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ABSTRACT 

 Science, technology, engineering, and math (STEM) fields are currently facing a crisis 

with respect to filling jobs with qualified workers (NSF, 2013; NAS, 2011).  While 

advancements in these industries have translated into job growth, post-secondary declaration and 

retention rates within STEM majors lag behind industry needs (Carnevale et al., 2011; Chen, 

2013; Koenig et al., 2012).  Although researchers previously investigated demographic variables 

and math-related variables in the context of STEM retention (Beasley & Fischer, 2012; 

CollegeBoard, 2012; Cundiff et al., 2013; Gayles & Ampaw, 2014; Le et al., 2014; Nosek & 

Smyth, 2011; Riegle-Crumb & King, 2010), the need exists for additional research examining 

the impact of career-related variables (Belser et al., 2017; Folsom et al., 2004; Parks et al., 2012; 

Reardon et al., 2015).  Additionally, prior STEM retention research primarily focused on 

students with declared STEM majors, as opposed to undeclared students considering STEM 

majors. 

 In the present study, the researcher sought to determine the degree to which demographic 

variables (gender and ethnicity), math ability variables (SAT Math scores and Math Placement 

Test--Algebra scores), and career development related variables (initial major, STEM course 

participation, and Career Thoughts Inventory [CTI] change scores) could predict undergraduate 

retention in STEM for participants in a STEM recruitment and retention program.  Using binary 

logistic regression, the researcher found that initially having a declared STEM major was the 

best predictor of STEM retention.  Higher scores on math variables consistently predicted higher 

odds of STEM success, and the data revealed higher odds of STEM retention for ethnic minority 
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students.  Gender only showed to be a significant predictor of STEM attrition with the undecided 

students with first-to-third year retention.  Finally, larger decreases in CTI scores predicted 

increased odds of STEM retention.  Implications from the findings relate to a variety of 

professionals from higher education, counseling, and research.  The findings provide guidance 

and new perspectives on variables associated with better rates of STEM retention, and as such, 

inform STEM initiatives targeting undergraduate STEM recruitment and retention.   
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CHAPTER I: INTRODUCTION 

 Despite advancements and job growth within science, technology, engineering, and math 

(STEM) fields, the United States currently faces a crisis with respect to filling these jobs with 

qualified individuals (National Science Foundation [NSF], 2013; National Academy of Sciences 

[NAS], 2011).  In addition to job creation, the rise in retirements among the Baby Boomer 

generation and high attrition rates within STEM degree programs at post-secondary institutions 

both are predicted to contribute to a deficit of nearly three million skilled STEM workers by 

2018 (Carnevale, Smith, & Melton, 2011).  Whereas the impact of this crisis may not be 

completely universal, Xue and Larson (2015) posited that the deficits vary across STEM 

disciplines, worker education levels, and geographic locations around the country.  Moreover, 

disparities also exist when the numbers are broken down by race and gender (National Science 

Board, 2015).   

 Carnevale et al. (2011) identified high attrition rate for undergraduates in STEM majors 

as one key problem contributing to the STEM crisis.  In one report, less than 30 percent of 

undergraduates declared a STEM major at four-year institutions, and of these students, 

approximately half left their STEM major prior to graduation either by changing their majors or 

by leaving college altogether (Chen, 2013).  Variance exists in STEM retention rates depending 

on the post-secondary institution, with some reporting closer to 30 percent (Koenig, Schen, 

Edwards, & Bao, 2012).  To combat the low rates of students earning STEM degrees, post-

secondary institutions have begun providing initiatives specifically targeting recruitment and 



 

 2 

retention for undergraduate STEM degrees (Bouwma-Gearhart, Perry, & Presley, 2014; 

Defraine, Williams, & Ceci, 2014).  The goals of such programs include capturing students into 

STEM degree programs and providing them with support to promote their success with a desired 

outcome of increased degree attainment.  Many of these programs also include initiatives to 

increase participation in STEM for underrepresented populations, such as women and students of 

color (Carnevale et al., 2011; Palmer, Maramba, & Dancy, 2011).   

 Within the present study, the researcher sought to investigate retention and attrition rates 

for one such STEM program at the University of Central Florida (UCF).  The UCF COMPASS 

Program (Convincing Outstanding Math-Potential-Admits to Succeed in STEM) targets first-time 

college students who have a potential interest in STEM but have not confirmed their major 

choice.  Some students have an uncommitted interest in STEM based on hobbies, parent or 

guardian careers, and/or experiences in high school coursework.  The program provided math 

support, mentoring, and research opportunities, which are not uncommon in undergraduate 

STEM initiatives (Bouwma-Gearhart, Perry, & Presley, 2014; Defraine, Williams, & Ceci, 

2014).  A uniqueness of the COMPASS Program was the inclusion of a STEM-focused Career 

Planning Class as a career development intervention.  The current study included career-related 

variables, in addition to demographics and math ability, to determine the extent to which these 

variables could predict whether or not undergraduates would be retained in a STEM major for 

their first two years of college.  As the program incorporates a career development focus, the 

researcher framed the proposed study on previous literature and research in the areas of 
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undergraduate retention in STEM majors and career development, as well as several theoretical 

models of career development. 

Theoretical Foundation 

 Of the numerous career development theories, four in particular contributed to the 

framework of this study: (a) the Theory of Circumscription, Compromise, and Self-Creation 

(Gottfredson, 1981); (b) the Theory of Vocational Choice (Holland, 1973); (c) Social Cognitive 

Career Theory (Brown & Lent, 1996; Lent, 2005; Lent & Brown, 2002); and (d) the Cognitive 

Information Processing Approach (Peterson, Sampson, & Reardon, 1991; Peterson, Sampson, 

Reardon, & Lenz, 1996; Sampson, Lenz, Reardon, & Peterson, 1999; Peterson, Sampson, Lenz, 

& Reardon, 2002).  Each theory offered a perspective on at least one of the constructs of interest 

for the study, and together they created a framework for understanding processes and issues 

within STEM career development.  

Theory of Circumscription, Compromise, and Self-Creation 

 Linda Gottfredson’s Theory of Circumscription, Compromise, and Self-Creation 

(Gottfredson, 1981) defines the process by which individuals begin to eliminate career options 

that are not seen as good matches or that are seen as being outside the scope of possibility for an 

individual.  Although the stage models of this theory do not directly overlap with the average age 

range of undergraduate students, the theory does shed light on processes occurring during 

childhood that may have long-term implications on self-concept and career choice, particularly 
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with regard to gender roles and social prestige (Zunker, 2016).  Gottfredson explained that 

children begin to narrow their career options in early childhood based on interactions with 

society, and this process occurs in four stages.  During the second stage, societal gender norms 

and stereotypes influences individuals’ conceptualization of careers (Zunker, 2016).  This stage 

in particular offered insight into the gender disparities that exist within STEM fields, which may 

be the result of a lack of representation for females within STEM.   

 Gottfredson (1981) found that individuals are more likely to compromise, or concede, 

their area of career interest before the sex type for a career if there is a large perceived 

discrepancy between what they want to do and what they perceive is possible.  Young females 

who do not see other females like them in STEM careers may begin to perceive these careers as 

not easily attainable.  As such, if something is not done to intervene with females eliminating 

STEM career options based on a perceived lack of representation within STEM careers, this 

cycle may continue to negatively impact females.  Although Gottfredson’s theory does not 

specifically address ethnicity in the same way that it does address gender, the theory did provide 

context on how a lack of representation in STEM could affect underrepresented ethnic or racial 

groups. 

Theory of Vocational Choice 

 John Holland’s (1973) Theory of Vocational Choice is one of the most widely used and 

widely studies career theories (Curry & Milsom, 2014).  Holland theorized that individuals fall 

within one of six types: (a) Realistic, (b) Investigative, (c) Artistic, (d) Social, (e) Enterprising, 

and (f) Conventional; these six types also describe the work environments of different 
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occupations (Holland, 1973; Spokane, Luchetta, & Richwine, 2002).  From the perspective of 

this theory, individuals strive to find an occupation that has an environment type that is 

congruent with one’s personality type (i.e. a Realistic person will seek Realistic work 

environments; Holland, 1997).  This theory was applicable to the present study because the 

program from which the researcher drew participants used of a career development intervention 

targeting participants with a particular career interest.  Holland (1959) noted, “Persons with more 

information about occupational environments make more adequate choices than do persons with 

less information” (pp. 40-41).  This sentiment would also be relevant in regard to students’ 

choice to persist in an academic major; moreover, one goal of career development interventions 

is often to increase individuals’ understanding of various career options.  Within the present 

study, the participants all had expressed an interest in STEM but have varying levels of 

commitment to STEM fields as a possible career option.  Despite more recent advancements 

with Holland’s (1997) theory to include identity as a factor in the person-environment fit 

equation, researchers agree that additional factors (e.g. gender and self efficacy) can also 

influence one’s desire to pursue a particular career field (Gottfredson & Johnstun, 2009; Spokane 

et al., 2002).     

Social Cognitive Career Theory 

 Social Cognitive Career Theory (SCCT; Brown & Lent, 1996; Lent, 2005; Lent & 

Brown, 2002) incorporates self-efficacy beliefs, outcome expectations, interests, action, and 

performance into the career development process.  Lent, Brown, & Hackett (2002) incorporated 

elements of other vocational psychology theories, while keeping a constructivist view that 
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individuals have influence of their own career development.  Within the SCCT framework, self-

efficacy beliefs can influence one’s outcome expectations and, ultimately, the outcome of the 

process.  For individuals within STEM, these self-efficacy beliefs may relate to the lack of 

representation within the field; if one cannot visualize someone like them choosing to enter a 

particular field, that person will likely not be able to visualize someone like them being 

successful in that field (Niles & Harris-Bowslbey, 2009).  Similarly, SCCT might suggest a 

relationship between individuals’ beliefs about their math ability and their actual performance in 

math and a relationship between individuals’ actual performance in math and their beliefs about 

being successful in STEM.  Researchers have studied STEM retention within the context of 

SCCT, and self-efficacy beliefs were a significant predictor of retention, particularly when 

academic performance and demographics were factored into the model (Lee, Flores, Navarro, & 

Kangui-Munoz, 2015; Lent, Lopez, Lopez, & Sheu, 2008).  However, these models did not 

include any predictors related to career readiness or career planning intervention participation. 

Cognitive Information Processing 

 The Cognitive Information Processing (CIP) Approach (Peterson, Sampson, Lenz, & 

Reardon, 2002; Peterson, Sampson, & Reardon, 1991; Sampson, Lenz, Reardon, Peterson, 1999; 

Sampson, Peterson, Lenz, Reardon, & Lenz, 1996a) was important to this study because the 

career development course discussed in this study was designed using the CIP Approach and 

because the researcher included CIP constructs within the independent variables of the study.  

The theoretical framework of the CIP Approach is twofold, with a focus on both the content of 
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the career development process (i.e. self knowledge, knowledge of the world of work, and 

decision-making skills) and the process of career development (i.e. the steps through which one 

goes when making a career decision).  In CIP, dysfunctional thinking can negatively impact 

one’s readiness to make decisions about careers (Jaensch, Hirschi, & Freund, 2015).  The Career 

Thoughts Inventory (CTI) is an instrument that can help identify the type of negative career 

thinking that is affecting an individual, including Decision Making Confusion, Commitment 

Anxiety, and External Conflict (Sampson et al., 1996a; Sampson, Peterson, Lenz, Reardon, & 

Saunders, 1996b).  Career development interventions and programming within the CIP 

framework fairly consistently result in reductions in negative career thinking (Dipeolu, Snitecki, 

Storlie, & Hargrave, 2013; Meyer & Shippen, 2016; Prescod, Daire, Young, Dagley, & 

Georgiopoulos, In press; Sampson et al., 1996a).  More specifically, researchers have 

demonstrated a relationship between participating in career planning courses framed around CIP, 

such as the one used within the present research, and positive outcomes for undergraduate 

students (Folsom, Peterson, Reardon, & Mann, 2004; Osborn, Howard, & Leierer, 2007; 

Reardon, Melvin, McClain, Peterson, & Bowman, 2015) 

Population Disparities within STEM 

 Disparities exist for females within both the STEM workforce and STEM degree 

programs (National Math and Science Initiative [NMSI], 2016).  In the United States, females 

account for approximately half of the total workforce but only about 23 percent of the STEM 

workforce.  Females are grossly underrepresented in some fields like engineering, but have 
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reached or surpassed gender parity in other fields like biological sciences; moreover, females are 

now overrepresented in science-related fields not considered a part of STEM, including 

psychology and non-diagnosing health practitioner fields like nursing (ACT, 2014, NSF National 

Center for Science and Engineering Statistics [NCSES], 2015).  With regard to undergraduate 

retention, the presence of gender stereotyping and stereotype threat (i.e. group-based 

performance anxiety) was a significant predictor of attrition from STEM majors for females 

(Beasley & Fischer, 2012; Cundiff, Vescio, Loken, & Lo, 2013).  Gayles and Ampaw (2014) 

found that females overall were less likely to be retained in STEM, especially when math 

remediation was necessary. 

 Whereas marginalized ethnic minority groups (i.e. Black/African American and 

Hispanic) have made gains in some STEM fields (e.g. computer science, biological science), 

they are still underrepresented within general STEM employment and degree attainment (Palmer 

et al., 2011).  Foltz, Gannon, and Kirschmann (2014) found that connections with STEM faculty 

mentors and undergraduate peers who are also from an underrepresented ethnic minority group 

was a protective factor for STEM retention; however, because of underrepresentation, 

individuals find challenges in attain mentors and peer groups within these groups.  Researchers 

identified an interaction between gender and ethnicity with regard to STEM major selection 

retention, as females from underrepresented ethnic groups tended to have better outcomes than 

their male counterparts (Beasley & Fischer, 2012; Cundiff et al., 2013; Gayles & Ampaw, 2014; 

Riegle-Crumb & King, 2010).  However, findings were inconsistent and, in some cases, 
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contradictory as to which subgroups had better or worse outcomes, particularly for male students 

from across underrepresented ethnic groups.   

Math Ability and STEM 

 In prior studies, researchers identified math ability as a significant factor in STEM 

outcomes for undergraduates, including performance in class, overall grade point averages, and 

retention (CollegeBoard, 2012; Crisp et al., 2009; Le, Robbins, & Westrick, 2014; Rohr, 2012).  

Achieving higher SAT Math scores and taking higher level math courses in high school both 

translated into a higher likelihood of completing a STEM major (Chen, 2013; CollegeBoard, 

2012).  However, numerous research studies over several decades have highlighted potential test 

bias with the SAT based on race, noting that lower mean family income and decreased access to 

SAT preparation courses contribute to Black students having lower mean SAT scores than their 

White counterparts (Dixon-Román, Everson, & McArdle, 2013; Lawlor, Richman, & Richman, 

1997; Temp, 1971; Toldson & McGee, 2014).  As a result, CollegeBoard revised the SAT in 

2016 to address these concerns, and many universities have changed admissions and decision-

making polices regarding the use of college entrance exams (CollegeBoard, 2017; Toldson & 

McGee, 2014).  Nevertheless, the SAT remains one of the most commonly used college entrance 

exams (CollegeBoard, 2017).  Beyond the issues documented with the SAT, researchers have 

also found that increased math anxiety and the need for math remediation are both correlated 

with a decreased chance of completing a STEM degree, particularly for female students (Cundiff 

et al., 2013; Nosek & Smyth, 2011). 
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Career Planning Coursework and STEM 

 Students who participate in a career planning course are more likely to be retained in 

their major until graduation (Folsom, Peterson, Reardon, & Mann, 2004; Parks, Rich, & Getch, 

2012; Reardon, Melvin, McClain, Peterson, & Bowman, 2015).  Whereas career-related 

coursework within STEM programming often focuses on students with declared STEM majors 

rather than undeclared students, researchers found that these programs did yield positive results 

(Freeman, 2012; Gentile et al., 2012).  STEM professionals, rather than career development 

professionals, taught two particular STEM-related courses found in the literature; as such, these 

courses were more focused on providing information to students about various STEM majors, 

rather than using a career development process to help students select a potential major 

(Freeman, 2012; Gentile et al., 2012).  Nevertheless, these courses resulted in increased 

identification with a STEM major, increased participation in undergraduate research, and 

increased likelihood of retention through the second year of college.  In another study, 

undeclared students participating in a STEM-focused career planning course saw a larger 

decrease in negative career thinking than declared STEM majors in a seminar class without a 

career development focus (Prescod et al., In press).  Similarly, in a pilot study to this dissertation, 

the researcher found similar findings as Prescod et al. (In press); in addition, after adjusting for 

covariates, the undeclared students in the STEM-focused career planning course had lower 

scores on a measure of negative career thinking than the declared students in the seminar course 

at the end of their first semester of college.   
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 A second pilot analysis informed the present study more (Belser, Prescod, Daire, Dagley, 

& Young, 2017).  The results of this study indicated that participation in a career development 

course, initial major, and CTI change scores could accurately predict which students would be 

retained in a STEM major from their first year to their second year.  However, the final model 

produced in the study was only accurate in predicting non-retained students with only about 43 

percent of cases and had a fair overall model fit.  As the researchers did not include demographic 

or math-related variables in the model, considering these variables in future research may yield a 

more accurate model. 

Research Hypotheses 

 Based on the existing literature, it is clear that researchers only minimally investigated 

career development factors as predictors of undergraduate retention within STEM majors (Belser 

et al., 2017; Lee et al., 2015; Lent et al., 2008).  As such, a research gap exists with regard to 

how career-related variables, such as participation in career development programming and 

measures of career readiness, fit into predictive models along with demographic variables and 

math aptitude scores.  As such, in this study, the researcher used binary logistic regression to 

determine the degree to which demographic variables (gender, ethnicity, and initial major), math 

ability scores (SAT Math scores and Math Placement Test scores), and career development 

factors (STEM Course Participation and Career Thoughts Inventory [CTI] change scores) could 
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predict undergraduate retention in STEM majors during the first two years of college.  To answer 

the aforementioned questions, the researcher tested the following six hypotheses: 

 

Null Hypothesis 1:  First-year to second-year undergraduate retention in STEM majors 

cannot be significantly predicted by ethnicity, gender, initial major, Math Placement Test 

scores, SAT Math scores, STEM Course Participation (Career Planning vs. STEM 

Seminar), and CTI change scores. 

 

Null Hypothesis 2:  First-year to second-year undergraduate retention in STEM majors 

for students participating in a STEM-focused Career Planning Course cannot be 

significantly predicted by ethnicity, gender, initial major, Math Placement Test scores, 

SAT Math scores, and CTI change scores. 

 

Null Hypothesis 3:  First-year to second-year undergraduate retention in STEM majors 

for students participating in a STEM Seminar Course (without a career development 

focus) cannot be significantly predicted by ethnicity, gender, initial major, Math 

Placement Test scores, SAT Math scores, and CTI change scores. 

 

Null Hypothesis 4:  First-year to third-year undergraduate retention in STEM majors 

cannot be significantly predicted by ethnicity, gender, initial major, Math Placement Test 
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scores, SAT Math scores, STEM Course Participation (Career Planning vs. STEM 

Seminar), and CTI change scores. 

 

Null Hypothesis 5:  First-year to third-year undergraduate retention in STEM majors for 

students participating in a STEM-focused Career Planning Course cannot be significantly 

predicted by ethnicity, gender, initial major, Math Placement Test scores, SAT Math 

scores, and CTI change scores. 

 

Null Hypothesis 6:  First-year to third-year undergraduate retention in STEM majors for 

students participating in a STEM Seminar Course (without a career development focus) 

cannot be significantly predicted by ethnicity, gender, initial major, Math Placement Test 

scores, SAT Math scores, and CTI change scores. 

 

 With this study, the researcher hoped to contribute to the current literature related to 

STEM initiatives with undergraduates and to lay groundwork for future research with career 

development and STEM.  Additionally, findings from the present study have implications for 

career development personnel within higher education institutions regarding programming for 

undergraduates interested in or majoring in a STEM discipline.  This research also helps solidify 

the role of counselor educators as career development content specialists within STEM 

initiatives. 
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Professional Significance 

 The current study has implications for research on STEM initiatives.  First, although 

prior research has investigated the influence on demographic variables and math ability on 

retention in STEM (ACT, 2014; Beasley & Fischer, 2012; Cundiff et al., 2013; Gayles & 

Ampaw, 2014; NMSI, 2016; Palmer et al., 2011; Riegle-Crumb & King, 2010), career related 

variables have not been investigated with the same degree (Belser et al., 2017; Le, Robbins, & 

Westrick, 2014; Lent et al., 2016; Prescod et al., In press; Porter & Umbach, 2006).  In addition, 

the existing studies that have examined career development as a predictor of retention in STEM 

have primarily focused on students who have a declared STEM major rather than initially 

undeclared students.  The current study provided insight on how career development related 

variables compare to previously studied variables with regard to predicting retention in STEM 

majors.  Moreover, the inclusion of both declared and undeclared students provided an avenue to 

explore how a predictive model might look different for each group.  Findings from the study 

serve to fill gaps in the current literature and provide a foundation for future research in this area. 

 As noted, colleges and universities are investing millions dollars from federal agencies 

and private organizations to address the STEM crisis, with lots of money being spent on students 

who still end up leaving their STEM major (Carnevale et al., 2011).  For higher education 

professionals and career counselors tasked with creating STEM initiatives, identifying which 

variables are most aligned with retention or attrition can assist with program development.  Such 

information could help these professionals begin to provide general services in the areas 

associated with retention and then targeted interventions for those identified as being at risk for 
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dropping out of a STEM major.  This research also has implications for potential differences in 

the variables associated with retention for declared students and undeclared students.  

 The present study also has significance for counselor education.  Counseling literature 

focused on STEM initiatives has primarily been discussed in relation to K-12 settings with 

school counselors and largely has not been empirically based.  However, the COMPASS 

Program is a unique endeavor in which individuals from counselor education brought career 

development expertise to a higher education STEM initiative.  This research opens doors for 

other interdisciplinary collaborations, in which individuals from counseling and counselor 

education can provide critical knowledge and expertise in the area of career development that 

can impact STEM retention.  These partnerships equate to research initiatives and external 

funding.  In a review of nearly 3,000 projects funded by the Directorate for Education and 

Human Resources of the National Science Foundation since the 1970s, the researcher found five 

projects whose research would serve to advance the science of career development within the 

context of STEM (NSF, 2017).  Of these programs, four were framed around career development 

theory, and three involved professionals from counselor education or counseling psychology.  

Moreover, two involved a career development intervention for students who had not yet decided 

to pursue a STEM career; one of these was the COMPASS program and one was a program for 

females aged 10 to 14.  As such, the findings of the present study can serve as a foundation for 

future evidence-based outcome research involving STEM career initiatives. 
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Methodology 

 For the current study, the researcher used data collected as part of the UCF COMPASS 

Program, which focused on recruiting and capturing undecided undergraduates into STEM 

majors with the long-term goal of increasing retention in STEM majors.  Because the study was 

part of an active research project, approval from the UCF Institutional Review Board (IRB) was 

already in place.  The following sections outline the research design, sampling, data collection 

and instrumentation procedures, as well as the data analysis that the researcher used. 

Design 

 For the study, the researcher used a quasi-experimental design with non-equivalent 

comparison groups (Campbell & Stanley, 1963; Gall, Gall, & Borg, 2007).  The participants 

were selected into the UCF COMPASS Program using purposive criterion sampling, rather than 

random assignment.  The research hypotheses explored whether a set of identified variables 

could predict retention or attrition in STEM majors across multiple years of college.  In order to 

analyze these potential predictors within the context of the binary outcome (i.e. retention or 

attrition), the researcher tested the first three hypotheses regarding first-to-second year retention 

using a dichotomous dependent variable (coded as Retained in STEM or Not retained in STEM) 

and tested the last three hypotheses regarding first-to-third year retention using a dichotomous 

dependent variable (coded as Retained in STEM or Not retained in STEM).  The researcher 

elected to analyze the data using binary logistic regression.  Methodologists commonly 

recommend this procedure when the dependent variable is categorical, when independent 
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variables data are not normally distributed, and when the regression model will include both 

categorical and continuous variables as predictors (Agresti, 2013; Hosmer, Lemeshow, & 

Sturdivant, 2013; Tabachnick & Fidell, 2013.  Although predictors can be selected for the model 

using several procedures, this study used purposeful selection of predictors based on a review of 

the literature (Hosmer et al., 2013). 

Population and Sample 

 The population for this study included STEM-interested undergraduates who were 

members of a STEM recruitment and retention program.  The researcher drew the sample from 

the UCF COMPASS Program, which is a federally funded initiative that seeks to recruit and 

capture undecided STEM-interested students into STEM majors (National Science Foundation 

STEP 1B: No. 1161228).  Participants expressed an interest in STEM majors based on their self-

selection into the STEM-focused program, but they had not yet committed to a particular major 

at the time they applied.  Criteria for selection into the program included (a) being a first time in 

college student, (b) having an SAT Math score between 550 and 800, (c) having an undeclared 

major status at the time of application, and (d) having a potential interest in pursuing a STEM 

major.  In addition to the two STEM-specific studies referenced throughout this dissertation, the 

COMPASS Program also connects students to a peer mentor, hosts an undergraduate research 

experience, and provides math support through tutoring and designated course sections.  For 

purposes of defining STEM, the COMPASS program considers the following majors as STEM 

majors at UCF:  Aerospace engineering, Biology, Biomedical Sciences, Biotechnology, 
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Chemistry, Engineering (all branches), Computer Science, Forensic Science, Mathematics, 

Photonics, Physics, and Statistics.  All participants joined the COMPASS Program between Fall 

2012 through Fall 2015 semesters.  Participants with an undeclared major took a STEM-focused 

career planning course in their first semester, whereas initially undecided participants who 

declared a STEM major between the time of admission to the program and the first day of class 

took a STEM Seminar class that did not have a career planning focus.  The researcher defined 

these two courses later in this chapter and in subsequent chapters.  Participants received and 

signed an informed consent document indicating their rights as subjects of a research study. 

Data Collection 

 The University’s Institutional Knowledge Management (IKM) Office provided most of 

the data that the researcher used within this study, including demographic information (gender 

and ethnicity), academic data (SAT Math scores and Math Placement Test scores), major related 

variables, and retention data.  As such, a demographic questionnaire was not needed.  The IKM 

Office provided these data in comma-separated values (CSV) files, which were transferred to 

one Statistical Package for Social Sciences (SPSS) file.  Participants completed the Career 

Thoughts Inventory during the first and last week of their first semester in either the STEM-

focused Career Planning course or the STEM Seminar course.  The researcher and a team of 

trained research assistants then added the scores to the SPSS file. 
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Instruments and Instrument Data 

 The researcher utilized results from three instruments: (a) the Career Thoughts Inventory 

(Sampson, Peterson, Lenz, Reardon, & Saunders, 1996a; Sampson, Peterson, Lenz, Reardon, & 

Saunders, 1996b); (b) the SAT Mathematics subtest (CollegeBoard, 2012; 2016); (c) the UCF 

Math Placement Test: Algebra subtest (University of Central Florida, 2016).  Participants took 

the SAT prior to applying for admission to the University and the program.  Next, participants 

completed the Math Placement Test after being admitted to the university to determine their 

math course registration for their first semester.  Finally, participants completed the Career 

Thoughts Inventory as part of COMPASS course programming during the first week of their first 

semester of classes.   

 The Career Thoughts Inventory (CTI) measures negative career thinking by asking 

participants to indicate their level of agreement with 48 statements about the career selection 

process (Sampson et al., 1996a; Sampson et al., 1996b).  The measure provides a total score and 

three subscale scores: (a) Decision Making Confusion; (b) Commitment Anxiety; and (c) 

External Conflict.  Each subscale provides more specific insight into the source of one’s negative 

career thinking.  Completing the CTI yields a raw score and a T-score for the CTI Total and each 

of the subscales.  T-scores higher than 50 are indicative of problematic career thinking in at least 

one area.  Sampson et al. (1996a) provided alpha coefficients for internal consistency that ranged 

from .93 to .97 for the CTI Total and from .74 to .94 for the three subscales.  This study utilized 

change scores calculated by subtracting the pre-test scores from the post-test scores for the CTI 

Total and the three subscales.  Using the Reliability Analysis procedure in SPSS, the researcher 
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found alpha coefficients for the CTI pretest of .95 for the CTI Total score, .87 for the DMC 

subscale, .88 for the CA subscale, and .71 for the EC subscale; similarly, the researcher found 

alpha coefficients for the CTI posttest of .96 for the CTI Total, .92 for the DMC subscale, .89 for 

the CA subscale, and .83 for the EC subscale.  These measures of internal consistency were 

within the same ranges as the coefficients of Sampson et al. (1996a), with the exception of the 

EC subscale that was .03 lower than the norm group but still within the acceptable range 

(DeVellis, 2012; Kline, 2000). 

 The SAT is a test commonly used by colleges and universities for the purpose of making 

admissions decisions (CollegeBoard, 2016).  The test includes four subtests: (a) Essay, (b) 

Critical Reading, (c) Writing, and (d) Mathematics; the overall score can range from 600 to 2400 

and subtest scores (except the Essay) range from 200 to 800.  This study utilized only scores 

from the SAT Math subtest.  This subtest is timed and includes 54 items related to math fluency, 

conceptual understanding, and applications (CollegeBoard, 2016).  Ewing et al. (2005) reported 

an alpha coefficient of .92 for overall internal consistency, with coefficients ranging from .68 to 

.81 for the four identified skill areas that are part of the SAT Math test.  Because the Institutional 

Knowledge Management Office only provided the scale scores without individual item 

responses, the researcher could not run reliability statistics on the SAT for the data set. 

 The UCF Math Placement Test is a university-made assessment that is used to determine 

the math course in which students should start their math sequence at the university.  It is a timed 

assessment with three content areas: (a) algebra, (b) trigonometry, and (c) pre-calculus (UCF, 

2016).  Students begin with the algebra section, and if they complete this test with 70 percent 
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accuracy, they are invited to take the other two sections of the test.  The University had not yet 

made psychometric properties for the Math Placement Test available at the time of this 

dissertation.  Because every student taking the Math Placement Test completes the Algebra 

subtest but may not take the other subtests, the researcher opted to use only the Algebra subtest 

scores for this study.  Additionally, the University only recommended the Math Placement Test 

for incoming students at the beginning of the data collection process but made the test a 

requirement partway through the data collection process; as such, the researcher expected 

missing data for participants who joined the COMPASS program before the Math Placement test 

became a requirement. 

Data Analyses 

 Within the present study, the researcher examined six hypotheses using binary logistic 

regression to determine which of the pre-selected independent variables can predict group 

membership in a binary categorical dependent variable (Agresti, 2013; Hosmer et al., 2013; 

Tabachnick & Fidell, 2013).  After compiling data into one data file, the researcher conducted 

preliminary analyses to identify univariate and multivariate outliers and to evaluate missing data, 

resulting in the removal of 16 outliers and data imputation using the Expectation Maximization 

The final set of preliminary analyses involved checking the data for possible violations of the 

assumptions for logistic regression, including the following: (a) checking the ratio of cases to 

predictor variables, (b) verifying a linear relationship between the logit transform of the 

dependent variable and continuous predictors, (c) checking for multicollinearity, and (d) 

examining potential outliers in the solution (Tabachnick & Fidell, 2013).  To test the first three 
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hypotheses, the researcher used Year Two STEM Retention as the outcome variable (i.e. 

retention from first year to second year), and to test hypotheses four through six, the researcher 

used Year Three STEM Retention as the outcome variable (i.e. retention from first year to third 

year).  Testing hypotheses two and five only required the use of students from the STEM-

focused Career Planning course, whereas testing hypotheses three and six only required the use 

of students from the STEM Seminar class. 

Definitions of Terms 

 This section includes operational definitions for common terms or phrases used within 

this study. 

Career Development:  defined as the process by which individuals make decisions about careers.  

An individual’s career development process may occur naturally or may involve interventions 

from a career development professional (Niles & Harris-Bowlsbey, 2009).  The researcher 

framed this study around four theories of career development, which were discussed in a prior 

section. 

 

Career Development Intervention:  defined as a treatment or initiative provided by a career 

development professional to aid in an individual’s career development process, including making 

informed career decisions (Niles & Harris-Bowlsbey, 2009).  The STEM-focused Career 

Planning class discussed within this study is one example of a career development intervention. 
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Career Thoughts:  defined as thoughts developed by an individual about career problems and 

career decision making based on one’s assumptions, biases, beliefs, and intentions (Peterson et 

al., 1991). 

 

First-year student:  defined as an undergraduate student who is enrolling in a university for the 

first time.  This term is used in place of the term Freshman, as some students enter the university 

as first-year students with enough credit from dual enrollment, Advanced Placement courses, and 

other means to have a higher classification.   

 

STEM Retention:  defined as the status of remaining declared in a STEM major to a specific time 

point, such as the end of an academic year or graduation.  This study will utilize two time points.  

First-year STEM retention refers to one being retained in STEM at the completion of their first 

academic year.  Second-year STEM retention refers to one being retained in STEM at the 

completion of their second academic year. 

 

STEM-Focused Career Planning course:  defined as a 16-week academic course taken at a 

university to enhance an individual’s career development process or to help an individual select 

an appropriate major or career.  This course involves career assessment, career exploration, and 

career decision-making.  In the first phase of the course, students take a battery of career 

assessments to aid in understanding interests, values, skills, personality type, decision-making 

processes, and more.  In the second phase, professionals from STEM industries and academia 

present their career fields to the students in the class and students also participate in visits to 
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STEM research labs; within the class, students reflect on their experiences with these activities 

and whether these STEM fields would be a good fit for them.  In the third and final phase, 

students complete a career action plan and a research paper about a career field of choice; the 

goal of this phase is for them to make a decision about their college major. 

 

STEM Seminar class:  defined as a one credit hour 16-week academic course taken at a 

university to support individuals with declared STEM majors who are a part of the COMPASS 

program.  In this course, students hear from guest speakers representing STEM fields, learn 

about undergraduate research and internship opportunities, participate in STEM lab visits, and 

engage in a service learning activity.  Students in this course take the Career Thoughts Inventory 

at the beginning and end of the course; the assessment results are explained to the students but 

are not used within the course to aid in confirmation of students’ major choice.  On numerous 

occasions throughout the semester, students participate in review sessions for their mathematics 

courses in lieu of a regular class meeting; as students in the program have required study hours, 

students can substitute these math review classes in lieu of their required study hours. 

Limitations 

 The current study had a number of limitations.  First, the study did not include a control 

group.  Both the Career Planning group and the STEM Seminar group received an intervention 

as part of the program, with the STEM-focused Career Planning Course utilizing a more 

systematic career planning approach; the lack of a true control group limits the causal inferences 

that may have been drawn regarding the career development interventions used.  Maturation and 

history may have been natural threats to internal validity, and the lack of a control group 
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prevented the researcher from discerning what differences may be attributed to maturation, rather 

than between group differences.  The data utilized in this study only represented one university 

and one STEM program, so the findings may only be generalizable to similar programs.  

Similarly, the variables used within the study were not comprehensive; therefore, additional 

factors contributing to STEM retention may exist.  Because of the sample size, some subgroups 

within the ethnicity variable violated the recommended number of cases in each of the possible 

retention outcomes (Field, 2009; Peduzzi et al., 1996).  As such, readers should view coefficients 

from these variables with caution.  Also, the researcher is also the instructor for the Career 

Planning Course and a Graduate Assistant for the COMPASS Program, which may result in 

participants acting differently than they would in a career planning course not attached to a 

research study. 

Summary 

 Currently, low undergraduate retention rates for STEM disciplines help perpetuate the 

STEM Crisis.  Just as troubling, these rates contribute to a cycle of underrepresentation for 

women and certain ethnic minority groups in STEM disciplines.  Colleges and universities have 

sought to address these disparities through externally funded STEM initiatives, but prior research 

on such endeavors has primarily focused on examining demographic variables and math-related 

variables with regard to retention in STEM.  Researchers have largely overlooked career 

development related variables, leading to a lack of understanding of their impact on STEM 

retention. 
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 In the present study, the researcher sought to explore a critical gap in the literature related 

to variables that may predict undergraduate retention in STEM, particularly career-related 

variables.  This study gave particular attention to understanding how demographic variables, 

math ability, career development participation, and career readiness could uniquely predict 

whether undergraduates are more likely to be retained in a STEM major or not during their first 

two years of college.  The findings of this study have implications for STEM-interested 

researchers, career and higher education practitioners, and counselor educators.
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CHAPTER II: LITERATURE REVIEW 

 The National Science Foundation (NSF, 2013) and the National Academy of Sciences 

(NAS, 2011) both indicated that the number of qualified workers to fill jobs in science, 

technology, engineering, and math (STEM) fields lags behind rates of growth and advancements 

within these fields.  In 2011, researchers projected that job growth within STEM fields would 

grow by 17 percent through 2018 (Carnevale, Smith, & Melton, 2011).  However, because of 

identified job growth in these fields, increases in retirements within the Baby Boomer 

generation, and low completion of STEM degrees, researchers predicted that the United States 

will be short as many as three million high skilled STEM workers by 2018 (Carnevale et al., 

2011; National Math & Science Initiative [NMSI], 2016).  These issues, commonly referred to in 

aggregate as the “STEM Crisis,” have also sparked debate about the United States’ ability to 

remain competitive in an increasingly more global economy (Chen, 2013; NSF, 2013; NAS, 

2011).    

The STEM Crisis 

 Existing literature presents a varied perspective on the extent to which the STEM Crisis 

has impacted employment across STEM disciplines (Carnevale et al., 2011; National Science 

Board [NSB], 2015; Xue & Larson, 2015).  Rather than arguing that there are across-the-board 

shortages in STEM fields, Xue and Larson (2015) posited that shortages do exist and that they 
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likely vary across STEM disciplines, degree levels of workers, and geographic locations (e.g. the 

demand for degreed petroleum engineers will likely be different in Texas than in Vermont).  The 

discrepancy between the availability of STEM jobs in industry and academia is another 

commonly cited example that highlights that both a STEM crisis argument and a STEM surplus 

argument can be valid.  Whereas there are shortages within some industry-based fields (e.g. 

computer/technology fields and Department of Defense engineering jobs) because of increased 

retirements and creation of new jobs, academic positions have not seen the same increase, 

resulting in these opportunities becoming more competitive (NSB, 2015).  Carnevale et al. 

(2011) added that candidates qualified for STEM positions are graduating from college and 

taking positions in non-STEM jobs that are seeking candidates with similar qualifications.  

Another important aspect of the disagreement over whether there is a STEM crisis or a STEM 

surplus is that some researchers have looked just at raw numbers of STEM graduates compared 

to STEM positions, which leads to a conclusion that there is a surplus; however, these numbers 

must also be broken down based on the number of qualified workers for existing and new 

positions, disparities across gender and racial/ethnic groups, and interacting effects of these 

factors (NSB, 2015). 

 Chen (2013) reported that less than 30 percent of students with a bachelor’s degree had 

chosen a STEM major; additionally, nearly half of these students who entered a four-year 

institution with a declared STEM major changed to a non-STEM major prior to graduation or left 

college.  Of these students who exited their STEM degree program, nearly half left college 

altogether and half changed their majors to something outside of STEM.  Within Chen’s (2013) 
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sample, students who left their STEM majors attempted an average of 11.4 credit hours of STEM 

coursework.  Retention rates vary significantly around the country, with some institutions 

reporting retention rates around 30 percent (Koenig, Schen, Edwards, & Bao, 2012).  As a result 

of these high rates of attrition within STEM, many post-secondary institutions have developed 

programs targeting retention in undergraduate STEM disciplines (Bouwma-Gearhart, Perry, & 

Presley, 2014; Defraine, Williams, & Ceci, 2014; Schneider, Bickel, & Morrison-Shetlar, 2015).  

In addition to aggregate retention in STEM, many of these programs included initiatives to 

address disparities across gender and ethnic groups (Chen, 2013; Palmer, Maramba, & Dancy, 

2011).  The National Science Board (NSB, 2016) indicated that recent spikes in the number of 

STEM graduates relate highly to the number of international students coming to the United 

States to pursue STEM degrees; this influx of international students completing STEM degrees 

in the United States is problematic in cases in which the student does not remain in the United 

States after graduation, as these cases increase the retention and graduation rates without adding 

candidates to the U.S. STEM workforce.   

 Billions of dollars are spent each year on STEM initiatives at the K-12 and postsecondary 

levels, with most coming from the federal government through grants from the National Science 

Foundation, the Department of Defense, and the Department of Education (Carnevale et al., 

2011).  The 2016 federal budget appropriated more than $1 billion to STEM initiatives through 

the National Science Foundation and Department of Education alone (US House of 

Representatives, 2016).  As previously stated, the nearly five million Baby Boomers expected to 

retire from STEM jobs and the disparities in some underrepresented populations within STEM 
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(e.g. women, people of color) both are cause for concern for the STEM labor market in the 

United States (Carnevale et al., 2011).  Currently, the STEM labor market is underutilizing 

individuals from demographic groups that comprise nearly half of the U.S. population (i.e. 

women and ethnic minorities) and instead is filling in gaps in STEM with foreign-born workers 

(Carnevale et al., 2011).  

 The purpose of this review was to examine empirical and theoretical literature related to 

STEM declaration and academic persistence in STEM majors.  For the purposes of the review, 

the researcher defined STEM declaration as the process of selecting a major within a science, 

technology, engineering, or math field; STEM declaration can entail changing a major from a 

non-STEM major to a STEM major or moving from and undeclared major to a declared STEM 

major.  Academic persistence, or retention, was defined as the process of remaining within a 

STEM major until graduation and obtaining a STEM degree.  The researcher framed this 

literature review around three primary constructs as they pertain to STEM retention and degree 

attainment:  (a) demographic variables, (b) math ability, and (c) career development factors.  

Demographic variables include gender, ethnicity, and the interaction between the two, whereas 

math ability refers to students’ performance on standardized math assessments; this section also 

examines the effect of stereotyping on math ability.  The career development section considers 

several career development theories, previous predictive models related career initiatives within 

STEM, and STEM-focused career planning classes. 
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Gender Disparities in STEM 

 Gender disparities exist both within the STEM workforce and in STEM degree programs 

(NMSI, 2016).  Whereas women make up nearly 48 percent of workers in all occupations, they 

only account for 23 percent of workers in STEM fields.  Equally startling, men aged 25 and 

older hold 87 percent of engineering bachelor’s degrees, with white men accounting for 

approximately one half of the science and engineering workforce (NSF National Center for 

Science and Engineering Statistics [NCSES], 2015).  Science-interested females are more likely 

to be interested in and are overrepresented in non-diagnosing health practitioner fields (e.g. 

nursing, dental hygienist) and psychology (ACT, 2014; NSF, 2015); however, these are not 

included on the NSF STEM Classification of Instructional Programs Crosswalk (NSF, 2016).  

Within engineering fields, females are more likely to enter chemical, materials, industrial, or 

civil engineering programs, rather than aerospace, mechanical, or electrical engineering 

programs (NCSES, 2015).  The fields of computer science, mathematics, and physics have seen 

either stagnation or decline in female participation the undergraduate level (NCSES, 2015).  

 Mansfield, Welton, & Grogan (2014) established through a qualitative policy analysis 

that gender disparities within STEM fields has been a topic of public discourse and policy 

discussions for numerous years; however, they concluded that stakeholders have not adequately 

addressed gender-related barriers to success in STEM at the appropriate level (i.e. K-12 

education) in order to yield results at the undergraduate level.  Riegle-Crumb, Grodsky, and 

Muller (2012) analyzed data from three national education data sets at three different time points 

over a 22-year span; they found males took calculus and physics courses at significantly higher 
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rates at all three time points.  These data likely partially explain why undergraduate females were 

more likely to change from a STEM major to a non-STEM major, as non-STEM majors are less 

likely to require higher-level math courses (Chen, 2013).   

 Gender stereotypes have also played a role in the disparities within STEM.  Beasley and 

Fischer (2012) explored the role of stereotype threat (i.e. group-based performance anxiety) in 

students’ decision to declare a STEM major; in their analysis, females were overall less likely to 

declare a STEM major (OR = .59, p < .001) and at significantly lower rates for Black (OR = .87, 

p < .01), Hispanic (OR = .79, p < .001), Asian (OR = .51, p < .001), and White (OR = .50, p < 

.001) females.  The researchers noted that females were overall more likely to leave their STEM 

major, which they hypothesized was due to experiences of stereotype threat; however, they did 

not report the odds ratio.  When the researchers examined group anxiety (their measure of 

stereotype threat), the odds of leaving a STEM major were higher for Black females (OR = .80) 

and Hispanic females (OR = .57) than their male counterparts; White females (OR = .61) actually 

had lower odds of leaving their STEM majors than White males (OR = .65), albeit a small 

difference.  The authors did not report a standardized measure of effect size.  This particular 

study was among the first to examine the effect of stereotype threat on persistence within a 

major, rather than just in short-term testing situations. 

 Litzler, Samuelson, & Lorah (2014) found different results in a sample of over 7,800 

engineering students at 21 post-secondary institutions.  Using multilevel linear regression, the 

authors sought to compare levels of confidence in STEM across gender and racial groups, with 

White males as the reference category.  In their first model that did not include covariates, all 
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demographic subgroups had significantly or non-significantly lower STEM confidence scores.  

The STEM confidence scores were significantly lower for Asian males (b = -.30, p < .001), 

Hawaiian/Pacific Islander males (b = -.57, p < .05), White females (b = -.18, p < .001), African 

American females (b = -.34, p < .001), Hispanic females (b = -.23, p < .001), and Asian females 

(b = -.37, p < .001); the other five subgroups (African American males, Native American males, 

Hispanic males, Native American females, and Hawaiian/Pacific Islander females) had lower 

STEM confidence scores than White males, but the differences were non-significant.  Their 

second model included covariates related to the university environment (e.g. good professors, 

student community).  After adjusting for covariates, only White females continued to have 

significantly lower confidence scores (b = .07, p < .01).  The researchers acknowledged that their 

sample was skewed by overrepresentation of females compared to the actual STEM population; 

however, they did not address that non-White males and females accounted for a combined 28.5 

percent of the total sample used in the analysis, with the Hawaiian/Pacific Islander and Native 

American subgroups combined accounting for less than 2 percent of the total sample.  The first 

model without covariates explained approximately 2 percent of the variance in STEM outcomes, 

whereas the second model with covariates explained approximately 37 percent of the variance in 

STEM outcomes. 

 Several models have been used to predict STEM participation and retention with regard 

to gender.  Females were less likely to be retained in STEM, as were racial/ethnic minorities, in 

two identified studies (Cundiff, Vescio, Loken, & Lo, 2013; Gayles & Ampaw, 2014).  Cundiff 

et al. (2013) explored the effect of gender stereotypes on individuals’ intent to persist in science.  
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Their sample included approximately 1,800 undergraduate students from introductory biology, 

chemistry, and physics courses at one university.  For females, stronger gender stereotypes in 

science predicted weaker science identification and a weaker desire to pursue a science career 

(Path a = -0.28, p < .01, R2 = .34).  In contrast for males, stronger gender stereotypes in science 

predicted stronger science identification and an increased desire to pursue a science career (Path 

a = 0.18, p < .01, R2 = .20).  The authors noted that their sample did not include STEM-

interested students without a declared major and suggested that subsequent research should 

investigate the effect of gender stereotyping on major selection, rather than desire to continue in 

a STEM major.   

 Gayles and Ampaw (2014) examined the relationship between the college experience and 

STEM degree attainment based on gender.  Using a subset of a national dataset (n = 1,488), the 

researchers ran a binary logistic regression to analyze predictors of STEM degree completion.  

Compared to the entire sample, female students were overall less likely to complete a STEM 

degree than male students (OR = 0.84, SE = 0.01, p  < .01).  Hispanic females (OR = 0.40, SE = 

0.02, p  < .01) and Black females (OR = 0.72, SE = 0.03, p  < .01) were significantly less likely 

to complete a STEM degree than their male counterparts.  Another interesting finding was that 

female students who did not need math remediation (OR = 13.9, SE = 1.15, p  < .01) were 

significantly more likely to complete a STEM degree than their male counterparts (OR = 0.38, 

SE = 0.02, p  < .01).  These studies provide a rationale for further inclusion of gender as a 

variable in predictive models.  The authors reported odds ratios as measures of effect size. 
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Race/Ethnicity Disparities within STEM 

 Similar to gender, there are also disparities in STEM degree attainment and STEM 

employment across racial and ethnic groups, primarily with people of color (NSF, 2013; Palmer 

et al., 2011).  Underrepresented minority groups have made gains in degree attainment within 

psychology, social sciences, computer sciences, and biological sciences, but have had stagnant 

or decreasing participation within engineering, physical sciences, and mathematics (NSF, 2015). 

Chen (2013) reported that Black students were more likely to leave their STEM major either by 

dropping out of college or by changing to a non-STEM major.  In contrast, Foltz, Gannon, & 

Kirschmann (2014) found through qualitative inquiry that minority STEM students identified 

college-going expectations from the family-of-origin, close connections with STEM faculty 

members, integration with overall campus life, a sense of community with other minority 

students in similar programs as protective factors that support retention in STEM majors.  

However, minority underrepresentation in STEM for both students and faculty creates inherent 

difficulties in fostering these relationships.  In a longitudinal analysis of data from the 

Department of Education, the NSF NCSES (2015a) found that ethnic minority males and 

females separately attained STEM bachelor’s degrees at approximately the same rate as the 

overall aggregate (males and females combined) for each racial/ethnic group; the only exception 

was with Black or African American students, where female students were awarded STEM 

degrees at a higher rate than males. 
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 Riegle-Crumb and King (2010) encouraged researchers to examine the intersectionality 

of race/ethnicity with gender within STEM fields.  In their analysis of a national education data 

set, they found that higher percentages of Black (35.5 percent) and Hispanic (33.9 percent) males 

chose physical science and engineering majors than their white male counterparts (30.7 percent), 

with a somewhat similar ratio for Black (15.9 percent) and Hispanic (12.7 percent) females 

compared to white females (13.1 percent).  The researchers did note, however, that their sample 

only included students who entered four-year universities, which eliminated a disproportionate 

number of minority students from the sample.   

 As suggested by Riegle-Crumb and King (2010), many predictive models that examined 

demographics and academic persistence included both gender and ethnicity.  The previous 

section highlighted a few predictive models that examined the effects of stereotypes and 

stereotype threat (Beasley and Fischer, 2012; Cundiff et al., 2013).  Both studies showed a clear 

interaction between gender and race, particularly for non-White females.  Models related to 

males-of-color showed mixed results, with some indicating a higher likelihood (Riegle-Crumb & 

King, 2010) and some showing a lower likelihood of obtaining a STEM degree (Cundiff et al., 

2013; Gayles & Ampaw, 2014).  Nevertheless, the obtained results warrant future models to 

include race as a predictor to investigate this variable further. 

Mathematics & STEM 

 Higher Scholastic Aptitude Test (SAT) Math scores (a measure of subject area readiness) 

are correlated with higher grade point averages in first-year undergraduate math and science 
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classes (CollegeBoard, 2012).  For example, students with an SAT Math score of 680 

(representative of the 91st percentile) have a 75 percent probability of obtaining a 2.67 grade 

point average in first-year math and science courses and a 65 percent chance of obtaining a 3.0 

grade point average in first-year math and science courses.  The SAT is most often used in 

decisions related to university admission and can be used in conjunction with other assessments 

(e.g. math placement exams, Advanced Placement tests) to determine which math classes 

undergraduate students will start in when they enroll in post-secondary classes.   

 Despite the SAT being one of the most commonly used college entrance exams 

(CollegeBoard, 2017), numerous research studies over several decades have highlighted potential 

test bias with the SAT based on race, noting that lower mean family income and decreased 

access to SAT preparation courses has contributed to Black students having lower mean SAT 

scores than their White counterparts (Dixon-Román, Everson, & McArdle, 2013; Lawlor, 

Richman, & Richman, 1997; Temp, 1971; Toldson & McGee, 2014).  As a result, CollegeBoard 

revised the SAT in 2016 to address these concerns, and many universities have changed 

admissions and decision-making polices regarding the use of college entrance exams 

(CollegeBoard, 2017; Toldson & McGee, 2014).   

 Three predictive models identified higher academic achievement and aptitude measured 

with the SAT as a predictor of academic success later in college (Crisp et al., 2009; Le, Robbins, 

& Westrick, 2014; Rohr, 2012).  Mattern and Patterson (2013) examined the relationship 

between SAT scores and university retention to the second year.  With a sample of over 215,000 

students from 160 institutions, they found a positive association between SAT scores and second 
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year retention after accounting for gender, race, income, parents’ education, and high school 

grade point average.  The total sample had a mean SAT Math score of 572 (SD = 99.0); the 

retained students (n = 186,257) had a mean SAT Math score of 578 (SD = 98.0), whereas the 

non-retained students (n = 29,447) had a mean SAT Math score of 529 (SD = 95).  Their primary 

analysis examined the SAT composite score rather than the Math subscore.  The retention rate 

increased from 60 percent with the lowest composite score band (600-890) to 96 percent with the 

highest score band (2100-2400).  The positive trend remained consistent when broken down by 

gender and ethnicity.  The authors did not provide an r value for the correlation between SAT 

scores and retention or any measures of effect size; moreover, it must be noted that the research 

conducted in this study was supported by CollegeBoard, the creator of the SAT. 

 Chen (2013) reported that undergraduates who had taken higher-level math courses in 

high school (e.g. Pre-calculus and Calculus) left their declared STEM majors at a lower rate (12 

percent) than students who had not taken higher level math courses in high school (41 percent).  

However, many students with high math potential choose majors outside of STEM, as evidenced 

by comparable SAT Math scores for STEM majors (e.g. Engineering, Biological Sciences, 

Mathematics, Computer Science) and non-STEM majors (e.g. foreign/classical languages, legal 

studies, literature) within one report (Carnevale et al., 2011).  These findings provide evidence 

that higher math aptitude can help students be successful both in STEM and non-STEM fields, 

but that it provides a necessary boost to students who do intend to major in a STEM field. 
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 As noted in the previous sections, researchers have connected math ability and math 

efficacy to gender and ethnicity.  Nosek and Smyth (2011) found that females across the lifespan 

exhibited lower implicit warmth for math (M = 5.16, SD = 2.57, d = -.29, p < .05) than males (M 

= 5.93, SD = 2.41), lower explicit identification with math (M = -.25, SD = .75, d = -.27, p < .05) 

than males (M = -.03, SD = .76), and lower self-ascribed math ability (M = -.11, SD = .79, d = -

.28, p < .05) than males (M = .13, SD = .76).  These findings likely shed light on gender 

disparities within participation in higher-level math courses in high school and undergraduate 

retention in STEM majors.  Similarly, Gayles & Ampaw (2014) noted that females who do not 

need math remediation in college have a significantly higher likelihood (OR = 13.9, SE = 1.15, p 

< .01) of completing their STEM degree than males who do not need math remediation (OR = 

.38, SE = .02, p < .01).  The authors noted that these gender differences are more likely rooted in 

internalized factors based on environmental stereotypes and stressors, rather than objective 

observable factors.  Due to the strong relationships demonstrated between demographic variables 

and mathematics, math ability should also be investigated further with regard to academic 

persistence and attrition in STEM majors. 

Career Development and Intervention 

 Many career theories address career decision-making and career choice.  The career 

theories that follow have been included in this review because of their relevance to variables 

pertinent to STEM retention.  Research outcomes and implications for STEM programming will 

be discussed. 
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Theory of Circumscription, Compromise, and Self-Creation 

 Linda Gottfredson (1981) proposed a developmental theory that integrated the 

sociological and psychological approaches to career development.  The aim of her Theory of 

Circumscription, Compromise, and Self-Creation was to explain emerging trends in occupational 

choice based on demographic factors, such as ethnicity/race, sex/gender, and social class.  

Within Gottfredson’s (1981) framework, she defined circumscription as the process by which 

individuals eliminate occupations as possible careers based on interactions with society during 

their formative years.  The process of circumscription occurs within four stages:  (a) Orientation 

to size and power, (b) Orientation to sex roles, (c) Orientation to social valuation, and (d) 

Orientation to internal unique self.  The second stage represents the primary time during which 

students’ conceptualization of careers are influenced by societal gender norms and stereotypes; 

for example, children may come to believe that being a doctor is for boys and being a nurse is for 

girls.  In the third stage, children begin to conceptualize how the dominant society assigns 

prestige and value to some occupations based on the type of work being done.  Within these 

stages, children develop what Gottfredson labeled as images of occupations; these are the 

internalized stereotypes of occupations that individuals have related to whom they believe can 

work in an occupation and what kind of work they believe can be done by someone in that 

occupation.   

 As children develop, their self-concept is influenced by their appearance, gender, values, 

abilities, and personality, among other factors.  They evaluate their images of occupations 
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against themselves and begin to eliminate career options from their future as early as four years 

old (Curry & Milsom, 2014).  Over time, children can begin to adjust their preferred career 

options based on the external, or environmental, constraints that affect their beliefs about the 

attainability of a career (Zunker, 2016).  This process is known as compromise (Gottfredson, 

1981).  Through her research, she found that individuals are more likely to compromise their 

area of career interest than their preferred level of prestige or sex type (i.e. careers they see as 

congruent with their internalized concept of gender roles) if there is a large discrepancy between 

what type of career they want to do and they type of career they perceive as possible (Zunker, 

2016).  If this same discrepancy between their preference and their perceived reality is moderate, 

they are more likely to compromise on sex type than prestige.   

 This process of circumscription and compromise is especially important with regard to 

STEM careers, as there are large disparities in STEM career attainment for women and people of 

color (NMSI, 2016; NSF, 2013; Palmer et al., 2011).  Within the process of circumscription, 

children make judgments about the attainability of a career based on whether or not they see 

people like themselves in the career.  If students from demographic groups who are 

underrepresented in STEM are not exposed to individuals representative of their population in 

STEM careers, these demographic patterns, according to Gottfredson’s theory, may become 

cyclical (i.e. the cycle of underrepresentation will not break itself without an outside intervention 

propelling students from underrepresented groups into STEM fields).  Mansfield et al. (2014) 

noted that these interventions are more appropriate at the K-12 level if differences are sought at 

the undergraduate level; however, they noted that such endeavors can be effective at the 
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undergraduate level.  Such interventions should include exposing students to STEM faculty, 

graduate students, and industry professionals from underrepresented populations who can disrupt 

the images of occupations that students may have for STEM fields.     

Theory of Vocational Choice 

 John Holland’s (1973) theory seeks to connect individuals to a career that is congruent 

with their personalities, reflected by interests, skills, and values.  His theory is one of the most 

widely used career theories in practice (Curry & Milsom, 2014).  After studying the preferences 

and values of workers, Holland was able to create a system of classifying careers into personality 

types.  The six primary personality types are Realistic (R), Investigative (I), Artistic (A), Social 

(S), Enterprising (E), and Conventional (C); these six personality types are presented as a 

hexagon, with each type representing a different zone of the hexagon (See Figure 1).  Holland 

(1973) organized and categorized careers based on the top associated personality types for 

members of a particular career (e.g. the code for Astronomers is Investigative-Artistic-Realistic, 

or IAR).  These groupings make it easier for individuals to explore similarities and differences 

between careers with similar codes. 
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Figure 1.  Holland’s RIASEC Model 

    

 Through assessments based on Holland’s theory, individuals can learn their top three 

personality types, represented by the three-letter code (e.g. Realistic-Conventional-Investigative, 

or RCI; Holland, Vierstien, Kuo, Karweit, & Blum, 1970).  The primary personality type is 

listed first followed by the second and third highest type, which can help and individual better 

understand nuances or specific preferences within the primary type (i.e. an individual with a 

code of RCI will have somewhat different preferences than an individual with a code of ICR).  If 

an individual’s scores show that their top personality types are much higher than the remaining 

types, the individual’s personality code is considered to be well differentiated (Curry & Milsom, 

2014).  An undifferentiated score indicates that the individual shows no discernable preferences 

toward a particular personality type, which could make narrowing career options more difficult 

for that person.  Similarly, if an individual’s top personality type preferences are adjacent to each 

other on the hexagon, his or her personality code is considered to be congruent (Holland, 1973).  
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Because careers were intended to be classified into congruent codes, an individual with an 

incongruent code may struggle to integrate all personality preferences into a particular career.  

 Researchers using Holland’s model to make predictions about undergraduates in STEM 

have focused both on major selection and academic persistence (Le, Robbins, & Westrick, 2014; 

Porter & Umbach, 2006).  Examining a sample of 1,665 undergraduate students, Porter and 

Umbach (2006) found that students with an investigative personality type were 17.4 percent less 

likely to choose an arts/humanities major over a science major, 9.3 percent less likely to choose 

an interdisciplinary major over a science major, and 14.2 percent less likely to choose a social 

sciences major over a science major (p < .01).  In contrast, students with an artistic personality 

type were 25.4 percent more likely to choose an arts/humanities major over a science major, 7.6 

percent more likely to choose an interdisciplinary major over a science major, and 10.0 percent 

more likely to choose a social science major over a STEM major.  Whereas the authors noted 

that these findings could be supported by theory, they recognized several limitations of their 

study, including the relatively low reliability of their investigative personality scale (a = .58) and 

their use of a national data set with which they had no control of data collection procedures.  

Additionally, as these findings support questions related to Holland personality types and major 

selection, they do not address associations between personality types and persistence within a 

declared STEM major. 

 Le et al. (2014) examined both major selection and academic persistence for 

undergraduates in STEM based on Holland’s model.  The researchers used a longitudinal data 
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set from ACT of students (N = 207,093) at 51 four-year post-secondary institutions.  First, the 

authors examined the likelihood of enrolling in a STEM major by calculating an Interest-fit 

coefficient (a Pearson’s product-moment correlation between a student’s interest profile score 

and an overall profile score for STEM fields, then converted to a Fisher’s z).  The researchers 

built this coefficient into the predictive model, with a higher Fisher’s z score indicative of a 

better fit with the student’s profile and the STEM profile (i.e. investigative and realistic).  

Students with a higher standardized interest fit coefficient were statistically significantly more 

likely to choose a STEM science (OR = 2.47, p < .01, Delta p [effect] = .06) or a STEM 

quantitative major (OR = 1.58, p < .01, Delta p [effect] = .05).  Regarding persistence within 

STEM majors, students with a higher standardized interest fit coefficient were statistically 

significantly less likely to change to a non-STEM major (OR = .881, p < .01, Delta p [effect] = -

.024.  Despite small effect sizes, these results indicated that interest fit based on Holland’s model 

is a stronger predictor of STEM major declaration than of persistence in STEM.  One limitation 

of the study is that the authors only disaggregated STEM majors into two categories: STEM 

science and STEM quantitative. 

Super’s Life-Span Life-Space Theory 

 In contrast to Holland’s career theory focusing on person-environment fit, Super’s (1953, 

1990) Life-Span Life-Space Theory explains career development as a process that evolves 

developmentally over time and within a variety of life roles (e.g. child, student, parent).  Super 

also held that individuals are qualified for a variety of occupations based on their interests, 
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values, skills, personality traits, and self-concept (Niles & Harris-Bowlsbey, 2009).  Career 

adaptability, or career maturity, refers to one’s readiness to make career decisions, which can 

relate to career knowledge, career exploration activities, and the influence of one’s environment 

(Niles & Harris-Bowlsbey, 2009; Savickas, 1997).  Individuals become more ready to make 

career decisions as they progress through a series of ordered developmental tasks; stagnation 

with one task can lead to career indecision (Super, 1990).  

 The first stage in Super’s model is Growth, which occurs during childhood; in this stage, 

children become attuned to the world-of-work through fantasy, play, and curiosity about careers 

(1990).  Exploration, the second stage, occurs during adolescence and continues into early 

adulthood; learning about, trying out, and narrowing career options are crucial to this stage.  

Early to middle adulthood is the timeframe of the third stage, Establishment; in this stage, 

individuals become more committed to their career and take steps to advance and become stable 

within their field (Super, 1990).  Maintenance and Disengagement are the final two stages; 

within these stages, individuals work to maintain their careers into late adulthood and begin to 

transition out of their careers, respectively.  Whereas these stages can occur linearly for some 

individuals, others may cycle back through an earlier stage if that individual experiences a career 

or job shift. 

 The life space is also a very important aspect of Super’s (1953, 1990) theory.  He noted 

that as individuals develop, the salience of their roles within their environment will shift.  For 

example, a child or adolescent might more readily identify with the role of child or student, 
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whereas an older adult might identify more with the role of citizen or pensioner (Niles & Harris-

Bowlsbey, 2009).  Super also noted that these roles are enacted within several key environments 

(e.g. the home, the school, the workplace, and the community (Super, 1953, 1990).  The stages 

in the model are often visually represented in context to the life roles as a Life Career Rainbow, 

on which individuals can display the salience of a particular role at a particular stage (Super, 

1990).   

  The Career Development Inventory (CDI; Glavin & Rehfuss, 2005; Super, Thompson, 

Jordan, Lindeman, & Myers, 1981) is a measure of career decidedness and career adaptability 

based on Super’s theory.  The CDI includes four subscales.  Career Planning measures the extent 

to which an individual has engaged in career planning activities, whereas Career Exploration 

assesses one’s awareness of resources and information pertaining to career decision making.  

The Decision Making subscale evaluates one’s ability to make appropriate decisions with regard 

to careers, and the World-of Work subscale evaluates an individual’s fund of knowledge 

regarding their career options.  Higher scores on each subscale are indicative that an individual is 

more ready to make decisions about careers, whereas lower scores indicate that further 

knowledge or intervention is needed.  With regard to STEM, no published studies were found 

that applied the CDI to a unique STEM population, particularly with regard to predicting 

academic persistence. 



 

 48 

Social Cognitive Career Theory 

 A newer career development theory, Social Cognitive Career Theory (SCCT; Brown & 

Lent, 1996; Lent, 2005; Lent & Brown, 2002) frames the career development process, including 

self-efficacy, outcome expectations, interests, action, and performance.  Due to the importance 

of self-efficacy to SCCT, the theorists pulled from Bandura’s (1986) social cognitive theory, 

noting that self-efficacy is impacted by past performance on a task, vicarious learning, social 

persuasion, and physiological reactions.  According to SCCT, these self-efficacy beliefs can 

impact outcome expectations, interests, goals, action initiation, and actual performance (Niles & 

Harris-Bowlsbey, 2009).  Similarly, outcome expectations can impact interests, goals, and action 

initiation.  For career development specifically, self-efficacy beliefs and beliefs about how one 

will perform in a career will impact whether a person chooses to go into a particular field, what 

steps are taken to be successful within that field, and task performance within that field.  As with 

Gottfredson’s theory, SCCT takes an individual’s broader social context into account; however, 

SCCT uses a more cyclical model, rather than a linear model.  This process cycles back and 

influences future self-efficacy and outcome beliefs, either for better or worse.   

 As discussed in prior sections, demographic factors, as well as one’s perceived math 

ability, can impact self-efficacy and outcome beliefs for STEM fields.  Based on Gottfredson’s 

theory, individuals from underrepresented groups may have difficulty imagining themselves 

within some STEM fields; taking that sentiment further with SCCT, they may also not be able to 

see someone like them being successful in a STEM major (Niles & Harris-Bowslbey, 2009).  



 

 49 

Similarly, if one does not feel efficacious with mathematical ability, he or she may opt for a non-

STEM major that requires fewer math classes. 

 Lent, Miller, Smith, Watford, Lim, and Hui (2016) tested the SCCT model with 908 

engineering undergraduates across two universities.  Using path analysis, the researchers 

concluded that intended persistence (i.e. wanting to finish) had the strongest direct relationship 

(path coefficient = .29) with actual academic persistence from the second year to the third year 

of college.  The authors noted that several variables intervened between self-efficacy and actual 

academic persistence, including academic satisfaction and persistence intentions.  Two 

limitations to this study include the fact that the researchers only examined engineering majors 

and that the study examined second and third-year students.  Nevertheless, the study’s results 

shed light on how self-efficacy and other factors related to career adaptability help predict 

retention in STEM. 

 In a similar study, Lee, Flores, Navarro, and Kangui-Munoz (2015) tested SCCT’s 

academic persistence model with 350 White and Latino/a men and women.  The results of the 

model established a statistically significant relationship between math/science ability (as 

measured by the ACT Math and Science tests) and students’ first-year undergraduate grade point 

averages (path coefficient = .39, p < .001) and between math/science ability and engineering 

self-efficacy (path coefficient = .20, p < .01).  The ACT alone had a small, albeit non-significant, 

relationship with actual persistence (path coefficient = -.02, p > .05), whereas college grade point 

average had a stronger relationship with actual persistence (path coefficient = .17, p < .05).  
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There were strong linear paths linking ability to self-efficacy to goals (path coefficient = .30, p < 

.001) and goals to persistence (path coefficient = .36, p < .001).  The overall model explained 17 

percent (R2 = .17) of the variance in persistence outcomes.  Most notably, the model did not vary 

between White and Latino/a students [2 (7) = 10.38, p > .05].  However, there were some 

differences by gender [2 (8) = 16.33, p < .05].  The model explained 12 percent (R2 = .12) of the 

variance in persistence outcomes for males and 35 percent of the variance in persistence 

outcomes for females (R2 = .35), providing more support for the use of SCCT concepts with 

females in STEM.  The authors did not include outcome expectations from the model, which 

limits the ability to test the effect of that variable.   

 In another study, Lent, Lopez, Lopez, and Sheu (2008) tested the Social Cognitive 

Career Theory model with students in computing disciplines and found that self-efficacy was a 

strong predictor of outcome expectations (r = .71, p < .05), interests (r = .61, p < .05), and major 

choice goals (r = .30, p < .05).  Moreover, the model explained 44 percent (R2 = .44) of the 

variance in self-efficacy, 50 percent (R2 = .50) of the variance in outcome expectations, 40 

percent of the variance in interests (R2 = .40), and 33 percent of the variance in major choice 

goals (R2 = .33).  Lent et al.’s model fit well when the researchers separately added gender, 

ethnicity, education level, and university type (predominantly White institution or historically 

Black college/university) as grouping variables.  This indicates that predictive models must take 

on a wide array of variables when predicting academic persistence in STEM.  The researchers, 

however, only applied the model to one discipline within STEM with a population that was not 

representative of STEM overall. 
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The Cognitive Information Processing Approach 

 The Cognitive Information Processing (CIP) approach to career decision making focuses 

both on the content and the process of how individuals make decisions about their careers 

(Peterson, Sampson, & Reardon, 1991; Peterson, Sampson, Reardon, & Lenz, 1996; Sampson, 

Lenz, Reardon, & Peterson, 1999; Peterson, Sampson, Lenz, & Reardon, 2002).  In essence, the 

goals of the CIP approach are to better understand a person’s decision-making process and to 

help them make informed career decisions.  Akin to Super’s theory, CIP addresses career 

adaptability in practice and also examines how one’s internal thoughts or processes impact career 

decision-making.  As such, CIP helps individuals understand the nature of their career decision-

making process and provides a framework that can be used to assist individuals in making career 

decisions (Peterson et al., 2002). 

 The content component of the career decision-making process incorporates knowledge of 

the individual, knowledge of the world of work, and knowledge of decision-making skills.  CIP 

theorists graphically represented this content component of CIP with the Pyramid of Information 

Processing Domains (Peterson et al., 1991).  The Knowledge Domain, or the base of the 

pyramid, includes self-knowledge and occupational knowledge; self-knowledge includes 

personal information (e.g. values, skills, interests) about an individual obtained through formal 

and informal career assessments, whereas occupational knowledge refers to knowledge about the 

world-of-work and about specific career fields.  The Decision-Making Skills Domain, or the 

center of the pyramid, represents the process an individual uses to choose a career, major, or job 

that fits with his or her unique profile; within the context of CIP, this process is the CASVE 
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Cycle (Communication, Analysis, Synthesis, Valuing, Execution), which is the process 

component of CIP.  The Executive Processing Domain, or the top of the pyramid, represents the 

metacognitions related to making career decisions; these metacognitions can include positive and 

negative self-talk and awareness of one’s thoughts and feelings about career decision making. 

 

Figure 2. The Pyramid of Information Processing Domains of CIP 

 

 Making career decisions is one of the most important and powerful processes that shape 

the life of an individual (Hackett & Betz, 1995).  Furthermore, career indecision, defined as the 

struggle with making decisions related to careers, is associated with reduced life satisfaction, 

lower career self efficacy, and heightened stress and anxiety (Jaensch, Hirschi, & Freund, 2015).  

Saunders, Peterson, Sampson, and Reardon (2000) found that depression and dysfunctional 

career thinking were significant predictors of career indecision.  The authors further noted that 
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because dysfunctional career thinking contributes to problems with making career decisions, 

these negative career thoughts should be addressed prior to engaging in career exploration and 

planning.   

 The Career Thoughts Inventory is a measure of negative career thinking that provides a 

total score and three subscale scores: Decision Making Confusion, Commitment Anxiety, and 

External Conflict; the researchers derived these subscales from a series of principal component 

analyses with oblique rotation that identified a three factor structure.  Higher scores on the CTI 

indicate more negative career thinking (Sampson, Peterson, Lenz, Reardon, & Saunders, 1996a).  

Using a generic sample of college students (N = 595), Sampson et al. (1996a) reported reliability 

coefficients for the CTI Total score ( = .96), the DMC subscale ( = .94), the CA subscale ( = 

.88), and the EC subscale ( = .77).  Each of these coefficients falls within the acceptable to 

excellent ranges for internal consistency (DeVellis, 2012; Kline, 2000).  They also reported 4-

week test-retest correlations for the CTI Total score (r = .86), the DMC subscale (r = .82), the 

CA subscale (r = .79), and the EC subscale (r = .74) with the college student sample.  The 

authors established convergent validity by correlating the CTI scales with the My Vocational 

Situation scale, the Career Decision Scale, the Career Decision Profile, and the Revised NEO 

Personality Inventory; with all three norming groups, the relationships between the CTI scales 

and the other instruments were in the direction expected based on theory, with the strongest 

correlations with the Career Decision Scale.  The CTI has been studied with general populations, 

as well as with individuals with disabilities and incarcerated males (Dipeolu, Sniatecki, Storlie, 

& Hargrave, 2013; Meyer & Shippen, 2016; Sampson, Peterson, Lenz, & Saunders, 1996a).  In 
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these studies, career development interventions reduced negative career thinking.  However, 

these studies did not test it with an intervention or test it with particular career fields (e.g. 

STEM).  

 Prescod et al. (In press) examined differences in CTI scores with STEM interested and 

STEM declared undergraduates after their first semester of college; the study by Prescod et al. 

was a part of the same STEM program as the current dissertation.  The STEM interested students 

(n = 99) took a STEM-focused career planning class to help them select a major, whereas the 

STEM declared students (n = 182) took a STEM seminar class designed for students majoring in 

STEM.  Using a series of one-way ANOVAs, the researchers found statistically significant 

differences between the STEM interested and STEM declared students on the CTI Total [F 

(1,279) = 31.54, p = .000, eta² = .12] the CTI DMC subscale [F (1,279) = 32.68, p = .000, eta² = 

.11], the CTI CA subscale [F (1,279) = 18.86, p = .000, eta² = .07], and the CTI EC subscale [F 

(1,279) = 8.60, p = .000, eta² = .03].  The STEM decided group had lower CTI Total pretest 

scores (M = 31.64, SD = 20.55) and CTI Total posttest scores (M = 29.12, SD = 21.85) than the 

STEM interested group (Pretest: M = 50.52, SD = 19.41; Posttest: M = 36.07, SD = 21.94).  

Although the researchers did not report an F statistic for the differences within each group from 

pre to post, the mean scores demonstrated that the STEM interested group had a greater decrease 

in negative career thinking than the STEM declared group.  These findings provided preliminary 

support for the STEM-focused Career Planning course as a means of helping students lower 

negative career thoughts; however, the lack of a true control group makes it difficult to reach a 

causal inference. 
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 The researchers from the present dissertation and from the Prescod et al. (In press) study 

conducted a follow-up analysis, which has not yet been published at the time of this dissertation.  

In this analysis, the researchers tested the effect of an STEM-focused undergraduate Career 

Planning Course on students’ negative career thoughts.  Of the total sample, 214 undecided 

students participated in the Career Planning course; as a comparison group, 118 students who 

were recruited under the same criteria as the intervention group and who declared a major 

between the time of admittance to the program and the start of classes, took a STEM Seminar 

Course without a career development intervention focus (neither group was randomly assigned).  

As such, the Career Planning group began their first semester of college with higher CTI scores 

than the comparison group.  After controlling for gender and between-group differences on the 

CTI and its subscales, an ANCOVA revealed that students who took the STEM-focused Career 

Planning course (Madj = 31.964, SE = 1.143) not only saw a larger reduction (F1,325 = 7.274, p = 

.007, 2 = .022, d = .309) in their CTI Total scores but they also outgained the students who did 

not take the career planning class (Madj = 37.475, SE = 1.621).  Despite the limitation of not 

having a true control group, the undecided students in the STEM-focused Career Planning course 

ended their first semester of college with lower adjusted CTI scores than the decided group.  

This pilot study provides support for the STEM-focused Career Planning course used within the 

present study.   

 In a second pilot analysis, the researchers included the CTI in a model predicting 

academic persistence in STEM from year one to year two (Belser, Prescod, Daire, Dagley, & 
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Young, 2017).  For this analysis, 181 students were included in the career planning group, and 

134 were included in the comparison group similar to the previous study.  The results of the 

binary logistic regression indicated that students who took the career planning class were nearly 

three times (OR = 2.973) more likely to be retained in a STEM major from their first year to their 

second year.  Moreover, changes in CTI Total scores showed a marginal ability to predict 

persistence in STEM majors from year one to year two (OR = .979).  Although the change in 

negative career thinking was an inconclusive predictor of persistence in STEM majors, including 

the CTI Total score change variable did greatly improve the accuracy of the logistic regression 

model; however, the final model only predicted 43.3 percent of non-retained students correctly.  

The Hosmer and Lemeshow Goodness of Fit Test was approaching statistical significance (p = 

.07), which indicates that the final model was acceptable but did not have a good fit with the data 

set.  The overall accuracy of the model would likely be improved by adding additional variables 

in the logistic regression to account for more variance.  One limitation of this study is that it only 

included three independent variables, rather than applying a more comprehensive set of variables 

based on relevant literature.  Additionally, the study only looked at the overall model accounting 

for the students who took the career planning class and those in the comparison group; if the 

study also examined these two groups individually using logistic regression, it is possible that 

the ability to predict retention in STEM would have been different for decided students than 

undecided students.  Future research should consider this option to strengthen the findings of the 

study.  
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Other Career Planning Courses in Undergraduate Programming 

 Parks, Rich, and Getch (2012) noted that undergraduate students who participate in a 

career planning course are more likely to successfully matriculate through a major than students 

who do not participate in such coursework.  Using a qualitative approach, the authors ascertained 

more detailed information about the undergraduates’ experience in the program.  The students 

indicated that participating helped build their self-esteem and helped them reinforce their career 

interests.  They elaborated further noting that there was not a particular intervention that helped 

most; however, the overall process was helpful. 

 Folsom, Peterson, Reardon, and Mann (2004) studied the impact of a generic career 

planning course on academic performance and graduation.  The authors used archival student 

data to evaluate a career planning course framed around Cognitive Information Processing (CIP).  

There were no significant differences between students who took the career planning class and 

those who did not take the career planning class with respect to months taken to graduate 

[F(1,1083) = 1.095, p > .01] and cumulative GPA [F(1,1083) = 1.149, p > .01].  There were, 

however, significant differences between students who took the career planning class and those 

who did not take the career planning class with respect to the number of credit hours taken to 

graduate [F(1,1083) = 1418, p < .001, ES = .03] and the number of course withdrawals 

[F(1,1083) = 1.535, p < .001, ES = .08].  These findings indicate that although not taking the 

career planning class did impact the students’ ability to finish school or lower their GPA; 

however, but students did withdraw from more classes and take a larger courseload, likely to 

offset the dropped classes.  When broken down by gender, females who took the career planning 
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class graduated in significantly less time than those who did not (p < .01; 50.1 vs. 60.8 months, 

adjusted).  In contrast, males who took the career planning class did take longer to graduate 

(54.5 vs. 47.7 months, adjusted) but had fewer course withdrawals and higher GPAs.  A 

limitation to the study is that the data used in the analysis came from students enrolled in one 

university from 1989 to 1993.   

 Reardon, Melvin, McClain, Peterson, and Bowman (2015) paired the participants from 

the Folsom et al. (2004) study with a comparison group of students from the same time period 

who did not take a career planning course; the comparison group had been matched through 

stratified random sampling.   Although the groups had been matched based on specific criteria, a 

preliminary chi-square test indicated a significant difference in the graduation rates for the two 

groups (2 = 15.47, df = 1, p < .001), with 81.5 percent of the career planning group graduating 

within six years and 71.3 percent of the comparison group graduating within six years.  Using 

binary logistic regression, the researchers found that participating in the career course, 

cumulative GPA, changes of major, and the number of course withdrawals were significant 

predictors of whether students would graduate within six years or drop out.  The model 

accurately predicted approximately 95 percent of those who graduated but only about 58 percent 

of those who dropped out.  The Nagelkerke R2 was .560, indicating that the model explained 

about 56 percent of the variation in predicting whether students would drop out or graduate.  It is 

notable that these results are similar to the findings of the first pilot study (Belser et al., In press).  

Although the groups were matched, the authors acknowledged excluding college seniors and 
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students who achieved less than a C+ in the course, which impacts the generalizability of the 

findings.  The authors also encouraged future researchers to identify additional variables to 

include in predictive models.  However, neither the Folsom et al. (2004) study nor the 

subsequent Reardon et al. (2015) study specifically focused on STEM students. 

 Much like the first pilot study for this dissertation, Osborn, Howard, and Leierer (2007) 

studied the effect of a six-week career development course on negative career thoughts of 

racially and ethnically diverse college freshmen.  With a sample of 158 students, the authors 

examined CTI scores as pre and post-tests.  There were no significant differences in pre-test CTI 

scores based on gender or ethnicity [F (1, 150) = 2.71, p > .05].  When looking at the effect for 

the course, the authors found a significant multivariate effect on students’ CTI Total scores 

[Wilks’ lambda = .79, F(1,157) = 40.94, p < .001, 2 = .21], with the post-test being 

significantly lower than the pre-test.  This study helps establish a link between career 

development coursework and reductions in negative career thinking.  The participants in the 

study were part of a targeted first-year experience program not specific to any particular major, 

which indicates that one should take caution in generalizing to the overall population of college 

freshmen.  One noteworthy distinction of this study is that it indicated that similar results could 

be achieved in a 6-week course that had previously been seen in a 14-15 week course.  The 

authors recommended examining longitudinal data to follow up with participants to identify the 

more long-term effects of the course (Osborn et al., 2007). 
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 Similar to other aspects of STEM programming, career related coursework has more 

commonly focused on students with declared STEM majors, rather than undeclared students.  In 

one such class for biology majors, the primary focus was on orienting students to the field of 

biology and to the biology program at that particular university (Freeman, 2012).  Students were 

tasked with identifying a career path by taking the Strong Interest Inventory, meeting with a staff 

member from the university’s Career Center, completing a side-by-side analysis of six possible 

careers, and other in-class activities. Once students identified their intended path, they created a 

detailed career plan.  Students revealed through end-of-course surveys that they better 

understood the field of biology and their major program after taking the course.  One noteworthy 

item from the survey was that after completing the course, students’ self-reported ability to 

articulate their career plan and its appropriateness significantly increased for the first year (t = 

10.565, df =42, p < .05) and second year (t = 3.914, df =39, p < .05) the course was offered 

(Freeman, 2012).  Although this course was among the few that address career exploration 

within STEM, it was not targeted at undecided students; moreover, it was dependent on self-

report data for outcome evaluation and did not track students beyond the end of the course. 

 In another STEM-focused project, Gentile et al. (2012) described an integrated science 

course for first semester STEM majors taught by an interdisciplinary team of ten STEM faculty 

members that focused on key concepts of each major field, as well as interdisciplinary research 

collaborations.  After completing the course, students were more likely to participate in 

undergraduate research experiences in a subsequent summer.  For the first year the course was 
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offered, all 20 (100 percent) of the students engaged in undergraduate research the first summer 

after the course, and 12 students (61 percent) engaged in a second summer of research; in the 

comparison group, only 9 percent engaged in research in their first summer and only 22 percent 

engaged in research their second summer.  Students involved in the course were more likely to 

take additional coursework in multiple STEM disciplines; approximately 94 percent of students 

who took the integrative science course enrolled in multiple subsequent STEM courses, as 

opposed to 73 percent of students in the comparison group.  Students who took the integrated 

science course (94 percent) were also more likely to maintain or declare a major in a STEM 

discipline by the end of their second year than students at the university who did not take the 

course (60 percent).  The instructors acknowledged that their data was preliminary and did not 

represent the most effective way of evaluating the impact of the course; however, they 

recognized that this type of activity did have positive effects.  In addition, although the course 

helped students become more acquainted with major fields, it did not have a career development 

focus to match students with a field that fits their individual profile, and it only tracked students 

through their second year. 

Implications 

 Low rates of academic persistence, or retention, in STEM indicate a clear problem based 

on the prevalence of students beginning a STEM major and not completing that major.  Previous 

studies examined demographic variables as they relate to STEM major declaration and academic 

persistence in STEM majors (Beasley & Fischer, 2012; Foltz et al., 2014; Gayles & Ampaw, 
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2014; Litzler et al., 2014; Riegle-Crumb & King, 2010).  Many of these studies, though, focused 

primarily on students who were already preparing to declare a STEM major, rather than 

undecided STEM-interested students.  Similarly, with mathematics, studies revealed that math 

ability (measured by the SAT), efficacy beliefs about math, and math stereotype threat can affect 

one’s decision to choose a STEM major and be successful in that STEM major (Carnevale et al., 

2011; Chen, 2013; CollegeBoard, 2012; Cundiff et al., 2013; Nosek & Smyth, 2011).   

 Researchers have not studied STEM career development and career development 

interventions to the degree that they examined other constructs, such as demographics and math 

ability.  The existing studies primarily focused on career interest as a predictor for STEM 

declaration and persistence (Le et al., 2014; Porter & Umbach, 2006).  Career-related studies 

addressed discipline-specific self-efficacy combined with math aptitude to predict academic 

persistence (Lee et al., 2015; Lent at al., 2016; Lent et al., 2008); these studies however 

examined students with declared STEM majors or who were preparing to declare a STEM major.  

Similarly, researchers and instructors of STEM-focused career planning classes noted that these 

courses catered to students who were already STEM decided (Freeman, 2012; Gentile et al., 

2012).  After exhaustive literature searches using multiple academic databases, the researcher 

found only one study (Belser et al., 2017) that incorporated a career planning intervention and 

measures of career readiness into predictive models of STEM retention.  As the analysis in that 

study yielded significant results related to the career planning course utilized in the present study 

and academic persistence of its participants, these variables warrant further research.  
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 To date, no published studies have integrated demographic variables (gender and 

ethnicity), math ability (SAT math scores and math placement scores), and measures of career 

readiness (CTI) into one predictive model for academic persistence in STEM.  Additionally, 

investigating these constructs with both undeclared STEM-interested and STEM-declared 

students can further the literature on the extent to which these variables can predict academic 

persistence in STEM.  Moreover, discerning the ability of these variables to predict which 

students are at risk for dropping out of STEM majors can help drive STEM initiatives targeting 

recruitment and retention.   
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CHAPTER III: METHODOLOGY 

Introduction 

 Current undergraduate retention rates for science, technology, engineering, and 

mathematics (STEM) disciplines contribute to a national STEM Crisis (Chen, 2013; NSF, 2013; 

NAS, 2011).  Chen (2013) reported that the declaration rate for undergraduate STEM majors is 

less than 30 percent and that nearly half of these students leave their STEM major prior to 

graduation.  Universities and colleges around the country developed programs on their campuses 

targeting STEM recruitment and retention, with particular focus on increasing engagement with 

underrepresented populations (Bouwma-Gearhart, Perry, & Presley, 2014; Defraine, Williams, 

& Ceci, 2014; Palmer, Maramba, & Dancy, 2011; Schneider, Bickel, & Morrison-Shetlar, 

2015).  In prior studies related to STEM engagement and retention, researchers investigated the 

influence of demographics and math ability; however, they overlooked career development 

factors related to STEM retention (Cundiff, Vescio, Loken, & Lo, 2013; Gayles & Ampaw, 

2014; Riegle-Crumb, Grodsky, and Muller, 2012). 

 In the present study, the researcher sought to provide a preliminary investigation into 

whether demographic factors, math ability, and career development factors could predict 

undergraduate retention in STEM majors.  At present, researchers have not employed these three 

constructs together in studies examining undergraduate STEM retention outcomes.  The 

outcomes of this quantitative study may provide valuable information for STEM engagement 
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researchers, higher education professionals, post-secondary career development professionals, 

and counselor educators. 

Research Design 

 The current study was part of the UCF COMPASS Program, a larger federally funded 

research collaborative between multiple senior colleges at the University of Central Florida.  The 

larger project recruited undecided admits to the University with high math potential (i.e., SAT 

Math scores at or above 550) and a potential interest in STEM to be a part of a STEM 

recruitment and retention program.  The program offered the STEM-focused Career Planning 

course discussed within this dissertation, as well as math and science tutoring, peer mentorship, 

and an undergraduate research experience.  All students admitted to the COMPASS Program 

were undecided at the time of admission, but some students selected a STEM major between 

admittance and the first day of classes.  The undecided students enrolled in the STEM-focused 

Career Planning course, and the students who selected a STEM major instead took a STEM 

Seminar course that focused on engaging students with their majors rather than career planning.  

The primary initiatives of the COMPASS program (e.g., the two courses, the peer mentors) 

operate in students’ first year at the University.  However, students have access to math and 

science tutoring throughout their college years and can take part in an undergraduate research 

experience in their second year of college. 

 For this dissertation, the researcher used data from the COMPASS Program and 

employed a quasi-experimental, quantitative design using non-equivalent comparison groups 

(Campbell & Stanley, 1963; Gall, Gall, & Borg, 2007).  The researcher obtained the sample of 
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undergraduate students through purposive criterion sampling with non-random assignment, 

necessitating the use of a quasi-experimental design (Gall et al., 2007).  Moreover, the primary 

grouping variable related to the participants’ membership in one of the two tracks of the 

COMPASS Program.  One track takes a STEM-focused Career Planning course in their first 

year, and the other track takes a STEM Seminar course without a career development focus.  The 

researcher further defines these two tracks in a later section.  

 The study aimed to determine which variables are related to first and second year 

retention in undergraduate STEM majors.  The researcher chose to analyze the contributions of 

the independent variables using binary logistic regression due to the binary nature of the outcome 

variables, which the researcher coded as retained or non-retained (Agresti, 2013; Hosmer, 

Lemeshow, & Sturdivant, 2013; Tabachnick & Fidell, 2013).  Whereas, discriminant analysis 

and logistic regression both operate to predict outcomes based on a dichotomous categorical 

variable, logistic regression offers more flexibility to non-normally distributed independent 

variables (Hosmer et al., 2013).  The data set for this study contained continuous variables 

derived from career assessment results that are non-normally distributed based on the population.  

Therefore, the researcher determined logistic regression to be a more appropriate analysis for the 

proposed dependent variables.  Additionally, the proposed model for this study includes both 

categorical and continuous predictors.   

 Whereas structural equation modeling (SEM) provides a more robust procedure for 

making predictions and understanding the interrelatedness of predictor variables, Tabachnick and 

Fidell (2013) noted that “SEM assumes that measured variables are continuous and measured on 
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an interval scale” (p. 734) and that nominal variables can be included as independent variables 

through the use of dummy coding.  Hair, Hult, Ringle, and Sarstedt (2014) reiterated that 

researchers commonly use nominal (i.e. categorical) variables in SEM studies as categorical 

control variables or moderating variables.  Hair, Sarstedt, Pieper, and Ringle (2012a) further 

posited that when researchers use a binary single item (e.g. retained/not retained) to measure an 

endogenous latent variable, “a basic premise of the ordinary least squares regression is violated 

(p. 326).  Hair, Sarstedt, Ringle, and Mena (2012b) more explicitly warned researchers not to use 

categorical variables as endogenous constructs and noted that using categorical variables to split 

the dataset in multigroup comparisons is a more appropriate function.  Kupek (2006) proposed a 

strategy for using Yule’s transformation to convert results from a logistic regression to a 

continuous correlation coefficient that can then be used in an SEM analysis; however, the author 

noted that this approach would require a logistic regression model with good model fit in order to 

take this next step.  Because of the recommendations against using SEM with categorical 

outcome variables (Hair et al., 2014; Hair et al., 2012a; Hair et al., 2012b; Tabachnick & Fidell, 

2013), the researcher opted to use logistic regression to analyze the categorical dependent 

variables (Hosmer et al., 2013). 

 Rather than identifying a linear regression equation, as with a traditional linear 

regression, logistic regression functions to determine the natural (loge) of the probability that a 

case will be “in one group divided by the probability of being in another group” (Tabachnick & 

Fidell, 2013, p. 440).  Logistic regression achieves this goal by making comparisons between the 

observed outcome values and the predicted outcome values from the proposed model both with 

and without the independent variables (Hosmer et al., 2013).  The statistical model yields 
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coefficients for a regression equation and odds ratios, which serve as a measure of effect size 

(Tabachnick & Fidell, 2013).  Multiple options exist for researchers to enter predictors into a 

logistic regression model, including entering them all at once, entering them purposefully (i.e. 

selecting predictors based on theory and prior research with less regard for the predictor’s 

observed statistical significance), or entering them using a stepwise approach (i.e. predictors are 

added or removed from the model based on statistical significance to achieve the most 

parsimonious model; Hosmer et al., 2013).  Although the researcher selected predictor variables 

based on theory and prior literature, this study employed a backward stepwise approach, in 

which SPSS removed non-significant predictors in order to achieve the most parsimonious 

model.  The researcher opted for this approach to determine if removing the least significant 

variables would improve the models’ ability to predict retention outcomes.  Tabachnick and 

Fidell (2013) cautioned that a stepwise approach can lead to underfitting the model (i.e., leaving 

out predictors that are important based on theory), but this approach can have value in 

exploratory model building when a theoretical model is not structured enough to enter variables 

hierarchically (Field, 2009).  To mitigate the possibility of underfitting, the researcher used a 

more liberal cutoff point (p  .20) for the inclusion of predictors in the model. 

Population and Sample 

 The population for the current study was undergraduate students from the University of 

Central Florida (UCF) participating in UCF COMPASS (Convincing Outstanding-Math-

Potential Admits to Succeed in STEM), a grant-funded research project focused on recruiting 

and retaining students in STEM majors (National Science Foundation STEP 1B: No. 1161228).  
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All participants in the study entered the COMPASS program and the university as first-year 

students between Fall 2012 and Fall 2015.  Some COMPASS participants had earned enough 

college credits through high school programming, such as Advanced Placement coursework and 

Dual Enrollment, to be designated as sophomores or juniors; therefore, the term first-year 

students will be used in place of freshmen throughout this dissertation to refer to undergraduate 

students who are in their first year at UCF.  The COMPASS program used purposive criterion 

sampling for selection into the program and the researcher ultimately used the same approach in 

obtaining the sample for this study (Gall et al., 2007).  To be admitted into the UCF COMPASS 

program, applicants needed to (a) be first-year students at UCF, (b) have a SAT Math score of 

550 to 800, (c) have an undeclared major status, and (d) have a potential interest in pursuing a 

STEM major.  Additionally, to be eligible for this particular study within the overall COMPASS 

research endeavors, participants needed to have joined the COMPASS program by the Fall 2015 

semester in order for them to complete at least one year of college by the beginning of the data 

analysis.  Recruitment for the COMPASS Program included mail-outs to undecided UCF 

applicants and admits, presentations by COMPASS staff at orientation events, distribution of 

information about the program to area high schools, and a COMPASS program website. 

 To determine if the sample size of participants would yield adequate statistical power for 

the analyses, the researcher conducted an a priori power analysis for the hypotheses using 

G*Power 3 (Cohen, 1992; Faul, Erdfelder, Lang, & Buchner, 2007).  For the power analysis for 

binary logistic regression, the researcher utilized an alpha level of .05, a recommended power of 

.80 (Cohen, 1992; Tabachnick & Fidell, 2013), and a corresponding odds ratio of 3.0.  Results 
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from the power analysis indicated that a sample of 97 participants was necessary to ensure 

adequate power.  As the sample for hypotheses one through three was 429 and the anticipate 

sample for hypotheses four through six was 271, the researcher expected the sample size to be 

sufficient for the study.   

 With logistic regression, statistical theorists also recommend comparing the ratio of cases 

in each outcome of the dependent variable to the number of independent variables used as 

predictors (Agresti, 2013; Hosmer et al., 2013; Tabachnick & Fidell, 2013).  As a rule of thumb, 

Peduzzi, Concato, Kemper, Holford, and Feinstein (1996) recommended that there be at least 10 

cases per outcome for each predictor included in the model, particularly with categorical 

predictors.  However, Field (2009) and Vittinghof and McCulloch (2006) recommended a 

minimum of 5 cases per outcome for each predictor.  The model proposed in the current study 

included ten independent variables as potential predictors.  For hypotheses one through three, all 

independent variables met this rule of thumb sufficiently except Ethnicity because multiple 

subcategories (Asian/Pacific Islander and Other) within this variable had fewer than 10 cases in 

each outcome.  Similarly, for hypotheses four through six, all independent variables met this rule 

of thumb except Ethnicity, with three of the five subcategories (African American/Black, 

Asian/Pacific Islander, and Other) having fewer than 10 cases in each outcome.  Hosmer et al. 

(2013) noted that having an insufficient number of cases could lead to overfitting or underfitting 

the model, but also clarified that these are recommended guidelines, rather than strict rules.  

Collapsing the Ethnicity variable into smaller categories (e.g. Minority / Non-Minority) would 

resolve the violation of these recommendations but would detract from the researcher’s ability to 
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investigate each Ethnicity group individually, as recommended by prior literature on STEM 

retention.  As such, the researcher opted to keep the Ethnicity variable coded as is instead of 

collapsing categories further, accepting a potential limitation to the study.   

Data Gathering/Collection Procedures 

 This study is part of a larger ongoing grant-funded research project previously approved 

by the University’s Institutional Review Board.  Undergraduate participants in the study signed 

an informed consent document during their university orientation meeting.  This informed 

consent document described the nature of the research being conducted, announced the types of 

data/assessments that will be collected and used, and explained that participation in the study is 

voluntary.  Data collection for this project began in Fall 2012. 

 As stated, the UCF COMPASS program targets recruitment and retention in STEM 

majors for undergraduate students.  As members of the program, students take their math courses 

with other students in the program and have access to math tutoring in a center designated solely 

for members of the program.  As intended by the program’s initial design, undecided and 

undeclared students take a STEM-focused career planning course in their first year to help them 

solidify their major choice.  Some participants are officially coded as “undeclared” (i.e. they 

have not formally selected a major with the university), whereas others have listed a possible 

major based on a preliminary unconfirmed interest (e.g. Undecided Engineering, Undecided 

Science) or have listed a “dummy” major to which they have not committed (e.g. Biology, 

Psychology).  Some participants formally commit and declare a STEM major between the time 

of admission to the program and the first day of class, and these students instead take a STEM 
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Seminar class in their first year focused on available opportunities within their STEM majors.  

Whereas the seminar class does provide opportunities for participants to learn more about their 

majors, it does not have a career development focus as with the career planning course.  The 

program requires students in both tracks to participate in weekly study hours at a designated 

center.  COMPASS students have a peer mentor in their first year of college, and female students 

have another opportunity to participate in additional programming that connects them to female 

peer mentors, female STEM faculty, and female STEM industry professionals.  Similarly, to 

address issues of demographic representation in STEM found in the literature, the COMPASS 

Program intentionally includes females and ethnic minorities, as well as an intersection of the 

two, as guest speakers and peer mentors.  Moreover, both the Principal Investigator and Project 

Director for the program are female administrators. 

 The Career Planning course is a modified version of the University’s general career 

planning course.  To meet the needs of STEM-interested students, the course focuses primarily 

on exploring STEM careers in a three-phase process.  In the first phase, students take a battery of 

career assessments, which are used to help them understand their readiness to make decisions 

about careers, as well as their interests, values, skills, and personality.  During the second phase, 

students learn more about their options within STEM by hearing from a variety of STEM 

faculty, researchers, and industry professionals; students also have an opportunity to visit the 

research labs of the STEM faculty.  In the final phase, students use what they have learned over 

the semester to develop a career action plan and to research in depth the majors they are now 
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considering.  Also in the course, students gain practice with developing a resume and cover 

letter, with interviewing for jobs, and with delivering a structured presentation about themselves. 

 The STEM Seminar course is designed for students who have declared a STEM major 

and provides supports for their success in that major.  The course explores practical information 

topics, such as learning styles and strategies, time management and study skills, professional 

opportunities for STEM majors, undergraduate research for STEM majors, and engagement with 

the learning community.  A variety of guest speakers from STEM industry fields and campus 

resource offices present students with information on how to maximize their success as a STEM 

student.  Additionally, in lieu of lectures and guest presentations, certain class meetings operate 

as study and review sessions for math courses with tutors available. 

 The University’s Institutional Knowledge Management (IKM) Office provided much of 

the data used in this study to the Project Director for UCF COMPASS.  These data included 

demographic variables (gender and ethnicity), academic data (SAT Math scores and Math 

Placement Test scores), major related variables, and enrollment verification used to determine 

major retention and attrition.  Receiving this data from the IKM Office eliminated the need for 

participants to complete a demographic questionnaire.  The IKM Office provided the data in a 

series of comma separated values (CSV) files.  The researcher transferred the data points of 

interest to a Statistical Package for Social Sciences (SPSS, Version 24) file and replaced student 

names with a unique COMPASS ID number.  
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 Students completed the Career Thoughts Inventory (CTI) in either the Career Planning 

class or the STEM Seminar class.  Students took the CTI at the beginning and end of the 

respective program course in which they were enrolled.  For the Career Planning class, the CTI 

was a graded assignment that became a focal point of many in-class discussions pertaining to 

individual career development.  For the STEM Seminar class, students received participation 

points for completing the CTI; whereas the CTI was not a primary topic of class discussion, 

students did receive an in-class explanation of their results.  Because the CTI was used as an in-

class assignment with both groups, the researcher did not provide additional incentives for 

participants beyond an assignment grade or participation points.  The researcher and a team of 

trained research assistants added scores to the SPSS file. 

Instruments and Scale Variables 

 The COMPASS program utilizes scores from a variety of assessments; however, the 

researcher only used three of these assessments within this study.  The Career Thoughts 

Inventory (CTI) was the only of these assessments that was directly administered and scored 

within course components of the program.  The SAT Math subtest and the Math Placement Test 

were administered outside of the COMPASS program and were used by the university for 

admissions, advising, and scheduling purposes. 
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Career Thoughts Inventory 

 The Career Thoughts Inventory (CTI) is a 48-question assessment that measures negative 

career thinking (Sampson, Peterson, Lenz, & Saunders, 1996a; Sampson Peterson, Lenz, & 

Saunders, 1996b).  Respondents are asked to read statements about careers and indicate their 

level of agreement with the statement based on a four-point Likert-type scale ranging from 

Strongly Disagree to Strongly Agree (represented numerically on a scale of 0 to 3, respectively).  

The CTI contains three subscales: (a) Decision Making Confusion (DMC), (b) Commitment 

Anxiety (CA), and (c) External Conflict.  The DMC subscale measures the degree to which one 

is experiencing confusion or distress about making career-related decisions or narrowing their 

career options.  The CA subscale measures the degree to which one is experiencing anxiety 

about committing to a specific career option.  The final subscale, EC, measures the degree to 

which the thoughts and opinions of others hinder the career decision-making process. 

 The CTI provides a raw score and a T score for the CTI Total and for each of the 

subscales. The CTI Total raw score is the sum of all of the numerical item responses (i.e. the 0 to 

3 score associated with the Likert-type labels); this score can range from 0 to 144.  Each of the 

subscale raw scores is the sum of the items associated with the particular subscale.  DMC scores 

range from 0 to 42, CA scores range from 0 to 30, and EC scores range from 0 to 15; the 

variability in these scales is due to some scales having more associated items.  Raw scores can be 

converted to T scores using a graph on the back of the test booklet and compared to one of the 

norm groups (high school student, college student, or adult).  Higher raw scores and T scores 
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indicate more negative career thinking.  The mean T score (50) is the decided cut score with 

standard deviations of 10; scores above the mean are indicative of problematic negative career 

thinking. T scores between 51 and 60 are considered to represent a mild problem with negative 

career thinking, T scores between 61 and 70 are considered to represent a moderate problem with 

negative career thinking, and T scores at or above 71 are considered to represent a more severe 

problem with negative career thinking.  This study will utilize a change score calculated by 

subtracting the pre-test score from the post-test for the CTI Total score and the three subscales. 

 Sampson et al. (1996a) provided psychometric information on the CTI’s reliability and 

validity.  Regarding internal consistency, alpha coefficients ranged from .93 to .97 for the CTI 

Total score, ranged from .90 to .94 for the Decision Making Confusion subscale, ranged from 

ranged from .79 to .91 for the Commitment Anxiety subscale, and ranged from .74 to .81 for the 

External Conflict subscale.  Each of these coefficients falls within the acceptable to excellent 

range for internal consistency (DeVellis, 2012; Kline, 2000).  Test-retest reliability coefficients 

were reported based on a 4-week interval; coefficients ranged from .69 to .86 for the CTI Total 

score, from .70 to .79 for the Decision Making Confusion subscale, and from .52 to .74 for the 

External Conflict subscale.  Using the Reliability Analysis procedure in SPSS, the researcher 

found alpha coefficients for the CTI pretest of .95 for the CTI Total score, .87 for the DMC 

subscale, .88 for the CA subscale, and .71 for the EC subscale; similarly, the researcher found 

alpha coefficients for the CTI posttest of .96 for the CTI Total, .92 for the DMC subscale, .89 for 

the CA subscale, and .83 for the EC subscale.  These measures of internal consistency were 
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within the same ranges as the coefficients of Sampson et al. (1996a), with the exception of the 

EC subscale that was .03 lower than the norm group but still within the acceptable range 

(DeVellis, 2012; Kline, 2000). 

 The test developers established content validity through the CTI’s conceptual basis on 

Cognitive Information Processing (CIP) Theory and the CASVE Cycle of CIP (Reardon, Lenz, 

Sampson & Peterson, 2011; Reardon & Minor, 1975; Sampson et al., 1989).  The CTI Total 

score, the Decision Making Confusion subscale score, and the Commitment Anxiety subscale 

score showed strong correlations with all eight content dimensions of CIP Theory; the External 

Conflict subscale score showed a mixture of moderate and strong correlations with all eight 

content dimensions of CIP Theory.  Construct validity was established through a series of 

principal component analyses that resulted in three identifiable factors, which became the three 

subscales; these factors were replicated in subsequent studies and across the norm groups.  The 

authors reported that criterion-related validity was established through multivariate analysis of 

variance, which revealed that the CTI could discern between individuals seeking career services 

and those not seeking career services.  The test creators established convergent validity by 

comparing the CTI to the My Vocational Situation assessment, the Career Decision Scale, the 

Career Decision Profile, and the NEO Personality Inventory-Revised; for all three norming 

groups, the relationships between the CTI scales and the other instruments were in the direction 

expected based on theory, with the strongest correlations with the Career Decision Scale.   
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SAT Math 

 The SAT is a college admissions test commonly used by universities and colleges around 

the United States (CollegeBoard, 2016).  High school students often take it during their junior 

and senior years.  The SAT includes four subtests: (a) Essay, (b) Critical Reading, (c) Writing, 

and (d) Mathematics.  The overall score ranges from 600 to 2400, whereas the scores on the 

three non-essay subtests ranges from 200 to 800 (CollegeBoard, 2016).  Although Ewing, Huff, 

Andrews, & King (2005) reported psychometric properties for the entire instrument, the 

researcher only presented the properties for the SAT Math subtest, as only this subtest was 

utilized in this study.  Participants for this study took the SAT prior to being admitted to the 

University and the COMPASS Program.  Thus, the researcher treated these as existing data.  

 The SAT Math subtest includes 54 questions/tasks related to math fluency, conceptual 

understanding, and applications.  Students have 70 minutes to complete them (CollegeBoard, 

2016).  Ewing et al. (2005) tested the validity of the SAT using a sample of 485 high school 

juniors; the sample was fairly representative with regard to gender and ethnicity.  The authors 

reported an internal consistency coefficient of .92, with coefficients ranging from .68 to .81 for 

the four measured skill areas.  They found an alternative-form reliability coefficient of .91 for 

math, with coefficients ranging from .71 to .78 for the four measured skill areas.  The researcher 

could not analyze psychometric properties of the SAT Math subtest with this dataset as the IKM 

Office only provided composite scores, rather than individual items for each participants. 

 It must be noted that numerous research studies over several decades have highlighted 

potential test bias with the SAT based on race, indicating that lower mean family income and 
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decreased access to SAT preparation courses contributed to Black students scoring lower on the 

SAT than their White counterparts (Dixon-Román, Everson, & McArdle, 2013; Lawlor, 

Richman, & Richman, 1997; Temp, 1971; Toldson & McGee, 2014).  Consequently, 

CollegeBoard revised the SAT in 2016 to address these concerns (after the completion of data 

collection for this study), and many universities have changed admissions and decision-making 

polices regarding the use of college entrance exams (CollegeBoard, 2017; Toldson & McGee, 

2014).  Despite these potential limitations, the SAT remains one of the most commonly used 

college entrance exams and has been used in numerous research studies, to which these results 

can be compared (CollegeBoard, 2017).   

UCF Math Placement Test -- Algebra 

 The UCF Math Placement Test (MPT) is a university-made test that measures 

competence in three subtest areas: (a) algebra, (b) trigonometry, and (c) pre-calculus (UCF, 

2016).  This web-based test is administered to all first-time undergraduate student admits to 

determine which math course is the most appropriate starting point.  When data collection began, 

all students were not required to take the MPT, but due to a policy change, all first-time 

undergraduate admits were required to take it; as a result, some students who joined the 

COMPASS Program during the early stage of data collection did not have an MPT score.  

 For this study, the researcher only utilized scores from the Algebra subtest as it is the 

only subtest that all students must complete when taking the MPT.  Students only take the 

consecutive subtests if their scores on the Algebra subtest are above a particular threshold. 

Individuals are allowed 1 hour and 45 minutes to complete the 25 questions on the algebra sub-
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test.  If students complete the algebra subtest with 70 percent accuracy, they are given an 

opportunity to take the trigonometry and pre-calculus sub-tests.  Each of these two sub-tests 

contains 15 questions, and students are given a maximum of 1 hour and 15 minutes to complete 

each section.  The maximum score for the algebra sub-test is 500, and the maximum score for 

each of the trigonometry and pre-calculus sub-tests is 510.  Psychometric properties for the Math 

Placement Test were not available.  As with the SAT Math test, students take the Math 

Placement--Algebra test prior to the first day of classes to determine placement into math 

courses; thus, the researcher treated this variable as existing data.  The researcher could not 

analyze psychometric properties of the UCF Math Placement--Algebra test with this dataset as 

the IKM Office only provided composite scores, rather than individual items for each 

participants. 

Research Hypotheses 

 The aim of this study was to investigate the degree to which retention in STEM majors 

can be predicted by demographic variables, math ability, and career development factors.  More 

specifically, this study aimed to explore ten variables within these categories in the context of 

first year to second year retention and first year to third year retention.  Because of the inherent 

differences between the Career Planning group and STEM Seminar group (i.e., undecided vs. 

decided, respectively), the researcher also chose to examine the influence of the independent 

variables on each of these groups separately.  As such, the researcher tested the following 

hypotheses using quantitative research methods: 
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Null Hypothesis 1:  First-year to second-year undergraduate retention in STEM majors 

cannot be significantly predicted by ethnicity, gender, initial major, Math Placement Test 

scores, SAT Math scores, STEM Course Participation (Career Planning vs. STEM 

Seminar), and CTI change scores. 

 

Null Hypothesis 2:  First-year to second-year undergraduate retention in STEM majors 

for students participating in a STEM-focused Career Planning Course cannot be 

significantly predicted by ethnicity, gender, initial major, Math Placement Test scores, 

SAT Math scores, and CTI change scores. 

 

Null Hypothesis 3:  First-year to second-year undergraduate retention in STEM majors 

for students participating in a STEM Seminar Course (without a career development 

focus) cannot be significantly predicted by ethnicity, gender, initial major, Math 

Placement Test scores, SAT Math scores, and CTI change scores. 

 

Null Hypothesis 4:  First-year to third-year undergraduate retention in STEM majors 

cannot be significantly predicted by ethnicity, gender, initial major, Math Placement Test 

scores, SAT Math scores, STEM Course Participation (Career Planning vs. STEM 

Seminar), and CTI change scores. 
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Null Hypothesis 5:  First-year to third-year undergraduate retention in STEM majors for 

students participating in a STEM-focused Career Planning Course cannot be significantly 

predicted by ethnicity, gender, initial major, Math Placement Test scores, SAT Math 

scores, and CTI change scores. 

 

Null Hypothesis 6:  First-year to third-year undergraduate retention in STEM majors for 

students participating in a STEM Seminar Course (without a career development focus) 

cannot be significantly predicted by ethnicity, gender, initial major, Math Placement Test 

scores, SAT Math scores, and CTI change scores. 

Independent Variables 

 The study included ten independent variables as predictors for the logistic regression 

models.  Each variable is discussed below: 

Gender 

 The University’s Institutional Knowledge Management Office provided participants’ 

gender classification.  This binary variable was coded as Male = 1, Female = 0.  The 

University’s reporting system used a binary classification for gender, rather than providing an 

Other option or specific options for students identifying outside of a traditional binary gender 

identity. 
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Ethnicity 

 The University’s Institutional Knowledge Management Office provided participants’ 

ethnicity classification.  This variable was coded into five categories determined by the 

University’s reporting system: (a) White = 1, (b) African American/Black = 2, (c) 

Hispanic/Latino = 3, (d) Asian/Pacific Islander = 4, and (e) Other = 5. 

Initial Major 

 Initial major represents the major that participants listed on their application to the 

University prior to admission, which the Institutional Knowledge Management Office provided.  

This variable was coded as (a) Undeclared = 1, (b) Declared STEM = 2, and (c) Declared non-

STEM = 3. 

STEM Course Participation 

 This variable indicated whether participants were enrolled in the STEM-focused Career 

Planning class or the STEM Seminar class during their first year at UCF.  The variable is coded 

as STEM Career Planning = 1, STEM Seminar = 0.   

Career Thoughts Inventory (CTI) Total Change Score 

 The CTI Total score is a continuous variable.  These data are collected at the beginning 

and end of participants’ first semester with the COMPASS Program in one of the program’s 

respective courses.  To account for the changes in negative career thinking after participating in 
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either the Career Planning class or the STEM Seminar, the researcher computed change scores 

for the CTI Total by subtracting the pretest from the posttest.   

Career Thoughts Inventory (CTI) Decision Making Confusion Change Score 

 The CTI Decision Making Confusion (DMC) subscale score is a continuous variable.  

These data are collected at the beginning and end of participants’ first semester with the 

COMPASS Program in one of the program’s respective courses.  To account for the changes in 

negative career thinking after participating in either the Career Planning class or the STEM 

Seminar, the researcher computed change scores for the CTI DMC subscale by subtracting the 

pretest from the posttest.   

Career Thoughts Inventory (CTI) Commitment Anxiety Change Score 

 The CTI Commitment Anxiety (CA) subscale score is a continuous variable.  These data 

are collected at the beginning and end of participants’ first semester with the COMPASS 

Program in one of the program’s respective courses.  To account for the changes in negative 

career thinking after participating in either the Career Planning class or the STEM Seminar, the 

researcher computed change scores for the CTI CA subscale by subtracting the pretest from the 

posttest.   

Career Thoughts Inventory (CTI) External Conflict Change Score 

 The CTI External Conflict (EC) subscale score is a continuous variable.  These data are 

collected at the beginning and end of participants’ first semester with the COMPASS Program in 
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one of the program’s respective courses.  To account for the changes in negative career thinking 

after participating in either the Career Planning class or the STEM Seminar, the researcher 

computed change scores for the CTI EC subscale by subtracting the pretest from the posttest.   

Math Placement--Algebra Subtest Scores 

 The University’s Institutional Knowledge Management Office and the Math Department 

provided participants’ Math Placement Test scores, including scores for the Algebra subtest.  

Programmatically, University advisors and COMPASS Program staff use these scores to make 

decisions about advising and scheduling of students’ math courses.  For this study, the researcher 

only used the Algebra subtest scores and entered them as continuous scores. 

SAT Math Scores 

 The University’s Institutional Knowledge Management Office provided participants’ 

SAT Math scores.  The university used these scores for purposes of admission to the university; 

additionally, students admitted to the COMPASS Program must have a minimum SAT Math 

score of 550.  For this study, the researcher entered them as continuous scores. 

Dependent Variables 

 In this study, the researcher analyzed two binary dependent variables.  The first was Year 

Two STEM retention, which represented whether students were retained in a STEM major from 

their first year to their second year; the researcher used this variable with Hypotheses one 
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through three.  The second dependent variable was Year Three STEM retention, which 

represented whether students were retained in a STEM major from their first year to their third 

year; the researcher used this variable with Hypotheses four through six.  Both variables are 

binary and are coded as 1 = Retained in STEM, 0 = Not retained in STEM.  The University’s 

Institutional Knowledge Management Office provided retention data to the COMPASS staff.  

Statistical Analysis/Procedure 

 As stated earlier, the researcher used Statistical Package for Social Sciences (SPSS, 

Version 24) to test the six hypotheses for this study using binary logistic regression (Agresti, 

2013; Hosmer et al., 2013; Tabachnick & Fidell, 2013).  The first step in preparing the data set 

was to update the existing data file to reflect the most current retention and attrition outcomes for 

participants.  Preliminary analysis of the data included identifying univariate and multivariate 

outliers and conducting a missing data analysis.  Based on the findings of these preliminary 

procedures, the researcher determined that imputation of missing values was necessary and 

employed an Expectation Maximization procedure (Dempster, Laird, & Rubin, 1977; Little & 

Rubin, 2002; Tabachnick & Fidell, 2013); additionally, the researcher removed 16 univariate and 

multivariate outliers from the dataset. The assumptions for logistic regression include (a) 

checking the ratio of cases to predictor variables, (b) verifying a linear relationship between the 

logit transform of the dependent variable and continuous predictors, (c) checking for 

multicollinearity, and (d) examining potential outliers in the solution (Tabachnick & Fidell, 

2013).  The only assumption that required additional attention related to the number of 
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participants from the Asian/Pacific Islander and Other sub-categories of the ethnicity variable 

within each of the retention outcomes.  However, due to the researcher’s desire to keep the 

ethnicity variable in-tact versus collapsing and dummy coding this variable, the ethnicity 

variable was left as is. 

 With each hypothesis, the researcher opened the Binary Logistic Regression procedure 

within SPSS.  The first step was to select the appropriate categorical dependent variable for each 

hypothesis, as well as the independent variables used as predictors (see the following paragraphs 

for specific variables used in each hypothesis).  Categorical predictors were identified as such 

using the Categorical Covariates function; the researcher indicated which subgroup to use as the 

reference category for each categorical predictor.  Using the Options function, the researcher 

opted to obtain the Classification plots, the Hosmer-Lemeshow Goodness of Fit test, the 

Casewise listing of residuals, the 95 percent Confidence Intervals for the Odds Ratios, the 

standardized and unstandardized residual statistics and the Cook’s d values.  The researcher used 

each of these values to evaluate various aspects of the model. 

 To analyze hypotheses one through three, the researcher utilized Year 2 STEM retention 

as the outcome variable to examine the influence of variables on retention in STEM from the 

first year to the second year.  The analysis for Hypothesis one utilized cases from both the Career 

Planning group and the STEM Seminar group and initially included all 10 independent variables.  

The analysis for hypothesis two utilized only the cases from the Career Planning group; as such, 

the STEM Course participation variable was removed from the model, leaving nine independent 

variables.  In contrast, the analysis for Hypothesis three utilized only the cases from the STEM 
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Seminar group; the STEM Course participation variable was also removed from this model, 

leaving nine independent variables. 

 To analyze hypotheses four through six, the researcher utilized Year 3 STEM retention as 

the outcome variable to examine the influence of variables on retention in STEM from the first 

year to the third year.  The analysis for Hypothesis four utilized cases from both the Career 

Planning group and the STEM Seminar group and was tested using all 10 independent variables.  

The analysis for Hypothesis five utilized only the cases from the Career Planning group; as with 

Hypotheses two and three, the STEM Course participation variable was removed from the 

model, leaving nine independent variables.  Finally, the analysis for Hypothesis six utilized only 

the cases from the STEM Seminar group; the STEM Course participation variable was also 

removed from this model, leaving nine independent variables. 

Ethical Considerations 

 The current study was part of a larger grant-funded research project that the University’s 

Institutional Review Board had already been approved.  As such, this study was in line with the 

parameters of the larger study.  Participants had already provided informed consent for their 

information to be used within the study and were aware that participation is voluntary and that 

they could have withdrawn from the study at any time.  Prior to beginning the study, the 

researcher obtained the permission and approval of the dissertation chair, the dissertation 

committee, and the COMPASS Project Director. 
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Summary 

 The researcher conducted the current study as part of a larger grant-funded research 

project aiming at increasing undergraduate participation and retention in STEM majors.  The 

purpose of this proposed study was to investigate whether demographics, math ability, and 

career development factors could predict undergraduate retention in STEM majors in the first 

two years of college.  The goal of the study was to advance the literature related to STEM 

retention, particularly in the area of career development as predictor and factor. 

 Because the dependent variables are dichotomous and categorical, the researcher used 

binary logistic regression to analyze the data and to build a potentially predictive model.  the 

researcher used the following as independent variables for the study:  (a) gender, (b) ethnicity, 

(c) initial major, (d) career development participation, (e) Career Thoughts Inventory change 

scores, (f) SAT Math scores, and (g) UCF Math Placement Test scores.  The two dependent 

variables that the researcher tested separately were Year Two STEM retention and Year Three 

STEM retention.  Constructing a parsimonious predictive model was useful for purposes of 

research, undergraduate advising and programming, post-secondary career development 

programming, and counselor education. 
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CHAPTER IV:  RESULTS 

Introduction 

 Science, technology, engineering, and mathematics (STEM) fields face projected deficits 

in the number of qualified workers to fill new jobs and vacancies (National Science Foundation 

[NSF], 2013; National Academy of Sciences [NAS], 2011; Xue & Larson, 2015).  Carnevale, 

Smith, and Melton (2011) identified attrition rates for undergraduates in STEM majors as one 

contributor to the crisis facing STEM fields.  In a longitudinal analysis of approximately 7,800 

first year undergraduates from a national sample, Chen (2013) reported that less than 30 percent 

of these students chose a STEM major; furthermore, approximately half of these students left 

their STEM majors prior to graduating.  Researchers have previously investigated associations 

between retention in STEM majors and gender, ethnicity, and math related variables; however, 

they have overlooked associations between retention in STEM majors and career development 

factors, particularly measures of career readiness and participation in a career intervention. 

 The purpose of the present study was to investigate the degree to which ethnicity, gender, 

initial major, Math Placement--Algebra Test scores, SAT Math scores, participation in a career 

planning course, and changes in total and subscale scores on the Career Thoughts Inventory 

could predict retention in STEM majors.  In this chapter, the researcher presents the statistical 

results of the analyses used within the study.  First, the researcher reintroduces the research 

hypotheses tested within the study.  The next section addresses preliminary analyses for logistic 

regression, including missing values analysis, outlier identification, and assumptions testing.  

Then the researcher presents results associated with each hypothesis.  As the hypotheses are 

organized by dependent variable (i.e., H01-H03 for 2nd Year STEM Retention and H04-H06 for 3rd 



 

 91 

Year STEM Retention), the researcher presents a summary for each group of hypotheses, as well 

as an overall summary at the end of this chapter. 

Research Hypotheses 

Null Hypothesis 1:  First-year to second-year undergraduate retention in STEM majors 

cannot be significantly predicted by ethnicity, gender, initial major, Math Placement Test 

scores, SAT Math scores, STEM Course Participation (Career Planning vs. STEM 

Seminar), and CTI change scores. 

 

Null Hypothesis 2:  First-year to second-year undergraduate retention in STEM majors 

for students participating in a STEM-focused Career Planning Course cannot be 

significantly predicted by ethnicity, gender, initial major, Math Placement Test scores, 

SAT Math scores, and CTI change scores. 

 

Null Hypothesis 3:  First-year to second-year undergraduate retention in STEM majors 

for students participating in a STEM Seminar Course (without a career development 

focus) cannot be significantly predicted by ethnicity, gender, initial major, Math 

Placement Test scores, SAT Math scores, and CTI change scores. 

 

Null Hypothesis 4:  First-year to third-year undergraduate retention in STEM majors 

cannot be significantly predicted by ethnicity, gender, initial major, Math Placement Test 
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scores, SAT Math scores, STEM Course Participation (Career Planning vs. STEM 

Seminar), and CTI change scores. 

 

Null Hypothesis 5:  First-year to third-year undergraduate retention in STEM majors for 

students participating in a STEM-focused Career Planning Course cannot be significantly 

predicted by ethnicity, gender, initial major, Math Placement Test scores, SAT Math 

scores, and CTI change scores. 

 

Null Hypothesis 6:  First-year to third-year undergraduate retention in STEM majors for 

students participating in a STEM Seminar Course (without a career development focus) 

cannot be significantly predicted by ethnicity, gender, initial major, Math Placement Test 

scores, SAT Math scores, and CTI change scores. 

Preliminary Analyses 

 To investigate the six hypotheses, the researcher used a binary logistic regression as the 

primary data analysis procedure.  Prior to running this procedure, the researcher ran preliminary 

analyses, including examining the data set for missing values, identifying univariate and 

multivariate outliers, and testing the assumptions of logistic regression.  Testing these 

preliminary analyses safeguards the integrity of the analysis and helps the researcher identify any 

corrections or transformations the researcher may need to make with the data (Tabachnick & 

Fidell, 2013).  In this section, the researcher presents results of these analyses with implications 

for the present study before presenting descriptive statistics for the dataset.  
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Missing Values Analysis 

 The researcher examined each dependent and independent variable used in the study for 

missing values.  There were no missing values for either of the outcome variables or for 

participants’ gender, ethnicity, or initial major, as the University’s Institutional Knowledge 

Management Office provided these data points for all participants.  Moreover, the Career 

Planning variable that identified whether students took the Career Planning class or the STEM 

Seminar class was also complete.  Missing values existed for the SAT Mathematics scores, the 

UCF Math Placement Test--Algebra scores, and the pre and post-administration of the Career 

Thoughts Inventory (Total score and three subscales).  Table 1 describes the missing data for 

these variables.   

 

Table 1. Missing Data for Continuous Variables 

 Complete Missing % Missing Mean SD 

SAT Math 374 55 12.8 625.13 60.82 

Math Placement Algebra 316 113 26.3 305.78 95.25 

CTI DMC Pre 417 12 2.8 11.04 7.39 

CTI CA Pre 417 12 2.8 15.55 7.60 

CTI EC Pre 415 14 3.3 3.98 3.07 

CTI Total Pre 415 14 3.3 48.80 20.58 

CTI DMC Post 359 70 16.3 7.10 7.24 

CTI CA Post 359 70 16.3 12.21 7.38 

CTI EC Post 359 70 16.3 3.45 6.96 

CTI Total Post 359 70 16.3 34.67 21.63 
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 The Missing Values Analysis revealed that missing data was most problematic for the 

SAT Math and Math Placement--Algebra scores, as well as the post-administration of the CTI.  

Values for the SAT Math test were missing due to some students taking the ACT rather than the 

SAT as a college admissions test.  The Math Placement Test was not a requirement for all first-

year students when the COMPASS Program started, and some students elected not to take the 

Math Placement Test due to receiving college math credits through other programs (e.g. 

Advanced Placement, dual enrollment).  Attrition between the pre and post administration was a 

problem for the CTI, with the percentage of missing cases increasing from 2.8 percent to 16.3 

percent for the DMC and CA subscales and from 3.3 percent to 16.3 percent for the EC subscale 

and the Total score.  These increases in the number of missing CTI scores may be due to students 

being absent from either the STEM-focused Career Planning course or the STEM Seminar 

course on the day the CTI post-test was administered or students withdrawing from either course.  

 The researcher used Little’s MCAR test in SPSS to determine whether missing cases 

were missing completely at random (Little, 1988).  Results from the test indicated that the data 

were not missing completely at random (Chi-square = 839.606, df = 161, p < .001).  The 

missingness for SAT Math, Math Placement--Algebra, and the CTI Post were predictable based 

on the outcome variable but did have a relationship to other variables.  Therefore, the researcher 

determined them to be missing at random (MAR) and chose to impute missing values rather than 

deletion, as deletion could skew or bias the data set (Little, 1988; Little & Rubin, 2002).  

 To impute missing values, the researcher used the Expectation Maximization (EM) 

procedure within SPSS’s Missing Values Analysis function, which is appropriate for MAR data 

(Tabachnick & Fidell, 2013).  The EM procedure used a two-step process to impute values 

(Demptster, Laird, & Rubin, 1977; Little & Rubin, 2002).  In the first step, the procedure 
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estimated the means, variances, and covariances for the variables of interest based on the 

complete cases.  In the second step, EM used a maximum likelihood procedure to estimate 

regression equations for the variables of interest based on the calculations from the first step; 

SPSS generated the missing values using these regression equations (Tabachnick & Fidell, 

2013).  The researcher incorporated the generated values into the existing data file.   

 Univariate & Multivariate Outliers 

 Next, the researcher tested for univariate outliers within the continuous variables.  For 

continuous variables, univariate outliers were cases that had standardized scores with an absolute 

value higher than 3.29 (Tabachnick and Fidell, 2013).  The Math Placement--Algebra variable 

had no identified univariate outliers, the SAT Math and CTI Total Change variables each had 

one univariate outlier, and the CTI CA Change and CTI EC Change variables each had two 

univariate outliers.  The CTI DMC Change variable had six identified univariate outliers.  In all, 

there were 10 univariate outliers, as one case was considered an outlier for three different 

variables (See Table 13).  Based on the recommendation of Field (2009) and Tabachnick and 

Fidell (2013), the researcher excluded these cases from the analysis. 

 
Table 2. Univariate Outliers for Continuous Variables 

Variable Case number 

SAT Math 836 

MP_Algebra none 

CTI Total Change 291 

CTI DMC Change 291, 292, 329, 339, 1094, 1060 

CTI CA Change 291, 952 

CTI EC Change 101, 590 



 

 96 

 In addition to univariate outliers, the researcher also tested the dataset for multivariate 

outliers using the Mahalanobis distance.  The Mahalanobis distance values represent the distance 

of each case from the point around which all other cases swarm on the multivariate level 

(Tabachnick & Fidell, 2013).  The researcher computed the Mahalanobis distance for each case 

using the linear regression function of SPSS and then compared the Mahalanobis distance values 

for each case to the critical value for 10 predictor variables (p < .001) of 29.588.  Analysis of 

these values revealed six potential multivariate outliers (Cases 27, 260, 295, 303, 482, 943), 

which were excluded from the analyses. 

Assumptions Testing for Logistic Regression 

 Next, the researcher tested the assumptions of logistic regression with the dataset (Field, 

2009; Hosmer, Lemeshow, & Sturdivant, 2013; Tabachnick & Fidell, 2013).  The first 

assumption, which related to sample size, required the researcher to determine if an adequate 

number of cases existed for each categorical independent variable in each outcome of the 

dependent variable (i.e. an adequate representation for each categorical variable in both the 

retained group and the not retained group).  Peduzzi, Concato, Kemper, Holford, and Feinstein 

(1996) recommended that each outcome have at least 10 cases for each predictor; however, Field 

(2009) and Vittinghof and McCulloch (2006) both recommended that the minimum number of 

cases per outcome for each predictor could be as low as 5.   

 Within the data set, all continuous variables and all categorical variables sufficiently met 

both the 10 case recommendation by Peduzzi et al. (1996) and the 5 case recommendation by 

Field (2009) except the non-retained Asian/Pacific Islander and Other subcategories of the 

categorical Ethnicity variable.  For the analysis of first year retention (Hypotheses 1 through 3), 
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the Asian/Pacific Islander subcategory only had 4 cases in the non-retained outcome, which 

violated the Peduzzi et al. (1996) and Field (2009) recommendations.  The Other subcategory 

had 5 cases in the non-retained outcome, which violated the Peduzzi et al. recommendation but 

meets the Field recommendation.  For the analysis of second year retention (Hypotheses 4 

through 6), the Asian/Pacific Islander and Other subcategories both had 5 cases.  Hosmer et al. 

(2013) cautioned that an insufficient number of cases in each outcome may lead to overfitting or 

underfitting the model; however, they also added that the 10 case and 5 case recommendations 

should be considered a guideline rather than a strict rule and that researchers should make the 

final determination.  One possible solution would have been to collapse the Ethnicity variable 

into fewer subcategories (e.g. White/non-White, minority in STEM/non-minority in STEM).  

However, the researcher kept the existing categories to allow for viewing of the subcategories 

disaggregated, while noting the possibility of over/underfitting the model as a potential 

limitation. 

 In regression analyses, multicollinearity among the predictor variables can inhibit the 

researcher’s ability to assess the individual importance of each predictor (Field, 2009; 

Tabachnick & Fidell, 2013).  To test for multicollinearity, the researcher ran the model as a 

linear regression to obtain the collinearity diagnostics (Field, 2009; Pallant, 2013).  Menard 

(1995) posited that tolerance values less than 0.1 are indicative of collinearity issues.  None of 

the predictor variables in this data set violated this assumption for either of the outcome variables 

(2nd year STEM retention or 3rd year STEM retention). Myers (1990) specified that variance 

inflation factor (VIF) values greater than 10 are indicative of multicollinearity issues.  None of 

the predictor variables violated this rule for either outcome variable.  Table 12 displays 

collinearity statistics (Tolerance values and Variance Inflation Factor values) for each of the 
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predictor variables for each of the dependent variables (2nd year STEM retention and 3rd year 

STEM retention). 

 
Table 3. Multicollinearity Statistics 

 DV:  2nd Year Retention DV:  3rd Year Retention 

Predictor Tolerance VIF Tolerance VIF 

Gender .882 1.134 .893 1.120 

Ethnicity .975 1.025 .971 1.030 

Career Planning Participation .891 1.123 .899 1.112 

Initial Major .932 1.073 .922 1.085 

SAT Math .748 1.337 .707 1.415 

Math Placement-Algebra .774 1.292 .744 1.343 

CTI Total Change .407 2.457 .341 2.930 

CTI DMC Change .527 1.897 .523 1.911 

CTI CA Change .705 1.417 .571 1.751 

CTI EC Change .686 1.458 .685 1.461 

 
  

 Logistic regression also operates with the assumption that a linear relationship exists 

between the continuous predictors and the logit transformation of the dependent variable (Field, 

2009; Hosmer et al., 2013; Tabachnick & Fidell, 2013).   The researcher used the Box-Tidwell 

approach to test this assumption; this approach involved computing the natural logarithm of the 

continuous variables (SAT Math, Math Placement--Algebra, and CTI Change variables) and then 

adding interactions between the continuous variables and their natural logarithm as predictors 

into the full logistic regression model (Hosmer et al., 2013; Tabachnick & Fidell, 2013).  None 

of the interaction terms were statistically significant (p < .05), so this assumption was met.   
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 The final assumption of logistic regression required testing for outliers in the solution of 

the model (Hosmer et al., 2013; Tabachnick & Fidell, 2013).  Distinct from univariate and 

multivariate outliers, outliers in the solution refer to cases for which the model did not fit well, as 

measured by Cook’s distance values above 1.00 or standardized residual values at or above 3.00 

(Field, 2009; Tabachnick & Fidell, 2013).  After identifying outliers in the solution, the 

researcher has the option of removing those outlier cases and rerunning the analysis with the goal 

of increasing precision.  As this assumption required the researcher to examine residual statistics 

for each analysis, outliers in the solution are presented in the section for each hypothesis. 

Descriptive Statistics  

 Descriptive statistics allow the researcher and readers to better understand the sample 

within the study.  Because the study includes two dependent variables that were tested 

separately, the researcher divided the descriptive statistics for each of the retention outcome 

variables.  

Descriptive Statistics for Year 2 STEM Retention 

 Table 4 displays descriptive statistics for the categorical variables used in the analyses for 

Hypotheses 1 through 3 (evaluating Year 1 to Year 2 STEM retention); the table shows the 

statistics for the entire data set and for each of the retention outcomes (retained or not retained).  

The sample overall was nearly half female, which was a larger representation of females than 

STEM fields overall and previous studies examining gender in STEM; the high number of 

females likely was due to the COMPASS Program’s attention to gender issues in STEM.  More 

females were in the retained group than the non-retained group, but females represented a larger 
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proportion of the non-retained group.  Regarding ethnicity, more than half of the sample consists 

of Caucasian/White students, which is representatives of the University and STEM overall.  A 

larger number of students were in the Career Planning group than the STEM Seminar group.  

Similarly, a larger number of students were in the Undeclared Initial Major group. 

 

Table 4. Descriptive Statistics for Categorical Variables (2nd Year STEM Retention) 

Variable Retained Not Retained Total 

 n %a n %b n %c 

Gender       

     Male 159 58.9 74 46.5 233 54.3 

     Female 111 41.1 85 53.5 196 45.7 

     Total 270 100.0 159 100.0 429 100.0 

Ethnicity       

     Caucasian/White 147 54.4 100 62.9 247 57.6 

     African American/Black 31 11.5 16 10.1 47 11.0 

     Hispanic 57 21.1 34 21.4 91 21.2 

     Asian/Pacific Islander 24 8.9 4 2.5 28 6.5 

     Other 11 4.1 5 3.1 16 3.7 

     Total 270 100.0 159 100.0 429 100.0 

Course       

     Career Planning 137 50.7 120 75.5 257 59.9 

     STEM Seminar 133 49.3 39 24.5 172 40.1 

     Total 270 100.0 159 100.0 429 100.0 

Initial Major       

     Undeclared 130 48.1 72 45.3 202 47.1 

     STEM 124 45.9 40 25.2 164 38.2 

     Non-STEM 16 5.9 47 29.6 63 14.7 

     Total 270 100.0 159 100.0 429 100.0 

Note.  a = percentage of the Retained group.  b = percentage of the Not Retained group. c = percentage of the Total group. 
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 Tables 5 through 8 provide descriptive statistics for all continuous variables that the 

researcher used to analyze Hypotheses 1 through 3 (testing first to second year STEM retention).  

Table 5 displays the means, standard deviations, and ranges for the SAT Mathematics and Math 

Placement Algebra subtest, including the data for the entire sample and the two retention 

outcome groups (retained and not retained).  The Retained group had higher mean scores on both 

the SAT Math test and the UCF Math Placement-Algebra test.  The minimum scores for the SAT 

Math test were below the 550 required for admission to the COMPASS Program, which resulted 

from the Expectation Maximization procedure for imputing missing values (i.e., the cases with 

scores below 550 were missing the SAT Math score prior to the Missing Values Analysis. 

 
 
Table 5. Descriptive Statistics for Math Variables (2nd Year STEM Retention) 

Variables Mean SD Minimum Maximum 

SAT Mathematics     

     Retained 631.61 56.74 470.00 800.00 

     Non-Retained 614.07 56.57 390.00 770.00 

     Total 625.11 57.24 390.00 800.00 

Math Placement--Algebra     

     Retained 313.89 88.99 40.00 500.00 

     Non-Retained 285.37 72.41 80.00 480.00 

     Total 303.32 84.28 40.00 500.00 

Note. Total N for 2nd Year Retention = 429; Retained n = 270, Non-Retained n = 159). 

 
 
 
 Table 6 displays the means, standard deviations, and ranges for the CTI Pretest Total and 

subscales, including the data for the entire sample and the two retention outcomes.  The Non-

Retained group had higher mean scores on the pretest CTI Total and all three subscales, 
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indicating that the students who were not retained in a STEM major initially had slightly higher 

negative career thoughts than the students who were eventually retained in a STEM major. 

 

Table 6. Descriptive Statistics for CTI Pretest Variables (2nd Year STEM Retention) 

Variables Mean SD Minimum Maximum 

CTI Total Pretest     

     Retained 48.49 20.48 0.00 110.00 

     Non-Retained 49.13 20.10 3.00 97.00 

     Total 48.73 20.32 0.00 110.00 

CTI DMC Pretest     

     Retained 10.76 7.47 0.00 34.00 

     Non-Retained 11.57 7.02 0.00 31.00 

     Total 11.06 7.30 0.00 34.00 

CTI CA Pretest     

     Retained 14.69 5.58 0.00 25.00 

     Non-Retained 16.15 6.80 2.00 59.00 

     Total 15.23 6.09 0.00 59.00 

CTI EC Pretest     

     Retained 3.86 2.64 0.00 13.00 

     Non-Retained 3.94 2.62 0.00 10.00 

     Total 3.89 2.63 0.00 13.00 

Note. Total N for 2nd Year Retention = 429; Retained n = 270, Non-Retained n = 159). 

 
 
 
 Table 7 displays the descriptive statistics for the CTI Posttest Total and subscales in the 

same format as Table 6.  The Non-Retained group had higher mean scores on the posttest CTI 

Total and all three subscales, indicating that the students who were not retained in a STEM major 
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still had higher negative career thoughts after the first semester of college than the students who 

were eventually retained in a STEM major. 

 
 
Table 7. Descriptive Statistics for CTI Posttest Variables (2nd Year STEM Retention) 

Variables Mean SD Minimum Maximum 

CTI Total Posttest     

     Retained 33.14 20.30 0.00 93.00 

     Non-Retained 37.61 21.08 0.00 11.00 

     Total 34.80 20.68 0.00 99.00 

CTI DMC Posttest     

     Retained 6.52 6.61 0.00 26.00 

     Non-Retained 8.20 7.25 0.00 32.00 

     Total 7.14 6.89 0.00 34.00 

CTI CA Posttest     

     Retained 11.32 6.16 0.00 26.00 

     Non-Retained 12.84 5.80 0.00 25.00 

     Total 11.89 6.07 0.00 26.00 

CTI EC Posttest     

     Retained 2.72 2.67 0.00 15.00 

     Non-Retained 3.07 2.53 0.00 11.00 

     Total 2.85 2.62 0.00 15.00 

Note. Total N for 2nd Year Retention = 429; Retained n = 270, Non-Retained n = 159). 

 
 
 
 Table 8 displays the descriptive statistics for the CTI Change Score variables, which the 

researcher calculated by finding the mathematical difference between the pretest and posttest 

administrations of the CTI.  The Retained group had higher mean change scores for the CTI 
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Total and all three subscales, indicating that the Retained group showed larger decreases in 

negative career thinking than the Non-Retained group. 

 
 
Table 8. Descriptive Statistics for CTI Change Variables (2nd Year STEM Retention) 

 Retained Non-Retained Total 

Variables Mean SD Mean SD Mean SD 

CTI Total Change 15.35 16.86 11.53 20.60 13.93 18.41 

CTI DMC Change 4.24 5.91 3.37 6.15 3.92 6.01 

CTI CA Change 3.37 5.08 3.31 6.52 3.34 5.65 

CTI EC Change 1.14 2.89 .87 2.76 1.04 2.84 

Note. Total N for 2nd Year Retention = 429; Retained n = 270, Non-Retained n = 159). 
 

 

Descriptive Statistics for Year 3 STEM Retention 

 Because fewer students had made it to their third year of college than to their second year 

of college at the time of the data analysis, the sample for Hypotheses 4 through 6 was smaller 

than the sample for Hypotheses 1 through 3.  As such, the researcher provided descriptive 

statistics separately for the second dependent variable (evaluating Year 1 to Year 3 STEM 

retention).  Table 9 displays descriptive statistics for the categorical variables used in the analysis 

for Hypotheses 4 through 6; as with Table 4, this table includes statistics for the entire sample 

and for each of the retention outcomes (retained or not retained).  The sample overall was half 

female, which was a larger representation of females than STEM fields overall and previous 

studies examining gender in STEM.  More females were in the non-retained group.  Regarding 

ethnicity, more than half of the sample consists of Caucasian/White students, which is 

representatives of the University and STEM overall.  A larger number of students were in the 
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Career Planning group than the STEM Seminar group.  Similarly, a larger number of students 

were in the Undeclared Initial Major group. 

 
 

Table 9. Descriptive Statistics for Categorical Variables (3rd Year STEM Retention) 

Variable Retained Not Retained Total 

 n %a n %b n %c 

Gender       

     Male 72 55.8 65 44.8 137 50.0 

     Female 57 44.2 80 55.2 137 50.0 

     Total 129 100.0 145 100.0 274 100.0 

Ethnicity       

     Caucasian/White 66 51.2 85 58.6 151 55.1 

     African American/Black 16 12.4 18 12.4 34 12.4 

     Hispanic 29 22.5 32 22.1 61 22.3 

     Asian/Pacific Islander 10 7.8 5 3.4 15 5.5 

     Other 8 6.2 5 3.4 13 4.7 

     Total 129 100.0 145 100.0 274 100.0 

Course       

     Career Planning 76 58.9 112 77.2 188 68.6 

     STEM Seminar 53 41.1 33 22.8 86 31.4 

     Total 129 100.0 145 100.0 274 100.0 

Initial Major       

     Undeclared 65 50.4 63 43.4 128 46.7 

     STEM 55 42.6 39 26.9 94 34.3 

     Non-STEM 9 7.0 43 29.7 52 19.0 

     Total 129 100 145 100 274 100.0 

Note.  a = percentage of the Retained group.  b = percentage of the Not Retained group. c = percentage of the Total group. 
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 Tables 10 through 13 provide descriptive statistics for all continuous variables that the 

researcher used to analyze Hypotheses 4 through 6 (testing first to third year STEM retention).  

Table 10 displays the means, standard deviations, and ranges for the SAT Mathematics and Math 

Placement Algebra subtest, including the data for the entire sample and the two retention 

outcome groups (retained and not retained).  The Retained group had higher mean scores on both 

the SAT Math test and the UCF Math Placement-Algebra test.  The minimum scores for the SAT 

Math test were below the 550 required for admission to the COMPASS Program, which resulted 

from the Expectation Maximization procedure for imputing missing values (i.e., the cases with 

scores below 550 were missing the SAT Math score prior to the Missing Values Analysis. 

 

Table 10. Descriptive Statistics for Math Variables (3rd Year STEM Retention) 

Variables Mean SD Minimum Maximum 

SAT Mathematics     

     Retained 636.89 57.27 530.00 800.00 

     Non-Retained 614.01 57.37 440.00 770.00 

     Total 624.78 58.35 440.00 800.00 

Math Placement--Algebra     

     Retained 323.39 85.83 80.00 500.00 

     Non-Retained 282.65 77.41 80.00 480.00 

     Total 301.83 83.84 80.00 500.00 

Note. Total N for 3rd Year Retention = 274; Retained n = 129, Non-Retained n = 145). 

 
 
 
 Table 11 displays the means, standard deviations, and ranges for the CTI Pretest Total 

and subscales, including the data for the entire sample and the two retention outcomes.  The 

Non-Retained group had higher mean scores on the pretest CTI Total and all three subscales, 
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indicating that the students who were not retained in a STEM major initially had slightly higher 

negative career thoughts than the students who were eventually retained in a STEM major. 

 
 
Table 11. Descriptive Statistics for CTI Pretest Variables (3rd Year STEM Retention) 

Variables Mean SD Minimum Maximum 

CTI Total Pretest     

     Retained 46.40 20.68 0.00 110.00 

     Non-Retained 50.62 20.21 3.00 94.00 

     Total 48.64 20.50 0.00 110.00 

CTI DMC Pretest     

     Retained 10.37 7.53 0.00 34.00 

     Non-Retained 11.95 7.01 0.00 28.00 

     Total 11.21 7.29 0.00 34.00 

CTI CA Pretest     

     Retained 14.51 5.78 0.00 24.00 

     Non-Retained 16.37 5.83 0.00 28.00 

     Total 15.50 5.87 0.00 28.00 

CTI EC Pretest     

     Retained 3.70 2.73 0.00 12.00 

     Non-Retained 4.07 2.63 0.00 11.00 

     Total 3.90 2.68 0.00 12.00 

Note. Total N for 3rd Year Retention = 274; Retained n = 129, Non-Retained n = 145). 
 
 
 Table 12 displays the descriptive statistics for the CTI Posttest Total and subscales in the 

same format as Table 11.  The Non-Retained group had higher mean scores on the posttest CTI 

Total and all three subscales, indicating that the students who were not retained in a STEM major 
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initially still had higher negative career thoughts after the first semester of college than the 

students who were eventually retained in a STEM major. 

 
 
Table 12. Descriptive Statistics for CTI Posttest Variables (3rd Year STEM Retention) 

Variables Mean SD Minimum Maximum 

CTI Total Posttest     

     Retained 32.47 20.92 0.00 99.00 

     Non-Retained 35.57 20.48 0.00 83.00 

     Total 34.11 20.71 0.00 99.00 

CTI DMC Posttest     

     Retained 6.38 6.51 0.00 28.00 

     Non-Retained 7.64 6.99 0.00 30.00 

     Total 7.05 6.79 0.00 30.00 

CTI CA Posttest     

     Retained 11.43 6.26 0.00 26.00 

     Non-Retained 12.61 6.09 0.00 25.00 

     Total 12.05 6.19 0.00 26.00 

CTI EC Posttest     

     Retained 2.77 2.72 0.00 12.00 

     Non-Retained 3.16 2.94 0.00 15.00 

     Total 2.98 2.84 0.00 15.00 

Note. Total N for 3rd Year Retention = 274; Retained n = 129, Non-Retained n = 145). 

 
 

 Table 13 displays the descriptive statistics for the CTI Change Score variables, which the 

researcher calculated by finding the mathematical difference between the pretest and posttest 

administrations of the CTI.  The Non-Retained group had higher mean change scores for the CTI 

Total and all subscales except the External Conflict subscale.  These statistics indicate that the 
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Non-Retained group showed larger decreases in negative career thinking than the Retained 

group, except with External Conflict. 

 

Table 13. Descriptive Statistics for CTI Change Variables (3rd Year STEM Retention) 

 Retained Non-Retained Total 

Variables Mean SD Mean SD Mean SD 

CTI Total Change 13.93 17.77 15.06 20.34 14.53 19.15 

CTI DMC Change 3.98 6.21 4.32 6.16 4.16 6.18 

CTI CA Change 3.09 5.39 3.76 5.46 3.44 5.43 

CTI EC Change .93 2.98 .91 3.15 .92 3.07 

Note. Total N for 3rd Year Retention = 274; Retained n = 129, Non-Retained n = 145). 
 

Results of Data Analyses 

Hypothesis 1 

 
 To test the first null hypothesis, which stated that first-year STEM undergraduate 

retention could not be predicted by the independent variables, the researcher ran a binary logistic 

regression with 2nd Year STEM Retention as the binary outcome variable.  Categorical predictor 

variables included Gender (Male = 0, Female = 1), Ethnicity (Caucasian/White = 1, African 

American/Black = 2, Hispanic = 3, Asian/Pacific Islander = 4, Other = 5), Initial Major 

(Undeclared = 1, Declared STEM = 2, Declared Non-STEM = 3), and Career Planning 

Participation (Career Planning = 1, STEM Seminar = 2).  A previous researcher established the 

coding scheme for some of these variables, and SPSS automatically dummy coded identified 

categorical variables with more than two categories.  Continuous variables included SAT Math 

scores, Math Placement--Algebra Test scores, CTI Total Change scores, CTI DMC Change 
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Scores, CTI CA Change Scores, and CTI EC Change Scores.  The sample for this analysis 

included 413 cases after removing the univariate and multivariate outliers.  The researcher used a 

Backward (Stepwise) Wald procedure for including variables in the model.  In this procedure, 

the analysis initially included all predictor variables; variables with p values higher than a 

designated cutoff point were removed one by one until only variables with p values at or below 

the cutoff points remained in the model (Hosmer et al., 2013; Tabachnick & Fidell, 2013).  SPSS 

defaults to an alpha level of .05, but Hosmer et al. (2013) recommend a more liberal cutoff point 

between .15 and .20.  For this analysis, the researcher used a cutoff point of .20 for a predictor to 

be included in the model; using a higher cutoff point helped address the possibility of a stepwise 

approach removing a variable that still contributes to the model without having traditional 

statistical significance.  

 The logistic regression required five steps to achieve the most parsimonious model.  In 

the first step, which included all predictor variables, the Chi-square value was 92.445 (df = 14, p 

< .001) and the -2 Log likelihood statistic was 452.054.  The initial model with all predictors had 

a Cox & Snell R Square value of .201 and a Nagelkerke R Square statistic of .274, indicating that 

the model with all predictors explained between 20 and 27 percent of the variance in the 

outcome.  Hosmer et al. (2013) noted that R squared values for logistic regression tend to be 

lower than linear regression.  The Hosmer and Lemeshow Goodness of Fit Test indicated that the 

model fit well with the data (Chi-square = 6.545, df = 8, p = .586) because of a non-significant p 

value.   

 After removing four variables with p values greater than .20 (CTI CA Change, CTI EC 

Change, Gender, CTI DMC Change, respectively) one by one, the Chi-square value for the final 

model was 91.011 (df = 10, p < .001).  The final model yielded a -2 Log likelihood of 453.488, a 
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Cox & Snell R Square value of .198, and a Nagelkerke R Square value of .270.  These R-Square 

values showed that the model explained between 20 and 27 percent of the variance in the 

outcome.  The Hosmer and Lemeshow Goodness of Fit Test indicated that the model had a good 

fit (Chi-square = 6.273, df = 8, p = .617); a non-significant p value greater than .05 indicated 

support for the model (Tabachnick & Fidell, 2013).   

 Table 14 displays a comparison of the observed outcomes and the predicted outcomes.  

The final model was able to accurately predict 73.4 percent of cases, with most of the accurate 

predictions being in the retained group.  The model predicted approximately 90 percent of the 

retained students accurately, but predicted the non-retained cases accurately less than half of the 

time.   

 

Table 14. Classification Table For Hypothesis 1 

 
 
 
 
 
 
 
 
 
 

 
 The final model included the following six variables that met the criteria of having a p 

value at or below .20 based on the Hosmer et al. (2013) recommendation:  Ethnicity, Initial 

Major, STEM Course Participation, SAT Math, Math Placement--Algebra, and CTI Total 

Change.  Table 15 explains the contributions of each of these variables to the final model, 

including their observed significance, odds ratio, and 95 percent confidence intervals for the 

Observed 2nd Year STEM Retention 

Predicted 2nd Year STEM Retention 

No Yes % Correct 

 No 70 83 45.8 

Yes 27 233 89.6 

Overall Percentage   73.4 

a. The cut value is .500 
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odds ratios.  The odds ratio represents the association between an independent variable and a 

particular outcome (Hosmer et al., 2013).  For this study, the odds ratio represents the extent to 

which the independent variables predict membership in the STEM retained group.  With 

categorical variables, the odds ratio indicates the likelihood that being in a particular category 

(e.g. African American) predicts membership in the STEM retained group.  With continuous 

variables, the odds ratio indicates the likelihood that increases or decreases in the independent 

variable (e.g. SAT Math scores) predict membership in the STEM retained group.  Odds ratios 

can be used as a measure of effect size in that odds ratios closer to 1.0 have a smaller effect 

(Tabachnick & Fidell, 2013); however, the researcher also converted the odds ratios to eta-

squared values as another method of interpreting effect size (Borenstein, Hedges, Higgins, & 

Rothstein, 2009; Cohen, 1988). 
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Table 15. Variables in the Equation for Hypothesis 1 

       95% C.I. for O.R. 

Variable B S.E. Wald df p value O.R. Lower Upper 

Ethnicity   10.319 4 .035    

Ethnicity (AfricanAmerican/Black) .576 .393 2.148 1 .143 1.779 .823 3.842 

Ethnicity (Hispanic) .068 .290 .054 1 .816 1.070 .606 1.889 

Ethnicity (Asian/Pacific Islander) 1.889 .637 8.803 1 .003 6.615 1.899 23.041 

Ethnicity (Other) .258 .714 .131 1 .717 1.295 .320 5.246 

Initial Major   35.824 2 < .001    

Initial Major (Declared STEM) .412 .265 2.422 1 .120 1.511 .899 2.539 

Initial Major (Declared non-STEM) -1.944 .375 26.905 1 < .001 .143 .069 .298 

STEM Seminar (Non-CP) .850 .258 10.885 1 .001 2.340 1.412 3.879 

SAT Math .004 .002 2.411 1 .120 1.004 .999 1.008 

Math Placement--Algebra .002 .002 2.080 1 .149 1.002 .999 1.005 

CTI Total Change .017 .007 5.546 1 .019 1.017 1.003 1.032 

Constant -2.994 1.378 4.717 1 .030 .050   

Note: O.R. = Odds Ratio 
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 The Wald Chi-square test within logistic regression helps determine the significance of 

the coefficient for each predictor in the model by dividing the squared coefficient for each 

variable by its squared standard error (Tabachnick & Fidell, 2013).  Based on the results of the 

Wald test, Initial Major was the most statistically significant predictor (p < .001).  The odds 

ratios indicated that participants from the Declared STEM group had a 1.5 times higher 

likelihood of being in the retained outcome group (eta squared = .01).  However, for participants 

in the Declared non-STEM category, the odds of participants in this group being in the retained 

outcome group decrease by a factor of .143 (eta squared = .22).  With a similar significance level 

(p = .001), the students in the STEM Seminar group (i.e. the students who did not take the career 

planning class) had a 2.34 times higher likelihood of being in the retained group (eta squared = 

.05).  The CTI Total change variable was also a statistically significant predictor at the .05 level; 

the odds ratio for this variable indicates that for every unit increase in CTI Total Change score, 

the odds of being in the retained group are 1.017 times higher (eta squared < .001).  Ethnicity 

was another predictor variable that was a significant predictor at the .05 level.  All of the 

categories had odds ratios above 1, indicating that the African American/Black, Hispanic, 

Asian/Pacific Islander, and Other subgroups all had higher odds of being in the retained group 

than the reference category of Caucasian/White students.  However, the wide confidence interval 

range and the high odds ratio may, particularly with the Asian/Pacific Islander and Other 

subgroups, result from the small number of cases in both outcome groups for the subgroups.   

 Both the SAT Math and Math Placement--Algebra tests were not statistically significant 

at the .05 level but met the Hosmer et al. (2013) recommendation for acceptable alpha levels.  

Because the 95 percent confidence interval range contains the value of 1.00, the researcher 

cannot rule out the possibility that the true odds ratio is 1.00, which would indicate that this 
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variable predicts an equal probability of a case being in either the retained or non-retained 

outcome.  Despite not having statistical significance at the .05 level, these variables may have 

contributed to the overall model and increased precision with other variables.  

 Examining the residual statistics for each case helped evaluate goodness of fit and 

identify outliers for which the model did not fit (Tabachnick & Fidell, 2013).  Cook’s distance 

measures the effect of deleting a particular case from the model; cases with high Cook’s distance 

values should be evaluated further (Field, 2009).  There were no unusually high Cook’s distance 

values, as all were below 1.00 (Field, 2009).  SPSS determined residual values by calculating the 

difference between the predicted outcome (i.e. a value between 0 and 1) and the observed value 

(i.e. a value of 0 or 1); after standardizing the residual value, the researcher could identify 

outliers in the solution by finding cases with a standardized residual value at or above 3.00 

(Field, 2009; Tabachnick & Fidell, 2013).  Table 16 displays four cases that met this criterion.  

Upon further inspection of these individual cases, the only trends the researcher observed were 

that three of the four were in the Asian/Pacific Islander subgroup and three of the four were in 

the non-retained outcome group.  This finding may indicate that the model did not work well for 

participants who are in both the Asian/Pacific Islander subgroup and the non-retained group; 

however, due to the small number of participants who met both of these criteria (n = 5), the 

researcher could not conclusively determine this.  Eliminating these cases may have improved 

the model fit, but it would also have resulted in a subgroup (non-retained Asian/Pacific Islander 

students) with only two cases; as such, the researcher chose to keep them in the analysis to avoid 

having to collapse the Ethnicity variable into fewer categories (i.e. minority/non-minority). 
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Table 16. Outliers in the Solution for Hypothesis 1 

Case No. 

Observed First Year 

STEM Retention Predicted 

Predicted 

Group Resid ZResid 

855 Y .064 N .936 3.816 

860 N .921 Y -.921 -3.416 

910 N .953 Y -.953 -4.518 

1421 N .978 Y -.978 -6.631 

  
 
 In summary, adding the predictors into the logistic regression model did improve the 

predictions made.  Removing predictors with p values greater than .20 did increase the model fit 

based on the Hosmer and Lemeshow test, but slightly decreased the variance accounted for by 

the model, as measured by a decreased Chi-square statistic and an increased -2 Log likelihood 

statistic.  Despite these differences, the R-squared values minimally changed with the removal of 

more highly non-significant predictors.  The Initial Major variable, the STEM Course variable, 

and the Ethnicity variable were the most significant predictors in the final model, although the 

math variables and the CTI Total change variable contributed.  Overall, the model performed 

well in predicting retained students but only predicted non-retained students correctly with less 

than half of cases. 

Hypothesis 2 

 
 To test the second hypothesis, which stated that 2nd year undergraduate retention in 

STEM majors could not be predicted by the independent variables for students in a STEM-

focused career planning class, the researcher ran a binary logistic regression with 2nd Year 

STEM Retention as the binary outcome variable.  Categorical predictor variables included 
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Gender (Male = 0, Female = 1), Ethnicity (Caucasian/White = 1, African American/Black = 2, 

Hispanic = 3, Asian/Pacific Islander = 4, Other = 5), and Initial Major (Undeclared = 1, Declared 

STEM = 2, Declared Non-STEM = 3).  A previous researcher established the coding scheme for 

some of these variables, and SPSS automatically dummy coded identified categorical variables 

with more than two categories.  Continuous variables included SAT Math scores, Math 

Placement--Algebra Test scores, CTI Total Change scores, CTI DMC Change Scores, CTI CA 

Change Scores, and CTI EC Change Scores.  The sample for this analysis included 247 cases 

from the Career Planning group after removing the univariate and multivariate outliers.  The 

researcher used a Backward (Stepwise) Wald procedure for including variables in the model.  In 

this procedure, all the analysis initially included all predictor variables; variables with p values 

higher than a designated cutoff point were removed one by one until only variables with p values 

at or below the cutoff points remained in the model (Hosmer et al., 2013; Tabachnick & Fidell, 

2013).  For this analysis, the researcher used a cutoff point of .20 for a predictor to be included in 

the model; using a higher cutoff point helped address the possibility of a stepwise approach 

removing a variable that still contributes to the model without having traditional statistical 

significance.  

 The logistic regression required six steps to achieve the most parsimonious model.  In the 

first step, which included all predictor variables, the Chi-square value was 50.227 (df = 13, p < 

.001) and the -2 Log likelihood statistic was 291.277.  The initial model with all predictors had a 

Cox & Snell R Square value of .184 and a Nagelkerke R Square value of .246, indicating that the 

model with all predictors explained between 18 and 25 percent of the variance in the outcome.  

Hosmer et al. (2013) noted that R squared values for logistic regression tend to be lower than 
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linear regression.  The Hosmer and Lemeshow Goodness of Fit Test indicated that the model fit 

well with the data (Chi-square = 9.420, df = 8, p = .308) because of a non-significant p value. 

 After removing four variables with p values greater than .20 (CTI EC Change, CTI CA 

Change, CTI Total Change, SAT Math, and Gender, respectively) one by one, the Chi-square 

value for the model was 45.857 (df = 8, p < .001).  The final model yielded a -2 Log likelihood 

of 295.646, a Cox & Snell R Square value of .169, and a Nagelkerke R Square value of .226.  

These R-Square values showed that the model explained between 17 and 23 percent of the 

variance in the outcome.  The Hosmer and Lemeshow Goodness of Fit Test indicated that the 

model had a good fit (Chi-square = 6.441, df = 8, p = .598); a p value greater than .05 indicates 

support for the model (Tabachnick & Fidell, 2013).   

 The final model was able to accurately predict 64.8 percent of cases, with most of the 

accurate predictions being in the retained group.  Table 17 displays a comparison of the observed 

outcomes and the predicted outcomes.  The model predicted approximately 80 percent of the 

retained students accurately, but predicted the non-retained cases accurately less than half of the 

time. 

 

Table 17. Classification Table for Hypothesis 2 

 

 
 
 

 

 

 

Observed Year 1 STEM Retention 

Predicted Year 1 STEM Retention 

No Yes % Correct 

 No 55 61 47.4 

Yes 26 105 80.2 

Overall Percentage   64.8 

a. The cut value is .500 
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 The final model included the following variables that met the criteria of having a p value 

at or below .20 based on the Hosmer et al. (2013) recommendation:  Ethnicity, Initial Major, 

Math Placement--Algebra, and CTI DMC Change.  Table 18 explains the contributions of each 

of these variables to the final model, including their observed significance, odds ratio and 95 

percent confidence intervals for the odds ratios.  As a reminder, the odds ratio represents the 

association between an independent variable and a particular outcome (Hosmer et al., 2013).  

Specific to this study, the odds ratio represents the extent to which the independent variables 

predict membership in the STEM retained group.  Odds ratios can be used as a measure of effect 

size in that odds ratios closer to 1.0 have a smaller effect (Tabachnick & Fidell, 2013); however, 

the researcher also converted the odds ratios to eta-squared values as another method of 

interpreting effect size (Borenstein, Hedges, Higgins, & Rothstein, 2009; Cohen, 1988). 
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Table 18. Variables in the Equation for Hypothesis 2 

       95% C.I. for O.R. 

Variable B S.E. Wald df p value O.R. Lower Upper 

Ethnicity   10.306 4 .036    

Ethnicity (AfricanAmerican/Black .596 .454 1.723 1 .189 1.814 .745 4.417 

Ethnicity (Hispanic) .069 .359 .037 1 .848 1.071 .530 2.165 

Ethnicity (Asian/Pacific Islander) 2.504 .863 8.419 1 .004 12.235 2.254 66.414 

Ethnicity (Other) 1.040 1.147 .822 1 .365 2.830 .299 26.807 

Initial Major   22.256 2 < .001    

Initial Major (Declared STEM) .147 .328 .199 1 .655 1.158 .608 2.203 

Initial Major (Declared non-STEM) -1.982 .441 20.155 1 < .001 .138 .058 .327 

Math Placement--Algebra .004 .002 4.303 1 .038 1.004 1.000 1.007 

CTI DMC Change .040 .026 2.329 1 .127 1.040 .989 1.095 

Constant -1.053 .584 3.249 1 .071 .349   

Note: O.R. = Odds Ratio 
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 The Wald test within logistic regression helps determine the significance of the 

coefficient for each predictor in the model by dividing the squared coefficient for each variable 

by its squared standard error (Tabachnick & Fidell, 2013).  Based on the results of the Wald test, 

Initial Major was the most statistically significant predictor (p < .001).  The results indicated that 

participants from the Declared STEM group had approximately a 1.2 times higher likelihood of 

being in the retained outcome group (eta squared = .002); however, for participants in the 

Declared non-STEM category, the odds of participants in this group being in the retained 

outcome group decrease by a factor of .138 (eta squared = .230).  Ethnicity was another predictor 

variable that was a significant predictor at the .05 level.  As with Hypothesis 1, all of the 

categories had odds ratios above 1, indicating that the African American/Black, Hispanic, 

Asian/Pacific Islander, and Other subgroups all had higher odds of being in the retained group 

than the reference category of Caucasian/White students.  However, the wide confidence interval 

range and the high odds ratio may, particularly with the Asian/Pacific Islander and Other 

subcategories, be the result of the small number of cases in both outcome groups for the 

subcategories.  The Math Placement--Algebra variable was also a statistically significant 

predictor at the .05 level; the odds ratio for this variable indicates that for every unit increase in 

Math Placement--Algebra test score, the odds of being in the retained group are 1.040 times 

higher (eta squared < .001).   

 The CTI DMC Change variable was not statistically significant at the .05 level but met 

the Hosmer et al. (2013) recommendation for acceptable alpha levels.  Because the 95 percent 

confidence interval range contains the value of 1.00, the researcher could not rule out the 

possibility that the true odds ratio is 1.00, which would indicate that this variable predicts an 

equal probability of a case being in either the retained or non-retained outcome.  Despite not 
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having statistical significance at the .05 level, these variables may have contributed to the overall 

model and increased precision with other variables. 

 Examining the residual statistics for each case helped evaluate goodness of fit and 

identify outliers for which the model did not fit (Tabachnick & Fidell, 2013).  Cook’s distance 

measures the effect of deleting a particular case from the model; cases with high Cook’s distance 

values should be evaluated further (Field, 2009).  There were no unusually high Cook’s distance 

values, as all were below 1.00 (Field, 2009).  SPSS only identified three cases that could be 

considered outliers in the solution based on a standardized residual value at or above 3.00 (Field, 

2009; Tabachnick & Fidell, 2013).  Table 19 displays the cases that met this criterion.  Upon 

further inspection of these individual cases, the researcher could not determine an observable 

trend with these outliers that may be influencing the predicted values.  Eliminating these cases 

may have improved the model fit, but it would also have resulted in further reduction to the non-

retained Asian/Pacific Islander students by one case; as this variable is already limited, the 

researcher kept these potential outliers in the analysis to avoid having to collapse the Ethnicity 

variable into fewer categories (i.e. minority/non-minority). 

 
 
Table 19. Outliers in the Solution for Hypothesis 2 

Case No. 
Observed First Year 

STEM Retention 
Predicted 

Predicted 
Group 

Resid ZResid 

289 Y .078 N .922 3.443 

855 Y .063 N .937 3.862 

860 N .940 Y -.940 -3.964 
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 In summary, adding the predictors into the logistic regression model did improve the 

predictions made.  Removing predictors with p values greater than .20 did increase the model fit 

based on the Hosmer and Lemeshow test, but slightly decreased the variance accounted for by 

the model, as measured by a decreased Chi-square statistic and an increased -2 Log likelihood 

statistic.  Additionally, each R-squared value decreased by approximately two percent with the 

removal of more highly non-significant predictors.  The Initial Major variable and the Ethnicity 

variable were the most significant predictors in the final model, although the Math Placement--

Algebra variable and the CTI DMC change variable contributed.  Overall, the model performed 

well in predicting retained students but only predicted non-retained students correctly with less 

than half of cases. 

Hypothesis 3 

 To test the third hypothesis, which stated that 2nd year undergraduate retention in STEM 

majors could not be predicted by the independent variables for students in a STEM Seminar class 

without a career planning focus, the researcher ran a binary logistic regression with 2nd Year 

STEM Retention as the binary outcome variable.  Categorical predictor variables included 

Gender (Male = 0, Female = 1), Ethnicity (Caucasian/White = 1, African American/Black = 2, 

Hispanic = 3, Asian/Pacific Islander = 4, Other = 5), and Initial Major (Undeclared = 1, Declared 

STEM = 2, Declared Non-STEM = 3).  A previous researcher established the coding scheme for 

some of these variables, and SPSS automatically dummy coded identified categorical variables 

with more than two categories.  Continuous variables included SAT Math scores, Math 

Placement--Algebra Test scores, CTI Total Change scores, CTI DMC Change Scores, CTI CA 

Change Scores, and CTI EC Change Scores.  The sample for this analysis included 166 cases 



 

 124 

from the STEM Seminar group after removing the univariate and multivariate outliers.  The 

researcher used a Backward (Stepwise) Wald procedure for including variables in the model.  In 

this procedure, the analysis initially included all predictor variables; variables with p values 

higher than a designated cutoff point were removed one by one until only variables with p values 

at or below the cutoff points remain in the model (Hosmer et al., 2013; Tabachnick & Fidell, 

2013).  SPSS defaults to an alpha level of .05, but Hosmer et al. (2013) recommend a more 

liberal cutoff point between .15 and .20.  For this analysis, the researcher used a cutoff point of 

.20 for a predictor to be included in the model; using a higher cutoff point helped address the 

possibility of a stepwise approach removing a variable that still contributes to the model without 

having traditional statistical significance.  

 The logistic regression required seven steps to achieve the most parsimonious model.  In 

the first step, which included all predictor variables, the Chi-square value was 24.667 (df = 13, p 

< .05) and the -2 Log likelihood statistic was 151.473.  The initial model with all predictors had a 

Cox & Snell R Square value of .138 and a Nagelkerke R Square statistic of .211, indicating that 

the model with all predictors explained between 14 and 21 percent of the outcome variance.  

Hosmer et al. (2013) noted that R squared values for logistic regression tend to be lower than 

linear regression.  The Hosmer and Lemeshow Goodness of Fit Test indicated that the model fit 

well with the data (Chi-square = 2.680, df = 8, p = .953) because of a non-significant p value. 

 After removing six variables with p values greater than .20 (Gender, CTI DMC Change, 

Ethnicity, Math Placement--Algebra, CTI Total Change, and CTI EC Change, respectively) one 

by one, the Chi-square value for the model was 22.253 (df = 4, p < .001).  The final model 

yielded a -2 Log likelihood of 153.888, a Cox & Snell R Square value of .125, and a Nagelkerke 

R Square value of .192.  These R-Square values show that the model explains between 13 and 19 
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percent of the variance in the outcome.  The Hosmer and Lemeshow Goodness of Fit Test 

indicated that the model had a good fit (Chi-square = 2.722, df = 8, p = .951); a p value greater 

than .05 indicates support for the model (Tabachnick & Fidell, 2013).   

 Table 20 displays a comparison of the observed outcomes and the predicted outcomes in 

the final model.  The final model was able to accurately predict 80.7 percent of cases, with most 

of the accurate predictions being in the retained group.  The model predicted approximately 97 

percent of the retained students accurately, but predicted the non-retained cases accurately less 

than one fourth of the time. 

 

Table 20. Classification Table for Hypothesis 3 

 

 
 
 

 

 

  
 The final model included the following variables that met the criteria of having a p value 

at or below .20 based on the Hosmer et al (2013) recommendation:  Initial Major, SAT Math, 

and CTI CA Change.  Table 21 explains the contributions of each of these variables to the final 

model, including their observed significance, odds ratio, and 95 percent confidence intervals for 

the odds ratios.  The odds ratio represents the association between an independent variable and a 

particular outcome (Hosmer et al., 2013).  For this study, the odds ratio represents the extent to 

which the independent variables predict membership in the STEM retained group.  Odds ratios 

Observed 2nd Year STEM Retention 

Predicted 2nd Year STEM Retention 

No Yes % Correct 

 No 9 28 24.3 

Yes 4 125 96.9 

Overall Percentage   80.7 

a. The cut value is .500 
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can be used as a measure of effect size in that odds ratios closer to 1.0 have a smaller effect 

(Tabachnick & Fidell, 2013); however, the researcher also converted the odds ratios to eta-

squared values as another method of interpreting effect size (Borenstein, Hedges, Higgins, & 

Rothstein, 2009; Cohen, 1988). 

 The Wald test within logistic regression helps determine the significance of the 

coefficient for each predictor in the model by dividing the squared coefficient for each variable 

by its squared standard error (Tabachnick & Fidell, 2013).  Based on the results of the Wald test, 

Initial Major was the most statistically significant predictor (p < .01).  The results indicated that 

participants from the Declared STEM group had 2.059 times higher likelihood of being in the 

retained outcome group (eta squared = .038); however, for participants in the Declared non-

STEM category, the odds of participants in this group being in the retained outcome group 

decrease by a factor of .245 (eta squared = .131).  The CTI CA Change variable was also a 

statistically significant predictor at the .05 level; the odds ratio for this variable indicates that for 

every unit increase in CTI CA Change score, the odds of being in the retained group are 1.117 

times higher (eta squared < .001).   

 The SAT Math variable was not statistically significant at the .05 level but met the 

Hosmer et al. (2013) recommendation for acceptable alpha levels.  Because the 95 percent 

confidence interval range contains the value of 1.00, the researcher could not rule out the 

possibility that the true odds ratio is 1.00, which would indicate that this variable predicts an 

equal probability of a case being in either the retained or non-retained outcome.  Despite not 

having statistical significance at the .05 level, this variable may have contributed to the overall 

model and increased precision with other variables. 
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Table 21. Variables in the Equation for Hypothesis 3 

       95% C.I. for O.R. 

Variable B S.E. Wald df p value O.R. Lower Upper 

Initial Major   10.194 2 < .01    

Initial Major (Declared STEM) .722 .434 2.766 1 .096 2.059 .879 4.825 

Initial Major (Declared non-STEM) -1.408 .707 3.961 1 < .05 .245 .061 .979 

SAT Math .007 .004 3.342 1 .068 1.007 1.000 1.014 

CTI CA Change .111 .051 4.697 1 .030 1.117 1.011 1.236 

Constant -3.584 2.445 2.149 1 .143 .028   

Note: O.R. = Odds Ratio 
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 Examining the residual statistics for each case helped evaluate goodness of fit and 

identify outliers for which the model does not fit (Tabachnick & Fidell, 2013).  There were no 

unusually high Cook’s distance values, as all were below 1.00 (Field, 2009).  SPSS only 

identified one case that could be considered an outlier in the solution based on a standardized 

residual value at or above 3.00 (Field, 2009; Tabachnick & Fidell, 2013).  Table 22 displays the 

case that meets this criterion.  Because the analysis only identified one outlier, the researcher 

could not discern any other criteria that may have contributed to the predicted value of this case.  

Eliminating this case would not jeopardize any of the smaller categories, so the researcher 

removed it and re-ran the analysis (Field, 2009). 

 

Table 22. Outliers in the Solution for Hypothesis 3 

Case No. 
Observed First Year 

STEM Retention 
Predicted 

Predicted 
Group 

Resid ZResid 

1410 N .908 Y -.908 -3.143 

 
 

 As with the previous run of the model, the logistic regression required seven steps to 

achieve the most parsimonious model.  In the first step, which included all predictor variables, 

the Chi-square value was 26.654 (df = 13, p < .05).  After removing six variables with p values 

greater than .20 (Gender, CTI EC Change, Ethnicity, Math Placement--Algebra, CTI Total 

Change, and CTI EC Change, respectively) one by one, the Chi-square value for the model was 

24.208 (df = 4, p < .001).  The final model yielded a -2 Log likelihood of 148.909, a Cox & Snell 

R Square value of .136, and a Nagelkerke R Square value of .210.  These R-Square values 

showed that the model explains between 13 and 19 percent of the variance in the outcome, which 

was a slight improvement from the first run of this model.  The Hosmer and Lemeshow 
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Goodness of Fit Test indicated that the model had a good fit but yielded slightly different 

statistics (Chi-square = 3.968, df = 8, p = .860); a p value greater than .05 indicates support for 

the model (Tabachnick & Fidell, 2013).   

 The final model was able to accurately predict 81.2 percent of cases, with most of the 

accurate predictions being in the retained group; because the removed case was in the non-

retained group, the percentage of correctly predicted non-retained students increased slightly.  

Table 23 displays a comparison of the observed outcomes and the predicted outcomes.  Despite 

minimal improvement from the first run of this model, the final version still only predicted the 

non-retained students correctly one fourth of the time. 

 
 
Table 23. Classification Table for Hypothesis 3B 

 

 
 
 

 

 

 The final model included the following variables that met the criteria of having a p value 

at or below .20 based on the Hosmer et al. (2013) recommendation:  Initial Major, SAT Math, 

and CTI CA Change.  Table 24 explains the contributions of the variables that were included in 

the final model, including their observed significance, odds ratio, and 95 percent confidence 

intervals for the odds ratios.  As with the first run of this model, the researcher converted the 

odds ratios to eta-squared values as another method of interpreting effect size (Borenstein, 

Hedges, Higgins, & Rothstein, 2009; Cohen, 1988). 

Observed Year 2 STEM Retention 

Predicted Year 2 STEM Retention 

No Yes % Correct 

 No 9 27 25.0 

Yes 4 125 96.9 

Overall Percentage   81.2 

a. The cut value is .500 
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Table 24. Variables in the Equation for Hypothesis 3B 

       95% C.I. for O.R. 

Variable B S.E. Wald df p value O.R. Lower Upper 

Initial Major   10.908 2 < .01    

Initial Major (Declared STEM) .835 .445 3.526 1 .060 2.304 .964 5.507 

Initial Major (Declared non-STEM) -1.357 .709 3.664 1 .056 .257 .064 1.033 

SAT Math .008 .004 4.504 1 .034 1.008 1.001 1.016 

CTI CA Change .112 .052 4.644 1 .031 1.119 1.010 1.239 

Constant -4.480 2.527 3.142 1 .076 .011   

Note: O.R. = Odds Ratio 
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 Based on the results of the Wald test, Initial Major was still the most statistically 

significant predictor (p < .01).  The results indicated that participants from the Declared STEM 

group had 2.3 times higher likelihood of being in the retained outcome group (eta squared = 

.050); however, for participants in the Declared non-STEM category, the odds of participants in 

this group being in the retained outcome group decrease by a factor of .257 (eta squared = .123).  

The CTI CA Change variable was also a statistically significant predictor at the .05 level; the 

odds ratio for this variable indicates that for every unit increase in CTI CA Change score, the 

odds of being in the retained group are 1.119 times higher (eta squared = .001).  In this re-run of 

the model, the SAT Math variable was also statistically significant at the .05 level.  The 95 

percent confidence interval for SAT Math no longer includes the 1.000 value, but the lower 

bound was only 1.001; as such, the interpretation the odds ratio of 1.008 (eta squared < .001), 

which only represents an increase of .001, was largely similar to the first run of the model.     

 In summary, adding the predictors into the logistic regression model slightly decreased 

the percentage of accurate predictions from 81.8 percent to 81.2 percent.  Removing predictors 

with p values greater than .20 did increase the model fit based on the Hosmer and Lemeshow 

test, but slightly decreased the variance accounted for by the model, as measured by a decreased 

Chi-square statistic and an increased -2 Log likelihood statistic.  Additionally, each R-squared 

value decreased by one to two percent with the removal of more highly non-significant 

predictors.  The Initial Major variable, the SAT Math variable, and the CTI CA Change variable 

were all statistically significant, with the Initial Major variable having a larger effect.  Overall, 

the model accurately predicted nearly all of the retained students but only predicted non-retained 

students correctly with one fourth of cases. 



 

 132 

Summary for Hypotheses 1 through 3 

 Hypothesis 1 examined the influence of predictor variables on 2nd Year STEM Retention 

with all cases, whereas Hypotheses 2 and 3 separately examined the influence of predictors for 

the Career Planning group and the STEM Seminar group, respectively.  Table 25 compares the 

base model and final model for each of hypotheses.  In all three models, removing predictors 

with p values above .20 decreased the Chi-square statistic, increased the -2 Log likelihood, and 

decreased the R Square values, indicating that including all predictors accounted for more 

variance in retention outcomes.  Moreover, removing highly non-significant predictors increased 

the Goodness of Fit with Hypotheses 1 and 2 and decreased the number of accurate predictions 

with Hypotheses 2 and 3.  Whereas some statistics improved by using the Backward Stepwise 

approach, the inclusion of all predictors appears to be the better option for making predictions. 

 The models for each hypothesis included a different set of predictors, indicating that the 

predictors operated differently between the two groups.  Each model more accurately predicted 

the retained students (80.2 to 96.9 percent of cases) rather than the non-retained students (25.0 to 

47.4 percent of cases).  Initial major was the most significant predictor across all three models, 

with the Initial STEM declared group consistently having a higher odds ratio of being in the 

retained group.  Ethnicity was only retained in the models that included the Career Planning 

students, and Gender was removed from all three models.  The model from Hypothesis 1 (both 

groups) retained both math variables, whereas Hypothesis 2 (only Career Planning students) 

retained the Math Placement--Algebra test and Hypothesis 3 (only STEM Seminar students) 

retained the SAT Math test.  The CTI Change scores retained in the models also varied across 

groups with the Total change score in the first model, DMC change in the second model, and CA 

change in the third model. 
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Table 25. Comparison of Results from Hypotheses 1 through 3 

 Hypothesis 1 Hypothesis 2 Hypothesis 3 

 Base Model Final Model Base Model Final Model Base Model Final Model 

Chi-square value 92.445* 91.011* 50.227* 45.857* 26.654** 24.208* 

-2 Log likelihood 452.054 453.488 291.277 295.646 146.463 148.909 

Cox & Snell R Square .201 .198 .184 .169 .149 .136 

Nagelkerke R Square .274 .270 .246 .226 .230 .210 

Goodness of Fit Test  p = .586 p = .617 p = .308 p = .598 p = .535 p = .860 

% Correct Predictions 72.4 73.4 70.9 64.8 81.8 81.2 

Variables in the Model All Ethnicity, 

Initial Major, 

STEM Course 

Participation, 

SAT Math, 

MP-Algebra, 

CTI Total 

Change 

All Ethnicity, 

Initial Major, 

MP Algebra, 

CTI DMC 

Change 

All Initial Major, 

SAT Math, CTI 

CA Change 

* = p < .001; ** = p < .05
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Hypothesis 4 

 To test the fourth null hypothesis, which stated that 3rd year undergraduate retention in 

STEM majors could not be predicted by the independent variables, the researcher ran a binary 

logistic regression with 3rd Year STEM Retention as the binary outcome variable.  Categorical 

predictor variables included Gender (Male = 0, Female = 1), Ethnicity (Caucasian/White = 1, 

African American/Black = 2, Hispanic = 3, Asian/Pacific Islander = 4, Other = 5), Initial Major 

(Undeclared = 1, Declared STEM = 2, Declared Non-STEM = 3), and Career Planning 

Participation (Career Planning = 1, STEM Seminar = 2).  A previous researcher established the 

coding scheme for some of these variables, and SPSS automatically dummy coded identified 

categorical variables with more than two categories.  Continuous variables included SAT Math 

scores, Math Placement--Algebra Test scores, CTI Total Change scores, CTI DMC Change 

Scores, CTI CA Change Scores, and CTI EC Change Scores.  The sample for this analysis 

included 263 cases after removing the univariate and multivariate outliers.  The researcher used a 

Backward (Stepwise) Wald procedure for including variables in the model.  In this procedure, 

the analysis initially included all predictor variables; variables with p values higher than a 

designated cutoff point were removed one by one until only variables with p values at or below 

the cutoff points remained in the model (Hosmer et al., 2013; Tabachnick & Fidell, 2013).  SPSS 

defaults to an alpha level of .05, but Hosmer et al. (2013) recommend a more liberal cutoff point 

between .15 and .20.  For this analysis, the researcher used a cutoff point of .20 for a predictor to 

be included in the model; using a higher cutoff point helped address the possibility of a stepwise 

approach removing a variable that still contributes to the model without having traditional 

statistical significance.  
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 The logistic regression required six steps to achieve the most parsimonious model.  In the 

first step, which included all predictor variables, the Chi-square value was 58.710 (df = 14, p < 

.001) and the -2 Log likelihood statistic was 305.030.  The initial model with all predictors had a 

Cox & Snell R Square value of .200 and a Nagelkerke R Square statistic of .267, indicating that 

the model with all the predictors explained between 20 and 27 percent of the variance in the 

outcome.  Hosmer et al. (2013) noted that R squared values for logistic regression tend to be 

lower than linear regression.  The Hosmer and Lemeshow Goodness of Fit Test indicated that the 

model fit well with the data (Chi-square = 11.238, df = 8, p = .189) because of the non-

significant p value. 

 After removing five variables with p values greater than .20 (CTI CA Change, CTI DMC 

Change, Gender, CTI EC Change, and CTI Total Change, respectively) one by one, the Chi-

square value for the model was 55.835 (df = 9, p < .001).  The final model yielded a -2 Log 

likelihood of 307.904, a Cox & Snell R Square value of .191, and a Nagelkerke R Square value 

of .255.  These R-Square values show that the model explains between 19 and 26 percent of the 

variance in the outcome.  The Hosmer and Lemeshow Goodness of Fit Test indicated that the 

model had a good fit (Chi-square = 9.187, df = 8, p = .327); a p value greater than .05 indicates 

support for the model (Tabachnick & Fidell, 2013).   

 Table 26 displays a comparison of the observed outcomes and the predicted outcomes.  

The final model was able to accurately predict 70.0 percent of cases, with most of the accurate 

predictions being in the non-retained group.  The model predicted approximately 67 percent of 

the retained cases and approximately 73 percent of the non-retained cases. 
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Table 26. Classification Table for Hypothesis 4 

 

 

 

 

  
  

 The final model included the following variables that met the criteria of having a p value 

at or below .20 based on the Hosmer et al (2013) recommendation:  Ethnicity, Initial Major, 

Career Planning Participation, SAT Math, and Math Placement--Algebra.  Table 27 explains the 

contributions of the variables that were included in the model, including their observed 

significance, odds ratio, and 95 percent confidence intervals for the odds ratios.  As a reminder, 

the odds ratio represents the association between an independent variable and a particular 

outcome (Hosmer et al., 2013).  For this analysis, the odds ratio represents the extent to which 

the independent variables predict membership in the STEM retained group.  Odds ratios can be 

used as a measure of effect size in that odds ratios closer to 1.0 have a smaller effect (Tabachnick 

& Fidell, 2013); however, the researcher also converted the odds ratios to eta-squared values as 

another method of interpreting effect size (Borenstein, Hedges, Higgins, & Rothstein, 2009; 

Cohen, 1988). 

 

 
 
 
 
 
 

Observed 3rd Year STEM Retention 

Predicted 3rd Year STEM Retention 

No Yes % Correct 

 No 101 38 72.7 

Yes 41 83 66.9 

Overall Percentage   70.0 

a. The cut value is .500 
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Table 27. Variables in the Equation for Hypothesis 4 

       95% C.I. for O.R. 

Variable B S.E. Wald df p value O.R. Lower Upper 

Ethnicity   6.445 4 .168    

Ethnicity (African American/Black .542 .448 1.467 1 .226 1.719 .715 4.134 

Ethnicity (Hispanic) .243 .349 .484 1 .487 1.275 .643 2.528 

Ethnicity (Asian/Pacific Islander) 1.636 .698 5.494 1 .019 5.137 1.307 20.185 

Ethnicity (Other) .403 .684 .347 1 .556 1.497 .391 5.725 

Initial Major   17.362 2 < .001    

Initial Major (Declared STEM) .223 .328 .460 1 .498 1.250 .656 2.379 

Initial Major (Declared non-STEM) -1.792 .468 14.664 1 < .001 .167 .067 .417 

STEM Seminar (Non-CP) .588 .323 3.327 1 .068 1.801 .957 3.389 

SAT Math .004 .003 2.536 1 .111 1.004 .999 1.010 

Math Placement--Algebra .005 .002 5.449 1 .020 1.005 1.001 1.009 

Constant -2.994 1.378 4.717 1 .030 .050   

Note: O.R. = Odds Ratio 
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 The Wald test within logistic regression helps determine the significance of the 

coefficient for each predictor in the model by dividing the squared coefficient for each variable 

by its squared standard error (Tabachnick & Fidell, 2013).  Based on the results of the Wald test, 

Initial Major was the most statistically significant predictor (p < .001).  The results indicated that 

participants from the Declared STEM group had a 1.25 times higher likelihood of being in the 

retained outcome group (eta squared = .004); however, for participants in the Declared non-

STEM category, the odds of participants in this group being in the retained outcome group 

decrease by a factor of .167 (eta squared = .196).  The Math Placement--Algebra variable was 

also statistically significant at the .05 level; the odds ratio for this variable indicates that for 

every unit increase in Math Placement--Algebra test score, the odds of being in the retained 

group are 1.005 times higher (eta squared < .001). 

 The remaining variables included in the model (Ethnicity, Career Planning Participation, 

and SAT Math) were not statistically significant at the .05 level but met the Hosmer et al. (2013) 

recommendation for acceptable alpha levels.  With the Ethnicity variable, the African American/ 

Black, Hispanic, Asian/Pacific Islander, and Other subgroups all had higher odds ratios of being 

in the retained group than the White/Caucasian reference category.  Similarly, the STEM 

Seminar group was 1.8 times more likely to be in the retained group than the Career Planning 

group.  However, because the 95 percent confidence interval range contains the value of 1.00, 

the researcher could not rule out the possibility that the true odds ratio is 1.00, which would 

indicate that this variable predicts an equal probability of a case being in either the retained or 

non-retained outcome.  Despite not having statistical significance at the .05 level, these variables 

may have contributed to the overall model and increased precision with other variables.   
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 Examining the residual statistics for each case helped evaluate goodness of fit and 

identify outliers for which the model did not fit (Tabachnick & Fidell, 2013).  There were no 

unusually high Cook’s distance values, as all were below 1.00 (Field, 2009).  SPSS only 

identified one case that was considered an outlier in the solution based on a standardized residual 

value at or above 3.00 (Field, 2009; Tabachnick & Fidell, 2013).  Table 28 displays the case that 

met this criterion.  Because the analysis only identified one outlier, the researcher could not 

discern any other criteria that may have contributed to the predicted value of this case.  

Eliminating this case did not jeopardize any of the smaller categories, so the researcher removed 

it and re-ran the analysis (Field, 2009).  

 

Table 28. Outliers in the Solution for Hypothesis 4 

Case No. 

Observed First Year 

STEM Retention Predicted 

Predicted 

Group Resid ZResid 

289 Y .046 N .954 4.543 

 
 

 After removing the one outlier and re-running the model, the logistic regression required 

six steps to achieve the most parsimonious model.  In the first step, which included all predictor 

variables, the Chi-square value was 63.263 (df = 14, p < .001) and the -2 Log likelihood statistic 

was 298.969.  After removing four variables with p values greater than .20 (CTI CA Change, 

CTI DMC Change, Gender, CTI EC Change, and CTI Total Change, respectively) one by one, 

the Chi-square value for the model was 60.805 (df = 9, p < .001).  The final model yielded a -2 

Log likelihood of 301.427, a Cox & Snell R Square value of .207, and a Nagelkerke R Square 

value of .277.  These R-Square values showed that the model explained between 21 and 28 

percent of the variance in the outcome.  The Hosmer and Lemeshow Goodness of Fit Test 



 

 140 

indicated that the model had a good fit (Chi-square = 10.975, df = 8, p = .203); a p value greater 

than .05 indicates support for the model (Tabachnick & Fidell, 2013).  This p value was the 

lowest significance level for any of the models tested thus far.  However, the final model was 

able to accurately predict 71.0 percent of cases, with most of the accurate predictions being in the 

non-retained group.  Table 29 displays a comparison of the observed outcomes and the predicted 

outcomes.  The model predicted approximately 68 percent of the retained students accurately, 

and predicted approximately 73 percent of the non-retained students accurately. 

 
Table 29. Classification Table for Hypothesis 4B 

 

 

 

 

  
  

 The final model included the following variables that met the criteria of having a p value 

at or below .20 based on the Hosmer et al (2013) recommendation:  Ethnicity, Initial Major, 

Career Planning Participation, SAT Math, and Math Placement--Algebra.  Table 30 explains the 

contributions of the variables that were included in the model, including their observed 

significance, odds ratio, and 95 percent confidence intervals for the odds ratios.  For this 

analysis, the odds ratio represented the extent to which the independent variables predict 

membership in the STEM retained group.  As with previous analyses, the researcher converted 

the odds ratios to eta-squared values as another method of interpreting effect size (Borenstein, 

Hedges, Higgins, & Rothstein, 2009; Cohen, 1988). 

Observed Year 2 STEM Retention 

Predicted Year 2 STEM Retention 

No Yes % Correct 

 No 102 37 73.4 

Yes 39 84 68.3 

Overall Percentage   71.0 

a. The cut value is .500 
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Table 30. Variables in the Equation for Hypothesis 4B 

       95% C.I. for O.R. 

Variable B S.E. Wald df p value O.R. Lower Upper 

Ethnicity   7.942 4 .131    

Ethnicity (African American/ Black .596 .453 1.730 1 .188 1.815 .747 4.411 

Ethnicity (Hispanic) .290 .354 .675 1 .411 1.337 .669 2.673 

Ethnicity (Asian/Pacific Islander) 1.757 .721 5.940 1 .015 5.794 1.411 23.798 

Ethnicity (Other) .407 .687 .351 1 .553 1.503 .391 5.779 

Initial Major   18.643 2 < .001    

Initial Major (Declared STEM) .211 .331 .406 1 .524 1.235 .646 2.360 

Initial Major (Declared non-STEM) -1.996 .497 16.104 1 < .001 .136 .051 .360 

STEM Seminar (Non-CP) .601 .326 3.403 1 .065 1.824 .963 3.455 

SAT Math .004 .003 2.137 1 .144 1.004 .999 1.010 

Math Placement--Algebra .005 .002 6.971 1 .008 1.005 1.001 1.009 

Constant -4.543 1.652 7.564 1 .006 .011   

Note: O.R. = Odds Ratio 
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 The Wald test within logistic regression helps determine the significance of the 

coefficient for each predictor in the model by dividing the squared coefficient for each variable 

by its squared standard error (Tabachnick & Fidell, 2013).  Based on the results of the Wald test, 

Initial Major was still the most statistically significant predictor (p < .001).  The results indicated 

that participants whose initial major category Declared STEM group had a 1.2 times higher 

likelihood of being in the retained outcome group (eta squared = .003); however, for participants 

in the Declared non-STEM category, the odds of participants in this group being in the retained 

outcome group decrease by a factor of .136 (eta squared = .232).  The Math Placement--Algebra 

variable was also a statistically significant predictor at the .05 level; the odds ratio for this 

variable indicates that for every unit increase in Math Placement--Algebra test score, the odds of 

being in the retained group were 1.005 times higher (eta squared < .001).  In this re-run of the 

model, the Ethnicity, Career Planning Participation, and SAT Math variables were still not 

significant at the .05 level but met the Hosmer et al. (2013) recommendation for acceptable alpha 

levels. 

 In summary, adding the predictors into the logistic regression model slightly increased 

the percentage of accurate predictions from 69.1 percent to 71.0 percent.  Removing predictors 

with p values greater than .20 slightly decreased the model fit based on the Hosmer and 

Lemeshow test and slightly decreased the variance accounted for by the model, as measured by a 

decreased Chi-square statistic and an increased -2 Log likelihood statistic.  Additionally, each R-

squared value decreased by approximately one percent with the removal of more highly non-

significant predictors.  The Initial Major variable and the Math Placement--Algebra test were 

statistically significant predictors, with the Initial Major variable having a larger effect.  The 

Ethnicity variable, the STEM Course Participation variable, and the SAT Math variable were not 
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statistically significant at the .05 level but still contributed to the model.  Unlike Hypotheses 1 

through 3, the model in Hypothesis 4 more accurately predicted the non-retained students (73.4 

percent) than the retained students (68.3 percent) with an overall accuracy with 71 percent of 

cases. 

Hypothesis 5 

 To test the fifth hypothesis, which stated that 3rd year undergraduate retention in STEM 

majors could not be predicted by the independent variables for students in a STEM-focused 

career planning class, the researcher ran a binary logistic regression with 3rd Year STEM 

Retention as the binary outcome variable.  Categorical predictor variables included Gender 

(Male = 0, Female = 1), Ethnicity (Caucasian/White = 1, African American/Black = 2, Hispanic 

= 3, Asian/Pacific Islander = 4, Other = 5), and Initial Major (Undeclared = 1, Declared STEM = 

2, Declared Non-STEM = 3).  A previous researcher established the coding scheme for some of 

these variables, and SPSS automatically dummy coded identified categorical variables with more 

than two categories.  Continuous variables included SAT Math scores, Math Placement--Algebra 

Test scores, CTI Total Change scores, CTI DMC Change Scores, CTI CA Change Scores, and 

CTI EC Change Scores.  The sample for this analysis included 179 cases from the Career 

Planning group after removing the univariate and multivariate outliers.  The researcher used a 

Backward (Stepwise) Wald procedure for including variables in the model.  In this procedure, 

the analysis initially included all predictor variables; variables with p values higher than a 

designated cutoff point were removed one by one until only variables with p values at or below 

the cutoff points remained in the model (Hosmer et al., 2013; Tabachnick & Fidell, 2013).  SPSS 

defaults to an alpha level of .05, but Hosmer et al. (2013) recommend a more liberal cutoff point 
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between .15 and .20.  For this analysis, the researcher used a cutoff point of .20 for a predictor to 

be included in the model; using a higher cutoff point helped address the possibility of a stepwise 

approach removing a variable that still contributes to the model without having traditional 

statistical significance.  

 The logistic regression required four steps to achieve the most parsimonious model.  In 

the first step, which included all predictor variables, the Chi-square value was 40.546 (df = 13, p 

< .001) and the -2 Log likelihood statistic was 199.897.  The initial model with all predictors had 

a Cox & Snell R Square value of .203 and a Nagelkerke R Square value of .274, indicating that 

the model with all the predictors explained between 20 and 27 percent of the variance in the 

outcome.  Hosmer et al. (2013) noted that R squared values for logistic regression tend to be 

lower than linear regression.  The Hosmer and Lemeshow Goodness of Fit Test indicated that the 

model fit well with the data (Chi-square = 7.007, df = 8, p = .536) because of a non-significant p 

value. 

 After removing three variables with p values greater than .20 (CTI DMC Change, Math 

Placement--Algebra, and CTI CA Change, respectively) one by one, the Chi-square value for the 

model was 37.485 (df = 10, p < .001).  The final model yielded a -2 Log likelihood of 202.958, a 

Cox & Snell R Square value of .189, and a Nagelkerke R Square value of .256.  These R-Square 

values showed that the model explained between 19 and 26 percent of the variance in the 

outcome.  The Hosmer and Lemeshow Goodness of Fit Test indicated that the model had a good 

fit (Chi-square = 9.659, df = 8, p = .290); a p value greater than .05 indicated support for the 

model (Tabachnick & Fidell, 2013).   

 The final model was able to accurately predict 67.6 percent of cases, with most of the 

accurate predictions being in the non-retained group.  Table 31 displays a comparison of the 
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observed outcomes and the predicted outcomes.  The model predicted approximately 80 percent 

of the non-retained students accurately, but only predicted the retained students correctly 

approximately half the time. 

 

Table 31. Classification Table for Hypothesis 5 

 

 

 

 

 

  
 The final model included the following variables that met the criteria of having a p value 

at or below .20 based on the Hosmer et al (2013) recommendation:  Gender, Ethnicity, Initial 

Major, SAT Math, CTI Total Change and CTI EC Change variables.  Table 32 explains the 

contributions of the variables that were included in the model, including their observed 

significance, odds ratio, and 95 percent confidence intervals for the odds ratios.  Once again, the 

odds ratio represents the association between an independent variable and a particular outcome 

(Hosmer et al., 2013).  As with previous analyses, the researcher also converted the odds ratios to 

eta-squared values as another method of interpreting effect size (Borenstein, Hedges, Higgins, & 

Rothstein, 2009; Cohen, 1988). 

 

 

 
 

Observed 3rd Year STEM Retention 

Predicted 3rd Year STEM Retention 

No Yes % Correct 

 No 86 22 79.6 

Yes 36 35 49.3 

Overall Percentage   67.6 

a. The cut value is .500 
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Table 32. Variables in the Equation for Hypothesis 5 

       95% C.I. for O.R. 

Variable B S.E. Wald df p value O.R. Lower Upper 

Gender -.550 .363 2.293 1 .130 .577 .283 1.176 

Ethnicity   8.863 4 .065    

Ethnicity (African American /Black .951 .550 2.988 1 .084 2.587 .881 7.603 

Ethnicity (Hispanic) -.075 .447 .028 1 .867 .928 .286 2.229 

Ethnicity (Asian/Pacific Islander) 2.011 .837 5.772 1 .016 7.467 1.448 38.502 

Ethnicity (Other) .973 .965 1.015 1 .314 2.645 .399 17.535 

Initial Major   15.092 2 .001    

Initial Major (Declared STEM) .124 .430 .083 1 .773 1.132 .488 2.628 

Initial Major (Declared non-STEM) -2.081 .555 14.060 1 < .001 .125 .042 .370 

SAT Math .007 .003 4.851 1 .028 1.007 1.001 1.014 

CTI Total Change .022 .012 3.405 1 .065 1.023 .999 1.047 

CTI EC Change -.105 .075 1.947 1 .163 .901 .778 1.043 

Constant -4.709 2.124 4.917 1 .027 .009   

Note: O.R. = Odds Ratio 
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 The Wald test within logistic regression helps determine the significance of the 

coefficient for each predictor in the model by dividing the squared coefficient for each variable 

by its squared standard error (Tabachnick & Fidell, 2013).  Based on the results of the Wald test, 

Initial Major was the most statistically significant predictor (p = .001).  The results indicated that 

participants whose initial major category Declared STEM group had a 1.13 times higher 

likelihood of being in the retained outcome group (eta squared = .001); however, for participants 

in the Declared non-STEM category, the odds of participants in this group being in the retained 

outcome group decrease by a factor of .125 (eta squared = .247).  The SAT Math variable was 

also statistically significant at the .05 level; the odds ratio for this variable indicates that for 

every unit increase in SAT Math score, the odds of being in the retained group were 1.007 times 

higher (eta squared < .001). 

 The remaining variables included in the model (Gender, Ethnicity, CTI Total Change, 

and CTI EC Change) were not statistically significant at the .05 level but met the Hosmer et al. 

(2013) recommendation for acceptable alpha levels.  This model is the first within the study to 

retain Gender, and indicated that Female students had lower odds (OR = .577) of being in the 

retained group.  As with prior models in the study, the African American/ Black, Asian/ Pacific 

Islander, and Other subgroups had higher odds of being in the retained group; however, Hispanic 

students had lower odds in this model, unlike previous models in the study.  With the CTI 

change scores, larger decreases in CTI Total score predicted higher odds of being in the retained 

group, whereas larger decreases in the CTI EC score predicted lower odds of being in the 

retained group.  Because the 95 percent confidence interval range contains the value of 1.00, the 

researcher could not rule out the possibility that the true odds ratio is 1.00, which would indicate 

that these variables predict an equal probability of a case being in either the retained or non-
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retained outcome.  Despite not having statistical significance at the .05 level, these variables may 

have contributed to the overall model and increased precision with other variables. 

 Examining the residual statistics for each case helps evaluate goodness of fit and identify 

outliers for which the model does not fit (Tabachnick & Fidell, 2013).  There were no unusually 

high Cook’s distance values, as all were below 1.00 (Field, 2009).  SPSS identified no cases that 

could be considered an outlier in the solution based on a standardized residual value at or above 

3.00 (Field, 2009; Tabachnick & Fidell, 2013).   

 In summary, adding the predictors into the logistic regression model slightly decreased 

the percentage of accurate predictions from 68.2 percent to 67.6 percent.  Removing predictors 

with p values greater than .20 slightly decreased the model fit based on the Hosmer and 

Lemeshow test and slightly decreased the variance accounted for by the model, as measured by a 

decreased Chi-square statistic and an increased -2 Log likelihood statistic.  Additionally, each R-

squared value decreased by between one and two percent with the removal of more highly non-

significant predictors.  The Initial Major variable and the SAT Math test variable were 

statistically significant predictors, with the Initial Major variable having a larger effect.  The 

Ethnicity variable, the Gender variable, the CTI Total Change variable, and the CTI EC Change 

variable were not statistically significant at the .05 level but still contributed to the model.  As 

with Hypothesis 4, the model in Hypothesis 5 more accurately predicted the non-retained 

students (79.6 percent) than the retained students (49.3 percent) with an overall accuracy with 

67.6 percent of cases. 
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Hypothesis 6 

 To test the sixth hypothesis, which stated that 3rd year undergraduate retention in STEM 

majors could not be predicted by the independent variables for students in a STEM Seminar class 

without a career planning focus, the researcher ran a binary logistic regression with 3rd Year 

STEM Retention as the binary outcome variable.  Categorical predictor variables included 

Gender (Male = 0, Female = 1), Ethnicity (Caucasian/White = 1, African American/Black = 2, 

Hispanic = 3, Asian/Pacific Islander = 4, Other = 5), and Initial Major (Undeclared = 1, Declared 

STEM = 2, Declared Non-STEM = 3).  A previous researcher established the coding scheme for 

some of these variables, and SPSS automatically dummy coded identified categorical variables 

with more than two categories.  Continuous variables included SAT Math scores, Math 

Placement--Algebra Test scores, CTI Total Change scores, CTI DMC Change Scores, CTI CA 

Change Scores, and CTI EC Change Scores.  The sample for this analysis included 84 cases from 

the STEM Seminar group after removing the univariate and multivariate outliers.  This sample is 

below the recommended sample size of 97 provided by the power analysis, which indicates that 

sample size is a limitation of this analysis.  The researcher used a Backward (Stepwise) Wald 

procedure for including variables in the model.  In this procedure, the analysis initially included 

all predictor variables; variables with p values higher than a designated cutoff point were 

removed one by one until only variables with p values at or below the cutoff points remained in 

the model (Hosmer et al., 2013; Tabachnick & Fidell, 2013).  SPSS defaults to an alpha level of 

.05, but Hosmer et al. (2013) recommend a more liberal cutoff point between .15 and .20.  For 

this analysis, the researcher used a cutoff point of .20 for a predictor to be included in the model; 

using a higher cutoff point helped address the possibility of a stepwise approach removing a 

variable that still contributes to the model without having traditional statistical significance.  
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 The logistic regression required six steps to achieve the most parsimonious model.  In the 

first step, which included all predictor variables, the Chi-square value was 22.770 (df = 13, p < 

.05) and the -2 Log likelihood statistic was 87.849.  The initial model with all predictors had a 

Cox & Snell R Square value of .237 and a Nagelkerke R Square value of .324, indicating that the 

model with all predictors explained between 24 and 32 percent of the variance in the outcome.  

Hosmer et al. (2013) noted that R squared values for logistic regression tend to be lower than 

linear regression.  The Hosmer and Lemeshow Goodness of Fit Test indicated that the model fit 

well with the data (Chi-square = 7.950, df = 8, p = 438) because of a non-significant p value. 

 After removing five variables with p values greater than .20 (Gender, CTI DMC Change, 

Ethnicity, CTI EC Change, and SAT Math, respectively) one by one, the Chi-square value for 

the model was 17.960 (df = 5, p < .01).  The final model yielded a -2 Log likelihood of 92.659, a 

Cox & Snell R Square value of .192, and a Nagelkerke R Square value of .263.  These R-Square 

values showed that the model explained between 19 and 26 percent of the variance in the 

outcome.  The Hosmer and Lemeshow Goodness of Fit Test indicated that the model had a good 

fit (Chi-square = 12.778, df = 8, p = .120); a p value greater than .05 indicates support for the 

model (Tabachnick & Fidell, 2013).  This analysis had the lowest significance level for the 

Hosmer and Lemeshow test; however, it also had the smallest sample.  However, the final model 

was able to accurately predict 71.4 percent of cases, with most of the accurate predictions being 

in the retained group.  Table 33 displays a comparison of the observed outcomes and the 

predicted outcomes.  The model predicted approximately 85 percent of the retained students 

accurately, but predicted the non-retained students accurately with less than half of the cases. 
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Table 33. Classification Table for Hypothesis 6 

 

 

 

 

 

 
 The final model included the following variables that met the criteria of having a p value 

at or below .20 based on the Hosmer et al (2013) recommendation:  Initial Major, Math 

Placement--Algebra, CTI Total Change, and CTI CA Change.  Table 34 explains the 

contributions of the variables that were included in the model, including their observed 

significance, odds ratio, and 95 percent confidence intervals for the odds ratios.  As with 

previous analyses, the odds ratio represents the extent to which the independent variables predict 

membership in the STEM retained group.  Additionally, the researcher converted the odds ratios 

to eta-squared values as another method of interpreting effect size (Borenstein, Hedges, Higgins, 

& Rothstein, 2009; Cohen, 1988). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Observed 3rd Year STEM Retention 

Predicted 3rd Year STEM Retention 

No Yes % Correct 

 No 15 16 48.4 

Yes 8 45 84.9 

Overall Percentage   71.4 

a. The cut value is .500 
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Table 34. Variables in the Equation for Hypothesis 6 

       95% C.I. for O.R. 

Variable B S.E. Wald df p value O.R. Lower Upper 

Initial Major   4.549 2 .103    

Initial Major (Declared STEM) .850 .569 2.230 1 .135 2.340 .767 7.142 

Initial Major (Declared non-STEM) -.911 .991 .845 1 .358 .402 .058 2.805 

Math Placement--Algebra .010 .004 8.179 1 .004 1.010 1.003 1.018 

CTI Total Change -.038 .026 2.084 1 .149 .963 .914 1.014 

CTI CA Change .199 .094 4.486 1 .034 1.220 1.015 1.466 

Constant -3.182 1.293 6.054 1 .014 .041   

Note: O.R. = Odds Ratio 
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 Based on the results of the Wald test, Math Placement--Algebra was the most statistically 

significant predictor (p < .01); the odds ratio for this variable indicates that for every unit 

increase in Math Placement--Algebra score, the odds of being in the retained group were 1.01 

times higher (eta squared < .001).  The CTI CA Change variable was also a statistically 

significant predictor at the .05 level; the odds ratio for this variable indicates that for every unit 

increase in CTI CA Change, the odds of being in the retained group increase were 1.2 times 

higher (eta squared = .003).   

 The Initial Major and CTI Total Change variables were not statistically significant at the 

.05 level but met the Hosmer et al. (2013) recommendation for acceptable alpha levels.  As with 

previous models in this study, the Initial STEM Declared group had higher odds (OR = 2.340) of 

being in the retained group, and the Initial non-STEM Declared group had lower odds (OR = 

.402) of being in the retained group.  Larger decreases in the CTI Total score predicted lower 

odds of being in the retained group.  Because the 95 percent confidence interval range contains 

the value of 1.00, the researcher could not rule out the possibility that the true odds ratio is 1.00, 

which would indicate that this variable predicts an equal probability of a case being in either the 

retained or non-retained outcome.  Despite not having statistical significance at the .05 level, 

these variable may have contributed to the overall model and increased precision with other 

variables. 

 Examining the residual statistics for each case helps evaluate goodness of fit and identify 

outliers for which the model does not fit (Tabachnick & Fidell, 2013).  There were no unusually 

high Cook’s distance values, as all were below 1.00 (Field, 2009).  SPSS identified no cases that 

could be considered an outlier in the solution based on a standardized residual value at or above 

3.00 (Field, 2009; Tabachnick & Fidell, 2013).   
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 In summary, adding the predictors into the logistic regression model decreased the 

percentage of accurate predictions from 75.0 percent to 71.4 percent.  Removing predictors with 

p values greater than .20 slightly decreased the model fit based on the Hosmer and Lemeshow 

test and decreased the variance accounted for by the model, as measured by a decreased Chi-

square statistic and an increased -2 Log likelihood statistic.  Additionally, each R-squared value 

decreased with the removal of more highly non-significant predictors.  The Math Placement--

Algebra variable and the CTI CA Change variable were statistically significant predictors, with 

the CTI CA Change variable having a larger effect.  The Initial Major variable and the CTI Total 

Change variable were not statistically significant at the .05 level but still contributed to the 

model.  Unlike with Hypotheses 4 and 5, the model in Hypothesis 6 more accurately predicted 

the retained students (84.9 percent) than the non-retained students (48.4 percent) with an overall 

accuracy with 71.4 percent of cases.  Due to the lower sample size and the small number of cases 

for some predictor variables, the researcher encourages readers to examine these results with 

caution. 

Summary for Hypotheses 4 through 6 

 Hypothesis 4 examined the influence of predictor variables on 3rd Year STEM Retention 

with all cases, whereas Hypotheses 5 and 6 separately examined the influence of predictors for 

the Career Planning group and the STEM Seminar group, respectively.  Table 35 compares the 

base model and final model for each of hypotheses.  In all three models, removing predictors 

with p values above .20 decreased the Chi-square statistic, increased the -2 Log likelihood, and 

decreased the R Square values, indicating that including all predictors accounted for more 

variance in retention outcomes.  Moreover, removing highly non-significant predictors decreased 
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the Goodness of Fit with Hypotheses 4 through 6 and decreased the number of accurate 

predictions with Hypotheses 5 and 6.  Whereas some statistics improved by using the Backward 

Stepwise approach, the inclusion of all predictors appears to be the better option for making 

predictions. 

 The models for each hypothesis included a different set of predictors, indicating that the 

predictors operated differently between the two groups.  The models in Hypotheses 4 and 5 that 

both included the Career Planning students more accurately predicted the non-retained students 

(73.4 to 79.6 percent of cases) rather than the retained students (49.3 to 68.3 percent of cases); 

the model in Hypothesis 6 including only the STEM Seminar students more accurately predicted 

the retained students (84.9 percent of cases) than the non-retained students (48.4 percent of 

cases).  Initial major was retained in all three models, with the Initial STEM declared group 

consistently having a higher odds ratio of being in the retained group.  Ethnicity was only 

retained in the models that included the Career Planning students, and Gender was retained in the 

model that only examined Career Planning students.  The model from Hypothesis 4 (both 

groups) retained both math variables, whereas Hypothesis 5 (only Career Planning students) 

retained the SAT Math test and Hypothesis 6 (only STEM Seminar students) retained the Math 

Placement--Algebra test.  CTI Change scores were only retained in the models examining the 

two groups individually and varied in their degree of influence. 
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Table 35. Comparison of Results from Hypotheses 4 through 6 

 Hypothesis 1 Hypothesis 2 Hypothesis 3 

 Base Model Final Model Base Model Final Model Base Model Final Model 

Chi-square value 63.263* 60.805* 40.546* 37.485* 22.770*** 17.960** 

-2 Log likelihood 298.969 301.427 199.897 202.958 87.849 92.659 

Cox & Snell R Square .215 .207 .203 .189 .237 .192 

Nagelkerke R Square .286 .277 .274 .256 .324 .263 

Goodness of Fit Test  p = .270 p = .203 p = .536 p = .290 p = .438 p = .120 

% Correct Predictions 69.1 71.0 68.2 67.6 75.0 71.4 

Variables in the Model All Ethnicity, 

Initial Major, 

STEM Course 

Participation, 

SAT Math, 

MP-Algebra 

All Gender, 

Ethnicity, 

Initial Major, 

SAT Math, CTI 

Total Change, 

CTI EC Change 

All Initial Major, 

MP Algebra, 

CTI Total 

Change, CTI 

CA Change 

* = p < .001; ** = p < .01; *** = p < .05
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Overall Summary 

 Predictive findings varied across each logistic regression model; however, the base model 

consistently had better Chi-square values, -2 Log likelihood statistics, and R square values than 

the model only including predictors with p values greater than .20.   The percentage of accurate 

predictions and the Goodness of Fit statistics inconsistently changed with the removal of highly 

non-significant predictors.  All six models retained the Initial major variable and indicated that 

Initially STEM Declared students had higher odds of being in the retained group and Initially 

non-STEM Declared students had lower odds of being in the retained group.  The Ethnicity 

variable was retained only in the models that included Career Planning students (Hypotheses 1, 

2, 4, and 5) and indicated that students in the ethnic minority subgroups had higher odds of being 

in the retained group, except for the Hispanic subgroup in Hypothesis 5.  Gender was retained 

only in Hypothesis 5, denoting that the female students had lower odds of being in the retained 

group in their third year of college.  Both math variables were retained in models containing both 

groups, whereas models examining the groups individually retained either the SAT Math 

variable or the Math Placement--Algebra variable.  The CTI Change variables performed 

inconsistently.  However, greater decreases in CTI Change scores predicted increased odds of 

being in the retained group, except with EC Change in Hypothesis 5 and Total Change in 

Hypothesis 6.  Overall, the models varied in their correct predictions of retention outcomes, but 

each model showed a moderately strong to strong ability to predict at least one of the retention 

outcomes. 
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CHAPTER V:  DISCUSSION 

 

Introduction 

 The purpose of this study was to use quantitative research methods to determine the 

degree to which demographic variables, math ability, and career related factors could predict 

STEM major retention or attrition in undergraduates participating in a STEM recruitment and 

retention program.  As previous research on retention in STEM majors has largely overlooked 

career-related variables as predictors, the researcher was particularly interested in investigating 

such variables to begin to fill a critical gap in the literature.  In this discussion section, the 

researcher reviews key concepts and elements of the study’s design and analysis procedures, 

explains the results of the study within the context of theory and prior research, and will describe 

the study’s limitations, and provides implications for research and practice based on these 

findings. 

Theoretical Constructs of the Study 

 Regarding demographic variables, the researcher examined existing literature related to 

gender and ethnicity.  Females and ethnic minorities are largely underrepresented overall in 

STEM fields (NAS, 2011; NCSES, 2015; NMSI, 2016, NSF, 2013).  Researchers have attributed 

these disparities to stereotype threat (i.e. group-based performance anxiety; Beasley & Fischer, 

2012; Cundiff et al., 2013), lack of mentorship (Kirschmann, 2014), and math- and science-

specific issues (Cundiff et al., 2013; Litzler et al., 2014; Riegle-Crumb et al., 2012).  Within this 

study, the researcher included gender and ethnicity as predictors for retention outcomes with 

both undecided and STEM-declared undergraduates. 
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 Connections between math ability and STEM retention have long been established within 

the literature (Chen, 2013; Gayles & Ampaw, 2014; Litzler et al., 2014; Mattem & Patterson, 

2013; Nosek & Smyth, 2011).  Most commonly, researchers have utilized SAT scores in models 

predicting successful outcomes in STEM majors, such as relationships established between 

higher SAT Mathematics scores and college grade point averages.  Results from other studies 

have shown that taking higher level math courses in high school and requiring less math 

remediation are associated with more positive outcomes for students majoring in STEM (Chen, 

2013; Gayles & Ampaw, 2014).  Moreover, interactions exist between demographic variables 

(e.g. race, ethnicity) and both observed and perceived math ability (Gayles & Ampaw, 2014; 

Litzler et al., 2014; Mattem & Patterson, 2013; Nosek & Smyth, 2011).  In this study, the 

researcher included both the SAT Mathematics subtest score and the UCF Math Placement--

Algebra subtest as predictors for retention outcomes with STEM-interested and STEM-declared 

undergraduates. 

 The theoretical framework of this study borrowed from four career development theories: 

(a) the Theory of Circumscription, Compromise, and Self Creation (Gottfredson, 1981); (b) the 

Theory of Vocational Choice (Holland, 1973); (c) Social Cognitive Career Theory (Brown & 

Lent, 1996); (d) Cognitive Information Processing (Peterson et al., 1991).  Each theory helped 

explain a process or phenomenon that related to retention outcomes in STEM.  The work of 

Gottfredson (1981) and Brown and Lent (1996) provided context to how demographic 

representation, stereotypes, and self-efficacy can contribute to internal developmental processes 

that may contribute to one’s choice to not pursue or to leave a STEM major.  Brown and Lent 

(1996) and Holland (1973) also shed light on the importance of understanding one’s interests as 

they pertain to career.  Finally, the work of Peterson et al. (1991) contextualized the impact of 
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career readiness and negative career thinking as they relate to retention outcomes in STEM 

majors.  Within this study, the researcher included predictor variables related to initial major 

selection, participation in STEM career coursework, and change scores on a measure of career 

readiness.  Exploring these career related variables within the context of STEM could serve to 

open a new world of research for professionals in counseling, higher education, and counselor 

education.   

Preliminary Retention and Demographic Results 

 Regarding retention data, the researcher determined from this study that students from 

both tracks of the COMPASS Program have better STEM retention outcomes than other studies 

reported in the literature.  Approximately 79 percent of students from initially undecided groups 

who took the STEM-focused Career Planning course are retained in a STEM major from their 

first year to their second year, and approximately 62 percent of these same students are retained 

in a STEM major from their first year to their third year.  Approximately 82 percent of students 

who start college in a STEM major and who takes the STEM Seminar course are retained in a 

STEM major from their first year to their second year, and approximately 68 percent of these 

same students are retained in a STEM major from their first year to their third year.  These 

percentages for both groups are higher than the approximately 52 percent STEM retention rate 

reported by Chen (2013) with a nationwide sample and much higher than Koenig et al.’s (2012) 

30 percent at another single institution.  However, it must be noted that the retention numbers for 

the COMPASS program represent only the first two years of college, whereas Chen (2013) and 

Koenig et al. (2012) represent the four to six-year retention rates; because most of the 
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participants had not yet reached that marker at the time of this dissertation, the researcher could 

not provide that number. 

 This sample also differed from what is commonly seen in the literature with regard to 

gender.  Approximately 46 percent of the total sample was female, which is much higher than 

NMSI’s (2016) report that women account for approximately 23 percent of workers in STEM 

fields.  The researcher attributes this to the COMPASS Program’s active recruitment of female 

students with print and web advertising that promotes female representation in STEM.  

Additionally, as noted in Chapter Three, the COMPASS Program’s Principal Investigator and 

Project Director are both female administrators on campus, and program staff members 

intentionally recruit guest speakers and mentors that represent a diverse intersection of gender 

and ethnic identities.  Regarding retention in a STEM major to students’ 2nd year of college, 

females accounted for a larger percentage of the non-retained group (53.5 percent) than males 

(46.5 percent) and accounted for a smaller percentage of the retained group (41.1 percent) than 

males (58.9 percent).  The numbers were similar for retention in a STEM major to students’ 3rd 

year of college; females accounted for a larger percentage of the non-retained group (55.2 

percent) than males (44.8 percent) and accounted for a smaller percentage of the retained group 

(44.2 percent) than males (55.8 percent).  It is worth noting that the gap between female students 

and male students widened slightly with the progression of one year.  Whereas previous 

literature showed wider gaps between male and female students, the data from this study are 

consistent with previous literature in that female students are less likely to be retained in a STEM 

major than their male counterparts (Cundiff et al., 2013; Gayles & Ampaw, 2014).   

 The participants in this study were highly consistent with previous literature based on 

ethnicity, as the sample was majority White students (57.6 percent; NCSES, 2015; NSF, 2013; 
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Palmer et al., 2011).  The sample was largely representative of the University of Central Florida 

overall (UCF, 2017).  Regarding retention in a STEM major into the second year of college, the 

African American/Black and Hispanic subgroups had consistent percentages in both the retained 

and non-retained outcomes.  White students were represented in the non-retained group at a 

larger rate than in the retained group, whereas students in the Asian/Pacific Islander and Other 

categories were represented in the retained group at a larger rate than in the non-retained group; 

the raw numbers for the Asian/ Pacific Islander group were consistent with previous reports that 

identified this subgroup as well represented or overrepresented (NCSES, 2015; NSF, 2013; 

Palmer et al., 2011).  These overall ethnicity statistics were similar for retention in STEM majors 

into the third year of college. 

Research Hypotheses 

 In this study, the researcher used binary logistic regression to determine the degree to 

which demographic variables (gender, ethnicity, and initial major), math ability scores (SAT 

Math scores and Math Placement Test scores), and career development factors (STEM Course 

Participation and Career Thoughts Inventory [CTI] change scores) could predict undergraduate 

retention in STEM majors during the first two years of college.  To answer the aforementioned 

questions, the researcher tested the following six hypotheses: 

 

Null Hypothesis 1:  First-year to second-year undergraduate retention in STEM majors 

cannot be significantly predicted by ethnicity, gender, initial major, Math Placement Test 
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scores, SAT Math scores, STEM Course Participation (Career Planning vs. STEM 

Seminar), and CTI change scores. 

 

Null Hypothesis 2:  First-year to second-year undergraduate retention in STEM majors 

for students participating in a STEM-focused Career Planning Course cannot be 

significantly predicted by ethnicity, gender, initial major, Math Placement Test scores, 

SAT Math scores, and CTI change scores. 

 

Null Hypothesis 3:  First-year to second-year undergraduate retention in STEM majors 

for students participating in a STEM Seminar Course (without a career development 

focus) cannot be significantly predicted by ethnicity, gender, initial major, Math 

Placement Test scores, SAT Math scores, and CTI change scores. 

 

Null Hypothesis 4:  First-year to third-year undergraduate retention in STEM majors 

cannot be significantly predicted by ethnicity, gender, initial major, Math Placement Test 

scores, SAT Math scores, STEM Course Participation (Career Planning vs. STEM 

Seminar), and CTI change scores. 

 

Null Hypothesis 5:  First-year to third-year undergraduate retention in STEM majors for 

students participating in a STEM-focused Career Planning Course cannot be significantly 
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predicted by ethnicity, gender, initial major, Math Placement Test scores, SAT Math 

scores, and CTI change scores. 

 

Null Hypothesis 6:  First-year to third-year undergraduate retention in STEM majors for 

students participating in a STEM Seminar Course (without a career development focus) 

cannot be significantly predicted by ethnicity, gender, initial major, Math Placement Test 

scores, SAT Math scores, and CTI change scores. 

Discussion of Findings 

The study’s six hypotheses aimed to identify predictors of STEM retention, with the first 

three hypotheses focused on retention from the first to second year of college and the latter three 

hypotheses focused on retention from the first to third year of college.  With all six hypotheses, 

both the base models and the final models yielded by the stepwise procedure fit well with the 

data, with mixed findings on which approach to entering predictors performed best.  The final 

models for all six hypotheses accounted for less variance than the base models, but the final 

models for Hypotheses 1 and 4 (including both groups) correctly predicted more cases than the 

respective base models.  Additionally, the models more accurately predicted retained cases for 

first to second year retention across groups (H01 through H03) and for first to third year retention 

with the STEM Seminar group (H06); however, the models more accurately predicted non-

retained cases for first to third year retention when the models contained the Career Planning 

group (H04 and H05).  
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The influence of individual predictors varied across groups and across the two dependent 

variables.  Initial Major was a consistently strong predictor with both the Career Planning and 

STEM Seminar groups and for both 2nd and 3rd year retention.  The models for all six hypotheses 

indicated that the Initial STEM Declared group had higher odds of retention, whereas the Initial 

Non-STEM Declared group had lower odds of retention, consistent with findings from Lee et al. 

(2015) and Lent et al. (2016).  This finding was echoed in the fact that in Hypotheses 1 and 4 

examining both groups, the STEM Seminar group demonstrated higher odds of being in the 

retained group.   

Despite low numbers of cases in Ethnicity subgroups, Ethnicity was a strong predictor of 

retention with models containing the Career Planning group (H01, H02, H04, and H05).  In these 

models, the ethnic minority groups had higher odds of being retained than the Caucasian/ White 

group, with the exception of the Hispanic group in Hypothesis 5; these findings align with the 

findings of Riegle-Crumb & King (2010) but are not congruent with other studies investigating 

ethnicity as a predictor (Chen, 2013; Cundiff et all, 2013; Gayles & Ampaw, 2014).  Unlike prior 

literature, the models removed Gender as a predictor based on high p values, except in 

Hypothesis 5 that examined 3rd year retention with the Career Planning students only.  Specific 

implications for that hypothesis are provided later in that respective section, but it is worth noting 

that the removal of Gender as a significant predictor sets this study apart from prior research 

(Beasley & Fischer, 2012; Cundiff et al., 2013; Gayles & Ampaw, 2014; Riegle-Crumb et al., 

2012).  As with prior literature (CollegeBoard, 2012; Crisp et al., 2009; Le et al., 2014; Mattem 

and Patterson, 2013; Rohr, 2012), math variables influenced the models, but were inconsistent as 

to which math variable was retained in each model.  The author discusses each model’s findings 

in the sections below. 
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Hypothesis 1 

 The first null hypothesis based on Research Question 1 stated that first-year to second-

year undergraduate retention in STEM majors cannot be significantly predicted by ethnicity, 

gender, initial major, Math Placement Test scores, SAT Math scores, career planning 

participation, and CTI change scores.  The first model examining 2nd year STEM retention 

across both groups from the COMPASS program retained six variables (Ethnicity, Initial Major, 

STEM Course participation, SAT Math, Math Placement--Algebra, and CTI Total Change score) 

as predictors based on Hosmer et al.’s (2013) and Tabachnick & Fidell’s (2013) recommended 

cutoff point for inclusion.  The model removed the change scores for the three subscales from the 

CTI and gender as predictors.  This logistic regression model fit the data well based on a non-

significant Goodness of Fit test and was able to accurately predict approximately three-fourths of 

retention outcomes; however, the model poorly predicted non-retained outcomes with just under 

50 percent of cases correctly predicted.  Including demographic and math related variables into 

the analysis greatly improved the model fit as compared to Belser et al.’s (2017) pilot study; 

additionally, as compared to the Belser et al. analysis, the current model predicted non-retained 

students with a slightly higher accuracy but decreased slightly in the overall accuracy of 

predictions and with predicting the retained students. 

 Initial major was the most significant predictor and indicated that initially STEM 

declared students have a higher likelihood of being retained in a STEM major, whereas STEM-

interested students with a major initially declared as non-STEM were less likely to be retained.  

This finding is supported by the STEM course variable, which indicated that the STEM Seminar 

students were more than twice as likely to be retained.  Because students enroll in either the 
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STEM Seminar or STEM-focused Career Planning course based on their level of commitment to 

a STEM major, it is not surprising that the students in the STEM Seminar course (i.e. those with 

a declared STEM major as of the first day of classes) are retained at a higher rate.  A noteworthy 

finding is that by including demographic and math variables and by improving the overall model 

fit, the current model reversed the claim by Belser et al.’s (2017) model that the Career Planning 

students were more likely to be retained.  However, the results from both of these variables are in 

line with previous research that indicates that goals and intended persistence in a major were 

significantly associated with observed retention in STEM majors (Lee et al., 2015; Lent et al., 

2016).  Because this key finding reversed from the Belser et al. (2017) study to this dissertation, 

more research is needed to replicate findings.    

 The ethnicity variable overall was a significant predictor; however, issues related to 

sample size warrant the reader to read it with caution.  The data showed that African American/ 

Black, Hispanic, and Other students had higher likelihoods of being retained, which was 

supported by each of these groups having more students in the retained group than the non-

retained group.  However, the ratio of cases within these racial subgroups to the overall sample 

may have inflated these odds ratios.  These findings were inconsistent with researchers who have 

found that underrepresented minority students were less likely to be retained in STEM majors 

(Chen, 2013; Cundiff et all, 2013; Gayles & Ampaw, 2014) and consistent with those who found 

the opposite (Riegle-Crumb & King, 2010).  The predicted odds of being retained were highest 

for the Asian/Pacific Islander group, which was once again consistent with the observed 

retention outcomes.  This finding was consistent with Chen (2013) and NCSES (2015) who 

noted that whereas this subgroup is underrepresented in the overall population, they are 

overrepresented in some STEM fields.  Despite potential limitations with sampling, these 
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findings may provide initial statistical support for intervention like COMPASS that attend to 

demographic representation within the structure of the program. 

 The gender variable was removed from the model as a highly non-significant predictor.  

This finding is inconsistent with a wealth of literature indicating that females are less likely to be 

retained in STEM majors (Beasley & Fischer, 2012; Cundiff et al., 2013; Gayles & Ampaw, 

2014; Riegle-Crumb et al., 2012).  However, the sample in this study did not accurately reflect 

gender representation in STEM, as females comprised nearly half of the sample; this ratio may 

have skewed the retention data by decreasing the retention gap that researchers have previously 

observed.  Another possibility is that the COMPASS Program’s attention to gender related issues 

in STEM may have influenced female students’ persistence.  However, without a control group, 

the researcher cannot objectively make this causal claim.  

 The continuous variables (SAT Math, Math Placement--Algebra, and CTI Total Change) 

did not greatly increase the odds of students being retained but performed in the expected 

direction.  A positive association between math related variables and STEM retention is 

consistent with previous literature, although the influence was not as great within this sample 

(CollegeBoard, 2012; Crisp et al., 2009; Le et al., 2014; Mattem and Patterson, 2013; Rohr, 

2012).  Similarly, researchers previously associated changes in negative career thinking with 

better outcomes both specific to STEM (Belser et al., 2017) and across the board (Folsom et al., 

2004; Reardon et al., 2015).  

Hypothesis 2 

The second null hypothesis based on Research Question 1A stated that first-year to 

second-year undergraduate retention in STEM majors for students participating in a STEM-
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focused career planning class cannot be significantly predicted by ethnicity, gender, initial 

major, Math Placement Test scores, SAT Math scores, and CTI change scores.  This model 

examining 2nd year STEM retention with the students from the STEM-focused Career Planning 

course retained four variables (Ethnicity, Initial Major, Math Placement--Algebra, and CTI DMC 

Change score) as predictors based on Hosmer et al.’s (2013) and Tabachnick & Fidell’s (2013) 

recommended cutoff point for inclusion.  The model removed the change scores for the CTI 

Total and two of its subscales, SAT Math, and gender as predictors.  This logistic regression 

model fit the data well based on a non-significant Goodness of Fit test and was able to accurately 

predict approximately two-thirds of retention outcomes; compared to the model from Hypothesis 

1, the model was slightly better with predicting non-retained students but decreased in the 

percentage of accurate predictions for the retained students.   

 As with the results from Hypothesis 1, initial major was the most significant predictor 

and indicated that initially STEM declared students have a higher likelihood of being retained in 

a STEM major, whereas STEM-interested students with a major initially declared as non-STEM 

were less likely to be retained.  These results are consistent with previous research that indicates 

that goals and intended persistence in a major were significantly associated with observed 

retention in STEM majors (Lee et al., 2015; Lent et al., 2016).  This analysis extends these 

findings to students who were initially not committed to a STEM major; as noted in Chapter 3, 

some students had declared a major that they thought they liked but opted to take the STEM-

focused Career Planning course because their major decision was not solidified.  The inclusion 

of the CTI Decision Making Confusion subscale (albeit, not statistically significant) makes sense 

as this subscale evaluates negative career thinking around narrowing career options (Sampson et 
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al., 1996a).  The Decision Making Confusion subscale specifically measures negative thinking 

around difficulty with narrowing career options, which is a salient concern for students who are 

considered undecided. 

 The ethnicity variable overall was a significant predictor with this subgroup of 

participants, as well.  However, issues related to sample size warrant the reader to read it with 

caution.  As with the results from Hypothesis 1, the data showed that African American/ Black, 

Hispanic, and Other students had higher likelihoods of being retained, which was supported by 

each of these groups having more students in the retained group than the non-retained group.  

However, the ratio of cases within these racial subgroups to the overall sample may have inflated 

these odds ratios, especially as this analysis used a subset of the overall sample.  Similar to 

Hypothesis 1, these findings were inconsistent with researchers who have found that 

underrepresented minority students were less likely to be retained in STEM majors (Chen, 2013; 

Cundiff et all, 2013; Gayles & Ampaw, 2014) and consistent with those who found the opposite 

(Riegle-Crumb & King, 2010).  The Asian/Pacific Islander group once again had the highest 

predicted odds of being retained, which was consistent with previous literature (Chen, 2013; 

NCSES, 2015).  As with Hypothesis 1, these findings may highlight the potential of targeted 

STEM career programming on mediating and potentially reversing the negative effects of 

demographic representation in STEM. 

 The gender variable was once again removed from the model as a highly non-significant 

predictor, which is inconsistent previous literature indicating that females are less likely to be 

retained in STEM majors (Beasley & Fischer, 2012; Cundiff et al., 2013; Gayles & Ampaw, 

2014; Riegle-Crumb et al., 2012).  However, because the sample in this study did not accurately 

reflect gender representation in STEM, the retention data may be slightly skewed.  The 
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COMPASS Program’s attention to gender related issues in STEM might have influenced female 

students’ persistence by mitigating the previously observed negative effects of gender 

underrepresentation, but without a control group, the researcher cannot objectively make this 

causal claim.  

 The Math Placement--Algebra variable did not greatly increase the odds of students being 

retained but performed in the expected direction.  A positive association between math related 

variables and STEM retention is consistent with previous literature, although the influence was 

not as great within this sample (Crisp et al., 2009; Le et al., 2014; Rohr, 2012).  Unlike the 

Hypothesis 1, this model removed SAT Math scores as a significant predictor, which is 

inconsistent with previous literature (CollegeBoard, 2012; Mattem & Patterson, 2013); however, 

researchers affiliated with the SAT conducted both of these previous studies.  The findings of the 

current study could indicate that the SAT is not as good of a predictor as observed in previous 

studies or that the COMPASS Program’s inclusion of math tutoring and designated math courses 

helped level the playing field for students who tested differently on the SAT. 

Hypothesis 3 

The third null hypothesis based on Research Question 1B stated that first-year to second-

year undergraduate retention in STEM majors for students participating in a STEM seminar class 

(without a career development focus) cannot be significantly predicted by ethnicity, gender, 

initial major, Math Placement Test scores, SAT Math scores, and CTI change scores.  This 

model examining 2nd year STEM retention with the students from the STEM Seminar course 

retained only three variables (Initial Major, CTI CA Change score, and SAT Math) as predictors 

based on Hosmer et al.’s (2013) and Tabachnick & Fidell’s (2013) recommended cutoff point for 
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inclusion.  The model removed gender, ethnicity, Math Placement--Algebra, the CTI Total 

Change score, the CTI EC Change score, and the CTI DMC Change score as predictors.  This 

logistic regression model fit the data well based on a non-significant Goodness of Fit test and 

was able to accurately predict more than three-fourths of retention outcomes; compared to the 

models from Hypotheses 1 and 2, the model was better with predicting retained students but had 

a significantly weaker ability to predict non-retained students correctly. 

 As with the results from Hypotheses 1 and 2, initial major was the most significant 

predictor and once again indicated that initially STEM declared students have a higher likelihood 

of being retained in a STEM major, whereas STEM-interested students with a major initially 

declared as non-STEM were less likely to be retained.  It is important to note that these particular 

students were uncommitted to a STEM major at the time of applying to the University but 

declared a major between the time of admittance and the first day of class.  Some students may 

have included a major on their application that they were not fully committed to at that time.  

These students who included a major on their application to the University, however, were more 

likely to be retained, regardless of whether they were actually committed to that major.  

Similarly, the inclusion of the CTI Commitment Anxiety subscale as a significant predictor 

makes sense as this subscale evaluates negative career thinking around making a final career 

choice from narrowed career options (Sampson et al., 1996a).  This finding makes a case that 

decreasing commitment anxiety for these students who at least a partial commitment to a STEM 

major improves their likelihood of being retained.  

 The SAT Math variable did not greatly increase the odds of students being retained but 

performed in the expected direction.  A positive association between math related variables and 

STEM retention is consistent with previous literature, although the influence was not as great 
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within this sample (CollegeBoard, 2012; Crisp et al., 2009; Le et al., 2014; Mattem and 

Patterson, 2013; Rohr, 2012).  Whereas two different math variables were predictors for the 

Career Planning group and the STEM Seminar group, the fact that both models for Hypotheses 2 

and 3 included a math-related predictor supports previous research about math as a predictor for 

STEM success. 

 The gender variable and ethnicity variable both were removed from the model as non-

significant predictors, which is inconsistent previous literature examining demographics and 

STEM retention (Beasley & Fischer, 2012; Chen, 2013; Cundiff et al., 2013; Gayles & Ampaw, 

2014; Riegle-Crumb et al., 2012; Riegle-Crumb & King, 2010).  Although these findings may 

relate to sampling issues with both variables, the findings may also provide initial support for a 

hypothesis that participation in a STEM recruitment and retention program can mitigate the 

influence on demographic underrepresentation on STEM retention.  However, without a control 

group, the researcher cannot make this claim. 

Overall Discussion of 2nd Year Retention 

 Hypotheses 1 through 3 examined the influence of the predictors on the 2nd Year 

Retention outcome variable, with the latter two hypotheses focusing on the Career Planning and 

STEM Seminar groups individually.  As with the Belser et al. (2017) study, each of these three 

models more accurately predicted retained cases than non-retained cases, even after factoring in 

new predictors.  However, adding the new predictors increased the outcome variance explained 

by the model and increased the model fit.  The models’ lower number of accurately predicted 

non-retained cases may relate to internal factors (e.g., self-efficacy, stereotype threat, math 

anxiety) identified as predictors in prior research (Beasley & Fischer, 2012; Cundiff et al., 2013; 



 

 174 

Litzler et al., 2014).  Nevertheless, the findings indicated that early declaration of a STEM major, 

higher performance on math assessments, and higher reductions in negative career thinking 

could predict higher odds of being retained in a STEM major.  The Ethnicity variable, however, 

demonstrated that ethnic minorities had a higher odds of retention in STEM, with a higher level 

of significance for the undecided Career Planning students. 

Hypothesis 4 

The fourth null hypothesis based on Research Question 2 stated that first-year to third-

year undergraduate retention in STEM majors cannot be significantly predicted by ethnicity, 

gender, initial major, Math Placement Test scores, SAT Math scores, career planning 

participation, and CTI change scores.  This model examining 3rd year STEM retention with the 

students from both the STEM-focused Career Planning course and the STEM Seminar course 

retained five variables (Initial Major, Math Placement, STEM Course Participation, SAT Math, 

and Ethnicity) as predictors based on Hosmer et al.’s (2013) and Tabachnick & Fidell’s (2013) 

recommended cutoff point for inclusion.  The model removed gender and all CTI Change score 

variables as predictors.  This logistic regression model fit the data well based on a non-

significant Goodness of Fit test and was able to accurately predict 70 percent of retention 

outcomes; compared to the models examining 2nd year STEM retention, this first model 

examining 3rd year STEM retention was much better with predicting non-retained students and 

slightly less able to predict retained students correctly. 

 As with 2nd year STEM Retention, the Initial major variable was the most significant 

predictor of 3rd year STEM Retention and indicated that initially STEM declared students have a 

higher likelihood of being retained in a STEM major, whereas STEM-interested students with a 
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major initially declared as non-STEM were less likely to be retained.  This finding is supported 

by the STEM course variable, which indicated that the STEM Seminar students were nearly 

twice as likely to be retained.  Because students enroll in either the STEM Seminar or STEM-

focused Career Planning course based on their level of commitment to a STEM major, it is not 

surprising that the students in the STEM Seminar course (i.e. those with a declared STEM major 

as of the first day of classes) are retained at a higher rate.  However, the results from both of 

these variables are in line with previous research that indicates that goals and intended 

persistence in a major were significantly associated with observed retention in STEM majors 

(Lee et al., 2015; Lent et al., 2016). 

 The continuous math variables (SAT Math and Math Placement--Algebra) did not greatly 

increase the odds of students being retained but performed in the expected direction.  A positive 

association between math related variables and STEM retention is consistent with previous 

literature, although the influence was not as great within this sample (CollegeBoard, 2012; Crisp 

et al., 2009; Le et al., 2014; Mattem and Patterson, 2013; Rohr, 2012).  As with the model from 

Hypothesis 1 that included both the Career Planning and STEM Seminar students, both math 

variables remained in the model.    

 The ethnicity variable overall was not statistically significant at the .05 level but was 

retained as a predictor based on the Hosmer et al. (2013) and Tabachnick & Fidell (2013) 

recommendation.  The odds ratios for the African American/Black, Hispanic, and Other 

subgroups indicated a higher likelihood of being retained, which was supported by each of these 

groups having more students in the retained group than the non-retained group; however, as 

previously noted, the ratio of cases within these racial subgroups to the overall sample may have 

inflated these odds ratios.  Similar to the results from previous hypotheses, these findings were 
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inconsistent with researchers who have found that underrepresented minority students were less 

likely to be retained in STEM majors (Chen, 2013; Cundiff et all, 2013; Gayles & Ampaw, 

2014) and consistent with those who found the opposite (Riegle-Crumb & King, 2010).  The 

Asian/Pacific Islander group once again had the highest predicted odds of being retained, which 

was consistent with previous literature (Chen, 2013; NCSES, 2015). 

Hypothesis 5 

 The fifth null hypothesis based on Research Question 2A stated that first-year to third-

year undergraduate retention in STEM majors for students participating in a STEM-focused 

career planning class cannot be significantly predicted by ethnicity, gender, initial major, Math 

Placement Test scores, SAT Math scores, and CTI change scores.  This model examining 3rd 

year STEM retention with the students from the STEM-focused Career Planning course retained 

six variables (Initial Major, SAT Math, CTI Total Change score, Ethnicity, Gender, and CTI EC 

Change score) as predictors based on Hosmer et al.’s (2013) and Tabachnick & Fidell’s (2013) 

recommended cutoff point for inclusion.  The model removed the change scores for the CTI 

DMC and CA subscales and the Math Placement--Algebra test as predictors.  This logistic 

regression model fit the data well based on a non-significant Goodness of Fit test and was able to 

accurately predict more than two-thirds of retention outcomes; similar to the model from 

Hypothesis 1, the model more accurately predicted the retained students but predicted the non-

retained students correctly with less than half of the cases. 

 As with the results from previous hypotheses, initial major was once again the most 

significant predictor and indicated that initially STEM declared students have a higher likelihood 

of being retained in a STEM major, whereas STEM-interested students with a major initially 
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declared as non-STEM were less likely to be retained.  These findings support previous research 

that indicates that goals and intended persistence in a major were significantly associated with 

observed retention in STEM majors (Lee et al., 2015; Lent et al., 2016).  As with the results from 

Hypothesis 2, this analysis extends these findings to students who were initially not committed to 

a STEM major; as noted in Chapter 3, some students had declared a major that they thought they 

liked but opted to take the STEM-focused Career Planning course because their major decision 

was not solidified.   

 Neither the CTI Total Change score nor the CTI External Conflict subscale change score 

were statistically significant; however, the model retained both.  The results indicated that 

increases in CTI Total Change score (i.e. decreases from pretest to posttest) increase the odds of 

being retained in STEM, which is consistent with previous findings specifically related to STEM 

(Belser et al., 2017) and across the board (Folsom et al., 2004; Reardon et al., 2015).  

Interestingly, increases in the CTI External Conflict Change score (i.e. decreases from pretest to 

posttest) slightly decreased the odds of being retained in a STEM major.  This finding is 

inconsistent with previous literature on the CTI (Folsom et al., 2004; Reardon et al., 2015; 

Sampson et al., 1996a).  However, it is worth noting that this is the smallest subscale on the CTI 

and had the smallest mean differences from pretest to posttest for the total sample and for the 

Career Planning and STEM Seminar groups. 

 The ethnicity variable overall was retained as a predictor of 3rd year STEM retention 

with this subgroup of participants based on the recommendation by Hosmer et al. (2013) and 

Tabachnick & Fidell (2013) on inclusion of predictors.  As with the results from Hypothesis 1, 

the data showed that students in the African American/Black and Other groups had higher 

likelihoods of being retained, which was supported by each of these groups having more students 
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in the retained group than the non-retained group; however, the ratio of cases within these racial 

subgroups to the overall sample may have inflated these odds ratios, especially as this analysis 

used a subset of the overall sample.  Similar to Hypothesis 1, these findings were inconsistent 

with researchers who have found that underrepresented minority students were less likely to be 

retained in STEM majors (Chen, 2013; Cundiff et all, 2013; Gayles & Ampaw, 2014) and 

consistent with those who found the opposite (Riegle-Crumb & King, 2010).  This Hypothesis 5 

model was the first within this study to find that Hispanic students were less likely to be retained 

in STEM, although the decrease in odds was small.  The Asian/Pacific Islander group once again 

had the highest predicted odds of being retained, which was consistent with previous literature 

(Chen, 2013; NCSES, 2015); however, as noted, the reader should examine this finding with 

caution, as this group had the most issues with sampling. 

 The SAT Math variable was a significant predictor but did not greatly increase the odds 

of students being retained.  A positive association between math related variables and STEM 

retention is consistent with previous literature, as researchers have demonstrated that higher SAT 

Math scores relate to better STEM outcomes; however, the influence of math ability was not as 

great within this sample as in those previous studies (CollegeBoard, 2012; Crisp et al., 2009; Le 

et al., 2014; Mattem and Patterson, 2013; Rohr, 2012).   

 This model was the first to retain the gender variable as a predictor, albeit not statistically 

significant.  The results indicated that female students were less likely to be retained in a STEM 

major, which is consistent with previous literature (Beasley & Fischer, 2012; Cundiff et al., 

2013; Gayles & Ampaw, 2014; Riegle-Crumb et al., 2012).  The COMPASS Program’s attention 

to gender related issues in STEM, specifically within the first year of college, might have 

influenced retention outcomes.  However, this model may provide support for a hypothesis that 
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gender related concerns come back into play for initially STEM undecided students when these 

students are less involved with programming that specifically seeks to address issues of gender 

representation.  Without a control group, though, the researcher cannot objectively make this 

causal claim.   

Hypothesis 6 

The sixth and final null hypothesis based on Research Question 2B stated that first-year 

to third-year undergraduate retention in STEM majors for students participating in a STEM 

seminar class (without a career development focus) cannot be significantly predicted by 

ethnicity, gender, initial major, Math Placement Test scores, SAT Math scores, and CTI change 

scores.  This model examining 3rd year STEM retention with the students from the STEM 

Seminar course retained only four variables (Initial Major, CTI CA Change score, and SAT 

Math) as predictors based on Hosmer et al.’s (2013) and Tabachnick & Fidell’s (2013) 

recommended cutoff point for inclusion.  The model removed gender, CTI DMC Change, 

ethnicity, CTI EC Change, and SAT Math scores as predictors.  This logistic regression model fit 

the data well based on a non-significant Goodness of Fit test and was able to accurately predict 

approximately 71 percent of retention outcomes.  As with models from several previous 

hypotheses, the model was better with predicting non-retained students but accurately predicted 

non-retained students with less than half of the cases.  However, sample size was a limitation for 

this model, as the sample had fewer students than what the power analysis recommended for 

sample size.  As such, the reader should view the findings of this specific analysis with caution. 

 Once again, initial major was the most significant predictor and once again indicated that 

initially STEM declared students have a higher likelihood of being retained in a STEM major, 
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whereas STEM-interested students with a major initially declared as non-STEM were less likely 

to be retained.  As with Hypothesis 3, it is important to note that these particular students were 

uncommitted to a STEM major at the time of applying to the University but declared a major 

between the time of admittance and the first day of class.  Some students may have included a 

major on their application that they were not fully committed to at that time.  These students who 

included a major on their application to the University, however, were more than twice as likely 

to be retained, regardless of whether they were actually committed to that major.  Similarly, the 

inclusion of the CTI Commitment Anxiety subscale as a significant predictor makes sense as this 

subscale evaluates negative career thinking around making a final career choice from narrowed 

career options (Sampson et al., 1996a).  This finding makes a case that decreasing commitment 

anxiety for these students who at least a partial commitment to a STEM major improves their 

likelihood of being retained.  Interestingly, increases in the CTI Total Change score (i.e. 

decreases from pretest to posttest) slightly decreased the odds of being retained in a STEM 

major.  This finding is inconsistent with previous literature on the CTI (Belser et al., 2017; 

Folsom et al., 2004; Reardon et al., 2015; Sampson et al., 1996a).   

 The Math Placement--Algebra variable did not greatly increase the odds of students being 

retained but was a significant predictor.  Similar to findings from earlier hypotheses, these 

finding was consistent with previous literature, although the influence was not as great within 

this sample (CollegeBoard, 2012; Crisp et al., 2009; Le et al., 2014; Mattem & Patterson, 2013; 

Rohr, 2012).  Whereas two different math variables were predictors of 3rd year STEM retention 

for the Career Planning group and the STEM Seminar group, the fact that both models for 

Hypotheses 5 and 6 included a math-related predictor supports previous research about math as a 

predictor for STEM success. 
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Overall Discussion of 3rd Year Retention 

 Hypotheses 4 through 6 examined the influence of the predictors on the 3rd Year 

Retention outcome variable, with the latter two hypotheses focusing on the Career Planning and 

STEM Seminar groups individually.  In contrast to the Belser et al. (2017) study and the previous 

three hypotheses, the models for Hypotheses 4 and 5 more accurately predicted the non-retained 

cases than the retained cases.  Additionally, adding the demographic and math-related predictors 

increased the outcome variance explained by the model and increased the model fit.  As noted 

previously, internal factors (e.g., self-efficacy, stereotype threat, math anxiety) identified as 

predictors in prior research (Beasley & Fischer, 2012; Cundiff et al., 2013; Litzler et al., 2014) 

may have played a larger role with 2nd year retention when COMPASS Program initiatives were 

in place to address issues pertaining to observable factors (i.e., gender and ethnicity).  However, 

when some of those initiatives are removed after the first year, these observable factors may 

become more salient with students opting to leave STEM, as evidenced by an increased ability to 

accurately predict non-retained cases.  Nevertheless, the findings indicated that early declaration 

of a STEM major, higher performance on math assessments, and higher reductions in negative 

career thinking could predict higher odds of being retained in a STEM major.  

Summary of Findings 

 To fill a gap in the literature on STEM major retention, this study incorporated 

demographic variables, math scores, and career-related variables into a predictive model of 

STEM retention for students participating in a STEM recruitment and retention intervention 

program.  The findings consistently demonstrated that deciding on or declaring a STEM major 

prior to starting college predicts higher odds of being retained in a STEM major through the first 
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and second year.  It is worth noting that initially being undecided yet STEM interested did not 

predict reduced odds of being retained in STEM; however, having an initially declared non-

STEM major did predict reduced odds of being retained in STEM.  Although the use of a control 

group could have improved the researcher’s ability to make causal claims, the findings of this 

study to support the notion that STEM-career interventions do influence student outcomes with 

regard to STEM majors, particularly with improving retention and mitigating the negative effects 

of demographic underrepresentation.  The influence of demographic variables fluctuated with the 

2nd year and 3rd year retention variables, which likely related to the program structure that 

provides more intervention in the first year than in the second year. 

 The continuous variables within the study also operated as expected, although with 

inconsistent levels of significance.  In line with prior research, higher math assessment scores 

predicted higher odds of being retained in STEM.  However, within this study, the math 

variables did not predict dramatic increases in odds as seen in prior studies; it is possible that the 

COMPASS Program’s inclusion of math tutoring and designated sections of math courses 

reduced the ability to predict based on math performance.  Researchers previously used the 

Career Thoughts Inventory to demonstrate outcomes of Career Planning courses, both generic 

and specific to STEM majors.  In this study, reductions in negative career thinking did relate to 

increased odds of being retained in STEM (with a few exceptions), albeit with a small effect.  

Due to the high effects noted by the Initial Major and STEM Course variables, the CTI pretest 

may be a better predictor than the change scores.   

 From a methodological standpoint, the Backward Stepwise approach for entering 

predictors improved some aspects of the model and regressed some aspects.  Specifically, 

eliminating the highly non-significant predictors improved the number of accurately predicted 
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cases with Hypotheses 1 and 4 examining both groups; in other hypotheses, the number of 

accurately predicted cases decreased mildly with the final models.  The Stepwise approach 

improved model fit, as measured by the Hosmer and Lemeshow Test, with the 2nd Year 

Retention dependent variables but did not improve model fit with the 3rd Year Retention 

dependent variable.  Removing highly non-significant predictors may lead to underfitting the 

model, but based on the inconsistency of differences between the base and final models observed 

in this study, researchers may not want to completely dismiss the approach and carefully 

consider the cutoff p value for including predictors.  However, the comparison of the two 

approaches provides context both for predicting STEM retention and the using binary logistic 

regression. 

Limitations of the Study 

 A number of limitations exist for the current study.  In this section, the researcher will 

present these limitations as they relate to research design, sampling, and instrumentation. 

Research Design 

 One major limitation to this study’s design is the lack of a control group, which limited 

the researcher’s ability to make causal inferences.  Instead, the researcher used a comparison 

group design and acknowledged that the two groups (STEM-focused Career Planning and STEM 

Seminar) had key differences.  Both of these comparison groups were part of the UCF 

COMPASS Program, which was specifically designed to increase recruitment and retention in 

STEM majors.  As such, the researcher could hypothesize that either or both of these groups 

could have higher STEM retention rates than a true control group of students not receiving any 
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additional supports.  However, the researcher’s inclusion of both groups and inclusion of 

hypotheses examining the groups separately did allow for comparisons of how the predictors 

operated differently with STEM-declared and undecided students. 

 Threats to internal validity may have also impacted retention outcomes.  With regard to 

maturation, some of the variance in retention outcomes may be attributed to natural processes 

that students experienced on their own as they matriculated through college.  Testing is also a 

threat to internal validity, as students’ scores with the CTI posttest may have been influenced 

with their familiarity with the CTI pretest.  Additionally, because students were aware that they 

were part of a research study and because they knew the CTI was part of a class assignment, 

students may have taken these assessments in a way that would decrease their scores on the 

posttest. 

 The COMPASS Program also incorporates additional elements designed to support 

students that the researcher did not include within the current study.  It is possible that these 

additional variables could have provided additional statistical relevance for the analysis.  For 

example, all students had access to academic support and tutoring for their math and science 

courses; however, the program does not collect data regarding students’ use of these services or 

their perception of these services.  Additionally, students in both COMPASS courses participated 

in structured research lab visits and hear from guest speakers, but the two courses use different 

surveys for gathering information about students’ experiences with these activities.  

Sampling 

 Based on the a priori power analysis, the total sample size was sufficient for all of the 

analyses run within this study except the analysis for Hypothesis 6.  However, a larger sample 
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size overall may have increased generalizability.  Within the sample, female students were 

overrepresented in relation to their representation in the larger STEM world of work; this ratio 

may have skewed the data set, resulting in gender not appearing as a significant predictor of 

STEM retention for this data set when it actually is for the general population of STEM students.  

Whereas the ethnicity variable was representative of the University and reflected patterns seen in 

other studies, the actual number of students in some categories violated the Peduzzi et al. (1996) 

10 case rule and the Field (2009) five case rule for the number of cases per predictor in each 

outcome.  As such, increasing the sample size to secure larger number of students in these ethnic 

minority groups would have helped the analysis.  Additionally, the researcher could consider re-

running the analysis with the Ethnicity variable collapsed further (e.g., merging the Asian/ 

Pacific Islander group with the Other group) and comparing the results in the Coefficients tables 

for both approaches. 

Instrumentation 

 Due to lack of individual student data, the researcher was unable to run reliability 

analyses for the SAT Math subtest and the UCF Math Placement--Algebra test.  Moreover, the 

researcher did not have access to psychometric properties for the UCF Math Placement--Algebra 

test.  Missing data was also an issue for both the UCF Math Placement--Algebra test and the 

CTI, resulting in the researcher having to impute the missing values.  The researcher had the 

opportunity to standardize the CTI administration as much as possible but had no control over 

the administration of the SAT Math test or the UCF Math Placement--Algebra test.  Whereas the 

researcher checked the dataset for errors, it is possible that data entry errors exist due to the 
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number of research assistants who helped enter the data.  Examining the data set for unusual 

values or outliers helped mitigate the potential for error. 

 Although the study is not without limitations, it does have implications for research and 

practice.  With regard to future research studies, researchers should seek to address limitations 

observed in this study to improve outcomes.  

Recommendations for Future Research 

 This research study provided an exploratory investigation of factors that could predict 

STEM retention using logistic regression.  Based on issues with the current models, the 

researcher intends to address some minor design elements with the hope of improving the 

models’ ability to accurately predict both retained and non-retained students.  For example, 

based on the significance of the initial major variable in multiple models, the researcher 

hypothesizes that the CTI pretest scores may better predict STEM outcomes than the CTI change 

scores because a career readiness score from the first week of college may more closely relate to 

students’ initial major decision.  Additionally, the researcher may want to explore the data using 

a full logistic regression model with all predictors, rather than using a stepwise approach, as 

evidenced by the comparison of the base and final models for each hypothesis.  As the sample 

size grows, the researcher may be able to add interaction effects between demographic variables 

and math scores as recommended by previous literature.  The researcher may also want to re-run 

the analyses with the Asian/ Pacific Islander and Other subgroups combined to increase the 

number of cases in the combined group; the researcher could compare the Coefficients Table for 

each approach and determine if the sampling impacted the findings with other sub-categories. 
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 Follow-up analyses to this study would be to extend the exploration of these variables to 

later years of college with the goal of identifying how well these variables could predict STEM 

retention through the end of college.  To further explore potential mediating or moderating 

effects among the predictor variables, researchers may want to structural equation modeling to 

analyze the data; however, these analyses would need to use a different dependent variable (e.g. 

the CTI posttest) that is not based solely on one binary outcome.  Identifying these effects would 

provide more context to the variables used in the present study and how they can be built in to 

future investigations.  

 Outside of this particular study, future researchers should focus on outcome-based 

research involving STEM-focused career planning courses that build on prior research on 

effective strategies for STEM.  Prior research has linked participation in undergraduate career 

planning courses to better outcomes for students (Folsom et al., 2004; Osborn et al., 2007; Parks 

et al., 2012; Reardon et al., 2015).  Moreover, prior research has established relationships 

between STEM career development and STEM outcomes (Belser et al, 2017; Freeman, 2012; 

Gentile et al., 2012; Prescod et al., in press); however, these studies have been limited by 

correlational designs and lack of a control group.  As such, building research projects that 

incorporate a treatment-control group design into STEM career initiatives would help establish a 

causal link between these initiatives and STEM outcomes and fill a clear gap in the literature.  As 

is necessary with outcome research, replication studies, particularly involving multiple research 

sites would help establish the efficacy of such a treatment. 

 In prior research studies, researchers highlighted additional variables related to STEM 

outcomes that may be of interest to career researchers.  Lent et al. (2016) noted links between 

retention and both intended persistence and self-efficacy for engineering students.  Lent et al. 
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(2008) also incorporated self-efficacy, outcome expectations, and demographics into a retention 

model.  Other researchers have established that internal processes specific to gender and ethnic 

minority students (e.g. stereotype threat, gender stereotyping, math anxiety) also relate to STEM 

outcomes (Beasley & Fischer, 2012; Cundiff et al., 2013; Litzler et al., 2014).  Incorporating 

these elements, which have more commonly been applied to higher education and STEM 

research, into career development models may help account for more variance in STEM 

outcomes.  Moreover, additional career assessments based on other career theories (e.g. the 

Strong Interest Inventory, the Career Development Inventory) can provide additional career 

specific information to models. 

 The findings of this study indicated that students who have a more solidified major before 

starting college have higher odds of being retained in STEM majors.  School counselors are 

uniquely positioned to be a part of collaborative STEM career development work, as they are 

already charged with providing career development programming in their school settings (Curry 

& Milsom, 2014).  Researchers can partner with school counselors to develop STEM career 

initiatives that would allow for conducting outcome-based research with such interventions.  

These investigations could focus on how such interventions impact math and science test scores, 

math and science self-efficacy, and entry into the STEM pipeline. 

Implications  

 In the following sections, the researcher presents the practice implications that these 

research findings have for professionals in varying settings. 
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Implications for Higher Education 

 Higher education professionals can range from coordinators of STEM programming to 

University administrators charged with making decisions.  The findings of this study provide 

evidence that the variables explored do matter with regard to STEM recruitment and retention.  

Based on the result indicating that STEM-decided students have better retention outcomes, those 

in charge of STEM programming should strive to provide opportunities for students to solidify 

their major decision, rather than simply providing opportunities for students to be exposed to 

STEM fields.  Structured career development programming, such as career planning coursework, 

is one strategy for helping students choose an appropriate major.  Whereas the effect sizes (as 

measured by the odds ratios) were small for the CTI change scores, these scores, which represent 

improvements in negative career thinking, were related to increased likelihoods of being retained 

in STEM majors.    

 Similarly, undergraduate STEM programming also must incorporate elements aimed at 

rectifying demographic underrepresentation in STEM fields, which should be an on-going 

process rather than a one-time event (i.e. exposing students to academic and professional 

mentors that challenge gender stereotypes, rather than just having a one-time guest speaker from 

an underrepresented group).  As the influence of gender and ethnicity changed with the 2nd year 

and 3rd year retention outcomes, professionals managing such programming should take note 

that services aimed at mitigating the effects of demographic representation may be most effective 

when they are continuous throughout students’ academic journeys, rather than contained within 

the first year of college.  Although math supports are commonly included in these efforts, 

programming should also be sensitive to interactions between demographics and mathematics.  

A final recommendation is that STEM recruitment and retention programs should include a 
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professional with knowledge of career development processes and practice on planning and 

decision making teams to help ensure that career development theory and empirical research are 

considered.  As these programs translate into costs paid by grants, foundations, or university 

budgets, ensuring that programming incorporates best practices may provide a more cost-

effective solution.  

Implications for College Counseling and Advising 

 College counselors and advisors have a front line role in helping students matriculate 

through degree programs; moreover, they often work with students who are struggling to decide 

on a major or career path.  As the previous section noted, special attention should be paid on 

helping students solidify their major early, as this study demonstrated better STEM retention 

outcomes for students who came into college with a declared STEM major.  Counselors and 

advisors should also ensure that their work and programming is sensitive to demographic 

stereotypes and representation needs; exploring these topics with students in individual meetings 

may help students work through problematic thinking in these areas.  Moreover, these 

professionals should utilize assessment data and research on assessment data to connect students 

with additional resources.  Related to math, students’ scores on math assessments may translate 

into increases or decreases in the odds of successfully completing a STEM major; as such, 

counselors and advisors can help students with lower math scores to identify available math 

supports at the university.  Similarly, career readiness assessments like the CTI may help career 

counselors and advisors tailor their approaches to students’ individualized needs. 
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Implications for School Counseling 

 The findings of this study make a strong case that having a decided major prior to 

entering college can translate into a higher likelihood of being retained in a STEM major.  

Coupling these findings with Gottfredson’s (1981) research indicating that children begin to 

eliminate career options early in life, it is apparent that career development work must begin in 

the K-12 setting.  Mansfield et al. (2014) echoed this need for STEM-specific career 

development work at the K-12 level in order to effectively address underrepresentation of 

females and ethnic minorities within STEM.  School counselors are often the only professionals 

on school campuses with career development training, and as such, they can play a critical role in 

providing interventions for students related to STEM careers.  However, as they may not have 

received specific training on STEM initiatives, school counselors can partner with math and 

science teachers, as well as members of the community, to help marry career development 

knowledge with industry-specific knowledge.  In addition, as mentioned in the research 

implications, school counselors can serve as a gateway for researchers to investigate STEM 

initiatives in the K-12 arena.  These partnerships can serve to further the science of career 

development and provide a critical service to students. 

Implications for Counselor Education 

 The present study also has significance for counselor education.  From a research 

perspective, counseling literature focused on STEM initiatives has primarily been discussed in 

relation to K-12 settings with school counselors and largely has not been empirically based.  

However, the program within this study is a unique collaboration in which individuals from 

counselor education brought career development expertise to a higher education STEM 
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initiative.  With such interdisciplinary partnerships, counselor education researchers can provide 

critical knowledge and expertise in the area of career development that can impact STEM 

retention.  Additionally, these partnerships translate into potential external funding.  Though 

federal science agencies, such as the National Science Foundation, have supported counselor 

education researchers, these projects have rarely been in the area of STEM career development, 

particularly involving a career related intervention (NSF, 2017).  As such, the findings of the 

present study can serve as a foundation for future evidence-based outcome research involving 

STEM career initiatives. 

 In addition to research initiatives, counselor educators also need to ensure that their 

counselors-in-training are exposed to information about STEM fields in their career development 

coursework.  As these trainees include future school counselors, college counselors, and career 

counselors, this information would represent current research that can translate into benefits for 

future clients.  Specifically, counselors-in-training need to be aware of trends in STEM fields, 

interventions and assessments that work, and the unique needs of marginalized populations with 

regard to some industries like STEM where they are underrepresented.  With the current and 

projected deficits in STEM fields, a new generation of STEM-informed helping professionals 

would be uniquely positioned to make a difference in these outcomes.  

Implications for Public Policy 

 In line with implications for counselor educators and counseling professionals, these 

findings provide implications for public policy as it relates to preparing students to be college 

and career ready.  As the findings highlighted the importance of major decidedness prior to 

reaching college, policies and initiatives should reflect this need.  Government agencies that 
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emphasize STEM (e.g., the NASA Education Office) should continue to provide programming 

aimed at bolstering interest in STEM careers for children and adolescents through summer 

camps, online media, and outreach.  These types of initiatives could also be factored into 

afterschool programming.  To provide support for career planning in public schools, teacher 

education programs could incorporate career development training into their preparation 

programs.  Moreover, as school counselors are uniquely trained to do this work in education 

settings, governing bodies and school boards should explore avenues to adequately staff school 

counselors in schools and remove ancillary duties from school counselors to maximize their 

ability to provide career development programming. 

 Partnerships between K-12 and the STEM industry private sector exist currently, but 

these collaborations could be strengthened to provide more targeted support.  Another possible 

solution is to increase students’ access to internships and apprenticeships in high demand career 

fields within high school curricula.  These hands-on experiences have shown efficacy in existing 

programs, such as the Swiss Vocational and Educational Training System that integrates 

apprenticeships within the education system (Hoffman & Schwartz, 2015).  As a variation of this 

initiative will be piloted in Colorado in 2017, other states could utilize the findings and outcomes 

of both the Swiss and Colorado programs to model similar approaches (CareerWise Colorado, 

2017).  In essence, the findings of this study, as well as other studies on STEM initiatives, should 

not only inform future research, but should also factor into decisions made regarding future 

programming.  
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Summary and Conclusion 

 The purpose of this study was to determine the degree to which demographic variables, 

math ability, and career development factors could predict undergraduate retention in STEM for 

participants in a STEM recruitment and retention program.  Based on prior studies and existing 

literature, this study built upon existing literature related to gender, ethnicity, and mathematics 

and added to the literature regarding career initiatives within STEM fields.  Using binary logistic 

regression, the researcher explored these variables with first to second year STEM retention and 

first to third year STEM retention.  The analyses revealed that students who had a declared 

STEM major prior to starting college were consistently more likely to have a higher likelihood of 

being retained in a STEM major.  Students participating in a STEM Seminar course 

(representing a higher level of major decidedness) were also more likely to be retained in a 

STEM major than initially undecided students participating in a STEM-focused career planning 

course.  Ethnicity was a significant predictor of STEM retention with most of the models; 

however, the results varied on which specific subgroups were more likely to be retained.  Gender 

was only a significant predictor in one model, unlike existing literature, but these outcomes may 

relate to program elements or sampling bias.  Higher math scores (either measured by the SAT 

Math subtest or the UCF Math Placement--Algebra test) also predicted greater odds of being 

retained.  Finally, change scores from the Career Thoughts Inventory, showed an inconsistent 

ability to predict outcomes, although the directionality of their predictions mostly matched with 

prior research. 

 The results of this study have implications for researchers, higher education 

professionals, and counseling professionals in varying settings.  Each of these identified players 

can utilize the findings of this study to make more informed decisions about STEM initiatives in 
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their respective settings.  Moreover, the implications for this study serve as a call for a 

multidisciplinary approach to solving problems within STEM career attainment.  Coupling 

innovative and impactful STEM career research with empirically-sound STEM initiatives may 

be the driving force in improving STEM outcomes from K-12 to the workforce. 
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APPENDIX B:  COMPASS CONSENT FORM 
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APPENDIX C:  COMPASS INFORMED CONSENT 
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