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ABSTRACT

The modelling problem of nonlinear control system is studied, and a higher generality nonlinear
U model is established. Based on the nonlinear U model, RBF neural network and PD parallel
control algorithm are proposed. The difference between the control input value and the output
value of the neural network is taken as the learning target by using the online learning ability
of the neural network. The gradient descent method is used to adjust the PD output value, and
ultimately track the ideal output. The Newton iterative algorithm is used to complete the trans-
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formation of the nonlinear model, and the nonlinear characteristic of the plant is reduced without
loss of modelling precision, consequently, the control performance of the system is improved.
The simulation results show that RBF neural network and PD parallel control system can con-
trol the nonlinear system. Moreover, the control system with Newton iteration can improve the
control effect and anti-interference performance of the system.

1. Introduction

In daily production activities, nonlinear characteristics
are ubiquitous, especially with the rapid development
of large-scale mechanical informationization, intelli-
gence, and integration, and the study of nonlinear sys-
tem characteristics has become particularly important.
The nonlinear system first studies the plant modelling
problem, and due to the highly complex nonlinearity of
controlled plant, it is difficult to describe it with accu-
rate mathematical model, which brings great challenges
to the modelling of nonlinear system. Nonlinear mod-
elling is the basis of studying nonlinear characteristics.
The quality of the model directly determines the control
effect of the system.

After decades of research on nonlinear modelling,
NARMAX model (non-linear autoregressive mov-
ing average model), polynomial NARMAX model,
Hammerstein model, Wiener model, nonlinear FIR
model, Lure model, finite Volterra model, bilinear
input-output model, NARX model and output radia-
tion model were proposed [1,2]. Among them, Wiener
model and Hammerstein model are a kind of nonlin-
ear model with relatively simple structure, which has a
certain position in the theoretical research and prac-
tical application of nonlinear systems [3]. Compared
with linearization of nonlinear systems, these nonlin-
ear models can more accurately describe the nonlin-
ear characteristics of nonlinear systems and meet the

requirements of nonlinear controller design. However,
these nonlinear models also have some shortcomings:
the complex model structure expression and a great
many parameters which causes certain difficulties in
controller design; for the same nonlinear system, the
description capabilities of each model are different, that
is, each model has poor universality and can only be
used for a special class of nonlinear controlled objects,
which is not easy to be widely applied. For this reason,
proposing a simple and universal nonlinear model is a
problem worth studying. In this context, the U model
came into being. It is a polynomial with time-varying
parameters and can represent a large class of smooth
nonlinear systems. Moreover, during the transforma-
tion of the nonlinear plant into the expression of the
U model, no linearization processing is performed, and
the accuracy of the model can be guaranteed, which
is the key to the wide application of the nonlinear U
model. At the same time, considering the polynomial
expression of the model, Newton iterative algorithm is
adopted to transform the model. The transformed non-
linear objects can easily complete the system design
with the linear system design method, which pro-
vides a good way to solve the nonlinear modelling
problem [4].

In the past decade, great progress has been made in
the design of nonlinear control systems based on the U
model. A pole placement controller is proposed for a
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class of known dynamic nonlinear objects based on the
U model [5]. A forward adaptive tracking control based
on U model is proposed [6]. Under the framework of
U model, adaptive tracking of unknown multiple-input
and multi-output systems is adopted [2]. An adaptive
inverse control structure based on the standard leak-
age minimum mean square error (NLLMS) algorithm
is proposed [7]. An internal model control based on the
U model is proposed to solve the control of a class of
known dynamic nonlinear objects [8]. The minimum
mean variance adaptive inverse method based on the
U model is used to control complex nonlinear indus-
trial process systems [9]. The IMC control design based
on the minimum mean square error of U model is pro-
posed [10]. A generalized predictive control algorithm
based on U model is proposed [11]. The least-square
method is used to identify the U model coefficients of
stochastic nonlinear objects, and the radial basis neu-
ral network is used to construct the controller [12].
For a class of unknown nonlinear delay objects, an
adaptive control algorithm is proposed, using neural
network to identify U model of time-varying parame-
ters [13]. In [14], nonlinear U-model polynomial plant
controller, which was designed by the method of lin-
ear polynomial control system, was selected as the
research plant, and the U-block model framework was
founded, which allowed the method of linear state space
to design the nonlinear control system and offered
a new direction for the design of nonlinear control
system.

RBF neural network has a good generalization abil-
ity and simple network structure, which avoids com-
plex mathematical calculation. The researches on the
function approximation ability of RBF neural network
show that RBF neural network can approximate any
nonlinear function with any precision. Therefore, it
has attracted much attention in the research of non-
linear control, and some research results have been
obtained [15]. A variable learning operator RBF neu-
ral network algorithm based on nonlinear U model is
proposed [16]. Based on a pole placement PID con-
troller, a compound control method for tracking con-
trol of nonlinear dynamic system based on RBF and
PD is proposed [17]. An adaptive control algorithm
based on online identification of MIMO bilinear object
model by RBF neural network is proposed [18]. For a
class of uncertain nonlinear systems, an adaptive con-
troller design scheme based on RBF network is pro-
posed, so that the output of the nonlinear system is
the expected output in case of uncertainty or unknown
interference [19]. For the tracking control problem of
a class of uncertain strictly feedback nonlinear sys-
tems, a new robust adaptive control design method
is proposed by using RBF neural network to approx-
imate all unknown parts of the system [20]. Aiming
at the fact that the industrial robot control system is
inevitably affected by random noise in practical work,
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and a design of RBF neural network and PD com-
pound controller based on Kalman filter is proposed
[21]. In order to eliminate the adverse effect of exter-
nal interference and model uncertainty on the control
system, a new intelligent control algorithm based on
radial basis function neural network is designed for the
control of MEMS gyroscopes [22]. According to the
characteristics of nonlinear U model, this paper pro-
poses the parallel control system based on RBF neural
network and PID, and analyses the importance of New-
ton iteration algorithm in the control system. After the
addition of Newton iteration algorithm, the output of
the nonlinear control system can track the input signal
well after a small delay, and the system error is small,
which obviously improves the control effect of the non-
linear control system and can track the ideal output
better.

The rest organization of this paper is organized
as follows: Section 1 provides a basic discussion of
the nonlinear U model. Section 2 analyses the work-
ing principle of RBF neural network. Section 3 pro-
poses a parallel control system of RBF neural net-
work and PD based on U model. Section 4 presents
a parallel control system of RBF neural network and
PD based on model transformation. In Section 5,
two nonlinear plants are selected and the correspond-
ing simulation results are analysed. Section 6 is the
conclusion.

2. Nonlinear U-model

Nonlinear modelling is crucial in researching nonlin-
ear control systems. All control algorithm design is
based on the model of the controlled plant. The quality
of the nonlinear model is directly related to the suc-
cess or failure of the control algorithm design. In 2002
[23], a nonlinear U model was proposed to express
the controlled plant. The U model used polynomial
functions with time-varying parameters to represent a
large class of smooth nonlinear systems, and its expres-
sion was derived on the basis of NARMAX model
expression.

Assuming a single-input single-output (SISO) non-
linear controlled plant, the NARMAX model can be
expressed as

y) =ft—1),...,.yt—n)ult —1),...,u(t —n),
e(t),...,e(t —n)) (1)

In (1),y(t) and u(t) represent the output signal and
input signal of the nonlinear controlled plant, respec-
tively, e(t) represents unknown and unpredictable
quantities, such as modelling error, external interfer-
ence, etc., f(-) represents a function of the nonlinear
controlled plant model.
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Extend (1), and get

M n m
yo = | [T+ 2 ye-n
j=0 | I=1 j=1

n

< |11

m
b+ Yy ut—1)
I=1 j=2

Wit —1) +e(d) (2)

In (2), both a; and by are constants, u(t — j) and y(t — j)
are the input and output signals of the past time, respec-
tively. Simplified (2) can be obtained

In Equation (2), both A and B are constants, U and
Y are input

y(t) =Y Ot — 1) +e(t) (3)

j=0

In (3),

aj(t) = a+y ye-nl|-
=1 j=1
X 1_[ bH—Zul(t—l)
I=1 j=2

=[la+yt—-1D+yt—-2)+ -+ y({t—m)]
[+ =D+ =)+ + = m)] -
[an+y"(t =D +y"(t —2) + -+ )"t — m)]
(b1 +ut —2) +ut—3) + - +u(t—m)]

by + u?(t —2) + 12t —=3) + - + Pt —m)] - -
by +u"(t—=2)+u"(t=3)+ -+ u"(t —m)]
i=0,1,2,...,n

=

where the parameter ;(t) represents the function of
input u(t —2), ..., u(t — n) and output y(t — 1), ...,
y(t — n) at the past moment, and m represents the order
of the system model, further converting Equation (3) to:

yO=U®) =Y oiOu(t—1)+et) (4

j=0

Equation (4) is the nonlinear U model expression.

An example is given to illustrate the universality
and simplicity of the nonlinear U model. It is assumed
that the mathematical expression of the nonlinear con-
trolled object is

y(t) = 0.1y(t — D)y(t — 2) + 0.8u(t — 2)u(t — 1)
— 0.3y(t — Du?(t — 1)

According to (4), it can be obtained that:

y(t) = ap(H) + a1 (Hu(t — 1) + ar(Hu*(t — 1)

where

ap(t) = 0.1y(t — Dy(t — 2),
a1 (t) = 0.8u(t — 2),aa(t) = 0.3y(t — 1).

In summary, the U model can use a mapping to trans-
form the smooth nonlinear discrete time input-output
dynamic system model into a model that can be
designed by using linear control theory. At the same
time, there is no linearization in the transformation
process, which ensures the high accuracy of the model.
This is the key to the widespread application of the
nonlinear U model.

Compared with other nonlinear model expressions,
U model expressions have the following advantages:

Compared with the NARMAX model and the Ham-
merstein model, the expression of the U model is more
practical, simpler and concise.

The U model establishes a simple and universal map-
ping between almost all smooth nonlinear discrete time
input-output dynamic systems, and the mapping is
reversible.

By using the U-model representation to describe
the mapping relationship between the sampled data
of most input-output nonlinear dynamic systems, the
discrete-time model of the nonlinear system can be
easily obtained.

The U model expression adopts a polynomial struc-
ture, through which the design method of linear control
can be applied to the nonlinear control system, thus
greatly reducing the difficulty of controller design.

3. RBF neural network

The RBF neural network is a three-layer feedforward
neural network with a hidden layer. It demonstrates
functions such as local response local response, mutual
partial coverage, mutual indirect relationship and so on.
Therefore, the RBF neural network has good function
approximation, optimal mapping ability and fast learn-
ing convergence. In this paper, a single-input-single-
output RBF neural network is used. The neural network
structure is shown in Figure 1.

rin(t) rout(t)

Input layer

Hidden layer Output layer

Figure 1. SISO radial basis neural network structure.



The RBF neural network consists of three layers: the
input layer, the hidden layer, and the output layer. The
first layer is the input layer, which is only responsible
for transferring data to the next layer; the second layer is
the hidden layer, which is responsible for nonlinear pro-
cessing of the data of the previous layer, and transmits
the processed data to the next layer. Generally, there are
more neurons in this layer than in the previous layer;
the third layer is the output layer, which is responsible
for linear processing of the data of the previous layer,
that is, the data of the previous layer is weighted to
improve the learning rate of the network.

In Figure 1, m is the number of nodes in the hid-
den layer, rin(t) is the input value, rout(t) is the output
value, H = [hy, hy, . .. ,hj, ... hy]T is the radial basis
vector of the network, hj is the output of Gaussian func-
tion, and W = [wy (), w(t)2, ..., w;(®),. .. s wm (D] is
the variable of the network weight vector.

The following points should be noted when design-
ing the RBF neural network:

The number of neurons in the hidden layer, that is,
the value of m;

The setting of the weight matrix between the hidden
layer and the output layer, that is, the matrix W;

The setting of the weight matrix between the input
layer and the hidden layer, the values in this matrix are
all 1;

The selection of radial basis function of neuron in
hidden layer. Gaussian function is usually used.

The selection of radial basis function plays an impor-
tant role in the design of RBF neural network. Gener-
ally, there are several options as follows:

(1) Gaussian function:

52
y(x) = exp ( - P)

(2) Inversion sigmoid function

ye = 1 + exp (;‘—22)

(3) Quasi-multiple quadratic function

1
y(x) = @ 1o
where o represents the extended constant or width
of the basis function. These frequently used radial
basis functions are monotonically decreasing as the
Euclidean distance between the variable x and the 0
point increases. When the variable x is equal to 0, the
value of the function is the maximum. From the radial
basis function, it can be seen that the radial basis neural
network has good local characteristics. Gaussian func-
tions are widely used in radial basis neural networks
because of their simple expression, good symmetry and
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the existence of arbitrary derivatives. Therefore, Gaus-
sian function is adopted as the radial basis function of
neurons in the hidden layer in this paper.

The algorithm of RBF neural network is as follows:

L llx — GII?
j=ep| -5 (5)

In(S),j =12,.. .,m,Cj = [le,Cjz,.. <> Cji> - - .,ij]TiS
the vector of the centre point of Gaussian function, and
b is the basis width parameter of Gaussian function. The
output of the neural network is

rout(t) = wi(Hhy +wa(Hha + - - - + wi(Ohy  (6)

The performance index function of the network is
1
J= E(routm(t) — rout(t))? (7)

In (7), routm(t) is the target output value. According
to gradient descent method, the partial derivative with
respect to wj(t) can be obtained as follows:

Awi(t) = —n i = n(routm(t) — rout(t))h;

h]
aw;()
(8)

In (8), n is the learning rate of the network and is a nor-
mal number. The iterative algorithm of output weight is
as follows:

Wj(l‘) = Wj(t -1+ AWj(l‘)
+ O!(Wj(t -1 - Wj(t —2)) 9)

In (9), « is the inertia coeflicient and is a normal num-

ber.

4. Parallel control system of RBF neural
network and PD based on U-model

The system adopts design method of RBF neural net-
work PD parallel control, in which RBF is feedforward
controller, and its network control system structure dia-
gram is shown in Figure 1. The system uses PD to
complete the feedback control to ensure the stability
of the system and suppress the disturbance. The RBF
neural network controller is used to realize the feedfor-
ward control to ensure the control response speed of the
system, reduce the overshoot and enhance the control
precision. The structure of the control system is shown
in Figure 2.

The controller takes the given signal r(t) of the sys-
tem as the input value of RBF neural network, and
adjusts the weight w;(t) by the difference between the
actual output value u;(¢) of the neural network and the
control quantity U(t) of the system. When the system
starts running, u,(t) = 0, U(t) = uy(t), PD controller
plays a role. PD controller can optimize the learning
process of neural network according to the dynamic
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RBF neural
network ws(t)

.
(1) e(t) L Nonlinear | y(7)
| PD — - ——» U model »
ui(7) U® | plant
Figure 2. Composite control structure diagram of RBF neural
network and PID.

characteristics of the system and improve the stabil-
ity and anti-interference of the controller. At the end
of each control cycle, the output u,(¢) of RBF neural
network is compared with the system control quantity
U(t), and the weight is modified to enter the learning
phase of neural network. The purpose of RBF neural
network learning is to minimize the difference between
the control quantity of the system and the output quan-
tity of the neural network, that is, the control quantity
of the system is mainly generated by the neural net-
work controller, and finally the actual output y(¢) of
the controlled plant tracks the ideal output (). PD
algorithm is adopted here to make the learning of RBF
only depend on the current measured value and varia-
tion of the error.
The output of RBF neural network is

w(t) = with + wa(Ohy + -+ - + W (D (10)
The output of PD is
u1(f) = kpe(t) + ka(e(t) — e(t — 1)) (11)
The total control input is
U) = u(t) + uz () (12)

The performance index function of the network is

1 1
J=5WU® - w (D) = Eulz (13)

According to gradient descent method, the partial
derivative with respect to wj(t) can be obtained as fol-
lows:

e,
dw;(t)

=n(U®) — uz()hj = nu1(Hh; (14)

Awj(t) = —n

In (14), n is the learning rate of the network and is a nor-
mal number. The iterative algorithm of output weight is
as follows:
Wj(t) = Wj(t -1+ AWj(t)
—|—O[(Wj(t— 1) —Wj(t—Z)) (15)

In (15), « is the inertia coefficient and is a normal
number.

When PD is used for individual control, the value
of PD gain largely determines the control index of the
system. When the RBF control algorithm is added, the
degree to which the control effect of the system depends
on PD gain is significantly reduced.

5. Stability analysis

Lyapunov”s second law is a general method for the sta-
bility of deterministic systems, nonlinear systems and
time-varying systems. The stability can be discrimi-
nated without having to solve the differential equations
(difference equations) of the system. The scalar func-
tion of any definite symbol (positive or negative) is

V = V[x(®)] (16)

If V(0) = 0,x(k) is the solution of the following state
equation

x(t+1) = flx(t)] = %' ()Px(t) = Ax(2) (17)

Then, V is the Lyapunov function, and the difference of
V is defined as

AV[x(t)] = V[x(t + 1)] — V[x(®)] (18)

Make
t
VIx(t)] = % ; e (i) (19)

As can be seen from the second law of Lyapunov, it
can be found that the system is stable as long as it is
proved that AV[x(t)] < 0.

Combined with the given Equation (19), according
to the learning process, the V[x(#)] changes are

AVIx()] = VIx(t + D] = VIx(®)]

t+1 t
(Z SHOEDY ez(i>>
i=1 i=1

0| =

[2(i4+ 1) — €2(i)]

I
| =

-~ |
o

{le(i) + Ae(i)]? - €2(i)}

SRR

~ |
<)

[2e(i) - Ae(i) + Ae*(i)]  (20)

N | =
Il
=)

i
Due to the learning process, V[x(t)] changes to

de(t)
ow(t)

= e(t) + Ae(t) 21)

T
e(t+1) =e(t) + < ) X Aw(t)



By Equation (7):

1 2
3 (routm(t) — rout(t))

N~
Il

=220 (22)

In order to ensure that the weight coefficient is modified
along the negative gradient direction of ] corresponding
to w(t), according to Equation (8), it can be obtained

3y 9] de(t)
S hi= o hj
dw;(t) de(t) dw(d)

Awj(t) = —n (23)

From Equations (21) and (22) and let A = g‘f}((?), it can
be obtained

de(t) \ T
Ae(t) = <m> X Aw(t)
(ae(t) )T ( 3] de(t) )
= X - ——2h
Aw(t) de(t) aw(t)
= —T]h]AAT . e(t) (24)

LetK = nhj, it can be obtained
Ae(t) = - KAAT - e(t) (25)

Substituting (25) into (20), it can be obtained

t

AV[x(t)] = % Z [2e(i) - Ae(i) + Ae*(i)]

i=0

1 ¢ T T
=—3)_ @Al -e)

i=0
x 2K — KPAATY(AT -e(t))  (26)

According to Lyapunov stability theory: When
AV[x(t)] <0, the whole system is stable, and there
should be

2K — K2AAT > 0 (27)

Therefore, the value field of K is 0 < K < 2(AAT)~1,
and then AV[x(t)] < 0, the following are available

1 1
Eez(t +1) < Eez(t),lim e(t) =0,t > 00 (28)

That is, as k increases, e(k) tends to zero, and the
learning algorithm converges.

Conclusion: taking the learning weight according
to Equation (27), the whole system is stable and the
learning algorithm converges.

The learning step determines the amount of modifi-
cation of each cycle weight. If the value is too large, the
system will oscillate and will not converge. If the value
is too small, the convergence time will be extended
accordingly. Therefore, we need to select the appropri-
ate learning step according to the actual situation of the
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network. Lyapunov stability principle, according to the
value range, the learning step of the neural network PID
should satisfy the relationship

1
0<n<— (29)
€
where
1 de(t
e(?) (30)

" 24/e(t) ow(t)

The selection of the learning rate in the simulation
of Section 7 is selected based on the formula (29) and
the formula (30).

6. Parallel control system of RBFNN and PD
based on model transformation

According to the expression of the nonlinear U model
in (4), the coefficients of the nonlinear U-model are
time-varying, and the time-varying velocity of the coef-
ficients of different nonlinear systems cannot be esti-
mated. The RBF neural network algorithm needs to
continuously learn according to the nonlinear object
model to complete the system control. Therefore, the
tracking speed of the nonlinear system based on the
U model has certain limitations, which in turn causes
the system to have certain tracking error. In order to
improve the response speed and control precision of
the nonlinear system, the Newton iterative algorithm
is used to transform the nonlinear U model, which
reduces the time-varying speed of the nonlinear model
and improves the control precision of the system.

The Newton-Raphson iterative algorithm is used to
solve the polynomial, which provides a transformation
method for the expression of nonlinear objects in the
U model [24]. In order to obtain the output of the non-
linear model controller by applying the linear control
design method, the (4) is further converted into the
following form:

y() =U(®) (31)

M .
where U(t) = ) aj(t)/ (t — 1) + e(t), U(t) is the out-
j=0
put of the controller. In the model transformation

part, As long as one root of the nonlinear equation is
obtained, the output of the controller can be obtained. It
should be noted that the transformation of the U model
does not lose any characteristics of the original non-
linear model, and improves the design accuracy and
efficiency of the nonlinear control system. The output
of the Newton iteration formula is u(t — 1), and the
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e(t)

. . Umodel
iteration
plant

(1)

u(t-1)

Figure 3. Structure diagram of the improved control system.

Newton iteration formula can be described as
U1t — 1) = u(t — 1)

M i
g aj(Hu(t — 1) — U(t)
]:

d [fj o ()l (t — 1)} Jdu(t —1)
j=0 W(t—1)=u, (1—1)
(32)

In (32), k is the number of iterations, that is, k + 1
iteration is obtained from k iteration, and k > 0.

According to the nonlinear plant expression, the
Newton iteration formula and the U model are inverse
functions of each other. When the iterative formula
is completely inverse with the U model, the system
model transformation is matched, which is equivalent
to offsetting the nonlinear part. The system output can
completely track the input, and the effect of the con-
trol system is better. When the iterative algorithm is not
completely inverse with the U model or the calculation
order of the iterative algorithm is limited, the system
model transformation has deviation, and the nonlinear
system needs to be designed to complete the control
requirements. However, in the real nonlinear system,
the U model cannot completely describe the nonlin-
ear object, and it is difficult to achieve a state in which
the U model and the iterative algorithm are perfectly
matched. Therefore, the Newton iterative algorithm is
used to improve the system. The improved nonlinear
control system is shown in Figure 3.

7. Simulation

The effectiveness and control effect of the designed con-
troller were verified by continuous stirred tank reactor
and laboratory liquid level control system.

Plant 1: This example is to verify the proposed con-
trol system by using the continuous stirred tank reactor
as the nonlinear plant. The general model of the sys-
tem is y = —(1 + 2a)y + au — uy — ay*. In the above
equation, y represents the output of the controlled plant,
as a dimensionless of component concentration. u rep-
resents the input of the controlled plant, as a dimen-
sionless of flow rate. The above formula is discretized

and converted into the expression of the U model:
Ut) = ag(t) + a1 (Hu(t — 1) + ay (O (t — 1)
+az(Hu’(t — 1)
where

ao(t) = 0.8606y(t — 1) — 0.0401y*(t — 1)
4 0.0017y>(t — 1) — 0.000125y*(t — 1)

a1(t) = 0.0464 — 0.045y(t — 1) + 0.0034y*(t — 1)
— 0.00025y°(t — 1)

ay(t) = —0.0012 + 0.0013y(t — 1)
— 0.0001458y*(t — 1)
a3 (t) = 0.00002083 — 0.00002083y(t — 1)

The structure of RBF neural network adopts 1-7-1,
where in the input layer is a 1-layer, the hidden layer
is a 7-layer, the output layer is a 1-layer. Control
system without Newton iteration: learning rate n =
0.2, inertia coeflicient o = 0.01, initial value of C is
[-3-2-10123], initial value of b is 7, initial value
of weight is 0, initial values of k, and k; are 0.4 and
0.01 respectively. Control system with Newton itera-
tion: learning rate n = 0.3, inertia coefficient @ = 0.01,
initial value of Cis [ -3 —2 —1 0 1 2 3], initial value of b
is 7, initial value of weight is 0, initial values of k, and
kg are 0.1 and 0.02 respectively. Triangular wave, sine
wave and square wave were selected for the input signal
in simulation experiment, and the simulation diagram
of system output and error signal was shown in Fig-
ures 4-9. Figures 4, 6 and 8 are system output response
graphs, while Figures 5, 7 and 9 are system error graphs.

As it can be seen from the output response graph of
the system, the control system without Newton itera-
tive algorithm cannot track the input signal well, and

ideal output

without Newton iteration
Newton iteration

0.6

output

0 20 40 60 80 100 120 140 160 180 200
time(ms)

Figure 4. System output response graph when triangular wave
input.
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Figure 5. System error graph when triangular wave input.
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Figure 6. System output response graph when sine wave
input.

0.3
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0.2} ™

error
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Figure 7. System error graph when sine wave input.

the system error is relatively large. After the addition
of Newton iteration algorithm, the output of the non-
linear control system can track the input signal well
after a small delay, and the system error is small, which
obviously improves the control effect of the nonlinear
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0.8 A ideal output
A Newton iteration
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Figure 8. System output response graph when square wave
input.
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Newton iteration
without Newton iteration

error
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Figure 9. System error graph when square wave input.

control system and can track the ideal output better.
As can be seen from Figure 8, when the input signal is
a square wave signal and the jump occurs, the output
of the nonlinear control system with Newton itera-
tion will track the input signal after a short period of
overshoot adjustment; Although the non-linear system
without Newton iteration does not produce overshoot,
the adjustment time is long and the tracking effect is
poor.

Plant 2: laboratory liquid level control system is used
to verify the rationality of the designed controller. The
U model expression of laboratory liquid level control
system is

y(t) =ap +au(t—1)

where

ap(t) = 0.9722y(t — 1) — 0.04288y*(t — 2)
+0.1663y(t — 2)u(t — 2)
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+ 0.2573y(t — 2)ep(t — 1)

—0.03259y*(t — 1)y(t — 2)

—0.3513y%(t — Du(t — 2)

+0.3084y(t — Dy(t — 2)u(t — 2)
+0.2939y°(t — 2)ep(t — 1) — 0.1295u(t — 2)
+0.6389u*(t — 2)ep(t — 1)

a1 (t) = 0.3578 — 0.3103y(t — 1)
+0.1087y(t — 2)u(t — 2)
+ 0.4770y(t — 2)ey (t — 1)

The structure of RBF neural network adopts 1-7-1,
where in the input layer is a 1-layer, the hidden layer
is a 7-layer, the output layer is a 1-layer. Control
system without Newton iteration: learning rate n =
0.2, inertia coeflicient o = 0.01, initial value of C is
[-3-2-10123], initial value of b is 7, initial value
of weight is 0, initial values of k;, and k; are 0.4 and
0.01 respectively. Control system with Newton itera-
tion: learning rate n = 0.3, inertia coefficient @ = 0.01,
initial value of Cis [ -3 —2 —1 0 1 2 3], initial value of b
is 7, initial value of weight is 0, initial values of k, and
kg are 0.1 and 0.02 respectively. Triangular wave, sine
wave and square wave were selected for the input signal
in simulation experiment, and the simulation diagram
of system output and error signal was shown in Fig-
ures 10-15. Figures 10, 12 and 14 are system output
response graphs, while Figures 11, 13 and 15 are system
error graphs.

It can be seen from the system simulation graph
that the nonlinear control system without Newton iter-
ation has a large error in tracking the input signal, and
the addition of Newton iterative algorithm significantly
improves the control effect of the non-linear control
system and enables the system to track the ideal output

T T T T T T T T T
ideal output
without Newton iteration

0.6 Newton iteration I

output

L L L L L L L L L
0 20 40 60 80 100 120 140 160 180 200
time(ms)

Figure 10. System output response graph when triangular
wave input.
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error
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Figure 11. System error graph when triangular wave input.
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Figure 12. System output response graph when sine wave
input.
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Figure 13. System error graph when sine wave input.

better. It can also be seen from two simulation exam-
ples that when the nonlinear plant is the third-order
U model, that is, the nonlinear model is more compli-
cated, the control effect of the system without Newton
iterative algorithm becomes significantly worse, while
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Figure 14. System output response graph when square wave
input.
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Figure 15. System error graph when square wave input.

the control effect of the system with Newton iterative
algorithm remains unchanged. Therefore, after adding
the Newton iterative algorithm, the time-varying char-
acteristics of the nonlinear U model are weakened, and
the control effect of the nonlinear control system is
improved, so that the system can better track the ideal
output.

8. Conclusion

In this paper, the time-varying polynomial U model is
adopted to establish the nonlinear plant model. Based
on the nonlinear U model, RBF neural network and
PID parallel control are proposed as the control scheme
of nonlinear system. Considering the time-varying
characteristics of nonlinear pants, the Newton iterative
algorithm is introduced to complete the transforma-
tion of the nonlinear object model and weaken the
nonlinear characteristics of the object without approx-
imate processing, which ensures the accuracy of the
nonlinear plant model. The simulation shows that the
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control system with Newton iteration improves the con-
trol effect and the anti-interference of the system. At
the same time, Newton iterative algorithm is used to
transform the model of nonlinear plant, which reduces
the requirements of nonlinear control system design
and provides a new idea for some mature linear control
methods to be applied to nonlinear system design.
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