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ABSTRACT
Clustering of uncertain objects in large uncertain databases and problem of mining uncertain
data hasbeenwell studied. In this paper, clusteringof uncertain objectswith locationuncertainty
is studied. Moving objects, likemobile devices, report their locations periodically, thus their loca-
tions are uncertain and best described by a probability density function. The number of objects
in a database can be large which makes the process of mining accurate data, a challenging and
time consuming task. Authors will give an overview of existing clusteringmethods and present a
new approach for datamining and parallel computing of clustering problems. All existingmeth-
ods use pruning to avoid expected distance calculations. It is required to calculate the expected
distance numerical integration, which is time-consuming. Therefore, a newmethod, called Seg-
mentation of Data Set Area-Parallel, is proposed. In this method, a data set area is divided into
many small segments. Only clusters and objects in that segment are observed. The number of
segments is calculated using the number and location of clusters. The use of segments gives
the possibility of parallel computing, because segments are mutually independent. Thus, each
segment can be computed on multiple cores.

Paralelno klasteriranje nesigurnih podatka koristeći se segmentacijom područja podataka i
Voronojevim dijagramima. Klasteriranje podataka s nesigurnošću je vrlo proučavano područje
u velikim bazama nesigurnih podataka. U takvim bazama podataka teško je pronaći korisne
podatke umnoštvu podataka s nesigurnošću. U ovom radu proučavano je klasteriranje objekata
koji imaju nesigurnost položaja. Većina pokretnih objekata, kao što sumobilni ured−aji, periodički
izvještava svoj položaj, stoga je njihov položaj neprecizan te se mora opisati funkcijom gustoće
vjerojatnosti. Broj objekata ubazi podatakamožebiti jako velik i doći do točnihpodataka je izazo-
van zadatak i zahtijeva puno vremena. Sve metode za klasteriranje nesigurnih podataka koriste
slične principe. Ovim radom predložen je nov pristup. Prvo je dan pregled postojećih metoda,
a nakon toga predložena je nova metoda za paralelno klasteriranje nesigurnih podataka. Sve
postojeće metode koriste se različitim postupcima pročišćavanja kako bi se izbjeglo računanje
očekivane udaljenosti jer ono uključuje numeričke integracije i zahtijeva puno vremena. Pred-
ložili smo metodu nazvanu paralelna segmentacija područja podataka. U toj metodi, klastersko
područje podijeljeno je u mnogomalih segmenata te se promatraju samo klasteri i objekti u tim
malim segmentima. Broj segmenata izračunava se pomoću broja i položaja klastera u prostoru.
To nam daje mogućnost za paralelno računanje jer segmenti su med−usobno neovisni te se tako
svaki segment može računati na više procesorskih jezgri.
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1. Introduction

In many databases, data contain uncertainty, so min-
ing useful data from such uncertain databases is not a
simple task. Different factors, such as a measurement
error, sampling discrepancy and outdated data source,
contribute to data uncertainty. To cluster data with
location uncertainty, various methods are used, such
as UK-means, MinMax pruning and Voronoi pruning.
Clustered objects are mutually similar and near to the
cluster centre, thus forming similar groups. The loca-
tion of moving objects is uncertain because object loca-
tions are reported periodically. Therefore, the object’s
exact location must be estimated using the last known
location and uncertainty value. Uncertainty depends

on the location measurement error, speed of moving
objects, last reported direction, elapsed time etc. Clus-
tering methods can be used for many purposes: where
tracking of moving objects is needed, such as mobile
devices, traffic services, etc. An uncertain object is not
represented by the exact location, but by the uncertainty
region which is represented by a probability-density
function (PDF). In this paper, object’s locations are pre-
sented in 2D space and two-dimensional uncertainty.
In real life applications, PDF can be specified using
Gaussian distributions with means and variances [1].

For Gaussian distributions, a density function is
exponentially dropped, which means that the probabil-
ity density outside a certain region is zero. Thus, each
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object can be bounded by a finite bounding region. The
uncertainty region of a moving object is limited by the
maximum speed and elapsed time. The main issue in
the clustering process is the execution time, because
efficiency is very important in real-time applications.
In the clustering process, calculating the expected dis-
tances is the most demanding process, because numer-
ical integration is involved using a large number of
sample points for each PDF.

In [2], some pruning methods are introduced. In
these pruning methods, bounding regions for each
object are used to prune clusters. Using pruning meth-
ods, some clusters are eliminated as the candidate clus-
ters when a closer cluster for the observed object is
found. Thus, the computation of the expected dis-
tance from the object to pruned clusters is avoided,
and the computational cost is saved. In [3], pruning
methods based on Voronoi diagrams are introduced.
The spatial relationship among cluster representatives
in these pruning methods is taken into consideration.
Voronoi pruning is an improvement of the basic bound-
ing region method. In this paper, a new clustering
method is presented, and some issues that are not pre-
sented in the previous methods are discussed. This new
method is called Segmentation of Data Set Area – Par-
allel (SDSA-P). A data set area is divided into small
segments and only clusters and objects in those seg-
ments are observed, thus the number of object-cluster
observations is decreased. SDSA-P creates segments in
such a way that all segments are mutually independent
and can therefore be executed as parallel processes.New
investments are not needed because parallel methods
can be executed on a multi-core processor on one com-
puter, it is not necessary to by newhardware like graphic
cards or more computers to get parallel processing.

2. Overview of existingmethods

An object location can be uncertain in two ways: exis-
tential uncertainty and value uncertainty. An object is
existentially uncertain if it is uncertain whether that
object exists. In a relational database, an object is asso-
ciated with a probability value that indicates the confi-
dence of its presence [4]. Efficient query evaluation on
probabilistic databases is well explained in [5]. In the
second case, the object is known to exist, but the object’s
value is uncertain, and the location is not precise.

The object ismodelled as aminimumbounding rect-
angle (MBR), which bounds all possible location values.
In [1,4,6], MBR is described by a probability density
function. In this paper, clustering objects with value
uncertainty, such as location uncertainty, are studied.
MBR can be presented as rectangle, square or circle.
In this paper, MBR is presented as a rectangle, because
a rectangle shape is used in all cited references. Clus-
ter analysis is used to identify the most probable values
of model parameters [7] (such as means of Gaussian

mixtures), high-density connected regions [8] (such as
areas with high population density), or minimize the
total squared distance to cluster centres [9]. In this
paper, the latter case is studied with the aim of mini-
mizing the total squared distance from objects to clus-
ter centres. Distance can be measured, for example, a
city-block distance, Minkowski distance [10], Euclid-
ian distance etc. Data uncertainty is represented by a
probability density function, which is represented by
sets of sample values, and a large number of samples are
needed to improve the accuracy. The distance must be
calculated between all samples and the computational
cost is higher compared to the simple distance calcula-
tion [11]. In the basic UK-means clustering algorithm,
the expected distance (ED) is calculated from all objects
to all clusters, which makes the algorithm ineffective
[12]. In [2], the MinMax pruning method, which is sig-
nificantly more effective than UK-means, is presented.
Clustering uncertain data using Voronoi diagrams and
R-trees is presented in [13]. The mentioned method is
combined with the SDSA method presented in [14],
and a new and improved SDSA-P method is presented
in this paper. The SDSA method is used for segmen-
tation of the data set area and Voronoi diagrams for
cluster pruning. By synthesizing these two methods,
the new method acquires the best pruning qualities
taken from Voronoi diagrams, and by using the SDSA
method, a data set area is divided into segments which
are processed in parallel.

3. MinMax pruning

MinMax pruning method is presented in [2] as an
improvement of Uk-means. Before the method is used,
definitions are explained.

Definition 3.1 (Uncertain objects): Uncertain objects
are a collection of data O={o1, . . . ,on} in an m
dimensional space Rm, where the distance between two
objects is d(oi,oj) ≥ 0.

Definition 3.2 (Probability density function): The
probability density function of an object at point
x inside Rm is fi(x) > 0 (for points outside MBR
fi(x) = 0) and for all points

∫
x∈Rm fi(x)dx = 1.

Definition 3.3 (expected distance): Expected distance
from object oi, to any point y is calculated using next
formula:

ED(oi, y) =
∫
x∈Ai

d(x, y)fi(x)dx (1)

whereAi is finite region and fi(x) = 0 outside regionAi.

Definition 3.4 (clustering): The goal of clustering is
to find a set of cluster points C={c1, . . . ,ck} and
relation between objects and clusters h:{1, . . . ,n} →
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Figure 1. MBR of object, MinD and MaxD distance from an
object to a cluster.

{1, . . . ,k}, which minimize the total expected distance
among TED = ∑n

i=1 ED(oi, ch(i)) is minimized.

In MinMax pruning method minimum bounding
rectangle MBRi is used to avoid unnecessary expected
distance calculation. MBR is the smallest rectangle that
is equal to finite region Ai as shown in Figure 1.

Using MBR and inexpensive Euclidian distance cal-
culations, some clusters are pruned as candidates for an
object. Thus, expected distances from those clusters to
the object are not computed. For each object minimum
distance to cluster is defined:

MinD(oi, cj) = min
x∈MBRi

d(x, cj) (2)

Maximum distance to cluster:

MaxD(oi, cj) = max
x∈MBRi

d(x, cj) (3)

Smallest distance among all maximum distances:

MinMaxD(oi, cj) = min
cj∈C

{MaxD(i, cj)} (4)

It is obvious that the minimum distance from an object
to a cluster is smaller and the maximum distance is
larger than the expected distance from an object to a
cluster, as shown in the following formula:

MinD(oi, cj) ≤ ED(oi, cj) ≤ MaxD(oi, cj) (5)

Then, if it is satisfied the next condition:

MinD(oi, cp) ≥ MaxD(oi, cj)

Without computing the expected distances, cluster cp is
pruned from object oi, the expected distance is not cal-
culated and the execution time is shortened. MinMax
pruning is described by the following algorithm:

4. Voronoi pruning

In contrast to MinMax pruning, in the Voronoi prun-
ing method, the geometric structure of Rm is observed,
which means that spatial relationships between clusters

for all cj ∈ C and objects oi do
Compute MinD(oi, cj) and MaxD(oi, cj)
Compute MinMaxD(oi)
for all cj ∈ C do
if MinD(oi, cj)>MinMaxD(oi)then
Remove cj from CCi/*candidate clusters*/
for all remaining clusters calculate ED

are considered. In [3], it has been proved that Voronoi
pruning is theoretically strictly stronger than MinMax
pruning. The same authors presented hybrid methods
for even more efficient pruning. With a set of clusters
C={c1, . . . ,ck}, space Rm is divided into k cells with
the following property:

d(x, cp) ≤ d(x, cq) ∀x ∈ V(cp), cp �= cq (6)

After constructing Voronoi diagrams, the next step in
the iteration is Voronoi cell pruning, in which it is
checked whetherMBRi of object oi is completely inside
Voronoi cell V(cj). If so, object oi is assigned to clus-
ter cj and there is no need for ED computation because
all other clusters are pruned. Figure 2 shows thatMBR2
of object o2 is completely inside Voronoi cell V3, thus
object o2 is assigned to cluster c3. However, MBR1 is
particularly inside Voronoi cell V3 and object o1 can-
not be assigned to cluster c3. For all objects which are
not assigned to any clusters, the expected distance must
be calculated. Voronoi pruning can be combined to
develop hybrid methods, such as the combination of
Voronoi and bisector pruning, cluster shift method, etc

Voronoi pruning in combinationwith bisector prun-
ing method is described by the following algorithm:

5. Segmentation of data set area – parallel

This new method for parallel mining of uncertain data
is combining Voronoi diagrams and the SDSA method
presented in [14]. In the new Segmentation of Data

Figure 2. Voronoi cell for cluster c3.



352 I. LUKIĆ ET AL.

Compute the Voronoi diagram for C = {c1, . . . , cm}
for all cj ∈ C and objects oi do
if MBRi completely inside V(cj)

object o1 is assigned to cluster cj
for all unsigned objects and distinct clusters cp, cq
if MBRi on same side of Bp/q as cluster cp

Remove cq from CCi/*candidate clusters*/
for all remaining candidate clusters calculate ED

Set Area-Parallel (SDSA-P) method, the process of seg-
mentation is used, as shown in Figure 3. The SDSA-P
method can be combined with many existing methods
to significantly improve the execution times of original
methods. It has been experimentally proved in [14].

A data set area is divided into many segments to
reduce object-cluster observations and enable paral-
lel. Only objects and clusters inside a segment are
observed. According to this principle, many observa-
tions of object-cluster pairs are removed and the com-
putational cost saved. The smaller the segments are,
the more effective the clustering process is; however,
segmentation is limited by the number of clusters and
their position. It is important to note there is two
type of segments, object and cluster segment. Clus-
ters segment is larger than object segment, because
object segment must be surrounded with clusters to
ensure that clusters inside observed cluster segment are
closer to objects inside object segment than any clus-
ter outside observed cluster segment, such as clusters
in other cluster segment. A cluster segment contains an
object segment and all surrounding object segments. In
Figure 3, the process of segmentation is shown. Start-
ing from Figure 3(a) with a total data set area and all
16 object segments. In Figure 3(b), the outer object
segment with four objects is shown. It is surrounded
with three objects segments. These four segments create
a cluster segment, and ensure that any outside clus-
ter is closer to object segment. In Figure 3(c), one of
the inner segments surrounded with object segments
is shown. Inside that segment, six objects and associ-
ated MBRs are shown. For example, to observe each
object-cluster pair there are 640000 observations in a
data set with 10000 objects and 64 clusters. If the SDSA-
P method is used, objects O can be divided into 16
segments Oseg , and clusters C are divided into four
segments Cseg . The average number of objects in one
segment is 625, and the average number of clusters is
16. The total number of calculations for all 16 seg-
ments is 160,000 (16 segments × 16 clusters × 625
objects), as opposed to 640,000 calculations. A decrease
in the total number of calculations is proportional to
the number of cluster segments. However, segmenta-
tion has size limits, which is dependent on the number
of clusters and their position. An object segment must
be surrounded by clusters. If the number of clusters
is high, then segments are very small and can signif-
icantly speed up the clustering process. In this paper

Figure 3. Process of segmentation.

and in the experiments, objects are divided into 16, and
clusters into four segments. These numbers are used
because experiments are conducted on processor with
four cores, and each core process four cluster segment.
Further parallelization increasing number of segments
would have no effect. SDSA-P method has no restric-
tion for number of cluster or object segments, they
are limited by hardware configuration, cluster location
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and their number to ensure proper segments. Due to
the fact that all segments are mutually independent,
pruning methods (MinMax, Voronoi diagrams) can be
executed for each segment separately (as parallel pro-
cesses). The SDSA-P method is described using the
following pseudo-algorithm:

for all segments do
Compute the Voronoi diagram for Cseg ∈ C
for all cj ∈ Cseg and objects oi ∈ Oseg do
ifMBRi completely inside V(cj)

object o1 is assigned to cluster cj
for all unsigned objects and distinct clusters cp, cq

if MBRi on same side of Bp/q as cluster cp
Remove Cq from CCi/*candidate clusters*/

for all remaining candidate clusters calculate ED

There are different types of parallel computing
systems, like clusters, grids, distributed systems, multi-
core, many-core processors and cloud computing sys-
tems [15,16]. Parallelization is also possible using
CUDA [17,18] which is another type of parallelization
and has possibility to be used for SDSA-P method. In
this paper, the multi-core processor system is used, and
according toAmdahl’s law [19] speedup is proportional
to number of parallel processes. Uncertain data can be
clustered in distributed peer-to-peer networks [20]. In
the following section, the execution time of a serial
process, parallel processes on two cores and on four-
core processor ismeasured. Experiments are conducted
for SDSA-P 2 core and SDSA-P 4 cores. The pseudo-
algorithm can be executed serially and in parallel. The
serial execution is described in [14], and the execution
time is measured. It is stated that calculations for each
segment are interdependent and can be calculated in
parallel. Thus, withminor implementation changes, the
algorithm is transformed for parallel execution using
SDSA-P pseudo-algorithm and Matlab Parallel Com-
puting Toolbox for parallel processing. The algorithm
is searching for a free process. If it is available, it runs
this segment in a new process. More algorithms for
clustering uncertain data can be found in [21,22].

6. Experimental set-up

For a data set of n, corresponding uncertainties
described by MBRs are generated. All objects are
located in [0,100] x [0,100] 2D space. MBRs are gen-
erated to have random side length for each object, but
are bounded by the maximum length d of 10. For each
object, MBR is divided into a sqrt(s) × sqrt(s) grid,
where s is the number of samples per object’s proba-
bility density function. Probability for each cell is ran-
domly generated and the sum of all probabilities must
be equal to 1. All objects are randomly positioned in
space. For this data set, the initial cluster centres are
chosen uniformly from the 2D space mentioned above.

Table 1. Basic data set.

Parameter Description Value

n Number of uncertain objects 10000
k Number of clusters 49
d Maximum side length of MBR 10
s Number of sample point per object 196

Table 2. Basic data set experimental results

Method Execution time (s)

SDSA 93.75
SDSA-P 2 cores 62.25
SDSA-P 4 cores 44.63

The basic data set is represented in Table 1. It is themost
widely used data set in literature.

Each experiment is repeated 20 times to obtain a
more accurate average result. The experiment results
are compared to ensure that each method has the
same clustering results. All methods are implemented
inMATLAB 7.0 and carried out on PCwith a processor
Intel Core i7-870, 2.93GHz, with four physical cores,
and 4GB of main memory.

7. Basic parameters experiments

First experiment is conducted with parameters shown
in Table 1. Results are shown in Table 2.

In Table 2, the execution times are given in sec-
onds, and the serial process is compared to parallel
processes on two cores and four cores. The SDSA-P 2
cores method is 33.39% faster than the SDSA method,
while SDSA-P 4 cores is 53.4% faster.

It is important to note that the used processor has
only two physical cores and two virtual cores, and the
execution time of the SDSA-P 4 cores method would be
better on a processor with four physical cores. Hence,
the SDSA-P 4 cores method is recommended for the
basic parameters. In Figure 4, segments calculation for
the SDSA-P 2 cores method is shown. Grey segments
marked with number one are processed by the first core
and white segments with number two by the second
core. In Figure 5, segments calculation for the SDSA-P
4 cores method is shown. Grey segments are calculated
by the first and the fourth core, and white segments by
the second and the third core. In each core, there are two
inner and two outer segments for the purpose of better
distribution of the execution time, because the inside
segments are surrounded by more clusters and require
longer execution time.

8. Experiments with various numbers of
objects

In these experiments, various numbers of objects are
used, but other parameters retained the basic values.
Experiments started with 5000 objects and ended with
40000. The experimental results are shown in Figure 6.
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Figure 4. Segments calculation in two core process.

Figure 5. Segments calculation in four cores process.

Figure 6. Experimental results for various numbers of objects.

For a small number of objects (less than 5000), par-
allelization has a minor execution time improvement
compared to a serial method, because communication
between processes contributes significantly to the total
execution time. This communication occurs after each
iteration when processes for each cluster share new
position and objects assigned to that cluster. For a larger
number of objects, communication between processes
is negligible in total time, and benefits of paralleliza-
tion are visible. The execution times ratio of SDSA and
SDSA-P 2 cores is shown in Figure 7.

Figure 7. SDSA and SDSA-P 2 cores execution times ratio for
various numbers of objects.

Figure 8. Experimental results for various numbers of clusters.

The ratio for the SDSA and SDSA-P 4 cores method
is similar and there is no need to present it in a
figure. For 10000 objects, the execution times of paral-
lel methods are significantly better. For 40000 objects,
the execution time of the SDSA method is 675.25 sec-
onds, SDSA-P 2 cores 455.01 seconds, and SDSA-P
4 cores 376.55 seconds. In this case, execution time
improvements are 32.61% and 44.35%. In Figure 7,
the execution time ratio rises with the number of
objects. Therefore, when more computational power is
needed, a parallelmethod for a larger number of objects
is recommended, while for small number of objects
improvements is not significant because of communi-
cation after each iteration.

9. Experiments with various numbers of
clusters

In these experiments, the number of clusters k varies
from 16 to 144 with the basic values for other param-
eters, as shown in Figure 8. In Figure 9, the execution
times ratio of a serial and two cores parallel process for
different number of clusters is shown. As the number
of clusters increases, cluster centres are closer and there
is less probability for successful cluster pruning. Con-
sequently, more ED calculations must be performed to
assign an object to the cluster. ED calculations have
a significant contribution to the total execution time.
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Figure 9. SDSA and SDSA-P 2 cores execution times ratio for
various numbers of clusters.

Figure 10. Experimental results for various sizes of MBR.

Thus, with a larger number of clusters, parallel pro-
cesses perform better than a serial process. ED calcula-
tions are distributed tomore processes and each process
calculates only one part of ED calculations.

Based on the Figure 9, we can conclude that the
advantages of parallelization become apparent as the
number of clusters is higher, because the execution
times ratio is higher as the number of clusters increases.

10. Experiments with various size of MBR

In these experiments, the size of MBR varies from
1 to 20 with the basic values for other parameters.
The results are shown in Figure 10. It is visible that
the execution time increases with the size of MBR.
With a larger size of MBR, it is more probable that
the MBR of an object will overlap with the borders of
Voronoi cells causing unsuccessful pruning and more
ED calculations.

Again, parallel processes are more effective because
each process executes only a part of ED calculations,
whereas a serial process calculates all ED calculations.
Thus, in this case, parallel methods are more effective.
In Figure 11 the execution time ratio for various sizes
of MBR is shown. Ratio ranges from 1.32 for MBR = 1
to 1.57 for MBR = 20.

Figure 11. SDSA and SDSA-P 2 cores execution times ratio for
various sizes of MBR.

11. Conclusion

In this paper, methods for parallel clustering of uncer-
tain data are studied, and it has been experimentally
confirmed that those methods yield better results than
the serial method. Too much of the execution time is
spent on ED calculations, because it involves numerical
integration. The goal of all methods is to avoid ED cal-
culations. However, ED calculations cannot always be
avoided. In this paper, it has been found out which parts
of the clustering method can be parallelized. SDSA-P
methods were the best choice for parallelization. Cal-
culation using segmentation can be easily parallelized
with some changes in the serial method. The effec-
tiveness of parallel methods has been experimentally
proved, because the execution time has improved as the
number of objects and clusters, andMBRhas increased.
This is due to the influence of communication between
processes which is less important in the total computa-
tional costs. In our experiments, four parallel processes
on four cores are used because of the hardware lim-
itations. However, in practice, the number of parallel
processes, which are employed, can be equal to the
number of segments. The number of segments was 16
and, theoretically, 16 parallel processes could have been
used. The experiment results showed that the paral-
lel method outperformed the existing serial methods.
In future work, the segmentation algorithm will be
improved for optimal calculation sizes and number of
segments, according to the number of clusters and their
position. Using this algorithm, the maximum number
of segments will be used for each cluster analysis. Thus,
the number of parallel processes would be maximized
and the execution time more reduced.
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