, J.-C., Melodelima, C., Pompanon, F., &Coissac, E. (2012). Soil sampling and isolation of extracellular DNA from large amount of starting material suitable for metabarcoding studies. *Molecular Ecology*, 21(8), 1816–20. https://doi.org/10.1111/j.1365-294X.2011.05317.x
- Thomsen, P. F., Kielgast, J., Iversen, L. L., Møller, P. R., Rasmussen, M., & Willerslev, E. (2012). Detection of a diverse marine fish fauna using environmental DNA from seawater samples. *PloS One*, 7(8), e41732. https://doi.org/10.1371/journal.pone.0041732
- Thomsen, P. F., Kielgast, J., Iversen, L. L., Wiuf, C., Rasmussen, M., Gilbert, M. T. P., Orlando, L., & Willerslev, E. (2012). Monitoring endangered freshwater biodiversity using environmental DNA. *Molecular Ecology*, *21*(11), 2565–73. https://doi.org/10.1111/j.1365-294X.2011.05418.x
- Thomsen, P. F., Kielgast, J. O. S., Iversen, L. L., & Wiuf, C. (2011). Monitoring endangered freshwater biodiversity using environmental DNA. https://doi.org/10.1111/j.1365-294X.2011.05418.x

Thorp, J. H., & Covich, A. P. (2010). *Ecology and Classification of North American Freshwater Invertebrates* (Third). Amsterdam: Academic Press.

- Turner, C. R., Uy, K. L., & Everhart, R. C. (2015). Fish environmental DNA is more concentrated in aquatic sediments than surface water. *Biological Conservation*, 183, 93–102. https://doi.org/10.1016/j.biocon.2014.11.017
- Valentini, A., Taberlet, P., Miaud, C., Civade, R., Herder, J., Thomsen, P. F., Bellemain, E., Besnard, A., Coissac, E., Boyer, F., Gaboriaud, C., Jean, P., Poulet, N., Roset, N., Copp, G. H., Geniez, P., Pont, D., Argillier, C., Baudoin, J.-M., Peroux, T., Crivelli, A. J., Olivier, A., Acqueberge, M., Le Brun, M., Møller, P. R., & Willerslev, E. Dejean, T. (2016). Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. *Molecular Ecology*, *25*(4), 929–942. https://doi.org/10.1111/mec.13428
- Willerslev, E., Cappellini, E., Boomsma, W., Nielsen, R., Martin, B., Brand, T. B., Hofreiter , M., Bunce, M., Poinar, H. N., Dahl-Jensen, D., Johnsen, S., Steffensen J. P., Bennike, O., Schwenninger, J.-L., Nathan, R., Armitage, S., de Hoog, C.-J., Alfimov, V., Christl, M., Beer, J., Muscheler, R., Barker, J., Sharp, M., Penkman, K. E. H., Haile, J., Taberlet, P., Gilbert, M. T. P., Casoli, A., Campani, E., & Collins, M. J. (2007). UKPMC Funders Group Ancient Biomolecules from Deep Ice Cores Reveal a Forested Southern Greenland. *Science*, *317*(5834), 111–114. https://doi.org/10.1126/science.1141758.Ancient
- Wu, S., Xiong, J., & Yu, Y. (2015). Taxonomic Resolutions Based on 18S rRNA Genes: A Case Study of Subclass Copepoda. *Plos One*, *10*(6), e0131498. https://doi.org/10.1371/journal.pone.0131498
- Yu, D. W., Ji, Y., Emerson, B. C., Wang, X., Ye, C., Yang, C., & Ding, Z. (2012). Biodiversity soup: metabarcoding of arthropods for rapid biodiversity assessment and biomonitoring. *Methods in Ecology and Evolution*, 3(4), 613– 623. https://doi.org/10.1111/j.2041-210X.2012.00198.x
- Zhan, A., Bailey, S. a., Heath, D. D., & Macisaac, H. J. (2014). Performance comparison of genetic markers for high-throughput sequencing-based biodiversity assessment in complex communities. *Molecular Ecology Resources*, 14(5), 1049– 1059. https://doi.org/10.1111/1755-0998.12254
- Zimmermann, J., Glöckner, G., Jahn, R., Enke, N., & Gemeinholzer, B. (2014). Metabarcoding vs. morphological identification to assess diatom diversity in environmental studies. *Molecular Ecology Resources*, 15(3), 526–542. https://doi.org/10.1111/1755-0998.12336

APPENDICES

APPENDIX A:

Tables

Table 1. Successful DNA capture and extraction methods confirmed by polymerase chain reaction (PCR) gel electrophoresis.

				DNA precipita	ation from	water	DNA on g	lass fiber	filter
Forward Primer	Reverse Primer	Reference	Locus	<u>MoBio</u> PowerWater	Qiagen Dneasy	CTAB	<u>MoBio</u> PowerWater	Qiagen Dneasy	CTAB
LCO1490	HCO2198	Folmer et al. 1994	COI	19	-		(*)	+	+
563f	1132r	Hugerth etl al. 2014	18s		÷		100	+*	+*
574f*	1132r	Hugerth etl al. 2014	18s		۵		121	7.5	

Note(s): (+) indicates at least one successful reaction and (-) indicates a complete

absence of positive reactions

*Sequences not bioinformatically analyzed due to low quality

Table 2. Gel confirmation of polymerase chain reactions (PCR) with primers LCO1490 and HCO2198 and 563f and 1132r successes of DNA extracted from glass fiber filters using Qiagen DNeasy or CTAB.

DNA extraction Type		CTAB		S	Diagen Dneas	<u>y</u>
Extraction Replicate	CTAB 1	CTAB 2	CTAB 3	DNeasy 1	DNeasy 2	DNeasy 3
Number of						
Successful Reactions	8	8	8	8	2	7
COI (n=8)						
Number of						
Successful 18s	8	8	8	8	8	8
Reactions (n=8)						

Table 3. Number of sequences left after each bioinformatic step and number of OTUs found in Qiagen Dneasy and CTAB extractions.

DNA extraction Type		CTAB		S)iagen Dneas	Y
Extraction Replicate	CTAB 1	CTAB 2	CTAB 3	DNeasy 1	DNeasy 2	DNeasy 3
Pre-PCR DNA concentration	21.9	19.7	17.4	2.77	6.77	2.73
(ng/µl) <u>Nanodrop</u> (±SD)	(±3.86)	(±0.306)	(±0.551)	(±1.68)	(±5.30)	(±1.93)
Pre-PCR 260/280 (nm) wavelength ratio <u>Nanodrop</u>	1.30	1.17	1.24	3.77	1.26	3.41
Post-PCR DNA concentration (ng/µl) Qubit	6.6	3.3	14.2	10.3	8.3	5.3
Mean Raw Read Sequence	441.59	441.77	448.67	444.38	446.54	438.6
Length (±SD)	(±77.84)	(±77.74)	(±74.00)	(±75.82)	(±76.03)	(±79.81)
Raw reads	1044409	1052501	1027892	780586	2282526	1062014
Joined Paired End Reads	1037885	1046887	1020970	775772	2264984	1053971
Split Libraries FASTQ filtering	929851	557470	1004725	695309	2073958	986111
Reads assigned to MOTUs	2461	1801	4803	3922	12612	4582
Taxa Richness after MOTU						
taxa assignment	6	10	23	15	21	9

Table 4. Genus level taxonomic assignments made from each filter sample replicate with corresponding DNA extraction technique.

Genus	CTAB_1	CTAB_2	CTAB_3	Dneasy_1	Dneasy_2	Dneasy_3
Cheumatopsyche		+			+	
Dytiscidae		+	+		+	
Thienemanniella	+		+	+	+	+
Thienemannimyia			+	+	+	
Trissopelopia			+			
Zavrelimyia		+	+		+	
Tanypodinae			+			
Prosimulium					+	
Simulium				+	+	
Oulimnius					+	
Stenelmis				+	+	
Pseudolimnophila			+		+	
Habrophlebia	+		+	+	+	
Leptophlebia			+			
Paraleptophlebia			+			
Pycnopsyche	+		+		+	
Microtendipes			+			
Polypedilum	+	+	+	+	+	+
Tanytarsus			+	+	+	+
Leuctridae		+	+	+	+	+
Cinygmula			+	+	+	+
Epeorus		+	+	+	+	+
Maccaffertium		+	+		+	+
Stenacron			+	+	+	
Heptageniidae			+			+
Physa		+	+	+		+
Amphinemura	+	+	+	+	+	
Alloperla		+		+	+	
Cambarus	+		+	+		

Note(s): (+) - indicates operational taxonimic unit assigned to genus reference sequence to 97% similarity

	CTAB 1	CTAB 2	CTAB 3	DNeasy 1	DNeasy 2
CTAB 2	0.86				
CTAB 3	0.74	0.68			
DNeasy 1	0.69	0.68	0.54		
DNeasy 2	0.77	0.59	0.48	0.43	
DNeasy 3	0.85	0.64	0.61	0.59	0.70

Table 5. Jaccard dissimilarity index between DNA extraction replicates.

APPENDIX B:

Figures

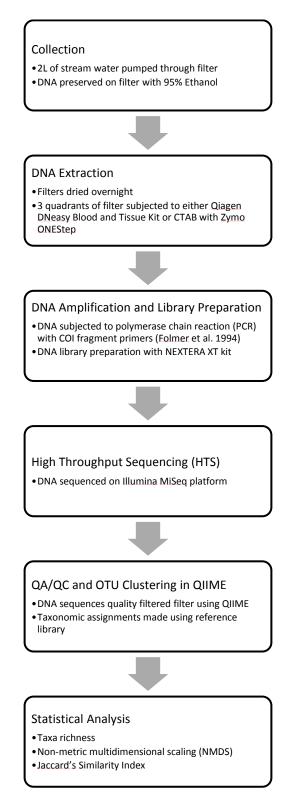


Figure 1. Workflow of processing environmental DNA samples from collection, extraction, amplification, and sequencing for targeting COI gene region.

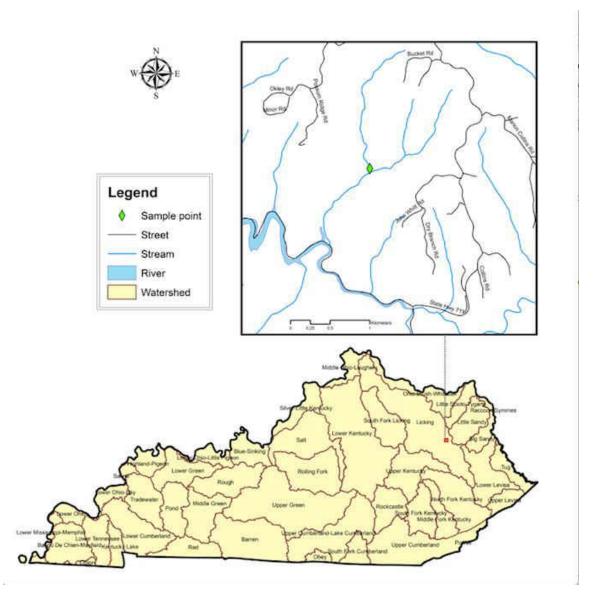


Figure 2. Location Kentucky Division of Water reference site in the watershed of the headwater stream Bucket Branch (38.05474N, longitude -83.31615W), located within the 8-HUC Licking River watershed.

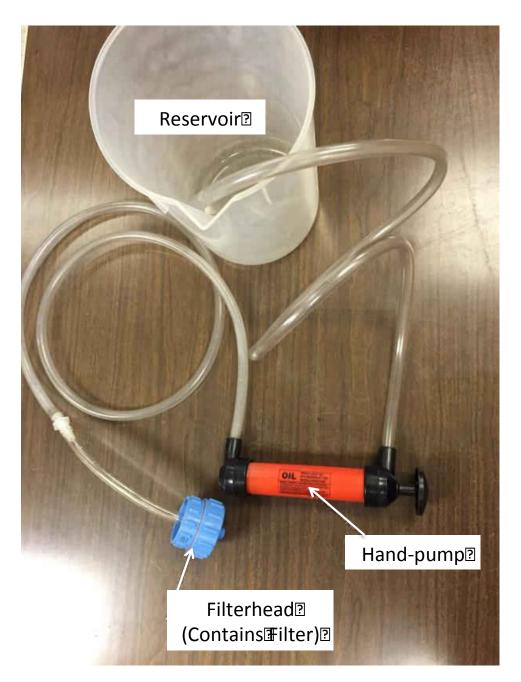
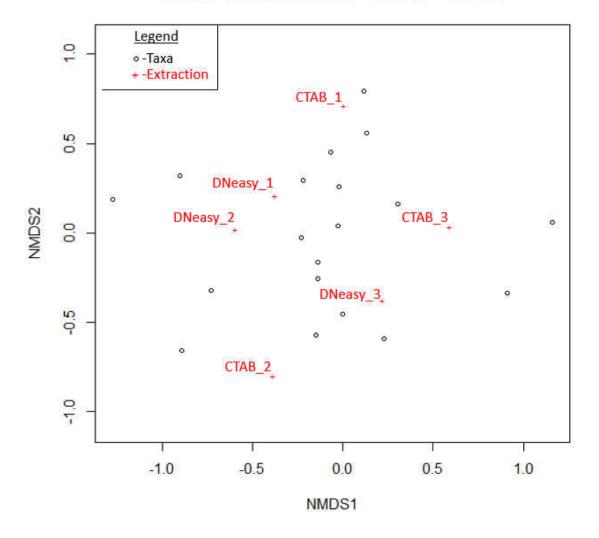



Figure 3. Pumping apparatus for filter capture of eDNA. Stream water is drawn through filterhead by pumping the hand-pump, which is measured in the reservoir at the end of the polyethylene tubing connecting the filterhead, hand-pump, and the reservoir.

NMDS Jaccard Method - Stress = 0.1199

Figure 4. Non-metric multidimensional scaling (NMDS) using Jaccard method for presence data of taxonomic assignments made from Illumina MiSeq data made to 97% similarity to reference sequences derived from CTAB and DNeasy extractions captured by filtration of stream water at Bucket Branch, KY.

APPENDIX C:

Supplementary Material

Supplementary Material A. List of aquatic invertebrate species collected in 2014 and identified by Kentucky Division of Water (KDOW) biologists from Bucket Branch, KY.

-	
#	Species Identified
1	Acentrella turbida
2	Acroneuria abnormis
3	Acroneuria carolinensis
4	<i>Agapetus</i> sp.
5	Alloperla sp.
6	Ameletus sp.
7	Amphinemura sp.
8	Antocha sp.
9	<i>Baetis</i> sp.
10	<i>Bezzia/Palpomyia</i> gp
11	Calopteryx maculata
12	Cambarus bartonii cavatus
13	Cambarus sp.
14	Cheumatopsyche sp.
15	Chimarra aterrima
16	Cinygmula subaequalis
17	Clinocera sp.
18	Cordulegaster erronea
19	Diamesa sp.
20	Diphetor hageni
21	Diplectrona modesta
22	<i>Dixa</i> sp.
23	<i>Ectopria</i> sp.
24	<i>Epeorus</i> sp.
25	Ephemera blanda
26	Ephemerella hispida
27	Ephemerella sp.
28	Eukiefferiella claripennis gp
29	Eurylophella funeralis
30	Glossosoma nigrior
31	Habrophlebia sp.
32	Haploperla brevis
33	Helichus basalis
34	Helochares sp.
35	<i>Hexatoma</i> sp.
36	Hydrobius melaenus
37	Ironoquia sp.
38	<i>Isoperla</i> sp.
39	Lanthus sp.

- 40 Leptophlebia sp.
- 41 *Leucrocuta* sp.
- 42 *Maccaffertium* sp.
- 43 *Maccaffertium vicarium*
- 44 *Microtendipes* sp.
- 45 Natarsia baltimorea
- 46 Neophylax aniqua
- 47 Neophylax sp.
- 48 *Neoporus* sp.
- 49 Nigronia serricornis
- 50 Nyctiophylax moestus
- 51 Orconectes cristavarius
- 52 Oulimnius latiusculus
- 53 *Paraleptophlebia* sp.
- 54 *Phylocentropus* sp.
- 55 *Physa* sp.
- 56 *Polycentropus* sp.
- 57 *Polypedilum aviceps*
- 58 *Polypedilum illinoense*
- 59 *Polypedilum* sp.
- 60 *Prosimulium* sp.
- 61 Psephenus herricki
- 62 *Pseudolimnophila* sp.
- 63 *Psilotreta* sp.
- 64 *Pycnopsyche* sp.
- 65 *Rheotanytarsus exiguus* gp
- 66 *Simulium* sp.
- 67 *Somatochlora* sp.
- 68 *Stempellinella* sp.
- 69 *Stenacron interpunctatum*
- 70 Stenacron minnetonka
- 71 Stenacron pallidum
- 72 Stenelmis crenata
- 73 Stenelmis sp.
- 74 Stenonema femoratum
- 75 *Stictochironomus* sp.
- 76 Stylogomphus sigmastylus
- 77 Sweltsa sp.
- 78 *Tanytarsus* sp.
- 79 *Thienemanniella* sp.
- 80 *Thienemannimyia* gp
- 81 | Trissopelopia ogemawi
- 82 Unid. Chloroperlid sp.
- 83 Unid. Glossosomatidae sp.
- 84 Unid. Heptageniid sp.

- 85 Unid. Hydracarina (mite) sp.
 86 Unid. Leptophlebiid sp.
 87 Unid. Leuctrid sp.
 88 Unid. Lumbriculid sp.
 89 Unid. Numbriculid sp.
- 89 Unid. Naidid sp.
- 90 Unid. Orthoclad sp.
- 91 Unid. Perlodid sp.
- 92 Unid. Polycentropodid sp.
- 93 Unid. Tanypodinae sp.
- 94 Unid. Tanytarsini sp.
- 95 Zavrelimyia sp.

	GenBank accession	
#	number	Taxonomic Classification
1	AY165634.1	Stenonema femoratum
2	AY165680.1	Psephenus herricki
3	AY326800.1	Diphetor hageni
4	AY326850.1	Stenacron interpunctatum
5	AY326854.1	Maccaffertium vicarium
6	AY326855.1	Stenonema femoratum
7	AY326869.1	Stenacron interpunctatum
8	AY326870.1	Stenacron interpunctatum
9	AY326872.1	Stenacron interpunctatum
10	AY326874.1	Stenacron interpunctatum
11	AY326876.1	Stenacron interpunctatum
12	AY326889.1	Stenonema femoratum
13	AY326891.1	Stenonema femoratum
14	AY326942.1	Stenacron interpunctatum
15	DQ393853.1	<i>Tanytarsus</i> sp.
16	DQ393864.1	Cladotanytarsus sp.
17	DQ393871.1	<i>Tanytarsus</i> sp.
18	DQ393876.1	<i>Tanytarsus</i> sp.
19	DQ393877.1	Cladotanytarsus sp.
20	DQ393878.1	<i>Tanytarsus</i> sp.
21	DQ411780.1	<i>Cambarus</i> sp.
22	DQ411781.1	<i>Cambarus</i> sp.
23	DQ411782.1	<i>Cambarus</i> sp.
24	EU038373.1	Physa gyrina
25	EU038374.1	Physa gyrina
26	EU038398.1	Physa gyrina
27	FJ373016.1	Physa acuta
28	FJ819855.1	Helochares sp.
29	FJ819856.1	Helochares sp.
30	FJ819857.1	Helochares sp.
31	FJ819858.1	Helochares sp.
32	FJ819859.1	Helochares sp.
33	FJ819918.1	Helochares sp.
34	FJ819919.1	Helochares sp.
35	FJ819920.1	Helochares sp.
36	GQ329628.1	Kalyptogaster erronea
37	GQ415038.1	Physa acuta
38	GQ415040.1	<i>Physa</i> sp.
39	GQ415041.1	Physa sp.

Supplementary Material B. Reference library used for bioinformatic analysis arranged by accession numbers in alphabetical and numerical order

4.0		DI I
40	GQ415042.1	<i>Physa</i> sp.
41	GQ415043.1	<i>Physa</i> sp.
42	GU066813.1	Lumbriculidae sp.
43	GU115794.1	<i>Isoperla</i> sp.
44	GU115795.1	<i>Isoperla</i> sp.
45	GU115797.1	<i>Isoperla</i> sp.
46	GU115799.1	<i>Isoperla</i> sp.
47	GU247995.1	Physa acuta
48	GU247996.1	Physa acuta
49	GU667740.1	<i>Agapetus</i> sp.
50	GU667742.1	<i>Agapetus</i> sp.
51	GU667745.1	<i>Agapetus</i> sp.
52	GU682377.1	Heptageniidae sp.
53	GU711736.1	<i>Neophylax</i> sp.
54	GU711791.1	<i>Neophylax</i> sp.
55	GU711792.1	<i>Neophylax</i> sp.
56	GU711793.1	Neophylax sp.
57	GU711814.1	<i>Neophylax</i> sp.
58	GU711817.1	<i>Neophylax</i> sp.
59	HE651537.1	Baetis sp.
60	HE651539.1	Baetis sp.
61	HE651540.1	Baetis sp.
62	HE651541.1	Baetis sp.
63	HM102054.1	Phylocentropus carolinus
64	HM102105.1	Psilotreta sp.
65	HM102106.1	Psilotreta sp.
66	HM102110.1	<i>Psilotreta</i> sp.
67	HM102701.1	Diplectrona modesta
68	HM102702.1	Diplectrona modesta
69	HM102963.1	Neophylax aniqua
70	HM103095.1	Phylocentropus carolinus
71	HM103101.1	Phylocentropus lucidus
72	HM900435.1	Eurylophella funeralis
73	HQ105379.1	Trissopelopia longimana
74	HQ105383.1	Zavrelimyia sp.
75	HQ105384.1	Zavrelimyia sp.
76	HQ150602.1	Ameletus sp.
77	HQ150603.1	Ameletus sp.
78	HQ150604.1	Ameletus sp.
79	HQ150783.1	Leucrocuta sp.
80	HQ151285.1	Ameletus sp.
81	HQ151286.1	Ameletus sp.
82	HQ151230.1 HQ151438.1	Ironoquia sp.
83	HQ151486.1	Maccaffertium vicarium
84	HQ151559.1	Diphetor hageni
04	11(131339.1	45
		тJ

85	110151504.1	Encorrigon
86	HQ151584.1	Epeorus sp.
80 87	HQ151668.1	Eurylophella funeralis
	HQ151670.1	Eurylophella funeralis
88	HQ151671.1	Eurylophella funeralis
89	HQ151672.1	Eurylophella funeralis
90	HQ151673.1	Eurylophella funeralis
91	HQ151810.1	Acroneuria carolinensis
92	HQ151811.1	Acroneuria carolinensis
93	HQ151820.1	Ameletus sp.
94	HQ151821.1	Ameletus sp.
95	HQ151822.1	Ameletus sp.
96	HQ151899.1	<i>Ephemerella</i> sp.
97	HQ151901.1	<i>Ephemerella</i> sp.
98	HQ151902.1	<i>Ephemerella</i> sp.
99	HQ151903.1	<i>Ephemerella</i> sp.
100	HQ151904.1	<i>Ephemerella</i> sp.
101	HQ151905.1	<i>Ephemerella</i> sp.
102	HQ151906.1	<i>Ephemerella</i> sp.
103	HQ151907.1	<i>Ephemerella</i> sp.
104	HQ151908.1	<i>Ephemerella</i> sp.
105	HQ151909.1	<i>Ephemerella</i> sp.
106	HQ152066.1	Perlodidae sp.
107	HQ152155.1	Diphetor hageni
108	HQ152356.1	Cinygmula subaequalis
109	HQ152357.1	Cinygmula subaequalis
110	HQ152358.1	Cinygmula subaequalis
111	HQ152359.1	Cinygmula subaequalis
112	HQ152360.1	Diphetor hageni
113	HQ152361.1	Diphetor hageni
114	HQ152362.1	Diphetor hageni
115	HQ152510.1	Acroneuria carolinensis
116	HQ152522.1	Cinygmula subaequalis
117	HQ152524.1	Diphetor hageni
118	HQ152575.1	<i>Ephemerella</i> sp.
119	HQ152697.1	Perlodidae sp.
120	HQ152698.1	Perlodidae sp.
121	HQ152699.1	Perlodidae sp.
122	HQ152700.1	Perlodidae sp.
123	HQ152701.1	Perlodidae sp.
124	HQ152702.1	Perlodidae sp.
125	HQ152702.1 HQ152703.1	Perlodidae sp.
125	HQ152704.1	Perlodidae sp.
120	HQ152705.1	Perlodidae sp.
127	HQ152706.1	Perlodidae sp.
120	HQ152708.1 HQ152728.1	Diphetor hageni
149	11(132/20.1	46
		10

130	HQ152729.1	Diphetor hageni
131	HQ152730.1	Diphetor hageni
132	HQ152741.1	Eurylophella funeralis
133	HQ261162.1	Stenacron sp.
134	HQ261163.1	Stenacron sp.
135	HQ261164.1	Stenacron sp.
136	HQ571191.1	<i>Leucrocuta</i> sp.
137	HQ571211.1	Ephemera blanda
138	HQ571212.1	Ephemera blanda
139	HQ571213.1	Ephemera blanda
140	HQ571214.1	Ephemera blanda
141	HQ571215.1	Ephemera blanda
142	HQ571216.1	Ephemera blanda
143	HQ660033.1	Physa gyrina
144	HQ939489.1	Diphetor hageni
145	HQ943407.1	Maccaffertium vicarium
146	HQ943408.1	Eurylophella funeralis
147	HQ943441.1	Maccaffertium vicarium
148	HQ943471.1	Stenacron interpunctatum
149	HQ943495.1	Stenacron interpunctatum
150	HQ943502.1	Stenacron interpunctatum
151	HQ979249.1	Dytiscidae sp.
152	JF286647.1	Antocha sp.
153	JF286648.1	Antocha sp.
154	JF286649.1	Antocha sp.
155	JF286650.1	Antocha sp.
156	JF286651.1	Antocha sp.
157	JF286652.1	Antocha sp.
158	JF286654.1	Antocha sp.
159	JF286655.1	Antocha sp.
160	JF286960.1	<i>Ephemerella</i> sp.
161	JF286961.1	<i>Ephemerella</i> sp.
162	JF286964.1	<i>Ephemerella</i> sp.
163	JF287254.1	Heptageniidae sp.
164	JF287373.1	Leuctridae sp.
165	JF287375.1	Leuctridae sp.
166	JF287376.1	Leuctridae sp.
167	JF287643.1	Oulimnius latiusculus
168	JF287644.1	Oulimnius latiusculus
169	JF287647.1	Oulimnius latiusculus
170	JF287649.1	Oulimnius latiusculus
171	JF287650.1	Oulimnius latiusculus
172	JF287774.1	Prosimulium sp.
173	JF287775.1	Prosimulium sp.
174	JF287851.1	Psephenus herricki
		47

175 JF287852.1 Psephenus herricki 176 JF287853.1 Psephenus herricki 177 JF288032.1 Stenelmis crenata 178 JF288033.1 Stenelmis crenata 179 JF288034.1 Stenelmis crenata 180 JN197443.1 Amphinemura sp. 181 JN197445.1 Amphinemura sp. 182 JN197446.1 Amphinemura sp. 183 JN197446.1 Amphinemura sp. 184 JN197445.1 Amphinemura sp. 185 JN197445.1 Amphinemura sp. 186 JN19749.1 Epeorus sp. 187 JN19749.1 Epeorus sp. 188 JN197497.1 Epeorus sp. 190 JN197496.1 Epeorus sp. 191 JN197491.1 Epeorus sp. 192 JN197502.1 Epeorus sp. 193 JN197501.1 Epeorus sp. 194 JN197502.1 Epeorus sp. 195 JN19759.1 Pycnopsyche sp. 196 JN197	175	15207052 1	Deere hanne harrishi
177 JF288032.1 Stenelmis crenata 178 JF288033.1 Stenelmis crenata 179 JF288034.1 Stenelmis crenata 180 JN197443.1 Amphinemura sp. 181 JN197445.1 Amphinemura sp. 182 JN197445.1 Amphinemura sp. 183 JN197445.1 Amphinemura sp. 184 JN197445.1 Amphinemura sp. 185 JN197445.1 Amphinemura sp. 186 JN197447.1 Amphinemura sp. 187 JN197491.1 Epeorus sp. 188 JN197496.1 Epeorus sp. 190 JN197497.1 Epeorus sp. 191 JN197497.1 Epeorus sp. 192 JN197500.1 Epeorus sp. 193 JN197501.1 Epeorus sp. 194 JN197502.1 Epeorus sp. 195 JN197549.1 Leurcocuta sp. 196 JN197554.1 Neophylax sp. 197 JN198320.1 Ironoquia sp. 200 JN198320.			-
178JF288033.1Stenelmis crenata179JF288034.1Stenelmis crenata180JN197443.1Amphinemura sp.181JN197445.1Amphinemura sp.182JN197445.1Amphinemura sp.183JN197446.1Amphinemura sp.184JN197447.1Amphinemura sp.185JN197448.1Amphinemura sp.186JN197490.1Epeorus sp.187JN197496.1Epeorus sp.188JN197496.1Epeorus sp.190JN197497.1Epeorus sp.191JN197497.1Epeorus sp.192JN197500.1Epeorus sp.193JN197501.1Epeorus sp.194JN197501.1Epeorus sp.195JN197549.1Leucrocuta sp.196JN197554.1Neophylax sp.197JN197560.1Pycnopsyche sp.198JN197560.1Pycnopsyche sp.199JN197549.1Leucrocuta sp.197JN197549.1Leucrocuta sp.198JN197560.1Pycnopsyche sp.199JN198318.1Ironoquia sp.200JN198320.1Ironoquia sp.201JN198320.1Ironoquia sp.202JN198371.1Pycnopsyche sp.203JN198372.1Pycnopsyche sp.204JN198373.1Pycnopsyche sp.205JN198374.1Pycnopsyche sp.206JN198374.1Pycnopsyche sp.210JN198374.1Pycnopsyche sp.211JN200280		,	-
179 JF288034.1 Stenelmis crenata 180 JN197443.1 Amphinemura sp. 181 JN197445.1 Amphinemura sp. 182 JN197445.1 Amphinemura sp. 183 JN197446.1 Amphinemura sp. 184 JN197446.1 Amphinemura sp. 185 JN197448.1 Amphinemura sp. 186 JN197449.1 Amphinemura sp. 187 JN197496.1 Epeorus sp. 188 JN197496.1 Epeorus sp. 190 JN197497.1 Epeorus sp. 191 JN19750.1 Epeorus sp. 192 JN19750.1 Epeorus sp. 193 JN19750.1 Epeorus sp. 194 JN19750.1 Epeorus sp. 195 JN19750.1 Epeorus sp. 196 JN197549.1 Leucrocuta sp. 197 JN197559.1 Pycnopsyche sp. 198 JN197560.1 Pycnopsyche sp. 199 JN198320.1 Ironoquia sp. 200 JN198321.1			
180 JN197443.1 Amphinemura sp. 181 JN197444.1 Amphinemura sp. 182 JN197445.1 Amphinemura sp. 183 JN197446.1 Amphinemura sp. 184 JN197446.1 Amphinemura sp. 185 JN197448.1 Amphinemura sp. 186 JN197449.1 Amphinemura sp. 187 JN197496.1 Epeorus sp. 188 JN197496.1 Epeorus sp. 189 JN197496.1 Epeorus sp. 190 JN197498.1 Epeorus sp. 191 JN197499.1 Epeorus sp. 192 JN197500.1 Epeorus sp. 193 JN197501.1 Epeorus sp. 194 JN197502.1 Epeorus sp. 195 JN197554.1 Neophylax sp. 196 JN197556.1 Pycnopsyche sp. 197 JN198316.1 Ironoquia sp. 200 JN198316.1 Ironoquia sp. 201 JN198320.1 Ironoquia sp. 202 JN198370.1			
181 JN197444.1 Amphinemura sp. 182 JN197445.1 Amphinemura sp. 183 JN197446.1 Amphinemura sp. 184 JN197446.1 Amphinemura sp. 185 JN197448.1 Amphinemura sp. 186 JN197449.1 Amphinemura sp. 187 JN197450.1 Amphinemura sp. 188 JN197496.1 Epeorus sp. 189 JN197496.1 Epeorus sp. 190 JN197498.1 Epeorus sp. 191 JN197498.1 Epeorus sp. 192 JN197500.1 Epeorus sp. 193 JN197501.1 Epeorus sp. 194 JN197502.1 Epeorus sp. 195 JN19759.1 Pycnopsyche sp. 196 JN197550.1 Pycnopsyche sp. 197 JN197550.1 Pycnopsyche sp. 198 JN19750.1 Epeorus sp. 199 JN197550.1 Pycnopsyche sp. 199 JN198316.1 Ironoquia sp. 100 JN198370.1 Pycnopsyche sp. 201 JN198370.1 Pycnopsyche	-		
182 JN197445.1 Amphinemura sp. 183 JN197446.1 Amphinemura sp. 184 JN197447.1 Amphinemura sp. 185 JN197448.1 Amphinemura sp. 186 JN197449.1 Amphinemura sp. 187 JN197450.1 Amphinemura sp. 188 JN197496.1 Epeorus sp. 190 JN197497.1 Epeorus sp. 191 JN197497.1 Epeorus sp. 192 JN197497.1 Epeorus sp. 193 JN197500.1 Epeorus sp. 194 JN197502.1 Epeorus sp. 195 JN197549.1 Leucrocuta sp. 196 JN197559.1 Pycnopsyche sp. 197 JN197559.1 Pycnopsyche sp. 198 JN197560.1 Pycnopsyche sp. 199 JN198316.1 Ironoquia sp. 190 JN198320.1 Ironoquia sp. 201 JN198320.1 Ironoquia sp. 203 JN198370.1 Pycnopsyche sp. 204 JN198370.1 Pycnopsyche sp. 205 JN198371.1 Pycnop			
183 JN197446.1 Amphinemura sp. 184 JN197447.1 Amphinemura sp. 185 JN197448.1 Amphinemura sp. 186 JN197449.1 Amphinemura sp. 187 JN197450.1 Amphinemura sp. 188 JN197496.1 Epeorus sp. 189 JN197496.1 Epeorus sp. 190 JN197498.1 Epeorus sp. 191 JN197498.1 Epeorus sp. 192 JN197498.1 Epeorus sp. 193 JN197500.1 Epeorus sp. 194 JN197502.1 Epeorus sp. 195 JN197549.1 Leucrocuta sp. 196 JN197559.1 Pycnopsyche sp. 197 JN197500.1 Pycnopsyche sp. 198 JN197560.1 Pycnopsyche sp. 199 JN198316.1 Ironoquia sp. 200 JN198318.1 Ironoquia sp. 201 JN198320.1 Ironoquia sp. 202 JN198320.1 Ironoquia sp. 203 JN198370.1 Pycnopsyche sp. 204 JN198370.1 Pycnopsyche			
184 JN197447.1 Amphinemura sp. 185 JN197448.1 Amphinemura sp. 186 JN197449.1 Amphinemura sp. 186 JN197490.1 Epeorus sp. 187 JN197490.1 Epeorus sp. 188 JN197497.1 Epeorus sp. 190 JN197498.1 Epeorus sp. 191 JN197490.1 Epeorus sp. 192 JN197500.1 Epeorus sp. 193 JN197501.1 Epeorus sp. 194 JN197502.1 Epeorus sp. 195 JN197549.1 Leucrocuta sp. 196 JN197550.1 Pycnopsyche sp. 197 JN197550.1 Pycnopsyche sp. 198 JN197560.1 Pycnopsyche sp. 199 JN198316.1 Ironoquia sp. 190 JN198320.1 Ironoquia sp. 201 JN198320.1 Ironoquia sp. 203 JN198320.1 Ironoquia sp. 204 JN198370.1 Pycnopsyche sp. 205 JN198371.1 Pycnopsyche sp. 206 JN198373.1 Pycnopsyche sp.<			
185 JN197448.1 Amphinemura sp. 186 JN197449.1 Amphinemura sp. 187 JN197450.1 Amphinemura sp. 188 JN197496.1 Epeorus sp. 189 JN197497.1 Epeorus sp. 190 JN197497.1 Epeorus sp. 191 JN197497.1 Epeorus sp. 192 JN197500.1 Epeorus sp. 193 JN197501.1 Epeorus sp. 194 JN197502.1 Epeorus sp. 195 JN197549.1 Leucrocuta sp. 196 JN197554.1 Neophylax sp. 197 JN197560.1 Pycnopsyche sp. 198 JN197560.1 Pycnopsyche sp. 199 JN198316.1 Ironoquia sp. 200 JN198320.1 Ironoquia sp. 201 JN198320.1 Ironoquia sp. 202 JN198320.1 Ironoquia sp. 203 JN198320.1 Ironoquia sp. 204 JN198370.1 Pycnopsyche sp. 205 JN198371.1 Pycnopsyche sp. 206 JN198373.1 Pycnopsyche sp.<			
186 JN197449.1 Amphinemura sp. 187 JN197450.1 Amphinemura sp. 188 JN197496.1 Epeorus sp. 189 JN197497.1 Epeorus sp. 190 JN197498.1 Epeorus sp. 191 JN197499.1 Epeorus sp. 192 JN197500.1 Epeorus sp. 193 JN197501.1 Epeorus sp. 194 JN197502.1 Epeorus sp. 195 JN197549.1 Leucrocuta sp. 196 JN197554.1 Neophylax sp. 197 JN198316.1 Ironoquia sp. 198 JN197560.1 Pycnopsyche sp. 199 JN198316.1 Ironoquia sp. 200 JN198320.1 Ironoquia sp. 201 JN198326.1 Ironoquia sp. 203 JN198329.1 Ironoquia sp. 204 JN198370.1 Pycnopsyche sp. 205 JN198371.1 Pycnopsyche sp. 206 JN198373.1 Pycnopsyche sp. 207 JN198373.1			
187 JN197450.1 Amphinemura sp. 188 JN197496.1 Epeorus sp. 189 JN197497.1 Epeorus sp. 190 JN197498.1 Epeorus sp. 191 JN197498.1 Epeorus sp. 192 JN197500.1 Epeorus sp. 193 JN197501.1 Epeorus sp. 194 JN197502.1 Epeorus sp. 195 JN197549.1 Leucrocuta sp. 196 JN197554.1 Neophylax sp. 197 JN197560.1 Pycnopsyche sp. 198 JN197560.1 Pycnopsyche sp. 199 JN198316.1 Ironoquia sp. 200 JN198318.1 Ironoquia sp. 201 JN198320.1 Ironoquia sp. 202 JN198324.1 Ironoquia sp. 203 JN198320.1 Ironoquia sp. 204 JN198370.1 Pycnopsyche sp. 205 JN198371.1 Pycnopsyche sp. 206 JN198373.1 Pycnopsyche sp. 207 JN198374.1			
188 $N197496.1$ $Epeorus sp.$ 189 $N197497.1$ $Epeorus sp.$ 190 $N197498.1$ $Epeorus sp.$ 191 $N197498.1$ $Epeorus sp.$ 192 $N197500.1$ $Epeorus sp.$ 193 $N19750.11$ $Epeorus sp.$ 194 $N197502.1$ $Epeorus sp.$ 195 $JN197549.1$ $Leucrocuta sp.$ 196 $JN197554.1$ $Neophylax sp.$ 197 $JN197559.1$ $Pycnopsyche sp.$ 198 $JN197560.1$ $Pycnopsyche sp.$ 199 $JN197559.1$ $Pycnopsyche sp.$ 199 $JN197560.1$ $Pycnopsyche sp.$ 199 $JN197560.1$ $Pycnopsyche sp.$ 200 $JN198316.1$ $Ironoquia sp.$ 201 $JN198320.1$ $Ironoquia sp.$ 202 $JN198320.1$ $Ironoquia sp.$ 203 $JN198326.1$ $Ironoquia sp.$ 204 $JN198370.1$ $Pycnopsyche sp.$ 205 $JN198370.1$ $Pycnopsyche sp.$ 206 $JN19837.1$ $Pycnopsyche sp.$ 207 $JN19837.1$ $Pycnopsyche sp.$ 208 $JN19837.1$ $Pycnopsyche sp.$ 209 $JN19837.1$ $Pycnopsyche sp.$ 210 $JN19837.1$ $Pycnopsyche sp.$ 211 $JN200280.1$ $Amphinemura sp.$ 213 $JN200355.1$ Heptageniidae sp.214 $JN20056.1$ $Cinygmula subaequalis$ 215 $JN20056.1$ $Cinygmula subaequalis$ 216 $JN20055.1$ $Maccaffertium vicarium$ 218 $JN200635.1$			
189 $JN197497.1$ $Epeorus sp.$ 190 $JN197498.1$ $Epeorus sp.$ 191 $JN197499.1$ $Epeorus sp.$ 192 $JN197500.1$ $Epeorus sp.$ 193 $JN197501.1$ $Epeorus sp.$ 194 $JN197502.1$ $Epeorus sp.$ 195 $JN197549.1$ $Leucrocuta sp.$ 196 $JN197554.1$ $Neophylax sp.$ 197 $JN197559.1$ $Pycnopsyche sp.$ 198 $JN197560.1$ $Pycnopsyche sp.$ 199 $JN197560.1$ $Pycnopsyche sp.$ 199 $JN197560.1$ $Pycnopsyche sp.$ 199 $JN198316.1$ $Ironoquia sp.$ 200 $JN198320.1$ $Ironoquia sp.$ 201 $JN198320.1$ $Ironoquia sp.$ 202 $JN198326.1$ $Ironoquia sp.$ 203 $JN198326.1$ $Ironoquia sp.$ 204 $JN198370.1$ $Pycnopsyche sp.$ 205 $JN19837.1$ $Pycnopsyche sp.$ 206 $JN19837.1$ $Pycnopsyche sp.$ 207 $JN19837.1$ $Pycnopsyche sp.$ 208 $JN19837.1$ $Pycnopsyche sp.$ 210 $JN19837.1$ $Pycnopsyche sp.$ 211 $JN200280.1$ $Amphinemura sp.$ 213 $JN200355.1$ Heptageniidae sp.214 $JN20056.1$ $Cinygmula subaequalis$ 215 $JN200506.1$ $Cinygmula subaequalis$ 216 $JN200511.1$ $Diplectrona modesta$ 217 $JN200635.1$ $Maccaffertium vicarium$ 218 $JN200635.1$ $Maccaffertium vicarium$ </td <td></td> <td></td> <td></td>			
190 JN197498.1 Epeorus sp. 191 JN197499.1 Epeorus sp. 192 JN197500.1 Epeorus sp. 193 JN197501.1 Epeorus sp. 194 JN197502.1 Epeorus sp. 195 JN197549.1 Leucrocuta sp. 196 JN197554.1 Neophylax sp. 197 JN197559.1 Pycnopsyche sp. 198 JN197560.1 Pycnopsyche sp. 199 JN198316.1 Ironoquia sp. 200 JN198318.1 Ironoquia sp. 201 JN198320.1 Ironoquia sp. 202 JN198326.1 Ironoquia sp. 203 JN198326.1 Ironoquia sp. 204 JN198370.1 Pycnopsyche sp. 205 JN198371.1 Pycnopsyche sp. 206 JN198373.1 Pycnopsyche sp. 209 JN198374.1 Pycnopsyche sp. 210 JN198374.1 Pycnopsyche sp. 211 JN200280.1 Amphinemura sp. 212 JN200280.1			
191 JN197499.1 Epeorus sp. 192 JN197500.1 Epeorus sp. 193 JN197501.1 Epeorus sp. 194 JN197502.1 Epeorus sp. 195 JN197549.1 Leucrocuta sp. 196 JN197554.1 Neophylax sp. 197 JN197559.1 Pycnopsyche sp. 198 JN197560.1 Pycnopsyche sp. 199 JN198316.1 Ironoquia sp. 200 JN198318.1 Ironoquia sp. 201 JN198320.1 Ironoquia sp. 202 JN198326.1 Ironoquia sp. 203 JN198326.1 Ironoquia sp. 204 JN198370.1 Pycnopsyche sp. 205 JN198371.1 Pycnopsyche sp. 206 JN198371.1 Pycnopsyche sp. 207 JN198373.1 Pycnopsyche sp. 210 JN198374.1 Pycnopsyche sp. 211 JN200280.1 Amphinemura sp. 212 JN200280.1 Amphinemura sp. 213 JN200355.1 Heptageniidae sp. 214 JN200356.1 He			
192 JN197500.1 Epeorus sp. 193 JN197501.1 Epeorus sp. 194 JN197502.1 Epeorus sp. 195 JN197549.1 Leucrocuta sp. 196 JN197554.1 Neophylax sp. 197 JN197559.1 Pycnopsyche sp. 198 JN197560.1 Pycnopsyche sp. 199 JN198316.1 Ironoquia sp. 200 JN198320.1 Ironoquia sp. 201 JN198326.1 Ironoquia sp. 203 JN198326.1 Ironoquia sp. 204 JN198329.1 Ironoquia sp. 205 JN198370.1 Pycnopsyche sp. 206 JN198370.1 Pycnopsyche sp. 207 JN198371.1 Pycnopsyche sp. 208 JN198373.1 Pycnopsyche sp. 210 JN198374.1 Pycnopsyche sp. 211 JN200280.1 Amphinemura sp. 212 JN200281.1 Amphinemura sp. 213 JN200355.1 Heptageniidae sp. 214 JN20056.1 Cinygmula subaequalis 215 JN200506.1		,	
193 JN197501.1 Epeorus sp. 194 JN197502.1 Epeorus sp. 195 JN197549.1 Leucrocuta sp. 196 JN197554.1 Neophylax sp. 197 JN197559.1 Pycnopsyche sp. 198 JN197560.1 Pycnopsyche sp. 199 JN198316.1 Ironoquia sp. 200 JN198320.1 Ironoquia sp. 201 JN198326.1 Ironoquia sp. 202 JN198326.1 Ironoquia sp. 203 JN198326.1 Ironoquia sp. 204 JN198329.1 Ironoquia sp. 205 JN198370.1 Pycnopsyche sp. 206 JN198371.1 Pycnopsyche sp. 207 JN198371.1 Pycnopsyche sp. 208 JN198373.1 Pycnopsyche sp. 209 JN198373.1 Pycnopsyche sp. 210 JN198374.1 Pycnopsyche sp. 211 JN200280.1 Amphinemura sp. 212 JN200281.1 Amphinemura sp. 213 JN200355.1 Heptageniidae sp. 214 JN200506.1			
194JN197502.1Epeorus sp.195JN197549.1Leucrocuta sp.196JN197554.1Neophylax sp.197JN197559.1Pycnopsyche sp.198JN197560.1Pycnopsyche sp.199JN198316.1Ironoquia sp.200JN198318.1Ironoquia sp.201JN198320.1Ironoquia sp.202JN198326.1Ironoquia sp.203JN198326.1Ironoquia sp.204JN198329.1Ironoquia sp.205JN198370.1Pycnopsyche sp.206JN198371.1Pycnopsyche sp.207JN198371.1Pycnopsyche sp.208JN198373.1Pycnopsyche sp.209JN198374.1Pycnopsyche sp.210JN198374.1Pycnopsyche sp.211JN200280.1Amphinemura sp.212JN20056.1Ginygmula subaequalis214JN200355.1Heptageniidae sp.215JN200506.1Cinygmula subaequalis216JN200511.1Diplectrona modesta217JN200635.1Maccaffertium vicarium218JN200635.1Maccaffertium vicarium219JN200636.1Maccaffertium vicarium			• •
195 JN197549.1 Leucrocuta sp. 196 JN197554.1 Neophylax sp. 197 JN197559.1 Pycnopsyche sp. 198 JN197560.1 Pycnopsyche sp. 199 JN198316.1 Ironoquia sp. 200 JN198318.1 Ironoquia sp. 201 JN198320.1 Ironoquia sp. 202 JN198326.1 Ironoquia sp. 203 JN198326.1 Ironoquia sp. 204 JN198329.1 Ironoquia sp. 205 JN198370.1 Pycnopsyche sp. 206 JN198371.1 Pycnopsyche sp. 207 JN198371.1 Pycnopsyche sp. 208 JN198373.1 Pycnopsyche sp. 209 JN198373.1 Pycnopsyche sp. 210 JN198374.1 Pycnopsyche sp. 211 JN200280.1 Amphinemura sp. 213 JN200355.1 Heptageniidae sp. 214 JN200356.1 Heptageniidae sp. 215 JN200506.1 Cinygmula subaequalis 216 JN200511.1 Diplectrona modesta 217 JN			
196 JN197554.1 Neophylax sp. 197 JN197559.1 Pycnopsyche sp. 198 JN197560.1 Pycnopsyche sp. 199 JN198316.1 Ironoquia sp. 200 JN198318.1 Ironoquia sp. 201 JN198320.1 Ironoquia sp. 202 JN198320.1 Ironoquia sp. 203 JN198326.1 Ironoquia sp. 204 JN198329.1 Ironoquia sp. 205 JN198370.1 Pycnopsyche sp. 206 JN198371.1 Pycnopsyche sp. 207 JN198371.1 Pycnopsyche sp. 208 JN198373.1 Pycnopsyche sp. 209 JN198374.1 Pycnopsyche sp. 210 JN198374.1 Pycnopsyche sp. 211 JN200280.1 Amphinemura sp. 212 JN200280.1 Amphinemura sp. 213 JN200355.1 Heptageniidae sp. 214 JN200506.1 Cinygmula subaequalis 215 JN200511.1 Diplectrona modesta 217 </td <td></td> <td></td> <td></td>			
197JN197559.1Pycnopsyche sp.198JN197560.1Pycnopsyche sp.199JN198316.1Ironoquia sp.200JN198318.1Ironoquia sp.201JN198320.1Ironoquia sp.202JN198326.1Ironoquia sp.203JN198326.1Ironoquia sp.204JN198329.1Ironoquia sp.205JN198370.1Pycnopsyche sp.206JN198371.1Pycnopsyche sp.207JN198372.1Pycnopsyche sp.208JN198373.1Pycnopsyche sp.209JN198374.1Pycnopsyche sp.211JN200280.1Amphinemura sp.212JN200355.1Heptageniidae sp.213JN200356.1Heptageniidae sp.214JN200506.1Cinygmula subaequalis216JN200511.1Diplectrona modesta217JN200635.1Maccaffertium vicarium218JN200636.1Maccaffertium vicarium			-
198 JN197560.1 Pycnopsyche sp. 199 JN198316.1 Ironoquia sp. 200 JN198318.1 Ironoquia sp. 201 JN198320.1 Ironoquia sp. 202 JN198324.1 Ironoquia sp. 203 JN198326.1 Ironoquia sp. 204 JN198329.1 Ironoquia sp. 205 JN198349.1 Neophylax sp. 206 JN198370.1 Pycnopsyche sp. 207 JN198371.1 Pycnopsyche sp. 208 JN198372.1 Pycnopsyche sp. 209 JN198374.1 Pycnopsyche sp. 211 JN200280.1 Amphinemura sp. 212 JN200281.1 Amphinemura sp. 213 JN200355.1 Heptageniidae sp. 214 JN200356.1 Heptageniidae sp. 215 JN200506.1 Cinygmula subaequalis 216 JN200535.1 Maccaffertium vicarium 218 JN200635.1 Maccaffertium vicarium 219 JN200636.1 Maccaffertium vicarium			
199JN198316.1Ironoquia sp.200JN198318.1Ironoquia sp.201JN198320.1Ironoquia sp.202JN198324.1Ironoquia sp.203JN198326.1Ironoquia sp.204JN198329.1Ironoquia sp.205JN198349.1Neophylax sp.206JN198370.1Pycnopsyche sp.207JN198371.1Pycnopsyche sp.208JN198373.1Pycnopsyche sp.209JN198374.1Pycnopsyche sp.210JN200280.1Amphinemura sp.213JN200355.1Heptageniidae sp.214JN200506.1Cinygmula subaequalis216JN200511.1Diplectrona modesta217JN200634.1Maccaffertium vicarium218JN200635.1Maccaffertium vicarium219JN200636.1Maccaffertium vicarium			
200 JN198318.1 Ironoquia sp. 201 JN198320.1 Ironoquia sp. 202 JN198324.1 Ironoquia sp. 203 JN198326.1 Ironoquia sp. 204 JN198329.1 Ironoquia sp. 205 JN198349.1 Neophylax sp. 206 JN198370.1 Pycnopsyche sp. 207 JN198371.1 Pycnopsyche sp. 208 JN198372.1 Pycnopsyche sp. 209 JN198373.1 Pycnopsyche sp. 210 JN198374.1 Pycnopsyche sp. 211 JN200280.1 Amphinemura sp. 212 JN200280.1 Amphinemura sp. 213 JN200355.1 Heptageniidae sp. 214 JN200356.1 Heptageniidae sp. 215 JN200506.1 Cinygmula subaequalis 216 JN200511.1 Diplectrona modesta 217 JN200635.1 Maccaffertium vicarium 218 JN200635.1 Maccaffertium vicarium			<i>Pycnopsyche</i> sp.
201 JN198320.1 Ironoquia sp. 202 JN198324.1 Ironoquia sp. 203 JN198326.1 Ironoquia sp. 204 JN198329.1 Ironoquia sp. 205 JN198349.1 Neophylax sp. 206 JN198370.1 Pycnopsyche sp. 207 JN198371.1 Pycnopsyche sp. 208 JN198372.1 Pycnopsyche sp. 209 JN198373.1 Pycnopsyche sp. 210 JN198374.1 Pycnopsyche sp. 211 JN200280.1 Amphinemura sp. 212 JN200280.1 Amphinemura sp. 213 JN20055.1 Heptageniidae sp. 214 JN20056.1 Cinygmula subaequalis 216 JN200511.1 Diplectrona modesta 217 JN200635.1 Maccaffertium vicarium 218 JN200635.1 Maccaffertium vicarium			
202 JN198324.1 Ironoquia sp. 203 JN198326.1 Ironoquia sp. 204 JN198329.1 Ironoquia sp. 205 JN198349.1 Neophylax sp. 206 JN198370.1 Pycnopsyche sp. 207 JN198371.1 Pycnopsyche sp. 208 JN198372.1 Pycnopsyche sp. 209 JN198373.1 Pycnopsyche sp. 210 JN198374.1 Pycnopsyche sp. 211 JN200280.1 Amphinemura sp. 212 JN200281.1 Amphinemura sp. 213 JN200355.1 Heptageniidae sp. 214 JN200356.1 Cinygmula subaequalis 216 JN200511.1 Diplectrona modesta 217 JN200634.1 Maccaffertium vicarium 218 JN200635.1 Maccaffertium vicarium	200	JN198318.1	Ironoquia sp.
203JN198326.1Ironoquia sp.204JN198329.1Ironoquia sp.205JN198349.1Neophylax sp.206JN198370.1Pycnopsyche sp.207JN198371.1Pycnopsyche sp.208JN198372.1Pycnopsyche sp.209JN198373.1Pycnopsyche sp.210JN198374.1Pycnopsyche sp.211JN200280.1Amphinemura sp.212JN200281.1Amphinemura sp.213JN200355.1Heptageniidae sp.214JN200506.1Cinygmula subaequalis216JN200511.1Diplectrona modesta217JN200634.1Maccaffertium vicarium218JN200636.1Maccaffertium vicarium			
204JN198329.1Ironoquia sp.205JN198349.1Neophylax sp.206JN198370.1Pycnopsyche sp.207JN198371.1Pycnopsyche sp.208JN198372.1Pycnopsyche sp.209JN198373.1Pycnopsyche sp.210JN198374.1Pycnopsyche sp.211JN200280.1Amphinemura sp.212JN200281.1Amphinemura sp.213JN200355.1Heptageniidae sp.214JN200356.1Heptageniidae sp.215JN200506.1Cinygmula subaequalis216JN200511.1Diplectrona modesta217JN200634.1Maccaffertium vicarium218JN200636.1Maccaffertium vicarium			Ironoquia sp.
205 JN198349.1 Neophylax sp. 206 JN198370.1 Pycnopsyche sp. 207 JN198371.1 Pycnopsyche sp. 208 JN198372.1 Pycnopsyche sp. 209 JN198373.1 Pycnopsyche sp. 210 JN198374.1 Pycnopsyche sp. 211 JN200280.1 Amphinemura sp. 212 JN200281.1 Amphinemura sp. 213 JN200355.1 Heptageniidae sp. 214 JN200356.1 Heptageniidae sp. 215 JN200506.1 Cinygmula subaequalis 216 JN200511.1 Diplectrona modesta 217 JN200634.1 Maccaffertium vicarium 218 JN200635.1 Maccaffertium vicarium		JN198326.1	
206 JN198370.1 Pycnopsyche sp. 207 JN198371.1 Pycnopsyche sp. 208 JN198372.1 Pycnopsyche sp. 209 JN198373.1 Pycnopsyche sp. 210 JN198374.1 Pycnopsyche sp. 211 JN200280.1 Amphinemura sp. 212 JN200281.1 Amphinemura sp. 213 JN200355.1 Heptageniidae sp. 214 JN200356.1 Heptageniidae sp. 215 JN200506.1 Cinygmula subaequalis 216 JN200511.1 Diplectrona modesta 217 JN200634.1 Maccaffertium vicarium 218 JN200635.1 Maccaffertium vicarium	204		Ironoquia sp.
207 JN198371.1 Pycnopsyche sp. 208 JN198372.1 Pycnopsyche sp. 209 JN198373.1 Pycnopsyche sp. 210 JN198374.1 Pycnopsyche sp. 211 JN200280.1 Amphinemura sp. 212 JN200281.1 Amphinemura sp. 213 JN200355.1 Heptageniidae sp. 214 JN200356.1 Heptageniidae sp. 215 JN200506.1 Cinygmula subaequalis 216 JN200511.1 Diplectrona modesta 217 JN200634.1 Maccaffertium vicarium 218 JN200636.1 Maccaffertium vicarium		JN198349.1	<i>Neophylax</i> sp.
208 JN198372.1 Pycnopsyche sp. 209 JN198373.1 Pycnopsyche sp. 210 JN198374.1 Pycnopsyche sp. 211 JN200280.1 Amphinemura sp. 212 JN200281.1 Amphinemura sp. 213 JN200355.1 Heptageniidae sp. 214 JN200356.1 Heptageniidae sp. 215 JN200506.1 Cinygmula subaequalis 216 JN200511.1 Diplectrona modesta 217 JN200634.1 Maccaffertium vicarium 218 JN200636.1 Maccaffertium vicarium	206		<i>Pycnopsyche</i> sp.
209JN198373.1Pycnopsyche sp.210JN198374.1Pycnopsyche sp.211JN200280.1Amphinemura sp.212JN200281.1Amphinemura sp.213JN200355.1Heptageniidae sp.214JN200356.1Heptageniidae sp.215JN200506.1Cinygmula subaequalis216JN200511.1Diplectrona modesta217JN200634.1Maccaffertium vicarium218JN200636.1Maccaffertium vicarium	207	JN198371.1	
210JN198374.1Pycnopsyche sp.211JN200280.1Amphinemura sp.212JN200281.1Amphinemura sp.213JN200355.1Heptageniidae sp.214JN200356.1Heptageniidae sp.215JN200506.1Cinygmula subaequalis216JN200511.1Diplectrona modesta217JN200634.1Maccaffertium vicarium218JN200636.1Maccaffertium vicarium219JN200636.1Maccaffertium vicarium	208	JN198372.1	
211JN200280.1Amphinemura sp.212JN200281.1Amphinemura sp.213JN200355.1Heptageniidae sp.214JN200356.1Heptageniidae sp.215JN200506.1Cinygmula subaequalis216JN200511.1Diplectrona modesta217JN200634.1Maccaffertium vicarium218JN200635.1Maccaffertium vicarium219JN200636.1Maccaffertium vicarium	209	JN198373.1	
212JN200281.1Amphinemura sp.213JN200355.1Heptageniidae sp.214JN200356.1Heptageniidae sp.215JN200506.1Cinygmula subaequalis216JN200511.1Diplectrona modesta217JN200634.1Maccaffertium vicarium218JN200635.1Maccaffertium vicarium219JN200636.1Maccaffertium vicarium	210	JN198374.1	<i>Pycnopsyche</i> sp.
213JN200355.1Heptageniidae sp.214JN200356.1Heptageniidae sp.215JN200506.1Cinygmula subaequalis216JN200511.1Diplectrona modesta217JN200634.1Maccaffertium vicarium218JN200635.1Maccaffertium vicarium219JN200636.1Maccaffertium vicarium	211	JN200280.1	
214JN200356.1Heptageniidae sp.215JN200506.1Cinygmula subaequalis216JN200511.1Diplectrona modesta217JN200634.1Maccaffertium vicarium218JN200635.1Maccaffertium vicarium219JN200636.1Maccaffertium vicarium	212	JN200281.1	Amphinemura sp.
215JN200506.1Cinygmula subaequalis216JN200511.1Diplectrona modesta217JN200634.1Maccaffertium vicarium218JN200635.1Maccaffertium vicarium219JN200636.1Maccaffertium vicarium	213	JN200355.1	Heptageniidae sp.
216JN200511.1Diplectrona modesta217JN200634.1Maccaffertium vicarium218JN200635.1Maccaffertium vicarium219JN200636.1Maccaffertium vicarium	214	JN200356.1	Heptageniidae sp.
217JN200634.1Maccaffertium vicarium218JN200635.1Maccaffertium vicarium219JN200636.1Maccaffertium vicarium	215	JN200506.1	Cinygmula subaequalis
218JN200635.1Maccaffertium vicarium219JN200636.1Maccaffertium vicarium	216	JN200511.1	Diplectrona modesta
219JN200636.1Maccaffertium vicarium	217	JN200634.1	Maccaffertium vicarium
	218	JN200635.1	Maccaffertium vicarium
48	219	JN200636.1	Maccaffertium vicarium
			48

220	JN200637.1	Maccaffertium vicarium
221	JN200638.1	Maccaffertium vicarium
222	JN200639.1	Maccaffertium vicarium
223	JN291792.1	Stenacron interpunctatum
224	JN419463.1	Calopteryx maculata
225	JN419948.1	Lanthus parvulus
226	JN419949.1	Lanthus parvulus
227	JN582236.1	Prosimulium sp.
228	JN658996.1	Nyctiophylax moestus
229	JN659016.1	Nyctiophylax moestus
230	JQ662785.1	Eurylophella funeralis
231	JQ663071.1	Acentrella turbida
232	JQ663087.1	Acentrella turbida
233	JQ663098.1	Acentrella turbida
234	JQ663196.1	Acentrella turbida
235	JQ663197.1	Acentrella turbida
236	JX514462.1	Cambarus dubius
237	JX514491.1	Cambarus robustus
238	KC263060.1	Trissopelopia cf.
239	KC502459.1	Hydroporus sp.
240	KF000131.1	Zavrelimyia sp.
241	KF000197.1	Zavrelimyia sp.
242	KF000315.1	Naididae
243	KF437320.1	<i>Cambarus</i> sp.
244	KF437321.1	<i>Cambarus</i> sp.
245	KF437323.1	<i>Cambarus</i> sp.
246	KF489818.1	Thienemanniella sp.
247	KF489841.1	Thienemanniella sp.
248	KF489854.1	Thienemanniella sp.
249	KF489864.1	Thienemanniella sp.
250	KF489867.1	Thienemanniella sp.
251	KF489873.1	Thienemanniella sp.
252	KF489879.1	Thienemanniella sp.
253	KF563009.1	Ameletus sp.
254	KJ203823.1	Neoporus superioris
255	KJ203895.1	<i>Hydroporus</i> sp.
256	KJ449711.1	Ectopria nervosa
257	KJ449712.1	Ectopria nervosa
258	KJ449714.1	Ectopria nervosa
259	KJ449715.1	Ectopria nervosa
260	KJ449716.1	Ectopria nervosa
261	KJ450824.1	Stenelmis crenata
262	KJ450825.1	Stenelmis crenata
263	KJ450826.1	Stenelmis crenata
264	KJ450827.1	Stenelmis crenata
-		49

265	KJ450828.1	Stenelmis crenata	
266	KJ674900.1	Neophylax aniqua	
267	KJ674901.1	Maccaffertium vicarium	
268	KJ674933.1	Maccaffertium vicarium	
269	KJ674946.1	Eurylophella funeralis	
270	KJ674950.1	Eurylophella funeralis	
270	KJ674953.1	Amphinemura sp.	
272	KJ675056.1	Cinygmula subaequalis	
272	KJ675152.1	Stenonema femoratum	
273	KJ675152.1 KJ675153.1	Stenonema femoratum	
274	KJ675160.1	Cinygmula subaequalis	
275	KJ675187.1		
270	-	Cinygmula subaequalis	
	KJ675240.1	Cinygmula subaequalis	
278	KJ675372.1	Stenonema femoratum	
279	KJ961891.1	Dryops luridus	
280	KM206493.1	Naididae sp.	
281	KM206494.1	Naididae sp.	
282	KM206504.1	Naididae sp.	
283	KM206505.1	Naididae sp.	
284	KM206506.1	Naididae sp.	
285	KM206507.1	Naididae sp.	
286	KM206508.1	Naididae sp.	
287	KM206509.1	Naididae sp.	
288	KM206518.1	Naididae sp.	
289	KM445076.1	Dryops nitidulus	
290	KM445386.1	Pomatinus substriatus	
291	KM532299.1	<i>Sweltsa</i> sp.	
292	KM532433.1	<i>Sweltsa</i> sp.	
293	KM532633.1	<i>Sweltsa</i> sp.	
294	KM532974.1	<i>Sweltsa</i> sp.	
295	KM534699.1	<i>Sweltsa</i> sp.	
296	KM537031.1	<i>Sweltsa</i> sp.	
297	KM569819.1	<i>Hexatoma</i> sp.	
298	KM570489.1	<i>Hexatoma</i> sp.	
299	KM571243.1	<i>Hexatoma</i> sp.	
300	KM571592.1	<i>Hexatoma</i> sp.	
301	KM571629.1	<i>Hexatoma</i> sp.	
302	KM630869.1	<i>Tanytarsus</i> sp.	
303	KM979427.1	Cambarus robustus	
304	KM988740.1	<i>Tanytarsus</i> sp.	
305	KM990976.1	Tanytarsus sp.	
306	KP182981.1	<i>Physa</i> sp.	
307	KP182982.1	Physa sp.	
308	KR085274.1	Stictochironomus sp.	
309	KR085322.1	Stictochironomus sp.	
I		50	

310	KR134497.1	Pelonomus sp.
311	KR140980.1	Chimarra aterrima
312	KR141078.1	Somatochlora sp.
313	KR141081.1	Stenacron sp.
314	KR141684.1	Chimarra aterrima
315	KR141716.1	Heptageniidae sp.
316	KR141756.1	Acroneuria abnormis
317	KR141818.1	<i>Pycnopsyche</i> sp.
318	KR141825.1	Heptageniidae sp.
319	KR142140.1	Leucrocuta sp.
320	KR142144.1	Somatochlora sp.
321	KR142202.1	Alloperla sp.
322	KR142256.1	Glossosomatidae sp.
323	KR142287.1	Heptageniidae sp.
323	KR142207.1 KR142407.1	Leucrocuta sp.
325	KR142707.1 KR142719.1	Somatochlora sp.
326	KR142775.1	Somatochlora sp.
320	KR142793.1 KR142793.1	Leptophlebia sp.
327	KR142793.1 KR142894.1	
320 329	KR142094.1 KR142978.1	Leptophlebia sp.
		Leptophlebia sp.
330	KR143163.1	Alloperla sp.
331	KR143229.1	<i>Leptophlebia</i> sp.
332	KR143344.1	Calopteryx maculata
333	KR143496.1	<i>Leucrocuta</i> sp.
334	KR143811.1	<i>Leucrocuta</i> sp.
335	KR143915.1	Baetis sp.
336	KR143976.1	Alloperla sp.
337	KR144126.1	Baetis sp.
338	KR144506.1	Alloperla sp.
339	KR144641.1	Alloperla sp.
340	KR144679.1	Baetis sp.
341	KR145070.1	Polycentropodidae sp.
342	KR145400.1	Glossosomatidae sp.
343	KR145700.1	<i>Leucrocuta</i> sp.
344	KR145830.1	Heptageniidae sp.
345	KR145877.1	<i>Isoperla</i> sp.
346	KR145964.1	Heptageniidae sp.
347	KR145994.1	Stenacron sp.
348	KR146139.1	Glossosomatidae sp.
349	KR146151.1	Alloperla sp.
350	KR146184.1	<i>Leptophlebia</i> sp.
351	KR146206.1	Somatochlora sp.
352	KR146219.1	Baetis sp.
353	KR146477.1	Chimarra aterrima
354	KR146506.1	Leptophlebia sp.
I		51

355	KR146558.1	<i>Epeorus</i> sp.
356	KR146698.1	Leptophlebia sp.
357	KR146704.1	Maccaffertium sp.
358	KR146709.1	Chimarra aterrima
359		
360	KR146791.1	Maccaffertium sp.
361	KR146824.1	Habrophlebia sp.
362	KR146837.1	Maccaffertium sp.
363	KR146965.1	Leucrocuta sp.
364	KR147018.1	Alloperla sp.
365	KR147212.1	Leptophlebia sp.
366	KR147223.1	Maccaffertium sp.
367	KR147239.1	Somatochlora sp.
368	KR147253.1	Habrophlebia sp.
369	KR147255.1 KR147304.1	<i>Leucrocuta</i> sp.
370	KR147370.1	Paraleptophlebia sp.
370	KR147370.1 KR147439.1	Leptophlebia sp.
371	KR147439.1 KR147522.1	Paraleptophlebia sp.
372	KR147551.1	Paraleptophlebia sp.
373 374	KR147551.1 KR147645.1	
374 375	KR147045.1 KR147732.1	Baetis sp.
	KR147732.1 KR147737.1	Paraleptophlebia sp.
376		Alloperla sp.
377	KR147850.1	Paraleptophlebia sp.
378	KR147857.1	Leuctridae sp.
379	KR147872.1	Maccaffertium sp.
380	KR147962.1	Haploperla brevis
381	KR147978.1	Leuctridae sp.
382	KR147986.1	Paraleptophlebia sp.
383	KR148013.1	Leuctridae sp.
384	KR148096.1	Leuctridae sp.
385	KR148118.1	Leuctridae sp.
386	KR148133.1	Isoperla sp.
387	KR148149.1	Paraleptophlebia sp.
388	KR148194.1	Glossosomatidae sp.
389	KR148243.1	<i>Cheumatopsyche</i> sp.
390	KR148265.1	<i>Cheumatopsyche</i> sp.
391	KR148363.1	Cheumatopsyche sp.
392	KR148396.1	Paraleptophlebia sp.
393	KR148498.1	Leuctridae sp.
394	KR148515.1	Habrophlebia sp.
395	KR148556.1	Leuctridae sp.
396	KR148557.1	<i>Leptophlebia</i> sp.
397	KR148560.1	Habrophlebia sp.
398	KR148593.1	Leuctridae sp.
399	KR148620.1	Pycnopsyche sp.
		52

400	KR148642.1	Cheumatopsyche sp.
401	KR148661.1	Habrophlebia sp.
402	KR148695.1	Amphinemura sp.
403	KR148703.1	Leuctridae sp.
404	KR148722.1	<i>Epeorus</i> sp.
405	KR148744.1	Alloperla sp.
406	KR148804.1	Habrophlebia sp.
407	KR148849.1	Alloperla sp.
408	KR148863.1	Habrophlebia sp.
409	KR382538.1	Pseudolimnophila inornata
410	KR383491.1	Pseudolimnophila inornata
411	KR388602.1	Pseudolimnophila inornata
412	KR388620.1	Pseudolimnophila inornata
413	KR394099.1	Pseudolimnophila inornata
414	KR394426.1	Pseudolimnophila inornata
415	KR397763.1	Pseudolimnophila inornata
416	KR398958.1	Pseudolimnophila inornata
417	KR432840.1	Prosimulium sp.
418	KR435636.1	Prosimulium sp.
419	KR438615.1	Rheotanytarsus sp.
420	KR445573.1	Prosimulium sp.
421	KR468882.1	Stempellinella sp.
422	KR470087.1	Thienemannimyia sp.
423	KR480591.1	Stenelmis crenata
424	KR480641.1	Dytiscidae sp.
425	KR484340.1	Dytiscidae sp.
426	KR484375.1	Psephenus herricki
427	KR485770.1	Stenelmis sp.
428	KR486476.1	Stenelmis sp.
429	KR486700.1	Stenelmis sp.
430	KR491184.1	Stenelmis crenata
431	KR512256.1	Stempellinella sp.
432	KR514078.1	Zavrelimyia sp.
433	KR522705.1	Polypedilum aviceps
434	KR523055.1	Rheotanytarsus sp.
435	KR524726.1	Pseudolimnophila inornata
436	KR525334.1	Thienemannimyia sp.
437	KR589114.1	Natarsia punctata
438	KR620728.1	Rheotanytarsus sp.
439	KR622665.1	Rheotanytarsus sp.
440	KR624529.1	Diamesa sp.
441	KR635375.1	Thienemannimyia sp.
442	KR635409.1	Polypedilum aviceps
443	KR635862.1	Thienemannimyia sp.
444	KR636146.1	Thienemannimyia sp.
		53

445	KR640316.1	Thienemanniella sp.
446	KR640496.1	Thienemanniella sp.
447	KR641314.1	Thienemannimyia sp.
448	KR642406.1	Thienemannimyia sp.
449	KR644344.1	Simulium sp.
450	KR644416.1	Simulium sp.
451	KR644480.1	Simulium sp.
452	KR644515.1	Simulium sp.
453	KR644530.1	Polypedilum aviceps
454	KR644545.1	Simulium sp.
455	KR644848.1	Simulium sp.
456	KR645039.1	Simulium sp.
457	KR651776.1	Thienemanniella sp.
458	KR657545.1	Thienemanniella sp.
459	KR680511.1	Thienemannimyia sp.
460	KR681360.1	Tanytarsus sp.
461	KR681370.1	Tanytarsus sp.
462	KR681757.1	Polypedilum sp.
463	KR681890.1	Polypedilum sp.
464	KR682013.1	<i>Polypedilum</i> sp.
465	KR683112.1	Polypedilum sp.
466	KR683332.1	Polypedilum sp.
467	KR683635.1	Tanypodinae sp.
468	KR683710.1	Tanypodinae sp.
469	KR683905.1	<i>Polypedilum</i> sp.
470	KR683972.1	<i>Polypedilum</i> sp.
471	KR684069.1	<i>Tanypodinae</i> sp.
472	KR684651.1	Zavrelimyia sp.
473	KR687018.1	Zavrelimyia sp.
474	KR689674.1	Zavrelimyia sp.
475	KR692622.1	Eukiefferiella claripennis
476	KR693595.1	<i>Microtendipes pedellus</i> group sp.
477	KR694766.1	<i>Microtendipes pedellus</i> group sp.
478	KR695130.1	Rheotanytarsus sp.
479	KR697378.1	Tanytarsus sp.
480	KR697452.1	Tanytarsus sp.
481	KR714609.1	Stempellinella sp.
482	KR714631.1	Thienemanniella sp.
483	KR721133.1	Stempellinella sp.
484	KR728001.1	Palpomyia sp.
485	KR730033.1	Polypedilum aviceps
486	KR731239.1	Polypedilum aviceps
487	KR731965.1	Polypedilum aviceps
488	KR741312.1	Diamesa sp.
489	KR746080.1	Eukiefferiella claripennis
		54

490	KR746623.1	Diamesa sp.
491	KR747981.1	Eukiefferiella claripennis
492	KR748435.1	Eukiefferiella claripennis
493	KR753030.1	Eukiefferiella claripennis
494	KR753383.1	Rheotanytarsus sp.
495	KR754740.1	Diamesa sp.
496	KR755785.1	<i>Microtendipes pedellus</i> group sp.
497	KR755815.1	Microtendipes sp.
498	KR756059.1	Tanytarsus sp.
499	KR756118.1	Eukiefferiella claripennis
500	KR756228.1	Eukiefferiella claripennis
501	KR756375.1	Eukiefferiella claripennis
502	KR756446.1	Tanypodinae sp.
503	KR757131.1	Tanypodinae sp.
504	KR757230.1	Microtendipes pedellus group sp.
505	KR757336.1	Eukiefferiella claripennis
506	KR757627.1	Eukiefferiella claripennis
507	KR759106.1	Prosimulium sp.
508	KR918929.1	Glossosomatidae sp.
509	KR957882.1	Natarsia punctata
510	KR958647.1	Eukiefferiella claripennis
511	KR960127.1	Eukiefferiella claripennis
512	KR960373.1	Eukiefferiella claripennis
513	KR960828.1	Rheotanytarsus sp.
514	KR961074.1	Rheotanytarsus sp.
515	KR961487.1	Diamesa sp.
516	KR962025.1	Diamesa sp.
517	KR962209.1	Diamesa sp.
518	KR964003.1	Zavrelimyia sp.
519	KR966200.1	Stempellinella sp.
520	KR966677.1	<i>Stempellinella</i> sp.
521	KR967305.1	<i>Stempellinella</i> sp.
522	KR971266.1	Pseudolimnophila inornata
523	KR981444.1	Prosimulium sp.
524	KT084036.1	Palpomyia sp.
525	KT085519.1	Palpomyia sp.
526	KT085628.1	<i>Bezzia</i> sp.
527	KT086163.1	Palpomyia sp.
528	KT087754.1	<i>Bezzia</i> sp.
529	KT088829.1	<i>Bezzia</i> sp.
530	KT088866.1	<i>Bezzia</i> sp.
531	KT088938.1	<i>Bezzia</i> sp.
532	KT089178.1	<i>Bezzia</i> sp.
533	KT089430.1	Palpomyia sp.
534	KT089889.1	<i>Bezzia</i> sp.
		55

535	KT091618.1	Palpomyia sp.	
536	KT096662.1	Palpomyia sp.	
537	KT099059.1	<i>Bezzia</i> sp.	
538	KT115240.1	-	
539	KT117770.1	<i>Tanytarsus</i> sp.	
540	KT117828.1	Tanytarsus sp.	
541	KT118027.1	Tanypodinae sp.	
542	KT118102.1	Tanytarsus sp.	
543	KT118775.1	Tanytarsus sp.	
544	KT118797.1	Tanytarsus sp.	
545	KT118907.1	Tanypodinae sp.	
546	KT119167.1	Tanypodinae sp.	
547	KT119216.1	Orthocladiinae sp.	
548	KT119307.1	Tanytarsus sp.	
549	KT119308.1	Orthocladiinae sp.	
550	KT282412.1	Orconectes cristavarius	
551	KT282414.1	Orconectes cristavarius	
552	KT759635.1	Cambarus bartonii	
553	KT759641.1	Cambarus bartonii	
554	KT759645.1	Cambarus bartonii	
555	KU980986.1	Leptophlebiidae sp.	
556	KU980993.1	Leptophlebiidae sp.	
557	KU981001.1	Leptophlebiidae sp.	
558	KX039562.1	Hexatoma sp.	
559	KX039573.1	Leptophlebiidae sp.	
560	KX039574.1	Leptophlebiidae sp.	
561	KX039575.1	Leptophlebiidae sp.	
562	KX039576.1	Leptophlebiidae sp.	
563	KX039628.1	Tanypodinae sp.	
564	KX039629.1	Tanypodinae sp.	
565	KX102703.1	Agapetus sp.	
566	KX102832.1	Neophylax sp.	
567	KX103370.1	Diplectrona modesta	
568	KX103387.1	Diplectrona modesta	
569	KX105355.1	<i>Pycnopsyche</i> sp.	
570	KX139049.1	Koenikea sp.	
571	KX139052.1	Limnesia sp.	
572	KX139053.1	Limnesia sp.	
573	KX139054.1	Limnesia sp.	
574	KX139055.1	Limnesia sp.	
575	KX139055.1 KX139056.1	Krendowskia sp.	
576	KX139057.1	Krendowskia sp.	
570	KX139059.1	Koenikea sp.	
577	KX139039.1 KX142783.1	Glossosomatidae sp.	
576 579	KX142765.1 KX142887.1	<i>Agapetus</i> sp.	
517	1.14200/.1	<i>Agapetus</i> sp. 56	
		50	

580	KX142936.1	Polycentropodidae sp.
581	KX143815.1	Polycentropodidae sp.
582	KX144371.1	Polycentropodidae sp.
583	KX144433.1	Agapetus sp.
584	KX144530.1	Polycentropodidae sp.
585	KX271859.1	Zavrelimyia sp.
586	KX291842.1	<i>Neophylax</i> sp.
587	KX293446.1	Diplectrona modesta
588	KX293883.1	Polycentropodidae sp.
589	KX294140.1	Polycentropodidae sp.
590	KX294335.1	Polycentropodidae sp.
591	KX294832.1	<i>Agapetus</i> sp.
592	KX295041.1	Polycentropodidae sp.
593	KX295408.1	<i>Psilotreta</i> sp.
594	KX295509.1	<i>Neophylax</i> sp.
595	KX295568.1	<i>Agapetus</i> sp.
596	KX296009.1	Polycentropodidae sp.
597	KX296464.1	<i>Neophylax</i> sp.
598	KX296624.1	Glossosomatidae gen. sp.
599	KX453764.1	Dixa submaculata
600	KX890920.1	Lanthus vernalis
601	KX890945.1	Stylogomphus sigmastylus
602	KX890996.1	Stylogomphus sigmastylus
603	LC096195.1	Trissopelopia longimana
604	LN810271.1	Lumbriculidae sp.
605	LN810272.1	Lumbriculidae sp.
606	LN897584.1	Diamesa cinerella/tonsa group sp.
607	LN897587.1	Diamesa sp.
608	LN897608.1	Diamesa sp.
609	LN897619.1	Diamesa cinerella/tonsa group sp.
610	LN897620.1	<i>Diamesa cinerella/tonsa</i> group sp.

species and extractions in ordinal space on Figure 4.			
	NMDS1	NMDS2	
CTAB_1	0.004868538	0.71446701	
CTAB_2	-0.389236263	-0.80063627	
CTAB_3	0.592091461	0.03508303	
Dneasy_1	-0.376132357	0.21013333	
Dneasy_2	-0.593815356	0.02013655	
Dneasy_3	0.219897239	-0.37581669	
Cheumatopsyche	-8.92E-01	-0.65962517	
Dytiscidae sp.	-1.50E-01	-0.56786729	
Thienemanniella	-2.14E-02	0.25958593	
Thienemannimyia	-2.17E-01	0.29265435	
Trissopelopia	1.16E+00	0.06020264	
Zavrelimyia	-1.50E-01	-0.56786729	
Tanypodinae	1.16E+00	0.06020283	
Prosimulium	-1.27E+00	0.18623173	
Simulium	-9.03E-01	0.31991032	
Oulimnius	-1.27E+00	0.18623195	
Stenelmis	-9.03E-01	0.31991032	
Pseudolimnophila	3.05E-01	0.15889753	
Habrophlebia	-6.74E-02	0.44928134	
Leptophlebia	1.16E+00	0.06020226	
Paraleptophlebia	1.16E+00	0.06020226	
Pycnopsyche	1.24E-01	0.56137718	
Microtendipes	1.16E+00	0.06020262	
Polypedilum	-1.36E-01	-0.16552498	
Tanytarsus	-2.60E-02	0.03903263	
Leuctridae	-1.37E-01	-0.2541858	
Cinygmula	-2.60E-02	0.03903263	
Epeorus	-1.37E-01	-0.2541858	
Maccaffertium	7.86E-05	-0.45539669	
Stenacron	-2.17E-01	0.29265435	
Heptageniidae sp.	9.10E-01	-0.3347903	
Physa	2.27E-01	-0.59037475	
Amphinemura	-2.31E-01	-0.02815366	
Alloperla	-7.26E-01	-0.32342699	
Cambarus	1.20E-01	0.79558582	

Supplementary Material C. Plotted coordinates for species and extractions in ordinal space on Figure 4.

M. Triston Mullins was born in Ashland, Kentucky on December 15, 1988. He graduated from Russell Independent High School in June, 2007. The following fall semester, he attended Georgetown College (Georgetown, Ky.), and in 2011 received a degree of Bachelor of Science in Environmental Studies with a minor in Chemistry. After graduating Triston pursued work in the bourbon industry for Wild Turkey Distillery, fulfilling a variety of supervisory roles. In the fall of 2013, he started his graduate studies at Eastern Kentucky University, and received his Master of Science in Biology in the summer of 2017.

Triston is currently an ecologist for Eco-Tech Consultants in Louisville, Ky.