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Practical tracking control for stochastic nonlinear systems with polynomial
function growth conditions
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ABSTRACT
This paper mainly focuses on an output feedback practical tracking controller design for a class
of stochastic nonlinear systems with polynomial function growth conditions. Mostly, there are
some studies on an output feedback tracking control problem for general nonlinear systems
with polynomial function growth conditions in existing achievements. Moreover, we extend it
to stochastic nonlinear systems and construct an output feedback practical tracking controller
based on dynamic and static phase combined, ensuring that all the states of the stochastic non-
linear systemare bounded and the system tracking error can bemade arbitrarily small after some
large enough time. Finally, a simulation example is provided to illustrate the efficiency of the
theoretical results.

ARTICLE HISTORY
Received 25 July 2017
Accepted 30 June 2019

KEYWORDS
Output feedback practical
tracking control; polynomial
function growth conditions;
feedback control with
dynamic and static phase;
stochastic nonlinear systems;
states boundness; output
convergence

1. Introduction

For a nonlinear control theory, it is necessary to real-
ize the stabilization of the closed-loop control system
[1–5]; on the other hand, the output of a controlled
object can also need to track the reference trajectory
signal such that it can achieve output tracking con-
trol. As one of the current research hotspots, output
tracking control has a wide range of applications in
practical systems, such as attitude control of spacecraft,
military radar tracking control, precise guidance con-
trol and industrial robot control [6–8]. In Ref. [4], a
robust attitude stabilization controller is proposed con-
sisting of a nominal state-feedback controller and a
robust compensator. In Ref. [8], a robust cascade con-
troller including an attitude controller and a position
controller is proposed based on the hierarchical control
scheme and the robust compensating technique. Fur-
thermore, based on the needs of practical applications,
output feedback tracking control for complex nonlin-
ear systems has producedmore results in the theoretical
field [9–16]. According to the existing papers, control
theory research has mainly focused on two kinds of
output feedback tracking controls for a series of stud-
ies: the first category is asymptotic output feedback
tracking control and this applies to the object system
which states that information and reference tracking
trajectory information are sufficient [17,18] and the
second category is the practical output feedback track-
ing control problem. For many practical systems and
their controller design, it is difficult to obtain suffi-
cient information and some of system states and the

reference trajectory are not measurable, in this case, it
needs to use practical output feedback tracking control
to achieve a tracking objective.

Early research on the output feedback controller
design is relatively simple for nonlinear systems whose
states and output are measurable [14]. When sys-
tem states are partially unmeasurable or completely
unmeasurable, the restriction assumptions of nonlinear
term growth conditions are required for unmeasurable
states. In Ref. [15], authors have studied the problem
of output feedback practical tracking control for a non-
linear system for which the nonlinear term growth
condition is a form of the product of a constant and
output polynomial function. In Ref. [19], some con-
straints of the reference trajectory signal in Ref. [15]
are eliminated, and output feedback practical tracking
control is realized for nonlinear systems that growth
conditions depend on high-order unmeasurable states
and simultaneously, high-gain observer has been intro-
duced in the output tracking controller design process.
In the above description of the reference trajectory, the
upper bound of the reference signal and its first deriva-
tive has been set; moreover, when the upper bound of
the reference trajectory signal and its first derivative is
unknown, Zhai and Fei [16] use an increasing power
integral method to study the global output feedback
practical tracking problem for a class of higher-order
nonlinear systems.

Research status of the output feedback tracking con-
trol for nonlinear systems is reviewed. However, for a
practical system, the external interference is inevitable,
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and a lot of interference is random which creates ubiq-
uitous stochastic nonlinear systems [20–25]. Naturally,
it is desirable to extend the output feedback tracking
control results for nonlinear systems to stochastic non-
linear systems; nevertheless, there are few studies in this
area, and some key issues (such as output tracking con-
trol for stochastic nonlinear systems that meet different
growth conditions) have not been effectively addressed.
Therefore, the research on the output tracking control
problem of stochastic nonlinear systems is challenging
and practical.

The paper mainly studies the output feedback track-
ing control problem for a class of stochastic nonlinear
systems which the nonlinear term satisfies the out-
put polynomial function such that the output feed-
back practical tracking controller based on dynamic
and static phase is constructed to ensure that system
tracking error converges to the small neighbourhood of
zero.

This paper is organized as follows: Section 2 gives the
description of the stochastic nonlinear system and the
problem to be solved. Section 3 gives the design process
and results of the output feedback practical tracking
controller, whichmainly includes states observer design
and boundedness analysis of system states and observer
gain. Section 4 gives a simulation example to verify
the effectiveness of the output feedback tracking con-
troller. Section 5 summarizes this paper and prospects
for future work.

2. Problem description

This paper focuses on the output feedback practical
tracking problem for a class of stochastic nonlinear
system:

dηi = ηi+1dt + φi(t, u, η)dω (i = 1, . . . , n − 1)

dηn = udt + φn(t, u, η)dω

y = η1 − yr(t) (1)

where η = (η1, . . . , ηn)T ∈ Rn, u ∈ R, and y ∈ R are the
states, input and output of the system, respectively; yr is
a given unmeasurable output trajectory and x1, . . . , xn
are also unmeasurable states; ω is an m-dimensional
standardWiener process defined on the complete prob-
ability space (�,�, P) with � being a sample space,
� being a filtration, and P being a probability mea-
sure; furthermore, the nonlinear term ηi : R+ × R ×
Rn → Rm, i = 1, . . . , n is continuous for t, and locally
Lipschitz in (u, η).

Here, the stochastic nonlinear system (1) satisfies the
following assumptions on the basis of which the output
feedback practical tracking control can be achieved.

Assumption 2.1: There exists positive integer p and
known positive constant c0 such that the following

inequality holds:

|φi(t, η, u)| ≤ c0(1 + |η1|p)(|η1| + · · · + |ηi|) + c0,

i = 1, . . . , n (2)

Therefore, we can conclude that the stochastic non-
linear system (1) is dominated by an output polynomial
function growth rate system.

Assumption 2.2: The reference output trajectory yr
of the stochastic nonlinear system (1) is continuously
differentiable and satisfies the following inequality:

max(|yr|, |ẏr|) ≤ c1 (3)

where c1 is a known positive constant.

According to the above description of the system, it
leads to the objective of this paper: for any constant δ >

0, all the states of the stochastic nonlinear system (1)
are well defined and bounded. In addition, there exists a
finite time T > 0 such that for any t > T, we can obtain

|y(t)| = |η1(t) − yr(t)| ≤ δ (4)

Remark 2.1: It should be noticed that the output feed-
back tracking control problem for nonlinear systems
with parametric uncertainties and unknown control
directions has been mainly studied in Refs. [9–16].
However, by the introduction of stochastic factors,
the output feedback tracking control problem for the
stochastic nonlinear system is first studied in this paper.
Simultaneously, by Assumption 2.1, it can be observed
that the nonlinear term of system (1) is dependent on
unmeasurable states. Moreover, from Assumption 2.2,
it can easily conclude that the reference trajectory yr has
only obtained its upper bound and the upper bound of
derivative, which means that it does not need to give
a specific description function for the reference trajec-
tory yr or give it more information. Due to the lack of
system states and tracking signal information as well
as the system instability caused by the introduction of
stochastic factors, this leads to a general tracking con-
trol method, such as an asymptotic tracking control
method which can no longer solve the output feed-
back control problem in this paper. For this challenging
problem, the paper will focus on the stochastic nonlin-
ear system under Assumptions 2.1 and 2.2, and then
construct an output feedback practical tracking con-
troller based on dynamic and static phase such that the
output of system (1) can be gradually converged to zero.

3. Practical tracking control

3.1. Time-varying observer design

Above all, according to the description of the stochastic
nonlinear system (1) and Assumptions 2.1 and 2.2, we
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can obtain

|φi(t, η, u)| ≤ c0(1 + |y + yr|p)(|η1| + · · · + |ηi|) + c0
≤ c(1 + |y|p)(|η1| + · · · + |ηi|) + c

i = 1, . . . , n (5)

where c is a known constant and c = c0 max(1 + 2p−1

cp1, 2
p−1).

For the sake of convenience of calculation and for-
mula derivation, the following simple states transfor-
mation is introduced:

z1 = η1 − yr
zi = ηi (i = 2, . . . , n) (6)

and then, we can obtain the updated stochastic nonlin-
ear system

dzi = zi+1dt + fi(t, u, z)dω

dzn = udt + fn(t, u, z)dω

y = z1 (7)

where

f1(t, u, z) = φ1(t, u, z1 + yr, z2, . . . , zn) − dyr
dω

fi(t, u, z) = φi(t, u, z1 + yr, z2, . . . , zn) (i = 2, . . . , n)
(8)

Due to unmeasurable states characteristics of system
(7), states observer of system (7) is established

˙̂zi = ẑi+1 + Kihi(z1 − ẑ1)(i = 1, . . . , n − 1)

˙̂zn = u + Knhn(z1 − ẑ1) (9)

where hi > 0(i = 1, . . . , n) is the coefficient of the Hur-
witz polynomial with sn + h1sn−1 + · · · + hn−1s + hn.
K = AB(t) is a high-order gain term which consists of
a constant A and a variable B(t) as follows:

Ḃ = −α1B2 + α2(1 + |y|p)2B
B(0) = 1 (10)

Define the system error states as ei = zi − ẑi(i = 1,
. . . , n), and then, by (1), (7) and (9), the error system
can be obtained

dei = ei+1dt − Kihie1dt + fi(t, u, z)dω

den = −Knhne1dt + fn(t, u, z)dω (11)

In order to facilitate the output feedback practical
tracking controller design, the transformation of esti-
mated states ẑi and error states ei is introduced

εi = ei
Kb+i−1 (i = 1, . . . , n)

τi = ẑi
Kb+i−1 (i = 1, . . . , n) (12)

where ε = (ε1, . . . , εn)T , τ = (τ1, . . . , τn)T ,
h = (h1, . . . , hn)T and 0 ≤ b ≤ 1

4p are known con-
stants. Furthermore, by (12), stochastic nonlinear sys-
tems (7) and (9) can be converted into

dε = KHεdt − K̇
K
Cbεdt + G(z,K)dω

τ̇ = KHbτ + Khε1 − K̇
K
Cbτ (13)

where

H =

⎛
⎜⎜⎜⎝

−h1 1 · · · 0
...

...
. . .

...
−hn−1 0 · · · 1
−hn 0 · · · 0

⎞
⎟⎟⎟⎠ ,

Hb =

⎛
⎜⎜⎜⎝

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

−h1 −h2 · · · −hn

⎞
⎟⎟⎟⎠

Cb = diag(b, b + 1, . . . , b + n − 1)

G(z,K) =
(

f1
Kb ,

f2
Kb+1 , . . . ,

fn
Kb+n−1

)T
(14)

3.2. Boundedness analysis of system states and
gain

Since the closed-loop stochastic nonlinear system
(13) satisfies the locally Lipschitz condition on (ε, τ),
according to Ref. [26], it is concluded that the closed-
loop system has a unique solution in interval [0, tT).
Moreover, if T is a maximum value of tf , then 0 < T ≤
∞.

Next, we discuss the bounds of systemgainB(t), state
ε, and τ . First, the appropriate parameters r1, r2, r3, r4
are chosen such that positive definite matrix P,Q and
matrix H,Hb,Cb satisfy the following relation:

HTP + PH ≤ −Inr1In ≤ CbP + PCb ≤ r2In

HT
b Q + QHT

b ≤ −2Inr3In ≤ CbQ + QCb ≤ r4In
(15)

Define the following Lyapunov function:

V(ε, τ ) = εTPε + τTQτ (16)

and then, we can obtain the trajectory of (16) alongwith
the Ito differentiation for system (13) as follows:

LV = −K|ε|2 + 2εTPG − K̇
K

εT(CbP + PCb)ε

− 2K|τ |2 + 2KτTε1h
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− K̇
K

τT(CbQ + QCb)τ + Tr(GT(P + Q)G)

− K̇
K

εT(CbP + PCb)ε ≤ r2α1B|ε|2

− r1α2(1 + |y|p)2|ε|2

− K̇
K

τT(CbQ + QCb)τ ≤ r4α1B|τ |2

− r3α2(1 + |y|p)2|τ |2 (17)

where

|G| = (|G1|2 + · · · + |Gn|2) 1
2

=
((

f1
Kb

)2
+ · · · +

(
fn

Kb+n−1

)2
) 1

2

(18)

and

|G1| ≤ c(1 + |y|p)((|ε| + |τ |) + c1) + c + c1

|Gi| ≤ c(1 + |y|p)
(√

i(|ε| + |τ |) + c1
)

+ c + c1,

i = 1, . . . , n (19)

By splitting and enlarging items in (17), we can obtain

2εTPG ≤ 2||P|||ε| (c(1 + |y|p)
× (√

n(|ε| + |τ |) + c1
)+ c + c1

)
≤ c||P||(1 + c1)(1 + |y|p)2(|ε|2 + |τ |2)

+ ||P||(2nc + c + c1)|ε|2
+ ||P||(cc1 + c + c1)

× 2KτTε1h ≤ K(|h|2|ε|2 + |τ |2) (20)

Furthermore, by (17)–(20), the Ito differential
equation for system (13) can be organized as

LV ≤ −K|ε|2 + c||P||(1 + c1)(1 + |y|p)2(|ε|2 + |τ |2)
+ ||P||(2nc + c + c1)|ε|2 + ||P||(cc1 + c + c1)

+ r2α1B|ε|2 − r1α2(1 + |y|p)2|ε|2

− 2K|τ |2 + 2KτTε1h

+ r4α1B|τ |2 − r3α2(1 + |y|p)2|τ |2

+ Tr(GT(P + Q)G)

≤ −K|ε|2 + c||P||(1 + c1)(1 + |y|p)2(|ε|2 + |τ |2)
+ ||P||(2nc + c + c1)|ε|2 + ||P||(cc1 + c + c1)

+ r2α1B|ε|2

− r1α2(1 + |y|p)2|ε|2 − 2K|τ |2

+ K(|h|2|ε|2 + |τ |2) + r4α1B|τ |2

− r3α2(1 + |y|p)2|τ |2 + (||P|| + ||G||)
× (

c(1 + |y|p) (√n(|ε| + |τ |) + c1
)+ c + c1

)2
(21)

where the last item in (21) can be magnified as

(||P|| + ||G||) (c(1 + |y|p)
× (√

n(|ε| + |τ |) + c1
)+ c + c1

)2
≤ 2(||P|| + ||G||)

(
c2(1 + |y|p)2

× (√
n(|ε| + |τ |) + c1

)2 + (c + c1)2
)

≤ 2(||P|| + ||G||)(2c2(1 + |y|p)2

× (n(|ε| + |τ |)2 + c21) + (c + c1)2)

≤ 2(||P|| + ||G||)(2c2(1 + |y|p)2

×(2n(|ε|2 + |τ |2) + c21) + (c + c1)2)

= (||P|| + ||G||) · (8nc2(1 + |y|p)2(|ε|2 + |τ |2)
+4c2(1 + |y|p)2c21 + 2(c + c1)2) (22)

After simplification, we can obtain

LV ≤ −(K − K|h|2 − ||P||(2nc + c + c1) − r2α1B)|ε|2

− (1 + |y|p)2(r1α2 − c||P||(1 + c1)

− 8nc2(||P|| + ||Q||))|ε|2

− (K − r4α1B)|τ |2

− (1 + |y|p)2(r3α2 − c||P||(1 + c1)

− 8nc2(||P|| + ||Q||))|τ |2 + ||P||(cc1 + c + c1)

+ (4c2(1 + |y|p)2c21 + 2(c + c1)2)(||P|| + ||Q||)
(23)

By observation of (23) and offset principle, parameter
α2 can be chosen as

α2 ≥ c||P||(1 + c1) − 8nc2(||P|| + ||Q||)
r1

α2 ≥ c||P||(1 + c1) − 8nc2(||P|| + ||Q||)
r3

α2 ≥ α1 > 0 (24)

Since B ≥ 1, parameterA needs to satisfy the follow-
ing relationship:

A ≥ ||P||(2nc + c + c1) + r2α1

1 − |h|2
A ≥ r4α1

A ≥ 1 (25)
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According to the above equation for the choice of
parameters, (23) can be translated into

LV ≤ −K(|ε|2 + |τ |2) + ||P||(cc1 + c + c1)

+ (4c2(1 + |y|p)2c21 + 2(c + c1)2)(||P|| + ||Q||)

≤ − A
max(λmax(P) + λmax(Q))

· V + ||P||(cc1 + c + c1)

+ (4c2(1 + |y|p)2c21 + 2(c + c1)2)(||P|| + ||Q||)
(26)

To avoid the lengthy and cumbersome of (26),
parameters E1andE2 are defined as follows:

E1 = A
max(λmax(P) + λmax(Q))

E2 = ||P||(cc1 + c + c1)

+ (4c2(1 + |y|p)2c21 + 2(c + c1)2)(||P|| + ||Q||)
(27)

Since the closed-loop system has a unique solution in
interval [0,∞), by (26) and (27), we can obtain

V(ε(t), τ(t)) ≤ V(ε(0), τ(0))e−
E1
A t + E2

E1
, t ∈ [0,T)

(28)
such that states ε(t) and τ(t) of the stochastic nonlinear
system (13) are well defined and bounded on [0,T).

Correspondingly, by y = z1 = (ε1 + τ1)Kb and |y| ≤
(AB)b(|ε1| + |τ1|), we can obtain |y| ≤ (AB)bE3. Accord-
ing to the boundedness of ε and τ on [0,T), com-
bined with the above-obtained |y| ≤ (AB)bE3 and b ∈(
0, 1

4p

)
, we can obtain

Ḃ = −α1B2 + α2(1 + |y|p)2B
≤ −α1B2 + α2(1 + ((AB)bE3)

p
)2B

≤ −α1B2 + 2α2(1 + ((AB)bE3)
2p

)B

≤ −α1B2 + 2α2B
(
1 + (AB)

1
2E2p3

)
(29)

which implies that

B(t) ≤
4α2

2

(
1 + E2p3

√
A
)2

α2
1

(30)

Through the above analysis, we can prove that the
system gain B(t) is well defined and bounded on [0,T)

with T = ∞.

3.3. Output feedback tracking controller design

According to the boundedness analysis of Section 3.2,
this section first gives the theorem of the output feed-
back practical tracking controller.

Theorem 3.1: Consider a class of stochastic nonlinear
system (1) whose output is y = x1 − yr under Assump-
tions 1 and 2. By choosing appropriate parameters
ai, hi,A,α1α2, the following output feedback practical
tracking controller can be designed:

u = −(Kna1ẑ1 + Kn−1a2ẑ2 + · · · + Kanẑn) (31)

where B is defined by (10) and ai > 0 is the coefficient
of Hurwitz polynomial sn + h1sn−1 + · · · + hn−1s + hn
with hi = an−i+1. Then, for any δ > 0, there exists a
finite time T such that y = |x1 − yr| ≤ δ and all the
states of stochastic nonlinear systems (1) and (13) are
bounded on [0,T) under the action of the output feed-
back practical tracking controller (31).

The proof process of Theorem 3.1 is given as follows.

Proof: There exists a time T = T1 such that

V(ε(0), τ(0))e−
E1
A t ≤ E2

E1
t ≥ T (32)

and hence,

V(ε(t), τ(t)) ≤ 2E2
E1

, t ≥ T = T1 (33)

It should be noticed that E1 contains parameter A.
According to (26), it can be concluded that

λmin(P)|ε|2 + λmin(Q)|τ |2 ≤ V(ε(t), τ(t)) (34)

and then,

ε21(t) + τ 21 (t) ≤ E4
A

(35)

By using |y| ≤ (AB)bE3 and (33)–(35), we can obtain

|y| ≤ AbBb(|ε1(t)| + |τ1(t)|)

≤
√
2(ε21(t) + τ 21 (t)) ≤

√
2E4
A

(36)

Simultaneously, for any t ≥ T, there exists

B(t) ≤
4α2

2

(
1 + ( 2E4

A
)p√A

)2
α2
1

(37)

and combined with (36), we can further obtain

y2(t) = (AbBb)2(|ε1(t)| + |τ1(t)|)2

≤ 2A2bB2b(ε21(t) + τ 21 (t))

≤ 2 · 16
bα4b

2 E4
α4b
1 A1−2b

·
(
1 + 2pEp4

Ap− 1
2

)2b

(38)

Through the above proof and analysis, the output |y(t)|
of stochastic nonlinear systems (1) and (13) can be
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gradually converged to zero by choosing sufficiently
large A with t ≥ T.

The proof of Theorem 3.1 is over such that the
output feedback practical tracking controller design
for the stochastic nonlinear systems (1) and (13) is
achieved. �

4. Simulation example

This section considers a class of stochastic nonlinear
systems under Assumptions 2.1 and 2 as described
below to verify the output feedback tracking controller
designed in Section 3:

dη1 = η2dt + dω

dη2 = udt + η2 ln(1 + 0.8η21)dω

y = η1 − yr (39)

where the corresponding parameter values of the sys-
tem are set to

c0 = 0.78, c1 = 0.3, p = 2 (40)

andω is them-dimensional standard Brownianmotion
defined on the probability space (�,�, P), where � is

the sample space, � is the algebra, and P is the proba-
bility measure.

In the numerical simulation, the tracking trajectory
is specifically set to

yr(t) = 0.3 sin t (41)

and the nonlinear terms φ1 and φ2 of the stochastic
nonlinear system (39) are defined as

φ1 = 1

φ2 = η2 ln(1 + 0.8η21) (42)

Set

z1 = η1 − yr
z2 = η2 (43)

and ẑ1 and ẑ2 are the estimated values of z1 and z2,
respectively. Furthermore, the parameters of the output
feedback tracking controller are set as follows according

Figure 1. The trajectory of system output y.

Figure 2. The trajectory of system states η1 and η2.
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Figure 3. The trajectory of system observer states ẑ1 and ẑ2.

to Theorem 3.1:

h = (0.5, 1)T , a = (1, 0.5)T ,

α1 = 0.2, α2 = 186,

A = 785, b = 1
16

(44)

Then, start the system simulation and select the
initial value

η1(0) = 0.2, η2(0) = −1

ẑ1(0) = 0, ẑ2(0) = 0 (45)

Figures 1–3 show the response characteristics of the
closed-loop system (39). By observing the simulation
graph, the practical states and the estimated states of the
two-dimensional system (39) are bounded and gradu-
ally converged. The results verify the effectiveness of the
designed output feedback practical tracking controller.

5. Conclusion and future prospects

This paper mainly focuses on the output feedback
tracking controller design for a class of stochastic non-
linear systems with polynomial function growth condi-
tions.Mostly, there are some studies on the output feed-
back tracking control problem for nonlinear systems
with polynomial function growth conditions in existing
achievements.Moreover, we extend it to stochastic non-
linear systems and construct output feedback practical
tracking controller based on dynamic and static phase
combined by the Ito stochastic differential theory and
selection of appropriate design parameters, ensuring
that the system tracking error can be made arbitrarily
small after some large enough time. Finally, a simula-
tion example is provided to illustrate the efficiency of
the theoretical results.

This paper has made some valuable research results
and also produced some further in-depth research of
the problem.

In this paper, the control coefficient of the stochas-
tic nonlinear systems which we study is defaulted to 1,
and then, we consider whether it can generalize them
to stochastic nonlinear systems with uncertain control
coefficients. Consider the following stochastic nonlin-
ear systems:

dηi = ηi+1dt + φi(t, u, η)dω (i = 1, . . . , n − 1)

dηn = kudt + φn(t, u, η) dω

y = η1 − yr(t) (46)

where k is the control coefficient and satisfies

k1 ≤ |k| ≤ k2 (47)

Here, we can observe that the stochastic nonlinear
system studied in this paper is a special case (k = 1)
of the system (46). How to design the output feedback
practical tracking controller for this type of extended
system (46)? It is worth studying on the problem.
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